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Abstract

The analysis and understanding of highly dynamic movements is a fundamental part

of biomechanics. Since sports injuries often involve the lower extremities and muscles,

musculoskeletal models can help to prevent them. These models allow the calculation

of ground and joint reaction forces as well as muscle forces and activities for individual

muscle strands. One goal of this work is to use musculoskeletal models to investigate the

influence of mental stress on lower extremity loading. Moreover, the models themselves

are evaluated for highly dynamic movements and practical recommendations for action

will be derived.

For this purpose, fast movements of youth competitive and amateur athletes will be

recorded using different measurement systems. Subsequently, the models calculate the

target parameters using inverse dynamics. Furthermore, measured and calculated muscle

activities of the lower extremities are compared and artificial balancing forces (residuals)

in the models are analyzed and minimization approaches are presented.

The investigation of muscle and joint loading under mental stress has shown that

the response to mental stress is highly individual. Athletes may experience a significant

increase in muscle and knee forces with a simultaneous decrease in performance. The

comparison of measured and calculated muscle activity proved the reliability of the models

also for highly dynamic movements. With the frequently used default settings in the

model and optical and inertial motion capture, the muscle activities in the model could

be calculated reliably. The residual forces were highest, when the model transitioned

from foot-ground contact to no contact and vice versa. By adjusting the settings of the

kinematic filter and the ground reaction force prediction, the residuals were reduced by

up to 54%.

The analysis of musculoskeletal loading under mental stress has shown that the models

can make a valuable contribution to the biomechanical analysis of highly dynamic move-

ments. Subsequently, the models have also proven to be a reliable tool for the analysis of

highly dynamic movements when the calculated parameters as well as the model-specific

optimization options are reviewed. With this in mind, these models can contribute to

further understand highly dynamic movements and prevent muscle injuries in athletes.
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Zusammenfassung

Die Analyse und das Verständnis hochdynamischer Bewegungen ist ein fundamentaler

Bestandteil der Biomechanik. Da Sportverletzungen häufig die unteren Extremitäten

und Muskeln betreffen, können muskuloskelettale Modelle dazu beitragen, sie zu vermei-

den. Diese Modelle ermöglichen die Berechnung von Boden- und Gelenkreaktionskräften

sowie von Muskelkräften und -aktivitäten für einzelne Muskelstränge. Ein Ziel dieser

Arbeit ist es, mit Hilfe von muskuloskelettalen Modellen den Einfluss von mentalen Be-

lastungen auf die Belastung der unteren Extremitäten zu untersuchen. Darüber hin-

aus werden die Modelle selbst für hochdynamische Bewegungen evaluiert und praktische

Handlungsempfehlungen abgeleitet.

Zu diesem Zweck werden schnelle Bewegungen von jugendlichen Leistungs- und Freizeit-

sportlern mit verschiedenen Messsystemen aufgezeichnet. Anschließend berechnen die

Modelle mittels inverser Dynamik die Zielparameter. Weiterhin werden gemessene und

berechnete Muskelaktivitäten der unteren Extremitäten verglichen sowie künstliche Aus-

gleichskräfte (Residuen) in den Modellen analysiert und Minimierungsansätze vorgestellt.

Die Untersuchung der Muskel- und Gelenkbelastung unter mentalem Stress hat gezeigt,

dass die Reaktion auf mentalen Stress sehr individuell ist. Bei einzelnen Personen kann es

zu einem deutlichen Anstieg der Muskel- und Kniegelenkreaktionskräfte bei gleichzeitiger

Leistungsminderung kommen. Der Vergleich von gemessener und berechneter Muskelak-

tivität beweist die Zuverlässigkeit der Modelle auch bei hochdynamischen Bewegungen.

Mit den häufig verwendeten Standardeinstellungen im Modell und der vielseitigen Bewe-

gungserfassung konnten die Muskelaktivitäten im Modell zuverlässig berechnet werden.

Die Residualkräfte waren am höchsten, wenn das Modell von Fuß-Boden-Kontakt zu

keinem Kontakt und umgekehrt überging. Durch Anpassung der Einstellungen des kine-

matischen Filters und der Berechnung der Bodenreaktionskraft konnten die Residualkräfte

um bis zu 54% reduziert werden.

Die Analyse der muskuloskelettalen Belastung unter psychischer Beanspruchung hat

gezeigt, dass die Modelle einen wertvollen Beitrag zur biomechanischen Analyse von

hochdynamischen Bewegungen leisten können. In der Folge haben sich die Modelle

auch bei der Überprüfung der berechneten Parameter sowie der modellspezifischen Opti-

mierungsmöglichkeiten als zuverlässiges Werkzeug für die Analyse hochdynamischer Be-

wegungen erwiesen. Daher können die Modelle dazu beitragen, hochdynamische Bewe-

gungen besser zu verstehen und Muskelverletzungen bei Sportlern vorzubeugen.

7



Chapter 1

Introduction

Understanding fast movements in sports or in everyday life is an essential part of biome-

chanics. The main goals of sports biomechanics studies are the improvement of perfor-

mance and the prevention of injuries (Bussey 2002). While performance analysis usually

has its focus on kinematic and kinetic outputs such as running times, exerted force or

repetitions, injury prevention often concentrates on intrinsic parameters like joint reaction

forces (JRF) and moments or muscle activity and muscle forces.

In amateur and professional sports muscle injuries of the players are a major problem.

However, the injury mechanisms and types differ from the usual occupational diseases

and, since professional athletes often are highly paid, the costs for their outages are high.

In addition, there are the individual health consequences of the injuries for the athletes

themselves. Consequently, it is beneficial for the teams, the society and the players to

prevent injuries of athletes. A large proportion of sports injuries are caused by muscular

problems as they make almost a third of all injuries (Ekstrand et al. 2011a). In addition,

many injuries are potentially caused or facilitated by mental stress (Jansen et al. 2019).

Therefore, it is of enormous importance to be able to grasp and analyze these connections.

By understanding the complex and intricate processes involved in dynamic motions, it is

possible to optimize movements in sports or prevent injuries in general.

For these reasons, the use of musculoskeletal models to analyze fast, highly dynamic

movements has increased noticeably in recent years. Musculoskeletal models that allow

deep insight into athletes and the forces acting internally can help to better understand

injury mechanisms and causes, and consequently prevent damage. While conventional

investigations are often limited to one or two time slots due to fixed force plates, mod-

els allow for more extensive research because they provide more complete data. Since

these models were initially developed for slower movements or orthopedic research, they

have been tested and validated thoroughly for these kinds of applications (Rasmussen

et al. 2001; Wu et al. 2009; Andersen et al. 2010; Fluit et al. 2014). Nevertheless, a

comprehensive assessment of these models in highly dynamic movements has yet to be

made.

8



CHAPTER 1. INTRODUCTION 9

1.1 Mental stress

Although it is commonly described as emotional pain, the definition of mental stress is

ambiguous. There are many different manifestations of mental stress, as it can occur

in the form of major events (crises), daily hassles, or environmental situations (Jones

2001). Regardless of its form, mental stress is considered a major public health issue

with significant social and economic consequences. This is because mental stress can lead

to a variety of physical and psychological health problems, such as anxiety, depression,

sleep disturbances, cardiovascular diseases, and impaired cognitive function (Pastorino

and Doyle-Portillo 2019). Selye (1976) defined stress as a nonspecific response of the

body to any demand placed on it and divided it into eustress and distress. Eustress

refers to the positive form of stress that can be motivating and lead to personal growth,

while distress refers to the negative form of stress that can be harmful and cause anxiety,

depression, or other mental health problems. This reaction to stress is described by the

Hebbian version of the Yerkes–Dodson law (Figure 1.1).

low high
Arousal

low

high

Pe
rfo

rm
an

ce Increasing attention
and interest

Optimal arousal
Optimal performance 

Impaired performance
because of strong anxiety

Figure 1.1: Hebbian version of the Yerkes-Dodson law. The law describes the human
reaction to different levels of stress. The Hebbian version leaves out that hyperarousal
does not adversely impact simple tasks. Figure adapted from Diamond et al. (2007).

In addition, Lazarus and Folkman’s transactional model of stress (Lazarus and Folk-

man 1984) describes how individuals evaluate the demands of a situation and their ability

to cope with those demands, which in turn affects their level of stress.

Overall, there are many theoretical frameworks that attempt to explain the causes

and consequences of mental stress. However, it is widely recognized that mental stress

is a complex phenomenon influenced by various biological, psychological and social fac-

tors. Therefore, a multidisciplinary approach is needed to fully understand and effectively

address mental stress in individuals and populations and research its cause.
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There are many causes of mental stress. Some common causes of mental stress include

interpersonal conflict, financial difficulties, work-related stressors, major life events (such

as divorce, job loss, or the death of a loved one), and chronic health problems. Envi-

ronmental factors such as noise, air pollution, and overcrowding can also contribute to

mental stress. Moreover, individual factors such as personality traits, coping mechanisms

and resilience can play an important role in the development and management of mental

stress (Selye 1976; Cooper 1986). For athletes in particular, the pressure to perform at a

high level and to meet the expectations of coaches, teammates, and fans can contribute

to psychological stress. Especially in sports, eustress can also be experienced when an

athlete is motivated and energized by the challenge of competition, leading to improved

performance. However, when stress becomes chronic and overwhelming, it can lead to

negative outcomes such as burnout, injury, and mental health disorders such as anxiety

and depression. For athletes in particular, a healthy mix of eu- and distress, as shown in

Figure 1.1, can be important in order to be able to perform accordingly.

However, the principle of increasing performance with rising stress levels is not undis-

puted. In recent literature, for example, there is growing doubt about the empirical basis

for this theory (Corbett 2015). Consequently, there is still room for the investigation of

mental stress and its actual effects on sports.

1.2 Muscle physiology

Figure 1.2: Structural anatomy of a skeletal muscle. Adapted from Carnes and Pins
(2020).

Humans have several types of muscles. Skeletal, smooth, and cardiac muscles are the

three main types of muscles in the human body. However, since this thesis is mainly about

skeletal muscles, the other types will not be discussed in this text. Skeletal muscles are

attached to the bones and allow the skeleton to move. These muscles are responsible for

voluntary movements, such as walking and talking, and account for about 40% of total

human weight. Skeletal muscles are called striated muscles because of the striated pattern
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formed by the arrangement of actin and myosin filaments. A single muscle consists of

several muscle bundles, each of which is composed of individual muscle fibers. Figure 1.2

describes the structural anatomy of a skeletal muscle.

The muscle fibers are multinucleated, meaning they contain multiple nuclei, which are

essential for protein synthesis and maintaining cellular metabolism. Muscle fibers are also

composed of multiple myofibrils made up of sarcomeres, the basic functional unit of muscle

contraction. Sarcomeres contain two types of protein filaments, actin and myosin. The

sliding of these two filaments past each other is responsible for muscle contraction, which

is triggered by the release of acetylcholine, a neurotransmitter that binds to receptors on

the muscle fibers. The functional structure of a sarcormer is described in Figure 1.3.

Z-disc
Actin filament

Titin filament

M-line

Myosin filament

Figure 1.3: Functional structure of a relaxed sarcomere. The myosin filaments in the
middle of the sarcomere and actin filaments interlock with each other. The titin filaments
bind the actin filaments to the Z-discs and serve as elastic feathers during contraction.
The M-line in the middle connects the Myosin filaments. Adapated from Brandes et al.
(2019, p. 131).

To control skeletal muscle strength, muscle fibers are grouped into motor units. They

describe a set of muscle fibers that are activated by a motoneuron. Consequently, to gen-

erate more muscle force, more motor units are activated and vice versa. In addition to the

number of activated motor units, muscle force is also regulated by the variation in action

potential frequency. By increasing the frequency, a superposition of individual muscle

activations is achieved, resulting in higher muscle force. There are large motor units

with predominantly slow twitch fibers (Type I) and small motor units with mainly fast

twitch fibers (Type II). While the small motor units are typically responsible for precise

movements, the large motor units are usually involved in rough or holding movements.
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Muscles can produce passive forces in addition to active ones. Unstimulated, resting

muscles exert a passive force when stretched beyond their resting length. The passive

force exerted increases in a non-linear relationship with increasing stretch, implying an

increasing Young’s modulus as a function of muscle stretch. The slope varies for different

skeletal muscles and depends on the different titin isoforms and the content and cross-

linking of the collagen fibers. Passive muscle force is also added to the muscle force when

active force is applied. Thus, muscle stretch affects both active and passive muscle force.

The relationship between active and passive muscle force is described in Figure 1.4.

0.0 0.5 1.0 1.5
Muscle length, 1 = length at maximum force

0

50
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active force
passive force
resulting muscle force

Figure 1.4: Relationship between active and passive muscle force

1.3 Relationship of mental stress and musculoskele-

tal loading

This section is also part of a contribution published in ”Die Orthopädie” under the ti-

tle ”Kombinierter Einfluss von psychologischen und biomechanischen Faktoren auf die

muskulären Belastungen beim Fußballspielen. Ein neuer Ansatz zur Prävention von

Muskelverletzungen?” (Auer et al. 2023).

Study results indicate that psychological factors are also associated with the risk of

sports injuries. Personality traits such as anxiety and an associated reduced ability to cope

with stressful situations in the form of negative life events or everyday stress have been

identified as indicators. This has been demonstrated in cross-sectional and prospective

studies (Alahmad et al. 2020; Ivarsson et al. 2013). In addition to this individual level,

risk factors can additionally be identified in the interpersonal domain. This can be seen,
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for example, in correlations between the coach-athlete relationship and an increased risk

of injury (Pensgaard et al. 2018). Previous injuries also represent a stress factor that can

lead to increased anxiety and thus to a vicious circle (Jansen et al. 2019). The risk of

injury also increases additionally with the duration of the stress. For example, increased

stress over three to four weeks leads to a significantly increased risk of injury (McCall

et al. 2018). In order to assess the risk of injury, multiple factors must therefore be taken

into account, which act directly or indirectly on the musculature.

Task

- active
- passive
- external loads

Musculoskeletal load

- changes in posture
- muscle forces
- joint loads

Body reaction

- tissue injuries
- degeneration
- rebuilding processes

Mental load

- cognitive
- emotional

Physiological reaction

- muscle strain
- changes in body kinematics
- heart rate/EDATissue loads

- muscle tension

Body reaction

- Allostatic Load

Mental stress

- individual stress reaction

Figure 1.5: Cascade of the biomechanical and mental load. Adapted from Auer et al.
(2023).

The effects of biomechanical and mental loads can be summarized in a cascade struc-

ture (Figure 1.5). In the case of biomechanical loads, activities such as sprints lead in the

first stage to musculoskeletal loads in the form of, for example, muscle and joint forces

or ligament strains. The integral loads on structures can also be represented at a further

level of discretization as tissue loads such as muscle tension or joint compression. From

the point of view of structural mechanics, this level is usually used to further describe

changes in tissue structure such as the development of injuries, or the initiation of re-

modeling processes or degeneration. Analogously, in a first stage, the influence of mental

loads, for example of a cognitive or emotional nature, can lead to mental stress depending

on moderating factors such as individual evaluation processes, from which a psychical

reaction can result. Typical measurable physical reactions to a higher mental stress are

an altered heart rate and skin conductance, an increase in muscle tone and altered body

kinematics (Selye 1976; Lundberg et al. 2002). Here is an obvious cross-connection be-

tween mental and biomechanical loads. The physiological responses to the mental loads
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directly influence the biomechanical loads at the muscular level, through an increase in

preload and conditioned by the altered body kinematics. Nevertheless, there is little to

no literature investigating the effects of mental stress on individual muscles.

1.4 Musculoskeletal modeling

This section is based on the information available in the AnyBody Tutorials (AnyBody

Technology 2023). Other references are given, if applicable.

Figure 1.6: Full body model of the AnyBody Managed Model Repository (AMMR). The
bones are depicted in beige, muscles in salmon. The blue and red lines at the bottom
represent the ground reaction forces (GRF).

Musculoskeletal models are a special field of multi-body dynamics. A popular appli-

cation for musculoskeletal models is the AnyBody Modeling System (AMS) (AnyBody

Technology A/S, Aalborg, Denmark) with its open-code model library, the AnyBody

Managed Model Repository (AMMR). The models consist of rigid bodies, representing

human bones, actuators acting as muscles and other important support-components such



CHAPTER 1. INTRODUCTION 15

as tendons and ligaments (Figure 1.6). The joints defining the connection between the

modeled bones imitate the functionality of the anatomical human joints. The muscu-

loskeletal models in the AMS are based on an inverse dynamics approach. While other

musculoskeletal models are based on forward dynamics and calculate the motion on the

given forces, inverse dynamics models calculate forces and moments based on a given

motion and defined inertial properties.

𝑭𝑭 = 𝒎𝒎𝒂𝒂
𝑭𝑭 = 𝒎𝒎 �̈�𝒙

𝑭𝑭 = 𝒎𝒎𝒂𝒂
𝑭𝑭 = 𝒎𝒎 �̈�𝒙

𝑭𝑭 ∫∫

𝑭𝑭

𝒙𝒙

𝒙𝒙 𝒅𝒅𝒅
𝒅𝒅𝒅𝒅𝒅

Forward dynamics: 

Inverse dynamics: 

Figure 1.7: Simplified principles of the forward and inverse dynamics approaches. F
represents the occurring forces, m the objects mass, a and ẍ the acceleration, x the
motion and t the time.

Muscle recruitment

Since the models are based on an inverse dynamics approach, they can calculate internal

and external parameters through differentiation of a given motion (Figure 1.7). However,

the human body consists of hundreds of muscles and bones interacting in many complex

configurations. Additionally, since there are many more muscles involved in the movement

than there would be necessary to balance the body’s degrees of freedom (DOF), the human

body is a kinetically overdetermined system. This problem is solved mathematically by

formulating the boundary conditions, internal and external forces, and movements as

an optimization problem. It minimizes internal forces in respect of given motion and if

applicable external forces. With this approach, the kinetics of individual body parts can

be calculated (Damsgaard et al. 2006).

Since rigid body systems need actuators that exert forces on the system, a major

part of inverse dynamics is muscle recruitment. In humans as well as in musculoskeletal

models, this part is taken by muscles attached to the bones. In humans this involves

the detachment of cross bridges and the re-uptake of calcium as two energy-consuming

processes (Praagman et al. 2003; Praagman et al. 2006) and the human body strives to
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minimize energy consumption. In terms of inverse dynamics, the process of balancing a

given external load through muscle activation is called muscle recruitment and is described

as an optimization problem. The equilibrium equations can be organized like

C ∗ f = r (1.1)

with f as a vector of muscle and joint forces, r as a vector of external and inertia

forces and C as the matrix of equation coefficients. f is restricted to positive numbers,

since muscles can only exert forces in one direction. Furthermore, the human muscu-

loskeletal system is highly complex and redundant since there is more than one muscle

to perform a certain movement. Mathematically, this results in more unknowns in the

equilibrium equation than it has equations and consequently infinitely many solutions.

The optimization problem for the muscle recruitment can be described as follows:

minimize G(f (M))

subject to C ∗ f = r

f
(M)
i ≥ 0, i = 1...n(M)

(1.2)

G(f (M)) is the target function of the optimization problem, that can have different

forms in the AMS. Ideally, the target function should represent the physiological muscle

activation exactly but since this isn’t possible, there are different approximations taking

the numerical peculiarities of the AMS into account. The simplest approximation of phys-

iological muscle recruitment is a linear combination of muscles where the target function

looks like this:

G =
∑
i

fi
Ni

(1.3)

Ni represent the normalization factors, which usually is the individual muscle strength

and causes strong muscles to work more than weak muscles. Practically, this means that

the AMS only recruits the minimum number of muscles necessary to balance the system,

although this is non-physiological. In order to improve the physiological behavior of the

musculoskeletal model, one can introduce a polynomial to the target function

G =
∑
i

(
fi
Ni

)p

(1.4)

where the power p increases the synergy between muscles. The higher p gets, the

higher the synergy is and an infinite p would mean maximum synergy. Nevertheless,

increasing the power of the polynomial decreases numerical stability of the model and

therefore, the default value is p = 2 for motion capture models with ground reaction force
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prediction (GRFP) and p = 3 for all other models. However, there’s also the possibility to

use a recruitment algorithm that allows for minimum fatigue by minimizing the maximum

relative load in the muscles. This can mathematically be described by setting p = ∞.

Since an infinite p would lead to hard, non-physiological on- and offsets of muscle activity,

it can be combined with a quadratic term:

minimize G = β + ϵ ∗
∑
i

(
fi
Ni

)2

subject to
f
(M)
i

Ni

≤ β, for i = 1...n(M)

C ∗ f = r

f
(M)
i ≥ 0, for i = 1...n(M)

(1.5)

Here β describes the numerical representation of an infinite p in Equation 1.4 in the

AMS and ϵ is a factor to weigh the additional quadratic term. In practice, this formulation

of the muscle recruitment optimization algorithm leads to a simultaneous reduction of all

muscle activities with soft on- and offset for the individual activities. Nevertheless, when

independent model parts are used in the same application, this recruitment algorithm

leads to unreasonable results and therefore should be handled with care.

Muscle modeling

Besides muscle recruitment, there are also different ways of modeling muscles in mus-

culoskeletal models and since the muscle force is dependent on the used muscle model,

muscle modeling consequently influences the muscle recruitment. For modeling, one has

to distinguish between the kinematic implementation of the muscle, which determines the

muscle’s path from origin to insertion and the kinetic representation which defines the

muscle’s strength and other properties depending on the muscle’s kinematics.

One way to define the muscle paths is by giving specific points (nodes) in the mus-

culoskeletal model to which the muscle is attached and follows a straight line between

two points. The first and last point transfer the muscle force in the muscle’s longitu-

dinal direction while the via points only transfer forces along the line that bisects the

angle formed by the muscle on the two sides of one via point. Although this makes mus-

cle pathing quite simple and kinematically robust, this approach is limited in creating

complex geometrical muscle pathings that change with different joint angles. Therefore,

one can additionally use geometrical shapes as wrapping surfaces for the muscles. By,

for example, combining cylindrical surfaces with via points one can create complex and

physiological muscle pathings.
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The muscle properties can be defined in multiple ways in the AMS. The most often used

properties are the simple muscle model and the Hill-type muscle model. The simple muscle

model calculates the muscle’s strength depending on its physiological corss-sectional area

(PCSA) and a strength index (SI) acting as a scaling factor. Consequently, the muscle

force (FM) is calculated as follows:

FM = SI ∗ PCSA (1.6)

The three-element Hill-type muscle model calculates the muscle force depending on

the active properties of the muscle fibers (FCE), the elasticity of the tendon (FT ) and also

the passive stiffness of the muscle fibres (FPE):

FM = FCE + FPE + FT (1.7)

Figure 1.8: Schematic view of the mechanical properties of the three-element Hill-type
muscle model. It consists of a contractile element (CE), a passive element (PE), and an
elastic element (T).

A schematic view of the mechanical properties is shown in Figure 1.8 and the concepts

for this model in the AMS are adopted from Zajac (1989). Although the described prop-

erties are not the only ones in the model, they are often used in different combinations

and there is little literature on the practical implications in highly dynamic movements.
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1.5 Research questions

It is well known that mental stress promotes muscular injuries in competitive sports

(Ivarsson and Johnson 2010; Ivarsson et al. 2013; Jansen et al. 2019), but the exact

mechanisms are unknown. There are suggestions that psychological stress can lead to

force peaks in the (leg) muscles, but detailed studies are lacking. Musculoskeletal models

are ideally suited for these research questions, as they allow analysis of muscle forces at

the level of individual muscle strands. This problem is addressed in chapter 2 and refers

to research question 1.

Further on, the musculoskeletal models used in these studies are tested and validated

for normal and slow movements only. Investigations regarding muscle modeling, muscle

recruitment and activation in musculoskeletal models in highly dynamic movements like

sprinting are rare. Consequently, these models need to be evaluated for such applications,

which leads to research question 2 and is treated in chapter 3.

As preliminary investigations have shown, musculoskeletal models driven by motion

capture inherit artificial balancing forces (human-ground-residuals (HGR)), influencing

the calculated results. In order to investigate the height and effects of the HGR on

musculoskeletal models and approaches to minimize them, research question 3 is addressed

in chapter 4.

The research questions are formulated as follows:

1. How does the muscle and joint reaction force behave under the influence of mental

stress in elite junior football players for highly dynamic, sports related motions?

2. Does the musculoskeletal model’s muscle activity in the lower extremities match the

physiological muscle activation in highly dynamic motion, and what’s the influence

of different muscle modeling options?

3. When and to what extent do HGR occur in simulations of highly dynamic motions

and how can their occurrence be influenced?

Each of the following chapters deals with a separate research question.



Chapter 2

Musculoskeletal loading under

mental stress in football-related

movements

This chapter addresses research question 1: ”how do the muscle and joint reaction forces

behave under the influence of mental stress in elite junior football players for highly

dynamic, sports related motions?” The text and figures are mostly based on the pa-

pers ”Mental stress reduces performance and changes musculoskeletal loading in football-

related movements” published in Science and Medicine in Football by Auer et al. (2021)

and ”Effect of mental demand on knee forces in professional youth soccer players” pub-

lished in the ISBS Proceedings Archive: Vol. 38 by Auer et al. (2020).

2.1 Introduction

Despite its popularity, football bears a considerable injury risk. Injuries to the thigh

muscles are common in amateur and professional football, representing almost a third of

all injuries (Ekstrand et al. 2011b). These can lead to a range of costs, including financial

costs associated with treatment and those associated with long-term recovery and ab-

sence from training or competition. Further, there is a high risk of injury recurrence and

subsequent injury (Ekstrand et al. 2011b). These injuries usually occur in non-contact or

overuse situations (Loose et al. 2019; McCall et al. 2018). Half of the injuries occur during

matches (Junge et al. 2002), and these matches involve a high physical workload com-

bined with psychological aspects. Psychological aspects have previously been identified as

potential risk factors for injury (Ivarsson and Johnson 2010; Ivarsson et al. 2013; Jansen

et al. 2019; Junge et al. 2002). These psychological reactions occurred in the form of cog-

nitive anxiety and changed mood states, which led to increased cortisol and testosterone

levels (Slimani et al. 2017). Besides professional players, players in semi-professional and

20
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elite junior football have a comparably high risk of injury, especially on the musculature

(Loose et al. 2019). These competition levels are characterized by the same high ambi-

tions and physical demands of the players as in professional football. Mendez-Villanueva

et al. (2013) reported an average running distance of 8450 m for U17 players, while it

was 8810 m for adults (Rebelo et al. 2014). Rebelo et al. (2014) additionally reported an

average heart rate of 85% of the maximum heart rate of the U17 stating similar physical

effort for youth and adult players.

Since it is a considerable risk for injury (Arnason et al. 2004), this work aims to ex-

amine the effects of mental stress in the form of additional attention-grabbing tasks in

highly dynamic motion. The effects of this kind of mental stress on the body have been

studied before, with arithmetic tasks used as a form of mental stress (Lundberg et al.

2002; Nimbarte et al. 2012; Wijsman et al. 2013). Others used short-term memory tests

(Bloemsaat et al. 2005; Wijsman et al. 2013), negative/unsupportive language (Marras

et al. 2000) or additional cognitive tasks (Srinivasan et al. 2016). There, muscle activity

in the upper extremities and back was increased significantly under stress. Also, muscles

were active even though there was no physical necessity for this. In addition to higher

muscle tone, compression and shear forces in the spine increased (Marras et al. 2000).

While these studies (Bloemsaat et al. 2005; Lundberg et al. 2002; Marras et al. 2000;

Wijsman et al. 2013) consistently detected higher biomechanical loading under mental

stress, some information is still missing. The motion is mostly quasi-static or low dy-

namic since they arise from workplace ergonomics. Moreover, most studies focus on

muscle activities, lacking kinetic information of internal parameters like muscle or joint

reaction forces, since collecting such information is quite difficult.

For this purpose, musculoskeletal simulation is a valuable tool. Such software has been

used in different sports-related fields to analyze internal biomechanical parameters. Ali et

al. (2014) investigated non-contact ACL injury rates in single-leg landings using individu-

alized 3D musculoskeletal models of the human body. Although they could only indirectly

validate the internal forces, this was the first study to report joint reaction and muscle

forces during single-leg landings. Skals et al. (2017) gave another example of analyzing

highly dynamic motion. They examined predicted ground reaction forces and moments

for running, side-cutting and vertical jumping with human body models. They found

that the estimates are comparable to measured ground reaction forces (median Pearson’s

correlation coefficient, r = 0.99) and moments as well as joint flexion moments (median

r = 0.93) and resultant joint reaction forces (median r = 0.97). Hence, musculoskeletal

simulation opens the possibility of adequately mapping highly dynamic movements using

motion capture and musculoskeletal modeling.
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Although current studies (Ivarsson and Johnson 2010; Ivarsson et al. 2013; Jansen et al.

2019; Junge et al. 2002) show that mental stress increases the injury risk for competitive

footballers, there is a lack of research into the exact injury mechanisms. Most studies

refer to longer-term exposure to stress. To the best of the authors’ knowledge, there are

no studies investigating the acute occurrence of mental stress in the form of an additional

attention-grabbing, mental task and its effects on the peak muscle force of competitive

footballers. Hence, the purpose of this study was to examine the musculoskeletal reaction

of elite junior football players exposed to mental stress in highly dynamic motion. In

particular, we want to analyze the players’ performance in terms of running speed and the

changes in exerted muscle force in the lower extremities with and without and additional

mental stressor.

2.2 Materials and Methods

For this study, professional youth football players were subjected to mental stress while

performing standardized, sports-specific movements. The kinetics of these movements are

computed with inverse dynamics software. Ethical approval was obtained in advance by

the University of Regensburg (Number: 15-101-0137).

Participants

Twelve football players from a German U17 elite junior football team of a 2nd Bundesliga

club were tested. The mean age was 15.9±0.3 years. The average weight was 72.5±5.3 kg

and the mean height was 1.80±0.06 m. The players’ mean training time per week was

7.5±0.5 h. All players granted their informed consent. Players with a muscle injury within

six weeks before the testing were excluded from the study.

Study Design and Protocol

This study was performed in a SpeedCourt (Globalspeed GmbH, Hemsbach, Germany),

where the test subjects completed two runs. The SpeedCourt System is a 4 x 4 m field

with twelve integrated pressure plates and a screen in front of it (Figure 2.1). The pressure

plates are connected to a computer, which detects foot contacts and highlights the target

field on the screen. This system has already been used to recreate standardized, sports-

related change-of-direction (COD) maneuvers (Achenbach et al. 2019; Düking et al. 2016).

The running route was designed as a so-called star run (Achenbach et al. 2019). The play-

ers started in the center field, touched a randomly highlighted outer field, and returned

to the center. Each outer field had to be touched two times to get evenly distributed

motion patterns for each participant in one run. The screen in front only highlights the
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Figure 2.1: Schematic view of the SpeedCourt system. The fields 1-4 in the middle are
treated as one field in this study.

current target field. Running times were measured through the system, starting with the

first and ending with the last foot contact on the center field. Before the test, the players

were introduced to the SpeedCourt system and the stressor.

The first run (baseline) was performed without any external stressor, with the in-

struction to run as fast as possible. After a five-minute break for rest, the players ran

again. The runs were limited to two runs to avoid a learning effect and fatigue. During

the second run, the test subjects had to perform a modified version of the d2 attention

test (Brickenkamp et al. 2016) as a mental stressor. For this purpose, a second screen

in front of the court displayed the letters d and p with one to four dashes. The players

had to affirm every d with exactly two dashes and negate every other case. This test was

selected to recreate a football-related stress situation of a physically demanding challenge

combined with an attention-grabbing task. The answers to the displayed test were not

assessed. After each run, the players had to fulfil the NASA-TLX workload scale to eval-

uate the runs: physical demand (”How much physical activity was required?”), mental

demand (”How much mental and perceptual activity was required?”), performance (”How

successful were you in performing the task?”), exertion (”How hard did you have to work

(mentally and physically) to accomplish your level of performance?”), and frustration

(”How irritated, stressed, and annoyed versus content, relaxed, and complacent did you

feel during the task?”) (Hart and Staveland 1988). The ratings ranged from zero (low) to

ten (high). The NASA-TLX ensured the validity of the stressor compared to the baseline.



CHAPTER 2. MENTAL STRESS STUDY 24

Data Processing and Musculoskeletal Simulation

Twelve motion capture infrared cameras (Vicon Motion Systems, Oxford, UK) captured

the runs with a sampling rate of 120 Hz. Afterwards, the data was filtered using a

second-order Butterworth filter with an 8 Hz cut-off frequency and used as input for

the AnyBody Modeling System (AMS) (v. 7.2), a musculoskeletal simulation software

(AnyBody Technologies, Aalborg, Denmark). Figure 2.2 shows the model used in this

study. The software uses an inverse dynamics approach to calculate internal (joint reac-

tion forces (JRF), muscle forces, muscle activities) and external kinetics (ground reaction

forces (GRF)). In our study, we modified a full-body model from the AnyBody Managed

Figure 2.2: Front and back view of the employed musculoskeletal full body model from the
AnyBody Managed Model Repository (AMMR). The investigated muscles are highlighted.
The blue and red dots represent the motion capture marker set, which is transferred from
the recording software to the AMS.

Model Repository (AMMR)(v. 2.2.0). The model from the AMMR has already been

validated previously (Skals et al. 2017). In this study, the muscle forces of the M. Rectus

Femoris (RF), M. Semitendinosus (ST), M. Biceps Femoris (BF) and M. Vastus Medialis

(VM) as injury-prone muscles in adults as well as in elite youth players (Ekstrand et al.

2011b; Nilsson et al. 2016) were investigated along with knee JRF. Ekstrand et al. (2011b)
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reported 3.1 injuries per 1000 match hours for the hamstring muscles and 1.3 injuries/1000

match hours for the quadriceps muscles for an age group of 16-21 y. These are the highest

and third-highest incidences of muscle injuries in this age group. Antero-posterior (AP),

medio-lateral (ML) and proximo-distal (PD) forces of both knees were determined and

normalized to the participants’ body weight.

For the analysis, only the contact phases of the outer fields (5-12) were regarded to

compare similar motion patterns. The contact phase was defined as the period from 0.6 s

before to 0.6 s after the foot’s ground contact within the target field. From the contact

phase, the peak forces of the parameters mentioned above were analyzed. Furthermore,

contact phases were compared for matching field numbers with/without mental stress.

Differences in mean peak muscle force and percentage change were calculated between

baseline and stress conditions. The peak force of each parameter was determined by

averaging the peaks of the particular contact phases. Therefore, within-subject variability

is reduced and the effect of possible outliers in one field is minimized.

Statistical Analysis

All statistical tests were performed using the SciPy package (v. 1.2.1) in Python (v. 3.7.6).

The results of the running times were tested with a t-test for two related samples, and

the effect size was determined with Cohen’s d. NASA-TLX results were compared using a

two-sided Wilcoxon signed-rank test. The effect size was obtained using Spearman’s rank

correlation coefficient (rs). The confidence interval (CI) was calculated for the NASA-

TLX parameters, the running time, and the mean difference of the particular muscle

forces. The level of significance for all tests was 0.95.

2.3 Results

Stressor evaluation and kinematics

The NASA-TLX identified an effect of the mental stressor. The results specific to the

mental demand components of the NASA-TLX supported an association with the con-

dition where players were under mental stress. Specifically, the runs carried out without

mental stress (5.8±2.5) were rated less mentally demanding than with stressor (8.5±1.7);

p = 0.006, rs = 0.37. The mental demand was rated 2.25 points (CI: [1.09, 3.41]) higher on

average under mental stress. Physical demand under stress was averagely rated 6.7±2.1,

while the baseline had a mean rating of 6.5±1.7, showing no significant difference between

ratings for physical demand (p = 0.777, rs = 0.45). The mean increase in the stress condi-

tion was 0.17 (CI: [-0.86, 1.20]). The parameters performance (p = 0.191, rs = 0.50), effort

(p = 0.526, rs = 0.56) and frustration (p = 0.359, rs = 0.12) were not rated significantly
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different either. The time demand was rated significantly different (p = 0.039, rs = 0.77).

Figure 2.3 shows the results from the self-evaluation. Regarding the kinematics, the

velocity in runs under mental stress was significantly lower than in the baseline runs

(p < 0.001, d = −1.62). In terms of time, the players ran on average 35.7±1.8 s in the

control condition but 39.9±3.3 s under mental stress. The average running-time increase

under mental stress was 4.25 s (CI: [2.94, 5.56]).

Figure 2.3: Results of the self-evaluation forms. The light grey points represent the
feedback after the baseline runs, while the black points are from the stressor runs. The
mental demand was rated significantly higher under cognitive stress (p = 0.006, rs = 0.37)
with equally rated physical demand (p = 0.777, rs = 0.45).

Musculoskeletal simulation

For the baseline and the mental stressor, 204 simulations were executed, resulting in 408

datasets. Table 2.1 shows the results of the musculoskeletal simulation. If the muscles

are viewed separately, a very heterogeneous picture emerges. On the one hand, there

are partial differences in the stress reaction between left and right, and on the other

hand, there are differences between the individual muscles themselves. The ST on the

right side consistently shows reduced muscle force under stress, while it also indicates
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Table 2.1: Results of the musculoskeletal simulation for the participants. The investigated
muscles were m. RF, m. VM, m. BF and m. ST. The table presents the mean difference
between stressor muscle force and baseline and the mean peak loading in the baseline
runs in %BW and the relative change. Mean values and CI are reported for the different
parameters.

Parameter/Player 1 2 3 4 5 6 7 8 9 10 11 12 x,CI

R
F

ri
gh

t Delta (%BW) -35 16 23 -12 -36 -32 -20 -13 -48 14 9 -21 -13, [-26, 0]
Mean (%BW) 171 172 126 204 175 166 280 163 177 153 169 209 180 [160,201]
rel. change -20% 9% 18% -6% -21% -19% -7% -8% -27% 9% 5% -10% -4% [-12, 4]

le
ft

Delta (%BW) -8 71 5 -3 -146 8 -11 -18 65 27 -14 -9 -3 [-32, 27]
Mean (%BW) 117 140 185 182 290 168 239 200 178 153 221 148 185 [159, 211]
rel. change -7% 51% 3% -2% -50% 5% -5% -9% 37% 18% -6% -6% 2 [-11, 16]

V
M

ri
gh

t Delta (%BW) -24 24 -2 -14 -28 -31 -11 -5 -17 -53 -12 2 -14 [-25, -4]
Mean (%BW) 148 162 141 135 134 129 166 131 143 199 179 156 152 [143, 162]
rel. change -16% 15% -1% -10% -21% -24% -7% -4% -12% -27% -7% 1% -12% [-17, -7]

le
ft

Delta (%BW) -29 87 -7 -10 -40 23 25 -11 64 -6 44 -24 10 [-12, 31]
Mean (%BW) 160 138 160 137 173 119 142 156 140 176 176 150 152 [143, 162]
rel. change -18% 63% -4% -7% -23% 19% 18% -7% 46% -3% 25% -16% 8% [-7, 22]

B
F

ri
g
h
t Delta (%BW) 4 -11 -13 -9 -60 -10 -19 -8 -27 4 -55 -17 -18 [-29, -7]

Mean (%BW) 73 76 89 118 165 107 107 127 183 82 119 71 110 [90,129]
rel. change 5% -14% -15% -8% -36% -9% -18% -6% -15% 5% -46% -24% -15% [-23, -7]

le
ft

Delta (%BW) -13 -14 20 33 -19 -11 43 10 -52 -11 -18 -2 -3 [-17, 11]
Mean (%BW) 109 89 55 93 115 99 122 92 119 93 88 98 98 [88, 107]
rel. change -12% -16% 36% 35% -17% -11% 35% 11% -44% -12% -20% -2% -1% [-15, 22]

S
T

ri
gh

t Delta (%BW) -4 -5 -5 -4 -38 -12 -12 -7 -14 -6 -30 -11 -12 [-18, -6]
Mean (%BW) 46 48 58 62 100 66 54 79 85 51 69 47 64 [55, 73]
rel. change -9% -10% -9% -6% -38% -18% -22% -9% -16% -12% -43% -23% -16% [-24, -9]

le
ft

Delta (%BW) -4 -7 9 3 -16 -19 3 -2 -19 -17 -7 3 -6 [-11, -1]
Mean (%BW) 63 48 37 58 69 69 75 61 61 63 49 55 59 [53, 65]
rel. change -6% -15% 24% 5% -23% -28% 4% -3% -31% -27% -14% 5% -9% [-18, 0]

increased values on the left side. The situation is similar for the ST, which has only a few

increased muscle forces on the right side but more on the left. The VM responds similarly.

Conversely, this means a more frequent increase in muscle force under stress on the left

side. In the RF, the left and right changes are more or less the same, with force increases

being higher on the left. The players also show different reactions to mental stressors.

For some, this has little or no effect on peak muscle force (04/08). For these players, the

percentage changes under stress are relatively small. Meanwhile, other players (05/09)

show comparatively frequent high changes in force under mental stress. It can also be

seen that the direction of change differs from subject to subject. While for VM, ST and

BF muscle forces are almost exclusively reduced under stress, there are increases and

decreases to the same extent in the RF.

Table 2.2 shows the mean peak loadings of the parameters for baseline and attention

task during the runs. No significant difference is found between the mean baseline and
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Table 2.2: Mean peak loadings (%BW) and standard deviations of the investigated knee
forces for the two run types.

Left AP Left ML Left PD Right AP Right ML Right PD

Baseline 693±247 109±61 511±195 659±388 101±48 489±284
Stressor 697±286 106±63 472±155 610±209 94±41 457±141

stressor runs (p<0.05). The mental demand lead to equally high knee loadings, with no

divergent effect for any parameter. While the knee joint reaction forces appear to be

slightly higher on the left side, this effect accounts for both the baseline and the stressor.

2.4 Discussion

Muscle forces in the lower extremities, knee forces and performance under stress were

analysed in highly dynamic motion. The collected data shows that running velocity was

decreased in football players when subjected to an additional mental stressor. The poten-

tial implications of the results may be a reduced performance. Furthermore, this stressor

led to a change in muscle force in the lower extremities for almost half of the inspected

muscle parameters. Nonetheless, knee forces were not affected and there were some dif-

ferences in how this impacted specific muscles across individuals.

The athletes’ reduced performance can be seen best in a significantly increased run-

ning and reaction time, which raises from averagely 35.7 s to 39.9 s (+4.2 s =̂ +12%)

under mental stress. Only two players were equally fast in both runs. Nevertheless, their

rating of mental demand in the NASA-TLX was comparable to the others. This could

imply a greater tolerance to stress for some players, although the perception is the same.

All other athletes needed longer for the stressor runs. However, this performance drop

under stress cannot be seen clearly in the athletes’ musculoskeletal loading. Although the

low number of players does not allow a common statement, some athletes may be more

affected in the extensor muscles RF and VM, and others in the flexor muscles BF and

ST. Additionally, one must acknowledge that an individual interpretation of muscle forces

can be subject to errors since within-subject-variability influences these results (Atkinson

and Batterham 2015). Nevertheless, this is counteracted by averaging the muscle forces

over all fields for the individual players. For more sophisticated individual interpretation,

adjustments to the study protocol are necessary.

An interesting aspect of the results is that the knee and muscle forces are not lower

in general under mental stress, although longer reaction and running times indicate lower

velocities. Previous studies stated that the muscle and ground reaction forces are higher
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with increasing walking or running speeds (Dorn et al. 2012; Fukuchi et al. 2019; Wein-

handl et al. 2017). Conversely, this should mean that the knee, muscle and ground

reaction forces are lower under mental stress due to lower running speed. However, the

force level under stress is the same as without. A further examination of the center of

mass (COM) shows that the velocity in the contact phase is not reduced in general. Thus,

lower running speed only occurs between the contact phases and can only explain some

of the lower peaks under stress, whereas the majority presumably has different causes.

Previous studies on mental stress have shown that changes in kinematics (e.g., longer

reaction time or altered movements) can occur under its effects (Higuchi et al. 2002).

Marras et al. (2000) and Lundberg et al. (2002) found increased muscle activity under

mental stress and even active muscles without physical demand. Higuchi et al. (2002)

stated changed movement strategies under stress. Lohse and Sherwood (2012) suggested

that an internal focus of attention disrupts efficient motor control. In light of that, the

up- and downward fluctuations of the peak muscle force can be induced by a different

movement behavior and non-physiological muscle activation in the form of disrupted ef-

ficient motor control under mental stress (Swanik et al. 2007). Nevertheless, the players’

psychological personality profiles, e.g., introversion/extroversion, thinking/feeling, were

not considered in this study. Marras et al. (2000) and Nimbarte et al. (2012) indicate

that they influence the players’ stress response. Therefore, the players react individually

to stress. The muscle force changes, which are listed herein, come exclusively from a

change in kinematics since the AMS calculates the forces solely through the kinematic in-

put and cannot create a stress-induced increase of the muscle tone. Previous studies have

shown that under stress, there is an increase in muscle tone up to activity without phys-

ical necessity (Bloemsaat et al. 2005; Lundberg et al. 2002; Marras et al. 2000; Nimbarte

et al. 2012; Srinivasan et al. 2016; Wijsman et al. 2013). Nonetheless, it is challenging to

generate an artifact-free electromyography (EMG) signal during such complex and highly

dynamic movements. These aspects should be considered in future studies. Furthermore,

this study only addresses the contact phases, which excludes information about the rest

of the run. However, this is necessary to be able to compare the different contact points.

Since the experimental condition in this study is relatively new, the protocol is sub-

jected to some limitations. Although generally established methods were used, they had

to be adjusted to the particular environment. One central point is the complexity of the

movements. The randomization of the route in the SpeedCourt has a considerable effect

of unequal movement sequences. Thus, every time a field is approached, the direction

and speed are slightly different from the second attempt. This makes a simple compar-

ison of the stressor and baseline runs difficult. Nevertheless, each attempt’s start and

endpoint are the same (middle-outer field), minimizing deviations. By considering the

contact phases of ±0.6 s to the turning point, this deviation is minimized additionally,
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and a learning effect for the players is avoided. Besides that, the SpeedCourt system

has already been utilized in sports-related studies in the recent past (Achenbach et al.

2019; Bartels et al. 2016; Born et al. 2016; Düking et al. 2016; Zinner et al. 2017). Its

application ranges from focusing on using the SpeedCourt system to help identify factors

for improving performance and preventing and rehabilitating from injury. Another aspect

of limitation is the muscle recruitment algorithm of the AMS. For this study, a quadratic

target function for the optimization problem was used for numeric stability, as suggested

by other studies (Skals et al. 2017). This algorithm is responsible for the numerical acti-

vation of the muscles and, consequently, their exerted force. However, it can only work

with the kinematic input from the motion capture and lacks information on real muscle

activation since the numerical muscle activation is based on an optimization algorithm.

Besides that, it is commonly used for faster movements (David et al. 2017; Sakai et al.

2018), and its validity for these applications has already been investigated (Skals et al.

2017).

To the best of our knowledge, this is the first study that has researched into highly dy-

namic movements and mental stress using musculoskeletal simulation. On the one hand,

the SpeedCourt system has already been used to create game-situation-like motion se-

quences (Achenbach et al. 2019; Düking et al. 2016). On the other hand, the established

musculoskeletal software allows the examination of muscle forces in such movements with-

out the complex equipment of EMG (Damsgaard et al. 2006; Skals et al. 2017). Also,

the modified d2 attention test may be a suitable method of inducing mental stress to the

test persons. The mental and time demands were rated significantly higher under the

influence of the d2 test, while there was no significant difference in physical demand. The

other parameters were rated equally as well. Thus, the test only affects mental stress and

does not affect perceived physical stress or performance. This study combines established

methods to expose players to a mental task while performing highly dynamic movements.

However, the combination of these is novel and needs further validation to yield a proper

representation of in-game situations in football. In addition to that, the questionnaires

have proven to be a practical way of assessing stress. While physiological parameters such

as electrodermal activity or heart rate variability are more precise than questionnaires,

they lose their validity in physically demanding activities. The inevitable sweating of the

test subjects and the varying exposure makes the results of the measurements uninter-

pretable. Hence, the questionnaire remains a reliable alternative to these tests. Although

questionnaires are always answered subjectively, especially in the investigated age group,

the self-evaluation forms in combination with the increased running times support the

reliability. The details on the NASA-TLX are found in the literature (Hart and Staveland

1988).
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Properly managing stress may be an underrepresented aspect for injury prevention

in football players so far. Hence, future studies could research into this association and

evaluate programs to direct these stressors to avoid motion patterns prone to injury during

football activity. For the practical routine in elite junior football, this study shows that

a mental stress-inducing task is associated with decreased performance and can change

musculoskeletal loading patterns. Additionally, it might imply that mental preparedness

for stress situations in players represents a vital role in successful football play and may

be considered in training planning for the season.

2.5 Conclusion

This study aimed to analyze the effect of stress on the velocity and muscle forces of

athletes. To this end, twelve young competitive athletes were exposed to mental stress

during highly dynamic movements. The mental stress task was found to be associated

with a lower velocity in a controlled lab environment. Additionally, changes in peak

muscle forces were observed. For the first time in football medicine, this data quantifies an

association between mental stress with reduced football players’ performance and changes

in muscle force.



Chapter 3

Implications of different muscle

models and recruitment

configurations in musculoskeletal

models of sprinting movements

Although musculoskeletal models are well tested for a number of applications, there is

little information on how they behave in highly dynamic situations. Especially data con-

cerning muscle modeling, muscle recruitment and muscle activation is rare. Consequently,

this chapter addresses research question 2: ”Does the musculoskeletal model’s muscle ac-

tivity in the lower extremities match the physiological muscle activation in highly dynamic

motion, and what’s the influence of different muscle modeling options?”.

3.1 Introduction

Musculoskeletal simulations have played a vital role in biomechanics research for quite

some time. They are used in the field of orthopedics (Benditz et al. 2018; Putzer et al.

2016; Weber et al. 2016), ergonomics (Larsen et al. 2020; Reilly and Kontson 2020) and

the recent years, more and more in sports biomechanics (Auer et al. 2021; Dupré et al.

2019; Sakai et al. 2018). Since musculoskeletal models allow a deep insight into the hu-

man body, they are valuable tools for detailed research without complex and invasive

measurement methods. Nevertheless, model validity is inevitable if parameters such as

ground reaction forces, joint reaction forces or muscle activities are researched without

additional measurement equipment like force plates or implanted load cells. Hence, mus-

culoskeletal models were a matter of research themselves to prove the reliability of their

outputs (Dupré et al. 2019; Karatsidis et al. 2019; Wibawa et al. 2016).

32



CHAPTER 3. MUSCLE MODEL AND RECRUITMENT STUDY 33

Various parameters influence the models’ outputs. First of all, the kinematic is a

crucial factor. If the given kinematic model input has insufficient quality the model re-

sults are deficient. Optical motion capture (OMC) is often used as kinematic input for

these calculations due to its accuracy (Aurand et al. 2017). However, the growing appli-

cations of musculoskeletal models in sports biomechanics increased the urge to perform

measurements in the field. Hence, inertial motion capture (IMC), has gained importance

in recent years because it does not require cameras and can therefore be used nearly

anywhere (Karatsidis et al. 2019).

Secondly, kinematic input can be excellent, but the results remain unusable if the

musculoskeletal model is misdesigned in terms of boundary conditions. Especially, when

ground reaction forces (GRF) and moments are predicted through the model without mea-

suring them with force plates, the boundary conditions need to be set correctly. Karatsidis

et al. (2019) evaluated model-predicted GRF and joint angles during gait recorded with

OMC and IMC. They had test subjects walk slowly, normal and fast and investigated

the correlation of the predicted and measured GRF and the correlation of sagittal plane

joint angles of ankle, knee and hip of IMC- and OMC-driven models. They determined

a Pearson correlation of 0.80 ≤ ρ ≤ 0.97 for the predicted GRF and 0.95 ≤ ρ ≤ 0.99 for

the ankle, knee and hip joint angles with an IMC-driven musculoskeletal model.

Additionally, the model’s’ accuracy depends on its anatomy. The calculated parame-

ters strongly rely on the implemented model geometry e.g. in terms of muscle wrapping.

Wibawa et al. (2016) compared measured muscle activity (MMA) from the leg to cal-

culated muscle activity (CMA) for walking, forward hopping and side jumping. They

used an optical motion capture system, including force plates, to produce kinematic and

kinetic input for the musculoskeletal model. They found visually comparable activity

patterns. However, their Pearson correlation coefficients ranged from -0.25 to 0.82 over

all movements. Another study on CMA and MMA in the thigh has found a higher cor-

relation. Dupré et al. (2019) found a strong correlation between CMA and MMA for

sprinting and running, while the correlation decreased for side-cutting manoeuvres. Their

mean ρ ranged from 0.57 for cutting manoeuvres to 0.81 for walking. They determined

−0.42 ≤ ρ ≤ 0.96 for the investigated thigh and shank muscles for sprinting.

In addition to the type of kinematic input and model geometry, CMA is dependent

on the model configuration. The most common configuration for the motion capture

models of the AnyBody Modeling System (AMS) is a simple muscle model, where the

muscle activity is dependent solely on the physiological corss-sectional area (PCSA) and

a scaling factor. For the muscle recruitment optimization problem, a target function with

a quadratic exponent is the preset choice. However, the AMS also features three-element

Hill-type muscle models, where passive properties of the muscles are taken into account.

Furthermore, the optimization problem has different target functions, though their effect

in complex movements is poorly investigated.



CHAPTER 3. MUSCLE MODEL AND RECRUITMENT STUDY 34

IMC-driven musculoskeletal models have been investigated in the past and reproduce

valid results regarding predicted GRF and joint kinematics. Furthermore, these models

show a good agreement of MMA and CMA with OMC-input. However, to the authors’

best knowledge, there are no investigations on the agreement of MMA and CMA when

IMC is used as kinematic input, especially in dynamic movements like sprinting. Hence,

IMC is a valid kinematic input for many model aspects but needs further investigation.

Furthermore, although the anatomy does not change in highly dynamic situations, the

physiological muscle recruitment differs (Higashihara et al. 2010). Additionally, the influ-

ence of different muscle recruitment criteria on muscle activity in dynamic musculoskeletal

simulations is currently unknown. Thus, this study aimed to analyze the agreement of

numerical and measured muscle activity in dynamic movements using GRF prediction

and IMC as well as the effect of different muscle recruitment criteria and muscle models

on the numerical muscle activity.

3.2 Materials and Methods

For this study, 20 test subjects (all male) with a mean age of 26.0±3.7 y were recruited

and granted informed consent. The average height was 1.82±0.06 m, and the mean

weight was 80.6±8.2 kg. Exclusion criteria were chronic musculoskeletal diseases or acute

injuries to the lower limbs in the last three months before the study. However, data from

all participants could be included in the evaluation. The procedures performed in this

study were in accordance with the 1964 Helsinki Declaration and its later amendments or

comparable ethical standards.

3.2.1 Experimental setup

After an individual warm-up, the subjects conducted three different tasks. Firstly, they

executed five knee flexion (prone, 0°-90°) and extension (sitting, 90°-0°) movements for

the left and right leg at an audio signal as fast as possible (Figure 3.1). Afterwards, they

performed five sprints of 10 m on artificial turf resulting in a total running distance of 50 m.

The turning points were marked as solid lines on the ground, which had to be crossed

before turning by 180◦. Motion was captured at 240 Hz using 17 IMC sensors (MVN

Link, Xsens Technologies B.V., NL) for a full-body setup. Simultaneously, ten surface-

electromyography (EMG) sensors (Trigno IM, Delsys Inc., USA) measured muscle activity

of five thigh muscles on each thigh at 1111 Hz. These muscles were Rectus Femoris (RF),

Vastus Medialis (VM), Vastus Lateralis (VL), Biceps Femoris (BF) and Semitendinosus

(ST).
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Figure 3.1: Experimental setup for flexion (top) and extension movements. Left side
describes the initital and right side the maximum position.

3.2.2 Musculoskeletal modeling

The motion capture data served as input for the simulation of the flexion/extension move-

ments and the sprints with musculoskeletal modelling software (AMS v. 7.3.3, AnyBody

Technology, DK). For this study, the pre-configured model from the AnyBody Managed

Model Repository (AMMR) (v.2.3.4, Lund et al. (2021)) with IMC-input was chosen

since this is the most commonly used configuration for this kind of musculoskeletal anal-

ysis. The inverse dynamics software uses an algorithm to calculate internal and external

forces, including muscle activities. Details on the AMS muscle recruitment can be found

in section 1.4.
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For this study, two different approaches for the formulation of the optimization prob-

lem’s target function are selected. On the one hand a quadratic polynomial target function

(Equation 1.4) was chosen, since it is the pre-defined configuration for IMC-driven muscu-

loskeletal models in the AMS. Another pre-defined configuration for muscle recruitment

in the AMS is the increase of power in the target function. In order to improve the

synergy between muscles, the power of the term can be increased, and an infinite expo-

nent reaches maximum synergy. However, numerically this would lead to very hard on-

and offsets of muscle activity, which is not physiological, since human muscles cannot

apply forces immediately. Therefore, a quadratic term as in Equation 1.4 is added to the

infinite-power. Now, the target function represents the two energy-consuming processes

of muscle contraction and creates softer on- and offsets of muscle activities (Praagman

et al. 2003; Praagman et al. 2006). The optimization problem is now formulated as in

Equation 1.5 and serves as second option for the muscle recruitment’s target function.

Due to the combination of a term with an infinite power polynomial and a quadratic term

in the target function, this muscle recruitment criterion is also called ”composite muscle

recruitment”.

Further on, two different muscle models were used in the musculoskeletal models. The

simple muscle model calculates the muscle force only through a scaling factor (SI) and

the PCSA:

FM = SI ∗ PCSA (3.1)

Furthermore, a three-element Hill-type muscle model was used for the simulations, where

the muscle force depends on the active properties of the muscle fibres (FCE), the elasticity

of the tendon (FT ) and also the passive stiffness of the muscle fibres (FPE):

FM = FCE + FPE + FT (3.2)

A schematic view of the mechanical properties is shown in Figure 1.8. The passive

properties of the Hill-type muscle model are determined in a calibration sequence before

the actual inverse dynamics calculation. For this study, the pre-defined calibration se-

quence of the AMS was used since this is the most common workflow (Lund et al. 2021).

It uses pre-defined joint angles of each joint and calculates the passive fiber length of each

muscle of the respective joints.

With the two different muscle models and the two different target functions for the

muscle recruitment, there are four possible configurations for the calculations of CMA: a

simple muscle model with a quadratic target function for the muscle recruitment (S2), a

simple muscle model with composite target function (SC), a Hill-type muscle model with

quadratic muscle target function (H2) and a Hill-type muscle model with composite target

function (HC). An overview of the four different configurations is shown in Table 3.1.
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Table 3.1: Overview of the different configurations regarding the calculation of muscle
forces (muscle model) and the target function of the muscle recruitment minimization
problem.

S2 SC H2 HC

Muscle
model:

FM = SI ∗ PCSA FM = SI ∗ PCSA FM = FCE + FPE + FT FM = FCE + FPE + FT

Muscle
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3.2.3 Data processing

Raw EMG data was filtered with a second-order bandpass Butterworth filter with 10 Hz

and 500 Hz cut-off frequencies. Additionally, the linear envelope of the EMG data was

formed with a fourth-order low-pass Butterworth filter with a cut-off frequency of 6 Hz.

Finally, to account for the electromchanical delay (EMD) between the onset of muscle

activation and the onset of muscle force, the linear envelope of the EMG data was right-

shifted by 40 ms (Zhou et al. 1995).

Motion Capture data was filtered with a 12.5 Hz cut-off frequency second-order low-

pass Butterworth filter before being loaded into the musculoskeletal model. For the sprint

analysis, the second sprint-cycle of each of the 10 m runs was taken from right heel strike

to right heel strike to minimize effects of the turning points and analyze the movement at

its highest velocity. Additionally, time steps where none of the feet had ground contact in

the musculoskeletal model were removed to avoid an influence of human-ground-residuals

(HGR) on the muscle activity. These five trials per subject were normalized to the

maximum activity in the measured and calculated data, respectively. Afterwards, the

mean curve from the five trials was created for MMA as well as CMA.

In order to compare MMA and CMA, the Pearson correlation coefficient ρ and the

root mean square error (RMSE) of the mean curves was determined. The Pearson cor-

relation coefficient was interpreted according to Cohen (1988), where ρ ≤ 0.29 should

be considered as low correlation, 0.30 ≤ ρ ≤ 0.49 as moderate correlation 0.50 ≤ ρ as

strong correlation. In addition to determining the Pearson correlation coefficient, MMA

and CMA of sprinting was analyzed using statistical parametric mapping (SPM) (Pataky

2012), where the recorded curves were tested for statistically significant differences over

their course using random field theory (Friston 2006). Furthermore, the sprint curves were

compared using dynamic time warping distance (DTWD) (Keogh and Ratanamahatana

2005). The analyses were performed using Python (v. 3.7.6) with the scipy (v. 1.7.2),

spm1d (v. 0.4.0) and dtaidistance (v. 2.3.2) packages. The level of confidence for all

statistical tests was 0.95.
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3.3 Results

With five periods for each kinematic setting, 20 test subjects and four different muscle

recruitment/configuration scenarios, 400 musculoskeletal simulations have been run for

every kinematic setting. All three kinematic settings thus include 800 datasets for each

muscle and, since the left and right leg muscle activity is investigated.

3.3.1 Flexion and extension tasks

Table 3.2 shows the overall flexion/extension results of the Pearson correlation analysis of

the different muscle configurations summarized for all muscles. All muscle configurations

and recruitment types bear a strong mean correlation with Hill-type muscles performing

slightly better than simple muscles.

Table 3.2: Mean ρ, standard deviation and the 95% confidence interval (CI) for the
different flexion and extension scenarios. BF and ST were analyzed for flexion and RF,
VM and VL for extension.

S2 SC H2 HC

Mean ρ±STD
[CI]

0.57±0.16
[0.54, 059]

0.57±0.16
[0.54, 0.59]

0.61±0.16
[0.59, 0.64]

0.61±0.16
[0.59, 0.64]

When the muscles are considered individually, there is no noticeable difference between

them. Not even between flexion and extension muscles. Although the correlation is

slightly higher overall for the VM and VL flexors, the differences are within the range of

the standard deviation.

3.3.2 Sprinting tasks

The overall results of the Pearson correlation for all scenarios are depicted in Table 3.3.

The overall results show a strong correlation for the S2 and SC scenarios and a moderate

one for the H2 and HC scenarios. Additionally, the different muscle recruitment types do

not yield remarkable differences in median ρ or the confidence interval (CI).

Table 3.3: Median ρ and the 95% CI for the different scenarios of sprinting. Median
values were taken due to the non-normal distribution of ρ-values.

S2 SC H2 HC

Median ρ
[CI]

0.57
[0.52, 0.61]

0.57
[0.52, 0.61]

0.45
[0.40, 0.49]

0.45
[0.40, 0.49]

However, the particular correlations are different for the investigated muscles (Fig-

ure 3.3). For example, the highest correlation of median [CI] ρ = 0.68 [0.58, 0.79] can be
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Figure 3.2: Results of the Pearson correlation analysis for the flexion/extension tasks.
The chart is grouped by muscle, and the different bars represent the median ρ and the
confidence interval (CI) of the muscle for the four configurations S2, SC, H2 and HC.

found in the ST muscles for both S2 and SC. On the other hand, the lowest correlation is

found in the RF muscles for the S2 and SC scenarios with a median [CI] ρ of 0.27 [0.19,

0.35], meaning a low correlation of MMA and CMA.

The DTWD analysis in Table 3.4 shows that the distance between MMA and CMA

is bigger for the H2 and HC scenario. At the same time, there is only a small difference

between the two different muscle recruitment criteria.

Table 3.4: Median DTWD and the 95% CI for the different scenarios of the sprinting
tasks. Median values were taken due to the non-normal distribution of DTWD-values.

S2 SC H2 HC

Median DTWD
[CI]

1.18
[1.09, 1.28]

1.19
[1.10, 1.29]

1.38
[1.27, 1.49]

1.38
[1.27, 1.49]

An exemplary result of the SPM analysis is shown in Figure 3.4. The SPM revealed

that CMA and CMA are not significantly different over most of the course. Lower correla-

tion coefficients show more different ranges than high ones. However, in all data sets, the

areas of difference are limited to rather small sections, so that no statistically significant

difference can be established for a predominant part of the muscle activity.
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Figure 3.3: Results of the Pearson correlation analysis for sprinting. The chart is grouped
by muscle, and the different bars represent the median ρ and the CI of the muscle for the
four configurations S2, SC, H2 and HC.

Since the S2 scenario is the default configuration and often used, the MMA and CMA

graphs of all subjects for the S2 sprinting scenarios can be found in Appendix A.

3.4 Discussion

The study aimed to analyze the effect of different muscle recruitment criteria and muscle

models on the correlation of numerical and measured muscle activity in dynamic move-

ments using GRF prediction and IMC. The Pearson correlation reveals a strong correlation

for flexion/extension tasks and an overall moderate to strong correlation of MMA and

CMA for sprinting tasks. However, in sprinting tasks, except for RF and BF, the simple

muscle model produces a higher correlation of MMA and CMA. In the flexion/extension

tasks, the Hill-type muscle model’s correlation is slightly higher than the simple muscles’

correlation. No noticeable difference was found between the different muscle recruitment

criteria.

MMA and CMA agree the most in extension for VL when a Hill-type muscle model is

used with ρ = 0.68 ± 0.12. Although the overall level of agreement is higher for Hill-type

muscles, the differences between the muscles models is within the standard deviation. The

correlation of the individual muscles ranges from ρ = 0.54 to ρ = 0.68 over all muscle

types and recruitment criteria, hence the individual muscles are on a comparable level

regardless of the model configuration.
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Figure 3.4: Exemplary result of a univariate SPM analysis for one muscle-dataset of one
subject with ρ=0.43. The upper part describes the MMA in green and the CMA in red as
mean curve with standard deviation for the five recordings for each muscle. The bottom
part represents the corresponding SPM results. Sections, where statistically significant
differences between MMA and CMA were detected, are marked gray with corresponding
p-values.

In sprinting, ST bears the best correlation of MMA and CMA with ρ = 0.68 [0.58, 0.79]

for S2 and SC. The second best-correlating muscle is the BF with ρ = 0.64 [0.53, 0.74] for

the HC scenario. Overall, the flexor muscles have a higher correlation than the extensor

muscles regardless of muscle or recruitment type, which is stronger when the Hill-type

muscle model is used. This leads to the conclusion, that the muscle wrapping in the AMS

is represented better for knee flexor muscles and therefore leading to higher correlations.

Since the Hill-type muscle model requires a calibration sequence to determine the passive

properties of the muscle, this calibration sequence influences the CMA.

It is noticeable that the correlation for the Hill-type muscle model for extension only

is at a similar level to the correlation for simple muscles, whereas for extensions in sprints

the Hill-type correlation is much lower. In flexion, whether sprinting or isolated, the

difference is not as pronounced. This may be due to the fact that the pure flexion/ex-

tension movements are much more controlled and isolated with regard to the application

of force by the muscles. As a result, physiological parameters of the Hill-model that are

inadequately estimated by the model may not have such a strong effect on the CMA.

In particular, inaccurate parameters can lead to deviations in the anterior thigh muscles,

which are not pure flexors but are also responsible to a certain extent for internal/external

rotation and knee stabilization.
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The different muscle recruitment criteria of the AMS have little to no influence on

the CMA. Regardless of muscle model or location, the difference in correlation is minimal

because the flexor and extensor muscles are not fully loaded during sprinting or flex-

ion/extension. Hence, there is no need for further synergy, which the composite muscle

recruitment criterion would provide. Furthermore, the results from the DTWD analysis

are consistent with the Pearson correlation. The DTWD in the simple muscle model

scenarios is considerably lower than in the Hill-type muscle model scenarios.

Although only a few other studies are investigating MMA and CMA in dynamic move-

ments, the results of this study’s correlation analysis are comparable to the results from

the literature. Dupré et al. (2019) investigated the agreement of MMA and CMA for

running as well. They found a strong correlation for VM (ρ = 0.93), VL (ρ = 0.92),

and negative correlation of BF (ρ = -0.59). However, they used a different model of the

AMMR with a knee that has more degrees of freedom (DOF). This might explain the

higher Pearson correlation.

Another study performed by Wibawa et al. (2016), also using optical motion capture

and measured GRF, investigated muscle activity of EMG and musculoskeletal models in

one-legged forward hopping and side jumping. They also found a moderate to strong

correlation between MMA and CMA for the thigh muscles. They calculated the Pearson

correlation of ρ = 0.25 for the RF, 0.68 (VM), 0.69 (VL), 0.51 (BF) and ρ = 0.41 (ST)

for forward hopping. For side jumping they calculated ρ = 0.41 (RF), ρ = 0.81 (VM),

ρ = 0.82 (VL), ρ = 0.31 (BF) and ρ = 0.31 (ST). The different movements might explain

the higher correlation in VM and VL combined with a lower correlation in BF and ST.

However, some limitations have to be taken into consideration. First of all, the knee

joint in the standard model of the AMMR is modeled as a hinge joint, allowing only flex-

ion/extension movements and neglecting rotation and abduction/adduction. This simpli-

fication might lead to a change in numerical muscle activation since only flexion/extension

movements are possible, and the activity of muscles that participate in rotation or ab-

duction/adduction may be underrepresented. Although the effect of missing degrees of

freedom cannot be avoided totally, the chosen muscles are mainly responsible for flex-

ion/extension movements, which minimizes this effect.

The usage of a general EMD also bears some limitations. CMA and MMA’s optical

investigation often shows similar characteristics of peaks and valleys, but they seem to

be shifted on the x-axis. For many individual curves, the x-shift is mainly eliminated by

considering the EMD. Although some x-shifts remain when using a constant EMD for all

muscles and subjects, most of the curves fit well. The determination of individual EMD

would only provide minor improvements. However, neither Pearson correlation analysis

nor SPM take into account time shifts between curves. Anyway, the DTWD analysis

confirms the results of the Pearson correlation with a smaller DTWD for scenarios with

a higher ρ.
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Nevertheless, the results only allow conclusions about the curves’ shape due to the

normalization of signals to the maximum value. Hence, when analysing CMA’s absolute

height, e.g. maximum voluntary contraction (Konrad 2005), tests or other methods to

quantify muscle activity have to be performed.

The results imply that inertial motion capture as kinematic input for musculoskeletal

models is suited for calculating thigh muscle activities in sprinting movements. The

moderate to strong correlation between the thigh muscles’ MMA and CMA lead to this

conclusion. In addition, the SPM showed that even at low to moderate correlations, there

were no statistically significant differences for the predominant range of MMA and CMA.

Thus, when the results of the SPM are considered in addition to the correlation, we find

a high level of agreement between MMA and CMA. However, not all muscles perform

equally. For example, in this study, BF and ST had the highest ρ during sprinting,

while VM and VL had the highest ρ in the study of Wibawa et al. (2016) during side

and forward jumping. This circumstance suggests that the correlation of the individual

muscles’ MMA and CMA depends on the movement itself. This is supported by the fact

that muscle wrapping plays a crucial role in numerical muscle activation (Vondrák et al.

2006). The muscle wrapping is dependent on the chosen musculoskeletal model. The

Twente Lower Extremity Model (Pieri et al. 2018), the default model configuration for

the lower extremities of the AMS, was used, while other studies used lower extremity

models with, e.g. more degrees of freedom to the knee (Dupré et al. 2019). However, this

study aimed to investigate the most common configuration to draw conclusions for the

general application of the model.

Additionally, this study showed that one could use GRF prediction for highly dynamic

movements to calculate reliable muscle activities. Although the GRF prediction itself has

already been proven to be valid, even for highly dynamic situations (Skals et al. 2017),

the influence on CMA when using this method had been investigated. Although the peak

correlation between CMA and MMA is not as high as in musculoskeletal simulations using

measured GRF, the overall ρ is in the same range (Dupré et al. 2019; Wibawa et al. 2016).

With the increasing use of GRF prediction and the rise in studies of highly dynamic

motions, many simulations were using quadratic muscle recruitment (Dupré et al. 2019;

Skals et al. 2017). Although only flexion/extension tasks and sprinting movements have

been investigated in this study, other studies have shown the validity of quadratic muscle

recruitment for various activities (Andersen 2018). Moreover, this study showed that

this recruitment type is suitable for fast movements and has no drawback compared to

supposedly more dedicated composite muscle recruitment types.
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3.5 Conclusion

The study aimed to analyze the effect of different muscle recruitment criteria and mus-

cle models on the correlation of numerical and measured muscle activity in dynamic

movements using GRF prediction and IMC. The Pearson correlation reveals an overall

moderate to strong correlation of MMA and CMA. Except for RF and BF, the simple

muscle model produces a higher correlation of MMA and CMA. Additionally, the simple

muscle model proved to be a reliable muscle model for sprinting simulations. Further-

more, the quadratic muscle recruitment did not show any disadvantages in the correlation

between MMA and CMA. Altogether, the study shows that IMC as kinematic input and

the usage of GRF prediction is suitable for calculating thigh muscle activities in sprint-

ing movements. Moreover, the most common configuration of the AMS models produces

reliable results of CMA.



Chapter 4

Addressing

Human-Ground-Residuals in

dynamic musculoskeletal simulation

Preliminary tests have shown that residual forces can occur to a considerable degree

in highly dynamic motions. Therefore, further investigation into the characteristics of

residual forces in highly dynamic motions is warranted. Hence, this chapter deals with

research question 3: ”When and to what extent do HGR occur in simulations of highly

dynamic motions and how can their occurrence be influenced?”

4.1 Introduction

The fields of application for musculoskeletal models has widened in the last years. After

initially (and still) being used in orthopaedics and ergonomics (Benditz et al. 2018; Larsen

et al. 2020), these models have gradually found broader use. Nowadays, it is common to

utilize musculoskeletal software, such as the AnyBody Modeling System (AMS), also in

sports biomechanics (David et al. 2017; Dupré et al. 2019). However, musculoskeletal

models are sensitive to the given kinematics and the modeled boundary conditions. Since

none of the models is a perfect representation of the real person and motion capture

also involves some inaccuracy, the models include forces acting on the hip to balance

the deviations. These forces are often referred to as ”human-ground-residuals (HGR)”.

Although artificial forces like the HGR are necessary for numerical stability, they effect

the actual results of the musculoskeletal simulations and have to be monitored closely. If

the HGR are too high, the computations become questionable as they can be considered

as a reference value for the realistic representation of the actual movement and boundary

conditions in the model. Usually, these forces are rather small and they should not exceed

5% of the ”net external force” (Hicks et al. 2015).

45
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Mayo and Ojeda (2020) investigated HGR in gait using calculated ground reaction

forces (GRF). They used two different methods to perform the inverse dynamics calcula-

tions including estimated GRF, which were compared with measured ones. They found

average HGR up to 69 %BW in vertical direction but also up to 64 %BW in the transver-

sal plane. Pallarès-López et al. (2019) introduced a new residual reduction procedure and

compared it to OpenSim’s existing residual reduction algorithm (RRA). For this purpose,

they recorded kinematics of 6 subjects performing single leg triple hops and performed an

inverse dynamics analysis. In order to minimize the HGR the implemented the recorded

kinematics into an optimization algorithm with the HGR as constraints. Although they

were able to reduce the HGR by over 98%, performing an optimization at each step of the

inverse dynamics calculation is timely and computationally consuming, which limits its

use. Faber et al. (2018) experienced vertical HGR of over 30 %BW for normal walking.

They managed to completely eliminate the HGR without even considering them as bal-

ancing forces by optimizing marker and joint positions as well as the segements’ centers of

mass. However, their approach is limited to the use of measured GRF and normal walking

and also used a two-dimensional inverse dynamics model instead of a three-dimensional.

Obviously, the studies on HGR are rare, especially concerning the AMS. Hence, it is

the aim of this study to approach HGR by investigating their occurrences in dynamic

motion and find a way to minimize these artificial forces in the musculoskeletal models.

In particular, dynamic motions, where the model temporarily has no ground contact

are investigated. Furthermore, several HGR-optimization approaches are evaluated to

determine the occurrence of these forces for different kinematic inputs.

4.2 Materials and Methods

4.2.1 Data acquisition

For this study, the kinematics of one test subject were recorded. The male subject (28 y,

1.86 m, 83.3 kg) performed a squat jump on two force plates (3D Force Plate 9260,

Kistler Instrumente GmbH, Germany). Kinematics were recorded at 240 Hz using optical

motion capture cameras (Vicon Vero v. 2.2, Vicon Motion Systems, UK) as well as inertial

motion capture sensors (MVN Link, Xsens Technologies B.V., NL) in order to investigate

the influences of the type of kinematic data collection. The force plates measured the

GRF at 960 Hz. The kinetic and kinematic recordings were synchronized to match the

timestamps.

4.2.2 Musculoskeletal modeling

Kinematic and kinetic data served as input for the AMS (v.7.3). Three different models

were adapted from the AnyBody Managed Model Repository (AMMR):
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� kinematic input from optical motion capture and kinetic data from the force plates

(=OM),

� kinematic input from optical motion capture and ground reaction force prediction

(GRFP) (=OP),

� kinematic input from inertial motion capture and GRFP (=IP).

Since the HGR were expected to be the highest, when there was no contact of the

model’s feet with the ground or right before losing/regaining contact, the jumps were

analyzed from 1 s before to 1 s after the no-ground-contact period.

4.2.3 HGR reduction

Since the GRFP and the HGR are strongly related in the AMS and the segment mass

distribution as well as the kinematics are known to influence the HGR (Ojeda et al.

2016), these model properties are assessed in the optimization process as well as the

cut-off frequency of the kinematic filter.

The OP and IP models were optimized regarding the detection height and velocity

of the GRFP and the segment mass distribution. Furthermore, the segment mass distri-

bution of the IP model is optimized. Table 4.1 gives an overview of the pursued min-

imization approaches. Two different optimization methods are used for all approaches.

In preliminary investigations, a gradient-based minimization algorithm with a sequential

least squares programming solver is applied. Since this procedure did not produce a so-

lution differing from the initial guess, a stochastic approach is introduced for this study.

The ”differential evolution” from Storn and Price (1997) is a heuristic method to min-

imize continuous functions. All optimization procedures were conducted using Python

(v.3.7.6) with the anypytools package (v.1.6.0) and the scipy package (v.1.7.2). Exem-

plary Python code for the optimization procedures of segment masses and GRFP can be

found in Appendix B.

Table 4.1: Overview of the HGR minimization approaches that have been applied to the
different model configurations. Details on the exact application of the approaches are
described in the following paragraphs.

Adjustments/model type OM OP IP

filter cut-off frequency 7.5 Hz,12.5 Hz 7.5 Hz, 12.5 Hz 5 Hz, 7.5 Hz, 12.5 Hz

GRFP parameters no detection height,
max velocity

detection height,
max velocity

segment mass
distribution

no no thorax,
lower body
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Optimization of the GRFP parameters

The main parameters influencing the GRFP are the thresholds for the detection height and

maximum velocity of the contact nodes. These limits define the range in which a potential

ground contact is detected. Hence, these two parameters were modified to minimize

the HGR. The bounds were set to height=0.005...0.3 m and velocity=0.1...15 m
s
. The

velocity’s initial guess was set to the default value of the AMS (=0.8 m
s
) while the height

was chosen manually to create a reasonable on- and offset of the GRFP in accordance with

the Xsens ground contact detection. Hence, the height limit was set to 0.35 m. In order

to account for the actual ground contact determined by the force plates or the motion

capture system, a weighted penalty term adding the absolute difference in contact time

was included to the target function.

Optimization of the segment mass distribution

Since the mass distribution of the AMS is based on cadaver studies and the distribution

is known to influence the HGR it was subject of another optimization approach. The

individual segment masses of all model segments excluding the head and arms were opti-

mized within boundaries of ±25% to their default configuration in the AMS which served

as initial guess. The range and initial guess are shown in Table 4.2. Furthermore, the

minimization problem was subjected to the constraint that the overall change of mass

must be < 5%.

Kinematic data filtering

The kinematic data is known to have great influence on the HGR (Hicks et al. 2015).

While others propose optimizing the joint angles at every time step of the kinematic

data, here a more general approach is presented by adjusting the cut-off frequency of the

musculoskeletal model’s kinematic filter. As 12.5 Hz were proposed by Winter (2009)

for dynamic motions, 12.5 Hz, 7.5 Hz and 5 Hz were chosen as options for the cut-off

frequency. This ensures the comparison of an established frequency as well as stronger

kinematic smoothing with the lower ones.

4.2.4 Data processing

In order to compare the different optimization methods to the default model, the HGR

and GRF were analyzed. Maximum occurring HGR value over the analyzed time slot

was considered in its own as well as in relation to the maximum occurring GRF as net

external force. All forces were normalized to the subject’s body weight.
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4.3 Results

In total 11 different model configurations were examined regarding their maximum GRF

and their maximum HGR. The force plates measured maximum GRF of 238 %BW during

the landing phase of the counter-movement jump. When the OM models (Figure 4.1)

were run with a kinematic filter’s cut-off frequency of 12.5 Hz, the maximum HGR are

at 62 %BW. This results in a share of 26.1% of HGR of the GRF as net external force.

When the filter’s cut-off frequency is set to 7.5 Hz, the HGR are reduced to 45 %BW

(18.9% net external force).
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Figure 4.1: Results of the HGR minimization for the OM models. (a) 12.5 Hz cut-off
frequency for the kinematic filter, (b) 7.5 Hz cut-off frequency for the kinematic filter,
(b) 5 Hz cut-off frequency for the kinematic filter.

Figure 4.2 depicts the GRF and HGR results for the OP models. The baseline model

with a kinematic filter cut-off frequency of 12.5 Hz calculates maximum GRF of 256 %BW

and maximum HGR of 42 %BW, resulting in a HGR-share of 16.4%. Using a cut-off

frequency of 7.5 Hz reduces the maximum GRF and HGR to 235 %BW and 29 %BW,

respectively (12.3% net external force). When, in addition to a lower cut-off frequency,

the GRFP detection height and velocity are optimized, the maximum HGR go down to

27 %BW (11.5% net external force).

For the IP models three different cut-off frequencies are compared (Figure 4.3 a-c)

in addition to the optimization of segment mass distribution and GRFP settings (Fig-

ure 4.3 d-f). Initially, with a cut-off frequency of 12.5 Hz, the maximum GRF are

275 %BW with the HGR being 37 %BW (13.5% net external force). A cut-off frequency

of the kinematic filter of 7.5 Hz sets the maximum GRF to 246 %BW and the HGR to

27 %BW (11.0% net external force). Lowering the cut-off frequency to 5 Hz reduces the

maximum GRF to 225 %BW and raises the HGR to 39 %BW (17.3% net external force).

When the segment mass distribution is optimized (Table 4.2), the HGR/GRF ratio goes

down to 12.9%, however the maximum GRF and HGR rise to 319 %BW and 41 %BW

respectively. The optimization of the GRFP alone does not yield any changes in maxi-
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Figure 4.2: Results of the HGR minimization for the OP models. (a) 12.5 Hz cut-off
frequency for the kinematic filter, (b) 7.5 Hz cut-off frequency for the kinematic filter,
(c) 7.5 Hz cut-off frequency for the kinematic filter and optimized GRFP settings.

Table 4.2: Default and optimized relative segment mass distribution of the AMS.

segment masses thorax lumbar pelvis thigh shank foot

default 19% 14% 14% 10% 5% 2%
optimized 17% 23% 17% 12% 6% 2%

mum HGR or GRF compared to the original model. However, when the kinematic filter’s

cut-off frequency is set to 5 Hz, the optimization of the GRFP brings the HGR down to

17 %BW, resulting in a share of 7.6% at 225 %BW maximum GRF.

4.4 Discussion

The aim of the study was to investigate and minimize the HGR musculoskeletal simula-

tions of dynamic movements. Consequently, a counter-movement jump of one subject was

simulated with the AMS for different model configurations. In general, the investigation

has shown that in a jump simulation with measured GRF, HGR of up to 62 %BW can

occur, which corresponds to a proportion of 26.1% of the net external force. When the

GRF are calculated, 37 %BW HGR occur at the peak at 12.5 Hz cut-off frequency of the

kinematic filter. Regardless of the kinematic input, a reduction of the cut-off frequency

also leads to a decrease of the maximum HGR. Additionally, an optimization study for

the GRFP settings can help to reduce the HGR even more.

The investigation found HGR that ranged from 37 %BW to 62 %BW without any op-

timization approaches. This is in accordance with literature data, that determined HGR

of 30 %BW (Faber et al. 2018) and 69 %BW (Mayo and Ojeda 2020) for gait. The maxi-

mum reduction of HGR was achieved for the IP models, where HGR were reduced by 54%

from 36 %BW to 17 %BW by decreasing the kinematic filter cut-off frequency in com-

bination with an optimization of GRFP settings. However, Pallarès-López et al. (2019)
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Figure 4.3: Results of the HGR minimization for the IP models. (a) 12.5 Hz cut-off
frequency for the kinematic filter, (b) 7.5 Hz cut-off frequency, (c) 5 Hz cut-off frequency,
(d) 12.5 Hz cut-off frequency and optimized segment mass distribution, (e) 12.5 Hz cut-off
frequency and optimized GRFP settings, (f) 5 Hz cut-off frequency and optimized GRFP
settings.

managed a reduction of over 98% by optimizing each time step of the inverse dynamics

calculation. While this approach delivers an efficient minimization of HGR, it probably is

computationally demanding, which limits its use. Thus, the proposed procedure allows a

considerable reduction of HGR by 54% with a simple methodology. In order to minimize

the HGR, the segment mass distribution was optimized, like Riemer and Hsiao-Wecksler

(2009) and Fritz et al. (2019) proposed. Despite lowering the share of HGR, the total

HGR even increased when the segment mass distribution was optimized. On the one

hand, Riemer and Hsiao-Wecksler (2009) used a two-dimensional model and additionally

optimized the joint angles. On the other hand, the used optimization algorithm allowed

an increase of the total body mass by 5%, which led to overall higher forces in the model

and consequently higher HGR.

Although the segment mass distribution optimization delivered a solution by minimiz-

ing the share of HGR, it did not perform as expected. The absolute body weight rose,

revealing weaknesses in the framework conditions of the optimization algorithm. Most

importantly, an increase of body weight share for the lumbar spine of 9% to 23% is re-

markable. Although the standard data of the model are largely based on cadaver data
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from older individuals, and younger people, such as the subject here, can be assumed to

have a greater weighting of the lower body, the current subject was in no way extremely

athletic, which would fit such a severe shift. Some optimization drawbacks could be im-

proved by minor adjustments of the algorithm’s settings, but it might be appropriate to

re-evaluate the chosen optimization method for the segment mass distribution.

The high HGR of 62 %BW for the OM models show that HGR are a major issue

in musculoskeletal simulations of dynamic movements. Although the kinetic boundary

conditions are recorded with two force plates as gold standard, the HGR were the highest

in these models. It can be concluded that musculoskeletal models with calculated GRF

may be better suited to simulate dynamic motion. Not only are dynamic motions rarely

limited to only two ground contacts, GRFP models can be fine-tuned in the calculation

of GRF to mitigate HGR. However, the risk of ”hiding” the HGR in the GRF should not

be disregarded even if the results show that the calculated GRF are close to the measured

ones after the optimization of the parameters.

Furthermore, it can be stated that the HGR are primarily dependent on the kinemat-

ics, since especially the adjustment of the kinematic filter led to a decrease of the HGR.

Moreover, optimization of the segment mass distribution (Riemer and Hsiao-Wecksler

2009) as proposed in the literature, did not really produce any improvement. Conse-

quently, depending on the absolute level of the HGR, it may be promising to optimize

the kinematics. An adjustment of the cut-off frequency of the kinematic filter seems to

be a feasible way due to the noticeable reduction of the HGR by 54%. Optimizing each

time step (Pallarès-López et al. 2019) brings an even better reduction of the HGR, but is

also more computationally intensive.

It is noticeable that the peaks of HGR are mostly in the transition phases from ground

contact to no ground contact and vice versa. This can be observed more clearly in the

models with GRFP than in the models with measured GRF, but the HGR are also highest

in the transition phases. In the latter, the HGR are also significant in the ground contact

phases, whereas in the GRFP models they are virtually non-existent in the contact phases.

On the one hand, this is due to the fact that the GRFP models have the possibility to

compensate for the HGR above them due to the nature of the GRFP. On the other hand,

it is also important to consider which areas of the simulation are relevant to the problem

at hand. Thus, if the transition phases from contact to no contact are not of interest, the

influences of the HGR on the results are likely to be smaller.

It should be noted that this HGR minimization approach was only conducted for one

subject and movement only. Especially the optimization of segment mass distribution

is dependent on the subjects actual body composition. Thus, although in this case the

optimization of mass distribution didn’t bring any improvements to the HGR, this could

bear enhancements for other subjects. Since the GRFP, just like the HGR is implemented

in the AMS as artificial muscles, it is possible that the AMS simply transfers forces,
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initially exerted by the HGR feature, to the GRF. In the process, the investigated HGR

are reduced, although they are actually still excerted in the GRF. However, the GRFP

is a reliable and valid feature of the AMS (Skals et al. 2017) and the predicted GRF in

the OP and IP models only differ slightly from the measured GRF. Moreover, it must

be mentioned that a reduction of the cut-off frequency also means a loss of kinematic

information. Thus, corresponding adjustments must not be made across the board but

must be applied with caution. As the HGR are to a certain degree also an indicator for

the computational error in musculoskeletal models (Ojeda et al. 2016), in this specific

case lowering the cut-off frequency also led to an error minimization.

4.5 Conclusion

This study aimed to investigate and minimize HGR for a counter-movement jump by

adjusting kinematics and optimizing the GRFP settings and has shown that HGR can

be considerably large in standard simulations and can affect the results. The region of

interest plays an important role, since the ground contact phases are hardly influenced

by HGR, whereas GRFP models show significantly lower HGR. In addition, there are

application-dependent possibilities to reduce the HGR. A small improvement is achieved

by optimizing the GRFP parameters and an adjustment of the cut-off frequency of the

kinematic filter has a noticeable influence on the occurrence and the amount of HGR.

However, in order to reduce the occurring HGR below limit values suggested by the

literature or even completely eliminate them more elaborate methods are necessary. With

the presented approach, however, it is possible to reduce the influence of HGR on the

model output considerably by simple adjustments.



Chapter 5

Discussion and Conclusion

5.1 Discussion

The aim of this work was to investigate highly dynamic movements of competitive ath-

letes, as well as to evaluate the behavior of musculoskeletal models during such motions.

Specifically, the performance and musculoskeletal load of youth competitive football play-

ers under the influence of mental stress was investigated by providing players with addi-

tional cognitive tasks during change of direction maneuvers. Moreover, an evaluation of

muscle activation in the musculoskeletal models was performed by comparing measured

and calculated muscle activity during fast movements. In a further step, numerical in-

accuracies of these models (HGR) during the calculation of highly dynamic movements

were systematically investigated and optimization approaches were presented.

Investigating research question 1 ”How does the muscle and joint reaction force behave

under the influence of mental stress in elite junior football players for highly dynamic,

sports related motions?” revealed an interesting behavior of muscle and joint reaction

force under stress. The additional cognitive load for the elite junior football players led to

individual physiological and biomechanical reactions of the athletes. While some showed

considerate de- or increases in muscle and knee forces, others had comparable force levels

regardless of external stress reception.

Research question 2 was ”Does the musculoskeletal model’s muscle activity in the

lower extremities match the physiological muscle activation in highly dynamic motion,

and what’s the influence of different muscle modeling options?”. The examinations of

EMG and AMS muscle activities for different muscle recruitment and muscle modeling

configurations showed, that EMG and AMS fit quite well. Since the different configu-

rations didn’t differ much, the AMS most common configuration with a simple muscle

model and a quadratic target function for the muscle recruitment’s optimization problem

delivered reliable muscle activities for fast flexion and extension tasks as well as sprinting

movements.

54
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With research question 3 ”When and to what extent do HGR occur in simulations

of highly dynamic motions and how can their occurrence be influenced?” another model

reliability aspect was addressed. It was shown that HGR occur in simulations of highly

dynamic motion especially during changes of ground contact of the feet to no ground

contact. With optimizations to the GRFP and adjustments to the kinematic filter’s cut-

off frequency, the HGR can be reduced, although not eliminated completely.

The particular investigations in this thesis have shown that musculoskeletal models

can make a valuable contribution to research in the field of highly dynamic biomechanical

issues. In the experimental series on musculoskeletal loading under mental stress, the

athletes responded very differently to the stimuli. Most subjects experienced a reduction

in performance and changes in muscle and knee loading. Some exhibited significant peaks

in bracing during runs under stress.

Although the number of participants in the study reported here was too small to

draw general conclusions, the findings suggest that athletes in states of mental stress,

particularly with an additional attention-demanding task, may be at increased risk for

injury due to the non-physiological change in loading in the musculoskeletal apparatus.

Studies with a larger subject population may help in the future to identify athletes at

high risk in general or vulnerable body areas in particular. This work has shown that a

stressful scenario can be created with simple means and that musculoskeletal models in

a highly dynamic setup are suitable to identify such stress induced changes.

Evaluation of measured and calculated muscle activity has further supported the

reliability of musculoskeletal models in highly dynamic movements. In particular, for

flexion/extension-only movements, the correlation was mostly strong. For sprint move-

ments, the correlation of muscle activities was somewhat lower, overall in the moderate

to strong range, however, they were also in the range of those found by the literature in

similar studies (Wibawa et al. 2016). Although higher correlations were also calculated

in other studies (Dupré et al. 2019), this was probably due to the much tighter bound-

ary and environmental conditions for those studies. In this work, broader frameworks

were set with, compared to marker-based motion capture as the gold standard, somewhat

less accurate inertial motion capture (Blair et al. 2018) and calculated rather than mea-

sured ground reaction forces. Additionally, deliberate attention was paid to presets and

standard models of the model library, which have wide application. However, the investi-

gations proved that it is possible to calculate reliable muscle activities and consequently

muscle forces even with these. Though, it is to be noted that only the thigh musculature

was evaluated here.

In further work, other body regions such as the lower leg, thorax or upper extremities

can be considered. Similar results can be expected due to the general numeric muscle re-

cruitment algorithm. Furthermore, in highly dynamic movements, the thigh musculature

is often the subject of investigation. Consequently, it can be concluded that musculoskele-
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tal (standard) models fed with motion data from inertial or also video-based motion cap-

ture paired with calculated ground reaction forces can be used to analyze highly dynamic

movements.

As a final step, the HGR minimization approaches can contribute to additional model

validity. From the analysis, it appears that the kinematic input has a significant influence

on the occurrence of artificial balancing forces in the musculoskeletal model. By reducing

the cutoff frequency of the Butterworth low-pass filter in the model, the HGR can be

significantly reduced. In addition, optimization of the GRFP settings brings further

reduction. Thus, the interaction of kinematic fitting and GRFP optimization leads to

a better computational result with less HGR. Nevertheless, it has not been possible to

bring the relative contribution of HGR to the maximum occurring forces below 10%,

which is considered a reference value for HGR in the literature (Hicks et al. 2015). These

10%, nonetheless, refer to normally fast motions. In the case of the examined highly

dynamic movements, a higher HGR level is to be expected in principle due to the greater

accelerations occurring.

However, the investigations into HGR minimization have also shown that the op-

timization approaches may well be subject to error. By optimizing the segment mass

distribution to reduce HGR, a relative decrease in HGR has occurred, but a simultaneous

increment in body mass combined with an increase in GRF and HGR has ultimately led to

an absolute rise in HGR. Given that musculoskeletal models are often based on cadaver

studies of older subjects, it is reasonable for the future to optimize the segment mass

distribution to the specific subjects. Still, the framework of the optimization procedure

needs to be narrowly defined after the literature has shown that this optimization can

help (Fritz et al. 2019). In the end, there are already simple adjustments to minimize

HGR by adapting the cutoff frequency and the GRFP settings, whereas depending on the

problem, further, special minimization approaches have their justification.

In summary, musculoskeletal models are well suited to answer specific questions in

highly dynamic movements. Although there is still some potential for enhancement,

which needs further intensive research, the models produce reliable muscle activities on

the one hand and on the other hand there are simple possibilities to reduce numerical

inaccuracies caused by the input kinematics and thus to calculate the loads more stable

and reliable.
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5.2 Conclusion

For practical applications this means that we have models that we can safely use for

research questions in sports or other dynamic settings. First of all, the study on the

influence of stress on muscle loading has shown how such complex issues can be addressed

in a close to real-world experimental setting. In particular, the further advancement of

markerless motion capture technology will simplify such studies further. Due to the fact

that with markerless motion capture the subjects have to be prepared with much less

effort, considerably more subjects can be investigated, which is especially necessary when

dealing with stress with often individual reactions in order to draw general conclusions

from the examinations. The experimental setup presented in this work can easily be

adapted to markerless motion capture and essential components for stress generation and

evaluation as well as analysis can be adopted. This lays a foundation for further and

in-depth investigations of the exact mechanisms inherent to the cascade of biomechanical

and mental load (Figure 1.5). A better understanding of the precise relationships between

injuries and mental stress will ultimately lead to improved preventive measures in amateur

and professional sports.

With the evaluation of muscle recruitment and muscle modeling in musculoskeletal

models, studies regarding skeletal muscle loading have a broader basis for assessing the

results in terms of their accuracy and reliability. With the knowledge of the behavior

of different muscle models and muscle recruitment criteria, the results of the studies on

stress are also supported but not limited to them. Further studies investigating either the

performance of individual muscles and muscle groups or muscle injuries independent of

stress are also conceivable. With research into the exact injury development mechanisms,

new prevention programs can be developed or existing ones can be further improved and

the health of athletes can be promoted. Due to the possibility of application in more

dynamic settings, use in post-injury care is also possible. In sports rehabilitation, for

example, problems and progress in muscle development can be addressed.

Last but not least, the study of HGR has also shown that musculoskeletal models

are suitable for studies in highly dynamic movements. Although HGR also occur to a

greater extent there, they can be reduced and the time of occurrence also plays a role.

For practice, this means that especially, but not exclusively, attention must be paid to

HGR in simulations of highly dynamic motions, as they can have a significant influence

on the results. However, with the approaches presented in this paper, it is possible to get

a grip on the HGR and reduce their influence. In general, it is necessary to always check

the results of the calculations and ensure the correct setting of the boundary conditions

in the musculoskeletal model.
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Appendix A
Supplementary material to chapter 3

Graphs for muscle activity in EMG and AMS for the S2 scenario for every subject.

(a) Subject 1

(b) Subject 2
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(c) Subject 3

(d) Subject 4
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(e) Subject 5

(f) Subject 6
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(g) Subject 7

(h) Subject 8
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(i) Subject 9

(j) Subject 10
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(k) Subject 11

(l) Subject 12
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(m) Subject 13

(n) Subject 14
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(o) Subject 15

(p) Subject 16
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(q) Subject 17

(r) Subject 18
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(s) Subject 19

(t) Subject 20

Figure A.1: Muscle activity in electromyography (EMG) (green) and AMS (red) for the S2
scenario for every subject. Including the statistics of Pearson correlation r and coefficient
of determination R2.
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Appendix B
Supplementary material to chapter 4

Listing B.1: Python code for the optimization of the body segment parameters.

import s c ipy

import numpy as np

from path l i b import Path

from anypytoo ls import AnyPyProcess

from anypytoo ls . macro commands import Load , OperationRun , Dump, SetValue

# r e l a t i v e path to AnyBody . h5 output f i l e

path = str ( Path ( ’ . . / . . / 0 2 AnyBody/ BVH with forceplate / App l i ca t ion / ’+

’ MocapExamples/BVH Xsens/ ’ ) . r e s o l v e ( ) )

BM = 84.3

def run model (

l b rSc l , thxScl , p lvSc l , t h iS c l , shaScl , f ooSc l , BM, s i l e n t=False ) :

macro = [

Load ( path + ”/Main . any” ) ,

SetValue ( ”Main . HumanModel . Anthropometrics . SegmentMasses . Lumbar” ,

l b r S c l *BM) ,

SetValue ( ”Main . HumanModel . Anthropometrics . SegmentMasses . Thorax” ,

thxSc l *BM) ,

SetValue ( ”Main . HumanModel . Anthropometrics . SegmentMasses . P e l v i s ” ,

p l vSc l *BM) ,

SetValue ( ”Main . HumanModel . Anthropometrics . SegmentMasses . Right . Thigh” ,

t h i S c l *BM) ,

SetValue ( ”Main . HumanModel . Anthropometrics . SegmentMasses . Right . Shank” ,

shaSc l *BM) ,

SetValue ( ”Main . HumanModel . Anthropometrics . SegmentMasses . Right . Talus ” ,

f o o S c l *0 .2*BM) ,

SetValue ( ”Main . HumanModel . Anthropometrics . SegmentMasses . Right . Foot” ,

f o o S c l *0 .8*BM) ,

SetValue ( ”Main . HumanModel . Anthropometrics . SegmentMasses . Le f t . Thigh” ,

t h i S c l *BM) ,

SetValue ( ”Main . HumanModel . Anthropometrics . SegmentMasses . Le f t . Shank” ,

shaSc l *BM) ,

SetValue ( ”Main . HumanModel . Anthropometrics . SegmentMasses . Le f t . Talus ” ,

f o o S c l *0 .2*BM) ,
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SetValue ( ”Main . HumanModel . Anthropometrics . SegmentMasses . Le f t . Foot” ,

f o o S c l *0 .8*BM) ,

OperationRun ( ”Main . RunAnalysis . LoadParameters” ) ,

OperationRun ( ”Main . RunAnalysis . InverseDynamics ” ) ,

Dump( ”Main . Stud i e s . InverseDynamicStudy . Output . ”+

”ModelEnvironmentConnection . HumanGroundResiduals . PosX Force” ) ,

Dump( ”Main . Stud i e s . InverseDynamicStudy . Output . ”+

”ModelEnvironmentConnection . HumanGroundResiduals . PosY Force” ) ,

Dump( ”Main . Stud i e s . InverseDynamicStudy . Output . ”+

”ModelEnvironmentConnection . HumanGroundResiduals . PosZ Force ” ) ,

Dump( ”Main . Stud i e s . InverseDynamicStudy . Output . ”+

”BodyModel . Anthropometrics . BodyMassDummy” )

]

app = AnyPyProcess (

anybodycon path=

’C: / Program  F i l e s /AnyBody  Technology /AnyBody . 7 . 3 / AnyBodyCon . exe ’ ,

s i l e n t=s i l e n t )

r e s u l t s = app . s tar t macro ( macro )

return r e s u l t s [ 0 ]

def obj fun ( de s i gnvar s ) :

””” Ca l cu l a t e the o b j e c t i v e f unc t i on va lue ”””

l b r S c l = des i gnvar s [ 0 ]

thxSc l = des i gnvar s [ 1 ]

p l vSc l = des i gnvar s [ 2 ]

t h i S c l = des i gnvar s [ 3 ]

shaSc l = des i gnvar s [ 4 ]

f o o S c l = des i gnvar s [ 5 ]

r e s u l t = run model ( l b rSc l , thxScl , p lvSc l , t h iS c l , shaScl , f ooSc l , BM,

s i l e n t=True )

i f ”ERROR” in r e s u l t :

return 9999999

bodyWeight = np . array ( r e s u l t [ ’ BodyModel . Anthropometrics . BodyMassDummy ’ ] ) [ 0 ]

nrm = ( bodyWeight *9 .81)/100 # norma l i za t ion o f f o r c e s to %BW

hgrX = r e s u l t [ ”ModelEnvironmentConnection . ”+

”HumanGroundResiduals . PosX Force” ]

hgrY = r e s u l t [ ”ModelEnvironmentConnection . ”+

”HumanGroundResiduals . PosY Force” ]

hgrZ = r e s u l t [ ”ModelEnvironmentConnection . ”+

”HumanGroundResiduals . PosZ Force ” ]

return np .max(np . s q r t ( hgrX**2+hgrY**2+hgrZ **2)/nrm)

def o p t c o n s t r a i n t ( x ) :

return ( x [ 0 ] + x [ 1 ] + x [ 2 ] + x [ 3 ] + x [ 4 ] + x [ 5 ] )
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l b r S c l 0 =0.139

thxSc l0 =0.1894

p lvSc l 0 =0.142

t h i S c l 0 =0.1

shaSc l0 =0.0465

f o o S c l 0 =0.0145

sumMD = l b r S c l 0+thxSc l0+p lvSc l 0+t h i S c l 0 *2+shaSc l0*2+ f o o S c l 0 *2

t o l = 0 .05 # ov e r a l l we igh t t o l e r anc e o f 5%

c o n s t r a i n t s = sc ipy . opt imize . Non l inearConstra int (

op t con s t r a in t , sumMD=t o l *sumMD, sumMD+t o l *sumMD)

t o l 2= 0 .2

bounds = [

( lb rSc l 0=t o l 2 * l b rSc l 0 , l b r S c l 0+t o l 2 * l b r S c l 0 ) ,

( thxScl0=t o l 2 * thxScl0 , thxSc l0+t o l 2 * thxSc l0 ) ,

( p lvSc l0=t o l 2 * plvSc l0 , p lvSc l 0+t o l 2 * p lvSc l 0 ) ,

( th iSc l 0=t o l 2 * th iSc l 0 , t h i S c l 0+t o l 2 * t h i S c l 0 ) ,

( shaScl0=t o l 2 * shaScl0 , shaSc l0+t o l 2 * shaSc l0 ) ,

( fooSc l0=t o l 2 * f ooSc l0 , f o o S c l 0+t o l 2 * f o o S c l 0 )

]

i n i t i a l g u e s s = ( lb rSc l 0 , thxScl0 , p lvSc l0 , th iSc l 0 , shaScl0 , f o o S c l 0 )

s o l u t i o n = sc ipy . opt imize . d i f f e r e n t i a l e v o l u t i o n (

objfun , bounds , c o n s t r a i n t s=c o n s t r a i n t s )

Listing B.2: Python code for the optimization of the GRFP parameters with C3D input.

import s c ipy

import numpy as np

from path l i b import Path

from anypytoo ls import AnyPyProcess

from anypytoo ls . macro commands import Load , OperationRun , Dump, SetValue

s u b j e c t = ’ Subject 997 ’

t r i a l = ’ Jump 003 ’

f i l ename = ’ / ’ + s u b j e c t + ’ ’ + t r i a l

# r e l a t i v e path to AnyBody . h5 output f i l e

path = str ( Path ( ’ . . / . . / 0 2 AnyBody/C3D SquatJump/ Appl i ca t ion / ’+

’ MocapExamples/Plug=in=ga i t S imp l e / ’ ) . r e s o l v e ( ) )

f i r s tFrame = 850

lastFrame = 1150

contactStop = 947 # ex t r a c t e d manually from ForcePlate Data

contac tS ta r t = 1057

contactDurationC3D = contac tS ta r t = contactStop

def run model (LDH, LVH, s i l e n t=False ) :
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macro = [

Load ( path + ”/ FullBody GRFPrediction . main . any” ) ,

SetValue ( ”Main . EnvironmentModel . ForcePlates . ”+

” GRF Prediction Right . S e t t i n g s . LimitDistHigh ” , LDH) ,

SetValue ( ”Main . EnvironmentModel . ForcePlates . ”+

” GRF Predict ion Left . S e t t i n g s . LimitDistHigh ” , LDH) ,

SetValue ( ”Main . EnvironmentModel . ForcePlates . ”+

” GRF Prediction Right . S e t t i n g s . LimitVelHigh ” , LVH) ,

SetValue ( ”Main . EnvironmentModel . ForcePlates . ”+

” GRF Predict ion Left . S e t t i n g s . LimitVelHigh ” , LVH) ,

OperationRun ( ”Main . RunAnalysis . LoadParameters” ) ,

OperationRun ( ”Main . RunAnalysis . InverseDynamics ” ) ,

Dump( ”Main . Stud i e s . InverseDynamicStudy . Output . ”+

”ModelEnvironmentConnection . HumanGroundResiduals . PosX Force” ) ,

Dump( ”Main . Stud i e s . InverseDynamicStudy . Output . ”+

”ModelEnvironmentConnection . HumanGroundResiduals . PosY Force” ) ,

Dump( ”Main . Stud i e s . InverseDynamicStudy . Output . ”+

”ModelEnvironmentConnection . HumanGroundResiduals . PosZ Force ” ) ,

Dump( ”Main . Stud i e s . InverseDynamicStudy . Output . ”+

”BodyModel . Anthropometrics . BodyMassDummy” ) ,

Dump( ”Main . Stud i e s . InverseDynamicStudy . Output . EnvironmentModel . ”+

” ForcePlates . GRF Prediction Right . GRF point . Opacity ” ) ,

Dump( ”Main . Stud i e s . InverseDynamicStudy . Output . ”+

”EnvironmentModel . ForcePlates . GRF Predict ion Left . ”+

”GRF point . Opacity ” )

]

app = AnyPyProcess (

anybodycon path=

’C: / Program  F i l e s /AnyBody  Technology /AnyBody . 7 . 4 / AnyBodyCon . exe ’ ,

s i l e n t=s i l e n t )

r e s u l t s = app . s tar t macro ( macro )

return r e s u l t s [ 0 ]

def obj fun ( de s i gnvar s ) :

””” Ca l cu l a t e the o b j e c t i v e f unc t i on va lue ”””

LDH = des i gnvar s [ 0 ]

LVH = des i gnvar s [ 1 ]

r e s u l t = run model (LDH, LVH, s i l e n t=True )

i f ”ERROR” in r e s u l t :

raise ValueError ( ” Fa i l ed  to  run  model” )

bodyWeight = np . array (

r e s u l t [ ’ BodyModel . Anthropometrics . BodyMassDummy ’ ] ) [ 0 ]

nrm = ( bodyWeight *9 .81)/100 # norma l i za t ion o f f o r c e s to %BW

hgr = np . s q r t (max(abs ( r e s u l t [

”ModelEnvironmentConnection . HumanGroundResiduals . PosX Force” ] ) )**2
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+ max(abs ( r e s u l t [

”ModelEnvironmentConnection . HumanGroundResiduals . PosY Force” ] ) )**2

+ max(abs ( r e s u l t

[ ”ModelEnvironmentConnection . HumanGroundResiduals . PosZ Force ” ] ) ) * * 2 ) / nrm

rightGRFOnOff = np . array ( r e s u l t [

’ EnvironmentModel . ForcePlates . GRF Prediction Right . ’+

’ GRF point . Opacity ’

] )

leftGRFOnOff = np . array ( r e s u l t [

’ EnvironmentModel . ForcePlates . GRF Predict ion Left . ’+

’ GRF point . Opacity ’

] )

contactDurationAMS = 0

for i in range ( len ( rightGRFOnOff ) ) :

i f rightGRFOnOff [ i ] == 1 or leftGRFOnOff [ i ] == 1 :

contactDurationAMS += 1

contactDi f fAbs = int ( contactDurationAMS = contactDurationC3D )

con tac tD i f fRe l = contactDi f fAbs /contactDurationC3D *100

return hgr + 0.7*abs ( c on ta c tD i f fRe l )

def o p t c o n s t r a i n t ( x ) :

return (np . s q r t ( x [ 0 ]**2 + x [ 1 ] * * 2 ) = 0 . 0 5 )

bounds = [ ( 0 . 0 0 5 , 0 . 3 ) , ( 0 . 5 , 1 5 ) ]

i n i t i a l g u e s s = ( 0 . 0 3 5 , 0 . 8 )

s o l u t i o n = sc ipy . opt imize . d i f f e r e n t i a l e v o l u t i o n (

objfun , bounds=bounds )

Listing B.3: Python code for the optimization of the GRFP parameters with BVH input.

import s c ipy

import pandas as pd

import numpy as np

from path l i b import Path

from anypytoo ls import AnyPyProcess

from anypytoo ls . macro commands import Load , OperationRun , Dump, SetValue

import mvnx

s u b j e c t = ’ Subject 997 ’

t r i a l = ’ Jump 003 ’

f i l ename = ’ / ’ + s u b j e c t + ’ ’ + t r i a l

# r e l a t i v e path to AnyBody . h5 output f i l e

path = str ( Path ( ’ . . / . . / 0 2 AnyBody/ BVH with forceplate / App l i ca t ion / ’+

’ MocapExamples/BVH Xsens/ ’ ) . r e s o l v e ( ) )

# r e l a t i v e path to Xsens . h5 output f i l e
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mvnxFile = Path (

’ . . / . . / 0 3 Xsens / ’ + s u b j e c t + ’ / out/ ’ + t r i a l + ’ . mvnx ’ ) . r e s o l v e ( )

mvnxData = mvnx .MVNX( str ( mvnxFile ) )

f i r s tFrame = 850

lastFrame = 1150

# Xsens Ground contac t d e t e c t i on :

contMVNX = pd . DataFrame (mvnxData . g e t i n f o ( ’ f ootContact s ’ ) )

contactDurationMVNX = 0

for i in range ( f i r s tFrame , lastFrame ) :

i f contMVNX[ ’ Le f tFoot Hee l ’ ] [ i ] == [ 1 . 0 ] or \
contMVNX[ ’ LeftFoot Toe ’ ] [ i ] == [ 1 . 0 ] or \
contMVNX[ ’ RightFoot Heel ’ ] [ i ] == [ 1 . 0 ] or \

contMVNX[ ’ RightFoot Toe ’ ] [ i ] == [ 1 . 0 ] :

contactDurationMVNX += 1

def run model (LDH, LVH, s i l e n t=False ) :

macro = [

Load ( path + ”/Main . any” ) ,

SetValue ( ”Main . EnvironmentModel . ForcePlates . ”+

” GRF Prediction Right . S e t t i n g s . LimitDistHigh ” , LDH) ,

SetValue ( ”Main . EnvironmentModel . ForcePlates . ”+

” GRF Predict ion Left . S e t t i n g s . LimitDistHigh ” , LDH) ,

SetValue ( ”Main . EnvironmentModel . ForcePlates . ”+

” GRF Prediction Right . S e t t i n g s . LimitVelHigh ” , LVH) ,

SetValue ( ”Main . EnvironmentModel . ForcePlates . ”+

” GRF Predict ion Left . S e t t i n g s . LimitVelHigh ” , LVH) ,

OperationRun ( ”Main . RunAnalysis . LoadParameters” ) ,

OperationRun ( ”Main . RunAnalysis . InverseDynamics ” ) ,

Dump( ”Main . Stud i e s . InverseDynamicStudy . Output . ”+

”ModelEnvironmentConnection . HumanGroundResiduals . PosX Force” ) ,

Dump( ”Main . Stud i e s . InverseDynamicStudy . Output . ”+

”ModelEnvironmentConnection . HumanGroundResiduals . PosY Force” ) ,

Dump( ”Main . Stud i e s . InverseDynamicStudy . Output . ”+

”ModelEnvironmentConnection . HumanGroundResiduals . PosZ Force ” ) ,

Dump( ”Main . Stud i e s . InverseDynamicStudy . Output . ”+

”BodyModel . Anthropometrics . BodyMassDummy” ) ,

Dump( ”Main . Stud i e s . InverseDynamicStudy . Output . ”+

”EnvironmentModel . ForcePlates . GRF Prediction Right . OnOff” ) ,

Dump( ”Main . Stud i e s . InverseDynamicStudy . Output . ”+

”EnvironmentModel . ForcePlates . GRF Predict ion Left . OnOff” )

]

app = AnyPyProcess (

anybodycon path=

’C: / Program  F i l e s /AnyBody  Technology /AnyBody . 7 . 3 / AnyBodyCon . exe ’ ,

s i l e n t=s i l e n t )

r e s u l t s = app . s tar t macro ( macro )
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return r e s u l t s [ 0 ]

def obj fun ( de s i gnvar s ) :

””” Ca l cu l a t e the o b j e c t i v e f unc t i on va lue ”””

LDH = des i gnvar s [ 0 ]

LVH = des i gnvar s [ 1 ]

r e s u l t = run model (LDH, LVH, s i l e n t=True )

i f ”ERROR” in r e s u l t :

raise ValueError ( ” Fa i l ed  to  run  model” )

bodyWeight = np . array (

r e s u l t [ ’ BodyModel . Anthropometrics . BodyMassDummy ’ ] ) [ 0 ]

nrm = ( bodyWeight *9 .81)/100 # norma l i za t ion o f f o r c e s to %BW

hgr = np . s q r t (max(abs ( r e s u l t [

”ModelEnvironmentConnection . HumanGroundResiduals . PosX Force”

] ) )**2

+ max(abs ( r e s u l t [

”ModelEnvironmentConnection . HumanGroundResiduals . PosY Force”

] ) )**2

+ max(abs ( r e s u l t [

”ModelEnvironmentConnection . HumanGroundResiduals . PosZ Force ”

] ) ) * * 2 ) / nrm

rightGRFOnOff = np . array (

r e s u l t [ ’ EnvironmentModel . ForcePlates . ’+

’ GRF Prediction Right . OnOff ’ ] )

leftGRFOnOff = np . array (

r e s u l t [ ’ EnvironmentModel . ForcePlates . ’+

’ GRF Predict ion Left . OnOff ’ ] )

contactDurationAMS = 0

for i in range ( len ( rightGRFOnOff ) ) :

i f rightGRFOnOff [ i ] == 1 or leftGRFOnOff [ i ] == 1 :

contactDurationAMS += 1

contactDi f fAbs = int ( contactDurationAMS = contactDurationMVNX )

contac tD i f fRe l = contactDi f fAbs /contactDurationMVNX*100

return hgr + 0.7*abs ( c on ta c tD i f fRe l )

def o p t c o n s t r a i n t ( x ) :

return (np . s q r t ( x [ 0 ]**2 + x [ 1 ] * * 2 ) = 0 . 0 5 )

bounds = [ ( 0 . 0 0 5 , 0 . 3 ) , ( 0 . 1 , 1 5 ) ]

i n i t i a l g u e s s = ( 0 . 0 3 5 , 0 . 8 )

s o l u t i o n = sc ipy . opt imize . d i f f e r e n t i a l e v o l u t i o n (

objfun , bounds=bounds )
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