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Introduction

Quantum entanglement is at the very heart of quantum mechanics. It is one of
the decisive properties, which separates the classical world from the quantum one.
Entanglement, in its essence, describes the phenomenon that different particles may
form a combined quantum state in such a way that one particle of this state cannot be
represented independently of the other constitute states. As Erwin Schrödinger framed
it in 1935 [1]:

When two systems, of which we know the states by their respective repre-
sentatives, enter into temporary physical interaction due to known forces
between them, and when after a time of mutual influence the systems sepa-
rate again, then they can no longer be described in the same way as before,
[namely] by endowing each of them with a representative of its own. I would
not call that one, but rather the characteristic trait of quantum mechanics,
the one that enforces its entire departure from classical lines of thought.
By the interaction, the two representatives (or Ψ-functions) have become
entangled.

An example of entangled particles is a spin-singlet state (total spin S = 0) formed by
two electrons, which is illustrated in Fig. 1 a:

|Ψ−⟩ =
1√
2
(|↑↓⟩ − |↓↑⟩) . (0.1)

Also referred by Albert Einstein as the spooky action at a distance, entanglement of
the former state ensures that even if the electrons get separated far from each other, a
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0 Introduction

measurement of one of the electron’s spin would determine the other’s instantaneously.
A similar thought experiment, where the position and the momenta of two particles
are entangled, is known as the Einstein–Podolsky–Rosen (EPR) paradox, named after
its proposers [2]. Remarkably, Albert Einstein, considered as one of the founders of
quantum mechanics with his theory of quantized light, contested though the non-locality
of the entanglement and thus of quantum mechanics in general, which corresponds
to actions propagating faster than the speed of light. He proposed as a solution to
the thought experiment the so-called local hidden-variable theory. However, as one

Figure 1: Quantum entanglement of particles: a Illustration of an
entangled spin up and spin down electron. © 2022 Nicolle R. Fuller/NSF.
b Two pairs of entangled particles are emitted from different sources. One
particle from each pair is brought together in a special way that entangles them.
The two other particles (1 and 4 in the diagram) are then also entangled. In
this way, two particles that have never been in contact can become entangled.
Figure and description taken from [3]. © 2022 Johan Jarnestad/The Royal
Swedish Academy of Sciences.

could think after this introduction, the study of entanglement was not only restricted
to a dispute between the founding fathers of quantum mechanics in its early days. Its
significance as a current research topic was underscored by the Nobel Prize in Physics
of 2022. The prize was awarded to Alain Aspect, John Clauser and Anton Zeilinger “for
experiments with entangled photons, establishing the violation of Bell inequalities and
pioneering quantum information science”. In their groundbreaking work, Aspect and
Clauser managed to obtain, among other things, a source of singlet states, similar to
the one sketched earlier in Eq. (0.1). With the help of these states, they could probe
the Bell inequality and show experimentally its violation [4, 5]. This result helped to
establish the now-consensus understanding of entanglement, with rejecting firmly the

2



local hidden-variable theory in quantum mechanics proposed by Einstein.

Figure 2: Interference: a Two water drops illustrate an interference pattern.
The ripples represent constructive and destructive interference of the two
concentric water waves. © 2013 Josh Valcarcel photography. b Setup of the
interference experiment of [6]. In a CNT, a linear combination of the two
prevailing momentum states can lead to the formation of a dark state.

With quantum interference, we have another fundamental concept of quantum physics
protruding into our research. It is a direct consequence of the superposition principle,
which allows quantum systems to be at the same time in two different states. Note that
the superposition principle is not the same phenomenon as entanglement since for the
latter you inevitably need two degrees of freedom. Furthermore, all entangled states are
(special cases) of superposed states, while the opposite is not true. Generally, quantum
interference characterizes two coherent states or wave packets combining each other
in a constructive or destructive way, in close analogy to water waves (cf. Fig. 2 a). It
should be noted that only if there exists some form of quantum coherence in a system,
the effect of interference can arise. In order to have perfectly coherent states, these
states need to have a constant phase relation. The most prominent experiment in this
context is definitely the original double-slit experiment by Young, which measured light
interference [7]. Later achievements were the observation of interference patterns with
electrons [8, 9] and even with C60 molecules [10].
Due to impressive experimental advances, quantum interference, once believed to be
too delicate for any attempt to bring it even into the mesoscopic scale, is now studied
in a broad range of systems. In order to bring interference effects and thus quantum
coherence into realistic experimental scenarios, one must consider the interaction of a
system with its environment. The coupling to the leads, however, introduces decoherence
with a detrimental effect on interference. Nevertheless, many research groups could

3
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Figure 3: Dark state formation in a CNT: a Stability diagram of the QD
reveals missing transition lines, indicated by the red arrows, which can only
explained by destructive interference. Blue arrows highlight areas of negative
differential conductance. Experimental data of the gate traces of the current
(b) shows a good agreement with the theoretical results (c).

show in recent years striking evidence of interference fingerprints in a variety of setups
and regimes, despite the presence of this coupling. In this regard, experiments in the
strong [11–13] and weak [14–16] coupling regime could observe different manifestations
of interference. All of these implementations share the property that they consist
of multiple paths for the traversing particles, which are energetically equivalent. In
contrast to the strong coupling regime, where the decoherence rate is negligible, the weak
coupling regime is governed by decoherence. There, electrons enter the nanojunction
one after the other, in a transport regime dubbed, for this reason, sequential tunneling.
The electrons reside then on the system for a relative long time and they potentially
can lose their coherence. Nevertheless, the possible coherent pumping from the leads,
which is in constant competition to the hindrance of the decoherence, can prevail and
lead indeed to interference in these nanojunctions.
Another recent work displays the effect of interfering electrons [6]. The setup is here a
carbon nanotube (CNT) suspended on two leads (cf. Fig. 2 b), which can be considered
as an overall a quantum dot (QD) system. In Fig. 3, we depict their theoretical and
experimental findings, where the interference effects are clearly visible through the

4



disappearance of transition lines. The origin of this effect is found to be in the formation
of a so-called dark state, which is decoupled from one of the leads. The resulting
suppression of current is not captured within the classical picture, but in the quantum
world, it can be seen as the destructive interference of electrons in analogy to a valley in
the water wave picture (Fig. 2 a). Overall, this particular work is closely related to the
presented research of this thesis, where slightly adjusted parameters lead to strikingly
new interference features.

Outline This thesis is divided into two main parts. The first one deals with the
underlying theory, while the second one is about its applications.

Part 1 - Theory In Cha. 1, we introduce our transport theory based on the density
matrix formalism. Transforming the equations into the Liouville space, we obtain here
a generalized master equation for an arbitrary system. Special focus is given to the two
leading-order approximations with respect to the coupling of the system to the leads.
These two approximations, called sequential tunneling and cotunneling, are exclusively
used in the later following results. The discussion of a diagrammatic representation of
this formalism, its application to the basic example of the single-impurity Anderson
model and the role of the coherences complete this chapter.

In Cha. 2, we examine spin and pseudospin valves, with the main focus on valves
implemented in QD setups. The pseudospin is considered to be the orbital degree of
freedom of a double quantum dot (DQD) in our applications. We dedicate one section
to the important role of the exchange fields, which can alter the dynamics in QD valve
setups drastically. Sequentially, we give the equations of motion for a QD spin valve,
which are the foundation of our studies of more intricate systems in DQDs. Other
than that, the concept of spin resonance, central in this thesis, is extensively discussed.
Moreover, the concept of concurrence as a measure of entanglement in a bipartite system
is introduced.

In Cha. 3, we cover the theoretical basis of the investigation of QD-based Josephson
junctions. We achieve this with a particle-conserving ansatz to superconductivity. At
first, we introduce the broader context of superconductivity to the reader in terms of
its history, the recent developments as well as the deficiencies of the existing underlying
theory. The derived generalized master equation, with the proper definitions of the
superconducting Kernels, is the foundation of the later work. Additionally, we introduce
the Anderson pseudospin in order to describe the proximity-induced superconducting
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0 Introduction

correlations appearing in the QDs. Using a pseudospin description also for the supercon-
ductive nanojunctions helps us to take advantage there from the appropriated methods
applied for the analysis of pseudospin dynamics in valve setups.

Part 2 - Applications
In Cha. 4, we discuss the results of our first publication Pseudospin resonances reveal
synthetic spin-orbit interaction, in which we investigate a DQD pseudospin valve. To
start with, we thoroughly introduce a microscopic model of a pseudospin valve setup.
Moreover, by manipulating the coupling to the leads, we substantiate our predictions.
We realize pseudospin current resonances, which can split due to the addition of fer-
romagnetic leads. In this particular setup, an intertwinement of the spin and the
pseudospin degree of freedom is observed. The discussion is based on a coherent sequen-
tial tunneling model, which complements the numerical data obtained by a generalized
master equation up to the cotunneling transport regime. In the outlook, experimental re-
sults of a possible implementation of pseudospin resonances in a CNT setup are discussed.

In Cha. 5, we present the results of our second publication, titled Precession of entan-
gled spin and pseudospin resonances in double quantum dots. Upon the results of the
previous chapter, we extend and generalize here the model to allow for arbitrary spin
and pseudospin polarizations of the leads. In the particular example of a DQD-based
spin valve, we can show intricate current resonances, which stem from the precession
dynamics of an entangled spin and pseudospin. Dissecting the interplay of decoherence,
pumping and precession in these systems helps us to predict the resonances. Other than
that, we identify as the general mechanism behind spin and pseudospin resonances a
dephasing process.

In Cha. 6, we investigate proximity-induced superconductivity in a QD-based Josephson
junction within a particle-conserving ansatz. We can show that finite superconducting
correlations, captured by the Anderson pseudospin, leak into the QD, and that they can
assume non-zero values for gate voltages inside the Coulomb blockade region, far away
from the previously assumed resonance positions. The finding of non-zero values of the
pair amplitude is rationalized by the delicate interplay of quasiparticle processes and the
ones involving Cooper pairs. Moreover, we demonstrate a so-called 0-π transition of our
system in dependence of temperature or gate voltage. The calculations are performed
within the leading-order approximation of the coupling to the leads and encompass also
non-equilibrium configurations.
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Liouville approach to transport

1
In this chapter, we introduce the transport theory which represents the foundation of this
thesis. We derive a generalized master equation based on the density matrix formalism
in the Liouville approach. This method is inherently based on the evolution of states
according to the Schrödinger equation. However, due to the enormous number of degrees
of freedom of a system connected to large reservoirs, it is impossible to capture the
evolution of all states. For that reason, one traces out the reservoir degree of freedoms
and focuses instead on the reduced density matrix of the system. The coupling to the
leads introduces incoherent processes leading to a loss of information as well as coherent
processes building up coherences in our reduced density matrix. Coherences are, in the
context of density matrices, phase relations between different states in a given basis.
The Liouville approach is now our method of choice to describe transport phenomena,
where exactly those coherences are an integral part of the systems, which often cannot
be described without them. Going from a Hilbert space description to a Liouville space,
it enables us to condense the resulting equations in a more concise manner. Moreover,
we prefer the Liouville space representation to the more conventional Hilbert space one.
In the Liouville space, the equations of motion for the reduced density matrix are in
fact more concise, thus allowing us a better overview of their structure.

9



1 Liouville approach to transport

1.1 System-bath Hamiltonian

In this thesis, we focus on open quantum systems. This concept is widely used in many
fields of physics like quantum optics, statistical mechanics and quantum information. In
general, an open quantum system describes a quantum-mechanical system interacting
with its environment, called the bath. In order to analyze realistic physical setups, these
are often the model of choice since many systems cannot be treated as isolated from
their surroundings. Moreover, in transport configurations, precisely this interaction of
the bath and system is desired and, crucially, characterizes the overall dynamics. By
definition, we lack full information of the large baths. Consequently, they introduce
dissipation (i.e., irreversible processes) and decoherence to the system. A generic
system-bath Hamiltonian describing such a setup reads

Ĥ = ĤS + ĤB + Ĥtun, (1.1)

where the system Hamiltonian ĤS is coupled to the bath Hamiltonian ĤB via the
tunneling Hamiltonian Ĥtun. Throughout the thesis, we pay special attention to
interacting systems. One of the simplest realization of an interacting system is a QD
where its small spatial size leads to discrete energy levels for its residing electrons.
Usually, one applies a gate voltage Vg to the QD, which shifts its energy levels through
capacitive coupling, and a bias voltage Vb to the leads tuning the current I. The
electrons are confined on these islands akin to artificial atoms, and they exhibit strong
Coulomb repulsion which fixes the number of particles on a broad gate voltage range,
the so-called Coulomb blockade. In Fig. 1.1, a transport setup is shown where the
system is chosen to be a QD. With the exception of the superconducting case treated
in Cha. 3, the bath Hamiltonian is modeled as two fermionic baths

ĤB =
∑
lkσl

εlkσl
ĉ†lkσl

ĉlkσl
, (1.2)

where l = L,R comprises the lead index and σl labels the spin index of the corresponding
lead. The momentum vector k is indicated in boldface.
The distinction of the spin quantization axis of each lead is important when an itinerant
ferromagnet is introduced in Sec. 2.2 to describe spin valve setups. The density of
states of the leads, a crucial quantity in transport theory, determines the single-particle
energies εlkσl

. We take for simplicity single-band dispersion per spin species and lead,
as fermionic transport only involves states close to the Fermi-energy. The annihilation
operator ĉlkσl

destroys the lead electron with the corresponding energy εlkσl
. The
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1.2 Nakajima-Zwanzig equation

Figure 1.1: Schematic setup of a QD attached to leads: The bath
Hamiltonian ĤB consists of two leads (l = L,R) in between which a bias
voltage Vb is applied. A gate voltage Vg modifies the energy levels of the system
Hamiltonian ĤS which is here chosen to be a QD. The black arrows indicate
the tunneling coupling of the system and the bath via Ĥtun.

creation operator is denoted by ĉ†lkσl
.

Tunneling between the bath and the system is described by the following Hamilto-
nian,

Ĥtun =
∑
lkσliσ

tlkσl,iσ ĉ
†
lkσl

d̂iσ + t∗lkσl,iσ
d̂†iσ ĉlkσl

, (1.3)

where the dot annihilation/creation operators d̂iσ/d̂
†
iσ are connected with the lead

operators via the tunneling amplitudes tlkσl,iσ and its complex counterpart t∗lkσl,iσ
. The

tunneling amplitudes describe the interface of the leads with the system. They weight
the tunneling from a particular single-particle system state to a certain single-particle
lead state, or vice versa. Physically, these amplitudes are a measure of the overlap of
the lead and the system wave functions. They are strongly influenced by the geometry
of the contacts. The two indices of the dot operators label the transferred electrons
with its spin σ and its orbital degree of freedom i.

1.2 Nakajima-Zwanzig equation

This section follows to a great extent the introduction of the transport theory of
our publication [17] which is based on [18, 19]. A more detailed derivation of the
Nakajima-Zwanzig equation also can be found in [20].
The Nakajima-Zwanzig equation falls into the category of master equations and is
expressed in the density matrix formalism. Generally, master equations are used in
physics to describe the time evolution of states by differential equations. They are
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1 Liouville approach to transport

often applied to open quantum systems, but not exclusively. There are numerous
implementations. Here we explicitly derive a general and exact master equation, known
in the community as generalized master equation (GME). It is a generalization of the
Pauli master equation, as in contrast to the latter, it also incorporates the dynamics of
the coherences, i.e., the off-diagonal elements of the density matrix. The important role
of the coherences is elaborated in great detail in Sec. 1.7.
The starting point for the derivation of our GME is the Liouville-von Neumann equation,
which describes the time evolution of the total density matrix. The Liouville-von
Neumann equation is the quantum mechanical analog to the Liouville equation of
statistical mechanics and can be directly deduced from the Schrödinger equation. For
its formulation, we introduce the concept of a Liouville superoperator L:

˙̂ρtot(t) = − i

ℏ
[
Ĥ, ρ̂

]
=: Lρ̂tot(t), (1.4)

where ˙̂ρtot(t) is the time derivative of the density matrix for the total system-bath
model. The Liouville superoperator is a linear operator acting on the vector space
of the Hermitian operators, themselves defined on the Fock space of the system-bath
model. It is convenient to split the full Liouvillian L into the sum of three terms
L = LS+LB+Ltun, each indicating the commutator with the corresponding component
of the Hamiltonian. Since we are primarily interested in the dynamics of the system,
we integrate over the bath degrees of freedom and thus obtain an equation of motion
for the reduced density matrix ρ̂ = TrB {ρ̂tot}.
In order to arrive at a GME in an integral form, we deploy the Nakajima-Zwanzig
projection operator technique [21, 22]. The main idea behind this approach consists of
splitting the total density operator into two parts, namely Pρ̂tot and Qρ̂tot. The former
captures the separated component of ρ̂tot at a given time. The latter instead takes the
entangled part. The projectors extracting these two components are defined as

Pρ̂tot = TrB {ρ̂tot} ⊗ ρ̂B, (1.5)

Qρ̂tot = (1− P) ρ̂tot, (1.6)

with ρ̂B as the reference equilibrium density matrix of the bath.
Subsequently, we solve formally the Liouville equation for Qρ̂tot and inserting the result
back into the equation for Pρ̂tot. The result is called the Nakajima-Zwanzig equation
[23]:

P ˙̂ρtot(t) = LSPρ̂tot(t) +

∫ t

0
ds K(t− s)Pρ̂tot(s). (1.7)
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1.2 Nakajima-Zwanzig equation

One defines the Kernel superoperator as

K(t) = PLtunḠQ(t)LtunP, (1.8)

where the propagator for the entangled part ḠQ(t) contains all orders in the tunneling
Liouvillian Ltun:

ḠQ(t) = e(LS+LB+QLtunQ)t. (1.9)

The last step, a formally trivial trace over the leads of Eq. (1.7), yields the desired
equation of motion for the reduced density operator.
The so far exact Nakajima-Zwanzig equation depends on the state of the system at all
previous times, thus it is non-local in time. However, we restrict ourselves in this thesis
to calculate the steady state of the system, which is defined as ρ̂∞ := TrB {ρ̂tot(t → ∞)}.
By applying a Laplace transformation and with the help of the final value theorem, we
get an equation for steady state of the reduced density matrix [19, 24–26]:

TrB
{(

LS + K̃
)
(ρ̂∞ ⊗ ρ̂B)

}
= 0, (1.10)

with

K̃ = PLtun

∞∑
n=0

(
G̃0QLtunQ

)2n
G̃0LtunP, (1.11)

where
G̃0 = lim

λ→0+

1

λ− LS − LB
(1.12)

is the Laplace transform of the free propagator, for the system and the bath, in the
absence of tunneling. Since the tunneling Hamiltonian does not conserve the leads’
particle number, PL2n+1

tun P = 0 for n ∈ N, only an even number of Ltun survives the
trace over the bath degrees of freedom in Eq. (1.11).
The Laplace transform of the propagation Kernel is used to define the equation of
motion within the Markov approximation of the GME:

P ˙̂ρtot(t) =
(
LS + K̃

)
Pρ̂tot(t). (1.13)

Here, one is not restricted to the steady state but assumes that the timescale of the
evolution of the reduced density matrix is much longer than the decay time of the
propagation Kernel K(t− s), thus, ultimately, of the bath correlator functions [23]. This
condition ensures that memory effects do not play a role so that the equation can be
seen as local in time.
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1 Liouville approach to transport

1.3 Weak coupling limit

Throughout this thesis, we opt to treat the interaction exactly. We approximate, on
the other hand, the coupling to the leads to the two lowest orders to be able to tackle
more complex setups. Such a perturbative expansion of the propagation Kernel is a
valid approximation if the coupling to the leads (Γ0 ≪ U, kBT ) is sufficiently small.
The following subsections are dedicated to the lowest order, the often used sequential
tunneling limit and the next-to-leading order known shortly as the cotunneling regime.
It should be stated that the naming of this regime as cotunneling can be ambiguous since
this order also encompasses other tunneling phenomena such as, e.g., pair tunneling.

1.3.1 Sequential tunneling

The first term of the sum in Eq. (1.11) reproduces the sequential tunneling regime. The
propagation Kernel reads

K̃(2) = PLtun
1

0+ − LS − LB
LtunP, (1.14)

with the two tunneling Liouvillians Ltun setting the definition of the perturbative order
used in this thesis. With 0+, we denote the limit coming from the Laplace transformation,
which should be performed at the very end of the calculation. It originates from the
limit of the free propagator defined in Eq. (1.12), G̃0 = limλ→0+ G̃0(λ) = limλ→0+(λ−
LS − LB)

−1.
We introduce a Liouville index α for an arbitrary operator X̂ in order to shorten the
notation:

X̂+ρ̂ := X̂ρ̂, X̂−ρ̂ := ρ̂X̂. (1.15)

With this definition, we can reformulate a commutator as
[
X̂, ρ̂

]
=
∑

α αX̂
αρ̂. Applying

this notation to Ltun yields

LtunX̂ = − i

ℏ
∑
p=±

∑
α=±

∑
lkσln

p tp̄lkσl,n
ĉp,αlkσl

d̂p̄,αn X̂, (1.16)

with n = {iσ} running over the states of the system. We further introduced in Eq. (1.16),
the indices p = ± and p̄ = −p which distinguish creators (p = +) from annihilators
(p = −) and, for the tunneling amplitudes, t−lkσl,n

:= tlkσl,n from its complex value
t+lkσl,n

:= t∗lkσl,n
.

The tunneling amplitudes between specific bath and system states can be incorporated
in the so-called tunneling rate matrix [27], which is defined on the single-particle space
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1.3 Weak coupling limit

Figure 1.2: Visualization of an one-electron tunneling process and
correlated two-electron processes: The leftmost sketch shows an exemplary
sequential tunneling process where one electron (blue line) tunnels from the
source to one energy level of the system. The other four sketches show instead
correlated two-electron processes which extend the transport regime to the
cotunneling regime.

of the system as

Γl
n,m(E) =

2π

ℏ
∑
kσl

t∗lkσl,n
tlkσl,m δ(E − εlkσl

). (1.17)

In Sec. 2.2, we further elaborate on the specific form of the tunneling rate matrices and
their important role in the observation of interference effects in spin valve setups. Using
now Eqs. (1.16)-(1.17), we can express the second-order Kernel as

K̃(2) =
−i

2π

∑
nmp
lα1α2

∫
dεΓl,p

n,md̂p̄,α2
n

α1α2f
(pα1)
l (ε)

i0++pε−iℏLS
d̂p,α1
m P. (1.18)

The Fermi-function is defined as f±
l (ε) = [e±(ε−µl)/(kBT )+1]−1. Hereby is µl the chemical

potential of the l-lead, kB the Boltzmann constant and T the temperature. Furthermore,
we set ε := εlkσl

in the integral and added an index p also to the tunneling rate matrix,
which obeys then Γl

n,m = Γl,−
n,m = Γl,+

m,n. Moreover, we drop in this expression the energy
dependence of the tunneling rate matrix. The rationale behind it lies in the wide-band
limit, which we use for the solution of this energy integral. This approximation assumes
that the bands around the Fermi-energy are sufficiently flat so that the detailed structure
of the density of states is not important for the description of the transport. It is valid
if the bandwidth is large in comparison to the applied bias.
In general, the integral of Eq. (1.18), for a certain set of parameters, can be understood
as the weight of a certain tunneling event. The leftmost sketch of Fig. 1.2 shows a
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1 Liouville approach to transport

sequential tunneling event, which is characterized by the transfer of exactly one electron
from or to the leads indicated by the blue arrow. It may seem at the first glance
counterintuitively that one needs for a single charge transfer two d̂-system operators in
the integral. However, this is inherently tied to the fact the bra- and the ket-vector of
the reduced density matrix need to change for sequential tunneling by one considering,
e.g., a state with initially N -particles and finally N ± 1-particles: ρ̂initial = |N⟩⟨N | →
ρ̂final = |N ± 1⟩⟨N ± 1|. For the concrete but rather technical solution of the sequential
tunneling integral, we direct the interested reader to Appx. A.

1.3.2 Cotunneling

The next-to-leading-order in the expansion of the Kernel of Eq. (1.11) is the cotunneling
transport regime:

K̃ = K̃(2) + K̃(4) +O
(
H6

tun
)
. (1.19)

We indicate the cotunneling Kernel as K̃(4) since there tunneling events up to the fourth
order in Ltun are kept:

K̃(4) = PLtunG̃0QLtunQG̃0QLtunQG̃0LtunP. (1.20)

Simplifying the expression yields

K̃(4) = PLtunG̃0LtunG̃0LtunG̃0L tunP

− PLtunG̃0LtunPG̃0PLtunG̃0LtunP. (1.21)

Since G̃0 commutes with Q respective P and both projection operators square to them-
selves, the innermost Q-operators break down to Q. The outermost Q-operators vanish
according to PL2n+1

tun P = 0. The second term compensates the reducible Wick’s contrac-
tion still contained in the first term with the effect that only irreducible diagrams (i.e.,
diagrams which are not separated solely by a free evolution) persist in the cotunneling
Kernel [24]. The fourth-order Kernel can be split into the contributions K̃(4,D),

K̃(4,D) =
−iℏ
(4π)2

∑
{l}{p}

∑
{m}{n}

∑
{αi}

∫
dε

∫
dε′α1α4d̂

p̄,α4
n

f
(p′α2)
l′ (ε′)

i0++pε−iℏLS
d̂p̄

′,α3

n′

Γl,p
n,mΓl′,p′

n′,m′

i0++pε+p′ε′−iℏLS
d̂p

′,α2

m′
f
(pα1)
l (ε)

i0++pε−iℏLS
d̂p,α1
m P, (1.22)
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1.3 Weak coupling limit

and K̃(4,X),

K̃(4,X) =
iℏ

(4π)2

∑
{l}{p}

∑
{m}{n}

∑
{αi}

∫
dε

∫
dε′d̂p̄,α4

n

f
(pα2)
l (ε)

i0++pε−iℏLS
d̂p̄

′,α3

n′

α1α4Γ
l,p
n,mΓl′,p′

n′,m′

i0++pε+p′ε′−iℏLS
d̂p,α2
m

f
(p′α1)
l (ε)

i0++p′ε′−iℏLS
d̂p

′,α1

m′ P. (1.23)

Both K̃(4,D) and K̃(4,X) involve double energy integrals, which can be solved by the
residual theorem. In Appx. B, further remarks and the technical solution of the co-
tunneling integrals are given. The label of D and X of the Kernels stems from its
diagrammatic representation, which is introduced in Sec. 1.5. With the help of a treat-
ment of the cotunneling integrals founded on the work of [20, 24–26, 28, 29], we have
implemented a transport code which includes all coherences necessary to capture the
interference effects in our system. Moreover, the next-to-leading-order expansion allows
for a systematic test of robustness of the interference effects beyond the sequential
tunneling approximation. In the cotunneling regime, one sums up three processes,
namely the cotunneling ones, pair tunneling ones and level renormalization processes
(cf. Fig. 1.2 and [26]). They cannot be directly linked to either the X- or the D-functions.

Pair tunneling describes processes where two different electrons both enter or both leave
the central system simultaneously, as opposed to cotunneling where one electron enters
and one leaves the central system [30]. The number of electrons of the initial state thus
differs by two from the final state (N → N ± 2).

Cotunneling can further be split into elastic and inelastic processes. The former are
processes where the in- and the outgoing tunneling event involves only one energy level
of the system, letting the system unchanged (N → N). The latter, however, involve two
different electrons and alter the electronic occupation of the system. In pair tunneling
and cotunneling the individual tunneling processes are linked by an overall conservation
of energy at the end of the total process. However, in the intermediate virtual state
of the system where only one of the two correlated events has happened, there can be
a (short-lived) violation of the energy conservation. Pair and cotunneling both can
contribute to a current through the junction.

Level renormalization describes the last type of fourth-order processes, which are
amendments to sequential tunneling [26]. They are processes where a charge fluctuation
is accompanied by an electron transfer between lead and system (N → N ± 1). In fact,
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1 Liouville approach to transport

it can be shown that these amendments to sequential tunneling are the linear-order
contribution in a renormalization of the energy argument of the Fermi-function. Only
if one would go to all orders by including all possible charge fluctuations, the full
tunneling-induced level renormalization would be achieved [31].

1.4 Current

Starting from the stationary density matrix ρ̂∞, one can obtain any stationary expec-
tation value of a system observable as O = TrS{Ôρ̂∞}. In transport calculations, the
stationary current at lead l is of main interest:

Il = TrS+B

{
K̃Il ρ̂

∞ ⊗ ρ̂B

}
. (1.24)

The current Kernel K̃Il can be derived from the propagator Kernel in Eq. (1.11) by
changing the leftmost tunneling Liouvillian with the current operator,

Îl =
ie

ℏ
∑
kσlaσ

tlkσl,aσ ĉ
†
lkσl

d̂aσ − t∗lkσl,aσ
d̂†aσ ĉlkσl

, (1.25)

where e is the electronic charge. For consistency, we keep the same order in the
perturbation expansion of the propagator and of the current Kernel. In the following
section, more details can be found regarding the exact modification of the propagation
Kernel to deduce the current Kernel.

1.5 Diagrammatics

This section is dedicated to a diagrammatic formulation of the transport Kernel of
Eq. (1.11) which helps to visualize certain tunneling events as well as to straightforwardly
calculate them. At first, we introduce a diagrammatic representation with two timelines
based on the real time diagrammatics framework initially developed by Gerd Schön,
Herbert Schoeller and Jürgen König [32, 33]. Major contributions in this context
also can be found in [24, 26]. Secondly, we show the connection to a more compact
single-timeline Liouville space diagrammatics based on [18, 19]. The diagrammatic rules
of this approach are given in Appx. C to allow the interested reader to perform the
calculations on its own. To start with, we can write the GME of Eq. (1.10) as a matrix
equation. Every final state (|b⟩⟨b′|) is obtained from a sum over all possible tunneling
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1.5 Diagrammatics

events contained in the Kernel starting from the initial states (|a⟩⟨a′|):

ρ̇bb′ = 0bb′ = − i

ℏ
∑
aa′

δabδa′b′Eaa′ρ
a
a′ +

∑
aa′

Kb,a
b′,a′ρ

a
a′

:=

⟨a′| ⟨a′|

|a⟩ |a⟩
ρaa′ +

∑
a′a


⟨b′| ⟨a′|

|b⟩ |a⟩
ρaa′

 . (1.26)

with Eaa′ = Ea − Ea′ . The matrix and Kernel elements are set to

ρ̂ =
∑
aa′

ρaa′ |a⟩
〈
a′
∣∣ , (1.27)

Kb,a
b′,a′ = ⟨b| K̃

(
|a⟩
〈
a′
∣∣) ∣∣b′〉 . (1.28)

The GME can be divided in a free coherent propagation stemming from the system
Liouvillian LS and a propagation containing all possible tunneling events to all orders
indicated by the gray block. The approximation of the Kernel to sequential tunneling
yields the following eight diagrams in the two-timeline formalism. The timelines represent
forward and backward propagation on a Keldysh contour for the ket- and the bra-part
of the density matrix, respectively:

K̃(2) = lσ + lσ

+ lσ + lσ + lσ

+ lσ + lσ + lσ

:=
lσp

α1α2

. (1.29)

The eight two-timeline diagrams should be interpreted in the following way. The dark
circles from right to left represent the time-wise first and second tunneling operator of
Eq. (1.18). Every line connecting tunneling events is associated with a fixed p-value
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1 Liouville approach to transport

and representing a Fermi-function. The direction of the arrow determines the p-value.
If the arrow points to a certain tunneling event, this event is a creation operation in the
system space and if the arrow points away, it is an annihilation event. In general, the
upper contour represents d̂-operators acting from the left on the density matrix with
the respective Liouville index (α = +), while the lower contours represent accordingly
(α = −)-operators acting from the right on the density matrix. Other than that, there
are the σ- and l-indices which determine the spin and the lead index of the fermion
line, while the tunneling matrix elements are not properly accounted for. For example,
off-diagonal tunneling matrices in the spin space can lead to a mixing of the spin, with
the effect that the diagrams with both spin species have to be considered. It occurs
when a spin up electron entering from one lead does not only inject a spin up in the
system space. To every diagram, an energy function can be assigned which gives then
the weighting of the particular diagram depending on the electronic configuration like
gate or bias voltage. From a vertical cut between neighboring tunneling events, the
energy denominator for the energy integral can be read out as the difference between
the energy from the temporary state on the upper contour minus the energy of the
state on the lower contour weighted by the p-index. For the complete set of rules,
the interested reader is referred to [26, 28]. In the last step of Eq. (1.29), the more
compact single-timeline formalism is introduced, which is respecting the structure of the
Liouville superoperators in a more natural way. With its three additional parameters
α1, α2 and p, the full space of all possible tunneling configurations is recovered. The
projection of the fourth-order Kernel into single-timeline diagrammatics yields only two
conceptionally different types of diagrams, namely the D- and the X-diagrams:

K̃(4) = lσl′σ′ + lσl′σ′ + lσ
l′σ′

+
l′σ′ lσ

+ lσl′σ′ ...

:= l′σ′p′

lσp

α4 α1α3 α2︸ ︷︷ ︸
D−type diagrams

+

l′σ′p′ lσp

α4 α1α3 α2︸ ︷︷ ︸
X−type diagrams

. (1.30)
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1.5 Diagrammatics

The conciseness of the single-time line diagrammatics becomes now clear since K̃(4)

consists already of 27 = 128 irreducible diagrams in the former formalism (24 for the
four Liouville indices, 22 for the p/p′ indices and 2 for the D/X diagrams).
Two restrictions on the Kernel elements and density matrix elements help to check the
consistency of an implementation of these diagrammatics:∑

a

ρaa = 1,
∑
b

Kba
ba′ = 0 ∀a, a′. (1.31)

The last equation is also known as the sum-rule. In [26], this rule leads to the introduction
of the so-called gain-loss relations. In their essence, they state that a certain diagram
has not a physical meaning on its own since in the physical rates always a set of diagrams
are appearing. The gain-loss partner of a diagram is found, if the last vertex is moved
on the other contour (change of α). In the sum rule, these gain-loss partners cancel
then according to the sum-rule.
At this point, we give an example of a pair tunneling diagram of the D-type in both
diagrammatics. We start with the initial density matrix |0⟩⟨0| of a single QD with the
four available states {|0⟩ , |↑⟩ , |↓⟩ , |2⟩}. Two in-tunneling events from the left lead alter
the system so that the final state is the double-occupied state |2⟩⟨2|:

|2⟩⟨2| |0⟩⟨0|
|2⟩⟨0| |↓⟩⟨0||2⟩⟨↑|

p′ = +, σ′ =↑, l′ = L

p = +, σ =↓, l = L

− +− +

=

⟨2| ⟨0|

|2⟩ |0⟩

σ =↓, l = L
σ′ =↑, l = L

+

−

+

−

(1.32)

The three virtual intermediate states during the tunneling event and their energies are
then the parameters of the respective D-function:

K20
20 = ⟨2| K̃(4,D) (|0⟩⟨0|) |2⟩

=
iℏ

(4π)2

∑
{n}
{m}

∫
dε

∫
dε′d̂−,−

n

f
(+)
L (ε′)

i0++ε−E2↑︸ ︷︷ ︸
3. propagator

d̂−,−
n′

ΓL,+
n,mΓL,+

n′,m′

i0++ε+ε′−E20︸ ︷︷ ︸
2. propagator

d̂+,+
m′

f
(+)
L (ε)

i0++ε−E↓0︸ ︷︷ ︸
1. propagator

d̂+,+
m

=
∑
{n}
{m}

−ΓL,+
n,mΓL,+

n′,m′

kBT
D++(ν, ξ, δ)d̂−,−

n d̂−,−
n′ d̂+,+

m′ d̂+,+
m (1.33)

with ν = (E2↑ − µL)/(kBT ), ξ = (E↓0 − µL)/(kBT ) and δ = (E20 − 2µL)/(kBT ).
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1 Liouville approach to transport

From this concrete example, one can deduce how one can translate a diagram into the
mathematical expression and vice versa. The complete set of rules for the single-line
diagrammatics can be found in Appx. C and are in the following briefly sketched. The
three free propagators are captured by a fraction with the respective energy according
to Eq. (1.12) as, e.g., for the first propagator with 1/(i0+ + pε− E↓0). The four system
operators are denoted by their α-value and if they are creation or annihilation processes
(p = +/−). Fermi-functions are linked to the rightmost vertex of the fermionic line
connecting the two d̂-operators, and they adopt the product of (αp) of this d̂-operator.
The tunneling rate matrices, associated to a Fermi-function, accompany the respective
indices of the fermionic line. The prefactors for X-/D-diagrams are ±iℏα1α4/(4π)

2 and
for sequential tunneling diagrams −iα1α2/(2π). Adding the respective summation of
the indices and the integrals completes the rules.

Current Kernel : In order to obtain the current Kernel from the propagation Kernel, one
has to consider only a subset of all possible diagrams. The following rules apply:

• Lead index: There is no summation of l-index of the leftmost vertex. The
replacement of a tunneling Liouvillian with the current operator Îl fixes the lead
index.

• Position of last vertex: Only diagrams where the last vertex is a left superoperator
have to be considered (α = +) since the current operator Îl always acts from the
left. In the two-timeline diagrammatics this corresponds to diagrams where the
leftmost vertex lies on the upper contour.

• Direction of last fermion line: The sign of the diagrams where the fermion line
points away from the leftmost vertex has to be inverted. This difference stems
from a sign change in Ĥtun with respect to Îl.

1.6 Single-impurity Anderson model

One of the simplest models of a transport setup is the well-studied single-impurity
Anderson model (SIAM), named after Anderson, which used this model initially for
describing magnetic impurities embedded in metals [35]. The SIAM is describing a
single spin-degenerate level, and thus it can be seen as a single QD. The Hamiltonian
can be written as

ĤQD =
∑
σ

(εσ + eVg) d̂
†
σd̂σ + Ud̂†↑d̂↑d̂

†
↓d̂↓, (1.34)

22



1.6 Single-impurity Anderson model

Figure 1.3: Single-impurity Anderson model with exited states due
to Zeeman splitting: a Differential conductance of a SIAM centered around
the Coulomb diamond with particle number N=1 where the current is strongly
suppressed. The parameters are: U = 8meV, kBT = 0.1meV, Ez = 2meV and
ΓL
0 = ΓR

0 = 0.005meV. b Bias cut of dI/dV at a gate voltage of eVg = −1.5meV
up to the sequential tunneling (seq) and the cotunneling (cot) approximation.
The inelastic cotunneling threshold can be clearly identified. c Differential
conductance with same parameters as a except a stronger coupling to the leads:
ΓL
0 = ΓR

0 = 0.02meV. The arrows indicate from top to bottom: a pair-tunneling
resonance [34], cotunneling-assisted sequential tunneling (cf. Fig. 1.4) and a
reduced differential conductance feature also observed in [26]. d Comparison
of the bias traces of the current from the low coupling case (Γ<: a) and the
high coupling case (Γ>: c) shows the non-linear scaling of cotunneling features
with the coupling strength.
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where U is the on-site Coulomb repulsion, e is the elementary electric charge, Vg is the
applied bias voltage and εσ the spin-dependent level position. The four dimensional
Hilbert space is spanned by the basis {|0⟩ , |↑⟩ , |↓⟩ , |2⟩}. In order to enrich the spectrum,
one can add a Zeeman splitting Ez due to an external magnetic field, which modifies
the level position of the spin states as ε↑ = ε0 +Ez/2 and ε↓ = ε0 −Ez/2. In Fig. 1.3,
the differential conductance dI/dV := dI/dVb of a SIAM with Zeeman split states,
is plotted. It is a good example to highlight the effects of the different tunneling
processes. Panel a shows the so-called stability diagram where one can clearly identify
the Coulomb blockade region in the center which is confined by the diamond-shaped
transition lines. Another feature is the enhanced differential conductance above the
inelastic cotunneling threshold |eVb| > Ez inside the Coulomb diamond, which also is
highlighted in panel b. One can extract that the differential conductance inside the
Coulomb diamond is predominantly due to cotunneling processes. Panel c shows a
stability diagram with a bigger coupling strength leading to an enhancement of different
fourth-order processes.
The red arrow for example indicates a pair tunneling resonance, which is located exactly
in between two transition lines [34]. The explanation for this truly non-equilibrium
transport feature is the following: If an electron tunnels from the source to the state
|σ⟩, there is an excess energy of ∆. In case that this ∆ matches exactly the energy
needed to assist an excitation to the higher lying state |2⟩, one can observe these two
tunneling events happening coherently via a pair tunneling process. This two-electron
process preserves energy conservation at its end while violating it for a short time in
the transitory virtual state in between.
Other than that, one also can observe cotunneling-assisted sequential tunneling, which
leads to enhanced differential conductance in a triangle shaped area inside the Coulomb
blockade region (black arrow). This effect is discussed in more details at the end of this
section and in Fig. 1.4.
The last feature of Fig. 1.3 a, on which we focus, is marked with the white arrow. It is
a half diamond shape area where the differential conductance is reduced compared to
its surrounding. The explanation of this is given in [26] with Fig. 8. Amendments to
sequential tunneling diagrams can lead to a reduction of the sequential tunneling rate
Γσ→0 when fluctuations towards the initial state |σ⟩ occur. They are then described as
’backward’ fluctuations since they diminish the rate to Γσ→0 and can be understood as
a fluctuation back to the positively biased lead, counteracting the enhancing character
of elastic cotunneling contributions to the current.
As a benchmark for our differential conductance plot, we took the analytical result for a
SIAM without a Zeeman splitting. The bias voltage and the gate voltage are set around
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1.6 Single-impurity Anderson model

Figure 1.4: Cotunneling-assisted sequential tunneling: a A few-electron
QD (GaAs/AlGas heterostructure) shows in the differential conductance (b)
a resonance feature (red arrow). c Inelastic cotunneling event. d Sequential
tunneling event. e Sketch of Coulomb diamond with various tunneling regimes
including elastic cotunneling (E), inelastic cotunneling (I) and sequential tun-
neling (S). The excitation energy δ between the involved states determines the
size of the areas where cotunneling-assisted sequential tunneling can appear
(red). The electronic configuration of the two previous panels are marked with
(b) and (c) respectively. f Population of the ↑-state plotted in logarithmic
scale of a comparable setup. The triangular shaped areas inside the Coulomb
diamond show increased probability of energetically unfavored state due to
inelastic cotunneling (cf. with green area of e). Above the inelastic cotunneling
threshold, the ↑-state can be the starting point of a sequential tunneling transi-
tion which leads to a lowering of p↑ (cf. red area of e). The parameters of f are:
U = 8meV, kBT = 0.1meV, Ez = 2meV and ΓL

0 = ΓR
0 = 0.02meV. Pictures

a-e are taken from [36]. © 2005 American Physical Society. Reproduced with
permissions. All rights reserved.

the charge degeneracy point N=0 ↔ N=1:

dI

dVb
|Vb=0,Vg=0 =

e2Γ0

12ℏkBT
(1.35)

where Γ0 = ΓL
0 = ΓR

0 . Note that we measure throughout this thesis the coupling to
the leads of Γ0 in units of energy, with the effect of adjusting it by the factor of ℏ to
recover its rate character. Moreover, for us, Γ0 is always the sum of the coupling to all
the (spin) channels, as in Eq. (2.16).
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1 Liouville approach to transport

In Fig. 1.4 a, the setup of a cotunneling-assisted sequential tunneling experiment is
shown, while in panel b its measurement of the differential conductance is displayed
[36]. The red arrow indicates the increased differential conductance along a resonance
inside the Coulomb diamond. The effect describes the modification of the electronic
configuration due to an inelastic cotunneling event (c) followed by sequential tunneling
process (d). The area above the inelastic cotunneling threshold can be divided into
an area (green part of e) where only elastic and inelastic cotunneling events can occur
and an area (red part of e) where additionally the transition for sequential tunneling
for the excited state back to neighboring particle number (ΓN→N±1) is open. The
result is a depopulation of the excited state via an extra current channel and thus a
spike in differential conductance (cf. model calculation of f which is comparable to the
experimental setup).

1.7 Coherences

In this section, we discuss the important role of coherences in the context of density
matrices. In general, we distinguish in a density matrix its diagonal elements, the
populations which are a measure of the probability of a certain state, and its off-diagonal
elements, the coherences. As the name of the latter suggests, they are closely linked
to the broad quantum mechanical concept of coherence. In optics, for example, it is
said that two wave functions are coherent if they have a fixed phase relation during
their evolution. Only the superposition of coherent waves enables constructive or
destructive interference. Density matrices now generalize the description of quantum
mechanical states beyond the more usual description of state vectors and wave functions.
Similarly to optics, coherences of density matrices are a necessary prerequisite to observe
interference effects.
To better understand the notion of coherences, it is necessary to introduce the concept
of pure and mixed states. While the widespread description of quantum mechanical
states with state vectors and wave functions are only able to describe pure states, one
can also describe statistical mixtures of pure states with density matrices. A pure state
can be written as an outer product of a state vector |Ψ⟩ as |Ψ⟩⟨Ψ|. Furthermore, a pure
state has to fulfill

Tr {ρ̂} = Tr
{
ρ̂2
}
= 1. (1.36)

Mixed states can arise out of a lack of information about the preparation of the system
so that one has to deal with a statistical ensemble of different states. An example for
this is the tracing out of the leads in open systems. Theoretically, another observer
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1.7 Coherences

could have all knowledge about the system and thus describe it with a pure state. An
alternative origin of mixed states is quantum entanglement, which inevitably brings
in another statistical component to the description. However, here, it is impossible
that another observer can describe an entangled state as a pure state. In other words,
entanglement prevents full knowledge about the subsystem.
It is important to state that the concept of coherences is in general basis dependent, i.e.,
the same system can have off-diagonal elements in one basis and is completely diagonal
in another basis. However, the most practicable basis to describe the system is given by
the interaction of the system with its leads, which has usually a preferential basis. If the
preferential basis of the interaction and the basis of the system do not coincide, then
off-diagonal elements get inevitably pumped and do not decay. An example of such a
setup is transport through a QD attached to non-collinear ferromagnetic leads, where in
general three different quantization axes play a role. In these systems, coherence-induced
phenomena can be observed, what is extensively discussed in Sec. 2.4. The distinction
between pure and mixed states is however basis independent. In Fig. 1.5, the simplest

Figure 1.5: Bloch sphere representation: Any state vector |Ψ⟩ of a pure
state of a two-level setup is residing on the sphere and can be uniquely specified
by its coordinates. The completely mixed state is in the origin of the sphere.
As with any other mixed state in the interior of the sphere, it is not possible to
assign a state vector.

example of a set of density matrices, the ones of a two-level system, is usually visualized
in terms of a Bloch sphere. A vector pointing to the North or the South Pole represents
the two pure states |0⟩ and |1⟩ respectively. All other vectors residing on the unit sphere
are also pure states since there is a perfect superposition of |0⟩ and |1⟩. Mixed states
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1 Liouville approach to transport

however are described by vectors which point somewhere in the interior of the unit
sphere. In terms of the Pauli matrices, the qubit state can be written as

ρ̂qubit =
1

2
(1 + n⃗ · σ⃗) , (1.37)

with the vector n⃗ = (x, y, z) pointing somewhere in or at the unit sphere and the vector
σ⃗ = (σx, σy, σz) containing the Pauli matrices.

Figure 1.6: Reduction of relevant coherences in an exemplary density
matrix: a If the total Hamilton conserves particle number N , the reduced
density matrix acquires a block diagonal structure. The diagonal elements are
the populations, marked in blue, and the non-vanishing off-diagonal coherences
are marked in orange. b Conservation of the z-component of the spin leads to
vanishing coherences between different spin species. c The secular approxima-
tion, when applicable, can reduce the number of relevant coherences similar to
conservation laws.

Since the size of the reduced density matrix grows with its number of available states
as n2

state, certain selection rules are of great help to reduce the number of variables
with ensuring that many entries of the reduced density matrix can by default be set
to zero. In the following, we discuss three prominent examples of such a reduction. If
one deals with a total Hamiltonian which conserves particle number, all coherences
between states which differ in their particle number vanish. In Fig. 1.6 a, the effect of
the conservation of particle number on an exemplary reduced density matrix, assumed
to host up to four particles, is visualized. In panel b, the effect of conservation of the
spin component Sz is shown, which is the case when there is no spin mixing allowed,
i.e., parallel spin polarized leads. Here, only coherences within a spin species have to
be considered, so that the ↑-sector and the ↓-sector are completely separated. Panel
c is depicting an example of the appliance of the secular approximation. The secular
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1.7 Coherences

approximation states that all coherences between non-degenerate states are set to zero
since they correspond to rapidly oscillating terms. In the shown example, where it is
assumed that there is a finite energy difference in the N = 2-block between generic
states associated with the energies E1 and E2, a further division into two subblocks is
occurring. A path to extend the validity of secular approximation in a rigorous way
into the perturbation expansion in order of ℏΓ is given in Sec. 1.3 of [26]. However, it is
still an approximation and crucially depends on the spacing of the energy spectrum in
the system.
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Quantum dot spin and pseudospin
valves

2

2.1 Orbital pseudospin

The concept of pseudospin is occurring in many areas of physics. In general, one uses
it to describe a twofold degenerate setup in close analogy to the spin of an electron.
A prominent example is the sublattice degree of freedom in graphene with sublattice
"A" and "B". It also can be exploited in the realm of valleytronics, when two energy
extrema in the band structure exist, the so-called valleys, which represent then an
additional degree of freedom for the electrons other than charge or spin. In the first
two chapters of the Applications part, we apply the concept of a pseudospin to describe
the orbital degree of freedom in a DQD. We label one dot as orbital "1" and the other
dot with orbital "2" (cf. Fig. 2.1). Assuming a pseudospin-1/2 system, which represents
exactly one electron in the DQD, the pseudospin can then be visualized by the means
of the Bloch sphere (cf. Fig. 1.5). If the vector describing the pseudospin points in the
center of the unit sphere, one deals with an incoherent superposition of both orbitals,
i.e., a full delocalized electron. A mere z-polarization would correspond to an increased
occupation of one of the dots depending on the direction. A polarization in the x- or
y-direction represents then the degree of coherence in the superposition of a delocalized
state. However, we allow for any number of electrons from N =0 to N =4 since we
consider a spinful interacting double-level system as our model setup. Consequently, we
have to deal with a more complicated pseudospin space where no simple visualization
like with the Bloch sphere exists.
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2 Quantum dot spin and pseudospin valves

Figure 2.1: Schematic setup of a DQD in a pseudospin valve config-
uration: The left lead (L) is more strongly coupled to dot "2", the right lead
(R) to dot "1". The opening angle θ ≲ π between the pseudospin polarization
of the leads ensures the mixing of the pseudospin states during the tunneling
event (cf. Sec. 2.2). The bias voltage (Vb) applied to the leads and the gate
voltage (Vg) control together the transport characteristics of the DQD.

The Hamiltonian of the DQD reads

ĤDQD =
∑
i=1,2

[(eVg + ε0) n̂i + Un̂i↑n̂i↓] + V n̂1n̂2. (2.1)

The operator n̂iσ = d̂†iσd̂iσ counts the number of electrons on the ith dot with spin σ,
where d̂iσ is the corresponding electronic annihilation operator, e the electronic charge,
and n̂i =

∑
σ n̂iσ. Furthermore, the on-site energy is denoted as ε0 and the gate voltage

as Vg. The local (U) and the inter-dot (V ) Coulomb interaction are in general not equal.
We expect U > V so that it is energetically more favorable to distribute electrons on two
separated dots, rather than to confine them on the same one, due to the decay of the
Coulomb interaction as a function of the distance between the involved electrons. This
choice of our system leads inevitably to an anisotropy in the pseudospin space. As we
see in Cha. 4 and in Cha. 5, the anisotropy is of crucial importance in the understanding
of the appearing interference effects. Other than that, it represents an important tuning
knob to alter the later analyzed interference effects.
This anisotropy reveals itself if ĤDQD is expressed in terms of its pseudospin. For this
reason, we introduce the three components of the pseudospin operator,

T̂α =
1

2

∑
τij

d̂†iτσ
α
ij d̂jτ , (2.2)

where α = x, y, z and σα are the Pauli matrices. Moreover, the total pseudospin operator
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2.1 Orbital pseudospin

Figure 2.2: Energy splitting of the two-particle states: The spin-
triplet, pseudospin-singlet states are depicted in blue (Sz = 0,±1 and T = 0).
The pseudospin anisotropy splits the pseudospin-triplet, spin-singlet states
(Tz = 0,±1 and S = 0) energetically. They are highlighted in orange.

is given by T̂ 2 = T̂ 2
x + T̂ 2

y + T̂ 2
z . The occupation number operators for the both dots

are

n̂1,2 =
N̂

2
± T̂z, (2.3)

where N̂ = n̂1+n̂2 is the total particle number operator of the system. The reformulated
DQD Hamiltonian yields then

ĤDQD =

(
ε− U

2

)
N̂ +

U + V

4
N̂2 + (U − V ) T̂ 2

z , (2.4)

where ε = eVg+ε0. In this representation, the difference between the local and inter-site
Coulomb repulsion leads to an easy-plane anisotropy of the pseudospin, due to the last
term of Eq. (2.4). The pseudospin vanishes in the zero- and four-particle subspaces which
are both pseudospin singlets while it reduces to a constant energy shift when evaluated
on the one- and the three-particle subspaces, corresponding both to pseudospin doublets.
The richest structure can be found in the two-particle subspace, where we can classify
the states according to their spin and pseudospin. The spin-singlet, pseudospin-triplet
states

|S = 0, Tz = +1⟩ = d̂†1↑d̂
†
1↓|∅⟩,

|S = 0, Tz = 0⟩ = 1√
2

(
d̂†1↑d̂

†
2↓ − d̂†1↓d̂

†
2↑

)
|∅⟩,

|S = 0, Tz = −1⟩ = d̂†2↑d̂
†
2↓|∅⟩,

(2.5)
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2 Quantum dot spin and pseudospin valves

are complemented by the spin-triplet, pseudospin-singlet ones

|Sz = +1, T = 0⟩ = d̂†1↑d̂
†
2↑|∅⟩,

|Sz = 0, T = 0⟩ = 1√
2

(
d̂†1↑d̂

†
2↓ + d̂†1↓d̂

†
2↑

)
|∅⟩,

|Sz = −1, T = 0⟩ = d̂†1↓d̂
†
2↓|∅⟩.

(2.6)

It is only on the pseudospin-triplet component of the two-particle subspace, spanned by
the vectors in Eq. (2.5), that one appreciates the anisotropy: It is energetically more
favorable for the pseudospin vector to be in the x-y-plane rather than to point toward
the z-direction as it costs additional energy to localize both electrons on the same dot.
The energy landscape of the two-particle sector is depicted in Fig. 2.2.

2.2 Spin and pseudospin valve setup

Spin valves are structures which consist of two or more conducting spin-polarized, thus
magnetic, layers with an electrical resistance changed by the relative alignment of the spin
polarization of the layers. The two well-known effects of tunneling magnetoresistance
(TMR) [37] and giant magnetoresistance (GMR) [38, 39] can be observed in spin valves.
In general, spin valves are, under exploitation of these effects, widely used in technology
applications, most notably in magnetic sensors and in storage devices like hard disk
drives. The former effect is associated to a setup of two magnetic layers with an
insulating tunneling barrier in between. The quantum mechanical effect describes
in its essence that electrons tunnel more likely from one ferromagnet to the other
ferromagnet if their magnetization is parallel (P) rather than antiparallel (AP) aligned,
which manifests then into the resistance. The TMR := (RAP −RP)/RP can be defined
by the resistance R in the two different configurations. The largest observed ratio is
604% at 300K in so-called pseudo spin valves [40].
We want to mention here the often used term in this community of "pseudo spin valves",
in order to avoid confusion, even if we use the term of a pseudospin valve differently.
This is the reason why we deliberately choose here to write "pseudo spin" instead
of our former introduced "pseudospin", the orbital degree of freedom. In the TMR
community, a pseudo spin valve describes a magnetic valve configuration which uses
two different materials with different magnetic coercivities, the ability to withstand an
external magnetic field, instead of an ordinary spin valve with two equal materials. A
deviation from TMR is the so-called tunneling anisotropic magnetoresistance (TAMR)
which is able to mimic a spin valve effect with the help of spin-orbit coupling [41]. It
relies on just one ferromagnetic layer which is coupled with a tunneling barrier to a
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2.2 Spin and pseudospin valve setup

Figure 2.3: Pseudospin valve transistor: Gating bilayer graphene changes
the polarization of the pseudospin. It is thus switching the polarity of the
central gate with the effect that one can control the flow of electrons through
the junction. Figure taken from [52]. © 2009 American Physical Society.
Reproduced with permissions. All rights reserved.

non-ferromagnetic material and can be explained by the interplay of spin-orbit coupling
at the interfaces [42]. The setup of observing GMR is similar to the TMR setup with
the distinction that the layer in between the two ferromagnets is a material which can
be polarized itself (for example a metal) instead of the insulating tunneling barrier
in case of a TMR configuration. The switching of one ferromagnet (soft layer) to an
antiparallel configuration with respect to the other fixed layer (hard layer) is usually
done with the application of an external field. The pinning of the fixed layer is obtained
often by an adjacent antiferromagnet, which raises the coercivity of that ferromagnet.

In our research, we are interested in QD spin valves where a QD is coupled to ferro-
magnetic leads. Experimentally, they are realized in different ways, for example, using
QDs defined in CNTs [43–45] or nanowires [46], single molecules [47], nanoparticles [48,
49] or semiconductor QDs [50]. A DQD spin valve setup with relative high QD spin
polarization of up to 80% was reported in [51]. Throughout the thesis, we also use
the concept of a pseudospin valve. We define it as a replica of a spin valve with the
distinction that instead of the spin degree of freedom, we are using the orbital degree of
freedom to obstruct electron transport. In Fig. 2.1, a possible setup of a pseudospin
valve is shown: a DQD is attached to leads which have pseudospin polarization, i.e.,
they couple differently to the two orbitals, dot "1" and dot "2". If supposedly the left
lead is more coupled to dot "2", and the right lead to dot "1", we obtain a suppression
of current similarly to a spin valve. A microscopic model which provides this desired
parametrization is given in Sec. 4.1.

The concept of a pseudospin valve is used in a plethora of materials and setups. For ex-
ample in (bilayer) graphene, it also is coined as a valley valve, investigated theoretically
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2 Quantum dot spin and pseudospin valves

in [53] and experimentally in [54]. In Fig. 2.3, a possible pseudospintronics device is
sketched where the pseudospin in bilayer graphene is used to realize an all-electronic,
pseudospin-based version of a spin valve [52]. Another implementation of a pseudospin
valve can be found in topological insulators, where one exploits the emergent orbital
pseudospin in the surface states to model a spin valve analogue [55].

Valve parametrization of a DQD: For the explicit modeling of valve configurations, we
make use of the tunneling rate matrices since they incorporate the specific geometry of
the tunnel barriers and their spin properties. The following derivation mainly follows
our publication [17] and it focuses on DQDs since there, one is able to construct a spin
and a pseudospin valve. The tunneling rate matrices, recapturing their definition of
Eq. (1.17) as

Γl
iσ,jσ′(E) =

2π

ℏ
∑
kσl

t∗lkσl,iσ
tlkσl,jσ′ δ(E − εlkσl

), (2.7)

consist of the tunneling amplitudes and the density of states. Firstly, in order to describe
spin polarization, we utilize the Stoner model for itinerant ferromagnetism. At the
Fermi-energy, the density of states glσl

(EF) for the different spin species differ due to
a spin-dependent dispersion relation εlk↑l ≠ εlk↓l . The spin polarization for the lead l

yields

P l
S =

gl↑l(EF)− gl↓l(EF)

gl↑l(EF) + gl↓l(EF)
. (2.8)

The leads are kept at the same temperature T and their electrochemical potentials
µl are modulated by the external bias µL,R = ±eVb/2. For systems with negligible
intrinsic spin-orbit interaction (SOI) and very localized dot-wave functions, the tunneling
amplitudes tlkσl,iσ can be factorized into a spin and an orbital overlap:

tlkσl,iσ ≈ ε0 ⟨lkσl|iσ⟩ = ε0 ⟨lk|i⟩ ⟨σl|σ⟩ . (2.9)

To proceed further in the analysis of the tunneling rate matrices, we also assume
the density of states for both spin species to be rather smooth in the vicinity of the
Fermi-level. We thus introduce the approximation

δ(E − εlkσl
) ≈ glσl

(EF)

gl↑l (EF) + gl↓l (EF)

∑
τl

δ(E − εlkτl). (2.10)

The sum over the lead spin index τl compensates, in the limit E → EF, the denominator
and Eq. (2.10), integrated on the momenta k, becomes exact.
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By combining Eqs. (2.9)-(2.10), we obtain a tunneling rate matrix of the form

Γl
iσ,jσ′(E) =

2π

ℏ
ε20
∑
k

⟨i|lk⟩ ⟨lk|j⟩
∑
τl

δ(E − εlkτl)

∑
σl

glσl
(EF)

gl↑l (EF) + gl↓l (EF)
⟨σ|σl⟩

〈
σl
∣∣σ′〉 , (2.11)

which can be factorized into a bare tunneling rate, a pseudospin (orbital) and a spin
part,

Γl = Γl
0A

l ⊗Bl, (2.12)

where we omit, for simplicity, the energy dependence. The bare tunneling rate Γl
0, and

the generic elements of the pseudospin Al
ij and of the spin matrix Bl

σσ′ , are defined in
terms of the wave function overlaps and the single-particle spectra:

Γl
0 =

2π

ℏ
ε20
∑
ikσl

| ⟨i|lk⟩ |2δ(E − εlkσl
), (2.13)

Al
ij =

∑
kσl

⟨i|lk⟩ ⟨lk|j⟩ δ(E − εlkσl
)∑

aqτl
| ⟨a|lq⟩ |2δ(E − εlqτl)

, (2.14)

Bl
σσ′ =

∑
σl

glσl
(EF)

gl↑l (EF) + gl↓l (EF)
⟨σ|σl⟩

〈
σl
∣∣σ′〉 . (2.15)

Since both Al and Bl are Hermitian 2× 2 matrices of trace 1, the tunneling rate matrix
can be expanded in terms of Pauli matrices as

Γl = Γl
0

(
12

2
+

P l
T

2
n⃗l
T · σ⃗

)
⊗
(

12

2
+

P l
S

2
n⃗l
S · σ⃗

)
, (2.16)

where P l
S is the spin polarization defined in Eq. (2.8), n⃗l

S is the direction of the spin
quantization axis for the lead l, and σ⃗ is the vector of the Pauli matrices. Analogously,
we define P l

T and n⃗l
T as the strength and the direction of the pseudospin polarization of

the l-lead.
Throughout the thesis, we describe valve configurations with the help of Eq. (2.16).
Whenever two leads are now polarized, either in spin or pseudospin, almost antiparallel
so that their opening angle is θ ≈ π, we speak of a valve configuration. A possible
pseudospin valve can be parameterized in the following way,

n⃗L,R
T =

(
cos

θ

2
, 0,∓ sin

θ

2

)
, (2.17)

with the opening angle θ. This parameterization corresponds to the setup shown in
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Fig. 2.1 since θ ≈ π results in two vectors which point mainly in the −z- and the
+z-direction.
The pseudospin polarization of the lead allows for a simple physical interpretation, in
connection to the pseudospin formulation of the system Hamiltonian. Full pseudospin
polarization in the z-direction indicates an exclusive coupling to one or the other dot.
Components in the x-y-plane describe instead coherent tunneling of one electron to
both orbitals.
It is thus understandable how such off-diagonal components of the tunneling rate matrix
are necessary for the observation of interference effects. In particular, in complete
analogy to the spin valve [56], tunneling is forbidden from a DQD with maximum
expectation value of the pseudospin in a given direction (i.e., 1/2 for the one- and
three-particle sector, 1 for the two-particle sector) and a lead fully polarized in the
opposite direction. Exemplarily, a state with double occupation of one dot cannot
release any electron to a lead which only couples to the other dot. The pseudospin
formulation allows us to capture on an equal footing also the other polarization direction,
which, on the contrary, is not so easily described within the position representation. A
concrete example of pseudospin polarization is given in [6]. The angular momentum
states of the CNT provide a two-level system with symmetry-protected degeneracy. The
pseudospin polarization of the leads is there related to the extent and position of the
contact region between the lead and the CNT. The localized contact provides an almost
full polarization. The control of the phase and strength of the tunneling amplitudes
can be achieved with the help of a longitudinal magnetic field acting on the CNT, as
recently proved in [57].

2.3 Exchange fields

An important consequence of having Coulomb interaction in nanostructures is the
appearance of so-called exchange fields. These exchange fields can act similarly as
magnetic fields on the spin of a QD system. Thus, they are sometimes called effective
magnetic fields. The exchange fields originate from virtual fluctuations between the
system and the leads and are generally governed by Coulomb interaction and the
indistinguishability of particles. In fact, exchange is a manifestation of the Coulomb
interaction and the Pauli exclusion principle, as it is pointed out in [58]. A prominent
example where exchange fields play a major role in determining the transport and the
dynamics is a QD attached to non-collinear polarized ferromagnetic leads. In such
systems, Kondo peaks can split up due to an exchange field in the absence of an applied
external magnetic field [59] or the spin of a QD can precess, which is then detectable in
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the conductance [60]. In the latter publication, the concept of exchange fields in such
setups was mentioned the first time and in a follow-up publication, it is elaborated in
more detail [56]. The combination of spin-dependent tunneling and Coulomb interaction
gives rise to a spin torque, which is then captured in a simple way by the exchange
fields.
The inspection of any second-order diagram reveals the origin of the exchange fields to
its first order. Every tunneling event incorporates the tunneling rate matrix accounting
for possible spin polarization of the leads. Moreover, every diagram accompanies the
energy-dependent Y -function [cf. Eq. (A.4)] containing the Coulomb interaction U . The
real part of this function turns out to be the Fermi-function and can be associated
to real tunneling events. The imaginary part of the Y -function, corresponding to the
real part of a digamma-function, represents then also the effect of possible virtual
transitions since at an individual tunneling process the energy may not be conserved
temporarily. However, quite often this imaginary part of the digamma-function cancels
out upon summation of Hermitian conjugate diagrams, as it is the case, for example,
for non-ferromagnetic leads. In the case of spin-dependent tunneling in a non-collinear
setup, this cancelation is not given. The result is then a spin torque which is best
described by an exchange field containing the real part of the digamma-function.

2.4 Equation of motion for QD spin valve

An insightful minimal model to study exchange field-induced dynamics is the one
of a QD attached to ferromagnetic leads [56]. This spin valve setup allows for the
investigation of the interplay of magnetization with the spin polarization of the leads
and the interaction at the level of the central system, which goes beyond the standard
influence of exchange interaction in the formation of ferromagnetism. In Fig. 2.4, a
schematic setup is displayed. In order to describe the setup in the sequential tunneling
limit, one needs 6 parameters, namely the three populations (p0 for empty, p1 for
single-occupied and p2 for double-occupied) and the three components of the spin (S⃗)
of the QD. The equations of motion can be written as

ṗ0 = − 2γ+10 p0 + γ−10 p1 + 2γ⃗−10 · S⃗, (2.18)

ṗ1 = 2γ+10 p0 −
(
γ−10 + γ+21

)
p1 + 2γ−21 p2 − 2

(
γ⃗−10 − γ⃗+21

)
· S⃗, (2.19)

ṗ2 = γ+21 p1 − 2γ−21 p2 − 2γ⃗+21 · S⃗, (2.20)
˙⃗
S = γ⃗+10 p0 +

(
−1

2 γ⃗
−
10 +

1
2 γ⃗

+
21

)
p1 − γ⃗−21 p2 −

(
γ−10 + γ+21

)
S⃗ + B⃗ × S⃗, (2.21)
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2 Quantum dot spin and pseudospin valves

Figure 2.4: QD spin valve: The polarization of the two ferromagnetic
leads (blue arrows) have a certain opening angle, which determines the spin
accumulation on the dot (blue arrow) via a precession stipulated by an exchange
field B⃗ (green arrow).

with γ±nm =
∑

l γ
±
l,nm and γ±l,nm = Γl

0/2f
±
l (ε− Enm). For Γl

0, we use as the definition
Eq. (2.16) without the orbital part, i.e., it is the sum of the coupling of the two spin
channels. The subscript of the energy Enm labels the energy difference between the
state n and m which can be the zero-particle state (0), the one-particle state (1), and
the two-particle state (2). The vectorial form is given by γ⃗±nm =

∑
l n⃗

l
SP

l
Sγ

±
l,nm. The

two spin polarization vectors of the leads n⃗l
S are defined analogously to Eq. (2.17) and

they enclose the opening angle ϕ. Out of an analysis of these equations, we can deduce
two things. Firstly, we encounter in the last term of Eq. (2.21) a part which contains
an exchange field B⃗:

B⃗ =
∑
l

P l
SΓ

l
0 [pl(E10)− pl(E21)] n⃗

l
S , (2.22)

with
pl(x) =

1

2π
ReΨ(0)

(
1

2
+ i

x− µl

2πkBT

)
. (2.23)

The effective magnetic field is characterized by the difference of the principal parts
pl of the energy function Y and thus by the real part of the digamma-functions [cf.
Eq. (A.4)]. One sees now, that this effective magnetic field vanishes if the Coulomb
interaction U becomes zero. It causes precession as well as dephasing of the spin S⃗ but
it also generates a spin splitting of order Γl

0 [56]. For a complete analysis of this aspect,
we refer the reader to our second publication (Cha. 5).
In Fig. 2.5 a, the components of this exchange field induced by the left and the right lead
for an exemplary parameter set are depicted in blue and red, respectively. Clearly, the
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2.4 Equation of motion for QD spin valve

Figure 2.5: Exchange field-induced phenomena in spin valves: a The
exchange field components for the left lead BL and for the right lead BR are
shown. The yellow line represents the condition where a spin resonance is
predicted (cf. Sec. 2.2). Parameters: U = 1meV, kBT = 0.05meV, ϕ = 0.99π,
PL
S = PR

S = 0.99, eVg = 0.3meV, and 2ΓL
0 = ΓR

0 = 0.01meV. b Current
for different opening angles of a spin valve. Parameters equal to a except of
ΓL
0 = ΓR

0 = 0.01meV and eVg = 0.5meV.

peaks of the principal parts due to the respective energy arguments can be observed.
Generally, Eq. (2.21) describes the time evolution of the spin, which is non-trivial for
spin polarized leads. The equation can be divided in three different terms: a pumping,
a decoherence and a precession term:

dS⃗

dt
=

(
S⃗

dt

)
pumping

+

(
S⃗

dt

)
decoherence

+

(
S⃗

dt

)
precession

(2.24)

The pumping term, also referred as source or accumulation term, accounts for tunneling
in and out of the QD. It contains all contributions involving the populations [=̂γ⃗+10 p0 +(
−1

2 γ⃗
−
10 +

1
2 γ⃗

+
21

)
p1 − γ⃗−21 p2]. The decoherence term is the counterpart to pumping since

it reduces the spin of the dot. The decoherence term
(
−γ−10 − γ+21

)
S⃗ can be identified to

be the only one proportional to S⃗. It is also often coined the relaxation term, where the
intrinsic spin relaxation rate τc can be deduced from the absolute value of the prefactor
as 1/τc = γ−10 + γ+21. In our context, we prefer the term decoherence over relaxation
since the latter is more applicable when states relax to the ground state rather than
the observed reduction of the spin vector towards the center of the Bloch sphere into
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2 Quantum dot spin and pseudospin valves

a completely incoherent state. The precession term, as already outlined, is a vector
product of the exchange field and the spin (=̂B⃗ × S⃗).
For zero bias, equal spin polarization (PS : = PL

S = PR
S ) and symmetric coupling

(ΓL
0 = ΓR

0 ), there is no spin pumping, thus in equilibrium it holds S⃗ = 0. For small
non-zero bias and in the linear response regime, one obtains that the linear conductance,
Glin = (dI/dV )|Vb=0, depends crucially on the opening angle ϕ:

Glin(ϕ)

Glin(0)
= 1− P 2

S

sin2(ϕ/2)

1 + (B0τc)2 cos2(ϕ/2)
, (2.25)

where we deduce B0 from the exchange field B⃗ = B0 cos(ϕ/2)e⃗x. The gate voltage is
assumed to be zero in this formula. The interplay between the lifetime τc of the spin
of the dot, which decreases if the gate is favoring an empty or double-occupied QD
state, and the opening angle are the determining parameters. The minimum of the
conductance is reached for ϕ = π, i.e., an antiparallel alignment of the polarization of
the leads, regardless of the polarization strength and the gate voltage. This minimum
can be attributed to the spin valve effect, where the dot accumulates with the spin
species which shares the spin polarization of the source. The accumulated electron gets
trapped since tunneling out of the dot is suppressed by the low density of states for the
given spin direction. For longer lifetimes which correspond to gate voltages favoring
a single-occupied QD state, the exchange field is able to rotate the QD spin more so
that a stronger lifting of the spin valve can occur except in the vicinity of antiparallel
alignment.
Another interesting result of this model is the current I0 in the non-linear response
regime (eVb < kBT ):

I0 =
2ΓL

0Γ
R
0

ΓL
0 + ΓR

0

{
1− [PS sin(ϕ/2)]2

}
. (2.26)

In Fig. 2.5 b, the current at the charge degeneracy point N=0 ↔ N=1 for different
opening angles is displayed. The red curve for perpendicular alignment of the leads
strikingly shows a decrease of the current even for an increase of applied bias, what
can only be explained by interference. Areas of negative differential conductance can
be caused by so-called blocking or dark states which decouple from the drain, as it is
the case in [6]. The exact local minimum occurs whenever the source component of
the exchange field vanishes (here BL) so that no precession is possible and the full spin
valve effect prevails.
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2.5 Spin resonances

2.5 Spin resonances

The coherent manipulation of spins is at the heart of quantum information technology.
In this regard, electron spin resonance (ESR) is a compelling tool able to accomplish
for this task in a controlled way [61–63]. The basic working principle of ESR requires
a constant magnetic field, splitting the spin energy levels, together with a magnetic
field oscillating at the resonant frequency. In a system comprising several spin centers,
however, it is very challenging to produce localized magnetic fields which address one
spin at a time. To overcome this obstacle, it was shown that, by mixing charge and spin
degrees of freedom, it is possible to manipulate the electronic spins also by electrical
gates [64].
With the same advantage, there exists yet another approach to manipulate the spin
in a nanojunction. This effect, appearing in QD spin valves, is called spin resonances
without spin splitting. The latter are a main point of interest of this thesis. They were
first studied by M. Hell et al. in [65] and are still investigated in several groups [66–69].
Interestingly, an onset of these resonances was already observed in Fig. 2 of [70] some
years earlier. From now on, we refer to them only by spin resonances if not stated
otherwise. They can be distinguished from the more familiar ESR signals by the lack of
an external magnetic field.
In the parameter regime of spin resonances, the lifting of the spin valve is resonantly
enhanced. It is observed within the Coulomb diamond and for an almost antiparallel
alignment of the leads. A complete antiparallel alignment destroys the effect since the
resulting exchange field points in the direction of the leads’ polarization and thus cannot
precess the spin in any other direction, which is crucial for this phenomenon. Spin
resonances can be detected by dI/dV -spectroscopy, or possibly in pulsed pump-prope
schemes. In Fig. 2.6 a, the numerical results of the differential conductance up to
the cotunneling regime are shown. Clearly, a resonance feature is cutting through the
otherwise flat region of the Coulomb diamond.
In [65], they gave a vectorial argument for the lifting of the spin valve. The resonance
occurs when the exchange field is perpendicular to the source polarization of the lead to
maximize the lifting of the spin valve for a fixed opening angle ϕ ≈ π. Their argument
is that a component perpendicular to the source polarization rotates the spin inside the
QD from n⃗L

S to n⃗R
S . In our second publication, we show that this argument has to be

refined since in reality maximal dephasing rather than maximal precession matters [71].
However, the vectorial condition stays unchanged, so we use it nevertheless to predict
the resonances and refer the reader for more details about the exact mechanism to our
results part (cf. Sec. 5.4). Since the exchange field strength and more importantly its
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2 Quantum dot spin and pseudospin valves

Figure 2.6: QD spin resonance: a Differential conductance obtained by
fourth-order calculations. The s-shape of the spin resonance line is centered
around the particle-hole symmetric point. With the white dashed line, the
predicted resonance position is marked. b Difference of fourth-order and second-
order current highlights the increased current through cotunneling events inside
the Coulomb blockade region. Furthermore, suppression of the resonance line
through increased spin decay can be extracted. An external field is added in the
z-direction (c) and in the y-direction (d). Parameters of all plots: U = 1meV,
kBT = 0.05meV, ϕ = 0.99π, PS = 0.99 and 2ΓL

0 = ΓR
0 = 0.01.
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2.6 Concurrence as measure of entanglement

direction can be tuned by electrical means, one has great control of the resonances and
is not dependent on external induced energy splittings. In contrast to the resonance
condition formulated in [65], we choose a slightly adopted condition, where the drain and
the source equally participate since it matches the numerical resonances on a broader
parameter range:

B⃗ ·
(
n⃗L
S − n⃗R

S

)
= 0. (2.27)

The yellow curve of Fig. 2.5 a shows the exemplary graphical determination of resonant
bias voltage as the intersection of B⃗ · (n⃗L

S − n⃗R
S ) with 0. Panel b of Fig. 2.6 displays

the difference between the fourth- and second-order current. In its subpanel, a bias cut
shows a lowering and a broadening of the resonance with including higher order terms.
In Fig. 2.6 c, the effect of an external magnetic field in the z-direction is shown. The
resonance condition changes according to(

B⃗ + B⃗ext

)
·
(
n⃗L
S − n⃗R

S

)
= 0. (2.28)

The direction as well as the strength of the external magnetic field is of crucial importance.
If the strength of the Zeeman splitting is higher than the resolution of the tunneling
which is of order Γ0, the condition of having a degenerate or quasi degenerate energy
spectrum is then not anymore fulfilled, and the virtual fluctuations cannot lift the
valve. The direction of the external magnetic field with respect to the valve polarization
direction determines if a valve configuration still persists. The valve polarization of the
left lead is mainly in −z-direction and the right lead is in +z-direction, both having
a small positive component in the +x-direction. The external magnetic field can be
compensated by the exchange field, which has due to the polarization of the leads a big
component in the z-direction, so that the combined field can indeed point perpendicular
to the source polarization. If the same external magnetic field is applied now in the
y-direction (perpendicular to the valve polarization plane of x-z), the precession or
the dephasing of the spin is facilitated everywhere in the parameter space, thus no
distinct resonance and a less pronounced current suppression can be observed in the
stability diagram (cf. Fig. 2.6 d). Almost the same stability diagram is the result if the
external magnetic field points along the x-direction, with the effect that the lifting of the
resonance is possible everywhere in the gate and bias landscape (not shown here).

2.6 Concurrence as measure of entanglement

The entanglement of a quantum mechanical system, as sketched in the introduction,
is a fundamental quantity which attracted recently a lot of interest since it is one of
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2 Quantum dot spin and pseudospin valves

the necessary prerequisites for quantum computation. Other than that, it is the central
property to show the violation of the Bell’s inequality, which proves the non-local
character of quantum mechanics and rules out the theory of local hidden variables. In
our research, we are as well interested in the entanglement in DQDs as a manifestation of
synthetic SOI. Generally, entanglement can be measured with the help of the concurrence,
which is closely related to the entanglement of formation. Both measures are able to
quantify the degree of quantum entanglement of a system [72]. Explicitly, for a bipartite
system, the entanglement of formation can be calculated as

E(C) = h

(
1 +

√
1− C2

2

)
, (2.29)

with h(x) = −x log2 x− (1− x) log2(1− x) as the Shannon entropy function [73] and
C as the concurrence. The entanglement of formation E is a monotonically increasing
function of the concurrence and ranges from 0 to 1. The concurrence C also ranges from
0 to 1 so that it itself can be considered as a standalone measurement of entanglement.
To obtain the value for the concurrence, two different, but compatible formulas can be
used. For a pure state |Ψ⟩, C can be expressed, with the help of the spin-flip operation
in both degrees and captured in |Ψ̃⟩ = σy ⊗ σy |Ψ∗⟩, as

C(Ψ) = |⟨Ψ|Ψ̃⟩|. (2.30)

The ∗ in the vector |Ψ∗⟩ denotes complex conjugation. For the one-particle sector of our
DQD, we can adopt this combined spin-flip operation to our problem with using the spin
and pseudospin operators: |Ψ̃⟩ = 4ŜyT̂y |Ψ∗⟩. It is important to notice, that we opt in
our research to measure the concurrence between the spin and the pseudospin rather than
the more standard approach to capture the concurrence between two spins. An example
of a maximal entangled state in our definition is then (|↑, 0⟩ − |0, ↓⟩)/

√
2, where we

differentiate in the state vector with a comma between the occupation of the two different
dots. This state is associated with concurrence 1 because a simultaneous pseudospin and
spin flip, up to a sign, does not change the state. In contrast, (|↑, 0⟩ − |0, ↑⟩)/

√
2 yields

concurrence of 0 since the simultaneous flip of spin and pseudospin results in a state
orthogonal to the initial one. Another way of seeing it is that the spin and pseudospin
degree can be factorized in the latter example but not in the former one.
The second approach to calculate the concurrence is better suited for our purpose since
it is tailored for a generic state of our bipartite spin-pseudospin DQD and not only
for pure states. However, we are with the following formula again restricted to the
one-particle subblock of the reduced density matrix, namely ρ̂1, since we want to retain
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2.6 Concurrence as measure of entanglement

the pseudospin-1/2 structure. Following [72], we calculate the concurrence C as

C (ρ̂1) = max(0, λ1 − λ2 − λ3 − λ4), (2.31)

where the λi’s are the square roots of the eigenvalues, in decreasing order, of the non-
Hermitian matrix ρ̂1ρ̃1. Analogously to |Ψ̃⟩, we define the pseudospin- and spin-flipped
state as ρ̃1 = (σy ⊗ σy)ρ̂∗1(σ

y ⊗ σy).
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Quantum dot-based Josephson
junctions

3

3.1 Introduction to superconductivity

In 1911, Heike Kamerlingh Onnes discovered superconductivity while measuring the
resistivity of metals close to zero Kelvin. He was the first observing the abrupt vanishing
of the resistivity of mercury at its critical temperature Tc, one of the main characteristics
of superconductors (cf. Fig. 3.1). In 1933, Robert Ochsenfeld and Walther Meissner were
then first to describe another important property of superconductors, the expulsion of
magnetic fields, which is now known as the Meissner-Ochsenfeld effect [75]. The London
equations, named after their developers Fritz and Heinz London, put another piece into
the puzzle of understanding superconductivity with relating the superconducting current
with the magnetic field from which one can deduce the penetration depth of the magnetic
field into the superconductors [76]. The next major step in explaining superconductivity
was the phenomenological Ginzburg–Landau theory of superconductivity from 1950,
where macroscopic properties were deduced from a Schrödinger-like wave equation
describing a phase transition from a normal to a superconducting state [77].
However, it took up until 1957 to come up with the first microscopic theory for
superconductivity, namely the Bardeen–Cooper–Schrieffer (BCS) theory [78]. They
established that superconductivity can be explained as a collective phenomenon in which
a macroscopic fraction of electrons builds time-reversal related Cooper pairs. The pairing
of normally repelling electrons is considered to stem from an attractive potential due to
lattice phonons. This mechanism is in accordance with the isotope effect, discovered by
Maxwell [79] and Reynolds [80]. The BCS-theory with its mean-field ansatz can predict
many properties correctly: the excitation spectrum, the critical temperature as well as
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Figure 3.1: First measurement of a superconducting phase transition
[74]: The resistivity of a capillary of mercury as a function of temperature.

the temperature dependence of the superconducting gap and the supercurrent. Up to
now, it is still the theory of choice to explain the latest experimental findings. However,
there are also many examples of unconventional superconductors where the BCS theory
fails, like in the case of cuprates or heavy fermion superconductors. It is assumed that in
these systems the electron interaction plays a major role so that the mean-field approach
breaks down. Also, the exact pairing process in many high-temperature superconductors
is not yet known [81]. The full understanding of high-temperature superconductors
is thus considered to be one of the major unsolved problems of theoretical physics.
However, this lack of understanding does not hinder the wide technological adaption
of superconductors, quite often the less understood high-temperatures ones. The use
of superconductors is manifold, spanning from magnetic resonance imaging (MRI) in
medicine to quantum computers, where one of the best performing architecture is based
on superconducting circuits [82, 83]. Another interesting application of superconductors
is in the area of electricity generation and transmission. In Denmark, a MW-scale
wind turbine for example is producing energy with a superconducting rotor, which has,
among others, the advantage of a huge weight reduction [84]. In Essen, and soon also
in Munich, superconducting power cables are integrated in the local electricity grid [85,
86] in order to reduce the power loss of transmission.
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3.1 Introduction to superconductivity

Figure 3.2: Superconductivity in the strong coupling limit: Materials
which are located at the top of this plot have a high critical temperature.
From left to right, the materials are ordered in terms of their normalized
carrier density. Magic-angle graphene is in this respect special because only few
electrons participate in the Cooper-pair formation and thus, it can be argued,
is still a high-temperature superconductor. The blue shaded region is the
approximate region in which almost all known unconventional superconductors
lie. One is very much interested in a superconducting material which is very
much in the upper left corner of the plot, what corresponds to high critical
temperatures and to a material which cannot be easily disturbed. Such a
material could have vast applications in technology. The inset shows the
variation in Tc/TF as a function of doping n′ for magic-angle twisted bilayer
graphene (red filled circles). The horizontal dashed lines are the approximate
Tc/TF values of the corresponding material. Picture and part of description
taken from [87]. © 2018 Nature Springer. Reproduced with permissions. All
rights reserved.

Recently, there is a convincing hint that unconventional superconductivity like high-
temperature superconductors indeed arise if one has to deal with strongly interacting
and thus also strongly correlated systems. In 2018, it was discovered that in bilayer
graphene, where the angle between the layers allows for a certain tunability of such
correlations, unconventional superconductivity can arise for certain configurations, called
magic angles [87]. This discovery where two layers of graphene are stacked on top of
each other and twisted by a magic angle attracted a lot of attention in the physics
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community. On the one side, many groups around the world have a lot of experience
with graphene, both experimentally and theoretically, because it is seen since a long
time as an interesting material with particular electronic and mechanical properties.
On the other side, it is despite its low absolute critical temperature claimed to be one
of the best high-temperature superconductors (cf. Fig. 3.2) since there is an insulating
state close to the superconducting one, which is often also the case with cuprates. The
hope is now that with the help of magic-angle graphene, one can get a step closer to
explain unconventional superconductivity. In magic-angle graphene superlattices, the
electrons are densely packed, interactions play an important role, so that one needs
to find a new theory which goes beyond a mean-field approach. It is clear that we
have to abandon the single-particle description and instead introduce a full many-body
description of our system. This is exactly what we explore and use in this part of the
thesis: A many-body description of a QD-based Josephson junction.

3.2 Particle-conserving theory of superconductivity

In 1962, B.D. Josephson proposed a fundamental superconducting effect, for which he was
later rewarded the Nobel Prize in Physics [88]. The Josephson effect describes in essence
that a supercurrent can flow without applying any voltage when two superconductors
are brought into close proximity. In his work, he employed for the first time a particle-
conserving ansatz to describe superconductivity. While nowadays the mean-field BCS
approach is more well-known, the particle-conserving ansatz provides however a clearer
picture of superconductivity and at the same time it retains the related U(1)-symmetry.
For a dedicated introduction to the concept, see, for instance, the book by Nobel
laureate A. Leggett [81]. Apart from removing the non-physical violation of particle
conservation, this ansatz solves many of the interpretation issues that appear in the
BCS theory. Moreover, this approach could provide a way to capture long-range
interactions which are considered important as an additional pairing mechanism, but
cannot be properly accounted for by mean-field Hamiltonians. It is now very interesting
to search for new features which can be predicted by this framework but not with the
conventional BCS theory. Eventually, it could give a hint how superconductivity arises
in the presence of strong correlations, like in QD systems. Knowing about the origin
of high-temperature superconductivity could help to find more stable superconductors
which also prevail at room temperature. Right now, researchers are still dependent on
their intuition which materials should be brought together to create a high-temperature
superconductor. Not only a refinement of superconductivity itself, but also interference
effects in superconducting setups are in the scope of this topic of the thesis. A better
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3.2 Particle-conserving theory of superconductivity

understanding of how Cooper pairs interfere with the electrons and their all-important
Coulomb interaction is desirable. When a superconductor is connected to a normal
conductor, superconducting correlations can leak into it, giving rise to pair correlations
and to an induced superconducting gap, a phenomenon known as the proximity effect.
The results presented here are based on the PhD thesis of Jordi Picó-Cortés [89] and a
joint publication of Julian Siegl and Jordi Picó-Cortés [90]. We extend their work to
an analysis of the interplay of Cooper pair and quasiparticle tunneling and investigate
the superconducting coherences via the concept of Anderson pseudospin (cf. Sec. 3.5).
The results are based on a generalized master equation calculated in the leading-order
approximation.
We model a QD system connected to two superconductors, a S-QD-S junction, with the
following Hamiltonian:

Ĥ = ĤQD +
∑
l

Ĥl + Ĥtun. (3.1)

For our QD system, we take the Hamiltonian of a SIAM [cf. Eq. (1.34)]. The Hamiltonian
of the l-lead takes the general form of

Ĥl =
∑
σk

(ξlk + µl) ĉ
†
lkσ ĉlkσ (3.2)

+
∑

σσ′kk′q

Vl(q)ĉ
†
lk+qσ ĉ

†
lk′−qσ′ ĉlk′σ′ ĉlkσ. (3.3)

Here, the spin-independent lead energies ξlk are associated to the lead creation/annihila-
tion operators ĉ†lkσ/ĉlkσ, where the momentum vector of the respective electrons is
denoted as k and the spin as σ. We write the chemical potential of the l-lead as µl

and for the electron-electron interaction Vl(q), we use a form which is general in its
momentum dependence.
Superconductivity can arise now with the formation of a Cooper pair condensate if the
interaction becomes attractive [91]. The ground state within the particle-conserving
ansatz can be written as |Ml⟩, where the number of the Cooper pairs Ml in the l-lead
are sufficient to describe the state [81]. The Cooper pairs are protected from breaking
up due to, e.g., thermal fluctuations by twice the superconducting gap. Hence, the
superconducting gap is considered to be the energy needed for one electron to leave the
superconducting state. The characteristic energy spectrum of a superconductor is, for
that reason, gapped. Now, we use a mean-field description for the interaction in order
to describe the excited energy spectrum. However, we define crucially the average of
all states ⟨⟩ in the definition of the superconducting gap ∆lk in a particle-conserving
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fashion:
∆lk =

∑
k′

Vl(k − k′)⟨Ŝ†
l ĉlk↑ĉlk̄↓⟩. (3.4)

The addition of the Cooper pair creation and annihilation operators, which are defined
as

Ŝ†
l |Ml⟩ = |Ml + 1⟩ , Ŝl |Ml⟩ = |Ml − 1⟩ , (3.5)

is the main difference with the standard BCS-approach. The Cooper pair operators
preserve the particle number in the above-mentioned average. Other than that, Ŝ†

l Ŝl =

1−P̂l,0 holds with P̂l,0 projecting to the state with zero Cooper pairs. In the following, we
use the assumption that the state with zero Cooper pairs is negligible (i.e., macroscopic
leads), so that the two Cooper pair operators commute [89]. Applying the mean-field
approach to the interaction, the Hamiltonian yields

ĤMF
l =

∑
σk

(ξlk + µl) ĉ
†
lkσ ĉlkσ −

∑
k

(
∆lkŜlĉ

†
lk↑ĉ

†
lk̄↓ + h. c.

)
. (3.6)

In the following, we consider a momentum-independent gap, ∆l,k = ∆l, which corre-
sponds to s-type superconductivity. Furthermore, we can divide the complex supercon-
ducting gap into its amplitude |∆l| and its phase part eiϕl = eiarg(∆l), which is essential
to explain the supercurrent. The diagonalization of ĤMF

l can be achieved through
the particle-conserving Bogoliubov-Valatin transformations outlined, e.g., in [88]. The
electron creation operator transforms then according to

ĉ†lkσ = ulkγ̂
†
lkσ + sgn(σ)v∗lkŜ

†
l γ̂lk̄σ̄ +O

(
P̂l,0

)
, (3.7)

where

ulk =

√
1
2

(
1 + ξlk

Elk

)
, (3.8)

vlk = eiϕl

√
1
2

(
1− ξlk

Elk

)
. (3.9)

To this end, we employ the Bogoliubov quasiparticle operators γ̂lkσ/γ̂†lkσ, which are able
to describe fermionic excitations of the systems and the quasiparticle excitation energy
Elk =

√
ξlk + |∆l|2. Under the assumption of macroscopic leads, the anti-commutation

relations of fermions apply {γ̂lkσ, γ̂†lkσ} = δll′ [δkk′δσσ′ +O(P̂l,0)]. Furthermore, it holds
that γ̂lkσ |Ml⟩ = 0 for all values of {l, k, σ}, hence, we can conclude that the vacuum
of quasiparticle excitations is the ground state for the superconductor. Applying the
Cooper pair and quasiparticle operators, which commute mutually up to factors of P̂l,0,
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3.3 Generalized master equation for superconducting leads

to the ground state leads to an eigenstate with Nl particles. These excited energy states
can be written as |M, l, {νlkσ}⟩, where the occupation of a quasiparticle mode with
momentum k and spin σ is denoted by νlkσ.
Now, we split the Hamiltonian describing the leads [Eq. (3.6)] into two parts

Ĥl = ĤQP,l + ĤCP,l, (3.10)

with one part describing the quasiparticles ĤQP,l and one part describing the Cooper
pairs ĤCP,l. The definitions of quasiparticle and the Cooper pair Hamiltonian are given
by

ĤQP,l =
∑
kσ

(Elk + µl) γ̂
†
lkσγ̂lkσ, (3.11)

ĤCP,l = µl

∑
kσ

(
ĉ†
lk̄σ̄

ĉlkσ − γ̂†lkσγ̂lkσ

)
. (3.12)

The Cooper pair Hamiltonian can be seen in this definition as everything what is left
if one subtracts the rather standard fermionic quasiparticle Hamiltonian contribution
from the total lead Hamiltonian.
Eventually, the tunneling Hamiltonian can be rewritten with the Bogoliubov-Valatin
transformations as

Ĥtun =
∑
lkσ

tlĉlkσd̂σ + h. c.

=
∑
lkσp

ptpl

[
up̄lkγ̂

p
lkσ + sgn(σ)vplkŜ

p
l γ̂

p̄

lk̄σ̄

]
d̂p̄σ. (3.13)

The last step in the equation is obtained by introducing the Fock index p = ± analogous
to Eq. (1.16). This formulation of the tunneling Hamiltonian leaves us with one part
involving only quasiparticles and one involving also Cooper pairs.

3.3 Generalized master equation for superconducting leads

In order to derive a GME for our superconducting setup, we will make use of the
Nakajima-Zwanzig formalism outlined in Cha. 1. The main task is hereby finding the
solution for the steady state of our reduced density matrix, ρ̂, with the help of the
propagation Kernel defined in Eq. (1.11):[

LS − λ+ K̃(λ)
]
ρ̂ = 0, (3.14)

55



3 Quantum dot-based Josephson junctions

with λ → 0+ due to the Laplace transform. We explicitly opt here to write the
dependence of the Kernel on λ, which should be considered as a frequency. It should be
noted that in general, one could write the reduced density matrix in a time-dependent
form, as in [90]. However, since we will derive only analytical equations on the dc-
component of the current, we refrain from using the most general description, which
would unnecessarily enlarge the already intricate formalism. Subsequently, the current
through the system is given by Eq. (1.24):

I = TrS
{
K̃I ρ̂

}
, (3.15)

where K̃I is the current Kernel for the symmetrized current operator Î = (ÎL − ÎR)/2

as in Eq. (1.25). The advantage of using the Nakajima-Zwanzig projector technique for
our transport calculation is that we are flexible in the exact distinction of what is the
bath and what is the system part. As the most convenient distinction, we define the
system part as the QD Hamiltonian and the Cooper pair one:

ĤS = ĤQD + ĤCP, ĤB = ĤQP. (3.16)

Since ĤCP commutes with the Ĥtun, we observe that the quasiparticle and the Cooper
pair degrees of freedom are uncoupled. The quasiparticle degrees of freedom are the
only dissipative part so that the Cooper pair time evolution can be considered as fully
coherent. However, this is just the result of our model assumptions, where we do not
consider charging effects which can couple the Cooper pairs with the quasiparticles.
The timescale of these effects is nonetheless usually large so that the assumption, that
the Cooper pair dynamics are decoupled from the quasiparticle dynamics, is indeed
reasonable. Eventually, this observation of the coherent evolution of Cooper pairs will
lead to the famous ac-Josephson effect. With this distinction between ĤS and ĤB at
hand, we can write the reduced density matrix as

ρ̂ =
∑

M∆M

∑
χχ′

ρχχ′(∆M ,M) |χ,M +∆M⟩
〈
χ′,M

∣∣ , (3.17)

where χ ∈ {0, ↑, ↓, 2} describes the electronic population of the QD and the vector
M = (ML,MR) accounts for the Cooper pairs in the left and right lead, respectively.
Coherences in the Cooper pair space can be described by a vector accounting for the
Cooper pair imbalances in the leads with ∆M = (∆ML,∆MR) ∈ Z2. Overall, ρ̂ can be
considered as a system operator only. The action of the Cooper pair Liouvillian on the
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3.3 Generalized master equation for superconducting leads

Figure 3.3: Sketch of the effective density matrix: The density matrix
consists of blocks (gray), which differ in the imbalance of Cooper pairs ∆M .
The blue entries, considered as the populations, correspond to the sum over all
states with absolute Cooper pair number M and no Cooper pair imbalance,
which can be formalized by ρχχ(∆M = 0). These four entries sum to 1 due to
population conservation. In principle, also spin coherences (orange) are part
of this block, however we can neglect them in our setup. The non-vanishing
elements in the blocks, which are off-diagonal in the "Cooper pair imbalance"-
space, are depicted in orange. These elements are associated with coherences
between the empty and double-occupied electronic state (|2⟩⟨0| for ∆Ml = −1
and |0⟩⟨2| for ∆Ml = +1). In general, ρ̂′ is infinite in its size.

density matrix is

iℏLCP |χ,M +∆M⟩
〈
χ′,M

∣∣ = 2∆M · µ |χ,M +∆M⟩
〈
χ′,M

∣∣ , (3.18)

where µ = (µL, µR) is the vector of the chemical potentials of the leads. We can deduce
here that the absolute number of Cooper pairs is not relevant in the calculation of
the Kernels, where LCP is appearing, but rather the imbalance of Cooper pairs ∆M .
A generalization of the partial traces helps us to write the GME in a form, which is
independent of the absolute number of Cooper pairs M . We define the generalized
traces by

Ô(∆M) =
∑

M∈Z2

Ô(∆M ,M). (3.19)

As an example, the trace ρ̂(0) corresponds to the partial trace over the Cooper pair
and quasiparticle sector, which is equivalent to the reduced density matrix of the QD
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3 Quantum dot-based Josephson junctions

space only. A sketch of the effective density matrix ρ̂′ =
∑

M∈Z2 ρ̂, under consideration
in the following, is depicted in Fig. 3.3. The effective GME, connecting elements which
differ in ∆M , can be thus written as

0 = (LQD − 2i∆M · µ/ℏ− λ) ρ̂(∆M)

+
∑
∆M ′

K̃red(∆M −∆M ′, λ+ 2i∆M ′ · µ/ℏ)ρ̂(∆M). (3.20)

Here, the Kernel K̃red(∆M , λ) is obtained by collecting all the elements of K̃(λ) which
change the Cooper pair imbalance by ∆M after accounting for the Cooper pair operators
appearing in the Kernel. We compensate the vanishing Cooper pair Liouvillians by the
shift λ → λ+ 2i∆M ′ · µ/ℏ. Note that K̃red(∆M , λ) is acting now only on a reduced
density matrix, namely the one of ρ̂(∆M). The exact derivation of Eq. (3.20) is given
in [89, 90].
In Fig. 3.3, we already anticipate that the only relevant entries of our considered density
matrix have to fulfil the particle number selection rule [92] of

Nχ′ −Nχ + 2
∑

∆Ml = 0. (3.21)

Since our SIAM model can host only up to 2 electrons, we deal with the following
restriction on ∆Ml,

−1 ≤ ∆ML +∆MR ≤ 1, (3.22)

for ∆ML, ∆MR ∈ Z. Hence, in the blocks where ∆ML +∆MR = ±1, the only non-
vanishing elements in the QD space are |2⟩⟨0| and |0⟩⟨2|, depending on the sign of ∆Ml

(cf. Fig. 3.3). These elements can be considered as the superconducting correlations,
and the investigation of them recently attracted a lot of interest [90, 93–96]. The
superconducting correlations, often also dubbed pair-amplitude, are induced by the
proximity effect, through which superconductivity from the adjacent leads leaks into
the dot.
As already mentioned, we focus in our analysis on the leading-order contribution of the
Kernel to the steady state and to the current. The perturbation in the coupling to the
leads is applied in terms of the tunneling coupling,

Γl = 2πgl,0|tl|2, (3.23)

where gl,0 denotes the density of states of the l-lead in the normal state and tl is the
tunneling amplitude of the corresponding lead. With this definition, we are consistent
with the convenient unit of energy of Γl. The original rate character of it is obtained by
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3.3 Generalized master equation for superconducting leads

a division of ℏ as in Eq. (1.17). Starting from the definition of the sequential tunneling
Kernel [cf. Eq. (1.14)],

K̃(2)(λ) = PLtun
1

λ− LS − LB
LtunP, (3.24)

we can insert the exact form of the tunneling Hamiltonian with its two parts, namely the
one ∝ up̄lkγ̂

p
lkσ and the other ∝ sgn(σ)vplkŜ

p
l γ̂

p̄

lk̄σ̄
into the Liouvillians Ltun. We collect

now all terms where no Cooper pair operators Ŝp
l are left after tracing out the bath degree

of freedom (quasiparticle degree of freedom) and call it the normal terms. The normal
terms are characterized therefore by no change in the Cooper pair number, and they
can be associated to two electron-like or two hole-like excitations of opposite Hermicity.
The other main contribution of the Kernel, coined anomalous terms, are obtained by
collecting all the remaining terms with Cooper pair operators. They correspond then to
an electron- and hole-like excitation of the same Hermicity together with a transport
event of a Cooper pair. The next step is to apply the aforementioned generalized trace
so that we correctly transform into the space where different ρ̂(∆M) are connected. In
the following two sections, we derive now the Kernel K̃(2)

red(0, λ), describing the normal
terms, and the Kernels K̃(2)

red[(±1, 0), λ] and K̃(2)
red[(0,±1), λ], describing the anomalous

terms.

3.3.1 Normal terms

The normal (reduced) Kernel yields

K̃(2)
red(0, λ) = − i

ℏ
∑
lσp
α1α2

|tl|2α1α2

∫ ∞

−∞
dεd̂p̄α2

σ

gl(ε)f
α1(ε)

ε− iℏLQD + pµl + iℏλ
d̂pα1
σ . (3.25)

The only relevant difference of this Kernel to the one of non-superconducting leads
introduced previously [cf. Eq. (1.18)] is, besides a slight adoption of the Fermi-function
to f q(ε) = [eqε/(kBT ) + 1]−1, which is more convenient in this chapter, the exchange of
the density of states with the one characteristic for superconductivity:

gl(ε) = gl,0Re

{√
(ε− iγ)2

(ε− iγ)2 − |∆l|2

}
. (3.26)

The shape of this function is governed by the superconducting gap |∆l| where for energies
below it, the integral will vanish. However, due to a more realistic finite broadening of
the superconducting density of states which would have otherwise divergent peaks at
ε = ±|∆l|, we introduce the Dynes parameter γ [97, 98]. The solution of the energy
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3 Quantum dot-based Josephson junctions

integral is given in [89, 90] by

Iq
l (ν) = −iπf q̄(ν)hl(ν)− q

[
S(2)
l (ν)− lim

W→∞
C(2)
l (W )

]
, (3.27)

which obeys Iq
l (ν) = −

(
I q̄
l (−ν)

)∗ and where

S(2)
l (ν) = 2πkBT

∞∑
k=0

ωkhl(iωk)

ω2
k + ν2

, (3.28)

C(2)
l (W ) = πkBT

∞∑
k=0

hl(iωk) + hl(iW )

ωk +W
+ πkBT

∞∑
k=0

hl(iωk)− hl(iW )

ωk −W
, (3.29)

with ωk = 2πkBT (k + 1/2) and the bandwidth W . The solution is obtained by using
the residuum theorem. As a result, the function appearing in Eq. (3.27) is not gl(ε)

but

hl(z) = gl,0

√
z2

z2 − |∆l|2
. (3.30)

This can be understood as the result of the Kramers-Kronig relations. The action of the
final form of the normal Kernel on ρ̂(∆M) can be written with the help of the above
definitions as

K̃(2)
red

(
0, λ+

2i∆M · µ
ℏ

)
ρ̂(∆M) =− i

ℏ
∑
lσp
α1α2

|tl|2α1α2

d̂p̄α2
σ Iα1

l (pµl − iℏLQD)d̂
pα1
σ ρ̂(∆M). (3.31)

3.3.2 Anomalous terms

The anomalous (reduced) Kernel reads

K̃(2)
red(pul, λ) = − i

ℏ
∑
lσ

∑
pα1α2

eipϕl |tl|2α1α2

∫ ∞

−∞
dεd̂p̄α2

σ

sgn(σ)pg̃l(ε)fα1(ε)

ε− iℏLQD − pµl + iℏλ
d̂p̄α1
σ̄ ,

(3.32)
with uL = (1, 0) and uR = (0, 1). The former introduced phase of the superconductor
ϕl enters this Kernel as well as the anomalous density of states

g̃l(ε) = gl,0Re

{√
|∆l|2

(ε− iγ)2 − |∆l|2

}
sgn(ε). (3.33)
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3.4 Current

Employing again the residuum theory, we solve the anomalous energy integral with

Ĩq
l (ν) = iπf q̄(ν)g̃l(ν) + qS̃(2)

l (ν), (3.34)

where the following functions are used

S̃(2)
l (ν) = 2πkBT

∞∑
k=0

iνh̃l(iωk)

ω2
k + ν2

, (3.35)

h̃l(z) = gl,0

√
|∆l|2

z2 − |∆l|2
sgn

(
Re{z}+ 0+

)
. (3.36)

Here, the property Ĩq
l (ν) = [Ĩ q̄

l (−ν)]∗ is satisfied. Eventually, we can express the
anomalous Kernel in its final form:

K̃(2)
red

(
pul, λ+

2i∆M · µ
ℏ

)
ρ̂(∆M) =− i

ℏ
∑
lσ

∑
pα1α2

|tl|2pα1α2sgn(σ)e−ipϕl

d̂p̄α2
σ Ĩα1

l (pµl − iℏLQD)d̂
p̄α1
σ̄ ρ̂(∆M). (3.37)

For more insights about the technicalities of the solution of the integrals, we refer the
interested reader to [89, 90].

3.4 Current

According to [89, 90], it can be shown that the current Kernel can be equally cast into
a form which is consistent with the block structure of ρ̂(∆M). Hereby, we explicitly
follow the same approach outlined in the general Theory part (Sec. 1.4), where one
replaces the leftmost tunneling Liouvillian with the current operator. In general, the
obtained current is time-dependent, even in its steady state limit, which can explain
the famous ac-Josephson effect. The steady state current can be expressed as

I(t) := I∞l (t) =
∑
∆M

I(∆M)e2i∆M ·µt/ℏ, (3.38)

where the current harmonics are given by

I(∆M) = TrQD

{
c∆M

∑
∆M ′

K̃(2)
I,red(∆M −∆M ′, 2i∆M ′ · µt/ℏ)ρ(∆M ′)

}
, (3.39)
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with the coefficients of the initial state defined as

c∆M = TrQD {ρ̂(−∆M)(t = 0)} . (3.40)

The reason that the current harmonics are dependent on the initial preparation of
the density matrix is explained in full detail in [90]. In essence, this is due to the
absence of a mechanism which couples the Cooper pairs to the dissipative degrees of
freedom (namely the quasiparticles). It can be rationalized by the commutation of the
Cooper pair operators with the tunneling Hamiltonian. However, since we focus on the
first harmonic of the current, namely I(0), we can use c0 = 1 due the conservation of
probabilities.

3.5 Anderson pseudospin

In 1958, Phil Anderson introduced a pseudospin concept to explain the excitation
spectrum of a bulk superconductor [99]. He showed that the superconductor can be
described by a set of interacting pseudospins, where one pseudospin represents a pair of
electronic states. When both states of such a pair are unoccupied, this is represented
by the pseudospin pointing in the positive z-direction. Otherwise, if both states are
occupied, the pseudospin is pointing in the negative z-direction. Similar to the Bloch
sphere of Fig. 1.5, any other direction of the pseudospin vector can be seen as a
superposition of the former states.
A review article by Josephson summarizes nicely the main ideas and the origin of the
Anderson pseudospin concept in superconductivity [100], and here we briefly sketch
it. The effective Hamiltonian of the bulk superconductor can be written according to
Anderson as

Heff = −2
∑
k

(ϵk − µ) Ik,z −
∑
k ̸=k′

Vkk′
(
Ik,xIk′,x + Ik,yIk′,y

)
. (3.41)

Here, the first term describes the kinetic energy, while the second one stems from the
interaction. The single-particle kinetic energy is denoted as ϵk, the chemical potential
as µ, the matrix element for the scattering of a pair of electrons of equal momentum
and opposite spin as Vkk′ , while the three components of the kth pseudospin are Ik,x,
Ik,y and Ik,z.
One can formulate an effective field for the kth pseudospin:

H⃗k = 2 (ϵk − µ) e⃗z + 2
∑
k ̸=k′

Vkk′ I⃗k′,⊥, (3.42)
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3.5 Anderson pseudospin

where e⃗z is the unit vector in the z-direction and I⃗k′,⊥ indicates the component of the
pseudospin in the x-y plane. In Fig. 3.4 a, a possible configuration of the pseudospins

Figure 3.4: Anderson pseudospin configurations: a In a normal metal,
the pseudospin changes abruptly its direction at the Fermi-momentum kF,
whereas in b, the pseudospins in a superconductor perform a vectorial rotation
similar as in domain walls in magnetic textures. Figure taken from [100].
© 1974 American Physical Society. Reproduced with permissions. All rights
reserved.

associated to a normal metal is depicted. In analogy to the semiclassical theory of
magnetism, the spins align as a first approximation with applied effect field so that at
the Fermi-surface, the signs of the pseudospins reverse due to the sign change in ϵk − µ

in H⃗k. However, if there is an attractive interaction (corresponding to negative Vkk′),
another configuration exists with lower total energy. In b, we display such lower energy
configuration where the pseudospins are rotated inside the x-z plane in the vicinity of
the Fermi-surface. Interestingly, the ground state of the superconductor breaks now the
symmetry of the pseudospin Hamiltonian (Heff) with respect to the rotation around
the z-axis, which one can link to the particle conservation in the initial Hamiltonian.
Furthermore, there is a degeneracy in the ground states of the superconductor, where
the pseudospins can indeed lie in any plane through the z-axis. Another interesting fact
is that the angle between this degenerate set and the plane of x-z can be related to the
phase of the superconductor ϕl.
After setting the historic background of the Anderson pseudospin, we adopt it to our
model where we deal only with one pair of electronic states, namely the spin states of
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our SIAM, and thus with only one pseudospin. We define its three components as

Ix = Re{C20}, (3.43)

Iy = Im{C20}, (3.44)

Iz =
p0 − p2

2
, (3.45)

where the real and the imaginary part of the superconducting correlations are the
x- and y-component of the pseudospin and the difference of the populations of the
empty (p0) and double-occupied state (p2) of the QD define the z-component. The
superconducting correlations C20 are building up in the QD due to the proximity effect
of the neighboring superconductors. Expressing the correlations with the help of the
density matrix formalism, we write them as C20 = |2⟩⟨0|, where we have in mind a
density matrix as

ϱ̂ =


p0 0 0 C02

0 p↑ 0 0

0 0 p↓ 0

C20 0 0 p2

 . (3.46)

The off-diagonal elements of this density matrix, |2⟩⟨0| and its complex conjugate partner
|0⟩⟨2|, can be seen as a measure of the superconducting correlations. In the application
part in Cha. 6, we will address the issue how to transform the a priori infinite matrix ρ̂′

to the simple one of ϱ̂ in order to have a firm footing of our defined pseudospin.

64



II
4 Pseudospin resonances reveal synthetic spin-

orbit interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.1 Microscopic model of a pseudospin valve . . . . . . . . 68
4.2 Coherent sequential tunneling model . . . . . . . . . . . . 76
4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.4 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.5 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5 Precession of entangled spin and pseudospin
in double quantum dots . . . . . . . . . . . . . . . . . . . . . . 91

5.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.2 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.3 Coherent sequential tunneling model . . . . . . . . . . . . 96
5.4 Limiting cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.5 Correlator-induced exchange fields. . . . . . . . . . . . . . 109
5.6 Entanglement of spin and pseudospin. . . . . . . . . . . . 114
5.7 Summary and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6 Anderson pseudospin dynamics in a quantum
dot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.1 Equations of motion for finite gate voltages . . . . . . . 120
6.2 Proximity-induced dot-pair amplitude . . . . . . . . . . . . 125
6.3 dc-Josephson effect . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
6.4 Gate- and temperature-dependent zero-pi transi-

tion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
6.5 Non-equilibrium results . . . . . . . . . . . . . . . . . . . . . . . . . . 133
6.6 Summary and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . 136

7 Final conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

Applications





Pseudospin resonances reveal synthetic
spin-orbit interaction

4

In this chapter, we investigate pseudospin current resonances, which we predict in DQDs.
Therefore, we employ a pseudospin valve in the spirit of a spin valve by manipulating the
orbital coupling of the leads to the DQD. With adding also the spin degree of freedom
through ferromagnetic leads, we show the interesting intertwinement between the orbital
and the spin degree of freedom in such systems. The realized pseudospin resonances
are a manifestation of many-body interference influenced by interaction and facilitated
by the virtual electronic fluctuations between the leads and the system. We present
a rich variety of these current resonances which can split, turn into dips, and even
acquire a Fano shape. We accompany the numerical results obtained by a generalized
master equation with an analytical minimal rate model. The analytic findings help us to
understand the mechanism behind the pseudospin resonances and give insight into the
underlying synthetic SOI. In the outlook of this chapter, we present some experimental
data of a CNT which could indeed show remanences of pseudospin resonances. The
following sections are based to a large extent on our publication Physical Review B 103,
205420 (2021) with the same title as this chapter [17].
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4 Pseudospin resonances reveal synthetic spin-orbit interaction

4.1 Microscopic model of a pseudospin valve

As our setup, we take a spinful DQD and attach it to two leads in a pseudospin valve
configuration as outlined in Sec. 2.2. The Hamiltonian of the DQD is defined by Eq. (2.4)
and is characterized by the on-site and inter-site Coulomb interaction U and V , which
results in a pseudospin anisotropy. At this stage, we present an extension of the used
Hamiltonian in order to analyze the robustness of its degenerate spectrum. In a real
DQD setup, one can encounter inter-dot tunneling t and asymmetry in the on-site
energies of the DQD, which we could include in our pseudospin framework as

ĤDQD =

(
ε̄− U

2

)
N̂ +

U + V

4
N̂2 + (U − V ) T̂ 2

z + B⃗t ·
ˆ⃗
T. (4.1)

We adjust the on-site energies to its average ε̄ = (ε1+ ε2)/2+ eVg and define a magnetic
field B⃗t acting on the orbital degree as Bt,x = 2Re t, Bt,y = 2 Im t, and Bt,z = ∆ε =

ε1 − ε2. The tunneling and the orbital asymmetry would lift the orbital degeneracy
of our system and thus destroy our interference effect of pseudospin resonances if the
magnitude of such Zeeman-like splitting is big enough. We argue that a small hopping
and asymmetry |t|,∆ε < ℏΓ0 are not detrimental, as the coupling to the leads Γ0 cannot
resolve the lifted degeneracies. Therefore, one still expects interference effects to appear
and the pseudo-magnetic field B⃗t would simply add to the exchange field in the spirit
of Fig. 2.6 c. From now on, we restrict ourselves to the simpler case of t = 0 and
ε1 = ε2.

Figure 4.1: Schematic setup of a DQD in a pseudospin valve con-
figuration with ferromagnetic leads: The blue arrows indicate parallel
spin polarization of the leads. A pseudospin valve is obtained by coupling the
dots differently to the leads highlighted by the black arrows. The total opening
angle of the pseudospin polarization θ is applied equally to the left lead (L)
and the right lead (R) as ±θ/2 and ensures coherent tunneling for θ ̸= π, 0.
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4.1 Microscopic model of a pseudospin valve

On top of the pseudospin valve, we are adding spin polarization to the leads. In Fig. 4.1,
such a setup is displayed. We opt for parallel spin and almost antiparallel pseudospin
directions with an opening angle θ = 0.95π based on Eq. (2.17). Furthermore, we always
use equal spin and orbital polarization for both leads in our calculations (PS = PL

S = PR
S

and PT = PL
T = PR

T ). Moreover, we set the pseudospin polarization to the high value
of PT = 0.99 in order to increase the visibility of the effects and obtain an essentially
closed pseudospin valve. This prerequisite of high pseudospin polarization is however
within experimental reach, as shown in [6]. In this experiment, the angular momentum
states of a CNT provide a two-level system with symmetry-protected degeneracy. The
pseudospin polarization of the leads is there related to the extent and position of the
contact region between the lead and the CNT. The localized contact provides then an
almost full polarization. Furthermore, in [57] it was recently shown that the control of
the phase and strength of the tunneling amplitudes can be achieved with the help of a
longitudinal magnetic field acting on a CNT.
In this chapter, we however outline an alternative model based on the DQD geometry,
which differs from the CNT implementation but results in a comparable pseudospin
valve setup. The big advantage of our microscopic model is to be able to control the
decisive parameters of the polarization strength and vectors by the relative distance of
the dots to the leads and by the relative distance between the dots. The main goal of
this section is to show that a realistic implementation of a pseudospin valve is indeed
possible. We explicitly relate the position of the dots to the parametrization of the
tunneling rate matrix components Al and Bl and thus reproduce the desired pseudospin
valve parameters Γl

0, PT , and θ (cf. Sec. 2.2). The specific setup chosen here corresponds
then to a situation where the left (right) lead is primarily coupled to dot "2" ("1")
dot. Additionally, the opening angle θ ≲ π accounts for a small component of coherent,
simultaneous tunneling through both dots.
To start with, we define the wave functions of the leads and of the dots in real space
as

Ψlk(r)δτσl
= ⟨rτ |lkσl⟩ and ϕi(r)δτσ = ⟨rτ |iσ⟩ . (4.2)

To simplify the notation, we assume from now on that the axis of the lead spin σl

and the one of the system σ coincide so that we switch to σ as the overall spin index.
Furthermore, we denote in this section vectors in boldface to facilitate the readability.

69



4 Pseudospin resonances reveal synthetic spin-orbit interaction

The tunneling amplitude reads, accordingly,

tlkσ,iσ′ =

∫
drΨ∗

lk(r)

[
− ℏ2∇2

2mel
+ vDQD(r)

+ vleads(r)

]
ϕi(r)δσσ′ ≈ εi

∫
drΨ∗

lk(r)ϕi(r)δσσ′ , (4.3)

where, due to the strong localization of the system wave function, we neglect, in the
approximation, the contribution of the leads’ potential vleads. The energy of the localized
dot state is denoted by εi.
The lead wave function is parametrized, in the tunneling barrier separating the leads
from the dots, in terms of ky and kz, the components of the momentum parallel to the
lead surface, and κ, the inverse penetration length inside the tunneling barrier:

Ψlk(r) = Ψ⊥
lκ(x)Ψ

∥
lkykz

(y, z) =
e−κx+i(kyy+kzz)

√
SLx

, (4.4)

where Lx and S are, respectively, the width of the well and the area of the lead surface
perpendicular to the transport direction. Along the x-direction, the wave function
decays exponentially. It is useful, for the following, to express the inverse penetration
length κ in terms of the electron energy Eel and the parallel momenta ky and kz:

κ =

√
k2y + k2z −

2mel

ℏ2
Eel, (4.5)

where mel is the (effective) electronic mass.
The potential landscape for one lead and one QD is sketched in Fig. 4.2. The potential
landscape confines the electrons only along the x-direction. The bottom energy of the
rectangular potential well Eσ

b is spin-dependent, and the Fermi-energy EF is separated
from the vacuum energy (E = 0) by the work function of the metal ϕ0

1. With this
ansatz, made in the spirit of the Stoner model for itinerant ferromagnets, we assure a
different density of states at the Fermi-energy for the different spin species, and obtain
the desired spin polarization.
The two QD’s are at distances xl1 and xl2 from the surface of the lead l and they feature
localized bound states which we model as δ peaks centered at the position Ri of the

1In a more realistic setup, the vacuum level would be replaced by the top of the valence band of the
insulator separating the metallic lead from the dot. The essence of the model remains, though,
unchanged.
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4.1 Microscopic model of a pseudospin valve

Figure 4.2: Potential landscape of a lead coupled to a QD: The lead
is modeled as a (large) rectangular potential well of width Lx and is separated
by a distance xi from the QD. The work function of the lead is denoted by ϕ0

and the Fermi-energy by EF. The color coding emphasizes that the bottom
energy Eσ

b is bigger in its absolute value for ↑-electrons than for ↓-electrons.

dot. The tunneling amplitude gets thus further simplified to

tlkσ,iσ′ =εi ⟨lk|i⟩ ≈ εi

∫
drΨ∗

lk(r)a
3/2δ (r −Ri)

=εia
3/2Ψ∗

lk(Ri) = εi
a3/2√
SLx

e−κxl
i−ik∥Ri , (4.6)

where a is a normalization factor in units of length and where we have introduced the
parallel component of the momentum k∥ = (0, ky, kz).
In the following, we calculate the parameters Γl

0, PT , and θ starting from the definition
of the tunneling rate matrix of Eq. (1.17). We follow two different approaches. At first,
we employ the so-called surface Γ-point approximation (SGPA) [101]. Subsequently,
we generalize our result by taking into account the full dispersion relation of the
ferromagnetic leads.

4.1.1 Surface Gamma-point approximation

In a first approximation, we assume that only the state at the surface Γ-point, i.e.,
with ky = kz = 0, participates in the transport. From Eq. (4.5), we know that such a
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4 Pseudospin resonances reveal synthetic spin-orbit interaction

state minimizes the inverse penetration length for a fixed electronic energy and thus is
expected to give the largest contribution to the tunneling. Moreover, we calculate the
tunneling density matrix at the Fermi-energy EF = −ϕ0. Under those two conditions,
the penetration length for the leads wave function reads λ =

√
ℏ2/(2melϕ0). Eventually,

by inserting Eq. (4.6) into the definition of the bare tunneling rate Γl
0 of Eq. (2.13), we

obtain
Γ̃l
0(EF ) =

2π

ℏ
ε20a

3
∑
σ

gσ (EF)
∑
i

e−
2xli
λ , (4.7)

where the tilde indicates the SGPA. In order to restore the correct units, the density of
states are defined inverse proportional to the volume SLx. The bare tunneling rate is
proportional to the total density of states of the lead at the Fermi-energy which scales
as the volume in the thermodynamic limit, and it is thus compensated by the factor
SLx at the denominator. Moreover, Γ̃l

0 decreases exponentially upon increasing the
distance between the dots and the lead. For a typical work function ϕ0 = 5 eV, the
penetration length is approximately λ = 0.9Å and the bare tunneling rate is reduced
roughly by an order of magnitude if one increases the distance between the dots and
the leads by 1Å.
For the pseudospin component of the tunneling rate matrix, one obtains

Ãl
ij =

exp

(
−xl

i+xl
j

λ

)
exp
(
−2xl

1
λ

)
+ exp

(
−2xl

2
λ

) . (4.8)

From Ãl, we can deduce the polarization angle, calculated within the same approxima-
tion:

θ̃l = arctan

[
sinh

(
xl2 − xl1

λ

)]
. (4.9)

In our setup, we define the angle θ = θR − θL as the opening angle between the two
polarization vectors. Moreover, we distribute the tilting symmetrically: θL,R = ∓θ/2.
Thus, an angle θ = 0 corresponds to a DQD connected in parallel, with the state
|i = 1⟩ − |i = 2⟩ completely decoupled from both leads. Conversely, for θ = π the left
(right) lead only couples to dot "2" ("1"), i.e., a completely closed pseudospin valve
configuration.
From Eq. (4.9), it is clear that the calibration of the pseudospin polarization angle
requires the control of the dot position on the scale of the penetration length λ.
Alternatively, one should control with local gating the barrier height and thus have
access to penetration length itself. Starting from Eq. (4.8), it is straightforward to prove
that, within the SGPA, the strength of the pseudospin polarization is always maximal,
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4.1 Microscopic model of a pseudospin valve

i.e., P̃ l
T = 1. This fact is not so surprising if one considers that only the tunneling

amplitude to the state at the surface Γ-point is considered in the calculation of the Ãl

matrix. All the other states at the Fermi-energy are simply accounted for in the density
of states. A more careful evaluation of the tunneling amplitudes softens the condition
of full polarization. Such an evaluation offers more insight into the dependence of the
pseudospin polarization strength and direction on the geometry of the junction.

4.1.2 Three-dimensional Stoner model

Relaxing the SGPA requires us to calculate the k-space integrals in the definition of
tunneling rate matrices of Eqs. (2.13)-(2.14). The fundamental integral reads:

I lij =
∑
kσ

⟨i|lk⟩ ⟨lk|j⟩ δ (EF − εlkσ)

=
a3mel

2π2ℏ2
∑
σ

∫ kσF

0
dk∥k∥

J0
[
k∥(yi − yj)

]
e
−(xl

i+xl
j)
√

λ−2+k2∥√
2mel
ℏ2 (EF − Eσ

b )− k2∥

, (4.10)

where J0 is the Bessel-function of the first kind, k∥ =
√
k2y + k2z , and the upper

integration limit

kσF =

√
2mel

ℏ2
(EF − Eσ

b ), (4.11)

is the Fermi-momentum for the electrons of spin σ. Without any loss of generality, we
chose the coordinate system such that z1 = z2 = 0. Moreover, we denote with yi the
l-independent distance of the i-dot in the y-direction.
On the one side, we evaluated numerically the integral in Eq. (4.10), and extracted
the tunneling rate parameters plotted in Fig. 4.3. On the other side, further insight
is gained from analytical calculations carried out under specific conditions. As we are
interested in a DQD in weak tunneling coupling, we assume xli + xlj > 3λ. Furthermore,
we concentrate on the two limiting cases of an almost vanishing and almost full spin
polarization. In the first case, we have, for a typical metallic electron density, kσF ≳ λ−1,
for both spin species. Hence, the numerator in Eq. (4.10) is exponentially suppressed at
the upper integration limit since the absolute value of the argument of the exponential
function is at least bigger than |3

√
2|, and the integration limit can be shifted at no price

to ∞. We further neglect the k∥ dependence in the denominator and Taylor-expand the
exponent up to the second order. Under these simplifications the integral can thus be
solved, to give

I l,0ij = C exp

[
−
xli + xlj

λ
− (yi − yj)

2

2λ(xli + xlj)

]
1

xli + xlj
, (4.12)
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with

C =
2a3mel

h2

∑
σ

(
Eσ

b
EF

− 1

)− 1
2

. (4.13)

In the limit of almost full polarization, instead, E↓
b ≈ −ϕ0. We can thus apply the

SGPA for the minority spin and obtain

I l,fmij = g↑(EF)e
−

xli+xlj
λ

ϕ0

EF − E↑
b

λ

xli + xlj
e
−

(yi−yj)
2

2λ(xl
i
+xl

j
) + g↓(EF)e

−
xli−xlj

λ , (4.14)

where

gσ(EF) =
1

4π2

(
2mel

ℏ2

)3/2√
EF − Eσ

b . (4.15)

With the help of Eq. (4.12) or Eq. (4.14), we calculate the bare tunneling coupling Γl
0

at the Fermi-energy and compare it to the one obtained in the SGPA. One obtains in
both cases a reduction of the bare tunneling rate, with the ratio being proportional to
(2λ)/(xl1 + xl2) < 1 in the range of validity of our analysis. The SGPA yields an upper
limit for the bare tunneling strength, as the tunneling amplitude is smaller for states
with finite k∥ in comparison to the one at the Γ-point.
Finally, the generic element of the pseudospin matrix reads, independently of the spin
polarization,

Al
ij(EF) =

exp

[
−xl

i+xl
j

λ − (yi−yj)
2

2λ(xl
i+xl

j)

]
(xli + xlj)

−1

exp
(
−2xl

1
λ

)
(2xl1)

−1 + exp
(
−2

xl
2
λ

)
(2xl2)

−1
. (4.16)

In the limit of small spin polarization, this result is obtained as the constant C in
Eq. (4.13) factorizes both in the numerator and in the denominator of the A-matrix. In
the limit of high spin polarization, the same simplification is obtained by neglecting the
minority spin contribution to the integral I l,fmij . The orbital polarization strength and
orientation angle follow as

P l
T =

√
X2 + Z2, (4.17)

θl = arctan

(
Z

X

)
, (4.18)

where

X =

[
1−

(
∆x
2x̄l

)2]
exp
(
−∆y2

4λx̄l

)
2 cosh

(
∆x
λ

)
+ ∆x

x̄l sinh
(
∆x
λ

) , (4.19)
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and

Z = −
sinh

(
∆x
λ

)
+ ∆x

2x̄l cosh
(
∆x
λ

)
2 cosh

(
∆x
λ

)
+ ∆x

x̄l sinh
(
∆x
λ

) , (4.20)

are the components of Al multiplying, respectively, the σx- and σz-Pauli matrices,
while

x̄l =
xl1 + xl2

2
, ∆x = xL

1 − xL
2 and ∆y = y1 − y2. (4.21)

In Fig. 4.3, we represent the pseudospin tunneling matrix parameters θL and PL
T ,

Figure 4.3: Pseudospin valve parameters in variation of the relative
separation of the dots exemplarily shown for the left lead: a The
polarization angle θL and b the polarization strength PL

T depend on the ∆x- and
∆y-separation of the dots. The values are obtained by a numerical integration
of Eq. (4.10). The parameters of the solid white lines are PL

T = 0.99 and
θL = −0.95π/2. The dashed white lines, which coincide mostly with the solid
ones, indicate the contour lines obtained by using the analytical Eqs. (4.17)
and (4.18). The other parameters are: xL

1 + xL
2 = 5Å, E↑

b = −16.4 eV,
E↓

b = −5.0003 eV, and ϕ0 = 5 eV which correspond to a spin polarization of
PS = 0.99.

as obtained from the numerical evaluation of I lij combined with the definition of the
pseudospin matrix in Eqs. (2.14), (2.16), and (2.17), plotted as a function of the
relative position between the two dots measured in unit of the penetration length λ. In
accordance with the general trend already observed in the SGPA, the polarization angle
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4 Pseudospin resonances reveal synthetic spin-orbit interaction

tends to ±π/2 for a negative (positive) large ∆x (cf. panel a in Fig. 4.3). The switch
between the extreme orientation directions becomes though smoother in the vicinity of
∆y = 0, once the contributions of finite k∥ are taken into account.
At the same time, we also notice that the strength of the pseudospin polarization
does assume values in the full range between 0 and 1. In particular, well separated
dots (∆y ≈ 4λ), kept though at similar distances from the leads, yield an almost
vanishing polarization strength (i.e., an incoherent tunneling). Moving toward any
other geometrical configuration, the polarization strength rapidly increases toward the
maximum value of PT = 1.
In Fig. 4.3, we also indicate the contour lines corresponding to the polarization strength
and orientation angle assumed later in the results section. The full lines refer to the
numerical calculation of the parameters. The dashed lines correspond, instead, to the
analytical functions given in Eqs. (4.17)-(4.20). The crossing points between the full
contour line for θL and the full contour line for PL

T fix both parameters to the desired
values for one concrete ∆x/∆y-configuration.

4.2 Coherent sequential tunneling model

Now that we gave a concrete example of pseudospin valve realization, we have established
and substantiated in depth our setup of a DQD in an orbital valve configuration. In the
following section, we want to introduce an analytical model which we use in order to
describe and analyze the electronic dynamics on such a DQD. This model, which is in the
regime of coherent sequential tunneling (CST) [102], helps us to gain a clearer physical
understanding of the numerical results presented later on. The numerical findings are
based on our developed transport theory (cf. Cha. 1) and also cover the cotunneling
regime, with the caveat that there are more opaque in their interpretation.
The starting point of the analytic model is the generalized master equation in the
steady state limit of Eq. (1.13), retaining only the CST-Kernel K̃(2) given in Eq. (1.11).
The equation of motion for the reduced density operator can be cast into the simple
form:

˙̂ρ = (LDQD + K̃(2))ρ̂ = − i

ℏ
[ĤDQD + ĤLS, ρ̂] + LTρ̂, (4.22)

where LT describes the tunneling events among many-body states with consecutive
particle numbers and ĤLS is the Lamb shift Hamiltonian, which renormalizes the
coherent DQD dynamics and is due to virtual charge fluctuations [103]. This splitting
into LT and LLS is achieved by dividing all Kernel contributions into Fermi-function
components and principal part components. However, in order to do this, we have
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to restrict ourselves to a certain parameter space. This is necessary since in general,
Eq. (4.22) would yield, for the system at hand, a set of 256 coupled equations for the
different matrix elements of ρ̂. A first reduction of the parameter space is obtained
when we apply the conservation of charge, leading to a block diagonal matrix with only
1× 1+ 4× 4+ 6× 6+ 4× 4+ 1× 1 = 70 elements calculated in an arbitrary many-body
basis (cf. Sec. 1.7). To further limit the number of observables, we focus our interest on
gate and bias voltages corresponding to at most one particle in the DQD, leading to
coupled dynamics of the populations p0 and pσ (empty and single-occupied DQD with
spin σ) complemented each by one of the spin-resolved pseudospin vectors T⃗σ. Due to
the solely Sz-polarization of the leads, we can describe the one-particle sector instead of
the general 16 variables with only 8 variables. These observables are obtained as the
expectation values of system operators:

p0 = ⟨P̂0⟩, pσ = ⟨P̂σ⟩, Tσ,α = ⟨P̂σT̂αP̂σ⟩, (4.23)

where ⟨•⟩ = TrDQD {•ρ̂}, P̂0 = |∅⟩⟨∅| is the projector on the empty state, P̂σ =∑
i d̂

†
iσP̂0d̂iσ, and T̂α is the α = x, y, z component of the pseudospin operator defined

in Eq. (2.2). With this chosen division of the one-particle subspace, we look at the
pseudospin of each spin channel individually, for example, if a spin up electron is more
located on one dot or the other (z-polarization of the pseudospin); or if it is localized
on both dots equally (x/y-polarization of the pseudospin).
Due to the conservation of particle number and z-component of the spin for parallel
polarized leads, in the range of bias and gate voltages relevant for our considera-
tions, the reduced density matrix is block diagonal and can be approximated with the
expression

ρ ≈ p0 ⊕
(p↑
2

12 + T⃗↑ · σ⃗
)
⊕
(p↓
2

12 + T⃗↓ · σ⃗
)
, (4.24)

where ⊕ denotes a direct sum. With these definitions at hand, we outline in the following
subsection the exact derivation of the Lamb shift Hamiltonian in order to originate the
all important exchange fields acting on the pseudospin vectors T⃗↑ respectively T⃗↓.

4.2.1 Lamb shift Hamiltonian

In this subsection, we derive the Lamb shift Hamiltonian, which enables us to read out
the spin-resolved pseudo-exchange field B⃗σ. We start from the definition of the Lamb
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shift Hamiltonian for the one-particle subspace:

ĤLS,1 =
∑
liσjσ′

ℏΓl
iσ,jσ′P̂1

[
d̂†iσpl (E1 −HDQD) d̂jσ′ + d̂jσ′pl

(
ĤDQD − E1

)
d̂†iσ

]
P̂1.

(4.25)
Its commutator with the reduced density matrix captures the contributions of K̃(2)

proportional to the principal parts [Eq. (2.23)] which stem from the imaginary part of
the Y n-function. Moreover, the projector on the one-particle space in Eq. (4.25) reads
P̂1 =

∑
iσ d̂

†
iσ|∅⟩⟨∅|d̂iσ, being |∅⟩ the vacuum state vector.

To proceed further, we insert the DQD Hamiltonian written in the pseudospin formula-
tion, as given in Eq. (2.4), into Eq. (4.25) and perform a complete Taylor expansion
with respect to the anisotropy component proportional to the operator T̂ 2

z . The two-
particle subspace consists of a singlet and a triplet pseudospin sector; thus the relation
P̂2T̂

2
z P̂2 =

(
P̂2T̂

2
z P̂2

)n
for n ≥ 1 holds, where P̂2 is the projector operator on the

two-particle subspace. We can thus simplify the Taylor expansion:

P̂2pl

[
ε+ V + (U − V )T̂ 2

z

]
P̂2 = P̂2pl (ε+ V ) + P̂2T̂

2
z P̂2

∞∑
n=1

(U − V )n

n!
p
(n)
l (ε+ V )

= P̂2

{
pl (ε+ V ) + T̂ 2

z [pl (ε+ U)− pl (ε+ V )]
}
P̂2

= P̂2

{
[pl (E2g1) + T̂ 2

z [pl (E2e1)− pl (E2g1)]
}
P̂2. (4.26)

We distinguish in the energy differences the two-particle ground state (2g) and excited
state energy (2e) to account for the U -V anisotropy (cf. Fig. 2.2). At this stage, the
following operator identity is useful:

P̂1d̂jσ′ T̂ 2
z d̂

†
iσP̂1 =

1

2
P̂1d̂jσ′ d̂†iσP̂1 +

∑
k

σz
kiP̂1d̂jσ′ d̂†kσT̂zP̂1. (4.27)

Some algebra leads, eventually, to the formulation of the Lamb shift Hamiltonian,
obtained under the additional assumption of parallel spin polarization of the leads:

ĤLS,1 =
∑
l

ℏΓl
0 [pl (E10) + 2pl (E2g1) + pl (E2e1)] P̂1

+
∑
l

ℏΓl
0(D↑ −D↓) [pl (E10)− pl (E2e1)] n⃗

l
S · P̂1

ˆ⃗
SP̂1

+
∑
lσ

2ℏΓl
0Dσ [pl (E10)− pl (E2g1)]PT n⃗

l
T · P̂σ

ˆ⃗
T P̂σ

+
∑
lσ

2ℏΓl
0Dσ̄ [pl (E2e1)− pl (E2g1)]PT

(
n⃗l
T · e⃗z

)
P̂σT̂zP̂σ, (4.28)
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where the spin operator ˆ⃗
S, similarly to the pseudospin one defined in Eq. (2.2), reads,

in components,

Ŝα =
1

2

∑
iττ ′

d̂†iτσ
α
ττ ′ d̂iτ ′ . (4.29)

Furthermore, we define D↑,↓ = 1±PS . The first and the second term in Eq. (4.28) do not
contribute to the time evolution of the reduced density matrix, which is block diagonal
in spin, as the parallel spin polarization of the leads defines a common quantization axis
for the entire DQD junction. Thus, the Lamb shift Hamiltonian reduces, effectively, to
a pseudospin Zeeman term:

˜̂
HLS,1 =

∑
σ

ℏB⃗σ · ˆ⃗Tσ, (4.30)

where we have introduced the spin-resolved pseudo-exchange field

B⃗σ =
∑
l

2PTΓ
l
0

{
Dσ [pl(E10)− pl(E2g1)] n⃗

l
T

+Dσ̄ [pl(E2e1)− pl(E2g1)]
(
n⃗l
T · e⃗z

)
e⃗z

}
. (4.31)

The pseudospin operator is defined as

ˆ⃗
Tσ = P̂σ

ˆ⃗
T P̂σ. (4.32)

The exchange field arises due to virtual fluctuations of the system to the neighboring
empty and double-occupied DQD states. It is crucial to include in the exchange field the
two-particle states, even though we do not account explicitly for the dynamics of their
populations. Also, energy levels far from the CST-resonance do influence the exchange
field due to the logarithmic tails of the digamma-functions (cf. Fig. 2.5). It is now
straightforward to demonstrate that the commutator with the Lamb shift Hamiltonian
results in a precession dynamics:

− i

ℏ

[
ĤLS,1, ρ̂1

]
⇐⇒ B⃗σ × T⃗σ. (4.33)

The pseudo-exchange fields associated with the majority and the minority spins differ
from each other both in strength and orientation, thus giving rise to a SOI, which, due
to the complete absence of intrinsic SOI in the system, we call synthetic. As shown in
Sec. 4.3, such synthetic SOI determines the rich variety of phenomena decorating the
N=1-Coulomb diamond.
It is the first line in Eq. (4.31) which gives the most relevant contribution to B⃗↑.
The second line dominates, instead, B⃗↓. Especially for leads with a very high spin
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polarization, we can conclude that the pseudo-exchange field of minority spins always
points approximately toward the z-direction, which represents the hard axis of the
pseudospin anisotropy. Instead, the majority spin field B⃗↑ oscillates, as a function of
the bias and gate voltage, between the two directions n⃗L

T and n⃗R
T . Interestingly, for

an isotropic system (U = V ) the two fields would be collinear, with the difference in
strength stemming merely from the different spin-resolved density of states in the leads.
For normal metallic leads, the two fields even coincide.

4.2.2 Equations of motion

By inserting the approximate block diagonal reduced density matrix of Eq. (4.24) into
the generalized master equation of Eq. (1.13) with the Kernel evaluated in the CST-limit,
we compute the time derivatives of the expectation values of our observables according
to Eq. (4.23). In analogy to the spin valve case discussed in Sec. 2.4, the following set
of coupled Bloch-like equations can be obtained:

ṗ0 = −4γ+p0 +
∑
σ

Dσ

(
γ−pσ + 2γ⃗− · T⃗σ

)
, (4.34)

ṗσ = Dσ

(
2γ+p0 − γ−pσ − 2γ⃗− · T⃗σ

)
, (4.35)

˙⃗
Tσ = Dσ

(
−γ−T⃗σ + p0γ⃗

+ − pσ
2
γ⃗−
)
+ B⃗σ × T⃗σ, (4.36)

where we have introduced scalar and vector rates, respectively γ± =
∑

l Γ
l
0f

±
l (ε) and

γ⃗± =
∑

l PTΓ
l
0f

±
l (ε)n⃗l

T . For the Fermi-functions, we adopt again the notation f±
l (ε) =

[e±(ε−µl)/(kBT ) + 1]−1. The conservation of probability imposes that ṗ0 + ṗ↑ + ṗ↓ = 0.
This relation is clearly satisfied by the differential equations (4.34) and (4.35). Besides
the gain-loss relations between the populations p0 and pσ, they contain the terms
±2Dσγ⃗

− · T⃗σ which ensure the coupling of the populations to the dynamics of the
spin-resolved pseudospin vectors T⃗σ.

4.3 Results

The stability diagram, i.e., the differential conductance displayed as a function of bias
and gate voltage, of a DQD in the cotunneling regime is shown in Fig. 4.4 for several spin
polarizations of the leads. Our analysis is focused on the one-particle Coulomb diamond,
highlighted in panel a by the dotted white lines. Here, we would normally expect a
featureless exponentially suppressed differential conductance, as the consequence of an
essentially fixed particle number and, due to Coulomb repulsion, a smooth, exponentially
suppressed current.
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Contrary to the expectations, we can clearly see in this panel a distinctive resonance,
highlighted by the dashed black line, cutting through the Coulomb diamond. Increasing
the spin polarization PS [Fig. 4.4 b-d] leads to a splitting of this resonance, marked by
the dashed lines. In the upper right corner of Fig. 4.4 d, a resonance can be observed even
outside the diamond. Although introduced as current resonances, the aforementioned
transport features are more visible in the differential conductance. The latter enhances,
in fact, sharp current modulations within the generally suppressed Coulomb diamond
background. We rationalize those transport effects in terms of pseudospin resonances,

Figure 4.4: Differential conductance of a DQD shows pseudospin
resonances tuned by spin polarization PS: a The one-particle diamond
is highlighted by the dotted white lines. b-d Increasing the spin polarization
leads to a splitting of the resonances. The three vertical black lines (⋆,■,▲)
indicate the bias traces of Fig. 4.5. The dashed magenta (black) line is the
resonance condition of the ↑-(↓-)electrons [cf. Eq. (4.37)]. The solid white
line indicates the minimum of Bσ,⊥ which matches perfectly a local minimum
within the pseudospin resonance. The parameters are the following: U = 2meV,
kBT = 0.05meV, PT = 0.99, θ = 0.95π, ΓR

0 = 2.5 × 10−3 meV = 2ΓL
0 , and

ε0 = −2meV.

in analogy to the spin resonances reported firstly in [65]. The valve configuration blocks
the current since an electron occupying the dot strongly coupled to the source is only
weakly coupled to the drain. Due to a lack of a direct hopping term to the other dot and
the Coulomb repulsion, the electron can reside for a long time on the dot in terms of
the internal time scales, leading to a suppression of current. The pseudo-exchange fields
are now able to lift the pseudospin valve configuration since they offer the possibility,
at a certain resonance condition, to transfer population of this blocked electrons to the
other open dot by the virtue of virtual fluctuations. It is important to point out that
this transfer of populations is facilitated by tunneling to a coherent superposition of two
different orbitals. It can only arise for σx- or, equivalently, σy-orbital polarized leads.
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4 Pseudospin resonances reveal synthetic spin-orbit interaction

Experimental evidence of such coherent superpositions for QDs in the weak tunneling
regime has been reported in [6, 104]. A valve of only σz-polarization of the leads is
not sufficient for this effect to arise so that non-collinear Γl-matrices are a necessary
prerequisite. Other than that, we require an asymmetry in the bare coupling strength
(ΓL

0 ̸= ΓR
0 ) of the right and the left lead which shifts the resonance away from the zero

bias line exactly as in the case of spin resonances.
We can formulate, in the framework of Eqs. (4.34)-(4.36), vectorial pseudospin resonance
conditions similarly to the ansatz in [65, 102]:

B⃗σ ·
(
n⃗L
T − n⃗R

T

)
= 0. (4.37)

The spin-dependent exchange field generates two distinct conditions, each determining
the position of the corresponding resonance in the Vg-Vb plane: the magenta (black)
dashed line in Fig. 4.4 for the ↑-(↓)-electrons. The accuracy of Eq. (4.37) in determining
the resonance positions reduces as the angle θ is chosen farther away from antiparallel
alignment. In contrast to the resonance conditions formulated in [65] and in [102], we
choose Eq. (4.37), where the drain and the source equally participate since it matches
the numerical resonances on a broader parameter range. The main idea behind all
these conditions is that an exchange field perpendicular to the injected (pseudo)spin
can cause precession of the equilibrium (pseudo)spin. In a large parameter space, the
effective pseudo-magnetic field is pointing mainly parallel to the injected pseudospin,
resulting in no or limited precession dynamics. Only at specific values of gate and
bias, a compensation of left and right lead components in B⃗σ parallel to the injected
pseudospin leads to drastic direction change of the exchange field. The result is a
drastically different pseudospin equilibrium vector and population situation, where a
channel of transport is open despite the valve configuration of the leads.
Despite the subtle differences, though, all three conditions mentioned above can only
predict the position of the resonances, but not their character. The same resonance
condition corresponds to a dip in the current (⋆ in Fig. 4.4), or to a peak (▲) and even
to a Fano-like asymmetric peak-dip (■). Finally, the current peak is strongly modulated
along the same resonance line and it can even disappear, as exemplarily highlighted
in panel a of Fig. 4.4 with the solid white line. The discovery and explanation of such
qualitative differences in the pseudospin resonances, which originate from the intertwining
of spin and pseudospin, represent the main result presented in this chapter.
As a first step in the analytical understanding of the rich variety of transport phenomena
illustrated in Fig. 4.4, we calculate the stationary current in the CST-limit. The current
through the DQD can be expressed as the charge variation due to the coupling to a
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specific lead. From Eq. (4.35), we readily obtain

IL = 4γ+L p0 −
∑
σ

Dσ

(
γ−L pσ + 2γ⃗−L · T⃗σ

)
, (4.38)

where the vector and scalar rates for the left lead read, respectively, γ⃗−L = ΓL
0PT f

−
L (ε)n⃗L

T

and γ±L = ΓL
0f

±
L (ε). The stationary current is obtained by inserting in Eq. (4.38) the

populations p∞0 , p∞σ , and T⃗∞
σ , i.e., the stationary solutions of Eqs. (4.34)-(4.36).

Panels a, c, and e of Fig. 4.5 show a direct comparison between the absolute value of
the current as obtained from the full numerical calculation (orange) and the analytical
approach (blue) of Eq. (4.38). In all three cases, the analytical result well reproduces
the qualitative behavior of the current and the position of its extrema.
For a deeper understanding of the resonances of Fig. 4.4 and Fig. 4.5, we further elaborate
on the equations of motion (Eqs. (4.34)-(4.36)). To this end, we solve Eq. (4.36) in the
stationary limit, and obtain, for the accumulated pseudospin,

T⃗∞
σ = F⃗σ (⃗bσ), (4.39)

where we introduced the auxiliary function

F⃗σ(x⃗) =
aσ

a2σ + |B⃗σ|2

(
x⃗+

B⃗σ · x⃗
a2σ

B⃗σ +
B⃗σ × x⃗

aσ

)
, (4.40)

with aσ = Dσγ
−, together with the vector b⃗σ = Dσ (p0γ⃗

+ − pσγ⃗
−/2).

By substituting T⃗∞
σ into Eqs. (4.34)-(4.35), we obtain a set of effective rate equations

for the populations p0 and pσ: ṗ0

ṗ↑

ṗ↓

 =

 −R00 R0↑ R0↓

R↑0 −R↑↑ 0

R↓0 0 −R↓↓


 p0

p↑

p↓

 . (4.41)

The transition rates are indicated in Fig. 4.6 and defined as

R0↑ =D↑γ
− −D2

↑γ⃗
− · F⃗↑(γ⃗

−), (4.42)

R0↓ =D↓γ
− −D2

↓γ⃗
− · F⃗↓(γ⃗

−), (4.43)

R↑0 =2D↑γ
+ − 2D2

↑γ⃗
− · F⃗↑(γ⃗

+), (4.44)

R↓0 =2D↓γ
+ − 2D2

↓γ⃗
− · F⃗↓(γ⃗

+). (4.45)

Furthermore, the conservation of probability requires for the depopulation rates Rii
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4 Pseudospin resonances reveal synthetic spin-orbit interaction

Figure 4.5: Character of pseudospin resonances: The absolute value
of the current dips in a at eVg = 1.9meV, peaks in c at eVg = 1.8meV, and
acquires in e a Fano-like shape at eVg = 1.58meV. The analytic solution of
the CST-model is depicted in blue, whereas the orange line shows the full
cotunneling calculations. The black (red) dashed lines indicate the position of
the minimum of Bσ,⊥ (Bσ,∥) and correspond to a minimum (maximum) of |I|.
The rate R↓↓ (b) and |Sz| (d) correlate to the current. f The logarithm of the
ratio Ω = B2

↓,⊥/(a
2
↓ + B2

↓,∥) highlights the two extrema of Ω that result in a
peak and a dip in |I|. The bias traces are indicated in Fig. 4.4 d.
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with i = 0, ↑, ↓:
R00 = R↑0 +R↓0, Rσσ = R0σ. (4.46)

In a simple physical picture, we expect a peak in the current whenever the pseudospin
precession caused by the exchange field releases the blockade induced by the pseudospin
valve. A dip arises, instead, whenever this mechanism is locally suppressed. Both
phenomena happen in close vicinity to the aforementioned resonance condition of
Eq. (4.37). Only the analysis of the effective rates represented in Fig. 4.6 allows us,
though, to distinguish them.
In the gate and bias voltages corresponding to the one-particle Coulomb diamond,
the rates Rσ0 are much larger than the depopulation rates Rσσ. In particular, R↓↓ is
the smallest rate, due to the additional small density of states of the minority spins.
The current is obtained by the incoherent superposition of the minority and majority
spin channels. Its modulation is thus determined, within the one-particle Coulomb
diamond, by the depopulation rates R↑↑ and R↓↓. As confirmed by the resemblance
between panels a and b in Fig. 4.5, the shape of a ↓-resonance is essentially given by
the bottleneck rate

R↓↓ = D↓γ
−

1− |γ⃗−|2

(γ−)2
1

1 +
B2

↓,⊥
a2↓+B2

↓,∥

 (4.47)

with B2
↓,∥ = (γ⃗− · B⃗↓)

2/|γ⃗−|2 and B2
↓,⊥ = |B⃗↓|2 − B2

↓,∥ the exchange field components
parallel and perpendicular to γ⃗−. The injected pseudospin is proportional to γ⃗− in the
applicable regions, as can be read out from the equations of motion. In itself, R↓↓ is
strongly influenced by the ratio Ω = B2

↓,⊥/(a
2
↓ +B2

↓,∥) in which the proposed physical
explanation based on the precession dynamics is encoded.
In absence of a perpendicular pseudo-magnetic field component, no precession occurs
and the bare pseudospin valve factor |γ⃗−|2/(γ−)2 reduces the rate. The other extreme
is reached when the ratio Ω peaks, therefore suppressing the pseudospin valve factor.
Such phenomenon only occurs if the parallel component B↓,∥ is minimized since the
dephasing rate a↓ is proportional to a Fermi-function, which varies only smoothly within
the Coulomb diamond.
The dashed lines in Fig. 4.5 substantiate the accuracy of the precession argument in
determining the position of the current extrema. The rate R↑↑, obtained by replacing
↓ with ↑ in all the elements of Eq. (4.47), is used for panels c and d of Fig. 4.5. In
Fig. 4.5 e, both the suppression and the enhancing of the current appear in close vicinity
and form a Fano-like line shape. In order to emphasize the rather weak dip, we depicted
in Fig. 4.5 f the logarithm of base 10 of the ratio Ω. The ratio Ω has two extrema

85



4 Pseudospin resonances reveal synthetic spin-orbit interaction

which stem from minima of the corresponding exchange field components B↓,⊥ and
B↓,∥. Despite its superficial resemblance to a Fano resonance, the origin of this peak-dip
current resonance cannot be ascribed to the interference processes typical of a Fano
resonance, also seen in QD setups [105–109]. Interestingly, the ratio Ω can explain
features within a resonance line, as indicated by the solid white line of Fig. 4.4 a. The
local minimum at the current resonance can be ascribed to the line of a minimum
of B↓,⊥ which leads to a less pronounced current resonance at this point. Moreover,

Figure 4.6: Rate scheme of the three populations p0, p↑, and p↓:
The four arrows indicate the rates between the populations while their size
specifies the strength of them. The dashed rates for the minority spin are
further lowered by the majority spin polarization of the leads.

the relevance of Ω decreases if aσ ≫ |B⃗σ|, i.e., when the dephasing rate exceeds the
precession frequency and the direction of the exchange field becomes irrelevant for the
transport. Thus, no resonances appear on the left upper corner in correspondence to
the black and magenta dashed lines of panels a-d of Fig. 4.4 even if they would be
predicted by the resonance condition Eq. (4.37).

In order to highlight the effect of the synthetic SOI, one can look at the case of constant
interaction (U = V ). In Fig. 4.7, we can observe that then only one resonance arises
in the stability diagram, which is a result of the coincidence of the energy differences
E2e1 and E2g1. This fact implies that the second term of the exchange field pointing in
the anisotropy direction e⃗z vanishes (cf. 4.31) so that the spin-resolved exchange fields
become collinear. Furthermore, the resulting single resonance becomes independent of
the spin polarization. Overall, the figure clearly indicates that the pseudospin anisotropy
is a necessary condition for the emergence of the synthetic SOI.
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Figure 4.7: Differential conductance for PS = 0.99 and constant
interaction (U = V): The stability diagram of a DQD shows only one
pseudospin resonance in comparison with Fig. 4.4 d where two resonances for
the different spin species appear. Changing the spin polarization at constant
interaction does not alter the differential conductance, in agreement with
Eq. (2.22). The parameters are the following: U = 1meV, kBT = 0.05meV,
PT = 0.99, θ = 0.95π, ΓR

0 = 2.5× 10−3 meV = 2ΓL
0 , and ε0 = −1.5meV.

4.4 Summary

A DQD weakly coupled to ferromagnetic leads in a pseudospin valve configuration
is characterized by a rich variety of pseudospin current resonances. They decorate
the Coulomb diamonds with novel features which range from a peak to a dip to a
Fano shape in the current. These transport characteristics reveal the synthetic SOI
induced on the system by the interplay of the spin polarization of the leads and the
pseudospin anisotropy on the DQD. Those current resonances mainly occur within the
Coulomb diamonds. Despite their small amplitude, they are rather sharp. Differential
conductance measurements thus represent a preferential tool to highlight them. We
derive the tunneling rate matrices for a microscopic model capable of reproducing
the desired pseudospin polarization. To this end, we also gain physical insight into
the role played by the DQD geometry in the realization of a pseudospin valve. The
cotunneling calculations ensure the robustness of the discussed effects also beyond the
coherent-sequential-tunneling regime. Moreover, with the help of a minimal model,
we give an accurate physical picture of the resonances and relate their position and
character to a precession dynamics which modulates the pseudospin valve effect. The
analysis of the pseudospin resonances also reveals the fundamental role played by the
synthetic SOI in the understanding of the transport characteristics of our system. The
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4 Pseudospin resonances reveal synthetic spin-orbit interaction

different orientations of the spin-resolved exchange fields explain the splitting of the
resonances. Their qualitatively different behavior as a function of the bias is rationalized
instead by the depopulation rates and, ultimately, again by the different orientation
and strength of the pseudo-exchange fields.

4.5 Outlook

To our knowledge, the spin or pseudospin resonances discussed here have not yet been
realized experimentally. However, we are convinced that, though very challenging, these
experiments are feasible. The quest is to combine the two main prerequisites which are
already individually achieved in experiments: On the one side, a valve configuration [51]
and on the other side off-diagonal tunneling rate matrices, i.e., coherent tunneling [6, 110].
In our opinion, pseudospin resonances bear some advantages for a concrete realization
over spin resonances. First of all, a huge variety of systems exhibit the necessary
twofold degeneracy in their valley/orbital degree of freedom so that our used model is
applicable. Furthermore, an easier tunability of the system parameters characterizes, in
general, the pseudospin degree of freedom. The polarization of the leads, for example,
is for the pseudospin a property of the interface, and as such tunable in strength and
direction, together with the tunneling amplitudes. The spin polarization, however, relies
on material properties, hardly tunable and, above all, difficult to integrate, for example,
in semiconductor heterostructures. The necessary high pseudospin polarizations of the
leads are already and rather easily accessible, as shown in an interference experiment
of a suspended CNT-QD [6]. The high polarization is achieved there through local
tunneling from the leads to the orbitals of the CNT. It bears the decisive advantage,
that in comparison with the high spin polarization case with ferromagnetic materials, a
rather good contact region is maintained which enables a clean transport measurement.
In the aforementioned interference experiment [6], precursors of pseudospin precession
have been demonstrated with a tunneling coupling similar to the one proposed here.
Besides the high pseudospin polarization, the necessary coherent tunneling also was
achieved there, with the only difference being that the opening angle of the pseudospin
polarization vectors of the leads was intermediate and not almost antiparallel as we
would need it for the pseudospin resonances. In general, suitable candidates for detection
of these resonances are QDs realized in semiconductors [51], in CNTs [6, 43], or in
molecules within a STM setup [111].
In the following, we focus on another experiment which shows resonance features which
strikingly resemble the pseudospin resonances proposed here. In this experiment [112],
curved resonances are cutting through the Coulomb diamonds of a sample of an ultra-
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Figure 4.8: Experimental transport data of a suspended CNT shows
reminiscences of pseudospin resonances: a Differential conductance map
taken from [112]. © 2019 WILEY-VCH Verlag. Reproduced with permissions.
All rights reserved. b Zoom into the stability diagram with the leftmost
Coulomb diamond corresponding to N =16. c-d Bias cuts, indicated in the
previous panel, at gate voltages of Vg = 0.7375V and Vg = 0.8V show dips in
the current for positive bias.
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clean suspended CNT. We want to thank explicitly Andreas Hüttel, an author of this
publication, for a fruitful discussion and the possibility to access their raw data. In
Fig. 4.8 a, we display their experimental data of the differential conductance of the
Coulomb diamonds with the electron number ranging from N =8 to N =30. Below
particle number N=16, they rationalize a twofold shell filling which turns to fourfold
shell filling for particle numbers greater than N=16, according to an analysis of the
charging energies extrapolated from the size of the Coulomb diamonds. However, they
state that this analysis needs further verification, and they claim that the origin of this
observation is due to electron-electron interaction.
Interestingly, starting from the supposed change of the filling factor to fourfold, the
resonances inside the Coulomb diamonds appear. They give as possible explanations
for these artifacts inelastic cotunneling and the non-equilibrium Kondo effect. However,
it is remarkable that the observed features are in some cases rather tilted, which is
not usually the case with inelastic cotunneling lines. There is the possibility to obtain
split Kondo peaks away from the zero bias line as in [113], though this is achieved by
ferromagnetic leads or an external magnetic field, which both are not present here. The
fourfold pattern of the charging energies also is repeated in the resonances, with similar
resonances in the N=18-, N=22- and N=26-diamond. Possible split resonances are
observed in the N=17-, N=20- and N=21-diamond. In panel b of Fig. 4.8, we depict
a zoom into the raw data of the resonances 16 ≤N≤ 21. A current resonance would
result in negative differential conductance. For a conclusive judgement, the resolution is
not sufficient to clearly identify the negative differential conductance which is consistent
with our theory (e.g., in the N=17-diamond). However, in the bias cuts of panel c and
d, one can indeed see a reduction in the current for increasing the bias. As a conclusion,
the presented experiment is a very promising host for the first detection of pseudospin
resonances. It is clear that further verification is needed.
The realization of pseudospin resonances would put the spotlight on the internal
dynamics of this widespread degree of freedom. The possibility of altering the direction
of the pseudospin drastically by solely electrical means is a promising research platform.
To this end, we also envisage, driven pump-probe protocols, which would unravel the
dynamics induced by the synthetic SOI directly in the time domain.
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Precession of entangled spin and
pseudospin in double quantum dots

5

In general, QD spin valves are characterized by exchange fields which induce spin
precession and generate current spin resonances even in absence of spin splitting. In the
previous chapter, we showed analogous phenomena in DQDs, in which the orbital degree
of freedom, the pseudospin, replaces the spin in the valve configuration. We generalize,
now, this setup to allow for arbitrary spin and orbital polarization of the leads, thus
obtaining an even richer variety of current resonances, stemming from the precession
dynamics of the entangled spin and pseudospin. We observe for both vectors a delicate
interplay of decoherence, pumping and precession which can only be understood by also
considering the dynamics of the spin-pseudospin correlators. This analysis sheds light
on the mechanism of spin or pseudospin resonances in general and relates its origin to
a dephasing effect rather than to a precession one. The numerical results are again
obtained in the framework of a generalized master equation within the cotunneling
approximation and are complemented by the analytics of a coherent sequential tunneling
model. The following sections are based to a large extent on our publication Physical
Review B 105, 205418 (2022) with the same title as this chapter [71].
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5 Precession of entangled spin and pseudospin in double quantum dots

5.1 Setup

We consider for our setup a spinful DQD with the same Hamiltonian as in the previous
chapter [cf. Eq. (2.1)]:

ĤDQD =

(
ε− U

2

)
N̂ +

U + V

4
N̂2 + (U − V ) T̂ 2

z . (5.1)

The Hamiltonian is characterized by U , the local and V , the inter-dot Coulomb interac-
tion, with the general condition U > V favoring electron delocalization over the full
DQD. An important property of this system is its pseudospin anisotropy, which exactly
stems from this difference in the Coulomb interactions and is contained in the last term
of the Hamiltonian. The coupling to the leads is captured by the tunneling rate matrix

Spin channels

SystemLead Lead

System

Pseudospin channel

Lead Lead

Figure 5.1: Interplay of spin and pseudospin channels determines
the transport through the system: In the spin space, the polarization
vectors of the leads are almost antiparallel (ϕ ≈ π) which translates into a
spin valve configuration. Through pseudo exchange fields (purple), one can
rotate the spin of the system, thus lift the current suppression of the spin valve.
In the pseudospin space, we consider parallel polarization of the leads. Since
there is a preferential plane in the pseudospin, indicated by the red lines, one
defines the polarization direction of the leads in respect with this plane (θ).
The pseudospin of the system can precess under the influence of the pseudo
exchange field B⃗T .
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[cf. Eq. (2.16)] as

Γl = Γl
0

(
12

2
+

P l
T

2
n⃗l
T · σ⃗

)
⊗
(

12

2
+

P l
S

2
n⃗l
S · σ⃗

)
, (5.2)

with the bare tunneling rate Γl
0, the spin/pseudospin polarization strength P l

S/T and
direction n⃗l

S/T .
In contrast to the previous chapter, we couple this time the DQD to ferromagnetic leads
to obtain a spin valve configuration rather than a pseudospin valve, and on top of that,
we add parallel pseudospin polarization. In essence, we mirror the configuration of the
previous publication, where we have an almost antiparallel pseudospin but parallel spin
polarization. One could now expect that, with the exact exchange of the role of spin
and pseudospin, that one replicates the results of the previous publication. However,
this is not the case since the spin degree of freedom is isotropic on the DQD while
the pseudospin degree is not. As we substantiate later, this fact, alters the results
drastically.
In Fig. 5.1, one of the tunneling configurations considered in this chapter is visualized.
We distinguish for clarity between spin and pseudospin channels, even if, except of
some limiting cases, the full system dynamics results from their interplay, as suggested
by the curved arrows. The pseudospin polarization vectors of the leads are, instead,
parallel to each other, though they do not coincide, in general, with the pseudospin
hard axis of the DQD (indicated by dashed black line) nor do they belong to the easy
plane (indicated schematically by the solid red lines). The angle θ measures the angle
away from the hard pseudospin axis and is the crucial parameter, eventually tuning the
entanglement between spin and pseudospin on the DQD.
Due to the spin isotropy of the DQD and its rotational invariance around its pseudospin
hard axis, we can parametrize the polarization vectors with just two angles:

n⃗L
S = (0, 0, 1) , n⃗R

S = (sinϕ, 0, cosϕ) , (5.3)

n⃗
L/R
T = (sin θ, 0, cos θ) = n⃗T . (5.4)

Moreover, throughout this chapter we use equal spin and orbital polarization for the
leads (PS = P

L/R
S ; PT = P

L/R
T ).

5.2 Numerical results

In Fig. 5.2, we show the current through the DQD calculated within the cotunneling limit.
In particular, we set parallel pseudospin polarization with PT = 0.6 and pseudospin
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polarization angle with respect to the hard z-axis of θ = 1.5 ≈ π/2, as well as PS = 0.99

with a relative spin polarization angle ϕ = 0.95π. The current, given in logarithmic

Figure 5.2: Current plot of a DQD in a Vg-Vb map shows an
intricate set of current resonances: The N =1, 2, 3-Coulomb diamonds
are decorated with resonances which cut deep into the Coulomb blockade
regions. In the central N = 2-diamond, a simple ground-state-to-ground-
state-transition is appearing. The parameters are the following: U = 2meV,
V = 1meV, kBT = 0.05meV, PT = 0.6, PS = 0.99, θ = 1.5, ϕ = 0.95π,
ΓL
0 = 1× 10−2 meV = 2ΓR

0 and ε0 = −2meV.

scale, is normalized to a reference value I0 [cf. Eq. (2.26)]. The latter is the one
expected for a QD spin valve in the non-linear response regime, but without pseudospin
polarization [56]. Such a current normalization highlights the effects of the pseudospin
on the transport characteristics since I0 gives the scale of the underlying spin valve
suppression.
The stability diagram is characterized, on the large scale, by five Coulomb diamonds
where the Coulomb interaction suppresses the current, thus stabilizing a constant charge
on the system. The quantized occupation of the DQD increases from 0 to 4 electrons
by lowering the single-particle level, as indicated in the figure. The size U and V for,
respectively, the two- and one- or three-particle Coulomb diamonds is determined by the
corresponding addition energies. Besides of the electron-electron interaction, the current
in the Coulomb diamonds is further suppressed, at biases larger than the temperature,
by the spin valve configuration, which promotes spin accumulation on the system with
an orientation antiparallel to the one of the drain lead.
A distinctive current resonance protrudes into the Coulomb blockade area of the central
diamond. It is a spin resonance which lifts the additional current suppression due to
the spin valve configuration. We rationalize such a resonance, in the same spirit of [17,
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65], by introducing the exchange field:

B⃗2S =
∑
l

2PSΓ
l
0 [pl(E32g)− pl(E2g1)] n⃗

l
S , (5.5)

with the principal part pl(x) defined in Eq. (2.23). The energy differences are derived
from the two-particle ground-state (2g) and its neighboring states, the one-particle
(1), respectively three-particle state (3). In contrast to exchange fields involving the
excited energies and due to symmetry reasons, the resulting resonance is centered point
symmetrically around the middle of the Coulomb diamond.
The electronic fluctuations from and to the leads, in combination with the Coulomb
interaction on the system, are at the origin of this exchange field, which generates
spin dephasing and spin precession on the degenerate triplet sector of the two-particle
ground state (cf. Fig. 5.1). In previous works, spin precession is attributed to counteract
the spin accumulation and to lift the spin valve suppression by promoting precession
towards the spin states more aligned to the drain polarization. The position of the
resonance can thus be predicted by the vector condition B⃗2S ·

(
n⃗L
S − n⃗R

S

)
= 0 [analogous

to Eq. (4.37)]. However, as we will detail in Sec. 5.4, in fact, the underlying mechanism
is explained by spin dephasing rather than spin precession. Nevertheless, the resonance
conditions are broadly unchanged by this refined explanation.

Figure 5.3: Current resonances modulated by the pseudospin po-
larization angle θ and strength PT: a θ-Vb map and b PT -Vb map, both
at Vg = 1.5meV, exhibit a strong dependence on the respective parameters.
The white dashed lines indicate the parameter set of Fig. 5.2. The black and
magenta dashed lines are the resonance conditions for the S⃗− and S⃗+ channel,
which are explicitly discussed in Sec. 5.4.
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5 Precession of entangled spin and pseudospin in double quantum dots

Also, the one- and three-particle diamonds are decorated by current resonances. Their
pattern is, though, more intricate than the one of the central Coulomb diamond and
it cannot be explained solely in terms of exchange field induced spin precession. The
explanation requires a more detailed analysis involving the interplay with the pseudospin
degree of freedom. Due to the particle-hole symmetry of the Hamiltonian, we restrict
ourselves to the one-particle diamond. Results for negative energies can be deduced by
a simultaneous reflection of both the bias and the gate voltage.
The intimate relation between the current resonances of the one-particle diamond and
the pseudospin degree of freedom is presented in Fig. 5.3. The current resonances
are plotted here as a function of the pseudospin polarization PT and the pseudospin
polarization angle θ. Not only the position and the strength of the resonances, but even
their number, depends on the control parameters. For example, the angle dependence
shows a single peak for θ = 0 which splits into two and even acquire a third resonance
for larger angles. The mere z-polarization of the leads for θ = 0 allows us to identify
parallel transport channels for each of the dots and is rationalized by a spin exchange
field similar to Eq. (5.5). The same procedure, though, fails to capture all the resonances
for intermediate angles 0 < θ < π/2 and intermediate polarization strengths 0 < PT < 1.
For a more complete understanding of the entire parameter range, we introduce, in the
next section, a reduced model and study the dynamics of the system within the lowest
order in the tunneling coupling.

5.3 Coherent sequential tunneling model

In this section, we introduce a CST-model which is capable to capture the main features
of the full cotunneling numerical results. First, we present the equations of motion for
our minimal model, then we investigate, starting from a current formula, the pseudospin
and the spin dynamics of our system.

5.3.1 Equations of motion

We deduce the equations for the minimal model by considering only the sequential
tunneling contributions to the full generalized master equation, in the same spirit as in
the previous chapter [cf. Eq. (4.22)], where, though, a completely different parameter
regime has been analyzed. The richest pattern of anomalous current resonances is found
in the one-particle Coulomb diamond (cf. Fig. 5.2). Thus, we further restrict ourselves
only to the elements of the density matrix describing the empty and the single-occupied
DQD. The system exhibits a fourfold degenerate one-particle spectrum and single-
particle tunneling rate matrices which cannot be diagonalized simultaneously. Thus,
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in general, all the one-particle coherences should be retained for a correct description
of interference effects [103]. Their dynamics is, in fact, coupled to the one of the
corresponding populations, independently of the representation basis.
In summary, the non-equilibrium dynamics of the DQD weakly coupled to the source
and drain leads reduces to a set of 17 coupled linear differential equations, involving the
empty-state population and each of the 16 elements of the one-particle density matrix.
An alternative description involves the expectation values of a complete set of operators:
p0 = ⟨P̂0⟩ and p1 = ⟨P̂1⟩ are the populations of the empty and the single-occupied state,
respectively, with P̂0 = |∅⟩⟨∅| and P̂1 =

∑
iσ d̂

†
iσP̂0d̂iσ the corresponding projectors;

Tα = ⟨T̂α⟩ and Sα = ⟨Ŝα⟩ are the pseudospin and the spin vectors, respectively, with
T̂α as the α = x, y, z component of the pseudospin operator defined in Eq. (2.2) and,
analogously, Ŝα = 1/2

∑
iττ ′ d̂

†
iτσ

α
ττ ′ d̂iτ ′ . The spin-pseudospin correlator,

Λαβ = ⟨T̂αŜβ⟩, (5.6)

completes the set and is of decisive importance. In our considered setup, this correlator
is in general not proportional to the product of the spin and pseudospin due to their
intertwined dynamics: p1⟨T̂αŜβ⟩ ̸= ⟨T̂α⟩⟨Ŝβ⟩. The correlator captures therefore the
mutual influence on each other of the spin and pseudospin variables. Within these 17
linearly independent variables, we replace S⃗ and Λ by the four vectors:

S⃗± =
S⃗

2
± e⃗T · Λ, Λ⃗⊥ = e⃗⊥ · Λ, Λ⃗y = e⃗y · Λ, (5.7)

which involve the orthogonal basis e⃗y = (0, 1, 0), e⃗T = n⃗T and e⃗⊥ = (⃗ey × e⃗T ). This
basis adapts to the orientation of the (parallel) pseudospin polarization of the leads,
and analogously it occurs to the set of variables in Eq. (5.7) chosen to describe the
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5 Precession of entangled spin and pseudospin in double quantum dots

system. The equation of motion for such observables read:

ṗ0 =+ γ−
(
p1 + 2PT e⃗T · T⃗

)
− 4γ+p0 + 2D+γ⃗

− · S⃗+ + 2D−γ⃗
− · S⃗−, (5.8)

ṗ1 =− γ−
(
p1 + 2PT e⃗T · T⃗

)
+ 4γ+p0 − 2D+γ⃗

− · S⃗+ − 2D−γ⃗
− · S⃗−, (5.9)

˙⃗
T =− γ−T⃗ + 2ω⃗T × T⃗ −

[
4ω⃗− · Λ⃗y + 2γ⃗− · Λ⃗⊥

]
e⃗⊥

−
[
γ− PT

2 p1 − 2γ+PT p0 +D+γ⃗
− · S⃗+ −D−γ⃗

− · S⃗− − 4ω⃗a
S · Λ⃗y

]
e⃗T

+
[
4ω⃗− · Λ⃗⊥ − 2ω⃗a

S · (S⃗+ − S⃗−)− 2γ⃗− · Λ⃗y

]
e⃗y, (5.10)

˙⃗
S± =− γ−D±S⃗± + 2 (ω⃗S ± ω⃗−)× S⃗± +D±

[
γ⃗+p0 − γ⃗−

4 (p1 ± 2⃗eT · T⃗ )
]

+ 2ω⃗a
S × Λ⃗⊥ ∓ 2ωa

T Λ⃗y ± ω⃗a
S (⃗ey · T⃗ ), (5.11)

˙⃗
Λ⊥ =− γ−Λ⃗⊥ + 2ω⃗S × Λ⃗⊥ − 2ω+Λ⃗y − PT γ⃗

− × Λ⃗y − ω⃗−(⃗ey · T⃗ )

− γ⃗−

2 e⃗⊥ · T⃗ + ω⃗a
S × (S⃗+ + S⃗−), (5.12)

˙⃗
Λy =− γ−Λ⃗y + 2ω⃗S × Λ⃗y + 2ω+Λ⃗⊥ + PT γ⃗

− × Λ⃗⊥ + ω⃗−(⃗e⊥ · T⃗ )

− γ⃗−

2 e⃗y · T⃗ − ω⃗a
S (⃗eT · T⃗ ) + ωa

T (S⃗+ − S⃗−), (5.13)

where several functions have been defined to express the tunneling, as well as the Lamb
shift contribution of the Liouvillian. On one hand, we have introduced scalar and vector
rates, respectively,

γ± =
∑
l

γ±l with γ±l =
Γl
0

4
f±
l (ε), (5.14)

and
γ⃗± =

∑
l

γ⃗±l with γ⃗±l = PSn⃗
l
Sγ

±
l , (5.15)

in which we denote the Fermi-functions with f±
l (ε). Furthermore, we set D± = 1± PT

to quantify the coupling strength to the different pseudospin sectors.
The Lamb shift contribution to the generalized master equation yields several exchange
fields, which are responsible for precession dynamics for the vectorial components in
Eqs. (5.8)-(5.13). To this end, we introduce the frequencies ωl

xx′,yy′ = Γl
0[pl(Exx′) −

pl(Eyy′)]/4, which involve the difference of two digamma-functions, and fluctuations
towards both the zero- and the two-particle neighboring states. In terms of those
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frequencies, we define the exchange fields:

ω⃗T = PT

∑
l

(ωl
10,2g1n⃗T + ωl

2e1,2g1 cos θ e⃗z), (5.16)

ω⃗S = PS

∑
l

ωl
10,2e1n⃗

l
S , (5.17)

ω⃗− = PTPS

∑
l

(ωl
10,2g1 − ωl

2e1,2g1 cos
2 θ)n⃗l

S , (5.18)

ω⃗a
S = PTPS sin θ cos θ

∑
l

ωl
2e1,2g1n⃗

l
S . (5.19)

The list of auxiliary functions appearing in the model equations Eqs. (5.8)-(5.13) is
complemented by the scalars

ωa
T = PT sin θ cos θ

∑
l

ωl
2e1,2g1, (5.20)

ω+ = PT

∑
l

(ωl
10,2g1 + ωl

2e1,2g1 cos
2 θ). (5.21)

Despite their complexity, the equations of motion display simple recurring patterns,
which can guide us in the understanding of their physical implications.
The first two equations [Eqs. (5.8)-(5.9)] express the rate of change in the zero- and
one-particle populations. It holds, in particular, ṗ0 = −ṗ1 as follows from the probability
conservation and the neglect of populations with particle number larger than one. This
assumption strongly reduces the number of equations needed to describe the DQD, but
it also restricts their validity to the region of the one-particle diamond closer to the
N=0 ↔ N=1 charge degeneracy point.
The rate of change of p0 (and p1) not only depends on populations, but also on the
spin and pseudospin vectors, respectively S⃗± and T⃗ . The latter appear within scalar
products with, respectively, the spin and the pseudospin polarization vectors in the
leads. Indeed, like for a spin valve, electron tunneling is favored by the alignment of
the spin or the pseudospin degree of freedom of the DQD with the corresponding lead
polarization.
We now turn to the equation of motion for the vectorial components [Eqs. (5.10)-(5.13)],
which all share the same structure and encompass three main effects: decoherence,
precession and pumping. The first two effects are described by the terms involving the
very same vector whose time derivative appears on the left-hand side of the equation. We
collect instead under the concept of pumping all the other terms, involving populations
as well as the other vectors describing the DQD.
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5 Precession of entangled spin and pseudospin in double quantum dots

The rate of decoherence is always proportional to γ− as tunneling events towards the
zero-particle state reduce both the spin as well as the pseudospin on the DQD. Such
processes, though, are strongly suppressed within the one-particle diamond, due to
Coulomb interaction. We thus expect weak decoherence. Even the correlator vectors
Λ⃗y and Λ⃗⊥ are subject to the same decoherence rate. Notice, moreover, the D±-weight
is modulating the rate of the spin variables S⃗±, which implies a further reduction of
decoherence for the spin variable S⃗− in presence of large pseudospin polarization.
The exchange fields characterizing the precession terms strongly vary, among the different
vectorial components, both in direction and intensity. The pseudospin exchange field
always points into the direction e⃗T , i.e., the one of the parallel pseudospin polarizations
of the leads. The spin exchange field results instead from a delicate balance between
the almost antiparallel source and drain contributions. Thus, both the strength and the
intensity of the fields ω⃗S ± ω⃗− are strongly modulated within the one-particle Coulomb
diamond.
The pumping component of the (pseudo)spin dynamics is the one responsible for the
(pseudo)spin accumulation on the DQD observed in the stationary limit. Naturally, such
a phenomenon characterizes the spin channels, due to the spin valve configuration of
the leads’ polarization. The spin pumped from the source lead accumulates, in absence
of spin precession, on the DQD, and it has hardly any chance to escape towards the
almost antiparallel polarized drain. The terms encompassing this dynamics are the ones
proportional to the populations p0 and p1. The pumping component contains, moreover,
also terms which intertwine the spin dynamics to the one of the pseudospin and that
of the correlator vectors Λ⃗y and Λ⃗⊥. Analogously, thanks to the coupling to the other
vectorial variables, also the pseudospin can be pumped along a generic direction, despite
the parallel polarization of the leads along e⃗T .
The effects of such an intricate system dynamics on the transport characteristics and,
in particular, the crucial role played by the spin and the pseudospin degree of freedom
is illustrated by the current formula:

Imodel =4
(
γ+L − bγ+

)
− 2PT

(
γ−L − bγ−

)
n⃗T · T⃗∞

− 2
(
γ⃗−L − bγ⃗−

)
·
(
D+S⃗

∞
+ +D−S⃗

∞
−

)
, (5.22)

in which b = (γ−L + 4γ+L )/(γ
− + 4γ+) and the superscript "∞" indicates observables

calculated in the steady state limit. A comparison between the current in the one-particle
Coulomb-diamond obtained in the cotunneling approximation with the one stemming
from this CST-model is depicted in Fig. 5.4. Despite the strong simplifications in the
model calculation, the two currents show a good qualitative agreement. In particular,
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Figure 5.4: Current in the one-particle Coulomb diamond calculated
with two different approaches: In panel a the full cotunneling calculation
is presented. Panel b shows the corresponding result for the CST-model. Both
currents are renormalized by the current I0 expected for a spin valve in the
high bias limit. The white dashed line helps for a comparison with Fig. 5.3. c
Resonances are highlighted in differential conductance. d CST-model is only
capable to reproduce the current around the first charge degeneracy point. The
black box indicates voltage map of b.

the main resonance which is bending towards the point (Vg ≈ 1.3,Vb = 0) as well as its
anti-crossing near the point (Vg ≈ 1.4, Vb ≈ 0.1) are captured in the model description.
Of the distinctive cross-shaped feature of the cotunneling calculation, though, only one
arm is well visible in the model calculation. The other arm is buried inside the fermionic
tail of the current inside a Coulomb diamond and therefore it is barely discernible.
Moreover, a poorer match is expected for the side of the Coulomb diamond closer to the
N=1 ↔ N=2 charge degeneracy point. As we neglect, for simplicity, direct tunneling
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to the two-particle states, the current of the model decreases exponentially for decreasing
gate voltages. This restricted area of validity of the CST-model is visualized in panel
d of the same figure. The differential conductance of the cotunneling calculations of
Fig. 5.4 c accentuates the resonances, as for example the one in the upper right corner
cutting through the 0− 1 transition resonance of the Coulomb diamond.
The first component in Eq. (5.22) yields the current expected for PS = PT = 0.
As it only contains Fermi-functions centered around the 0 − 1 transition resonance,
this contribution to the current is smooth within the one-particle Coulomb diamond.
Consequently, the sharp current resonances observed in Fig. 5.4 b can only be ascribed
to the sharp modulations of the stationary pseudospin and spin vectors appearing
respectively in the second and third term of Eq. (5.22).

5.3.2 Pseudospin dynamics

In Fig. 5.5, the components of T⃗ in the basis of e⃗y, e⃗T , e⃗⊥, and its absolute value are
displayed.
Distinct features in the pseudospin components are clearly correlated to the current
resonances in Fig. 5.4. For most of the bias and gate voltages, T⃗∞ points along the
e⃗T direction and in the areas of (anti-)alignment of T⃗ with respect to e⃗T , the current
is (lowered) raised. There are, though, also areas in which the other components of
T⃗ prevail and the pseudospin contribution to the current vanishes, as can be derived
from Eq. (5.22). Altogether, it is thus clear how the vectorial character of T⃗ must be
considered for a thorough description of the transport phenomena. In particular, it is
the intertwining of the spin and pseudospin degrees of freedom which foster the drastic
deviation of the pseudospin direction of the DQD from the polarization direction of the
leads, as highlighted later by analyzing limiting cases of the pseudospin polarization
angle θ. In Fig. 5.5 d, we indicate with the black dashed line a resonance condition
which is established in the same spirit as in the first publication (cf. Cha. 4) or the
original publication of spin resonances [65]. However, the way to obtain this resonance
is rather lengthy and not sufficiently accurate. Hence, we intentionally refrained to
include it into publication [71]. However, we are convinced that they help to understand
better the whole mechanism of spin or pseudospin resonances, especially when knowing
about their limitations. For this reason, we include it here in Sec. 5.5. Furthermore, it
highlights the distinction of these intriguing and intertwined resonances to the standard
ones.
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Figure 5.5: Pseudospin depends strongly on gate and bias voltages:
The components a e⃗y, b e⃗T , c e⃗⊥ of T⃗ underline the vector character of the
pseudospin. The (anti-)alignment of the pseudospin (decreases) increases the
current flow through the DQD. Focusing on the upper right corner, one observes
a clear rotation of T⃗ in the y-direction. d Absolute value of T⃗ with the resonance
condition for black dashed line predicting the resonances only partially. Same
parameters as in Fig. 5.2.

5.3.3 Spin dynamics

We now turn to the spin contribution of the current. The first qualitative understanding
is obtained in the framework of the phenomenology of a QD spin valve. The last term of
Eq. (5.22) substantially decreases the current due to the almost antiparallel alignment
of the source and drain and the corresponding spin accumulation along the source spin
polarization direction.
More specifically, we refer in Eq. (5.22) to the combinations of the spin vector S⃗ and the
spin-pseudospin correlator Λ proposed in Eq. (5.7). The latter define spin observables
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Figure 5.6: Comparison of stationary spin variables S⃗±: Panel a and c
are obtained from the full cotunneling calculation, while b and d refer to the
reduced sequential tunneling model. Same parameters as in Fig. 5.2.

which, for specific limiting cases, identify independent spin channels. The full separation
is only obtained when n⃗T coincides with the hard axis (θ = 0) or it belongs to the easy
plane (θ = π/2) for the pseudospin of the DQD. These cases are discussed in detail in
Sec. 5.4. However, insight into the spin dynamics also can be gained for the case at
hand (θ = 1.5) as it is demonstrated by the predicting character of the magenta and
black dashes lines in Fig. 5.3 b.
In Fig. 5.6, we compare the modulus of the two spin variables S⃗+ and S⃗− as calculated
from the full cotunneling and from the CST-model. The model captures the rich texture
of the stationary spins even better as compared to the current presented in Fig. 5.4.
Particularly, the cross-shaped feature appears more distinctively, although for |S⃗−| the
model predicts the wrong sign for the positive slope signal. Most interestingly, we
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observe how the spin channels can be blocked or unblocked individually, as the separate
regions of high, respectively, low modulus indicate. Qualitatively, we can rationalize
this phenomenon as a transfer of probability between the "+" and the "−" channel
occurring when one of them is unblocked due to a fast precession dynamics.
A more quantitative description is obtained, analyzing the equation of motion for S⃗±.
The latter can be divided into a decoherence, a pumping and a precession compo-
nent:

˙⃗
S± = −a±S⃗±︸ ︷︷ ︸

decoherence

+ x⃗±(p1, T⃗ , Λ⃗y, Λ⃗⊥)︸ ︷︷ ︸
pumping

+ B⃗± × S⃗±︸ ︷︷ ︸
precession

. (5.23)

The steady state solution of this equation is given by S⃗∞
± = F⃗ (a±, x⃗±, B⃗±) with

F⃗ (a, x⃗, B⃗) =
a

a2 + |B⃗|2

(
x⃗+

B⃗ · x⃗
a2

B⃗ +
B⃗ × x⃗

a

)
. (5.24)

We define the input parameters as a± = D±γ
− and B⃗± = 2 (ω⃗S ± ω⃗−). Furthermore,

we use for the pumping the steady state solution of the other variables:

x⃗± =D±

[
γ⃗+(1− p∞1 )− γ⃗−

4
(p∞1 ± 2⃗eT · T⃗∞)

]
+ 2ω⃗a

S × Λ⃗∞
⊥ ∓ 2ωa

T Λ⃗
∞
y ± ω⃗a

S (⃗ey · T⃗∞). (5.25)

We do not have a closed form solution of the intricate equations of motion [Eqs. (5.8)-
(5.13)]. The analysis of the semi-analytical Eq. (5.24) gives, though, relevant insights
on the accumulation dynamics of the spin variables.
We distinguish among three different regimes, depending on the ratio of |B⃗±|/a± which
are visualized in Fig. 5.7 a-f. If the decoherence rate is much larger than the precession
frequency (|B⃗±|/a± ≪ 1) the respective stationary spin is given by S⃗± ≈ x⃗±/a±, at
most, corrected by the small precession contribution B⃗± × x⃗±/a

2
±. Essentially, the

pumping defines the accumulation direction.
The opposite regime is obtained whenever (|B⃗±|/a± ≫ 1). In this case, the second
term of Eq. (5.24) dominates and results in dephasing, with all components suppressed
except for the ones pointing in the direction of the exchange fields. In the intermediate
regime (|B⃗±|/a± ≈ 1), also the last term, which represents a coherent precession of the
pumped spin, plays an important role. Inside the one-particle Coulomb diamond, it
holds |B⃗±|/a± ≫ 1 so that the spin is mainly determined by the absolute value of the
pumping |x⃗±| and the angle ∠(x⃗±, B⃗±) between pumping direction and exchange field
(as can be seen by the dominant contributions of the middle column of Fig. 5.7).
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Figure 5.7: Overview of spin and pseudospin dynamics: The steady
state components obtained by the auxiliary function F⃗ (aτ , x⃗τ , B⃗τ ) [Eq. (5.24)]
of the respective quantities (τ = ± for the spins and τ = T for the pseudospin)
are displayed based on the CST-equations of motion. The first column shows
a relevant contribution when |B⃗τ |/aτ ≪ 1, i.e., the steady state is governed
predominantly by the decoherence rate. The second column is prevailing in
the regime of |B⃗τ |/aτ ≫ 1 where the absolute value of the pumping |x⃗τ | and
the angle to the corresponding exchange field ∠(x⃗τ , B⃗τ ) set the steady state.
The last column, tied to precession, is appearing for |B⃗τ |/aτ ≈ 1, which is
an important contribution for the pseudospin analysis but not for the spin
channels. Same parameters as in Fig. 5.2.
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If the pumping occurs for a given spin variable in a direction perpendicular to the
exchange field, the corresponding spin is strongly dephased and, for that channel, the
spin blockade is strongly lifted. Since the same condition cannot occur simultaneously
for both spin channels, the other one absorbs probability. This probability transfer
corresponds to an increase of the pseudospin component along e⃗T . However, the latter
is also precessing (see Fig. 5.5) and it gives feedback on the spin pumping direction.
While the population transfer between the "+" and the "−" spin channels rationalizes
the complementary behavior of the spin plots in Fig. 5.6, the interplay between the spin
and the pseudospin is at the origin of the correlation between Figs. 5.5 and 5.6.
All together, the two-spin-channel description represents a good starting point for
unraveling the dynamics of the DQD spin valve under consideration. A fully vectorial
approach to the pseudospin, going beyond the population difference of the spin channels
(the latter being represented by the e⃗T · T⃗ component) is though necessary for a
generic orientation of the pseudospin polarization as it is shown in Fig. 5.5. The
notable contribution to the pseudospin of Fig. 5.7 i, related to precession, highlights
the vectorial character of the pseudospin. Overall, we also can conclude from Fig. 5.7
that the dynamics of the spin are predominantly governed by dephasing rather than
precession due to the relative large absolute values of the exchange fields on the relevant
gate and bias voltages.

5.4 Limiting cases

We consider, in this section, two limiting cases of pseudospin polarization direction:
firstly, we assume with θ = 0 that e⃗T coincides with the hard pseudospin axis; afterwards,
we take e⃗T in the easy plane, i.e., θ = π/2. The symmetry of the system Hamiltonian
with respect to any rotation around the hard pseudospin axis ensures the equivalence of
all pseudospin polarizations belonging to the easy plane. The fundamental simplification
obtained for θ = 0 or θ = π/2 is the vanishing of the exchange field ω⃗a

S as well as of the
scalar ωa

T . Both functions derive from the Lamb shift contribution of the Liouvillian and,
in particular, they originate from the pseudospin anisotropy of the DQD. Interestingly,
for both limiting angles the variables Λ⃗⊥, Λ⃗y, are only coupled to themselves and to
the components e⃗y · T⃗ , e⃗⊥ · T⃗ of the pseudospin, but they are independent of p0, p1, S⃗+,
S⃗− and e⃗T · T⃗ . If the system of Eqs. (5.8)-(5.13) admits a unique stationary solution,
the latter corresponds to the trivial choice for the set of coupled variables which do not
include the populations. It is in fact the probability conservation to fix the normalization
of the Kernel for the Liouvillian. The relevant part of the equations of motion can be
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5 Precession of entangled spin and pseudospin in double quantum dots

cast with the help of p± = p1
2 ± n⃗T · T⃗ into the following equations

ṗ± = 2D±

[
γ+p0 − γ−p± − γ⃗− · S⃗±

]
, (5.26)

˙⃗
S± = D±

[
p0γ⃗

+ − γ−S⃗± − p±
2 γ⃗−

]
+ 2B⃗± × S⃗±, (5.27)

complemented by ṗ0 = −ṗ+−ṗ− due to probability conservation. Further simplifications
apply if θ = 0, as the exchange field B⃗± reduces to D±ω⃗S . Thus, in this limit, D±

factorizes in the equations of the spin variables. We are left with a single spin resonance
with the condition given by ω⃗S ·

(
n⃗L
S − n⃗R

S

)
= 0. Interestingly, the prefactors D± drop

completely from the stationary solutions. They can simply be interpreted as scaling
factors for the time evolution of the different channels. As such, they cannot influence
the stationary state, achieved in the infinite time limit.

Figure 5.8: Spin dephasing as the main mechanism behind spin
resonances: a The limiting case θ = π/2 shows a splitting into the ± channels.
The default situation is that the electrons occupy p+ (red area) since the
pumping is polarized in that direction. p− is prevailing on the resonance
condition for the "+" channel (white dashed line) since there the "+" electrons
can leave the spin valve blockade and thus only "−" electrons remain. b
On the resonance, the spin coherence decreases faster than the respective
population. c Clear resonance condition for the "−" channel is outside of this
Vg-Vb window, thus the coherence of this channel is maintained and yields a
blockade. Parameters of Fig. 5.2 except of θ = π/2.

In the case θ = π/2, instead, the two spin variables are characterized by two independent
resonant conditions B⃗± ·

(
n⃗L
S − n⃗R

S

)
= 0. The splitting of the resonances as a function

of the angle and pseudospin polarization strength is highlighted in Fig. 5.3.
In Fig. 5.8, we further analyze the spin dynamics underlying such resonances. The
observable p+ − p− := 2T⃗ · e⃗T shows a very strong transfer of probability from the "+"
towards the "−" channel in the vicinity of the S⃗+ spin resonance (highlighted by the
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5.5 Correlator-induced exchange fields

white dashed line). A comparison with Fig. 5.8 b indicates, moreover, how the spin
dephasing is at the origin of the population transfer. The fast precession opens the
"+" spin channel, and the average spin amplitude (perpendicular to the exchange field)
drops even faster than the corresponding population. Spin accumulation for the slow
precessing "−" channel completes the picture. This observation contrasts, though, with
the picture of coherent rotation as unblocking mechanism, as the latter would conserve
the rotating spin length, or at least, the ratio between the spin and the corresponding
population.
The understanding of the limiting cases allows us to infer a similar dynamics for
θ = 1.5 ≈ π/2. Fig. 5.3 b shows how the resonances predicted for θ = π/2 closely
follow two of the actual resonances. The other two resonances of this plot can be
rationalized, instead, by the semi-analytical ansatz of Eq. (5.24) as a delicate interplay
of the pumping vector and the involved magnetic fields. The elements e⃗y · T⃗ and e⃗⊥ · T⃗
feed into the spin channels and cause, there, an accumulation of spin components which
are eventually not blocked.
Remarkably, in the areas where both unblocking conditions are simultaneously satisfied,
i.e., in Fig. 5.4 around the anti-crossing of Vg ≈ 1.6 and Vb ≈ 0.2, a near-to-perfect
lifting of the spin blockade is reached. The current closely approaches the one that
would be obtained for normal leads, in the complete absence of spin valve.

5.5 Correlator-induced exchange fields

Now, we want to establish resonance conditions for the spin and pseudospin which also
capture the more intriguing resonances like, e.g., the cross-shaped feature of Fig. 5.5.
The derived extended exchange fields go beyond the ones which can be directly read
out from the vectorial Eqs. (5.10)-(5.11). The ansatz of the resonance conditions is to
solve the equations for the correlator vectors Λ⃗y and Λ⃗⊥ in the stationary limit and
plug the results into the equations for T⃗ , S⃗+ and S⃗−. Here, we implicitly assume that
the correlator dynamics are faster in the sense that they reside to their steady state
limit at first. The last step is then to identify the effective magnetic or pseudo-magnetic
fields which are able to induce precession phenomena.
The two correlator equations read initially:

γ−Λ⃗⊥ − 2ω⃗S × Λ⃗⊥ + 2ω+Λ⃗y + PT γ⃗
− × Λ⃗y = b⃗⊥, (5.28)

γ−Λ⃗y − 2ω⃗S × Λ⃗y − 2ω+Λ⃗⊥ − PT γ⃗
− × Λ⃗⊥ = b⃗y, (5.29)
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5 Precession of entangled spin and pseudospin in double quantum dots

Figure 5.9: Resonance conditions for the three different channels:
The left column depicts the functions of the resonance conditions where one
expects resonances at their local minima. Local maxima indicate areas where
resonances are locally suppressed. In the right column, we display the spin
channels and the pseudospin calculated with the CST-model, where the dashed
lines show the resonance conditions from the left panels. In panel b, the
anti-crossing from the bottom left corner is highlighted. Parameters of Fig. 5.2.
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5.5 Correlator-induced exchange fields

where

b⃗⊥ = −ω⃗−(⃗ey · T⃗ )− γ⃗−

2 e⃗⊥ · T⃗ + ω⃗a
S × (S⃗+ + S⃗−), (5.30)

b⃗y = +ω⃗−(⃗e⊥ · T⃗ )− γ⃗−

2 e⃗y · T⃗ − ω⃗a
S (⃗eT · T⃗ ) + ωa

T (S⃗+ − S⃗−), (5.31)

We can cast the two equations into the following matrix form:(
Γ1 Γ2

−Γ2 Γ1

)
︸ ︷︷ ︸

:= Γ

(
Λ⃗⊥

Λ⃗y

)
=

(
b⃗⊥

b⃗y

)
, (5.32)

where

Γ1 (x⃗) = γ−x⃗− 2ω⃗S × x⃗, (5.33)

Γ2 (x⃗) = 2ω+x⃗+ PT γ⃗
− × x⃗. (5.34)

In the region of interest, except for a specific vertical line, where the current shows no
specific feature, ω+ ≫ |γ⃗−| holds. For this reason, we neglect the second contribution
to Γ2 which makes the further calculations much easier. The effective Γ is thus inverted
by:

Γ−1 ≈
(
4ω2

+ + Γ2
1

)−1

(
Γ1 −2ω+

2ω+ Γ1

)
. (5.35)

Now, the task is to find an expression for (4ω2
+ + Γ2

1)
−1. In order to achieve this, we

can write equations of the structure of 4ω2
+ + Γ2

1 as

b⃗ = Ay⃗ −Bv⃗ × y⃗ + (v⃗ · y⃗) v⃗, (5.36)

where we set for our specific equation A = 4ω2
++(γ−)2−4(ω⃗S)

2, B = 2γ− and v⃗ = 2ω⃗S .
The following equation is able to invert Eq. 5.36,

y⃗ =
1

A2 +B2v2

[
Ab⃗+

B2 −A

A+ v2

(
v⃗ · b⃗

)
v⃗ +Bv⃗ × b⃗

]
, (5.37)
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enabling us to write the final solutions for the correlators as

Λ⃗⊥ =
γ−

A2 +B2v2

[
Ab⃗⊥ +

B2 −A

A+ v2

(
v⃗ · b⃗⊥

)
v⃗ +Bv⃗ × b⃗⊥

]
− 1

A2 +B2v2

[
A
(
v⃗ × b⃗⊥

)
+B

(
v⃗ · b⃗⊥

)
v⃗ −Bv2⃗b⊥

]
− 2ω+

A2 +B2v2

[
Ab⃗y +

B2 −A

A+ v2

(
v⃗ · b⃗y

)
v⃗ +Bv⃗ × b⃗y

]
, (5.38)

and

Λ⃗y =
γ−

A2 +B2v2

[
Ab⃗y +

B2 −A

A+ v2

(
v⃗ · b⃗y

)
v⃗ +Bv⃗ × b⃗y

]
− 1

A2 +B2v2

[
A
(
v⃗ × b⃗y

)
+B

(
v⃗ · b⃗y

)
v⃗ −Bv2⃗by

]
+

2ω+

A2 +B2v2

[
Ab⃗⊥ +

B2 −A

A+ v2

(
v⃗ · b⃗⊥

)
v⃗ +Bv⃗ × b⃗⊥

]
. (5.39)

Subsequently, we insert the expressions for Λ⃗⊥ and Λ⃗y into the equations for S⃗+ and
S⃗− in order to collect all precession terms, which we define then as δB⃗±. The total
magnetic field for the S⃗±-channels, denoted by B⃗tot,±, consist then of two parts, the
one stemming directly from Eq. (5.11) [B⃗± = 2 (ω⃗S ± ω⃗−)] and one from terms in Λ⃗⊥

which are proportional to ∝ S⃗± as well as by terms in Λ⃗y which are proportional to
∝ X⃗ × S⃗±. The total magnetic field for the spin channels yields

B⃗tot,± = B⃗± + δB⃗±, (5.40)

with

δB⃗± =∓ 4

A2 +B2v2

{
2Aω+ω

a
T ω⃗

a
S ±

(
γ−B −A

) [
(ω⃗S · ω⃗a

S) ω⃗
a
S + (ωa

T )
2 ω⃗S

]}
. (5.41)

For the pseudospin, we can repeat the procedure and obtain

B⃗tot,T = B⃗T + δB⃗T , (5.42)
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with δB⃗T = Ωy e⃗y +ΩT e⃗T +Ω⊥e⃗⊥

Ωy =0, (5.43)

ΩT =
−4

A2 +B2v2

{
γ⃗− · ω⃗−

(
Aγ− +Bv2

)
+
(
v⃗ · γ⃗−

)
(v⃗ · ω⃗−)

(
B2 −A

A+ v2
γ− −B

)
+2ω+A

(
|ω⃗−|2 −

1

4

∣∣γ⃗−∣∣2)+ 2ω+
B2 −A

A+ v2

[
(v⃗ · ω⃗−)

2 − 1

4

(
v⃗ · γ⃗−

)2]}
, (5.44)

Ω⊥ =
2

A2 +B2v2
ω⃗TS ·

[
−
(
Aγ− +Bv2

)
γ⃗− − 4ω+Aω⃗−

−
(
v⃗ · γ⃗−

)
v⃗

(
B2 −A

A+ v2
γ− −B

)
− 4 (v⃗ · ω⃗−) v⃗ω+

B2 −A

A+ v2

]
. (5.45)

Analyzing the current formula [Eq. (5.22)], we can formulate the resonance conditions
for the spin channels as

B⃗tot,± ·
(
n⃗L
S − n⃗R

S

)
= 0, (5.46)

and for the pseudospin as
B⃗tot,T · n⃗⊥ = 0. (5.47)

In the case of the spin channels, for increased current it is beneficial to lift the spin valve
by maximal dephasing which is achieved if the pumping [∝ (n⃗L

S − n⃗R
S )] is perpendicular

to the exchange field. However, for the pseudospin, which gets pumped mostly along
the polarization directions of the leads (∝ n⃗T ), one expects more current for alignment
of pseudospin and the parallel pseudospin polarization of the leads. For this reason,
the vectorial conditions are opposite in the sense that the exchange fields should be
either perpendicular (spin) or parallel (pseudospin) to the pumping. We get further
insight with the analysis of these resonance conditions depicted in Fig. 5.9. In panel
a, the condition of the main resonance of the "+" channel (cf. Fig. 5.8) gets distorted
so that an anti-crossing forms, which is highlighted in the inset of panel b. One can
rationalize the anti-crossing with the fact that locally the resonance gets suppressed
where the function of a has a local maxima. Moreover, we can deduce that only using the
resonance condition can be misleading since many local maxima have a narrow minimum
in its peaks, as it is the case with the white dashed line along the anti-crossing of b.
The condition for the "−" channel, depicted in c can predict two arms of cross-shaped
feature. This cross-shaped feature also can be found in the condition for the pseudospin
(e). Quite strikingly, the center of the resonance and the onset of all four arms are
captured. Moreover, the prediction character of the white dashed lines of panel f gets
refined if one excludes the local maxima, which are located around the cross since
they correspond in their essence to maxima. The vertical line cutting the cross-shaped
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5 Precession of entangled spin and pseudospin in double quantum dots

feature is not relevant since there our model assumptions from the derivation of the
exchange fields ω+ ≫ |γ⃗−| do not hold.
Combining the insights on the resonances, we can conclude that the main knob for
the current is the lifting of the spin valve setup. If one hits one resonance condition,
an imbalance of two different spin channels develops, which inevitably pumps the
pseudospin component in the e⃗T -direction. If now the exchange field for the pseudospin
is not aligned with the pseudospin pumping direction, the amplitude of T⃗ can diminish
and eventually will have then a back action to the spin channels. The resonance, which
is located in the upper right corner, is not captured by any of the conditions. If one
compares with Fig. 5.5 and especially with Fig. 5.7 i, this coincides with a strong
precession of the pseudospin and relative less pronounced dephasing term, i.e., a relative
weak exchange field strength. Another hint, that this resonance is more intricate, is
given in the next chapter.

5.6 Entanglement of spin and pseudospin

The interaction between the spin and the pseudospin, discussed in the previous sections
and triggered by an intermediate pseudospin polarization angle, yields not only cor-
relation but also entanglement between the two degrees of freedom. As a measure of
the phenomenon, we choose the concurrence as a degree of quantum entanglement of a
system. The definition of this quantity is outlined extensively in Sec. 5.6.
In Fig. 5.10 a, the concurrence of our system is displayed in dependence of bias and
gate voltages. One appreciates how quantum mechanical entanglement of spin and
pseudospin is only present on the resonances, which are not captured by the limiting
case of the independent "+" and "−" spin channels. Consequently, the finite values of
the concurrence closely correlate to the e⃗y and e⃗⊥ components of T⃗ shown in Fig. 5.5 a
and c. The mediator of the entanglement between the spin and pseudospin in the
DQD is the synthetic SOI induced by the electronic fluctuations. In the regions with
entanglement, the ansatz with the resonance condition breaks down and one has to
resort into an analysis of the alignment of the pseudospin and spin vectors to make an
assessment of the strength of the current.
With the concurrence, we can quantify and compare the degree of entanglement with
respect to other systems or polarization configurations. In graphene, for example,
entanglement between spin and sublattice pseudospin leads to the formation of states
which violate the Bell inequality [114]. The latter should be detectable via Cooper pair
splitting experiments. The time-varying concurrence, generated in graphene by the
intrinsic SOI, ranges in their calculation between 0.5 and 0.6. Beyond its relevance for
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Figure 5.10: Properties of the density matrix reveal entanglement:
a Concurrence C in dependence of gate and bias voltage. Remarkably, only
in a limited area, entanglement between spin and pseudospin can be observed.
These features are determined by the correlator vectors Λ⃗y and Λ⃗⊥. b Trace
over the squared one-particle density matrix highlights the areas of incoherent
transport via the two spin channels. Same parameters as in Fig. 5.2.

fundamental physics, the study of entanglement [115] is crucial for the development
of current quantum technologies. In this spirit, the discussed electrical manipulation
of quantum entanglement represents a new interesting path for the implementation of
qubit operations in DQD.
In Fig. 5.10 b, we highlight the "mixedness" of the density matrix in the one-particle
subsector ρ̂1. For a pure state, one expects Tr{ρ̂1} = Tr{ρ̂21} = 1. In agreement to our
description, we can rationalize that an incoherent superposition is the mechanism at
the main resonances for the "+" and "−" channel, leading to mixed states rather than
pure states. Interestingly, there seems to be only one region where there is enhanced
"pureness", which coincides with the resonance of maximum pseudospin rotation.

5.7 Summary and outlook

The transport characteristics of interacting systems with a degenerate many-body
spectrum are prone to exhibit interference effects [14, 56, 110, 116] already in the
sequential tunneling regime. Interference appears whenever the single-particle tunneling
matrices of the leads cannot be diagonalized simultaneously. In other terms, whenever
it is not possible to identify parallel transport channels running between the source and
the drain lead.
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5 Precession of entangled spin and pseudospin in double quantum dots

In this chapter, we analyzed an interacting DQD weakly coupled to ferromagnetic
leads in almost antiparallel spin valve configuration. This set up naturally ensures
interference between the spin transport channels. Moreover, we choose a tunneling
coupling with parallel pseudospin polarization, which, naively, should correspond to
independent pseudospin channels.
On the other hand, the tendency of the electrons to avoid each other due to the Coulomb
interaction induces pseudospin anisotropy on the DQD, thus defining a pseudospin hard
axis. It is the angle θ between this axis and the polarization direction of the leads to
control the mixing of the pseudospin channels.
For θ = 0, the stationary pseudospin is completely quenched, and the dynamics reduces
to the one of a QD spin valve [65]. In the case of θ = π/2, instead, we can identify
two different spin variables, S⃗+ and S⃗− associated with opposite pseudospin directions
and showing independent dynamics. Thus, the pseudospin reduces itself to a single
component, the one parallel to the lead polarization, which measures the imbalance
p+ − p− between the populations of the two spin channels. Finally, for any other
intermediate angle, the spin and the pseudospin are correlated, with the stationary
pseudospin changing strength and direction as a function of the bias and gate voltage
applied to the system.
We focused on the angle θ = 1.5 ≈ π/2. Here, the signatures of the intertwined spin and
pseudospin dynamics are current resonances emerging inside the one-particle Coulomb
diamond. Besides the spin resonances closely related to the ones of the limiting case
with θ = π/2, we identify a cross-shaped feature which can only be understood in terms
of spin-pseudospin correlations.
In general, all the observed current resonances result from the lifting of the spin blockade
induced by the spin valve configuration. The exchange fields induce a fast precession of
the spin variables, which results in spin dephasing. Therefore, the electrons can again
tunnel towards the drain, despite its high spin polarization. In particular, the direction
of the exchange fields controls the efficiency of the dephasing and thus the position
of the spin resonances within the Coulomb diamond. The cross-shaped resonance,
instead, stems from the interplay of spin and pseudospin and their mutual influence in
their pumping dynamics, where also the correlation vectors Λ⃗y and Λ⃗⊥ are involved.
Ultimately, we could show that, in the vicinity of the cross-shaped resonance, spin and
pseudospin are not only correlated, but also entangled. To this end, the calculation of
the concurrence gives a figure of merit for the effect. A fundamental issue addressed in
this study is the emergence of spin-pseudospin correlation and entanglement, despite
the factorized form of the tunneling matrices. Moreover, the different nature of the
current resonances observed in the one-particle Coulomb diamond shows how to address
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different transport channels and stir the dynamics of different degrees of freedom of an
interacting system solely by electrical means, i.e., the bias or the gate voltages across
the nanojunction.
Systems with larger (N>2) level degeneracy exhibit a coherent dynamics involving a
rapidly increasing number of degrees of freedom. Together with their fast-increasing
complexity, though, they also offer more control knobs. Modulating the tunneling
amplitudes between a multilevel system and the leads induces variations of the exchange
fields arising from electronic fluctuation. Ultimately, the results presented here indicate,
in principle, how to achieve in a single device, an all-electronic control of the precession
dynamics for several entangled degrees of freedom, a very desirable feature for the
current quest of scalable quantum information technology.
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Anderson pseudospin dynamics in a
quantum dot

6

This chapter is dedicated to the investigation of the Anderson pseudospin, a measure for
superconducting correlations, of a QD which is attached to superconducting leads. Our
analysis is based on a particle-conserving formalism of superconductivity, and we focus
on the leading-order in the coupling to the leads while keeping a finite temperature and
finite superconducting gap as well as treating the interaction exactly. In this parameter
regime at zero bias, we deduce the equations of motions for the populations and the
pseudospin for finite gate voltages with the help of the density matrix formalism. Other
than that, we show a non-vanishing pseudospin inside the Coulomb diamond through
quasiparticle processes. Furthermore, we demonstrate that our QD system is undergoing
a so-called 0-π transition depending on the gate voltage or the temperature. Numerical
finite bias calculations of the proximity-induced dot-pair amplitude are complementing
the analysis, which shed further light on the interplay of Cooper pair processes and the
ones involving quasiparticles.
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6 Anderson pseudospin dynamics in a quantum dot

6.1 Equations of motion for finite gate voltages

In Cha. 3, we introduced our model of a S-QD-S junction, where we separate the
Hamiltonian into a system and a bath part,

ĤS = ĤQD + ĤCP =
∑
σ

eVgN̂σ + UN̂↑N̂↓ +
∑
lkσ

µlN̂CP,lkσ, (6.1)

ĤB = ĤQP =
∑
lkσ

(Elk + µl) N̂QP,lkσ. (6.2)

In this summarized form, the number operators for dot electrons of spin σ, for the
Cooper pairs in lead l and for the quasiparticles are given by N̂σ, N̂CP,lkσ and N̂QP,lkσ,
respectively. The relevant parameters are the energy associated to the gate voltage
(eVg), the interaction energy (U), the quasiparticle excitation energy (Elk) as well as the
chemical potential for the leads (µl) depending on the applied bias voltage (Vb).

Figure 6.1: Reduction of ρ̂′ to ϱ̂: In a first assumption, we restrict the a
priori infinite-sized ρ̂′ to the blocks containing the four nearest neighbors of
ρ̂(0) which differ by ±1 Cooper pair imbalance. The second assumption is to
condense the coherences, which are proportional to |2⟩⟨0| and |0⟩⟨2| in the QD
space, into the off-diagonal elements of ϱ̂ of C20 and C02, respectively.

As the first step, we identified the imbalance of Cooper pairs in the respective leads,
expressed by ∆M = (∆ML,∆MR), as the relevant quantity and not its absolute number
M = (ML,MR). For this reason, an effective and explicitly particle-conserving GME
[Eq. (3.20)], traced out of M , is well suited to describe our setup. In this set of equations,
which are capable of treating non-equilibrium configurations, we focus on the leading-
order Kernels. The Kernels connect blocks of different Cooper pair imbalances ∆M to
themselves and to each other. We start with restricting ourselves to the equilibrium
situation (Vb = 0) while addressing finite bias voltages at a later stage (cf. Sec. 6.5).
At zero bias, the Cooper pair condensates of the two leads are indistinguishable since
there is no energy scale which separates them, especially if we choose µl = 0. For
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this reason, as also discussed in [93], we can simplify the picture considerably with
the result that the obtained supercurrent is time-independent (dc-Josephson effect).
We truncate the theoretically infinitely-sized density matrix consisting of all possible
Cooper pair imbalances (cf. Fig. 3.3) to only five blocks, namely the four blocks ρ̂(pul),
which have a Cooper pair imbalance of exactly p = ±1 in the l-lead, and the block ρ̂(0),
which contains the populations. We will show later with a comparison to a numerical
evaluation of a truncation with a larger amount of blocks that the assumption we are
doing is indeed reasonable. The set of equations is thus written as

0 =
[
LQD + K̃red(0, 0

+)
]
ρ̂(0) +

∑
pl

K̃red(p̄ul, 0
+)ρ̂(pul), (6.3)

0 =
[
LQD + K̃red(0, 0

+)
]
ρ̂(pul) + K̃red(pul, 0

+)ρ̂(0), (6.4)

where the λ-argument of the Kernels [Eq. (3.31) and Eq. (3.37)] simplifies due to the
setting of µl = 0.
In Fig. 6.1 on the left side, we highlight the only relevant elements of the used density
matrix, which can be divided into populations and coherences. The former consist of
the four diagonal elements of ρ̂(0), which are the populations of the empty state p0, of
the single-occupied state p↑/↓ and the double-occupied state p2. Due to the selection
rule of conserving particle number of Eq. (3.21), Nχ′ −Nχ + 2

∑
∆Ml = 0 for the QD

states χϵ{0, ↑, ↓, 2}, only one element does not vanish in each ρ̂(pul)-block.
In order to define the pseudospin in our system, we opt for the simplification, which
is visualized on the right side of Fig. 6.1. In essence, we condense the correlations in
the left superconducting lead with the ones of the right superconducting lead with
C20 = ⟨2| ρ̂[(0,−1)] |0⟩+ ⟨2| ρ̂[(−1, 0)] |0⟩ and C02 = ⟨0| ρ̂[(0, 1)] |2⟩+ ⟨0| ρ̂[(1, 0)] |2⟩. We
argue that since in the case of zero bias the distinction between the left and right
superconductor is anyway arbitrary, we are allowed to do so [93]. In essence, we keep
only track if we destroy or create a Cooper pair. Since the spin symmetry is not broken
by any process, we can divide the populations into an odd and an even part, and define
the Anderson pseudospin:

P⃗ =

(
po

pe

)
=

(
p0 + p2

p↑ + p↓

)
, I⃗ =

Ix

Iy

Iz

 =

ReC20

ImC20
p0−p2

2

 . (6.5)
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The equations of motion for the populations yield

dP⃗

dt
=
∑
l

Γl

[(
−G−

+ G+
+

G−
+ −G+

+

)
P⃗ +

(
2

−2

)
I⃗ ·
(
G̃−

+n⃗l − B̃−
− n⃗⊥,l −G−

−e⃗z

)]
, (6.6)

where two types of functions are involved:

G±
± = − 1

πℏ
[
Im
{
I+
Y ( ± ω10)

}
± Im

{
I+
Y ( ± ω12)

}]
, (6.7)

B±
± = − 1

πℏ
[
Re
{
I+
Y ( ± ω10)

}
± Re

{
I+
Y ( ± ω12)

}]
. (6.8)

The upper index of the two auxiliary functions sets the sign in front of the energy
differences ωxy while the lower index represents the sum or the difference of the involved
integrals. In the use of G̃±

± and B̃±
± the normal integrals [Eq. (3.27)] are replaced by

the anomalous ones [Eq. (3.34)]. For simplicity, we drop the l-index from the integrals.
The vectors appearing in the equations read

n⃗l = (cosϕl, sinϕl, 0), (6.9)

n⃗⊥,l = (sinϕl,− cosϕl, 0), (6.10)

e⃗z = (0, 0, 1), (6.11)

where the superconducting phases of the leads ϕl are the crucial parameters. As a first
observation, we can conclude that the anomalous functions G̃±

± and B̃±
± are always

tied to the vectors n⃗l and n⃗⊥,l, which contain the superconducting phases. This is
indeed reasonable since a transfer of a Cooper pair is always phase-dependent. Indicated
already by the choice of notation, we can see n⃗l as the pseudospin polarization of the
lead in the same spirit as in the previous two chapters, with however different physics
at the origin.
The equation of the Anderson pseudospin can be cast into a form which resembles
the ones studied in the previous chapters, of a (pseudo)spin governed by pumping,
decoherence and precession:

dI⃗

dt
= x⃗(pe, po)− aI⃗ + B⃗ × I⃗ + Q̄I⃗ (6.12)
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6.1 Equations of motion for finite gate voltages

with the pumping vector defined as

x⃗(pe, po) =
∑
l

Γl

2

(
G̃−

+n⃗l + B̃−
− n⃗⊥,l −G−

−e⃗z

)
pe

+
∑
l

Γl

2

(
G̃+

+n⃗l − B̃+
− n⃗⊥,l +G+

−e⃗z

)
po. (6.13)

We observe that the Ix- and Iy-component of the pseudospin are pumped by anomalous
terms, while a sole quasiparticle contribution is accumulating the Iz-component. The
magnetic-field-like exchange field for the precession term reads

B⃗ =
∑
l

ΓlB̃
−
+ n⃗l +−

(
2eVg + U

ℏ
+
∑
l

ΓlB
−
−

)
e⃗z, (6.14)

where three qualitative different processes play a role. The first is feedback of Cooper pair
processes and the second one scales with eVg due to the energy splitting of the empty and
the double-occupied state. The third part is the only one in the equations which stems
from the principal part of the normal energy integral. Only around Γl ≈ |U/2 + eVg|
the exchange field changes its direction. Otherwise, the second contribution is the
dominating one, with the effect that B⃗ is primarily pointing in the z-direction. However,
we will show that interesting dynamics are unfolding, in contrast as anticipated in [95],
also far away from the conditions where the energy difference of |0⟩ and |2⟩ are zero.
The decoherence rate is captured by a =

∑
l ΓlG

−
+.

In comparison to the previously discussed similar equations [cf. Eq. (4.39) and Eq. (5.23)],
we also have an anisotropic damping term, expressed by the matrix Q̄:

Q̄ =
∑
l

ΓlG̃
−
−

 0 0 cosϕl

0 0 sinϕl

cosϕl sinϕl 0

 . (6.15)

Such an anisotropy is studied for the spin case in [70, 116]. Overall, the derived equations
of motions of the Anderson pseudospin and the populations are an extension of the ones
presented in [95], where the focus is on the particle-hole-symmetric point. In this limit
(eVg → −U/2), we restore their results. In the calculations of the integrals we have,
though, a slight deviation since we also include terms which are proportional to the
imaginary part of h̃l(z) of Eq. (3.36) in the anomalous integrals. In our calculations, these
terms contribute, however, only negligibly to the relevant quantities. The stationary
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6 Anderson pseudospin dynamics in a quantum dot

Figure 6.2: Anderson pseudospin components and dot-pair ampli-
tudes: The columns differ by the phase of the right lead: ϕR = 0 and
ϕR = π/2. The common parameters are ϕL = 0, |∆l| = 1meV, Γ = 0.001meV,
kBT = 0.05meV, U = 1.5meV, γ = 0.01meV. The red curve is the pair
amplitude without the (−aB⃗ × x⃗)-term of Eq. (6.16).
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6.2 Proximity-induced dot-pair amplitude

solution of the Anderson pseudospin is given by

I⃗∞ =
−1

Λ

[(
Q̄2

13 + Q̄2
23 − a2 − Q̄Q̄− aQ̄

)
x⃗−

(
x⃗ · B⃗

)
B⃗ +

(
−aB⃗ + Q̄B⃗

)
× x⃗
]
, (6.16)

with Λ = a3 + aB⃗ · B⃗ − a(Q̄2
13 + Q̄2

23)− (Q̄B⃗) · B⃗. For the solution, we extended the
auxiliary F⃗ -function of Eq. (5.24) to include also the anisotropy term Q̄.
In Fig. 6.2, we display the results of the stationary solution for two different values of
the superconducting phase of the right superconductor while fixing the phase to ϕL = 0

for the left lead. We find here the steady state numerically, and consequently, as a
consistency check, we plugged the populations into Eq. (6.16) to compare to the purely
numerically obtained values. The first observation is that Ix and Iy are in general
at least lowered by the factor of Γ with the respect to the Iz. We set Γ throughout
this chapter to be equal for both leads Γ := ΓL = ΓR according to the definition of
Eq. (3.23). The reduction results from the effect that the superconducting correlations
need to be pumped by tunneling events of Cooper pairs and would die out otherwise.
For the evaluation of the physical meaning of the Ix- and Iy-components, we resort
to the analysis of the dot-pair amplitude and eventually to its connection with the
supercurrent.

6.2 Proximity-induced dot-pair amplitude

An important quantity of the dot is the so-called pair amplitude, which we can deduce
from the proximity-induced superconducting order parameter of the QD as

F := C20 = Ix + iIy = |F|eiΨ. (6.17)

The pair amplitude is defined as |F| =
√

I2x + I2y and the superconducting phase is
given by Ψ = tan−1(Iy/Ix). In our case, we can derive the pair amplitude from the
following expression:

FL = ⟨Ŝ†
Ld̂↓d̂↑⟩ = TrS

{
Ŝ†

Ld̂↓d̂↑ρ̂
}

=
∑

M∆Mχχ′

TrS
{
Ŝ†

Ld̂↓d̂↑ρχ,χ′(M ,∆M) |χ,M +∆M⟩
〈
χ′,M

∣∣}
=

∑
M∆Mχχ′

TrS
{
ρχ,χ′(M ,∆M) |χ− 2,M + (1, 0) + ∆M⟩

〈
χ′,M

∣∣}
=
∑
M

⟨2| ρ̂ [(M , (−1, 0)] |0⟩ := ⟨2| ρ̂ [(−1, 0)] |0⟩ . (6.18)
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6 Anderson pseudospin dynamics in a quantum dot

Figure 6.3: Phase dependence of the pair amplitude: a eVg-ϕL map
shows periodicity of |F|. The two phase traces of b are indicated by the
dashed black and magenta lines. The common parameters are: U = 1.5meV,
|∆l| = 0.2meV, γ = 1e-5 meV, Γ = 0.001meV, kBT = 0.05meV and ϕR = 0.

We use in the second line the definition of our general density matrix ρ̂ of Eq. (3.17)
and the generalized trace of Eq. (3.19) is applied in the last line. Due to our convention
to combine the coherences tied to the left lead and to the right lead, we do the same for
the derived expression FL to obtain F = FL + FR.
In Fig. 6.2 g-h, we depict the pair amplitude for two different phase configurations of
the leads in dependence of the gate voltage. We can conclude that their overall shape
is similar, while they differ in the absolute values. Indeed, as shown in Fig. 6.3, there
is a perfect phase dependence of |F| ∝ | cos [(ϕL − ϕR)/2] |. Changing the phases of
the leads results in a shift of Ix towards Iy and vice versa, while letting the overall
shape of the pair amplitude unchanged. Effectively, one is changing with it the phase
of the order parameter of the dot. The dependence of |F| on the order parameter
of the lead superconductor |∆l| is visualized in Fig. 6.4. In the limit of an infinite
superconducting gap |∆l| → ∞, the value of the pair amplitude is vanishing inside
the Coulomb diamond, as observed in Fig. 4 of [93]. It resembles then the density
of states of the superconductors. However, the two quantities are different since the
width of the gap in the density of states is given by 2|∆l| and for the pair amplitude
the "gap" is U (in the infinite limit of |∆l| → ∞). Nevertheless, the two quantities
are related so that the effect of raising |∆l| is to push the quasiparticle excitations out
of the spectrum. We can therefore deduce that the non-vanishing contribution of |F|
inside the Coulomb diamond is influenced by quasiparticle excitations. Analyzing the
steady state solution of Eq. (6.16) in depth sheds even more light on the origin of that
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6.2 Proximity-induced dot-pair amplitude

Figure 6.4: Gap dependence of the pair amplitude: Higher super-
conducting gaps |∆l| lead to a reduction of the pair amplitude inside the
Coulomb diamond. The common parameters are: U = 1.5meV, γ = 0.01meV,
Γ = 0.001meV, kBT = 0.05meV, ϕL = −π/4 and ϕR = +π/4.

non-vanishing contribution inside the Coulomb diamond. For ϕL = ϕR = 0, we find that
the main contribution to Ix, and therefore eventually to |F|, is the term −aB⃗ × x⃗. The
effect of removing it is depicted in Fig. 6.2 g with the red line, where clearly the pair
amplitude drops inside the Coulomb diamond. Dissecting the term −aB⃗ × x⃗ further,
we can conclude that Ix stems from the xy-component, due to the almost exclusive
polarization of the effective magnetic field B⃗ into the z-direction. The xy-component
reads

xy
ϕL=ϕR=0

=
∑
l

Γlpe
−1

2πℏ

[
Re
{
Ĩ+
Y (ω01)

}
− Re

{
Ĩ−
Y (ω12)

}]
+
∑
l

Γlpo
−1

2πℏ

[
Re
{
Ĩ+
Y (ω12)

}
− Re

{
Ĩ−
Y (ω01)

}]
Pe≈0∝

∑
l

Γl
−1

2πℏ

[
S̃(2)
l (ω12)− S̃(2)

l (ω10)
]

=
∑
l

ΓlkBT

ℏ
∑
l

gl,0

∞∑
k=0

√
|∆l|2

|∆l|2 + ω2
k

(
ω12

ω2
k + ω2

12

− ω10

ω2
k + ω2

10

)
(6.19)

with ωk = 2πkBT (k + 1/2). The second term with the differences of energies changes it
sign after some elements of k and vanishes for big k. The first term with the square
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6 Anderson pseudospin dynamics in a quantum dot

root is determining now how many of the k-elements of the sum have to be considered
as relevant. For this reason, higher values of |∆l| lead to a compensation of the first
relative big elements with many small elements of opposite sign, thus to a vanishing
of xy. Another interesting observation is that the xy-component is zero exactly in the
center of the Coulomb diamond, due to ω12 = ω10, which results in a substantially lower
but non-zero value of Ix (cf. Fig. 6.2).
The dependence of the pair amplitude of the dot inside the Coulomb diamond on
the interaction energy U is inverse proportional. It can be rationalized insofar that
a higher energy difference between the empty and double-occupied state is reducing
superconducting correlations.

6.3 dc-Josephson effect

In general, one expects a supercurrent to have the form of

I(t) = I0 + Ic sin (ϕ0 +Ωt) , (6.20)

where for non-equilibrium situations, the second term gives the time-dependent ac-
Josephson effect. The time-independent current I0 is in case of finite applied bias
a normal current, while the supercurrent has the periodicity of Ω = 2eVb/ℏ and is
shifted by the value of ϕ0. The term Ic denotes the critical current of the Josephson
junction.
Focusing now on the case of zero applied bias, the time-independent I0 becomes a
supercurrent. This is better known as the dc-Josephson effect and has its origin in a
phase difference of the two superconductors which form the Josephson junction. In order
to derive the formula for the supercurrent at zero bias voltage, we employ Eq. (3.39),
which is consistent with our approach of connected blocks of ρ̂(∆M). The only relevant
term for our calculation is now the term I(0), which helps us to write the current for
zero bias as

I =e
{(

peG
−
− − poG

+
−
) ΓL − ΓR

2

+I⃗ ·
[
−G̃−

− (ΓLn⃗L − ΓRn⃗R) + B̃−
+ (ΓLn⃗⊥,L − ΓRn⃗⊥,R) +G−

+ (ΓL − ΓR) e⃗z

]}
ΓL=ΓR= eΓLI⃗ ·

[
−G̃−

− (n⃗L − n⃗R) + B̃−
+ (n⃗⊥,L − n⃗⊥,R)

]
. (6.21)

At first, we have to clarify how we deduce a supercurrent while using only leading-order
energy integrals. Our derived supercurrent is proportional to Γ2 since in essence two
processes, both scaling with Γ, have to happen after each other. The build-up of
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6.3 dc-Josephson effect

superconducting correlations leads to an Anderson pseudospin component. Starting
another anomalous tunneling event from such a coherence leads then to a supercurrent.
For this reason, we can indeed restore the correct order of the supercurrent with however
the caveat that we are not capturing all terms which are of Γ2. A more rigorous inclusion
of Γ2-terms is addressed in [89]. Note that the first term of Eq. (6.21) seems to be at a
first glance due to only quasiparticle energy integrals, but its supercurrent character is
included by the populations which are influenced by anomalous energy integrals.
In Fig. 6.5, we depict the result of the supercurrent calculated by our formula. There
is a good agreement to a non-equilibrium transport code developed by Jordi Picó-
Cortés, where we take the limit of eVb → 0. The reason for comparing it with these
non-equilibrium calculations is twofold. Firstly, since the latter calculations, based on
the same theoretical background, also include the blocks ρ̂[(±1,∓1)], ρ̂[(±2,∓1)] and
ρ̂[(∓1,±2)], our assumption seems to be reasonable to focus only on the neighboring
blocks of ρ̂(0). Secondly, our other assumption to combine coherences of the left and
the right lead to formulate our Anderson pseudospin also seems plausible since the
such-constructed pseudospin I⃗ leads to the main contribution of the current. The
pronounced dips of negative current in Fig. 6.5 are located exactly at the energy of
|∆l| away from the charge-degeneracy points. The depth of the minima and their
"sharpness" depend on the Dynes parameter γ. We observe that a more peaked density
of states, corresponding to a smaller γ, leads, at first, to a sharper feature in the current
picture at these points, while it saturates then for very low γ to zero (not shown here).
Importantly, for all values of γ, the sign change of the current is at a fixed point. Within
our approach, we expect that at the border of the Coulomb diamonds and for small
coupling, the leading-order of the supercurrent is captured.
An interesting observation is now the relation of the supercurrent to the pair amplitude
of the dot. In [117], they gave for the limit |∆l| → ∞ the following form of the
supercurrent for the lead l:

Isc,l =
2e
ℏ
Γl|⟨d̂↓d̂↑⟩| sin (Ψ− ϕl). (6.22)

For them, the term |⟨d̂↓d̂↑⟩| is the pair amplitude. Interestingly, it is scaling directly
with the supercurrent. In the derivation of this formula based on the Meir-Wingreen
formula [118], however, they do not account explicitly for Cooper pair operators as
in our particle-conserving approach. For this reason, we want to study this apparent
connection further.
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6 Anderson pseudospin dynamics in a quantum dot

Figure 6.5: Supercurrent for zero bias: Finite bias calculations, not
based on our pseudospin formulation, including a larger set of ρ̂(∆M) and in
the limit to zero bias, agree with the current formula of Eq. (6.21). The used
parameters are U = 1.5meV, |∆l| = 0.2meV , γ = 0.01meV, Γ = 0.001meV,
kBT = 0.05meV, ϕL = −π/4 and ϕR = +π/4.

6.4 Gate- and temperature-dependent zero-pi transition

It is known that a superconductor can undergo a so-called 0-π transition of its ground
state [119, 120]. Such a transition is usually attributed to a change in the sign of the
critical current in its dependence on the superconducting phase. It corresponds in our
anticipated form of the supercurrent of Eq. (6.20) to the phase shift of ϕ0 = 0 for the
0-state and to ϕ0 = π for the π-state (cf. Fig. 6.6 b). The change of the parity in the
ground states at a 0-π transition can be rationalized by a change from a screened spin
regime (singlet) to a free spin regime (doublet). Generally, a 0-π transition can be
realized, apart from single-occupied quantum dots [121] and ferromagnetic interlayers
[122, 123], also in a SIAM setup [124]. In the later configuration, the screening of
the spin of the impurity is achieved by the formation of a Yu-Shiba-Rusinov state, a
hybridized singlet-state of the superconductors and the impurity. Another possibility to
reach the screened spin regime is via a Kondo singlet-state [125]. Overall, the formation
of a 0-π transition is governed by a delicate interplay of the relevant quantities in these
systems: the tunneling coupling Γ, the Kondo temperature TK, the interaction U and
the superconducting gap |∆l| [126–128].
In [129], experimental evidence of such a critical current 0-π transition in Josephson
QD-junctions is reported. The experimental setup of a single-wall CNT in between two
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6.4 Gate- and temperature-dependent zero-pi transition

Figure 6.6: Experimental data of a 0-π transition in a CNT: a Sketch
of the experimental setup. b Different sign in the Josephson current in its phase
dependence for the 0-ground state (red) and the π-ground state (blue). The
black curve depicts the phase dependence of a state directly at the transition
marked by the empty black squares in the next panel. c Absolute value of the
critical current shows strong modulation in dependence of the applied gate
voltage. A formation of the π-state coincides with odd population of the QD.
Figures taken from [129]. © 2007 American Chemical Society. Reproduced
with permissions. All rights reserved.

superconductors (Tc = 0.75K and |∆l| = 0.1meV) is depicted in Fig. 6.6 a. In panel
c, we can observe that in this device, the critical current is strongly modulated by the
applied gate voltage. The red areas are ascribed to the 0-state, while the blue ones
to the π-state. The measurements are performed at a temperature of T = 0.75 mK
and the extracted values of the device are U = 3meV as well as Γ = 1.1meV. Due to
this relatively strong coupling (kBT = 1.93meV), their parameter regime is not directly
comparable to our leading-order expansion. However, it is remarkable that the critical
current of Fig. 6.6 c resembles very much our plots of the pair amplitude. In our opinion,
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6 Anderson pseudospin dynamics in a quantum dot

this is a strong hint that the pair amplitude |F| is indeed to a large extent proportional to
the supercurrent as predicted by Eq. (6.22). Hence, the measurement of the supercurrent
can be seen as a way to probe the Anderson pseudospin. Also, we can conclude that the
physical relevant quantity is not the individual Ix- nor the Iy-component, changeable
by the individual phases of the superconductors, but rather the pair amplitude which
only depends on the relative phase of the two superconductors.
In Fig. 6.7, we depict an observed 0-π transition in dependence of the gate voltage. As
a consistency check of the exact ground state, we obtained the same phase dependence
as in Fig. 6.6 b for gate voltages above and below the transition point (not shown here).
Comparable to the experimental results, the 0-π transition is occurring close to the
border of the Coulomb diamonds, with a slight shift to the odd-occupied region.

Figure 6.7: 0-π-transition observed in dependence of the gate voltage:
Close to the borders of the Coulomb diamond (for reference here at eVg =
−1.5meV) the signs of the Ix-component (a) and of the current (c) reverse
simultaneously. The vanishing pair amplitude (b) exactly at this transition
completes the picture. The red dashed lines indicate the gate voltage of eVg =
−1.48meV in all three plots. The parameters are U = 1.5meV, γ = 0.01meV,
|∆l| = 1meV, Γ = 0.001meV, kBT = 0.05meV, ϕL = −π/4 and ϕR = +π/4.

Another 0-π transition, this time in dependence of the temperature, is depicted in
Fig. 6.8. The gate voltage of eVg = −0.45meV is associated to a configuration inside
the Coulomb diamond. Increasing the temperature towards the critical temperature
leads to a breakdown of the π-state. The temperature dependence of the supercon-
ducting gap is calculated by |∆l|(T ) = |∆l|(0) tanh (1.74

√
Tc/T − 1), where the critical

temperature is connected to the gap at zero temperature as |∆l|(0) = 1.764kBTc to a
good approximation.
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6.5 Non-equilibrium results

Figure 6.8: 0-π-transition observed in dependence of the temperature:
The temperature is expressed as the ratio to the critical temperature Tc. There
is a simultaneous sign change in the Ix-component (a) and in the current (c)
accompanied by a vanishing of the pair amplitude (b). The red dashed lines
indicate the temperature of T/Tc = 0.77 in all three plots. The parameters are
U = 1.5meV, γ = 0.01meV, |∆l| = 1meV at zero temperature, Γ = 0.001meV,
eVg = −0.45meV, ϕL = −π/4 and ϕR = +π/4.

6.5 Non-equilibrium results

In our particle-conserving framework, we are able to treat non-equilibrium transport
setups. We resort for our calculations to the transport code developed by Jordi Picó-
Cortés, where, besides the central blocks of Cooper pair imbalances outlined in Fig. 6.1,
also additional blocks can be included. For the definition of the pseudospin, we sum up
all components proportional to |2⟩⟨0| in the QD-space to C20 and proceed analogously
with C02. Except for zero bias, the code is most accurate for high bias voltages since
there, only relatively few blocks have to be considered. More information about the
limitations of the transport code for non-equilibrium calculations can be found in
[89].
In Fig. 6.9 a and b, we display the time-independent component of the current I(0)

[cf. Eq. (3.39)] for different values of the superconducting gaps. Note that this current
component is not associated to a supercurrent, but rather to a normal current (except
for the case of zero bias). The gap opening can be clearly seen in panel a, while in b the
gap is comparable to the Coulomb energy U so that the Coulomb diamond is buried
inside the superconducting gap. In the latter panel, exactly where the |2⟩- and |0⟩-state
are in resonance, which is at

2eVg + U ± eVb = 0, (6.23)
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6 Anderson pseudospin dynamics in a quantum dot

Figure 6.9: Non-equilibrium calculations: The left (right) column shows
the results for |∆l| = 0.2meV (1meV). In a, one can clearly observe the opening
of the Coulomb diamonds by 2|∆l|. For the parameter set of b, the current has
features along the resonance lines of the superconducting coherences outside
the Coulomb diamond. With the logarithm of the pair amplitudes, we highlight
these resonances further. The two gate traces at eVb = 0.2meV indicate the
plots of e-f. The parameters are ϕL = −π/4, ϕR = +π/4, γ = 0.01meV,
Γ = 0.001meV, U = 1.5meV and kBT = 0.05meV. The central five blocks of
ρ̂(∆M) are used.
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there are features in the current picture, but only outside of Coulomb diamond region.
In this parameter regime, where U and |∆l| are comparable, we predict that the
superconducting correlations will alter the dc-component of the current, and therefore,
they would be indirectly measurable. These features are even more prominent in
panel c and d, where the pair amplitude is depicted. The reasoning why the dot-pair
amplitude on the resonance is suppressed inside and outside the Coulomb diamond
is given extensively in [90]. At a first glance, one would focus only on regions of the
resonance condition in the search for high pair amplitudes, be it in or outside the
Coulomb diamonds, due to the favorable alignment of the energies of the |2⟩- and
|0⟩-state.
However, due to our findings, we want to reiterate two points. The first one is that inside
the Coulomb diamond region, it is actually better to focus on the regions which are not on
the resonance, as one can observe in Fig. 6.9 e and f, with dips exactly at the resonance
condition given by Eq. (6.23). The second major point we want to communicate, is
that the pair amplitude inside the Coulomb diamond is not predominantly induced
by the even population, as suggested by [117]. This fact would lead to an exponential
suppression of |F| due to the exponentially reduced pe facilitated by the interaction
strength U .
We want to base our argumentation on the panels of Fig. 6.2 g and h, where we see a
clear dip of the pair amplitude exactly in the center of the Coulomb diamond. This
point is fulfilling the resonance condition of Eq. (6.23) and according to it, we also can
extend this analysis to finite bias. In Eq. (6.19), we could show that the main pumping
contribution arises in these gate traces from the pumping of the odd population and not
from the even one, which we also confirmed numerically. Our explanation is in line with
the plateau-like character of the pair amplitude inside the Coulomb diamond, in spite
of an exponential increase of the even population towards the border of the Coulomb
diamonds. Another hint can be the experimental data of Fig. 6.6, which also shows
plateau-like critical current inside the Coulomb diamond, assuming the correlation
between |F| and Ic. Interestingly, we observe an exact vanishing of the main pumping
contribution from po exactly at the resonance due to ω12 = ω10. Insofar, we agree with
the observation of a suppression of |F| inside the Coulomb diamond and exactly on the
resonance as suggested in [90].
Away from the resonance lines, according to Eq. (6.16) and to the odd pumping
contribution of Eq. (6.19), we see that the pair amplitude is at least suppressed by a
factor of Γ/U inside the Coulomb diamond.
Outside the Coulomb diamond, we can confirm the antagonist role of the interaction U

in the formation of pair amplitude, with evidence that a higher value of U leads to a
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lower value of |F| (not shown here).
The gate traces of the pair amplitude |F| of panel e and f resembles the one observed
from zero bias calculation in the overall shape. However, there are particular differences.
First of all, we do not see a drop to zero pair amplitude at the minima near the charge
degeneracy points, as in Fig. 6.2 h. Comparing panel e and f, it seems that a stronger
background contribution to |F| is due to enhanced quasiparticle processes for lower
values of |∆l|. Secondly, we notice that the dips of the pair amplitude are moving
in correspondence with the resonance condition of Eq. (6.23) away from the center
of the Coulomb diamond. In general, a stronger deviation from the zero bias results
are observed in panel e, where the applied bias and the superconducting gap are of
comparable strength.

6.6 Summary and outlook

The investigation of the dot-pair amplitude, a measure of the proximity-induced super-
conducting correlations, in Josephson junctions has attracted recently a lot of interest
[93–96, 117]. In general, the pair amplitude is an ideal quantity to study the effect of
the coherent dynamics of Cooper pairs on an impurity, which is in our case a QD.
In our analysis, we studied a QD attached to superconducting leads using a density
matrix formalism, which also captures the Cooper pair space explicitly in a particle-
conserving fashion. In the leading-order of a perturbation in the coupling to the leads,
we could formulate the equations of motion and the current for finite gate voltages.
To achieve this, we are using the Anderson pseudospin formulation to describe the
superconducting correlations. The distinction to previous work is here, besides the
particle-conserving ansatz, a finite interaction as well as finite superconducting gaps of
the leads. In this intermediate regime, the quasiparticle spectrum is not pushed away
from the relevant energy scales of our system, with the consequence of a non-vanishing
pair amplitude inside the Coulomb blockade region. This result agrees qualitatively
with experimental data of a critical current 0-π transition in Josephson junctions based
on a QD in CNT setup [129]. The investigation of gate- and temperature-dependent 0-π
transitions constitutes another finding of our studies. Other than that, non-equilibrium
results of our Josephson junction are addressed. A special focus is hereby on the
discussion, where one can expect distinct features from the Cooper pair transport in
the current and in the dot-pair amplitude.

In Fig. 6.10, we display a part of the overall supercurrent obtained from finite bias
calculations. According to Eq. (3.38), the higher harmonics of the current, like the
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Figure 6.10: Time-dependent supercurrent for non-equilibrium calcu-
lations: In a, the absolute value of the current component I(−1,+1) is depicted,
while in b its sign. Red regions indicate a 0-state and the blue ones a π-state.
The parameters are ϕL = −π/4, ϕR = +π/4, γ = 0.01meV, Γ = 0.001meV,
U = 1.5meV, |∆l| = 0.2meV and kBT = 0.05meV. The central five blocks and
additionally the ρ̂[(±1,∓1)]-blocks are used for this calculation.

depicted I(−1,1), are time-dependent. The frequency of I(−1,1) is 2eVb/ℏ. The analysis of
the features in the supercurrent harmonics in non-equilibrium situations is a promising
area of research [89]. It could help to explain, in a rigorous fashion, non-sinusoidal
behavior of the supercurrent. Other than that, one could explore 0-π transitions in
non-equilibrium situations. Together with a complete inclusion of all Γ2-terms, one
could lay the cornerstone of a consistent particle-conserving theory, which possibly helps
us to understand superconducting phenomena in all its facets.
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Final conclusion

7
In this thesis, we elaborated on pseudospin dynamics in hybrid nanojunctions, whereas
the pseudospin was used for the description of two conceptionally different observ-
ables.
In the first occurrence, the pseudospin degree of freedom captures the orbital degree
of freedom of a DQD. In this spirit, presented in Cha. 4, we brought the concept of
spin resonances, shown to exist in spin valves, to the pseudospin degree of freedom. In
its essence, pseudospin resonances appear due to the lifting of a valve configuration by
fine-tuning the prevailing exchange fields. The effect is a bending current signal cutting
through the otherwise featureless Coulomb diamonds of the DQD. This pseudospin
approach has some decisive advantages in terms of its experimental realization. First
and foremost, it greatly enlarges the number of possible host candidates for observing
this particular interference effect since many materials, as for example CNTs, exhibit a
pseudospin degree of freedom. Other than that, we could show that there is a great
flexibility to achieve the necessary pseudospin valve configuration by having to change
only the tunneling couplings from the QDs to the leads. In contrast, the spin polarization
strength often relies on material properties and is thus hardly tunable. In this chapter,
we also observed the emergence of synthetic spin-orbit with the intertwinement of
spin and pseudospin in the setups due to the exchange fields at the origin of the
pseudospin resonances. Hereby, the question arose if the spin and pseudospin degree
are interchangeable in the utilization for spin and pseudospin resonances.
In Cha. 5, we addressed the former question by a generalization of spin and pseudospin
resonances in terms of the lead polarization directions. The difference of the spin space
with regard to the pseudospin space manifests itself in the setup of a spin valve with
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additional parallel pseudospin polarization of the leads. There, an even greater variety
of current resonances in the one-particle Coulomb diamond could be observed. At the
root of the richness of the features is the interaction-induced anisotropic character of
the pseudospin of the DQD in comparison to its isotropic spin space. The spin and
pseudospin vectors of our system are governed by a delicate interplay of decoherence,
pumping, and precession which can only be understood by also considering the dynamics
of the spin-pseudospin correlators. Moreover, we could show that varying the pseudospin
polarization of the leads with respect to the hard axis of the pseudospin, caused by
the energetically unfavorable condition of a double occupation of one of the QDs, leads
to entangled resonances. An analysis of the arising entanglement of the spin and the
pseudospin in the DQD, which goes beyond a mere correlation, is hereby a central result
of this chapter. Last but not least, we could conclude our investigation of spin and
pseudospin resonances by identifying dephasing rather than precession as their main
generating mechanism.
In the second utilization of the pseudospin degree of freedom, we use it in Cha. 6
to describe proximity-induced superconducting correlations. In our model of a QD
attached to superconducting leads, we deploy a density matrix formalism which is
capable of accounting explicitly in a particle-conserving fashion the Cooper pair space.
We believe that this ansatz can overcome some fundamental problems non-equilibrium
calculations are facing in this field. A central point of investigation is the dot-pair
amplitude, captured by the Anderson pseudospin. We focus here on the leading-order
of a perturbation in the coupling to the leads, while using a finite interaction and
finite superconducting gaps for the leads. In this intermediate regime, we observe a
non-vanishing dot-pair amplitude inside the Coulomb blockade region. Furthermore, we
are able to identify the tunneling events, tied to the odd population of the QD, behind
this dot-pair amplitude accumulation. Moreover, we connect the dot-pair amplitude
to experimental data of 0-π transitions in Josephson junctions, which shows a good
qualitative agreement with our findings. Stipulated by this comparison, we examine
in detail critical current 0-π transitions, depending not only the applied gate voltage
but also on the prevailing temperature. We conclude our studies with non-equilibrium
results for the dot-pair amplitude and the current. In particular, we elaborate here on
the expected resonances in the two quantities, which stem from the interplay of Cooper
pair and quasiparticle tunneling.
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Sequential tunneling energy integral

A

The sequential tunneling contribution to the Kernel from Eq. (1.18) was given by

K̃(2) =
−i

2π

∑
nmp
lα1α2

∫
dεΓl,p

n,md̂p̄,α2
n

α1α2f
(pα1)
l (ε)

i0++pε−iℏLS
d̂p,α1
m P. (A.1)

The Fermi-function in this expression is obtained by the trace over the bath stemming
from P and used the bath correlators of the Fermi-Dirac statistics

TrB
{
ĉp,αlkσl

ĉp
′,α′

l′k′σ′
l′
ρ̂B

}
=
〈
ĉp,αlkσl

ĉp
′,α′

l′k′σ′
l′

〉
= δll′δσlσ

′
l′
δkk′δpp̄′f

(pα′)
l (εlkσl

) . (A.2)

The superscript of the Fermi-function in Eq. (A.2) (pα′) stems from the general expres-
sion Tr{ĉ†lkσl

ĉlkσl
ρ̂B} = ⟨n̂⟩ = f+

l (ξlσlk) and applying the cyclic property of the trace
for the different cases of left operators α = + and right operators α = −.
In order to solve the energy integration, we define the Y n-function with the integration
variable x and its energy argument µ which the latter are both renormalized by kBT .
Furthermore, we take the Fermi-function with a dimensionless input parameter f (n)(x) =

1/[exp(nx) + 1], and the Lorentzian-cutoff-function L(W̃ , x) = W̃ 2/(x2 + W̃ 2):

Y n (µ) := − i

2π

∫
dx

f (n)(x)L(W̃ , x)

x− µ+ i0+
. (A.3)

The Lorentzian-cutoff-function originates from the applied wide-band limit with the
dimensionless wide-band constant W̃ = W/(kBT ) to ensure the convergence of the
integration.
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A Sequential tunneling energy integral

With the help of the residuum theorem, one obtains

Y n (µ) =− 1

2
fn(µ)− in

2π

[
ReΨ(0)

(
1

2
+

iµ

2π

)
− C

]
=− 1

4
− in

2π

[
Ψ(0)

(
1

2
+

iµ

2π

)
− C

]
, (A.4)

with the constant C defined as C = Ψ(0)[1/2 + W̃/(2π)] [28]. A detailed derivation of
this result is given in Appx. A of [20]. One can either derive it based on a residuum-only
ansatz or with the help of the Sokhotski-Plemelj theorem. The digamma-function,

Ψ(0) (z) := −
∞∑
n=0

1

n+ z
+

∞∑
n=1

ln

(
1 +

1

n

)
, z ∈ C, (A.5)

is closely related to the Fermi-function by

ImΨ(0)

(
1

2
+

ix

2π

)
=

π

p

[
1

2
− fp(x)

]
, x ∈ R, p ∈ {±1} . (A.6)

Since the constant C always disappears when summing over the α-indices, we can drop
C from the sequential tunneling Kernel (proof can be found in Appx. B of [20]). The
final expression for the second-order Kernel K̃(2) is obtained by inserting the energy
integral function Y n into Eq. (1.18)

K̃(2)ρ̂∞ =
∑
nmp
l α1 α2

α1α2 Γ
l,p
n,md̂p̄,α2

n Y α1

(
∆Empα1 − pµl

kBT

)
d̂p,α1
m ρ̂∞. (A.7)

Here we included the density matrix to highlight the fact that the energy difference
∆Empα1 depends on the action of d̂p,α1

m -superoperator on the density matrix. This
superoperator changes the density matrix, on which then the system Liouvillian LS is
acting on to retrieve an energy difference ∆E. This projection is explicitly shown in
[19].
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B
The fourth-order Kernel can be formally split into the contributions K̃(4,D),

K̃(4,D) =
−iℏ
(4π)2

∑
{l}{p}

∑
{m}{n}

∑
{αi}

∫
dε

∫
dε′α1α4d̂

p̄,α4
n

f
(p′α2)
l′ (ε′)

i0++pε−iℏLS
d̂p̄

′,α3

n′

Γl,p
n,mΓl′,p′

n′,m′

i0++pε+p′ε′−iℏLS
d̂p

′,α2

m′
f
(pα1)
l (ε)

i0++pε−iℏLS
d̂p,α1
m P, (B.1)

and K̃(4,X),

K̃(4,X) =
iℏ

(4π)2

∑
{l}{p}

∑
{m}{n}

∑
{αi}

∫
dε

∫
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n

f
(pα2)
l (ε)
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d̂p̄

′,α3

n′

α1α4Γ
l,p
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d̂p,α2
m

f
(p′α1)
l (ε)

i0++p′ε′−iℏLS
d̂p

′,α1

m′ P. (B.2)

There appear two qualitatively different integrals which can be expressed in terms of
two types of functions, respectively the D- and X-functions. They are defined as

Dnn′
(µ, µ′,∆) =

−iℏ
4π2

∞∫
−∞

dx

∞∫
−∞

dx′
f (n) (x)

x− µ+ i0+
1

x+ x′ −∆+ i0+
f (n′) (x′)

x− µ′ + i0+

=
2π2n (iπ + 2Cn′)

iℏ (µ− µ′)

[
Ψ(0)

(
1

2
+

iµ

2π

)
−Ψ(0)

(
1

2
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iµ′

2π

)]
− 2πnn′

ℏ

∞∑
k=0

Ψ(0)
(
1 + k + i∆

2π

)(
k + 1

2 + iµ
2π

)(
k + 1

2 + iµ′

2π

) , (B.3)
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and

Xnn′
(µ, µ′,∆) =

iℏ
−4π2
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−∞

dx

∞∫
−∞

dx′
f (n) (x)
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(
1

2
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iµ′
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)
−Ψ(0)

(
1

2
+
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The D- and X-functions can be written in closed form, i.e., without an indefinite sum,
for several special cases (e.g., ∆ = 0). In Appx. C of [20], these special cases can be
found, as well as a discussion about a numerical implementation of a transport code
based on these integrals. Since the expressions for the energy integrals include both the
real and the imaginary part, one can calculate on the same footing the time evolution
of the coherences and populations and is not dependent on an effective treatment of
the fourth-order Kernel (cf. Cha. 1.3 of [26]). The final form of the fourth-order Kernel
expressed with the D- and X-functions yields then

K̃(4)ρ̂∞ =
[
K̃(4,D) + K̃(4,X)

]
ρ̂∞

=
∑

{αi}{l}
{n}{m}

{p}

α1α4

kBT
Γl,p
n,mΓl,′p′

n′,m′

[
Dα1α2(ν, ξ, δ)d̂p̄,α4

n d̂p̄
′,α3

n′ d̂p
′,α2

m′ d̂p,α1
m

+Xα2α1(ν, τ, δ)d̂p̄,α4
n d̂p̄

′,α3

n′ d̂p,α2
m d̂p

′,α1

m′

]
ρ̂∞, (B.5)

with ν = (∆Ej3 −pµl)/(kBT ), ξ = (∆Ej1 −pµl)/(kBT ), δ = (∆Ej2 −pµl−p′µl′)/(kBT )

and τ = (∆Ej1 − p′µl′)/(kBT ). The subscripts {j1, j2, j3} of the energy differences ∆E

indicate that these energies depend on the variables of the first (α1, p,m), two first
respective three first d̂-superoperators.
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Diagrammatic rules

C

In this chapter, we provide the diagrammatic rules for the single-timeline Liouville
space. The following rules are to a large degree a repetition of the rules formulated by
Michael Niklas and Andrea Donarini in their work [18, 19], with only a slight adoption
to my notation and a small correction in terms of the αi-indices.

• Draw a propagation line oriented from right to left. Fix on it 2n vertices, each
associated with a Liouville index α = ±.

α2n ... α1α2

• Draw n fermionic lines, all oriented from left to right, each labelled with an index
pi = ±, an overall lead index bi comprising of its spin σ, lead l and energy εi,
connecting the 2n vertices in such a way that the diagram cannot be cut in two
parts without cutting a fermionic line. Example:

p2, b2, ε2

p1, b1, ε1

α4 α1α3 α2

• Assign to each propagation line an energy. External lines have zero energy. The
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C Diagrammatic rules

energy is conserved at vertices.

ω + piεi ω

pi, bi, εi

ω ω + piεi

pi, bi, εi

• Assign to each fermionic line the corresponding Fermi-function f
(piαi)
l (εi), where

αi is the Liouville index of the rightmost vertex, as well as the corresponding
tunneling rate matrix ℏ/(2π)× Γl,pi

n,m with a prefactor. The indices of the Fermi-
function and the tunneling rate matrix must be consistent with the fermionic
line.

• Assign to each vertex a system operator d̂pi,αi
n or d̂p̄i,αi

n , respectively, for the
vertex with an ingoing or outgoing fermionic line. These creation and annihilation
operators of the n state must be consistent with the fermionic line n(bi = σ, l).

• Assign to each propagation line between vertices the propagator

G(ω) = 1

i0+ + ω − iℏLS
,

where ω is the corresponding energy.

• Write the product of vertex superoperators and propagator, from right to left,
respecting the order of the graph, while adding the Fermi-functions and tunneling
rate matrices identified earlier.

• Multiply by the prefactor (−i/ℏ)Πiαi(−1)P{αi}, where P{αi} is the number of
equal sign vertex permutations necessary to recast the graph into a completely
reduced form, which respect of the time ordering of

n
...

2 1

Other than that, for each permutation, the factor −αiαi′ should be added.

• Add the summation over all αi, pi, li and σi indices as well as the energy integrals:∑
{αi}

∑
{pi}

∑
{li}
∑

{σi}
∫
dεi. The density of states are already included in the

respective tunneling rate matrices.
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Acronyms

BCS Bardeen–Cooper–Schrieffer.

CNT carbon nanotube.

CST coherent sequential tunneling.

DQD double quantum dot.

EPR Einstein–Podolsky–Rosen.

GME generalized master equation.

GMR giant magnetoresistance.

MRI magnetic resonance imaging.

QD quantum dot.

S-QD-S superconductor-quantum dot-superconductor.

SGPA surface Γ-point approximation.

SIAM single-impurity Anderson model.

SOI spin-orbit interaction.

STM scanning tunneling microscope.
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Acronyms

TAMR tunneling anisotropic magnetoresistance.

TMR tunneling magnetoresistance.
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