Light-matter coupling utilizes quantum fluctuations of electromagnetic fields
of the vacuum to shape and control properties of matter excitations and even
the vacuum ground state itself. This thesis explores new regimes of
ultrastrong and deep-strong light-matter coupling, presenting record
coupling strengths and new schemes for controlling the interaction of light
and matter modes, on strongly sub-wavelength scales and simultaneously
faster than an oscillation cycle of light. These accomplishments are the result
of a novel approach of coupling tailor-cut cyclotron resonances of
two-dimensional electron gases hosted in semiconductor quantum wells to
subwavelength THz modes of a new generation of plasmonic resonator
structures.

First, lateral shaping of the quantum wells tailors the spatial overlap of the
vacuum electric field and the polarization field of the matter excitation. This
allows us, similar to the selection rules in classical optics, to custom-tailor the
overlap between multiple matter and cavity modes. The introduction of
off-resonant, multi-mode coupling offers a new quality of the vacuum
ground state characterized by polaritons spanning over as much as 6 optical
octaves, a vacuum population of 1.17 virtual photons and 1.06 virtual
magnetoplasmon excitations, resulting in an equivalent light-matter coupling
strength of Qr/w. = 3.19. Moreover, we drive an ultrastrongly coupled system
with strong, coherent THz waveforms competing with the vacuum electro-
magnetic field and observe strong, non-perturbative nonlinearities up to
eight-wave mixing. These nonlinear polariton correlations beyond the
normal-mode approximation set the stage for nonlinear optical control of
deep-strong coupling. Finally, we demonstrate a highly non-adiabatic

switch-off of deep-strong coupling by selective photodoping of a switching
element, collapsing the cavity field quasi-instantaneously and decoupling-
light and matter on time scales ten times faster than a cycle of light. In.
combination with the record vacuum photon population, this paves the way N
for the detection of vacuum radiation in a table-top experiment, in similarity. s "\

to Unruh-Hawking radiation from black holes.
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Chapter

Introduction

Success is not the key to happiness.
Happiness is the key to success.
If you love what you are doing, you will

be successful.

— Albert Schweitzer

What is vacuum? This question about the nature of absolute nothingness has
been asked again and again over the course of the history of science - with very
different answers. Going back in time, Isaac Newton [New18] (and many others)
postulated an aether, that surrounds everything, is everywhere, and allows light
to travel through space. However, this idea could not be proven even with very
sophisticated measurements, such as the Michelson-Morley interferometer [Mic81].
Albert Einstein’s theory of special relativity then assumed the vacuum as a completely
empty space, where no supporting medium for electromagnetic waves is necessary. In
1916, he described spontaneous emission as one of the three processes that can occur
when light and matter are interacting [Ein16]. Building on the work of Dirac [Dir27],
and expanding Einstein’s work by introducing the concept of second quantization,
modern quantum dynamics no longer considers the vacuum as empty and can explain
the process of spontaneous emission as stimulated emission by vacuum fluctuations. In
fact, a finite ground state energy accompanied by the presence of vacuum fluctuations

exists in every system [Dys49, Pes95].
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Figure 1.1 | Light-matter coupling. a, Illustration of the vacuum field Ey,. of a
cavity, coupled to an atomic transition with a frequency of wys. b, Splitting of the
lower polariton (LP) and the upper polariton (UP) by 2Qg with increasing coupling
strength Qg /wa.

The intriguing fact, that matter can actually interact with this “nothingness”, that
the quantum vacuum is, has opened up the possibility to modify and tailor this
interaction, sprouting the field of cavity quantum electrodynamics (cavity-QED). The
first example of such a modification of matter properties with vacuum fields is the
Purcell effect [Pur46]. Purcell predicted that the rate of spontaneous emission for
an atom can be enhanced (or suppressed) by placing it in a resonant cavity (Fig.
1.1a). Doing so, the atomic system with a transition frequency of wis and the cavity
vacuum field E,. start to exchange energy. When reducing the cavity and the atom
loss rates, eventually, the energy exchange rate, called the vacuum Rabi frequency
Qr, exceeds the losses and we enter the regime of strong coupling (SC). In this
regime, first observed by Kaluzny et al. [Kal83], the periodic exchange of energy
between the vacuum field and the matter system occurs at the frequency Qg, with

Qr < d X Egae x VN, (1.1)

where d is the dipole moment of the atomic transition (or any other resonance that
can be coupled to) and N is the number of equivalent atoms inside the cavity. The
coupling results in the formation of new eigenstates of the system, light-matter
hybridized states called polaritons (Fig. 1.1b). These new eigenstates, the lower (LP)
and upper polariton (UP), are separated in frequency by 2Qg. The strength of the



interaction is quantified by the normalized light-matter coupling strength n = Qg /w1s,
defined as the quotient of the vacuum Rabi frequency and the unperturbed frequency
of the coupled matter system at resonance. Coupling to single atoms severely limits
the achievable coupling strength as intrinsic atomic dipole moments are very small
and the transition frequencies are comparatively high. To reach higher coupling
strengths, one has three options (see Equation 1.1): use collective excitations to
massively increase IV, reduce the cavity mode volume to boost E,. or choose other
excitations with large dipole moments d. Following this strategy, one can reach the
regime of ultrastrong coupling (USC), where Qg reaches the order of magnitude
of wia [Ana09, Gu09]. Here, the extremely strong coupling profoundly alters the
vacuum ground state, giving rise to an intriguing and exotic vacuum ground state
characterized by a population of virtual excitations of both light and matter systems.
These virtual excitations are called “virtual” because, under usual circumstances,
the vacuum ground state and its fluctuations cannot emit radiation.

This fundamental coupling-induced change of the properties of the quantum vacuum
[Ciu05, FK19, FD19] is at the centre of a multitude of fascinating and groundbreaking
phenomena, such as Bose Einstein condensation of exciton-polaritons in solids [Den10],
vacuum-modified transport [Orgl5, Barl8, PB19, Val21, App22], the vacuum Bloch-
Siegert shift [Lil8], light-matter decoupling [DL14], nonlinear optics with virtual
photons [Kocl7], novel light sources [Garl7], single-photon manipulation [Rid12],
irregular photon transfer [Fell4], squeezed quantum states of light [Fed16], creation of
photon-bound excitons [Cor21], coherent polariton scattering [Kno22], superradiant
[Hep73, Wan73] or other phase transitions [Sch19]. This ability to change the vacuum
ground state even started the field of cavity chemistry [Hut12, Chil6, Her16, Thol9,
Dun22, Sch22]. As the number of virtual excitations scales with the coupling strength,
the stronger the coupling, the more pronounced the effect. When Qg surpasses the
eigenfrequencies of the light and matter systems, they exchange one energy quantum
faster than one oscillation cycle of the light mode and the deep-strong coupling regime
(DSC) is reached. As of now, this regime has only been achieved with a few select
material systems: superconducting qubit-oscillator circuits with GHz frequencies
[Yos17], followed by Landau polariton systems in the terahertz (THz) regime [Bay17]

and plasmonic nanoparticle crystals [Mue20].



1. Introduction

While vacuum fluctuations are ubiquitous in quantum mechanics and indirectly
manifest in various effects such as the Casimir effect [Cas48] and the Lamb-shift
[Lam47], so far, they have not been measured directly. Recently efforts using electro-
optic sampling in a nonlinear crystal to measure vacuum noise and correlations of
the vacuum [Riel5, BC19] have been made. Hawking [Haw74, Haw75] and Unruh
[Unr76] postulated a mechanism at the event horizon of black holes that leads to
a photon flux coming from a black hole, as the strong space-time gradient at the
event horizon can generate real photons from vacuum fluctuations. Measuring these
photons is however illusive due to practical reasons, e.g. travelling to the vicinity
of a black hole and the small photon flux. However, a non-adiabatic change of the
vacuum ground state of an ultrastrongly or deep-strongly coupled system has been
demonstrated [Gi09, Hal20] and is postulated to convert virtual photons to real
ones [Lib07, G109, Garl3, Hal20], very similarly to the mechanism considered by
Hawking and Unruh and the dynamical Casimir effect [Moo70, Lam96, Will1].
Measuring such a virtual photon emission from an extremely strongly light-matter
coupled system poses multiple challenges towards the system of choice and the
measurement itself. As a prerequisite, one needs a system with the largest possible
number of virtual photons in the ground state to maximize the number of radiated
photons. Additionally, one requires a way to modulate the coupling strength with
sufficient contrast [DL17] and on a timescale of less than one cycle of the light-matter
energy exchange, i.e., non-adiabatically. Lastly, to detect the emission, it is necessary
to be able to detect single photons in the respective wavelength range. On a more
general note, such a subcycle control mechanism of the coupling also opens up new
possibilities for controlling all the aforementioned effects made possible by coupling
to vacuum fluctuations, such as the capability to modify transport, manipulate
chemical reactions, and induce phase transitions.

In this work, I showcase a series of breakthroughs that not only pave the way
for measuring virtual photon emission, but also unveil multiple innovative tech-
niques for shaping and controlling ultrastrong and deep-strong light-matter coupling
on nanoscale length- and subcycle (sub-one-oscillation-cycle-of-light) timescales —
achieving a new level of precision and control. Chapter 2 gives an introduction to
the theory description of deep-strong light-matter coupling, a detailed look into the

vacuum ground state and the system of choice to implement deep-strong coupling: cy-



clotron resonances of two-dimensional electron gases in quantum well stacks coupled
to planar metasurface resonator arrays. In chapter 3, I show how one can combine
the regimes of light-matter coupling, governed by the vacuum Rabi frequency, with
strong-field physics, governed by the Rabi frequency of a coherent classical field,
both driving the system simultaneously. This ultrafast control mechanism induces
nonlinearities breaking the normal-mode approximation and lets the polaritons, our
new eigenstates, interact with each other to create custom-tailored nonlinearities. In
chapter 4, an additional degree of freedom for shaping the light-matter coupling is
explored - structuring not only the metasurface array, but also the quantum well
plane. This method offers precise control over the modal overlap and the possibility
to explore the multi-mode coupling regime for multiple cavity modes. Chapter 5
capitalizes on to the concept of multi-mode coupling by introducing multiple matter
modes, magneto-plasmons, to establish a new coupling and virtual photon population
record, achieving, for the first time, an expectation value of over one whole-photon
in the vacuum ground state. In chapter 6, I present a novel and minimally invasive
mechanism to switch-off a deep-strongly coupled system on strongly subcycle time
scales. Together with the increased number of virtual photons shown in chapter 5
and further developed optimizations, this mechanism paves the way for the detection
of virtual photon emission. Chapter 7 concludes this thesis with exciting outlooks for
the novel possibilities to control and shape vacuum photon mediated effects, ranging

from cavity chemistry to quantum information processing.






Chapter

Deep-strong light-matter coupling

Light-matter coupling can be observed in a multitude of systems, ranging from single
atoms to organic molecules and semiconductor structures, as long as the transition
features a dipole moment d that the vacuum field, enhanced by a cavity, can couple
to. The strength of the interaction is characterized by the normalized coupling
strength, n = Qgr/wia, the quotient of the vacuum Rabi frequency, Qg, and the
frequency of the matter transition, wys.

When Qg is greater than the loss rates of the cavity and matter systems, 7eay
and Ymat, strong coupling (SC) is achieved (figure 2.1). Here, a coherent energy
exchange between light and matter modes takes place and as a result, polaritons as
the new light-matter hybrid eigenstates form. This dynamic can be described with a
basis rotation in the rotating-wave approximation (RWA). With > 0.1, ultrastrong
coupling (USC) is reached. Here, the counter-rotating terms and their faster dynamics
no longer contribute only weakly to the overall dynamics. Thus, they can no longer

be neglected, and the RWA breaks down. These counter-rotating terms, such as ab

weak strong ultrastrong deep-strong
coupling . coupling . coupling . coupling

Veav/ W12, 0.1 1.0 Qr /ona
’Ymat/w12

Figure 2.1|Regimes of light-matter coupling: weak coupling, Qr/wiz >
Yeav /W12, Ymat/wi2: strong coupling, > 0.1: ultrastrong coupling, > 1.0: deep-strong
coupling.



2. Deep-strong light-matter coupling

or a'b' in second quantization, no longer preserve the number of excitations and are
responsible for the creation of the characteristic vacuum ground state population.
When the coupling strength surpasses one, n > 1, deep-strong coupling (DSC) is
reached. Here, for DSC, the important prerequisite for strong coupling, that the
loss rates of both systems are smaller than the vacuum Rabi frequency 2, becomes
more and more irrelevant [DL17, FK19], as even over-damped coupled resonances
(Yeav > Weay OF Ymat > wi2) are able to fulfil the condition Qr > Yeav, Ymat-

To accurately describe the wealth of different light-matter coupled systems, several
tailored theories are available. Strongly coupled systems with one atomic transition
can be described using the Jaynes-Cummings model [Jay63] or including non-resonant
contributions for USC with the quantum Rabi model [Rab37]. These models can be
expanded to multi-atom systems with the Tavis-Cummings model [Tav68] and the
Dicke model [Dic54]. These fermion-boson Rabi models can be further generalized to
a purely bosonic model, called the Hopfield model [Hop58], to describe the coupling to
collective excitations such as the cyclotron resonance, or plasmons. Models describing
the transition from the fermionic Rabi model to the bosonic Hopfield model have
also been developed [Tod14].

Sometimes the additional regimes of very-strong-coupling (VSC) and multi-mode
strong-coupling (MMSC) are used to further classify the coupling. VSC is reached,
when Qg is on the order of the spacing of the levels in the matter system [Brol7,
Raj21], while MMSC is reached when Qg is comparable to the spacing of the resonator
modes [Sunlb, Cor21, Bal21]. While SC, USC and DSC are usually studied in the
context of light-matter coupling, (ultra-)strong coupling can also be present between
other systems, e.g. magnons [Bas21, Mak21]. In the following, our focus centres
on the Hopfield model, as our objective is to achieve DSC, wherein the employed
cyclotron resonance represents a bosonic, multi-particle excitation. In chapters 4 and

5, we will extend this model to encompass the VSC and MMSC regimes as well.

2.1. Theory of bosonic light-matter coupling

To describe the coupling of a single (bosonic) cavity mode to another bosonic mode
(see Fig. 2.2), such as the collective cyclotron resonance of a two-dimensional electron

gas, we use Hopfield’s model [Hop58, Ciu05, Hagl0, Cor23] in second quantization.
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3
. 2
cavity A
0

Figure 2.2 | Bosonic ultrastrong coupling. Illustration of resonant ultrastrong
coupling of a single cavity mode (upper parabola) to a single matter excitation
(bottom parabola) with a vacuum Rabi frequency Qgr. The population by virtual
excitations in the vacuum ground state is indicated by semi-transparent spheres.
Adapted from [Mor23a].

Let us consider the Hamiltonian describing a two-dimensional electron gas (2DEG)
of N electrons of charge —e and effective mass m* interacting with a photonic field

of a resonator in the Coulomb gauge,

N 2
PO N (p; +eA(r))
HZHEM""Z%

Jj=1

+V(r), (2.1)

expressed in terms of the electric and magnetic field vectors E(r) and B(r) (contained
in the electromagnetic field Hamiltonian Hpy, see appendix E), the potential vector
A(r) and the Coulomb potential V(r). Here we employed the minimal coupling
substitution (p — P + eA).

Omitting the possibility of multiple cavity modes and multiple matter modes as
well as assuming perfectly bosonic modes, we can simplify the Hamiltonian. The
full derivation is featured in appendix E. Models including multiple modes will be
discussed in chapter 4 and 5. After multiple rearrangement steps, the Hamiltonian

reads:

H =Hg, + H, + Hy + Ay (2.2)
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Here, the light field of the cavity is described in second quantization with the creation

and annihilation operators af and @ and a frequency weay:
N o1
Heoy =hweay | G'a + 5 . (23)

The collective cyclotron resonance of the electrons is described in second quantization
with the creation and annihilation operators, bt and I;, and a frequency w,, and
originates from the interaction with the applied static external magnetic field, included

in the potential vector A(r):
- a1
A, —he, (bfb + 5) . (2.4)

The minimal coupling is also responsible for two more terms, the interaction Hamil-
tonian I:Iim, and the so-called self-interaction or diamagnetic term ﬁdia, denoted
by

Hiy =1 (af +a) (B +) , (2.5)
Hi :hj}%‘ (af + a)2 . (2.6)

c

Hgi describes a cavity frequency blue shift and originates from squaring A(r) in the
minimal substitution. The vacuum Rabi frequency Qg, describing the strength of the
interaction, contains the overlap of the light and matter modes, the dipole moment
and the number of electrons N. ﬁim includes anti-resonant interactions, beyond the
RWA | not included in the Jaynes-Cummings model and the Tavis-Cummings model.
These terms, a'b" or @b seem to violate energy conservation and are responsible for

the modified vacuum ground state and the population of virtual photons.

A Bogoliubov transformation diagonalizes A in the new polariton basis of the lower
(LP) and upper polariton (UP),

H=FEc+ Y. hwsplps, (2.7)
Be{LP,UP}

10



2.1. Theory of bosonic light-matter coupling

where Eg is the ground state energy and pg is the annihilation operator of a polariton,
s = .’L’g& + wlg?l + ’yg&j + Z@Bt, (28)

with |zs]> + Jws)® — |ys|* — |2s° = 1. The vectors vg = (z4,ws, ys, 23)" are the
eigenvectors for the Hopfield-matrix M, representing the Hamiltonian H , such that

Muvg = wgvg:

Weav T 2D QR 2D QR
Q A Q 0
M= R w R (2.9)
2D O —Wew —2D —Og
7QR 0 *QR —We

2
}%R. For strong coupling, & < 1, the polariton operator can be

We

with D =
approximated in the RWA as

ﬁ@ = ’Iﬂ(Al =+ 11}“3?;. (210)

In the case of resonance (weay = We) and strong coupling, the polariton frequencies

are given by
wLpup) ~ We F Or (2.11)

and thus, the two polaritons are separated in frequency by 2Qg. For USC or DSC,
the diamagnetic shift must be included:

wrp(up) = \/w¢ + () F Qg (2.12)

The diamagnetic shift inhibits the lower polariton from reaching zero and as such,
the polaritons split in frequency asymmetrically (Fig. 2.3a). When sweeping the
resonance condition we/we.y (Fig. 2.3b), regardless of coupling strength, the lower
polariton always starts at a frequency of w/ = 0 for w. = 0. Due to the diamagnetic
shift, the upper polariton starts at a finite frequency above the bare cavity frequency

Weay, depending on the coupling strength. With increasing w,, the LP increases in

11
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Figure 2.3 | Polariton splitting of bosonic ultrastrong coupling. a, Splitting
of the lower polariton (LP) and the upper polariton (UP) with increasing coupling
strength Qg /w.. b, Polariton frequencies as a function of w,/weay for three different
coupling strengths: no coupling (grey), Qr/w. = 0.1 (blue), Qg /w. =1 (yellow) and
Qr/w. = 2 (red).

frequency and asymptotically approaches the bare cavity frequency. The UP curves
upwards in frequency and asymptotically approaches the cyclotron frequency we.

If the LP could reach zero or negative frequencies, a superradiant phase transition,
also called the Dicke phase transition, may take place. Whether such transition
can take place when the diamagnetic term is absent, was and still is an ongoing
debate [Hep73, Wan73, Rza75, BB79, Bak13] and depends on the specific details of
the coupled systems. For the coupling to the cyclotron resonance of electrons in
QWs with a parabolic dispersion, as considered in this thesis, the diamagnetic terms

are present, preventing the Dicke phase transition from occurring.

2.2. Vacuum ground state properties

With the strong light-matter interaction of ultrastrong and deep-strong coupling, the
anti-resonant interaction terms in the Hamiltonian become relevant and eventually
dominate with increasing coupling strength. This results in a strongly modified
vacuum ground state. The quantum vacuum state |Gy) is the quantum state with

the lowest possible energy, given by @ |Go) = b|Go) = 0 for our uncoupled systems.

12



2.2. Vacuum ground state properties

For ultrastrong coupling, the ground state |Gg) of the uncoupled system no longer
fulfils & |Go) = b|Go) = 0. Its unusual properties and the resulting consequences will

be discussed in the following.

The most prevalent change of the vacuum ground state is its finite number of virtual
excitations. We calculate the virtual photon number in the system as <G |&f&‘ G>,

where the new ground state, dressed by the light-matter interaction, is defined as

pg|G) = 0. By introducing the inverse Bogoliubov transformation,

a= Y (wips—yeb}), (2.13)
Be{LP,UP}

and by calculating the expectation value in the ground state we obtain

Np = <G(afa

G) =33 (waph — yiis) (235 — yorily)
B B
= lyrel* + lyoe[*. (2.14)

This number of virtual photons in the ground state Np is displayed in Figure 2.4a as
a function of the coupling strength. While for low coupling strength the number of
photons scales quadratically, in the deep-strong coupling regime Np scales linearly

with the coupling strength.

As a result of the virtual population, the vacuum ground state gets significantly
modified. To further explore the properties of this exotic vacuum, we perform
calculations with the “quantum toolbox in Python” (QuTiP) [Johl3]. Here we
approximate the bosonic harmonic oscillator systems with 30 levels in order to
be able to numerically calculate the number state distribution. The calculations
reveal that the vacuum ground state features a non-classical Fock state occupation
distribution (Fig. 2.4b). More precisely, the occupation probability does not diminish
monotonically as a function of the photon number for the example of deep-strong
coupling with 7 = Qg /w. = 3.0. Instead, it displays a higher probability for the two-
photon state |2) as compared to the single photon state |1). The Wigner function
representation for the photonic state, as a function of the complex phase space
parameter «, is displayed in Figure 2.4c-e for three varying coupling strength. With

no coupling, Qr /w. = 0, (Fig. 2.4c), the Wigner function is a (rotational symmetric)

13
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Figure 2.4 | Squeezed vacuum ground state of an ultrastrongly coupled
system. a, Mean ground state population of virtual photons Np as a function of
the coupling strength Qg /w.. b, Virtual photon population with Qr/w. =1 (blue)
and Qg /w. = 3 (red). c-e, Wigner function representation for the photonic state for
¢, Qr/w. =0, d, Qr/w. =1 and e, Qg /w. = 3. Adapted from [Mor23a].

Gaussian function. For a coupled system (Fig. 2.4d,e), the Wigner function is
compressed in one direction, displaying strong squeezing of the vacuum ground state.
The same calculations can be made for the matter part of the coupled system,
achieving identical results, as long as a bosonic system is considered. This exotic
ground state with its virtual populations is at the core of the many achievements
and applications of USC and DSC. Therefore, in these regimes the number of virtual
excitations in the ground state provides a more suitable measure for characterising
the strength of the coupling, compared to the typically used normalized coupling
strength. To further advance the field of USC and DSC, it is critical to increase the

virtual excitation numbers to enhance their effects. In chapter 5, we will explore

14



2.3. Ultrafast 2D THz-magneto-spectroscopy

record-breaking, extreme coupling with more than one virtual photon in the vacuum
ground state and the corresponding exotic ground state properties. Yet, it is equally
important to gain control of the coupling mechanism in space and time, to tailor its

region of effect and to be able to switch the coupling on and off on demand.

2.3. Ultrafast 2D THz-magneto-spectroscopy

In order to measure the data presented in this thesis, we use a custom-tailored, ultra-
fast 2D THz-magneto-spectroscopy setup. Here we employ phase-stable, broadband,
single-cycle THz pulses to measure the linear and nonlinear response of our samples
in the THz regime. We record the transmitted THz waveform with electro-optic sam-
pling [Wu95, Nah96, Lei99], which allows us to trace the electric field profile £(¢) of
the THz pulses with subcycle precision and extract the spectral amplitude and phase
via a Fourier transform. Electro-optic sampling also enables us to measure subcycle
resolved time dynamics when exciting the samples with strong THz fields or optical
pumping. At the same time, we can cool the sample to cryogenic temperatures and
apply an external magnetic field bias with a custom magnet-cryostat. The schematic
layout of the setup is detailed in Figure 2.5.

We start with femtosecond near-infrared pulses (centre wavelength, 807 nm, pulse
energy, 5.5mJ, pulse duration, 33fs) from a titanium-sapphire (Ti:Sa) amplifier laser
operating at a repetition rate of 3kHz. The pulses are split by a beam splitter (BS1)
into two branches, where the first either drives an optical parametric amplifier (OPA)
or a tilted pulse front (TPF) THz source [Ste03, Bail7].

The second pulse is used to generate broadband, single-cycle THz pulses by optical
rectification and to detect the transmitted waveforms by electro-optic sampling. For
THz generation, we employ an (110)-cut ZnTe crystal with a thickness of 1 mm (C1),
whereas for detection of the transmitted THz we use a 0.5mm ZnTe crystal (C2).
To increase the bandwidth for measurements in chapter 5, we exchange both crystals
to GaP crystals of a thickness of 200 pm. Remaining pump light is separated from
the THz pulses by a silicon wafer (W1). Here a mechanical chopper (CH) modulates
the THz pulses, allowing for differential detection of the transmitted THz electric
field, £(t). For electro-optic sampling, the gate beam is sent across a delay line

(DS2), before being focused by a lens L1 into the electro-optic sampling detection
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2. Deep-strong light-matter coupling
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Figure 2.5 | Ultrafast 2D THz-magneto-spectroscopy setup. For a detailed
description see the text of chapter 2.3.

crystal (C2). Subsequently, the polarization state of the gate pulses is analysed by
a A/4-plate, a Wollaston prism (WP), and two balanced photodiodes (PD). The
sample (S) is kept at a temperature of <10K in a magneto-cryostat (MC) with
a large numerical aperture, with magnetic bias fields (B) of up to 5.5T applied
perpendicularly to the sample surface. The THz pulses are focused through the
sample before the transmitted waveforms are re-collimated and focused onto the
detector crystal using off-axis parabolic mirrors. The measurements are referenced to
a measurement without a sample in the cryostat to obtain the transmission spectra.
The first branch of the Ti:Sa laser pulses is used to drive THz generation by optical
rectification in lithium niobate in a tilted-pulse-front scheme [Ste03, Bail7]. This
source can produce THz pulses with up to 1 MV /cm peak field strength and is
introduced into the setup by a Si-beam splitter (W2). These high-field THz pules are
used in chapter 3. A second delay line (DS1) changes the time delay tp between both
THz pulses. This experimental configuration for two-dimensional THz spectroscopy
provides the capability to simultaneously excite and examine the nonlinear response
of multiple resonances, capitalizing on the ultrabroadband frequency spectrum of
the THz pulses. A mechanical chopper in each THz generation branch enables the

simultaneous recording of both, the linear and nonlinear response of the samples.
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2.4. Cyclotron resonance of 2D electron gases in quantum wells

For the measurements in chapter 6, the first branch is sent into an optical parametric
amplifier (OPA), which generates near-infrared pulses of a duration of 70 fs (FWHM)
and a centre photon energy of 1.03eV. The pulses are modulated by a mechanical
chopper (CH) and focused with the lens L2 onto the sample with a spot diameter of
4mm (FWHM), for homogeneous excitation. This grants us the ability to perform
near-infrared pump, THz probe experiments and record both absolute and differential

transmission data, with subcycle time resolution.

2.4. Cyclotron resonance of 2D electron gases in

quantum wells

So far, only three matter systems have been able to achieve deep-strong coupling:
superconducting qubit-oscillator circuits in the GHz range with n = 1.34 [Yos17],
Landau polariton systems with n = 1.43 [Bay17, Hal20], and plasmonic nanoparticle
crystals (n = 1.83) [Mue20] in the optical regime. To achieve DSC, the utilization
of collective excitations proves to be highly advantageous, as the vacuum Rabi
frequency Qg scales with v/N, where N represents the number of oscillators. This
fact renders collective solid-state excitations ideal candidates. Notably, both inter-
subband transitions [Ana09, Gii09, Tod10] and the cyclotron resonance (CR) of a
two-dimensional electron gas (2DEG) [Scal2, Mail4, Bay17, Hal20, Mor21, Mor23a]
are well-established systems that facilitate the scaling of the dipole moment with the
number of electrons. In this work, we will use Landau polaritons. They feature a
greater dipole moment per excitation, and their resonance frequency can be tuned
across a wide range through the application of an external magnetic field. In fact,
as will be demonstrated in chapter 4, this allows us to achieve the highest coupling
strength so far and exceed previous records by almost a factor of two.

To attain a collective cyclotron resonance involving a substantial number of charge
carriers, a meticulous design of the platform hosting the two-dimensional electron
gas (2DEG) is essential. In this context, semiconductor heterostructures provide
precise tailoring capabilities for shaping the energy dispersion of the electrons. A high
charge carrier mobility is crucial for the formation of a cyclotron resonance. However,

introducing an excessive number of carriers can lead to reduced mobility, which
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2. Deep-strong light-matter coupling

naturally imposes limits on the number of carriers available for potential coupling.
Striking the right balance between charge carrier concentration and mobility is pivotal
for achieving maximal coupling strengths. In addition, when using quantum wells
(QWs) to host the 2DEG, excessive doping also introduces carriers in the second or
even higher subbands, which feature different effective masses and do not contribute

to a single collective excitation.

We host our 2DEG in GaAs QWs embedded in Aly3Gag;As barriers. The het-
erostructures are grown by molecular-beam epitaxy on undoped (100)-oriented GaAs
substrates. First these are primed with an GaAs layer of a thickness of 50 nm and a
subsequent Aly3Gag7A/GaAs superlattice to achieve a defect-free, atomically flat
surface. In order to limit scattering in the QW itself and therefore improve the
maximum tolerable doping density, free charge carriers are introduced by symmetrical
Si d-doping in the AlGaAs barriers around the QWs. These carriers then diffuse
into the QW. To further overcome the limitation of maximum doping in one QW,
we employ a stack of multiple, tightly packed QWs. The QW stack is capped by
a protective layer of GaAs with a thickness of 30 nm. Regarding the coupling to
a resonator, the multiple 2DEGs effectively still act as one collective system, as
long as electronic coupling between QWs can be neglected [Hagl0]. The design and
fabrication of these QWs has undergone multiple extensive optimizations, including
explorations of different semiconductors, to achieve the maximal number of carriers
while keeping an acceptable carrier mobility and reducing the thickness of barrier
and QW layers [Bay17, Hal21]. The optimized QW structures used in this thesis
are grown by the group of Prof. Dominique Bougeard. Unless stated otherwise,
the GaAs QWs feature a thickness of 15 nm, each surrounded by barriers of 15 nm,
containing the Si d-doping, targeting a doping density of p = 1.8 x 10*2 cm~2, per
QW. The number of QWs in the heterostructures allows us to easily scale the number
of carriers for coupling. In this thesis samples with one QW up to 48 QWs will be

used.

The QWs confine the free carriers to a quasi two-dimensional plane, quantizing the
electron gas in the growth direction. To further quantize the system in the QW
plane we induce a cyclotron motion by employing an external static magnetic field,

perpendicular to the QW plane. The magnetic field B governs the in-plane dispersion,
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2.4. Cyclotron resonance of 2D electron gases in quantum wells

AT /Ty
0.3 1.0
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giving rise to the formation of Landau levels with an equidistant energy spacing of

eB

m*’

hwe = h (2.15)
where m* is the effective mass of the electrons in the QW. For the employed
AlGaAs/GaAs-QWs, m* ~ 0.07m,, with m. being the free electron mass. The
transition between neighbouring states can be interpreted as the classical cyclotron
resonance with frequency w.. Only transitions between adjacent Landau levels are
dipole allowed. Due to the degeneracy of each Landau level n, as well as spin
degeneracy, the filling factor ng, up to which Landau level the states are occupied is

given by [Hagl0]

ph
ng=-—, 2.16
7 2B (2.16)
where h is the Plank constant. Let’s assume low temperatures, as employed for all our
measurements at cryogenic temperatures of < 10 K, where kg1 < hw,, with kg being
the Boltzmann constant. Here only the transition from Landau level ng — 1 to ng is
contributing to the accessible dipole moment, as other transitions are Pauli-blocked.

The dipole moment of a single QW is then given by

" (2.17)
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2. Deep-strong light-matter coupling

For weak excitation of the system, Kohn’s theorem states that the cyclotron resonance
is not affected by Coulomb interactions [Koh61, Maal6]. Consequently, we can
consider our system to be bosonic and model it effectively as a harmonic oscillator,
as already described in chapter 2.1.

To achieve higher coupling strengths, we can either increase the free carrier density
p or reduce the effective mass m* to boost the dipole moment. A full theoretical
description in second quantization, including ultrastrong and deep-strong coupling
to a metasurface resonator structure, is included in appendix E.

The linear dependence of w, = 27v, on the external magnetic field B enables us to
continuously tune the cyclotron resonance, as illustrated in Figure 2.6, where the
cyclotron resonance of a 6-QW stack results in a reduction in transmission at its

resonance frequency Ve.

2.5. Planar metasurface subwavelength resonator

arrays

The photonic modes for USC and DSC are provided by planar, plasmonic resonators,
designed for the THz regime. As the vacuum Rabi frequency of a coupled system
scales with the electric vacuum field strength, Qg o< Ey,, it is desirable to maximise
the field strength of the vacuum field to maximise the coupling strength. This can
be achieved by reducing the mode volume of the selected photonic mode.

At first glance, achieving the highest coupling strengths may appear to necessitate
the most extreme subwavelength confinement of the vacuum field. However, it is
crucial to acknowledge that such extreme confinement poses considerable challenges
when attempting to introduce a matter system for coupling into the cavity. At best,
the confinement can limit the number of systems N that can be effectively utilized,
thereby impacting the potential benefits of scaling the dipole moment with a collective
excitation. Similar planar plasmonic resonators as used here can feature effective
mode volumes down to Veg/A® & 6 x 1071 with A being the free space wavelength
[Kell7b]. Utilizing the field enhancement of a scanning tunnelling microscope tip,
even effective mode volumes on the order of Vog/A3 ~ 6 x 107 are possible [Pel21].

However a thoughtful balance between confinement, practicality and the overlap with
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2.5. Planar metasurface subwavelength resonator arrays

the matter system becomes essential in realizing the maximum coupling strength.
This balancing act is further complicated by the fact, that for USC and DSC, the
coupling itself significantly influences the photonic mode. Here the two systems
can no longer be considered as two separate entities, influence each other and even
light-matter decoupling might occur [Bayl17].

The employed resonator designs are placed directly on top of the QW stack to
maximise mode overlap and are derived from a basic plasmonic split ring resonator.
The basic split ring resonator design is formed by a capacitive gap, where the field
enhancement is concentrated, and a metallic element connects both sides of the
capactive element [Pen99]. In the most general simplification, they form an LC-circuit
made from an inductor (L, the wire/stripe) and a capacitor (C, the gap). Their folded
design makes them generally sub-wavelength in size, rendering the characterization
of one single resonator with far-field techniques very inconvenient. Therefore, the
resonators are almost always employed on a grid to boost the areal coverage and
allow for far-field measurements. These resonators find extensive application in the
realm of metamaterials and metasurfaces [Yul3, Chel6, Genl7]. In the context of
metamaterials, the primary focus revolves around exploring far-field properties under
illumination, standing in stark contrast to the near-field optimizations of vacuum
fields, as investigated here. The very active field of metasurfaces showcases the
immense potential of custom-tailored structures to unlock intricate functionalities,
shaping multiple degrees of freedom of light concurrently and manipulating light in
unprecedented ways.

While the basic functionality of these planar plasmonic resonators can be understood
with equivalent LC-circuit models, much more complicated design optimizations
are possible. Here one needs to resort to finite-element simulation of Maxwell’s
equations for the complete structure, allowing one to extract the full near- and far-
field properties with quantitative and predictive accuracy. Details of the employed
finite-element frequency-domain (FEFD) simulations, also including the QWs, are
included in appendix C. The simulations factor in coupling between neighbouring
resonators on the grid and allow for custom-tailoring of the mode spacing, near-field
mode profiles and resonance quality factors. In this work, we focus on tailoring the
near field to optimize the vacuum field enhancement in the (multiple) QWs as well

as the free spectral range of the cavity modes. By expanding the free spectral range
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2. Deep-strong light-matter coupling
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Figure 2.7 | Double gap resonator metasurface. a, Calculated electric near-field
enhancement |&,| for the LC mode in a plane 150 nm below the resonator. b, Near-
field enhancement in the xz-plane along y = 0. ¢, Measured THz transmission
spectrum for the resonator array, with the two lowest modes, the LC and DP mode,
marked. Adapted from [Mor21].

of the cavity modes, we create a larger frequency-domain space for the splitting
polariton resonances, and simultaneously mitigate the onset of multi-mode strong
coupling, as the coupling of one matter resonance to multiple cavity modes can
complicate the identification of polariton resonances. The influence of multiple cavity

modes on the coupling will be explored in detail in chapter 4.

The first resonator used in this thesis is a mirror symmetric version of a straightforward
split ring design (Fig. 2.7a), thus suppressing a magnetic field enhancement by design.
This resonator will hereafter be referred to as a double gap resonator (DGR). The
outer dimensions of the resonators are 37.5 um by 30 pm, the width of the gold bars
is 4um. The double capacitive element features two gaps with a width of 2.5 um
and a length of 10 pm. The resonators are deployed as a metasurface in an array
with a 60 pm by 60 pm unit cell. In the centre of the gaps the electric near field of

the fundamental LC mode is enhanced by more than a factor of 8 with respect to
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2.6. Ultrastrongly coupled Landau-cavity polaritons

30 um

Figure 2.8 | Fabricated double gap resonator metasurface. a, Light microscope
picture of an array of resonators. b, Scanning electron microscope picture of a sample
featuring the double gap resonator.

the far field (Fig. 2.7b). The far-field transmission spectrum shows the fundamental
LC mode at a frequency of 0.81 THz, and the higher-order, dipolar (DP) mode at
a frequency of 1.8 THz (Fig. 2.7c). For the DP mode, the field enhancement is
localized predominately at the outer edges of the resonator structure.

The resonator array is fabricated on the surface of bare GaAs substrates or the
semiconductor structures using electron-beam lithography and wet-chemical pro-
cessing. Therefore, a gold layer with a thickness of 100 nm is thermally deposited.
The finished structures are shown in Figure 2.8. Structuring for all experimentally
examined samples shown in this thesis was performed by Maike Halbhuber and Laura

Diebel. More details on the sample preparation can be found in appendix A.

2.6. Ultrastrongly coupled Landau-cavity

polaritons

A complete sample structure is obtained by integrating the resonator array with a
QW stack containing the 2DEG. To interrogate these coupled structures, we place
them into a high-numerical aperture magnet-cryostat that keeps the sample at a

temperature of < 10K and allows us to apply a perpendicular static magnetic field
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2. Deep-strong light-matter coupling
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bias to control the cyclotron frequency. In order to measure the THz transmission,
we employ THz time-domain spectroscopy (see chapter 2.3).

For our first structure S1 we measure the response of a sample featuring a single
quantum well (QW thickness of 10nm, p = 6.3 x 10 ecm~2) and a double gap
resonator array. The transmission as a function of the cyclotron frequency v,
(controlled with the external magnetic field bias) is shown in Figure 2.9. Here we
observe two main transmission minima. The first resonance starts at a frequency
of v = 0.9 THz and slowly starts to curve upwards to asymptotically approach the
bare cyclotron resonance for large cyclotron frequencies v, with a slope of 1. This
mode is the upper polariton resonance (UP). The second mode, the lower polariton
(LP) resonance starts at v = 0 THz for v. = 0 THz, stays closely located below the
cyclotron resonance and becomes visible as a transmission minimum at v, ~ 0.6 THz,
starting to curve downwards, away from the bare cyclotron resonance. The LP then
asymptotically approaches the frequency of the bare cavity at 0.81 THz for large v.
The two polariton modes are closest in frequency at the anti-crossing point. The third
slightly visible minimum emerging below the cyclotron resonance for large v, is the
lower polariton resonance of the coupling with the second cavity mode. Fitting the
full magnetic field dependence of the two polaritons with the Hamiltonian presented
in chapter 2.1 yields a coupling strength of Qg /w. = 0.15, placing the structure in

the USC regime. The procedure also allows us to determine the mixing fractions of
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Figure 2.10 | Deep-strong coupling. a, Calculated enhancement of the right-
circularly polarized near-field component |E,+|/& of the LC mode of a L-gap res-
onator, relative to the far-field amplitude, &, at a depth of z = —200nm and for
v = 0.52 THz. b, Light microscope picture of the sample with gold L-gap resonators.
The quadratic structures around the capacitive gaps will be discussed in chapter 6.
¢, THz transmission of the sample L6, including the Hopfield fit for the LP and UP
with a coupling strength of Qg /w. = 1.3. Adapted from [Hal20].

light and matter for each polariton, given by the Hopfield coefficients (x5, w3, yg, 25).
At the anti-crossing point, the LP and UP carry equal parts of light and matter
contributions (|zs| & |wg|, |ys| & |25]). However, for higher coupling strength, the
anti-resonant coefficients become dominant, and the LP will become more matter-like
(lzwp| < [wepl, |yie| < |zLpl), the UP more light-like (|zup| > |wup|, [yup| > |zup|).

As a next step, we measure the transmission of the structure L6, featuring 6 QWs
(p=1.75 x 102 cm~2%) and a different resonator structure “L-gap” (Fig. 2.10a,b)
[Hal20]. This resonator features an LC mode with a frequency of v, = 0.52 THz
and a higher DP cavity mode with a frequency of vpp = 1.95 THz. The vacuum
field enhancement of the LC mode is located in two capacitive gaps. Measuring the
THz transmission as a function of v, shows a LP and UP resonance (Fig. 2.10c),
alongside the uncoupled cyclotron resonance. Here the UP starts at a frequency of
v =~ 1.6 THz and curves upwards to approach the bare cyclotron resonance. The LP

resonance starts to become visible for v, ~ 0.4 THz and asymptotically converges
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2. Deep-strong light-matter coupling

toward the bare LC mode frequency of vp,c = 0.52 THz. At the anti-crossing, the two
modes are separated in frequency by more than twice their bare frequencies. Fitting
the full magnetic field dependence of the LP and UP with the Hopfield Hamiltonian
yields a coupling strength of Qg /w. = 1.3, placing the structure in the deep-strong
coupling regime. Here, the vacuum ground state exhibits significant squeezing (see
Fig. 2.4) and hosts a vacuum ground state population of 0.32 virtual photons. This
significant change in the vacuum ground state sets the stage for vacuum-induced

phenomena such as virtual photon emission from these samples.
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Chapter

Subcycle nonlinearities of ultrastrong

light-matter coupling

As detailed in the introduction and chapter 2, ultrastrong and deep-strong coupling
and its modified vacuum ground state give rise to many complex quantum effects
and applications. However, most of these effects are studied with linear spectroscopy
and under equilibrium conditions. Yet there is a completely separate field of light-
matter interaction: strong-field physics, where an electronic resonance is driven
by an atomically strong coherent lightwave, resulting in highly non-perturbative
dynamics faster than an oscillation cycle of the carrier wave. These dynamics can
result in high harmonic and high-order sideband generation as well as other strong-
field nonlinearities [Chi01, Cor07, Zak12, Sch14, Lan16, Bor23]. Here, for resonant
excitation, the Rabi frequency Q%" not the vacuum Rabi frequency Q§, quantifies
the rate of periodic absorption and stimulated emission. When Q" is greater than
the carrier frequency of light, carrier-wave Rabi flopping [Mii01, Raal9] and even
extreme subcycle Rabi flopping [Hoh15] can occur. To make a clear differentiation
between the Rabi frequency Q" and the vacuum Rabi frequency Q32°, in this chapter
they will feature their respective additional superscript. Yet, in the rest of this thesis,
we will suppress the superscript “vac” from the vacuum Rabi frequency to improve
readability.

In this chapter, we unify the above fields and establish a new research area at the

interface of strong-field and vacuum photonics. By exciting an ultrastrongly coupled
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3. Subcycle nonlinearities of ultrastrong light-matter coupling

light-matter system with intense coherent electromagnetic fields, we tailor a scenario
in which the vacuum Rabi frequency, the Rabi frequency of the coherent field, and
the carrier frequency of light, all become comparable for the first time. This sets
the stage for coherent nonlinearities, where phase transitions in superconductivity
[Sch19], cavity chemistry [Hut12, Chil6, Herl6, Thol9, Dun22, Sch22], or vacuum-
modified electronic transport [Orgl5, Barl8, PB19, Val21, App22] could be explored.
Moreover, it opens up exciting possibilities for novel quantum devices that can
leverage parametric nonlinearities to generate coherent light sources or produce
squeezed quantum states of light [Rid13]. The results of this chapter are published

in an article in Physical Review Letters [Mor21].

Two-dimensional THz time-domain spectroscopy

We interrogate and excite the coupled structures with strong THz fields at the same
time, using two-dimensional (2D) THz time-domain spectroscopy (Fig. 3.1). Details
on the optical setup are given in chapter 2.3. We send two broadband phase-stable
singe-cycle THz pulses with a relative delay time 7 through our sample structures
and record the response as a function of the delay time ¢ with electro-optic sampling.
The two strong THz pulses A and B are generated by optical rectification and feature
peak field strengths of 1.3kV/cm and 2.5kV/cm, respectively. The ultrabroadband
spectra of the pulses allow us to excite and monitor all resonances of our samples
simultaneously. Mechanical choppers individually modulate each source and, thus,
we can record the individual responses €4 and &g of the pulses as well as the response
to both pulses Eop. Subsequent subtraction allows us to extract the purely nonlinear
response & = Eap — Ea — Ep of the sample.

For characterizing the complete nonlinear response, we record &, as a function of the
two delay times ¢ and 7. A subsequent 2D Fourier transform of the dataset allows us
to disentangle the nonlinear interaction pathways by a Liouville path analysis based
on the pseudo-wave vectors of the two fields, as will be shown in the next subchapter
[Kue09, Kuell, Junl2, Maal6, Raal9]. This method offers the powerful capability
to separate, e.g., four-wave mixing, pump-probe and higher-order processes, even if

they are energy degenerate.
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3.1. Non-perturbative nonlinearities of Landau polaritons

Figure 3.1 | Two-dimensional THz spec-
. troscopy. Schematic of the two THz pules
L& interrogating the sample, and their respective

g
delays: t: electro-optic delay time (real time).
7: relative delay of the two THz waveforms, Ex
and &g. &, nonlinear signal. Adapted from

5 [Mor21].

A

3.1. Non-perturbative nonlinearities of Landau

polaritons

First, we measure the linear transmission of our structure, S6 (Fig. 3.2a). This
sample features 6 QWs, each with a doping density of p = 1.75 x 102 cm~2 and a
double gap resonator array (see chapter 2.5). Coupling of the cyclotron resonance
(CR) to the fundamental LC mode at a frequency of v c = 0.81 THz, as well as the
dipolar mode at vpp = 1.8 THz results in multiple transmission minima. At lower
frequencies, a lower polariton (LP) branch emerges from the cyclotron resonance,
while an upper polariton resonance (UP) is observed at a frequency of 1.5 THz
when v, = 0THz (Fig. 3.2c). As v, increases, the polariton frequencies exhibit
opposite curvatures, resulting in the distinctive anti-crossing shape. Additionally,
off-resonant coupling of the cyclotron resonance with the dipolar cavity mode (DP)
generates a third resonance referred to as dipolar polariton (DPP), which is positioned
approximately 0.2 THz below the UP branch. The transmission minimum at v, can
be attributed to THz absorption by the cyclotron resonance within the uncoupled
regions between the resonator structures. At the anti-crossing point the LP, UP,
and DPP resonances are centred at frequencies of 0.4 THz, 1.65 THz, and 1.3 THz,
respectively (Fig. 3.2c).

To validate our measurements and get a deeper insight into the origins of the coupled
modes via their near-field distributions, we extend our finite element simulations to

include the gyrotropic response of the cyclotron resonance within the QWs. This
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Figure 3.2 | Transmission spectra of the ultrastrongly coupled structure
S6. a, Measured transmission spectra as a function of the cyclotron frequency v..
The dotted curves show the lower (LP) and upper polariton mode (UP) obtained
from Hopfield’s model for a coupling strength of Qf°/w, = 0.77. DPP: additional
polariton mode. The vertical dotted line marks the anticrossing point, . = 0.84 THz.
The arrows indicate the frequencies of the uncoupled LC and DP cavity modes,
respectively. b, Calculated transmission spectra including the dashed lines of panel
a. ¢, Transmission spectrum extracted from the data in a, at v, = 0 THz and d, near
the anti-crossing point. Adapted from [Mor21].

enables us to compute the transmission of the ultrastrongly coupled structure without
relying on any free fit parameters (see appendix C for more details). By adopting
an electron doping density of p = 2.1 x 102 ¢cm~2 per quantum well (Fig. 3.2b),
our calculations yield an excellent agreement with the experimental spectra. Our
simulations provide insights into the contributions of the individual bare resonator
modes to each of the coupled modes. By comparing the corresponding near-field
distributions, it is possible to differentiate their effects. Notably, the near-field
distribution of the lower polariton mode (see Fig. 3.3a) exhibits a resemblance to
the LC mode, primarily due to its concentration of the field within the central gap
region. Conversely, the dipolar mode expels most of the field from the gap region,
which is evident in the near-field distribution of the DPP mode (shown in 3.3b),
reflecting its similarity to the DP cavity mode. Lastly, owing to its significant field

enhancement within the gap, the upper polariton mode is linked to the LC mode
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Figure 3.3 | Calculated coupled mode profiles. Right-circularly polarized
near-field component |, |/, to which the cyclotron resonance selectively couples,
whereby & is the far-field amplitude at v, = 0.84 THz, a, v = 0.46 THz for the LP,
b, v = 1.30 THz for the DPP and ¢, v = 1.73 THz for the UP. Adapted from [Mor21].

(3.3c). We derive the coupling strength from the frequency dependence of the LP and
UP on the magnetic field and obtain Q§°/w. = 0.77 by diagonalizing the light-matter

Hamiltonian.

Nonlinear measurements

With this analysis of the linear properties, we are now equipped to investigate the
nonlinear response of our structure by two-dimensional THz spectroscopy. Initially,
we deactivate the magnetic field (v. = 0 THz) to examine the nonlinear characteristics
of the cavity interacting with the electron plasma. In this scenario, the UP and
DPP modes exhibit frequencies of 1.5 and 1.2 THz, respectively. We record the
nonlinear response, &y, as a function of the relative delay 7 and the electro-optic
sampling time ¢. &, displays a complex time-domain structure featuring multiple
oscillation patterns (Fig. 3.4a). Here, the fronts of constant phase for pulse A are
observed as vertical lines, while those for pulse B appear as diagonal lines along
t — 7 = const. &, exhibits its maximum amplitude around 7 = 0 ps, where both
pulses interfere constructively, resulting in oscillations with frequencies corresponding
to the UP and DPP modes. This constructive interference gives rise to prominent
oscillatory behaviour along the ¢ axis, periodically modulating the envelope of &y

with minima at approximately ¢ = 3ps and 5.5ps. Conversely, for 7 = +0.25 ps,
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the pulses undergo destructive interference, leading to a reduction in the THz peak
amplitude and consequently diminishing the magnitude of &,.

Next, we set the external magnetic field bias B to 2.3T, which corresponds to
the anti-crossing point of the cyclotron resonance and the LC mode, v, ~ vic.
Here the overall nonlinear response is similar to the measurement at B = 2.3T,
vet a higher level of coherence becomes apparent, indicated by the slower decay
of &, and the persistence of a finite amplitude for delay times up to 7 = 5ps
(Fig. 3.4b). Furthermore, in this configuration, the beating pattern arises from the
interactions of three, rather than two resonances and suggests the presence of a rich
structure of nonlinearities. In order to further investigate the nonlinearities for both
measurements, we need to perform a two-dimensional Fourier transform (see next
section).

For our measurements, the vacuum Rabi frequency of our structure, Qf<, can
be determined based on the frequencies of the polariton branches measured in
equilibrium. However, the Rabi frequency of the coherent drive, Q%" depends on the
amplitude of the external field and the coupling of the far field to the light-matter
hybridized modes. We determine Q" by performing finite-element frequency-domain
calculations (see appendix C) to calculate the field distribution of the coupled system
in the plane of the QWs. By extracting the complex-valued frequency-domain data

from the simulation and multiplying it with the spectrum of our THz transient,
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3.1. Non-perturbative nonlinearities of Landau polaritons
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we calculate the local near-field frequency response induced by the far-field THz
transient. The phases of the near-field components do not vary significantly within
the QW plane. Transforming the result back into the time domain, we obtain
near-field waveforms that feature a slightly more narrow frequency bandwidth, but
the same phase. By averaging these waveforms within the capacitive gap region
of our THz resonators, we determine a peak near-field amplitude of 1.7kV /cm for
excitation with a peak far-field amplitude of 2.5kV /cm (Fig. 3.5). From these data,

we obtain a coherent Rabi frequency of Q" = 27 x 2.7 THz.

Liouville path analysis

For the systematic analysis of all individual nonlinear optical interaction processes, we
perform a two-dimensional Fourier transform [Kue09, Kuell, Jun12, Maal6, Raal9]
of the time-domain data. This yields the nonlinear amplitude spectrum, Ay (14, v;),
which depends on the frequencies v; and v, associated with the respective delay
times.

For our data without the external magnetic field, A, (v, v,-) shows distinct resonances
at frequencies v, = vyp, vppp and multiple frequencies v, (Fig. 3.6a). Here, each
maximum of A, represents a unique multi-photon process, which is a linear combina-
tion of any number > 1 of pseudo-wave vectors of the incident fields, ky = (v,0) and

kg = (vs,v3), where vz with 8 € (LP,UP,DPP) denotes the polariton frequencies.

Pump-probe (PP) processes resulting from third-order nonlinearities lie along the
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Figure 3.6 | Experimental amplitude spectra Apn (14, ;) a, of the time-domain
data of Figure 3.4a, at 0T, normalized to its peak value. Dashed lines as guides
to the eye: third-order processes with only one resonance. b, of the time-domain
data of Figure 3.4b, at 2.3T. Dashed circle: four-wave-mixing processes of the UP
and DPP. c-f, Liouville path analysis of nonlinear interactions: ¢, decomposition
of the four-wave mixing processes of the LP (blue arrows), DPP (red arrows) and
UP resonance (green arrows), individually. d, Liouville path for a four-wave mixing
process combining the nonlinear polarization of the LP and DPP. e,f, Four-wave
mixing processes mixing the UP and DPP resonances. Black dot: virtual level
|UP,DPP). Adapted from [Mor21].

black dashed lines and are formed by the process
PR (vs) = X (s, v, —v5) A (v5) An (v5) An(—v5), (3.1)

where Y® represents the corresponding nonlinear susceptibility, and A,, with m,n €
(A,B),m # n are the spectral amplitudes of the incident fields. Positive frequencies
vg indicate an energy transfer from the field into the polarization of polariton states.
In contrast, negative frequencies represent the opposite process. The wave vectors for
the PP processes, kpp; = ka + kg — kg and kpps = kg + ks — ka, result in a phase
cancellation of one of the incident field components, indicating that the PP processes

probe the (incoherent) population response. Contrary, the four-wave mixing (4WM)
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3.1. Non-perturbative nonlinearities of Landau polaritons

signals marked by the red dashed lines are functions of the phases of both fields and

probe the nonlinear polarization,
Piini(vs) = X (v5, v3, —15) A (v5) A (v5) An(—5). (3.2)

The spectra extracted from the data recorded at the anticrossing point (Fig. 3.6b),

feature additional resonances at the frequency on the LP resonance.

We further illustrate these processes with a Liouville wave vector decomposition. As
an example, the decomposition of the 4WM signals located at (v, —vg) is illustrated
in Figure 3.6¢, where these signals for the LP, DPP, and UP resonances are highlighted
with blue, red, and green arrows, respectively, representing the Liouville paths. In
each case, PS\)/M(W) requires the coherent mixing of two photons from € (horizontal
arrows) and one photon from &g (diagonal arrows), resulting in a polarization at a
frequency of vg. This emitted polarization is subsequently detected. Notably, all

photons involved in this process are resonant with their respective polaritons.

Interestingly, A, exhibits additional peaks at frequencies such as (vrp, —vppp), which
arise from nonlinear polarization mixing between different polariton resonances (Fig.
3.6d). In this scenario, £4 contributes a photon resonant with the LP (blue arrow)
and another resonant with the DPP (red horizontal arrow), while a photon resonant
with the DPP is emitted into g (red diagonal arrow). This process corresponds to

the nonlinear polarization
P4<€\)/1\/1(VLP) = X(S)(VLPs Vppp, _VDPP)-AA(VLP)AA(VDPP)AB(_VDPP)~ (3~3)

Equivalent maxima for 4WM and PP processes involving the mixing of polarizations
between the UP and the DPP are displayed in panels e und f, respectively. These
signatures of inter-polariton mixing are indicative of a strongly nonlinear regime

where the normal-mode approximation of the polariton resonances is violated.

To investigate the expected and potential nonlinear resonances, we systematically
scan the 2D frequency space, considering all possible third-order nonlinearities of
the three polariton branches. These arise from the various combinations of their
corresponding wave vectors, accounting for both fields (A and B) and mixing processes

with positive and negative frequencies. Figure 3.7 illustrates all the pump-probe
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processes (black circles) and four-wave-mixing processes (red circles). Filled circles
represent, processes that yield a nonlinear polarization oscillating at the frequency
of one of the polariton resonances, resulting in strong emission into the far field.
Conversely, open circles correspond to off-resonant polarization components that do
not significantly contribute to the total emission [Boy08]. Additionally, as certain
locations in frequency space can be accessed through multiple Liouville paths, the

degeneracy is depicted by the size of each circle.

3.2. Subcycle quantum model

The plethora of measured and possible nonlinear resonances calls for a quantitative
theoretical description for strongly nonlinear excitation of ultrastrongly coupled
structures. Thus, we develop a theory extending the description of light-matter
coupling beyond the scope of chapter 2.1, including non-perturbative nonlinear

phenomena and the full Landau fan with its individual levels.

First, we extend the Hamiltonian to include not only the first cavity mode, at a

frequency of vpc = 0.81 THz, but also the dipolar mode at vpp = 1.8 THz. The
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3.2. Subcycle quantum model

Hamiltonian is then given by
H =" hwjdla; + hwbd (3.4)

J
+ 30055 (3l + ) (4 8) + 0D, (3] + )"+ .
j g

2 N
Here, j € (LC,DP), D, = (Q‘léj‘;) Jwe, and Hey contains the coupling of the cavity
modes to the THz far field. We calculate the dynamics of the system by using
Heisenberg’s equation of motion for each of the operators,
dA(t) P
— = ——[A(¢), H], 3.5
o = A, A1) (35)
where A(t) is a bosonic operator. Now we derive the time-dependent differential

equations by applying the corresponding bosonic commutation relations, resulting in

it i‘-ﬂjflj(t) — iR [b(t) + b (1)] — i2D; [a;(t) + al(1)] (3.6)
- % [&j(t)71:[ext] )
%(f) = —iwh(t) — i;sz;;?j [a;(t) +aj(1)] 37)

In order to derive differential equations for the simulation, we adopt a mean-field
approach by introducing the mean values o; = (@;) () and § = <i)> (t), where we
omit the explicit temporal dependence, for simplicity. Additionally, we incorporate

phenomenological dephasing rates «; for each mode.

d . - yvac * . *
2 = Ty = 05 = iQr5 B+ B —1i2D; [Oéj + aj] + K7€ (1), (3.8)
d . - vac *
PR ) @0
j

Coupling to the external THz field Erm,(t) is accounted for by the respective dipole
moment of the cavity mode through a coupling constant #;. Additionally, a factor of

/7 s included, arising from the fluctuation-dissipation theorem [Kub66].
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3. Subcycle nonlinearities of ultrastrong light-matter coupling

Under the strong external THz field, the description of the electronic system as an
infinitely bosonic harmonic oscillator is no longer applicable even for a perfectly
parabolic potential. Here, electrons are no longer merely excited from the highest
occupied Landau level to the lowest unoccupied Landau level, and the resulting
interactions of excited electrons, no longer covered by Kohn’s theorem, affect the
cyclotron resonance [Koh61, Maal6]. In fact, as the model will show, charge carriers
will be excited multiple rungs over the highest occupied Landau level. Therefore, we
extend our model by introducing the full multi-level structure of the Landau fan to
the model, and include the nonequidistant energy progression originating from the

GaAs band structure with a density matrix approach [Maal6]:

hwl M128_iw12t . 0
. eiwmt N
I (3.10)

Here N = 100 denotes the number of implemented Landau levels. The Hamiltonian
of the subsystem in matrix form, 7—1/“ consists of the eigenenergies of the n-th Landau
level, hw,, on the diagonal. The neighbouring minor diagonal is populated by
coupling terms between adjacent Landau levels, governed by the selection rules of

Landau electrons and the driving field:

Hmn = dmn X Z (05]‘ + 0(;) Q‘F,{a; (311)
J

Here, the driving term for the transition is obtained by multiplying the dipole
moment d,,,, with the sum of the real parts of the cavity fields, scaled by their
respective vacuum Rabi frequency. Whereas the RWA commonly employed for
perturbative nonlinearities couples the electronic excitations by a complex-valued
field that neglects counter-rotating wave components, here, we are required to include
these terms and employ the real-valued electric field. The dipole moments follow the
scaling relation d,,,, = elpy/m for the transition between adjacent Landau levels m
and n, where e represents the elementary charge, lo = /h/eB denotes the magnetic
length, and B represents the static magnetic bias field (see also subchapter 2.4).
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3.2. Subcycle quantum model

The resulting density matrix p includes the population density of the Landau levels
on its diagonal, while the off-diagonal entries p,,, = p},, describe the coherent
polarization between Landau levels m and n. In addition, coherences also exist
between states which are not connected via a dipole moment, as population can be
transferred from Landau level n =1 to, e.g., Landau level n = 3, via intermittently

exciting Landau level n = 2.

P PIN
p= : : . (3.12)

PN1 " PNN

The temporal evolution of the density matrix is determined by solving the von

Neumann equation,
0 N
—ihGr = [H.pl = ivop, (3.13)

where 7 is the damping matrix. Here dephasing is phenomenologically implemented
for each element of p individually, by the element-wise product, o. We will adopt this
description of our Landau ladder and substitute the polarization term of Equation
3.8, B(t) + B*(t), with the polarization field of the multi-level Landau system,

PL(t) = > prn(t)don- (3.14)

This results in our final form of the differential Equation 3.8:

d

i —iwja — ey — QRGP —i2D; [a]- + aﬂ + V5kErm(t). (3.15)

We model our coupled system by solving the system of differential equations, from
which we obtain the cavity fields a;(t) and the time-dependent density matrix, p.
By adding the fields of both cavity modes as well as the incident THz field Ery,

according to

“:mcasurcd(t) = STHz(t) - Z v Veav,j X5 (316)

)
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3. Subcycle nonlinearities of ultrastrong light-matter coupling

we obtain the total field corresponding to the field measured in the experiment. By
calculating Epeasured (t) for all combinations of the two THz pulses analogously to the

experiment, we get the nonlinear response &.

Including the nonlinearities

The inclusion of a perfectly equidistant ladder of Landau levels into our model
alone does not produce a nonlinear response &,. However, this step is a crucial
prerequisite for incorporating the nonlinearities present in the sample structure.
The nonlinearities depend on the distribution of excited Landau electrons along the
Landau fan as well as the precise energy dispersion of the conduction band of the
host semiconductor. To account for the observed behaviour, we consider multiple
potential sources of nonlinearities.

Firstly, we acknowledge that the conduction band of the GaAs quantum wells does
not exhibit a perfectly parabolic shape and results in a non-equidistant progression
of the Landau level frequencies. Such a non-equidistant Landau ladder has been
shown to produce significant nonlinearities in GaAs quantum wells [Maal6] and in

graphene [KO17]. An effective model for the Landau level frequencies w, is given by

Wy, = —Wnp/2 + \/w2 /4 4+ wppeB/m*(n +0.5). (3.17)

np

In the above equation, n represents the Landau level index, m* is the effective mass
given by m* = 0.066m,., where m, is the electron mass. The elementary charge
is denoted by e, B is the static magnetic bias field, and w,, = 27 x 237THz is
a fitting parameter for GaAs [Zaw94]. For our sample with a doping density of
p=1.75x 102 cm~2 per QW and a magnetic field of 2.3T, the filling factor at the
anticrossing point is ng = 15.7. In this configuration, the transition frequency in the
vicinity of the Fermi level is w, = 0.868 THz, while the adjacent higher and lower
transitions are centred at 0.874 THz and 0.862 THz, respectively. As we will see,
these small deviations of the cyclotron frequency of less than 1%, only account for a
small part of the observed nonlinearities, pointing at the presence of other nonlinear
effects.

While the gold resonators should respond linearly up to much stronger fields [Lan14],

it has been shown, that strong-field, non-perturbative excitation of Landau electrons
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3.2. Subcycle quantum model

can lead to sizeable nonlinearities beyond Kohn’s theorem, due to dynamical Coulomb
correlations [Maal6]. Kohn’s theorem establishes that the purely repulsive electron-
electron Coulomb interaction, in isolation, cannot give rise to observable nonlinear
effects in a two-dimensional electron gas. Nonetheless, in real-world scenarios, a
2DEG invariably exists together with a positive background charge. The electron-ion
interaction is not subject to the limitations posed by Kohn’s theorem and induces
nonlinearities under excitation, namely a softening of the cyclotron resonance. To
appropriately account for these effects in the model, we introduce a measure for the
instantaneous degree of excitation of the electronic system, pexc(t), and dynamically
change the Landau level eigenenergies and dipole moments in the non-equilibrium

situation:
1. .
Pexe(t) = 3 5 Idiag(p(t)) — diag (po)l,,, Fom; (3.18)

m—lf for m <l

hyy = (3.19)
m—1I;+1 for mzl’f.

The degree of excitation, pex.(t), considers the number of excited Landau electrons as
well as their distance in Landau level space relative to the equilibrium distribution,
po, and equilibrium Landau level index at the Fermi level, I[; = 16 ~ ng. For the
case of a perfectly parabolic conduction band, the Landau fan behaves as a harmonic
oscillator and pex. is equal to |B3]* of our bosonic theory. With pe We can now
introduce an effective, dynamical scaling of the Landau level energies by the scaling
factor U,:

wn = wn X (14 Uepexe) (3.20)
and a rescaling of all dipole moments d,,,, by a scaling factor Uy:

dmn - dmn X (1 + Udpcxc)71 . (321)

Calibration of the model

As our model does not fully capture the coupling of an external THz field into

the cavity mode and its field enhancement by the cavity, we have to calibrate the
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Figure 3.8 | Simulated internal dynamics. a, Population of each Landau level
for the setting of Figure 3.10. Dashed lines: threshold energy for longitudinal optical
phonon scattering (see text). b, Population of the LC (black) and DP (red) cavity
modes for 7 = 0ps. ¢, Electronic excitation pey.. Adapted from [Mor21].

model to accurately match the experimental conditions. The field strength of the
driving pulses is quantified by measurements of the power from our tilted-pulse-front
THz source (pulse B). We calculate the corresponding peak amplitude by using the
THz waveform obtained through electro-optic sampling, as well as the beam profile
measured with a pinhole at the sample position. The model parameters scaling the
field amplitudes are then adjusted to match the density of electronic excitations in
theory and experiment. To this end, we calculate the absorption of the THz pulses
based on the linear transmission spectra of our structure within the spectral range of
the three polariton resonances, as well as the corresponding spectral power density of
the incident THz pulses. Considering the gap area of our THz resonators, where the
strongest contribution to the light-matter interaction occurs, we obtain an excitation
density of 6.95 x 10!* cm™2 Landau electrons per QW. The density of excitations in

the simulations is given by peye X 22. Here the excitation parameter pey is multiplied

h
by the constant density of states per Landau cylinder, %4 Additionally, one has to
account for different coupling strengths of the two cavity modes to the incident far
field by introducing individual coupling factors x;, where sr,c = 1 and xpp = 1.5 for

the LC and DP cavity modes, respectively.

Finally, we utilize the theory to model the nonlinear subcycle dynamics observed
in the experiment. First, we observe the population dynamics of each Landau level
upon excitation (Fig. 3.8a). Within the full width at half maximum (FWHM) of
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3.2. Subcycle quantum model

pulse Eg(t) of 2 ps around ¢ = 0 ps, Landau electrons are coherently excited from up
to 5 levels below to 5 levels above the Fermi level. The maximum energy separation
is still just below the energy of the longitudinal optical phonon of GaAs, which would
lead to electron-phonon scattering and strong dephasing. The degree of excitation of
the electrons, pex., condenses the electron dynamic into one parameter. After the
initial fast excitation, the electron distribution displays some trailing oscillations and
slowly relaxes into its new equilibrium distribution (Fig. 3.8¢c). The population of
the LC and DP cavity modes, |a; ]|, experience a steep increase at t = 0ps and decay
exponentially afterwards with superimposed oscillations. As expected for ultrastrong
light-matter coupling, the cavity and the Landau electrons periodically exchange
energy, which results in the observed oscillations with alternating local maxima of
pexc and |a;| (Fig. 3.8b,c).

Comparison of theory and experiment

After fitting the resonance frequencies, damping factors and the field calibration to
the experimental data, we are left with the two values of U, and Uy as free fitting
parameters. First, we investigate the situation for U; = U, = 0, where only the
non-parabolic band structure is responsible for the nonlinear response. Here the
calculated nonlinear field &, displays coherent oscillations that qualitatively resemble
the experimental data (Fig. 3.9a). However, the calculated modulation amplitude is
significantly lower (only 0.6 V/cm) compared to the measured amplitude of 13V/cm
(Fig. 3.4). Additionally, the calculated modulation is slower, resulting in most of the
spectral weight being concentrated on the LP resonance (compare Fig. 3.6b and Fig.
3.9b).

Next, we incorporate the Landau energy rescaling due to dynamical Coulomb corre-
lations with U, = 0.016 (Fig. 3.9¢,d). Now the nonlinear amplitude of the calculated
data matches the amplitude of the experiment, but the low-frequency components
are still overestimated. Likewise, when including both non-parabolic effects and
rescaling of the transition dipole moments (with Uy = 0.064), similar results are
obtained with a nonlinear amplitude matching the experimental data, yet with a
focus on low-frequency components (Fig. 3.9e,f). Including both rescaling effects

due to dynamical Coulomb correlations, but not the non-parabolic conduction band
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Figure 3.9 | Switch-off analysis of different nonlinearities. a, b, Time-domain
calculation and amplitude spectra, normalized to its peak value, for U; = U, = 0.
c,d, Calculation for Uy = 0. e, f, Calculation for U, = 0. g, h, Calculation for
equally spaced Landau levels. Adapted from [Mor21].
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of GaAs, we obtain a very good match with the experimental data, displaying the
same nonlinear field amplitude as well as the spectral weight between the polaritons
(Fig. 3.9g,h). However, as the slight nonlinearity of the Landau level spacing is
known to exist, we include all effects in the simulation for the best match (Fig. 3.10).
In the full calculation including all three nonlinearities (Fig. 3.10), the fast oscillations
originating from the UP and DPP resonances as well as the slower modulation
induced by the LP resonance are accurately reproduced (compare to Fig. 3.4 and
3.6). Furthermore, the relative and absolute spectral amplitudes of pump-probe and
four-wave mixing signals are adequately captured for the individual polaritons, as well
as for the nonlinear correlations between separate polariton resonances. The good
agreement between theory and experiment is even more evident, when comparing
cuts of the datasets for different frequencies v, and v, (Fig. 3.11).

For the case of v, = 0 (Fig. 3.11b), the frequencies and amplitudes of the pump-
probe responses for the three polariton resonances exhibit a close match between
the experimental and theoretical results. Similarly, for the cut along v, = v,
(Fig. 3.11c), the resonances align well, with some deviation caused by spectral
broadening of the UP resonance. The cuts along v, = 1.3THz and v, = 1.6 THz
(Fig. 3.11d,e) once again demonstrate a good agreement in the resonance frequencies
between the measured and calculated data. Finally, for completeness, cuts along
v; = 0.55 THz, 1.3 THz and 1.6 THz are shown in Figure 3.11f-h.
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Figure 3.11 | Detailed comparison of experiment and simulation. a, Ampli-
tude spectrum Ap (14, v;) of the time-domain data of Figure 3.6, normalized to its
peak value. b-h, Amplitude spectra comparing the experimental data (solid curves)
and theoretical calculations (dashed blue curves, see also Fig. 3.10), extracted along
the dashed lines shown in panel a of the same colour. b, Spectrum extracted for
v, = 0THz, c for v; = 1, d for v, = 1.3 THz, e for v, = 1.6 THz, f for v, = 0.55 THz,
g for v, = 1.3 THz and h for v, = 1.6 THz. Adapted from [Mor21].
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3.3. Field strength and coupling strength scaling
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Figure 3.12 | Excitation with a peak field amplitude of pulse B of 5.6 kV /cm.
a, Experimental response &, (¢, 7). b, Amplitude spectrum of the data of panel a,
normalized to its peak value. ¢, Simulated amplitude spectrum for the excitation
scenario of a and b, normalized to its peak value. Adapted from [Mor21].

Our comprehensive theory successfully describes the creation of distinct resonances
through strongly nonlinear interactions of light-matter hybrid modes and significantly
expands the parameter space for tailoring deep-strong coupling, a regime that was
previously limited to linear interactions with weak probe fields. We further explore
the limits of driving our ultrastrongly coupled system with strong coherent fields
and conduct additional measurements by doubling the field amplitude of pulse B to
approximately 5.6 kV/cm, while keeping the characteristics of pulse A unchanged.
Here, the time-domain data show a noticeable reduction in the amplitude of the
oscillations of &, along the 7 axis (Fig. 3.12a), as compared to the data presented
in Figure 3.4. The corresponding spectral amplitude Ay, (Fig. 3.12b) exhibits
predominantly pump-probe signatures at frequencies (v3,0) and (v, v3), where
S € {LP, UP, DPP}. Four-wave mixing signals at (v3, —v3) and (vg, 2vg) contribute
only weakly to the overall signal. Due to the significantly larger amplitude of pulse B
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3. Subcycle nonlinearities of ultrastrong light-matter coupling

Figure 3.13 | Simulated population with a
peak field amplitude of pulse B of 5.6 kV /cm.
Population of each Landau level for the setting of
Figure 3.12. Dashed lines: threshold energy for
longitudinal optical phonon scattering (see text).
0 2 4 6 Adapted from [Mor21].

Real time, t (ps)

Landau level, /

compared to pulse A, third-order processes involving two photons from pulse B are
dominant, which is especially evident when comparing the pump-probe signatures at
frequencies of (vg,0) with the signatures at (vg, vz).

While for the case of excitation with &g = 2.5kV /cm, the distribution of excited
electrons along the Landau fan covers an energy range slightly below the threshold at
which scattering between Landau electrons and longitudinal optical phonons of GaAs
becomes possible [Maal6], this is no longer the case for excitation with 5.6kV/cm.
Therefore it is necessary to account for the phonon scattering of these electrons in
the simulation and we introduce an additional dephasing time of 7, = 100fs for
Landau electrons excited to Landau levels outside the energy range of Er + fiwr,o/2,
as indicated by the dashed lines in Figure 3.8a and Figure 3.13. Here, Er represents
the Fermi level in equilibrium, and Awro = 36 meV denotes the energy of the
LO phonon [Maal6]. For sufficiently strong excitation, empty Landau states are
simultaneously available at Fp — "‘”% and occupied states at Ep + h’“’%, allowing
for electron-phonon scattering. Including this additional scattering channel, the
calculated results, presented in Figure 3.12c, accurately reproduce the predominantly
incoherent pump-probe nonlinearities observed in the experimental data and reveal
that a significant fraction of the total population is excited beyond the threshold for

phonon scattering (Fig. 3.13).

To investigate the impact of the coupling strength on the nonlinear response, we
additionally measure the nonlinear response of sample S1 (Fig. 2.9). This sample
features a lower coupling strength of Qj2¢/w. = 0.15. The nonlinear response in
the time domain is dominated by long-lived oscillations, modulated by multiple
frequencies along the 7 axis (Fig. 3.14a). Employing a two-dimensional Fourier

transform results in the nonlinear amplitude spectrum, as depicted in Figure 3.14b.
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Figure 3.14 | Experimental nonlinear polarization response of the single-
QW sample S1, for a peak field amplitude of 9kV/cm, normalized to its peak
value. a, Time-domain data &, (t, 7). b, Spectral amplitudes Ay, (v, v-) obtained
from the time-domain data of panel a. For each vertical segment, the data are scaled
by the specified factor, for better visibility. ¢, Close-up of a group of six-wave and d,
four-wave mixing signatures. Adapted from [Mor21].

A, again shows pump-probe (PP) signatures at v, = 0 THz, corresponding to the
frequencies of the two polariton resonances. In the vicinity of v, = —0.8 THz and
—1.6 THz, groups of four-wave mixing (4WM) and six-wave mixing (6WM) signatures,
respectively, are visible (see Fig. 3.14c, d for a magnified view). Additionally, around
v; = 2.2THz, 3.2THz, and 4.6 THz, 4WM, 6WM, and even a faint eight-wave
mixing (§WM) signature emerge, respectively. Again, strong nonlinearities mixing
the LP and the UP resonances emerge for the 4WM and 6WM signal. Despite the
significantly higher driving field amplitude of 9kV /cm, this structure S1 seems to offer

a higher degree of coherence, resulting in the visibility of higher order nonlinearities.
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3. Subcycle nonlinearities of ultrastrong light-matter coupling

Conclusion

In summary, the presented data explore a novel regime of ultrastrong light-matter
coupling, where the subcycle polarization dynamics of the electronic system are not
only driven by vacuum fluctuations, but at the same time by a strong coherent external
field. This non-perturbative excitation results in the emergence of new pump-probe
and coherent multi-wave mixing nonlinearities, connecting the polarization of different,
individual polaritons. These nonlinearites, inaccessible through linear spectroscopy,
provide evidence of the dynamical breaking of the normal-mode approximation in a
strongly out-of-equilibrium situation. The large design space for ultrastrong light-
matter coupling allows us to custom-tailor and resonantly enhance these nonlinearities,
where neither the light nor the matter subsystem has resonances. Access to these
previously unexplored degrees of freedom within cavity-QED has the potential to
unveil quantum phenomena akin to the strong coupling regime of cavity-QED, where
Bose-Einstein condensates or quantum fluids of light have been successfully generated
[Carl3]. Controlling the nonlinear response of an ultrastrongly coupled system can
aid in the generation of squeezed quantum states of light, as well as enhancing
ground-state instabilities and phase transitions in superconductivity [Sch19], control
cavity chemistry [Hut12, Chil6, Thol9, Dun22], and vacuum-modified electronic
transport [Orglh, PB19, Val21l, App22]. Furthermore, if improving the nonlinear
response is possible and results in significant modulation of the coupling strength,
even the detection of quantum vacuum radiation from periodic modulation is feasible
[Lib0T].
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Chapter

Tailoring light-matter coupling through

spatial matter design

With the pursuit of larger and larger coupling strengths extending into the deep-
strong coupling regime, the splitting of the polariton doublet, 2Qr, occupies a larger
and larger spectral bandwidth. Consequently, as already evident in the previous
chapter, coupling to other light or matter modes comes into play. Yet usually the
theoretical models to describe the coupling (except the one used in the previous
chapter) only consider the interaction between a single optical mode and a single
matter excitation.

However, the interactions with off-resonant light and matter modes are often signifi-
cant and cannot be neglected, even for modest coupling strengths. Moreover, as will
be shown in this chapter, these additional interactions offer novel routes for tailoring
light-matter coupling, allowing us to suppress or enhance specific coupling pathways,
establish coupling of formerly orthogonal modes, and reshape the polariton modes.
The regime of multi-mode coupling is called multi-mode strong-coupling (MMSC) or
very strong coupling (VSC) regime. While we already included coupling to a second
cavity mode into our description of the system in the previous chapter, we will now
explore the parameter space offered by multi-mode coupling systematically.

The coupling of multiple matter modes to a single cavity mode (VSC) will be analysed
in the next chapter 5. In this chapter we will explore the coupling of two different

cavity modes to one matter resonance (MMSC). Theory support for the results
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4. Tailoring light-matter coupling through spatial matter design

described in this chapter was provided by Erika Cortese and Simone De Liberato.
The theoretical findings are published in Optica [Cor23]. A second publication,
focussing on the experimental data is submitted [Mor23b].

While both, the VSC and MMSC multi-mode regimes have been reached by multiple
systems already [Sunl5, Bayl7, Brol7, Cor2l, Raj21, Bal2l], their potential to
tailor the properties of light-matter coupling has been largely neglected. Every
light-matter coupled system and its properties are fundamentally defined by the
overlap integrals of the electric field modes and the matter polarization fields. Multi-
mode coupling allows one to advance beyond simply maximising the overlap of two
fields and offers a large accessible design space to shape the coupling by taking the
specific subwavelength spatial structure of each mode into account. In similarity
to selection rules of classical optics, one can now select specific coupling pathways,
establish coupling of formerly orthogonal modes, and shape the frequency response

and magnetic tuning of the polariton modes.

4.1. Light-matter coupling with non-orthogonal
light modes

In order to examine the effects of multi-mode coupling, we first have to extend the
description of light-matter coupling given in chapter 2.1 to include multiple light
and matter modes, as well as the (fractional) overlap of all these modes. While
one can generally assume, that the modes of a cavity are orthogonal within the full
three-dimensional space, this does not generally hold true in a limited sub-volume
(Fig. 4.1). This fact is important for our coupled samples, as for the coupling we
only consider the cavity fields in the limited volume of the QW stack. Therefore,
generally, cavity modes can become non-orthogonal in the QW subspace, and we have
to include this fractional overlap in our theory description of the coupled system. The
full detailed deviation of the Hamiltonian including these effects by Erika Cortese
and Simone De Liberato will be included in appendix E. The resulting bosonic

Hamiltonian (in Coulomb gauge) then reads:

H= ]:Ic + Hcyc + ﬁint + ﬁdim (41)
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4.1. Light-matter coupling with non-orthogonal light modes

Figure 4.1 | Orthogonal and non-orthogonal modes. a, Two lowest modes of a
resonator (red, blue), orthogonal respective to the complete mode volume. b, Two
modes of a planar microresonator, orthogonal respective to the complete 3D space.
c, d, Identical modes from panels a and b overlap respective to a limited volume.
Adapted from [Cor23].

with

e = S e (i + 3 ). (43)

Hiy =33 1 [(Qmj0ba + U jabl) ( +a5)] (4.4)
Jj asj

Hao =303 hyy (8 + ) (a) + ) (4.5)
JoJ

and coupling parameters

w.Nqwpe?
Op i = | DeYowpe - 46
R,j, 2m*egew; V; aj, (4.6)

hiy= ) R I

~ w,
v<4.3" ¢

(4.7)

Here the Hamiltonian features the same four parts as in chapter 2.1, He, f]cym i
and ﬁdia. Now we describe j cavity modes with individual frequencies w; in FIC and
« frequency degenerate matter modes with frequency w, in f]cyc. The interaction
and diamagnetic parts of the Hamiltonian, ]:Iint and Hdm then describe interactions

between all j cavity and a matter modes.

The coupling is characterized by the vacuum Rabi frequencies, Qg j o, which quantify
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4. Tailoring light-matter coupling through spatial matter design

the spatial mode overlap and represent the mutual interaction between modes j and
«a. They also take into account the interactions resulting from the non-orthogonality
of modes within the limited subspace of the interaction, specifically the quantum
well plane. V; represents an effective mode length in the z-direction, which is
determined by dividing the mode volume in the three-dimensional domain by the
mode integral over the two-dimensional plane of the electron gas. The background
dielectric constant in the quantum well plane is denoted by €, m* is the effective
mass of the electrons and Nqwp denotes the number of QWs times their individual
2D density. The overlap matrix is contained in a;,. Note that the approximation of
multiple degenerate matter modes with frequency v, does not hold true for systems,
which have ultra-narrow features in the resonator or QW structure. Here one has
to incorporate the dispersion of the matter system and as such multiple different

matter resonances.

For two photonic modes, we consider, generally, two different spatial mode distribu-
tions in the QW plane. Thus, we also need to account for two degenerate matter
modes and obtain three parameters, containing the overlap parameter s, which

assumes values between 0 and 1:

wepe?
Q =, 4.8
R, 2m*6067.w1V1 ' ( )
[ wepe?
Q =/ ———=1Thy, 4.9
ot 2m*epe,wa Vs h (4.9)
[ wepe? 3
Q = ——=/1— . 4.10
R.2,2 Im*eoerwn Vs |712,1 ( )

Here the photonic mode j = 1 is coupled exclusively to the matter mode v = 1 and

the coupling of the second photonic mode ov = 2 is shared between both matter modes.
For 751 = 0, the coupled system separates into two non-interacting subsystems, each

described by the Hamiltonian introduced in chapter 2.1.

The change in cavity overlap manifests in multiple distinct changes in the spectral
response of the polaritons. In Figure 4.2 we illustrate three characteristic cases for
two photonic modes with frequencies of 1 THz and 2 THz, respectively: no overlap
(721 = 0, Fig. 4.2a,b), medium overlap (7j2; = 0.5, Fig. 4.2¢,d), and full overlap
(21 = 1, Fig. 4.2e,f). In each panel, the data on the left displays the polariton
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Figure 4.2 | Polariton frequencies with overlapping cavity modes, a, as a
function of the cyclotron frequency v, and b, as a function of the relative QW doping
density p/po for no overlap, ¢, d, partial overlap and e, f, full overlap. Bare cavity
frequencies are marked with green and the cyclotron frequency with a red dashed
line. The grey dashed lines in b, d, f mark the doping density py, used in a, c, e

Adapted from [Cor23].
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4. Tailoring light-matter coupling through spatial matter design

frequencies as a function of the cyclotron frequency w. and on the right as a function
of the relative QW doping density p/po, whereby the latter shows the frequencies as
a function of coupling strength.

Looking at the cyclotron frequency plots on the left, for the case of no or partial
overlap (Fig. 4.2a,c), we observe four modes, which we identify as a two pairs of a
lower polariton and an upper polariton, each with their distinct polariton splitting.
However, when 79; = 1, an S-shaped resonance appears instead of the LPy and
the UP; resonance. This S-shape is a manifestation of the fundamental change
of the character of the coupling, as now a single matter excitation mode (j = 1)
simultaneously couples to both photonic modes (o = 1, 2), reducing the number of
participating modes from four to three. Consequently, this results in three polariton
branches in total, where the middle-energy branch is confined between the frequencies
of both cavity modes, w; and wy and exhibits a double-mode nature. Additionally,
the panels showing the polariton frequencies, as a function of the electron density p
(Fig. 4.2b,d,f), highlight the effects of the overlap on the diamagnetic contributions.
For no overlap (Fig. 4.2b), two modes, the two upper polaritons, UP; and UP,,
experience the blue-shift from the respective diamagnetic term with increasing
electron density. This behaviour is also still present for the case of partial overlap
(Fig. 4.2d), yet the diamagnetic term causes the two upper polaritons to slightly repel
each other. The two lower polaritons do not change significantly. For perfect overlap
(Fig. 4.2f), this repellence between the two UPs dominates, resulting even in an
anticrossing behaviour of the UPs above a critical value of the electron density. This
behaviour also assures that the S-shaped mode never crosses its bare components.
As a result of the reduced number of coupled modes, the LP5 mode is replaced by

an uncoupled mode representing the bare cyclotron resonance.

4.2. Mode-shaping via subwavelength structuring

of the electronic medium

In order to explore the implications of light-matter coupling with multiple and
non-orthogonal cavity modes, we utilize our established Landau-polariton structures.

This will allow us to demonstrate the additional tailoring capabilities, allowing for
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4.2. Mode-shaping via subwavelength structuring of the electronic medium

Figure 4.3 | Subwavelength structuring of the QWs.
Scanning electron microscope picture of a single double gap
resonator fabricated on top of the GaAs substrate, and the QW
patch hosting the cyclotron resonances.

10pm

control of the spectral shape of multiple polariton resonances as well as boosting
or suppressing coupling of certain modes. In order to change the spatial overlap of
the cavity modes and the electronic system, we perform subwavelength structuring
of the electronic medium. We again use the double gap resonators coupled to the
cyclotron resonances of Landau-quantized 2DEGs in our QWs, but in two different
configurations. A reference sample implements a planar quantum well stack covering
the whole unit cell area, as introduced in chapter 2.4 and is referred to as unstructured
(S3unstr). A second sample, referred to as structured (S3str), features laterally etched,
quadratic QW patches, resulting in additional lateral confinement (Fig. 4.3). The
reduced QW area then controls the spatial overlap with the resonator modes. Both
sample structures feature 3 QWs with a thickness of 20 nm, AlGaAs barriers of 25 nm
and a doping density of p = 1 x 102em™2, per QW. The patches of the structured
sample are fabricated by wet-etching with a temporary mask before the resonators
are added to the structure and feature a side length of 15 pm. Hereby the central
gap region of the resonators is aligned with the etched patches (Fig. 4.3).

THz transmission of the samples is recorded as a function of the cyclotron frequency
v, using the same setup utilized in previous experiments and outlined in chapter
2.3. The spectra for the unstructured sample are shown in Figure 4.4a and exhibit
five resonances. The diagonal resonance at v = v, (red dashed line) corresponds
to the cyclotron resonance in the uncoupled regions of the structure between the
resonators. The remaining four modes arise from the coupling between the different
light and matter modes, displaying the characteristics of one-to-one coupling of
photonic modes to matter excitations, which are orthogonal to each other. The
coupling to the LC mode at v ,c = 0.8 THz results in the LP; mode and a UP; mode,
which start at frequencies of 0 THz and 0.9 THz for v, = 0 THz, respectively. With

increasing cyclotron frequency, they exhibit the expected anti-crossing shape. Similar,
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Figure 4.4 | Tailoring of the modal overlap. a, Experimental transmission of
structure S3unstr, featuring a complete QW film, as a function of the cyclotron
frequency, v.. Dashed red line: bare cyclotron resonance. transparent lines: polariton
modes fitted with the multimode Hamiltonian. b, Respective finite-element frequency-
domain simulation of the structure with an adjusted doping density of p = 1.25 x
102 ecm~2, per QW. Pictogram on right: double gap resonator in unit cell and
unstructured QW (red). ¢, Experimental transmission of sample S3str, featuring the
quadratic QW patches. d, Respective simulation. Pictogram on right: double gap
resonator in unit cell and structured QW patch (red).

58



4.2. Mode-shaping via subwavelength structuring of the electronic medium

for the coupling to the second resonator mode with a frequency of vpp = 1.6 THz, the
corresponding LPy mode branches off from the cyclotron resonance near v, =~ 1.2 THz,
while the associated UP, mode resides at v = 1.75 THz for v, = 0 THz.
Subsequently, the structured sample is measured (Fig. 4.4c). Here the resonator can
only couple to the QW patch in the central gap region of the resonators (see Fig.
4.4 right). In stark contrast, the resonances previously associated with the upper
polariton of the LC mode (UP;) and the lower polariton of the DP mode (LP3) merge
into one S-shaped mode, predicted for a strong overlap of both photonic modes.
Thus, we only observe three coupled modes instead of four. This mode starts at a
frequency of 0.92 THz for v. = 0 THz and stays approximately constant up to v, =
0.7 THz, beyond which the frequency increases until reaching an inflection point at
v, = 1.25 THz. A further increase in v, leads to the convergence towards v = 1.6 THz.
Due to the modified spatial overlap, the frequencies of the other coupled resonances
(LPy, UP,) differ as well. We confirm the measurements with our fit-free finite-
element frequency-domain simulations (see appendix C). The resulting transmission
spectra match the experimental data and validate the results (Fig. 4.4b,d).

To extract the coupling parameters, we use the multi-mode Hamiltonian to fit both
the experimental and simulated datasets with the effective mode lengths Vj as free fit
parameters (black curves in Fig. 4.4). The overlap parameter 7j; is calculated from
the electric near-field distribution of the resonator modes. The fits match the observed
polariton modes and confirm the main difference of our datasets - the S-shaped mode
is only present for the structured sample. Comparing the resulting overlap factors,
for the unstructured sample we obtain 7, ; = 0.15 and for the structured one 721 =~ 1,
respectively. While both structures feature a large overlap of the photonic modes,
only the almost perfect overlap for the structured sample results in an S-shaped
mode. This increase in overlap of the photonic modes is expected, as reducing the
QWs to the patch in the central resonator area eliminates coupling opportunities
elsewhere. Specifically, the DP cavity mode features significant field enhancement at
the edges of the double gap resonator. For the structured sample, there is no QW
present, and hence, coupling to the DP mode is no longer possible at the outer edges
of the resonator.

Furthermore, this change of the shape of the magnetic field dependence of the polari-

tons is accompanied by a reduction in the polariton splitting and the diamagnetic
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4. Tailoring light-matter coupling through spatial matter design

shifts. Here the fit shows reduced normalized coupling strengths. For the first cavity
mode, the normalized coupling strength Qg 11 /w;, evaluated at resonance w; = w, is
reduced to 0.28, while for the second cavity mode, Qg 22/ws is decreased to 6 x 1073
and Qg o1/w; is increased to 0.27. In comparison, the unstructured case exhibits
larger overall normalized coupling strengths of Qg 11/w1 = 0.37, Qra2/ws = 0.21,
and Qg o,1/w; = 0.07. This overall reduction can be attributed to the decrease in the
integration area for the photonic modes, which results in a larger normalized mode
length V; and consequently leads to a smaller coupling strength. At the same time,
the negligible value of Qg 22/w, for the structured sample is a direct consequence
of an almost perfect overlap factor. Surprisingly, structuring the QW leads to an
increase in the ratio between the coupling strengths of the DP and LC cavity modes
from 0.19 to 0.96, thereby increasing the weight of the DP coupling. This change in
coupling strengths demonstrates our capability to take back control of the selection of
modes that couple to each other and suppress or enhance specific coupling pathways
by near-field structuring of the electronic medium. Additionally, we can utilize
this ultrastrong coupling of two cavity modes to the same matter mode to mediate

coupling of the formerly non-interacting cavity modes.

4.3. Plasmon formation in structured quantum

wells

Spatial structuring of the electronic medium allows for shaping the interacting modes
and thus opens up new pathways for tailoring light-matter coupling. However, our
assumption of degenerate matter modes with frequency w,, independent of the spatial
distribution, is only accurate for structures that do not contain features significantly
smaller than the wavelength in the resonator geometry or the QW structuring. When
subwavelength structures are present, a thorough analysis of the matter system is
required as additional confinement can require taking plasmonic resonances into
consideration.

The simplest case for additional confinement of our QW stack is the structuring into
stripes. Here the confinement of the 2DEG in one additional direction, given by

the stripe width L, creates a plasmon resonance in the structured direction. The
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Figure 4.5 | Stripes of a 6 QW sample Str6. a, Light microscope picture of the
stripes with a width of L = 4.8 pm and spaced 7 pm apart. b, THz transmission of the
sample as a function of the cyclotron resonance, v.. Black line: Fit of the resonance
with the Equation 5.2, for g = 2 adjusted with e = 9.7 and p = 1.15 x 10" cm ™!
for the experiment and c, simulation with p = 1.75 x 102 cm™L.

frequency of the resonance scales according to Vplasmon & v/pL~T [Mur20]. When
applying the external magnetic field, the plasmon resonance will hybridize with
the cyclotron resonance v., forming a magnetoplasmon resonance with frequency
UMP = \/Vasmon T V& [KusO1, Mur20]. Further details on plasmons in 2DEGs will
also be discussed in the next chapter.

To experimentally verify the formation of a plasmon resonance in QW stripes we
structure a sample featuring 6 QWs (sample Str6), each with a doping density of
p=1.15x 102 cm~2, into stripes with a width of L = 4.8pm and a spacing of
7Tum (Fig. 4.5a). Figure 4.5b,c shows the resulting experimental and simulated
transmission as a function of v, whereby the sample is probed with THz pulses
polarized perpendicular to the stripes. For v, = 0 THz, the bare plasmon mode
features a frequency of Vplasmon = 1.5 THz, subsequent hybridisation with the cy-
clotron resonance results in an increase in frequency, asymptomatically approaching
the cyclotron resonance with increasing .. This change shifts the accessible matter
frequency range from > 0THz to > 1.5 THz and consequently does not allow for
resonant coupling to the LC mode of the double gap resonator (see Fig. 2.7).

For the case of light-matter coupling with structured QW patches, as employed for
controlling the modal overlap (see Fig. 4.4 and Fig. 4.6a), the situation is further
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Figure 4.6 | Square patches with a side length of 15 pm with 3 QWs, each with
p=1x102cm™! (sample S3pat). a, Scanning electron microscope picture of the
patches. b, Experimental differential THz transmission. c, Simulated transmission,
with marked cyclotron resonance (dashed line), bulk (solid lines) and edge (dotted
lines) magnetoplasmon modes for the first two plasmon modes. d, Sweep of the
simulation unit cell size L,, L, at a frequency of v, = 0.25 THz.

complicated by additional confinement in both directions of the QW plane. The
transmission spectra of the bare square patches with a side length of 15 pm (S3pat,
as used for sample S3str) as a function of the cyclotron resonance (Fig. 4.6b) display
a rich structure with multiple anti-crossing modes. The finite-element frequency-
domain simulations of the structure match the experimental results (Fig. 4.6¢). For
V. = 0 THz, the plasmon modes for both confinement directions are degenerate and
orthogonal, resulting in a fundamental plasma mode with a frequency of 0.5 THz.
Higher plasmon modes are present, even though they feature a much lower oscillator
strength. Upon activating the external magnetic field, hybridization with the cy-
clotron resonance occurs. Due to the confinement in two dimensions, each plasmon
splits into two modes, a bulk magnetoplasmon and an edge magnetoplasmon. With
increasing cyclotron frequency, the bulk magnetoplasmon rises in frequency and
asymptotically approaches the bare cyclotron frequency, whereas the edge magneto-
plasmon asymptotically approaches zero frequency. This phenomenon has been first
observed in disk geometries [All83, Mas85] and has been studied and theoretically
modelled for a variety of 2DEG systems [Gla85, Fet86, Mur20]. For the length scales
and 2DEG properties employed here, the magnetic field dependence of the bulk and
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4.3. Plasmon formation in structured quantum wells

Figure 4.7 | QW disks with a diameter of 15 pm with
3 QWs, each with p = 1 x 102ecm™!. Experimental
differential THz transmission, with marked cyclotron
resonance (dashed line), bulk (solid line) and edge (dot-
ted line) magnetoplasmon mode for the first plasmon
mode.

edge magnetoplasmon modes is given by [Mur20]

2
w w
WPt = ?C + IC + Wlasma (4.11)

The bare cyclotron resonance (dashed blue line) as well as the bulk magnetoplasmon
(solid lines) and edge magnetoplasmon (dotted lines) modes for the first two plasmon
modes with bare frequencies of wplasma = 0.5 THz (white lines) and wpjasma = 0.78 THz
(red lines), are plotted in Figure 4.6b, respectively. Yet, this magnetic field depen-
dence does not include the observed pronounced anti-crossing of the first bulk
magnetoplasmon mode and the second edge magnetoplasmon mode at v, = 0.25 THz.
While there is a plethora of studies on disk geometries, none of them observes the
anti-crossing of the modes, as the edege and bulk magnetoplasmon modes are normal
modes, which do not interact. This absence of the anti-crossing in disk geometries
is also confirmed by a measurement of a QW disk with a diameter of 15 pm and
otherwise identical parameters as our QW patches (Fig. 4.7). Only one study
[Dem90] observes a similar anti-crossing in smaller, but rectangular structures. Here
matching theory suggests two possible explanations: many-body effects and coupling
of adjacent patches [Hua91]. Conducting a systematic sweep of the unit cell side
length of the patch simulations, ranging from 30 pm to 200 pm in an additional
simulation, shows no observable change of the splitting (Fig. 4.6d). In conjunction
with the absence of an anti-crossing point in the matching disk geometry, it seems

that the coupling of the modes is introduced by the geometry of the patch itself.

Certainly, the influence of these effects on the matter system must be taken into
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4. Tailoring light-matter coupling through spatial matter design

account to achieve a precise characterization of the structured samples. As implied
by its name, the edge magnetoplasmon mode primarily localizes at the edge of the
QW patch, where the field enhancement of the resonator is considerably diminished
and thus the coupling to the edge magnetoplasmon mode is minimal and can be
neglected. Consequently, the spectrum in the frequency range utilized for coupling is
predominantly governed by a solitary mode, namely the first bulk magnetoplasmon
mode. The strong deviation of the bulk magnetoplasmon resonance from the bare
cyclotron resonance is limited to the region v, < 0.5 THz, while for v, > 0.5 THz the

increase in frequency shifts the polaritons modes slightly.

Conclusion

In summary, the exploration of multi-mode coupling offers a largely uncharted param-
eter space for controlling light-matter interactions. The developed, comprehensive
theory allows for the incorporation of the non-orthogonality of multiple confined THz
resonator modes, coupled to the cyclotron resonance of a 2DEG. Through lateral
confinement of the QW, we gain the ability to manipulate spatial overlap factors,
thereby customizing the characteristics of the polariton modes. Surprisingly, the
alterations in the overlap exert a substantial influence on the polariton properties,
including their frequencies, magnetic field dependence, coupling strength, and even
spatial field distribution, all without modifying the cavity itself (see also [Cor23]).
This capability facilitates the suppression or enhancement of specific coupling path-
ways of certain cavity or matter modes, similar to the selection rules in classical
optics. Furthermore, shaping the QWs enables tailoring the coupling between former
non-interacting cavity modes, through a common matter resonance. This versatile
toolkit for manipulating the coupling between multiple photonic and electronic modes
opens up more possibilities for tuning the polaritons of polariton-based devices for a

wide range of applications in areas such as optoelectronics and nanophotonics.
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Chapter

Deep-strong multi-mode, multi-octave

coupling

Increasingly stronger light-matter coupling and the consequent rise in vacuum photon
populations have opened exciting possibilities for exotic effects of cavity QED. Thus
far, the primary focus has been on optimizing resonant light-matter interactions.
While previous investigations have showcased remarkable progress in this direction,
they also discovered fundamental barriers arising from light-matter decoupling [DL14]
or dissipation [Raj21]. With increasing coupling strengths pushing into deep-strong
coupling, the very strong coupling regime will almost invariably come into play,
rendering the single-mode approximation inadequate.

In chapter 4, we explored the influence of multiple cavity modes coupling to the same
matter resonance in a setting featuring modest coupling strengths within the USC
regime. However, as illustrated in chapter 4.3, as electron densities in the 2DEG
increase and the coupling strength grows, multiple non-degenerate matter modes may
also be involved. While the dipole moment of a solitary resonant excitation can only
be augmented to a certain extent, thereby setting a limit to the attainable coupling
strength, this barrier can be overcome by coupling to multiple strong dipole moments
with differing frequencies and even of different resonance types. This chapter will
show how coupling multiple matter modes to one photonic mode enables us to exceed
previous coupling strength records and achieve coupling strengths deep in the DSC

regime, while providing novel opportunities for customising light-matter coupling.
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The concept of off-resonant, multi-mode coupling exploits the fact that when there
is a sufficiently strong spatial overlap between light and matter polarization fields,
even matter resonances, considerably detuned from the optical resonance, can sub-
stantially boost the vacuum ground state population (discussed in this chapter later).
Consequently, multiple non-resonant plasmon modes can be cooperatively coupled
to a shared resonator mode, leading even to the mixing of formerly orthogonal elec-
tronic excitations. By harnessing this principle of non-resonant multi-mode coupling,
this chapter will demonstrate how an ultrabroadband spectrum of more than 10
cavity polaritons spanning 6 optical octaves and a vacuum ground state population
exceeding 1 photon can be created, surpassing previous records almost threefold.

The results presented in this chapter were submitted as an article to a peer-review

journal and are available as a preprint (see [Mor23al).

5.1. Irreducible compact resonator array

We begin our design process of the coupled structures by reevaluating the resonator
geometry to enhance its performance. Our strategy involves not only capitalizing
on coupling to multiple non-resonant plasmon modes to amplify the virtual photon
number per resonator structure but also focusing on optimizing the metasurface
resonator geometry to achieve a higher density of individual resonators. By increasing
the density of resonators, we effectively boost the overall virtual photon density
in the system. The resulting metasurface eliminates the excess spacing between
adjacent resonators, resulting in a four-fold increase in the areal resonator density,
while maintaining the oscillator strength, well-separated optical modes, linewidths,
high near-field enhancement factors, and low mode volumes of the original design.

To achieve this optimization, we revisit the established design principles for our
resonator structures and discard the design rule of generously spaced resonators
to avoid nearest-neighbour couplings. We start with a well-established inverted
resonator structure [Che07, Scal2, Bay17, Die20], featuring a square shape with an
outer extension of 30 pm, embedded in a unit cell size that is twice as large as the
outer dimensions of the resonator (Fig. 5.1a). The design features two symmetric
current paths feeding a central capacitive gap with a width of 2.5 pm. The structure

features five optical modes with centre frequencies at 0.52, 1.95, 3.75, 4.6, and
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Figure 5.1 | Ultracompact metasurface. a, Three-dimensional cut-away illustra-
tion of a conventional metasurface structure (gold shape) and its electric near-field
distribution |&,| for the fundamental LC mode at v = 0.5 THz. The unit cell (size:
60 pm x 60 pm) is indicated by the dashed line. QWs: quantum well stack. b, Highly
compacted metasurface with a unit cell size of L, X L, = 30 pm x 32.5pm (butter-
fly). ¢, Measured THz transmission of the bare resonator array (blue circles), and
calculation (red curve). Adapted from [Mor23a].

6 THz (see Fig. 5.1c and 5.4b) for the excitation by THz radiation linearly polarized
perpendicular to the capacitive gap.

Exciting the fundamental mode at 0.52 THz, an oscillating current flows along the
paths indicated in Figure 5.2a. Charge carriers on the right inner metal plate are
transported to the outside of the structure (turquoise right arrow) while a current,
identical in both magnitude and direction, drives charges into the corresponding
mirrored plate on the left side (left turquoise arrow), as dictated by symmetry. The
current paths are closed to a loop by currents on the outer metal plane in the y-
(yellow arrows) and z-directions (blue arrows), respectively. Overall, here the current
phase lags behind the driving field phase by /2.

To compact this resonator structure, we will remove areas of low current density,
which are not necessary for the resonator functionality and merge adjacent current
paths of opposite phase, allowing us to eliminate the affected elements completely.
We start with reducing the unit cell size in a-direction. When reducing the spacing,
the y-oriented currents along the left and right edges of the outer metal plane (yellow
arrows) will start to overlap. However, since they feature opposite phases, they

cancel out. Yet this change does not affect the current flow into and out of the
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Figure 5.2 | Ultracompact resonator design and current distributions.
a, Resonator layout featuring a conventional, large unit cell. Arrows: current
flow of the fundamental optical mode. b, Resonator design compacted in z-direction,
and current flow. The unit cell is indicated by the dashed rectangle. c, Butterfly
resonator design, compacted in z- and y-direction, and current flow. Adapted from
[Mor23a].

internal resonator area (turquoise arrows), as the currents continue on their path
into the neighbouring resonator (Fig. 5.2b). Consequently, the optical mode remains
unaffected, even when the spacing between resonators in z-direction is eliminated
completely. In this configuration, the y-polarized current paths are now absent and
no longer necessary, as the z-polarized currents flowing along the outer perimeter of
the structure are also connected between adjacent resonators (blue arrows).

Next, we examine the reduction of the spacing between resonators in the y-direction.
Here, the outer currents of adjacent unit cells in the y-direction share the same phase
(blue arrows). Thus, the cancellation mechanism described for the z-direction cannot
be used. However, as the currents favour the shortest paths, they concentrate near
the edges of the metallized layer and as we move away from the edge, the current
density quickly diminishes, falling off within a short distance of approximately 3 pm
perpendicular to the edge. Thus, as long as the remaining metal strip is sufficiently
wide to support the currents in z-direction, we can still compact the structure. We
choose a spacing of 2.5 pm, resulting in an overall almost four-fold reduction in the
unit cell’s area (Fig. 5.1b, 5.2¢).

68



5.1. Irreducible compact resonator array
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Figure 5.3 | Fabricated butterfly metasurface. a, Light microscope picture of a
part of a metasurface array. a, Scanning electron microscope picture of a resonator.

The resulting metasurface is maximally compact and can no longer be separated into
individual resonators. Yet, the near-field distribution of this compacted structure
closely resembles that of the original design (Fig. 5.1b). Due to the shape loosely
resembling a butterfly, we will call this resonator design from now on “butterfly”.
Examples of the fabricated resonator metasurfaces are displayed in Figure 5.3.

As the arguments of symmetry and current localization can be applied equally to
all resonator modes, also the spectrum of the compacted structure does not differ
significantly from that of the separated structures across the entire spectral range.
Here the most prominent remaining differences result from the overall increase in
transmission resulting from the reduction in unit cell size and coupling to surface

plasmons at the gold/GaAs interface, which will be discussed in the next subsection.

Resonator spacing and coupling to surface plasmons

Metasurface resonator arrays are usually designed by starting with a single resonator
and then scaling to an array. Thus, in the array, individual resonators are spaced far
apart to minimise coupling between resonators, potentially changing the careful design
of the individual resonators. Yet coupling effects are always present to a certain
degree. Additionally, a low resonator density imposes the challenge of reduced
overall transmission for measuring a negative resonator structure and increases

computational complexity in the finite-element frequency-domain simulations due to
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5. Deep-strong multi-mode, multi-octave coupling

the increased unit cell size.
Coupling between individual resonators in a negative resonator array is mediated
by surface plasmons at the gold/substrate interface [Kell7a]. Their frequency vsp is

given by

. 2 2

vep = 2‘412 (LQ:H> + 52 <%) : (5.1)
where c is the speed of light in vacuum, n an effective refractive index, L, and L, the
unit cell size of the metasurface in z- and y-direction, respectively and 4, j € IN. Here,
n = % [Gha98, Kell7a] and can be approximated by the THz refractive
index for GaAs, as ngaas < Ngola. A careful look at the surface plasmon frequency
dependence reveals an alternative route to limit their influence on our resonances,
as for small unit cells, all their frequencies increase, shifting out of our relevant
frequency region.
The finite-element frequency-domain simulation for the employed resonator design,
varying the quadratic unit cell size L, = L, displays the main resonator modes,
crossed by multiple surface plasmon modes with increasing unit cell size (Fig. 5.4a).
For the maximally compacted butterfly structure and thus smallest possible unit cell,
the lowest surface plasmon mode is shifted to a frequency above the second dipolar
resonator mode. As a result, the two lowest resonator modes are no longer being
affected by surface plasmon resonances. Increasing the unit cell, not only decreases
the overall transmission, but also introduces coupling to multiple surface plasmons.
Whereas the isolated transmission spectrum for the butterfly resonator (Fig. 5.4b
black curve) displays only the main resonator resonances, the spectrum for a unit
cell of 60 pm features multiple additional resonances, already for the bare resonator
(Fig. 5.4b red curve). These additional resonances will make identifying polariton

resonances in the structures with QWs much more difficult.

Plasmon excitation of resonator arrays

So far, we mostly treated the matter system as a single collective cyclotron resonance,
neglecting any effects that arise from the electron plasma in the QWs itself (except

in chapter 4.3). However, with increasing doping densities and QW number, these
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Figure 5.4 | Surface plasmon coupling of the resonator array a, Calculated
THz transmission of the inverted resonator array as a function of the lattice spacing
L., L, b, Calculated THz transmission for a unit cell of 60 pm (red) and the
maximally compacted butterfly structure (black).

effects can no longer be neglected. Note that these are distinct from the surface
plasmon effects we covered in the previous section. As discussed in chapter 4, the
near-field enhancement of the metasurface resonators is not uniform in the QW plane
and can differ between different resonator modes. Consequently, this implies that
our coupling is not confined solely to an in-plane wave vector of g = 0, but rather
extends to multiple wave vectors. Additionally, the periodicity of the metasurface,
and thus of the field localization, quantizes the wave vectors of the light field that
can couple to the electrons in the QWs. Therefore, to fully include effects from the

plasma itself, we have to take its dispersion into account.

5.2. Plasmons of 2D electron gases

In absence of the external magnetic field, plasma excitations of a 2D electron gas

obey the dispersion relation [Ste67, Pop05]

2
Wplasma (QH) =, mm‘- (5.2)
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5. Deep-strong multi-mode, multi-octave coupling

Here g denotes the in-plane wave vector, p is the 2D electron density, m* is the
effective electron mass and e.q(q) is the effective dielectric constant for the electron
gas. When adding the static magnetic bias field oriented perpendicular to the QW
plane, we again introduce Landau quantization and the plasmon excitations hybridize
with the cyclotron resonance, w,, resulting in the formation of magnetoplasmons
(MPs) [Kus01] with a frequency of

_ / 2
WMP = /W2 + W2 (5.3)

In order to calculate our plasma dispersion, we have to determine the effective
dielectric constant e.g(q)), which is given by the dielectric environment of the 2DEG.
Therefore, we have to consider all dielectric constants for the surrounding layers of
the QWs. The dielectric constant of the GaAs substrate below the QWs is given
by € = 12.9. The capping layer on top of the QWs features a thickness of d
and a dielectric constant of €pupier. The dielectric function of the top interface
depends on whether it is in contact with vacuum or the gold layer of the resonator
structure. Previous studies [Egu75, Pop05] have provided effective dielectric functions
for these cases, denoted as €upgatea(q)) for the vacuum interface and €gaiea(g) for a
top-metallized 2DEG. For the latter two cases e.g(q)) is given by either

€sub €barrier 1+ €barrier tanh(|€lu |d)
ungates = X » OF 5.4
cungared (41) 2 2 Coareier + tanh([qy|d) """ >4
€sub 1 Ebarrier coth(\q |d)
cpntea (1) = : e (5.5)

In more complex situations involving laterally structured samples like planar metal
resonators or gratings, we construct an averaged effective dielectric function, taking
into account both scenarios. This averaging is valid as long as the size of the structure
is smaller than the plasmon wavelength. The constructed average dielectric function
incorporates a factor ¢ that represents the relative metal coverage of the surface and

is denoted by

€eff, mix (q”) = 6€gated (Q||) + (1 - 6) €ungated (qH) . (56)
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5.2. Plasmons of 2D electron gases

Furthermore, in the case of a multi-quantum well (QW) stack composed of multiple
layers with varying dielectric properties, an additional averaging of the effective
dielectric function is necessary along the growth direction. Previous studies have
shown that the response of densely packed QWs can be well approximated using
an effective-medium approach [Bay17]. Additionally, it should be noted that the
charge carriers within the QW stack do not exhibit the characteristics of an ideal
two-dimensional electron gas due to the finite extension of the QWs in the growth
direction. As the thickness of the QWs increases, their plasma frequency approaches
the three-dimensional plasma frequency as an asymptotic upper limit for large wave
vectors. In contrast, the dispersion of an ideal two-dimensional plasma has no such
upper bound. We account for this effect by including a correction depending on the
QW stack thickness dqw. The effective dielectric function e.q for a thick stack of
QWs can then be expressed as [Bonl7]:

€sub |q|| |dQW

9 (5.7)

€eff = €eff,mix +

The description provided allows for a plasmon mode dispersion that approaches the
three-dimensional (3D) plasma frequency as |q| tends to infinity. However, it is
important to consider the limitations imposed by Landau damping on the frequency
and wave vector range of plasmon and magnetoplasmon excitations [Bac92, Kus01].
Landau damping becomes effective when single-particle excitations start to play a
significant role. An upper bound for the frequency of these single-particle excitations

can be determined by the expression v < vp|q)|, with the Fermi velocity vp = ﬁ’Vme L

The resulting plasmon dispersion for samples featuring 1, 3, 6, 12, 24 and 48 QWs is
displayed in Figure 5.5. For samples featuring comparably low doping densities, such
as the 1 and 3 QW samples, the plasmon dispersion is almost linear and the plasma
frequencies v, = Wplasma/(27m) do not reach 1 THz for wavevectors |q| < 2 (pm)*lA
For QW stacks with more QWs, the plasma frequencies reach up to 5 THz. For the
stack with 48 QWs, even the frequency of the first plasmon mode with |q;| # 0,
that couples to the resonator array (see next section), supersedes the bare resonator
frequency by three times. As a result, this significantly alters the nature of the

coupling and cannot be disregarded.
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Figure 5.5 | Plasmon dispersion for all samples. The dots mark the plasmon
frequencies which fulfil the diffraction condition. The black dashed line indicates
the cut-off wavevector up to which plasmon modes were considered in the quantum
model. Adapted from [Mor23a).

Resonator field enhancement in reciprocal space

The vacuum near fields of our resonator structures are not spatially homogenous
over the complete QW plane. This fact and especially the effect of different spatial
mode profiles of multiple resonator modes have already been discussed in real space
in chapter 4. A non-homogenous mode profile in real space results in the resonator
structure exciting in-plane vectors of g # 0. Up to now, we neglected effects of the
plasma itself and assumed the cyclotron resonance being the only resonance in our
matter system. As we can no longer neglect the plasma itself for samples featuring a
high effective doping density, the wavevector decomposition of the resonator vacuum
field plays a crucial role in determining coupling strength and polariton frequencies
[Raj21]. Moreover, the periodic nature of our metasurfaces leads to a discretization
of the plasmon wave vectors which can be excited by the cavity modes. As the
dominant modes of the resonator structure mostly enhance the vacuum field in
a-direction (see Fig. 5.1), we consider from now on only the z-component of g;. The

condition for the in-plane wave vector ¢, is given by

¢ (@) = i—ia (5.8)
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Figure 5.6 | Plasma wave exci-
tation of the butterfly resonator
in the 48 QW sample. Finite-
element frequency-domain simula-
tion of the electric field distribution
|€:] in the QW stack, 300nm be-
low the resonator a, for a frequency
of 0.275 THz and b, for 0.925 THz.
Note that coupling effects are in-
cluded in the calculation, as they
cannot be excluded.

x (um)

Here, o € Z is the plasmon mode index. The small value of L, = 30 um increases
the energy spacing of the now distinct magnetoplasmon modes we can couple
to, when compared to previously investigated structures with larger unit cells.
Bright and dark standing waves, given as Wy,  exp (—ig,z) + exp(i¢,x) and Wq
exp (—ig,x) — exp(ig,x), respectively, can be formed by linear combinations of
plasmon waves with wave vectors —¢g, and ¢,. In the context of coupling to cavities,
only the bright modes couple to the cavity modes, since their dipole moments add
constructively, and we therefore focus our attention on these. We disregard the dark
standing waves, as their dipole moments cancel out. We can use the finite-element
frequency-domain simulations to observe the plasmon waves excited in the QWs by
the butterfly resonator structure for our sample featuring 48 QWs (Fig. 5.6). In the
simulations the effect of light-matter coupling cannot be switched off, so the modes
reflect their coupled state. For a frequency of v = 0.275 THz we observe two electric
field maxima on the left and right side of the central gap (Fig. 5.6a), corresponding
to the coupled low frequency upper plasmon polariton mode UP (see Fig. 5.12b).
At a higher frequency of v = 0.925 THz, the field distribution in the whole unit cell
is filled with oscillations with a higher spatial frequency of ~ 0.9 um (Fig. 5.6b).
This mode corresponds to the UPy( plasmon polariton mode (see Fig. 5.12b).

To analyse the effect of coupling to (magneto-)plasmons with ¢, # 0 systematically,
we calculate the 2D Fourier transform of the z-polarized electric near-field component,
&, for the first two cavity modes (Fig. 5.7), using finite-element frequency-domain
simulations (appendix C). This calculation is performed using undoped QWs to

obtain the modes of the bare cavity (Fig. 5.7 insets) and evaluated within zy-oriented
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Figure 5.7 | Analysis of magneto-plasmon formation. a, Amplitude compo-
nents of the Fourier transform of the electric field component &, for the LC mode
(j =1) at 0.52 THz as a function of the wave vector k,, for k, = 0, and the depth
of the plane below the metasurface, z. Inset: |£;| in the quantum well plane 50 nm
below the resonator structure. b, Equivalent amplitude components for the data of
the dipolar mode (j = 2) at 1.95 THz. Adapted from [Mor23a).

planes lying within the QW stack. Again, the £, components are significantly weaker
than the dominant &, field enhancement and thus are neglected. As a result, we
obtain the amplitudes FFT(E,)(q, = 0), integrated within the respective planes, as
a function of the wave vector, ¢,, and the depth below the metasurface, z. Both,
the spectrum for the LC and the DP resonator mode, show significant excitation
of plasmon modes, whereas for the LC mode, the dominant excitation occurs for
¢.( = 1) (Fig. 5.7a). For the dipolar cavity mode, the strongest excitation is present
for ¢,(a = 0) = 0 and almost no excitation at g,(o = 1). Considering the effect
of single-particle excitations discussed in the previous paragraph and the decay of
the field amplitude for larger wave vectors, especially in planes located further away
from the metasurface, we limit the magnetoplasmon mode index « to a maximum
of |a| < a. = 10. This choice allows us to model the coupling of the light field to
each individual magnetoplasmon and account for their relative amplitudes, displayed

with the discretization condition, and the cut-off wave vector in Figure 5.5.
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5.3. Multi-mode coupling of multiple light and

matter modes
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Figure 5.8 | Off-resonant multi-mode coupling. Illustration of deep-strong
coupling of multiple light modes (upper parabolas) to multiple matter excitations
(bottom parabolas) with vacuum Rabi frequencies Qg ; o under off-resonant conditions.
Owing to the extremely large light-matter coupling, a significant number of virtual
excitations are present (semi-transparent spheres). Adapted from [Mor23a).

As demonstrated in multiple publications [Ana09, Gti09, Tod10, Scal2, Mail4, Bay17,
Mue20] and within the previous chapters of this thesis, even for USC or DSC, a
single-mode model often suffices for a description of the situation. However, with
rising doping densities of the QWs, this description begins to lose accuracy, necessi-
tating the inclusion of the magnetoplasmon resonances when the plasma frequency
Wplasma (0 (0ic)) exceeds the linewidth of the cyclotron resonance. Under such condi-
tions, we now account for the coupling of each magnetoplasmon characterized by a

frequency wyip,o to multiple resonator modes, denoted as j (Fig. 5.8).

In order to describe the coupling arising from this extreme setting of strong, off-
resonant coupling of multiple light and matter modes with highly disparate fre-

quencies, we develop our light-matter coupling Hamiltonian (see chapter 2.1 and 3)
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further:

H =Y hwjala; + 3 hwp ablba + 3 Ok jo (af + a;) (B + ba)
j « \J

@,)
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—R22 (G 4 4;)" + How. (5.9)
aj WMP.a :

Here, in addition to including multiple cavity modes j, we introduce multiple
magnetoplasmon modes «, with individual vacuum Rabi frequencies g j o, which are
determined based on the amplitudes of the corresponding wave vectors, as described
in the previous section. These include the decay of the near-field amplitude in
z-direction, accounting for the coupling to the complete QW stack. To match the
experimental spectra, the entire set of Qp ;o is scaled by a single amplitude scaling
factor that applies to all modes. For the employed butterfly resonator and planar
QWs, modal overlap of the cavity modes, described in chapter 4, is minimal and
thus not included in the Hamiltonian. Further, we limit ourselves to the coupling of
the first two cavity modes, as these dominate the resonance spectrum up to 6 THz,
whilst coupling to higher modes is observed to be minimal.

As a result of the coupling between 2|a.| + 1 = 21 magnetoplasmon resonances and
each resonator mode, 22 light-matter hybridized modes form. Each polariton mode
is a superposition of all magnetoplasmon modes and only one cavity mode, due to
the nearly orthogonal nature of the cavity modes (see chapter 4). These modes are
labelled with the existing cavity mode index, j, and a new index, 3, to represent
the 22 resulting magnetoplasmon cavity polaritons (MPPs). The magnetoplasmon
polaritons are split into a lower polariton (LP) mode, denoted as LP; s—¢, and several
upper polariton (UP) modes, denoted as UP;1<g<q.+1. This polariton spectrum of a
single LP mode, but multiple UP modes is a unique feature of multi-mode coupling,
where all independent magnetoplasmon modes cooperatively couple to a common
cavity mode. The single LP and the set of UPs can be distinguished by their Hopfield
coefficients, since the signs of their resonant cavity and anti-resonant matter fractions
differ (see Fig. 5.15 for details). As a consequence, they vary in their magnetic field
dependence, as shown in chapter 2 for the case of single-mode coupling and later in
this chapter for multi-mode coupling. While dark modes with 8 < 0 are included,

they do not couple to the cavity modes and will be discussed later in more detail.
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Figure 5.9 | Characteristics of multi-mode coupling. Illustration of multi-mode
coupling of one cavity mode to several matter modes, MPy = CR, MP; and MPs, as
a function of the cyclotron frequency, v.. a, uncoupled modes. b, coupled modes
comprising of one lower polariton (LP;) and three upper polaritons (UP; 1, UPy 5
and UP; 3). Adapted from [Mor23al.

As an instructive example, we will look at the coupling of a single cavity mode
j =1 to three magnetoplasmons, whereas the first magnetoplasmon, MPy, is the
bare cyclotron resonance. Their bare frequencies as a function of the cyclotron
resonance ., without coupling, is displayed in Figure 5.9a. Switching the coupling
on (Fig. 5.9b), four magnetoplasmon polariton resonances form with monotonically
increasing frequencies. The LP; mode emerges asymptotically from below the
cyclotron resonance (CR) near v, = 0 and gradually approaches the cavity frequency
as v, becomes larger. On the other hand, the UP;—; 3 modes, at v, = 0, exhibit a finite
frequency determined by the plasma frequencies of the constituent magnetoplasmon
modes and the diamagnetic shift induced by the photon field. As v, increases, all UP
modes bend upward and eventually converge asymptotically towards the cyclotron
resonance. Remarkably, contrary to the case of single mode coupling, an upper
polariton mode can exist for frequencies lower than its associated cavity frequency,
specifically, vup j 3 < v;. This not only eliminates the previously observed bandgap
that exists in the context of single mode coupling, which is created by the diamagnetic
term and separates the two polariton modes, but also serves as a unique indicator of

multiple matter modes interacting with a single cavity mode.
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Experimental results

For an initial experimental investigation of the effects of multi-mode coupling, we
employ samples with 1, 3, 6, and 12 QWs, measured with the THz time-domain
setup detailed in chapter 2.3 and used to obtain the experimental data shown in
prior chapters.

In the case of a single QW (Fig. 5.10a), a single LP; mode is located below the
cyclotron resonance. As v, increases, the LP; mode approaches the frequency of the
bare first cavity mode at 0.52 THz. At v, = 0 THz, we observe a dense fan of partially
overlapping UP; g modes, starting at a frequency of 0 THz. Among these UP modes,
the most prominent one, highlighted by the uppermost semi-transparent white curve,
exhibits the highest frequency at v = 0.78 THz. As v, increases, the entire UP mode
structure bends upward in frequency, as discussed for the example, and occupies
a progressively narrower spectral bandwidth between the cyclotron resonance and
the highest-energy UP mode. Similarly, coupling to the second cavity mode with
a frequency of v = 1.95 THz results in a LP3 mode, represented by the lowermost
dotted curve in the plot. As v, is increased, the LPy mode branches off below the
cyclotron resonance and reaches a frequency of v = 1.65 THz at v, = 1.9 THz. The
ensemble of UP, 3 modes depicted by the upper dotted curves is dominated by a
single spectral feature centred around v = 2.0 THz for v, = 0 THz. As v, increases,
this feature slightly shifts towards higher frequencies.

In the case of three QWs (Fig. 5.10b), the electronic dipole moment is enhanced,
resulting in an increase in the frequency spacing of the uncoupled magnetoplasmons,
vyvp (@) as well as the coupled magnetoplasmon polaritons. At v, = 0 THz, the UP 4
modes span a frequency range from approximately 0 to 1.0 THz, exhibiting well-
separated resonances that clearly demonstrate the multi-mode nature of the coupling.
The increased interaction also causes a further upward shift in the frequencies of the
UP, 3 modes, while simultaneously lowering the frequencies of the LP; modes.
Moving on to the 6 QW case (Fig. 5.10c), we observe a pronounced magnetoplas-
mon polariton fan with well-separated UP; g modes that extend up to 1.65THz at
v, = 0THz. The UP; modes reach frequencies up to 2.0 THz.

Increasing the number of QWs to 12 QWs (Fig. 5.10d), distinct branches of UP; 4
and UP; g modes at frequencies reaching up to 2.5 THz and 3.2 THz, respectively,
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Figure 5.10 | Deep-strong multi-mode coupling. a, THz transmission spectra
as a function of v, of the 1-QW structure. Continuous curves: polariton modes
from the multi-mode Hopfield model for the first resonator mode (coupling strength:
m = 0.55). Dashed curves: polaritons linked to the higher mode vy (17, = 0.13).
b, Transmission of the 3-QW structure (7, = 0.76). ¢, Transmission of the 6-
QW structure (n; = 1.34). d, Transmission of the 12-QW structure (1, = 2.32).
e-h, Spectra from the time-domain quantum model. i-1, Spectra from the finite-
element frequency-domain simulations. Adapted from [Mor23a].
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are observed. Remarkably, several of these modes exhibit ultrastrong coupling
simultaneously, with centre frequencies reaching up to approximately 5 times the

frequency of the bare cavity mode, v;—; = 0.52 THz.

Fitting and extraction of the coupling strength

To accurately assign and fit the individual, multiple resonances and investigate
the nature of the coupling in detail, we use our finite-element frequency-domain
simulations as well as time-domain simulations derived from the Hamiltonian. As
in chapter 3, we use Heisenberg’s equations of motion to derive the time evolution
of each operator, calculate the temporal evolution upon excitation and, through a
Fourier transform, the spectral characteristics of the coupled modes. The frequency
response of the bare metasurface is effectively modelled by a superposition of cavity
modes, where each cavity mode «; with a cavity frequency v; contributes with a
relative amplitude, phase, and damping rate carefully selected to ensure an optimal
representation of the far-field response (see Fig. 5.4 and appendix D). The theoretical
calculations based on these equations accurately reproduce the measured spectra
(Fig. 5.10e-h). The matching line widths and oscillator strengths of all modes across
the entire experimentally accessible spectral range confirm the theory’s ability to
capture the complex dynamics of the coupled modes in our system. The finite-element
frequency-domain simulations (Fig. 5.10i-1), quantitatively match the experimental
data over the complete experimentally accessible spectral range as well, without any
free fitting parameter besides the doping density p. The excellent agreement of theory
and experiment allows us to determine the set of individual coupling constants, Qg ; o
with great precision.

In this context of multiple matter modes being off-resonantly coupled to multiple
light modes with extreme coupling strengths, the concept of the anti-crossing point,
which maximizes the coupling strength between a single pair of modes, loses its
relevance. Especially in our multi-mode coupling scenario, an appropriate figure
of merit for characterizing the system is actually the number of virtual photons
(N;) = (G] fz}&j |G) associated with each photonic mode 7, and the number of virtual
matter excitations (G]b1b, |G) of each magnetoplasmon mode, as both of these

virtual excitations govern most of the fascinating effects of USC and DSC. When the
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Figure 5.11 | Virtual photon popula-
tion (N) as a function of detun-
ing with the cyclotron frequency v..
: a, For the structure featuring 48 QWs
- Qr/w. =283 (black) with an equivalent single-mode
! ' ' ' coupling strength of Qr/w. = 2.83 and
: : : : including all magnetoplasmons. Grey
dashed line: coupling of only a single cav-
ity and matter mode with equivalent cou-
pling strength. Dotted blue line: v, =
Veay = 0.52 THz. b, For the single modes
with a coupling strength of Qg /w. = 0.1.
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coupling strength for an individual mode reaches the DSC regime, even off-resonant
coupling decreases the virtual photon population only slightly, further diminishing the
significance of an individual anti-crossing point. This enables the total vacuum photon
population to be increased almost arbitrarily by adding electronic oscillator strength
within a spectral window that can span several octaves in frequency. Let’s consider
a specific case to illustrate this behaviour. Suppose we have a single cavity mode
with a resonance frequency of ve,, = 0.52 THz coupled to a single matter mode, with
a coupling strength of Qg /w. = 2.83 (approximating the situation of the structure
with 48 QWs, discussed shortly) (Fig. 5.11a dotted grey curve). As expected, the
vacuum photon population as a function of the cyclotron frequency v, features a
maximum at the anti-crossing point v, = v,y = 0.52 THz. However, surprisingly,
even with a significant detuning of v, from the anti-crossing point, the vacuum
photon population remains above 50% of its maximum value when the modes are
resonant. This behaviour is also found for the multi-mode configuration, as observed
for the 48-QW structure with the same equivalent coupling strength Qg /w. = 2.83
(Fig. 5.11a black curve). However, the situation changes significantly for moderate
coupling strengths. For a single pair of light and matter modes with Qg /w. = 0.1, a
much stronger dependence of (N) on the detuning is observed (Fig. 5.11b). Here,

reducing the cyclotron frequency to v, = 0.1 THz or increasing it to 3 THz already
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reduces the number of virtual photons to 50%. This comparison demonstrates
that effective multi-mode coupling over multiple optical octaves critically relies on
significant light-matter coupling strengths, as in the multi-mode configuration, at
most, one magnetoplasmon mode is in resonance with the cavity mode.

For the 1-QW structure, the theory fit yields virtual photon populations of (N;) = 0.07
and (Ny) = 4 x 1072 for the first and second cavity mode, respectively. In comparison,
if we consider the hypothetical coupling strength 7 of a single pair of resonant light
and matter modes that would result in the same total vacuum photon number, we
obtain n; = 0.55 and 7y = 0.13. Increasing the number of QWs to 3, we achieve
(N1) = 0.13 and (Ns) = 0.01, resulting in n; = 0.76 and 7y = 0.19. The model also
successfully reproduces the transition from the merged ensemble of UP; 3 modes to
clearly distinguishable individual magnetoplasmon polariton resonances (Fig. 5.10e-h
and transparent lines). Similarly, for the 6-QW structure, the calculation replicates
the data, and we obtain (N7) = 0.34 and (N,) = 0.03, resulting in 7, = 1.34 and
12 = 0.36. Doubling the number of QWs again to 12, the calculation results in
(N1) = 0.76, (N2) = 0.08 and 1, = 2.32, 15 = 0.60, significantly surpassing previous

vacuum photon population and effective coupling strength records [Bay17, Mue20].

Maximal achievable deep-strong coupling

While our structure with 12 QWs already exceeds all previous records, we push the
limits of our approach further and fabricate two additional structures with up to 48
QWs. The increased number of QWs allows us to occupy almost the entire available
cavity mode volume and further enhance the electronic oscillator strength. As a
result, we observe deep-strongly coupled polariton modes that extend over six optical
octaves and exhibit a highly structured spectrum (Fig. 5.12). While damping effects
make it more difficult to identify single modes in the experimental data (Fig. 5.12a,c),
our theoretical model (Fig. 5.12b,d and appendix D) makes it possible to confirm
our measurements. Despite the large coupling strength, we are still able to observe
the LP; mode at frequencies of 0.15 THz to 0.34 THz. For the sample with 24 QWs,
we observe an even more structured fan of UP modes, with a single strong mode at
1.3 THz and multiple modes reaching up to 4.3 THz for v, = 0 THz (Fig. 5.12a). For

the sample with 48 QWs, this trend continues, as the lower polaritons shift even

84



5.3. Multi-mode coupling of multiple light and matter modes

04 d 0.0

ve (THz) ve (THz) ve (THz) Ve (THz)

Figure 5.12 | Extremely strong, multi-octave light-matter coupling. a, THz
magneto-transmission of the 24-QW sample as a function of v.. The extended
Hopfield model yields coupling strengths of n; = 2.80 and 7, = 0.85 for the first
and second resonator mode, respectively. Calculated polariton frequencies (solid and
dashed curves) with distinct resonances marked. b, Calculated transmission and
polariton frequencies. ¢, Transmission of the 48-QW structure. Coupling strengths:
m = 2.83, 2 = 0.88. d, Calculated transmission and identical polariton frequencies.
Adapted from [Mor23a].

lower in frequency and the complete UP fan increases in frequency, now reaching
frequencies above 5 THz. Our theoretical model confirms even higher than before
vacuum photon populations and coupling strengths. With 24 QWs, we achieve
(N1) = 0.99, (N5) = 0.16 and 1, = 2.80, 17 = 0.85. For the 48 QW structure, we
reach (N7) = 1.00, (N2) = 0.17 and 7, = 2.83, 1, = 0.88. Notably, for the first time,
the vacuum photon population of a single coupled optical mode reaches unity, while
the combined ground state population of both modes, (N) = (Ny) + (N,) = 1.17,
surpasses it. The effective, combined coupling strength of Qf, /ws = 3.19 exceeds the

values of existing structures (7 = 1.43 [Bay17] and n = 1.83 [Mue20]) by almost a
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Figure 5.13 | Scaling of the coupling strength with the number of electronic
oscillators. a, Equivalent coupling strength 7, for the first cavity mode as a function
of the square root of the total charge carrier density, and linear fit of the data adjusted
to the first four data points. b, Equivalent data for the second cavity mode. Adapted
from [Mor23al.

factor of 2. Here the vacuum ground state exhibits strong squeezing of the photonic
mode and a highly non-classical Fock-state probability distribution (see chapter
2). Moreover, the extreme coupling also results in virtual excitations of the matter
system, with a combined population of the magnetoplasmons by 1.06. These vacuum
ground state properties open up exciting possibilities for wide-ranging control of

transport, chemical reactions, and phase transitions by vacuum fluctuations.

According to our findings in chapter 4 and of ref. [Hagl0], the coupling strength for
collective excitations, such as Landau polaritons, is expected to scale with the square
root of the total carrier density pqw = pNqw in the quantum well stack. This scaling
law holds true for the coupling of the LC and DP resonator modes for the structures
with 1, 3, 6, and 12 QWs (Fig. 5.13). However, for the structures with 24 and 48
QWs, we begin to see a deviation from this ideal scaling law. This discrepancy can
be attributed to the limited penetration depth of the near field into the QW stacks.
As the number of QWs increases, the near field may not effectively interact with all
the QWs, leading to a reduced impact on the overall coupling strength. Despite this
deviation, the coupling strength still increases with the additional QWs, albeit not

at the same rate.
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Dynamics of the multi-mode coupled state

N7

I —

= gt I Figure 5.14|Plasmon coupling strength.
g 11 \i Plasmon frequency v, and coupling strength
31 51 é: QR 1,0/wj=1 for each magnetoplasmon mode « in
H: c  the case of the 48 QW sample. Adapted from
£ 0 0 10 0 [Mor23a).

MP mode index, o

For a closer look at the nature of our deep-strongly coupled system, we restrict
ourselves to the sample with 48 QWs and the most extreme coupling strengths. In
this scenario, the plasmon frequencies v, o significantly surpass those of the cavity
modes (red dots in Fig. 5.14), yielding highly non-resonant coupling. Notably,
despite the off-resonant nature of this interaction, the individual coupling strengths
QR 1,a/wj=1 reach the DSC regime (Fig. 5.14, blue bars). Since most plasmon modes
are never resonant with the cavity mode to form an individual anti-crossing point,
the individual coupling strength shown is calculated as if such an anti-crossing point
existed by rescaling Q0 according to Qg o \/w. (see equation 4.6).

Diagonalization of the Hamiltonian does not only yield the polariton frequencies but
allows us to determine the composition of the coupled modes. The normal-mode

polariton operators, denoted as {f)m, ﬁg.j}, are expressed as
P = Ws,405 + I Taba + s} + Y z5abl (5.10)
« «

and incorporate contributions from one cavity and all magnetoplasmon modes.
The Hopfield coefficients (wg,j, ©g.a, Y35, 28,) represent the polariton fractions associ-
ated with the bare cavity and matter modes. The values of these Hopfield coefficients
are illustrated in Figure 5.15 as a function of the magnetoplasmon index « and
the polariton index 3, considering a cyclotron frequency of v, = 0.52 THz and the
coupling to the first cavity mode j = 1.

Each wave vector pair (—¢z, ¢.) gives rise to two hybridized modes, a dark magne-
toplasmon mode and a bright magnetoplasmon mode. The dark magnetoplasmons

do not couple to the resonator mode, due to a vanishing net dipole moment. We
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Figure 5.15| Hopfield coefficients for the 48-QW structure. a, Plot of
the (real-valued) Hopfield coefficients; for the lowest cavity mode, j = 1, and a
cyclotron frequency of v, = 0.52THz. The right and bottom panels show the
frequencies of the uncoupled magnetoplasmon and the coupled polariton modes,
respectively. w: light mode, z_1y to x1p: plasmon modes. Polariton index < 0:
uncoupled magnetoplasmon modes, 3 = 0: lower polariton, 8 > 0: upper polaritons.
b, Absolute values of the anti-resonant Hopfield coefficients. y: light mode, z_1o to
z10: plasmon modes. Adapted from [Mor23al.

assign the dark magnetoplasmon polaritons a polariton index § < 0. The nature of
the dark modes is also evident in their Hopfield coefficients, as they remain solely a
superposition of the two magnetoplasmons with opposite sign with z_, = —z, and
no cavity component w (Fig. 5.15a), nor any anti-resonant coefficients z, or y (Fig.
5.15b).

In contrast, bright magnetoplasmons form the coupled magnetoplasmon polaritons
with 5 > 0. These are not each a mix of the cavity mode and a single magnetoplasmon

mode, but rather a superposition of the cavity mode and all magnetoplasmons at the
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same time. The Hopfield coefficients of the lower polariton (3 = 0) feature opposite
signs for the cavity components w and y compared to the matter components x,
and z, (Fig. 5.15a,b). All modes of the UP fan feature an even more intricate
composition of light and matter. While all anti-resonant coefficients y and z,
are negative (Fig. 5.15b), all resonant coefficients are positive, except for the
magnetoplasmon coefficients where vyp o > Vpor g (Fig. 5.15a). The fact, that each
polariton is a mixture of multiple matter modes hallmarks the cooperative nature of

the multi-mode coupling.

Multi-mode coupling time-domain dynamics

The extraordinary nature of the deep-strongly coupled multi-mode system becomes
particularly apparent when examining the subcycle dynamics in the temporal domain.
Therefore, we use the derived equations of motion for each operator (see this chapter
and also chapter 3). The simulation allows us to analyse the microscopic polarization
dynamics of each individual cavity and matter resonance. Furthermore, they allow
for the quantitative fit shown in Figure 5.10 by Fourier transform.

When exciting the 48-QW sample at v, = 0.52 THz, the transmitted experimental
waveform exhibits a prominent initial cycle at a time delay of t = 0ps (Fig. 5.16a).
Starting from ¢ = 0.5 ps, we observe trailing oscillations that display multiple beating
patterns (indicated by arrows). These oscillations arise from the complex energy
exchange occurring between multiple coupled modes. The corresponding spectrum
reveals a global maximum near 2 THz, accompanied by local maxima adjacent to
it, corresponding to the magnetoplasmon polaritons modes (Fig. 5.16a, inset). For
a deeper insight into the intricate energy exchange, we excite the system in the
simulation with a short, broadband THz pulse (Fig. 5.16b grey waveform) and
observe the response of the first cavity mode (black waveform). Here the electric
field oscillates on much shorter timescales compared to the cycle duration of the
uncoupled mode (grey-shaded background area) and again displays multiple beating
patterns. The corresponding spectrum exhibits a total of eight local maxima with
comparable amplitudes, ranging from 0.2 THz to as high as 4.5 THz (Fig. 5.16b,
inset), corresponding to magnetoplasmon polariton modes. These features exceed

the frequency of the uncoupled cavity by nearly an order of magnitude and hallmark
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Figure 5.16 | Dynamics of extremely strong multimode coupling. a, Trans-
mitted THz field of the 48-QW sample (; = 2.83) at v, = 0.52 THz (black curve).
Inset: spectral amplitude of the THz field. b, Calculated expectation value for
the population of the first cavity mode Re{d;) after excitation (black curve) by a
broadband pulse (grey curve). Inset: corresponding spectra. The shading marks
one oscillation period of the bare cavity mode. ¢, Calculated expectation value of
the polarization of the first magnetoplasmon mode, Re(b—1), and spectrum (inset).
d, Re(ay) for the same coupling strength as in b, yet only for a single pair of light
and matter modes. Inset: corresponding spectrum. Adapted from [Mor23a].
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Figure 5.17 | Magnetoplasmon

spectra. Calculated spectra of
the expectation values of the
polarization of the magnetoplasmon
modes 0 < o < 10. The spectra are
vertically offset by a value of 0.2,
for clarity. Adapted from [Mor23al.
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the remarkably strong light-matter coupling, Qg 1., which results in a total spectral
bandwidth spanning over 6 optical octaves from as low as 0.05 THz to as high as
6 THz.

Driven by ultrastrong and deep-strong coupling, the polarization of the first magne-
toplasmon polariton mode with a frequency of vp =1 = 1.2 THz displays a similar
intricate time-domain structure (Fig. 5.16¢). Its spectrum reveals four significant
local maxima spanning from 0.18 to 2.59 THz, accompanied by less pronounced
higher-frequency maxima (Fig. 5.16¢, inset). These dynamics are in stark contrast
to the dynamics of a single pair of light-matter coupled modes, with O, /ws = 3.19.
Here the cavity field features only the lower and upper polariton resonances, without
additional features in its spectrum (Fig. 5.16d).

Owing to the strong coupling of multiple magnetoplasmon modes to a shared cavity
mode, the magnetoplasmons influence each other, mediated by the cavity. This
interaction results in strong mixing of the previously orthogonal matter modes.
As a result, the dominant frequencies in their polarizations reflect the spectral
characteristics of all magnetoplasmon polaritons simultaneously (Fig. 5.17). Although
the spectral weight of each magnetoplasmon mode is primarily centred around its
intrinsic resonance frequency, they all share the same local maxima. This is a
characteristic signature of multi-mode non-resonant deep-strong light-matter coupling

and the strong back-action of the cavity vacuum field on the matter system.
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Figure 5.18 | Energy dynamics of extremely strong multimode coupling.
a, Energy of the first cavity mode for the full calculation (solid curve) and the
single-mode reference (dashed curve) as in 5.16. b, Energies of the first magnetoplas-
mon mode (solid curve) and cyclotron resonance (dashed curve) for the two cases.
¢, Corresponding coupling energies between the cavity mode and the respective
matter mode. Adapted from [Mor23a].

The distinction between the single-mode and multi-mode coupling regimes becomes
even more pronounced when examining the dynamics of energy redistribution
(Fig. 5.18). In the case of a single pair of modes, the cavity energy Ecay 1, the
energy of the matter system E.. 1 and the energy stored in the coupling itself
Ecou1, all exponentially decay upon excitation (Fig. 5.18, dotted curves). During
the decay, the subsystems exchange energy periodically at the rate of 5, resulting
in an oscillatory modulation of the decaying energies. However, in our system with a
large number of participating magnetoplasmon matter modes, the dynamics of all
energies exhibit a much more irregular behaviour (Fig. 5.18, solid curves). A single
exponential decay is no longer observable, instead the cavity energy, the energy of
the first magnetoplasmon and its respective coupling energy exhibit a sharp decay
after the initial rise upon excitation and a second, local maximum at ¢ = 1.8 ps.
Although this dynamic seems to contradict energy conservation, the energy is simply
stored in the coupling of the other 20 magnetoplasmons, not displayed in the figure,

highlighting the complex nature of the multi-mode coupled state.
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Conclusion

Cooperative, non-resonant multi-mode coupling allows one to overcome the limitations
of resonant light-matter coupling and reach record-breaking light-matter coupling
strengths. To achieve this, we designed a new, highly compact resonator metasurface
capable of custom-tailoring multiple plasmon resonances and optical modes, resulting
in an ultrabroadband spectrum of Landau cavity polaritons spanning as much as 6
optical octaves. As a result, the vacuum ground state of the system is highly squeezed
and hosts an unprecedentedly large population of 1.17 virtual photons and 1.06 virtual
magnetoplasmon excitations. The equivalent coupling strength of Qf /ws = 3.19
surpasses the previous deep-strong coupling strength records [Bay17, Mue20] almost
by a factor of 2. Furthermore, the exceptionally strong coupling of multiple electronic
modes to a common cavity mode allows for the hybridization of otherwise orthogonal
matter states. This capability might be extended to interactions between various
systems such as magnons, phonons, or Dirac electrons, enabling the mixing of these
excitations. The combination of the highly non-adiabatic switching mechanism,
which is also applicable to this resonator structure as presented in the next chapter
6, along with the remarkable records achieved for coupling strength and vacuum
photon population, brings us closer to the exciting prospect of experimentally feasible

detection of vacuum radiation from these samples.
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Chapter

Non-adiabatic switch-off of deep-strong
light-matter coupling

The interaction of vacuum fields with matter can result in extreme light-matter
coupling in the deep-strong coupling regime, as exemplified in the last chapter. Its
exotic ground state gives rise to many fascinating equilibrium properties, due to
the strongly squeezed vacuum ground state and a non-vanishing virtual photon
population. However, even more remarkable physics is anticipated to unfold on
subcycle timescales, where ultrafast control of light-matter coupling opens up novel
avenues to manipulate vacuum-induced effects. This offers exciting new perspectives
for non-adiabatic quantum optics and might ultimately facilitate the release of Unruh-
Hawking like radiation [Lib07, Gii09, Gar13]. Here, a non-adiabatic change of the
vacuum ground state is postulated to transmute the virtual photon population into
real photons. A faster switching process or higher coupling strengths (see chapter
2.1) will maximise the number of emitted photons. However, up to now, this regime
has been limited to Qg /w2 < 0.1 [Gii09].

In the following, we delve into the fascinating dynamics that arise when electrons,
initially deep-strongly coupled, are rapidly stripped of their photon dress. To this
end, we combine our ultrastrongly and deep-strongly coupled sample structures with
a new, subcycle switching mechanism, that, for the first time, enables controlled
and complete decoupling of light and matter modes using an optical femtosecond

switching pulse. Upon photoactivation of the switching element, the fundamental
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Figure 6.1 |Resonator scheme for switchable deep-strong light—matter
coupling. THz resonators (gold shapes) coupled to the cyclotron resonance of
2DEGs (red layers, also see magnification), biased by the magnetic field B (black
arrow), and interrogated by THz transients (blue waveform). The switch element
(white patch) is photoexcited by a near-infrared femtosecond pulse (red shape).
Adapted from [Hal20].

cavity mode collapses, and results in an abrupt quench of the polariton modes. This
strongly subcycle breakdown is accompanied by characteristic sub-polariton-cycle
oscillations — a unique signature of this novel regime characterized by extreme
light-matter dynamics.

The work presented in this chapter is published as a coverstory in Nature Photonics
[Hal20]. Additional details on the development of the switching mechanism can also
be found in the PhD thesis of my co-first-author Maike Halbhuber [Hal21]. The main
findings of the article are presented in the following, together with new optimizations

for vacuum photon emission.

6.1. Switchable THz resonator structures

While there are established means [Has17] of electrically [Shr11, Che06], mechanically
[Zhul12, Shil7] or thermally [Sin12, Kell8] activated switching mechanisms for plas-
monic THz metasurfaces, only optical activation [Pad06, Che08, Kaf12, Liul5, Hul9]
is capable of an ultrafast and non-adiabatic switch-off of resonator modes.

We base our switching design on the THz resonator introduced in chapter 2.5. Here,
the double gap resonator enhances the vacuum field in its two central capacitive

gaps (Fig. 2.7). To maximise the light-matter coupling, the QW stack is placed
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Figure 6.2 | Resonator field profiles before and after photoexcitation. a, Cal-
culated enhancement of the right-circularly polarized near-field component |E,+|/&
of the LC mode, relative to the far-field amplitude, &, at a depth of z = —200 nm,
for an undoped switching patch (dashed lines) and b, for a doped switching patch.
¢, Near-field enhancement in the QW plane along y = 0 without photoexcitation and
d, with photoexcitation. e,f, Same as a and b, but for the DP mode. g, Transmission
spectra for a doped and an undoped switching patch, respectively. Adapted from
[Hal20].

directly below the resonator to maximise the overlap. Thus, changing the dielectric
properties of this region will strongly influence the coupling. We make use of this fact
and introduce an undoped Ing 55Gag 45As patch (dimensions: 10 pmx22 pm) between

the capacitive resonator region and the QWs (Fig. 6.1, white patch).

The bandgap of 0.73 eV of the semiconductor material allows for the selective exci-
tation of charge carriers only in the switching patch using femtosecond switching
pulses with a photon energy of 1.03eV and a pulse duration of 70fs. Full saturation
of the patch with the employed pulses corresponds to a photoexcited plasma with
an electron-hole pair density of pewiten = 3.5 x 10*® em~3, rendering the patch quasi-
metallic in the THz regime. We conduct finite-element frequency-domain simulations
(see appendix C) to observe the influence of the photoexcited plasma on the resonator

modes (Fig. 6.2). Before photoactivation, the double gap resonators feature a strong
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Figure 6.3 |Fabricated switchable double gap resonator metasurface.
a, Light microscope picture of an array of InGaAs patches. b, Scanning elec-
tron microscope picture of a single resonator and InGaAs patch. The resonator is
coloured golden for better visibility. ¢, Scanning electron microscope picture of an
array of switchable double gap resonators.

field enhancement in the central two gaps (Fig. 6.2a,c). Upon exciting the patch (Fig.
6.2b, dashed lines), the field enhancement of the LC mode below the patch is reduced
by 95%, whereas the near fields outside the patch stay unaffected (Fig. 6.2b,d).
These data show that the photoexcited plasma is efficient to screen the near field
in the resonator gap, thereby collapsing the LC mode, which in turn results in the
collapse of the coupling between the LC resonator mode and the QW stack. While
the near-field enhancement of the second mode, the DP mode, is also reduced by
95% below the patch, the near-field enhancement of the DP mode outside the patch
region stays mostly unaffected (Fig. 6.2e,f). The simulated far-field response does
not show a collapse of the DP mode, only a redshift in frequency (Fig. 6.2g). On the
contrary, the complete collapse of the LC mode is also evident in the far field.

As a first evaluation of our concept, we employ a structure only featuring the
switchable resonator structures and no QWs. Pictures of the fabricated structures
are displayed in Figure 6.3. Details on the fabrication are included in the appendix
A. To test the structure, we measure the instantaneous THz response of the sample
during switching. To this end, the THz pulse and the switching pulse are shifted
with respect to each other by a delay time, tp, and the electro-optic detection is
performed at the delay time ¢ relative to the THz pulse (Fig. 6.4).

Upon photoexcitation, a strong pump-induced change, AE (Fig. 6.5a) of the transmit-
ted THz field, £, emerges. Sweeping tp probes the switching behviour of the resonator
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6.1. Switchable THz resonator structures

Switching pulse

Figure 6.4 | Schematic of excitation. The switching pulse (blue pulse) is shifted
with respect to the THz transient (red waveform) by a delay time ¢p, and electro-optic
sampling (EOS) is performed at a delay time ¢ (orange pulse). Adapted from [Hal20].

during different phases after THz excitation and reveals a complex temporal structure
along the diagonal ¢ = —tp. Interpreting such dynamics, that exhibit variations on a
subcycle scale, extends beyond the scope of equilibrium or quasi-equilibrium settings
where response functions change slowly compared to the duration of one oscillation
cycle of light. Thus, we adopt the formalism developed by Kindt and Schmuttenmaer
[Kin99] to extract the instantaneous linear response function and transform the data
into a new time frame where 7 =t + tp represents a constant delay between the
switching and electro-optic detection pulses (Fig. 6.4). Subsequently, the acquired
time-domain data are subjected to a Fourier transform along the time axis ¢, while
maintaining a constant value for 7 (Fig. 6.5b). This transform allows us to extract
the instantaneous switching response of the system and analyse its dynamics on a
subcycle scale.

Once more, the data underscores the spectral specificity inherent to the switching
concept. Notably, the primary impact is observed on the narrowband LC cavity
mode at 0.8 THz, while the DP mode experiences only a marginal redshift and a
slight broadening in frequency. A detailed analysis of the differential transmission
AT =T(7)=T (1 = —2ps) of the LC mode (Fig. 6.5¢c, black curve) reveals an initial
drop in transmission, which is attributed to the increased overall THz absorption
caused by the presence of carriers in the switching patch. This process is reversed
after the first 100s of fs from whereon the transmission monotonically increases with
time. In contrast, the transmission at a reference frequency of 2.1 THz remains

largely unchanged throughout the switching process (Fig. 6.5¢, red curve).
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Figure 6.5 | Switching dynamics of the bare resonator. a, Pump-probe THz
signal during femtosecond photoexcitation. The charge carrier concentration resulting
from femtosecond photoexcitation is 3.5 x 10'® cm™2. b, Corresponding transmission
spectra, in the 7-frame. ¢, Black curve: differential transmission AT of the LC mode
extracted within the frequency window outlined in panel b by dashed black lines.
Red curve: differential transmission extracted within the frequency window outlined
in panel b by dashed white lines, for reference. Adapted from [Hal20].

6.2. Subcycle switch-off dynamics

With a successful demonstration of our switching concept, we put it to the test
with two coupled structures. The first structure S3sw, features three QWs with a
doping density of p = 1.75 x 10’2 ecm~2 per QW, coupled to the switchable double gap
resonator. We characterize the sample in equilibrium before switching by measuring
the THz transmission as a function of the cyclotron frequency v. (Fig. 6.6a).
The spectra show the expected anticrossing, with a lower polariton (LP) branch
emerging from the cyclotron resonance at low frequencies and an upper polariton
(UP) resonance starting at 1.35 THz for v, = 0 THz. Here we use a single-mode
Hamiltonian to reduce the complexity to the most relevant modes, as additional
modes only produce minor corrections to the spectra. The analysis reveals a coupling
strength of Qg /w. = 0.57, equivalent to a vacuum ground state population of 0.1
virtual photons. Additionally, the bare, uncoupled cyclotron resonance is visible for

V=V
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Adapted from [Hal20].
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Steady-state spectra

Next, we record the same spectra after photodoping of the switching patch, exciting
the sample 2 ps before the maximum of the THz pulse at a time delay of tp = 2 ps
(Fig. 6.6b). Here we observe several large changes, as both polariton resonances are
completely absent, evidencing the full collapse of the ultrastrong coupling. As already
observed for the bare resonator, the dipolar cavity mode slightly redshifts as well
upon activation of the switching patch, resulting in the observed reduced transmission
above 1.6 THz. Other spectral features, such as the bare cyclotron resonance, remain
unaffected, showcasing the minimally invasive nature of the switching concept.

As a next step, we test the structure L6, featuring 6 QWs and characterized in
equilibrium in chapter 2.6. This structure features the L-gap resonator structures
(Fig. 6.7a), the positive resonator counterpart to the negative structure we started
with in chapter 5. Likewise, this resonator features a fundamental LC mode with
a frequency of vpc = 0.52THz and a higher dipolar mode with a frequency of
vpp = 1.95 THz. The vacuum field enhancement of the LC mode is located in two
capacitive gaps, under which two InGaAs patches for switching are placed (marked
by dashed lines). Our finite-element frequency-domain simulations show again a
collapse of the LC mode upon doping the patches (Fig. 6.7b).

The steady-state transmission before switching shows an LP and UP resonance

(Fig. 2.10 and 6.7c), with a coupling strength of Qg /w. = 1.3, equivalent to a vacuum
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Figure 6.7 | Steady-state switching of deep-strong coupling. a, Electric near-
field distribution of the LC mode of a L-gap resonator for v = 0.52 THz. b, After
switching patch activation. ¢, THz transmission of the 6-QW sample L6, including
the Hopfield fit for the LP and UP with a coupling strength of Qg /w. = 1.3. d, 2ps
after excitation of the switching patch. Adapted from [Hal20].

ground state population of 0.32 virtual photons. Likewise, 2 ps after photodoping
the switching patches, both polariton resonances have fully vanished, while the
bare cyclotron resonance remains unaffected (Fig. 6.7d). These data are the first
demonstration of switching deep-strong coupling in general, and in particular by

optical means and on an ultrafast time scale.

Subcycle dynamics

Next, we will explore how the transition from deep-strong coupling to uncoupled
modes takes place on a subcycle time scale. Therefore, we photoexcite the sample
S3sw at tp = Ops, where the electric field of the THz pulse has its maximum
(Fig. 6.8a). The pump-induced change AE = € — Enswitehea (red curve) emerges in the
first half-cycle of the oscillating field, increases in amplitude and becomes comparable
to € during the trailing oscillations (¢ > 0.5ps), as the polariton resonances are
suppressed.

A systematic scan of A€ as a function of tp (Fig. 6.8b) reveals complex switching

dynamics along t = —tp as the exchange of energy between light and matter is
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Figure 6.8 | Subycle switching dynamics of USC. a, Transmitted THz transient
before excitation (black curve) and pump-probe signal AE for tp = 0ps (red curve).
b, A€ as a function of the EOS delay time, ¢, and the pump—probe delay time, tp.
The grey diagonal line (¢t = —tp) indicates a constant delay 7 =t + ¢tp = 0 ps (see a).
¢, Transmission spectra obtained by Fourier transform of the data in b, along lines
of constant 7. The dashed lines indicate the FWHM of the polariton resonances
centred at a frequency of 0.48 THz and 1.49 THz. Adapted from [Hal20].

interrupted in various phases of the polariton oscillations.

To extract the instantaneous transmission spectra, we transform the data into the 7-
time frame and perform a Fourier transform along ¢. The evolution of these spectra
now shows the transition from the light-matter coupled state to the decoupled state,
with subcycle resolution (Fig. 6.8c). The data reveals that both polaritons display
complex switch-off dynamics featuring multiple oscillation components. The change
in transmission, A7 for the lower polariton resonance (Fig. 6.9a, solid black curve
and circles) reveals an initial short increase of transmission for delay times 7 < 0 ps,
followed by a sharp minimum at 7 ~ 0 ps. These dynamics are followed by a rapid

increase in transmission and multiple further oscillations before the transmission
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Figure 6.9 | Sub-polariton-cycle switching oscillations. a, Differential trans-
mission AT of the LP (solid black curve and circles) extracted within the highlighted
spectral range in Figure 6.8 and calculation for a switching time of 100 fs (red curve).
Dotted and dashed curves: calculations of AT for switching times of 10 fs, and 800 fs,
respectively. The error bar indicates the standard deviation of the experimental
signal, multiplied by 5. b, Energy of the cavity (solid black curve), polarization
energy (dashed black curve) and coupling energy (red curve) when only the LP is
excited. The black arrow marks a local extremum of these energies. ¢, Decay of
the total energy without switching (solid black curve) and for switching when the
coupling energy is minimized (dotted black curve). Adapted from [Hal20].

reaches its final value. The frequency response of the oscillations contains components

that exceed the frequency of the LP resonance several times.

In order to explain the high-frequency oscillatory dynamics in the response function,
observed for the rapid deactivation of light-matter coupling, we will expand the
time-domain simulations described in chapters 3 and 5 to include the dynamical

switch-off process of the resonator by introducing a set of time-dependent parameters.

With Heisenberg’s equation of motion and a mean-field treatment we obtain for the
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6.2. Subcycle switch-off dynamics

equilibrium state,

St = — iwcarc — eate — 0 [3(8)+ 6" (0] ~ 2D are (1) +aic (0]
+ frcext () (6.1)
%(XDP = — iwppapp — YpPoDP + KkppEext (1) , (6.2)
46 =~ i =28 — 10 [one (1) + aic (0] (63

with the damping terms 7; and +. for the cavity and matter modes, respectively, as

well as a scaling factor for each cavity mode’s coupling to the external field by ;.
2

D = 2—’} represents the diamagnetic term. Coupling to the second cavity mode is

omitted here, as it is negligibly small.

As the switching mechanism is based on the screening of the electric near field by
the charge carrier plasma generated through optical excitation, we have to take
the plasma generation dynamics into account. The femtosecond excitation pulses
have a FWHM duration of 70fs and create a plasma with a carrier density of
Pewiteh = 3.5 x 10" cm®. This results in a (3D) plasma frequency of v, = 80 THz,
and a build-up of screening within t. = v 1= 12.5fs [Hub01]. Thus, it is safe to
assume, that the near field will collapse within approximately the duration of the

switching pulse.

We introduce the decoupling mechanism into the differential equations by a set of
time-dependent parameters (table 6.1), which start at their equilibrium value, X',
transitioning to their value after switching, Xf. We parametrize this transition by a

switching time Tyyiten, leading to

(Xt -Xt 9 prttn _(oams (¢ ),
X(f+fn) :X1+(f) (1+ﬁ/0 € (Ts""i"‘h(n)) dtD . (64)
The switching process collapses the vacuum Rabi frequency Qg(t + tp) to 0 and
changes the damping parameters, 7; (t + tp), as well as the coupling to the external
field, k; (t 4+ tp). For the best fit, we reduce the coupling to the external field of the
LC mode by 50%. Activation of the switching patch also shifts the frequency of

the DP resonator mode, which is added to the simulation, as well as an increase in
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X(t +tp) | initial value X' | final value X'
O /or 057 0.0

Upp (THZ) 2.2 1.8

yop (THz) | 0.20 - 27 0.30 - 27

KLC 0.25 0.13

Kpp 1.0 1.5

Table 6.1: Parameters used for the USC switch-off model.

far-field coupling by 50%. All variable parameters are listed with their respective
initial and final values in table 6.1.

The theoretical calculations closely capture the dynamics observed in the experimental
data (Fig. 6.9, red curve). This includes the initial reduced transmission, the
subsequent steep rise, and the local reduction between 7 = 0.5ps and 1.1 ps. The
calculated dynamic for 7 > 1.5 ps deviates slightly from the experimental curve, as
potential changes in higher resonator modes are not fully included in the model.
Changes in the damping, frequency or far-field coupling of these higher resonator
modes could in principle alter the dynamics, but are not accounted for here for
simplicity. However, the model displays the impact of Tyyiten on the observed dynamics.
The transition dynamics match only for a sufficiently fast switching time of 7Tyyiten <
100fs (Fig. 6.9, black curve), whereas for larger switching times the oscillations
vanish and the transitions resembles a more adiabatic transition from initial to the
final transmission coefficient. This change of the dynamics allows us to quantify
an upper bound of the switching time of 7yyiten = 100 fs, which corresponds to just
5% of the LP mode oscillation period, clearly evidencing the strong non-adiabatic

character of the switch-off process.

Energy dynamics

Our theory also allows us to investigate the internal energy dynamics of the ultra-
strongly couple state, responsible for the observed subcycle oscillations. Due to the
extremely strong coupling in the USC regime, energy is periodically exchanged not
only between the cavity and the matter mode, but a sizeable part can also be stored
in the coupling mechanism itself. This coupling energy, Ecoupling, is proportional to

the in-phase quadratures of the cavity field and the polarisation and can exceed their
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6.2. Subcycle switch-off dynamics

individual energies, Feayity and Epolarisation, respectively. The mean-field energies are

given by
(Eeoupling) = Mr (arc + aic) (B + 87, (6.5)
<Ecavity> = MLClaLC|2 + hD (aLC + OéEC)2 ) (66)
<Epolarisation> = mc|ﬁ|2 (67)

When the fast switching process switches off the transfer of energy, the subsequent
dynamics of the uncoupled cavity and electronic polarization are determined by
the instantaneous field amplitudes at the moment of switching. As the energy is
exchanged with the rate of (g, which can oscillate at a faster rate than a single
polariton oscillation cycle in the USC or DSC regime, the observed response function

also exhibits rapid oscillations.

The influence of the exact switching time during the energy exchange oscillation
cycle on the observed dynamics can be demonstrated with an instructive example:
When we excite the lower polariton mode with a coherent THz field (prp = Ae™?),
the mean-field expectation values are given by arc = wrpAe™!t — yppAe™™!, and
B = xrpAe™t — z1pAe” ™. The Hopfield coefficients then dictate that the field
quadratures have opposite phases and (arc + o) (B + 3*) < 0. Thus, (Eeavity)
and (Epolarisation) Oscillate in phase, while (Feoupling) Oscillates out of phase and is
negative (Fig. 6.9b). Due to the ultrastrong coupling, the magnitude of (Ecoupling) 1S

comparable to the other energy components of the system.

In the absence of switching, the total energy decays exponentially over time (Fig.
6.9c, black line). In the case of switching, the energy oscillations result in two
different scenarios: if the switching happens at a local minimum of (Ecouping) (black
arrow in Fig. 6.9¢), the negative energy of the coupling mechanism is removed
due to the collapse of the coupling, and consequently the overall energy in the
system is increased (dotted curve in in Fig. 6.9¢). If the switch-off occurs at a local
maximum of (Ecoupling), the overall energy is decreased, as (Ecavity) also collapses
and subsequently the overall energy of the system is decreased. As the state of the
system oscillates between these two extrema, this causes the observed oscillations in

the response function.
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Figure 6.10 | Subycle switching dynamics of DSC. a, Transmission spectra of
the 6-QW structure as a function of pump-probe delay time, 7, at the anti-crossing
point. The dashed lines mark the frequency windows of the lower and upper polariton
resonances at 0.17 THz and 1.62 THz, respectively. b, Differential transmission AT
at the UP frequency. ¢, Spectrum of the switching dynamics of the lower polariton.
Vertical dashed lines indicate the resonance frequency of the LP, v p, and 10 X vp,
for reference. Adapted from [Hal20].

Subcycle dynamics of DSC switch-off

Similar switch-off dynamics can be observed for the deep-strongly coupled sample L6
(Fig. 6.10a). Here again, both polariton resonances are switched off on a strongly
subcycle scale (Fig. 6.10b,c). The differential transmission at the upper polariton
(Fig. 6.10b) exhibits a short-lived increase, which then reverses to a decrease,
followed by a subsequent steep increase approaching its final value. This behaviour
is similar to what was observed in sample S3sw, yet the transmission change at the
frequency of the lower polariton resonance shows even more extreme oscillations

which contain frequency components exceeding the LP frequency by an order of
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magnitude (Fig. 6.10c). Here, the 100 fs switch-off time corresponds to only 2% of
the oscillation period of the lower polariton mode, showcasing again the strongly
non-adiabatic nature of the process.

Further discussions of the energy dynamics and the error estimation can be found in
[Hal20, Hal21].

6.3. Switching the compact resonator array

In order to maximise the density of virtual photons that can be emitted during a
non-adiabatic switch-off of the coupling, in chapter 5, we developed a new maximally
compact resonator design (butterfly) with over one virtual photon, per resonator.
Yet, to release these virtual photons, we need to combine the resonator structure
with the switching design demonstrated in this chapter.

To continue maximising the virtual photon output of the structure, we go one
step further in optimizing the switching mechanism. As the light-matter coupling
takes place in the region of the strongest field enhancement, upon switching off
the coupling, the virtual photon emission is expected to originate from there as
well. Thus, the photodoped switching patches in this region will impair the emission
of the released photons into the far field, as the patch will reflect or absorb them.
To remove this obstacle, we redesigned the placement of the switching patches
for the maximally compact butterfly resonator. Here, the switching patches no
longer directly “disable” the capacitive gap, but are replaced by stripes parallel
to the gold stripes in z-direction (Fig. 6.11a,b, dashed lines). Upon photodoping
the stripes “short” the resonators in y-direction and, according to finite-element
frequency-domain simulations, also result in a collapse of the LC mode. The strong
near-field enhancement of the fundamental LC resonator mode in the capacitive
gap (Fig. 6.11a and c, black curve) is reduced by 92% by activating the switching
stripes (Fig. 6.11b and c, red curve). The collapse of the LC mode is also evident
in the far-field response of the resonator array (Fig. 6.11d). Here, the pronounced
transmission maximum at the resonance frequency of the LC mode is absent in the
transmission data after switching. Contrary to previous resonators, here also the
higher DP mode is significantly reduced in amplitude by 38% and experiences a

resonance frequency blue shift by 58%. This behaviour is actually beneficial, as
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Figure 6.11 | Butterfly resonator field profiles before and after photoex-
citation. a, Calculated enhancement of the right-circularly polarized near-field
component |E,+|/Ey of the LC mode, relative to the far-field amplitude, &, at a depth
of z = —200 nm, for an undoped switching layer and b, for a doped switching layer.
c, Near-field enhancement in the QW plane along y = 0 without photoexcitation
(black curve) and with photoexcitation (red curve). d, Transmission spectra for a
doped and an undoped switching patch, respectively.

for the highest achieved vacuum photon numbers, the coupling to the DP mode
contributes a significant number of virtual photons.

We put this enhanced switching concept to the test and fabricated a structure with the
switchable butterfly metasurface (Fig. 6.12). The recorded instantaneous response
of the bare resonator as a function of the delay time 7 is displayed in Figure 6.13a.
After photoexcitation (7 > 0ps), the overall transmission of the sample is slightly
reduced, whereas the LC and DP mode display a rapid and drastic reduction in
transmission and vanish into the background transmission (Fig. 6.13b,c). The switch-
off dynamics happen on the same time scale as for the double gap resonator (see Fig.

6.5), demonstrating that placing the switching patch in the field enhancement gap of
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Figure 6.12|Fabricated switchable butterfly metasurface. a, Light mi-
croscope picture of InGaAs stripes for the resonators. b, Picture of the finished
metasurface array including the switching stripes.
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the resonator is not necessary for an ultrafast switch-off of the resonator near-field
enhancement.

We test whether this switching concept can successfully switch-off light-matter
coupling by conducting finite-element frequency-domain simulations of a sample
featuring one QW with and without doping the InGaAs stripes. Without free
charge carriers in the stripes (Fig. 6.14a), we observe the lower polariton resonances
of the LC and DP cavity mode, as well as their corresponding upper polariton
fans. Upon introducing free carriers into the stripes with a doping density of
Pewiteh = 3.5 X 101 cm~3 (Fig. 6.14b), both the LP mode and the entire UP fan of
the LC mode are absent. This signifies a complete breakdown of the coupling of the
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Figure 6.14 | Simulated switching of a structure with a single QW coupled
to the maximally compacted resonator. a, Calculated THz transmission of
the sample, as a function of v.. b, THz transmission after excitation of the switching
patch.

LC mode. Meanwhile, the LP and the multiple UP modes of the dipolar cavity mode
exhibit an upward shift in frequency and a reduction in intensity. This outcome aligns
with our expectations, considering that simulating the unmodified resonator reveals
an elevated frequency for the bare dipolar mode alongside diminished intensity.

These results demonstrate the capability of the improved switching concept to fully
switch off coupled structures featuring the maximally compact butterfly resonator
design, while not hindering potential photon emission from the region with the

strongest LC mode field enhancement.

Conclusion

Our switching design for deep-strong light-matter coupling adds time as a new
control parameter for cavity-QED, allowing us to switch off the coupling at a speed
more than ten times faster than the oscillation cycle of the lower polariton mode.
This rapid subcycle process is evidenced by oscillations in the optical response
function, which our newly developed quantum theory links to a novel coherent energy
transfer mechanism through which the switching pulse liberates energy trapped in
the coupling mechanism.

Combining the mechanism with the maximally compact butterfly resonator structures,
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6.3. Switching the compact resonator array

featuring over one whole virtual photon per resonator array, the switch-off is expected
to release the population of the vacuum ground state, analogous to the concept of
Unruh-Hawking radiation observed in black holes [Haw74, Haw75, Unr76, Lib07,
G109, Garl3]. Since the resonator array can be easily fabricated to a size of
0.5cm by 0.5c¢m, we can expect to see on the order of 25,000 emitted photons
per switching event. Using a laser system with a repetition rate of 1 MHz, this
corresponds to 2.5 - 10! expected photons per second. Furthermore, the non-
adiabatic control possibilities provide a platform to explore non-adiabatic quantum
optics, ultrafast vacuum-modified transport [Orgl5, Barl8, PB19, Val21, App22] or
chemistry [Hut12, Chil6, Her16, Thol9, Dun22, Sch22] and cavity-mediated phase
transitions, including superconductivity [Sch19], on demand, without the requirement

of THz illumination or direct excitation of matter.
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Chapter

Conclusion

The fact that the vacuum is not empty, but rather populated by ommnipresent
fluctuations, has redefined our physical understanding of the world and sprouted a
multitude of exciting new fields of physics [Mil13].

Light-matter coupling allows us to harness these powerful vacuum fluctuations, shape
them and utilize them to tailor quantum systems. In this thesis, multiple new
regimes of ultrastrong and deep-strong light-matter coupling have been pioneered,
allowing for record coupling strengths and unprecedented control of the extreme
interaction of light and matter on the nanoscale and subcycle timescales [Hal20,
Mor21, Cor23, Mor23a, Mor23b]. These pioneering steps could ultimately pave the
way towards the detection of radiation arising directly from the quantum vacuum
fluctuations themselves. Here, these accomplishments have been facilitated by the
highly tunable and capable platform of the coupling between the cyclotron resonances
of a two-dimensional electron gas hosted in QWs and subwavelength-confined THz
modes of planar plasmonic resonator structures.

First, we entered a new regime at the interface of strong-field physics and vacuum
photonics, where the vacuum Rabi frequency, 3¢, the Rabi frequency of the
external coherent driving field, Q" and the carrier frequency of light, wy, all become
comparable. In this nonperturbative setting, subcycle nonlinearities up to eight-wave
mixing occur, revealing mixing between the orthogonal polariton eigenstates of the
system and creating new nonlinearities inaccessible by linear spectroscopy. This

opens up a path to tailoring novel quantum states and nonlinearities to enhance
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7. Conclusion

ground-state instabilities and drive phase transitions. Such nonlinear optical control
may even facilitate novel quantum devices harnessing parametric nonlinearities for
coherent light sources or squeezed quantum states of light [Rid13].

Next, by lateral confinement of the quantum wells, we open up a previously unexplored
parameter space for tailoring ultrastrong light-matter coupling. Generally, light-
matter interaction is fundamentally governed by the spatial overlap of the vacuum
electric field of the resonator mode and the polarization field of the matter excitation.
So far, most investigations focused purely on maximising the overlap to achieve the
maximum coupling strength. Yet, the large design space accessible by subwavelength
control of the shape and overlap of modes is often not fully taken advantage of.
Spatial structuring of the quantum wells allows us to manipulate the coupling as well
as overlap between multiple matter and cavity modes, similar to tailoring of selection
rules in classical optics. Here, our changes in the overlap, on the order of 85%, are
demonstrated to have a significant impact on the characteristics of the polariton
modes, affecting polariton frequencies, magnetic field dependence, and spatial field
distribution. Control of these parameters and the mutual couplings between modes as
well as their dispersion, is highly relevant for nanophotonic applications, especially in
multi-mode settings, where the suppression or enhancement of individual interactions
opens up new possibilities.

Leveraging the concept of multi-mode coupling further facilitated reaching new
record coupling strengths. Here, a newly designed, maximally compact resonator
metasurface that custom-tailors multiple plasmon resonances as well as optical modes
allows us to exploit the cooperative dipole moments of multiple, highly non-resonant
magnetoplasmon modes. The novel multi-mode coupling results in an ultrabroadband
spectrum of Landau magneto-cavity polaritons, spanning a bandwidth of as much
as 6 optical octaves. This extreme interaction features a vacuum ground state
hosting a record population of 1.17 virtual photons and 1.06 virtual magnetoplasmon
excitations, equivalent to an effective light-matter coupling strength of Qf /ws = 3.19
— almost twice as much as all previously achieved records [Bayl7, Mue20]. The
almost threefold boost of the number of virtual excitations per resonator and the
increase in resonator density will especially benefit the envisioned detection of
vacuum radiation [Lib07, Gii09, Gar13, Hal20]. This extreme limit of light-matter

interaction, combined with multi-mode coupling, even facilitates the hybridization of
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otherwise non-interacting bosonic matter modes, purely through the vacuum field of
the common cavity mode. This principle can be applied to interactions between a
variety of systems such as magnons, phonons or Dirac electrons, including the mixing
of entirely different excitations, offering exciting possibilities with novel mixed states
of matter.

An equally important breakthrough for the detection of vacuum radiation is the de-
velopment of a strongly non-adiabatic switch-off mechanism for deep-strong coupling.
Here, selective photodoping of a tailored, local switching element collapses the cavity
field quasi-instantaneously and decouples light and matter. This rapid quench of the
vacuum ground state is accompanied by strong polarisation oscillations, confirming
the quasi-instantaneous nature of the switch-off on timescales ten times faster than
a cycle of light. These subcycle dynamics originate in the periodic energy transfer
between the systems and the coupling, offering the potential for energy transfer out
of the coupling mechanism and the release of the virtual photon population from
the deep-strongly coupled vacuum ground state. This quasi-instantaneous control
of deep-strong light-matter coupling serves as an ideal platform for exploring more
non-adiabatic effects in cavity-QED or designing all-optically controlled filters and

modulators with tailor-made response functions.

Perspectives

The new subcycle control strategies and the exploration of new domains of light-
matter coupling introduce fundamentally fresh avenues for sculpting the interaction
between light and matter. Particularly compelling is the prospect of merging the
nanoscale and subcycle temporal control schemes with the achieved record-breaking
levels of coupling strength, as this synergy could uncover even more intriguing effects
of cavity-QED. One particularly exciting prospect for cavity-QED is the detection of
Unruh-Hawking-like radiation arising from the squeezed quantum vacuum. Here, the
remarkable records achieved for coupling strength and vacuum photon population,
combined with the developed quasi-instantaneous switch-off mechanism, pave the way
for the detection of vacuum photon emission from these samples. This measurement
would constitute the most direct validation of the presence of vacuum fluctuations to

date. To bring this concept to fruition, we already refined the switching mechanism
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7. Conclusion

for the maximally compact resonator array and optimized photon emission. Further
we developed an experimental setup with maximized collection efficiency of vacuum
photons, enhancements in thermal radiation management and employing highly
sensitive, single-shot electro-optic correlation spectroscopy [BC19].

Looking ahead, the presented capabilities are not limited to the coupling of the
cyclotron resonance to planar cavities, but can be universally employed for a wide
variety of coupled systems, such as e.g. intersubband polaritons, where precise control
of the coupling is vital for achieving inversionless lasing. Here, stimulated coherent
polariton-polariton scattering of intersubband polaritons in dispersive cavities is the
first prerequisite to reach this goal. This significant accomplishment is depicted in
[Kno22]. While not extensively covered in this thesis, it underlines the significance
of understanding and recording ultrafast dynamics. Doing so allows for further
optimizations of the coupled system on the nanoscale and subcycle timescales, which
is expected to enable gain, condensation, and the realization of inversionless lasing
of the polaritons.

Moreover, the novel techniques outlined in this study can be applied to e.g. vibrational
modes of molecules, lattice vibrations of Josephson plasmons or Dirac electrons, or
even can be used to mix entirely different excitations. These opportunities bring
exciting prospects to quantum computing, where the ability to tailor light-matter
coupling within quantum systems with both ultrafast temporal and subwavelength
precision could further accelerate and simplify quantum information processing [FK19,
FD19]. In addition, dynamic control with subwavelength precision of the coupling
could be used to trigger chemical reactions without the need for a photocatalyst
[Hut12, Chil6, Her16, Thol9, Dun22, Sch22], manipulate vacuum-modified transport
[Orgl5s, Barl8, PB19, Val21, App22] and cavity-mediated phase transitions, including
superconductivity [Sch19], on demand, without the requirement of THz illumination
or direct excitation of matter.

Ultimately, all of these exciting prospects share one common feature - they are made

possible merely by shaping the quantum vacuum.
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Appendix
Sample structure preparation

The gold resonator structures are processed onto the bare QW or GaAs samples
with electron-beam lithography (EBL) and subsequent wet-chemical processing. In
a first step, a layer of positive electron beam resist (CSAR 6200.13) is applied to
the surface of the sample. Subsequently the desired geometry is structured on the
sample surface using EBL. Here the parts of the sample which should be covered
in gold are exposed to the electron beam in 2x2mm arrays with an area dose of
60 n1Cem~2. The exposed areas are removed by developing the sample for 80s in
ARG600 546. Subsequent thermal deposition of 10nm of Ti aids with the adhesion of
the subsequently deposited gold layer of a thickness of 100 nm. The remaining resist
and surplus gold are removed using Remover PG.

Additionally, for the switchable samples extra fabrications steps need to take place.
To fabricate the patches, the QW stacks are capped by an Ing 55Gag45As layer with a
thickness of 100 nm. The InGaAs layer features an energy gap of 0.73 eV and is grown
with an intentionally defect-rich crystal structure which still shows photoconductivity
but does not allow for a cyclotron resonance to form. The switching patches are also
structured by electron-beam lithography and wet-chemical etching. Here a negative
resist (ARN 7500.18) is exposed with a dose of 110 pCem~2. Etching of the InGaAs is
performed in citric acid for 60s. To eliminate two-photon absorption of the switching
pulse in the substrate, the sample is glued to a sapphire substrate with a thickness

of 500 pm, which allows for the removal of the GaAs substrate.
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Appendix B

Sample structure overview

name resonator | nqw | p

S1 double gap | 1 6.3 x 10 cm™2
S6 double gap | 6 1.75 x 102 cm—2
S3unstr | double gap | 3 1.0 x 10" cm ™2
S3str double gap | 3 1.0 x 10" cm ™2
S3pat - 3 1.0 x 102 cm ™2
Stré - 6 1.15 x 102 cm—2
BF1 butterfly 1 1.28 x 102 cm—2
BF3 butterfly 3 7.90 x 10" cm ™2
BF6 butterfly 6 1.37 x 102 cm—2
BF12 butterfly 12 1.90 x 102 cm ™2
BF24 butterfly 24 2.30 x 102 cm—2
BF48 butterfly 48 1.80 x 102 ecm—2
S3sw double gap | 3 1.75 x 102 cm—2
L6 L-gap 6 1.75 x 102 cm ™2

Table B.1: Parameters for all structures featuring QWs.






Appendix

Finite-element frequency-domain

simulations

In order to design and validate our sample structures, as well as get a deeper insight
into the microscopic functionality of the resonators and coupled systems, we employ
finite-element frequency-domain (FEFD) simulations using COMSOL Multiphysics.
Following the implementation of [Bay17], we solve Maxwell’s equations classically.
This gives us a parameter free theory, which cannot only predict the behaviour of
the bare resonator structures, but also the response of coupled structures, even in
the DSC regime. This is possible, as both, light and matter, are treated together
and thus the reshaping of the cavity modes by the matter system is considered

adequately.

Here we define a simulation volume, which contains the desired three-dimensional
geometry of the nanostructures with their individual dielectric response (Fig. C.1a).
After discretization to a mesh (Fig. C.1b), the program solves Maxwell’s equations
on this mesh for a fixed frequency. The calculation yields the 3D response of the
structures including the spatially resolved near-field distribution as well as the far-field

transmission, without any free fit parameters.

For implementing the structures, we follow [Bay17] and choose a dielectric constant

of €xy = 10° 4 10% for the gold metamaterial. The magnetically invariant GaAs
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C. Finite-element frequency-domain simulations

vacuum
gold
InGaAs
QWs

GaAs

Figure C.1|Finite-element frequency-domain simulations. a, Schematic
overview of the simulation volume including all different implemented materials.
b, Example of a mesh used to solve Maxwell’s equation on.

substrate layers are implemented by the dielectric function

2 2
__ Wip — W+ 1row
€GaAs (UJ) = €oo 2 ) - )
Wro — W+ 1yTOW

(C.1)

where we include the optical phonons of GaAs to improve the accuracy of the
calculation for higher THz frequencies and use €5, = 10.87 [Loc05], wro/2m =
8.839 THz, wro/27 = 8.124 THz, Y10 = 0.0225 THz and yro = 0.0255 THz [Irm96].
The QWs feature an anisotropic dielectric response, which is implemented as a tensor
function € (r, w,, w), which depends on the direction r, the cyclotron frequency, w.,
and the frequency of the THz field, w.

€ow Uy 0

€= 72.513/ €xx 0 N (02)
0 0 €GaAs
w;z) (w+ik)

Here, the components €., = €gaas — ] and €, = o

wl(wtir)?—w? <w+m);7w2] with Wp =

\/g describe the gyrotropic nature of two-dimensional polarization response of the
cyclotron resonance in z- and y-direction. In z-direction, we employ the background
dielectric constant of GaAs, since the small thickness of the QW inhibits a plasma
response in our frequency regime. The scattering rate of k = 0.3 THz is set to match

the experimentally observed typical cyclotron line width. Additionally, to reduce
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the numerical complexity of modelling several quantum wells and the corresponding
barriers between them, we employ an effective medium for the complete quantum
well stack with an effective dielectric tensor.

We account for the array character of our structure by implementing a single unit
cell and using periodic boundary conditions in z- and y-directions. The resulting
far-field calculations are calculated with an algorithm developed by Stratton and
Chu [Str39] and predict experimental results across the entire spectral range with

high accuracy.

Switching patches

To include the effect of the switching patches into the simulations and guide the design
of the switching concept itself, we use the Drude model with different charge carrier
densities for the unswitched and switched state to account for the photoexcitation.

The (3D) plasma frequency is given by

2
switch €
wy = | Powitch©” (C.3)
€0MInGaAs

Here, miygaas = 0.04 m, denotes the effective mass of conduction band electrons in
InGaAs, m, is the free electron mass, pswiten 18 the electron charge carrier density,
€ is the vacuum permittivity, and e is the elementary charge. In the experiment,
we achieve saturation of the switching effect. Therefore we assume a density of

photoexcited carriers of pegiten = 3.5 x 108 cm ™3

, corresponding to the total density
of states of InGaAs within the bandwidth of our switching pulse. As a result, we
obtain a plasma frequency of v, = w,/2m = 80 THz. The dielectric function of the
plasma is then given by

2,2
Wy T

(C4)

€InGaAs (w) = €InGaAs (OO) - m,
s s

with a scattering time of 7, = 1 x 107135, and €p,gaas (00) = 13.7.
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Appendix

Time-domain simulations of the compact

resonator array

Frequency response of the maximally compact resonator structure

In order to accurately simulate the coupled spectra of the samples with the maximally
compact resonator structure, we first need to identify the individual modes of the
bare resonator structure. Then we derive again the equations of motion for each
operator using Heisenberg’s equation of motion.

We characterize the complex frequency response of the metasurface by a superposition
of cavity fields, denoted as c;. Each cavity field o; is associated with a specific custom
frequency v; and contributes with a relative amplitude A;, phase ¢;, and damping
rate y; carefully chosen to optimize the representation of the far-field response
obtained from our finite-element frequency-domain calculations. By implementing a
total of five oscillators with the parameters provided in Table D.1, we successfully
reproduce the finite-element frequency-domain results, as demonstrated in Figure
D.la. The frequency response of each individual oscillator is displayed in Figure
D.1b.
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D. Time-domain simulations of the compact resonator array

a b

0.4 0.4r b
.2

@
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0'00 2 4 6
Frequency, v (THz) Frequency, v (THz)

Figure D.1 | Far-field transmission of the bare metasurface, a, calculated by
the finite-element frequency-domain method (solid curve) and transmission obtained
from the harmonic oscillator representation of our time-domain simulations (dotted
curve). b, with the simulation of each individual oscillator (coloured curves) Adapted
from [Mor23a].

Mode index _7 v; (THZ) Vi (THZ) A]‘ ¢j

1 0.52 0.08 28 10

2 1.95 0.80 445 | -0.14 7
3 3.75 0.12 08 |-0257
4 4.60 0.30 09 |-0.607
5 6.00 0.30 70 |-0.147

Table D.1: Parameters for the cavity modes used to model the frequency response
of the butterfly resonator structure. Adapted from [Mor23a]
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ve (THz) ve (THz) ve (THz)

Figure D.2|Switch-off analysis for the optical modes for the 48-QW
structure. Time-domain simulation including a, all modes, b, only the first and
¢, only the second optical mode of the resonator structure. Adapted from [Mor23al.

Mode selective simulations of the 48 QW sample

Using our time-domain quantum model, we investigate the individual contributions
of each optical mode to the transmission spectrum of the structure. This is achieved
through a switch-off analysis, where we selectively disable specific modes and observe
the resulting impact on the far-field response. In particular, we focus on the contri-
butions of the two most significant cavity modes, 7 = 1 and j = 2, and plot them
separately in Figure D.2. This allows us to distinguish the magnetoplasmon polari-
tons of both cavity modes and to obtain a highly accurate fit to the experimental
data.
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|Appendix E

Ultrastrong coupling of the cyclotron

transition in the general multimode case

The following theory describes in detail the general case of coupling the cyclotron
resonance of a 2DEG to multiple modes of a planar metasurface resonator in more
detail than in chapter 2.1 and chapter 4. The theory was developed by Erika Cortese

and Simone De Liberato and is also published in again a shorter form in [Cor23].

E.1. Light-matter Hamiltonian in Coulomb gauge

Let us consider the Hamiltonian describing a two-dimensional electron gas (2DEG) of
N electrons of charge —e and effective mass m* interacting with a resonator photonic

field in the Coulomb gauge

(f)z +eA (r[))z
2m*

~ [ [eEi(r)? B(r)?
Hf/dr{ 5 +2H0}+

M=

+V (), (E.1)

=1

expressed in terms of the clectric and magnetic field vectors E(r) and B(r), the
potential vector A(r) and the Coulomb potential V (r).
I(r)

e ’

The first term represents the energy of the transverse fields E(r) and B 1(r)=—
where TI(r) is the conjugate momentum of the vector potential, which satisfies the
commutation relation [A(r)7 I (r’)] =héT (r —1').
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E. Ultrastrong coupling of the cyclotron transition in the general multimode case

We now consider the following approximations: first, we neglect the degrees of
freedom of charges in the dielectric background, although considering their effect by
substituting the vacuum dielectric permittivity ey with the one of medium €e(r),
taken isotropic and non dispersive; then, thanks to Kohn’s theorem [Koh61], we can
neglect the Coulomb electron-electron interactions, since it has been demonstrated
that they have no effect on the cyclotron resonance we are investigating (for low
excitation fields) [Maal6]. (Here we would also already deviate for introducing the

(magneto-)plasmons discussed in chapter 5.)

If, for sake of simplicity, we consider a z-dependent background dielectric permittivity,

for the electromagnetic field Hamiltonian we obtain

o — /dr |:606(Z)]2'?‘L(I‘) " BQ(:S . (E.2)

By expressing the fields in terms of the potential vector A(r), such that

B(r) =V x A(r), (E.3)
B.() =~ Alr) (E4)

we can express the electromagnetic Hamiltonian as

oy — / & [6062(2) (%A(ﬂ)z N (vzi)(r))ﬂ . (E.5)

By quantizing the electromagnetic field, we obtain the vector potential operator
A(r) =3¢ [Er(v)al + £,()ay] (E.6)
J

where the index j counts the electromagnetic modes, f;(r) is the spatial mode shape

function vector and C; is a normalization factor

Cj = (h/2e0e(2)w;V))? | (E.7)
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E.1. Light-matter Hamiltonian in Coulomb gauge

with the mode effective volume

V; = /dr \fj(r)\27 (E.8)

such that, calculated the fields from the vector potential (E.6) and plugged in (E.2),

this is equal to
N o1
HEM = Z hw]- (ajaj + 5) . (Eg)
J

Let us focus now on the light-matter interaction. We consider a number Nqw of
2DEGs in which the electrons are distributed and free to move on the xy-plane at
2 = ZpEG,, and that a static magnetic field By is applied along the z-direction.
For simplicity, we assume that the electromagnetic field distribution along z varies
slowly enough to be considered homogeneous within the stack of Nqw 2DEGs, and
as such we assume that light couples equally to all of them. We can write the total
Hamiltonian as

o X (meA(ry)

H=~Hpgy+ ), ~——F——%—

=1

, E.10
2m* ( )
where N = Nqw - pS is the total number of electrons on the Nqw surfaces S with
superficial electron density p,r); is the electron coordinate on the plane z — y, and
=D+ eAy is the in-plane momentum coupling with the static vector potential
Ag, such that B = V x A,.

Let us introduce the bosonic lowering operator between the Landau levels with

cyclotron transition frequency w.

L Tyt iTy
= = E.11
O o ha (B-11)
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E. Ultrastrong coupling of the cyclotron transition in the general multimode case

satisfying [él, é}] = 1. Then the total Hamiltonian can be rewritten as

H=H +§N ﬁ12+§N /A.AA(I‘ )+—62AA(1~ )2— (E.12)
= Hgm Zeomr T & m*ﬁl II,¢ m [ = :
N A2
A un
= i+
EM = 2m*

+
M=

% (ﬁ',,lzzhr (WJ) + 7A1'+JA, (I‘H71>) + %A, (r\l,l) /ALr (rH,l)} = (E.13)

1L

N 1
= o + 3 e (e + 5
1

fiw.e2

m*

(AL (ry) + @A (r)) +

62* A, (I‘”)[) /ALF (r,l):| s (E.14)

+ Zz: -
with 74, = (%, F i%,.) /V2, which means & = #, ;/v/m*hw,, and

As (ru‘,z) A (rw) j;Ay (rH"l) . (E.15)

Since we defined the vector potential as in Eq. (E.6), we can express the two

components A (r”J) as

A (ra) =226 (£55 (r10) & + frx (v) 45) (E.16)

J

with fi; = (f.; Fif,;)/v/2. Since we assume real the z and y components of the

field, we find f ; = fi ;, so the vector potential can thus be written as

Ai (I‘HJ) = chfj:,j (I‘HJ) (A; + &j) . (E17)
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E.2. General case of non-orthogonality and photons mode overlap effects

Therefore, if we recall f; = f; we can write the total Hamiltonian, as
H = Hp + ;fwc (6}@ + %)
* W? ;Cj £ (vp0) & (@) + ;) + hee |
62* ; ; ;Cjcj'fj (r10) £ (r1) (@) +a5) (@) +a5) . (E18)

+

m

E.2. General case of non-orthogonality and

photons mode overlap effects

Let us focus the attention only on the third term of the Hamiltonian in Eq. (E.18),
describing the interaction between the photonic modes and the cyclotron motion of

the electron,

ﬁim =4/ hwmicf? ;;Cj {fj (erl) ¢ ((Alj + ﬁj) + h.c. } . (E.19)

Although we assume the orthogonality for the resonator field modes over the whole
volume V = L x Sp, with L and St are the total length and surface, if we restrict
our self on the xy-plane of the 2DEGs, in principle, the photon modes cannot be
orthogonal, and as such they could mix up when they couple to the collective matter
modes. This aspect is the novel key point of our theory.

Let us consider the first n photonic modes, whose shape functions f; (rH) can be
defined in terms of a set of n mode functions ¢; defined orthogonal over the plane
occupied by the 2DEG of area S, as

fi (‘"H\) =2 b (rz,u) (E.20)

<

obeying the normalisation relations

/S¢§ (x1) 6 (vy) dry = 6,5 (E.21)
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E. Ultrastrong coupling of the cyclotron transition in the general multimode case

and

Nei
; &5 (ru1) 6u (xu) = POus (E.22)

where N, = pS is the number of electrons for each 2DEG. Since the mode function
has to be normalised over all the volume, whereas the function ¢, (I‘l,u) is normalised
only upon the surface S where the electrons are distributed, let us notice that the

coefficient a;; must scale as the total area /Sp.

Let us define now a set of n collective matter modes as

N 1 &
ba = —= o |\ T él- E.23
ﬁ;b (xup) (E.23)

As it is explained above, even though the two photon modes are orthogonal when
integrated over all the cavity volume, this is not true if we consider the plane in
which they couple to the electronic transitions. We define then a normalization factor

matrix element

N
Faj = ;f; (I‘z,u) fi (rz,u) , (E.24)

which is, in general, different from zero. We can easily derive that the in-plane
2
normalization factor for the first mode F; = ZZN )fl (TI,H)‘ = Nqwp |(1171|2

It is clear that, if the photon modes are orthogonal over the plane, no overlap between

them occurs and the matrix F' of elements F, ; is diagonal.

In order to obtain the coefficients a, ;, from the orthonormalization rules, we can

write the relation

Fia=Nowp Y @ Qay. (E.25)

~y<min(j,a)

Since C; = (h/?eoéijj)% with € = € (zprg,,) is constant for all the 2DEGs, it is
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E.2. General case of non-orthogonality and photons mode overlap effects

possible now to rewrite the interaction Hamiltonian as

A - h2w(-Nvip€2 ) At .
Hye = ZJ: etV ;J [0abe (@] + ;) + hec. | (E.26)

The total Hamiltonian for the light-matter system becomes then

H = I:IEM + Hmattcr + I:]im + ]:[dia (E27)
with
ot 1
HEM—ZFIAU < CL]+2>7 (E28)

Hopater Z huwe (13 ba + ) (E.29)
Hie = Z Z [(gjaba + g300L) (al + )] (E.30)

Haw =33y (3] +85) (a) + ) (E.31)
Jj J

and with coupling parameters

h2w.Nqwpe?

- Nowpe? | E.32
95 Qm*eoéijj A ( )
hiy =3 % (E.33)

v<5.9’ ¢

To arrive at the Hamiltonians used in this thesis, we define Qg j o = gj/(27).

The above Hamiltonian can be diagonalised by introducing the hybrid multimode

polariton operators,

=" (158 + w; 5b; + 50} + 2 50)) (E.34)
J

in which (x4, wj 3, Y58, 2j,3) are called Hopfield coefficients, and obey the normalisa-
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E. Ultrastrong coupling of the cyclotron transition in the general multimode case

tion condition

> (I

J

2 2 2 2
+|wipl = lysal” = 1zi6l) = 1. (E.35)

The dressed polariton frequencies wg are the eigenvalues of the 4n x 4n Hopfield
matrix M representing the Hamiltonian in (E.26), such that

MV@ = WpVg, (E36)
where the eigenvectors are

T
Vg = [T18, - Tn g W1, Wngs —Y185 - —Yngs —2185- - —Zngs] - (B.37)

Semi-analytical results for two photonic modes

To arrive at the definitions used in chapter 4, we define the overlap matrix F;, in a

normalized version

Fin

Njpy = —F—77vemos,
\ fuyu}—j,j

which can assume values from 0 to 1 and quantifies the spatial overlap of each pair of

(E.38)

cavity modes in the quantum well plane. Here, a diagonal matrix 7;, o §;, implies

no overlap, while a full matrix implies a strong overlap.

For two photonic modes (M = 2) with frequencies w; and w, and mode volumes V;
and Vs, their non-orthogonality is given by the single overlap parameter 7. This

results in

]:111 = ailv
Foo = \a2.1\2 + |Oé2,2|27
Far = agony, (E.39)
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which leads to

Qi1 = \/-7:1,17

_ o Faa -
Q21 = =/ F22ia1
VI
Foal? ~
Qoo = ]'-2,2 - @ = \/E 1- ‘772,1|2- (E'4O)

Fia

By defining the renormalised mode volume (or length) V,» = %, we arrive at the

expressions for the coupling strengths displayed in chapter 4.

Virtual photons in the general case

We calculate the virtual photons number in the system as <G |Zj &;&j‘ G>, where
the new ground state dressed by the light-matter interaction is defined as pg|G) = 0.

By introducing the inverse Bogoliubov transformation

aj =7 (l‘f%_,jﬁs - yﬁ,jﬁfﬁ) : (E4L)
B

we obtain

Ata
a;a;

G)=

> (@
J
Z<G‘ Zd: ; (‘rlfﬁjﬁ; - y;,jﬁﬁ) (l’}gjﬁﬂ' - y;’wﬁ;/)
j 5B

=X %: lys.al” - (E.42)

E.3. Case of complete orthogonality: no overlap

effects

In the case in which the overlap between the photon modes on the 2DEG plane is
negligible, our model turns to a standard decoupled modes model, which considers

a one-to-one light-matter coupling between the n photon modes and respective n
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collective matter modes, and which can be easily resolved by analytical methods.

We can define indeed the collective matter modes straight from the photon shape

functions as
R 1 N
by =F 2 3 F (v & (E.43)
[

1
where the normalization factor is F7; = \/Nqwp - o] as in eq.(E.24) . If we call
L; = V;/|aj;|* an effective length for the j-th mode, and then we define

h2wNqwpe?
=, E.44
gj Qm*eoéwj L] ’ ( )

2
hj = lo;l” (E.45)

We

The final Hamiltonian in eq.(E.26) thus becomes
. 1 1 S 2
H = Z |:th (a}aj + 5) + hw, (b;bJ + 5) + g; (bJ + b;) ((J,;r + a]‘> + h; (a; + aj) :| .
j
(E.46)

In this case we can diagonalise the Hamiltonian of each j-th mode separately,
by calculating the eigenvalues of the j-th Hopfield matrix expressed in the basis

[a,b;a1b}]:

wj+2h; g 2h; 9
M, = 9j We 9j 0 ) (B.AT)
—2h;  —g; —w;j—2h; —g;
—9; 0 —9; —We

By vanishing the determinant of the matrix M; — wf[ with 3 € [LP, UP], we can

obtain the polariton frequencies w}‘P’ P and the Hopfield-Bogoliubov transformations
for the polariton operators
Bos = Tay + yp,s) + wagbs + 25,0), B € [LP, UP]. (E.48)
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E.3. Case of complete orthogonality: no overlap effects

Virtual photons in the orthogonal case
We calculate the virtual photons number <G ‘Z]- d;d]-| G > exactly as in the general

case, by introducing the inverse Bogoliubov transformation

;=3 (%h,0s5— Yssbhy) - (E.49)
BELP, UP

By performing the average in the ground state, we obtain
> (clajal @) =
J
G (wabhy = Vo) (whnsbora = virably.s)
B

J B

= Z <‘yLP,j
J

2+ Jyorsl) - (E.50)
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