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Proximity-induced phenomena in van der Waals heterostructures have emerged as a platform to
tailor the electronic, spin, optical, and topological properties in two dimensional materials. A crucial
degree of freedom, which has only recently been recognized, is the relative twist angle between the
monolayers. While partial results exist in the literature, we present here a comprehensive first-
principles based investigation of the twist-angle dependent proximity spin-orbit coupling (SOC) in
graphene in contact with, or encapsulated by, monolayer transition metal dichalcogenides (TMDCs)
MoS2, MoSe2, WS2, and WSe2. Crucially, our commensurate supercells comprise monolayers with
strains of less than 2.5%, minimizing band-offset artifacts. We confirm earlier DFT results that
for Mo-based TMDCs the proximity valley-Zeeman SOC exhibits a maximum at around 15–20◦,
and vanishes at 30◦ for symmetry reasons. Although such a maximum was also predicted by tight-
binding simulations for W-based TMDCs, we find an almost linear decrease of proximity valley-
Zeeman SOC in graphene/WSe2 and graphene/WS2 when twisting from 0◦ to 30◦. We also refine
previous DFT simulations and show that the induced Rashba SOC is rather insensitive to twisting,
while acquiring a nonzero Rashba phase angle φ which measures the deviation of the electron spin
from in-plane transverse direction to the momentum, for twist angles different from 0◦ and 30◦.
The Rashba phase angle varϕ varies from −20◦ to 40◦, with the largest variation (40◦) found
for MoS2 at a twist angle of 20◦. This finding contradicts earlier tight-binding predictions that
the Rashba angle can be 90◦ in the studied systems. In addition, we study the influence of a
transverse electric field, vertical and lateral shifts, and TMDC encapsulation on the proximity SOC
for selected twist angles. Within our investigated electric field limits of ±2 V/nm, mainly the
Rashba SOC can be tuned by about 50%. The interlayer distance provides a giant tunability, since
the proximity-induced SOC can be increased by a factor of 2–3, when reducing the distance by only
about 10%. When encapsulating graphene between two TMDCs, both twist angles are important
to control the interference of the individual proximity-induced SOCs, allowing to precisely tailor the
proximity-induced valley-Zeeman SOC in graphene, while the Rashba SOC becomes suppressed.
Finally, based on our effective Hamiltonians with fitted parameters to low-energy ab initio band
structures, we calculate experimentally measurable quantities such as spin lifetime anisotropy and
charge-to-spin conversion efficiencies. The spin lifetime anisotropy—being the ratio between out-of-
plane and in-plane spin lifetimes—can become giant (up to 100), depending on the TMDC, twist
angle, transverse electric field, and the interlayer distance. The charge-to-spin conversion can be
divided into three components which are due to spin-Hall and Rashba-Edelstein effects with non-
equilibrium spin-density polarizations that are perpendicular and parallel to the applied charge
current. All conversion efficiencies are highly tunable by the twist angle and the Fermi level.
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I. INTRODUCTION

Van der Waals (vdW) heterostructures based on two-
dimensional (2D) materials are emerging as an important
platform for investigating novel solid state phenomena
[1–8]. While 2D materials exhibit extraordinary physi-
cal properties on the atomic scale, we can combine dif-
ferent monolayers to form artificial vdW crystals with
customized electronic, optical, magnetic, or topological
properties [1, 2, 5, 9]. The prime example are het-
erostructures based on monolayer graphene, where prox-
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imity interactions, such as spin-orbit coupling (SOC) [10–
27], exchange coupling [14, 28–43], and superconductiv-
ity [44] can be induced via neighboring layers. Important,
the proximity-induced interactions can be controlled by
gating, doping, straining, lateral stacking, and twisting.

Particularly interesting for spintronics [45] are
graphene/transition-metal dichalcogenide (TMDC) bi-
layers [10, 11, 46, 47]. First-principles calculations [10]
and experiments [20, 48–51] on graphene/TMDC struc-
tures have already demonstrated that proximity SOC can
be tuned by the application of a transverse electric field.
Recent DFT simulations show a potential tunability via
controlled alloying of the TMDC [52]; this should be ex-
perimentally realizable given the impressive progress in
TMDC growth techniques [53]. Since proximity effects
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are short-ranged and originate from the wavefunction
overlap of different layers, also the vdW distance plays
an important role. Recent experiments have shown that
external pressure, which reduces the interlayer distance,
can significantly boost proximity interactions [19, 54].
The proximity coupling of graphene with TMDCs has al-
ready lead to fascinating experimental findings, such as
optical spin injection [10, 55, 56] , gate tunable charge-
to-spin conversion [20, 48, 49, 57], giant spin relaxation
anisotropy [21, 58–62], and field-effect spin transistor op-
eration [63].

Recently, the relative twist angle between the mono-
layers has emerged as another important control knob.
In general, vdW heterostructures composed of twisted
monolayers [64–67] promise great tunability of electronic,
optical, and magnetic properties. For example, magic-
angle twisted bilayer graphene exhibits magnetism and
superconductivity due to strong correlations [68–82]. In
twisted TMDCs, a strong trapping potential for excitons
can arise due to the emerging moiré pattern [83, 84]. In
graphene/Cr2Ge2Te6 bilayers, twisting allows to reverse
the proximity-induced exchange splitting of the Dirac
bands [29]. Finally, gating and twisting are two efficient
control knobs to tune the valley splitting in TMDC/CrI3
heterostructures [85]. All the above demonstrates that
the twist angle has a highly non-trivial influence on phys-
ical observables.

There have already been theoretical [13, 86–90] and ex-
perimental [91] studies investigating the impact of twist-
ing on the electronic properties and proximity-induced
SOC in graphene/TMDC heterostructures [91]. Tight-
binding studies have predicted that the relative rota-
tion of the monolayers can greatly enhance the proximity
SOC, with an expected maximum at around 15–20◦, for
graphene in contact with MoS2, MoSe2, WS2, and WSe2
[87, 88]. However, tight-binding calculations have to rely
on some input parameters. For example, the position
of the Dirac point within the TMDC band gap seems is
rather crucial for predicting twist-angle dependent prox-
imity SOC [87].

In a systematic DFT investigation, Naimer et al. [13]
showed that strain (the study used up to 10% of strain in
graphene) in twisted graphene/TMDC supercells affects
the proximity effects due to strain-induced band offsets,
prompting the application of a transverse displacement
field to remove these artifacts. This ad hoc procedure
has produced qualitatively similar results as the afore-
mentioned tight-binding studies for Mo-based TMDCs,
but has found that the valley-Zeeman proximity coupling
for W-based TMDCs decreases with increasing the twist
angle from 0◦ to 30◦, not exhibiting a global maximum.
This DFT study [13] also found specific values for the
Rashba phase angles, predicted on symmetry grounds to
be different from zero (the reference angle at which the
in-plane spin is perpendicular to the momentum) away
from 0◦ to 30◦ [87, 88]. Also Pezo et al. [86] consid-
ered large-scale supercells of graphene on strained (up to
3.5%) MoTe2 and WSe2, employing twist angles around

0◦, 15◦, and 30◦, predicting strong variations of the
proximity SOC, although the limited set of twist angles
was insufficient to uncover systematic trends. Finally,
Lee et al. [89] performed DFT investigations of twisted
graphene/WSe2 heterostructures with small strain (less
than 2%) finding a nearly constant valley-Zeeman SOC
up to about 18◦, followed by a linear decrease to 30◦;
the Rashba SOC was found to be nearly constant for all
the investigated twist angles. There is already evidence
from weak antilocalization experiments [91] on twisted
graphene/WSe2 structures showing small (∼ 0.05 meV)
valley-Zeeman and finite (∼ 0.5 meV) Rashba SOC at
30◦, in agreement with theory. In contrast, samples with
15◦ twist angle show larger SOC values, with Rashba
∼ 1.5 meV and valley-Zeeman ∼ 0.4 meV.

In this paper, we aim to provide a comprehen-
sive DFT-based picture of proximity SOC in twisted
graphene/TMDC heterostructures by considering only
small-strain supercells (less than 2.5% of strain in
graphene and zero strain in TMDCs) for all four semi-
conducting TMDC monolayers MoS2, MoSe2, WS2, and
WSe2. In addition to providing systematic dependencies
of the valley-Zeeman and Rashba SOC on the twist an-
gles, we also address the effects of a transverse electric
field, encapsulation, and lateral and vertical shifts. We
confirm earlier DFT studies that upon twisting from 0◦

to 30◦, the induced valley-Zeeman SOC decreases almost
linearly to zero for W-based TMDCs, while for Mo-based
TMDCs it exhibits a maximum at around 15–20◦. The
induced Rashba SOC stays rather constant upon twist-
ing, and acquires a phase angle φ ̸= 0, due to symme-
try breaking, for twist angles different from 0◦ and 30◦.
For WSe2 our results also correspond to the findings of
Ref. [89], but we additionally cover the twist angle behav-
ior for graphene on MoS2, MoSe2, and WS2. Within our
investigated electric field limits of ±2 V/nm, mainly the
Rashba SOC can be tuned by about 50%. The interlayer
distance, correlating to external pressure in experiments
[19, 54], provides a giant tunability, since the proximity-
induced SOC can be increased by a factor of 2–3, when
reducing the distance by only about 10%. When encap-
sulating graphene between two TMDCs, both twist an-
gles are important to control the interference of the in-
dividual proximity-induced SOCs, allowing to precisely
tailor the valley-Zeeman SOC, while the Rashba SOC
becomes suppressed. More precisely, when the twist an-
gles of the encapsulating TMDC layers are equal, say
both are 0◦, the induced valley-Zeeman SOC is roughly
doubled, since the layer-resolved proximity effect is addi-
tive on the graphene sublattices. In contrast, when the
twist angles differ by 60◦, the sublattices are effectively
exchanged and the effective valley-Zeeman SOC becomes
suppressed. The Rashba SOC is always suppressed due
to the nearly restored z-mirror symmtery in encapsulated
structures.

Finally, combining the first-principles calculations, low
energy model Hamiltonian, fitted parameters, and real-
space transport calculations, we make specific predic-
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tions for experimentally measurable quantities such as
spin lifetime anisotropy and charge-to-spin conversion ef-
ficiency. We find that the spin lifetime anisotropy—the
ratio between out-of-plane and in-plane spin lifetimes—
can become giant, up to 100, especially in graphene on
MoS2 and WS2 as the valley-Zeeman dominates over the
Rashba SOC, pinning the spin to the out-of-plane direc-
tion. Our calculated anisotropies are in agreement with
experiments [21, 59, 92] and further tunability is provided
by twisting, an external electric field, and the interlayer
distance. The real-space transport calculations reveal
that twisted heterostructures provide a tunable charge-
to-spin conversion via spin-Hall and Rashba-Edelstein
effects. With gating and twisting, it is possible to tai-
lor not only the magnitude but also the direction of the
non-equilibrium spin-density, making graphene/TMDC
heterostructures a versatile platform for creating and de-
tecting spin polarized currents without the need of con-
ventional ferromagnets.

The manuscript is organized as follows. In Sec. II,
we first address the structural setup and summarize the
calculation details for obtaining the electronic structures
of the twisted graphene/TMDC bilayers. In Sec. III,
we introduce the model Hamiltonian that captures the
proximitized Dirac bands, which is used to fit the first-
principles results. In Sec. IV, we show and discuss ex-
emplary calculated electronic structures, along with the
model Hamiltonian fits. We also address the influence
of the twist-angle, transverse electric field, and the inter-
layer distance on the proximity SOC. In Sec. V, we briefly
discuss TMDC-encapsulated graphene structures, where
proximity SOC can be enhanced or suppressed due to
interference of the encapsulating layers. In Sec. VI, we
address some open questions and discuss the origin of
our findings in more detail. In Sec. VII and Sec. VIII
we analyze experimentally relevant quantities, which are
the twist-angle and gate tunability of the spin-lifetime
anisotropy and charge-to-spin conversion efficiencies. Fi-
nally, in Sec. IX we conclude the manuscript.

II. GEOMETRY SETUP AND
COMPUTATIONAL DETAILS

The graphene/TMDC heterostructures, for which we
consider several twist angles between the two monolayers,
are set-up with the atomic simulation environment
(ASE) [93] and the CellMatch code [94], implementing
the coincidence lattice method [67, 95]. Within this
method, a graphene/TMDC heterostructure contains a
(n,m) graphene supercell and a (n′,m′) TMDC supercell,
where integers n,m, n′ and m′ define the corresponding
supercell lattice vectors. Monolayers of graphene and
TMDCs are based on hexagonal unit cells, with experi-
mental lattice constants [96–99] of a = 2.46 Å (graphene),
a = 3.288 Å (MoSe2), a = 3.282 Å (WSe2), a =
3.15 Å (MoS2), and a = 3.153 Å (WS2), which addi-
tionally need to be strained in the twisted heterostruc-
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FIG. 1. 3D view of graphene above a TMDC (MoSe2), where
we define the interlayer distance, dint. We twist graphene
by an angle ϑ around the z axis with respect to the TMDC.
The twist-angle evolution of the proximitized Dirac states is
sketched. Red (blue) bands are polarized spin up (spin down),
while grey bands are in-plane polarized. At 0◦, the proximity-
induced SOC in the Dirac states, is of Valley-Zeeman and
Rashba type. At around 19.1◦, the Valley-Zeeman SOC
is maximized leading to a band inversion. At 30◦, Valley-
Zeeman SOC vanishes and only Rashba SOC remains.

tures, in order to form commensurate supercells for peri-
odic density functional theory (DFT) calculations. Since
MoSe2 and WSe2 have nearly the same lattice constant,
we set them to 3.28 Å in the following. The same we do
for MoS2 and WS2, where we use 3.15 Å. In Table S1
and Table S2 we summarize the main structural infor-
mation for the twist angles we consider. In total, we
investigate 12 different angles between 0◦ and 30◦, for
each graphene/TMDC heterostructure. Especially these
angles are suitable for DFT calculations, since strain ap-
plied to the monolayers is below 2.5%. We already know
that biaxial strain strongly influences the band gap of
monolayer TMDCs [100] and therefore we leave them
nearly unstrained in the heterostructures. The residual
strain is applied to the graphene lattice, which mainly
influences the Fermi velocity of Dirac states [13]. In ad-
dition, the number of atoms is kept below 250. Other-
wise, also other angles could be investigated, but beyond
reasonable strain limits and above a computationally fea-
sible number of atoms in the structure.

The electronic structure calculations and structural re-
laxations of the graphene/TMDC heterostructures are
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performed by DFT [101] with Quantum ESPRESSO [102].
Self-consistent calculations are carried out with a k-point
sampling of nk × nk × 1. The number nk is listed in Ta-
ble S1 and Table S2 for all twist angles and depends on
the number of atoms in the heterostructure. In addition,
nk is limited by our computational power. Nevertheless,
for large supercells the heterostructure Brillouin Zone is
small and only few k-points are necessary to get con-
verged results.

We use an energy cutoff for charge density of 560 Ry
and the kinetic energy cutoff for wavefunctions is 70 Ry
for the fully relativistic pseudopotentials with the pro-
jector augmented wave method [103] with the Perdew-
Burke-Ernzerhof exchange correlation functional [104].
Spin-orbit coupling (SOC) is included in the calculations.
For the relaxation of the heterostructures, we add DFT-
D2 vdW corrections [105–107] and use quasi-Newton al-
gorithm based on trust radius procedure. Dipole correc-
tions [108] are also included to get correct band offsets
and internal electric fields. In order to simulate quasi-2D
systems, we add a vacuum of about 20 Å to avoid in-
teractions between periodic images in our slab geometry.
To get proper interlayer distances and to capture possible
moiré reconstructions, we allow all atoms to move freely
within the heterostructure geometry during relaxation.
Relaxation is performed until every component of each
force is reduced below 5× 10−4 [Ry/a0], where a0 is the
Bohr radius.

After relaxation of the graphene/TMDC heterostruc-
tures, we calculate the mean interlayer distances, dint,
and the standard deviations, ∆zgrp, from the z coordi-
nates of the C atoms of graphene. The standard devia-
tions represent the amount of rippling of graphene. The
results are summarized in Table S1 and Table S2. The in-
terlayer distances are nearly independent of the twist an-
gle and range from about 3.3 to 3.4 Å. The graphene itself
stays nearly flat, as the rippling stays below about 3 pm.
In Fig. 1, we show the general structural setup of our
graphene/TMDC heterostructures, where the graphene
resides above the TMDC. When we apply the transverse
electric field (modeled by a zigzag potential), a positive
field points along z direction from the TMDC towards
graphene.

III. MODEL HAMILTONIAN

From our first-principles calculations we obtain the low
energy Dirac band structure of the spin-orbit proximi-
tized graphene. We then extract realistic parameters for
an effective Hamiltonian describing graphene’s low en-
ergy Dirac bands. The Hamiltonian together with the
fitted parameters provide an effective description for the
low-energy physics, which is relevant for studying trans-
port [14, 19, 33, 89, 109, 110], topology [111, 112], or spin
relaxation [16, 58, 60, 113]. Due to the short-range na-
ture of the proximity effects in van der Waals heterostruc-
tures, the effective model parameters are transferable and

can be employed for bilayer and trilayer graphene het-
erostructures [114–116].
The band structure of spin-orbit proximitized

graphene can be modeled by symmetry-derived Hamil-
tonians [117]. For graphene in heterostructues with C3

symmetry, the effective low energy Hamiltonian is

H = H0 +H∆ +HI +HR + ED, (1)

H0 = ℏvF(τkxσx − kyσy)⊗ s0, (2)

H∆ = ∆σz ⊗ s0, (3)

HI = τ(λA
I σ+ + λB

I σ−)⊗ sz, (4)

HR = −λRe
−iφ sz

2 (τσx ⊗ sy + σy ⊗ sx)e
iφ sz

2 (5)

Here vF is the Fermi velocity and the in-plane wave
vector components kx and ky are measured from ±K,
corresponding to the valley index τ = ±1. The Pauli
spin matrices are si, acting on spin space (↑, ↓), and
σi are pseudospin matrices, acting on sublattice space
(CA, CB), with i = {0, x, y, z} and σ± = 1

2 (σz ± σ0).
The staggered potential gap is ∆, arising from sublat-
tice asymmetry. The parameters λA

I and λB
I describe the

sublattice-resolved intrinsic SOC and λR stands for the
Rashba SOC. In addition, a phase angle φ can be present
in the usual Rashba term, which leads to a rotation of the
spin-orbit field around the z-axis [87, 88]. When the in-
trinsic SOC parameters satisfy λA

I = −λB
I , it is also called

valley-Zeeman or Ising type SOC, while in the case of
λA
I = λB

I , it is called Kane-Mele type SOC [118]. Charge
transfer between the monolayers in the DFT calculation
is captured by the Dirac point energy, ED, which adjusts
the Dirac point with respect to the Fermi level. The
basis states are |ΨA, ↑⟩, |ΨA, ↓⟩, |ΨB, ↑⟩, and |ΨB, ↓⟩, re-
sulting in four eigenvalues ε

CB/VB
1/2 . For each considered

heterostructure, we calculate the proximitized low energy
Dirac bands in the vicinity of the K point. To extract the
fit parameters from the first-principles data, we employ
a least-squares routine [119], taking into account band
energies, splittings, and spin expectation values.

IV. FIRST-PRINCIPLES RESULTS AND
DISCUSSION

A. Twist angle dependence of proximity SOC

In Fig. 2(a), we show the calculated global band struc-
ture of the graphene/MoSe2 heterostructure for a twist
angle of 0◦, as an exemplary case. The Dirac states of
graphene are nicely preserved within the band gap of the
TMDC, and are located about 0.61 eV (−0.85 eV) above
(below) the relevant K point valence (conduction) band
egde of the TMDC, see Table S3. Actually in Fig. 2(a),
the conduction band edge of the TMDC is located close
to the M point. However, we note that we use a lat-
tice constant of 3.28 Å for MoSe2, and not the exact ex-
perimental one of 3.288 Å. Already at such small tensile
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FIG. 2. (a) DFT-calculated band structure of the graphene/MoSe2 heterostructure along the high-symmetry path M-K-Γ for
a twist angle of 0◦. The color of the lines corresponds to the sz spin expectation value. We also indicate the position of the
Dirac point with respect to the TMDC valence (conduction) band edge, ED − EV (ED − EC). (b)-(e) The spin expectation
values of the 4 low-energy bands as labeled in (f). (f) Zoom to the calculated low-energy bands (symbols) near the Fermi level
around the K point, corresponding to the band structure in (a), with a fit to the model Hamiltonian (solid lines). (g) The
energy splitting of the low energy Dirac bands.

strain, MoSe2 becomes an indirect band gap semiconduc-
tor, with the conduction band edge at the Q side valley
[100]. In addition, the relevant K points of TMDC band
edges are backfolded to the Γ point due to the 3×3 MoSe2
supercell we use for the 0◦ case.

In Figs. 2(b)-(g), we summarize the low-energy band
properties of the graphene Dirac states near the Fermi
level. Due to proximity-induced SOC, the Dirac bands

split into four states, ε
CB/VB
1/2 . The magnitude of the split-

ting is on the order of 0.7 meV. By fitting the low-energy
Dirac dispersion to our model Hamiltonian, we find that
proximity-induced intrinsic SOCs are of valley-Zeeman
type, λA

I ≈ −λB
I ≈ 0.23 meV. In addition, a Rashba

SOC is present, λR ≈ 0.25 meV, being of the same mag-
nitude. The obtained SOC parameters are giant com-
pared to the intrinsic SOC of pristine graphene, being
about 20–40 µeV [120, 121]. In addition, Dirac states
display an orbital gap, which results from the potential
asymmetry of the sublattices (connected to the rippling
of graphene), characterized by parameter ∆. The Dirac
states, band splittings, and spin expectation values are
perfectly reproduced by our model Hamiltonian employ-
ing the parameters in Table I. The results for 0◦ are in
good agreement to earlier calculations of proximity SOC
in graphene/TMDC heterostructures [11].

Before we show and discuss the twist-angle dependence
of proximity SOC, we first want to address how strain
affects the dispersion. Since the lattice constant of the
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FIG. 3. The calculated position of the Dirac point with re-
spect to the TMDC valence (conduction) band edge, ED−EV

(ED − EC), as function of the biaxial strain in graphene for
the different TMDCs. The data are summarized in Table S3.

TMDC is fixed for all twist angles, the main changes
are in the graphene Dirac states and band offsets. From
literature, we know that the Dirac states of graphene
are quite robust against biaxial strain [122, 123], apart
from a renormalization of the Fermi velocity. From re-
cent studies [13, 29], we already know that band offsets
are tunable by strain. In Fig. 3, we plot the position of
the Dirac point with respect to the TMDC valence (con-
duction) band edge, ED − EV (ED − EC), as defined in
Fig. 2(a), as function of the strain applied to graphene.
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TABLE I. Fit parameters of the model Hamiltonian, Eq. (1), for the graphene/TMDC heterostructures for different twist
angles ϑ. We summarize the Fermi velocity vF, the staggered potential gap ∆, the sublattice-resolved intrinsic SOC parameters
λA
I and λB

I , the Rashba SOC parameter λR, the phase angle φ, and the position of the Dirac point, ED, with respect to the
Fermi level.

TMDC ϑ [°] ∆ [meV] vF/105[m
s

] λA
I [meV] λB

I [meV] λR [meV] φ [°] ED [meV]

MoSe2 0.0000 0.4917 8.2538 0.2422 -0.2258 0.2550 0 1.8970

2.6802 0.4346 8.2382 0.2213 -0.2120 0.2664 -2.2919 0.0024

3.8858 -0.3121 8.1250 -0.1860 0.1954 0.2859 -4.1254 -0.0311

5.2087 -1.1162 8.5072 -0.2920 0.2166 0.2448 -1.3751 1.9400

8.2132 -0.6569 8.3124 -0.3046 0.2434 0.2613 -2.8076 0.0046

12.2163 -0.7117 8.4028 -0.5062 0.3877 0.2136 2.8190 0.1276

14.3916 0.4097 8.0799 0.3838 -0.4240 0.3247 -7.9644 0.0592

19.1066 0.1163 8.0073 0.5627 -0.5827 0.3326 4.7156 1.0680

22.4987 -0.0826 8.2585 -0.5181 0.5041 0.2912 31.8860 -0.1366

25.2850 -0.0173 7.9727 -0.3393 0.3320 0.3110 29.5139 0.0445

30.0000 0.0040 8.3109 0.0013 -0.0055 0.2398 0 0.2514

WSe2 0.0000 0.5878 8.2500 1.1722 -1.1572 0.5303 0 1.2931

2.6802 0.5438 8.2687 1.0775 -1.0650 0.5475 -1.3522 -0.0502

3.8858 -0.4079 8.2968 -0.9045 0.9120 0.5592 -3.1055 -0.0509

5.2087 -1.3110 8.3911 -1.1868 1.0555 0.5979 -1.3293 1.6139

8.2132 -0.8307 8.3230 -1.0482 0.9122 0.6210 -3.4092 1.0818

12.2163 -0.8494 8.4755 -1.2914 0.9973 0.6129 -1.8794 -0.0278

14.3916 0.4444 8.0440 0.6371 -0.7484 0.8339 -17.3382 0.0158

19.1066 0.0876 7.8914 0.5899 -0.6420 0.8215 -19.6129 2.2178

22.4987 -0.0813 8.2654 -0.7106 0.6654 0.6441 3.8985 -0.0464

25.2850 -0.0037 7.9577 -0.2522 0.2382 0.5237 18.6102 0.0107

30.0000 -0.0093 8.3185 -0.0165 0.0128 0.6197 0 1.1670

MoS2 1.0445 -0.7794 8.3275 -0.2990 0.2672 0.0737 6.1881 -0.1036

6.5868 0.4420 8.0126 0.2445 -0.2647 0.0854 21.1428 0.2847

8.9483 0.3782 7.9692 0.2244 -0.2460 0.0953 17.5330 -0.0681

12.8385 -0.2796 7.9358 -0.2393 0.2140 0.1106 8.2508 -0.0696

14.4649 0.3765 8.1134 0.3053 -0.3565 0.1245 15.0692 1.1699

16.1021 -0.3058 8.2297 -0.4126 0.3517 0.1287 14.3244 0.0450

22.4109 -0.0546 8.0486 -0.1347 0.1216 0.0718 37.4152 0.0025

27.6385 -0.0002 8.1439 -0.0410 0.0373 0.0843 32.8887 0.1104

29.2649 0.0011 8.0021 0.0027 -0.0049 0.0395 18.4498 0.0020

WS2 1.0445 -0.9678 8.1209 -1.1390 1.0407 0.2131 5.3688 -0.0787

6.5868 0.6485 8.0248 0.7849 -0.8638 0.2337 16.8970 1.6459

8.9483 0.5615 7.9988 0.6581 -0.7354 0.2705 9.8609 0.5747

12.8385 -0.3525 7.9563 -0.5200 0.4531 0.3206 -4.9620 0.0493

14.4649 0.4676 8.1248 0.5635 -0.6826 0.3678 -1.3236 0.3962

16.1021 -0.3602 8.1780 -0.6841 0.5536 0.3956 -4.8474 0.0075

22.4109 -0.0472 8.0434 -0.0158 -0.0082 0.1777 2.4793 0.3277

27.6385 0.0025 8.2009 0.0059 -0.0113 0.2410 18.7310 1.8203

29.2649 -0.0007 8.0090 -0.0212 0.0194 0.1462 9.0129 0.3090

The different twist angles provide different strain, and
the plotted information are summarized in Tables S1,
S2, and S3. We find a linear dependence of the band
offsets with respect to the graphene strain as in a previ-
ous study [13]. In experiment, one can expect that both

graphene and the TMDCs are nearly unstrained due to
weak vdW bonding and only the zero strain band off-
sets are relevant. For our exemplary case of MoSe2, we
find the Dirac cone roughly in the middle of the TMDC
band gap. From Fig. 3 we can extract the zero strain
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FIG. 4. (a) Zoom to the calculated low-energy bands (symbols) of the graphene/MoSe2 heterostructure near the Fermi level
around the K point, for a twist angle of 0◦ and with a fit to the model Hamiltonian (solid lines). The color of the lines/points
corresponds to the sz spin expectation value. (b) and (c) The same as (a), but for twist angles of 19.1◦ and 30◦. (d) The
calculated spin-orbit field, in the vicinity of the K point, of the spin-up valence band from the low-energy dispersion shown
in (a). The color represents the sz spin expectation value, while the arrows represent sx and sy spin expectation values. The
dashed white lines represent the edges of the hexagonal Brillouin zone, with the K point at the center. (e) and (f) The same
as (d), but for twist angles of 19.1◦ and 30◦.

band offsets and the rates γ at which the band offsets
change via straining, by fitting the data with a linear
dependence. The extrapolated values are summarized
in Table II. We find that for lighter (heavier) elements
in the TMDC, the Dirac cone is located closer to the
conduction (valence) band edge, as is the case for MoS2
(WSe2). Especially the zero strain band offsets should be
also useful for tight-binding models of graphene/TMDC
bilayers [87, 88], where the position of the Dirac point
within the TMDC band gap enters as an unknown pa-
rameter. In addition, despite the strain in graphene is
kept below ±2.5% in our heterostructure calculations, we
observe variations in the band offsets of several hundreds
of meV. The reason is that the rates γ ≈ −80 meV/% are
quite large, but similar for all TMDCs, and band offsets
can be massively tuned by straining. In particular, ten-
sile (compressive) strain will shift the Dirac states closer
to the TMDC valence (conduction) band edge. Our cal-
culated zero strain band offsets show that the Dirac cone
is clearly located within the TMDC band gap, which is
in agreement to experiments [124, 125]. The tunability

of the band offset with straining graphene is expected,
since the individual workfunctions of the layers determine
the band alignment, and the workfunction of graphene
shows a significant strain dependence within our strain
limits [126]. In particular, the workfunction of graphene
increases (decreases) with positive (negative) strain [126],
shifting the Dirac point towards more negative (posi-
tive) energy, which is consistent with our observations
in Fig. 3.

In contrast to Ref. [13], our heterostructures have
smaller strain so we do not compensate the strain-
related band offsets with an electric field. Also, we
perform structural relaxation at each twist angle which
leads to rippling and twist-dependent interlayer distance.
As we show, both effects influence the proximity in-
duced SOC, so that electric-field compensation would
not necessarily make the results more representative. We
demonstrate this by comparing 0◦ graphene/MoSe2 and
graphene/WSe2 heterostructures with different strains
and setup conditions [127]. We believe that the field cor-
rection as in Ref. [13] makes sense to be applied only
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in the scenario of a flat graphene layer and fixed inter-
layer distance, to extract the bare twist-angle dependence
while disregarding other effects. Otherwise all these ef-
fects: band offset, rippling, and interlayer distance, which
are in some way connected to strain and which affect
proximity SOC, would be difficult to disentangle.

TABLE II. Zero strain band offsets ED − EV and ED − EC

and the rates γ at which the band offsets change via straining,
extrapolated by fitting the data in Fig. 3 with linear functions.

TMDC ED − EV [eV] ED − EC [eV] γ [meV/%]

MoS2 1.3360 -0.3817 -78.95

WS2 0.9473 -0.7531 -77.04

MoSe2 0.6159 -0.8458 -77.35

WSe2 0.2446 -1.1606 -75.72

Now we turn to the most important result, which is
the twist-angle dependence of proximity-induced SOC.
In Fig. 4, we show the calculated low energy Dirac states
for the graphene/MoSe2 heterostructure for three differ-
ent twist angles, 0◦, 19.1◦, and 30◦, as exemplary cases.
As already mentioned, the Dirac states are split due to
proximity SOC. In the case of 0◦, the splitting is mod-
erate, caused by nearly equal valley-Zeeman and Rashba
SOC (λA

I ≈ −λB
I ≈ 0.23 meV, λR ≈ 0.25 meV). This can

be also seen in the calculated spin-orbit field of one of the
Dirac bands. Overall, spins have an out-of-plane com-
ponent due to intrinsic SOCs, while Rashba SOC is re-
sponsible for the vortex-like in-plane components. Both
components are nearly equal away from the K point, see
also Fig. 2. For 19.1◦, the splitting is maximized, a band
inversion can be obtained, and valley-Zeeman SOC dom-
inates over the Rashba one (λA

I ≈ −λB
I ≈ 0.57 meV,

λR ≈ 0.33 meV). The band inversion is due to the
fact that the sublattice potential asymmetry ∆ is small
compared to the magnitude of the intrinsic SOCs. The
spin-orbit field shows almost only an out-of-plane com-
ponent, while in-plane components are suppressed. For
30◦, the splitting is minimal, valley-Zeeman SOC van-
ishes and Rashba SOC dominates (λA

I ≈ −λB
I ≈ 0 meV,

λR ≈ 0.24 meV). In fact, the valley-Zeeman SOC should
completely vanish at 30◦, due to a mirror plane symme-
try, restoring the sublattice symmetry [89]. However, due
to the small rippling in graphene from structural relax-
ations, this symmetry is not fully restored and small, but
finite, intrinsic SOCs arise even at 30◦. The spin-orbit
field almost solely shows vortex-like in-plane components,
while an out-of-plane component is only present right at
the K point. Such a twist-angle tunability of SOC and
the corresponding spin-orbit fields will have a huge im-
pact on spin transport and relaxation [58], as we will
discuss later.

For all the investigated twist angles and the different
TMDCs, our model Hamiltonian can faithfully describe
the low-energy Dirac states, with the fit parameters sum-
marized in Table I. For structures from Tables S1 and

S2, which satisfy n−m = 3 · l, l ∈ Z, the Dirac states of
graphene from both K and K ′ fold back to the Γ point.
Consequently, we cannot apply our fitting routine em-
ploying the model Hamiltonian, Eq. (1), for some twist
angles, which are then absent in Table I.
Note that, when graphene sublattices (CA and CB) are

interchanged in the geometry, the parameter ∆ changes
sign, while parameters λA

I and λB
I are interchanged as

well. Such an exchange of sublattices corresponds to
an additional 60◦ twist applied to graphene above the
TMDC. Therefore twist angles ϑ and ϑ+ 60◦ cannot be
distinguished from the geometries. In Table I, the fit
parameters show such a sign change for the investigated
twist angles. This is connected to the setup of the het-
erostructure supercells for different angles, since 1) the
starting point stacking of the non-rotated layers is ar-
bitrary, 2) the origin of the rotation axis can be chosen
randomly, 3) the lattice vectors, defining the periodic het-
erostructure supercell, can be imposed differently on the
moiré structure from the twisted layers. Consequently,
one would have to consider several structures for each
twist angle to obtain well justified results (in terms of
value and sign). Considering subsequent lateral shifts
(see below) is particularly helpful to see how the proxim-
ity SOC changes for different atomic registries. However,
it is enough to consider only angles between 0◦ and 30◦,
since the parameters for the other angles can be obtained
by symmetry considerations [13].
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FIG. 5. Calculated twist-angle dependence of the valley-
Zeeman and Rashba SOC for the different TMDCs. The data
are summarized in Table I.

From the experimental point of view, e. g., in spin
transport or spin-charge conversion experiments, that
consider twisted graphene/TMDC heterostructures, only
the magnitude and type of proximity SOC plays a role,
since a well-defined manufacturing process with atomi-
cally precise control of stacking and twisting of two dif-
ferent monolayers is not yet possible. Due to this and
the mentioned sign issue from the DFT results, in Fig. 5
we plot the absolute values of valley-Zeeman and Rashba
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SOC as function of the twist angle for all TMDs, as sum-
marized in Table I. Note that the valley-Zeeman SOC
is defined as λVZ = (λA

I − λB
I )/2. We find a clear and

strong twist-angle dependence of the proximity-induced
SOC. The heavier the elements in the TMDC, the larger
is the proximity SOC. For untwisted structures (0◦),
both valley-Zeeman and Rashba SOC are finite. At 30◦,
the valley-Zeeman SOC vanishes and Rashba SOC domi-
nates, independent of the TMDC. While the Rashba SOC
stays rather constant upon twisting, the valley-Zeeman
SOC shows a marked twist-angle dependence, different
for Mo- and W-based TMDCs. For WS2 and WSe2, the
valley-Zeeman SOC gradually decreases when twisting
from 0◦ to 30◦. This finding is consistent with Ref. [89].
In contrast, for MoS2 and MoSe2, the valley-Zeeman SOC
exhibits a maximum at around 15◦ to 20◦.

B. Influence of vertical and lateral shifts

How sensitive is the proximity-induced SOC with re-
spect to the atomic registry (stacking) and the interlayer
distance? Recent experiments have shown that one can
tune proximity SOC by external pressure, thereby re-
ducing the interlayer distance between graphene and the
TMDC [19, 54]. In particular, by applying external pres-
sure of about 1.8 GPa to a graphene/WSe2 heterostruc-
ture and diminishing the interlayer distance by about 9%,
leads to a 2-fold enhancement of the proximity-induced
Rashba SOC, as found by magnetotransport experiments
[19]. In this section, we study how variations of the in-
terlayer distance influence proximity SOC. For selected
twist angles we vary dint in steps of 0.1 Å, starting from
the relaxed equilibrium distances listed in Tables S1 and
S2, keeping the rest of the geometry (rippling of graphene
and the TMDC) fixed. In addition, we study how lat-
eral shifts, which essentially change the exact stacking
of graphene above the TMDC, influence proximity SOC.
For the lateral shifts, we use crystal coordinate notation,
i. e., we shift graphene above the TMDC by fractions x
and y of the supercell lattice vectors. We perform struc-
tural relaxations in the case of lateral shifts before we
calculate the proximitized low energy Dirac bands, since
the stacking may influence the graphene rippling and the
interlayer distance.

Since Mo- and W-based TMDCs produce different
trends in the twist-angle dependence of proximity SOC,
we focus on MoSe2 and WSe2 only. In addition, we con-
sider only three selected twist angles, namely 0◦, 19.1◦

and 30◦. In Table S4 and Table S5 we summarize the
fit results, when tuning the interlayer distance or chang-
ing the stacking. By reducing the interlayer distance,
we find that Dirac states are pushed towards the TMDC
valence band edge. In addition, the sublattice asymme-
try, represented by the staggered potential ∆ increases,
when decreasing the distance. Most important, the in-
duced valley-Zeeman and Rashba SOC depends strongly
on the distance, as summarized in Fig. 6. By reducing
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FIG. 6. Calculated interlayer distance dependence of the
valley-Zeeman and Rashba SOC for MoSe2 and WSe2 struc-
tures for selected twist angles. The data are summarized in
Table S4 and Table S5.

the interlayer distance, the SOC can be heavily increased,
in agreement with experiments [19, 54]. In particular,
the proximity-induced SOC can be increased by a factor
of 2–3, when reducing the distance by only about 10%.
The only exception is the valley-Zeeman SOC for the 30◦

structures, which is absent (or at least very small in our
case due to rippling) due to symmetry. In contrast, the
precise atomic registry (stacking) has negligible influence
on the magnitude of proximity SOC in graphene/TMDC
heterostructures. This results probably from the fact
that the considered heterostructure supercells are large
compared to the monolayer unit cells, such that an aver-
aging effect takes place.

C. Gate tunability of proximity SOC

In experiment, gating is a tool to further control and
tailor the proximity SOC in graphene-based heterostruc-
tures [20, 48–50]. For example, in Ref. [50] it has been
shown that a gate voltage can be employed to control
the spin-charge conversion efficiency in graphene/MoTe2
heterostructures. We wish to answer the question: How
does a transverse electric field affect proximity SOC for
different twist angles? Again, we focus only on MoSe2
and WSe2 and twist angles of 0◦, 19.1◦ and 30◦. The
positive field direction is indicated in Fig. 1.
The fit results are summarized in Tab. S6 for

graphene/MoSe2 and Tab. S7 for graphene/WSe2 bilay-
ers. In general, the electric field simply shifts the Dirac
cone up or down in energy within the TMDC band gap,
as can be seen from the band offsets. The tunability is
about 100 meV per V/nm of applied field. Since the
band offsets change, also the interlayer coupling along
with proximity SOC changes. In Fig. 7 we show how the
valley-Zeeman and Rashba SOC are affected by the ex-
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FIG. 7. Calculated electric field dependence of the valley-
Zeeman and Rashba SOC for MoSe2 and WSe2 structures for
selected twist angles. The data are summarized in Table S6
and Table S7.

ternal transverse electric field. We find that for MoSe2,
the field barely influences the valley-Zeeman SOC, while
the Rashba one can be tuned in a linear fashion, similar
for all the different twist angles we consider. More pre-
cisely, within our field limits of ±2 V/nm, the Rashba
SOC can be tuned by about 50%. In particular, recalling
that the ratio between valley-Zeeman and Rashba SOC
determines the spin relaxation anisotropy [58], the elec-
tric field will lead to an enormous tunability of the latter.

In the case of WSe2, the behaviour is rather similar
but the 19.1◦ twist angle is an exception. For this an-
gle, also the valley-Zeeman SOC is highly tunable by the
field. Moreover, we find that the valley-Zeeman SOC in-
creases, while the Rashba one decreases for positive field
amplitudes and vice versa for negative fields.

V. ENCAPSULATED GEOMETRIES

Maximizing the proximity SOC in graphene is advanta-
geous for example in spin-charge conversion experiments
[17, 20, 48, 49, 89, 109, 110]. We have already seen,
that proximity-induced SOC is maximized for WSe2 at
0◦ and for MoSe2 at 19.1◦. Can we further enhance
proximity SOC, by encapsulating graphene between two
TMDC monolayers? We consider the graphene/WSe2
heterostructure with 0◦ twist angle and place another
WSe2 monolayer on top. The top WSe2 layer is con-
sidered to have a relative twist angle of 0◦ and 0+60◦

with respect to the subjacent graphene/WSe2 bilayer,
see Fig. 8. Similarly, we consider the graphene/MoSe2
heterostructure with 19.1◦ twist angle and place another
MoSe2 monolayer on top, with a relative twist angle of
19.1◦ and 19.1+60◦. We also perform a structural relax-
ation on the encapsulated structures, similar as above,
before we proceed to calculate the proximitized Dirac

dispersion.

The structural information for the encapsulated struc-
tures are summarized in Table III. The relaxed top and
bottom graphene/TMDC interlayer distances are nearly
identical for the different cases we consider, and coincide
with the non-encapsulated geometries. In addition, the
intrinsic dipole of the trilayer structure is strongly di-
minished, but still finite due to a small aysmmetry in the
interlayer distances. The rippling of the graphene layer
is small (large) for symmetric (asymmetric) encapsula-
tion when twist angles are the same for top and bottom
monolayers (when the top TMDC monolayer has an ad-
ditional 60◦ twist). The calculated band offsets are also
nearly identical to the non-encapsulated structures.

We expect that symmetric encapsulation will boost
proximity SOC in graphene, while for asymmetric en-
capsulation the proximity SOC in graphene will nearly
vanish. The reason is the valley-Zeeman type of SOC
combined with the interchange of the graphene sublat-
tices upon 60◦ rotation. For example, the induced SOC
from the bottom WSe2 is λA

I ≈ −λB
I ≈ 1.2 meV in the

case of 0◦ twist angle. If the top WSe2 layer has the
same alignment to graphene as the bottom WSe2 layer,
the induced SOC will be the same and we can expect
a doubling of valley-Zeeman SOC. However, if the top
WSe2 layer is rotated by 60◦ with respect to the under-
lying graphene/WSe2 bilayer, the graphene sublattices
are effectively interchanged with respect to the top WSe2
layer. Hence, bottom and top TMDC layers induce op-
posite valley-Zeeman SOC, which in total leads to a can-
cellation.

In Table IV, we summarize the fit results for the
TMDC encapsulated geometries, while in Fig. 8, we ex-
plicitly show the results for WSe2-encapsulated graphene
and the different twist angle scenarios. Indeed, symmet-
ric encapsulation strongly enhances and roughly doubles
the proximity-induced intrinsic SOC parameters, com-
pared to non-encapsulated geometries. In contrast, the
Rashba SOC is drastically reduced, since TMDC encap-
sulation nearly restores the z-mirror symmetry. Also
the dipole (intrinsic electric field) of the structures is al-
most zero. For asymmetric encapsulation, the proximity-
induced intrinsic and Rashba SOC is strongly reduced,
as expected. Actually, for perfectly symmetric encapsu-
lation, the Rashba SOC should exactly vanish. Also the
valley-Zeeman SOC should vanish in encapsulated struc-
tures where inversion symmetry is restored. However,
our heterostructures still show a finite structural asym-
metry after atomic relaxation, leading to finite values of
proximity SOC.

In conclusion, TMDC encapsulation will only boost
proximity SOC in graphene, if both TMDC layers of-
fer the valley-Zeeman SOC in an additive way. In other
words, both twist angles are important control knobs to
tailor the interference of the individual proximity effects,
as also discussed in Ref. [128].
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TABLE III. Structural information and calculated band offsets for the TMDC/graphene/TMDC heterostructures. We sum-
marize the relative twist angles ϑb (ϑt) of graphene with respect to bottom (top) TMDC layer, the relaxed interlayer distances
db (dt), the rippling of the graphene layer ∆zgrp, the calculated dipole of the structures, and the position of the Dirac point
with respect to the TMDC valence (conduction) band edge, ED − EV (ED − EC).

TMDC ϑb (ϑt) [°] db (dt) [Å] ∆zgrp [pm] dipole [debye] ED − EV [eV] ED − EC [eV]

MoSe2 19.1 (19.1) 3.4114 (3.4152) 0.0020 0.0008 0.5196 -0.9346

19.1 (19.1+60) 3.4222 (3.4083) 0.5701 -0.0057 0.5180 -0.9394

WSe2 0.0 (0.0) 3.3489 (3.3609) 0.1847 0.0099 0.1821 1.2108

0.0 (0.0+60) 3.3410 (3.3419) 3.7920 0.0135 0.1739 -1.2246

TABLE IV. Fit parameters of the model Hamiltonian, Eq. (1), for the TMDC/graphene/TMDC heterostructures. We sum-
marize the relative twist angles ϑb (ϑt) of graphene with respect to bottom (top) TMDC layer, the Fermi velocity vF, the
staggered potential gap ∆, the sublattice-resolved intrinsic SOC parameters λA

I and λB
I , the Rashba SOC parameter λR, the

phase angle φ, and the position of the Dirac point, ED, with respect to the Fermi level.

TMDC ϑb (ϑt) [°] ∆ [meV] vF/105[m
s

] λA
I [meV] λB

I [meV] λR [meV] φ [°] ED [meV]

MoSe2 19.1 (19.1) 0.1049 7.8918 1.1320 -1.1357 0.0057 4.1166 -0.5327

19.1 (19.1+60) -0.2099 7.8872 -0.0488 0.0066 -0.0187 -5.2934 -0.7439

WSe2 0.0 (0.0) 0.0399 8.1670 2.6068 -2.6201 0.0334 0 -0.5580

0.0 (0.0+60) 0.2623 8.1523 0.0106 -0.0002 0.0042 0 -3.2908

VI. PHYSICS BEHIND THE SPIN-ORBIT
PROXIMITY EFFECT

There are several open questions related to the pre-
sented DFT and simulation results that we wish to ad-
dress: Why is the proximity-induced SOC of valley-
Zeeman (sublattice-odd) and not Kane-Mele (sublattice-
even) type? What is the exact origin of the proximity-
induced SOC? Why is the twist-angle dependence so dif-
ferent for different TMDCs and not as universal as pre-
dicted by recent tight-binding studies [87, 88]? Which
atomic type (transition-metal or chalcogen) contributes
most to the proximity-induced SOC? Why is the electric
field tunability of valley-Zeeman SOC so pronounced for
WSe2 and a twist angle of 19.1◦?

We start by addressing the question about which
atomic type contributes most to proximity SOC. We
already know that the different transition-metal and
chalcogen atoms provide very different contributions to
the TMDC spin splittings [100], which should also influ-
ence proximity effects. Therefore, we have turned off
SOC on different atoms by employing non-relativistic
pseudopotentials, and recalculated the proximitized
Dirac bands for different TMDCs and twist angles. The
fit results are summarized in the SM [127]. We find, as
expected, that the heavier the element (Mo or W, S or
Se), the larger the contribution to the proximity-induced
SOC. In particular, the contribution of W, Mo, Se, and
S atoms to the proximity-induced valley-Zeeman SOC is
roughly 1.2, 0.3, 0.1, and 0.01 meV for small (0 to 8◦)
twist angles. Remarkably, this can be drastically different
for other twist angles. For example, at 19.1◦ the contri-
bution of Se atoms to the valley-Zeeman SOC is roughly

twice as large as the one from W or Mo atoms. The rea-
son is that the graphene Dirac cone couples to different
k-points within the TMDC Brillouin zone for different
twist angles. At different k-points, the TMDC bands
have a different atomic and orbital decomposition [100].
Therefore, for different twist angles different atomic con-
tributions and orbitals are involved.

Why is the proximity SOC of valley-Zeeman type? The
graphene Dirac states at K are split as if an external
magnetic field would be present, see Fig. 4. In particu-
lar, for 0◦, spin down states are shifted to lower energies
compared to spin up, see Fig. 4(a), hence a Zeeman-like
band splitting. Due to time-reversal symmetry the Dirac
states at K ′ are energetically the same, but have the op-
posite spin. Hence, the charge carriers effectively experi-
ence the opposite magnetic field, i. e., a valley-dependent
Zeeman-like spin splitting arises. What causes this split-
ting in the first place? As we find from the projected
band structures for different twist angles, the Dirac states
predominantly couple to high-energy TMDC bands, see
for example Fig. 9(a) and SM [127]. Considering a partic-
ular twist angle, the Dirac states at K couple differently
to the spin up and spin down TMDC band manifolds.
For simplicity, imagine that the coupling of Dirac states
is only to TMDC conduction band states and the cou-
pling to the spin down manifold is stronger than to the
spin up one. According to second order perturbation the-
ory, coupled energy levels repel. When the coupling to
spin down is stronger, the spin down Dirac states would
be pushed to lower energies compared to spin up, ex-
plaining the Zeeman-like splitting for a given valley. Due
to time-reversal symmetry, the other valley shows the op-
posite behavior. Of course, in our heterostructures the
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FIG. 8. Top and side view of the WSe2-encapsulated graphene and corresponding proximitized low energy Dirac bands for
twist angles of (a) ϑb = 0◦, ϑt = 0◦ and (b) ϑb = 0◦, ϑt = 60◦

coupling is also to TMDC valence bands and there is a
delicate balance to the coupling to spin up and spin down
manifolds, where one outweighs the other. This is similar
to recent considerations in twisted graphene/Cr2Ge2Te6
heterostructures [29]. In particular for 30◦ twist angle,
the Dirac states of graphene are folded to the Γ-M high-
symmetry line of the TMDC Brillouin zone, see Fig. 9,
where TMDC bands are spin degenerate, and proximity-
induced valley-Zeeman SOC vanishes [127].

Regarding the electric field tunability of valley-Zeeman
SOC for WSe2 and a twist angle of 19.1◦, we first have to
consider the location in the TMDC Brillouin zone, where
the Dirac cone folds back, see Fig. 9(b) and SM [127]. In
particular, the graphene K point folds near the WSe2 Q
side-valley, see Fig. 9(f), where the spin splitting of the
first TMDC conduction band is very large (∼ 200 meV).
Moreover, the electric field results in Table S7 show that
the closer the Dirac point shifts towards the TMDC con-
duction band, the larger is the proximity-induced valley-
Zeeman SOC. Considering a coupling of Dirac states to
the energetically closest TMDC bands, for this particular
twist angle, we come to the conclusion that mainly the
first conduction band is responsible for the spin split-
ting of Dirac states. The contributions from the first
two WSe2 valence bands seem to cancel each other, due
to opposite spin splittings. Another supporting factor is
that at the Q valley, the TMDC conduction band wave
function is strongly delocalized across the TMDC layer,
see Fig. 9(e), allowing for a more efficient wavefunction
overlap between the layers and an enhanced transfer of
the SOC to the graphene layer. Therefore, a coupling to
the Dirac states should be enhanced, once the energy dif-
ference is reduced by applying an external electric field.
In contrast, for MoSe2 the spin splittings of the relevant
bands at the Q valley are very different in magnitude
compared to WSe2, see Fig. 9(d), and therefore the elec-
tric field dependence is not as pronounced for the same
twist angle.

This also relates to the question, why our twist an-
gle results are not universal for all the TMDCs, as the
tight-binding studies suggest [87, 88]. Even though the
individual TMDCs are very similar, there are profound
differences such as atomic and orbital decompositions of
bands, leading to different spin splittings across the Bril-
louin zone. On top of that, our DFT calculations cap-
ture the full picture, including monolayer dispersions,
spin-orbit effects, and interlayer interactions. In con-
trast, the tight-binding description of the heterostructure
[88] employs assumptions for the interlayer interactions
and a specific parametrization of the TMDC monolayer
dispersion based on first-principles results [129], which
does not perfectly reproduce band energies nor spin split-
tings. Anyway, both DFT and the tight-binding de-
scriptions have advantages and drawbacks, but help to
gain insights on the physics of proximity-induced SOC in
graphene/TMDC heterostructures.

VII. SPIN RELAXATION ANISOTROPY

An experimentally verifiable fingerprint of the
proximity-induced SOC in graphene/TMDC heterostruc-
tures is the anisotropy of the spin lifetimes [21, 58–62].
The intrinsic SOC parameters provide a spin-orbit field
that points out of the monolayer plane, while the Rashba
SOC creates, in the simplest case, a vortex-like in-plane
spin-orbit field. Depending on the interplay of both
SOCs, spins pointing in different directions relax on dif-
ferent timescales, creating a spin lifetime anisotropy. The
spin relaxation anisotropy, ξ, which is defined as the ratio
between the out-of-plane (τs,z) and in-plane (τs,x) spin
relaxation times, can be easily calculated from the fitted
parameters via [58]

ξ =
τs,z
τs,x

=

(
λVZ

λR

)2 (
τiv
τp

)
+

1

2
. (6)
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FIG. 9. (a) DFT-calculated band structure of the graphene/MoSe2 heterostructure along the high-symmetry path M-K-Γ for
a twist angle of 0◦. The color code shows the contribution of the individual monolayers to the bands, i. e., the bands appear
dark-reddish (dark-blueish) when only MoSe2 (graphene) orbitals contribute. (b) The backfolding of the graphene Dirac point
at K for different twist angles. The black (green) hexagon represents the graphene (TMDC) Brillouin zone. (c) DFT-calculated
band structure of monolayer MoSe2 with lattice constant of a = 3.28 Å along the high-symmetry path Γ-K-M-Γ. The vertical
dashed lines indicate the k-points, to which the Dirac states couple to, according to the backfolding in (b). The black dots
are the locations of the Dirac point for the different twist angles from Table S3. (d) The spin splittings ∆s = E↑ − E↓ of the
MoSe2 bands VB1, VB2, and CB1, extracted from the band structure in (c). (e) and (f) are the same as (c) and (d), but for
WSe2 monolayer.

A similar expression has been derived in Ref. [60]. Here,
the ratio between the valley-Zeeman and the Rashba
SOC strength predominantly determines the anisotropy,
but also the ratio between intervalley (τiv) and momen-
tum (τp) scattering times play a role. In the following,
we assume τiv/τp = 5, as in Ref. [58]. In Fig. 10, we
summarize the calculated anisotropies as function of the
1) twist angle, 2) the applied electric field, and 3) the
interlayer distance, employing the results from above.

The anisotropy is extraordinarily large for WS2 and
MoS2 at 0◦, since the valley-Zeeman SOC is giant com-
pared to the Rashba one, pinning the spins to the out-of-
plane direction. At 30◦, the anisotropy reduces to 1/2,
i. e., the Rashba limit, since the valley-Zeeman SOC van-
ishes independent of the TMDC. In general, the twist
angle is an experimental knob to tailor the spin relax-
ation anisotropy. Once a twist angle is fixed, the prox-
imity SOC can be further tuned by a transverse elec-
tric field or pressure engineering of the interlayer dis-
tance. Tuning the electric field from −2 to 2 V/nm es-
sentially decreases the Rashba SOC and consequently
increases the anisotropy. A strong tunability can be
especially observed in WSe2 for 0◦ and for MoSe2 for
19.1◦, where the anisotropies can be increased by a fac-
tor of 2–3. In contrast, reducing the interlayer distance
both valley-Zeeman and Rashba SOC increase, but at
different rates, and the anisotropies decrease. A par-
ticular strong anistoropy can be expected in TMDC-

encapsulated graphene, as the Rashba SOC can be sup-
pressed compared to the valley-Zeeman SOC, see Ta-
ble IV. In particular, considering the WSe2-encapsulated
case, and both twist angles to be 0◦, the calculated
anisotropy would be gigantic ξ ≈ 3× 104.

VIII. SPIN-CHARGE CONVERSION

Another experimentally verifiable fingerprint of
proximity-induced SOC is the possibility to convert be-
tween charge and spin currents in proximitized graphene
without the need of conventional ferromagnetic elec-
trodes, which is highly desirable for all-2D spintronic
devices [17, 20, 48–50, 57, 89, 109, 110, 130–136]. Re-
cent theoretical calculations [89, 109] have already con-
sidered the twist angle dependence of the charge-to-
spin conversion in graphene/TMDC heterostructures.
Remarkably, not only the conventional spin-Hall effect
(SHE) and Rashba-Edelstein effect (REE) occur, but
also an unconventional REE (UREE) can arise. While
for SHE and REE the current-induced non-equilibrium
spin density has a polarization perpendicular to the
charge current [48], for the UREE the spin density po-
larization is collinear to the applied electric current. A
similar unconventional charge-to-spin conversion has al-
ready been experimentally detected in the semimetals
WTe2 [137] and MoTe2 [50, 138, 139], and can be at-
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FIG. 10. Calculated spin relaxation anisotropy ξ, employing Eq. (6). Left: Anisotropy as function of the twist angle for the
different graphene/TMDC heterostructures, employing the parameters from Table I. Middle: Anisotropy as function of the
transverse electric field for MoSe2 and WSe2 structures for selected twist angles, employing the parameters from Table S6 and
Table S7. Right: Anisotropy as function of the interlayer distance for MoSe2 and WSe2 structures for selected twist angles,
employing the parameters from Table S4 and Table S5.

tributed to reduced symmetries [140]. Recent experi-
ments on graphene/NbSe2 [57], graphene/WTe2 [136],
and graphene/MoTe2 [138, 139] heterostructures have
demonstrated the spin-to-charge conversion of spins ori-
ented in all three directions. However, in these structures
NbSe2, WTe2, and MoTe2 are metallic, contributing di-
rectly to the conversion process, along with the proximi-
tized graphene.

The figure of merit for charge-to-spin conversion for
comparing 3D and 2D systems is given by αλSF, where
α is the conversion efficiency and λSF is the spin diffu-
sion length [18, 20, 141]. Especially λSF can be giant in
proximitized graphene (∼ µm) [20, 49, 92], much larger
than in conventional 3D bulk heavy metals such as Pt
or W (∼ nm) [142, 143]. Therefore, 2D material het-
erostructures can outperform 3D systems, even though
the conversion efficiencies of, e. g., Pt (7%) [144] or W
(20%) [143] are sizable.
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FIG. 11. Calculated twist-angle dependence of the Rashba
phase angle φ. The data are summarized in Table I.

The reason for the UREE in graphene/semiconductor-

TMDC heterostructures [89, 109] is the Rashba phase
angle φ of the proximitized Dirac bands. When φ = 0,
no radial in-plane spin-orbit field components arise. In
other words, the in-plane spins are always perpendicu-
lar to momentum, see for example Fig. 4(f), and conse-
quently the generated spin density polarization will also
be perpendicular to the applied current direction. How-
ever, when φ ̸= 0, also radial spin-orbit field components
arise, see for example Fig. S11, meaning that a current-
induced spin density can have a polarization component
parallel to the current. Consequently, the UREE will be
maximized when φ = 90◦. In Fig. 11, we summarize the
twist-angle dependence of the Rashba phase angle for our
investigated graphene/TMDC structures. For our exem-
plary case of MoSe2, we therefore expect that UREE will
be maximized for a twist angle of ϑ ≈ 23◦, where the
Rashba phase angle has a maximum of φ ≈ 30◦.

In Fig. 12, we schematically sketch the different con-
version processes in an experimental setup. A charge
current along x direction generates a spin current along
y with spins polarized along z due to SHE. Similarly,
a non-equilibrium spin density δs is generated, which is
in-plane polarized, due to combined REE and UREE.
In order to get the conversion efficiencies, we have per-
formed real-space quantum transport calculations [145–
147], employing the honeycomb tight-binding version [14]
of the Hamiltonian H, Eq. (1). The conversion efficien-



15

FIG. 12. Sketch of the charge-to-spin conversion processes in an experimental setup. Left: A charge current, Jx, along the x
direction results in a spin current flowing along y direction with spins polarized along z due to SHE at the graphene/TMDC
region. Right: The charge current shifts the Fermi contour, i.e., the proximitized Dirac bands, and generates a non-equilibrium
spin density δs at the graphene/TMDC interface. The spin density has components perpendicular (REE) and parallel (UREE)
to the charge current, due to the Rashba phase angle φ ̸= 0.

cies ΘSHE, αREE, and αUREE, are evaluated as

ΘSHE = (2/ℏ) Jz
y /Jx (7)

αREE = (2evF /ℏ) δsy/Jx (8)

αUREE = (2evF /ℏ) δsx/Jx (9)

where Jx is the charge current along the direction of
the applied bias voltage Vb and δsx (δsy) is the current-
induced nonequilibrium spin density along the x (y) axis.
Analogously, Jz

y = (e/2){sz, vy} is the Hermitian oper-
ator [146, 148] of spin current along the y-axis which
carries spins oriented alo)ng the z-axis. The local spin
and charge currents [146, 148], as well as nonequilibrium
spin density [14, 147], were calculated using the nonequi-
librium Green’s function formalism (NEGF) [149] ap-
plied to Landauer geometry [145, 148] where the central
region of finite length is an armchair nanoribbon that
is attached to two semi-infinite leads terminating into
macroscopic source (S) and drain (D) reservoirs at in-
finity. The difference of their electrohemical potentials
defines the bias voltage, µS − µD = eVb. Such clean
(i.e., without any impurities) system is then periodically
repeated in the transverse direction, which requires care-
fully checking of convergence in ky points sampling [150].
Note that this procedure effectively models an infinite
plane, while guarantying a continuous energy spectrum
of the system Hamiltonian which is essential [151] for
properly introducing dissipation effects when calculating
nonequilibrium expectation values in quantum statistical
mechanics. The NEGF formalism provides the nonequi-

librium density matrix for steady-state transport, ˆρ(ky),
from which the expectation value of the relevant oper-

ator Ô is obtained via O(ky) = ⟨Ô⟩ = Tr [ ˆρ(ky)Ô] at a
single value of ky, while its total is an integral over the

first Brillouin zone (BZ), O = W
2π

∫
dky O(ky), where W

is the width of the nanoribbon.

In Fig. 13, we show the calculated SHE, REE, and
UREE efficiencies, ΘSHE, αREE, and αUREE, as func-
tion of the twist angle and Fermi level for the different
graphene/TMDC heterostructures, employing the model
Hamiltonian parameters from Table I. We find that
graphene/WSe2 has in general both the largest range
and highest values of spin conversion efficiencies, due to
the highest values and variations of proximity SOC upon
twisting. In addition, the large tunability of the Rashba
phase angle is responsible for a pronounced UREE for
WSe2 and changes sign at a twist angle of around 20◦.
In all cases, the UREE follows the REE according to
αUREE = αREE tan(φ), i. e., a modulation by the Rashba
phase angle.

Fig. 14 shows the REE and UREE efficiencies for a
set of twist angles, as a function of the Fermi energy, for
graphene/WSe2. The overall behaviour of these curves
can simply be understood via the band structure of the
corresponding twisted heterostructure. Below the band
gap, no states contribute to transport, but as the Fermi
energy increases, different cases need to be considered.
In the first case, there is no Mexican hat in the band
structure and only Rashba-type SOC present, see for
example Fig. 4(c) for a twist angle of 30◦. Once the
Fermi energy crosses the first spin-split subband, which
is characterized by spin-momentum locking, a plateau in
REE emerges [110]. The plateau is maintained within
the Rashba pseudo-gap, followed by an algebraic decay,
once the second subband is reached, which contributes
with opposite spin-momentum locking. In the second
case, when there is additionally a valley-Zeeman SOC
present, as is the case for example in Fig. 4(a) for a twist
angle of 0◦, the REE and UREE efficiencies spike be-
fore reaching the plateau. In the third case, a Mexican
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FIG. 13. NEGF-computed conversion efficiencies, ΘSHE, αREE and αUREE, as function of the twist angle and Fermi level for
the different graphene/TMDC heterostructures.

hat develops, see for example Fig. 4(b), due to proximity
SOC that is larger than the pseudospin-asymmetry gap
(inverted band structure) [11]. Instead of directly reach-
ing the plateau or a spike as the Fermi energy increases,
the REE and UREE efficiencies now ramp up slowly but
still reach a plateau once the Mexican hat is overcome.
The analysis from this point is identical to before.

IX. CONCLUSIONS

In conclusion, we have performed extensive first-
principles calculations to reveal the twist-angle
and gate dependence of proximity-induced SOC in
graphene/TMDC heterostructures. By employing a
symmetry-based Hamiltonian, we have extracted orbital
and spin-orbit parameters that capture the proximitized
low energy Dirac bands. Our results show that the
magnitude and the interplay of valley-Zeeman and
Rashba SOC can be tuned via twisting, gating, encapsu-
lation, and the interlayer distance. In particular, when
twisting from 0◦ to 30◦, the induced valley-Zeeman SOC
decreases almost linearly to zero for W-based TMDCs,
while for Mo-based TMDCs it exhibits a maximum

at around 15–20◦ before going to zero. The induced
Rashba SOC stays rather constant upon twisting, and
acquires a phase angle φ ̸= 0, due to symmetry breaking,
for twist angles different from 0◦ and 30◦. Within our
investigated electric field limits of ±2 V/nm, mainly
the Rashba SOC can be tuned by about 50%. The
interlayer distance provides a giant tunability, since the
proximity-induced SOC can be increased by a factor of
2–3, when reducing the distance by only about 10%. In
TMDC-encapsulated graphene, both twist angles are
important to control the interference of the individual
proximity-induced SOCs, allowing to precisely tailor the
valley-Zeeman SOC, while the Rashba SOC becomes
suppressed.

Based on our effective Hamiltonian with fitted param-
eters, we made specific predictions for experimentally
measurable quantities such as spin lifetime anisotropy
and charge-to-spin conversion efficiencies. The spin life-
time anisotropy, as well as the charge-to-spin conversion
efficiencies are highly tunable by our investigated control
knobs and serve as guidance for experimental measure-
ments. Our results highlight the important impact of
the twist angle, gating, interlayer distance, and encapsu-
lation when employing van der Waals heterostructures in
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experiments.
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Torres, Alöıs Arrighi, Frédéric Bonell, Marius V.
Costache, and Sergio O. Valenzuela, “Strongly
anisotropic spin relaxation in graphene-transition metal
dichalcogenide heterostructures at room temperature,”
Nat. Phys. 14, 303 (2018).

[93] S. R. Bahn and K. W. Jacobsen, “An object-oriented
scripting interface to a legacy electronic structure code,”
Comput. Sci. Eng. 4, 56 (2002).

[94] Predrag Lazic, “Cellmatch: Combining two unit cells
into a common supercell with minimal strain,” Com-
puter Physics Communications 197, 324 – 334 (2015).

[95] Daniel S Koda, Friedhelm Bechstedt, Marcelo Mar-
ques, and Lara K Teles, “Coincidence lattices of 2d
crystals: heterostructure predictions and applications,”
The Journal of Physical Chemistry C 120, 10895–10908
(2016).

[96] Y. Baskin and L. Meyer, “Lattice constants of graphite
at low temperatures,” Phys. Rev. 100, 544 (1955).

[97] N. Wakabayashi, H. G. Smith, and R. M. Nicklow,
“Lattice dynamics of hexagonal MoS2 studied by neu-
tron scattering,” Phys. Rev. B 12, 659 (1975).

[98] W. J. Schutte, J. L. De Boer, and F. Jellinek, “Crystal
structures of tungsten disulfide and diselenide,” Journal
of Solid State Chemistry 70, 207 (1987).

[99] P. B. James and M. T. Lavik, “The crystal structure of
MoSe2,” Acta Crystallographica 16, 1183 (1963).

http://dx.doi.org/ https://doi.org/10.1038/s41586-020-2473-8
http://dx.doi.org/ https://doi.org/10.1038/s41586-020-2473-8
http://dx.doi.org/ https://doi.org/10.1038/s41586-020-2459-6
http://dx.doi.org/ https://doi.org/10.1038/s41586-020-2459-6
http://dx.doi.org/ https://doi.org/10.1038/s41586-019-1695-0
http://dx.doi.org/ https://doi.org/10.1038/s41586-019-1695-0
http://dx.doi.org/10.1126/science.aaw3780
http://dx.doi.org/https://doi.org/10.1038/s41586-021-03409-2
http://dx.doi.org/10.1126/science.aay5533
http://dx.doi.org/10.1126/science.aay5533
http://dx.doi.org/ https://doi.org/10.1007/s40820-020-00464-8
http://dx.doi.org/10.1103/PhysRevLett.124.166601
http://dx.doi.org/10.1103/PhysRevLett.124.166601
http://dx.doi.org/ 10.1103/PhysRevLett.124.187601
http://dx.doi.org/ https://doi.org/10.1038/s41567-019-0606-5
http://dx.doi.org/ https://doi.org/10.1038/s41567-020-01041-x
http://dx.doi.org/ https://doi.org/10.1038/s41567-020-0906-9
http://dx.doi.org/ https://doi.org/10.1038/s41567-020-0906-9
http://dx.doi.org/ 10.1103/PhysRevLett.123.096802
http://dx.doi.org/ 10.1103/PhysRevLett.123.096802
http://dx.doi.org/ 10.1021/acs.nanolett.2c03008
http://dx.doi.org/ 10.1021/acs.nanolett.2c03008
http://dx.doi.org/ 10.1021/acs.nanolett.2c04524
http://dx.doi.org/10.1103/PhysRevB.107.035112
http://dx.doi.org/10.1103/PhysRevB.107.035112
http://dx.doi.org/10.1088/2053-1583/ac3378
http://dx.doi.org/10.1103/PhysRevB.100.085412
http://dx.doi.org/10.1103/PhysRevB.100.085412
http://dx.doi.org/ 10.1103/PhysRevB.99.075438
http://dx.doi.org/ 10.1103/PhysRevB.99.075438
http://dx.doi.org/10.1103/PhysRevB.106.165420
http://dx.doi.org/10.1103/PhysRevB.106.165420
http://dx.doi.org/10.1063/5.0077669
http://dx.doi.org/10.1063/5.0077669
http://dx.doi.org/10.1038/s41567-017-0019-2
http://dx.doi.org/10.1109/5992.998641
http://dx.doi.org/https://doi.org/10.1016/j.cpc.2015.08.038
http://dx.doi.org/https://doi.org/10.1016/j.cpc.2015.08.038
http://dx.doi.org/10.1021/acs.jpcc.6b01496
http://dx.doi.org/10.1021/acs.jpcc.6b01496
http://dx.doi.org/10.1103/PhysRev.100.544
http://dx.doi.org/10.1103/PhysRevB.12.659
http://dx.doi.org/ 10.1016/0022-4596(87)90057-0
http://dx.doi.org/ 10.1016/0022-4596(87)90057-0
http://dx.doi.org/10.1107/S0365110X6300311X


21

[100] Klaus Zollner, Paulo E. Faria Junior, and Jaroslav
Fabian, “Strain-tunable orbital, spin-orbit, and opti-
cal properties of monolayer transition-metal dichalco-
genides,” Phys. Rev. B 100, 195126 (2019).

[101] P. Hohenberg and W. Kohn, “Inhomogeneous electron
gas,” Phys. Rev. 136, B864 (1964).

[102] Paolo Giannozzi, Stefano Baroni, Nicola Bonini, Mat-
teo Calandra, Roberto Car, Carlo Cavazzoni, Davide
Ceresoli, Guido L Chiarotti, Matteo Cococcioni, Ismaila
Dabo, Andrea Dal Corso, Stefano de Gironcoli, Ste-
fano Fabris, Guido Fratesi, Ralph Gebauer, Uwe Ger-
stmann, Christos Gougoussis, Anton Kokalj, Michele
Lazzeri, Layla Martin-Samos, Nicola Marzari, Francesco
Mauri, Riccardo Mazzarello, Stefano Paolini, Alfredo
Pasquarello, Lorenzo Paulatto, Carlo Sbraccia, Sandro
Scandolo, Gabriele Sclauzero, Ari P Seitsonen, Alexan-
der Smogunov, Paolo Umari, and Renata M Wentzcov-
itch, “Quantum espresso: a modular and open-source
software project for quantum simulations of materi-
als,” Journal of Physics: Condensed Matter 21, 395502
(2009).

[103] G. Kresse and D. Joubert, “From ultrasoft pseudopoten-
tials to the projector augmented-wave method,” Phys.
Rev. B 59, 1758 (1999).

[104] John P. Perdew, Kieron Burke, and Matthias Ernz-
erhof, “Generalized gradient approximation made sim-
ple,” Phys. Rev. Lett. 77, 3865 (1996).

[105] Stefan Grimme, “Semiempirical gga-type density func-
tional constructed with a long-range dispersion correc-
tion,” J. Comput. Chem. 27, 1787 (2006).

[106] Stefan Grimme, Jens Antony, Stephan Ehrlich, and
Helge Krieg, “A consistent and accurate ab initio
parametrization of density functional dispersion correc-
tion (DFT-D) for the 94 elements H-Pu,” J. Chem.
Phys. 132, 154104 (2010).

[107] Vincenzo Barone, Maurizio Casarin, Daniel Forrer,
Michele Pavone, Mauro Sambi, and Andrea Vittadini,
“Role and effective treatment of dispersive forces in
materials: Polyethylene and graphite crystals as test
cases,” J. Comput. Chem. 30, 934 (2009).

[108] Lennart Bengtsson, “Dipole correction for surface su-
percell calculations,” Phys. Rev. B 59, 12301 (1999).

[109] Alessandro Veneri, David T. S. Perkins, Csaba G.
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W. Savero, J.-P. Attané, C. Deranlot, M. Jamet, J.-
M. George, L. Vila, and H. Jaffrès, “Spin pumping and

inverse spin hall effect in platinum: The essential role
of spin-memory loss at metallic interfaces,” Phys. Rev.
Lett. 112, 106602 (2014).

[143] Junyeon Kim, Peng Sheng, Saburo Takahashi, Seiji Mi-
tani, and Masamitsu Hayashi, “Spin hall magnetoresis-
tance in metallic bilayers,” Phys. Rev. Lett. 116, 097201
(2016).

[144] Yi Wang, Praveen Deorani, Xuepeng Qiu, Jae Hyun
Kwon, and Hyunsoo Yang, “Determination of intrin-
sic spin hall angle in pt,” Applied Physics Letters 105,
152412 (2014).

[145] Branislav K. Nikolić, Kapildeb Dolui, Marko D.
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Supplemental Material:
Twist- and gate-tunable proximity spin-orbit coupling, spin relaxation anisotropy, and

charge-to-spin conversion in heterostructures of graphene and transition-metal
dichalcogenides
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I. STRUCTURAL INFORMATION

TABLE S1. Structural information for the graphene/MoSe2 (graphene/WSe2) heterostructures. We list the twist angle ϑ
between the layers, the supercell tuples (n,m) for graphene and (n′,m′) for the TMDC, the number of atoms (NoA) in the
heterostructure supercell, the number nk for the k-point sampling, the lattice constant and biaxial strain ε applied to graphene,
the relaxed interlayer distance dint, the rippling of the graphene layer ∆zgrp, and the calculated dipole of the MoSe2 (WSe2)
structures. The lattice constants of MoSe2 and WSe2 are set to 3.28 Å for all twist angles.

ϑ [°] (n,m) (n′,m′) NoA nk agrp [Å] εgrp [%] dint [Å] ∆zgrp [pm] dipole [debye]
0.0000 (0,4) (0,3) 59 12 2.4600 0 3.4093 (3.3637) 1.9344 (2.2799) 0.6054 (0.6156)
2.6802 (3,5) (2,4) 182 6 2.4794 0.7886 3.4160 (3.3675) 1.6146 (1.9063) 1.8490 (1.8757)
3.8858 (7,2) (5,2) 251 3 2.5032 1.7561 3.4217 (3.3767) 1.3909 (1.6122) 2.4952 (2.5084)
5.2087 (1,3) (1,2) 47 18 2.4069 -2.1585 3.3655 (3.3193) 3.1936 (3.5297) 0.5047 (0.5178)
8.2132 (3,5) (3,3) 179 6 2.4348 -1.0244 3.4047 (3.3592) 1.6455 (1.9513) 1.8815 (1.9058)
10.8934 (2,2) (1,2) 45 18 2.5051 1.8333 3.4263 (3.3834) 0.7984 (0.9861) 0.4424 (0.4431)
12.2163 (7,2) (6,0) 242 3 2.4043 -2.2642 3.3975 (3.3525) 1.5354 (1.7975) 2.6027 (2.6547)
14.3916 (3,4) (1,4) 137 9 2.4711 0.4512 3.4216 (3.3765) 0.6920 (0.7975) 1.3786 (1.3942)
19.1066 (1,2) (0,2) 26 24 2.4794 0.7886 3.4247 (3.3796) 0.3646 (0.4384) 0.2563 (0.2580)
22.4987 (7,2) (3,4) 245 3 2.4375 -0.9146 3.4138 (3.3696) 0.2918 (0.3495) 2.5023 (2.5403)
25.2850 (8,0) (4,3) 239 3 2.4939 1.3781 3.4296 (3.3859) 0.1669 (0.1939) 2.3054 (2.3125)
30.0000 (0,7) (3,3) 179 6 2.4348 -1.0244 3.4131 (3.3692) 0.1807 (0.2110) 1.8204 (1.8420)

TABLE S2. Structural information for the graphene/MoS2 (graphene/WS2) heterostructures. We list the same information
as in Table S1. The lattice constants of MoS2 and WS2 are set to 3.15 Å for all twist angles.

ϑ [°] (n,m) (n′,m′) NoA nk agrp [Å] εgrp [%] dint [Å] ∆zgrp [pm] dipole [debye]
1.0445 (4,5) (3,4) 233 3 2.4535 -0.2642 3.3643 (3.3090) 2.9759 (3.4459) 2.1582 (2.2144)
3.0045 (1,4) (1,3) 81 12 2.4784 0.7480 3.3731 (3.3221) 2.0840 (2.5539) 0.7318 (0.7403)
6.5868 (3,2) (2,2) 74 12 2.5034 1.7642 3.3834 (3.3335) 1.3572 (1.8227) 0.6554 (0.6553)
8.9483 (0,7) (1,5) 191 6 2.5055 1.8496 3.3886 (3.3363) 1.0278 (1.4295) 1.6749 (1.6864)
12.8385 (3,5) (1,5) 191 6 2.5055 1.8496 3.3786 (3.3399) 0.6556 (0.8256) 1.6562 (1.6724)
14.4649 (5,1) (3,2) 119 9 2.4661 0.2480 3.3797 (3.3273) 0.6684 (0.8666) 1.0518 (1.0751)
16.1021 (0,8) (2,5) 245 3 2.4590 -0.0407 3.3783 (3.3139) 0.5488 (0.7226) 2.1838 (2.2716)
22.4109 (6,1) (3,3) 167 6 2.4961 1.4675 3.3926 (3.3418) 0.1818 (0.2535) 1.4186 (1.4332)
24.7913 (1,4) (-1,4) 81 12 2.4784 0.7480 3.3878 (3.3363) 0.1463 (0.1921) 0.6899 (0.6999)
27.6385 (1,5) (3,2) 119 9 2.4661 0.2480 3.3846 (3.3312) 0.1214 (0.1594) 1.0246 (1.0390)
29.2649 (5,3) (1,5) 191 6 2.5055 1.8496 3.3950 (3.3462) 0.0977 (0.1141) 1.6023 (1.6116)
30.0000 (3,3) (4,0) 102 9 2.4249 -1.4268 3.3712 (3.3166) 0.1456 (0.1781) 0.9085 (0.9323)
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II. BAND OFFSETS

TABLE S3. The calculated position of the Dirac point with respect to the TMDC valence (conduction) band edge, ED −EV

(ED − EC), as defined in Fig. 2(a), for the different TMDCs and twist angles.

MoSe2 (WSe2) MoS2 (WS2)
ϑ [°] ED − EV [eV] ED − EC [eV] ϑ [°] ED − EV [eV] ED − EC [eV]

0.0000 0.6093 (0.2347) -0.8525 (-1.1695) 1.0445 1.3417 (0.9496) -0.3741 (-0.7488)
2.6802 0.5462 (0.1720) -0.9143 (-1.2321) 3.0045 1.2622 (0.8765) -0.4527 (-0.8221)
3.8858 0.4769 (0.1078) -0.9843 (-1.2977) 6.5868 1.1862 (0.8035) -0.5295 (-0.8946)
5.2087 0.7824 (0.4056) -0.6792 (-0.9983) 8.9483 1.1848 (0.7980) -0.5313 (-0.9012)
8.2132 0.6883 (0.3146) -0.7731 (-1.0910) 12.8385 1.1896 (0.8038) -0.5275 (-0.8960)
10.8934 0.4722 (0.1066) -0.9888 (-1.2986) 14.4649 1.3133 (0.9249) -0.4039 (-0.7755)
12.2163 0.7897 (0.4157) -0.6721 (-0.9897) 16.1021 1.3364 (0.9435) -0.3812 (-0.7565)
14.3916 0.5789 (0.2077) -0.8831 (-1.1978) 22.4109 1.2297 (0.8437) -0.4885 (-0.8581)
19.1066 0.5593 (0.1933) -0.9030 (-1.2124) 24.7913 1.2863 (0.9009) -0.4325 (-0.8005)
22.4987 0.6930 (0.3215) -0.7693 (-1.0838) 27.6385 1.3239 (0.9394) -0.3950 (-0.7623)
25.2850 0.5207 (0.1521) -0.9410 (-1.2542) 29.2649 1.2033 (0.8179) -0.5160 (-0.8843)
30.0000 0.7042 (0.3337) -0.7585 (-1.0721) 30.0000 1.4588 (1.0690) -0.2603 (-0.6327)
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III. VERTICAL AND LATERAL SHIFTS — MODEL PARAMETERS

TABLE S4. Fit parameters of the model Hamiltonian for the graphene/MoSe2 heterostructures for different angles and for
lateral (x and y) and vertical (z) shifts. The vertical shifts tune the interlayer distance by ∆d, while lateral shifts x and y are
in fractions of the supercell lattice vectors. We summarize the twist angle ϑ, the Fermi velocity vF, the staggered potential
gap ∆, the sublattice-resolved intrinsic SOC parameters λA

I and λB
I , the Rashba SOC parameter λR, the phase angle φ, the

position of the Dirac point, ED, with respect to the Fermi level, and the position of the Dirac point with respect to the TMDC
valence (conduction) band edge, ED − EV (ED − EC).

ϑ [°] ∆d [Å] (x, y) ∆ [meV] vF/105[m
s

] λA
I [meV] λB

I [meV] λR [meV] φ [°] ED [meV] ED − EV [eV] ED − EC [eV]
0.0000 -0.3 (0,0) 1.0981 8.2040 0.7005 -0.6360 0.8270 0 3.4731 0.4266 -1.0305
0.0000 -0.2 (0,0) 0.8369 8.2408 0.4916 -0.4538 0.5580 0 3.6012 0.4910 -0.9680
0.0000 -0.1 (0,0) 0.6465 8.2837 0.3417 -0.3204 0.3741 0 3.2502 0.5523 -0.9079
0.0000 0.0 (0,0) 0.4917 8.2538 0.2422 -0.2258 0.2550 0 1.8970 0.6093 -0.8525
0.0000 0.1 (0,0) 0.3752 8.3331 0.1626 -0.1575 0.1686 0 2.4345 0.6609 -0.8010
0.0000 0.0 (2/9,1/9) 0.4785 8.2867 0.2331 -0.2229 0.2573 0 2.7824 0.6105 -0.8501
19.1066 -0.3 (0,0) 0.1284 7.4888 1.5851 -1.6211 1.1323 1.8564 -1.9789 0.3949 -1.0635
19.1066 -0.2 (0,0) 0.1311 7.6695 1.1478 -1.1788 0.7685 2.7330 -1.8678 0.4493 -1.0103
19.1066 -0.1 (0,0) 0.1178 7.8162 0.8305 -0.8568 0.5228 3.6440 -2.1709 0.5041 -0.9576
19.1066 0.0 (0,0) 0.1163 8.0073 0.5627 -0.5827 0.3326 4.7154 1.0680 0.5593 -0.9030
19.1066 0.1 (0,0) 0.0764 7.9685 0.4584 -0.4770 0.2574 5.5749 -2.3473 0.6028 -0.8599
19.1066 0.0 (1/3,1/6) 0.2492 8.0107 0.5833 -0.6091 0.3462 4.5436 -0.1139 0.5579 -0.9040
30.0000 -0.3 (0,0) 0.0211 8.0369 0.0151 -0.0221 0.8275 0 0.0603 0.5305 -0.9291
30.0000 -0.2 (0,0) 0.0122 8.1618 0.0056 -0.0118 0.5486 0 -0.9400 0.5889 -0.8721
30.0000 -0.1 (0,0) 0.0073 8.2489 0.0018 -0.0071 0.3626 0 -1.0264 0.6473 -0.8147
30.0000 0.0 (0,0) 0.0040 8.3109 0.0013 -0.0055 0.2398 0 0.2514 0.7042 -0.7585
30.0000 0.1 (0,0) 0.0022 8.3555 0.0003 -0.0039 0.1599 0 -1.1215 0.7531 -0.7097
30.0000 0.0 (1/6,1/3) 0.0075 8.3019 0.0035 -0.0007 0.2415 0 -0.9588 0.7027 -0.7597

TABLE S5. Same as Table S4, but for the graphene/WSe2 heterostructures.

ϑ [°] ∆d [Å] (x, y) ∆ [meV] vF/105[m
s

] λA
I [meV] λB

I [meV] λR [meV] φ [°] ED [meV] ED − EV [eV] ED − EC [eV]
0.0000 -0.3 (0,0) 1.2839 8.0790 3.3416 -3.1994 1.6442 0 -2.5342 0.0527 -1.3469
0.0000 -0.2 (0,0) 1.0131 8.1581 2.3642 -2.2891 1.1265 0 0.2431 0.1178 -1.2830
0.0000 -0.1 (0,0) 0.7761 8.2121 1.6673 -1.6297 0.7727 0 -0.0829 0.1785 -1.2244
0.0000 0.0 (0,0) 0.5878 8.2500 1.1722 -1.1572 0.5303 0 1.2931 0.2347 -1.1695
0.0000 0.1 (0,0) 0.4500 8.2751 0.8221 -0.8187 0.3649 0 1.3808 0.2865 -1.1183
0.0000 0.0 (2/9,1/9) 0.5513 8.2679 1.1353 -1.1228 0.5137 0 -3.9876 0.2333 -1.1714
19.1066 -0.3 (0,0) 0.1246 7.5802 1.1452 -1.2077 2.4147 -21.5031 6.3883 0.0445 -1.3574
19.1066 -0.2 (0,0) 0.1200 7.7572 0.9431 -1.0057 1.6603 -20.8729 6.1628 0.0946 -1.3077
19.1066 -0.1 (0,0) 0.1062 7.8433 0.7521 -0.8105 1.1507 -20.2483 5.4331 0.1444 -1.2603
19.1066 0.0 (0,0) 0.0876 7.8914 0.5899 -0.6420 0.8215 -19.6123 2.2178 0.1933 -1.2124
19.1066 0.1 (0,0) 0.0862 8.0208 0.4426 -0.4884 0.5490 -19.0509 -1.2116 0.2336 -1.2230
19.1066 0.0 (1/3,1/6) 0.2048 7.9445 0.5886 -0.6707 0.8108 -19.7728 1.5774 0.1926 -1.2136
30.0000 -0.3 (0,0) -0.0717 8.0332 -0.0736 0.0667 1.7661 0 -1.3089 0.1679 -1.2344
30.0000 -0.2 (0,0) -0.0383 8.1632 -0.0438 0.0390 1.2503 0 -0.2899 0.2244 -1.1808
30.0000 -0.1 (0,0) -0.0218 8.2547 -0.0270 0.0228 0.8812 0 -0.5389 0.2788 -1.1263
30.0000 0.0 (0,0) -0.0093 8.3185 -0.0165 0.0128 0.6197 0 1.1670 0.3337 -1.0721
30.0000 0.1 (0,0) -0.0129 8.3640 -0.0105 0.0072 0.4359 0 0.0510 0.3838 -1.0225
30.0000 0.0 (1/6,1/3) -0.0292 8.2714 -0.0138 0.0100 0.6200 0 -0.6410 0.3344 -1.0714
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IV. TRANSVERSE ELECTRIC FIELD — MODEL PARAMETERS

TABLE S6. Fit parameters of the model Hamiltonian for the graphene/MoSe2 heterostructures for different angles and applied
transverse electric field. We summarize the twist angle ϑ, the electric field amplitude, the Fermi velocity vF, the staggered
potential gap ∆, the sublattice-resolved intrinsic SOC parameters λA

I and λB
I , the Rashba SOC parameter λR, the phase angle

φ, the position of the Dirac point, ED, with respect to the Fermi level, and the position of the Dirac point with respect to the
TMDC valence (conduction) band edge, ED − EV (ED − EC).

ϑ [°] field [V/nm] ∆ [meV] vF/105[m
s

] λA
I [meV] λB

I [meV] λR [meV] φ [°] ED [meV] ED − EV [eV] ED − EC [eV]
0.0000 -2.0569 0.4685 8.2770 0.2477 -0.2108 0.3176 0 0.9127 0.3508 -1.1106
0.0000 -1.0284 0.4795 8.2908 0.2443 -0.2216 0.2817 0 -0.4579 0.4764 -0.9844
0.0000 0.0000 0.4917 8.2538 0.2422 -0.2258 0.2550 0 1.8970 0.6093 -0.8525
0.0000 1.0284 0.5112 8.2791 0.2277 -0.2254 0.2284 0 0.3842 0.7353 -0.7255
0.0000 2.0569 0.4964 8.2182 0.2250 -0.2323 0.2172 0 0.3507 0.8642 -0.5961
19.1066 -2.0569 0.0672 7.9629 0.5954 -0.6141 0.4519 -0.7047 1.0541 0.3021 -1.1598
19.1066 -1.0284 0.0847 7.9939 0.5910 -0.6129 0.3979 1.7762 0.2231 0.4297 -1.0319
19.1066 0.0000 0.1163 8.0073 0.5627 -0.5827 0.3326 4.7156 1.0680 0.5593 -0.9030
19.1066 1.0284 0.1288 8.0129 0.5939 -0.6207 0.3059 8.2678 0.3496 0.6877 -0.7734
19.1066 2.0569 0.1518 8.0119 0.6185 -0.6498 0.2710 12.7598 -0.1338 0.8191 -0.6418
30.0000 -2.0569 0.0071 8.3101 0.0028 -0.0064 0.3138 0 -0.1813 0.4461 -1.0168
30.0000 -1.0284 0.0053 8.3128 0.0019 -0.0059 0.2735 0 -0.5350 0.5739 -0.8889
30.0000 0.0000 0.0040 8.3109 0.0013 -0.0055 0.2398 0 0.2514 0.7042 -0.7585
30.0000 1.0284 0.0031 8.3035 0.0006 -0.0054 0.2115 0 0.1435 0.8327 -0.6294
30.0000 2.0569 0.0025 8.2883 0.0002 -0.0053 0.1866 0 -0.0753 0.9610 -0.5015

TABLE S7. Same as Table S6, but for the graphene/WSe2 heterostructures.

ϑ [°] field [V/nm] ∆ [meV] vF/105[m
s

] λA
I [meV] λB

I [meV] λR [meV] φ [°] ED [meV] ED − EV [eV] ED − EC [eV]
0.0000 -2.0569 0.5411 8.2389 1.1792 -1.0921 0.6196 0 -1.9323 -0.0030 -1.4081
0.0000 -1.0284 0.5667 8.2450 1.1796 -1.1320 0.5738 0 0.7371 0.1072 -1.2972
0.0000 0.0000 0.5878 8.2500 1.1722 -1.1572 0.5303 0 1.2931 0.2347 -1.1695
0.0000 1.0284 0.6073 8.2522 1.1645 -1.1731 0.4950 0 -0.9790 0.3602 -1.0438
0.0000 2.0569 0.6256 8.2546 1.1594 -1.1876 0.4652 0 -0.7261 0.4845 -0.9195
19.1066 -2.0569 0.0684 7.9566 0.3418 -0.3821 0.9212 -23.0902 -7.5931 -0.0235 -1.4293
19.1066 -1.0284 0.0641 7.9215 0.4441 -0.4889 0.8698 -21.8125 -2.6814 0.0585 -1.3471
19.1066 0.0000 0.0876 7.8914 0.5899 -0.6420 0.8215 -19.6123 2.2178 0.1933 -1.2124
19.1066 1.0284 0.1142 7.9118 0.7122 -0.7730 0.7474 -17.2804 -0.2436 0.3158 -1.0893
19.1066 2.0569 0.1410 7.9332 0.8416 -0.9138 0.7124 -14.5302 -3.3181 0.4357 -0.9696
30.0000 -2.0569 -0.0134 8.3040 -0.0184 0.0161 0.6820 0 0.8303 0.0824 -1.3232
30.0000 -1.0284 -0.0124 8.3136 -0.0170 0.0142 0.6434 0 -0.0597 0.2058 -1.2001
30.0000 0.0000 -0.0093 8.3185 -0.0165 0.0128 0.6197 0 1.1670 0.3337 -1.0721
30.0000 1.0284 -0.0184 8.3206 -0.0169 0.0121 0.6120 0 0.8132 0.4594 -0.9466
30.0000 2.0569 -0.0190 8.3196 -0.0181 0.0119 0.6194 0 -0.0919 0.5862 -0.8190
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V. ORIGIN OF PROXIMITY SOC

Let us first investigate the MoSe2 monolayer band structures, as an example, to find out about the magnitude
of proximity SOC. According to Ref. [1], the interlayer coupling can be effectively described by tunneling matrix
elements from graphene orbitals to TMDC bands at particular k points for different twist angles. From this analysis,
one finds that the proximity-induced valley-Zeeman SOC can be estimated as:

λVZ ∝
∑

b

|tb|2∆s,b

(∆Eb)
2 − (∆s,b)2

, (S1)

where ∆Eb is the energy difference between TMDC band b and the Dirac point without taking into account SOC, tb
is the band tunneling strength, and ∆s,b = E↑,b − E↓,b is the spin splitting of the TMDC band. It is then obvious
that λVZ depends on the particular k point within the TMDC Brillouin zone, to which the Dirac states couple to,
since all these quantities depend on k. It is straightforward, to calculate the valley-Zeeman SOC from the monolayer
TMDC band dispersions, having knowledge about tb.

In Fig. S1, we summarize our MoSe2 band structure analysis. Depending on the twist angle, the Dirac states fold
back to different locations within the TMDC Brillouin zone, as indicated by the dashed lines and black dots for three
selected twist angles in Fig. S1(a). We also show the atomic character of the TMDC bands, see Fig. S1(b), which
certainly influences the band tunneling strength. Remember that graphene resides above the TMDC and the interlayer
coupling depends also on the distance between C atoms and metal/chalcogen atoms. In Fig. S1(c), we show the spin
splittings, ∆s,b, of three individual TMDC bands, that are probably most relevant for the coupling to graphene, since
they are energetically closest to the Dirac states. Note that the spin splitting can be positive or negative, depending
on the energetic order of the spin-split TMDC bands. In Fig. S1(d), we show the valley-Zeeman SOC as calculated
from perturbation theory, assuming tb = 1. The maximum valley-Zeeman SOC is expected at the TMDC K point,
where the first valence band has a giant spin splitting. However, due to lattice mismatch a coupling of the graphene
Dirac states directly to the TMDC valleys is not possible. As we can see for 30◦, the Dirac states are folded at a
k-point along the Γ-M high-symmetry line of the TMDC. Along this line, the TMDC bands are not spin split. Even
though graphene couples to the TMDC across the vdW gap, the absent splitting within the TMDC bands prohibits a
finite proximity-induced valley-Zeeman SOC in graphene, according to Eq. (S1). This is in agreement with the actual
DFT calculation results for 30◦. However, comparing 0◦ and 19.1◦ in Fig. S1(d), the predicted valley-Zeeman SOC
for 0◦ would be much larger compared to 19.1◦. This contradicts the DFT results in Fig. 5 of the main paper, where
valley-Zeeman SOC shows a maximum at 19.1◦ for MoSe2. Moreover, for 19.1◦ the predicted valley-Zeeman SOC is
negative. Comparing to the extracted parameters in Table I, the DFT predicts a positive valley-Zeeman SOC, but a
negative one for other twist angles. Therefore it is likely that a sign change could appear upon twisting.

Certainly, the band tunneling strength is not the same for all bands and k points. Therefore, here we also employ the
following approach for calculating tb from the monolayer TMDC dispersion. From the band structure in Fig. S1(b),
we have knowledge about the atomic projections. In addition, from the relaxed graphene/MoSe2 heteostructures, we
know about the interlayer distances of C atoms to the individual atomic layers within the TMDC. Hence, we assume:

tb =
∑

α

100 · Pα · e−dα , (S2)

where Pα ∈ [0; 1] is the projection onto atom α ={Mo, Se1, Se2}, for given band b and k-point, which is weighted
by an exponential function taking into account the interlayer distances dα between graphene and the TMDC atomic
layers. In Ref. [1], tb is actually calculated from knowledge about orbital amplitudes of the TMDC band structure,
assuming constant interlayer hopping amplitudes, and taking only the closest chalcogen layer into account. We believe
that our approach is somewhat similar and also well justified. Our calculated band tunneling strengths along the
high-symmetry paths are summarized in Fig. S1(e). Since the first Se layer in MoSe2 is closest to the graphene, the
tunneling strength is large for k-points where the Se content is large within a particular band. In Fig. S1(f), we
show the valley-Zeeman SOC as calculated from perturbation theory and taking into account our calculated band
tunneling strengths. Indeed, this leads to an enhanced valley-Zeeman SOC for 19.1◦, compared to the case of tb = 1.
Still, the predicted valley-Zeeman SOC for 0◦ would be larger compared to 19.1◦ in contradiction to our DFT results.
From our monolayer TMDC band structure analysis, one can certainly extract some information about the coupling
mechanism, but the predicted valley-Zeeman SOC does not reflect the actual DFT results, most likely due to the
limited set of bands that we include in our analysis. We performed the same analysis also for the WSe2 monolayer,
see Fig. S2, but the results are similar to MoSe2. However, one can already find pronounced differences. For example,
comparing the predicted valley-Zeeman SOC for 0◦ [Fig. S1(f) and Fig. S2(f)], WSe2 should give a much larger value
compared to MoSe2, which is consistent with the DFT results. For 19.1◦ the predicted valley-Zeeman SOC for WSe2
is smaller than for 0◦, which is also consistent with our DFT data.
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FIG. S1. (a) DFT-calculated band structure of monolayer MoSe2 with lattice constant of a = 3.28 Å along the high-symmetry
path Γ-K-M-Γ. The color of the lines corresponds to the sz spin expectation value. The vertical dashed lines indicate the
k-points, to which the Dirac states couple to, according to the backfolding. The black dots are the locations of the Dirac point
for the different twist angles from Table 3. (b) Same as left, but the color code indicates the contribution of the Mo and Se
atomic character of the bands. (c) The spin splittings ∆s,b of the bands VB1, VB2, and CB1, extracted from the band structure
in (a). (d) The valley-Zeeman SOC calculated from perturbation theory, evaluating Eq. (S1). We set the Dirac point energy
to the 0◦ twist angle case to calculate ∆Eb, while ∆s,b is shown in (c). We set tb = 1 for simplicity. The

∑
b is evaluated for

the individual bands and for all 3 bands we consider. (e) The calculated band tunneling strength tb, evaluating Eq. (S2). (f)
Same as (d), but taking into account the results for tb from (e).

Another way to find out about the origin of proximity-induced SOC is by carefully analyzing the heterostructure
dispersion. In Fig. S3, we do that for the case of graphene/MoSe2 and a twist angle of 0◦. Especially from the projected
band structure, see Fig. S3(b), we find that the graphene Dirac states couple to TMDC high-energy conduction and
valence bands, as indicated by the anticrossings (greenish and yellowish colors). The lowest TMDC conduction bands
do not seem to contribute to the interlayer coupling. Looking at the full density of states (DOS), see Fig. S3(e),
anticrossings appear whenever the Se content is large, for example at about 1.5 (−1.8) eV above (below) the Fermi
level. This is reasonable, since the interlayer coupling happens predominantly at the interface between C and Se
atoms. Analyzing the low energy Dirac bands, we find that only 0.3% of Mo and 0.4% of Se content contribute there,
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FIG. S2. Same as Fig. S1, but for monolayer WSe2.

leading to a sizable spin splitting of the bands, see Fig. S3(c,d). From the integrated local DOS in real space, see
Fig. S4, we find that the whole TMDC is contributing to the Dirac bands, but predominantly interfacial Se p and Mo
dxz + dyz orbitals.

In the case of 19.1◦, the situation is similar and Dirac states also couple predominantly at higher energies, see
Fig. S6. However, the low energy bands have a much larger Mo and Se content compared to the 0◦ case. In fact, the
contribution has doubled, which explains the much larger proximity SOC for 19.1◦. The origin may be the coupling
to the second highest TMDC valence band (VB2 in Fig. S1), which is almost exclusively formed by Se atoms and has
a giant spin splitting at the 19.1◦ backfolding k-point. From the integrated local DOS in real space, see Fig. S5, we
find that also Mo dz2 orbitals contribute, which is a significant difference compared to the 0◦ case.

In Fig. S7, we analyze the 30◦ geometry. The formerly dominant sz spin polarization of nearly the whole band
structure has vanished, which originates from the arising mirror plane symmetry. Still, the Dirac states couple
predominantly to high energy TMDC states. The low energy Dirac bands have nearly the same Mo and Se contribution
as for the 19.1◦ case, but due to symmetry considerations a valley-Zeeman SOC is prohibited.
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FIG. S3. (a) DFT-calculated band structure of the graphene/MoSe2 heterostructure along the high-symmetry path M-K-Γ
for a twist angle of 0◦. The color of the lines corresponds to the sz spin expectation value. The inset shows the backfolding
of the graphene Dirac point at K. The black (green) hexagon represents the graphene (TMDC) Brillouin zone. (b) Same as
(a), but the color code shows the contribution of the individual monolayers to the bands, i. e., the bands appear dark-reddish
(dark-blueish) when only TMDC (graphene) orbitals contribute. (c) Zoom to the calculated low-energy Dirac bands near the
Fermi level around the K point, corresponding to the band structure in (a). We also show the corresponding atom resolved
density of states (DOS). The contribution of Mo and Se is multiplied by a factor of 100 for better visualization. (d) Top view
of the heterostructure geometry (black = C, blue = Mo, yellow = Se), where the dashed lines indicate the unit cell. The Table
lists the atomic decomposition (in percent) of the DOS shown in (c) at the given energies. (e) The atom resolved DOS.
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FIG. S4. DFT-calculated integrated local density of states of the 0◦ graphene/MoSe2 heterostructure. The figure is a side
view of the cut along the longer diagonal of the unit cell in Fig. S3(d). We take into account only states in an energy window
of ±5 meV around the Dirac point from the low energy dispersion in Fig. S3(c). The colors correspond to isovalues between
1 × 10−4 (blue) and 5 × 10−7 (red) e/Å3.

FIG. S5. DFT-calculated integrated local density of states of the 19.1◦ graphene/MoSe2 heterostructure. The figure is a side
view of the cut along the longer diagonal of the unit cell in Fig. S6(d). We take into account only states in an energy window
of ±5 meV around the Dirac point from the low energy dispersion in Fig. S6(c). The colors correspond to isovalues between
1 × 10−4 (blue) and 5 × 10−7 (red) e/Å3.
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FIG. S6. Same as Fig. S3, but for the graphene/MoSe2 heterostructure with a twist angle of 19.1◦.
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FIG. S7. Same as Fig. S3, but for the graphene/MoSe2 heterostructure with a twist angle of 30◦.
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FIG. S8. Same as Fig. S3, but for the graphene/WSe2 heterostructure with a twist angle of 0◦.
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FIG. S9. Same as Fig. S3, but for the graphene/WSe2 heterostructure with a twist angle of 19.1◦.



14

FIG. S10. Same as Fig. S3, but for the graphene/WSe2 heterostructure with a twist angle of 30◦.
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FIG. S11. The calculated spin-orbit fields of the low energy Dirac bands of the graphene/WSe2 heterostructure with a twist
angle of 19.1◦, corresponding to the dispersion in Fig. S9(c). The color represents the sz spin expectation value, while the
arrows represent sx and sy spin expectation values. The dashed white lines represent the edges of the hexagonal Brillouin zone,
with the K point at the center. Especially looking at in-plane spins (arrows) along the ky = 0 line emphasizes the presence of
the Rashba phase angle φ ≈ −19.6◦. This is in contrast to the conventional Rashba field in Fig. 4(f) of the main text, where
in-plane spins are always perpendicular to the momentum.
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VI. ATOMIC CONTRIBUTIONS TO PROXIMITY SOC

From Fig. S4, we can see that the C pz orbitals predominantly couple to the Se p orbitals, which mediate the coupling
to Mo dxz + dyz orbitals. However, it is not clear which atomic type gives the dominant contribution for proximity
SOC. Therefore, we investigated the impact of artificially turning off SOC on different atoms. In Table S8, Table S9,
Table S10, and Table S11 we summarize the fit results for different twist angles and different TMDCs. Turning off
SOC on the TMDC, the spin splitting of the TMDC bands vanishes, along with the proximity SOC and we recover
the pristine graphene dispersion. Since the TMDC band splittings are reduced, it is not surprising that also the band
offsets, of the Dirac states with respect to the TMDC band edges, are modified. For all considered TMDCs and twist
angles the valley-Zeeman and Rashba SOC contributions of different atoms nearly perfectly add up, i. e., summing
the second and third row fit parameters of a certain structure gives the fit results of the first row. Surprisingly, for the
MoSe2 and WSe2 0

◦ structures we find that the transition-metal and the chalcogen atoms provide the opposite sign for
the valley-Zeeman SOC. Moreover, the contribution of the transition-metal atoms dominate over the chalcogen ones.
Similarly for the 5.2◦ structures. For the 19.1◦ structures, both TMDC atoms provide the same sign for valley-Zeeman
SOC, but now the chalcogen atom contribution dominates over the transition-metal one. Furthermore, the Rashba
phase angles are opposite in sign. For the 30◦ structures, again the transition-metal gives the dominant contribution.
In the case of MoS2 and WS2, the transition-metal contribution is always dominant compared to the chalcogen atom
contribution.

TABLE S8. Fit parameters of the model Hamiltonian for selected graphene/MoSe2 heterostructures, where we artificially
turned off SOC on Mo and Se.

ϑ [°] SOC on ∆ [meV] vF/105[m
s

] λA
I [meV] λB

I [meV] λR [meV] φ [°] ED [meV] ED − EV [eV] ED − EC [eV]
0.0000 C, Mo, Se 0.4917 8.2538 0.2422 -0.2258 0.2550 0 1.8970 0.6093 -0.8525
0.0000 C, Mo 0.4893 8.2959 0.3267 -0.3415 0.0984 0 2.8116 0.6388 -0.8553
0.0000 C, Se 0.4591 8.2952 -0.0992 0.1207 0.1402 0 -0.3492 0.6739 -0.8495
5.2087 C, Mo, Se -1.1162 8.5072 -0.2920 0.2166 0.2448 -1.3751 1.9400 0.7824 -0.6792
5.2087 C, Mo -1.1374 8.5179 -0.3639 0.2915 0.1446 5.8614 0.1243 0.8106 -0.6833
5.2087 C, Se -1.1348 8.5431 0.0804 -0.0907 0.0946 -11.8488 0.7973 0.8470 -0.6769
19.1066 C, Mo, Se 0.1163 8.0073 0.5627 -0.5827 0.3326 4.7154 1.0680 0.5593 -0.9030
19.1066 C, Mo 0.1201 8.0673 0.1673 -0.1979 0.1431 -31.7591 4.4229 0.5974 -0.8970
19.1066 C, Se 0.1214 8.0611 0.3887 -0.3920 0.2484 29.2495 -0.4601 0.6250 -0.9001
30.0000 C, Mo, Se 0.0040 8.3109 0.0013 -0.0055 0.2398 0 0.2514 0.7042 -0.7585
30.0000 C, Mo 0.0013 8.3106 0.0001 -0.0027 0.1388 0 -0.1966 0.7358 -0.7589
30.0000 C, Se 0.0007 8.3103 0.0004 -0.0029 0.0996 0 0.1012 0.7712 -0.7537

TABLE S9. Fit parameters of the model Hamiltonian for selected graphene/WSe2 heterostructures, where we artificially
turned off SOC on W and Se.

ϑ [°] SOC on ∆ [meV] vF/105[m
s

] λA
I [meV] λB

I [meV] λR [meV] φ [°] ED [meV] ED − EV [eV] ED − EC [eV]
0.0000 C, W, Se 0.5878 8.2500 1.1722 -1.1572 0.5303 0 1.2931 0.2347 -1.1695
0.0000 C, W 0.5914 8.2516 1.2134 -1.2472 0.3036 0 0.6422 0.2691 -1.1564
0.0000 C, Se 0.5905 8.2629 -0.0623 0.1038 0.2002 0 -0.1399 0.4424 -1.2144
5.2087 C, W, Se -1.3110 8.3911 -1.1868 1.0555 0.5979 -1.3293 1.6139 0.4056 -0.8727
5.2087 C, W -1.3320 8.4949 -1.2198 1.0480 0.4016 3.5317 5.1394 0.4435 -0.9820
5.2087 C, Se -1.3388 8.5136 0.0633 -0.0491 0.1678 -12.3129 0.5941 0.6116 -1.0455
19.1066 C, W, Se 0.0876 7.8914 0.5899 -0.6420 0.8215 -19.6123 2.2178 0.1933 -1.2124
19.1066 C, W 0.0649 7.9964 0.1751 -0.2249 0.5557 -29.1750 5.1493 0.2297 -1.1965
19.1066 C, Se 0.0696 7.8868 0.4175 -0.4232 0.3247 10.7430 0.0455 0.3956 -1.2639
30.0000 C, W, Se 0.0093 8.3185 -0.0165 0.0128 0.6197 0 1.1670 0.3337 -1.0721
30.0000 C, W -0.0053 8.3184 -0.0113 0.0093 0.4719 0 -1.4438 0.3676 -1.0588
30.0000 C, Se -0.0029 8.3187 -0.0042 0.0017 0.1496 0 0.7681 0.5414 -1.1176
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TABLE S10. Fit parameters of the model Hamiltonian for selected graphene/MoS2 heterostructures, where we artificially
turned off SOC on Mo and S.

ϑ [°] SOC on ∆ [meV] vF/105[m
s

] λA
I [meV] λB

I [meV] λR [meV] φ [°] ED [meV] ED − EV [eV] ED − EC [eV]
6.5868 C, Mo, S 0.4420 8.0126 0.2445 -0.2647 0.0854 21.1421 0.2847 1.1862 -0.5295
6.5868 C, Mo 0.4545 8.0373 0.2537 -0.2762 0.0589 33.2029 -2.5371 1.1924 -0.5286
6.5868 C, S 0.4523 8.0361 -0.0148 0.0153 0.0292 -3.6326 -2.1989 1.2503 -0.5314
14.4649 C, Mo, S 0.3765 8.1134 0.3053 -0.3565 0.1245 15.0688 1.1699 1.3133 -0.4039
14.4649 C, Mo 0.3857 8.1285 0.2882 -0.3415 0.0987 18.2143 -2.0370 1.3184 -0.4044
14.4649 C, S 0.3874 8.1770 0.0132 -0.0132 0.0300 6.2109 -1.5367 1.3781 -0.4054
27.6385 C, Mo, S -0.0002 8.1439 -0.0410 0.0373 0.0843 32.8878 0.1104 1.3239 -0.3950
27.6385 C, Mo -0.0024 8.1707 -0.0220 0.0183 0.0643 28.9229 -2.6086 1.3305 -0.3939
27.6385 C, S -0.0102 8.2031 -0.0191 0.0161 0.0214 44.2954 -1.0879 1.3910 -0.3943

TABLE S11. Fit parameters of the model Hamiltonian for selected graphene/WS2 heterostructures, where we artificially
turned off SOC on W and S.

ϑ [°] SOC on ∆ [meV] vF/105[m
s

] λA
I [meV] λB

I [meV] λR [meV] φ [°] ED [meV] ED − EV [eV] ED − EC [eV]
6.5868 C, W, S 0.6485 8.0248 0.7849 -0.8638 0.2337 16.8965 1.6459 0.8035 -0.8946
6.5868 C, W 0.6327 8.0261 0.8424 -0.8997 0.2079 21.8240 3.3981 0.8141 -0.8903
6.5868 C, S 0.6720 8.0120 -0.0070 0.0094 0.0428 -5.3514 -1.3558 1.0089 -0.9381
14.4649 C, W, S 0.4676 8.1248 0.5635 -0.6826 0.3678 -1.3235 0.3962 0.9249 -0.7755
14.4649 C, W 0.4759 8.1623 0.5315 -0.6532 0.3231 -0.2807 1.0492 0.9342 -0.7716
14.4649 C, S 0.4707 8.1924 0.0209 -0.0223 0.0438 -1.0199 0.8989 1.1341 -0.8146
27.6385 C, W, S 0.0025 8.2009 0.0059 -0.0113 0.2410 18.7310 1.8203 0.9394 -0.7623
27.6385 C, W 0.0030 8.1990 0.0284 -0.0334 0.2179 18.3814 -2.0955 0.9440 -0.7631
27.6385 C, S 0.0027 8.2060 -0.0211 0.0184 0.0253 24.5200 0.3798 1.1455 -0.8050
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VII. CORRECTING STRAIN-RELATED BAND OFFSET WITH ELECTRIC FIELD?

One particular effect that we would like to address is the fact that the band offset, i. e., the position of the Dirac point
within the TMDC band gap, is a linear function of the strain applied to graphene (see main text Fig. 3). In Ref [2]
this strain-related band offset was compensated by a transverse electric field in order to extract the zero-strain-like
results. How justified is this assumption?

For that purpose, we have considered the 0◦ twist angle structures of graphene on MoSe2 and WSe2, where no
strain was necessary to build the supercells. These structures serve as reference results. In addition, we consider
another 0◦ structure, where graphene is strained by about −4.8%. We compensate the strain-related band offset by
a transverse electric field and compare to the reference results. The electric field that is necessary for the correction
can be extracted from Table S6 and Table S7 and is about −2.6 V/nm.

If we relax the structures, we find that the large amount of strain leads to a sizable rippling of the graphene layer.
In fact, the rippling has increased by a factor of 10. This is also the reason, why in Ref. [2] atomic relaxation was
neglected and all the twisted structures were kept at fixed z. To rule out that the rippling introduces unwanted side
effects, we have additionally considered the strained structure and flattened graphene (no rippling) to the average
interlayer distance from the fully relaxed strained structure, which is different than the distance obtained for the
unstrained sample. Also there, we apply the electric field correction and compare to the reference results. Finally, we
consider the flattened graphene samples and change the interlayer distance to the reference cases, as proximity effects
are rather sensitive to the interlayer distance.

The comparison of the mentioned cases is summarized in Table S12, Table S13, and Table S14. Comparing the
band offsets, the compressive strain pushes the Dirac point closer to the TMDC conduction band edge. The correction
of the band offset with the estimated transverse electric field of −2.6 V/nm works quite well in the case of the fully
relaxed structure. Once we flatten the graphene layer, a larger electric field of about −3.3 V/nm is necessary to
correct the strain-related band offset.

Most important is how the proximitized Dirac states are affected by the strain and the electric field correction. We
find that the large amount of rippling leads to a strongly enhanced sublattice asymmetry, reflected in the parameter
∆, and the opening of a pronounced band gap. Also, the intrinsic SOC parameters are strongly modified by the strain
and the rippling. In particular the changes in the WSe2 case are giant and in the range of 0.5–0.8 meV. In contrast,
the Rashba SOC, which in the first place originates from the structural z-mirror asymmetry and the distortion of
graphene pz orbitals is less affected by the strain. The electric field correction does not help to adjust the results to
the reference values.

Once we flatten graphene the sublattice asymmetry nearly vanishes and the Fermi velocity strongly renormalizes,
while the intrinsic and Rashba SOC parameters almost match the reference values. With the electric field correction,
the Rashba SOC parameters can be brought even closer to the reference value, while intrinsic SOC parameters become
less reliable. In particular, the intrinsic SOC values deviate by about 20% (50%) in the case of WSe2 (MoSe2) with
flattened graphene and the field correction applied. However, the deviation is also due to the different interlayer
distance for the strained and the reference structure.

As a final check, for the flattened case, we tune the interlayer distance to match the one of the reference structure,
since the distance strongly affects proximity effects. Without electric field correction, intrinsic SOCs again match the
reference values, while the Rashba SOC is underestimated. Similar to before, the field correction makes the intrinsic
(Rashba) SOC parameters less (more) reliable.

Based on these findings, we believe that the electric field correction can be partially justified when comparing twisted
structures with fixed interlayer distance and no structural relaxation which could lead to rippling, in particular at
large strain. However, the presented results for the 0◦ structure may not be representative for the other twist angles.

TABLE S12. Structural information for the graphene/MoSe2 (graphene/WSe2) heterostructures. We list the same information
as in Table S1. Red indicates the structure with more strain. Blue is the same as red, but with flat graphene. Green is the
same as blue, but the interlayer distance is the same as for the reference structure.

ϑ [°] (n,m) (n′,m′) NoA nk agrp [Å] εgrp [%] dint [Å] ∆zgrp [pm] dipole [debye]
0.0000 (0,4) (0,3) 59 12 2.4600 0 3.4093 (3.3637) 1.9344 (2.2799) 0.6054 (0.6156)
0.0000 (0,7) (0,5) 173 9 2.3429 -4.7602 3.3749 (3.3380) 19.3940 (19.2038) 2.0499 (2.0348)
0.0000 (0,7) (0,5) 173 9 2.3429 -4.7602 3.3749 (3.3380) 0 (0) 1.9444 (1.9558)
0.0000 (0,7) (0,5) 173 9 2.3429 -4.7602 3.4093 (3.3637) 0 (0) 1.8183 (1.8901)



19

TABLE S13. The calculated position of the Dirac point with respect to the TMDC valence (conduction) band edge, ED −EV

(ED − EC), as defined in Fig. 2(a), for the graphene/MoSe2 (graphene/WSe2) heterostructures. Red indicates the structure
with more strain. Blue is the same as red, but with flat graphene. Green is the same as blue, but the interlayer distance is the
same as for the reference structure.

ϑ [°] E-field [V/nm] ED − EV [eV] ED − EC [eV]
0.0000 0 0.6093 (0.2347) -0.8525 (-1.1695)
0.0000 0 0.9154 (0.5518) -0.5453 (-0.8502)
0.0000 -2.57 0.6131 (0.2518) -0.8481 (-1.1507)
0.0000 0 1.0203 (0.6495) -0.4407 (-0.7531)
0.0000 -3.34 0.6056 (0.2421) -0.8562 (-1.1613)
0.0000 0 1.0434 (0.6653) -0.4179 (-0.7375)
0.0000 -3.34 0.6170 (0.2482) -0.8448 (-1.1642)

TABLE S14. Fit parameters of the model Hamiltonian. We list the same information as in Table I of the main text. Red
indicates the structure with more strain. Blue is the same as red, but with flat graphene. Green is the same as blue, but the
interlayer distance is the same as for the reference structure.

TMDC ϑ [°] E-field [V/nm] ∆ [meV] vF/105[m
s

] λA
I [meV] λB

I [meV] λR [meV] φ [°] ED [meV]
MoSe2 0.0000 0 0.4917 8.2538 0.2422 -0.2258 0.2550 0 1.8970

0.0000 0 2.4419 8.2928 -0.0353 -0.3081 0.1935 0 0.2123
0.0000 -2.57 1.9394 8.3885 0.0853 -0.1075 0.2088 0 -0.0015
0.0000 0 0.0422 8.8716 0.2767 -0.2634 0.1886 0 -0.3451
0.0000 -3.34 0.0487 8.9140 0.3347 -0.3226 0.2500 0 -0.2220
0.0000 0 0.0340 8.8793 0.2424 -0.2307 0.1647 0 0.4358
0.0000 -3.34 0.0399 8.9070 0.2952 -0.2847 0.2178 0 -0.0377

WSe2 0.0000 0 0.5878 8.2500 1.1722 -1.1572 0.5303 0 1.2931
0.0000 0 2.3658 8.2914 0.3939 -0.5162 0.4881 0 -0.0413
0.0000 -2.57 1.6894 8.2439 0.5374 -0.0649 0.4747 0 -0.5142
0.0000 0 0.0269 8.8884 1.3056 -1.2737 0.4416 0 0.8119
0.0000 -3.34 0.0326 8.9017 1.4471 -1.4127 0.5486 0 1.0723
0.0000 0 0.0239 8.8938 1.1849 -1.1559 0.3986 0 -0.7790
0.0000 -3.34 0.0295 8.9121 1.3126 -1.2815 0.4950 0 -1.1163
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VIII. REAL SPACE TRANSPORT CALCULATIONS

The Rashba-Edelstein effect (REE) and the unconventional REE (UREE) were evaluated using a real-space equiv-
alent of our effective low energy Hamiltonian H within the Keldysh formalism on a graphene nanoribbon. The
expectation values were evaluated using the Recursive Green’s function method (RGFM).

S1. Hamiltonian

The Hamiltonian used for the transport calculations is the real space tight-binding equivalent of H = H0 +H∆ +
HI +HR [3]. The first term

H0 = −t
∑

⟨ij⟩

∑

σ

c†iσcjσ

is the graphene Hamiltonian, where ⟨· · · ⟩ denotes a sum over nearest neighbors and ciσ (c†iσ) annihilates (creates) an
electron in site i with spin σ. The next term

H∆ = ∆
∑

i∈A

∑

σ

c†iσciσ −∆
∑

i∈B

∑

σ

c†iσciσ

arises from sublattice asymmetry. The first (second) sum is over all sites belonging to sublattice A (B). The third
term

HI =
∑

S=A,B

iλS
I

3
√
3

∑

⟨⟨i,j⟩⟩

∑

σ

vij [sz]σσ c
†
iσcjσ

contains the sublattice-resolved intrinsic spin-orbit coupling, where ⟨⟨· · · ⟩⟩ denotes a sum over next-nearest neighbors
and the first sum separates the contributions coming from either sublattice. vij = +1 (−1) if the electron takes a left
(right) turn along the lattice to get to the next-nearest neighbor. The last term

HR =
2iλR

3
e−iφ

2 sz
∑

⟨ij⟩

∑

σσ′

c†iσcjσ (sσσ′ × dij) · ẑ ei
φ
2 sz

is the Rashba SOC with an additional phase angle φ. dij is the unit vector connecting site i to j and sσσ′ =(
[sx]σσ′ , [sy]σσ′ , [sz]σσ′

)
is a vector of Pauli matrices’ components.

S2. Geometry and symmetries

The honeycomb lattice is set to an armchair nanoribbon geometry, consisting of a central sample (of width W unit
cells and length L unit cells) attached to two infinite leads made of the same material with the same width. In these
simulations, we used W = 6 and L = 10. Twisted boundary conditions [4] are imposed to allow for k-point sampling
along the transverse nanoribbon direction. An additional phase 0 < ϕ < 2π is added to the hoppings crossing the
periodic boundary conditions and the final expectation value is averaged over ϕ. Then, even if W is small, the
infinite-width limit can be retrieved with enough sampling over ϕ. Effectively, what this does is to repeat the system
along the transverse direction. Therefore, despite W being a rather small number, sampling over k yields the same
result as an infinitely wide lattice.

Transport properties are calculated with respect to operators A defined in a single slice of the lattice. The nanorib-
bon can be organized by slices across its cross-section. The Hamiltonian of the nanoribbon is described in terms of
the intra-slice Hamiltonian h and the inter-slice Hamiltonian u connecting slice n to n + 1. Both u and h can be
slice-dependent, as long as they are uniform in the leads. A sketch of the sample geometry is shown in Fig. S12.

Due to translation invariance along the longitudinal direction, the operator A only needs to be nonzero in one of the
slices. This simplifies the process of calculating ⟨A⟩ with the RGFM, since only the matrix elements of the Green’s
functions that connect this slice to the beginning of the leads need to be computed.

Symmetries also play a big role in our numerical results. In the absence of a twist (φ = 0) in our graphene/TMDC
structures, the ⟨sx⟩φ=0 response is forbidden and ⟨sy⟩φ=0 comes entirely from the Fermi surface. When a twist is

introduced, these two mix: ⟨sy⟩φ = ⟨sy⟩φ=0 cos (φ) and ⟨sx⟩φ = ⟨sy⟩φ=0 sin (φ), but they are still determined by

⟨sy⟩φ=0 and thus rely only on a Fermi surface calculation, considerably simplifying the numerical procedure. The ⟨sz⟩
response is also forbidden.
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operator

sample leadlead
FIG. S12. Lattice geometry used in the transport simulations: graphene nanoribbon sample (blue) with twisted boundary
conditions, attached to two identical leads. The operator A is defined in the green slice.

S3. Recursive Green’s function method

The REE and UREE were calculated using the Recursive Green’s function method (RGFM) which is now briefly
explained. At t < 0, the leads are disconnected from the sample and lie in thermal equilibrium with the corresponding
reservoirs at energy −∆V/2 and ∆V/2. At t = 0 the leads are connected to the sample, a transient regime ensues
and eventually an equilibrium state is reached, at which point the desired observables are measured.

The expectation value ⟨A⟩ of observable A is obtained via the Keldysh formalism [5, 6] as the sum of two terms,
stemming from the Fermi surface and the Fermi sea:

⟨A⟩surf =
i

2ℏ

∫ ∞

−∞
dε (fR − fL) Tr

[
AGr

(
ΓL − ΓR

)
Ga

]

⟨A⟩sea = −1

2

∫ ∞

−∞
dε (fR + fL) Tr [A (Gr −Ga)]

where fR(L) (ε) is the Fermi function of the right (left) lead defined through the Fermi-Dirac distributionfR/L (ε) =

f (ε±∆V/2), Gr(a) (ε) = (ε−H ± i0+)
−1

is the retarded (advanced) Green’s function of the whole system and

ΓL(R) (ε) = i
[
Σr

L(R) (ε)− Σr†
L(R) (ε)

]
is the level-width function defined through the left (right) self-energies of the

leads. Finally, the self-energies are defined in terms of the surface Green’s function at the left and right leads,
respectively: Σr

L (ε) = ugrL (ε)u† and Σr
R (ε) = u†grR (ε)u.

Within this formalism, the full expectation value is

⟨A⟩ = ⟨A⟩surf + ⟨A⟩sea − ⟨A⟩0

where ⟨A⟩0 is the expectation value of ⟨A⟩ at zero bias. The Fermi sea term can be calculated efficiently via Ozaki
countour integration [7], while the Fermi surface term simplifies at low bias because fR − fL is only nonzero in a very
narrow window of energy.

The recursive Green’s function method for nanoribbons requires matrix inversions for each slice , so its numerical
complexity scales as W 3L, making it very difficult to deal with wide nanoribbons [8–10]. In the case of simple lattices,
this complexity can be reduced to W 2L at the expense of a high memory cost [11, 12], and more recently a real-
space method based on the Kernel Polynomial Method (KPM) [13] has been proposed for general systems to reduce
this complexity to WL at the expense of introducing stochasticity to the formalism and finite leads [14, 15]. An
alternative way of effectively increasing W is through the use of twisted boundary conditions, or k-point sampling,
in the transverse direction. When the system has translation invariance along the transverse direction, as is the case



22

here, this approach exactly reproduces the infinite-width case.
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