
Qualitative Requirements Elicitation of Student Requirements for
Tool-supported Teaching of UML Diagrams

Florian Huber
Kempten University of Applied Sciences

Kempten, Germany
florian.huber@hs-kempten.de

Tobias Eigler
Kempten University of Applied Sciences

Kempten, Germany
tobias.eigler@hs-kempten.de

Georg Hagel
Kempten University of Applied Sciences

Kempten, Germany
georg.hagel@hs-kempten.de

Christian Wolff
University of Regensburg
Regensburg, Germany

Christian.Wolff@informatik.uni-regensburg.de

ABSTRACT
Learning how to model software systems or components is con-
sidered to be a central part in the education of future computer
scientists. Students are usually introduced to this topic in software
engineering courses. As de facto standard, most of them teach the
Unified Modeling Language (UML) for creating diagrams in spe-
cific contexts. This task regularly presents students with significant
challenges, as has been widely discussed in literature. Therefore,
it is not surprising that there are some tool-supported approaches
provided by educators. These are often based on observations. How-
ever, comprehensive research on actual students’ requirements and
aspirations for such tools has so been missing. The contribution of
this paper will be a qualitative requirements elicitation for students
requirements for tools to support teaching of UML diagrams in
software engineering education.

CCS CONCEPTS
• Social and professional topics → Software engineering edu-
cation; • Software and its engineering → Software creation and
management.

KEYWORDS
Software Engineering Education, UML, Tool-Supported Teaching,
Students Requirements

ACM Reference Format:
Florian Huber, Tobias Eigler, Georg Hagel, and Christian Wolff. 2023. Quali-
tative Requirements Elicitation of Student Requirements for Tool-supported
Teaching of UML Diagrams. In ECSEE 2023: European Conference on Software
Engineering Education (ECSEE 2023), June 19–21, 2023, Seeon/Bavaria, Ger-
many. ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/3593663.
3593673

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ECSEE 2023, June 19–21, 2023, Seeon/Bavaria, Germany
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9956-2/23/06. . . $15.00
https://doi.org/10.1145/3593663.3593673

1 INTRODUCTION
In software engineering education, students usually receive textual
exercises from educators. These contain requirements descriptions
from which UML diagrams are to be generated. Because there are
multiple diagram types with individual and in some cases similar
looking elements, remembering the diagrams’ components can be
a first hurdle for students. However, applying those to meet the
textual requirements is an even more challenging task for them
[13, 16, 17]. Correcting students’ diagrams and giving individual
feedback is often impossible for educators, because students’ solu-
tions can differ from each other and from a sample solution, but can
still be correct solutions[6, 7]. Furthermore, due to time restrictions,
it is not possible to look at and discuss all of them. Therefore, sev-
eral tools have been developed to support students in their learning
process and provide individual feedback [7]. Many of them are
unavailable for a wide range of students at different universities
or require the use of specific additional tools (like certain model-
ing tools) [7]. The heterogeneity of these applications illustrates
that different aspects have to be considered to support the learning
process of students. So far, a comprehensive research on students
requirements for such tools has come up short. Since too little in-
formation can be extracted from existing literature, this publication
reports on qualitative interviews in which challenges and related
requirements from a student’s perspective have been collected.
Therefore, a guideline-based expert interview was developed and
conducted.

The remainder of this paper is structured as follows: section 2
gives an overview about related work. The methodological proce-
dure and a description of the interview participants is outlined in
section 3. Finally, the results of the expert interviews are presented
in section 4 and discussed in section 5.

2 RELATEDWORK
As already outlined in the previous section, there are several ap-
proaches for a tool-supported teaching of UML diagrams in software
engineering education. Authors in [7] conducted a systematic liter-
ature review to provide an overview about those tools. Their func-
tionalities were developed regarding the observations of educators
and do not provide a qualitative survey about students’ require-
ments. The authors of [7] also present the five most mentioned
challenges in the listed publications that students face according

189

https://doi.org/10.1145/3593663.3593673
https://doi.org/10.1145/3593663.3593673
https://doi.org/10.1145/3593663.3593673
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3593663.3593673&domain=pdf&date_stamp=2023-06-19

ECSEE 2023, June 19–21, 2023, Seeon/Bavaria, Germany Huber et. al

to educators when learning modelling with UML. However, the
research does not specifically address the challenges and resulting
requirements for such tools.

From an educator’s perspective, the challenges of software en-
gineering education have been widely discussed in the literature
(e.g. [3, 5, 14]). The most common mistakes by students in software
modeling have been extracted by [4]. The authors in [15] have a sim-
ilar goal. They conducted a systematic literature review about the
problems students face during the modeling process. Furthermore,
a catalog of challenges and a study are presented. The literature
review shows that the students’ difficulties with applying the UML
are documented in literature. The study reveals problems students
encounter solely during the modeling process.

In [8] a multi-case study on the perception of UML modeling
tools in education is presented. It points out that there is a need for
tailoring those tools to educational purposes. Since this publication
does not deal with modeling tools, it differs thematically. Students’
perception of UML diagrams is also studied by [9] and can be
distinguished for the same reasons.

To the best of our knowledge, so far, a qualitative investigation
of challenges and requirements for tool-supported teaching of UML
diagrams from a student’s perspective has come up short.

3 RESEARCH DESIGN
The development of the research design was carried out accord-
ing to the specifications of [1] and [2]. The following subsections
describe the research interest and translate it into two research
questions. Since it is not possible to answer these from existing
literature, a qualitative expert interview was conducted with rel-
evant stakeholders. Preliminary quantitative research would be
too restrictive, as not all possible requirements can be captured in
advance on, for example, a questionnaire. Afterwards, the group of
interviewed experts is described. Finally, it is highlighted how the
interview results are extracted and evaluated.

3.1 Research Interest and Questions
The overall goal of this paper is to elicit students’ challenges and
related requirements for a software-based tool for teaching UML
diagrams. Not solely the modeling process is considered, but the
entire process of such exercise sessions.

In a first step, students should describe the challenges they face
in creating UML diagrams based on textual requirements. As de-
scribed in section 2 these already have been studied in literature.
While these are presented as results in section 4, the main focus
is on the related requirements that must be met if students are
to be supported by software. Before these were discussed in the
interviews it was important to talk about challenges and think of
software based solutions for them.

Subsequently, students are to be asked about possible tool-
supported assistance during the requirements extraction, the mod-
eling phase and the feedback process afterwards. This represents
the central points in the interview. The aim is to find specific func-
tionalities that should be met, in order to support them in their
learning process.

Based on the described research interest, two questions arise:

• RQ1: What challenges do students face when learning mod-
eling with UML in software engineering education?

• RQ2:What software-based assistance can help students over-
come their challenges in creating UML diagrams from textual
exercises?

3.2 Qualitative Guideline-based Expert
Interviews

Since knowledge is to be obtained from a specific group of people
(students), an expert interview was chosen as methodical approach.
Following the definition of [2], students are therefore considered
as "experts" because they see themselves confronted with the de-
scribed problem context and therefore have important insights
which only they can reveal - they are experts for their specific
software engineering learning situation.

Based on the descriptions of [1] and [2], an interview guideline
was developed to answer the outlined research questions.

To provide an easy entry point into the interview, as suggested
by [1], the experts are asked three personal questions:

• How old are you?
• Which semester are you in?
• Which course of study do you belong to?

These questions do not add any content value to the interview.
They merely provide an overview about the study participants and
are a simple start to the interview. The research questions are then
asked in the order described. To keep the conversation flowing,
some sub-questions are written down in the guideline. These shall
serve as additional stimuli, if required.

The duration of the interview is scheduled for about 30 minutes,
but can be adapted depending on the interview situation.

3.3 Participants
The qualitative guideline-based expert interview was conducted at
the Kempten University of Applied Sciences, Germany. Students
in a bachelor’s degree program with a computer science related
course of study were considered as possible participants. It was
a basic requirement to only question students that already have
taken the software engineering course and have participated in the
exercise sessions. If this would not have been the case, the students
would not be considered as experts by the definition of [2]. The
expert interview was scheduled in the winter semester 2022 / 2023.

3.4 Evaluation and Information Extraction
As suggested by [2], a qualitative content analysis is a suitable
methodological approach to analyze the contents of such guideline-
based expert interviews. It is a strictly regulated and qualitatively
oriented evaluation method for texts, which where collected in
scientific contexts [12]. The process has several stages with differ-
ent steps that need to be executed [2, 10–12]. In order to support
and facilitate the qualitative content analysis, the web application
QCAmap has been developed by Mayring and Fenzl (please see:
https://www.qcamap.org/ui/en/home) to lead researchers through
the individual steps. It has also been used to generate the results in
section 4.

190

https://www.qcamap.org/ui/en/home

Qualitative Requirements Elicitation of Student Requirements for Tool-supported Teaching of UML Diagrams ECSEE 2023, June 19–21, 2023, Seeon/Bavaria, Germany

Table 1: Categories of challenges

Category %

Object-orientation 100
Application of UML 100
Complexity of UML syntax 80
Processing the textual exercises 80

Table 2: Challenges of object-orientation

ID Challenge %

RQ1-10 Abstractness of UML components 60
RQ1-1 Learn and apply object-oriented con-

cepts
40

RQ1-3 Abstraction of texts to UML compo-
nents

20

RQ1-11 Linking UML components with pro-
gram code

20

As presented in [12], the two research questions were taken
as deductive top categories. Within them, inductive subcategories
were developed according to the answers of the participants.

4 RESULTS
4.1 Overview of the Participant Group
Five students agreed to participate as experts. The age distribution
ranges from 25 to 31. All of them are in between the fifth and tenth
semester of a computer science related bachelor’s degree program
at the Kempten University of Applied Sciences, Germany. Either the
students were enrolled in the Business Information Systems or the
Computer Science course of study. Due to the distributions in age,
semester and course of study, it can be assumed that the participants
have gained different experiences and can deliver diverse answers
to the individual research questions.

4.2 RQ1: What challenges do students face
when learning modelling with UML in
software engineering education?

For the top category "Challenges", four categories were formed by
an inductive process (please see: [2, 10–12]). Those are presented in
table 1 and ordered by percentage. The latter refers to the number
of times the category (or in the following the individual challenge
or requirement) has been named over all interviews.

The four categories:
• Object-orientation (referred to in 100% of the interviews)
• Application of UML (referred to in 100% of the interviews)
• Complexity of UML syntax (referred to in 80% of the inter-
views)

• Processing the textual exercises (referred to in 80% of the
interviews)

were derived from the individual challenges listed in table 2 - table
5.

Table 3: Challenges of application of UML

ID Challenge %

RQ1-8 No individual and direct feedback 80
RQ1-4 Variety of modeling possibilities 60
RQ1-19 Finding a strategy / approach 60
RQ1-14 Transfer of the mental model into an

UML diagram
40

RQ1-6 Complexity of larger diagrams 20
RQ1-7 Complexity of modeling tools 20
RQ1-16 Identification of the correct design pat-

tern
20

RQ1-17 Correct application of a design pattern 20

Table 4: Challenges with the complexity of the UML syntax

ID Challenge %

RQ1-5 Variety of components to be learned 60
RQ1-9 Differentiation of the components 60

Table 5: Challenges with processing the textual exercises

ID Challenge %

RQ1-2 Extraction of requirements / compo-
nents

80

RQ1-13 Identification of relations of the dia-
gram components

60

RQ1-18 Availability of exercises 20

Table 6: Categories of requirements

Category %

Provision and processing of the textual exercise 100
Feedback and improvement 100
Modelling 40

4.3 RQ2: What software-based assistance can
help students overcome their challenges in
creating UML diagrams from textual
exercises?

Based on the second research question, the top category "Require-
ments" emerged. By clustering the individual answers of the inter-
views, the three inductive categories:

• Provision and processing of the textual exercise (referred to
in 100% of the interviews)

• Feedback and improvement (referred to in 100% of the inter-
views)

• Modelling (referred to in 40% of the interviews)
were formed. They are visible alongside the percentage in table 6.
The individual requirements that were clustered in these categories
are listed in table 7 - 9.

191

ECSEE 2023, June 19–21, 2023, Seeon/Bavaria, Germany Huber et. al

Table 7: Requirements for the provision and the processing
of textual exercises

ID Requirement %

RQ2-17 Larger amount of exercises 100
RQ2-6 Highlight important components 100
RQ2-5 Different levels of difficulty 60
RQ2-7 Help text 40
RQ2-10 Collaborative work 20
RQ2-11 Step by step guide through tasks 20
RQ2-13 Different assistance for different levels

of difficulty
20

RQ2-15 Strategy guide 20
RQ2-16 Reversing exercises 20

Table 8: Requirements for feedback and improvements

ID Requirement %

RQ2-3 Software-supported individual feed-
back

100

RQ2-2 Sample solution 60
RQ2-14 Linking further literature 20

Table 9: Requirements for modeling

ID Requirement %

RQ2-8 Linking the diagram to program code 20
RQ2-9 UML editor 20
RQ2-12 Proposal for subsequent step 20

5 DISCUSSION
5.1 RQ1: What challenges do students face

when learning modeling with UML in
software engineering education?

The four categories illustrate which areas of teaching UML diagrams
in software engineering education are particularly challenging for
the surveyed students. For teachers, this result can serve as an indi-
cator to pay special attention to the mentioned topics in teaching.

As acknowledged in literature (e.g. [7]), object-orientated con-
cepts and their application are challenging for students. Therefore,
it is not surprising that this category has been formed inductively.
One reason for this, for example, is the abstractness of the UML com-
ponents. It is difficult for the students to convert the descriptions
contained in the textual exercises into an UML structure without
making mistakes (e.g. confuse attributes as classes). Furthermore,
some interview participants stated that they struggled to under-
stand how to convert the components in their diagrams to program
code.

Students also encounter hurdles in the practical application of
the knowledge they have learned in theory. The lack of direct feed-
back on their individual diagrams is seen as particularly challenging.
Some participants named a sample solution for each exercise in that

context as a requirement. However, regarding their learning suc-
cess, the participants were telling that individual feedback would
have been a greater contribution than a sample solution. The latter
can differ from a students’ diagram. But that does not mean that
they had made a mistake in their models. Especially for novices,
the multitude of modeling options can be difficult.
Although all participants had access to a professional modeling tool
(for free with their student license) only one stated to have used it.
Besides the complexity of these tools, they preferred to draw the
diagrams by hand because they cannot use software tools during
the exam.
When modeling UML diagrams from textual exercises, careful read-
ing and understanding the text is critical. The participants indicated
that they gradually developed a strategy on how to extract all infor-
mation from the given texts and transfer it from their own mental
model into an actual UML diagram. It is this cognitive process that
the authors consider to be one of the most important and critical
parts, as it determines the students’ success. A good strategy can be
developed through guidance, combined with a variety of exercises
that challenge students, but do not overwhelm them at their current
level of knowledge.

The third category contains all challenges students face regard-
ing the UML syntax. The variety of diagram types and their individ-
ual components can be overwhelming for novices. Also, many of
the diagram components look similar but have different meanings,
which can be even more confusing.

Processing the textual exercises is the fourth category. Extracting
all information within the textual exercises and understanding the
relations of the components is regarded difficult by the participants.
One stated that the limited availability of exercises was difficult.
However, most participants didn’t name it as a challenge but named
that topic as an requirement for tool-supported teaching of UML
diagrams.

5.2 RQ2: What software-based assistance can
help students overcome their challenges in
creating UML diagrams from textual
exercises?

The previously described setting during the classes’ exercise ses-
sions can be divided into three main phases. The inductively devel-
oped categories reflect these. At first student acquire the theoretical
knowledge and extract information from the given texts. After-
wards they start modeling. Ultimately, they expect feedback to
understand if their solution is correct or contains mistakes. It is
interesting that only 40% of the participants want software-based
support during the modeling phase. According to the findings of
the interview, they prefer to generate a first diagram without any
interruption. They see subsequent individual feedback as extremely
helpful for their learning process.

Most requirements for tool-supported assistance were named
in the category for provision and processing textual exercises. A
larger amount of texts was seen as one of the most helpful require-
ments. However, according to the participants a sample solution,
or preferably individual feedback is required alongside with them.
Otherwise it is hard to determine whether a valid UML diagram
was generated from the textual descriptions. The participants stated

192

Qualitative Requirements Elicitation of Student Requirements for Tool-supported Teaching of UML Diagrams ECSEE 2023, June 19–21, 2023, Seeon/Bavaria, Germany

that such digitally provided exercises should come with different
levels of difficulty, which match their individual state of knowledge.
Highlighting important information (e.g. class names) within the
texts is another very important requirement. This and other func-
tionalities like help texts could, according to the results, be available
only for specific levels of difficulty. Because students often prepare
in groups for an upcoming exam, collaboration has also been men-
tioned as desirable.
As stated previously, a good strategy when gathering all important
information from the textual exercises is vital. The participants
could imagine a step-by-step guide or a strategy guide that walks
them through the exercise.
One participant even imagined a reversal of the exercise process.
According to this, students would see an UML diagram and be re-
quired to write the requirements text. Usually in the professional
world, customers, stakeholders, etc. approach computer scientists
with their ideas. Therefore, the tasks are deliberately set in this way
in academia. However, it could contribute to the learning success of
the students to turn this process around for an individual exercise.

The second cluster concentrates on the tool-supported assis-
tance during the feedback process. Individual and direct feedback
by a software was named in all of the interviews. The participants
regarded it as the most vital point that could improve their learn-
ing success. Especially in the beginning it is difficult for them to
compare their own diagrams to a sample solution and determine,
whether they made a mistake or not. Feedback which is individu-
ally tailored in combination with specific suggestions for further
literature could boost the students’ success.

Cluster three contains all the requirements that were named
to assist during the modeling process. According to the interview
answers, linking the UML components to program code could be
helpful to reduce the abstractness. A simple UML editor with re-
duced complexity was also called for. An interesting requirement is
the proposal for subsequent steps. However, during the interview
the participant told us that this might be a feature that distracts to
much and that feedback after finishing the modeling process might
be more helpful.

6 CONCLUSION AND FURTHERWORK
In this paper, we have presented results from guideline-based ex-
pert interviews in order to collect the requirements of students
on tool-supported assistance in the teaching of UML diagrams in
software engineering education. The two research questions reveal
which challenges students face when modeling UML diagrams from
textual exercise descriptions and what requirements they have for
a software that helps them overcome these. With the results, edu-
cators are given an overview of subject areas which students seem
to struggle with and can adapt their teaching efforts accordingly.
Furthermore, there is a great number of software tools which aim
to support educators in software engineering education [7]. The
results presented above can serve as basis for further developments
in this area.

All results and statements refer to the conducted interviews. A
complete picture in terms of challenges and requirements is difficult
to achieve due to students’ individual differences and experiences.
Results presented in literature (e.g. [7, 15]) can deliver additional

insights. The educators’ side must also be considered and might be
a topic for future work.

REFERENCES
[1] Nina Baur and Jörg Blasius. 2014. Handbuch Methoden der empirischen Sozial-

forschung. Springer Fachmedien Wiesbaden, Wiesbaden. https://doi.org/10.
1007/978-3-531-18939-0

[2] Alexander Bogner, Beate Littig, andWolfgangMenz. 2014. Interviewsmit Experten:
Eine praxisorientierte Einführung. Springer Fachmedien Wiesbaden, Wiesbaden.
1–105 pages. https://doi.org/10.1007/978-3-531-19416-5

[3] Barbara Bracken. 2003. Progressing from Student to Professional: The Importance
and Challenges of Teaching Software Engineering. J. Comput. Sci. Coll. 19, 2 (dec
2003), 358–368.

[4] Stanislav Chren, Barbora Buhnova, Martin Macak, Lukas Daubner, and Bruno
Rossi. 2019. Mistakes in UMLDiagrams: Analysis of Student Projects in a Software
Engineering Course. In 2019 IEEE/ACM 41st International Conference on Software
Engineering: Software Engineering Education and Training (ICSE-SEET). 100–109.
https://doi.org/10.1109/ICSE-SEET.2019.00019

[5] Carlo Ghezzi and Dino Mandrioli. 2006. The Challenges of Software Engineering
Education. In Software Engineering Education in the Modern Age, Paola Inverardi
and Mehdi Jazayeri (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 115–
127.

[6] Florian Huber and Georg Hagel. 2020. Work-in-Progress: Towards detection and
syntactical analysis in UML class diagrams for software engineering education.
In 2020 IEEE Global Engineering Education Conference (EDUCON). 3–7. https:
//doi.org/10.1109/EDUCON45650.2020.9125244

[7] Florian Huber and Georg Hagel. 2022. Tool-supported teaching of UML diagrams
in software engineering education - A systematic literature review. In 2022 45th
Jubilee International Convention on Information, Communication and Electronic
Technology (MIPRO). 1404–1409. https://doi.org/10.23919/MIPRO55190.2022.
9803560

[8] Grischa Liebel, Omar Badreddin, and Rogardt Heldal. 2017. Model Driven Soft-
ware Engineering in Education: A Multi-Case Study on Perception of Tools and
UML. In 2017 IEEE 30th Conference on Software Engineering Education and Training
(CSEE&T). 124–133. https://doi.org/10.1109/CSEET.2017.29

[9] Adriana Lopes, Igor Steinmacher, and Tayana Conte. 2019. UML Acceptance:
Analyzing the Students’ Perception of UML Diagrams. In Proceedings of the
XXXIII Brazilian Symposium on Software Engineering (Salvador, Brazil) (SBES
2019). Association for Computing Machinery, New York, NY, USA, 264–272.
https://doi.org/10.1145/3350768.3352575

[10] Philipp Mayring. 2000. Qualitative Inhaltsanalyse. Grundlagen und Techniken.
Weinheim: Deutscher Studien Verlag.

[11] Philipp Mayring. 2010. Qualitative Inhaltsanalyse. VS Verlag für Sozialwis-
senschaften, Wiesbaden, 601–613. https://doi.org/10.1007/978-3-531-92052-8_42

[12] Philipp Mayring and Thomas Fenzl. 2014. Qualitative Inhaltsanalyse. Springer
Fachmedien Wiesbaden, Wiesbaden, 543–556. https://doi.org/10.1007/978-3-
531-18939-0_38

[13] Juan Carlos Muñoz Carpio, Michael Cowling, and James Birt. 2018. Framework
to Enhance Teaching and Learning in System Analysis and Unified Modelling
Language. In 2018 IEEE International Conference on Teaching, Assessment, and
Learning for Engineering (TALE). 91–98. https://doi.org/10.1109/TALE.2018.
8615284

[14] Sofia Ouhbi and Nuno Pombo. 2020. Software Engineering Education: Chal-
lenges and Perspectives. In 2020 IEEE Global Engineering Education Conference
(EDUCON). 202–209. https://doi.org/10.1109/EDUCON45650.2020.9125353

[15] Rebecca Reuter, Theresa Stark, Yvonne Sedelmaier, Dieter Landes, Jürgen Mottok,
and Christian Wolff. 2020. Insights in Students’ Problems during UML Modeling.
In 2020 IEEE Global Engineering Education Conference (EDUCON). 592–600. https:
//doi.org/10.1109/EDUCON45650.2020.9125110

[16] D. R. Stikkolorum, F. Gomes de Oliveira Neto, and M. R. V. Chaudron. 2018.
Evaluating Didactic Approaches Used by Teaching Assistants for Software
Analysis and Design Using UML. In Proceedings of the 3rd European Confer-
ence of Software Engineering Education (Seeon/ Bavaria, Germany) (ECSEE’18).
Association for Computing Machinery, New York, NY, USA, 122–131. https:
//doi.org/10.1145/3209087.3209107

[17] Sylvia Stuurman, Harrie Passier, and Erik Barendsen. 2016. Analyzing Students’
Software Redesign Strategies. In Proceedings of the 16th Koli Calling International
Conference on Computing Education Research (Koli, Finland) (Koli Calling ’16).
Association for Computing Machinery, New York, NY, USA, 110–119. https:
//doi.org/10.1145/2999541.2999559

193

https://doi.org/10.1007/978-3-531-18939-0
https://doi.org/10.1007/978-3-531-18939-0
https://doi.org/10.1007/978-3-531-19416-5
https://doi.org/10.1109/ICSE-SEET.2019.00019
https://doi.org/10.1109/EDUCON45650.2020.9125244
https://doi.org/10.1109/EDUCON45650.2020.9125244
https://doi.org/10.23919/MIPRO55190.2022.9803560
https://doi.org/10.23919/MIPRO55190.2022.9803560
https://doi.org/10.1109/CSEET.2017.29
https://doi.org/10.1145/3350768.3352575
https://doi.org/10.1007/978-3-531-92052-8_42
https://doi.org/10.1007/978-3-531-18939-0_38
https://doi.org/10.1007/978-3-531-18939-0_38
https://doi.org/10.1109/TALE.2018.8615284
https://doi.org/10.1109/TALE.2018.8615284
https://doi.org/10.1109/EDUCON45650.2020.9125353
https://doi.org/10.1109/EDUCON45650.2020.9125110
https://doi.org/10.1109/EDUCON45650.2020.9125110
https://doi.org/10.1145/3209087.3209107
https://doi.org/10.1145/3209087.3209107
https://doi.org/10.1145/2999541.2999559
https://doi.org/10.1145/2999541.2999559

	Abstract
	1 Introduction
	2 Related Work
	3 Research Design
	3.1 Research Interest and Questions
	3.2 Qualitative Guideline-based Expert Interviews
	3.3 Participants
	3.4 Evaluation and Information Extraction

	4 Results
	4.1 Overview of the Participant Group
	4.2 RQ1: What challenges do students face when learning modelling with UML in software engineering education?
	4.3 RQ2: What software-based assistance can help students overcome their challenges in creating UML diagrams from textual exercises?

	5 Discussion
	5.1 RQ1: What challenges do students face when learning modeling with UML in software engineering education?
	5.2 RQ2: What software-based assistance can help students overcome their challenges in creating UML diagrams from textual exercises?

	6 Conclusion and Further Work
	References

