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ABSTRACT
With the increasing complexity of software systems, it is becom-
ing more and more relevant for students in software engineering
education to learn how to elicitate requirements from customers
or stakeholders and visualize them in a diagram. This continues
to present different challenges to novice modellers. To counter-
act these, educators and researchers have developed support tools.
These offer various functionalities to address different challenges.
However, it is unclear what functionality needs to be provided to
address all of these issues and not just individual ones. Therefore,
this paper extracts such functional requirements and summarizes
them. It also shows how they can be translated into activities during
an exercise lesson.

CCS CONCEPTS
• Social and professional topics → Software engineering edu-
cation; • Software and its engineering → Software creation and
management.
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1 INTRODUCTION
An important part in the education of computer scientists is soft-
ware engineering [16, 18]. In this context, students often receive
textual requirements descriptions from an educator alongside with
the task to develop a diagram that matches the specified function-
alities. For diagram generation, the Unified Modeling Language
(UML) is widely used [18]. However, learning how to abstract such
software requirements and transfer them into a diagram is not an
easy task for students [27, 40, 42]. Since many graduates will be
confronted with customers’ or stakeholders’ requirements in their
daily work, it is important for them to overcome these hurdles.

Students’ misconceptions and difficulties within the modeling
process have already been in focus of numerous publications (e.g.
[31]). To address these issues, some educators and researchers have
developed tools that are able to support their students during the
modeling process. These were summarized in a systematic literature
review (SLR) [17]. Along with the five most named difficulties for
students in diagram generation, the various tools are explained.
Despite the fact that all these tools have similar goals, they provide
a variety of functionalities to tackle different problems. However, it
is unclear from the SLR what functionalities a software tool should
provide in order to support a students’ entire learning process and
not only specific parts of it. The large number of developed tools
and additional publications in this topic illustrates the interest of
the research community and especially educators. The contribution
of this paper is a summary of the software requirements described
in the papers included in the SLR. These are intended to serve as
building blocks for the development of new applications that take
a holistic approach and seek to address many students’ problems
at once. It is important to note that the focus is on functional
requirements [22]. Non-functional requirements [22] (such as the
response time of a server) are not described.

After the extraction process, the functional requirements are
translated into activities, that either students or educators could
perform during an exercise lesson.

The following sections are structured as follows: section 2 covers
related work. Afterwards, functional requirements are extracted
from the described list of papers in section 3. Finally a short con-
clusion is given in section 5.
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2 RELATEDWORK
As can be seen from the previous section, a SLR about tool-supported
teaching of UML diagrams [17] serves as a starting point for this
publication. The reviewed sources [1–5, 7, 8, 10, 12–15, 19–21, 23–
26, 28–30, 32, 34–39, 41, 43, 45, 46] will be used to extract the func-
tional requirements. The publications mentioned in the related
work of [17] also relate to this one.

Authors in [31] performed a SLR about publications that cover
students’ errors in UML artefacts. Furthermore they provide an
overview about problems that occur during the actual modeling
process. Focusing on difficulties and not functionalities to solve
those, this publications’ intention differs from the goals described
in [31].

A similar goal was pursued by [9]. The result is a catalogue of
students’ mistakes when modeling different types of UML diagrams.
This publication also does not consider the software-based options
that can reduce these errors.

Some publications focus on the challenges of teaching (UML)
modeling (e.g. [6]). As software engineering education as a whole is
an active field of research, there is also literature on its challenges in
general (e.g. [11]). Those difficulties and challenges might have been
a motivation for researchers to develop various supporting tools.
However, they do not deliver insights in the actual functionalities
that were implemented in order to overcome those issues. The
authors of this work have not been able to find a publication that
covers this topic. We follow [44] who advocates research on tool
development and usage in software engineering education.

3 REQUIREMENTS ELICITATION
The selected papers all suggest a classroom setting, where students
receive some sort of a textual requirements description provided
by an educator. They have to solve the given exercise with the
support of a tool. Such a scenario will serve as the basis for this
work. It contains two actors: an educator and a student. Therefore,
it is useful in this section to capture functional requirements for
both groups. In addition, functional system requirements must be
described. They include functionalities such as calculating a grade
on base of a defined algorithm.

The results of the SLR show that there are two main approaches.
Most of the included publications compare a students’ diagram
to a given set of rules or a sample solution. A smaller group uses
different visualization techniques (like 3D or Virtual Reality) in
order to support their students. The requirements from both groups
are therefore divided into basic and visualization requirements. As
already mentioned, this is a summary based on a modular principle
and not a list of mandatory functionalities. A breakdown of the
requirements into clusters supports this idea and makes it possible,
for example, to add or omit visualizations.

For the elicitation process, all selected papers were read and
the described tool functionalities listed. Once a specific function-
ality has been mentioned three times, it is included in our list. All
requirements are formulated following the suggestions of [33].

Table 1: Basic requirements for educators

ID Requirement

BE1 The system shall provide an educator with the
ability to open a session, where students can
login and work on the same exercise simultane-
ously.

BE2 The system shall provide an educator with the
ability to enter an information about the in-
tended learning outcome alongside with the ex-
ercise that shall be imported.

BE3 The system shall provide an educator with the
ability to import an exercise text with UML dia-
gram requirements descriptions.

BE4 The system shall provide an educator with the
ability to import a sample solution in form of a
UML diagram.

BE5 The system shall provide an educator with the
ability to create a sample solution within a sim-
ple modeling editor.

BE6 The system shall provide an educator with the
ability to specify which UML components shall
be compared to each other.

BE7 The system shall provide an educator with the
ability to view questions that students entered
during a session.

BE8 The system shall provide an educator with the
ability to answer questions that students en-
tered during a session.

BE9 The system shall provide an educator with the
ability to view a statistical overview about the
students activities during the modeling process.

BE10 The system should provide an educator with
the ability to view submitted students’ diagrams
alongside with the differences to a sample solu-
tion and the grade the system calculated.

3.1 Requirements from an Educators’
Perspective

This subsection describes all the extracted requirements from an
educators’ perspective. They are summarized in table 1. Because
from this point of view, there is no support required, no visualization
requirements were raised.

3.2 Requirements from a Students’ Perspective
This subsection describes all the extracted requirements from a
students’ perspective. Table 2 contains the basic ones, while table 3
summarizes requirements related to visualization.

3.3 System requirements
This subsection describes all system requirements. The basic ones
are listed in table 4. Because visualizations have to be generated (for
example a 2D UML diagram has to be converted into a 3D model),
table 5 summarizes the visual system requirements.
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Table 2: Basic requirements for students

ID Requirement

BST1 The system shall provide a student with the abil-
ity to login to a session and work on a specific
exercise provided by an educator.

BST2 The system shall provide a student with the
ability to view the intended learning outcome
of the displayed exercise.

BST3 The system shall provide a student with the
ability to view the exercise text provided by an
educator during the session.

BST4 The system should provide a student with the
ability to create an UML diagram within a sim-
ple editor.

BST5 The system shall provide a student with the
ability to ask questions about a specific exercise.

BST6 The system shall be able to assess the students’
diagrams during the modeling process.

BST7 The system shall provide a student with the abil-
ity to view all the relevant components within
the requirements descriptions.

BST8 The system shall provide a student with the
ability to import an UML diagram in XMI, JPG
or PNG format.

BST9 The system shall provide a student with the abil-
ity to submit an UML diagram for comparison
with a sample solution provided by an educator.

BST10 The system shall provide a student with the
ability to view the detected differences in the
comparison of two diagrams.

BST11 After two UML diagrams have been compared
to each other, the system shall provide a stu-
dent with the ability to view a list of theoretical
topics that should be revised in order to resolve
detected mistakes.

BST12 After the student received feedback, the system
shall provide a student with the ability to submit
an improved version of the diagram and restart
the comparison process.

4 REQUIREMENTS VISUALIZATION
Using activity diagrams, this section illustrates how the described
requirements in a classroom situation could be used from an edu-
cator’s and a student’s perspective. This is to show when and in
which order the described requirements are applicable.

4.1 Educators’ Activities
Through which activities an educator could go during an exercise
lesson, using a tool that meets all of the above requirements, is
shown in Figure 1.

After starting the tool, an ’educator view’ can be opened. It allows
to create a new session. Educators can enter an intended learning
outcome, a requirements text, a sample solution and information

Table 3: Visualization Requirements for Students

ID Requirement

VST1 The system should provide a student with the
ability to write code for a displayed exercise and
automatically generate a related UML diagram.

VST2 The system should provide a student with the
ability to create an UML diagram and automati-
cally generate the related code.

VST3 The system should provide a student with the
ability to search for keywords within the dia-
gram.

VST4 The system should provide a student with the
ability to navigate through an AR, 3D or 3D VR
model.

VST5 The system should provide a student with the
ability to run the visualized code and display
the runtime states of the individual objects.

VST6 The system should provide a student with the
ability to interact (create, move, edit or delete)
diagram elements within the 2D, AR, 3D or 3D
VR view.

Table 4: Basic system requirements

ID Requirement

BSY1 The system shall log the students’ activities dur-
ing the modeling process.

BSY2 The system shall be able to export a modelled
UML diagram into an XMI file.

BSY3 The system shall be able to convert imported
diagrams into a defined structure, which allows
the comparison of them.

BSY4 The system shall be able to grade the students’
diagrams according to a grading algorithm.

BSY5 The system shall be able to detect synonyms for
class, attribute and method names in a students’
solution.

BSY6 The system should create statistics about the
differences detected in multiple comparison pro-
cesses.

BSY7 The system should be able to generate feedback
after a comparison process.

BSY8 The system shall be able to compare two im-
ported diagrams to each other and outline the
differences.

BSY9 The system shall be able to apply a predefined
set of rules to check an imported students’ so-
lution and outline detected deviations.

about which of those diagram elements shall be compared to the
ones from a student’s solution. When the session is started, the
exercise participants can join and work on the provided contents. If
questions arise, they can be entered into the tool and answered by
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Table 5: Visualization system requirements

ID Requirement

VSY1 The system should be able to create a 3D dia-
gram from a 2D diagram created by a student.

VSY2 The system should be able to visualize differ-
ent levels of granularity within the diagrams
(classes, attributes, methods).

VSY3 The system should be able to create an AR dia-
gram from a 2D diagram created by a student.

VSY4 The system should be able to display code an
related UML diagrams alongside each other.

VSY5 The system should be able to create a 3D VR
model from a 2D diagram created by a student.

VSY6 The system should be able to highlight a se-
lected line of code within the UML diagram.

Figure 1: Educators activities during the exercise

the educator. When all students have finished modeling, statistics
can be reviewed as well as the students’ diagrams alongside the
grades the system calculated.

4.2 Students’ Activities
Activities a student could perform using such a tool during an
exercise lesson, are visualized in Figure 2.

When the tool has been started, a student can login to a provided
session. The information about the intended learning outcome
and the requirements description can now be read. Afterwards,
students can either choose to take an external modeling tool or use
the provided editor. During the diagram generation process, they
can use the described help functions (e.g. ask questions) or display
the diagram using one of the visualization techniques. When the
students have finished, they can submit their diagram and receive
feedback alongside with suggestions, on which theoretical aspects
to revise for improvement. If desired, the submitted solution can
be redesigned or the exercise be exited.

5 CONCLUSION
Especially for novices in software engineering education, learning
how to elicitate and convert requirements into an UML diagram
is challenging. Therefore, educators and researches have made an
effort to develop several supporting tools to improve their students

Figure 2: Student activities during the exercise

learning success. However, with these heterogenous solutions, it
is unclear what functionality a tool needs to provide to address
all difficulties and not just solve individual problems. This paper
has extracted all the functional requirements from a selected set
of publications (see [17]) and shows how they can be translated
into activities during practice sessions. Since this is a summary
from the literature, this list is not yet complete. It is important to
emphasize that not every requirement presented needs to be met
in an educational context in order to teach software engineering
efficiently. In future work, students and teachers will be interviewed
about further requirements.
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