
From Difficulties to Functional Requirements - Deriving
Requirements from Literature about Tool-supported Teaching of

UML Diagrams in Software Engineering Education
Florian Huber

Kempten University of Applied Sciences
Kempten, Germany

florian.huber@hs-kempten.de

Tobias Eigler
Kempten University of Applied Sciences

Kempten, Germany
tobias.eigler@hs-kempten.de

Georg Hagel
Kempten University of Applied Sciences

Kempten, Germany
georg.hagel@hs-kempten.de

Christian Wolff
University of Regensburg
Regensburg, Germany

Christian.Wolff@informatik.uni-regensburg.de

ABSTRACT
With the increasing complexity of software systems, it is becom-
ing more and more relevant for students in software engineering
education to learn how to elicitate requirements from customers
or stakeholders and visualize them in a diagram. This continues
to present different challenges to novice modellers. To counter-
act these, educators and researchers have developed support tools.
These offer various functionalities to address different challenges.
However, it is unclear what functionality needs to be provided to
address all of these issues and not just individual ones. Therefore,
this paper extracts such functional requirements and summarizes
them. It also shows how they can be translated into activities during
an exercise lesson.

CCS CONCEPTS
• Social and professional topics → Software engineering edu-
cation; • Software and its engineering → Software creation and
management.

KEYWORDS
Software Engineering Education, UML, Tool-Supported Teaching,
Student Requirements

ACM Reference Format:
Florian Huber, Tobias Eigler, Georg Hagel, and Christian Wolff. 2023. From
Difficulties to Functional Requirements - Deriving Requirements from Litera-
ture about Tool-supported Teaching of UMLDiagrams in Software Engineer-
ing Education. In ECSEE 2023: European Conference on Software Engineering
Education (ECSEE 2023), June 19–21, 2023, Seeon/Bavaria, Germany. ACM,
New York, NY, USA, 5 pages. https://doi.org/10.1145/3593663.3593672

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ECSEE 2023, June 19–21, 2023, Seeon/Bavaria, Germany
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9956-2/23/06. . . $15.00
https://doi.org/10.1145/3593663.3593672

1 INTRODUCTION
An important part in the education of computer scientists is soft-
ware engineering [16, 18]. In this context, students often receive
textual requirements descriptions from an educator alongside with
the task to develop a diagram that matches the specified function-
alities. For diagram generation, the Unified Modeling Language
(UML) is widely used [18]. However, learning how to abstract such
software requirements and transfer them into a diagram is not an
easy task for students [27, 40, 42]. Since many graduates will be
confronted with customers’ or stakeholders’ requirements in their
daily work, it is important for them to overcome these hurdles.

Students’ misconceptions and difficulties within the modeling
process have already been in focus of numerous publications (e.g.
[31]). To address these issues, some educators and researchers have
developed tools that are able to support their students during the
modeling process. These were summarized in a systematic literature
review (SLR) [17]. Along with the five most named difficulties for
students in diagram generation, the various tools are explained.
Despite the fact that all these tools have similar goals, they provide
a variety of functionalities to tackle different problems. However, it
is unclear from the SLR what functionalities a software tool should
provide in order to support a students’ entire learning process and
not only specific parts of it. The large number of developed tools
and additional publications in this topic illustrates the interest of
the research community and especially educators. The contribution
of this paper is a summary of the software requirements described
in the papers included in the SLR. These are intended to serve as
building blocks for the development of new applications that take
a holistic approach and seek to address many students’ problems
at once. It is important to note that the focus is on functional
requirements [22]. Non-functional requirements [22] (such as the
response time of a server) are not described.

After the extraction process, the functional requirements are
translated into activities, that either students or educators could
perform during an exercise lesson.

The following sections are structured as follows: section 2 covers
related work. Afterwards, functional requirements are extracted
from the described list of papers in section 3. Finally a short con-
clusion is given in section 5.

184

https://doi.org/10.1145/3593663.3593672
https://doi.org/10.1145/3593663.3593672
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3593663.3593672&domain=pdf&date_stamp=2023-06-19

ECSEE 2023, June 19–21, 2023, Seeon/Bavaria, Germany Huber et. al

2 RELATEDWORK
As can be seen from the previous section, a SLR about tool-supported
teaching of UML diagrams [17] serves as a starting point for this
publication. The reviewed sources [1–5, 7, 8, 10, 12–15, 19–21, 23–
26, 28–30, 32, 34–39, 41, 43, 45, 46] will be used to extract the func-
tional requirements. The publications mentioned in the related
work of [17] also relate to this one.

Authors in [31] performed a SLR about publications that cover
students’ errors in UML artefacts. Furthermore they provide an
overview about problems that occur during the actual modeling
process. Focusing on difficulties and not functionalities to solve
those, this publications’ intention differs from the goals described
in [31].

A similar goal was pursued by [9]. The result is a catalogue of
students’ mistakes when modeling different types of UML diagrams.
This publication also does not consider the software-based options
that can reduce these errors.

Some publications focus on the challenges of teaching (UML)
modeling (e.g. [6]). As software engineering education as a whole is
an active field of research, there is also literature on its challenges in
general (e.g. [11]). Those difficulties and challenges might have been
a motivation for researchers to develop various supporting tools.
However, they do not deliver insights in the actual functionalities
that were implemented in order to overcome those issues. The
authors of this work have not been able to find a publication that
covers this topic. We follow [44] who advocates research on tool
development and usage in software engineering education.

3 REQUIREMENTS ELICITATION
The selected papers all suggest a classroom setting, where students
receive some sort of a textual requirements description provided
by an educator. They have to solve the given exercise with the
support of a tool. Such a scenario will serve as the basis for this
work. It contains two actors: an educator and a student. Therefore,
it is useful in this section to capture functional requirements for
both groups. In addition, functional system requirements must be
described. They include functionalities such as calculating a grade
on base of a defined algorithm.

The results of the SLR show that there are two main approaches.
Most of the included publications compare a students’ diagram
to a given set of rules or a sample solution. A smaller group uses
different visualization techniques (like 3D or Virtual Reality) in
order to support their students. The requirements from both groups
are therefore divided into basic and visualization requirements. As
already mentioned, this is a summary based on a modular principle
and not a list of mandatory functionalities. A breakdown of the
requirements into clusters supports this idea and makes it possible,
for example, to add or omit visualizations.

For the elicitation process, all selected papers were read and
the described tool functionalities listed. Once a specific function-
ality has been mentioned three times, it is included in our list. All
requirements are formulated following the suggestions of [33].

Table 1: Basic requirements for educators

ID Requirement

BE1 The system shall provide an educator with the
ability to open a session, where students can
login and work on the same exercise simultane-
ously.

BE2 The system shall provide an educator with the
ability to enter an information about the in-
tended learning outcome alongside with the ex-
ercise that shall be imported.

BE3 The system shall provide an educator with the
ability to import an exercise text with UML dia-
gram requirements descriptions.

BE4 The system shall provide an educator with the
ability to import a sample solution in form of a
UML diagram.

BE5 The system shall provide an educator with the
ability to create a sample solution within a sim-
ple modeling editor.

BE6 The system shall provide an educator with the
ability to specify which UML components shall
be compared to each other.

BE7 The system shall provide an educator with the
ability to view questions that students entered
during a session.

BE8 The system shall provide an educator with the
ability to answer questions that students en-
tered during a session.

BE9 The system shall provide an educator with the
ability to view a statistical overview about the
students activities during the modeling process.

BE10 The system should provide an educator with
the ability to view submitted students’ diagrams
alongside with the differences to a sample solu-
tion and the grade the system calculated.

3.1 Requirements from an Educators’
Perspective

This subsection describes all the extracted requirements from an
educators’ perspective. They are summarized in table 1. Because
from this point of view, there is no support required, no visualization
requirements were raised.

3.2 Requirements from a Students’ Perspective
This subsection describes all the extracted requirements from a
students’ perspective. Table 2 contains the basic ones, while table 3
summarizes requirements related to visualization.

3.3 System requirements
This subsection describes all system requirements. The basic ones
are listed in table 4. Because visualizations have to be generated (for
example a 2D UML diagram has to be converted into a 3D model),
table 5 summarizes the visual system requirements.

185

From Difficulties to Functional Requirements - Deriving Requirements from Literature about Tool-supported
Teaching of UML Diagrams in Software Engineering Education ECSEE 2023, June 19–21, 2023, Seeon/Bavaria, Germany

Table 2: Basic requirements for students

ID Requirement

BST1 The system shall provide a student with the abil-
ity to login to a session and work on a specific
exercise provided by an educator.

BST2 The system shall provide a student with the
ability to view the intended learning outcome
of the displayed exercise.

BST3 The system shall provide a student with the
ability to view the exercise text provided by an
educator during the session.

BST4 The system should provide a student with the
ability to create an UML diagram within a sim-
ple editor.

BST5 The system shall provide a student with the
ability to ask questions about a specific exercise.

BST6 The system shall be able to assess the students’
diagrams during the modeling process.

BST7 The system shall provide a student with the abil-
ity to view all the relevant components within
the requirements descriptions.

BST8 The system shall provide a student with the
ability to import an UML diagram in XMI, JPG
or PNG format.

BST9 The system shall provide a student with the abil-
ity to submit an UML diagram for comparison
with a sample solution provided by an educator.

BST10 The system shall provide a student with the
ability to view the detected differences in the
comparison of two diagrams.

BST11 After two UML diagrams have been compared
to each other, the system shall provide a stu-
dent with the ability to view a list of theoretical
topics that should be revised in order to resolve
detected mistakes.

BST12 After the student received feedback, the system
shall provide a student with the ability to submit
an improved version of the diagram and restart
the comparison process.

4 REQUIREMENTS VISUALIZATION
Using activity diagrams, this section illustrates how the described
requirements in a classroom situation could be used from an edu-
cator’s and a student’s perspective. This is to show when and in
which order the described requirements are applicable.

4.1 Educators’ Activities
Through which activities an educator could go during an exercise
lesson, using a tool that meets all of the above requirements, is
shown in Figure 1.

After starting the tool, an ’educator view’ can be opened. It allows
to create a new session. Educators can enter an intended learning
outcome, a requirements text, a sample solution and information

Table 3: Visualization Requirements for Students

ID Requirement

VST1 The system should provide a student with the
ability to write code for a displayed exercise and
automatically generate a related UML diagram.

VST2 The system should provide a student with the
ability to create an UML diagram and automati-
cally generate the related code.

VST3 The system should provide a student with the
ability to search for keywords within the dia-
gram.

VST4 The system should provide a student with the
ability to navigate through an AR, 3D or 3D VR
model.

VST5 The system should provide a student with the
ability to run the visualized code and display
the runtime states of the individual objects.

VST6 The system should provide a student with the
ability to interact (create, move, edit or delete)
diagram elements within the 2D, AR, 3D or 3D
VR view.

Table 4: Basic system requirements

ID Requirement

BSY1 The system shall log the students’ activities dur-
ing the modeling process.

BSY2 The system shall be able to export a modelled
UML diagram into an XMI file.

BSY3 The system shall be able to convert imported
diagrams into a defined structure, which allows
the comparison of them.

BSY4 The system shall be able to grade the students’
diagrams according to a grading algorithm.

BSY5 The system shall be able to detect synonyms for
class, attribute and method names in a students’
solution.

BSY6 The system should create statistics about the
differences detected in multiple comparison pro-
cesses.

BSY7 The system should be able to generate feedback
after a comparison process.

BSY8 The system shall be able to compare two im-
ported diagrams to each other and outline the
differences.

BSY9 The system shall be able to apply a predefined
set of rules to check an imported students’ so-
lution and outline detected deviations.

about which of those diagram elements shall be compared to the
ones from a student’s solution. When the session is started, the
exercise participants can join and work on the provided contents. If
questions arise, they can be entered into the tool and answered by

186

ECSEE 2023, June 19–21, 2023, Seeon/Bavaria, Germany Huber et. al

Table 5: Visualization system requirements

ID Requirement

VSY1 The system should be able to create a 3D dia-
gram from a 2D diagram created by a student.

VSY2 The system should be able to visualize differ-
ent levels of granularity within the diagrams
(classes, attributes, methods).

VSY3 The system should be able to create an AR dia-
gram from a 2D diagram created by a student.

VSY4 The system should be able to display code an
related UML diagrams alongside each other.

VSY5 The system should be able to create a 3D VR
model from a 2D diagram created by a student.

VSY6 The system should be able to highlight a se-
lected line of code within the UML diagram.

Figure 1: Educators activities during the exercise

the educator. When all students have finished modeling, statistics
can be reviewed as well as the students’ diagrams alongside the
grades the system calculated.

4.2 Students’ Activities
Activities a student could perform using such a tool during an
exercise lesson, are visualized in Figure 2.

When the tool has been started, a student can login to a provided
session. The information about the intended learning outcome
and the requirements description can now be read. Afterwards,
students can either choose to take an external modeling tool or use
the provided editor. During the diagram generation process, they
can use the described help functions (e.g. ask questions) or display
the diagram using one of the visualization techniques. When the
students have finished, they can submit their diagram and receive
feedback alongside with suggestions, on which theoretical aspects
to revise for improvement. If desired, the submitted solution can
be redesigned or the exercise be exited.

5 CONCLUSION
Especially for novices in software engineering education, learning
how to elicitate and convert requirements into an UML diagram
is challenging. Therefore, educators and researches have made an
effort to develop several supporting tools to improve their students

Figure 2: Student activities during the exercise

learning success. However, with these heterogenous solutions, it
is unclear what functionality a tool needs to provide to address
all difficulties and not just solve individual problems. This paper
has extracted all the functional requirements from a selected set
of publications (see [17]) and shows how they can be translated
into activities during practice sessions. Since this is a summary
from the literature, this list is not yet complete. It is important to
emphasize that not every requirement presented needs to be met
in an educational context in order to teach software engineering
efficiently. In future work, students and teachers will be interviewed
about further requirements.

REFERENCES
[1] Sohail Alhazmi, Charles Thevathayan, and Margaret Hamilton. 2021. Learning

UML Sequence Diagrams with a New Constructivist Pedagogical Tool: SD4ED.
Association for Computing Machinery, New York, NY, USA, 893–899. https:
//doi.org/10.1145/3408877.3432521

[2] Norhayati Mohd Ali, Novia Admodisastro, Saádah Hassan, and Mohammed
Sadeq Abdullah Saeed. 2018. UML DIAGRAM LEARNING TOOL. UNIVERSITY
CARNIVAL on e-LEARNING (IUCEL) 2018 (2018), 408.

[3] Weiyi Bian, Omar Alam, and Jörg Kienzle. 2019. Automated Grading of Class
Diagrams. In 2019 ACM/IEEE 22nd International Conference on Model Driven
Engineering Languages and Systems Companion (MODELS-C). 700–709. https:
//doi.org/10.1109/MODELS-C.2019.00106

[4] Daria Bogdanova. 2019. Towards Personalized Feedback in a Smart Learning
Environment For Teaching Conceptual Modelling. In 2019 13th International
Conference on Research Challenges in Information Science (RCIS). 1–5. https:
//doi.org/10.1109/RCIS.2019.8876983

[5] Younes Boubekeur, Gunter Mussbacher, and Shane McIntosh. 2020. Automatic
Assessment of Students’ Software Models Using a Simple Heuristic and Machine
Learning. Association for Computing Machinery, New York, NY, USA. https:
//doi.org/10.1145/3417990.3418741

[6] Barbara Bracken. 2003. Progressing from Student to Professional: The Importance
and Challenges of Teaching Software Engineering. J. Comput. Sci. Coll. 19, 2 (dec
2003), 358–368.

[7] Yuanfang Cai, Daniel Iannuzzi, and Sunny Wong. 2011. Leveraging design
structure matrices in software design education. In 2011 24th IEEE-CS Conference
on Software Engineering Education and Training (CSEE&T). 179–188. https:
//doi.org/10.1109/CSEET.2011.5876085

[8] Yuanfang Cai, Rick Kazman, Ciera Jaspan, and Jonathan Aldrich. 2013. Introduc-
ing tool-supported architecture review into software design education. In 2013
26th International Conference on Software Engineering Education and Training
(CSEE&T). 70–79. https://doi.org/10.1109/CSEET.2013.6595238

[9] Stanislav Chren, Barbora Buhnova, Martin Macak, Lukas Daubner, and Bruno
Rossi. 2019. Mistakes in UMLDiagrams: Analysis of Student Projects in a Software
Engineering Course. In 2019 IEEE/ACM 41st International Conference on Software
Engineering: Software Engineering Education and Training (ICSE-SEET). 100–109.
https://doi.org/10.1109/ICSE-SEET.2019.00019

[10] Kleinner Farias and Bruno C. da Silva. 2020. What’s the Grade of Your Diagram?
Towards a Streamlined Approach for Grading UML Diagrams. Association for
Computing Machinery, New York, NY, USA. https://doi.org/10.1145/3417990.
3420052

187

https://doi.org/10.1145/3408877.3432521
https://doi.org/10.1145/3408877.3432521
https://doi.org/10.1109/MODELS-C.2019.00106
https://doi.org/10.1109/MODELS-C.2019.00106
https://doi.org/10.1109/RCIS.2019.8876983
https://doi.org/10.1109/RCIS.2019.8876983
https://doi.org/10.1145/3417990.3418741
https://doi.org/10.1145/3417990.3418741
https://doi.org/10.1109/CSEET.2011.5876085
https://doi.org/10.1109/CSEET.2011.5876085
https://doi.org/10.1109/CSEET.2013.6595238
https://doi.org/10.1109/ICSE-SEET.2019.00019
https://doi.org/10.1145/3417990.3420052
https://doi.org/10.1145/3417990.3420052

From Difficulties to Functional Requirements - Deriving Requirements from Literature about Tool-supported
Teaching of UML Diagrams in Software Engineering Education ECSEE 2023, June 19–21, 2023, Seeon/Bavaria, Germany

[11] Carlo Ghezzi and Dino Mandrioli. 2006. The Challenges of Software Engineering
Education. In Software Engineering Education in the Modern Age, Paola Inverardi
and Mehdi Jazayeri (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 115–
127.

[12] Robert W. Hasker. 2011. UMLGrader: An Automated Class Diagram Grader. J.
Comput. Sci. Coll. 27, 1 (oct 2011), 47–54.

[13] Robert W. Hasker and Mike Rowe. 2011. UMLint: Identifying Defects in UML
Diagrams. In 2011 ASEE Annual Conference & Exposition. ASEE Conferences,
Vancouver, BC. https://peer.asee.org/18929.

[14] Pavel Herout and Premek Brada. 2016. UML-Test Application for Automated
Validation of Students’ UML Class Diagram. In 2016 IEEE 29th International
Conference on Software Engineering Education and Training (CSEE&T). 222–226.
https://doi.org/10.1109/CSEET.2016.33

[15] Florian Huber and Georg Hagel. 2020. Work-in-Progress: Towards detection and
syntactical analysis in UML class diagrams for software engineering education.
In 2020 IEEE Global Engineering Education Conference (EDUCON). 3–7. https:
//doi.org/10.1109/EDUCON45650.2020.9125244

[16] Florian Huber and Georg Hagel. 2022. Semi-automatic generation of textual
exercises for software engineering education. In 2022 IEEE Global Engineering
Education Conference (EDUCON). 51–56. https://doi.org/10.1109/EDUCON52537.
2022.9766802

[17] Florian Huber and Georg Hagel. 2022. Tool-supported teaching of UML diagrams
in software engineering education - A systematic literature review. In 2022 45th
Jubilee International Convention on Information, Communication and Electronic
Technology (MIPRO). 1404–1409. https://doi.org/10.23919/MIPRO55190.2022.
9803560

[18] Florian Huber and Georg Hagel. 2022. Work-In-Progress: Converting textual
software engineering class diagram exercises to UML models. In 2022 IEEE
Global Engineering Education Conference (EDUCON). 1–3. https://doi.org/10.
1109/EDUCON52537.2022.9766593

[19] Yuta Ichinohe, Hiroaki Hashiura, Takafumi Tanaka, Atsuo Hazeyama, and Hi-
roshi Takase. 2019. Effectiveness of Automated Grading Tool Utilizing Similarity
for Conceptual Modeling. In Knowledge-Based Software Engineering: 2018, Maria
Virvou, Fumihiro Kumeno, and Konstantinos Oikonomou (Eds.). Springer Inter-
national Publishing, Cham, 117–126.

[20] Mantas Jurgelaitis, Lina Čeponienė, Jonas Čeponis, and Vaidotas Drungi-
las. 2019. Implementing gamification in a university-level UML mod-
eling course: A case study. Computer Applications in Engineering
Education 27, 2 (2019), 332–343. https://doi.org/10.1002/cae.22077
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/cae.22077

[21] Jan Knobloch, Jonas Kaltenbach, and Bernd Bruegge. 2018. Increasing Student
Engagement in Higher Education Using a Context-Aware Q&A Teaching Frame-
work. In Proceedings of the 40th International Conference on Software Engineer-
ing: Software Engineering Education and Training (Gothenburg, Sweden) (ICSE-
SEET ’18). Association for Computing Machinery, New York, NY, USA, 136–145.
https://doi.org/10.1145/3183377.3183389

[22] Gerald Kotonya and Ian Sommerville. 1998. Requirements Engineering: Processes
and Techniques (1st ed.). Wiley Publishing.

[23] Stephan Krusche, Nadine von Frankenberg, Lara Marie Reimer, and Bernd
Bruegge. 2020. An Interactive Learning Method to Engage Students in Model-
ing. In Proceedings of the ACM/IEEE 42nd International Conference on Software
Engineering: Software Engineering Education and Training (Seoul, South Korea)
(ICSE-SEET ’20). Association for Computing Machinery, New York, NY, USA,
12–22. https://doi.org/10.1145/3377814.3381701

[24] Stan Kurkovsky. 2015. Teaching Software Engineering with LEGO Serious Play.
In Proceedings of the 2015 ACM Conference on Innovation and Technology in
Computer Science Education (Vilnius, Lithuania) (ITiCSE ’15). Association for
Computing Machinery, New York, NY, USA, 213–218. https://doi.org/10.1145/
2729094.2742604

[25] Timothy C. Lethbridge, Gunter Mussbacher, Andrew Forward, and Omar Badred-
din. 2011. Teaching UML using umple: Applying model-oriented programming in
the classroom. In 2011 24th IEEE-CS Conference on Software Engineering Education
and Training (CSEE&T). 421–428. https://doi.org/10.1109/CSEET.2011.5876118

[26] Salisu Modi, Hanan Abdulrahman Taher, and Hoger Mahmud. 2021. A Tool
to Automate Student UML diagram Evaluation. Academic Journal of Nawroz
University 10, 2 (Jun. 2021), 189–198. https://doi.org/10.25007/ajnu.v10n2a1035

[27] Juan Carlos Muñoz-Carpio, Michael Cowling, and James Birt. 2018. Framework
to Enhance Teaching and Learning in System Analysis and Unified Modelling
Language. In 2018 IEEE International Conference on Teaching, Assessment, and
Learning for Engineering (TALE). 91–98. https://doi.org/10.1109/TALE.2018.
8615284

[28] Dominique Py, Ludovic Auxepaules, and Mathilde Alonso. 2013. Diagram, a
Learning Environment for Initiation to Object-Oriented Modeling with UML
Class Diagrams. Journal of Interactive Learning Research 24, 4 (October 2013),
425–446. https://www.learntechlib.org/p/41241

[29] Tobias Reischmann and Herbert Kuchen. 2016. Towards an E-Assessment Tool
for Advanced Software Engineering Skills. In Proceedings of the 16th Koli Calling

International Conference on Computing Education Research (Koli, Finland) (Koli
Calling ’16). Association for Computing Machinery, New York, NY, USA, 81–90.
https://doi.org/10.1145/2999541.2999550

[30] Rebecca Reuter, Florian Hauser, Daniel Muckelbauer, Theresa Stark, Erika Antoni,
Jürgen Mottok, and Christian Wolff. 2019. Using Augmented Reality in Software
Engineering Education? First insights to a comparative study of 2D and AR UML
modeling. In Proceedings of the 52nd Hawaii International Conference on System
Sciences 2019.

[31] Rebecca Reuter, Theresa Stark, Yvonne Sedelmaier, Dieter Landes, Jürgen Mottok,
and Christian Wolff. 2020. Insights in Students’ Problems during UML Modeling.
In 2020 IEEE Global Engineering Education Conference (EDUCON). 592–600. https:
//doi.org/10.1109/EDUCON45650.2020.9125110

[32] Claudia Susie C. Rodrigues, Cláudia M. L. Werner, and Luiz Landau. 2016.
VisAr3D: An Innovative 3D Visualization of UML Models. In 2016 IEEE/ACM 38th
International Conference on Software Engineering Companion (ICSE-C). 451–460.

[33] Chris Rupp, Stefan Queins, and SOPHISTen. 2014. Requirements-Engineering und
-Management. Carl Hanser Verlag GmbH & Co. KG. 570 pages.

[34] Rijul Saini, Gunter Mussbacher, Jin L.C. Guo, and Jöerg Kienzle. 2019. Teaching
Modelling Literacy: An Artificial Intelligence Approach. In 2019 ACM/IEEE 22nd
International Conference on Model Driven Engineering Languages and Systems
Companion (MODELS-C). 714–719. https://doi.org/10.1109/MODELS-C.2019.
00108

[35] Rijul Saini, Gunter Mussbacher, Jin L.C. Guo, and Jöerg Kienzle. 2019. Teaching
Modelling Literacy: An Artificial Intelligence Approach. In 2019 ACM/IEEE 22nd
International Conference on Model Driven Engineering Languages and Systems
Companion (MODELS-C). 714–719. https://doi.org/10.1109/MODELS-C.2019.
00108

[36] Marcelo Schots, Claudia Susie C. Rodrigues, ClaudiaWerner, and LeonardoMurta.
2010. A Study on the Application of the PREViAApproach inModeling Education.
In 2010 XXIX International Conference of the Chilean Computer Science Society.
96–101. https://doi.org/10.1109/SCCC.2010.29

[37] Gayane Sedrakyan and Monique Snoeck. 2012. Technology-Enhanced Support
for Learning Conceptual Modeling. In Enterprise, Business-Process and Information
Systems Modeling, Ilia Bider, Terry Halpin, John Krogstie, Selmin Nurcan, Erik
Proper, Rainer Schmidt, Pnina Soffer, and Stanisław Wrycza (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 435–449.

[38] J. Soler, I. Boada, F. Prados, J. Poch, and R. Fabregat. 2010. A web-based e-
learning tool for UML class diagrams. In IEEE EDUCON 2010 Conference. 973–979.
https://doi.org/10.1109/EDUCON.2010.5492473

[39] D.R. Stikkolorum, Truong Ho-Quang, and M.R.V. Chaudron. 2015. Revealing
Students’ UML Class DiagramModelling Strategies withWebUML and LogViz. In
2015 41st Euromicro Conference on Software Engineering and Advanced Applications.
275–279. https://doi.org/10.1109/SEAA.2015.77

[40] D. R. Stikkolorum, F. Gomes de Oliveira Neto, and M. R. V. Chaudron. 2018.
Evaluating Didactic Approaches Used by Teaching Assistants for Software
Analysis and Design Using UML. In Proceedings of the 3rd European Confer-
ence of Software Engineering Education (Seeon/ Bavaria, Germany) (ECSEE’18).
Association for Computing Machinery, New York, NY, USA, 122–131. https:
//doi.org/10.1145/3209087.3209107

[41] Dave R. Stikkolorum, Peter van der Putten, Caroline Sperandio, and Michel R. V.
Chaudron. 2019. Towards Automated Grading of UML Class Diagrams with
Machine Learning. In BNAIC/BENELEARN.

[42] Sylvia Stuurman, Harrie Passier, and Erik Barendsen. 2016. Analyzing Students’
Software Redesign Strategies. In Proceedings of the 16th Koli Calling International
Conference on Computing Education Research (Koli, Finland) (Koli Calling ’16).
Association for Computing Machinery, New York, NY, USA, 110–119. https:
//doi.org/10.1145/2999541.2999559

[43] Bingyang Wei, Harry S. Delugach, Eduardo Colmenares, and Catherine Stringfel-
low. 2016. A Conceptual Graphs Framework for Teaching UML Model-Based
Requirements Acquisition. In 2016 IEEE 29th International Conference on Software
Engineering Education and Training (CSEE&T). 71–75. https://doi.org/10.1109/
CSEET.2016.35

[44] Christian Wolff. 2015. The Case for Teaching “Tool Science”. Taking Software
Engineering and Software Engineering Education beyond the Confinements of
Traditional Software Development Contexts. In 2015 IEEE Global Engineering
Education Conference (EDUCON). 932–938. https://doi.org/10.1109/EDUCON.
2015.7096085

[45] Jeong Yang, Youlg Lee, and Kai H. Chang. 2017. Initial Evaluation of JaguarCode: A
Web-Based Object-Oriented Programming Environment with Static and Dynamic
Visualization. In 2017 IEEE 30th Conference on Software Engineering Education
and Training (CSEE&T). 152–161. https://doi.org/10.1109/CSEET.2017.32

[46] Jeong Yang, Young Lee, David Hicks, and Kai H. Chang. 2015. Enhancing object-
oriented programming education using static and dynamic visualization. In 2015
IEEE Frontiers in Education Conference (FIE). 1–5. https://doi.org/10.1109/FIE.
2015.7344152

188

https://doi.org/10.1109/CSEET.2016.33
https://doi.org/10.1109/EDUCON45650.2020.9125244
https://doi.org/10.1109/EDUCON45650.2020.9125244
https://doi.org/10.1109/EDUCON52537.2022.9766802
https://doi.org/10.1109/EDUCON52537.2022.9766802
https://doi.org/10.23919/MIPRO55190.2022.9803560
https://doi.org/10.23919/MIPRO55190.2022.9803560
https://doi.org/10.1109/EDUCON52537.2022.9766593
https://doi.org/10.1109/EDUCON52537.2022.9766593
https://doi.org/10.1002/cae.22077
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cae.22077
https://doi.org/10.1145/3183377.3183389
https://doi.org/10.1145/3377814.3381701
https://doi.org/10.1145/2729094.2742604
https://doi.org/10.1145/2729094.2742604
https://doi.org/10.1109/CSEET.2011.5876118
https://doi.org/10.25007/ajnu.v10n2a1035
https://doi.org/10.1109/TALE.2018.8615284
https://doi.org/10.1109/TALE.2018.8615284
https://www.learntechlib.org/p/41241
https://doi.org/10.1145/2999541.2999550
https://doi.org/10.1109/EDUCON45650.2020.9125110
https://doi.org/10.1109/EDUCON45650.2020.9125110
https://doi.org/10.1109/MODELS-C.2019.00108
https://doi.org/10.1109/MODELS-C.2019.00108
https://doi.org/10.1109/MODELS-C.2019.00108
https://doi.org/10.1109/MODELS-C.2019.00108
https://doi.org/10.1109/SCCC.2010.29
https://doi.org/10.1109/EDUCON.2010.5492473
https://doi.org/10.1109/SEAA.2015.77
https://doi.org/10.1145/3209087.3209107
https://doi.org/10.1145/3209087.3209107
https://doi.org/10.1145/2999541.2999559
https://doi.org/10.1145/2999541.2999559
https://doi.org/10.1109/CSEET.2016.35
https://doi.org/10.1109/CSEET.2016.35
https://doi.org/10.1109/EDUCON.2015.7096085
https://doi.org/10.1109/EDUCON.2015.7096085
https://doi.org/10.1109/CSEET.2017.32
https://doi.org/10.1109/FIE.2015.7344152
https://doi.org/10.1109/FIE.2015.7344152

	Abstract
	1 Introduction
	2 Related Work
	3 Requirements Elicitation
	3.1 Requirements from an Educators' Perspective
	3.2 Requirements from a Students' Perspective
	3.3 System requirements

	4 Requirements Visualization
	4.1 Educators' Activities
	4.2 Students' Activities

	5 Conclusion
	References

