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Chapter 1

Introduction and overview

1.1 Introduction

The author recalls an early morning with the managing directors of entelios AG,
now EnerNoc AG, a demand-response supplier in the German Power Reserve
and Balancing Energy Market on Wednesday, December 18th, 2013. As a math-
ematician and young econometrician, the author was asked to provide a price
for the offering of 20 megawatts (MW). The price would be the company’s bid
within the secondary power reserve for the first Christmas week starting on De-
cember 23rd. The mechanism was a frequential, discriminatory or pay-as-bid
multi-unit auction. While the maximum accepted price from week before was
approximately 800 €/MW, the last year’s price for the Christmas week was ap-
proximately 8,200 €/MW. If a (risk-taking) bid of 8,000 €/MW is locked in and
the maximum accepted price will be 7,999 €/MW, the offer will not be accepted,
meaning that the company will not receive anything, in particular not 160,000 €.
If a (risk-averse) bid of 100 €/MW is provided and the maximum accepted price
will be 5,000 €/MW, the company will receive 2,000 €, while the bidder with the
highest accepted bid will secure 100,000 € for 20 MW.

1.1.1 Functional Data Analysis

The challenge to empirically model frequential multi-unit auctions was the start-
ing point of this thesis and led the author to a branch of statistics called “func-
tional data analysis” (FDA), which dates back to Ramsay (1982). FDA’s growing
importance over the last two decades is not only due to increased computational
power, but mainly due to the exponential increase in the availability of high-
resolution data recordings, e.g., temperature or growth curves in nature or elec-
tricity multi-unit auctions in energy markets. Observations of such functions are

1



2 Introduction

called functional data, and FDA refers to the statistical analysis of such data.
While in the temperature example, data is generated by continuous processes,
which, in principle, can be sampled at arbitrary discretization points, FDA also
allows us to exploit properties of differentiable functions generated by, in princi-
ple, discrete demand or supply step functions as in the electricity example above.
In this case, an unbiased estimator can only be defined via the derivative of the
supply function.

This thesis aims to contribute to the FDA scientific field by developing novel
methods to approach (multi-unit) auctions from a functional data perspective
and prove the added value in practice. Moreover, the implementations are made
publicly available as packages for the open-source programming language GNU R
to simplify the application of the methods onto other multi-unit auctions, e.g., in
other balancing energy markets or on certain treasury bills and bonds markets.

The remainder of this chapter contains a brief introduction to functional data
and mutli-unit auctions as well as an overview of the three papers that make up
the dissertation.

Functional data analysis is the statistical counterpart of functional analysis
and analyzes so called “functional data”, i.e., discretized observations of “func-
tional random variables” (FRV). These are random variables taking values in a
Hilbert space L2(I), the study subject of functional analysis, where I is typically
a subset of Rn. In most applications, I is a closed interval on the real line, e.g.,
[0, 1], the random functions are one-dimensional curves, i.e.,x ∈ L2([0, 1],R), and
the FRV is a map X : (Ω,F ,P) → L2([0, 1],R) with ω 7→ x(t). As a generaliza-
tion, there are also applications to random surfaces or, more recently, random
functions defined on manifolds.

Next to classical statistical tasks such as mean and variance estimation, FDA
is also interested in how variables influence each other. Within FDA, the idea of
regression analysis is extended to functional variables and differentiates between
three different types of functional regression models: the first type (scalar-on-
function regression) is a regression model with a functional predictor and a scalar
outcome variable. The second type is a model where a functional outcome vari-
able is explained by scalar predictors (function-on-scalar regression), and in the
third type, a function is regressed on another function (function-on-function re-
gression), e.g., in functional autoregressive models.

From a theoretical perspective, this dissertation addresses methodological
extensions and questions related to the applicability and interpretability of the
first type of model. It further investigates the estimation of mean and variance
in the case of partially observed data, i.e., by systematically violating the i.i.d.
assumption, and uses this novel mean and variance estimator for a new prediction
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algorithm that avoids functional autoregressive models.

For a brief introduction to the scalar-on-function regression model, we assume
that we observe an i.i.d. sample of tuples (yi, Xi), i = 1, . . . , n, where Xi are
realizations of a functional random variable taking values in the Hilbert space
L2([0, 1]) and the yi are generated from the model

yi = α+

∫
[0,1]

β(t)Xi(t) dt+ εi, (1.1)

where εi is an scalar-valued i.i.d. error term that has mean zero, finite variance,
and is independently distributed from the Xi. The deterministic parameter func-
tion β(t) is often the quantity of interest because it determines the dependency
between Xi and yi.

Several estimation approaches are available in the literature. Classically, es-
timation builds on functional principal components (FPCA). In this setting, the
spectral theorem is used to approximate both the coefficient function β and the
functional observations by the leading eigenfunctions of the random curves’ em-
pirical covariance operator as a basis for a finite dimensional function space. On
the one hand, this finite dimensional subspace of L2 is optimal for approximating
the functional predictors for a given number of eigenfunctions but, on the other
hand, may not be the best fit for approximating β. Alternatively, the estimation
of β can also be achieved by using other basis systems, such as splines. Next to
estimating β, splines are also used to preprocess the auction data into functional
data, see Figure 1.1.

Figure 1.1: Left: Five weekly, discrete auction step functions from 19.09.2011
until 17.10.2011 (light gray to black). Right: Representation as functions, i.e.,
differentiable auction curves.
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1.1.2 Multi-Unit Auctions

Auctions are seemingly pervasive, they are used to sell a variety of agricultural
commodities and natural resources as well as fine art, real estate, and used cars.
In 2022, Google processed approximately 100,000 searches every single second,
the results of the requests appearing in the iconic results page—the advertised
ones on the top positions, the organic results below. The order of those links is
determined at a position auction, a type of auction used for Google AdWords.
Besides AdWords, the allocation of reserve capacity in Germany accounts for
hundreds of millions of euros every year and is one of the most important in-
dicators for renewable energy investments. This dissertation deals with these
auctions by applying functional data methods onto frequential, discriminatory
or pay-as-bid, sealed-bid multi-object/unit auctions.

In short, multi-object auctions involve the sale of several different objects, e.g.,
AdWords positions, while multi-unit auctions involve the sale of several units of
the same, non-differentiable object, e.g., MW or MW/h. If there is one price to
pay by every bidder, the mechanism is called uniform pricing, while a pricing
mechanism is called discriminatory or pay-as-bid if every bidder pays their own
or different prices. Sealed-bid describes the closed format of the auction, i.e., the
bids are not known to other bidders. Auctions are referred to as frequential if
they are held on a regular basis, e.g., every day or every week. For a general
introduction to auctions, the author recommends Krishna (2009), while for a
structural econometric introduction, Paarsch et al. (2006) provide a standard.
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1.2 Overview and contribution

1.2.1 Functional linear regression with points of impact

The first paper was published as Liebl et al. (2020) and is coauthored with
Dominik Liebl and Christoph Rust. It extends the literature on an augmented
scalar-on-function regression model, namely the functional linear regression model
with points of impact. The paper builds on the work of Kneip et al. (2016) and
introduces several adjustments to the estimation procedure, improving thereby
the finite sample performance. The model suggested in Kneip et al. (2016) is
defined by

Yi =

∫
β(t)Xi(t) dt+

S∑
s=1

βsXi(τs) + ϵi, i = 1, . . . , n. (1.2)

Here, the functional predictors not only influence the scalar-valued response vari-
able via the integral, but the functional predictors Xi are also directly related
to the outcome variable Yi at specific influential points τs ∈ [0, 1], s = 1, . . . , S.
These so-called points of impact are not known a priori and have to be estimated
together with the other model parameters β, β1, . . . , βS . To identify points of
impact, the random functions Xi must not be too smooth, and must possess
what Kneip et al. (2016) call specific local variation. The principal idea behind
identifying points of impact is to search for peaks over discretization points t
of the correlation between Yi and Zi(t, δ), where Zi(t, δ) is the central second-
order difference quotient of Xi(t) with differencing parameter δ > 0. Given a
set of potential points of impact, the model can be estimated using standard
FDA approaches. Kneip et al. (2016) use a finite-dimensional representation of
the curves (functional principal components) and select the model complexity
(number of principal components, number of points of impact, differencing pa-
rameter δ) by minimizing the Bayes Information Criterion (BIC) simultaneously
over these three parameters. They also suggest theoretically motivated choices
for the number of points of impact and the differencing parameter δ, which,
however, are not really suited for practical applications.

In our paper, we suggest several adjustments to the original procedure. First,
we use a different basis system and expand β using B-splines. As we argue, the
originally proposed FPCA approach is optimal for approximating the functional
covariates but may be less well-suited to approximating β, especially if it is a
relatively smooth function. Additionally, as we show in a simulation exercise,
selecting the number of (FPCA) basis functions and number of points of impact
simultaneously may result in severe misspecifications of the model. Second, we
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decouple the estimation of the points of impact and the estimation (and choice
of complexity) of β by using an alternating procedure that reduces the risk of
choosing a misspecified model.

In an extensive simulation study, we show that our procedure outperforms
the original approach in an MSE sense. This is particularly true for smaller
sample sizes. Besides that, the paper also provides theoretical arguments for
these adjustments and treats a case study with real data using data from Google
AdWords. This case study also shows the usefulness of the model framework
for decomposing the dependency between the functional predictor and the scalar
outcome variable into time-global effects (via β) and time-local effects (via points
of impact), which facilitates the interpretability of the estimation results at the
point-of-impact locations. To make this methodology accessible to practition-
ers, an R package implementing both the original estimation procedure and the
proposed one is available from one of the authors’ Github account.

1.2.2 Partially Observed Functional Data: The Case of System-
atically Missing Parts

The second paper was published as Liebl and Rameseder (2019) and is coau-
thored with Dominik Liebl. It provides a generalization of the classical mean
and covariance function estimators µ̂(t) and σ̂(s, t) for partially observed func-
tional data using a detour via the fundamental theorem of calculus. The new
estimators allow for a consistent estimation of the mean and covariance func-
tion under specific violations of the missing-completely-at-random assumption
(MCAR).

In our setup, the random functions Xi(t) are only observable over random
subdomains Di = [0, di] ⊆ [0, 1]. These subdomains lead to a t-specific ob-
served data indicator Oi(t) defined as Oi(t) = 1t∈Di ; i.e., Oi(t) = 1 if Xi(t)

is observable and Oi(t) = 0 if Xi(t) is missing. The MCAR assumption re-
quires independence between the entire random processes Oi and Xi. If they
are independent, the mean function can be consistently estimated via µ̂(t) =

(I1(t))(
∑n

i=1Oi(t))
−1
∑n

i=1Xi(t)Oi(t) with I1(t) = 1∑n
i=1 Oi(t)>0.

However, motivated by the practical problem of estimating the mean price
curve in the German Control Reserve (GCR) Market, the defined setup violates
the MCAR assumption by assuming that the dependency of X and O manifests
only in the dependency between O and the vertical shift component of X. This
violation can be explained by systematic trading strategies in the market. In
this case, µ̂(t) is biased and inconsistent, while we prove that the proposed mean
estimator µ̂FTC(t)

https://github.com/christophrust/FunRegPoI
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µ̂FTC(t) =

{
µ̂(t) if t ∈ [0, dmin]∫ t
dmin

µ̂(1)(z)dz + µ̂(dmin) if t ∈ (dmin, 1],
(1.3)

where

µ̂(k)(t) =
I1(t)∑n
i=1Oi(t)

n∑
i=1

X
(k)
i (t)Oi(t),

and where X(k)
i (t) denotes the k-th derivative of Xi(t), is consistent.

To test for this type of dependency, a sequential multiple hypothesis test
procedure from Romano and Wolf (2005) is introduced. The idea is to test the
basis representation X(t) =

∑
j≥1 ξjψj(t) for only ξi1 significantly correlating

with di while all other ξij , j ≥ 2 do not.
An extensive simulation study compares the new estimators with the classical

estimators from the literature in different missing data scenarios and ensures
the applicability of both the testing procedure and the proposed estimator’s
performance. In contrast to the classical estimators, the new estimators also
lead to useful estimates of the mean and covariance functions in the German
Control Reserve Market that are used in the next publication to predict future
supply curves. Supplementary materials such as data and codes are provided at
the author’s Github account.

1.2.3 Forecasting of discriminatory auction curves with underly-
ing missing data mechanism in the German Capacity Re-
serve and Balance Power Market

The third paper is single authored and addresses the moment mentioned at
the beginning of the introduction, i.e., providing bids for the GCR. The pro-
posed, novel method outperforms classical but standard approaches in this mar-
ket. While electricity spot markets, e.g., the European Energy Exchange (EEX),
are extensively investigated by both industry and researchers, balancing markets,
e.g., the GCR, play a minor role. Next to financial volumes, the most important
reason is the different pricing mechanism, where the latter typically uses exotic
auction formats and therefore needs adjusted statistical tools.

The GCR’s market design is a weekly, pay-as-bid multi-unit auction with
only partially observable supply functions. According to Grimm et al. (2008)
and Engelmann and Grimm (2009), it is strategically optimal to predict and bid
almost the (unknown) maximum price the GCC needs to cover for the inelastic
demand dt for week t, i.e., the amount of capacity to secure the stability of the

https://github.com/stefanrameseder/PartiallyFD
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electricity grid. The demand is determined and announced by the Bundesnetza-
gentur (BNetzA) on a weekly basis and differs significantly during volatile energy
consumption periods like Christmas, see for example Figure 1.1 with two different
demands in red or Figure 3.5.3 with different demands in turquoise. The partial
observability is due to the fact that bids exceeding the maximum accepted prices
are not published.

The paper’s principal idea of providing a bid is a four-step process:

1. Estimate consistently the mean of all curves up to t for the whole domain
[0, dmax] using µ̂FTC(t) to cover for the (tested) violation of the MCAR
assumption

2. Forecast a univariate gravity point for t+1 that also includes also exogenous
variables

3. Create a curve prediction out of the gravity point and the mean estimate
4. Use the evaluation of the functional prediction at a MW position reflecting

demand dt+1 and risk-aversion as bid

The paper applies this procedure to four different weekly auctions in Sec-
ondary Reserve but is also applicable in the German Primary (PR) and Tertiary
Reserve (TR) and can be scaled to general discriminatory multi-unit auctions
with underlying missing data mechanisms. As part of the modeling process, the
paper provides guidance and codes for every step: the transfer of discrete bids
into functional data using P-splines, the testing for the violation, the model es-
timation, and evaluation using specific, highly asymmetric metrics. ling process,
the paper provides guidance and codes for every step: the transfer of discrete
bids into functional data using P-splines, the testing for the violation, the model
estimation, and evaluation using specific, highly asymmetric metrics.

To the author’s knowledge, this is the first evaluation of prediction methods
for Secondary Reserve (SR) in the GCR which accounted for more than €1.3
billion between 2011 and 2016.



Chapter 2

Improving the estimation of
functional linear regression
with points of impact

2.1 Introduction

In many practical applications, one is interested in the relationship between a
real-valued outcome variable Yi and a function-valued predictor {Xi(t); a ≤ t ≤
b}. In our motivating Google AdWords case study, for instance, we aim to explain
the numbers of clicks Yi using impression trajectories Xi(t), where t denotes a
certain day within the considered time interval [a, b] of one year and i = 1, . . . , n

indexes the cross section of keywords associated with the considered Google Ad-
Words ad campaign.1 The economic success of any ad campaign depends on
product specific (time-global) seasonalities as well as on (time-local) events. The
slowly varying seasonal component could be estimated using the function-valued
slope parameter of the classical functional linear regression model (see, e.g., Hall
and Horowitz, 2007). The presence of time-local effects, however, harms such a
simple estimation approach (see the right plot in Figure 2.2 for notable examples).
Therefore, we use the recent functional linear regression models with so-called
Points of Impact (PoI) that allow us to identify and to control for time-local
effects.

Point of impact models were originally introduced by McKeague and Sen
(2010), who argue that these models are better to interpret than the classical

1Online ad campaigns use text corpora populations of relevant search keywords (for instance,
outdoor jacket, mountain boots, etc., in the case of an outdoor equipment campaign) to
identify potential customers by their Google searches (see Section 2.4 for more details).

9



10 Functional Regression with PoIs

functional linear regression models. Indeed, several convincing real data appli-
cations are presented in the related work of Lindquist and McKeague (2009).
The method of Kneip et al. (2016) generalizes the original point of impact model
by adding a classical functional linear regression component. While the origi-
nal point of impact model captures only time-local effects, the augmented point
of impact model of Kneip et al. (2016) also allows for time-global effects. In
our paper we present a new and relevant case study where time-local as well as
time-global effects are important for modeling the outcome.

As demonstrated in our simulation study, however, the finite sample perfor-
mance of the estimation procedure proposed by Kneip et al. (2016) is very sen-
sitive to the performance of the involved model selection. Therefore, we propose
an adjusted sequential estimation algorithm that leads to significantly improved
and more robust estimation results by using a refined model selection procedure.

The functional linear regression model with PoIs of Kneip et al. (2016) is
related to several other works in the literature. Identifiability and estimation
of points of impact was originally studied by McKeague and Sen (2010). The
authors focus on a one-point of impact model without a functional linear model
component; however, the possibility of a partial model misspecification by an
additional functional linear model component is also discussed theoretically. Fer-
raty et al. (2010) and Poß et al. (2020) allow for multiple PoIs within a nonpara-
metric model, but both do not consider a functional linear model component.
Matsui and Konishi (2011) consider the extraction of local information within
functional linear regressions using a LASSO-type approach, but do not estimate
global components. Torrecilla et al. (2016) focus on a classification context, and
Fraiman et al. (2016) consider feature selection for functional data at a more
general level. Our estimation algorithm uses the penalized smoothing splines
estimator for functional linear regression models proposed by Crambes et al.
(2009). The related literature is extensive and the following examples are by
no means exhaustive. Cardot et al. (2007) consider functional linear regres-
sion with errors-in-variables, Crambes et al. (2009) address optimality issues,
Goldsmith et al. (2010) focus on penalized smoothing splines within a mixed
model framework, and Maronna and Yohai (2013) propose a robust version of
the penalized smoothing splines estimator. Scalar-on-function regression mod-
els are successfully applied to solve important practical problems. Chiou (2012)
proposes a functional regression model for predicting traffic flows. Goldsmith
et al. (2012) introduce a penalized functional regression model to explore the
relationship between cerebral white matter tracts in multiple-sclerosis patients.
Koeppe et al. (2014) consider regularized functional linear regression for brain
image data. Gellar et al. (2014a) and Gromenko et al. (2017) propose functional
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regression models for incomplete curves. An overview article on methods for
scalar-on-function regression is found in Reiss et al. (2017). Readers with a gen-
eral interest in Functional Data Analysis (FDA) are referred to the textbooks of
Ramsay and Silverman (2005), Ferraty and Vieu (2006), Horváth and Kokoszka
(2012), and Hsing and Eubank (2015). To the best of our knowledge, we are the
first to use methods from FDA to analyze data from an online ad campaign; how-
ever, there are several contributions in FDA on related applications. Reddy and
Dass (2006) use a classical functional linear regression model to analyze online
art auctions, Liu and Müller (2008) analyze eBay auction prices using methods
for sparse functional data, Wang et al. (2008) forecast eBay auction prices, Wang
et al. (2008) develop a model for the price dynamics at eBay using differential
equation models, and Zhang et al. (2010) consider real-time forecasting of eBay
auctions using functional K-nearest neighbors.

The rest of the paper and our contributions are structured as follows. The
next section (Section 2.2) contains our methodology. In Section 2.2.1, we begin
with a short presentation of the original procedure of Kneip et al. (2016). In
Section 2.2.2, we introduce our three main proposals (1. Sequential model selec-
tion and estimation, 2. Smoothing splines estimator, and 3. Standardizations)
which we use to stabilize and improve the estimation procedure of Kneip et al.
(2016). The implementation of our estimation algorithm is presented in Section
2.2.3. Section 2.3 contains our simulation results, our case study on analyzing
Google AdWords data is found in Section 2.4 and Section 2.5 contains the conclu-
sion. Appendix 2.A presents further simulation results. The online supplement
supporting this article contains the R-package FunRegPoI and the R-codes for
reproducing our simulation study and the real data application.
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2.2 Methodology

We formally consider the following functional linear regression model with PoIs
introduced by Kneip et al. (2016):

Yi =

∫ b

a
β(t)Xi(t) dt+

S∑
s=1

βsXi(τs) + ϵi, i = 1, . . . , n. (2.1)

Here, (Y1, X1), . . . , (Yn, Xn) denote an i.i.d. sample of scalar response variables
Yi ∈ R and random predictor functions Xi ∈ L2([a, b]), where E[Yi] = 0 and
E[Xi(t)] = 0 for all t ∈ [a, b]. Without loss of generality, we set [a, b] = [0, 1]. The
i.i.d. error term ϵi has mean zero, variance E[ϵ2i ] = σ2ϵ < ∞, and is independent
of Xi. The assumption that Yi and Xi have mean zero is only for notational
simplicity; for the estimation, however, we will explicitly denote the centering of
the data.

The function-valued slope parameter β ∈ L2([0, 1]) in Model (2.1) describes
the time-global influences of Xi on Yi. The scalar-valued slope parameters βs ∈ R
take into account the time-local influences where the corresponding (unknown)
time-points τs denote the locations of the PoIs. The estimation algorithm de-
scribed below addresses the estimation of all unknown model parameters, namely,
the global slope coefficient β, the local influences of the PoIs β1,. . . ,βS , and the
set of PoI locations T = {τ1,. . . ,τS}.

In the following, we introduce our basic notation. The functions Xi(t) are
observed at p equidistant grid points t1, . . . , tp with tj = (j − 1)/(p − 1). For
non-equidistant designs, this can always be achieved by pre-smoothing the data.
In Y = (Y1, . . . , Yn)

′ ∈ Rn, we collect all observations of the response vari-
able Yi, and in X = (Xi(tj))ij ∈ Rn×p, we collect all discretizations Xi(tj), i =

1, . . . , n, j = 1, . . . , p. Furthermore, let Yc and Xc define the centered versions
of Y and X, i.e., Yc = (Y c

1 , . . . , Y
c
n )

′, Xc = (Xc
i (tj))ij , where Y c

i = Yi − Y,
Xc

i (tj) = Xi(tj)−Xj , Y = n−1
∑n

i=1 Yi, Xj = n−1
∑n

i=1Xi(tj).

2.2.1 The original procedure of Kneip et al. (2016)

In this section, we briefly describe the estimation and model selection procedures
proposed in Kneip et al. (2016). Later, in Section 2.2.2, we describe our adjust-
ments to improve the original procedure and explain why these adjustments result
in superior estimation performances.

To estimate the potential PoIs τ̃s, s = 1, . . . , S̃, Kneip et al. (2016) propose a
local maxima search (over tj) based on the sample version |n−1

∑n
i=1 ZXi(tj ; δ)Yi|

of the cross-moment |E[ZXi(t; δ)Yi]|, where ZXi(t; δ) = Xi(t)−(Xi(t−δ)+Xi(t+
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Algorithm 1 Search Potential Points of Impact Algorithm

1: procedure searchPotPoI( δ ∈ D = (0, δmax], X = Xc, Y = Yc)
2: Given δ, define the index kδ ∈ N such that 1 ≤ kδ < (p − 1)/2 ⇐⇒ δ ≈
kδ/(p− 1).

3: Restrict the set of possible grid indices, i.e., define J0,δ = {kδ +1, . . . , p−
kδ}.

4: For each index j ∈ J0,δ, calculate ZXi(tj ; δ) = Xi(tj) − 1
2(Xi(tj − δ) +

Xi(tj + δ)).
5: while Js,δ 6= ∅, iterate over s = 1, 2, 3, . . . , and do
6: Determine the index js ∈ Js−1,δ of the empirical maximum of
ZX(t; δ)Y , i.e.,

js = argmax
j∈Js−1,δ

∣∣∣∣∣ 1n
n∑

i=1

ZXi(tj ; δ)Yi

∣∣∣∣∣ .
7: Define the s-th potential impact point τ̃s = tjs as grid point at index
js.

8: Eliminate all points in an environment of size
√
δ around τ̃s, i.e., define

Js,δ = {j ∈ Js−1,δ | |tj − τ̃s| ≥
√
δ/2}.

9: end while
10: return T̃ = {τ̃1, . . . , τ̃S̃}
11: end procedure

δ))/2 is the central second-order difference quotient of Xi(t) with δ > 0. The
statistic ZXi(t; δ) acts as a filter on Xi(t) that uncovers the local-specific variance
component of the process Xi(t); see the left plot in Figure 2.1.

The existence of a local-specific variance component in Xi is crucial for the
estimation procedure of Kneip et al. (2016) and allows us to show the identifia-
bility of the points of impact and of the model parameters model parameters (see
Kneip et al., 2016, Theorem 1). Processes that have a local-specific variance com-
ponent are typically rough stochastic processes (for instance, Brownian motions,
Ornstein-Uhlenbeck processes, etc.), i.e., processes with covariance functions that
are sufficiently non-smooth at the diagonal (see Kneip et al., 2016, Theorem 3).
Kneip et al. (2016) use a parameter 0 < κ < 2 to quantify the smoothness of the
covariance function at the diagonal and propose an estimator κ̂ to decide in prac-
tice, whether the covariance function is sufficiently non-smooth at the diagonal.
The reader is referred to Section 2.4 for an application of this procedure.

The estimation procedure proposed by Kneip et al. (2016) to detect potential
PoIs is formally described in Algorithm 1. In each iteration, s = 1, 2, . . . , one PoI
is selected by the global maximum of the trajectory of |n−1

∑n
i=1 ZXi(tj ; δ)Yi| over

j ∈ Js−1,δ, where Js−1,δ ⊂ {1, . . . , p} denotes an index set defined in Algorithm 1
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(see lines 3 and 8). Once a PoI is selected, the algorithm eliminates the grid points
within a

√
δ/2-neighborhood around the selected PoI (see line 8 of Algorithm 1).

The algorithm terminates when Js,δ is the empty set. The elimination step in
line 8 is necessary for providing a consistent estimation procedure.

The selection of the first PoI is shown in the middle plot of Figure 2.1. The
first elimination step is shown in the right plot of Figure 2.1, where the second
PoI, τ̃2, is determined by the global maximum of the remaining parts of the
trajectory of |n−1

∑n
i=1 ZXi(tj ; δ)Yi| over j ∈ J1,δ.

0 0.2 0.4 0.6 0.8 1

X(t)
ZX(t)

0 0.2 0.4 0.6 0.8 1

0
|N

−1
∑ i=

1N
Z

X
i(t j

, δ
)Y

i|

τ1

0 0.2 0.4 0.6 0.8 1

|N
−1

∑ i=
1N
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X
i(t j

, δ
)Y

i|
0

τ1 ± δ 2τ2

Figure 2.1: Left: Trajectories of Xi(tj) and ZXi(tj ; δ), with δ = 0.01. Middle:
Trajectory of |n−1

∑n
i=1 ZXi(tj ; δ)Yi|, with first choice τ̃1. Right: Visualization

of the second iteration of the searchPotPoI-Algorithm.

To estimate the model coefficients for given PoIs τ̂s, Kneip et al. (2016)
propose an FPCA-based estimation procedure using the approximate model Yi ≈∫ 1
0 βK(t)Xi,K(t) dt+

∑Ŝ
s=1 βsXi(τ̂s)+ϵi, where βK(t) ≈ β(t) and Xi,K(t) ≈ Xi(t)

are K-dimensional approximations based on the first K eigenfunctions of the
empirical covariance operator of Xi (see Kneip et al., 2016, Eq. (6.1)). Besides
the smoothing parameter, K, one needs to choose a good value of the tuning
parameter δ and a subset T̂ ⊆ T̃ of the set of potential PoIs T̃ from Algorithm 1.
For selecting T̂ ⊆ T̃ , Kneip et al. (2016) propose an asymptotic cut-off approach
and data-driven Bayesian Information Criterion (BIC)-based approach. In this
paper, we focus on the data-driven BIC-based approach as this approach performs
clearly better than the asymptotic approach (see Table 1 in Kneip et al., 2016).
Moreover, the asymptotic cut-off parameter is hardly applicable in practice as it
depends on a generally unknown constant A >

√
2 (see Table 4 in Kneip et al.,

2016).
Kneip et al. (2016) propose an infeasible version and a more general feasible

version of their data-driven BIC-based procedure to select K, δ, and T̂ ⊆ T̃ . The
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infeasible strategy is used in their simulation study where the authors perform a
BIC-based selection of K and T̂ , and set δ = 1/

√
n. This naive parametrization

of δ is appropriate in their simulation study, but can be arbitrarily bad in practice.
The more general strategy is used in the application section of Kneip et al. (2016)
where the authors optimize the BIC(K, T̂ , δ) simultaneously over K, subsets
T̂ ⊂ T̃ , and a fine grid of δ ∈ (0, δmax]. In this paper, we only focus on the
latter general model selection strategy since this is practically the most relevant
strategy proposed in Kneip et al. (2016) which is not based on unknown constants
or naive choices of tuning parameters.

2.2.2 Improving the procedure of Kneip et al. (2016)

In this section, we explain our three main proposals for improving the estimation
procedure of Kneip et al. (2016): 1. Sequential model selection and estimation,
2. Smoothing splines estimator, and 3. Standardizations. Later, in Section 2.2.3,
we describe the implementation of our estimation algorithm, which builds upon
these proposals.
1. Sequential model selection and estimation. Estimating the model pa-
rameters in Model (2.1) bears the substantial risk of an omitted-variable-bias
since not incorporating the (unknown) true PoI locations τs can result in a heav-
ily biased estimator β̂(t) (see the right plot in Figure 2.2 for a noteworthy ex-
ample). This is a critical issue in practice, and our simulation results show that
the original estimation procedure of Kneip et al. (2016) may suffer severely from
such biases.

The underlying problem is that the selection of the number Ŝ of PoIs and
their locations τ̃1, . . . , τ̃Ŝ and the selection of the smoothing parameter, K, for
estimating β(·) are two ambiguous selection problems. It is easy to trade model
complexities between the empirical PoI model component and the empirical func-
tional model component without affecting the model fit. This results in a quite
delicate model selection problem, which generally leads to unstable estimates
when trying to solve both selection problems simultaneously as suggested in
Kneip et al. (2016).

Let us explain the reason for this instability by considering the following two
extreme situations—both approximating the regression Model (2.1):

• Let K � 0 and Ŝ = 0. For very large K, the estimator β̂K(t) is flexible enough,
such that ∫ 1

0
β̂K(t)Xi,K(t) dt ≈

∫ 1

0
β(t)Xi(t) dt+

S∑
s=1

βsXi(τs).
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In this case, β̂K(t) approximates β(t), except at the points of impact locations
t = τs, where β̂K(t) approximates βsXi(τs), i.e., where

∫ τs+h
τs−h β̂K(t)Xi,K(t) dt ≈

βsXi(τs) with, e.g., h = 0.01 (see the right plot in Figure 2.2 for examples of
such estimates β̂K(t)).

• Let K = 0 and Ŝ � 0. A large set of PoI candidates Xi(τ̂1), . . . , Xi(τ̂Ŝ) leads
to a very flexible linear model, such that

Ŝ∑
s=1

β̂sXi(τ̂s) ≈
∫ 1

0
β(t)Xi(t) dt+

S∑
s=1

βsXi(τs).

In this case,
∑Ŝ

s=1 β̂sXi(τ̂s) acts like a Riemann sum for approximating the
integral

∫ 1
0 β(t)Xi(t) dt, except for the β̂s-values at τ̂s ≈ τs, where β̂sXi(τ̂s) ≈

βsXi(τs).

These two extreme situations demonstrate that there is a certain ambiguity
between the model selection parameters K and Ŝ = |T̂ (δ)| that allows for shift-
ing the model-complexities between the integral-part and the PoI-part of the
empirical model. This ambiguity generally leads to unstable model selections
when optimizing BIC(K, T̂ , δ) simultaneously over K, subsets T̂ ⊂ T̃ , and δ—as
proposed in Kneip et al. (2016). As a consequence, one gets unstable estimates
of β(·) caused by omitted-variable biases in β̂(·), as shown in the right plot in
Figure 2.2.

To stabilize the model selection procedure we propose a sequential selection
and estimation procedure (see Section 2.2.3). In the first (“Pre-select”) step,
our procedure pre-selects all potential points of impact T̃ = {τ̃1, . . . , τ̃S̃} while
ignoring the estimation of the functional parameter β(·). In the second (“Esti-
mate”) step, our procedure estimates the model parameters, β(·) and βs, given
the pre-selected points of impact.

The theoretical justification for this sequential approach is given by the fol-
lowing result that holds under the assumptions of Kneip et al. (2016) and implies
that the points of impact can be estimated consistently without knowledge (or
pre-estimation) of the slope function β(·) (see Lemmas 3 and 4 in the supple-
mentary paper of Kneip et al., 2016):

|E(Zδ,i(t)Yi)| = βrc(τs)δ
κ + o(δκ) if tj = τs for some s = 1, . . . , S

|E(Zδ,i(t)Yi)| = O(δ2) if t 6∈ {τ1, . . . , τS}
(2.2)

as δ → 0, where 0 < κ < 2 and 0 < c(τr) < ∞ are constants specific to the
considered process Xi.
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That is, the trajectory of |E(Zδ,i(tj))Yi)|, j = 1, . . . , p, will have peaks at
grid points tj ≈ τr, even without knowledge (or pre-estimation) of the slope
function β(·). Consequently, Step 1 (“Pre-select”) of our algorithm (Section
2.2.3) leads to a consistent point of impact selection if, for instance, δκ ∼ n−1,
since |E(Zδ,i(tj))Yi)| can be consistently estimated using its empirical counterpart
|n−1

∑n
i=1 Zδ,i(tj))Yi| for all j = 1, . . . , p as n→ ∞.

Using the consistently pre-selected points of impact in Step 2 (“Estimate”)
leads to a more stable estimation of the model parameters, β(·) and βs, as it
avoids a simultaneous selection of the PoIs and the smoothing parameters. The
further Steps 3-5 (see the overview in Section 2.2.3) of our selection and estima-
tion algorithm contain repetitions of the selection and estimation steps (Step 1
and Step 2). These repetitions are asymptotically irrelevant, but further improve
the estimation results in practice (see Section 2.3).
2. Smoothing splines estimator. Deviating from Kneip et al. (2016), we pro-
pose using a penalized smoothing splines estimator. The FPCA-based estimator,
proposed by Kneip et al. (2016), is only optimal under the restrictive assumption
of a structural link between the functional regression parameter, β(·), and the
functional regressor, X (see Assumptions (3.1-3.3) in Hall and Horowitz, 2007).
However, this link does not necessarily hold in applications and also cannot be
tested in practice.2 Therefore, we propose using the penalized smoothing splines
estimator of Crambes et al. (2009). While this estimator achieves minimax opti-
mal rates under similar structural link assumptions (see Crambes et al. , 2009),
it is also known to perform well if these structural assumptions do not hold since
the spline basis system has some very general approximation properties (see, for
instance, De Boor, 1978, and Crambes et al., 2009).
3. Standardizations. The standardization of the curves in Step 1 (“Pre-select”)
and Step 3 (“Sub-select”) of our algorithm scales the trajectories of the process
Zδ by the inverse of the pointwise standard deviation of the process X. From an
asymptotic perspective, this is irrelevant, since this scaling only leads to different
constants c(τr) in (2.2). However, standardization of the data is a typical pre-
processing step in model selection problems leading to more homogenous signals
which further improves the selection results in practice (see Section 2.3).

2.2.3 The PES-ES estimation algorithm

Our estimation algorithm is built up from the following three Pre-select, Esti-
mate, and Sub-select (PES) steps:

2Remember that the FPCA-basis, based on the eigendecomposition of the covariance oper-
ator of X, is the optimal empirical basis to approximate X, but generally not the optimal basis
to approximate β(·).
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1. Pre-select: Pre-select potential PoIs T̃ = {τ̃1, . . . , τ̃S̃}. (See Section 2.2.3)

2. Estimate: Estimate the function- and scalar-valued slope parameters
β, β1, . . . , βS̃ given the set of potential PoIs T̃ . (See Section 2.2.3)

3. Sub-select: Sub-select PoIs from the set of potential PoIs T̃ . (See Section
2.2.3)

Typically, the estimation step (Step 2) leads to inefficient estimators β̂(·), but
avoids omitted-variable biases. Inefficient, because T̃ tends to contain many re-
dundant PoI locations (S̃ > S), which reduces the number of degrees of freedom.
We reduce the risk of omitted-variable biases because the large set of potential
PoIs T̃ has a high likelihood of containing the true PoI locations (as explained in
more detail in Section 2.2.2). Our final PES-ES algorithm, described in Section
2.2.3, uses a repetition of the latter two Estimate-Sub-select (ES) steps, which
can result in a further improvement of the estimation results (see Section 2.3).

Pre-Select PoIs

To select potential PoIs, we use Algorithm 1 with the difference that instead of
using centered observations of the functions Xc, we use the pointwise standard-
ized curves Xst as input of the algorithm, where Xst

i (tj) = Xc
i (tj)/sd(Xj) and

sd(Xj) = (n−1
∑n

i=1(Xi(tj)−Xj)
2)1/2. As described in Section 2.2.2, this is ir-

relevant from an asymptotic point of view, but typically stabilizes and improves
the PoI selection in practice.

Estimate Slope Parameters

To estimate the slope parameters—given the pre-selected PoIs T̃ —we adapt the
penalized smoothing splines estimator proposed by Crambes et al. (2009) in order
to incorporate PoIs. Let us initially recap the situation of Model (2.1) without
PoIs (S = 0, T = ∅), as considered by Crambes et al. (2009). Their estimator of
β(·), evaluated at the grid points t1, . . . , tp, is given by

(
β̂ρ(t1), . . . , β̂

ρ(tp)
)
=

1

n

(
1

np
Xc′Xc + ρA

)−1

Xc′Yc, (2.3)

where the penalty matrix A = P+pA⋆ is composed of a non-classical projection
matrix P and a classical regularization matrix A⋆. The non-classical p× p pro-
jection matrix P = W(W′W)−1W′, with W = (tlj)j,l ∈ Rp×m is introduced by
Crambes et al. (2009) in order to guarantee uniqueness of their estimator, where
tlj denotes the lth power of the grid point tj with j = 1, . . . , p and l = 0, . . . ,m−1.
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Following the usual convention, we set m = 2, which results in the classical choice
of cubic splines. The classical p× p regularization matrix A⋆ is defined as

A⋆ = B(B′B)−1

(∫ 1

0
b(2)(t)b(2)(t)′ dt

)
(B′B)−1B′,

where b(t) = (b1(t), . . . , bp(t))
′ are natural cubic spline basis functions, b(2)(t)

denotes their second derivatives, and B is a p×pmatrix with elements bi(tj), i, j =
1, . . . , p. For the implementation of the natural cubic spline basis functions, we
use the ns-function contained in the R-package splines.

In order to incorporate the pre-selected PoIs, we need to extend the matrices
Xc and A. The extended data matrix is given by Xc

T̃
= (Xc, pXc(τ̃1), . . . ,

pXc(τ̃
S̃
)) ∈ Rn×(p+S̃), where Xc(τ̃s) = (Xc

1(τ̃s), . . . , X
c
n(τ̃s))

′ ∈ Rn. The extended
penalty matrix is given by

AT̃ =

(
A 0

0 0

)
∈ R(p+S̃)×(p+S̃),

where all entries with respect to the PoIs are zero (see Goldsmith et al., 2010,
for an equivalent extension of the penalty matrix). The augmented estimator of
β(t1), . . . , β(tp) and β1, . . . , βS ,

β̂ρ
T̃
=
(
β̂ρ
T̃
(t1), . . . , β̂

ρ

T̃
(tp), β̂

ρ

T̃ ,1
, . . . , β̂ρ

T̃ ,S̃

)
=

1

n

(
1

np
Xc′

T̃ X
c
T̃ + ρAT̃

)−1

Xc′
T̃ Y

c,

(2.4)
depends on the included set of PoIs T̃ and on the smoothing parameter ρ. In
order to determine an optimal smoothing parameter, we use the following Gener-
alized Cross-Validation (GCV) criterion, as proposed by Crambes et al. (2009):

GCV(ρ) =

1
nRSS(β̂ρ

T̃
)(

1− 1
nTr(Hc

ρ,T̃
)
)2 . (2.5)

Here, the Residual Sum of Squares (RSS) is defined as RSS(β̂ρ
T̃
) = ||Yc −

Hc
ρ,T̃

Yc||2, where ||.|| denotes the Euclidean norm, and the smoother matrix
Hc

ρ,T̃
is defined as Hc

ρ,T̃
= (np)−1Xc

T̃
((np)−1Xc′

T̃
Xc

T̃
+ ρAT̃ )

−1Xc′
T̃

. Our final
estimator for the slope parameters is given by the GCV-optimized version of
(2.4),

β̂T̃ =
(
β̂T̃ (t), β̂T̃ ,1

, . . . , β̂T̃ ,S̃

)
=
(
β̂ρGCV
T̃

(t), β̂ρGCV
T̃ ,1

, . . . , β̂ρGCV
T̃ ,S̃

)
, t ∈ {t1, . . . , tp},

(2.6)
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where ρGCV = argminρ∈(0,ρmax]GCV(ρ).

Sub-Select PoIs

This part of our estimation algorithm is aimed at selecting the true PoIs from
the pre-selected set of potential PoIs T̃ = T̃ (δ) given the estimate β̂T̃ in (2.6).
This sub-selection is performed by minimizing the following BIC over subsets
R ⊆ T̃ (δ):

T̂ = argmin
R⊆T̃ (δ)

BIC(R), where

BIC(R) = n log

(
RSS(R)

n

)
+ log(n) · SR, with SR = |R|. (2.7)

Here, RSS(R) is made up of the residuals from regressing the β̂T̃ -neutralized
Y
i,β̂T̃

= Y c
i −

∫ 1
0 β̂T̃ (t)X

c
i (t) dt onto Xst

i (τ̃s), . . . , X
st
i (τ̃SR), with {τ̃1, . . . , τ̃SR} =

R, where β̂T̃ (t) is the estimate of β(·) defined as the first element in the vector
of estimates (2.6).

For optimizing BIC(R) over R ⊆ T̃ (δ), we use a directed search strategy
taking into account the information content in T̃ = {τ̃1, . . . , τ̃S̃}. By construction,
the order of the PoI locations τ̃1, . . . , τ̃S̃ reflects a decreasing signal-to-noise ratio
and, therefore, a decreasing quality of the estimates. This suggests minimizing
BIC(R) using a directed search strategy where BIC(R) is evaluated consecutively
at the sets R = {τ̃1}, R = {τ̃1, τ̃2}, . . . ,R = {τ̃1, . . . , τ̃S̃}.

The full PES-ES estimator

Our estimation algorithm, PES-ES, consists of the above described Pre-select-
Estimate-Sub-select (PES) steps and uses a repetition of the latter two Estimate-
Sub-select (ES) steps:

1. Pre-Select T̃ = T̃ (δ) (Section 2.2.3)
2. Estimate β̂T̃ (Section 2.2.3)
3. Sub-Select T̂ ⊆ T̃ (Section 2.2.3)
4. reEstimate β̂T̂ (Section 2.2.3, with T̃ replaced by T̂ )
5. reSub-Select T̂re ⊆ T̂ (Section 2.2.3, with T̃ replaced by T̂ )

Note that the entire PES-ES algorithm depends on the initially pre-selected
set of potential PoIs T̃ (δ) and, therefore, on the choice of δ. In the following,
we write T̂re(δ) in order to emphasize this entire dependency on δ. We follow
Kneip et al. (2016) and determine an optimal δ by minimizing the BIC. For each
δ-value on a fine grid in (0, δmax], we run the entire PES-ES algorithm and select
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the optimal δ by,
δBIC = argmin

δ∈(0,δmax]
BIC(δ), with

BIC(δ) = n log

(
RSS(T̂re(δ))

n

)
+ log(n) · edf(T̂re(δ)), (2.8)

where RSS(T̂re(δ)) = ||Yc −Hc
ρGCV,T̂re(δ)

Yc||2 with smoother matrix Hc
ρGCV,T̂re(δ)

defined as Hc
ρGCV,T̂re(δ)

= (np)−1Xc
T̂re(δ)

((np)−1Xc′
T̂re(δ)

Xc
T̂re(δ)

+ ρGCVA)−1Xc′
T̂re(δ)

and effective degrees of freedom edf(T̂re(δ)) = Tr(Hc′
ρGCV,T̂re(δ)

Hc
ρGCV,T̂re(δ)

); see
Hastie and Tibshirani (1990), Ch. 3.5 for an overview of possible definitions of
edf.

2.3 Simulations

In the following simulation study, we assess the finite sample properties of our
PES-ES algorithm. The original estimation procedure proposed by Kneip, Poss,
and Sarda (2016), abbreviated as KPS, serves as our main benchmark, and its
implementation is described in Section 2.2.1. The smoothing splines estimator
(2.3) by Crambes, Kneip, and Sarda (2009), abbreviated hereafter as CKS, serves
as a challenging benchmark for our NoPoI data generating process (i.e., a func-
tional linear regression model without points of impact). Section 2.3.1 introduces
the considered data generating processes and presents our simulation results.

We aim to provide an in-depth assessment of our PES-ES estimation algo-
rithm. Therefore, in order to assess the improvements that are due to the final
ES (Estimation and Subselection) step, we compare the PES-ES results with
those of the reduced PES estimation algorithm without the final ES step. We
also show that an additional second repetition of the ES step (PES-2ES) does
not lead to a significant improvement of our estimation algorithm.

Kneip et al. (2016) arbitrarily set Kmax = 6, which is, however, too small for
our simulation study where Kmax = 6 often becomes a binding upper optimiza-
tion threshold. The choice of Kmax is crucial since it constrains the magnitude of
possible omitted-variable biases in β̂K(t). The same issue applies to ρmin when
optimizing the GCV in (2.5) over ρ ∈ [ρmin, ρmax] with ρmin ≈ 0. Therefore,
we choose very conservative optimization intervals [Kmin,Kmax] = [1, 150] and
[ρmin, ρmax] = [10−6, 200].
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2.3.1 Data Generating Processes and Simulation Results

We consider five different Data Generating Processes (DGPs), as described in
Table 2.1. The DGPs Easy and Complicated represent a simple and a more
complex version of Model (2.1). The Complicated DGP is challenging due to the
closeness of the PoI locations τ1 and τ2, which may trigger omitted-variable biases
in β̂(t) when omitting either τ1 or τ2. The two further DGPs NoPoI (T = ∅) and
OnlyPoI (β(t) ≡ 0) are used to check the robustness of our PES-ES algorithm
against model-misspecifications.

Table 2.1: Data Generating Processes.

DGP β(t) S T = {τ1, . . . , τS} {β1, . . . , βS}
Easy β(t) = −(t− 1)2 + 2 2 {0.3, 0.6} {−3, 3}
Complicated β(t) = −5(t− 0.5)3 − t+ 1 3 {0.3, 0.4, 0.6} {−3, 3, 3}
OnlyPoI β(t) ≡ 0 2 {0.3, 0.6} {−3, 3}
NoPoI β(t) = −(t− 1)2 + 2 0 ∅ ∅

For each DGP and two sample sizes (n = 250 and n = 500), we generate 1000

replications of n functions Xi(t) observed at p = 300 equidistant points t1, . . . , tp
in [0, 1]. In Appendix 2.A we additionally present simulation results for p = 500.
The functions Xi(t) are standard Brownian Motions, and the dependent variables
Yi are generated according to Model (2.1) with ϵi ∼ N(0, 0.1252). Our simulation
is implemented using the statistical language R (R Core Team, 2017a), and the
R-codes for reproducing the simulation results are part of the online supplement
supporting this article.

The upper panel of Table 2.2 reports the integrated squared bias and the
integrated variance for the estimator β̂(t) of β(t). The integrated squared bias
is computed as

∫ 1
0 (β̄(t)− β(t))2 dt, where β̄(t) = 1000−1

∑1000
r=1 β̂r(t) is the mean

of the estimates over all replications. The integrated variance is computed as
1000−1

∫ 1
0

∑1000
r=1 (β̂r(t) − β̄(t))2 dt. The lower panel of Table 2.2 reports the av-

erage squared bias S−1
∑S

s=1(β̄s − βs)
2, with β̄s = 1000−1

∑1000
r=1 β̂r,s, and the

average variance S−1
∑S

s=1 1000
−1
∑1000

r=1 (β̂r,s − β̄s)
2 for the PoI coefficient es-

timators β̂s, conditionally on the event that τs was correctly found3, where a
single τs is considered to be found correctly if |τ̂s − τs| < 0.01. The latter re-
quirement corresponds to an estimation precision of only ±3 grid points, which
is substantially more challenging than the matching requirement originally used
in Kneip et al. (2016). The shades of gray in Table 2.2 show the ranking of the
mean squared error (MSE); the lowest/highest MSE (=Bias2 + Var.) has the
darkest/lightest gray-scale.

3Note that it is impossible to compute estimation errors for non-found τs.
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Table 2.2: Squared bias and variance of the estimators. Shades of gray show
the ranking of the Mean Squared Error (MSE): lowest/highest MSE has the
darkest/lightest gray-scale.

Easy Complicated NoPoI OnlyPoI∫
β̂(t) Bias2 Var. Bias2 Var. Bias2 Var. Bias2 Var.

n
=

2
50

PES 0.02 0.22 0.21 1.98 0.00 0.02 0.00 0.08
PES-ES 0.02 0.24 0.16 1.68 0.00 0.01 0.00 0.06
PES-2ES 0.02 0.25 0.16 1.66 0.00 0.01 0.00 0.06
KPS 2.81 51.17 155.17 303.03 0.01 0.02 0.05 6.65
CKS - - - - 0.00 0.00 - -

n
=

50
0

PES 0.01 0.06 0.05 0.55 0.00 0.01 0.00 0.01
PES-ES 0.00 0.05 0.04 0.38 0.00 0.01 0.00 0.01
PES-2ES 0.00 0.05 0.04 0.38 0.00 0.01 0.00 0.01
KPS 0.35 16.69 91.32 245.88 0.01 0.01 0.00 0.5
CKS - - - - 0.00 0.00 - -

1
S

∑
β̂s

n
=

25
0

PES 0.01 0.1 0.01 0.09 - - 0.00 0.02
PES-ES 0.00 0.08 0.01 0.06 - - 0.00 0.02
PES-2ES 0.00 0.08 0.01 0.06 - - 0.00 0.02
KPS 0.03 0.54 1.59 4 - - 0.00 0.06

n
=

50
0

PES 0.00 0.02 0.00 0.01 - - 0.00 0.02
PES-ES 0.00 0.01 0.00 0.01 - - 0.00 0.00
PES-2ES 0.00 0.01 0.00 0.01 - - 0.00 0.00
KPS 0.01 0.2 0.78 2.92 - - 0.00 0.01

The simulation results for the slope parameters β(t) and β1, . . . , βS in the
upper and lower panel of Table 2.2 show that the smoothing-spline-based esti-
mation algorithms PES and PES-ES clearly outperform the FPCA-based KPS
estimator. The final ES-step in the PES-ES algorithm aims to remove further
falsely selected point of impact candidates. This is advantageous in all DGPs,
except for the Easy DGP with n = 250 and the NoPoI DGP, where PES-ES
and PES achieve essentially equivalent results. Note that the final ES-step is
particularly advantageous for the Complicated DGP and the smaller sample size
n = 250, where KPS shows a very poor performance. Only in this particular case,
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Table 2.3: Percentage of replications with correct detection of all points of impact
τ1, . . . , τS .

300 grid points 500 grid points

Easy Compl. OnlyPoI Easy Compl. OnlyPoI

n
=

2
50

PES 97.5 77.4 99 97 83.8 99.1
PES-ES 97.6 79.3 99.2 97.3 85.3 99.2
PES-2ES 97.6 79.3 99.2 97.3 85.8 99.2
KPS 89.7 19.3 98.7 89.5 24 98.5

n
=

5
00

PES 99.3 94.6 99.9 99.3 94 99.9
PES-ES 99.4 95.7 99.9 99.2 95.3 99.9
PES-2ES 99.4 95.8 99.9 99.2 95.3 99.9
KPS 96.9 37.2 100 97 41.9 99.5

one additional second repetition of the ES-step (PES-2ES) further reduces the
variance. This improvement, however, is not substantial and does not justify the
additionally involved computational burden of PES-2ES. PES-ES also performs
very well in the NoPoI and the OnlyPoI DGPs, where PES-ES is actually a mis-
specified estimation procedure. In the case of NoPoI, PES-ES performs almost
as well as the corresponding (minimax-optimal) benchmark-estimator CKS, and
in the case of OnlyPoI, PES-ES is the best performing method.

Table 2.3 reports for each estimator and sample size the percentage of repli-
cations where all PoI locations τ1, . . . , τS are found correctly. The left part of
the table contains the results for functions observed on p = 300 grid points and
the right part for p = 500 grid points. PES-ES and PES-2ES outperform all
competitors, except in the case of OnlyPoI with n = 500, where all estimation
procedures show essentially the same performance. Again, the difference between
PES(-(2)ES) and KPS is particularly large for the smaller sample size n = 250

and the Complicated DGP. Increasing the resolution of the grid from p = 300

to p = 500 does not change the results. Similarly, the increased resolution also
does not affect the precision of the estimate for the slope parameter β(·) and
β1, . . . , βs, see Table 2.A.2 in Appendix 2.A.

To show the performance boost of using standardized data for locating the
potential PoIs (as described at the end of Section 2.2.3), we report the simulation
results without standardizing the data (see Tables 2.A.1 and 2.A.3 in Appendix
2.A). The results show that the standardization of the data is beneficial for the
Complicated DGP. Table 2.A.4 in Appendix 2.A shows the simulation results
for the Complicated DGP, but with different noise-to-signal ratios, that is, with
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different values for the error variance in model (2.1). PES(-ES) still outper-
forms KPS significantly; however, it turns out that the difference becomes less
pronounced as the noise-to-signal ratio increases.
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Figure 2.2: Pointwise deviations β̂(t) − β(t) of the 10% largest L2 distances∫ 1
0 (β̂(t) − β(t))2 dt for the Complicated DGP. Note that the scales of the two

y-axes differ by a factor of 10.

2.4 Application

To illustrate the practical importance of the functional linear regression model
with points of impact, we present an application to data from Google AdWords,
which is the most popular online advertising platform and of fundamental im-
portance for Alphabet’s (Google’s parent company) economic success (in 2014,
90 percent of Alphabet’s sales came from AdWords). Online advertising, in turn,
is the most important branch of today’s advertising industry, with an expected
U.S. revenue of 60 billion USD in 2016 (Doty et al., 2021). The case study
described below is motivated by the needs of Crealytics, the company that gener-
ously provided the data. Today this company uses the described method—with
some further confidential enhancements—to support their daily business.

The main pricing mechanism at Google AdWords is the so-called Pay-Per-
Click (PPC) mechanism. Here, advertisers (e.g., an online outdoor shop in our
application) can bid for a sponsored “impression” to be displayed along with
Google’s search results when a user conducts a search query related to a specific
keyword (e.g., outdoor jacket)4. The basic building block of an online ad

4Sponsored impressions link to the advertised homepage—they are similar to, but distin-
guishable from ordinary Google search results.
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campaign is a text corpus of (hundreds, thousands, or ten-thousands of, etc.)
keywords related to the advertised products.

The limited number of sponsored impressions is allocated by an auction.
Advertisers whose impression appears on the display are chosen according to
their ad-rank, which is basically their original bid, i.e., the maximum “costs-per-
click” an advertiser is willing to pay times the quality score, a discrete metric
(from 1, the lowest, to 10, the best) determining the relevance of an advertiser’s
impression. Google AdWords auctions are time continuous and an advertiser
only pays if a user clicks on the displayed impression. (See Geddes, 2014, for an
in-depth introduction to Google AdWords.)

The bidding process is usually based on bidding software that evaluate specific
key-figures. One of the most important key-figures is the so-called Click-Though
Rate (CTR), which is defined as the daily number of clicks per impression. The
CTR estimates the current probability of receiving a click on a sponsored im-
pression and therefore plays an important role in assisting the bidding process
on a short-term basis (Geddes, 2014).

The economic success of ad campaigns, however, also depends on long-sighted
bidding strategies taking into account product specific (time-global) seasonalities
as well as (time-local) events, such as the importance of Valentine’s Day for an
online flower shop. Unfortunately, existing key-figures such as the CTR only
provide a daily perspective and are not suitable for assisting in the implementa-
tion of long-sighted bidding strategies. Therefore, the functional linear regression
model with points of impact is a suitable methodology to identify the (global and
local) functional relationship between the yearly clicks and the yearly trajectories
of daily impressions—leading to a long-sighted version of the CTR.

As a yearly measure of clicks, we use the logarithmized yearly sums of clicks,
i.e., Yi = log(Ci) with Ci :=

∑365
t=1 clicksit, where i indexes the ith key-

word of the considered ad campaign. As a yearly measure of impressions, we
use the yearly trajectories of daily logarithmized numbers of impressions, i.e.,
Xi(t) = log(Ii(t)) with Ii(t) := impressionsit, where t = 1, . . . , 365 indexes
the days of the considered year. Our application uses data from a real Google
AdWords campaign run by an online store selling outdoor equipment in the year
from April 1st, 2012 to March 31st, 2013. The left plot in Figure 2.3 shows all
trajectories Xi(t) of the considered ad campaign. The middle plot shows three
exemplary (logarithmized) impression trajectories Xi(t). The right panel shows
the (logarithmized) yearly sum of clicks Yi, received on the impressions of the
ith keyword.

The data are provided by Crealytics (www.crealytics.com), an online adver-
tising service provider with offices in Berlin (Germany), London (UK), and New

https://crealytics.com/what-we-offer/


2.4 Application 27

0
2

4
6

8

May Jul Sep Nov Jan Mar May Jul Sep Nov Jan Mar

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

2
4

6
8

Figure 2.3: Left: Yearly trajectories of daily logarithmized numbers of impres-
sions. Middle: Three exemplary trajectories Xi(t). Right: Logarithmized
yearly clicks Yi.

York City (USA). The considered ad campaign is that of an online store selling
outdoor equipment. (For reasons of confidentiality, we cannot publish the com-
pany’s name). A lot of keywords received no impression during the considered
time span of 365 days from April 1st, 2012, to March 31st, 2013. Therefore, we
consider only the well established and relevant keywords that have been used
on at least 320 days within the considered time span—leading to n = 903 tra-
jectories observed at p = 365 grid points. The very few missing values in the
logarithmized impression trajectories are imputed by zeros since a missing value
means that the corresponding keyword did not receive an impression.

The considered functional linear regression model with PoIs in (2.1) is iden-
tifiable if the covariance function of the function-valued explanatory variable Xi

is sufficiently non-smooth at the diagonal (see Section 2.2.1 and Theorem 3 in
Kneip et al., 2016). Kneip et al. (2016) propose the following consistent esti-
mator κ̂ for their κ controlling the smoothness at the diagonal of the covariance
function:

κ̂ = log2

(
(1/(p− 2kδ))

∑
j∈J0,δ

∑n
i=1 Zδ,Xi

(tj)
2

(1/(p− 2kδ))
∑

j∈J0,δ

∑n
i=1 Zδ/2,Xi

(tj)2

)
.

An estimate of κ̂ < 2 indicates identifiability, which is clearly fulfilled in our case
where κ̂ = 0.03.

The estimation results from applying our PES-ES estimation algorithm and
the originally proposed KPS procedure are summarized in Figure 2.4 and Table
2.4. In the case of the PES-ES estimate, the function-valued slope parameter β̂(t)
shows a peak in the late summer and a pronounced negative trend towards the
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Figure 2.4: Result of the PES-ES (left panel) and KPS (right panel) estimate
for β(·). The variabilities of the estimators are visualized using the gray shaded
bands (see Remark 1).

Table 2.4: Estimate of PoI parameters βr

PES-ES KPS

Location Coef. St.Err. Location Coef. St.Err.

(τ̂4) May 01 -0.17∗∗∗ 0.04 (τ̂3) April 14 -0.10∗∗ 0.03
(τ̂3) June 14 0.22∗∗∗ 0.03 (τ̂1) June 14 0.22∗∗∗ 0.03
(τ̂1) July 25 -0.15∗∗∗ 0.03 (τ̂5) July 22 -0.17∗∗∗ 0.03
(τ̂2) December 05 0.01 0.03 (τ̂2) December 13 0.06∗ 0.03

(τ̂4) February 10 -0.11∗∗∗ 0.03

end of the considered period. The shape of β̂(t) is in line with our expectations
since the demand for outdoor equipment is generally greater during the summer
months than during the winter months. The negative trend towards the end of
the considered period is due to the strongly increased competition for outdoor
equipment ads in Google AdWords during the considered period. Additionally,
the estimation procedure identifies four PoIs (in order of the magnitude of |β̂s|):
June 14th (τ̂3; β̂3 = 0.22), May 1st (τ̂4; β̂4 = −0.17), July 25th (τ̂1; β̂1 = −0.15),
and December 5th (τ̂2; β̂2 = 0.01), where the effect of the PoI at τ̂2 seems to be
of lower importance.

Remark. Drawing inference about the function-valued slope coefficient and the
PoI parameters is a difficult issue in regression models with functional predictors.
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This is due to the fact that estimation in such models involves an ill-posed in-
version problem and the estimator of the function-valued slope parameter is not
asymptotically normal in the strong topology (Cardot et al., 2007). In addition,
it is difficult to construct confidence regions for random elements in infinite di-
mensional Hilbert spaces with proper coverage probability (Choi and Reimherr,
2018). All we can do is to visualize the variability of the estimator that is due
to the error term ϵi. For this purpose, we approximate the sampling variance
of the composite parameter vector βρ

T̃
using Eq. (15.16) in Ramsay and Silver-

man (2005), Ch. 15, and show Bonferroni-adjusted Gaussian (invalid) confidence
intervals in Figure 2.4.

The PoI τ̂3 on June 14th, with coefficient β̂3 = 0.22, summarizes two positive
effects. On the one hand, the store started a contest on May 23rd, 2012, giving
away outdoor gear. This contest ended on June 13th, i.e., one day before the PoI
which resulted in an increased click-through ratio of contest participants looking
for the winners. On the other hand, the closest competitor started the spring
sale, which led to a spillover bringing many interested buyers onto the homepage
to compare prices.

The two other significant PoIs are explained by effects specific to the German
calendar (about 80 percent of the customers live in Germany). The PoI τ̂4 on
May 1st, with coefficient β̂4 = −0.17, marks Labor Day (commemorating the
Haymarket Riot in Chicago in 1886), a national holiday in Germany which is
typically an opportunity for family outings. Similar in interpretation, the PoI
τ̂1 on July 25th, with coefficient β̂1 = −0.15, marks the beginning of the official
summer holidays in Baden-Württemberg and Lower Saxony—two large German
states. Both PoIs show a negative sign, which is due to a higher volume in
search queries related to outdoor activities; however, the users do not click on
the sponsored impressions since they do not intend to buy something—they are
only searching the Internet for (free) information on hiking trails etc., which
results in a lower CTR.

In contrast to the PES-ES estimate of β(·), the KPS estimate of β(·) is difficult
to interpret and does not fit to our expectations (see right panel of Fig. 2.4):
the trajectory is very unstable, does not show the expected peak in late summer,
and does not show the plausible negative trend towards the end of the considered
period. Regarding the PoI selections, the KPS approach identifies essentially the
same PoIs as the PES-ES approach, but favors one additional PoI at February
10 (see Table 2.4), which has a significant negative impact (β̂4 = −0.11) on the
outcome variable. This additional PoI may reflect a compensation for the missing
negative trend in the KPS estimate of β(·); see our discussion in Section 2.2.2.

The log-transformations in Yi = log(Ci) and Xi(t) = log(Ii(t)) allow us to
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interpret the estimated slope coefficients as elasticities. Taking derivatives with
respect to Ii(t) at a single time point t leads to the following time-local elasticity:

%∆Ci

%∆Ii(t)
≈

{
β̂s if t = τ̂s
0 else.

That is, time-local changes in Ii(t) generally have no (i.e., practically negligible)
effects on the yearly clicks Ci, except at PoIs, i.e., if t = τ̂1, . . . , τ̂Ŝ . For instance,
a 1% increase in the impressions at the time point of the after-contest PoI (t = τ̂3)
causes (on average) a 0.22% (β̂3 = 0.22) increase in the yearly clicks.

The function-valued slope parameter β̂(t) does not contribute to the time-
local elasticities; however, it determines the elasticities with respect to time-
global changes in the impressions, for instance, over the course of a month. The
following Riemann sum allows for a simple, approximative approach to interpret
such time-global elasticities:

̂log(Ci) ≈
1

365

365∑
t=1

β̂(t) log
(
Ii(t)

)
+

Ŝ∑
s=1

β̂s log
(
Ii(τ̂s)

)
.

For instance, the total elasticity of Ci with respect to Ii(t) for all t ∈ August is
given by

∑
t∈August

%∆Ci

%∆Ii(t)
≈ 1

365

∑
t∈August

β̂(t) +
Ŝ∑

s=1

β̂s1(τ̂s∈August),

where 1(TRUE) = 1 and 1(FALSE) = 0. That is, a 1% increase in the impressions
Ii(t), simultaneously for all t ∈ August, causes a 0.1% increase in the yearly clicks
since 365−1

∑
t∈August β̂(t) +

∑Ŝ
s=1 β̂s1(τ̂s∈August) ≈ 0.1. Hence, the time-global

August-elasticity is half the size of the elasticity of the after-contest PoI. This
is absolutely plausible since the super-imposed influence of the contest and the
spillover definitely outperforms a high-season month such as August in terms of
clicks-per-impressions.

2.5 Conclusion

In this work we propose an improved algorithm for estimating the unknown
model components of the functional linear regression model with points of Kneip
et al. (2016). Our estimation algorithm decouples the estimation of the points
of impact from the estimation of the function-valued slope parameter. The first
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step of the estimation algorithm allows for a consistent estimation of the points
of impact without knowledge (or pre-estimation) of the slope function. Given the
consistent estimates of the points of impact, the second step of the estimation
algorithm consists of an essentially classical estimation of the function-valued
slope parameter. For this latter step, we propose a generalization of the penal-
ized smoothing splines estimator of Crambes et al. (2009), which allows us to
incorporate the estimates of the points of impact. A further minor finite sample
improvement is achieved by repeating the estimation of the points of impact,
given the estimate of the function-valued slope parameter from the second step
and by a final repetition of the estimation of the slope parameter, given the
updated estimates of the points of impact.

The new estimation algorithm significantly improves the original estimation
procedure by Kneip et al. (2016). Using an extensive simulation study, we assess
the robustness of our estimation algorithm for different data generating processes,
different signal-to-noise ratios, different sample sizes and different sampling res-
olutions for discretizing the function-valued predictors.

The paper was originally motivated by an interesting case study on a Google
AdWords ad campaign. Our proposed functional linear regression model with
points of impact allows for data-based insights into the (time-global) seasonal
factors and the (time-local) events influencing the yearly number of clicks on
impressions of the considered Google AdWords online ad campaign.
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2.A Appendix

Additional simulation setups

Table 2.A.1: Squared bias and variance of the estimators. Lowest/highest MSE
has the darkest/lightest gray-scale. Scenario: No standardization of the func-
tions in preselection step and p = 300 grid points.

Easy Complicated NoPoI OnlyPoI∫
β̂(t) Bias2 Var. Bias2 Var. Bias2 Var. Bias2 Var.

n
=

25
0

PES 0.05 0.89 2.02 12.36 0.00 0.02 0.00 0.08
PES-ES 0.05 0.74 1.81 11.64 0.00 0.01 0.00 0.07
PES-2ES 0.04 0.72 1.85 11.69 0.00 0.01 0.00 0.06
KPS 3.98 60.37 139.62 301.13 0.01 0.02 0.12 10.97

n
=

50
0

PES 0.01 0.23 0.87 6.04 0.00 0.01 0.00 0.01
PES-ES 0.01 0.2 0.89 5.55 0.00 0.01 0.00 0.02
PES-2ES 0.01 0.19 0.9 5.46 0.00 0.01 0.00 0.02
KPS 0.69 23.39 82.42 241.99 0.01 0.01 0.01 1.77

1
S

∑
β̂s

n
=

25
0

PES 0.02 0.55 0.06 0.42 - - 0.00 0.02
PES-ES 0.02 0.46 0.04 0.33 - - 0.00 0.02
PES-2ES 0.02 0.45 0.04 0.32 - - 0.00 0.02
KPS 0.04 0.65 1.01 3.31 - - 0.00 0.14

n
=

5
0
0

PES 0.00 0.1 0.03 0.14 - - 0.00 0.00
PES-ES 0.00 0.09 0.02 0.11 - - 0.00 0.00
PES-2ES 0.00 0.09 0.02 0.1 - - 0.00 0.00
KPS 0.01 0.22 0.49 2.25 - - 0.00 0.02
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Table 2.A.2: Squared bias and variance of the estimators. Lowest/highest MSE
has the darkest/lightest gray-scale. Scenario: With standardization of the func-
tions in preselection step and p = 500 grid points.

Easy Complicated NoPoI OnlyPoI∫
β̂(t) Bias2 Var. Bias2 Var. Bias2 Var. Bias2 Var.

n
=

25
0

PES 0.04 0.37 0.16 1.43 0.01 0.04 0.00 0.06
PES-ES 0.03 0.3 0.09 0.94 0.00 0.02 0.00 0.04
PES-2ES 0.04 0.3 0.08 0.94 0.00 0.02 0.00 0.03
KPS 2.62 46.83 135.19 288.08 0.01 0.02 0.09 8.14
CKS - - - - 0.00 0.01 - -

n
=

50
0

PES 0.01 0.09 0.06 0.41 0.00 0.02 0.00 0.01
PES-ES 0.01 0.08 0.05 0.38 0.00 0.01 0.00 0.02
PES-2ES 0.01 0.08 0.04 0.38 0.00 0.01 0.00 0.02
KPS 0.43 17.82 91.76 238.1 0.01 0.01 0.01 2.71
CKS - - - - 0.00 0.00 - -

1
S

∑
β̂s

n
=

25
0

PES 0.01 0.08 0.01 0.02 - - 0.00 0.04
PES-ES 0.01 0.11 0.01 0.02 - - 0.00 0.05
PES-2ES 0.01 0.11 0.01 0.02 - - 0.00 0.05
KPS 0.03 0.54 1.04 3.26 - - 0.00 0.14

n
=

50
0 PES 0.00 0.01 0.00 0.01 - - 0.00 0.00

PES-ES 0.00 0.03 0.00 0.01 - - 0.00 0.00
PES-2ES 0.00 0.03 0.00 0.01 - - 0.00 0.00
KPS 0.01 0.16 0.62 2.39 - - 0.00 0.05
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Table 2.A.3: Squared bias and variance of the estimators. Lowest/highest MSE
has the darkest/lightest gray-scale. Scenario: No standardization of the func-
tions in preselection step and p = 500 grid points.

Easy Complicated NoPoI OnlyPoI∫
β̂(t) Bias2 Var. Bias2 Var. Bias2 Var. Bias2 Var.

n
=

2
50

PES 0.09 1.18 1.32 11.64 0.00 0.02 0.00 0.08
PES-ES 0.06 0.94 1.36 10.69 0.00 0.01 0.00 0.06
PES-2ES 0.06 0.9 1.32 10.42 0.00 0.01 0.00 0.06
KPS 2.05 41.9 145.2 291.28 0.01 0.02 0.04 6.06

n
=

5
00

PES 0.02 0.26 0.48 4.67 0.00 0.01 0.00 0.01
PES-ES 0.01 0.18 0.46 4.1 0.00 0.01 0.00 0.01
PES-2ES 0.01 0.18 0.48 4.04 0.00 0.01 0.00 0.01
KPS 0.47 19.09 81.27 229.75 0.01 0.01 0.01 2.77

1
S

∑
β̂s

n
=

25
0

PES 0.01 0.23 0.04 0.23 - - 0.00 0.02
PES-ES 0.01 0.28 0.04 0.22 - - 0.00 0.04
PES-2ES 0.01 0.3 0.04 0.22 - - 0.00 0.04
KPS 0.03 0.5 1.17 3.2 - - 0.00 0.06

n
=

50
0

PES 0.00 0.13 0.02 0.08 - - 0.00 0.00
PES-ES 0.00 0.12 0.02 0.07 - - 0.00 0.00
PES-2ES 0.00 0.11 0.02 0.09 - - 0.00 0.00
KPS 0.01 0.2 0.66 2.49 - - 0.00 0.04



2.A Appendix 35

Table 2.A.4: Mean squared bias and variance. Lowest/highest MSE has the
darkest/lightest gray-scale. DGP Complicated with different standard deviations
σϵ.

σϵ = 0.5 σϵ = 1 σϵ = 2 σϵ = 5∫
β̂(t) Bias2 Var. Bias2 Var. Bias2 Var. Bias2 Var.

n
=

2
50 PES 0.22 1.78 0.28 3.76 0.58 13.76 0.67 31.37

PES-ES 0.2 1.67 0.23 2.37 0.3 9.21 0.23 38.64
KPS 19.51 95.41 1.52 35.09 0.56 27.38 0.21 46.26

n
=

50
0 PES 0.12 0.67 0.15 1.36 0.29 5.59 0.5 21.84

PES-ES 0.09 0.31 0.13 0.55 0.2 2.9 0.27 21.9
KPS 11.47 80.98 0.6 20.17 0.2 10.18 0.14 25.74

1
S

∑
β̂s

n
=

25
0 PES 0.01 0.05 0.02 0.18 0.03 1.04 2.51 9.02

PES-ES 0.01 0.05 0.01 0.18 0.01 0.69 1.9 11.37
KPS 0.31 2.16 0.17 2.15 0.11 3.08 1.79 14.06

n
=

50
0 PES 0.00 0.02 0.01 0.06 0.01 0.27 0.97 6.06

PES-ES 0.00 0.02 0.01 0.05 0.01 0.2 0.42 5.86
KPS 0.19 1.61 0.04 0.9 0.03 1 0.62 8.33

Table 2.A.5: Percentage of replications with correct detection of all points of
impact τ1, . . . , τS .

300 grid points 500 grid points

Easy Compl. OnlyPoI Easy Compl. OnlyPoI

n
=

25
0 PES 86.1 28.4 98.3 85 28 98.6

PES-ES 87.4 30.4 98.3 86.5 30.4 98.8
PES-2ES 87.5 30.4 98.3 86.6 30.8 98.8
KPS 87.9 25.7 98.4 90.9 24.3 98.7

n
=

50
0 PES 97.6 54.5 100 97.4 58.9 99.9

PES-ES 97.8 56.2 100 97.8 61.1 99.9
PES-2ES 97.8 56.2 100 97.8 61.2 99.9
KPS 95.6 44.5 99.8 96.9 45.4 99.4
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Chapter 3

Partially Observed Functional
Data: The Case of
Systematically Missing Parts

3.1 Introduction

The classical literature on Functional Data Analysis (FDA) focuses on the anal-
ysis of functions where each function Xi(t) is observable for all t ∈ [a, b] (see, for
instance, the textbooks Ramsay and Silverman, 2005, Ferraty and Vieu, 2006,
Horváth and Kokoszka, 2012, and Hsing and Eubank, 2015). However, this reg-
ular situation does not apply to many functional data sets of practical relevance
where the functions Xi are only partially observable, i.e., where Xi(t) is only
observable for t ∈ Di with Di ⊂ [a, b] describing the i-specific observable subset
of the total domain.

The latter situation is often referred to as fragmented, truncated, incomplete,
or partially observed functional data and its practical relevance has triggered
a series of research works dealing with different aspects of this problem. De-
laigle and Hall (2013) propose a “shift-and-connect” procedure to reconstruct
and classify fragmentary functional data and Delaigle and Hall (2016) incorpo-
rate a Markov chain model. Zhou et al. (2014) model truncated functional data
using warping functions. Goldberg et al. (2014) and Kraus (2015) use func-
tional linear regression models to predict the missing parts. Gellar et al. (2014b)
and Gromenko et al. (2017) propose a functional regression model for incom-
plete curves. Liebl (2013) models and forecasts partially observed price func-
tions and Kneip and Liebl (2019) consider optimal reconstructions of partially
observed functional data. All these works, however, make use of the so-called

37
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Missing-Completely-At-Random (MCAR) assumption, i.e., the assumption that
the missing data mechanism is independent from all other stochastic components
of relevance (see, for instance, Little and Rubin, 2014, Ch. 1). All of the above
cited works lead to inconsistent results if the MCAR assumption is violated. To
the best of our knowledge, we are the first to consider specific violations of the
MCAR assumption in the context of partially observed functional data.

The classical missing data literature can be divided into the following four—
not mutually exclusive—classes (see Little and Rubin, 2014, Ch. 1): first, proce-
dures that discard all incompletely recorded units on the premise that the MCAR
assumption holds; second, procedures that use a re-weighting of the data in or-
der to adjust for the missing data; third, procedures that impute missing values
using simple estimators (e.g., mean imputation); and fourth, procedures that are
based on model assumptions. In this work, we add a fifth class that exclusively
applies to functional data due to its general availability of derivatives. By using
a detour via the fundamental theorem of calculus, we propose an estimation pro-
cedure that allows the consistent estimation of the mean and covariance function
under specific violations of the MCAR assumption. In order to test for the con-
sidered violations of the MCAR assumption, we propose the application of the
sequential multiple hypothesis testing procedure of Romano and Wolf (2005).

Note that we focus on the regular case of functional data where the single
functions are only partially observed, but where the observed parts are fully
observed. That is, we do not consider the case of sparse functional data where
one observes only a few real, possibly noise contaminated, discretization points
per function (see James et al., 2000, James and Sugar, 2003, Yao et al., 2005a,
and Yao et al., 2005b, among others). Our estimation procedure requires the
availability of derivatives and, therefore, cannot directly deal with the case of
sparse functional data.

Our work is motivated by a real data set from energy economics with partially
observed price curves Xi(t). For each Xi(t) we only observe the initial part for all
t ∈ [a, di]; however, the final part with t ∈ (di, b] is missing. The specific market
structure incentivizes a systematic bidding strategy that results in a missing data
mechanism where the random variable di correlates with the overall level of the
price curves Xi. Larger values of di are associated with price curves having an
overall high price level and vice versa (see Figure 3.5.3). The general exposition of
our methodology is geared towards the data situation in this real data application,
which provides a simple and instructive walk-along setup. However, we generalize
this setup also for broader violations of the MCAR assumption and broader
missing data designs.

The rest of the paper is structured as follows. The next section introduces the
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setup under consideration, our statistical methodology, and generalizations. In
Section 3.3, we propose a practical approach for testing the considered violations
of the MCAR assumption. Section 3.4 contains our simulation study and the
application is found in Section 3.5. Proofs and further derivations can be found
in Appendix 3.A.

3.2 Methodology

3.2.1 General Setup

We consider an i.i.d. sample of differentiable random functions X1, . . . , Xn each
with the same distribution as X with values in the separable Hilbert space
L2([a, b]), where we set [a, b] = [0, 1] ⊂ R without loss of generality. We assume
that E[||X||42] < ∞, where ||X||22 =

∫ 1
0 X(t)2dt. The mean and covariance func-

tions are denoted by µ(t) = E[X(t)] and σ(s, t) = E[(X(s)− µ(s))(X(t)− µ(t))].
Motivated by our real data application we consider the following missing

data mechanism: the random functions Xi are only observable over random
subdomains Di = [0, di] ⊆ [0, 1]. Here, di are i.i.d. copies of a real random
variable d with density fd, where fd(t) > 0 for t ∈ [dmin, 1] and zero else, with
deterministic 0 < dmin < 1. The random subdomains Di = [0, di] lead to a
t-specific observed data indicator Oi(t) defined as Oi(t) = 1t∈Di ; i.e., Oi(t) = 1

if Xi(t) is observable and Oi(t) = 0 if Xi(t) is missing. Let p(t) = P(Oi(t) = 1)

denote the probability of observing functions covering t. Observe that under our
setup p(t) = 1 for all t ∈ [0, dmin] and 0 < p(t) < 1 for all t ∈ (dmin, 1]. That
is, the random functions do not contain missing parts over the lower interval
[0, dmin], but may have missing endings over the upper interval (dmin, 1].

The MCAR assumption requires independence between the entire random
processes Oi and Xi. Under our setup, however, a violation of the MCAR as-
sumption can only affect the upper interval (dmin, 1], i.e., the part of the domain
where the functions may have missing endings. That is, any violation of the
MCAR assumption is without effect in the lower interval [0, dmin], where the
functions do not contain missing observations; see Figure 3.5.3 for a real data
example.

Our estimators use a detour via the fundamental theorem of calculus which al-
lows us to address some practically relevant violations of the MCAR assumption.
To formalize these violations, further notation needs to be introduced. Decom-
pose X(t) =

∑
j≥1 ξjψj(t), where B = {ψ1, ψ2, . . . } forms a deterministic orthog-

onal basis system of L2([0, 1]) with ψ1 ≡ 1, and where ξj =
∫ 1
0 X(t)ψj(t)dt, with

j ≥ 1, denote the—not necessarily centered—random basis coefficients. Com-
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mon basis systems which fulfill these assumptions are, for instance, a Fourier
basis system or Legendre polynomials after applying an appropriate scaling of
the domain. Denoting S = span{1} and S⊥ = span{ψ2, ψ3, . . . } allows us to
separate the functions X = XS + XS⊥ , where XS and XS⊥ are the orthogo-
nal projections of X on S and S⊥. With these notations, we can formalize the
Violation (V) of the MCAR assumption:

(V) X 6⊥⊥ O, but XS⊥ ⊥⊥ O; i.e, the dependency between X and O manifests
only in the dependency between O and the vertical shift component ξ1ψ1 =

ξ1 of X.

Note that Violation (V) causes distortions of the mean and covariance func-
tions for every t ∈ (dmin, 1] since E[ξ1|O(t)] 6= E[ξ1] for all t ∈ (dmin, 1]. For
t ∈ [0, dmin], however, Violation (V) is ineffective since O(t) = 1 almost surely,
such that E[ξj |O(t)] = E[ξj ] for all j ≥ 1 and all t ∈ [0, dmin].

This relatively simple Violation (V) of the MCAR assumption is motivated by
our real data application and allows for a comprehensible and pithy explanation
of our estimation strategies. Below, in Section 3.2.3, we introduce more general
versions of Violation (V) and discuss how to apply our estimation strategies
accordingly.

3.2.2 FTC-Estimators

In the case of partially observed functional data, it is impossible to use the
classical mean estimator, X̄(t) = n−1

∑n
i=1Xi(t), and covariance estimator,

n−1
∑n

i=1(Xi(t) − X̄(t))(Xi(s) − X̄(s)) since the value of Xi(t) may not be ob-
served. Therefore, Delaigle and Hall (2013) and Kraus (2015) propose the use of
the following estimators:

µ̂(t) =
I1(t)∑n
i=1Oi(t)

n∑
i=1

Xi(t)Oi(t), (3.1)

σ̂(s, t) =
I2(s, t)∑n
i=1 Ui(s, t)

n∑
i=1

Ui(s, t) [Xi(s)− µ̂(s)] [Xi(t)− µ̂(t)] , (3.2)

where the existence functions I1(t) = 1∑n
i=1 Oi(t)>0 and I2(s, t) = 1∑n

i=1 Ui(s,t)>0

for Ui(s, t) = Oi(s)Oi(t) are necessary to prevent divisions by zero through defin-
ing 0/0 = NA.

Violation (V) of the MCAR assumption implies that the estimator µ̂(t) is
biased and inconsistent for all t ∈ (dmin, 1], i.e., for all t with p(t) < 1. The
same applies to the estimator σ̂(s, t) if at least one of the arguments s or t is
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an element of the critical set (dmin, 1]. Simple rearrangements using the law of
iterated expectations show that under our setup

E[µ̂(t)] = µ(t) + ∆(t), where ∆(t) = E

[
I1(t)∑n
i=1Oi(t)

n∑
i=1

Oi(t)E [ξi1 | Oi(t)]

]
− µ1,

with |∆(t)| > 0, i.e., E [ξi1 | Oi(t)] 6= E [ξi1], iff p(t) < 1; an essentially equiv-
alent bias expression applies to σ̂(s, t) (see also Proposition 3.A.1 in Appendix
3.A).

Therefore, we propose the following detour via the Fundamental Theorem of
Calculus (FTC) which leads to consistent estimators of the mean and covariance
functions under Violation (V) of the MCAR assumption. The FTC states that
one can decompose a differentiable function f(t) as f(t) =

∫ t
0 f

(1)(z)dz + f(0),
where f (1) denotes the first derivative of f . This motivates our new estimators
µ̂FTC(t) and σ̂FTC(s, t) for the mean and covariance functions.

Definition 3.2.1 (FTC-mean). The FTC mean estimator is defined as

µ̂FTC(t) =

{
µ̂(t) if t ∈ [0, dmin]∫ t
dmin

µ̂(1)(z)dz + µ̂(dmin) if t ∈ (dmin, 1],
(3.3)

where

µ̂(k)(t) =
I1(t)∑n
i=1Oi(t)

n∑
i=1

X
(k)
i (t)Oi(t),

and where X(k)
i (t) denotes the k-th derivative of Xi(t).
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Definition 3.2.2 (FTC-covariance). The FTC covariance estimator is defined
as

σ̂FTC(s, t) =



σ̂(s, t) if (s, t) ∈ [0, dmin]
2∫ t

dmin
σ̂(0,1)(s, z2)dz2 + σ̂(s, dmin) if (s, t) ∈ [0, dmin]× (dmin, 1]∫ s

dmin
σ̂(1,0)(z1, t)dz1 + σ̂(dmin, t) if (s, t) ∈ (dmin, 1]× [0, dmin]∫ t

dmin

∫ s
dmin

σ̂(1,1)(z1, z2)dz1dz2+∫ s
dmin

σ̂(1,0)(z1, dmin)dz1+∫ t
dmin

σ̂(0,1)(dmin, z2)dz2+

σ̂(dmin, dmin) if (s, t) ∈ (dmin, 1]
2,

(3.4)
where

σ̂(ℓ,k)(s, t) =
I2(s, t)∑n
i=1 Ui(s, t)

n∑
i=1

Ui(s, t)
[
X

(ℓ)
i (s)− µ̂(ℓ)(s)

] [
X

(k)
i (t)− µ̂(k)(t)

]
with ℓ, k ∈ {0, 1}.

A step-by-step derivation of σ̂FTC(s, t) can be found in parts I-III of the proof
of Theorem 1 (see Appendix 3.A). The following theorem states the consistency
of the FTC-estimators under Violation (V) of the MCAR assumption:

Theorem 1. Under our setup and under Violation (V ) of the MCAR assump-
tion, the estimators µ̂FTC(t), defined in (3.3), and σ̂FTC(s, t), defined in (3.4),
are pointwise

√
n-consistent estimators of µ(t) and σ(s, t) for all s, t ∈ [0, 1].

3.2.3 Generalizations

Motivated by our real data application, we so far considered a relatively simple
missing data design that can be characterized by the following two restrictions:
first, Oi(t) only depends on vertical shifts in Xi(t), and second, the domain [0, 1]

is divided into two subdomains [0, dmin] and (dmin, 1], where the first is covered
by all functions, i.e., p(t) = 1 for all t ∈ [0, dmin], and where the second contains
the missing parts, i.e., 0 < p(t) < 1 for all t ∈ (dmin, 1]. In the following, we
generalize both of these restrictions.

The latter domain restriction can be weakened considerably, since the FTC
estimators need only one point where the full sample of curves is observed. De-
note this point by df ∈ [0, 1], i.e., p(df) = 1. By noting

∫ b
a = −

∫ a
b , the generalized
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FTC mean estimator is defined as

µ̂⋆FTC(t) =



∫ t
df
µ̂(1)(z)dz + µ̂(df) for all t > df

µ̂(df) for t = df

−
∫ df
t µ̂(1)(z)dz + µ̂(df) for all t < df.

(3.5)

Correspondingly, the generalized FTC covariance estimator is defined as

σ̂⋆FTC(s, t) =

=

∫ t

df

∫ s

df

σ̂(1,1)(z1, z2)dz1dz2

+

∫ s

df

σ̂(1,0)(z1, df)dz1 +

∫ t

df

σ̂(0,1)(df, z2)dz2 + σ̂(df, df) (3.6)

for all s, t > df, where for cases with s < df and/or t < df one needs to replace
“
∫ s
df

” with “−
∫ df
s ” and/or “

∫ t
df

” by “−
∫ df
t ”, and where σ̂⋆FTC(s, t) = σ̂(df, df)

for s = t = df. The estimators in (3.5) and (3.6) can be trivially adjusted
for scenarios when the observation mechanism contains larger fragments of fully
observed samples.

In order to generalize Violation (V), define SK = span{ψ1, . . . , ψK} with
monomial basis functions ψj(t) = tj−1 for j = 1, . . . ,K and let S⊥

K denote the
orthogonal complement of SK in L2([0, 1]). Additionally, we need to assume that
X is K-times differentiable. The following violation of the MCAR assumption
generalizes Violation (V):

(VK) X 6⊥⊥ O, but XS⊥
K ⊥⊥ O; i.e, the dependency between X and O manifests

only in the dependency between O and the first K monomial components
ξ1ψ1, . . . , ξKψK of X.

Our estimation procedure can be applied to this more general Violation (VK)
of the MCAR assumption using the following recursion, which back-transforms
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the consistent estimator µ̂(K) by repeatedly applying the FTC:

µ̃
(K−1)
FTC (t) =

∫ t

df

µ̂(K)(z)dz + µ̂(K−1)(df),

µ̃
(K−2)
FTC (t) =

∫ t

df

µ̃
(K−1)
FTC (z)dz + µ̂(K−2)(df),

...

and µ̃FTC(t) =

∫ t

df

µ̃
(1)
FTC(z)dz + µ̂(df),

where µ̃FTC(t) denotes the (back-transformed) estimator of µ(t).
An equivalent, yet more tedious recursion can be applied in order to back-

transform the consistent estimator σ̂(K,K):

σ̃
(K−1,K−1)
FTC (s, t) =

∫ t

df

∫ s

df

σ̂(K,K)(z1, z2)dz1dz2 +

∫ s

df

σ̂(K,K−1)(z1, df)dz1+

+

∫ t

df

σ̂(K−1,K)(df, z2)dz2 + σ̂(K−1,K−1)(df, df),

σ̃
(K−2,K−2)
FTC (s, t) =

∫ t

df

∫ s

df

σ̃
(K−1,K−1)
FTC (z1, z2)dz1dz2

+

∫ s

df

∫ t

df

σ̂(K,K−2)(z1, df)dz1dz1

+

∫ t

df

∫ t

df

σ̂(K−2,K)(df, z2)dz2dz2

+ 2σ̂(K−1,K−2)(df, df) + σ̂(K−2,K−2)(df, df),

...

and σ̃FTC(s, t) =

∫ t

df

∫ s

df

σ̃
(1,1)
FTC(z1, z2)dz1dz2 +

∫ s

df

∫ t

df

σ̂(0,1)(z1, df)dz1dz1

+

∫ t

df

∫ t

df

σ̂(0,1)(df, z2)dz2dz2 + 2σ̂(1,0)(df, df) + σ̂(0,0)(df, df),

where σ̃FTC(s, t) denotes the (back-transformed) estimator of σFTC(s, t).

3.3 A Practical Approach to Test Violation (V)

In practice, there are situations where Violation (V) is essentially known from the
context such as, for instance, in our real data application. Generally, however,
practitioners would like to test for Violation (V) in order to gain confidence for
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applying our FTC-estimators. In the following, we focus on testing Violation
(V); however, the testing procedure can be easily generalized to the more general
Violation (VK) as well.

Unfortunately, a proper test for Violation (V) cannot—to the best of our
knowledge—be achieved using existing procedures. A proper test procedure
needs to investigate possible dependencies between Oi and the coefficients ξi1,
ξi2,. . . . The coefficients ξi1, ξi2, . . . , however, refer to the complete trajectories
and, therefore, cannot be computed from the partially observed trajectories. Fur-
thermore, existing procedures that allow us to predict the coefficients ξi1, ξi2, . . .
from the partially observed trajectories require the possibly violated MCAR as-
sumption (see, for instance, Kraus, 2015, or Yao et al., 2005a).

Therefore, we can only propose a practical test procedure which will be useful
for well-structured functional data, but generally cannot be applied in the case
of complex structured functional data. The idea is to use the feasible coefficients
ξ
[0,dmin]
i1 , ξ

[0,dmin]
i2 , . . . with respect to the sub-part of the domain [0, dmin] over

which the full sample of functions is observed. For simply structured functional
data, the coefficients ξ[0,dmin]

i1 , ξ
[0,dmin]
i2 , . . . will be informative about the infeasi-

ble coefficients ξi1, ξi2, . . . . In fact, Kneip and Liebl (2019) argue in a related
context that the coefficients ξ[0,dmin]

i1 , ξ
[0,dmin]
i2 , . . . contain the same information

as ξi1, ξi2, . . . if the functional data are such that equality over [0, dmin] implies
equality over the total domain [0, 1]; i.e., if Xi(t) = Xj(t) for all t ∈ [0, dmin]

and i 6= j implies that Xi(t) = Xj(t) for all t ∈ [0, 1]. The latter might hold for
simply structured functional data and is fulfilled, for instance, for finite dimen-
sional random functions Xi(t) =

∑K
j=1 ξijψk(t), as long as the basis functions

ψ1, . . . , ψK are linearly independent over [0, dmin].
To identify cases falling under Violation (V), we propose the use of the fol-

lowing simple, practical procedure. Assuming Gaussian random functions Xi, it
suffices to consider correlations in order to check the independence assumption
in Violation (V). Under Violation (V), the upper threshold di of the partially
observed domain [0, di] is correlated with ξi1, but mutually uncorrelated with ξij
for all j ≥ 2. In order to detect such a correlation structure, we propose the
projection of the commonly observed parts of the random functions Xi(t) for all
t ∈ [0, dmin] onto a J < ∞ dimensional Fourier basis system, where the number
of basis functions J is selected using the Bayesian Information Criterion (BIC):
first, we select BIC-optimal numbers of basis functions JBIC

i for all i = 1, . . . , n,
and second, we use J = median{JBIC

1 , . . . , JBIC
n } as an overall trade-off between

over- and underspecification.
Projecting the random functions Xi(t) for all t ∈ [0, dmin] onto a J < ∞

dimensional Fourier basis system allows us to approximate the feasible coeffi-
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cients ξ[0,dmin]
i1 , . . . , ξ

[0,dmin]
iJ . In order to test for possible correlations between

ξ
[0,dmin]
i1 , . . . , ξ

[0,dmin]
iJ and di, we use the bootstrap-based multiple testing of Ro-

mano and Wolf (2005), which allows us to control for the multiple comparisons
problem involved.

The procedure of Romano and Wolf (2005) controls the Family-Wise Error
Rate (FWER) under an arbitrary set of dependence structures among the test
statistics. Furthermore, their procedure allows for a so-called strong control of
the FWER, i.e., the false rejection rate α is guaranteed for any combination
of true and non-true null hypotheses in opposite to weak control, where a false
rejection rate is only guaranteed if all null hypotheses are true (see Romano and
Wolf, 2005, for more details).

We apply their sequential testing procedure to the multiple linear regression
model di = β0 +

∑J
j=1 βjξji + ui (see Algorithm 2), where we substitute the

ξji with the approximated versions of the ξ
[0,dmin]
ij . We investigate the set of

hypotheses B = {H0,1, . . . ,H0,J} with H0,j : βj = 0, j = 1, . . . , J , using standard
squared t-test statistics t̂2j = (β̂j/ŝβ̂j

)2. Although there are a total of 2J possibly
different test outcomes, we are only interested in the following three different
types of outcomes:

Null: The overall null: all Hj,0, j = 1, . . . , J, cannot be rejected, i.e., all parame-
ters βj are insignificant and their basis coefficients ξij do not correlate with
di. This test decision points towards the MCAR assumption.

(V): Only H1,0 : β1 = 0 will be rejected; all other Hj,0, j = 2, . . . , J, cannot be
rejected. That is, only ξi1 significantly correlates with di. This test decision
points towards Violation (V) of the MCAR assumption.

Other Any of the remaining (2J − 2) different test decisions. These test decisions
point towards more complicated violations of the MCAR assumption.

Given n observations, J hypotheses, and a significance level α, the procedure
proposed by Romano and Wolf (2005) is basically to bootstrap the statistics and
calculate the bootstrapped p-value. For our special case, we can use a simplified
version of the original algorithm (see Romano and Wolf, 2005, Algorithm 1 and
Equation (26)). Our algorithm (see Algorithm 2) is initialized by setting B = B1,
where d = (d1, . . . , dn), Ξ = (ξ1, . . . , ξJ) ∈ Rn×J , and R denotes the number of
bootstrap replications:

A further simple visual tool for checking Violation (V) is to compare the
estimates of the classical estimators, µ̂(t) and σ̂(s, t) with those of the FTC
estimators, µ̂FTC(t) and σ̂FTC(s, t). Under the MCAR assumption the two es-
timates of the mean function and the two estimates of the covariance function
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Algorithm 2 Romano Wolf Stepdown Procedure for Multiple Hypothesis Test-
ing.

1: procedure RomanoWolf(d,Ξ, α,R)
2: Calculate the test statistics t̂2j , j = 1, . . . , J, for the sample (d,Ξ).
3: Perform a model-based bootstrap to obtain statistics t̂2j,r, j = 1, . . . , J, r =

1, . . . , R.
4: for j = 1, . . . , J hypotheses do
5: Define t̂2bj the maximum of all (remaining) test statistics in Bj with
bj = #Bj .

6: Define the p-value for bj hypotheses as

p̂R,bj =
1

R

[
1 +

R−1∑
r=1

1{t̂2j,r ≥ t̂2j}

]

7: if p̂R,bj > α then
8: stop and accept all remaining hypotheses in Bj ,
9: else

10: reject the bj-th hypothesis and define a new set of nulls Bj+1 =
Bj \H0,bj .

11: end if
12: end for
13: return B = Bj the final set of hypotheses and p = p̂R,bj the p-value.
14: end procedure

will essentially coincide; however, under Violation (V) the pairs of estimates will
differ.

3.4 Simulation

In the following simulation study, we assess the finite sample properties of our
FTC-estimators µ̂FTC and σ̂FTC and investigate performance of the multiple
testing procedure described in Algorithm 2. For a feasible data generation
Xi(t) =

∑
j≥1 ξijψj(t), we use a finite dimensional Fourier basis ψ1(t) = 1,

ψ2k(t) =
√
2 sin(2πkt), and ψ2k+1(t) =

√
2 cos(2πkt), k = 1, . . . , (J − 1)/2,

with J = 5 and draw uncorrelated coefficients ξij , j = 1, . . . , J, from a nor-
mal distribution with means E[ξij ] = µj and variances V (ξij) = λj , where
µ1 = 5, µ2 = 2, µ3 = 0, . . . , µ5 = 0, and λ1 = 10, λ2 = 8, . . . , λ5 = 2. This
results in the mean function µ(t) = 5 + 2 ·

√
2 · sin(2πt) and the covariance

function σ(s, t) =
∑J

j=1 λjψj(s)ψj(t).
We consider four different Data Generating Processes (DGPs), as described
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in Table 3.4.1. The DGPs represent discrete (Dis.), i.e., di ∈ {0.5, 1}, and contin-
uous (Con.), i.e., di ∈ [0.5, 1], distributions for di, as well as dependent (Dep.),
i.e., ξi1 6⊥⊥ di, and independent (Ind.), i.e., ξi1 ⊥⊥ di, setups. The Dep.-DGPs
represent versions of Violation (V) of the MCAR assumption and the Ind.-DGPs
fulfill the MCAR assumption.

Table 3.4.1: Data Generating Processes.

Dep.-Dis. Dep.-Con. Ind.-Dis. Ind.-Con.

ξi1 N(µ1, λ1) N(µ1, λ1) N(µ1, λ1) N(µ1, λ1)
di sgn{0.5,1}(ξ

c
i1) Unifsc(ξi1;µ1, λ1) Ber{0.5,1}(0.5) Unif([0.5, 1])

In each of the DGPs, ξi1 is drawn from N(µ1, λ1). For the Dep.-Dis. DGP, we
define di = 0.5 if ξci1 = ξi1−µ1 < 0 and di = 1 if ξci1 > 0. In the Dep.-Con. DGP,
we define di as a transformed version of ξi1 using the following two steps: first, we
use the uniform integral transformation to transform ξi1 to a uniformly (on [0, 1])
distributed random variable Φµ1,λ1(ξi1), where Φµ1,λ1 denotes the distribution
function of the Normal distribution with parameters µ1 and λ1. Second, we
project all values of Φµ1,λ1(ξi1) smaller 0.5 onto 0.5 and force the 2 percent largest
values onto 1, which results in a mixture (discrete and continuous) distribution
with point masses at 0.5 and 1. Formally, this means

di =


0.5 if d∗i ≤ 0.5

d∗i if d∗i ∈ (0.5, qemp,0.98)

1 if d∗i ≥ qemp,0.98,

where d∗i = Φµ1,λ1(ξi1) and where qemp,0.98 denotes the empirical 98 percent quan-
tile of the sample {d∗1, . . . , d∗n}. The structure of the Dep.-Dis. DGP resembles
our application and represents a quite challenging example in contrast to DGPs
with bigger masses at 1. For the Ind.-Dis. DGP we draw di from an adjusted
Bernoulli (Ber) distribution on {0.5, 1} with parameter p = 0.5, and for the
Ind.-Con. DGP we draw di from a standard uniform distribution.

For each DGP, we generate 500 replications of n = 50, 150, 250, and 500

functions Xi(t) evaluated at equidistant grid points t1, . . . , tp in [0, 1] with p =

501, where all values Xi(tj) with tj > di are considered missing and replaced by
NAs. Our simulation is implemented using the statistical language R (R Core
Team, 2017b), where we make use of the package fda (Ramsay et al., 2014) to
create the Fourier system. In order to maintain the sin-cosine pairs of the Fourier
system, we consider only odd numbers of basis functions J = 3, 5, . . . , Jmax with
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Jmax = 51.

Table 3.4.2: Integrated squared bias and variance.

Dep.-Dis. Dep.-Con. Ind.-Dis. Ind.-Con.
n Bias Var. Bias Var. Bias Var. Bias Var.

50 µ̂FTC 0.0 1.0 0.0 1.0 0.0 0.9 0.0 1.0
µ̂ 3.2 0.8 6.0 1.3 0.0 0.9 0.1 1.9

150 µ̂FTC 0.0 0.3 0.0 0.4 0.0 0.3 0.0 0.3
µ̂ 3.2 0.3 6.8 0.5 0.0 0.3 0.0 0.6

250 µ̂FTC 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.2
µ̂ 3.1 0.2 6.7 0.3 0.0 0.2 0.0 0.3

500 µ̂FTC 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1
µ̂ 3.2 0.1 6.7 0.1 0.0 0.1 0.0 0.2

50 σ̂FTC 0.1 40.7 0.5 47.1 0.4 43.8 0.7 44.1
σ̂ 31.3 27.1 43.2 38.4 0.3 36.7 7.6 57.6

150 σ̂FTC 0.1 13.3 0.1 15.7 0.1 15.1 0.1 15.0
σ̂ 30.4 8.7 38.0 16.6 0.0 12.2 0.7 28.3

250 σ̂FTC 0.1 7.9 0.1 9.2 0.1 9.4 0.1 8.8
σ̂ 30.7 5.4 38.7 10.2 0.0 7.5 0.4 17.7

500 σ̂FTC 0.1 4.3 0.0 4.8 0.1 4.7 0.1 4.6
σ̂ 0.1 4.3 0.0 4.8 0.1 4.7 0.1 8.7

Table 3.4.2 contains our simulation results for our FTC-estimators µ̂FTC and
σ̂FTC. We report the (doubly) integrated squared bias (

∫ 1
0 )
∫ 1
0 Bias2 (·) and vari-

ance (
∫ 1
0 )
∫ 1
0 Var (·) for µ̂FTC (σ̂FTC) and compare them with the estimation er-

rors of the classical estimators µ̂ (σ̂). The results clearly demonstrate a sys-
tematic bias of the classical estimators µ̂ and σ̂ under the Dep. DGPs (see the
Dep.-Dis. and Dep.-Con. columns), which is non-vanishing as n increases. In
contrast, our FTC-estimators show essentially no bias—despite Violation (V) of
the MCAR assumption. If the MCAR assumption holds, both estimators lead to
equivalent results up to some minor numerical issues; the slightly negative per-
formance of the FTC-estimator σ̂FTC in the Ind.-Dis. DGP is due to computing
numerical integrals and the disadvantage of the classical estimators in the Ind.-
Con. DGP is due to the influence of ξ1 with the largest variance λ1 on the outer
domains in [dmin, 1], where only a small percentage of the sample is observed.

To demonstrate the performance of our practical approach for identifying
Violation (V), we present simulation results for the adapted multiple testing
procedure proposed by Romano and Wolf (2005); see Table 3.4.3. We use a
significance level of α = 0.05 and report the percentages of replications falling
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under the scenarios Null, (V), and Other (see Section 3.3). The simulation
results provide a convincing picture of our practical identification procedure.
The procedure complies with the strong control of the FWER in all DGPs with
n ≥ 150, where the true scenario (V) for the Dep. DGPs and the true scenario
Null for the Ind. DGPs are only rejected in approximately 5% of the replications.
For n = 50 the procedure shows a very poor performance, since selecting a basis
system with up to Jmax = 51 basis elements in such a small sample typically leads
to misspecified basis choices resulting in unstable test results. However, the test
results stabilize when using a reduced number of Jmax = 31 basis elements for
n = 50; see second row in Table 3.4.3. From our experience with this method,
one should apply this procedure with Jmax = 51 for sample sizes n ≥ 150, but a
reduced number of basis elements 31 ≤ Jmax < 51 for 50 ≤ n < 150.

Table 3.4.3: Selection errors for Null, (V) and Other (in %) – Jmax = 51.

Dep.-Dis. Dep.-Con. Ind.-Dis. Ind.-Con.
n Null (V) Other Null (V) Other Null (V) Other Null (V) Other

50 85.0 15.0 0.0 49.6 50.4 0.0 100.0 0.0 0.0 100.0 0.0 0.0
50∗ 0.0 97.2 2.8 2.0 95.0 3.0 93.8 1.2 5.0 98.6 0.2 1.2
150 0.0 99.0 1.0 0.0 97.8 2.2 98.2 0.2 1.6 97.6 0.2 2.2
250 0.0 96.6 3.4 0.0 99.0 1.0 97.4 0.4 2.2 97.6 0.6 1.8
500 0.0 95.6 4.4 0.0 94.6 5.4 96.0 0.6 3.4 95.2 0.2 4.6
∗ Jmax = 31.

3.5 German Control Reserve Market Study

In this section, we use the above described estimation procedure to estimate the
mean price curve of control power prices from the German Control Reserve Mar-
ket. The German Control Reserve Market plays an important role in maintaining
grid stability, which is one of the basic responsibilities of electricity markets. Re-
serve capacities are an effective tool for guaranteeing grid stability. Each week,
the German Federal Network Agency (FNA), a public institution, determines a
sufficiently large amount of reserve capacity di that has to be bought, by law,
by the Grid Control Cooperation1 (GCC). The purpose of the German Control
Reserve Market is to generate market prices at which the GCC has to buy the
dictated reserve capacities from the electricity providers.

The German Control Reserve Market uses a so-called “pay-as-bid” auction,
where every successful bidder (i.e., the electricity providers) receives his own

1The GCC is a merger of the four German Transport System Operators (TSOs) www.
50hertz.com, www.amprion.net, www.transnetbw.de, and www.tennettso.de.

www.50hertz.com
www.50hertz.com
www.amprion.net
www.transnetbw.de
www.tennettso.de
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Figure 3.5.1: Left: The Pay-as-bid pricing mechanism, where each successful
bidder receives the price of his bid. Right: A vertical shift dependency of the
price curves due to changes in the announced amount of reserve capacity di.

(sealed offered) price at which the bidder is willing to provide a certain amount
of electricity. In this market design it is optimal to bid the (unknown) maximum
price the GCC is eventually forced to pay (see, e.g., Grimm et al., 2008, or
Engelmann and Grimm, 2009). Therefore, all bidders try to predict this unknown
maximum price and the best predictor is the publicly announced amount of
reserve capacity di. If the FNA dictates a large value of di, bidders tend to
increase their prices, which leads to vertical shifts in the price curve and vice
versa. That is, price curves Xi that are observed over larger sub-domains [0, di]

tend to have overall higher price levels and vice versa. This relationship is shown
schematically in the right plot of Figure 3.5.1 and can be clearly seen in the
data (Figure 3.5.3). This relatively simple dependency between the sub-domains
[0, di] and the level-shifts in the price curves Xi motivated the above described
Violation (V) of the MCAR assumption.

Data, Preprocessing, and Exploratory Analysis: The data are freely avail-
able from www.regelleistung.net and we provide the data set as well as imple-
mentations of our estimators in the accompanying R-package PartiallyFD. The
weekly data covers the time horizon from June 27th, 2011, to April, 17th, 2017.
Two special auctions (January 2nd, 2012 and December 31st, 2012) resulted in
extreme prices (≥ 20,000 EUR/MW) and have been removed. In order to ac-
count for some very high prices in the data, we analyze logarithmized price curves,
where all prices lower than 1 EUR/MW are mapped to 1 EUR/MW. To obtain a
functional data sample, we pre-smooth each logarithmized price curve using cubic
monotone P-splines in order to keep the monotonicity and the differentiability
of the bid curves. The necessary function monotSpline is included in the ac-

www.regelleistung.net
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Figure 3.5.2: Distribution of the first principal component scores of the log-
price curves computed with respect to the fully observed interval [a, dmin] of the
original sample.

companying R-package PartiallyFD. All functions are observed over the initial
interval [a, dmin] = [0 MW, 1832 MW], but are only partially observed over the
final interval (dmin, b] = (1832 MW, 2500 MW]. As in our simulation study, we
evaluate the curves at p = 501 equidistant points t1 = 0, t2 = 5, . . . , t501 = 2500

over the complete domain [a, b] = [0 MW, 2500 MW]; evaluation points within
the missing sub-domains [di, b] are filled by NAs. The log-price curves are rel-
atively simply structured random functions and their first Functional Principal
Component (FPC), computed with respect to the fully observed lower interval,
accounts for 98.7% of the total variance. (See, for instance, Ramsay and Sil-
verman, 2005, Ch. 8, for an introduction to FPC Analysis). This allows for an
exploratory data analysis with respect to the first FPC scores which reveals that
the original sample of log-price curves is bi-modal and has an additional point-
mass at zero-price functions. Therefore, we remove the zero-price functions from
the sample and perform a normal mixture cluster analysis on the first FPC scores
using the R-package mclust of Fraley and Raftery (2002). The result of this ex-
ploratory data analysis is shown in Figure 3.5.2. For our further analysis we
focus on the practically relevant high-price cluster with n = 337 price curves.
Normality is not necessary for our estimators to be consistent under Violation
(V), but it is needed in our practical test procedure described in Section 3.3.
Standard normality tests reject the null hypothesis of normality due to the hard
threshold used to allocate the data into the single clusters; however, the empir-
ical distribution of the high-price cluster is not substantially far from a normal

https://github.com/stefanrameseder/PartiallyFD
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distribution (see Figure 3.5.2).

Electricity Demand [MW]

Lo
g 

P
ric

e 
[L

og
(E

ur
o/

M
W

)/
w

ee
k]

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●
● ● ● ● ●

0 MW 500 MW 1000 MW 1500 MW 2000 MW 2500 MW

0
2

4
6

8
10

●

Xt

µ̂
µ̂FTC
di

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●
●

● ● ● ● ● ● ● ● ●

1750 MW 2000 MW 2250 MW 2500 MW

5
6

7
8

9
10

Figure 3.5.3: Classical mean (solid with triangles) and FTC mean estimates
(solid with circles) computed from n = 337 partially observed price curves.

We test the functional data sample for Violation (V) as described in Section
3.3 where the procedure leads to scenario (V), i.e., the identification of Violation
(V). For robustness, we additionally check Jmax = 51 ± 10, which also leads to
Violation (V). To estimate the mean function, we use our FTC-estimator µ̂FTC
as defined in (3.3) and compare the estimation result with that from using the
classical estimator µ̂. The difference between the classical estimator µ̂(t), which is
inconsistent under Violation (V), and our FTC-estimator µ̂FTC(t) is obvious: the
systematically missing parts of the curves lead to a positive bias in µ̂(t) resulting
in an implausible, non-monotonous, non-smooth mean curve. In contrast, our
FTC-estimator leads to a smooth and monotonous mean curve, which is perfectly
plausible given the monotonicity of the price curves. Nonetheless, the confidence
intervals are overlapping, but this is not surprising given the sparseness of the
data at the critical upper ending of the domain. The bias in the classical mean
estimator µ̂ also results in a defective estimate of the covariance function when
using the classical covariance estimator σ̂. A plot of the covariance surface is
omitted for reasons of space, but can be produced using the R-scripts of the
online supplementary materials.
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3.A Appendix

Proposition 3.A.1. Under (B) and under Violation (V ), the estimator µ̂(t) is
biased, i.e., E[µ̂(t)] = µ(t) + ∆(t), where ∆(t) = E [E [ξi1 | Oi(t)]]− µ1ψ1(t).

Proof of Proposition 3.A.1: For simplicity, denote the indicator percentage
IP(t) = I1(t)∑n

i=1 Oi(t)
, then

E [µ̂(t)] =E [E [µ̂(t) | O1(t), . . . , On(t)]]

=E

IP(t)
n∑

i=1

Oi(t)

E [ξi1 | Oi(t)]ψ1(t) +
∑
j≥2

µjψj(t)


=E

IP(t)
n∑

i=1

Oi(t)
∑
j≥2

µjψj(t)


+E

[
IP(t)

n∑
i=1

Oi(t)E [ξi1 | Oi(t)]ψ1(t)

]

The first summand deviates from µ(t) only by µ1ψ1(t):

E

IP(t)
n∑

i=1

Oi(t)
∑
j≥2

µjψj(t)

 =E

IP(t)
n∑

i=1

Oi(t)

∑
j≥1

µjψj(t)− µ1ψ1(t)


=µ(t)− µ1ψ1(t)

The second part deviates from µ1ψ1(t) by ∆(t) defined via

∆(t) = E

[
I1(t)∑n
i=1Oi(t)

n∑
i=1

Oi(t)E [ξi1 | Oi(t)]

]
− µ1ψ1(t)

which results in

E

[
IP(t)

n∑
i=1

Oi(t)E [ξi1 | Oi(t)]ψ1(t)

]
=E

[
IP(t)

n∑
i=1

Oi(t) (µ1ψ1(t) + ∆(t))

]
=µ1ψ1(t) + ∆(t)

The bias of σ̂(s, t) can be derived in a similar manner.

Proof of Theorem 1: First, we focus on µ̂FTC(t). When t ∈ [0, dmin], we
observe p(t) = 1, i.e., 100% of the sample. Therefore, the MCAR assumption is
not violated and µ̂ is unbiased and consistent.
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For t ∈ (dmin, 1], the estimator is defined as

µ̂FTC(t) =

∫ t

dmin

µ̂(1)(z)dz + µ̂(dmin)

by decomposing µ̂(t) via the FTC. A direct application of the product rule de-
livers the representation of

µ̂(1)(z) =
J(z)∑n

i=1Oi(z)

n∑
i=1

X
(1)
i (z)Oi(z)dz (3.7)

as the mean estimator of the first derivatives X(1)
i (t).

Under our setup with ψ1 ≡ 1 and under Violation (V), the derivatives
X

(1)
i (z) =

∑
j≥2 ξijψ

(1)
j (z) are independent from Oi(z) such that there is no viola-

tion of the MCAR when estimating µ(1)(z) by µ̂(1)(z) for z ∈ [dmin, 1]. It follows
by the Weak Law of Large Numbers that µ̂(1)(z) →p µ

(1)(z) as n→ ∞. For the
second summand in (3.3)—since p(dmin) = 1—we see that n−1

∑n
i=1Xi(dmin) →p

µ(dmin) as n → ∞. With the Continuous Mapping Theorem (CMT) we finally
deduce the unbiasedness and consistency of µ̂FTC(t) for all t ∈ [0, 1]. This rea-
soning is later used to show consistency in the case of σ̂FTC(s, t) is as well.

In the case of σ̂FTC(s, t), we go stepwise through all combinations for s, t ∈
[0, dmin] ∪ (dmin, 1].

I: For s, t ∈ [0, dmin].
Here, p(t) = 1, i.e., there is no missing data and the standard estimator
σ̂(s, t) as in (3.2) is consistent and therefore σ̂FTC(s, t) as well.

II: Without loss of generality, we assume s ∈ [0, dmin] and t ∈ (dmin, 1].
Then, the estimator is defined as

σ̂FTC(s, t) =

∫ t

dmin

σ̂(0,1)(s, z2)dz2 + σ̂(s, dmin),

where σ̂(k,ℓ)(s, t) = (∂k+ℓ/(∂sk∂tℓ))σ̂(s, t) with k, ℓ ∈ N. Hence, using the
same arguments as for (3.7), applied to

σ̂(0,1)(s, z2) =
I2(s, z2)∑n
i=1 Ui(s, z2)

n∑
i=1

Ui(s, z2)
[
Xi(s)−µ̂(s)

][
X

(1)
i (z2)−µ̂(1)(z2)

]
and to σ̂(s, dmin), we can deduce the consistency of σ̂(0,1)(s, t) and σ̂(s, dmin)

for s ∈ [0, dmin] and z2 ∈ (dmin, 1].
Parallel reasoning holds for the case where s ∈ (dmin, 1] and t ∈ [0, dmin].
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III: For s, t ∈ (dmin, 1].
In order to derive the estimator for the case where s, t ∈ (dmin, 1], observe
that the following three equations hold due to the FTC:

σ(s, t) =

∫ t

dmin

∂

∂z2
σ(s, z2)dz2 + σ(s, dmin) (3.8)

σ(s, z2) =

∫ s

dmin

∂

∂z1
σ(z1, z2)dz1 + σ(dmin, z2) (3.9)∫ t

dmin

∂

∂z2
σ(dmin, z2)dz2 = σ(dmin, t)− σ(dmin, dmin) (3.10)

Plugging (3.9) into (3.8) and using the linearity of the operations involved
yields

σ(s, t) =

∫ t

dmin

∂

∂z2

(∫ s

dmin

∂

∂z1
σ(z1, z2)dz1 + σ(dmin, z2)

)
dz2 + σ(s, dmin)

⇔ σ(s, t) =

∫ t

dmin

∫ s

dmin

∂2

∂z1∂z2
σ(z1, z2)dz1dz2 +

∫ t

dmin

∂

∂z2
σ(dmin, z2)dz2

+ σ(s, dmin). (3.11)

Plugging (3.10) into (3.11) yields

σ(s, t) =

∫ t

dmin

∫ s

dmin

∂2

∂z1∂z2
σ(z1, z2)dz1dz2 + σ(dmin, t)

+ σ(s, dmin)− σ(dmin, dmin). (3.12)

Replacing σ(dmin, t) with a corresponding version of (3.8) and σ(s, dmin)

with a corresponding version of (3.9) yields

σ(s, t) =

∫ t

dmin

∫ s

dmin

∂2

∂z1∂z2
σ(z1, z2)dz1dz2

+

∫ t

dmin

∂

∂z2
σ(dmin, z2)dz2 + σ(dmin, dmin)

+

∫ s

dmin

∂

∂z1
σ(z1, dmin)dz1 + σ(dmin, dmin)

− σ(dmin, dmin).
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Simplifying and using the notation of Definition 3.2.2 leads to:

σ(s, t) =

∫ t

dmin

∫ s

dmin

σ(1,1)(z1, z2)dz1dz2

+

∫ t

dmin

σ(0,1)(dmin, z2)dz2 +

∫ s

dmin

σ(1,0)(z1, dmin)dz1 + σ(dmin, dmin),

where, following the equivalent arguments as used above, σ(1,1)(z1, z2),
σ(0,1)(dmin, z2), σ(1,0)(z1, dmin), and σ(dmin, dmin) can be estimated consis-
tently using

σ̂(ℓ,k)(s, t) =
I2(s, t)∑n
i=1 Ui(s, t)

n∑
i=1

Ui(s, t)
[
X

(ℓ)
i (s)− µ̂(ℓ)(s)

] [
X

(k)
i (t)− µ̂(k)(t)

]
with ℓ, k ∈ {0, 1}.
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Chapter 4

Forecasting of discriminatory
auction curves with underlying
missing data mechanism in the
German Capacity Reserve and
Balance Power Market

4.1 Introduction

Capacity reserve and balancing power markets are essential for both electricity
and policy makers. Costs for capacity provision and instantaneously retrievable
energy play an important role in evaluating the costs for frequency control, the
integration of renewable energies, and future investment opportunities. Since,
e.g., electricity storage is currently prohibitively expensive, grid operators need
these markets to efficiently acquire capacity to permanently balance generation
and demand. While uniform pricing mechanisms result in one uniform price,
the comprehension of costs in discriminatory auction mechanisms is significantly
more complicated. Therefore, the understanding of the structure and dependen-
cies of whole curves rather than single statistics of these curves is crucial for the
future cost development and, in particular, predictions.

In this paper, we first give a brief introduction to auction econometrics, par-
ticularly the different strategies behind uniform versus discriminatory or “pay-
as-bid” auctions. The first format typically involves standard mechanisms, see,
e.g., Liebl (2013), while the latter involves the prediction of “maximal” prices
closely related to the X-model approach, see, e.g., Kulakov (2020). To motivate
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the problem, we briefly explain the German Auction Design for the GCR and
give a detailed description of the data. Later, we give a short introduction to
Functional Data Analysis (FDA) which analyzes statistics of function-valued ran-
dom variables where we focus on partially observed functional data as described
in Liebl and Rameseder (2019). FDA plays an important role in auction fore-
casting, see, e.g., Wang et al. (2008), and in forecasting electricity spot prices,
see Liebl (2013). On the other hand, Ziel and Steinert (2016) use multivariate
regime-switching methods to predict independent demand and supply curves at
the EEX to provide the intersection—the well-known “X-model”—as price fore-
cast. There are two functional requirements in the following case which do not
allow for their approach: the first is to allow for a continuum of regimes and the
second is to use a detour via derivatives. For a general summary of different fore-
casting approaches, we refer to Weron (2014) and Weron (2007) for an overview.
Ziel and Steinert (2016) and Ziel and Weron (2018) provide a multivariate but
not applicable relative of our forecasting. Our method will be explained in detail.
We conclude with an evaluation of four different auctions with different methods
and specifically auction-adjusted metrics.

4.1.1 Auctions

In the following we are dealing with a sequential, sealed-bid, discriminatory price,
multi-unit auction. We recommend Krishna (2009) for an exact definition and
introduction to the extensive amount of theoretical research in auction theory.
There is—probably due to the absence of widely available data—a sparse amount
of empirical literature: Paarsch et al. (2006) provide an introduction and Hen-
dricks and Paarsch (1995) give a research summary; the authors of Shmueli and
Jank (2005) started a series of papers applying functional data to ebay auctions;
however, their findings are not applicable since their ebay data cannot be con-
sidered as multi-unit auction. There is an important step from auction literature
typically concerned with individual interactions to anonymous online auctions for
which we refer to Lucking-Reiley (1999). Nevertheless, this approach is negligible
for our purposes due to the sealed-bid mechanism.

We recommend Kwasnica and Sherstyuk (2013) for a theoretical survey of
multi-unit auctions; from an empirical perspective, we recommend Hortaçsu
(2011) for applied research in the case of multi-unit auctions from a structural
point of view. Since this approach tries to find structural parameters by estimat-
ing individual bid functions, we are not able to follow such an approach due to
the anonymous bids.

https://www.regelleistung.net/ext/download/marktbeschreibung
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4.1.2 The German Capacity Reserve and Balancing Energy Mar-
ket (GCR)

Typically, electrical grids have to fulfill the property that consumption and pro-
duction of electricity equal each other in every moment. While in the classical
view consumption defined how much electricity has to be produced, i.e., electrical
producers had to adjust to cover the demand, smart technologies like intelligent
grids and storage opportunities allow for more flexibility on both sides. Nev-
ertheless, shortages or exuberances of production and/or demand can never be
completely prohibited, which is the reason why the policy maker typically gen-
erates a market to cover for these cases.

In Germany, this market is called the “Capacity Reserve and Balancing En-
ergy Market” (GCR) and is operated by the Grid Control Cooperation1 (GCC).
It is designed for two purposes: ex ante, it insures that the grid provides enough
power (capacity reserve) to guarantee 99.9% of all shortcomings and congestions
and, ex post, it allocates enough positive and negative balancing energy to sta-
bilize the grid after a shortcoming and exuberance again.

It is technically structured into three different reserve qualities; primary (PR),
secondary (SR), and tertiary reserve (TR)—for a detailed description, we recom-
mend Just (2015). In our application, we focus on SR, which is the biggest mar-
ket. SR consists of four auctions, two for the provision of power and energy—we
abbreviate them as POS (NEG) in the case of a shortcoming (exuberance)—and
two for peak and off-peak, which we abbreviate with HT and NT. This results
in four weekly hold auctions POS HT, POS NT, NEG HT, and NEG NT. We
focus on NEG HT, i.e., auctions for exuberances during peak. In addition, we
also provide results for the others in the GIT repository. For a very detailed
economic description, see Ocker et al. (2015).

Figure 4.1.1: Left: Aggregation of the (censored) supply curve with differently
colored market participants. Middle: The uniform pricing mechanism. Right:
A variant of discriminatory or “pay-as-bid" pricing, all with inelastic demand.

1The GCC is a merger of the four German Transport System Operators (TSOs) www.
50hertz.com, www.amprion.net, www.transnetbw.de, and www.tennettso.de.

https://github.com/stefanrameseder/BiddingCurvePredictions
www.50hertz.com
www.50hertz.com
www.amprion.net
www.transnetbw.de
www.tennettso.de


62 Forecasting of Discriminatory Auction Curves

The German Control Reserve auction uses so-called pay-as-bid pricing. Every
bidder—typically an energy producer—provides his own sealed-offered price at
which the bidder is willing to provide a certain amount of electricity. These
bids are sorted according to the price (see Figure 4.1.1, left). Depending on
the demand, bids are successful if their accumulated supply position is below
the demand and they receive the fee they offered their electricity for (see Figure
4.1.1, right). In this market design it is strategically optimal to bid almost the
(unknown) maximum price the GCC is eventually forced to pay (see, e.g., Grimm
et al. (2008) or Engelmann and Grimm (2009)). This is in contrast to uniform
pricing in which it is optimal to bid the own costs plus an epsilon (see Figure
4.1.1, middle).

4.2 Data

4.2.1 Data generating process

In the main paper, we focus on applying our method onto the NEG HT auctions.
The raw data can be downloaded at GCC’s homepage. We provide collected
weekly raw bids—from 2011-06-27 until 2017-04-17—for capacity reserve prices
here, in this case: “SRL_NEG_HT_LP”. In addition, the GIT repository pro-
vides all codes and data for all steps and all SR auctions, which leads to similarly
positive results as in the SR NEG HT auction.

The available raw data has the following structure: each week on Wednesday,
every prequalified and anonymous auction participant can provide multiple bids
bti, i = 1, . . . , n(t). Here, the i-th bid bti of total number of bids n(t) for the auction
at date t = 1, . . . , T is a tuple (τ ti , x

t
i) consisting of a number of supplied capacity

τ it ∈ N > 5 (in MW) and a capacity price xit ∈ R+
0 (in €/MW/w). The demand

of capacity reserve dt at auction t is chosen exogenously by the Transport System
Operators (TSOs) and is known to all bidders in advance (see Figure 4.A.2).

A bid bti is called “winning”—the bids left of the demand in Figure 4.1.1,
right—i.e., the bidder receives the fee to provide capacity reserve if the cumulative
capacity of all lower and equal bids is below the demand dt. Formally, the i-th
bid bit is a winning bid, i.e., Zt(b

i
t) = 1 defined via

Zt(b
t
i) = I(xti ≤ xtmax), where xtmax = max

1≤i≤n(t)
{xti |

i−1∑
k=1

τ tk < dt} (4.1)

The “winning” function Zt(·) will be used to evaluate our forecasting algorithm
(see Section 4.3.7).

https://www.regelleistung.net/ext/
https://github.com/stefanrameseder/BiddingCurvePredictions/tree/master/data
https://github.com/stefanrameseder/BiddingCurvePredictions
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We want to provide a detailed view of the data with multiple graphs. Since
the GCC does not provide any information about non-winning bids, i.e., {xti |
Zt(b

i
t) = 0}, we can only present the winning bids (see, e.g., the black dots in

Figure 4.A.1).
For an overview of the temporal development of the auction curves, consider

Figure 4.2.1, a censored plot with prices of up to 3500 /MW/w—for the other
auctions, see Figure 4.A.3. This graph type shows a two-dimensional projection
of bids onto bins—the sum of MW aggregated in a bin are color-coded: the
darker the color, the more MW at such a price bin and the flatter the curve in
this price range. Figure 4.A.1, left, shows exemplary the winning bids and the
demanded capacity dt (2240 MW) for one week starting on Monday 2012-02-02.
The demand over time can be seen in Figure 4.A.2—the obvious dependency
during Christmas weeks is due to higher uncertainty of electricity production
and consumption during holidays.

All bidders try to predict this unknown maximum price, i.e., the highest
price amongst the winning bids, and the best predictor is the publicly announced
amount of reserve capacity dt. If the Federal Network Agency (FNA) dictates
a large value of dt, bidders tend to increase their prices, which leads to vertical
shifts in the price curve and vice versa (see Figure 4.3.1). That is, prices xti
that are observed over larger sub-domains [0, dt] tend to have overall higher price
levels and vice versa. This relationship is shown schematically in the right plot of
Figure 4.3.1 and can be clearly seen in the data (see Figure 4.3.2 or this .gif). This
relatively simple dependency between the sub-domains [0, dt] and the level-shifts
in the prices xti motivated Liebl and Rameseder (2019) to develop new mean and
covariance estimators, which we exploit for maximum price forecasting.

4.2.2 Data preprocessing

We smooth the discrete data points using a monotone P-Spline interpolation
allowing us to define the bid curves Xt(τ) =

∑m
j=1 β̂jtδj(τ) with cubic B-splines

δj for each t as

min
β

n(t)∑
i=1

[
xti −Xt(τ

t
i )
]2

+ λ

∫ dt

0

[
X

(2)
t (z)

]2
dz w. r. t. Cβ ≥ 0 (4.2)

While the linear restrictions C onto β ensure monotonicity of the resulting func-
tions, the penalty additionally smooths the step curves which guarantees differ-
entiability that is needed by the method of Liebl and Rameseder (2019). The
penalty parameter λ is chosen according to Generalized Cross Validation (Meyer
(2012), Eq. (3), R-Code can be found at the author’s GitHub repository). We

https://github.com/stefanrameseder/BiddingCurvePredictions/blob/main/R_Graphs/POS_HT_Development.gif
https://github.com/stefanrameseder/BiddingCurvePredictions/blob/main/R_Functions/monotSpline.r
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Figure 4.2.1: T = 304 discrete and supply curves in NEG HT up to prices of
3,500 Euros per MW per week. The coloring describes the amount of MW—all
capacity within a price range of 20 €/MW is accumulated. Darker colors indicate
flat supply curves while brighter colors represent steep functions. The black line
shows the MW-weighted average of the prices xwavg

t = (
∑n(t)

i=1 x
t
i ∗ τ ti )/

∑n(t)
i=1 τ

t
i

and alludes to atypical behavior when extreme prices above 3,500 Euros were
realized.

would like to refer to Ziel (2016) for an alternative LASSO-approach.

4.3 Methodology

4.3.1 Summary

In this paper, we are interested in forecasting the “optimal” price, i.e., the max-
imum accepted price in the next week (see Figure 4.1.1, right). Mathematically,
it is the one-step-ahead prediction xmax

t+1|t = E[xmax
t+1 |Xt(·), . . . , X1(·)] of maximum

winning prices given all past bid curves to provide bids slightly lower than this
estimate—if xmax

t+1|t > xmax
t+1 , the bid will not be accepted. Our proposed FDA

algorithm at t to predict the price curve at t+1 can be described in the following
four steps:
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1. Step: Calculate the consistent mean estimator of all curves up to t (see 4.3.3).

2. Step: Forecast a univariate gravity point for t+ 1 (see 4.3.4).

3. Step: Build the predicted curve by adding the mean function to the gravity point
(see 4.3.5).

4. Step: Predict a price by inserting an accumulated MW position into the curve in
t+ 1 (see 4.3.6).

4.3.2 Functional Data Analysis

In the most general form of the FDA framework, a random variable X has real-
izations X1, . . . , XT in a function space, e.g., a separable Hilbert space L2([a, b])

over a compact domain [a, b] ⊂ R. Assuming E[||X||42] < ∞, the first two (func-
tional) moments µ(τ) = E[X(τ)] and σ(ρ, τ) = E[(X(ρ) − µ(ρ))(X(τ) − µ(τ))]

are well-defined.

4.3.3 Mean function estimation

The missing data mechanism does not allow to use the classical functional mean
estimator µ̂(t) = n−1

∑n
t=1Xt(τ) (see a sketch of the problem in Figure 4.3.1).

This is due to the strong dependency of the bidding behavior on the preannounced
and deterministic demand dt and the asymmetric information, i.e., non-winning
bids are not published by the GCC. This violation is formalized in Violation (V )

of Liebl and Rameseder (2019). We therefore apply the mean function estimation
technique proposed by Liebl and Rameseder (2019), who also provide a practical
approach to test their underlying assumptions (see both estimators in Figure
4.3.2 where the classical is clearly biased due to the missing data mechanism).
The Fundamental Theorem of Calculus (FTC) estimator originally introduced by
Liebl and Rameseder (2019), which uses the detour via the well-known theorem,
is defined as

µ̂FTC(τ) =

{
µ̂(τ) if τ ∈ [0, dmin],∫ τ
dmin

µ̂(1)(z)dz + µ̂(dmin) if τ ∈ (dmin, dmax].
(4.3)

In all of our applications, dmin = 1832 MW, i.e., the minimum demanded capacity
by the FNA over all periods and auctions (see Figure 4.A.2). We can now briefly
repeat the adjusted theorem by Liebl and Rameseder (2019):

Theorem 2. Under our setup, i.e. Violation (V ), the estimator µ̂FTC(t) is a
pointwise

√
n-consistent estimator of µ(t) for all t ∈ [0, dmax] where dmax = 2500

MW for all auctions (see Figure 4.A.2).
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Note that even if the classical estimator is unbiased, the FTC estimator is
also unbiased.

We will later use this technique of functional mean estimation for our out-
of-sample evaluation of our forecasting performance. This means that for the
forecast in t + 1, we will estimate the FTC µ̂FTC

t (τ) of the sample of curves
X1, . . . , Xt.

Price per Unit 

B1 B2 
B3 

B4 
B6 

B7 

Pay-as-Bid or   

 Discriminatory 

B4 

Aggregated Units 

Demand 𝒅𝒊 

Price per Unit

B1 B2 B3
B4

B6
B7B4

Aggregated Units
Demand !"#$

B4 1.

2.

Figure 4.3.1: Left: The pay-as-bid pricing mechanism, where each successful
bidder receives the price of his (solid) bid, are published by the FNA. Right: The
pre-announced increased amount of reserve capacity dt (1.) leads to a vertical
shift dependency of the price curves (2.) where the additional (solid) winning
bids are published, whereas the dotted predecessing were not.

4.3.4 Univariate forecasting of gravity points

The definition of the FTC estimator in Equation 4.3 involves the antiderivative
which is unique up to a constant. To gain a representative reconstruction of the
bidding function, these constants, i.e., points where the mean function is hung
up, need to be chosen. We call these constants gravity points in the following.

We evaluate a large set of models where a model is a combination of a gravity
point with a set of exogenous variables. The set of gravity points G consists of

G1 the minimum capacity price xmin
t = Xt(0),

G2 the maximum capacity price xmax
t = Xt(dt),

G3 the median capacity price xmed
t ,
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(solid with circles) computed from n = 304 partially observed price curves in
NEG HT.

G4 the capacity-weighted average price

wt = (

n(t)∑
i=1

xti ∗ τ ti )/
n(t)∑
i=1

τ ti = (

∫ dt

0
Xt(τ)dτ)/dt, and

G5 exemplary MW positions τp ∈ [0, dmin], i.e., xp
t = Xt(τp). Here, we use

τp = 1250 MW.

As a set of exogenous variables we use different combinations E of

E1 the demanded capacity dt,

E2 a binary variable for the two Christmas weeks (see Figure 4.A.2)

E3 the spread xmax
t − xmin

t .

Therefore, a model m directly relates to a combination of G and E, i.e., m ∈
G× E.

For the prediction with model m = (Gi, Ej), i = 1, . . . , 5, j = 1, . . . , 3, we use
the auto.arima function of R (see Hyndman and Khandakar (2008)), i.e.,

xmt ∼ ARIMAx(p,d,q). (4.4)

The dependent variable is the gravity point Gi given a regressor combination Ej .
We draw one-step mean predictions, i.e., xmt+1|t = E[xmt+1|Xt(·), . . . , X1(·)].
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4.3.5 Building up whole bidding functions

To provide a forecast value of our supply curve depending on the model m,
we combine the estimate of the gravity point xmt+1|t with the estimate of the
unconditional mean by centering the curve around this point, i.e.,

Xt+1|t(τ) = xmt+1|t + µ̂FTC
t (τ)− s(µ̂FTC

t (τ)) (4.5)

where the last term accounts for the centering by subtracting the statistic of
the mean function estimate, e.g., in case of G1 with the minimum statistic:
s(µ̂FTC

t (τ)) = µ̂FTC
t (0)

4.3.6 Choice of the accumulated MW position

Providing a bid means choosing a τ⋆ and evaluating Xt+1|t(τ
⋆), which represents

the predicted price at the accumulated MW position τ⋆. The bid is a winning
bid if Xt+1|t(τ

⋆) < xmax
t+1 . Since Xt+1|t is monotonically increasing, i.e., τ1 > τ2

implies Xt+1|t(τ1) > Xt+1|t(τ2), selecting a larger τ⋆ ∈ [0, dt+1] means a higher
price at the risk of exceeding the maximum accepted price xmax

t+1 and therefore
dropping out of the auction.

To formalize this, we define pt+1 ∈ [0, 1]. For each week, we will choose τ⋆(p)
as the percentage of the predetermined demand in t + 1, i.e., τ⋆t+1(p) = p · dt+1

(see Figure 4.A.2, left). We talked to three different SR prequalified bidders and
all are risk averse in the sense that they typically aim at the lower half of the
bidding curve. We therefore use p = 40%, i.e., τ⋆t+1 = 0.4 · dt+1 as the choice of
the accumulated MW position for our model.

4.3.7 Metrics

Standard forecast performance measures, e.g., MSEP or MAE, assume symmetric
loss functions of the forecast consumer. When forecasting highly inhomogeneous
value domains, e.g., in retail sales, MAPE and its relatives are well-established
metrics. However, our bidder faces the following problem:

• If the forecast is above the maximum winning bid, i.e., Xt+1|t(τ
⋆) > xmax

t+1 ⇔
Zt+1(Xt+1|t(τ

⋆)) = 0, the bidder does not need to provide his capacity
because cheaper bidders provide the full demand dt—the bidder leaves the
auction empty-handed.

• If the forecast is below the maximum winning bid, i.e., Xt+1|t(τ
⋆) < xmax

t+1 ⇔
Zt+1(Xt+1|t(τ

⋆)) = 1, the bidder receives the fee for which he provides his
capacity.
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Most of the bidders therefore evaluate their forecasting strategies in two KPIs:

• Acceptance Rate (AR) of model m over horizon H:

AR(m;H) =
H∑

h=1

Zt+h(x
m
t+h|t+h−1)/H

• Performance Rate (PR):

PR(m;H) =

H∑
h=1

Zt+h(x
m
t+h|t+h−1)x

m
t+h|t+h−1/

H∑
h=1

wt+h

WhileAR(m;H) ∈ [0, 1] counts the number of winning bids, e.g., AR(m;H) =

1 constitutes an always-winning model, the performance PR(m;H) ≥ 0 relates
the model performance to the weighted average. PR(m;H) > 1 signifies that
the model performs on average better than the realized weighted averages. Note
that due to the information asymmetry, the weighted average is censored by only
taking winning bids into account. This means that all non-winning bids with
return zero would highly decrease the denominator in PR(m;H) and therefore
increase the performance, i.e., a PR(m;H) = 1 means having a strategy better
than the average.

4.3.8 Benchmark models

We consider forecasting algorithms typically used in the literature for bench-
marking.

• Naive Model (NM)
We use the naive forecast xmt+1|t = xmt where the forecast equals the gravity
point Gj from the last observed auction in t.

• Automated ARIMA (AA)
There is a huge amount of software providing automated identification
of ARIMA models from which Hyndman and Khandakar (2008) provides
the most prominent open-source algorithm. While we forecast the gravity
points to build up whole predictions of the bidding functions, we also use
the univariate predictions of gravity points as benchmarks (see Section
4.3.4).

• Prophet (PR)
As a serious competitor we use Facebooks Prophet (see Taylor and Letham

https://facebook.github.io/prophet/
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(2018)), a state-of-the-art automated forecasting algorithm. Prophet be-
longs to the class of Generalized Additive Models (GAMs) (see Hastie
and Tibshirani (1987)), which decompose the time series into determin-
istic trend, periodicity, and irregularities. In the case of Prophet, time is
the only regressor. Prophet is fit by L-BFGS (see Byrd et al. (1995)) and
has some advantages over ARIMA; in particular, it is more flexible in terms
of multiple periods which is used to model the irregularly periodic behavior
in the bidding curves (see Figure 4.A.3). As different benchmarking mod-
els, we apply Prophet onto the univariate time series of the gravity points
G.

4.4 Application and results

Table 4.4.1 provides the forecast performance measured in the metrics of Section
4.3.7 for the competitor models presented in Section 4.3.8 and our proposed
FDA model. We have chosen to use "2015-05-25" to "2017-04-17" as our out-
of-sample horizon, i.e., H = 100. Although the table shows only the forecast
results for NEG HT, similarly positive results for the other auctions can be
easily reproduced.

Table 4.4.1: Acceptance Rate (AR) in % and Performance Rate (PR) in % in
NEG HT.

FDA NM PR AA
Gi Ej AC PR AC PR AC PR AC PR

1 1,2 99 111 55 23 67 59 69 72
2 1,2 92 109 52 21 72 62 72 79
3 1,2 100 114 63 58 81 78 76 69
4 1,2 97 102 60 57 83 77 79 77
5 1,2 95 99 60 60 80 73 75 73

1 1,2,3 92 89 69 42 57 55
2 1,2,3 95 91 70 46 62 58
3 1,2,3 98 90 78 55 65 60
4 1,2,3 92 92 79 59 58 59
5 1,2,3 91 85 72 56 62 65

While the naive model NM is not able to capture the dynamics in time or
the dependency of the demand at all, the automated univariate models perform
better and are comparable. However, none of them is close to the high Accep-
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tance Rate and Performance Rate of the FDA model perfectly suited for such
data. Note that

∑T
t=1wt ≈ 110, 000€/MW in NEG HT, i.e., the difference of

FDA in (G3, E1,2) to its closed competitor AA in (G2, E1,2) is approximately
38, 500€/MW.

4.5 Conclusion

The present research aims to establish a flexible forecasting approach for dis-
criminatory multi-unit auctions with an underlying missing data mechanism and
to show its superior performance compared to classical models. The forecasting
performance justifies the model, which also can be used for other types of anal-
yses. Although the market seems exotic, the assumptions behind the modeling
approach are not very restrictive and can be easily generalized, e.g., to all kinds
of bid or ask curves.

For further research, we recommend two points: (1) other strategies behind
the choice of the accumulated MW position τ⋆ can be investigated. This directly
relates to (2): we do not incorporate variable or fixed costs of providing capacity
due to the fact that the German Market consists of two auctions, one for capacity
reserve and the other for balancing energy. To implement these costs in the
forecasts decisions, we need to model both markets at once. This is, however,
common practice within the prequalified bidders we have talked to.

In conclusion, current research evaluates potential designs of capacity reserve
and balancing energy markets, in particular auctions. This includes assumptions
about bidding behavior and pricing mechanisms. While the bidding behavior
in uniform price auctions is empirically well-understood, the present research
provides an approach for the empirical modeling in the case of discriminatory
pricing. The goal behind capacity reserve and balancing energy markets is to
obtain a very high level of grid stability at justifiable costs.
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Conclusion and outlook

The present thesis aims to contribute to the literature on functional data anal-
ysis (FDA), in particular the prediction challenge mentioned in the beginning
of the Introduction 1.1. It demonstrates that FDA provides a beneficial toolkit
for empirical questions in relation to auctions by applying and extending FDA
methods. All the chapters of this thesis deal with real auction data collected and
preprocessed by the author. While analyzing the data, fundamental problems
related to the applicability and interpretability are generalized and investigated.
In this context and always motivated by real data, the thesis makes empirical
but also methodological contributions.

On the methodological side, the thesis contributes to the existing literature
by improving the estimation procedure for the functional regression model with
points of impact, an augmented scalar-on-function regression model that can
be interpreted more easily. Another methodological contribution is a general-
ized mean and covariance estimator for non-randomly missing data and a test
procedure to test for applicability. The empirical contribution addresses a ben-
eficial forecast approach for partially observable supply functions in pay-as-bid
multi-unit auctions, which allows for strategically optimal bids.

In the first paper (see Chapter 2.1) an improved estimation algorithm for the
functional regression model with points of impact is developed. This model can
be used to decompose the effect of a functional predictor on a scalar outcome
variable into the classical global component and a time-specific local component.
Motivated by a problem involving real data, where the dependency between
yearly trajectories of daily impressions and aggregated clicks is modeled, the pa-
per proposes an improved estimation algorithm taking into account that in finite
samples, there is an ambiguity between global and local effects. More specifically,
the proposed procedure decouples the estimation of the model parameters and
the selection of points of impact. Additionally, instead of the classical FPCA
estimator, our procedure uses a smoothing spline estimator for the functional
coefficient. An extensive simulation study shows a substantial improvement in
terms of the precision of the estimation.

75
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The second paper (see Chapter 3.1) is motivated by the mean and covari-
ance estimation in an auction market with partially observable supply functions.
Classical FDA mean and covariance estimators lead to obviously inconsistent re-
sults due to non-randomly missing data caused by strategic bidding behavior.
Our generalizations utilize the nature of FDA by using its properties such as
continuity and differentiability in the form of the fundamental theorem of calcu-
lus: by using classical estimators onto the derivatives and reintegrating over the
partially observable domains, certain dependencies can be bypassed, which leads
to consistent estimators under certain assumptions. A procedure to test for the
assumption is successfully developed and extensively evaluated in a simulation
study. The paper provides useful estimates for mean and covariance functions
that serve substantially in the prediction method proposed in the last paper.

The third paper (see Chapter 4.1) addresses the predictions of the strate-
gically optimal maximum price in pay-as-bid multi-unit auctions with partially
observable supply curves. The forecasting procedure models and evaluates the
predictions of whole auction curves since functional alternatives are not applica-
ble due to the missing data mechanism. The predictions are evaluated in four
auctions in the German Capacity Reserve and Balance Power Market (GCR)
and outperform classical methods due to the nature of the setup: non-randomly
missing data and quantile predictions. The method was used from end of 2017 to
2019. Unfortunately, at the time of this writing, the paper is still under review.

Still obsessed with the challenge of the Introduction 1.1, the author is keen to
formulate a more general tool box to predict arbitrary multi-unit auctions. This
includes the following extensions for future research:

Empirically, there is a significant amount of multi-unit auctions with data
available to the author, e.g., the primary and tertiary reserve in the GCR. There
are also other markets, e.g., the fragmented US energy market provides an enor-
mous set of different grid reliability mechanisms, e.g., New York (NYISO), New
England (ISO-NE), Midwestern ISO, Ontario (IESO), Pennsylvania, New Jersey,
and Maryland (PJM), Texas (ERCOT), . . . , with open available data.

Methodologically, there are a lot of opportunities to generalize the prediction
approach even further. From a prediction perspective, the choice of the gravity
point, the choice of the position τ⋆t+1 (see Section 4.3.6), and the approach if
dt+1 > d = max{d1, . . . , dt} should be further investigated. In addition, the au-
thor envisions incorporating functional dependencies in the form of the functional
regression with PoIs and other exogenous regressors into the prediction approach,
e.g., the influence of past bidding shapes and EEX price signals onto the shape of
the supply functions. Since some of the US market mechanisms also involve dif-
ferent non-randomly missing data mechanisms, the author also asks the question
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of whether for a specific set of missing data mechanisms, there could be basis
representations X(t) =

∑
j≥1 ξjψj(t) to follow similar approaches as proposed

in the second paper. Econometrically, the connection of FDA with structural
parameters can be established and discussed, e.g., the analysis of market power,
which is a significant topic in restructured electricity markets.
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