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This paper provides an overview of current linguistic and ontological challenges 
which have to be  met in order to provide full support to the transformation 
of health ecosystems in order to meet precision medicine (5 PM) standards. It 
highlights both standardization and interoperability aspects regarding formal, 
controlled representations of clinical and research data, requirements for smart 
support to produce and encode content in a way that humans and machines 
can understand and process it. Starting from the current text-centered 
communication practices in healthcare and biomedical research, it addresses the 
state of the art in information extraction using natural language processing (NLP). 
An important aspect of the language-centered perspective of managing health 
data is the integration of heterogeneous data sources, employing different natural 
languages and different terminologies. This is where biomedical ontologies, in 
the sense of formal, interchangeable representations of types of domain entities 
come into play. The paper discusses the state of the art of biomedical ontologies, 
addresses their importance for standardization and interoperability and sheds 
light to current misconceptions and shortcomings. Finally, the paper points out 
next steps and possible synergies of both the field of NLP and the area of Applied 
Ontology and Semantic Web to foster data interoperability for 5 PM.
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1. Background

Managing healthcare transformation towards personalized, preventive, predictive, and 
participative precision medicine (5 PM) is the background of a series of contributions for a broad 
audience [see the introductory paper to this Special Issue (1)], among which this paper 
highlights the role of language, semantics and standards for 5 PM. It intends to support the 
understanding of crucial notions in a field known as Biomedical Semantics.

5 PM considers individual health conditions, genetic and genomic dispositions in personal, 
social, occupational, environmental and behavioral contexts. The goal is to transform health and 
social care by fully understanding disease mechanisms and by turning health and social care 
from reactive to proactive. The current healthcare system transformations aiming at 5 PM 
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medicine are supported by a broad range of technologies, with data-
centered approaches playing a crucial role. Other than with clinical 
trials, quality data are intended not only to be collected and analyzed 
for a specific purpose but during the whole care process within a 
health ecosystem, i.e., a network of all relevant interconnected entities 
ranging from patients and carers to diagnostic and care processes 
targeting clinical conditions, pathogens, devices and being reflected 
by an ever-increasing amount of data.

The implementation of 5 PM involves multiple domains and 
disciplines with their specific objectives and perspectives, using a 
broad range of methodologies, educational backgrounds, skills and 
experiences as well as a broad range of resources. The technologies to 
be  deployed range from wearable and implantable micro- and 
nanotechnologies, biomolecular analytical techniques such as the 
family of OMICS technologies, up to super- and quantum-computing 
and big data analytics. Many of these technologies only unfold their 
potential if rooted in semantic resources like terminologies, ontologies 
and information models as core requirements for data standardization 
and interoperability.

The challenge is not only to understand the world of sciences and 
practices contributing to 5 PM, but also to formally and consistently 
represent it, i.e., of multidisciplinary and dynamic systems in variable 
context. Thus, mapping and harmonization data and processes among 
the different disciplines, methodologies, perspectives, intentions, 
languages, etc. must be supported. This is bound to the advancement 
of communication and cooperation between the business actors from 
data to concept and knowledge levels, in order to provide high-quality 
integration and interoperability between and within health 
ecosystems. Consequently, knowledge representation (KR) and 
knowledge management (KM) are crucial for the transformation of 
health and social care.

KR and KM happen at three levels: (a) the epistemological level of 
domain-specific modeling; (b) the notation level of formalization and 
domain representation; (c) the processing level of implementations. 
The different levels are represented by languages of different 
abstraction and processability.

Like specialized dictionaries provide words that constitute 
textual expressions in a certain field of interest, domain ontologies 
provide the building blocks for the construction of knowledge in 
that domain, in order to support representation and communication. 
For enabling interoperability between different stakeholder 
perspectives as well as logical deduction and machine processing, 
we  have to advance ontologies to become a repository of 
representational units for precise descriptions of classes of domain 
entities in logic-based languages (2). In order to bridge to the way 
humans communicate, in a variety of natural languages and domain-
specific sublanguages, the entities of meaning, as collected and 
defined within ontologies, must be linked to collections of natural 
language terms, i.e., domain vocabularies. More information on the 
health and social care transformation and the challenges to properly 
model the systems can be found in (1, 3, 4).

For representing health and social care ecosystems, we  have 
deployed a system-theoretical, architecture-centric, ontology-based, 
policy-driven approach standardized in ISO 23903:2021 
Interoperability and Integration Reference Architecture – Model and 
Framework (5), Figure  1. This standard introduces a top-level 
architectural model for any multi-domain system, formally 
representing its components, functions, and interrelations by a 

cube-shaped model with the three dimensions, viz. (a) domains 
representing specific aspects and perspectives of the system, forming 
domain-specific sub-systems; (b) generic granularity levels of the 
system’s elements enabling the composition/decomposition of the 
system; (c) the viewpoints within its development process. The latter 
one extends the views defined in ISO/IEC 10746 Open Distributed 
Processing – Reference Model (6–8) Enterprise, Information, 
Computational, Engineering and Technology by the ISO 23903 Business 
View. This view is represented by the domain ontologies harmonized 
through foundational ontologies (9) aka upper-level ontologies, the 
different ISO/IEC 10746 views are represented through additional 
ontologies and specifications of the information technology domain. 
The former ones include BFO, GFO, UFO, DOLCE, and others, some 
of them also referred to by the ISO/IEC 21838 Top Level Ontologies 
(9, 10). The latter ones range from the Business Process Modeling 
Language (BPML) for the Enterprise View through the Universal 
Modeling Language (UML) for the Information View and the 
Computational View up to programming languages for the Engineering 
View. As described before, the languages thereby move towards higher 
expressivity, but more constrained grammars. Capturing knowledge 
in ontologies enables the understanding of facts and relations by both 
humans and machines. Thereby, structured and semi-structured 
knowledge can be represented in different styles at different levels of 
formalization (2). Figure 2 represents the knowledge types addressed 
in the ecosystem ICT solution development process. Taking these 
knowledge types into consideration can provide rigorous design 
decisions for knowledge representation and reasoning solutions using 
ontologies (section 6.1. Linguistic opportunities).

2. Introduction

A great challenge of 5 PM is to master the tradeoff between (i) the 
need to constitute clinical cohorts that are large enough for high 
evidence on the effectiveness of interventions and (ii) the need to 
account for the individual character of health and disease, which 
demands personalized decisions for those patients that cannot 
be considered instances of well-studied large cohorts.

FIGURE 1

Transformed health and social care ecosystem according to ISO 
23903 in a representational focus.
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The key to address this problem is data. The more reliable health 
data are available, the better personalized decisions can be responsibly 
made on a scientific basis, and the better are data from routine care 
suited for retrospective investigations. This requires a thorough 
understanding of (i) what biomedical data are, (ii) which different 
kinds of data need to be distinguished, and (iii) how data relate to the 
reality of facts and hypotheses in the domains of biomedical research 
and personalized healthcare.

We understand by biomedical data all those signals used to 
support human and machine communication and reasoning about 
entities (including actors and processes) in the biomedical domain, 
and which are processed using modeling and programming languages. 
We have to consider the whole range between structured data (codes, 
numbers), primarily for machine processing and unstructured data 
(text, images), mainly for processing by humans.

The way computers deal with data is different from how people 
do. This raises issues regarding data quality, completeness, processing 
workflows and interoperability. Data quality is affected not only by 
measurement inaccuracies, but also by human errors in data handling. 
Humans also account for the completeness of data collection and 
registration, but also of the outcome of data retrieval. The fact that the 
growing amount of biomedical data has far exceeded the limits of 
human cognition makes automatic data processing indispensable for 
responsible medical practice. Additionally, different professionals in 
health care encode data in different ways, using different structures 
and different languages. This makes data interoperability a major goal 
which has been largely unfulfilled to date.

Clinical data requires some language to be encoded, with a given 
vocabulary, syntax, a more or less apparent semantics, embedded into 
overly diverse and often only implicit pragmatic contexts. This is true 
for languages used by machines as well as for natural (i.e., human) 
languages. The following example will demonstrate this.

A hospital laboratory machine plots a set of attributes, values and 
unit triples (like “Hb; 14; g/dl”) into a tabular structure. Similarly, a 
clinician inserts codes from a coding system (e.g., ICD-10) into an 
electronic health record (EHR) together with textual descriptions into 

a predefined table. In another setting, the clinicians write free-text 
reports, using the local natural language with its rules and domain-
specific terms. In all these cases, not all semantics and contexts are 
obvious. E.g., the lab machine output does not explain the sampling 
and analysis techniques. The table with the ICD-10 codes, even 
correctly filled, may leave open whether the codes refer to diagnostic 
hypotheses at admission or to clinical evidence at the discharge of a 
patient. And in the doctor’s report, crucial background information 
about the patient may be missing because the writer assumes it as 
known to the reader.

For a long time it has been daily practice for clinicians to supply 
structured information via forms and tables suited to machine 
processing, e.g., for billing, disease reporting and quality assurance, 
often redundantly and therefore unwillingly, which explains biases 
and errors (12). Nevertheless, textual content prevails in EHRs. It is 
created in various ways. Medical dictation and subsequent 
transcription by typists play a major role, although text is increasingly 
entered by medical staff themselves. Spoken language recognition 
systems are gaining acceptance due to enhancements of trained neural 
language models (13), which can be  adapted to the domain and 
personalized to their users. No matter how human language is 
produced, the result is not error-free, particularly when created under 
time pressure. Several kinds of errors occur, such as typos, grammar 
violations, other deviations of writing rules such as colloquialisms, 
ambiguous terms, and undefined short-hand expressions like 
acronyms are deeply rooted in clinical documentation culture. For a 
long time, computers had completely failed to reliably extract meaning 
from this kind of technical language. However, during the last decades, 
the picture has been changing. The advances in web translation 
engines like DeepL or Google Translate, and more recently dialogue 
systems like ChatGPT, have impressively demonstrated how 
information technology is improving its ability to process human 
language in a robust manner.

Yet there are largely different flavors of human language as used 
in the biomedical field. Clinicians use their language and dialect in an 
ad-hoc manner, researchers publish in English, and only the latter 
one’s texts are aligned with editorial principles before being published. 
In EHRs, narrative content can be completely unstructured or exhibit 
several degrees of structure, from document templates up to 
database tables.

Textual entries come in different degrees of standardization, 
from a completely unconstrained use of strings of characters over 
local term collections until shared dictionaries, linked to 
internationally compatible coding systems like ICD-10 or 
SNOMED CT. The most sophisticated ones are those that are 
rooted in some ontological basis, which provides standardized 
descriptions in logic defining and describing the referents of 
language entities, i.e., the concrete types of things, e.g., that 
hepatitis is an inflammation of the liver, that the eye is a sensory 
organ or that the sigmoid is part of the colon.

In this paper, we will provide an overview of current linguistic and 
ontological challenges which have to be met to provide a full support 
of transforming health ecosystems in order to meet precision medicine 
standards. We  will particularly highlight standardization and 
interoperability aspects regarding formal, controlled representations 
of clinical and research data, but we will on the other hand consider 
the users’ point of view. Clinicians require smart support to produce 
and encode content in a way that machines as well as humans with 

FIGURE 2

Transformed health and social care ecosystem acc. to ISO 23903 
regarding the knowledge types in the ICT solution development 
process (after (11), changed).
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different backgrounds and contexts can sustainably and reliably 
understand and process.

The requirement of interoperability and reusability has been 
formulated for research data by the FAIR (Findable, Accessible, 
Interoperable, Reusable) data stewardship desiderata (14). 
We reinforce these principles and advocate their use for all data in the 
field, which particularly includes routine data in EHRs, a scenario 
originally not in the focus of FAIR.

To this end, we discuss different formalisms to encode data and 
knowledge in biomedicine. We hypothesize that precision medicine, 
requires precision formalisms, such as KR languages with 
mathematical precision and computable semantics. This desideratum 
is challenged by a clinical documentation culture, in which narratives 
are the main carrier of information.

3. The perspective of human language

3.1. The characteristics of clinical and 
scholarly language

The crafting of a human language expression regarding its 
representation of reality principally depends on our innate capability 
to use a set of symbols and rules. It adjusts to the degree of precision 
needed by the data exchange use case as well as the background 
knowledge and thematic scope of the communication partners.

E.g., the expression [i] “MCP, pale, cld, 90/45, 130/min” is precise 
enough to describe a life-threatening shock situation when uttered 
by a clinician in an emergency scenario. Clinicians prefer brevity 
of information-rich messages over redundancy (cf. the following 
expression [ii]), as long as the recipient of the message can 
be expected to fill the gaps, here added in italics:

“Minimally conscious patient with a pale face, cold skin, and an 
arterial blood pressure measured with a sphygmomanometer on the 
upper arm resulting in a systolic value of 90 mmHg and a diastolic 
value of 45 mmHg, with a pulse rate, measured digitally over a 
peripheral artery (normally at the wrist), of 130 beats per minute 
on average.”

The message would even be understood when introducing some 
noise, such as typing errors and other mistakes like in expression 
[iii]: “MCP, palle, cld, 90/455, 130/s” (sic!).

The correct, unambiguous and precise expression [ii] would, in 
contrast, not be preferred by the (human) recipient of this information, 
as perceived wordy and redundant. Similarly, a structured 
representation (Table 1) would take more time to read than [i]. The 
shared knowledge of the situational context (in this example the 
primary assessment of vital signs in an emergency situation), opens a 
mental map, which already contains the parameters and requires only 
the values to be  added, such as interpreting the frequency value 
130/min as heart rate even if the attribute pulse rate’ is not given.

In contrast, an automated decision support system would not 
tolerate any missing parameter, and a wrong unit of measurement could 
cause considerable harm. The tendency to brevity, the acceptance of 
noise and the reliance on contextual information to fill gaps and correct 

errors is characteristic for oral communication, as well as in SMS or 
social networks posts. Clinical language, equally produced in a hurry, 
prioritizing content over form, resembles more to the language of 
WhatsApp messages and tweets than to scholarly publications (15). 
Table 2 gives an overview of typical characteristics of clinical language.

Published texts, in contrast, are carefully copy-edited and follow 
guidelines, which, e.g., prevent the use of unorthodox spelling or 
undefined acronyms. The reader of a scientific paper would not be left 
in the dark, whether “MCP” means “Monocalcium Phosphate”, 
“Metacarpophalangeal,” “Medical College of Pennsylvania” or, like in 
our example, “Minimally conscious patient”.

The observation that clinical narratives are often characterized 
by complete freedom in text design, forms a contrast with the 
enormous amount of effort invested in vocabulary normalization 
over decades (16). To name just a few, ICD-10 (17) is a worldwide 
standard for encoding medical conditions. Phenotype data can 
be coded by MedDRA (18) or the Human Phenotype Ontology 
(19), LOINC (20) is used as a controlled vocabulary for laboratory 
and other observational characteristics, ATC (21) and RXNorm 
(22) describe drugs and drug products, and SNOMED CT (23), an 
ontology-based terminology, claims to provide codes for the whole 
range of EHR content. For scholarly publications, the controlled 
MeSH vocabulary (24) is used for abstracting the key topics a 
scientific paper is about. Medical terminology systems are 
heterogeneous and overlapping. The UMLS (Unified Medical 
Language System) (25), maintained by the US National Library of 
Medicine, is a long-lasting effort of the biomedical informatics 
community to collect and to map medical terms from over a 
hundred terminology systems, thus facilitating interoperation, 
biomedical language processing and retrieval.

Although clinical terminology systems are often referred to by the 
term “controlled vocabulary” (CV), this does not imply that they play 
a significant role for controlling the terms used when producing 
clinical or scholarly narratives. Their main purposes are the support 
of structured data entry into forms such as for health statistics, quality 
assurance, reporting, and billing, the semantic annotation of article 
content in literature databases and the standardization of clinical data 
sets for research, e.g., within the Medical Outcomes Partnership 
(OMOP) Common Data Model (26).

Most terminology systems are primarily models of human 
language. They organize words and cohesive multiword sequences, 
normally referred to as “domain terms” or “terminological units.” 
These units are connected by semantic relations such as synonymy 
and hyponymy. From a class of domain terms, normally one, 
typically self-explaining term is flagged as the preferred term. Its 
meaning is further explained by textual elucidations. Semantic 

TABLE 1 Tabular representation of the short clinical text “MCP, pale, cold, 
90/45, 130/min.”

Emergency case – first assessment

Consciousness Minimal

Skin color/face Pale

Skin temperature Cold

Systolic arterial pressure (arm) in mmHg 90

Diastolic arterial pressure (arm) in mmHg 45

Pulse rate (beats per minute) 130
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relations in informal terminology systems, however, rely more on 
context-dependent human judgment than on crisp, objective 
criteria. E.g., the fact that “Animal” is a hypernym of “Human” may 
be trivial for a biologist, but debatable for a jurist. For a chemist 
“alcohol” is clearly a hypernym of “ethanol,” whereas a general 
practitioner uses them as synonyms. The meaning of “fear,” 
“anxiety” and “worry” has no clear boundaries, so that whether they 
are considered synonyms is much dependent on individual 
judgment and situational context.

3.2. The processing of biomedical language 
by computers

For decades, natural language processing (NLP) has been seen as 
an important and relevant application area of artificial intelligence, 
particularly because it bears the promise to bridge between humans 
and machines. Only in the last decade, however, NLP technology has 
reached enough maturity to play an ever-increasing role in application 
software, which determines ever larger parts of our everyday life, 
particularly in mobile applications.

When applying NLP technology to clinical narratives or 
scholarly publications, the main focus is on text mining, by use of 
different information extraction (IE) methods (27). IE systems 
analyze text structure and content in order to fill pre-structured 
information templates. An example is the processing of a pathology 
report in order to populate records of a tumor registry (28). This task 
of distilling structured data from unstructured text serves many 

purposes. Applied to clinical text, structured extracts can be used for 
all the documentation and annotation purposes as addressed in the 
previous section.

The complexity of the extracted information ranges from simple 
binary variables such as Smoker (yes/no), to parameters with 
numerical values for a parameter like Oxygen Saturation (e.g., 98%) to 
codes from a terminology system with up to hundreds of thousands 
of possible values. Their standardized meaning, is then often further 
contextualized by information models such as HL7-FHIR (29, 30), 
which provide information templates that represent the context in 
which the codes have to be interpreted, e.g., the role a disease code 
plays within a diagnostic expression. Instantiated FHIR resources 
specify, e.g., the time of a diagnosis and whether it refers to a current 
health problem, a resolved one, one in the patient’s family, or a 
hypothesis raised by a clinician.

Text mining analyzes and normalizes linguistic units of different 
granularity. The largest unit is the document. Documents can 
be distinguished by types (e.g., discharge summary, radiology report, 
progress note) as well as subdivided into sections. Sections can also 
be assigned a type, e.g., Diagnosis, Evolution, Laboratory, Medication 
etc. in clinical documents or Introduction, Methods, Results etc. in 
scholarly publications. Within sections, sentence-spanning phenomena 
such as anaphors (see Table  2) or semantic relations need to 
be identified for a complete understanding, e.g., to link the mention of 
a procedure with the mention of an anatomical structure. Sentences are 
decomposed into smaller units (chunks) using shallow parsing, 
supported by the analysis of parts of speech (POS), i.e., the identification 
of word classes such as Noun, Verb, Adjective etc. Within chunks, text 

TABLE 2 Sublanguage characteristics in clinical narratives.

Phenomenon Example Elucidation

Telegram style “left PICA stroke, presented to ED after fall” Incomplete sentences, sketchy style

Colloquialisms “pothole sign”, “snorkel” Milieu-specific sub-languages

Ad-hoc abbreviations “infiltr” Truncation (“infiltrated mucosa”)

Ambiguous short forms “RTA” “Road traffic accident”, “Renal-tubular acidosis”

Short forms of regional or 

local scope

“LDS Hospital”

“St. p.”

“Latter-Day-Saints Hospital”

“Status post” = “History of ”

Conventionalized Latin 

abbreviations

“V mors can dig V dext” “Vulnus morsum canis digiti quinti dextri” = “dig bite in the right 5th finger”

(common in some European languages)

Spelling errors, typos “Astra-Seneca,” “Hipotireose” accidental or systematic (e.g., 2nd language speakers)

Spelling variants “Esophagus”, “Oesophagus” e.g. American vs. British English

Single noun compounds “Ibuprofenintoxikation” Non-lexicalized long words (in languages such as German, Swedish)

Anaphora
 (i) “adenoCa rect pN + MX G2 (…). tumor excised 

in toto”

 (ii) “no blood in stomach (…). mult mucosal erosions”

Understanding requires reference to surrounding text,

 (i) “Tumor” coreferential to adenocarcinoma described in left context

 (ii) “mucosal erosions” refined to “erosions of gastric mucosa”

Negations “No evidence of pneumonia”

“Pulmones: nihil,” “metastasenfrei”

non-standard, jargon-like

Epistemic (uncertain, 

speculative) contexts

“susp MI, DD lung embolism” suspected diagnosis, differential diagnosis

Temporal contexts “h/o Covid-19”

“Streptokokkenangina 06/16”

“history of ”

coarse grained dates (mm/yy)

Other contexts  (i) “father: pancreas ca”

 (ii) “refrained from resuscitation”

 (i) family history

 (ii) plans not executed
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passages that can be mapped to a controlled term are finally identified 
by matching against a domain vocabulary, such as constituted by or 
linked to one of the mentioned terminology systems. Such passages can 
be  short (e.g., “cough”), but also complex, such as “non-intensive 
COVID-19 infection with positive vaccination status.” At this level, two 
NLP tasks must be  distinguished. First, the identification and 
delineation of a text passage to which a specific semantic type like 
Disease, Symptom, Medication, Proper Name, Institution can 
be ascribed. This is known as Named Entity Recognition. Second, the 
mapping of the identified candidate to the target vocabulary, which is 
known as Named Entity Normalization, Entity Linking or Concept 
Mapping (31–33). Pioneering systems for the English medical language 
are cTAKES (34), MetaMap (35) and MedKAT/P (36). In these systems, 
text content is automatically matched against terms in terminology 
systems and tagged with their codes.

Many use cases require connecting text passages, after 
normalization, to a temporal context. Clinical texts often do not report 
on facts chronologically, and time differences between important 
events of a patient history, e.g., between the first diagnosis of a tumor 
and its recurrence after therapy, are of prime interest. Standards like 
TimeML (37) have been proposed, as well as algorithms for the 
identification of time events, e.g., HeidelTime (38). The evaluation of 
temporal relations and putting events into context has also been 
addressed by the 2012 i2b2 Challenge on evaluating temporal relations 
in clinical text (39). Equally important is the identification of the 
negation context of a text passage, where NegEx (40, 41) has been 
optimized to different domains and languages (42–44), but the 
generalizability of the approaches is still missing (45).

The described analysis steps are implemented in classical text 
mining systems as software known as automated annotators or 
taggers. A common framework is Apache UIMA (46). Individual text 
analysis modules communicate in a processing pipeline by enriching 
a complex data structure, which incrementally adds information to 
the text under scrutiny. This information is represented by typed, 
access-optimized feature structures, which assign types and properties 
to a span of characters corresponding to text passages. Component 
repositories like DKPro (47) based on uimaFIT (48) support a flexible 
composition of use case specific building blocks for NLP systems, 
which implement specific functionalities in the chain. Important 
Python based NLP frameworks which have to be mentioned in this 
scope are spaCy (49) and Spark NLP (50).

A major paradigm shift has occurred in NLP during the last 
decade, driven by the unprecedented rise of artificial neural networks 
(ANNs) for machine learning, known as Deep Learning. Although the 
principles of ANNs have been formulated about 80 years ago, only 
now their combination with powerful computer architectures, big 
amounts of data, and innovative algorithms has unveiled their 
potential. Their popularity has been supported by practical program 
libraries such as KERAS, TensorFlow, PyTorch, and HuggingFace 
(51–53).

Deep learning approaches have largely replaced “shallow” machine 
learning methods in recent years, especially because features that are 
productive for learning success no longer require time-consuming 
feature engineering (54). Revolutionary for natural language processing 
are embeddings, which are computed semantic representations of text 
passages in vector spaces of medium dimension (e.g., 300), learnt from 
textual data. The embedding-based vector representation can be used 
for example to identify related term-candidates by applying different 

distant metrics like the cosine-similarity within this n-dimensional 
space. More recent architectures, particularly BERT (55) and GPT (56) 
can provide so-called contextualized embeddings (57), in contrast to 
first non-contextualized approaches like Word2Vec (58), GloVe (59) 
and fastText (60). For a given linguistic unit, these can incorporate the 
relevance of preceding units to their vector representation and thus 
distinguish between homonyms (e.g., “delivery” in “drug delivery 
mechanisms” from “normal labor and delivery”). For many of the 
model-based extraction tasks, Deep Learning, specifically the use of 
transformer-based architectures is now standard, and in some cases 
specific tasks no longer rely on the interaction of pipeline elements, but 
can be handled with an independently trained model, also known as 
end-to-end processing.

Training neural networks with sufficiently large amounts of data 
is “expensive” in terms of hardware requirements and processing time. 
This is specifically true when it comes to the generation of language 
models, which are usually downstreamed in a second step to a specific 
problem domain like named entity recognition or document 
classification, often referred to as transfer learning (61). Just some 
openly available language models exist for the clinical domain (62) 
which can be  leveraged adequately for this kind of model-based 
problem adaption.

Nevertheless, traditional, “low-tech” rule-based approaches still 
find their application, particularly where scarceness of training data 
meets in-depth expert knowledge about the domain. Training models 
only on publicly available data is by far not enough to reach a good 
quality, particularly when it comes to entity normalization and 
disambiguation, and even more for languages other than English (63). 
This is particularly important for clinical narratives, because contrary 
to scholarly publications, most clinical texts, from a global perspective, 
are written in languages other than English.

It should not be forgotten that speech recognition technology, 
nowadays mostly implemented as recurrent neural networks like 
LSTMs (13) is becoming increasingly popular. A randomized study 
from 2015 showed an increase in productivity by physicians using this 
technology (64). In the meantime, speech recognition software has 
been shown to be  faster and more accurate than typing, but the 
acceptance by clinicians still leaves a lot to be desired (65).

4. Ontological perspective

4.1. The need for semantic integration of 
health data

For the most part, medical research and medical standards of 
care are driven by international scientific and professional 
communities. Researchers and practitioners with different linguistic 
and cultural backgrounds have little problems when discussing 
medical issues, as long as a certain level of command of English and 
the knowledge of English medical terminology is guaranteed. Thus, 
experts from Baltimore, Bamako, Beijing, Berlin, Bogotá and 
Brisbane can get together to discuss issues of state-of-the-art clinical 
diagnosis and therapy. The picture changes already when we want to 
automatically integrate data from two hospitals in the same city: All 
kinds of major problems will arise, and harmonization of data from 
their respective EHRs requires human labor to an often-prohibitive 
extent. Similar challenges arise whenever we  attempt to bridge 
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between EHR data and content of scholarly publications 
and databases.

The main desideratum is semantic interoperability. The role 
ontologies and other semantic standards can play in fostering or 
creating semantic interoperability of heterogeneous clinical and 
scholarly data to fulfill the pHealth requirements will be discussed in 
the following section.

4.2. Ontologies as a special type of 
terminology systems

Ontologies have been important resources in computer science 
for decades, accompanied by a variety of tools and representational 
languages. Unfortunately, the way how they were conceived and 
defined, as well as the purposes for which they have been built, has 
shown great variation. We have introduced the notion of a terminology 
system in the previous section, and often the term “ontology” is also 
used to refer to them. We consider this view to be of little use. Instead, 
we introduce the clear bipartition, highlighting “ontologies” as “formal 
ontologies” (66–69), contrasting them with the large number of 
terminology systems that are not based on formal semantics, such as 
ICD, ICF, MeSH, MedDRA, but also the UMLS Metathesaurus.

Formal ontologies are “precise mathematical formulations” (70), 
or more concretely, logic-based definitions and elucidations of the 
types of entities of a domain and the way they are related. This requires 
a computer-interpretable language, which typically distinguishes 
between individuals, classes and properties. The main purposes of 
ontologies are (i) to support knowledge representation and reasoning 
and (ii) to foster interoperability by standardized descriptions. One 
example is the automatic assignment of a class to individuals based on 
a computer-interpretable, axiomatic specification of the inclusion 
criteria for the class. In Utecht et  al. (71) demonstrated that an 
ontology-based system can categorize potential drug–drug interaction 
(PDDI) evidence items into different types of evidence items based on 
the answers to a small set of questions. They tested RDF/OWL data 
representing such questions for 30 evidence items and showed that 
automatic inference was able to determine the proper evidence type 
category from a list of approximately 40 categories based on this small 
number of simpler questions. This is a proof-of-concept for a decision 
support infrastructure that frees the evidence evaluator from 
mastering relatively complex written evidence type definitions and 
allows for ontology-driven decision support.

The fact that natural language plays only a secondary role in 
formal ontologies is not a contradiction to what we wrote in the 
previous sections. The main difference is that the types of entities 
characteristic for a domain is the starting point when building an 
ontology, and not the meaning of domain terms in a particular 
natural language in the first place. In no way this should detract 
from the importance of domain language dictionaries. But the 
concerns are strictly divided: the ontological standardization of 
domain entities on the one hand, and on the other hand the 
anchoring of domain terminologies in several natural languages 
and dialects. This means, in practice, that synonyms and term 
variants in different languages are then linked to ontology IDs. 
At least one preferred term, often referred to as “label” is needed 
in order to make the ontology understandable by humans. 
Enriching it by additional terms is often done by the ontology 

builders themselves. Here, the ontology also fulfills the role of 
a dictionary.

Standardization has been an important issue regarding the formal 
languages employed by ontologies. Based on description logics (72), 
promoted by the W3C, the declarative Ontology Web Language OWL 
has become widely accepted. OWL is devised to verify the consistency 
of a set of logic-based axioms from which implicit knowledge can 
be made explicit by so-called description logics reasoners (73).

Equally, by the W3C, the Simple Knowledge Organization System 
SKOS (74) has been promoted as a representation of systems that 
informally structure a domain by its terminology. SKOS’ main 
objective is to enable easy publication and use of vocabularies as 
linked data. Both OWL and SKOS are part of the Semantic Web family 
of standards built upon RDF and RDFS, both are used with data 
represented in the universal Resource Description Framework (RDF) 
of the Semantic web (75, 76). The abstract syntax of RDF – which does 
not enforce any strict semantic interpretation, has at its center the 
representation of data as triples, i.e., statements consisting of subject, 
predicate and object (75). The simple, very small structure can 
be linked together using International Resource Identifiers (IRIs) for 
each entity in the domain of discourse (75), thus enabling the creation 
of complex knowledge graphs.

The following example may illustrate the difference between the 
two languages. In SKOS, the triple < “Homo sapiens”; skos:broader; 
“Living organism” > expresses that the meaning of the expression 
“Living organism” is conceived as broader than the expression “Homo 
sapiens.” In OWL, the triple < “Homo sapiens”; owl:subclassOf; “Living 
organism” > has the status of an axiom. It means that the class of all 
individuals of the type “Homo sapiens” is included in the class of all 
individuals of the type “Living organism.” Whereas in SKOS, the relata 
are human language expressions like words and terms, in OWL 
“Homo sapiens” and “Living organism” are no more than human-
readable class labels that make the ontology human-readable. The 
exact meaning of the classes requires further definitions of these types. 
According to these definitions, the axiom could be questioned by the 
fact that the class labeled as “Homo sapiens,” according to how it is 
defined, may also include dead persons. As SKOS has no formal 
semantics, it is at the discretion of the users to approve the 
statement < “Homo sapiens”; skos:broader; “Living organism” > as 
largely appropriate, despite boundary cases like the 
abovementioned one.

Thus, RDF-based Semantic Web standards constitute a framework 
that equally accounts for ontologies as carefully constructed 
cornerstones, for informal knowledge organization systems as bridges 
to human language, and the breadth of knowledge representation built 
upon it.

4.3. Standardization aspect of ontologies

Whereas computer science has always had a functional look on 
ontologies – an ontology is as good as it supports a given use case and 
its particular world view, life sciences have put much more emphasis 
on the interoperability aspect of ontologies. For instance, the Open 
Biological and Biomedical (OBO) Foundry (77) established a set of 
principles (78), ontologies have to comply with: orthogonality, open 
access, instantiated in a language that allows computer-interpretability, 
and use of common, shared identifiers (79). Over the last years, the 
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OBO Foundry community has worked to improve those principles 
and increase compliance for the OBO Foundry to become a key 
resource towards making biomedical data Findable, Accessible, 
Interoperable, and Reusable (FAIR) (80).

Orthogonality means that each ontology has its scope limited to 
entities of clearly defined types and scopes. It points to a framework 
of shared fundamental categories: chemical entities and roles such as 
in ChEBI, anatomical entities in the FMA, cell components, biological 
processes in the biological process and molecular “function” (activity) 
in the Gene ontology. Other examples are qualities in the human 
phenotype ontologies, locations in the environment ontology. All this 
points to high-level types of a common “upper level” (9), which is the 
focus of interest of the Foundational Ontology/Applied Ontology 
community. Foundational upper-level types, properties and related 
axioms (e.g., that a process is located in some space or that an 
immaterial entity cannot have material entities as parts) strongly 
constrain the modeling freedom of the ontology engineer, for the 
benefit of interoperability.

In the domain of life science, BFO (81, 82), the Basic Formal 
Ontology has found the widest acceptance. Figure 3 demonstrates its 
upper level.

The fact that BFO 2020 has become an ISO standard (10) sheds light 
on a new view on ontologies, namely the standardization (83) of entities 
in the field of science. In engineering it has always been obvious that a 
narrative description of an artifact would not be sufficient for producing 
interoperable industry-standard products. Only exact technical 
specifications guarantee the smooth interaction of technical components 
like plugs and sockets. The argument in favor of biomedical ontologies 
is that like bits and pieces of industrial artifacts require adherence to 
mathematically precise standards to be exchangeable and interoperable, 
entities of interest for precision-oriented science and health care require 
the same accuracy in terms of ontological definition and delineation. 
Such entities of interest range from biomolecules and pathways over 
body parts, disease processes, quantities and qualities, pathogens, 
medical devices up to all kinds of interventions and complex business 
processes in 5 PM contexts.

Apart from BFO, standardization has also been an issue in 
biomedical terminologies, particular in the case of SNOMED CT (84), 
which set off as an international terminology for EHRs, but which 
then increasingly adopted principles of formal ontology and logic, so 
that it can now be  seen as clinical ontology of high coverage 
and granularity.

4.4. Assessing biomedical ontologies

However, not all healthcare and life sciences ontology developers 
share the view that ontologies should be interoperability standards. Up 
until now, numerous project-specific ontologies have been built 
without any interoperability or standardization interest. They are 
maintained for the duration of a certain project and are then 
abandoned. They do not refer to foundational ontologies, nor do they 
re-use content from other domain ontologies. Such resources amount 
to many hundreds, which can be  inspected via BioPortal (85), a 
collection of ontologies and ontology-like representations, regardless 
of their formal rigor and maintenance status.

A critical analysis is therefore appropriate. When reviewing the 
ontologies created in recent years, we see, on the one hand, increasing 
acceptance of good practice design principles, at least where there are 
enough resources for ontology curation, such as in SNOMED CT and 
some of the OBO Foundry ontologies. On the other hand, despite all 
research and education in the field of Applied Ontology, numerous 
ontologies continue being constructed idiosyncratically, for specific 
use cases only, and without concern for interoperability. Such 
ontologies often ignore the strict requirements of logic, do not use 
machine reasoning and do not subscribe to any upper-level ontology. 
They often contain workarounds with the purpose to represent what 
ontologies are not meant to express, namely fuzzy, context-dependent 
or probabilistic representations. The fact that the use of the logic of 
OWL is restricted to axioms that are universally true, is often not 
taken into account in all its consequences. Even people with sufficient 
training in ontology are not aware of the fundamental differences 

FIGURE 3

BFO-2020 taxonomy (according to ISO 21838-2 (10)).
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between the statement “tobacco causes lung cancer” and the statement 
“tobacco contains nicotine.” Only the latter one can be  properly 
expressed by OWL, because tobacco always contains nicotine. The 
former one, in contrast, makes a probabilistic statement about 
populations, regarding a non-accidental co-occurrence between 
smokers and people with lung cancer, which does not preclude 
smokers without cancer and lung cancer patients that never smoked.

Another pitfall is improper or ambiguous labeling. Bioportal 
currently displays 58 ontologies with a class labeled “heart,” although 
the heart of an adult fly, a mouse embryo or a human heart transplant 
do not have much in common. Absurd mappings derive from the 
matching of labels, e.g., of “cold” to “chronic obstructive lung disease” 
(for which the acronym “COLD” is used). Even good ontologies often 
do not have a good labeling discipline, because the language 
expressions used as labels have different meanings in different 
communities. In other cases, ontologies like the Gene Ontology (GO) 
do not have more than one label per class, which leads to the practice 
to refer to GO classes as “GO terms,” which is confusing for anybody 
with a terminology of a linguistics background.

Finally, a complicating factor when constructing ontologies is the 
continuous nature of many natural kinds (86). Instances of hearts, 
brains and muscles – be it from mice, humans or flies – do not have 
sharp boundaries that delineate them from the neighboring 
anatomical structures, such as an engine in a vehicle. Heart surgeons 
would consider the pericardial sac and parts of the great vessels as part 
of the heart – as they transplant it together with the heart proper – 
opposed to anatomists, who share an ontogenetic (embryological) 
perspective. All these subtleties are seldomly made explicit in 
ontologies, so that the risk that re-using ontological content created in 
a different context produces unwanted effects, is considerable. After 
all, considering those human-made and therefore imperfect ontologies 
comes back to the problem we have with natural language as a means 
to encode information and knowledge, viz. the need to consider 
context and the acceptance of having fuzzy, partly conflicting, partly 
ambiguous representations.

5. Integration of ontologies and 
natural language for 5 PM

We now move to discuss the interface between ontologies and 
natural language technologies, with the goal to support formal, 
unambiguous and canonical representations of structured and 
unstructured data in the field of 5 PM, encompassing research data as 
well as real-world data from EHRs.

5.1. Canonic representations of narrative 
content

It is unrealistic that non-standardized and low-structured 
narrative data, currently prevailing in EHRs (87, 88) will be replaced 
at some point by completely structured and standardized 
documentation, as little as it is likely that future scholars will publish 
all their data according to the FAIR criteria. Human language will 
probably never lose its function in clinical and scholarly 
communication and documentation, due to its capability to describe 
facts and events in a flexible and granular way, just to the degree that 

it is understood by clinicians or researchers that share the same or 
similar contexts. The challenge is therefore that heterogeneous data of 
all kinds is analyzed and semantically interpreted in a way that leads 
to maximally standardized and interoperable representations. This is 
why semantic standards with a big, international user community, e.g., 
SNOMED CT, LOINC, and FHIR should be  preferred as target 
representations in biomedical data normalization workflows.

5.2. The resource problem

The performance of NLP systems depends crucially on the available 
resources. These include terminology systems and corpora, as well as 
language models derived from the latter. For the clinical language, there 
is a great need to catch up here, due to the lack of models tailored to 
clinical language, as well as natural languages other than English (62). 
So does the UMLS aggregate an impressive variety of terminology 
systems, but mainly in English, thus limiting terminology support for 
other languages. SNOMED CT has been translated and is being 
maintained in several languages, incurring high costs and efforts, and 
results lag behind, particularly for smaller languages. In addition, the 
existence of a translation does not necessarily mean that it is suitable for 
NLP applications. Terminology systems tend to be normative in nature, 
so that terms are ideally unambiguous and self-explanatory. This often 
does not reflect clinical language use. E.g., in a corpus of 30,000 
cardiology physician letters from an Austrian hospital (89), the authors 
did not find the word “Elektrokardiogram” a single time – contrasting 
with thousands of occurrences of the acronym “EKG.” For “liver 
metastases,” the term “sekundär malign levertumör” (secondary malign 
levertumör) is found in the overall Swedish translation of SNOMED CT, 
for which not a single use can be found in the entire web, while the 
clinically common “levermetastaser” has over 200,000 Google hits, but 
is missing in the Swedish SNOMED version. The EU project ASSESS-CT 
(90) propagated the creation of so-called interface terminologies, 
collections of technical terms that primarily represent the language used 
in the clinic. Examples for interface terminologies are the German 
ICD-10 alphabet (91) or the Austrian interface terminology for 
SNOMED CT (92). Corpora, i.e., text collections are essential for 
training NLP systems as well as for their evaluation, for example in 
shared tasks, which are scientific competitions like i2b2/n2c2 or the 
ShARe/CLEF eHealth and SemEval challenges (93), partly re-using 
narratives from the most prominent clinical language resource MIMIC 
(94). The more such open resources exist for a language group, the 
better synergies can be exploited by developers of NLP systems. For 
example, a large part of the quality of the Google translator is due to the 
simple fact that Google has direct access to gigantic amounts of 
multilingual texts.

Clinical researchers can only dream of this. Clinical content is 
highly confidential, so that only reliably anonymized data can 
be considered for the training of NLP systems. Anonymization means 
marking names of persons and institutions (95) in order to remove the 
direct reference to persons and institutions, an absolute requirement for 
clinical texts to be processed for purposes other than patient care and 
by persons other than those directly caring. What content is relevant for 
de-identification – PHI (protected health information) – is often not 
specified, so that many countries apply the HIPAA safe harbor criteria 
(96), developed in the USA. However, concerns regarding the release of 
anonymized clinical text samples are still enormous. As an example, the 
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completely manually anonymized German-language annotated clinical 
corpus BRONCO could only be  released after it was divided into 
randomly arranged individual sentences, the coherence of which could 
demonstrably not be  restored (97). Other ways of providing open 
clinical corpora include the creation of completely synthetic texts using 
machine learning (98). Access in a controlled setting for the use case 
specific adaptation of clinical NLP systems is indispensable for any 
reasonable use of narrative data in combination with enhanced 
standardized and interoperable clinical phenotype representations into 
a transformed health ecosystem.

5.3. Manual annotation as a fundamental 
task

Annotated corpora, i.e., text collections that were manually 
enriched by labels that describe the text according to its syntactic and 
semantic features, is not only an enormously resource-intensive effort, 
but also of utmost importance for entity normalization and semantic 
relation detection, but also text classification, sentiment analysis, 
question-answering and other tasks. Models trained with annotated 
corpora enable machines to understand the meaning of language in 
clinical narratives, and allow for more accurate analysis of medical 
data, particularly in P5 medicine settings.

Semantic annotations should be  guided by the same 
interoperability resources and using the same interoperability 
standards as expected for the target representation of clinical 
content. Only under these circumstances, consistency in annotation 
can be  reached, and principled annotation guidelines can 
be  formulated (99). Such annotation guidelines have to bridge 
between shared representations of the portion of reality the texts 
are about (health care scenarios for EHR content, lab procedures, 
clinical research paradigms, scientific methodology and argument 
when it is about scholarly content) on the one hand, and the text 
surface on the other hand. This means to link text passages to the 
ontology classes they denote (or to abstractions thereof, such as 
upper-level categories like Body Part), which requires a deep 
knowledge of the underlying ontology as well as familiarity with the 
domain, particularly in the case of ambiguous text passages such as 
acronyms. Entity normalization, i.e., the linkage of words and text 
passages to ontology identifiers such as SNOMED CT or LOINC 
codes is only the first step. Equally important is their linkage to 
contextual or temporal modifiers, in order to represent the entirety 
of a statement, e.g., whether a diagnosis is confirmed, suspected or 
negated, when an examination was done or when a recurrence of a 
disease occurred. Finally, annotations often need to be linked by 
relations, such as procedures or observations with the related 
anatomical sites, operations with devices or infections with 
pathogens, but also sequences of events by their temporal order and 
possibly causation. The relations used for annotation should 
be consistent with the underlying standards, such as Finding site in 
SNOMED CT or verificationStatus in FHIR. For assessing the 
quality of the manual annotations, the inter-rater agreement 
between annotators is very often measured via Cohen’s kappa, Fleiss 
kappa or F1 value (100, 101). The higher the value, the higher the 
agreement of two human annotators for a specific annotation task. 
An excellent overview of manual annotation tools is given by Neves 
and Ševa (102).

5.4. Pervasiveness of semantic technology 
in health informatics

This section is primarily concerned with the interplay between 
health standards, terminology systems like classifications and 
terminologies, as well as semantic web technologies. This is an 
important aspect of health data infrastructures and, in order to 
understand ontology-related challenges to creating transformed 
health ecosystems, these categories need to be considered.

At this time, there is wide-spread agreement that semantic data 
harmonization and integration are necessary to move forward 
biomedical research on a number of key areas in the field (103–106). 
The recent COVID-19 pandemic showcased the importance of fast 
and reliable data and knowledge management to support COVID-19 
(107, 108) research. This research is crucial to reign in the spread of 
COVID-19 and effectively improve patient outcomes. While this trend 
is certainly welcome and hopefully is the first step into deeper 
involvement of the biomedical informatics community in research 
regarding semantic technology, there is still much work to do in order 
to reach the pervasiveness of semantic technology in health 
informatics for the benefit of P5 medicine.

In a recent systematic literature review on semantic interoperability 
in health record standards (104), de Mello et al. proposed a five-category 
taxonomy for research in that area: (1) Health standards (e.g., 
OpenEHR, HL7, DICOM), (2) Classification and Terminologies (e.g., 
ICD, LOINC, SNOMED CT, MeSH), (3) Semantic Web (e.g., OWL, 
RDF, SPARQL, SKOS), (4) Storage (e.g., Multi-model, Semantic Web 
based, graph database), (5) Evaluation (e.g., Usability, Functional test) 
(104). The authors of the review concede that many of the research 
papers included fit in more than one category, which means that the 
classes in this taxonomy are clearly not mutually exclusive (104). For 
instance, both the ontology SNOMED CT and the language OWL are 
considered standards. The review also found that the use of ontologies 
and other Semantic Web technologies (SWTs) is motivated by the 
possibility to create logical inferences and rules from them. This finding 
leads to the core of the difference between an SWT-based approach to 
semantic data integration and harmonization and the use of the other 
categories (104).

The fact that biomedical researchers chose SWTs due to the ability 
to create new data points or run more inclusive queries using logical 
inference is a highly relevant point. One example for such an inference 
used in querying data is if a biobank stores a specimen labeled 
“cerebellum” and the biobank uses an anatomy ontology to specify 
that every cerebellum is a part of some brain, a biobank user can 
retrieve that specimen when running a query over all specimens of the 
brain or its parts, rather than running multiple strings (brain, 
cerebellum etc., possibly also including all synonyms) in one or 
multiple queries. The fact that the cerebellum is part of the brain is 
explicitly stated as part of the knowledge system and not externalized 
in the mind of some database employees. An example for a new data 
point created based on automatic inference is if a study has the 
information that the pediatric patient Jane Doe lives with their parent 
John Doe and the system also has the information that John Doe is a 
smoker, a knowledge management system containing a computer-
interpretable definition of a smoking household as a household that 
has at least one smoker as a member, the system automatically infer 
that Jane Doe is living in a smoking household. Beyond these use 
cases, the use of ontologies and other SWTs also allows automatic 
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sorting of individual entities in categories that have computer-
interpretable definitions, as (71) demonstrate.

One application of SWT is Knowledge Representation and 
Reasoning (KRR) (109), a core area of Artificial Intelligence (110, 
111). KRR provides the basis for “representing, maintaining, and 
manipulating knowledge about an application domain” (111), such as 
medicine. According to Lakemeyer and Nebel (111) the core elements 
to meet that aim are explicitness and declarativeness. Explicitness 
means that the knowledge needs to be stored in a knowledge base 
along with formal representations describing it in an unambiguous 
way, and declarativeness means the “meaning of the representation 
can be specified without reference to how the knowledge is applied 
procedurally, implying some sort of logical methodology behind it” 
(111). It is clear that this specification of knowledge representation is 
largely about the way that the meaning, or semantics, of the knowledge 
is specified. It is implicit in the Lakemeyer’s and Nebel’s specification 
that the call for explicitness entails the requirement for the knowledge 
to be  represented in a computer-interpretable language. The 
motivation to add reasoning as a crucial component to knowledge 
representation is, according to Brachman and Levesque (110), that 
this allows to infer new, often actionable knowledge, such as a 
potential adverse reaction to a drug inferred from previous drug 
reactions. In sum, when talking about the area of KRR, the semantics 
of knowledge rests on the formalization of the knowledge in a 
computer-interpretable language, the coding of unambiguous 
representation of its meaning in a way that does not refer to its 
operationalization. Keeping this in mind, highlights a number of 
obvious gaps in how the biomedical informatics community uses the 
term “semantics.”

In 2018, Brochhausen et  al. pointed out, that there might be  a 
disconnect regarding the use of the terms “semantic” or “semantics” in 
biomedical informatics: terminology systems, often in combination 
with Common Data Models (CDMs) are implemented to provide 
semantics and foster semantic integration and researchers using those 
resources and claim their data is semantically integrated and computer-
interpretable (112). None of the systems assessed in their study exhibited 
any features that amount to semantics, in the sense of the KRR 
community. Most of the tools featured human-interpretable definitions. 
To help address that communicative gap, Brochhausen et al. proposed 
the term computable semantics (112), which basically applies to the 
specification of semantics in a KRR context. They proposed to use a 
sorting task to assess whether a computer understands the data as a low 
hurdle measure to test for the existence of semantics.

But if this communicative gap exists, what is meant when 
biomedical informatics papers talk about semantics or semantic 
interoperability. The multitude of interpretations of the terms 
“semantic,” “semantics,” or “semantic interoperability” warrants a 
systematic review, which is out of scope for this paper. However, 
we  want to highlight some possible interpretations and how they 
compare or relate to the SWT approach using ontologies.

One traditional perspective is that achieving semantic 
interoperability relies on and can be  achieved by the use of 
standardized terminologies or controlled vocabularies. In 2016, 
Seerainer and Sabutsch affirm: “Semantic interoperability within a 
nationwide electronic patient record, entailing the interconnection of 
highly diverse organizations with various IT systems, can only 
be achieved by providing standardized terminologies” (113) . Their 
paper (113) describes the development of a national terminology 

system to share EHR data in Austria. To achieve these, multiple 
terminologies are loaded onto a terminology server, partially 
translated, and made available for users along with a manual on how 
to implement and use the terminologies (113). It is obvious that an 
approach like this is very different from what Brochhausen et al. call 
computable semantics. While the standardized terminology restricts 
the number of terms used, the interpretation of what those terms 
mean is not achieved, in fact not even guided by the computer. The 
interpretation of the allowable terms and values is completely 
externalized to human agents using them. The manuals and textual 
definition might provide some insight into what the intended 
meanings are, but ultimately, there is no guarantee that the terms and 
values are interpreted in the same way from one user to the next and 
from one clinical site to the next. The inherent problem of interpreting 
terms from terminologies and vocabularies has been highlighted by 
three studies in the past, which show that inter- and intra-coder 
equivalence in coding medical material with SNOMED CT did not 
surpass 58% (90, 114, 115). It is important to note that those findings 
predate substantial changes in SNOMED CT, which moved it to 
be more like an ontology (116), while currently considerable parts of 
it lack both formal and textual definitions.

We have mentioned above the role that the interplay between 
informal terminology systems and ontologies plays for semantic 
integration in conjecture with ontologies (104). In creating that 
interplay, researchers and developers frequently rely on mapping one 
or more terminological resources with one or more ontologies.

6. Future opportunities

6.1. Linguistic opportunities

The use of NLP for processing clinical routine data has long been 
seen as a rather academic topic, which may be useful to solve well-
delineated problems, but whose implementation within robust IT 
environments was still a long way away and not safe enough for 
clinical decision support. Whereas in the 20th century AI and NLP 
was characterized by unrealistic promises and several drawbacks, the 
universal AI boom of the last 10 years has brought intelligent 
applications including “understanding” of human language within 
user reach.

But the question of how these developments can be translated into 
real improvements of health care and health management is not 
ultimately answered, in particular, how can they be harnessed for 
events with high and urgent information and action needs, such as 
pandemics? A recent review (117) of approximately 150 NLP studies 
on COVID-19 focused on the extraction of information from 
published texts and identified the need for using clinical documents 
as a source as largely unmet.

Success criteria for the application of NLP in electronic patient 
records are crucial, for example user-friendly NLP platforms that 
implement current technology, which are extensible and customizable 
via open interfaces, and enable high quality text recognition, thus 
creating trust in their use and enabling automation of medical 
documentation processes. The performance of clinical NLP systems 
should be easily proven via benchmarks and shared tasks within the 
process of the adaptation to the application domain. This has to 
be  done with a consistent and continuous application-oriented 
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development of semantic standards, in particular ontologies such as 
SNOMED CT and information models such as HL7-FHIR, with 
specific consideration of the output of clinical NLP systems. This goes 
along with easy access to terminology resources, corpora and language 
models optimized for the clinical language. Modern hospital IT 
should therefore support computationally intensive AI processes, such 
as with GPU computers, and therefore enables easy integration and 
adaptation of NLP systems specifically but support multimodal 
approaches in general by combining, e.g., OMICS, image and textual 
resources widening the patient’s digital pheno- and genotype scope. 
Qualitatively adapted NLP systems, at its best, adapted to an entire 
target domain (118), can therefore be seen as one part in a holistic P5 
medicine approach. The domain-adapted resources should not 
be locked in this setting, but legal and regulatory frameworks should 
facilitate the use and reuse of medical data to train artificial intelligence 
across institutions, as well as the sharing of domain-adapted 
NLP models.

6.2. Ontology-related opportunities

Over the last few years, we see a growing interest in using ontologies 
and SWTs. While there is still a communication and knowledge gap 
regarding computable semantics, ontologies get increasingly used. 
We  have pointed out the two major repositories for biomedical 
ontologies, the BioPortal (85) and the OBO Foundry (79, 80). Having 
repositories making biomedical ontologies available which are typically 
focused on a specific domain or use case, raises the question of how 
expanding the coverage of those repositories, the individual classes and 
relations can be orchestrated and organized. As mentioned above, the 
strategy of the BioPortal and the OBO Foundry are quite different: the 
BioPortal is an open repository that allows developers to upload their 
ontology, then provide tools for users to identify the right ontology for 
their project. The OBO Foundry’s approach from its very beginning has 
been more coordinated. This is not only true regarding the principles 
submitted ontologies need to follow, but also the evolution towards 
more rigorous inclusion criteria (79, 80). Figure 3 shows the initial 
conception of OBO Foundry coverage regarding biological and 
biomedical domains and the axes the coverage was supposed to expand 
along. However, as the OBO Foundry grew, there have been an 
increasing number of ontologies added that cut across some of the axes 
shown in Figure 3. This meant that the orthogonality of the ontologies 
in the OBO Foundry was a work in progress in the initial years (119), 
but lately, independent analysis demonstrated the positive impact of 
OBO Foundry principles on the quality measure of OBO Foundry 
ontologies (120). Yet there are important biomedical ontologies growing 
independent of the OBO Foundry and uncoordinated with shared 
foundational ontologies. In the first place, this is the case with SNOMED 
CT as a resource that requires licensing, which contradicts the OBO 
Foundry principles. For the future, it is an important issue to ensure that 
the resources required for clinical interoperability are freely available to 
all participants as so-called knowledge commons. Since the development 
and maintenance of high quality semantic resources require 
considerable efforts, a strategy for sustainable evolution still has to 
be developed.

However, increasing unification of the existing ontologies in the 
OBO Foundry and principled expansion of its coverage might require 
further development and assessment of methodologies to guide 

ontology design decisions and representational strategies. The 
publication of ISO 23903 (5) Interoperability and integration reference 
architecture—Model and framework, marks one new opportunity to 
provide rigorous guidance for orchestrated ontology development. 
Brochhausen et al. have recently demonstrated the use of the reference 
architecture model and framework to analyze ontological 
representation and modeling for clinical data and other data relevant 
to biobanking for orthopedic trauma care (121). Viewing the data and 
specimen management as the business case represented in the Business 
View as defined by the GCM, necessary changes from the perspective 
of local EHR systems become obvious and can be  handled on a 
principled basis. The local EHRs are likely to enforce one patient 
identifier (ID) per patient. The business case of integrating data from 
multiple healthcare providers requires transition to allowing multiple 
patient IDs per patient to accommodate sampling regarding tumor 
progression happening in multiple providers (121, 122) . This is 
modeled by progressing through the Enterprise View, allowing 
multiple IDs into the Business View (Figure 2), which provides ways to 
query for patients across multiple patient IDs. The result is the 
ontology design decision which allows a one-to-many relationship 
between patients and IDs. This certainly could have been done based 
on ad hoc decision, but the principled approach, if used consistently, 
will allow increased rigor on ontology design decisions.

They showed that the reference architecture assisted in the 
resolution of representational design decisions and provided a 
rigorous way of managing such representation questions. Additional 
research is needed to test the usefulness of ISO 23903 for this purpose 
and alternative methods for rigorous methods of ontology design need 
to be developed and evaluated.
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