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PREFACE 

The aim of this thesis is to explore how people assign meaning to actions. For 

that reason, I investigated the cognitive and neural structures underlying action 

representations, taking into account the key features of actions and the categories that 

these actions form.   

The thesis consists of five chapters. The first chapter provides a general 

background on the topic of action understanding and the methods I chose for analyzing 

the data. Chapters 2 - 4 incorporate the three main studies that I conducted throughout 

the PhD project. Chapter 5 includes a general discussion, the implications of the studies, 

their limitations, and ideas for future studies.  

The article presented in Chapter 2 has been published in Behavior Research 

Methods (impact factor = 5.95) on July 5th 2022. The manuscript in Chapter 3 has been 

submitted to Human Brain Mapping (impact factor = 5.40) and is currently in revision. 

All references have been combined into one bibliography at the end of the thesis. 

Supplementary files and figures for all three manuscripts have been merged in the 

Appendix following Chapter 5. No further changes have been made to the text of the 

published article. 

The PhD project has been funded by a Research Grant from the German Research 

Foundation (Li 2840/1-1). I was supported by the Research Grant from the German 

Research Foundation (Li 2840/1-1) and the stipend from Finanzielles Anreizsystem zur 

Förderung der Gleichstellung. 
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CHAPTER 1: GENERAL INTRODUCTION 

A world full of actions 

Imagine walking down a busy street: a group of smiling teenagers talk and gesticulate 

vigorously; a businessman pushes through the crowd, nervously looking at his watch; a 

cyclist quickly passes by, forcing us to step to the side. The world around us is a complex 

and dynamic environment, full of various objects, landscapes, and events that we are 

constantly processing. As social beings, we are particularly attuned to the actions of others. 

Understanding others’ actions is essential for successful social interaction and 

communication, as it allows us to predict the behavior of those around us and to respond 

accordingly. Moreover, our ability to perceive, interpret, and replicate actions is crucial to 

many of our daily activities, such as learning new skills, doing sports and performing 

complex tasks. Although understanding actions seems easy and comes effortlessly, the 

underlying mechanisms are still a matter of debate. 

In my research, I conducted several behavioral and neuroimaging experiments to 

investigate the cognitive structure underlying action organization and its neural 

underpinnings. The central focus of this project revolves around understanding daily actions 

by considering both their features and the categories they form at both the cognitive and 

neural levels. In the Introduction, I provide readers with an overview of studies on action 

understanding. I delve into the underlying theories of action understanding and investigate 

specific brain regions believed to play a role in this process. I then identify gaps in the field 

and discuss how my research addresses them. Next, I provide a background on the core 

concept of how our minds structure the world around us, namely: Representations. In the last 

part of the Introduction, I give an overview of the methodological aspects and present two 
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primary analysis techniques that I employed in this research to investigate the neural structure 

of actions. Overall, in the Introduction I present the background of my research and highlight 

the existing gaps that I intend to explore. I then delve into the methods I employed and justify 

why they are appropriate for addressing the questions in this study.  

Research on action understanding 

The field of cognitive neuroscience emerged in the latter half of the 20th century, 

aimed to understand the neural basis of cognitive functions. A key method used was single-

cell recordings, which involve measuring electrical activity of individual neurons. One of the 

pioneering studies on the early visual perception focused on the primary visual cortex of cats 

and monkeys (Hubel & Wiesel, 1959, 1968). In their experiments, they presented simple 

visual stimuli to the animals, like black bars with different orientations. By recording the 

electrical activity of individual neurons in the visual cortex, they discovered a neural 

specificity linked to different orientations of presented bars and furthermore concluded a 

hierarchical nature of the visual system (Hubel & Wiesel, 1962). 

Single-cell studies provide detailed information about the activity of individual 

neurons but are not sufficient to understand the whole brain with its complex functions. 

Understanding higher-order cognitive processes often requires examining patterns of activity 

involving large numbers of neurons. Additionally, the brain’s function comes from complex 

interactions across billions of neurons forming large brain networks, which is beyond the 

scope of single-cell studies. A significant leap in cognitive neuroscience came from the 

development of imaging techniques, such as functional Magnetic Resonance Imaging (fMRI) 

or Electroencephalography (EEG), which enable non-invasive whole-brain measurement. In 

the following section, I provide readers a comprehensive overview of the research in the field 
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of action understanding and show how the development of techniques and analysis methods 

shifted the focus to previously overlooked brain regions.  

Motor theory – mirror neuron 

In 1996, an influential study came up reporting the discovery of mirror neurons (see 

review Rizzolatti & Sinigaglia, 2016). The authors reported a class of neurons that fired both 

when the monkey executed an action as well as when it observed another individual (a human 

or another monkey) performing that action (di Pellegrino et al., 1992; Gallese et al., 1996; 

Rizzolatti et al., 1996). Due to the behavior of mirror neurons, the authors suggested that 

these neurons serve as a neural basis for action understanding by simulating the action in the 

observer’s motor system. That idea places itself within the motor theory, already suggested 

for the speech perception (Liberman et al., 1967). The core hypothesis of the motor theory 

states that several aspects of our cognitive processes are linked to our own motor system, 

thereby connecting our understanding of them to the movement and gestures involved. The 

mirror neurons were originally discovered in the monkey’s premotor cortex, area F5, 

however in the subsequent studies they were also found in the inferior parietal lobe (IPL, 

Rizzolatti et al., 2001; Fogassi et al., 2005). It has been also suggested that the mirror neuron 

system might exist in humans, constituting a part of the ventral premotor cortex (PMv), IPL, 

and the posterior part of the inferior frontal gyrus (IFG) (Rizzolatti & Craighero, 2004). 

However, motor theory of action understanding has been challenged due to increasing 

amount of empirical evidence (see review papers: Caramazza et al, 2014; Hickok, 2009; 

Mahon & Caramazza, 2005). Numerous patient studies provide strong evidence of 

dissociation between action production and action recognition. Patients with apraxia 

(Buxbaum et al., 2005; Pazzaglia et al., 2008) and individuals with brain lesions (Halsband 
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et al., 1997; Pazzaglia et al., 2008) show dissociations between gesture production and 

recognition tasks, indicating that these abilities can be separate. Similar dissociations are 

observed in studies on stroke patients involving pantomime recognition, object use, and 

object recognition tasks (Negri et al., 2007). Thus, the ability to execute correct actions is not 

essential for recognizing them effectively, and vice versa. Moreover, the mirror system can 

function independently from action understanding, as humans can understand actions, that 

they have never performed themselves (Vannuscorps & Caramazza, 2016). An alternative 

explanation (e.g., Tucciarelli et al, 2015; Wurm & Lingnau, 2015) states that the mirror 

neurons do not play a causal role in decoding of action goals but are activated as a 

consequence of action understanding.  

Current view: Beyond the motor system 

The development of non-invasive whole-brain measurement techniques (fMRI, 

EEG/MEG, Positron Emission Tomography (PET)) pushed forward the research in cognitive 

neuroscience, including action understanding. A large meta-analysis revealed a set of regions 

involved in observation of actions, a so-called Action Observation Network (AON) 

consisting of frontal (BA 44, 45: Broca’s area (Amunts et al., 1999); BA 6: lateral premotor 

cortex (Geyer, 2004)), parietal (inferior parietal and intraparietal areas), and occipito-

temporal (posterior middle temporal gyrus (pMTG) and V5 in the extrastriate cortex) areas 

in both hemispheres (Caspers et al., 2010). Thus, the brain areas believed to constitute the 

AON encompass not only the previously identified mirror neuron regions but also the 

occipitotemporal areas.  

While understanding of actions engages a network of occipitotemporal, parietal and 

frontal regions, their exact function is still debated. Although some researchers reported that 



CHAPTER 1: GENERAL INTRODUCTION 
   

 

17 

 

the premotor cortex might represent action meaning and the end-goal (e.g., Nelissen et al., 

2005; Majdandić et al., 2009; Rizzolatti & Craighero, 2004; Rizzolatti et al., 2014), there is 

more and more evidence that this region may not show the level of generality as originally 

believed (Kilner, 2011; Cook & Bird, 2013) and instead carries information about perceptual 

properties of actions, such as kinematics (Wurm & Lingnau, 2015) or involved objects 

(Wurm & Lingnau, 2015; Wurm et al., 2015). Other studies highlighted the role of parietal 

regions in understanding the actions and their goals. Studies using Transcranial Magnetic 

Stimulation (TMS) and repetition suppression showed that the inferior parietal lobe processes 

high-level action understanding as well as goals and intentions of actions, generalizing across 

effectors (Cattaneo et al., 2010), the kinematic parameters (Hamilton & Grafton 2006, 2007), 

and trajectory of an action (Hamilton & Grafton, 2008). An fMRI study revealed that 

different subregions of the parietal cortex host information about different action classes 

(Abdollahi et al., 2013; Ferri et al., 2015; Corbo & Orban, 2017) and that the inferior parietal 

lobe transforms visual information about actions into more abstract representations (Urgen 

et al., 2019). 

Recent studies showed that not only the IPL, but also the lateral occipitotemporal 

cortex (LOTC), represents actions at an abstract level, as both regions generalize across 

kinematics and used objects (Wurm et al., 2015; Wurm & Lingnau, 2015), viewpoints 

(Oosterhof et al., 2010, 2012), and stimulus format (Hafri et al., 2017). Numerous studies 

indicate that these regions have distinct roles, implicating that the parietal regions are 

involved in planning actions (especially the anterior IPL; Goldenberg & Spatt, 2009; 

Buxbaum & Kalénine, 2010) as well as inferring the goals and intentions (specifically the 

posterior IPL; Leshinskaya & Caramazza, 2014), whereas the LOTC represents high-level 

semantic action knowledge (Oosterhof et al., 2010, 2012, 2013; Wurm & Lingnau, 2015; 
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Wurm et al., 2015; 2017; Leshinskaya et al., 2020; see reviews Lingnau & Downing, 2015 

and Wurm & Caramazza, 2022).  

The existing literature indicates that the functions within the LOTC are not uniform. 

Studies have demonstrated that the ventral and dorsal portions of the LOTC differ in respect 

to whether the action is object-directed (ventral part) or social (dorsal part) (Isik et al., 2017; 

Wurm et al., 2017; Wurm & Caramazza, 2022). Additionally, researchers have identified 

clusters within the LOTC that process different types of information, such as body parts 

(Downing et al., 2001; Orlov et al., 2010), hands (Bracci et al., 2010; Grosbras et al., 2012), 

tools (Bracci et al., 2012), faces and limbs (Grosbras et al., 2012; Weiner & Grill-Spector, 

2013). Moreover, evidence suggests a gradient of increasing abstraction from the posterior 

to the anterior parts (Watson et al., 2013; Papeo et al., 2019; Tarhan et al., 2021; for review, 

see Lingnau & Downing, 2015).  

Aim of this study 

As presented above, the neural mechanisms underlying action understanding have 

been extensively studied. While the brain regions involved in action observation have been 

identified, their exact roles remain debated. I believe that advancements in non-invasive 

neuroimaging techniques, which enable whole-brain measurements, coupled with 

computational methods like multivariate pattern analysis, can shed light on these roles.  

The aim of this project was multifold. Given the ongoing debate about the role of 

AON regions, I aimed to investigate how the regions are engaged in processing a big number 

of naturalistic images of actions and action categories. While many studies emphasize the 

role of the parietal cortex in action understanding, the potential significance of the LOTC is 

often overlooked. Moreover, it has been shown that different types of action-related 
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information are represented in distributed clusters of the LOTC. Yet, most of the studies used 

features selected by the authors, likely capturing only a subset of potentially relevant action 

features. I thus adopted a data-driven approach to collect action features and then examined 

their neural representations.  

To address these questions, I carried out a series of behavioral and neuroimaging 

experiments comprising three main studies: 

- Study 1. The aim was to explore the cognitive structure underlying the 

organization of actions, adopting a data-driven approach. The study involved 

using an inverse multidimensional scaling technique (Kriegeskorte & Mur, 2012) 

to investigate the category-based organization of actions, and a free-feature listing 

experiment to obtain key action features. The findings, published in Kabulska & 

Lingnau (2022), laid the groundwork for the next two studies.  

- Study 2. The focus of Study 2 centered on exploring the neural representations 

of the action features identified in Study 1. The aim was to investigate where the 

crucial action features are represented in the brain and whether specific regions 

have preference for certain features. The findings have been submitted to Human 

Brain Mapping journal. 

- Study 3. The goal was to investigate whether different action categories evoke 

unique activity patterns within the brain, with a particular focus on the AON 

regions. Additionally, whether these categories exhibit unique connectivity 

patterns across different brain areas, including the AON as well as category-

specific regions. Based on results of Study 1, I selected four action categories: 

Communication, Grooming, Ingestion, and Locomotion.  



CHAPTER 1: GENERAL INTRODUCTION 
   

 

20 

 

For the aim of Study 1, I performed several behavioral experiments including inverse 

multidimensional scaling (Kriegeskorte & Mur, 2012), free-feature listing, and feature-based 

ratings, which are explained in more details in Chapter 2. For Studies 2 and 3, I conducted 

two separate fMRI experiments. Since for the big part of neuroimaging data analysis I used 

multivariate methods, the following section elaborates on the Representations which is the 

background of these techniques. 

Representations 

One approach to understand how we grasp concepts and differentiate between them 

is through “Representations”. Representations refer to the mental or neural codes that we use 

to encode and process information about the concepts around us. Let us take three objects as 

an example: an orange, a banana, and a carrot. The objects belong to different categories, 

namely fruits and vegetables. Each object is represented by a variety of features, such as 

having a specific color and a specific shape (Figure 1.1A). These features can be represented 

in a multidimensional space, so-called representational space, where each dimension might 

reflect a specific feature. Semantically similar objects, here an orange and a banana (fruits), 

share more semantic features and thus will be located closer to each other in this 

representational space compared to the other semantically unrelated object (carrot). 

However, when we consider another feature, like shape, bananas and carrots are more similar 

to each other and therefore will be positioned closer to each other than to an orange. Such 

multidimensional organizations between concepts can be mapped onto two-dimensional 

space and form a representation model (Figure 1.1B). 

In the external world, objects are represented by sets of features. Inside the brain, 

however, objects are represented by activations within different neural populations. Since in 
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my work I investigate the brain using fMRI, I will focus on the level of voxels. To understand 

how certain concepts, in the case of this work - actions, are represented in the brain, it is 

beneficial to examine activity patterns across those voxels. In the following section I discuss 

methods of multivariate pattern analysis - techniques used for brain data analysis, that take 

into account that the information is encoded in the distributed activation patterns across 

multiple neurons. 

 

Figure 1.1. Representations. A Every object can be characterized by multiple features and classified into 

specific categories. For example, three objects - an orange, a banana and a carrot - are represented by features 

such as an elongated shape or a yellow color, and they belong to the categories of fruits or vegetables. B The 

degree of similarity between objects can be visualized using distances. The closer the objects are, the more 

similar they are, while greater distances indicate bigger differences. Depending on the chosen feature, the 

location of these objects relative to one another can shift. For instance, when comparing objects based on their 

semantic similarity, an orange and a banana (both fruits) will be located near each other, in contrast to a carrot 

(a vegetable). However, when considering shape, banana and carrot are more similar to each other (both have 

an elongated shape) than either is to an orange. These between-object similarities can also be visualized with 

dissimilarity matrices (representation models).  
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Multivariate Pattern Analysis (MVPA) 

In 2001, Haxby and colleagues (Haxby et al., 2001) discovered that each of the 

examined stimulus category evoked a distinct brain activity pattern across the voxels. It was 

the first time when a multivariate pattern analysis was used for fMRI data and was a turning 

point that influenced other researchers to shift their research practices and adopt this 

approach. In contrast to univariate analysis, which is used to calculate an average activation 

level in a brain region, the multivariate pattern analysis relies on fine-grained activity patterns 

yielded by each experimental condition (Figure 1.2). As the univariate analysis is performed 

to tell where in the brain the information is represented, the multivariate pattern analysis 

gives additional details about the nature of those representations. The advantages over the 

univariate analysis include a greater sensitivity and resolution, as the multivariate pattern 

analysis takes into account the differences between voxels and the relationship between them 

(Davis & Poldrack, 2013; Popov et al., 2018). Two main tools employed in the multivariate 

pattern analysis focus on (1) the classification of conditions (i.e., MVP classification) and (2) 

the assessment of similarities between the conditions (i.e., representational similarity 

analysis, RSA) (Figure 1.2) based on the activity patterns. In the following section, I focus 

on these two crucial methods that I also used for neuroimaging data analysis. 
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Figure 1.2. Methods of multivariate pattern analysis performed on data from fMRI. Stimuli (here a carrot, 

banana and orange) evoke neural activities. Each object can then be characterized by a specific pattern of 

activity within voxels, presented as a vector (see the upper part of the figure). Decoding (Classification 

analysis). Objects can be visualized as data points in a multi-dimensional space, with each dimension 

represented by a voxel. The dataset is divided into training and testing sets. During the training phase, the 

classifier learns to differentiate between objects (in this case, two object types) and establishes a decision 

boundary. In the subsequent testing phase, the classifier predicts the object labels using a dataset it has not seen 

before, resulting in the accuracy with which each object can be identified. This figure is based on a figure from 

Weaverdyck et al., 2020. Representational similarity analysis (RSA). The method uses representational 

dissimilarity matrices (RDMs) to compare data from different sources. The Neural similarity RDM is 

constructed using activity patterns within voxels from the fMRI and then by computing dissimilarities between 

the object representations. This RDM can be correlated with others, for example, conceptual RDMs 

representing semantic and shape-based similarities (see Figure 1.1). The images of the vegetable and fruits are 

adapted from www.istockphoto.com, whereas the image of the brain is adapted from www.wikipedia.com. 

 

Multivariate pattern classification (MVP classification) 

The idea behind the multivariate pattern classification is to decode information about 

stimuli from the brain activity patterns they evoke. These “patterns” refer to spatial 
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distribution of neural activity across multiple voxels. More specifically, a dataset consists of 

brain activity patterns obtained in response to, for example, seeing images of oranges, 

bananas, and carrots. A classification algorithm is then trained to differentiate between these 

categories based on their activity patterns and later tested on a set of data consisting of 

patterns elicited by the same stimuli but not seen by the algorithm. Thus, by training the 

algorithm with activity patterns linked to specific conditions or stimuli, we can classify new 

patterns and infer the associated conditions or stimuli (see the box Decoding in Figure 1.2). 

MVP classification employs various classification methods from the field of machine 

learning, with the Support Vector Machine (SVM) classifier being a popular choice in fMRI 

studies. This classifier obtains vectors from two categories in the training set, where each 

vector represents the stimulus in a high-dimensional space. The length of the vector 

corresponds to the number of dimensions. The objective of the classifier is to identify a 

decision boundary within that space that effectively separates the two categories. The 

decision boundary is determined by so-called ‘support vectors’, which are data points that 

determine the classification of other points; hence the name of the classifier, as it relies on 

these support vectors to achieve the optimal separation between different classes. In order to 

evaluate if the classifier can generalize to new data, researchers use a cross-validation 

method. It involves iterating the classification over different subsets of the available dataset. 

As an example, the training dataset can be divided into four parts and each part is to be used 

in the classification separately. Next, an average predictive performance of a classifier is 

calculated (Huettel, 2014), with the outcome usually being the accuracy values for each 

voxel.  

In my work, I used the MVP classification with the SVM classifier for the purpose of  
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Study 3. 

Representational similarity analysis (RSA) 

In the “Representations” paragraph, I discussed how different objects are represented 

based on the sets of features. Representational models can be created based on information 

from different sources, such as previously mentioned cognitive evaluations (shape and color), 

and fMRI experiments, as well as single-cell recordings from monkey brains, and 

computational models. Due to the need of comparing information across different sources, 

investigation of how information is represented in the brain seems like a big challenge. A 

pivotal breakthrough in cognitive neuroscience came with the introduction of the 

representational similarity analysis (RSA; Kriegeskorte et al., 2008), as it has provided a 

means to establish connection between three key research domains: neural, behavioral, and 

computational. RSA employs a construct called a representational dissimilarity matrix 

(RDM), which enables to bridge information between these domains (see the box RSA in 

Figure 1.2). RDM is a square matrix consisting of similarities or dissimilarities between pairs 

of stimuli. Choosing a measure of similarity (e.g., Pearson’s r) or dissimilarity (e.g., 1-

Pearsons’r) does not have a statistical impact on the results, but using a dissimilarity measure 

is more commonly used, as it provides a more intuitive explanation of the spatial relation 

between the stimuli. That means, when representing the stimuli in a representational space, 

the stimuli that are similar will be located close to each other (small dissimilarity), whereas 

dissimilar stimuli will be placed apart (Popal et al., 2020).  

There are different types of model RDMs and their choice depends on the researchers’ 

needs. One type, called a “conceptual model”, explores between-stimuli differences based on 

selected features of interest (e.g., animate-inanimate objects) (Kriegeskorte et al., 2008). A 
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“behavioral model”, on the other hand, contains dissimilarities between stimuli collected 

from behavioral experiments, e.g., inverse MDS or ratings. A “computational model” can be 

created based on, e.g., a layer from a neural network model or a function that mimics the V1 

brain regions (Nili et al., 2014). Lastly, a “neural model” contains dissimilarities between 

activity patterns from either a single region of interest (ROI) or a so-called searchlight sphere 

(Kriegeskorte et al., 2006). The obtained model RDMs can be compared by calculating 

correlations between them. For example, correlating a neural RDM from a specific ROI with 

a conceptual RDM carrying information about social and non-social actions will show how 

well social information is represented in the investigated brain region (Popal et al., 2020). 

Overall, RSA involves comparing the (dis)similarity patterns evoked by stimuli through 

different methods, enabling indirect comparison between the stimuli representations. 

In my work, I employed the RSA in the Study 2. The analysis incorporated 

behavioral, computational and neural models. 
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This study has been published after peer-review in Behavior Research Methods on July 5th 

2022. The online version with the supplementary materials is available at 

https://doi.org/10.3758/s13428-022-01894-5. The code and the full list of the obtained action 

features are publicly available at https://osf.io/73v58/. 

  

https://doi.org/10.3758/s13428-022-01894-5
https://osf.io/73v58/


CHAPTER 2: STUDY 1 
   

 

28 

 

Abstract 

In daily life, we frequently encounter actions performed by other people. Here we 

aimed to examine the key categories and features underlying the organization of a wide range 

of actions in three behavioral experiments (N = 378 participants). In Experiment 1, we used 

a multi-arrangement task of 100 different actions. Inverse multidimensional scaling and 

hierarchical clustering revealed 11 action categories, including Locomotion, Communication, 

and Aggressive actions. In Experiment 2, we used a feature-listing paradigm to obtain a wide 

range of action features that were subsequently reduced to 59 key features and used in a rating 

study (Experiment 3). A direct comparison of the feature ratings obtained in Experiment 3 

between actions belonging to the categories identified in Experiment 1 revealed a number of 

features that appear to be critical for the distinction between these categories, e.g., the 

features Harm and Noise for the category Aggressive actions, and the features Targeting a 

person and Contact with others for the category Interaction. Finally, we found that a part of 

the category-based organization is explained by a combination of weighted features, whereas 

a significant proportion of variability remained unexplained, suggesting that there are 

additional sources of information that contribute to the categorization of observed actions. 

The characterization of action categories and their associated features serves as an important 

extension of previous studies examining the cognitive structure of actions. Moreover, our 

results may serve as the basis for future behavioral, neuroimaging and computational 

modeling studies. 
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Introduction 

Being able to tell whether we are greeted or attacked by another person is a crucial 

skill for our survival. What are the key categories underlying the organization of observed 

actions, and what kind of information do we exploit to quickly categorize and understand 

actions performed by other people? There is a long tradition in asking this question in the 

domain of object categories. Aristotle (Aristotle, 1995/350 BCE) argued that categories can 

be distinguished on the basis of the presence or absence of relevant features (such as a tail or 

a wing). More recent views emphasize the similarity of weighted features (e.g., Cree & 

McRae, 2003; Vinson et al., 2003). Some authors pointed out the importance of sensory, 

functional, motor, and manipulation features (e.g., Binder et al., 2016; Cree & McRae, 2003; 

McRae et al., 2005; Vigliocco et al., 2004; Vinson & Vigliocco, 2008). According to this 

view, a cat will be distinguished from other animals by visual features, such as its posture 

and whiskers, whereas a chair will be distinguished from other non-living objects by 

functional features, such as that it is something to sit on. Binder et al. (2016) emphasized the 

role of features with known corresponding neural representations, such as sensory, spatial, 

and temporal features. In contrast to views that emphasize the role of different types of 

features, some authors argued that categories differ with respect to the distribution and 

correlation of features across different categories (for review, see Mahon & Caramazza, 

2009).  

A vast number of neuroimaging studies have reported a preference for object 

categories such as faces, houses, tools, and animals in ventral stream regions (Downing et al., 

2001; Kanwisher et al., 1997; Malach et al., 1995). These results are supported by 

corresponding category-selective deficits in patients (e.g., Humphreys & Rumiati, 1998; 
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Moscovitch et al., 1997). It has been argued that category selectivity reported in the ventral 

stream is at least partially due to visual features that systematically differ between object 

categories (for review, see e.g., Bracci et al., 2017). In line with this view, it has been 

proposed that object categories are represented by distributed feature maps rather than by 

functionally specific regions (see e.g., Haxby et al., 2001). Recent neuroimaging studies that 

directly compared the organization according to features and object categories revealed that 

features alone are not sufficient to account for the category-based structure (e.g., Jozwik 

et al., 2016). 

To which degree do the principles regarding the cognitive organization of objects 

according to features and categories described above apply to the organization of observed 

actions? Vigliocco et al. (2004) reported that both for object and action words, feature-based 

similarities can predict human similarity judgments. However, as pointed out by Vinson & 

Vigliocco (2008), objects and actions differ with respect to a number of aspects. Importantly, 

objects typically can be understood in isolation and often can be identified on the basis of a 

small number of features that show a strong correspondence with specific categories (e.g., 

beak and wings would be typical features of a bird). By contrast, many actions can only be 

understood on the basis of their relation towards objects (e.g., opening a door) or other agents 

(e.g., hugging someone), and they can be performed in various different ways (e.g., eating 

with a fork, with chop sticks, or with both hands). Moreover, actions differ with respect to 

the desired goal state, which can be described along a concrete-abstract continuum, from a 

change of posture (e.g., getting up) or location (e.g., riding the bike) towards a change of an 

object configuration (e.g., opening a book) to a change of a mental state (e.g., listening to 

music; see also Hamilton & Grafton, 2006; Vallacher & Wegner, 1985; Wurm & Lingnau, 

2015). Consequently, determining the principles underlying the organization of actions is 
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challenging and has only recently started to attract a growing level of attention in the 

literature. As an example, Watson and Buxbaum (2014) revealed two dimensions that 

underlie the organization of actions involving tools, namely, the amount of arm movement 

and the hand posture. Using standard univariate analyses of fMRI data, different types of 

information pertaining to observed actions have been reported to engage different brain 

regions, such as the ventral premotor cortex in response to the effector type used in an action 

(e.g., foot, hand, mouth) and the parietal cortex in response to movement direction (Jastorf 

et al., 2010) and different types of actions (Abdollahi et al., 2013; Ferri et al., 2015). Using 

multivariate pattern analysis of fMRI data, Wurm et al. (2017) reported a distinction between 

person-directed and object-directed actions in the lateral occipito-temporal cortex (LOTC). 

Using a multi-arrangement task, Tucciarelli et al. (2019) identified a number of categories 

according to which observed actions are organized behaviorally, including locomotion, 

communicative actions, food-related actions, and cleaning-related actions. Using multiple-

regression representational similarity analysis (RSA) of fMRI data, the authors identified a 

region in the LOTC that reflected this category-based similarity structure while accounting 

for a number of other components such as the context, body parts, kinematics, and low-level 

visual features. Using a similar approach, Tarhan et al. (2021) revealed an action processing 

hierarchy in the visual system and emphasized the importance of actors’ goals. Finally, 

Tarhan and Konkle (2020b) revealed brain networks recruited during the processing of 

videos of actions that carry information regarding body parts and the target of an action. 

Understanding how objects and actions are perceived and which features are useful 

in this process is important also beyond the field of cognitive neuroscience. Advances in the 

knowledge about the anatomy and function of the visual system proved to be useful in 

computer science (Cichy et al., 2019; Hassabis et al., 2017; Wardle & Baker, 2020), first 
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allowing to create a mathematical model of an artificial neuron (McCulloch & Pitts, 1943) 

that later became a building block for a single-layer perceptron (Rosenblatt, 1958) and for 

currently widely used deep neural networks (DNNs) (Cios, 2018; Rumelhart et al., 1986). 

Likewise, methodological developments in the field of human object recognition contributed 

to creating better computational models. For instance, DNNs differ from humans in the 

source of information used for object classification, relying more on the texture of images 

rather than on the shape. It has been shown that teaching a DNN to classify objects based on 

shape improved the network’s performance, resulting in a more accurate imitation of human-

like judgments (Geirhos et al., 2019). Thus, understanding which features are important for 

humans to distinguish between objects and actions and to categorize them is crucial for 

building artificial models that can mimic cognitive processes. 

In sum, whereas previous studies revealed a number of potential organizing principles 

of observed actions, we are lacking a thorough investigation of the categories and features 

that are used to identify and distinguish between them. The current study aims to address this 

gap in the literature. In Experiment 1, we used a multi-arrangement task of 100 actions 

depicted as static images in combination with inverse multidimensional scaling analysis 

(Kriegeskorte & Mur, 2012) to obtain the category-based structure that captures similarities 

between different actions. In short, participants were asked to arrange a set of action images 

on a computer screen in a way that the distances between the images reflect action similarity. 

In Experiment 2, we performed a free feature-listing experiment for the same actions as in 

Experiment 1 (using verbal material) that resulted in a wide range (approx. 6000) of action 

features. Subsequently, we reduced that list to 59 key features, for which we collected ratings 

in Experiment 3. By combining these ratings with the results of Experiment 1 we reveal 
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critical features that contribute towards the distinction between action categories, and we 

show how features may contribute to the category-based organization of observed actions. 

Experiment 1 

The aim of Experiment 1 was to determine the categories underlying the organization 

of observed actions. 

Methods 

Participants 

Twenty participants took part in the experiment (ten females; mean age = 22 years, 

age range = 19–27). Participants were financially reimbursed for their participation. 

Experimental procedures were approved by the ethics committee at the University of 

Regensburg. 

Materials 

We used 100 images of a wide range of daily actions. The initial list of actions was 

chosen from a study of Vinson and Vigliocco (2008), which reported semantic feature 

production norms for a wide range of verbs (N = 216) referring to events from different 

semantic fields such as manner of motion, body motion, and communication. We selected 

verbs that present typical, well-known daily actions that are easy to depict as static images, 

e.g., brushing hair, driving a car, eating. Details regarding the selection of action word and 

images and the full list of actions are provided in the Supplementary Materials (Sections 

A.1.1, A.1.2, and Table A1). 
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Procedure  

The multi-arrangement experiment (Kriegeskorte & Mur, 2012) was conducted at the 

University of Regensburg. Participants were asked to position images on the screen in such 

a way that the distance between the images reflected their perceived similarity in terms of 

their meaning, rather than the background (e.g., an outdoor scene or a kitchen) or the overall 

composition of the picture (see also Tucciarelli et al., 2019). As an example, actions with a 

very similar meaning (e.g., running and walking) should be positioned close to each other, 

while actions with very different meanings (e.g., running and taking a shower) should be 

positioned further apart (see Figure A2 for an illustration). In the first trial, all the 100 action 

images appeared on a so-called circular “arena”. The arrangement was performed by drag-

and-drop using the mouse and, when all the images were sorted inside the arena, the 

participant was asked to press a button, which started the next trial. In each trial, the program 

determined the dissimilarities between all the actions in Euclidean space on the basis of their 

pairwise distances on the screen. The program updates the estimates of the pairwise distances, 

such that the pairwise dissimilarity evidence increases progressively. In subsequent trials, 

images were sampled from the original stimulus set by picking those with the least amount 

of evidence. A detailed description of the multi-arrangement procedure can be found in 

Kriegeskorte and Mur (2012). The average duration of the experiment was 120 min.  

Data analysis  

Data analysis was carried out in MATLAB (The MathWorks Inc., Natick, MA, USA). 

Separately for each participant, Euclidean distances for all 4950 pairwise comparisons of the 

100 actions were reshaped into a vector, and, subsequently, averaged across participants. The 

obtained vector was transformed into a 100 x 100 representational dissimilarity matrix 
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(RDM; see Figure A3), depicting the relation between actions for all possible pairs of actions. 

To visualize the results in 2D, we used non-metric multidimensional scaling (MDS; criterion: 

metric stress, stress value = 0.237, distance measure: Euclidean). To access the structure 

underlying the representation of observed actions, we conducted hierarchical clustering 

analysis (see also Tucciarelli et al. (2019) for a similar approach). First, to reveal the metric 

that is best suited for clustering the data, we calculated the cophenetic correlation coefficients 

(Sokal & Rohlf, 1962; function cophenet in MATLAB) for different metrics. This method 

allows computing the correlation between cluster distances (so-called cophenetic distances 

generated by the linkage function in MATLAB) and actual Euclidean distances between the 

clusters (generated by the pdist function), enabling to assess whether the chosen clustering 

method reflects the original distances accurately. We obtained the highest value (cophenetic 

correlation = 0.854) for the average method (unweighted pair group method with arithmetic 

mean (UPGMA), Sokal & Michener, 1958). The resulting method indicates which algorithm 

will be used to group the data points into clusters and compute between-cluster distances 

(linkage function). UPGMA is an agglomerative method for hierarchical clustering that starts 

with each data point being its own single cluster and, moving bottom-up, forms a cluster from 

two clusters for which the average distance is the smallest. The average distance is calculated 

as the mean distance between all the members of each group. Second, to determine the 

number of clusters which best describe the dataset, we computed the silhouette index (si) 

(Rousseeuw, 1987) in a range from 3 to 50 (which corresponds to half of the number of 

stimuli) (Figure A4). In brief, the silhouette index reveals how appropriate a clustering 

solution is, by taking one data point at a time and comparing its distances with all other data 

points within the cluster to the between-cluster distances of the nearest cluster. The silhouette 

index ranges from – 1 to 1, where 1 indicates the best clustering of the data, whereas 0 
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represents a random clustering. To obtain labels for the action categories revealed by 

hierarchical clustering, we conducted an online experiment in a separate group of 

participants. We only used clusters that contained at least two actions (which was the case 

for 11 out of 12 clusters). Participants were asked to provide category labels based on actions 

belonging to each category. We selected the final category labels on the basis of their 

frequency (see Section A.1.5 in the Supplementary Materials for a detailed description of the 

Category naming experiment). 

Results  

Participants sorted actions according to several clusters; according to the silhouette 

index, the optimal number of clusters was 12 (si = 0.23; see Figure A4). As mentioned in 

Section Experiment 1, Data analysis, we removed one cluster since it only consisted of one 

single action. The remaining 11 action categories were labeled as follows: Aggressive 

actions, Communication, Food-related actions, Gestures, Hand-related actions, Hobby, 

Household-related actions, Interaction, Locomotion, Morning routine, and Sport-related 

actions. Information about the categories and the corresponding actions is provided in 

Table A3. Figure 2.1 presents a 2D MDS solution depicting the 11 action categories together 

with the corresponding labels. Clusters along the first dimension appear to be organized into 

pleasant (Sport-related actions, Hobby) and non-pleasant actions (Household-related 

actions, Aggressive actions). The second dimension might represent the presence (Food-

related actions, Morning routine, Household-related actions) or absence (Hand-related 

actions, Locomotion, Interaction, Gestures, Aggressive actions) of a tool. 
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Figure 2.1 Action categories revealed by the multi-arrangement experiment and their arrangement in a two-

dimensional space. Each dot represents one action, colors correspond to different action categories. For each 

category, a representative action with the corresponding category label is shown for ease of visualization. The 

gray dot indicates the action smoking belonging to the single-action cluster that was not considered in the 

subsequent experiment (see Section Experiment 1, Data analysis). 

 
Discussion  

Experiment 1 revealed 11 action categories, namely Aggressive actions, 

Communication, Food-related actions, Gestures, Hand-related actions, Hobby, Household-

related actions, Interaction, Locomotion, Morning routine, and Sport-related actions. The 

obtained categories provide an extension of the five categories obtained from 28 daily life 

activities by Tucciarelli et al. (2019). We discuss these results in relation to the existing 

literature in the General discussion. 
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Experiment 2  

In Experiment 2, we aimed to explore the feature-based organization of actions. It is 

not obvious which features should be used to best describe actions, and to distinguish them 

from other actions (see also Hebart et al., 2020; Zheng et al., 2019). One possibility would 

be to select a number of features that are either theoretically motivated, or that have been 

proposed in previous studies (e.g., Binder et al., 2016; Orlov et al., 2014; Tarhan & Konkle, 

2020b; Vigliocco et al., 2004; Vinson & Vigliocco, 2008; Watson & Buxbaum, 2014; Wurm 

et al., 2017; Yang et al., 2017). We reasoned that a disadvantage of such an approach is the 

risk to miss relevant features. To minimize this risk, we decided not to base the selection of 

features on the basis of previous studies alone, but to support this step with an exploratory 

feature generation task. To this aim, we asked a separate group of participants to provide 

action features for each of the 100 actions used in Experiment 1 using a free feature-listing 

paradigm. Subsequently, we used the obtained features in combination with features 

proposed in previous studies to select a subset of features to be used in an explicit feature 

rating of actions (Experiment 3). 

Methods  

Participants  

Forty participants (15 females; mean age = 23 years, age range = 18–36 years), 

recruited among students at the University of Regensburg, took part in the study and were 

financially reimbursed for their time. Experimental procedures were approved by the ethics 

committee at the University of Regensburg.  
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Apparatus  

We collected action features for 100 actions using an online survey 

(https://www.soscisurvey.de/). 

Materials  

Stimuli consisted of the same 100 actions as used in Experiment 1, depicted as 

German verbs in their infinitival form (see Table A1).  

Procedure  

Free feature-listing experiment In each trial, participants were provided with an 

action word (e.g., “laufen – to run”) and were asked to generate features that are typical for 

that action, which are relevant to understand it, and by which the action can be distinguished 

from others. Participants were instructed to provide at least five features per action, and they 

were provided with example features for two actions that were not part of the experiment 

(see Supplementary Materials, Section A.2.1, for the full instruction). Each participant was 

asked to provide features for 25 actions, such that we obtained features from ten participants 

for each of the 100 actions. The duration of the experiment was approximately 25 min. 

Selection of themes and key features The obtained list (N = 5683 features) consisted 

of duplicate features as well as features that were phrased differently but carried the same or 

a very similar meaning (e.g., “Werkzeug – tool” and “Werkzeuge – tools”). Whereas the 

identification of distinct features specific for each action or action category can without doubt 

be useful as well (e.g., Zhuang & Lingnau, 2021), the focus of the current study was to 

identify more general features that are suitable for the collection of ratings across a wide 

range of actions. This was the reason to reduce the obtained set of features. Reduction of 

https://www.soscisurvey.de/
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features was performed in several steps. First, separately for each of the 100 actions, a native 

German speaker collapsed duplicates of features or features with similar meaning (e.g., 

singular or plural nouns), while keeping different grammatical forms (e.g., “Anspannen – to 

tighten” and “Anspannung – tension”) separate. This resulted in N = 4504 features; the 

corresponding list is provided on osf [https:// osf.io/73v58/], table ‘Action features – 100 

actions’. Next, we collapsed duplicates of features across the whole dataset, which resulted 

in 3243 unique features (see table ‘Action features – unique’ on osf). This set of unique 

features consisted of single words and phrases that differed in terms of their grammatical 

class (e.g., nouns, verbs, adjectives), and the level of abstraction (ranging from concrete, 

specific features such as lifting an arm to abstract features, such as communication). Given 

this large variety and number of features, our next goal was to reduce the number of collected 

features to the most crucial ones, while at the same time keeping as much information from 

the collected dataset as possible. To this aim, we grouped the features into “themes” that keep 

conceptually related features together (see Table 2.1 and Figure A6). To identify themes 

according to which these features can be organized, we conducted an exploratory analysis of 

the dataset. To do so, the same native German speaker and one of the authors thoroughly 

went through the data set and, to avoid subjectivity, independently came up with main themes 

that could best describe the content of the dataset. In the next step, following previous studies, 

we selected themes that could be backed-up by the features provided by the participants in 

Experiment 2. We chose the following themes: Body parts (Orlov et al., 2014; Tarhan & 

Konkle, 2020b; Yang et al., 2017), Object-directedness (Tarhan & Konkle, 2020b; Wurm 

et al., 2017; Yang et al., 2017), Type of limb movement (Tranel et al., 2003; Watson & 

Buxbaum, 2014), Posture (Peelen & Downing, 2007), Location (Wurm & Schubotz, 2017), 

Keeping balance (Vaessen et al., 2018), Harm (Tranel et al., 2003; Binder et al., 2016), 
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Change of location (Vinson & Vigliocco, 2008), Duration (Tranel et al., 2003; Binder et al., 

2016; Yang et al., 2017), Contact with others (Vinson & Vigliocco, 2008; Binder et al., 

2016), Use of force (Watson & Buxbaum, 2014; Yang et al., 2017), Goal-directedness 

(Hamilton & Grafton, 2007; Wurm et al., 2016), Pace and Concentration (Binder et al., 

2016), Noise (Tranel et al., 2003; Vinson & Vigliocco, 2008), and Valence (Tranel et al., 

2003; Binder et al., 2016). The remaining themes (i.e., Trajectory, Water, and Season-

dependence) were selected based on the collected features. We decided to include these 

themes because they were mentioned frequently.  

In the next step, for each theme, we identified features belonging to each theme and 

selected those that were frequently mentioned by the participants. Based on these features, 

we came up with key features. This way, we aimed to preserve detailed features from 

participants’ responses while keeping them organized within groups containing conceptually 

related information. 

Because of the wide range of features obtained from the feature-listing experiment, 

we decided on two different types of key features: binary features that are reasonable to be 

judged with a yes/ no answer (e.g., Arms) and continuous features for which we considered 

it more useful to ask for a rating on a scale (e.g., Pace) (see Table 2.1 for a better 

understanding of the key features and the possible answers). 

Results  

From the free feature-listing experiment, we obtained 5683 features describing 100 

daily actions. Due to the nature of the task, the features varied in a number of different ways, 

e.g., in terms of the grammatical class (verbs, nouns, adjectives), the phrase length (single 

words, phrases, sentences), and the level of abstraction. The complete list of features 



CHAPTER 2: STUDY 1 
   

 

42 

 

separately for each of the 100 actions as well as a table with all the unique features across the 

100 actions are available at https://osf. io/73v58. 

In the second part of Experiment 2, we selected 59 key features (such as Arms, Hands, 

Targeting a tool, Targeting a person), which we divided into 19 broader themes: Body parts, 

Object-directedness, Trajectory, Type of limb movement, Posture, Location, Keeping 

balance, Harm, Water, Season-dependence, Change of location, Duration, Contact with 

others, Pace, Use of force, Goal-directedness, Concentration, Noise, and Valence. Thirteen 

of the themes contained binary features, i.e., those that can be either involved in an action or 

not (e.g., Arms, Legs), whereas the remaining themes contained features that could be 

described on a continuous scale (e.g., Pace, from slow – 1 – to fast – 7 –). Moreover, some 

of the themes contained multiple features (e.g., Arms, Shoulders, Legs etc. for the theme Body 

parts) whereas some contained one feature only (e.g., Keeping balance). For the latter, we 

refer to the themes and the features with the same name. The full list of themes and their 

corresponding features is provided in Table 2.1. 
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Table 2.1. List of action features grouped by the corresponding themes 

  Theme Description of the theme Features Possible answers 

1 
 

Body parts Which body parts are involved? Arms; Shoulders; Dominant Hand; Both hands; Fingers; Legs; 
Hips; Feet; Head; Mouth Yes/No 

2 
 

Object-directedness What is the target of the action? 
Targeting a non-manipulable object; Targeting a manipulable 
object; Targeting a tool; Targeting a person; No object 
involved 

Yes/No 

3 
 

Trajectory In which direction does the body move during 
the action? Horizontal; Vertical; No movement; Unspecified trajectory Yes/No 

4 

 

Type of limb movement How do the limbs move? 

Circular arms; Circular legs; Rotating arms; Rotating legs; 
Abduction/adduction arms; Abduction/adduction legs; 
Sweeping arms; Sweeping legs; Up-down arms; Up-down 
legs 

Yes/No 

5 
 

Posture What posture is involved during the action? Straight posture; Bent posture; Sitting; Laying; No specific 
posture Yes/No 

6 
 

Location Does the action take place indoor, outdoor, or 
can be both? Indoor; Outdoor Yes/No 

7 
 

Keeping balance Does the action require keeping balance? Keeping balance Yes/No 

8 
 

Harm Is it likely that the action can cause harm? Harm Yes/No 

9 
 

Water Does the action require water? Water Yes/No 

10 
 

Season-dependence Is the action season-dependent? Season-dependence Yes/No 

11 
 

Change of location How much does the actor change location 
during the action? 

Far away from the starting point; In proximity; No change of 
location Yes/No 

12 
 

Duration What is the duration of the action? 
Up to a few seconds; A few seconds to a few minutes; A few 
minutes to half an hour; Half an hour to an hour; Several 
hours; A day 

Yes/No 

13 
 

Contact with others Does the action involve contact with another 
person? 

Contact from a distance; Touching another person; Indirect 
contact; Does not require contact with a person Yes/No 
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14 
 

Pace With which pace is the action performed? Pace [scale from 1 (slow) to 7 (fast)] 

15 
 

Use of force How much force is required to perform the 
action? Use of force [scale from 1 (no force) to 7 

(lots of force)] 

16  Goal-directedness To which degree is the action goal-directed? Goal-directedness [scale from 1 (not goal-
directed) to 7 (goal-directed)] 

17 
 

Concentration To which degree does the action require 
concentration? Concentration [scale from 1 (barely) to 7 (a 

lot)] 

18 
 

Noise What is the degree of noise? Noise [scale from 1 (silent) to 7 
(loud)] 

19 
 

Valence To which degree does the action evoke 
positive or negative emotions? Valence [scale from 1 (negative) to 7 

(positive)] 

Themes and key features selected based on the features obtained from the free feature-listing experiment (see Section Experiment 2, Procedure, Selection of themes 

and key features for a detailed description of the procedure) and based on the existing literature. The selection resulted in 59 key features grouped into 19 themes. Each 

of the themes is marked by a different color. Thirteen out of the 19 themes consist of a set of binary features (possible answers: “Yes/ No”). The other six themes (e.g., 

Pace, Use of force) correspond to features that can be judged on a continuous scale (e.g., Pace, from 1 = slow to 7 = fast). Nine themes contain multiple features 

whereas the remaining ten themes consist of one single feature only. In the latter case, we refer to theme and feature with the same name (e.g., Pace). Questions 

describing each theme are provided to better illustrate the meaning of the theme. The last column contains possible answers (see Experiment 3 for details).  
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Discussion  

In Experiment 2, we obtained a wide range of different features (5683 in total) that 

human participants associate with different actions. We subsequently summarized that list to 

59 features, organized by different themes, to be used in an explicit feature rating 

(Experiment 3). The reduced set of features covers varying levels of abstractness, ranging 

from concrete features, e.g., Body parts, Type of limb movement, Posture to more abstract 

features such as Harm, Valence and Goal-directedness (Wurm et al., 2016). Moreover, the 

features cover different semantic domains (see e.g., Binder et al., 2016). Specifically, 

features are part of the sensory (e.g., Noise), motor (e.g., Type of limb movement), space (e.g., 

Location, Change of location), time (Duration), social (Contact with others), emotion 

(Valence), and drive (Goal-directedness) domains. Both the complete set of features 

provided by the participants as well as the selected set of features may serve as a starting 

point for future studies concerned with the behavioral and neural correlates of specific 

features, and for computational models aimed at the recognition of human actions. 

Experiment 3  

The goal of Experiment 3 was (1) to identify critical features that are used to 

distinguish between different action categories, and (2) to directly compare the feature- and 

category-based organization of actions. To this aim, we collected ratings for 59 action-related 

features obtained from Experiment 2. Methods Participants A total of 273 participants took 

part in the rating experiment (231 females; mean age = 28 years, age range = 16–67 years) 

and were financially reimbursed for their time. Experimental procedures were approved by 

the ethics committee at the University of Regensburg. 
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Apparatus  

The study was conducted as an online survey (www.sosci survey.de).  

Materials  

Stimuli consisted of the same 100 actions as used in Experiments 1 and 2, depicted 

as German verbs in their infinitival form (see Table A1 for a list of all actions). The actions 

were rated based on 59 key features selected in Experiment 2.  

Procedure  

Participants were asked to provide ratings for 59 features (see Table 2.1). Instructions 

provided to the raters can be found in Section A.3.1. For the features of 13 of the themes, 

binary answers (“Yes” or “No”) were required, whereas features for the remaining six themes 

had to be judged on a scale from 1 to 7 (e.g., 1: ”Not at all”, 7: “Very much”) (see Table 2.1 

for details). In addition to the instruction, participants were provided with an example action 

(not used in the study) with corresponding example ratings.  

For the features from the themes Body parts, Object-directedness, Trajectory, Type 

of limb movement, Posture, Location, Keeping balance, Duration, Contact with others, Pace, 

Use of force, and Goal-directedness 17 participants rated 25 action words each (425 ratings 

in total), which took approximately 45 min. To reduce the amount of time per participant, 

another set of 107 participants rated five action words each (535 ratings in total), which took 

about 10 min. For features from the remaining themes, we collected ratings from a separate 

group of 149 participants. Each participant rated five action words (745 ratings in total) and 

the full experimental session lasted approximately 10 min. The set of actions chosen for each 

participant was randomized. 



CHAPTER 2: STUDY 1 
   

 

47 

 

Data analysis  

All subsequent analyses, unless stated otherwise, were conducted using MATLAB 

(The MathWorks Inc., Natick, MA, USA). We obtained 1680 ratings in total, with the 

number of ratings per action ranging between seven and eleven. First, we reduced the 

redundancy within the features (see Supplementary Materials, Section A.3.2.1, for details). 

Since ratings differed depending on the theme (either “Yes/No” answers or ratings on a 

scale), we transformed “Yes/No”- answers to values of 1 or 0 and rescaled values of 

continuous ratings to a range from 0 to 1. To avoid multicollinearity, we removed features 

that were highly correlated (see Section A.3.2.2). The final set comprises of 44 features.  

Multi-feature model To depict which features are important for different actions, we 

averaged ratings across participants and created a multi-feature model (Figure 2.2). 

Additionally, we selected four exemplary features and showed actions that received 

minimum and maximum ratings (Figure A9) for an additional visualization of the results of 

the feature rating.  

Feature-based representations of action categories The aim of this analysis was to 

identify features that are most important to describe action categories and to distinguish 

between them. First, separately for each of the categories identified in Experiment 1, we 

collapsed the ratings across actions within a given category. Subsequently, we used radar 

charts together with 95% confidence intervals (across feature ratings of actions within a 

category) to visualize the mean action ratings within each action category (Figure 2.3, left 

panel, and Figure A10).  

Following Binder et al. (2016), to depict quantitative differences between each action 

category and the remaining categories, we computed the difference between the rating for 
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each feature of a given category (same as depicted in Figure 2.3, left panel, and Figure A10) 

and the mean rating of that feature for all remaining categories (see Figure 2.3, right panel 

and Figure A12). The difference is presented as z-scores and the significance threshold was 

set at p < 0.05, corrected for multiple comparisons using false discovery rate (FDR) 

estimation (Benjamini & Hochberg, 1995). 

Feature-based representations of single actions To depict feature-based ratings of 

single actions, we computed the mean ratings of each feature across participants and mapped 

them on individual radar charts (see Figure A11), separately for each action. 

Correlation of category- and feature-based models To determine how features 

contribute to explaining the category-based structure revealed by Experiment 1, we compared 

the results from the multi-arrangement task (Experiment 1) with the feature-based ratings 

(Experiment 3), using 52 different feature models: two multi-feature models (weighted and 

unweighted), 44 single-feature models and six theme models. As a first step, we transformed 

the category-based model and the feature models into RDMs (see Sections Experiment 1, 

Data analysis and Experiment 3, Data analysis, Creating feature RDMs, for details). Next, 

we computed the correlations between the category-based RDM and the feature RDMs using 

the RSA toolbox (Nili et al., 2014) and MATLAB scripts available from Storrs et al. (2020, 

2021): within each cross-validation fold, together with feature weights (see Section 

Experiment 3, Data analysis, Cross-validated reweighting of features), we calculated 

correlations between the feature RDMs and the category-based RDM (Kendall tA) as well as 

the lower and upper bounds of the noise ceiling (see also Storrs et al., 2020). We ran 50 cross-

validation folds, and within each fold ten randomly selected actions and five randomly 

selected participants were assigned as test data. At the end of the 50 cross-validation folds, 
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the correlations, weights, and bounds of the noise ceiling were averaged. This procedure was 

repeated for 1000 bootstrap samples. Significance of the RDM correlations was determined 

by bootstrap resampling of the stimuli and controlled for multiple comparisons using FDR at 

0.05. 

Creating feature RDMs Feature RDMs were generated by computing the Euclidean 

distance for each pair of actions for (1) all the unweighted features together (resulting in one 

unweighted multi-feature RDM), (2) all the weighted features together (resulting in one 

weighted multi-feature RDM (see Section Experiment 3, Data analysis, Cross-validated 

reweighting of features), (3) each feature separately (resulting in 44 single-feature RDMs), 

and (4) each theme separately (resulting in six theme-based RDMs). The theme-based RDMs 

were computed for those themes that contained more than one feature, more precisely Body 

parts, Object-directedness, Type of limb movement, Trajectory, Posture, and Location. This 

allows investigating sets of related features together. Figure A13 shows all 52 feature RDMs 

(i.e., weighted and unweighted multi-feature RDMs, 44 single feature RDMs and six theme-

based RDMs). 

Cross-validated reweighting of features In addition to the multi-feature RDM with 

equal weights for each feature, we aimed to examine whether the category-based organization 

could be accounted for better by a weighted multi-feature RDM. Following Jozwik et al. 

(2016) and Storrs et al. (2021), we thus performed feature reweighting to fit the categorical 

action structure, while cross-validating over participants and actions. For that purpose, we 

used non-negative least squares fitting with the MATLAB function lsqnonneg. Weights were 

estimated for all the 44 single-feature models. 
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Results 

Multi-feature model  

The multi-feature model (Figure 2.2) depicts information regarding the rated 

contribution of features for different actions. Each row presents one action, whereas each 

column represents a feature. The grayscale represents the mean rating of a feature (black: 

“Yes/Very much”; white: “No/Not at all”). For an intuitive understanding of the model, 

Figure A9 shows example actions that received the minimum and maximum rating for some 

exemplary features. 
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Figure 2.2. Multi-feature model. The model depicts ratings for 100 actions (rows) based on 44 features 

(columns). Different shades of gray indicate the mean rating of a feature (black: high rating, white: low rating). 

Features belonging to the same theme are depicted by the same color on the top of the figure (same color code 

as Table 2.1). 
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Feature-based representations of action categories  

Next, we aimed to identify features that were judged as important for specific action 

categories. Separately for each category, we visualized feature-based ratings across actions 

as radar charts (see Section Experiment 3, Data analysis, for details). Figure 2.3 (left column) 

shows the results for four representative action categories; Figure A10 shows all 11 

categories. As can be seen, radar charts reveal similarities as well as differences between the 

different categories. As an example, the features Goal directedness, Upper Limbs and Hands 

appeared to be judged as important for most categories. As can be seen in Figure A11, 

showing radar charts for single actions grouped by action categories, this observation appears 

to be rather consistent across individual actions within each category. By contrast, other 

features appeared to be more distinct, such as the features Harm and Noise for the category 

Aggressive actions, Targeting a person and Contact with others for the category Interaction, 

or the feature Keeping balance for the category Sport-related actions.  

Quantitative differences of feature ratings between each action category and the 

remaining categories are depicted in Figure 2.3, right column (see Figure A12 for all 11 

categories). This comparison allows identifying the most relevant features for a given 

category. For example, not surprisingly, Aggressive actions (Figure 2.3, 1st row) got 

significantly higher ratings on Harm and Noise, and significantly lower ratings on Valence, 

in comparison to the feature ratings obtained for the remaining categories.  

For the category Locomotion (Figure 2.3, 2nd row), this analysis revealed that the 

features Change of location, Noise, and Harm received significantly higher ratings than the 

remaining categories. By contrast, the feature Indoors was rated lower in comparison to the 

ratings obtained in the remaining categories. While the importance of the features Noise and 
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Harm might be surprising at first, they are likely due to the specific actions that were part of 

this category (i.e., Driving a car and Driving a scooter).  

For the category Interaction (Figure 2.3, 3rd row), the analysis highlighted the 

importance of the features Targeting a person and Contact with others, and lower ratings for 

the Use of force, Targeting a manipulable object, Lower limbs, and Duration. 

 Finally, for the category Sport-related actions (Figure 2.3, 4th row), pairwise 

comparisons revealed several movement-related features, such as Keeping balance and 

Lower limbs. 
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Figure 2.3 Visualization of feature vectors for selected action categories. Left column: Feature-based radar 

charts. Colors indicate features belonging to the same theme (same color code as Table 2.1). The length of each 
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spike is proportional to the mean rating of the corresponding feature. Shaded area indicates 95% confidence 

interval computed across feature-based ratings of actions within a category. Right column: Quantification of 

the difference of the mean rating for features of a given category (depicted in the left column) with the mean 

ratings of the remaining categories, presented as z-scores. Z-scores above zero indicate higher feature ratings 

for a given category compared to the remaining categories, whereas z-scores below zero indicate lower feature 

ratings for that category compared to the remaining categories. Features that differentiate the category from the 

remaining categories (p < 0.05, FDR corrected) are marked in black and their corresponding names are 

highlighted in bold. 

 

Correlation of category- and feature-based models  

In this analysis, we aimed to determine whether and to what extent the models based 

on the similarity of features account for the organization based on action categories. As a 

first step, we computed the correlation (Kendall tA) between the category RDM (obtained 

from Experiment 1) with the (unweighted) multi-feature RDM (obtained from Experiment 

3) that consisted of all 44 features treated equally. As shown in Figure 2.4a (right bar), the 

correlation between the unweighted multi-feature RDM and the category RDM (corr = 0.085) 

is significantly different from zero but does not reach the noise ceiling. 

So far, we treated each feature as contributing equally to the representation of 

observed actions. However, it is likely that some features are shared across categories, 

whereas other features or combinations of features are distinct for specific categories (Tyler 

& Moss, 2001). Similarly, to what has been proposed for object categories (Jozwik et al., 

2016; Khaligh-Razavi & Kriegeskorte, 2014), action categories might differ with respect to 

the weights assigned to different features. To identify which features contribute the most to 

the categorical organization of actions revealed by Experiment 1, we thus used non-negative 

least-squares fitting for assigning weights to the features (see Section Experiment 3, Data 

analysis, for details) and created a weighted multi-feature model that consisted of 44 
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weighted features. It should be noted that feature ratings and feature weights are two separate 

values. In the case of feature ratings, the ratings are provided by participants and each feature 

is treated as contributing equally to the category-based model. However, the assumption that 

all features contribute equally to the category-based organization is likely to be too simplistic. 

The estimates of the weights of each feature, generated by non-negative linear least squares 

fitting, provide an insight into the importance of a given feature in explaining the category-

based action representation. 

As can be seen in Figure 2.4a (left bar), the correlation between the weighted multi-

feature RDM and the category RDM (corr = 0.121) is significantly different from zero and 

significantly different from the unweighted multi-feature model (calculated with stimulus 

bootstrap test, p < 0.05, FDR corrected). An overview of the significant correlations between 

the category model and the different feature models (unweighted multi-feature model, 

weighted feature model, single-feature models, and theme models) is shown in Figure A14. 

Features and the corresponding weights that formed the weighted multi-feature model 

are shown in Figure 2.4b. The highest weight was obtained for the feature Valence, followed 

by substantially lower weights for features related to noise, posture, tool-directedness, and 

head. 

Discussion  

The results of Experiment 3 allow narrowing down which features might contribute 

most to the recognition and distinction between different action categories. Additionally, a 

direct comparison between category- and feature-based RDMs indicated that the former can 

be best explained by a combination of weighted features, showing an importance of the rated 
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valence of the action. However, part of the structure remains unexplained as evidenced by 

the best model not reaching the noise ceiling. 

 

 

Figure 1.4. (a) Correlation between the weighted and unweighted multi-feature RDMs (obtained from 

Experiment 3) with the category RDM (obtained from Experiment 1). Error bars show the 95% confidence 

interval estimated by bootstrap resampling of the stimulus set. Asterisks at the bottom indicate that both multi-

feature RDMs were significantly correlated with the category RDM (stimulus bootstrap test, p < 0.05, FDR 

corrected). The noise ceiling (shaded area above the bars) indicates the expected performance of the true model 

taking into account the noise in the data. None of the models reached the noise ceiling. The horizontal line 

above the noise ceiling indicates significant differences between the weighted and the unweighted multi-feature 

model (stimulus bootstrap test, p < 0.05, FDR corrected). Correlations between all feature RDMs and the 

category RDM are shown in Figure A14. (b) Feature weights contributing to the weighted multi-feature model, 

obtained with non-negative least squares in the cross-validation procedure (50 cross-validation folds across 

participants and stimuli, averaged across 1000 bootstrapping iterations). Error bars indicate the 95% confidence 

interval of the bootstrap distribution. Only features with non-zero weights are shown. 
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General discussion  

We performed three behavioral experiments to characterize the category- and feature-

based structure underlying the organization of observed actions. Moreover, we examined the 

degree to which the feature-based similarity between actions accounts for the category-based 

organization. 

In Experiment 1, we identified 11 categories, including Communication, Gestures, 

Locomotion, and Aggressive actions (Figure 2.1). Subsets of these categories have been 

reported in previous studies focusing on actions depicted as pictures, videos or animations, 

ranging from Hand-related actions (Handjaras et al., 2015; Wurm et al., 2017; Wurm & 

Lingnau, 2015) over Locomotion, Food-related actions, Morning routine, and Sport-related 

actions (Abdollahi et al., 2013; Tarhan & Konkle, 2020b; Tucciarelli et al., 2019) to 

Interaction (Isik et al., 2017; Papeo, 2020; Tucciarelli et al., 2019; Wurm & Caramazza, 

2019b). Not surprisingly, the obtained categories partly overlap with action verb categories, 

some of which formed the basis of stimulus selection for the current study (e.g., Vinson & 

Vigliocco, 2008). Although some of these category labels were similar (e.g., Food-related 

actions obtained in the current study and Cooking obtained from action verbs), the actions 

belonging to them differed: e.g., actions from the Food-related actions category belonged to 

action verb categories such as Body-action (e.g., Drinking, Eating, Licking) or Change of 

state (e.g., Pouring, Stirring). These slight differences in action categorization might depend 

on the stimulus material (visual vs. verbal) and the way these categories were determined 

(multi arrangement task of static images vs. semantic relations/ verb usage patterns). Our 

reason to use verbal material instead of visual stimuli to obtain features and feature ratings 

in Experiments 2 and 3 was to obtain features that are less dependent on the specific (visual) 
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exemplar presented to the participant. That said, we would like to stress that action categories 

revealed on the basis of visual material are unlikely to be identical to the action categories 

revealed on the basis of verbal material (see also Tucciarelli et al., 2019; Vinson & Vigliocco, 

2008; Watson & Buxbaum, 2014). 

Previous studies examining dimensions underlying the organization of observed 

actions revealed the importance of the hand configuration and the magnitude of the arm 

movement for actions related to a tool (Watson & Buxbaum, 2014). For 28 daily-life actions 

depicted as static images, Tucciarelli et al. (2019) highlighted the type of change induced by 

the action and the fulfillment of basic versus higher needs. Finally, using 152 everyday action 

videos and an odd-one-out task combined with a data-driven approach, Dima et al. (2020) 

reported a number of dimensions, ranging from visual information to more social and 

semantic aspects of actions. A study based on large-scale text analyses revealed that actions 

can be described by six dimensions, including Abstraction, Food, and Spiritualism (Thornton 

& Tamir, 2022). In the current study, Experiment 1 suggested that a pleasant/ non-pleasant 

and a tool-/ non-tool-related dimension might underlie the category-based structure. The 

assumption of a dimension related to pleasant/ non-pleasant actions is compatible with the 

results of Experiment 3 that revealed that the judged valence of an action strongly contributed 

to the category-based organization. It is likely that the specific dimensions revealed by 

different studies depend, among other things, on the type of actions included in the 

experiment and the methods used to reveal these dimensions. 

In Experiment 2, we used a free feature-listing paradigm to identify features 

participants consider important for the description of actions, and for their distinction from 

other actions. According to the Theory of Action Identification (Vallacher & Wegner, 1985; 
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Wegner & Vallacher, 1986), actions can be identified at different hierarchical levels that 

differ based on whether the feature provides information about how or why a given action is 

performed. According to this theory, lower identity levels are expected to rely more on 

movement-related information, whereas higher levels of the hierarchy are expected to be 

associated with a more abstract understanding of actions. Likewise, Hamilton and Grafton 

(2007) proposed that actions can be identified at different hierarchical levels (specifically, 

muscles, kinematics, goals and intentions), and that these different levels engage different 

brain regions. To be able to cover features from different hierarchical levels, we explicitly 

instructed participants to consider both concrete and abstract features (see Supplementary 

Materials, section A.2.1, for details on the instructions). Moreover, the obtained features 

cover a range of different semantic domains (e.g., Binder et al., 2016), such as sensory, 

motor, spatial, and temporal information. 

In contrast to a selection of features purely based on previous studies, our exploratory 

approach for the selection of features reduces the risk of missing potentially relevant features 

so far not covered in the literature. The obtained set of features thus is considered to be an 

important extension of previous studies (e.g., Binder et al., 2016; Tarhan & Konkle, 2020b; 

Tucciarelli et al., 2019; Vinson & Vigliocco, 2008) while serving as a basis for future 

experiments. 

The goal of Experiment 3 was to better understand the feature-based structure of 

observed actions. To this aim, we collected explicit ratings for each of the 100 actions for 59 

features selected on the basis of a free feature listing paradigm (Experiment 2) and features 

proposed in previous studies. This allowed us to compute a feature-based similarity structure 

of observed actions, which we used to determine (a) which features are most informative for 
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the description of action categories and their distinction from other categories and (b) to 

directly compare the feature-based similarity structure with the category-based similarity 

structure revealed in Experiment 1. We identified a number of plausible critical features for 

specific categories, e.g., Targeting a person for the category Interactions; Harm, Noise and 

Negative valence for the category Aggressive actions; and features such as Lower limbs, 

Keeping balance, and Use of force for the category Sport-related actions (see Figure 2.3, 

Figure A10, and Figure A12). Together, our results are in line with the view that each action 

category is characterized by some distinct combination of features. However, it is worth 

mentioning that a large proportion of the category-based structure remained unexplained. We 

will return to this point in the following sections. 

A direct comparison of the category- and feature-based organization revealed that the 

weighted multi-feature model best explained the variability of the category-based structure 

and was significantly different from the remaining models (Figure 2.4a, Figure A14). The 

feature that contributed most to this organization was the valence (positive/negative) of the 

actions (Figure 2.4b), highlighting the role of valence-related information for the 

categorization of actions included in the current study. In Figure 2.1, we visualized the action 

category structure resulting from the multi-arrangement task (Experiment 1) in a two-

dimensional space and referred to a pleasant/ non-pleasant dimension: Action categories 

associated with pleasure (e.g., Sport-related actions, Hobby, Food-related actions) are on the 

left side, whereas action categories with displeasure (e.g., Aggressive actions, Household-

related actions) are on the right side. In Figure A15, we present the same arrangement of 

actions in a two-dimensional space, and color-code the rated valence of each action, ranging 

from low (red) to high (yellow) values. This figure highlights the gradual change of valence 

moving from the left (positive valence) to the right (negative valence) side of the figure. 
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Thus, the organization of actions shown in Figure 2.1 and Figure A15 might reflect whether 

the participants associated the actions with pleasure/ positive valence or with displeasure/ 

negative valence. These results are in line with previous studies examining the relationship 

between the processing of emotions and actions (e.g., Kroczek et al., 2021; Poyo Solanas 

et al., 2020). The importance of valence has also been proposed by Tamir and Thornton 

(2018) who suggested that valence is involved in the process of prediction other person’s 

actions. As suggested by the authors, understanding another person’s action relies upon 

understanding another person’s mental states and traits. Persons with traits of a high valence 

value (e.g., agreeable) most likely exhibit positive mental states (e.g., content) that lead to 

performing positive actions (e.g., cooperation). The authors explored dimensionalities of 

mental states and traits revealing the importance of valence, but they did not explore the 

corresponding organization of actions. In our work, we aimed to fill this gap. Based on the 

results from Tamir and Thornton (2018), it seems plausible that valence serves as one of the 

crucial dimensions underling the organization of observed action. 

As mentioned above, whereas the weighted multi-feature RDM showed the highest 

similarity with the category RDM, a substantial part of this structure remained unexplained. 

In other words, even the combination of intermediate- (e.g., Body parts, Type of limb 

movement) and high-level features (e.g., Valence, Goal-directedness) cannot fully account 

for the categorical model of actions. This suggests that there must be additional organizing 

principles underlying the cognitive architecture of actions (see also Vinson & Vigliocco, 

2008). Likely candidates that may contribute towards the organization of actions that were 

not specifically examined in the current study is the context or scene in which an action 

typically takes place (see also Tucciarelli et al., 2019; Wurm et al., 2012; Wurm & Schubotz, 

2012), as well as specific objects or tools used for a given action (Bach et al., 2014; Wurm 
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et al., 2012). We expect that more fine-grained ratings for specific scenes (e.g., kitchen, 

office) and objects (e.g., knife, pen), which were beyond the scope of the current study, will 

allow a more accurate representation of the category-based action structure. 

Future directions 

Characterizing and establishing a set of action categories and features obtained from 

a wide range of actions, as well as better understanding of how features contribute to 

category-based action representation, might be useful for future behavioral and neuroimaging 

studies. Given the data-driven nature of Experiment 1, the individual actions that formed the 

categories revealed by the multi-arrangement task varied between 2 and 30, making it hard 

to draw firm conclusions regarding a final set of critical features for some of the categories 

(e.g., Locomotion). To be able to examine these categories in more detail, future studies 

should choose a more balanced number of actions per category. With these limitations in 

mind, we believe that our results will serve as a useful basis to stimulate future studies. As 

an example, future behavioral and neuroimaging studies might address how human 

participants process and respond to different action categories, how these capabilities 

develop, and under which circumstances they may become impaired. Moreover, our results 

might be useful in the field of computer vision and human–robot interactions. As mentioned 

by Wardle & Baker (2020), object recognition relies on different types of information, such 

as object’s appearance, task context, function of the object, and its possible interactions with 

other objects. The more we understand how the human brain tackles the problem of object 

recognition, the more accurate and human-like artificial models can be built. The same can 

be applied to actions: a better understanding of the way humans represent and categorize 

actions may lead to the creation of more accurate and efficient computational models of 
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action recognition with higher resemblance to human’s understanding of the world. In the 

future, such models could be applied in automated action recognition that has become a 

growing demand in the industry, including autonomous vehicles and driver-assistance 

systems, smart surveillance, and health care systems (Serpush & Rezaei, 2021). 

Conclusions  

We identified a set of action categories and showed that each of them is represented 

by a unique combination of action features. The reported action features can be grouped into 

more general themes, such as Body parts and Posture, partly overlapping with features 

already reported in the existing literature. Whereas the weighted multi-feature model 

performed best among all the examined models in explaining the category-based structure, a 

significant proportion of variability remained unexplained, suggesting that there are 

additional sources of information that contribute to the categorization of observed actions, 

beyond the features examined in the current study. Together, our results provide important 

insights into the cognitive architecture underlying our ability to distinguish between different 

actions and serve as an extension of the existing literature (e.g., Tucciarelli et al., 2019; 

Vigliocco et al., 2004; Vinson & Vigliocco, 2008). Additionally, the obtained features might 

be applied in computational science and help improving neural network models that could 

lead to more accurate computer-based action recognition in the future. 
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Abstract 

The lateral occipitotemporal cortex (LOTC) has been shown to capture the 

representational structure of a smaller range of actions. In the current study we carried out an 

fMRI experiment in which we presented human participants with images depicting 100 

different actions and used representational similarity analysis (RSA) to determine which 

brain regions capture the behaviorally established action space of a wider range of actions. 

Moreover, to determine the contribution of a wide range of action-related features to the 

neural representation of the behavioral action space we constructed a feature model on the 

basis of ratings of 44 different features. We found that the behavioral action space and the 

feature-based representation are best captured by overlapping but distinct activation patterns 

in bilateral LOTC and ventral occipitotemporal cortex (VOTC). An RSA on eight dimensions 

resulting from principal component analysis carried out on the feature model revealed partly 

overlapping representations within bilateral LOTC, VOTC, and the parietal lobe. Our results 

suggest spatially overlapping but distinct representations of the behavioral action space of a 

wide range of actions and the corresponding action-related features. Together, our results add 

to our understanding of the kind of representations along the lateral occipitotemporal cortex 

that support action understanding. 
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Introduction 

We are constantly surrounded by various types of actions and can recognize them 

without effort. However, understanding them is a complex task, relying on multiple sources 

of information. One of the key challenges is unraveling the mental representations of actions 

and the degree to which these explain behavior. A growing number of recent studies suggest 

that actions can be depicted as data points in a multi-dimensional action space (e.g., Dima et 

al., 2022; Kabulska & Lingnau, 2022; Thornton & Tamir, 2022; Tucciarelli et al., 2019; 

Watson & Buxbaum, 2014), in line with corresponding ideas in the object perception 

literature (Beymer & Poggio, 1997; Edelman, 1998; Kriegeskorte et al., 2008). 

Understanding the dimensions underlying this action space and the corresponding neural 

implementation thus is key to understanding the human ability to perceive and recognize 

actions.  

The dimensions spanning the space of actions have been investigated by several 

behavioral studies. For instance, in the realm of tool usage, Watson & Buxbaum (2014) 

demonstrated that tools can be sorted into distinct groups based on two dimensions: one 

associated with the hand configuration and the other with the magnitude of the arm 

movement. Tucciarelli et al. (2019) showed that daily-life actions can be mapped onto 

dimensions reflecting the type of change induced by the action, and the type of need to be 

fulfilled by the actions (ranging from basic, physiological needs to higher social needs). 

Furthermore, social importance has emerged as a prominent factor in various other studies, 

either as the main factor in judgement of action similarity (Dima et al., 2022) or as one of the 

factors, together with semantic dimensions (e.g., food, work, home life) and visual 

information (scene setting; Dima et al., 2023). A recent study of Vinton et al. (2023) 
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suggested that actions might be projected onto four dimensions: two related to facial traits 

and emotions (e.g., friendly – unfriendly) and two others unique to actions (e.g., planned – 

unplanned). Another important dimension that emerged is the actor’s goals (Tarhan et al., 

2021). Additionally, using large text data, Thornton & Tamir (2022) revealed six abstract 

dimensions including Abstraction, Creation, and Spiritualism. Lastly, Kabulska & Lingnau 

(2022) highlighted the importance of the valence of an action, i.e. the differentiation between 

pleasant (e.g., sport-related) and unpleasant (e.g., aggressive) actions. 

A number of previous studies examined the neural representation of an action space 

established behaviorally as well as the underlying action dimensions. Tucciarelli et al. (2019) 

demonstrated that the behaviorally obtained organization of 27 different actions is captured 

by patterns of activation in the lateral occipitotemporal cortex (LOTC). Regarding the neural 

representation of action dimensions, Tarhan & Konkle (2020b) revealed five large-scale 

brain networks associated with action processing: one dedicated to social aspects of actions 

(such as targeting an agent), and four pertained to a “scale of space” (i.e. near space / far 

space). Tarhan et al. (2021) proposed a hierarchy in processing actions along the posterior-

to-anterior lateral surface of the visual cortex, ranging from information about visual aspects 

of actions, followed by movement-related information and, lastly, the goals of actions, in line 

with the results of a recent EEG study by Dima et al. (2023). Furthermore, superior and 

inferior portions of the lateral occipitotemporal cortex (LOTC) have been shown to carry 

information about actions along the dimensions sociality and transitivity, respectively (Wurm 

et al., 2017). Overall, these findings contribute to our understanding of the neural substrates 

underlying the representation of visually presented actions in the human brain. However, 

most previous studies either used a small set of pre-selected dimensions, or a rather small 

stimulus set, which might restrict our understanding of action representation in a real-world 
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environment (for an exception, see the study by Thornton and Tamir, 2022, which however 

was based on large-scale text corpora). 

In the current study, in order to determine the neural representation of a behaviorally 

established action space of a wider range of actions, the representation of features related to 

these actions and potential dimensions underlying the organization of these features, we 

carried out an fMRI experiment in which we presented participants with 100 different actions 

(four exemplars each). We constructed a behavioral action space model on the basis of data 

from a multi-arrangement task (Kriegeskorte & Mur, 2012) on 100 different actions 

(Kabulska & Lingnau, 2022). Moreover, to be able to determine to which degree the neural 

representation of the behavioral action space can be accounted for by a range of different 

action-related features, we constructed a feature model on the basis of ratings of 44 different 

features (see Kabulska & Lingnau, 2022, for details). Finally, in order to determine the 

dimensions underlying the feature model, we employed principal component analysis and 

investigated the neural representations of the resulting dimensions (see also Tamir & 

Thornton, 2018; Tamir et al., 2016; Thornton & Tamir, 2022). 

Materials & Methods 

Participants 

Twenty-three right-handed participants (eleven males; mean age, 23; age range 20-

34) participated in the study. All participants had normal or corrected-to-normal vision and 

no history of neurological or psychiatric disease. Data of three participants were not included 

in the data analysis due to excessive head motion (translation/rotation bigger than 3 mm; two 

participants) and due to stopping the scan after 5 runs; one participant). The experimental 

protocol was approved by the ethics committee at the University of Regensburg. Written 



CHAPTER 3: STUDY 2 
   

 

70 

 

consent was obtained from all participants before the experiment. Participants were rewarded 

for taking part in the study. 

Stimuli 

Stimuli consisted of 400 colored images of daily actions that portrayed 100 different 

daily actions in front of a naturalistic background, such as running, biking, and eating (same 

as in Kabulska & Lingnau, 2022; see Figure 3.1 for examples), with four different exemplars 

per action. Stimuli were carefully chosen on the basis of the following criteria: (a) actions 

were clearly visible, (b) no other distracting actions were depicted in the image; (c) the action 

was embedded in a natural background. The stimulus set was collected from 

www.shutterstock.de. All selected images were in landscape orientation and were cropped to 

600 x 400 pixels. The full set of images used in the study is shown in Figure B1. 

 

Figure 3.1. Example trial sequence and experimental design. We conducted an fMRI experiment using a 

rapid event-related design. Each trial consisted of the presentation of an image depicting an action (e.g., running, 

biking, eating; 1 s) followed by a gray screen (3 s). Throughout the experiment, a central fixation cross was 

presented on the screen. Participants were instructed to attentively observe the actions while keeping their eyes 

at fixation and to press a button with their right index finger whenever they saw a repetition of the same action 

in two subsequent trials (here: biking). Each functional run lasted approx. 9 min and included 100 experimental 

trials, seven catch trials and 20 null trials (see Methods for details). The whole fMRI session consisted of eight 

functional runs. 

Experimental design and task 

We used a rapid event-related design (see Figure 3.1) adopting the design used by 

Tucciarelli et al.  (2019). There were 8 functional runs in total (approx. 9 min each). Each 

…

1s 3s 1s 3s 1s 3s 1s

Press button

http://www.shutterstock.de/


CHAPTER 3: STUDY 2 
   

 

71 

 

run started and ended with 12 s fixation period. Each functional run consisted of 100 

experimental trials, 20 null trials (4 s long each), and 7 catch trials during which the same 

action (but not the same exemplar) was shown as during the previous trial. The order of 

experimental trials was randomized, whereas null trials and catch trials were pseudorandomly 

interspersed between experimental trials, preventing two consecutive null trials and two 

consecutive catch trials. 

Each trial consisted of an action image (1 s) with a superimposed central fixation 

cross, displayed on a uniform gray background, followed by a fixation cross (3 s). Each action 

was presented once in a run in a random order. Throughout the scanning session, each 

exemplar was shown twice (each in a separate run). Throughout the experiment, participants 

performed a one-back task. Prior to entering the scanner, they received written instructions, 

asking them to attentively watch the images while keeping their eyes at fixation and to press 

a button with the right index finger whenever there was a consecutive repetition of the same 

action. Responses during these catch trials were used offline to calculate response time and 

accuracy (see Results: Behavioral data analysis). To ensure that participants understood the 

task, they completed a practice run before entering the scanner. 

Inside the scanner, stimuli were back-projected onto a screen (resolution 1024 x 768 

at 60 Hz; viewing distance 106 cm, 12.98 x 8.53 degree of visual angle) and viewed via a 

mirror mounted on the radiofrequency (RF) coil. Stimulus presentation and response 

collection were controlled with A Simple Framework (ASF) (Schwarzbach, 2011), a toolbox 

based on the MATLAB Psychtoolbox-3 for Windows (Brainard, 1997). 
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Post-session questionnaire 

At the end of the experiment, participants filled out a questionnaire in which they 

were asked to judge on a 6-point Likert scale how (1) comfortable and (2) tired they felt 

inside the scanner, (3) to which degree they internally verbalized the actions presented in the 

pictures and (4) to which degree they concentrated exclusively on the repetition of the 

actions. 

Data acquisition 

Functional and structural data were collected using a 3T Siemens Prisma MRI scanner 

and a 64-channel RF head coil at the University of Regensburg. Functional images were 

acquired with a T2*-weighted gradient echoplanar imaging (EPI) sequence (voxel resolution: 

2.5 x 2.5 x 2.5 mm; 60 axial slices that cover the whole brain; repetition time (TR): 2s, echo 

time (TE): 30s, flip angle (FA): 75°, field of view (FoV): 192 mm, matrix size: 96 x 96, 265 

volumes per run). Structural T1-weighted images were acquired halfway through the 

scanning session (i.e., after the fourth functional run) using an MPRAGE sequence (voxel 

resolution: 1 x 1 x 1 mm, 160 axial slices, TR: 1910 ms, TE: 3.67 s, FA: 9°, matrix size: 256 

x 256). 

Data analysis 

Data preprocessing and univariate analyses were performed using FEAT (FMRI 

Expert Analysis Tool; (Woolrich et al., 2001, 2004) which is a part of FSL (FMRIB’s 

Software Library, Jenkinson et al., 2012). FSL was also used for the extraction of information 

about the clusters of the statistical maps (command: cluster), creating ROIs, smoothing the 

maps and performing high-pass filtering (command: fslmaths). All further analyses were 

conducted in MATLAB (The MathWorks Inc.) using specific toolboxes mentioned below 
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and custom written scripts (available on 

https://osf.io/efn3w/?view_only=c2b87331de8b45aab23bf182b9921a57).  

Preprocessing 

The preprocessing of functional data included: (1) removal of the first four volumes; 

(2) slice time correction; (3) head motion correction (trilinear interpolation) with respect to 

the first volume of the first run for each participant (using MCFLIRT); (4) BET brain 

extraction; (5) spatial smoothing with a Gaussian kernel of 5 mm FWHM, (6) high-pass 

filtering (cutoff frequency of 100 mHz). Note that step (5) was carried out for reliability-

based voxel selection (following Magri et al., 2021; Park et al., 2022; Thornton & Tamir, 

2023), whereas this step was omitted for representational similarity analysis. Data were 

linearly registered using FMRIB’s Linear Image Registration Tool (FLIRT, Jenkinson et al., 

2002; Jenkinson & Smith, 2001, first to each participant’s 3D T1-weighted image (7 degrees 

of freedom) and then to the MNI152 standard brain (12 degrees of freedom).  

First-level univariate fMRI analysis 

We performed the first-level univariate analysis for the reliability-based voxel 

selection on spatially smoothed data (see previous section), whereas we used unsmoothed 

data for the representational similarity analysis. For both types of analysis, a general linear 

model (GLM) was used to model the obtained data series. We included 100 regressors of 

interests (one for each action), with each trial modeled as an epoch lasting from the onset to 

the offset of the image (1 s). In addition, we included one regressor for the catch trials, and 

six regressors resulting from 3D motion correction (x, y, z translation and rotation). Each 

regressor of interest was convolved with a standard dual gamma hemodynamic response 

function (Friston et al., 1998). 
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Reliability-based voxel selection 

To ensure that analyses are performed within a set of voxels that systematically 

respond during the processing of observed actions, we selected voxels based on their 

reliability following Tarhan & Konkle (2020a). With this approach, the voxels are considered 

as reliable when they (a) show systematic differences in activation across the different 

experimental conditions (in our case, actions), and that (b) show similar activation levels 

across conditions in different sets (i.e., different exemplars) of the stimuli. To implement this 

method, we performed the second- and group-level univariate analysis on spatially smoothed 

data split into odd and even runs (averaged across runs within each split). Separately for each 

voxel, both at the subject- and group-level, we correlated the obtained beta weights of each 

condition between the two halves. Based on a group item reliability plot (Figure B2) we 

decided on a voxel-reliability threshold equal to 0.25. All subsequent analyses were 

performed within voxels exceeding this threshold. 

Representational Similarity Analysis (RSA) 

To identify brain areas that represent (a) the behavioral action space model and (b) 

the action feature model, we performed searchlight-based representational similarity analysis 

(RSA; Kriegeskorte et al., 2006; Kriegeskorte et al., 2008) using the CoSMoMVPA Toolbox 

(Oosterhof et al., 2016). As input, we used (unsmoothed) t-maps (1 for each of the 100 

actions) calculated from b estimates obtained from first-level univariate analysis. RSA was 

performed using a searchlight sphere (radius: 10 mm) within voxels exceeding the voxel-

reliability threshold (see previous paragraph). For each searchlight sphere, a neural 

representational dissimilarity matrix (RDM) was created by computing pairwise distances 

(squared Euclidean distance) between t-scores of each pair of actions. The resulting neural 
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RDM was correlated (Pearson correlation) with a selected target RDM (see RSA: Model 

RDMs for details) and the correlation value was assigned to the center voxel of each sphere, 

resulting in a correlation map.  

To be able to account for the variability explained by additional models capturing 

low-level visual features, mid-level scene-related features (GIST), or action features (feature 

model; see section RSA: Model RDMs for details), we performed a multiple regression RSA 

(see e.g., Proklova et al., 2016; Tucciarelli et al., 2019, for similar approaches). To test the 

suitability of this approach, we determined the degree of multicollinearity between the 

variables using the Variance Inflation Factor (VIF). The VIFs were small, both when 

including three models (behavioral action space model: 1.01, low-level visual control model: 

1.01, GIST model: 1.00; feature model: 1.01, low-level visual control model: 1.01, GIST 

model: 1.06) and when including four models (behavioral action space model: 1.09, feature 

model: 1.15, low-level visual control model: 1.02, GIST model: 1.07), indicating a low risk 

of multicollinearity between the variables.  

The obtained beta maps were subsequently spatially smoothed with a 5 mm FWHM 

kernel and entered into a one-sample t test. Statistical significance for the group-level 

analyses was determined by correcting the beta maps for multiple comparisons using 

threshold-free cluster enhancement (TFCE, Smith & Nichols (2009) in combination with 

cluster level correction (p = 0.05, one-tailed, z = 1.65, 5000 iterations).  

We carried out multiple regression RSA for (1) the behavioral action space model, 

regressing out the low level visual control model and the GIST model and (2) the behavioral 

action space model, regressing out the low level visual model, the GIST model and the action 

feature model. In addition, to be able to compare the topography of the areas capturing the 
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behavioral action space model and the action feature model, we computed a multiple 

regression RSA for (3) the action feature model (regressing out the low-level visual model 

and the GIST model.  

For visualization purposes, we displayed the resulting thresholded t-maps onto an 

inflated standard surface map provided by BrainNet Viewer (Xia et al., 2013). 

RSA: Model RDMs 

The behavioral action space model and the action feature model were derived on the 

basis of a number of behavioral experiments (Kabulska & Lingnau, 2022), whereas the low 

level visual control model and the GIST model were established on the basis of image 

properties. The procedures are briefly summarized below.  

Behavioral action space model. This model was used to determine which brain areas 

capture the similarity space of actions resulting from behavioral judgments of action 

similarity. Following previous studies (Dima et al., 2022; Tucciarelli et al., 2019), we derived 

this model from a multi-arrangement paradigm (Kriegeskorte & Mur, 2012). In short, 20 

participants were asked to arrange 100 images of daily actions (same set of actions as used 

in the current study) on an arena, where between-action distances reflected action similarity 

(for details, see Kabulska & Lingnau, 2022). The model was created based on the resulting 

pairwise distances between the actions, averaged across participants.  

Action feature model We established this model in order to examine to which degree 

the behavioral action space can be accounted for on the basis of the similarity of a wide range 

of features. First, using a free feature-listing experiment, we asked N = 40 participants to list 

at least 5 features per action which resulted in approx. 6000 collected responses describing a 

set of 100 daily actions (same set as used in the current study). Second, we reduced that list 
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of features to 44 key action features (e.g., Upper/Lower limbs, Targeting a person/tool, Pace, 

Duration, Valence) and, from another set of N = 273 participants, obtained feature-based 

ratings for the same set of 100 actions. The averaged and rescaled ratings were subsequently 

used to create a feature model by computing pairwise distances between actions (Euclidean 

distance).  

Low-level visual control model We constructed this model to be able to account for 

low-level visual features. Since representations of objects in early layers of artificial neural 

networks have been shown to resemble neural activity within early visual cortex (Güçlü & 

van Gerven, 2015; Lindsay, 2021) we decided to use the first convolutional layer from 

ResNet50, a deep convolutional network with 50 layers, pretrained on object categories (He 

et al., 2016) and fine-tuned on 339 action categories from the Moments in Time dataset 

(Monfort et al., 2020). We fed the ResNet50 model with the 400 action images (100 actions 

with 4 exemplars each) which we used in the fMRI experiment. Next, we (1) determined the 

activations within the first convolutional layer and stored them as vectors and (2) averaged 

the resulting vectors across action exemplars, resulting in 100 activation vectors (one vector 

per action). (3) Next, we computed 1-Pearson’s R correlation for each pairwise combination 

of vectors resulting in a 100 x 100 RDM. We also created an RDM based on the first layer 

of AlexNet (Krizhevsky et al., 2017), pretrained on the ImageNet dataset (Russakovsky et 

al., 2015), which is another frequently used convolutional neural network (e.g., Kietzmann 

et al., 2019; Lee Masson & Isik, 2021, see Figures B3 and B4 for the RSA results). 

GIST model To account for the spatial structure of the scenes presented in the 

stimuli, we employed the GIST model (Torralba & Oliva, 2001). This computational model 

extracts information about scenes based on several dimensions, such as naturalness, 
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openness, and roughness, and defines stimuli as similar if the semantic categories of the 

scenes share similarities (e.g., highways and streets). We generated GIST descriptors for all 

400 action images (100 actions with 4 exemplars each) using the default parameters for the 

number of orientations at which the Gabor filters are applied, and the filter used to reduce 

illumination effects of input images. Subsequently, we averaged the descriptors across action 

exemplars, resulting in a set of 100 GIST descriptors, one for each action. To construct the 

GIST RDM, we computed pairwise distances between the actions using the Euclidean 

distance metric.  

Principal Component Analysis (PCA) 

The action feature model contained information about all 44 action features reported 

by Kabulska & Lingnau (2022) (see section RSA: Model RDMs for details). To be able to 

reduce this large number of features to a smaller set of dimensions, we conducted a principal 

component analysis (PCA) on the 44 feature-based ratings of 100 actions (same ratings as 

used to create the feature RDM, see RSA: Behavioral RDMs). The components were derived 

using varimax rotation which maintains orthogonality between them. We identified 11 

components with eigenvalues greater than one (Table B1). Based on the scree plot combined 

with the “elbow method” (Figure B5), we chose eight dimensions, accounting for approx. 

64.1% in total of the variability in the feature ratings.  

RSA with principal components (PCs) 

Subsequently we wanted to determine which brain regions best capture these 

dimensions. To address this question, we performed a regression-based RSA, separately for 

each of the eight dimensions while regressing out the low-level visual control model and the 

GIST model (see section RSA: Model RDMs for details). In order to construct the dimension-
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based RDMs, the first step involved multiplying the action feature ratings (obtained in 

Kabulska & Lingnau, 2022) by loadings on a given dimension. Subsequently, we took the 

resulting 100 vectors (one per action) of weighted feature ratings and computed pairwise 

distances (Euclidean distance) between them. Prior to conducting multiple regression RSA, 

we computed the Variance Inflation Factor. The VIFs were below 4 for all the models 

indicating low multicollinearity between them (PC1: 2.34; PC2: 2.91; PC3: 3.16, PC4: 3.46, 

PC5: 3.16, PC6: 2,40, PC7: 3.33, PC8: 2.30, low-level visual model: 1.04, GIST model: 

1.15). 

Winner-takes-all with PCs 

To visualize the most dominant dimension for each voxel, we calculated a winner-

takes-all map following Tarhan et al. (2021) within the voxels exceeding the reliability-based 

voxel threshold. We only included the six (out of eight) PCs for which the multiple regression 

RSA revealed significant clusters of voxels that survived correction for multiple 

comparisons. We assigned a unique color to each voxel to the dimension with the highest 

correlation. 

Results 

Behavioral results 

We performed an fMRI experiment with 100 daily actions (four exemplars per action; 

see Figure B1 for a complete overview of all stimuli) using a rapid event-related design (see 

Methods, section Experimental design and task for details). Mean reaction time for correct 

responses was 959.84 ms (± 43.60 ms SEM). Participants identified catch trials with a mean 
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error rate of 24.73% (±2.74% SEM), corresponding to approx. 14 out of 56 catch trials per 

participant.   

The post-session questionnaire revealed that on average the participants were 

reasonably concentrated on the task of identifying catch trials (mean = 4.09; std = 1.12; 1 = 

not concentrated at all, 6 = concentrated exclusively on the task), and that they felt reasonably 

comfortable inside the scanner (mean = 4.3; std = 0.88; 1 = very uncomfortable, 6 = very 

comfortable). The questionnaire also revealed that participants felt neither completely rested 

nor very tired throughout the experiment (mean = 3.43; std = 1.04; 1 = not tired at all, 6 = 

very tired), and that they verbalized the stimuli to some degree to perform the task (mean = 

4.7; std = 1.11; 1 = not naming at all; 6 = quietly naming).  

Individual error rates and answers provided in the post-session questionnaire are 

provided in Table B2.  

Reliability map 

Following Tarhan & Konkle (2020a), we used a reliability-based voxel selection (see 

Methods section for details). This analysis revealed voxels with high reliability in occipital 

brain areas, covering both ventral and dorsal visual streams, and part of the parietal lobe (see 

Figure B2), whereas voxel reliability was lower in frontal areas. All subsequent analyses 

were performed within the reliability map. 

Searchlight-based RSA 

To determine which brain areas reflect the behavioral action space, corresponding to 

the categorical organization obtained from the multi-arrangement task while accounting for 

variability due to low- level visual features, mid-level scene-related features, and high-level 
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action features, we performed a multiple regression searchlight-based RSA (see Methods, 

section Representational similarity analysis for details). Moreover, to determine the spatial 

correspondence between the regions capturing the behavioral action space and the regions 

capturing a feature-based organization, we carried out an additional searchlight-based RSA 

on the action feature model.  

The resulting searchlight maps for the behavioral action space model (while 

regressing out the low-level visual control model and the GIST model) revealed significant 

correlations between neural patterns of activation and the action space model in bilateral 

occipitotemporal and fusiform cortex as well as in small portions of the superior parietal lobe 

(Figure 3.2A). Additionally regressing out the action feature model resulted in a qualitatively 

similar, but less widespread map (Figure 3.2B) that was limited to bilateral occipitotemporal 

and temporal occipital fusiform cortex.  

The action feature model was captured by patterns of activation in a comparable, but 

slightly more widespread set of regions, including the bilateral occipitotemporal and fusiform 

cortex as well as the superior parietal lobe (see Figure 3.2C).  

 
1.65 8.71

Action space model
regressing out the visual control 

model and the GIST model

A Action space model
regressing out the visual control 
model, the GIST model and the 

action feature model

regressing out the visual control 
model and the GIST model

B Action feature modelC
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Figure 3.2. Results of the group-level searchlight-based RSA for: (A) the behavioral action space model 

(regressing out the low- level visual control model and the GIST model); (B) the behavioral action space model 

(regressing out the low-level visual control model, the GIST model and the action feature model; (C) the action 

feature model (regressing out the low-level visual control model and the GIST model). Statistical maps show t-

values thresholded at a z-score of 1.65, corresponding to p < 0.05 (one-tailed), corrected for multiple 

comparisons (TFCE, p < 0.05, 5000 Monte Carlo permutations). 

Principle Component Analysis (PCA) 

PCA on the 44 feature ratings for the 100 different actions revealed eight components 

that explained 64.1% of the variance (see Methods section for details). We labeled these 

components on the basis of the features belonging to each component (see Table B1). The 

first component that explained most of the variance (21.6%) we labeled General movements 

due to high positive loadings for a variety of features, such as lower limb movements, change 

of location, use of force and negative loadings on no movement and sitting features. The 

second component was mostly related to different arm movement kinematics (e.g., rotating, 

sweeping, circular) and therefore labeled Arm movement kinematics. The third component 

was related to features related to the goal/ target object and features related to the arm and 

hand and therefore labeled Goal-directedness. The subsequent components were associated 

with features related to the Context of the actions (Indoor, outdoor, season-dependence), the 

Posture of the agents performing the actions, Contact with others (i.e., whether or not the 

action involved a direct or indirect contact with another person), and Object-directedness 

(i.e., whether or not the action targeted a manipulable object). The last component referred 

to the features noise, harm and negative valence and thus was labeled Negative Emotions. 

RSA on dimensions resulting from principal component analysis 

To determine which brain areas represent the information captured by each of the 

dimensions resulting from PCA on the feature ratings, we conducted a searchlight-based 
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RSA, separately for each of the eight dimensions, regressing out the low-level visual control 

model and the GIST model. The results of this analysis are shown in Figure 3.3. For the 

dimension General movements, that explains the largest amount of variance (21.63%), we 

identified significant clusters in bilateral temporal occipital fusiform cortices and lateral 

occipital cortices, extending towards the superior parietal lobules. The dimension Goal-

directedness was captured by clusters in the left inferior temporal gyrus, bilateral temporal 

fusiform cortices and lateral occipital cortices. For the dimension Context, we obtained 

clusters in bilateral lateral occipital cortices and the left temporal occipital fusiform cortex. 

Clusters in bilateral temporal occipital fusiform cortices and superior parietal lobules 

corresponded to the dimension Posture. The dimension Contact with others was associated 

with clusters in the left lateral occipital cortex (superior and inferior division) and a smaller 

cluster in the right lateral occipital cortex (inferior division) as well as a cluster in the left 

temporal occipital fusiform cortex. The dimension Object-directedness showed a significant 

correlation with activation patterns within clusters in bilateral temporal occipital fusiform 

cortices and lateral occipital cortices (superior division). In sum, this analysis revealed a 

substantial degree of overlap between the different dimensions along the ventral visual 

stream and the superior parietal lobe, in particular for the dimensions General movements, 

Context, Posture, and Object-directedness. By contrast, the dimensions Goal-directedness 

and Contact with others were associated with more circumscribed clusters of voxels. To 

explore the spatial arrangement of these dimensions, we carried out a Winner-Takes-All 

analysis (see next section). 



CHAPTER 3: STUDY 2 
   

 

84 

 

 

Figure 3.3. Results of the searchlight RSA, carried out separately for each of the eight dimensions (regressing 

out the low-level visual control model and the GIST model). Six out of eight dimensions showed a significant 

correlation with neural activation patterns after correction for multiple comparisons (TFCE, p < 0.05, 5000 

Monte Carlo permutations). Statistical maps show t-maps thresholded using TFCE at z-score of 1.65. The 

remaining dimensions, namely Arm movement kinematics and Negative Emotions, did not survive the 

correction.  

Winner-takes-all map 

To explore clusters of voxels with a preference for individual principal components, 

we calculated a winner-takes-all map (see Methods for details). Note that since we provide 

no additional statistics for these maps, this analysis merely serves as an additional 

visualization of the results shown in Figure 3.3. That said, the winner-takes-all analysis 

highlights multiple clusters displaying the highest correlation with the General movements 

dimension in a prominent portion of the right LOTC as well as the left dorsal LOTC (Figure 

3.4, blue). The Goal-directedness dimension showed the highest correlations with patterns 

General movements Goal-directedness Context

1.65 8.92

Posture Contact with others Object-directedness
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of activation in a more anterior portion of the left middle LOTC (dark green). The dimension 

Context formed small clusters in bilateral superior parietal lobe (light green). The information 

related to Posture was encoded in the left middle posterior LOTC, right dorsal LOTC and 

portions of bilateral VOTC (red), whereas the Contact with others dimension exhibited a 

strong correlation in the left dorsal LOTC (orange). Finally, this analysis highlighted that the 

Object-directedness dimension exhibits the highest correlation in the superior parietal lobe 

(bilaterally), a small portion in the inferior parietal lobe (bilaterally) as well as portions of 

visual cortex (bilaterally), ranging from V1 to V4 (yellow). 

 

Figure 3.4. Results of the winner-takes-all analysis with maps for six different dimensions obtained from the 

searchlight-based RSA (see Figure 3.3; see also Tarhan et al., 2021). Each voxel was assigned a color 

corresponding to the dimension that showed the strongest correlation (see legend on the right for the assignment 

of colors to each dimension).  

 

Discussion 

In this study, we investigated the neural architecture underlying the organization of a 

wide range of observed actions. For that purpose, we conducted an fMRI experiment with 

General movements

Goal-directedness

Context

Posture

Contact with others

Object-directedness
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static images depicting 100 different human actions. Using multiple regression RSA in which 

we accounted for variability due to low-level visual features and mid-level scene-related 

features, we identified shared but distinct representations of a behavioral action space and a 

high-level action feature model in lateral and ventral occipitotemporal cortex. Using PCA, 

we found that these action features can be reduced to eight dimensions, including general 

movements, goal-directedness and action context that explained 64.8% of the variance of the 

data. Representational similarity analysis with these dimensions revealed distinct, but 

partially overlapping clusters for six out of eight dimensions within the LOTC, the VOTC 

and the superior parietal lobe that were further distinguished using a winner-take-all analysis. 

In the following we discuss these results in the context of existing studies on this topic and 

point out future directions.  

Neural representation of the behavioral action space 

Our results are in line with the results by Tucciarelli et al. (2019) who reported that a 

behaviorally determined action space assumed to capture the semantic similarity of a set of 

27 actions is reflected by patterns of activation in the LOTC. To account for additional action 

components that might covary with the behavioral action space, Tucciarelli et al. (2019) 

regressed out nine additional models capturing diverse aspects, including the similarity of 

objects, body parts and the distance between the observer and the actor. These additional 

action components partially overlapped with the cluster capturing the behavioral action 

space. The current study advances the findings of Tucciarelli et al. (2019) in two important 

ways. First, we demonstrated that the results of Tucciarelli et al. (2019) generalizes to a 

significantly wider range of actions (i.e., 100 instead of 27 actions). Second, our whole-brain 

searchlight RSA revealed the highest similarity between the behavioral action space model 
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and patterns of activation in dorsal and ventral portions of the LOTC, even after regressing 

out (a) a low-level visual control model derived from the first convolutional layer of a neural 

network (ResNet50), (b) mid-level spatial information of the scenes captured by the GIST 

model and (3) high-level information related to 44 different action features. Together, our 

results provide an important extension of a growing number of studies suggesting that the 

LOTC gathers not only perceptual evidence on the basis of action features, but also more 

conceptual action aspects (Hafri et al., 2017; Oosterhof et al., 2010, 2012; Wurm et al., 2015; 

Zhuang et al., 2023; for reviews, see Wurm & Caramazza, 2022 and Lingnau & Downing, 

2015). 

Dimensions underlying the organization of high-level action features 

The action feature model used in the current study is based on ratings obtained for 44 

high-level action features carried out for 100 different actions (Kabulska & Lingnau, 2022). 

PCA revealed eight dimensions underlying the organization of these features (General 

movements, Arm movement kinematics, Goal-directedness, Context, Posture, Contact with 

others, Object-directedness, and Negative Emotions). These dimensions align remarkably 

well with those previously proposed and examined. Movements, Posture and Goal-

Directedness are undeniably crucial aspects of actions, as they are sufficient to identify a 

wide range of actions (Johansson, 1973, see e.g., Beauchamp et al., 2003; Grossman et al., 

2000; Papeo et al., 2017 for studies with point-light displays). Moreover, numerous actions 

involve the use of tools (e.g., Buxbaum, 2001; Chao & Martin, 2000; Watson & Buxbaum, 

2014) or are directed towards specific objects (e.g., Bach et al., 2014; Wurm et al., 2017). 

Additionally, contact with other people and social actions play a vital role in our daily lives, 

enabling successful communication with others, while comprehending and interpreting 
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emotions is a crucial part in this process (e.g., Isik et al., 2017; Papeo, 2020; Poyo Solanas et 

al., 2020). Moreover, in contrast to objects that can be understood in isolation, understanding 

actions involves information that extends beyond the body itself (e.g., information regarding 

the scene; see Wurm & Schubotz, 2012; Wurm & Schubotz, 2017). Hence, using a wide 

range of actions and action features, our study revealed a set of dimensions that have been 

proposed in previous studies but, to the best of our knowledge, have not been collectively 

investigated before. Our approach allowed us to determine the degree to which the neural 

representation of these high-level action features contributes to the neural representation of 

the behavioral action space model (see section Neural representation of the behavioral action 

space), and to examine to which degree the topographies corresponding to the neural 

representation of the different action dimensions spatially overlap with the neural territory 

capturing the behavioral action space, which we discuss in more detail in the following 

paragraphs. 

Neural representation of action dimensions 

The searchlight RSA on the obtained principal components revealed overlapping 

clusters of voxels along ventral and dorsal portions of the LOTC and the superior parietal 

cortex for the dimensions General movements, Context, Posture, and Object-directedness, 

and more circumscribed clusters in the LOTC and the fusiform cortex for the dimensions 

Goal-directedness and Contact with others. Thus, in line with the results reported by 

Tucciarelli et al. (2019), the LOTC carries information about each of the investigated action 

dimensions, which we will discuss in more detail in the following sections.  

We found that activation patterns in the dorsal LOTC showed the highest similarity 

with the dimension labeled Contact with others, while activation patterns in the ventral 
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LOTC showed the highest similarity with the dimension labeled Object-directedness. These 

results are in line with several recent studies indicating an animate-inanimate organization of 

dorsal and ventral portions of the LOTC (e.g., Lingnau & Downing, 2015; Wurm et al., 2017; 

Wurm & Caramazza, 2022). More precisely, it has been shown that dorsal portions of the 

LOTC have a preference for animate things (Chao et al., 1999; He et al., 2020), body parts 

(e.g., Downing et al., 2001), movements (Beauchamp et al., 2003), and person-directed 

actions (Wurm & Caramazza, 2019a; Wurm & Caramazza, 2019b), while ventral portions 

have a preference for inanimate things (Chao et al., 1999; He et al., 2020), action-specific 

tool motion (Beauchamp et al., 2002; Beauchamp et al., 2003), and actions involving objects 

(e.g., Wurm et al., 2017; Wurm & Caramazza, 2019a; see Wurm & Caramazza, 2022 for a 

recent review on the animate-inanimate organization). Note that the clusters representing the 

dimensions Contact with others and Object-directedness obtained in the current study (see 

Figures 3.3 and 3.4) are well aligned with the clusters showing a high similarity with the 

Sociality and the Transitivity model reported by Wurm et al. (2017).  

It is worth noting that the studies that formed the basis of the idea of the animate-

inanimate dimension as one of the organizing principles of the LOTC used material that was 

quite different from the material used in the current study. Specifically, Martin and Weisberg, 

2003 used moving geometric shapes, whereas Wurm et al. (2017) and Wurm & Caramazza 

(2019a) used well-controlled videos of a small set of actions performed by an actor sitting at 

a table with the upper arms directed at an object or a person. In the current study, we 

demonstrate that the distinction between person-directed and object-directed actions 

generalizes across a wide range of actions from a diverse set of categories, involving different 

body parts and objects depicted in naturalistic scenes as static images.  
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In contrast to most of the other dimensions which showed significant correlations 

with the activity patterns within several brain regions, the dimension Contact with others was 

mainly located in the posterior superior temporal sulcus (pSTS). This result is well aligned 

with a growing number of studies demonstrating that the pSTS carries information about 

communicative actions (Isik et al., 2017; Pitcher & Ungerleider, 2021; Walbrin et al., 2018). 

Moreover, the cluster for Contact with others was more widespread in the left compared to 

the right hemisphere, indicating a lateralization in encoding social aspects of actions. 

High-dimensional spaces in the LOTC 

The regions capturing the higher-level action feature model and the underlying 

dimensions strongly overlapped with those capturing the behavioral action space model. The 

overlap encompassed the LOTC, indicating the pivotal role of this region in representing 

diverse information about actions (see also Lingnau & Downing, 2015; Wurm & Caramazza, 

2022). This raises the question according to which principles this diverse information is 

represented along the LOTC. One option, though speculative, is the idea put forward by the 

work by Graziano & Aflalo (2007), indicating that the motor cortex is organized along 

multiple dimensions – such as somatotopic information and information about different types 

of limb movements. As suggested by Graziano & Aflalo (2007), this structure is not limited 

to the motor cortex and may extend to any region that processes multidimensional and 

complex knowledge. Whereas future studies are required to test these predictions more 

systematically, the results obtained in the current study are compatible with the view that this 

principle also holds for the LOTC.  
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Conclusion 

Our results provide an important extension of previous studies, suggesting that action 

representations within the LOTC generalize to a wide range of actions. Moreover, our results 

suggest and that the areas capturing this representational space overlap with dimensions 

corresponding to high-level action features, in line with the idea that the LOTC, like other 

areas of the brain such as the motor cortex and parietal cortex, is organized along multiple 

dimensions (see also Graziano & Aflalo, 2007; Lingnau & Downing, 2015; Wurm & 

Caramazza, 2022). 
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Abstract 

Throughout our lives, we encounter a diverse range of actions we instinctively 

categorize to help us make sense of the world. Previous research has revealed that human 

participants tend to sort actions into clusters corresponding to distinct categories such as 

Food-related, Social/Communicative, and Locomotion actions. In this study, we aimed to 

investigate the neural basis of action category processing using fMRI. During MRI sessions, 

participants viewed static images of actions from four categories: Communication, 

Grooming, Ingestion, and Locomotion. We obtained significant decoding accuracies of 

action categories within regions of the Action Observation Network (AON), with the highest 

decoding accuracies in bilateral lateral occipitotemporal cortex (LOTC). Moreover, we 

investigated regions outside of the AON, unique for each action category. Finally, functional 

connectivity analysis revealed that some of the categories, e.g., Communication and 

Grooming, have distinct connectivity patterns between regions belonging to both the AON 

and the category-specific brain maps. The weights obtained from the SVM classifier shed 

light on the key regions crucial for decoding these category pairs. Overall, our findings 

provide insights into the neural underpinnings of action categories, capturing both the 

underlying neural activity and connectivity patterns. 
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Introduction 

Humans tend to categorize the surrounding to make sense of the world. For example, 

we differentiate between animate and inanimate objects or, on a finer level, between different 

animal species (Connolly et al., 2012). Such distinctions can be based on a range of 

properties, including semantic information, such as animacy, as well as visual characteristics 

such as shape and size (Bracci et al., 2019). Taking inspiration from research on object 

recognition, there has been a growing interest in the categorization of actions. Studies 

employing multi-arrangement tasks, combined with dimensionality reduction methods such 

as clustering analysis and principal component analysis revealed, have identified several 

semantic action categories, including Locomotion, Social/Communicative actions, and Food-

related actions (Tucciarelli et al, 2019; Kabulska & Lingnau, 2022). However, the neural 

underpinnings of action categories are not well understood yet.  

Studies on monkeys have provided insights into the neural correlations of action 

observation. A class of neurons, termed “mirror neurons”, was discovered that activates both 

when a monkey executes an action and when it observes another individual executing the 

action (di Pellegrino et al., 1992; Gallese et al., 1996; Rizzolatti et al., 1996). The mirror 

neuron system is primarly located in the premotor cortex, more precisely area F5, and the 

inferior parietal lobe (IPL) (Fogassi et al., 2005; Rizzolatti et al., 2001). Additionally, the 

superior temporal sulcus (STS) has been shown to play a role in observing biological actions 

(Oram & Perrett, 1994; Rizzolatti et al., 2001). Connectivity analysis based on monkey tracer 

studies showed that these brain regions are connected, i.e., the STS is reciprocally connected 

to the IPL (Seltzer & Pandya, 1994) and to the F5 via the IPL (Petrides & Pandya, 1984; 

Rizzolatti et al., 2001). An fMRI study confirmed these results, showing connectivity 
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between the STS, parietal areas and the ventral premotor cortex while monkeys observe 

actions (Nelissen et al., 2011). In humans, a similar network, the Action Observation 

Network (AON), has been identified, encompassing occipito-temporal, parietal, and 

premotor areas (Caspers et al., 2010; Hardwick et al., 2018). As has been reported in monkey 

studies, research has shown anatomical connections between the premotor and parietal areas 

(Rushworth et al., 2006) as well as throughout all three regions of the AON (Caspers et al., 

2010; Urgen, 2020). Furthermore, studies have demonstrated functional connectivity 

between the AON regions during movement observation (Kilner et al., 2007b, 2007a; 

Nishitani & Hari, 2002). 

However, the specific roles of these regions remain a topic of debate. Some studies 

suggests that the inferior parietal cortex is central to high-level action understanding, as it 

generalizes across effectors (Cattaneo et al., 2010), the kinematic parameters (Hamilton & 

Grafton 2006, 2007) and trajectory of an action (Hamilton & Grafton, 2008). When it comes 

to action categories, several recent studies support the idea that regions of the parietal cortex 

are involved in observation of different classes of actions. For example, it has been shown 

that the IPL was activated when observing goal-directed actions such as dragging and 

dropping, regardless of the body part used (Jastorff et al., 2010). Another study showed that 

observation of three different classes of actions, namely manipulation, locomotion, and 

climbing, evoked activity in parts of the superior parietal lobule (SPL) (Abdollahi et al., 

2013). The parietal cortex was also involved in observing upper limb actions, such as 

grasping a person and rubbing a skin (Ferri et al., 2015) as well as actions of vocal 

communication and oral manipulation (Corbo & Orban, 2017), and indirect communication, 

such as writing and drawing (Urgen & Orban, 2021). 
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Yet, recent findings indicate that not only IPL but also the lateral occipitotemporal 

cortex (LOTC) contribute to action understanding (Lingnau & Downing, 2015). Research 

has shown that the LOTC can generalize across viewpoints (Oosterhof et al., 2010, 2012), 

target objects (Wurm et al., 2015), involved kinematics (Wurm & Lingnau, 2015), and it 

carries semantic information about actions (Tucciarelli et al., 2019). When it comes to action 

categories, the LOTC can differentiate between social and object-directed action categories 

(Wurm et al., 2017).  

Despite extensive research on action processing and the established role of the AON 

in action observation, there is still no consensus regarding the regions crucial for high-level 

understanding of observed action categories. Previous studies examining the action 

categories have mostly focused on the parietal cortex and often overlooked the role of high 

visual areas in understanding action categories. Given the increasing evidence of the 

importance of the LOTC in action understanding, we aimed to investigate its role in 

processing information about action categories and compare with neural activation in the 

other AON regions. Moreover, we wanted to identify brain regions outside the AON that are 

involved in processing unique information to specific action categories. Based on recent 

findings from our behavioral study, which showed that each of the investigated action 

categories engages a unique combination of features (Kabulska & Lingnau, 2022), we 

expected to find regions that carry information about category-specific features. Finally, 

given the evidence of anatomical and functional connectivity between the AON regions, we 

were interested in the functional connectivity between the set of brain regions comprising the 

AON and the category-specific regions engaged in observing action categories. More 

precisely, we wanted to investigate whether the action categories could be differentiated 

based on their distinct connectivity patterns between these regions, and, if so, which pairs of 
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regions contribute to successful decoding. While we anticipated that the AON regions alone 

might not show differences in decoding, as they are activated for all action categories, we 

believed that distinctions might emerge when considering regions outside the AON that are 

specific to certain categories.  

To test these hypotheses, we conducted an fMRI study using static images of actions 

from four categories: Communication, Grooming, Ingestion, and Locomotion. As a first step, 

we performed a multivariate pattern analysis (MVPA) based on activity patterns in the AON 

brain regions to investigate whether the action categories could be decoded within these 

areas. Additionally, we explored whether there were any statistically significant differences 

between the AON regions in terms of decoding action category-related information. 

Subsequently, we carried out a conjunction analysis to identify unique activity maps evoked 

by specific action categories. We further investigated the connectivity within the identified 

regions and the AON regions. Specifically, we analyzed time series within these regions and 

conducted a functional connectivity analysis for pairwise action category decoding. Using 

Support Vector Machine (SVM) weights, we determined which pairs of brain regions played 

a pivotal role in successful decoding of categories based on connectivity patterns. The 

hypotheses and analysis methods have been pre-registered on OSF (https://osf.io/9d4sm).  

Materials and methods 

Participants 

Thirty right-handed healthy adults (19 females; mean age: 25; age range: 19 - 39) 

participated in the study. Data of one subject were not included in the data analysis due to 

excessive head motion (translation/rotation bigger than 3 mm). All participants had normal 

or corrected-to-normal vision and no history of neurological or psychiatric disease. 
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Participants gave written informed consent before participation in the experiment. The 

experimental procedures were approved by the ethics committee at the University of 

Regensburg. Participants were rewarded for taking part in the study.  

Stimuli 

Stimuli were 160 colored images of actions belonging to four action categories: 

Communication, Grooming, Ingestion, and Locomotion. Each action category consisted of 

five basic-level actions (e.g., arguing, pointing, talking, thumbs up, and waving for the 

category Communication, see Table C1 for the full list of action stimuli and Figure C1 for 

the corresponding images). The four action categories were chosen from the sets of action 

categories reported in Kabulska & Lingnau (2022) and Tucciarelli et al., (2019), both 

identified empirically through an inverse multidimensional scaling experiment (Kriegeskorte 

& Mur, 2012). The reason for selecting these four categories is that they address key aspects 

of daily life and have been also used in previous neuroimaging studies (Abdollahi et al., 2013; 

Corbo & Orban, 2017; Hafri et al., 2017; Tarhan & Konkle, 2020b). For each category, we 

selected actions by taking into account actions that (1) are typical for a given category, (2) 

can be depictable, and (3) are easily recognizable. Moreover, we tried to diversify the actions 

within each category by varying the objects used, the targeted body parts, and the actors’ 

postures, among other factors, to ensure that understanding the action categories would 

require generalizing across these aspects. Additionally, we ensured that the background is 

natural and does not interfere with the actions (i.e., the background should not catch the 

participants’ attention).  

For each of the twenty basic-level actions, we chose eight different pictures (referred 

to as ‘action examples’ throughout the remainder of this paper). For each action, four of the 
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pictures showed a single person performing an action, whereas the other four images showed 

either multiple people performing that action or, in case we could not find a proper picture, 

a single person performing that action with other people sitting or standing nearby or in the 

background. The reason for that was to ensure that the differences between the categories 

(e.g., Ingestion vs Communication) are not due to the number of people shown on the images, 

given that the category Communication by definition involves more than one person, whereas 

the remaining three categories can be performed in the absence of another person. The 

stimulus set was collected from http://www.shutterstock.de. All selected images were in 

landscape orientation and were cropped to 480 x 320 pixels.  

Experimental design 

Stimuli were presented in a mixed design, with the action category blocked, and basic 

level actions randomized within a block (see Figure 4.1). Each block consisted of 10 trials of 

five different basic level actions from the same category. Each trial within a block consisted 

of an action image (1 s) followed by a fixation period (2 s). Half of the trials within a block 

consisted of images showing a single person performing an action, while the other half of 

trials used images of several people. The fixation period between blocks lasted 10 s.  

Separately for each participant, the whole set of 160 images was divided into two sets 

(each containing an equal number of single-person and multiple-people images). One of the 

sets was presented in runs with an odd number, and the other set was presented in runs with 

an even number. This way we wanted to ensure that the same action examples do not appear 

in consecutive runs, and that they are spread evenly across the runs. Each of the four action 

category was presented twice within a run, for a total of 8 blocks per run.  

http://www.shutterstock.de/
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There were eight runs in total. Each run started and ended with a 13 s fixation period. 

Throughout the scanning session, each of the 20 different basic level actions was presented 

32 times (four trials per run x eight runs), and each action example was presented four times. 

The stimuli were back-projected onto a screen (resolution 1024 x 768 at 60 Hz; viewing 

distance 106 cm; 10.38 x 6.82 degree of visual angle) and viewed via a mirror mounted on 

the radiofrequency (RF) coil. Stimulus presentation and response collection was controlled 

via A Simple Framework (Schwarzbach, 2011), a toolbox based on the MATLAB 

Psychtoolbox-3 for Windows (Brainard, 1997) 

The order of blocks was counterbalanced across participants and within each 

scanning session. Blocks within runs were ordered based on the Latin square design: starting 

from action category 1 (i.e., 1, 2, 3, 4), or from category 4 (i.e., 4, 3, 2, 1) for participants 

with odd or even participant numbers, respectively. Trials within blocks were ordered 

randomly.  

 

Figure 4.1. Experimental design and an example run of the fMRI experiment. The experiment consisted of 

eight runs that started and ended with a 13 s fixation period. Within each run there were eight blocks belonging 

to one of the four action categories (Communication, Grooming, Ingestion, Locomotion) separated by 10 s 
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fixation. Blocks consisted of 10 trials. During each trial, one of the five basic level actions belonging to a given 

action category (in the example shown above: Ingestion) was depicted via a static image. The type of basic 

level action and the example was randomly assigned within a block. See section ‘Experimental design’ for 

details.  

 

Each run contained either one or two catch blocks that contained catch trials, i.e., 

images of actions belonging to another category, which served as targets in the catch trial 

task (see next paragraph). The number of catch trials within a catch block varied between 

one and two. The first catch trial in a catch block was always preceded by at least three 

images of actions belonging to the same category such that the participant knew which 

category is being presented. In total, there were twelve catch blocks within the whole 

scanning session (half of the runs contained one catch block, whereas the other half contained 

two catch blocks). In case of two catch blocks in a run, the catch blocks were interspersed 

with normal blocks. Otherwise, regardless of the number of catch blocks per run, the position 

of catch blocks in relation to normal blocks was not restricted. Catch blocks were later used 

to calculate the accuracy of identifying a catch trial and the response time (see Results: 

Behavioral data analysis) but were not included in neuroimaging data analysis. 

Task 

To ensure that participants paid attention to the actions, they were instructed to 

attentively watch the images, keep their eyes at the fixation cross, and focus on action 

categories within each block. They were asked to press a button with their right index finger 

whenever they spotted an action belonging to another category (i.e., a catch trial within a 

catch block). Before the experiment, participants completed a 3-minute-long practice version 

of the experiment to ensure that they understand the task. 
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Data acquisition 

Functional and structural data were collected using a 3T Siemens Prisma MRI scanner 

at the University of Regensburg and a 64-channel RF head coil. Functional images were 

acquired with a T2*-weighted gradient echoplanar imaging (EPI) sequence (voxel volume: 

2,5 x 2,5 x 2,5 mm3; 60 axial slices that cover the whole brain; repetition time (TR): 2 s, echo 

time (TE): 30 s, flip angle (FA): 75°, field of view (FoV): 192 mm, matrix size: 96 x 96, 188 

or 208 volumes per run). Structural T1-weighted images were acquired in the middle of the 

scanning session with an MPRAGE sequence (voxel volume: 1 x 1 x 1 mm3, 160 axial slices, 

TR: 1910 ms, TE: 3.67 s, FA: 9°, matrix size: 256 x 256). 

Data analysis 

Data preprocessing and univariate analyses were performed using FEAT (FMRI 

Expert Analysis Tool; (Woolrich et al., 2001, 2004) which is a part of FSL (FMRIB’s 

Software Library, Jenkinson et al., 2012). FSL was also used for the extraction of information 

about the clusters of the statistical maps (command: cluster), creating ROIs, smoothing the 

maps, performing high-pass filtering (command: fslmaths) and extracting time series 

(command: fslmeants). Data de-noising (see section ‘Preprocessing’ for details) was 

performed using Python scripts. All further analyses were conducted in MATLAB (The 

MathWorks Inc.) using specific toolboxes mentioned below and custom written scripts.  

Overview of the analyses 

The questions posed in our study are multifaceted. Firstly, we anticipated that 

observing action categories would evoke activation within the regions of the Action 

Observation Network (AON; Casper et al., 2010). To explore this, we performed a univariate 

analysis using separate categories as regressors. Secondly, we hypothesized that observing 
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action categories would engage additional brain regions specific for processing each 

particular category. To investigate it, we carried out a conjunction analysis. Next, we 

expected that each action category would be represented by unique patterns of brain 

activation. To examine this, we performed a multivariate pattern analysis (MVPA), decoding 

action categories based on patterns of neural activations evoked by each action separately. 

Lastly, we expected that each action category would be represented by unique patterns of 

functional connectivity between AON areas, and potentially additional areas specific to each 

category. For this analysis, we performed de-noising of fMRI data and used the time series 

within the selected regions of interest (ROIs).  

Preprocessing 

The preprocessing of functional data included: (a) removal of the first four volumes; 

(b) slice time correction; (c) head motion correction (trilinear interpolation) with respect to 

the first volume of the first run for each participant (using MCFLIRT); (d) BET brain 

extraction; and (e) high-pass filtering (cutoff frequency of 100 mHz). Data were linearly 

registered using FMRIB’s Linear Image Registration Tool (FLIRT, (Jenkinson et al., 2002; 

Jenkinson & Smith, 2001)), first to each participant’s 3D T1-weighted image (7 degrees of 

freedom) and then to the MNI152 standard brain (12 degrees of freedom). We applied spatial 

smoothing with a Gaussian kernel of 5 mm FWHM for the data used for identifying ROI 

peaks and for the conjunction analysis, however not for the data used for the MVPA. 

Preprocessing of the data used for the functional connectivity analysis included 

performing (a-d) points mentioned above, subsequently co-registration of the data to 

participant’s 3D T1-weighted image (FLIRT), and then to the MNI152 standard space using 

both FLIRT and non-linear registration (FNIRT (Andersson et al., 2010), Warp resolution of 
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10 mm). In the next step, we performed non-aggressive denoising with ICA-AROMA 

(Independent Component Analysis-based Automatic Removal Of Motion Artifacts; Pruim et 

al., 2015 a,b) ran via Python. In short, ICA-AROMA allows identifying motion-related 

components and removing them from the data. Output images from ICA-AROMA were 

subsequently high-pass filtered using fslmaths command (cutoff frequency of 100 mHz, same 

as e.g., Agosta et al. (2018) and Yang et al. (2017). Similar as Heinzle et al. (2012), we did 

not apply spatial smoothing, which, although commonly used to increase the signal-to-noise 

ratio in standard GLM analysis, has been shown not to be necessary for ROI-level functional 

brain network analysis (Alakörkkö et al., 2017). 

Output maps from the preprocessing analyses were subsequently fit to a general linear 

model (GLM) in the univariate analyses.  

First-level univariate fMRI analyses 

We performed three first-level univariate analyses: one using separate categories as 

regressors of interest on data that were not de-noised, second using separate categories as 

regressors of interest on data after de-noising, and the third using single actions as regressors 

of interest on data that were not de-noised. Data from the first analysis were used to identify 

peaks of ROIs and for the conjunction analysis. Data from the second analysis were used in 

the functional connectivity analysis. Data from the third analysis were used for the MVPA – 

by using 20 actions as regressors, instead of four categories, we wanted to ensure to have a 

sufficient number of training and testing data.  

Separate categories as regressors of interest: 

There were four regressors of interests (corresponding to the four action categories) 

and seven regressors of no interest (six resulting from 3D motion correction - x, y, z 
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translation and rotation - obtained during preprocessing and one regressor corresponding to 

the catch blocks). Each regressor of interest was convolved with a standard dual gamma 

hemodynamic response function (Friston et al., 1998). Each action category was modeled as 

a block lasting 30 s, starting from the onset of the first trial to the offset of the last trial of 

that block.  

To identify ROIs and to conduct the conjunction analysis, we subsequently performed 

the second- and group-level univariate analyses using the obtained b maps. For the functional 

connectivity analysis, we used time series extracted from individual runs.  

Single actions as regressors of interest: 

There were 20 regressors of interest (corresponding to 4 categories x 5 basic-level 

actions each = 20 single actions) and seven regressors of no interest (same as in the analysis 

described above). Each single action was modeled as a trial lasting 1 s (equal to the duration 

of the shown image). Each regressor of interest was convolved with a standard dual gamma 

hemodynamic response function. The first level analysis resulted in b estimates for each 

action separately. The b estimates were subsequently transformed to t-values that were used 

as input into the MVPA. We applied spatial smoothing with a Gaussian kernel of 5 mm 

FWHM on accuracy maps obtained from the MVP analysis (before conducting multiple 

comparison correction). 

Second- and group-level univariate analyses 

The second and the group-level univariate analyses were performed only for the data 

used for identifying ROIs and for performing the conjunction analysis. The group-level 

GLM-based analysis resulted in statistical maps corrected for multiple comparisons at p < 
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0.05 (thresholded non-parametrically at Z > 3.1) using cluster-based correction (Worsley, 

2001). 

ROI definition 

For the MVPA and the functional connectivity, we focused on regions that are known 

to be recruited during action observation, specifically, the LOTC, IPL, and ventral premotor 

cortex (PMv). Following previous studies (e.g., Oosterhof et al., 2010, 2012; Wurm et al., 

2015; Wurm & Lingnau, 2015), we used a combination of anatomical and functional criteria. 

In a first step, we defined anatomical ROIs based on two brain atlases: Harvard-Oxford 

probabilistic atlas (LOTC) and Jülich atlas (IPL, PMv) within FSL with a Maximal 

Probability Threshold of 30%. Second, the group peak for each ROI was chosen by taking 

the group level statistical map (all categories vs. baseline, see section Separate categories as 

regressors of interest above) and finding the voxel with the highest t-score within the 

anatomical ROI. Since we failed to obtain significant b estimates within the anatomically 

defined IPL and PMv, we selected the group peaks within anatomical ROIs in their vicinity, 

i.e., anterior intraparietal sulcus (aIPS) (from the Jülich atlas) and inferior frontal gyrus (IFG) 

(from the Harvard-Oxford atlas). In the third step, separately for each participant we 

identified individual ROIs as 10 mm radius spheres centered around the activation peak of 

the second-level GLM map that lie within a circle of 10 mm radius centered around the group 

peak (see also Oosterhof et al., 2010; Wurm et al., 2015). 

Conjunction analysis 

The conjunction analysis was performed using statistical maps at the group level (see 

section Second- and group-level univariate analysis above). First, we investigated which 

brain areas are engaged during the processing of all the four action categories. To this aim, 
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we computed the conjunction between the four contrasts corresponding to the four action 

categories (i.e., [Communication – baseline] ∧ [Grooming – baseline] ∧ [Ingestion – 

baseline] ∧ [Locomotion – baseline]). The resulting cluster peaks are reported in the 

Supplementary Materials (Table C3). 

Next, we wanted to determine whether there are unique brain areas that are recruited 

during the processing of specific action categories. To examine this, we used group-level 

statistical maps of contrasts of each category versus each other category. For each action 

category separately, we computed the conjunction of three contrasts (e.g., [Communication 

– Grooming] ∧ [Communication – Ingestion] ∧ [Communication – Locomotion]) (see also 

Urgen & Orban, 2021, for a similar approach). 

Conjunctions were computed by taking the minimum t-value for each voxel across 

the overlapping maps (Nichols et al., 2005). The resulted t-map was then thresholded with t 

= 1.65 and projected on a standard brain.  

Multivariate pattern analysis (MVPA) 

In order to investigate whether action categories can be distinguished between each 

other based on activation patterns, we performed multivariate pattern analysis (MVPA) using 

a linear support vector machine (SVM) classifier, as implemented in the CoSMoMVPA 

Toolbox (Oosterhof et al., 2016) and LIBSVM (Chang & Lin, 2011). We performed both 

ROI-based and searchlight-based (Kriegeskorte et al., 2006) decoding analyses. As input to 

the classifier, we used t-values from 20 regressors (i.e., each basic action vs baseline) 

calculated from the b estimates obtained from the first level univariate analysis (see section 

Single actions as regressors of interest above). At each cross-validation fold, training and 

testing data were z-normalized prior to classification. Decoding was performed for all pairs 
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of categories (e.g., decoding of actions from Category 1 versus actions from Category 2; 

Category 1 versus Category 3, Category 1 vs Category 4) and subsequently averaged across 

the three pairwise comparisons for each of four categories separately. 

ROI MVPA 

To investigate representations of action categories within the core regions involved 

in action observation (see ROI definition), we performed ROI-based MVPA. We selected 6 

ROIs: LOTC, aIPS, and IFG, all bilateral (coordinates of the peaks are reported in Table C2). 

Each individual ROI consisted of 515 voxels. Subject-specific t-maps of 20 individual 

actions were used as input to the analysis, thus for each subject and each ROI separately there 

were 160 t-maps (20 (number of regressors) x 8 (number of runs)). 

In order to compute classification accuracies, we used a leave-one-run-out cross-

validation method. In our approach, we used pairwise decoding to compare each category 

against every other category (e.g., Category 1 vs Category 2, Category 1 vs Category 3, 

Category 1 vs Category 4) and then averaged the results across the three accuracy maps. For 

each subject and for each action category an SVM classifier was trained on 70 t-maps (35 

from one category and 35 from another category) and tested on 10 t-maps (5 from one 

category and 5 from another category). This procedure was performed in 8 iterations. The 

classification accuracies were then averaged across the iterations, resulting in one accuracy 

value per subject and per ROI. To obtain the decoding accuracies of one category against all 

others, we averaged the results from the three pairwise decoding analyses. The mean 

classification accuracy was subsequently entered into a one-tailed one-sample t-test against 

chance level (50%). We report corrected results, where the correction was performed using 

a False Discovery Rate (FDR) at q = 0.05 (Benjamini & Hochberg, 1995) accounting for 
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multiple comparisons of the number of one sample t tests (i.e., 6 ROIs x 4 categories = 24 

tests). 

To investigate possible differences between ROIs and action categories, we 

conducted a repeated-measures three-way ANOVA [ROI (LOTC, aIPS, IFG) x CATEGORY 

(Communication, Grooming, Ingestion, Locomotion) x HEMISPHERE (left, right)] on the 

mean decoding accuracies. Subsequently, we performed post hoc two-tailed paired samples 

t tests between ROIs and between Categories. Statistical results were FDR corrected (at q = 

0.05) for the number of tested models (i.e., 12 for analysis between ROIs and 18 for analysis 

between Categories)  

Searchlight-based MVPA 

Searchlight-based MVPA was performed to reveal regions outside of the AON 

regions that can distinguish between the four different action categories on the basis of 

patterns of neural activation. The decoding was performed the same way as for the ROI-

based MVPA (see ROI MVPA), however within searchlight spheres. For each voxel in the 

brain, the decoding accuracy was assigned based on t-values of 100 voxels located in a sphere 

around that center voxel. Mean classification accuracies were assigned to the center voxel of 

the searchlight sphere, yielding maps of classification accuracy values for decoding a given 

category for a given subject. The resulting individual accuracy maps were subsequently 

spatially smoothed with a 5 mm FWHM kernel and entered into one-sample t-tests. Statistical 

significance for the group-level analyses was determined by correcting the accuracy maps 

for multiple comparisons using Threshold-Free Cluster Enhancement (TFCE, Smith & 

Nichols, 2009) in combination with cluster level correction (p = 0.05, one-tailed, z = 1.65, 

5000 iterations). The decoding analysis resulted in one group-level statistical map per 
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category. For visualization purpose, we projected the resulting thresholded t-maps onto an 

inflated standard surface map provided by BrainNet Viewer (Xia et al., 2013). The results 

are reported in the Supplementary materials (Figure C2 and Table C4). 

Functional connectivity analysis 

To investigate whether different action categories are represented by unique 

connectivity patterns we performed a functional connectivity analysis. The procedure was 

adapted from the work of Heinzle et al. (2012). Based on the so far obtained results, we 

selected 18 ROIs: six regions of the AON obtained from the group-level univariate analysis, 

i.e., bilateral LOTC, aIPS, and IFG and 12 regions chosen based on the peaks obtained from 

the conjunction analyses. We selected three peaks with the highest t-values per category (see 

Table C3). The peaks encompassed several brain regions, mainly located in the frontal, 

anterior lateral occipitotemporal, and ventral cortices.  

From the de-noised unsmoothed filtered functional images obtained from first-level 

univariate analysis (see section Separate categories as regressors of interest above), we 

extracted time series within each ROI. The sphere size of each ROI was 10 mm, 

encompassing 515 voxels. Time series were extracted for all the 515 voxels within a given 

ROI and subsequently averaged across these voxels. That resulted in one array of time series 

per run per ROI for each subject where the length of the array was equal the number of 

volumes within a run (184 (run with one catch block) or 204 (run with two catch blocks)). 

Next, for each category separately, we extracted the relevant time points from the 

time series by selecting volumes covering all the trials within a block (30 s) additionally 

shifted by 6 s to account for the hemodynamic delay (e.g., Aguirre et al., 1998; Ekman et al., 

2012). This resulted in two subsets of time series per run per category, consisting of 15 
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volumes each. Thus, for each subject, we obtained 16 subsets per category (2 (number of 

subsets in one run) x 8 (number of runs)).  

Functional connectivity analysis: Correlations 

In the first part of the functional connectivity analysis, we aimed to visualize how the 

time courses are correlated across the selected ROIs depending on the viewed action 

category. For each action category separately, we calculated Pearson’s correlation 

coefficients by correlating every time series with every other time series across all the ROIs. 

Separately for each subject and each category, this resulted in 288 x 288 correlation matrices 

(18 ROIs multiplied by 16 subsets). Next, for each subject and category, we computed the 

mean correlation across the 16 subsets, resulting in 18 x 18 matrices. Finally, we computed 

the mean across participants, resulting in four 18 x 18 correlation matrices in total (one matrix 

per category). It is worth noting that the obtained matrices were used for visualizing the 

between-ROIs correlations, however, were not the input to the MVPA analysis.  

Functional connectivity analysis: Category decoding 

In the second part of the functional connectivity analysis, we aimed to examine how 

well action categories can be decoded based on the connectivity patterns. We investigated 

this question by taking into account (a) only 6 key regions of the AON, and (b) a larger set 

of 18 ROIs, including the key regions of the AON and 12 additional functionally determined 

ROIs (see section Functional connectivity analysis for details). We used a linear SVM 

classifier and performed leave-one-subject-out classification analysis. The process of 

obtaining the input data was similar to the one described above (Functional connectivity 

analysis: Correlations) but the specific procedure was as follows. Separately for each 

category and each of the 16 category subsets, we calculated correlation coefficients between 
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time series across the ROIs. In total, for each subject there were 64 correlation matrices (16 

matrices per category), each matrix of a size [number ROIs x number ROIs], i.e. (a) 6 x 6 

and (b) 18 x 18. These matrices were used as an input for pairwise category decoding. With 

four categories, there are six possible pairwise combination. The decoding for each category 

pair was performed in 29 iterations, equal the number of subjects, such that correlation 

matrices from each subject were used once in a test dataset. In each fold of the cross-

validation, we trained the classifier on 896 correlation matrices (32 (16 from one category 

and 16 from another category) x 28 (number of subjects except one)) and tested on 32 

correlation matrices (16 from one category and 16 from another category for the left-out 

subject).  

Classifier performance was then tested against the chance level (50%) with a one-

tailed one-sample t-test. Correction was performed using the FDR at q = 0.05 (Benjamini & 

Hochberg, 1995), accounting for multiple comparisons for the number of one-sample t-tests 

(i.e., 6 tests) within both types of analysis. We report both uncorrected and corrected results. 

Functional connectivity analysis: Analysis of SVM weights 

Classification analysis with the SVM classifier results in a set of feature weights that 

provide information regarding the contribution of a given feature for the between-class 

separation (Guyon & Elisseeff, 2003; Sato et al., 2008). Applied to our case, where the SVM 

features are correlations between the ROIs, the SVM weights can reveal pairs of ROIs whose 

functional connectivity is crucial for decoding action categories. Thus, for each pairwise 

comparison between two categories, we extracted feature weights obtained for each subject. 

The sign of weights indicates whether the connection between ROIs was stronger or weaker 

for one or the other category (Guyon et al., 2002). 

http://www.jmlr.org/papers/volume3/guyon03a/guyon03a.pdf
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Results 

Behavioral results 

Participants identified catch trials with a mean accuracy rate of 84.86% (± 2.40% 

SEM). Mean reaction time for correct responses was 1206 ms (± 27.16 ms SEM). 

Univariate fMRI Analyses 

To determine ROIs for the MVPA and the functional connectivity analysis, we 

computed a group contrast of all four categories versus baseline (cluster-based corrected, p 

= 0.05). The contrast revealed recruitment of regions in the occipital pole, lateral occipital 

cortex and occipital temporal fusiform cortex. Then, we extracted peak coordinates with the 

highest t-value within the LOTC, aIPS, and IFG. Peak Talairach coordinates are as follows: 

-40/-74/-8 (left LOTC), 38/-75/-10 (right LOTC), -24/-56/36 (left aIPS), 28/-52/34 (right 

aIPS), -42/8/24 (left IFG), 42/12/24 (right IFG).  

Conjunction analysis 

We expected that similar brain regions of the AON are engaged during the processing 

of the action categories. To examine the overlap in brain activation across these categories, 

we performed a conjunction analysis between the four statistical maps resulting from GLM 

contrasts of each category versus baseline. This analysis revealed a large significant cluster 

in the bilateral occipital pole, lateral occipitotemporal cortex, central occipitotemporal 

cortex, inferior frontal gyrus, and in paracingulate gyrus (Figure 4.2). 
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Figure 4.2. Conjunction of four RFX GLM univariate contrasts of each of the four action categories versus 

baseline. Cluster-based thresholding was applied to each of the four statistical maps that were entered into the 

conjunction analysis (corrected cluster threshold of p = 0.05). 

To determine significant clusters that show a preference for one specific category, we 

performed a conjunction analysis on the basis of RFX GLM contrasts between a given 

category and each other category. For example, to determine a conjunction map for clusters 

that show a significant univariate difference between Communication and each of the three 

other categories, we computed a conjunction across statistical maps resulting from the RFX 

contrasts ‘Communication vs Locomotion’, ‘Communication vs Ingestion’, and 

‘Communication vs Grooming’. As shown in Figure 4.3, the processing of actions belonging 

to the category Communication specifically engages clusters in the bilateral supramarginal 

gyrus as well as the superior and middle temporal gyrus, and bilateral inferior frontal gyrus 

(Figure 4.3). Processing of actions belonging to the category Grooming engages bilateral 

early visual cortex (V1, V2, and left V4), and a small cluster in the superior parietal lobe. For 

actions belonging to the category Ingestion, we obtained several smaller clusters in bilateral 

precentral gyrus, insular cortex, small clusters in frontal gyrus, and in the anterior division of 
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cingulate gyrus. Lastly, actions belonging to the category Locomotion engage clusters in 

bilateral parahippocampal gyrus, and the precuneus. See Table C3 for details.  

 

Figure 4.3. Results of the conjunction analysis showing maps unique for each category. Each conjunction map 

was calculated from three univariate contrasts of a given category versus each of the other three categories (e.g., 

conjunction of Communication vs Grooming, Communication vs Ingestion, and Communication vs 

Locomotion). The input contrast maps are group-level maps after cluster-based thresholding (corrected cluster 

threshold of p = 0.05). 

ROI-based MVPA  

In the ROI-based MVPA we investigated whether the four action categories can be 

decoded within ROIs of the AON (i.e., bilateral LOTC, aIPS, and IFG) on the basis of 

patterns of activation (Figure 4.4). In the analysis, we compared each action category against 

Communication Grooming

1.65 5.81

Ingestion Locomotion
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every other category. Subsequently, for each category and each subject separately, we 

averaged the results across the three decoding accuracies corresponding to three categories, 

which resulted in a single accuracy value representing the decoding of one category versus 

the combined other three. 

 

Figure 4.4. ROI-based MVPA results. Mean classification accuracies for decoding four action categories: 

Communication (blue), Grooming (red), Ingestion (yellow), and Locomotion (purple). Error bars indicate SEM 

across subjects, asterisks indicate statistical significance with one-tailed t-tests against chance-level (FDR-

corrected, q < .05; chance level indicated by the dotted line). 

 

Except for the category Grooming in the right IFG, decoding accuracies for the 

categories was above chance level (50%) in all the selected ROIs.   

A three-way repeated-measures ANOVA [ROI x CATEGORY x HEMISPHERE] 

revealed a main effect of ROI (F(2,56) = 55.055, p < 0.001), CATEGORY (F(3,84) = 26.919, p 

< 0.001), HEMISPHERE (F(1,28) = 18.014, p < 0.001) and a significant interaction of ROI 

and CATEGORY (F(6,168) = 20.030, p < 0.001). No other interactions were significant (all p 

> 0.05). Since the factor HEMISPHERE did not interact with the factor ROI nor the factor 
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CATEGORY, we collapsed decoding accuracies across the two hemispheres in each of the 

ROIs. 

Post hoc two-tailed paired samples t-tests revealed that decoding accuracies for each 

action category, when contrasted with the other three, were significantly higher in the LOTC 

compared to both the aIPS and IFG (Table 4.1). Moreover, decoding accuracy for the 

category Ingestion was significantly higher in aIPS compared to IFG (t(28) = 3.226, p = 0.003, 

q = 0.004). We observed significant differences within the LOTC between the categories 

Communication and Grooming (t(28) = 3.498, p = 0.002, q = 0.005), Communication and 

Locomotion (t(28) = -6.786, p = 0.001, q = 0.003), Grooming and Locomotion (t(28) = -8.364, 

p = 0.001, q = 0.003), and Ingestion and Locomotion (t(28) = -6.798, p = 0.001, q = 0.003) 

(Table 4.2). Moreover, there was a significant difference within the aIPS for the categories 

Communication and Grooming (t(28) = 4.170, p = 0.001, q = 0.003) as well as Grooming and 

Ingestion (t(28) = -4.245, p = 0.001, q = 0.003). We also observed significant differences 

within the IFG for categories Communication and Ingestion (t(28) = 3.556, p = 0.001, q = 

0.003) and the categories Communication and Locomotion (t(28) = 3.945, p = 0.001, q = 

0.003). 

Table 4.1. Results of the post-hoc paired samples t-tests between ROIs, computed on the basis of decoding 

accuracies of action categories (separately for each subject), collapsed across hemispheres. Asterisks indicate 

significant q values (FDR corrected for the number of tests, i.e., 12). 

 LOTC - aIPS  LOTC - IFG  aIPS - IFG 
 t p q  t p q  t p q 
Communication 7.432 0.001 0.002*  7.249 0.001 0.002*  0.663 0.513 0.560 

Grooming 8.771 0.001 0.002*  7.963 0.001 0.002*  0.408 0.686 0.686 

Ingestion 5.568 0.001 0.002*  8.048 0.001 0.002*  3.226 0.003 0.004* 

Locomotion 9.030 0.001 0.002*  11.105 0.001 0.002*  1.953 0.061 0.073 

 



CHAPTER 4: STUDY 3 
   

 

118 

 

Table 4.2. Results of the post-hoc paired samples t-tests between Categories, computed on the basis of decoding 

accuracies of action categories (separately for each subject), collapsed across hemispheres. Asterisks indicate 

significant q values (FDR corrected for number of tests, i.e., 18). 

  

Functional connectivity analysis: Correlations 

Correlation matrices were created to visualize the functional connectivity between 

the selected ROIs evoked while observing actions from four different categories (Figure 4.5). 

The selected ROIs included 6 ROIs from the action observation network and 12 ROIs 

obtained from the conjunction analysis.  

 

Figure 4.5. The matrices visualize between-ROIs correlations calculated based on time series obtained within 

each region. The ROI labels are provided below the matrices: 6 ROIs of the AON (dark blue) and 12 ROIs 

obtained from the conjunction analysis, i.e. Communication (ligth blue), Grooming (green), Ingestion (yellow), 

and Locomotion (orange) (see section Methods: Functional connectivity analysis and Table C3 for details). The 

abbreviations stand for the following brain regions: lateral occipitotemporal cortex (LOTC), anterior 

intraparietal sulcus (aIPS), inferior frontal gyrus (IFG), supramarginal gyrus (SMG), middle temporal gyrus 

(MTG), precentral gyrus (PrCG), lateral occipital cortex - superior division (LOCsup), occipital fusiform gyrus 

(OF), lateral occipital cortex - inferior division (LOCinf), cingulate gyrus (CG), postcentral gyrus (POG), 

precentral gyrus (PRG), parahippocampal gyrus (PH), lingual gyrus (LG), cerebral cortex IV (CR-IV), either 

in the left hemisphere (l) or the right hemisphere (r). 
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Functional connectivity analysis: Category decoding 

In the second part of the functional connectivity analysis, we aimed to assess whether 

action categories can be distinguished between each other based on the functional 

connectivity patterns. We conducted a leave-one-subject-out cross-validation analysis, 

training and testing the SVM classifier to distinguish between two action categories on the 

basis of matrices consisting of between-region correlations. We performed the classification 

analysis based on (a) 6 ROIs belonging to the AON as well as (b) all 18 ROIs including 6 

AON regions and 12 regions reported in the conjunction analysis. While we anticipated 

minimal differences in decoding of action categories using only the 6 AON regions, we 

expected that including the category-selective regions might enhance decoding of action 

categories, as these regions provide more category-specific information. The mean decoding 

accuracies for all between-categories comparisons are shown in Figure 4.6. As expected, 

when taking into account only the six regions of action observation network (Figure 4.6A), 

we observed an above-chance decoding between the category Grooming and Ingestion. 

However, that effect did not survive the FDR-based correction for multiple comparisons. 

When taking into account all the 18 regions (Figure 4.6B), we were able to distinguish 

between the following categories on the basis of the functional connectivity patterns: 

Communication and Grooming (decoding accuracy = 55.71%), Communication and 

Ingestion (decoding accuracy = 54.31%), and Grooming and Ingestion (decoding accuracy = 

55.39%).  
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Figure 4.6. Results of the pairwise category decoding analysis on the basis of the functional connectivity 

between (A) 6 ROIs belonging to the AON and (B) 18 ROIs including 6 AON regions and 12 regions obtained 

from the conjunction analysis. Bars represent mean decoding accuracies. Error bars indicate SEM across 

participants, asterisks indicate statistical significance with one-tailed t-tests against chance level (i.e., 50%), 

indicated by the dotted line. * uncorrected p < 0.05, ** uncorrected p < 0.005, black stars q < 0.05 FDR corrected 

for number of tests (i.e., 6)). 

 

Subsequently, we investigated which specific between-ROIs connections drive these 

differences. The importance of functional connectivity within pairs of ROIs was assessed by 

the SVM weights obtained from the classification analysis (Figure 4.7). 

A) B) 6 ROIs (AON) 18 ROIs (AON and conjunction 
analysis)
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Figure 4.7. Representation of SVM weights corresponding to the importance of connections between pairs of 

ROIs for classifying two selected action categories. Importance of weights is visualized only for those pairs of 

categories that could be distinguished from each other with an accuracy significantly higher than chance level, 

i.e., Communication vs Grooming, Communication vs Ingestion, and Grooming vs Ingestion, see Figure 4.6). 

The graph represents weights of pairwise connections between the regions averaged across 29 cross folds, after 

applying a threshold of 0.75 (for the positive weights) and -0.75 (for the negative weights). Positive weights 

are shown in red and indicate that these pairs of ROIs enabled a successful decoding of the firstly mentioned 

category, whereas blue color – negative weights – indicate that these pairs of ROIs enabled a successful 

decoding of the secondly mentioned category. The abbreviations stand for the following brain regions: lateral 

Communication - Grooming Communication - Ingestion

Grooming - Ingestion

Communication

Grooming

Ingestion

Locomotion

AON regions
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occipitotemporal cortex (LOTC), anterior intraparietal sulcus (aIPS), inferior frontal gyrus (IFG), 

supramarginal gyrus (SMG), middle temporal gyrus (MTG), precentral gyrus (PrCG), lateral occipital cortex - 

superior division (LOCsup), occipital fusiform gyrus (OF), lateral occipital cortex - inferior division (LOCinf), 

cingulate gyrus (CG), postcentral gyrus (POG), precentral gyrus (PRG), parahippocampal gyrus (PH), lingual 

gyrus (LG), cerebral cortex IV (CR-IV), either in the left hemisphere (l) or the right hemisphere (r). To facilitate 

understanding of the connections, all the peaks used in the analysis are visualized in the right bottom part of the 

figure. The colorbar indicates the origin of these ROI (ROIs of the AON (dark blue) and 12 ROIs obtained from 

the conjunction analysis, i.e., Communication (ligth blue), Grooming (green), Ingestion (yellow), and 

Locomotion (orange). 

Discussion 

In this study, we sought to determine what are the neural bases on which human 

participants understand different action categories and distinguish between these categories. 

For that purpose, we conducted a functional Magnetic Resonance Imaging (fMRI) study 

using actions belonging to four categories, namely Communication, Grooming, Ingestion and 

Locomotion. First, a conjunction analysis across the whole brain revealed that individual 

action categories evoke different activation maps and engage unique brain regions. ROI-

based decoding analysis demonstrated that all action categories can be decoded on the basis 

of unique activity patterns within regions of the action observation network, with the highest 

decoding accuracy in the bilateral LOTC. The subsequent functional connectivity analysis 

revealed that some categories could be distinguished from one another on the basis of the 

functional connectivity patterns between regions engaged in understanding action categories. 

The analysis of SVM weights further highlighted pairs of regions which functional 

connectivity patterns contributed to the distinction between these categories. Overall, we 

showed that the AON regions, specifically the LOTC, enable understanding action 

categories, however, a broader network of selective regions carrying category-specific 

information is crucial for distinguishing between categories.  



CHAPTER 4: STUDY 3 
   

 

123 

 

Role of the AON in understanding action categories 

There is strong evidence that observing actions engages a set of regions that form the 

action observation network (Casper et al., 2010). Our group-level univariate analysis extends 

the current knowledge of the neural basis of action observation, demonstrating that the AON 

is also involved in observing actions at the level of action categories. Results of the ROI-

based MVPA (Figure 4.4) revealed that all the regions within the AON evoke category-

specific patterns of neural activations, allowing all the four categories to be successfully 

distinguished from one another (with the exception of Grooming in the right IFG). The 

successful decoding of action categories within the AON regions suggest that these regions 

collectively contribute to understanding of observed action categories.  

Moreover, the existing literature provides evidence that, among the AON regions, the 

LOTC plays a crucial role in understanding actions at an abstract level (Oosterhof et al., 

2010; Lingnau & Petris, 2013; Wurm & Lingnau, 2015; Wurm et al., 2015; Hafri et al., 2017; 

Tucciarelli et al., 2019; Yargholi et al., 2021; see review by Lingnau & Downing, 2015). Our 

findings support this notion, as we observed that the accuracy of action category decoding 

within the LOTC was significantly higher than in the other AON regions. This might indicate 

that the LOTC plays an important role in understanding actions at the level of categories.  

The functional connectivity analysis revealed that it was not possible to decode action 

categories when taking into account information about time series exclusively from the AON 

regions. This suggests that, while these regions are crucial for action understanding, the 

functional connectivity between them may not be sufficient for distinguishing between 

different types of action categories. This could imply that the AON acts jointly with other 

brain regions for successful categorization. We tested this hypothesis using additional ROIs 
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obtained from the conjunction analysis. We will discuss these results in the subsequent 

paragraphs. 

Category-selective brain regions 

Drawing from the existing studies on objects (Haxby et al., 2001) and actions 

(Abdollahi et al., 2013; Ferri et al., 2015; Corbo & Orban, 2017), we hypothesized that each 

action category might evoke activation in different brain areas. To investigate this, we 

conducted a conjunction analysis that confirmed our hypothesis and revealed unique activity 

maps for each category. Building on our recent behavioral study, which showed that action 

categories can be defined and distinguished by specific set of features (Kabulska & Lingnau, 

2022), we expected that category-specific brain regions (e.g., Downing et al., 2001; Bracci 

et al., 2010; Orlov et al., 2010; Bracci et al., 2012; Isik et al., 2017) would be involved in 

decoding these key features. In the following sections, we delve further into the neural maps 

obtained from the conjunction analysis.   

Communication. As communication involves interaction with other people, we 

expected that observing communicative actions will activate regions typically involved in 

social interactions. As anticipated, the conjunction analysis revealed unique activation maps 

in the bilateral pSTS/STG and the middle temporal gyrus (MTG). Posterior STS is considered 

a hub for biological motion (Calder & Young, 2005; Deen et al., 2015; Grossman et al., 2005; 

Ishai et al., 2000; van Kemenade et al., 2012) such as gaze shifts (Hoffman & Haxby, 2000; 

Puce et al., 1998; Wicker et al., 1997), body movement (Bonda et al., 1996; Grossman et al., 

2000; Kourtzi & Kanwisher, 2000; Senior et al., 2000), mouth movement (Puce at al., 1998), 

and lip reading (Calvert et al., 1997) (see Allison et al. (2000) for review). It also belongs to 

the so-called „social brain network“ (Frith, 2007) and plays a role in social perception, 
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including perception of faces (Haxby et al. 2000; Pitcher et al., 2011), voices (Belin et al., 

2000), social actions (Isiki et al., 2017; Wurm et al., 2017) and modality-invariant 

representation of person identity (Anzellotti & Caramazza, 2017). Its activation increases 

especially in response to dynamic faces (e.g., Allison et al., 2000; Haxby et al., 2000; Pitcher 

et al., 2011). Moreover, the obtained clusters in the MTG extends from the posterior to 

anterior division and covers the visual pathway specialized for social perception (Pitcher & 

Ungerleider, 2021), that begins in primary visual cortex (V1), goes through motion-selective 

area V5/middle temporal (MT), posterior STS, and ends in the anterior STS. A meta-analysis 

by Grosbras et al. (2012) showed that the right pSTS and bilateral MTG are also involved in 

hand and face movements. These regions, along with the right extrastriate body area (EBA) 

and MT/V5 areas that also emerged in the analysis, have been reported to play a role in the 

perception of body, hands and face movements as well as in recognizing dynamic human 

faces (Grosbras et al., 2012; Sato et al., 2004). Studies on anatomical connectivity have 

shown that the STS receives input from the visual stream through the motion-sensitive area 

MT, both in monkeys (Seltzer & Pandya, 1994) and humans (Pitcher & Ungerleider, 2021). 

Human functional connectivity studies have identified connections between the pSTS and 

the fusiform face area (FFA) (von Kriegstein et al., 2003). Furthermore, the STS has been 

shown to be functionally connected to both the premotor and primary motor cortices (Deen 

et al., 2015). Overall, our results showed that observing communicative actions evoked 

neural activation in regions playing a role in biological motion, social perception, and 

dynamic facial stimuli.  

Grooming. We observed that the neural activity associated with grooming actions 

was primarily located in the visual pathway, more precisely in bilateral V4 regions and in a 

portion of the dorsal visual stream. Area V4 is known for its role in visual object recognition, 
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contributing to the processing of object-related features, such as color, shape, and contour, 

as evidenced by both primate (Mountcastle et al., 1987; Roe et al., 2012; Zeki, 1973), and 

human (Bracci & Op de Beeck, 2016; James et al., 2003) studies. Furthermore, the lateral 

occipital cortex (LOC) has been shown to play a crucial role in object recognition (Grill-

Spector et al., 1999, 2001). As has been demonstrated in studies on monkeys, there are 

anatomical connections linking V4 and the inferotemporal cortex, a region functionally 

similar to the human LOC (Felleman et al., 1997). Based on Goodale and Milner’s model 

(1992), activation in the dorsal visual stream may imply that participants were also 

processing information related to potential actions they could perform with these objects. 

This interpretation aligns with the nature of grooming actions, which often involve the use 

of specific objects like toothbrushes or makeup applicators. Therefore, our findings indicate 

that the brain regions activated in response to grooming actions are engaged in both 

recognizing objects and potential actions involving these objects.  

Ingestion. We expected to find unique activation within regions engaged in 

processing objects, especially food-related information as well as hands and mouth. The 

cluster in the postcentral gyrus obtained in our study cluster overlapped with a peak reported 

by Cornier et al., (2009) that showed higher activation to images containing food compared 

to non-food images. We also reported small clusters in bilateral ventral visual cortex, that 

has been recently shown to have high selectivity to visual images of food (Khosla et al., 

2022). The map also revealed a cluster in the precentral area, a region which has been shown 

from the ALE meta-analysis to carry information about movement of hands, faces, and an 

object-directed hand movement (Grosbras et al., 2012).  
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Locomotion. Locomotion requires change of location (Kabulska & Lingnau, 2022) 

and thus often has to be performed outdoor. We then expected that one of the brain area 

unique for this category might be related to processing the spatial context. Results of the 

conjunction analysis revealed a peak in the parahippocampal gyrus that overlaps with the 

parahippocampal place area (PPA). The PPA has been associated with scene recognition, 

such as viewing landscapes and indoor layouts (Epstein & Kanwisher, 1998) as well as scene 

perception and spatial navigation (Aguirre & D’Esposito, 1999; Epstein et al., 2001, 2003). 

The parahippocampal gyrus, together with the lingual gyrus and the posterior cingulate 

cortex, i.e., the regions that we also reported from the conjunction analysis, have been shown 

to increase activation in spatial retrieval task (when participants attended spatial information) 

in contrast to temporal retrieval task (when participants attended to temporal information) 

(Ekstrom et al., 2011). Our results also revealed a cluster in the right precuneous. It has been 

reported that the precuneous plays a role in visuo-spatial processing, including coordination 

of motor behavior, directing attention towards moving targets, and imagining movements. It 

is also connected to motor areas, i.e., dorsal premotor area and supplementary motor area 

(see review by Cavanna & Trimble (2006)). In summary, our results show that observing 

locomotive actions in natural environment engages regions that are related to spatial 

processing and scene perception.  

Extended network for action categories 

We analyzed time series data from regions within the AON as well as from regions 

identified through the conjunction analysis. We were able to successfully decode certain pairs 

of categories using time series from these ROIs. The results show that, as expected, action 

understanding is a distributed process extending beyond just the AON. Additionally, we 
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show which regions might play the most crucial role in this decoding. As an example, 

decoding of the categories Communication and Grooming relied on both bilateral LOTC as 

well as peaks specific to each category. This implies that specialized regions contribute 

unique information that enables the categorization of specific types of actions. 

Limitations 

However, it is important to interpret the functional connectivity results with caution. 

First, we did not pre-register the exact number of category-selective ROIs used for pairwise 

category decoding. Instead, we selected it in a way that the number of ROIs is not too high 

(three ROIs per category) and the results can still be interpretable (see Figure 4.7). Second, 

the threshold for visualizing SVM weights was also not defined during the pre-registration. 

We chose it such that we could display only the strongest connections (Figure 4.7). While 

we have provided rationales for these choices, it is essential to note that these parameters 

were determined subjectively. Therefore, a different selection of these parameters might 

yield different results.   

Conclusion 

Our research revealed that observing action categories engages distinct brain areas, 

with each category evoking activation within specific regions that process information about 

unique features of that category. The findings further showed that, while the AON serves as 

foundation for action understanding, effective action categorization requires involvement of 

a broad network of specialized regions. Overall, our results provide insights into the neural 

underpinnings of action categories, encompassing information about neural activation as well 

as between-ROIs connections.   
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CHAPTER 5: GENERAL DISCUSSION 

In my dissertation, the goal was to explore the cognitive and neural bases of action 

understanding. The first part of this work sought to identify the key action features, that are 

crucial for action recognition, as well as more general action categories. Subsequently, I 

aimed to examine the underlying neural structures of action organization. Specifically, the 

whole PhD project consisted of three main studies: 

Study 1. This study included a series of behavioral experiments performed in order 

to better understand the cognitive organization of actions. The findings of Study 1 revealed 

a list of key action features, such as arms, legs, action targeting a tool, pace of action, and 

duration as well as eleven action categories, like Locomotion, Communication, and Food-

related actions. 

Study 2. The goal of this study was to explore the neural representations of action 

features and the underlying dimensions. The methodology included conducting an fMRI 

experiment and using the features identified in Study 1. The findings revealed distinct 

clusters within the lateral and ventral occipitotemporal cortices that corresponded to different 

feature dimensions, such as Posture, Contact with others and Object-directedness.  

Study 3. The goal of the subsequent fMRI experiment was to examine the neural 

underpinnings of action categories derived from Study 1, namely Communication, Ingestion, 

Grooming, and Locomotion. The results showed that the LOTC has the highest decoding 

accuracy compared to other AON areas. Furthermore, some of the action categories could be 

decoded from each other based on unique connectivity patterns between regions 

encompassing the AON and the category-selective brain areas. 
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In the following sections, I will discuss the findings in a broader context and explore 

their impact across various research fields. Lastly, I will discuss the limitations of the studies 

and present ideas for potential future studies. 

Cognitive principles underlying action organization 

To explore the underlying structure of action organization, I first examined the action 

features at the cognitive level. Actions are complex; among other factors, they evolve over 

time, they can be performed in different environments, and involve a variety of objects and 

tools. For instance, a single action can be performed using various objects, while a single 

object can be involved in multiple actions. Given these complexities, the exploration of action 

features poses challenges for their identification that require a suitable method. 

To tackle this problem, I adopted a data-driven approach and collected features from 

naïve participants. While I could have proposed my own set of features – a method that has 

been proven effective in numerous studies (e.g., Gainotti et al., 2009; Klatzky et al., 1993; 

Magri et al., 2021; Proklova et al., 2016) – this method would have potentially restricted the 

research to a limited scope. Instead, my goal was to obtain an objective set of features that 

reflects the view of a wider group of people. This way, I could explore a wide range of 

potential features and possibly uncover ones not previously discussed in the literature. The 

free-feature listing experiment in Study 1 resulted in an extensive set of action features, which 

can serve as feature norms for future experiments. Such norms have been already proposed 

in studies on objects, providing featural descriptions for living and nonliving objects (Garrard 

et al., 2001; Lynott & Connell, 2009; McRae et al., 2005) as well as actions and events 

(Vinson & Vigliocco, 2008). Feature norms provide insights into the structure of semantic 

representations (Rogers et al., 2004) and their importance has been shown in a variety of 
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experiments, including investigations of the structure underlying conceptual categories 

(Gainotti et al., 2013), knowledge (Hoffman & Lambon Ralph, 2013), and language 

comprehension (Cree et al., 2006), as well as in studies on patients with semantic deficits 

(Cree & McRae, 2003). 

The next step of Study 1 involved identifying the key features within this extensive 

feature set that could be subsequently tested at the neural level. Taking the obtained features 

into account and considering the existing literature (e.g., Tarhan & Konkle, 2020b; 

Tucciarelli et al., 2019; Watson & Buxbaum, 2014; Wurm et al., 2017), I narrowed down the 

list to 44 key features. These cover a broad range of action-related information and vary in 

levels of abstraction. Through a principal component analysis, I mapped these features into 

a multidimensional space, comprising dimensions related to General movements, Arm 

movement kinematics, Goal-directedness, Context, Posture, Contact with others, Object-

directedness, and Negative emotions. The neural underpinnings associated with these key 

features and feature dimensions were further investigated in Study 2.  

Neural representations of action features 

It has been shown that objects and actions (Huth et al., 2012) as well as mental states 

(Tamir et al., 2016) can be mapped onto dimensions which are reflected in dedicated neural 

systems. Following these studies, I investigated whether such neural systems also exist for 

the dimensions underlying action features that were obtained in Study 1. The results showed 

that all these dimensions except two, namely Arm movement kinematics and Negative 

emotions, were represented in the brain. The obtained clusters encompassed several brain 

regions, including the ventral and dorsal visual stream.  
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In the literature on action understanding, there is still an ongoing debate regarding the 

role of the AON regions. The first step of Study 2 involved computing a reliability map which 

identifies voxels consistently activated in response to actions. The obtained reliability map 

encompassed the parietal and occipitotemporal areas, but not the premotor regions, meaning 

that in the premotor regions the neural activation in response to action stimuli was not 

consistent across imaging runs. Given that I used naturalistic action images as stimuli, this 

could indicate that the premotor cortex does not generalize across aspects that vary in these 

stimuli, such as backgrounds, agents involved in actions, and their postures. This challenges 

theories that emphasize the critical role of the premotor cortex in representing action meaning 

(Majdandić et al., 2009; Nelissen et al., 2005; Rizzolatti et al., 2014) and aligns with the 

findings, which suggest that the premotor cortex rather codes low-level, perceptual action 

features (e.g., Wurm et al., 2015; Wurm & Lingnau, 2015). 

Given the growing evidence highlighting the crucial role of the LOTC in action 

understanding (Tucciarelli et al., 2019; Wurm & Caramazza, 2019a), I explored the idea 

previously proposed by Lingnau & Downing (2015), that the LOTC might host and integrate 

different types of action-related information. More precisely, I examined which dimensions 

underlying action organization are represented within the LOTC and how these 

representations relate to one another. The results have shown that distinct subregions of the 

LOTC held information about different dimensions, specifically General movements, Goal-

directedness, Context, Posture, Contact with others, and Object-directedness. I also observed 

that the representations of these dimensions overlapped. To identify the most dominant 

dimension in each region, I conducted a winner-takes-all analysis. This allowed examining 

the selectivity of different brain areas, revealing which dimension was most strongly 

represented in each voxel. The findings were consistent with earlier studies on actions that 
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explored action dimensions, such as social interactions and object-related information (Isik 

et al., 2017; Wurm et al., 2017; Wurm & Caramazza, 2022), and the representation of body 

parts (Downing et al., 2001). The results also support the findings of Wurm & Caramazza 

(2022), who demonstrated that the LOTC can differentiate between animate and inanimate 

action-related information. Overall, the findings indicate that the LOTC has a multifunctional 

role, with its subregions processing various action-related information. It is worth noting that 

the studies referenced above examined dimensions separately, e.g., focusing on just one type 

of action-related information (e.g., social interaction) at a time. My study provides additional 

insights as it allowed to explore the feature dimensions collectively. This approach not only 

revealed where these dimensions are represented but also how they relate to one another.  

The presence of overlapping representations of certain dimensions within the LOTC 

raises the possibility that this region might not have domain-specific subregions.	A similar 

conclusion has been drawn when examining brain regions previously believed to exhibit 

selectivity for specific object categories. Specifically, the fusiform gyrus demonstrated strong 

responses not only to faces but also to bodies (Peelen & Downing, 2005), while the left EBA 

exhibited strong responses to bodies as well as to mammals (Downing et al., 2005). Building 

upon the discussion presented by these authors, I propose a hypothesis that the LOTC 

contains multiple distinct feature-selective neural representations, instead of domain-specific 

regions that process single feature dimensions. It is plausible that the LOTC is composed of 

intertwined populations of feature-selective neurons (Downing et al., 2005; Quiroga et al., 

2005). In conclusion, the investigated dimensions might share a common representational 

space within the LOTC, resulting in their coexistence in the same neural areas.  
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Neural underpinnings of action categories 

As it is well established that object categories, like chairs and houses, evoke unique 

brain activity patterns (Haxby et al., 2001), I proposed that a similar phenomenon might be 

true for action categories. The findings revealed that while in all AON regions it was possible 

to decode action categories, the LOTC showed the highest decoding accuracy, significantly 

higher than in the aIPS. These results contribute to the discussion regarding the potential role 

of the parietal- and occipitotemporal regions in processing the meaning of actions. Previous 

studies have shown that actions (e.g., dragging, grasping) and action categories (e.g., 

climbing, running, performing manipulative actions) evoke neural activity patterns within 

the parietal cortex (Abdollahi et al., 2013; Corbo & Orban, 2017; Ferri et al., 2015; Jastorff 

et al., 2010; Urgen et al., 2019), concluding that the parietal cortex is central to the abstract 

understanding of actions. However, these studies primarily focused on the parietal cortex, 

overlooking other brain regions, such as the occipitotemporal regions. The findings of my 

study provide evidence that both regions are important for the understanding of action 

categories, with significantly better decoding of the categories in the LOTC. 

In the second part of Study 3, I investigated the functional connectivity between 

multiple brain regions including those belonging to the AON and those activated in response 

to specific action categories. The analysis showed that the LOTC was consistently involved 

in decoding action categories, as its connections with category-specific regions appeared to 

be crucial in this process. It was the only AON region consistently engaged in category 

decoding. 
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LOTC as a hub for action understanding 

The results from Studies 2 and 3 showed a multifunctional role of the LOTC: it carries 

representational maps of dimensions underlying action features, it holds representations of 

feature-based and category-based organizations of actions, it can accurately decode action 

categories, and it is consistently connected with regions hosting category-specific 

information. Taking all this into account, I considered a hypothesis previously proposed by 

Lingnau & Downing (2015) that the LOTC might act as a hub for action understanding.   

Typically, a region is considered a “hub” when it integrates information from multiple 

modality-specific brain regions and puts them into multi-modal representations (Anzellotti, 

2017). For instance, the anterior temporal lobe, believed to be a hub for semantic knowledge, 

connects different kinds of knowledge represented in specialized brain regions. This includes 

color information from color regions, shape information from visual-form regions, names of 

the objects in language regions, etc. (Anzellotti, 2017; Hoffman et al., 2014; Patterson & 

Lambon Ralph, 2016). 

Action recognition relies on combining diverse types of information, which include 

identification of specific effectors involved in an action, recognizing the usage of tools and 

objects within the action context, as well as understanding possible changes over time and 

actions’ end-goals. The recognition of an action should be independent of the effector (e.g., 

a cup can be gripped in several ways) or the environmental context (e.g., jogging can be 

performed in an indoor gym as well as in a park). The previous literature has provided 

evidence that the LOTC carries information about various types of information, such as 

motion (Papeo & Lingnau, 2015; Tootell et al., 1995; Zeki et al., 1991), biological motion 

(Grosbras et al., 2012; Lingnau & Petris, 2013; Papeo & Lingnau, 2015), tool viewing (Bracci 
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et al., 2012; Chao et al., 1999), body parts (Downing et al., 2001; Orlov et al., 2010), action 

observation (Caspers et al., 2010), action planning (Astafiev et al., 2004; Johnson-Frey et al., 

2005), and verbs (Bedny et al., 2008; Papeo & Lingnau, 2015; Peelen et al., 2012), see 

Lingnau & Downing (2015) for a review. As mentioned earlier, the LOTC represents actions 

at an abstract level, generalizing across different target objects (Wurm et al., 2015) as well 

as across objects and kinematics involved in performing an action (Wurm & Lingnau, 2015). 

In the LOTC, actions can be decoded across various formats, such as static images versus 

dynamic videos (Hafri et al., 2017) as well as videos and written descriptions (Wurm & 

Caramazza, 2019a). 

Both the existing literature (see the review by Lingnau & Downing, 2015) as well as 

the findings from my studies suggest that the role of the LOTC might be integration of action-

related information, thereby enabling action understanding. Consequently, the obtained 

results provide additional evidence for the theory that the LOTC could indeed function as a 

hub for action understanding.    

Implications 

Implications for cognitive neuroscience 

First, the findings of my projects revealed the cognitive structure underlying observed 

daily actions, including a wide set of action features as well as a set of action categories. This 

feature set might be used as action feature norms for future studies. Second, I investigated 

the neural mechanisms underlying action understanding, considering both the representation 

of feature dimensions as well as the brain regions carrying activity patterns unique to specific 

action categories. The results provide new insights into the neural underpinnings of 

understanding daily actions. Moreover, the results highlight the role of the LOTC in 
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understanding actions at an abstract level, which is in line with a vast body of research (see 

the review by Lingnau & Downing, 2015) and contributes to the ongoing debate about the 

functions of the AON regions (Wurm & Caramazza, 2019a). 

Implications for computational science 

The findings of my project might also have implications for the field of computational 

science. Through a series of behavioral experiments, I have identified action features that 

could describe 100 daily actions depicted as static images. These action features do not only 

provide valuable insights into human behavior but also might be used in the development of 

more human-like neural models. For instance, convolutional neural networks can be designed 

with a bias towards features that are important for humans, an approach that has been applied 

in object recognition (Geirhos et al., 2019). Incorporating action features derived from human 

behavior into neural networks can enable machines to understand and mimic human actions 

more effectively, leading to more realistic and context-aware AI systems (Wichmann & 

Geirhos, 2023).  

Limitations 

Stimuli 

In all three studies, I used naturalistic, static images. This choice was influenced by 

previous research, though it might introduce certain limitations. Below, I outline both the 

advantages and disadvantages of this approach.  

First, as demonstrated with objects, using naturalistic stimuli provides a better 

understanding of real-world scenarios (Haxby et al., 2020). However, the usage of highly 

controlled stimuli enables controlling for other factors, such as the surrounding objects and 
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scenes (e.g., Wurm et al., 2017). While naturalistic stimuli provide a more realistic 

experience as they present actions in their true context, they might also introduce variability 

and complexity. As an example, the stimuli might depict people in the background who are 

unrelated to the main action, or present other objects that could capture the participant’s 

attention. This can pose challenges in isolating specific factors of interest and might introduce 

noise unrelated to the actions themselves.  

Second, we used static stimuli. Static images are easier to design and manipulate, 

allowing for precise control of the timing of stimulus presentation and better experimental 

control. As has been shown, even a brief display of a static snapshot of an action is sufficient 

for accurate action recognition (Hafri et al., 2013). However, real-world actions are dynamic 

and unfold over time, whereas static images capture only a single moment. Consequently, 

one of the primary limitations is the reduced ecological validity, as static images may not 

fully capture the nuances of how the brain responds to dynamic actions. Moreover, statics 

images lack crucial kinematic information, such as motion trajectories and velocity, which, 

as I reported in Study 1, are important features of action understanding.  

Functional Magnetic Resonance Imaging 

Within the scope of my research, I conducted all neuroimaging experiments using 

fMRI. This technique has been successfully used in neuroscience for the past 30 years as it 

allows for non-invasive mapping of the human brain function with a good spatial resolution. 

However, the technique also comes with several limitations (Logothetis, 2008; Logothetis & 

Wandell, 2004; Turner, 2016). It has a limited temporal resolution - in my projects, the MRI 

scanner was set up to capture neural signals every 2 seconds - which means that it might miss 

rapid neural processes. Although it provides relatively good spatial resolution in comparison 
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to other neuroimaging techniques (e.g., EEG, MEG, PET (Sejnowski et al., 2014)), for my 

scans, I set up the voxel size to 3x3x3 mm, which encompasses activity within large groups 

of neurons. Moreover, fMRI indirectly reflects neural activity by measuring changes in blood 

flow and oxygenation (the blood-oxygenation level dependent (BOLD) response) which 

introduces a delay and leads to missing the real-time neural activation. Additionally, the noisy 

and confined environment in the MRI scanner can be uncomfortable and tiring for 

participants, potentially affecting their cognitive performance during tasks.  

Future studies 

In my study, I used fMRI to investigate the neural underpinnings of action 

representations, which gave insights into the spatial information of these neural systems. 

However, the processing of action-related information might vary in time which cannot be 

captured using fMRI methods. Given that actions are dynamic by nature, it is essential to 

view action recognition as a continuous process and to investigate it over time. Therefore, 

the next step would be to gain a better understanding of the temporal dynamics of action 

representations. 

First, as a follow-up to Study 2, I would explore the temporal dynamics associated 

with various action features and dimensions. This idea draws inspiration from studies on 

objects that examined how information about object-related features evolves over time. For 

instance, Carlson et al. (2013) demonstrated that the time of decoding varies based on the 

level of abstraction, with concrete object examples being identified earlier than the more 

abstract ones. A recent study highlighted that the hierarchical representations of objects 

unfold over time: low-level visual features emerge as early as 70 ms, while more conceptual 

object representations appear around 150 ms (Hebart et al., 2018). Similarly, research on 
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actions has shown hierarchical information processing, where the earliest detected features 

pertain to visual information (e.g., captured by early layers of a convolutional neural 

network), followed by action information (e.g., effectors, transitivity), and finally, by social-

affective information (e.g., valence, arousal) (Dima et al., 2022). Interestingly, these findings 

contrast with prior research, which showed that action goals are processed first (Hafri et al., 

2013), and motor properties such as grip force and movement speed are adjusted based on 

these goals (Gentilucci et al., 1997; Rosenbaum et al., 2001). Such discoveries underscore 

the potential impact of high-level action understanding on low-level visual perception 

(Kilner, 2011). I believe that using a wider set of features could add to the discussion on the 

temporal hierarchy of action features in the human brain. As the features identified in Study 

1 vary in the level of abstraction, for instance Body parts are more concrete than 

Concentration, I believe that they would be suitable for answering this question. 

Second, following Study 3, I would explore the temporal dynamics of the four action 

categories. The primary goal would be to determine the time windows when each category 

is perceived and when these categories become distinguishable. Past research involving eye 

saccades in object recognition has demonstrated that differentiation between certain object 

categories can occur already after 120 ms (Kirchner & Thorpe, 2006), whereas various 

objects, such as faces and vehicles, are detected with varying reaction times (Crouzet et al., 

2010). Studies based on electroencephalography (EEG) have revealed that different object 

categories, including buildings, cars, faces, animals, and tools, evoke unique event-related 

brain potentials (ERPs) for each category and thus can be differentiated based on their unique 

time courses (Murphy et al., 2011; Simanova et al., 2010; Wang et al., 2012). Drawing from 

these studies on objects, I anticipate that each action category might also evoke distinct 

temporal patterns. 
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For both experiments, I would use an EEG. In comparison to MRI, EEG offers a good 

temporal resolution, which allows the investigation of rapidly changing brain patterns. To 

investigate the temporal information of action features and dimensions, I would apply the 

design and dataset I used in Study 2, whereas to investigate the action categories I would use 

the design and dataset of Study 3. This approach would allow for a direct comparison of the 

results from both neuroimaging methods. Combining neuroimaging data from fMRI and 

M/EEG has already been applied by some of the leading research groups in the field of human 

object recognition (Cichy & Oliva, 2020).  

Overall, these further studies would help to reveal the sequence in which different 

types of information (feature- and category-based) arise and would provide insights into how 

action understanding unfolds in time and space.  
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APPENDIX 

A. Study 1 Supplementary materials 

A.1 Experiment 1 

A.1.1 Selection of action words 

Actions were chosen from a study by Vinson & Vigliocco (2008). As a first step, we 

discarded verbs that are difficult to depict as static images (e.g., animal sounds such as 

“oink”, “chirp”), with the aim to arrive at a final set of 100 actions we considered suitable 

for our experiments. Subsequently, we adjusted several action words towards more common 

actions. As an example, we chose “feeding” instead of “feeding a horse”, and “hugging” 

instead of “tree hugging”. Additionally, we tried to avoid keeping actions with very similar 

meaning in the dataset, e.g., “playing tennis” and “hitting a tennis ball”. Thus, three other 

actions (i.e. “hitting a tennis ball”, “playing piano”, and “fist bumping”) were removed and 

replaced by the actions “reading”, “riding on a bike”, and “writing on a board” from the 

“Stanford 40 Actions” dataset (Yao et al., 2011).  

Table A1. Actions used in the experiments

1. applauding 
2. arguing 
3. blowing bubbles 
4. breaking 
5. brushing hair 
6. brushing teeth 
7. building a sandcastle 
8. calling (phone)   
9. carrying buckets 
10. chopping vegetables 
11. cleaning the floor 
12. climbing 
13. constructing  
14. cooking 
15. cutting trees 
16. cutting with knife  
17. dancing 
18. digging 

19. dragging 
20. drawing 
21. drinking 
22. driving a car 
23. driving a scooter  
24. drumming 
25. eating 
26. feeding 
27. fishing 
28. fixing a bike 
29. gardening 
30. goal keeping  
31. grocery shopping 
32. hammering 
33. hand shaking 
34. handstand 
35. having a shower 
36. high fiving 
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37. hiking 
38. holding hands 
39. holding umbrella 
40. hula hoop 
41. hoovering 
42. hopping 
43. hugging 
44. juggling 
45. jumping 
46. kayaking 
47. kicking a football 
48. knitting 
49. knocking on a door 
50. leaning on a hand 
51. licking ice cream 
52. lifting weights 
53. listening to music 
54. looking through microscope 
55. making a bed 
56. painting 
57. paying someone 
58. playing basketball 
59. playing golf 
60. playing guitar 
61. playing tennis 
62. pointing 
63. pouring liquid 
64. public speaking 
65. pulling (tug of war) 
66. punching 
67. pushing a trolley 
68. raking leaves 
69. reading 
70. riding a bike 
71. rowing a boat 
72. running 
73. shooting an arrow 
74. sitting 
75. skateboarding 
76. skiing 
77. sleeping 
78. sliding (water slide) 
79. smoking 
80. stirring 
81. stroking a dog 
82. surfing 
83. swimming 
84. swinging 

85. switching on the light 
86. taking a photo 
87. tearing 
88. texting 
89. throwing a Frisbee 
90. thumbs up 
91. using a computer 
92. walking a dog 
93. washing a car 
94. washing dishes 
95. washing hands 
96. watching TV 
97. waving hand 
98. writing on a board 
99. writing 
100.  yawning
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A.1.2 Stimulus selection 

A.1.2.1 Participants 

Nineteen healthy participants took part in the study (15 females; mean age = 22 years, 

age range = 18-26 years). Experimental procedures were approved by the ethics committee 

at the University of Regensburg. 

A.1.2.2 Methods 

We aimed for a final set of 100 action images depicting the actions listed in Table 

A1. First, we selected 160 images from Shutterstock (www.shutterstock.com). We chose 

images according to the following criteria: (1) the depicted action is the main aspect of the 

image, (2) the action is depicted in front of a natural (rather than a uniform) background, (3) 

the body of the person performing the action is fully visible, (4) there is only one person on 

the image (unless the action is directed at another person), and (5) the image is taken in 

landscape (rather than portrait) orientation. For three of the actions (tearing, switching on the 

light and breaking), we could not find suitable pictures showing the full body and thus chose 

images showing the upper body/arms only. To ensure that the actions were recognized as the 

actions we had in mind during stimulus selection, we carried out an online survey 

(https://www.soscisurvey.de/) with the initial set of 160 images. For actions that might be 

more difficult to depict as an image (e.g., arguing), we chose more than one exemplar (on 

average, 1.6 images per action). Participants were presented with a set of action pictures on 

a screen, one after the other, and were asked to type the name of the depicted action on the 

keyboard. The final set of stimuli was chosen by selecting, out of the set of used pictures, 

those for which the “correct” action label was mentioned most frequently. Based on the 

naming agreement, we chose a set of 100 images (see Figure A1) for the multi-arrangement 

task (Experiment 1). 

http://www.shutterstock.com/
https://www.soscisurvey.de/
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Figure A1. Stimuli used for Experiment 1. Actions are sorted alphabetically (from left to right, row by row). 

For corresponding labels, see Table A1. 
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A.1.3 Procedure 

a b 

 

 

 

Figure A2. Exemplary trial of the multi-arrangement experiment (Kriegeskorte & Mur, 2012). 

Participants were asked to arrange the images by mouse drag-and-drop such that the physical distance between 

the images on the screen reflects the perceived similarity in terms of the meaning of the actions. In the first trial, 

all the 100 actions appeared on the screen around the arena. After arranging all the images within the arena, the 

next trial started. With each consecutive trial, a subset of images was presented, depending on pairwise 

dissimilarity evidence between the images (see Section Experiment 1, Procedure, for details). (a) Example trial 

with a subset of three action images (size of the images enlarged for ease of visualization). (b) Example 

arrangement at the end of a single trial.  
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A.1.4 Results 

 

Figure A3. Results from the multi-arrangement experiment. Blue indicates low dissimilarity (high 

similarity), whereas yellow indicates high dissimilarity (low similarity). Labels on the x-axis are identical to 

labels on the y-axis.  
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Figure A4. Mean silhouette index (si) as a function of the number of clusters obtained from hierarchical 

clustering in a range from 3 to 50. For each number of clusters, the mean silhouette index was computed by 

averaging across 100 iterations. The red line shows the index for the number of clusters chosen in the study (si 

= 0.23). 

A.1.5 Category naming  

A.1.5.1 Participants 

Twenty-six participants took part in the study (21 females; mean age = 26 years, age 

range = 18–51 years). Experimental procedures were approved by the ethics committee at 

the University of Regensburg. 

A.1.5.2 Instruction 

Participants received the following written instruction in German (for convenience, 

we provide the English translation): 

In this study we will ask you to find labels for sets of words. Please think about what 

the words have in common and try to come up with a “heading” that subsumes all of the 

words equally. You can give us multiple examples. Please write the label that fits best at first. 

There is no time limit so you can take as much time as you want. Below, you can find two 

examples. 

1. Example 

- to brake 
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- to accelerate 
- to blink 
- to turn 

Possible examples for category labels could be: driving a car, riding a motorcycle, 

etc. 

2. Example 

- Karate 
- to kick someone 
- to hit with a fist 
- to shout 
- to use a weapon 
- to break a window 

Possible examples for category labels could be: fighting, destroying, etc. 

A.1.5.3 Apparatus 

The study was conducted using an online survey (https://www.soscisurvey.de/). 

A.1.5.4 Procedure 

We only asked participants to provide names for clusters that contained at least two 

different actions. This was the case for 11 out of 12 clusters. Separately for each of the 11 

clusters, participants were provided with a list of all action words (in German) belonging to 

a given cluster. The order of the words was randomized for each participant. Participants 

were instructed to provide a label that could best describe a given cluster by considering what 

the words had in common (see Section A.1.5.2 for the exact wording of the instruction). 

Participants were allowed to provide more than one label per category. 

A.1.5.5 Data analysis 

In total, participants produced 493 labels (44.82 per category). To choose labels best 

describing each action category, we took into account the frequency of provided labels. In 

Figure S5 we visualized the collected category labels using word clouds, where more 

frequently provided labels are shown with a bigger font (in order to keep the original labels, 

we provide them in German). Table A2 contains all the labels provided by the participants 

(in German), together with the frequency of mentions. Taking into account the most 

frequently mentioned labels for each cluster, we selected subsequent category labels: 

Aggressive actions, Communication, Food-related actions, Gestures, Hand-related actions, 

https://www.soscisurvey.de/
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Hobby, Household-related actions, Interaction, Locomotion, Morning routine, and Sport-

related actions. The final list of action categories and the corresponding actions is provided 

in Table A3. 

 

Figure A5. Word cloud forms of category labels obtained from the Category naming experiment (carried out 

in German). Font size is proportional to the frequency of the labels. Above each word cloud, the English 

translation of the label chosen for the action category is shown. For a detailed list of labels and their frequency 

see Table A2. 
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Table A2. Labels obtained in the Category naming experiment. Numbers on the left indicate the frequency of 

each label. Labels are organized by frequencies; labels with similar frequencies are sorted alphabetically. Labels 

above each list are the final action category names.  

Aggressive actions Communication Food-related actions 

9 Aggression 
9 Wut 
7 Gewalt 
5  Konflikt 
4 Zerstörung 
3 Aggressivität 
2 Ärger 
2 Zerstören 
1 Aggressionsbewältigung 
1 Aggressive Handlungen 
1 Auseinandersetzung 
1 Eskalation 
1 Gefühlsausbruch 
1 Gewalt ausüben 
1 Kämpfen 
1 Kaputt machen 
1 negative Emotionen 
1 physischen oder psychischen  

Druck ausüben 
1 Probleme 
1 sich aggressiv verhalten 
1 Streit 
1 Verletzen 
1 Wutausbruch 

 

11 Kommunikation 
4 Kommunizieren 
4 Sprache 
2 Mediennutzung 
1 Alltag 
1 Alltagsaufgaben 
1 Arbeit 
1 Arbeiten/ Schule 
1 Beruf 
1 Büro 
1 Ideen austauschen 
1 Informationen austauschen 
1 Informationen generieren 
1 Interaktion mit einer anderen Person 
1 Kommunikationsmedien nutzen 
1 Lehrer:in 
1 Lesen & Schreiben 
1 Medien benutzen 
1 mitteilen 
1 Office 
1 Schreibskills 
1 Sprachnutzung 
1 Wissen austauschen 
1 Wörter 

 

4 Ernährung 
4 Kochen 
4 Küche 
4 Nahrung 
3 Lebensmittel 
3 Haushalt 
2 Alltag 
2 Essen 
1 Essen zubereiten 
1 Essensbezogene Handlungen 
1 Essensvorbereitungen 
1 Essenszubereitung 
1 Hausarbeit 
1 Hausarbeiten erledigen 
1 Hunger 
1 Küchenarbeit 
1 Küchenarbeit verrichten / In der Küche 

arbeiten 
1 Küchentätigkeiten 
1 Leben 
1 Lebensmittel zubereiten 
1 Mahlzeit 
1 Nahrungsaufnahme 
1 Nahrungsmittelverwendung 
1 Nahrungszubereitung und -verarbeitung 
1 Versorgung 
1 Zuhause 

 

Gestures Hand-related actions Hobby 

 

4 Gesten 
3 Kommunizieren 
2 Handbewegung 
2 Hände 
2 Mitteilen 
2 Tätigkeiten 
1 Aktivitäten mit der Hand 
1 Arbeit 
1 Forschungsvortrag 
1 Gestik 
1 Hände bewegen / benutzen 
1 Handmotoriken 
1 Handnutzung 
1 Interaktion 
1 jemanden begrüßen 
1 jemanden schätzen 
1 Kommunikation 
1 Körperliche Tätigkeiten 
1 Präsentation 
1 Rede halten 
1 Referat 
1 Schule 
1 Sprechen 
1 Studieren 
1 Tagung 
1 Uni 
1 USA Wahlen 
1 Versammlung 
1 Vorlesung 
1 Vortrag 
1 vortragen 
1 Wissenschaftlicher Vortrag 
1 Wissenschaftlicher 

Vortrag/Ausflug 

 

2 draußen sein 
2 Hände 
1 Aktionen, die mit der Hand ausgeführt werden 
1 Aktive Darbietung 
1 Aktivitäten mit Händen 
1 Ankommen 
1 Anstand 
1 Besuch 
1 Fremdenführer 
1 Geburtstagsfeier 
1 Gegenstände benutzen 
1 Handbewegungen im Alltag 
1 Hände bewegen / benutzen 
1 Handeln 
1 händisch 
1 Handlungen mit einer Person 
1 Handmotorik 
1 Handnutzung 
1 Haptik 
1 Hausbesuch 
1 Interaktion mit Gegenständen 
1 Outdoor Aktivitäten 
1 Tätigkeiten 
1 Tätigkeiten mit einer Hand 
1 Vertreter 
1 Vertreterbesuch 
1 zielgerichtete Handlungen 

 

16 Hobby 
8 Freizeit 
8 Freizeitaktivitäten 
2 Freizeitgestaltung 
2 Kreativität 
2 Spaß 
1 Alltag 
1 Erholung 
1 Freizeitaktivitäten ausführen 
1 Freizeitbeschäftigungen 
1 kreativ 
1 Unterhalten 
1 Zurückzug 
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Household-related actions Interaction Locomotion 

6 Haushalt 
3 Hausarbeit 
3 Heimwerken 
2 Handwerk 
2 Instandhaltung 
2 Ordnung 
2 Tätigkeiten am Haus 
1 Alltagstätigkeiten 
1 Arbeit 
1 außerberufliche Tätigkeiten 
1 Bauernhof 
1 Besitz pflegen 
1 den Haushalt machen 
1 Handwerken 
1 Haus und Garten 
1 Haus und Gartenarbeit 
1 Haus- & Gartenarbeit verrichten 
1 Hausarbeiten 
1 Haushaltsaktivitäten 
1 Haushaltsarbeit 
1 Haushaltsarbeiten 
1 Haushaltstätigkeiten 
1 Heimwerkeln 
1 Hobbys und Aktivitäten mit 

Händen 
1 Körperliche Aktivität 
1 Körperliche Arbeit am Haus und 

Grundstück 
1 Körperliche Tätigkeiten 
1 Kraft ausüben 
1 Ordnung schaffen 
1 Putzen 
1 Routinearbeiten 
1 Zuhause 

 

 

4 Interaktion 
3 Kontakt 
2 Geste 
2 Interagieren 
2 Zwischenmenschliche Aktionen 
1 Austausch 
1 berühren 
1 Berührung 
1 Beziehung 
1 Date 
1 Freundschaft 
1 Handaktionen 
1 Handbewegungen 
1 händische Tätigkeiten 
1 Handkontakt 
1 Interaktion mit Menschen 
1 Interaktion zwischen menschen 
1 jemanden treffen 
1 Kontakt mit Menschen 
1 Körperkontakt 
1 sich berühren 
1 sich mit anderen Personen austauschen 
1 soziale Interaktion 
1 Tätigkeiten mit den Händen und Armen 
1 Verabschiedung 
1 Verbundenheit 
1 Wertschätzung zeigen 
1 Zusammenarbeiten 
1 Zusammenhalt 
1 Zwischenmenschlicher Austausch 

 

9 Fortbewegung 
5 Fahren 
3 Transportmittel 
3 Verkehrsmittel 
2 Fahrzeug fahren 
2 Fortbewegen 
2 Lenken 
2 Mobilität 
2 sich fortbewegen 
2 Straßenverkehr 
2 unterwegs sein 
1 am Straßenverkehr teilnehmen 
1 Fahrzeug benutzen 
1 Fortbewegungsmöglichkeiten 
1 Führerschein 
1 Lokomotion 
1 Maschinelle Fortbewegung 
1 Motorisierte Transportmittel 
1 Personentransport 
1 Reise 
1 Straße benutzen 
1 Transport 
1 Transportieren 
1 Transportmittel benutzen 
1 Verkehr 

Morning routine Sport-related actions  
8 Morgenroutine 
5 Aufstehen 
3 Abend 
3 Abendroutine 
1 Aktionen 
1 Aktivitäten 
1 Alltag 
1 Alltagshandlungen ausführen 
1 aufwachen 
1 Bad 
1 Badezimmer 
1 Bettfertig machen 
1 Fertig machen für den Tag 
1 Handeln 
1 Handlungen 
1 Hygiene 
1 Ins Bett gehen 
1 Körperliche Bewegung 
1 Körperliche Tätigkeiten 
1 Morgen 
1 Morgens 
1 morgens aufstehen 
1 Nachtschlafvorbereitung 
1 Regeneration 
1 runterfahren 
1 Schlafen gehen 
1 Schlafzimmer 
1 sich fertig machen für das Schlafen 
1 tägliche Routine 
1 Tätigkeiten 
1 Wach werden 

 

15 Sport 
8 Hobby 
4 Freizeit 
3 Aktivitäten 
3 Bewegung 
2 Freizeitaktivitäten 
2 Körperliche Aktivität 
2 Urlaub 
1 Abenteuer 
1 Bewegen 
1 Fitness 
1 Freizeitaktivitäten ausführen 
1 Körperbezogene Aktivitäten 
1 Körpereinsatz Bewegung 
1 Körperliche Betätigung 
1 Leibesübungen 
1 Outdooraktivitäten 
1 sich betätigen 
1 sich bewegen 
1 Spaß 
1 Spiel 
1 Sport machen 
1 Sport treiben 
1 Sportaktivitäten 
1 Sportarten 
1 sportliche Aktivitäten 
1 Sportliche Tätigkeiten 
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Table A3. List of categories and corresponding actions obtained in Experiment 1.  

Category Actions 

Aggressive actions Arguing; Breaking; Punching; Tearing 

Communication Calling; Reading; Texting; Using a computer; Writing on a 
board 

Food-related actions 
Chopping vegetables; Cooking; Cutting with knife; Drinking; 
Eating; Feeding; Grocery shopping; Licking ice cream; Pouring 
liquid; Stirring; Washing dishes 

Gestures 
Applauding; Hand shaking; Leaning on a hand; Looking through 
microscope; Public speaking; Thumbs up; Waving hand; 
Writing 

Hand-related 
actions Holding umbrella; Knocking on a door; Pointing 

Hobby 
Dancing; Drawing; Drumming; Knitting; Listening to music; 
Painting; Playing guitar; Stroking a dog; Taking a photo; 
Walking a dog; Watching TV 

Household-related 
actions 
 

Carrying buckets; Cleaning the floor; Constructing; Cutting 
trees; Digging; Dragging; Fixing a bike; Gardening; 
Hammering; Hoovering; Making a bed; Pushing a trolley; 
Raking leaves; Washing a car 

Interaction High-fiving; Holding hands; Hugging; Paying someone 

Locomotion Driving a car; Driving a scooter 

Morning routine Brushing hair; Brushing teeth; Sitting; Sleeping; Switching on 
the light; Washing hands; Yawning 

Sport-related 
actions 

Blowing bubbles; Building a sandcastle; Climbing; Fishing; 
Goal keeping; Handstand; Having a shower; Hiking; Hula-hoop; 
Hopping; Juggling; Jumping; Kayaking; Kicking a football; 
Lifting weights; Playing basketball; Playing golf; Playing tennis; 
Pulling; Riding a bike; Rowing a boat; Running; Shooting an 
arrow; Skateboarding; Skiing; Sliding (water sliding); Surfing; 
Swimming; Swinging; Throwing a Frisbee 

Cluster containing 
one action 

Smoking 
 

Hierarchical clustering resulted in 12 action categories (see left column). Actions belonging to a given category 

are provided in the right column. Categories containing at least two actions (11 categories) were used in the 

Category naming experiment, which was performed to generate category labels (corresponding names are 

provided in the left column, sorted alphabetically). One cluster that consisted of one action only (smoking) was 

discarded from further analyses (highlighted in gray, shown at the bottom of the table). 
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A.2 Experiment 2 

A.2.1 Instructions 

Participants taking part in the feature generation task received the following 

instructions (in German): 

During the experiment, you will see a set of 25 action words and you will be asked to 

write down features of each action. You should write all the features which you think are 

relevant to describe a given action and to distinguish this action from the others. Please 

consider both abstract features (such as “sociality”, “transitivity”) and more detailed, 

concrete features (such as “moving fingers”, “lifting up arms”). Please try to imagine a 

given action in many different scenes and write down features that are common. 

You can type the features in boxes placed next to the action word. Please type as 

many features as possible, with a minimum of 5 per word. See the examples to get an idea of 

how to describe the action words in terms of their features. 

Playing piano: Music related, Body-sense, Finger movement, Rapid change, Being 

focused 

Talking: Sociality, Contact, Communication, Mouth movement, Eye contact 

A.2.2 Procedure 

 

Body	parts

Preparing	the	dataset Exemplary	ac on	themes Exemplary	key	features

Object-directednesss

Pace

Arms
Fingers
Legs
...

Targe ng	a	manipulable	object
Targe ng	a	non-maipulable	object

Targe ng	a	person

1.	Slow	pace

7.	Fast	pace	

...

... ...

Ge ng	ac on	features

Change	of	loca on
Far	away	from	the	star ng	point

In	proximity
No	change	of	loca on

Contact	from	a	distance
Touching	another	person

Indirect	contact
...

Contact	with	others

2) Removing unfrequent features

3) Getting "themes" best explaining
 the feature dataset

1) Merging features with a 
similar meaning

on-line survey

Action word To run

Sport
Fast pace

Feet
Feet movement

Legs
Leg movement
Arm movement
Fast breathing
Coordination

Muscles

Action features 
provided by a 
participant

...
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Figure A6. Generation of action themes and selection of key features. First, participants listed at least five 

features per action word (“Getting action features”), resulting in 5683 features in total. Next (“Preparing the 

dataset”), for each action, features with a similar meaning were merged, resulting in 4505 unique features (3243 

unique features within the whole dataset). Guided by features examined in previous studies and the frequency 

of unique features, we selected a total of 59 features (see fourth column for examples), which we organized 

according to 19 broad action themes (see third column for examples).  

A.3 Experiment 3  

A.3.1 Instructions 

Participants received the following written instructions (in German): 

In this study, you will be asked to describe different actions based on ratings in 

different themes. These themes include various aspects of actions, such as: involved body 

parts, duration of the action, its speed, etc. 

The experiment takes approximately 45 minutes and consists of 25 actions. In the 

course of the experiment, you may be asked to rate the same actions more than once. 

Below you will find an example of the action "applying make-up" with sample 

answers. Please take a look at this example and the explanations of the themes to better 

understand what each theme means. 

Unless otherwise stated, you can select more than one option for each theme. 

A.3.2 Data analysis 

A.3.2.1 Feature redundancy removal 

During the feature rating, features for some of the themes (e.g., Far away, In 

proximity, No change of location for the theme Change of location; see Table A4) required 

binary judgments. To reduce the redundancy within the dataset, we merged features that 

could be expressed on a single scale. As a first step, we assigned a number to each of the 

features within a theme (e.g., 3, 2, 1 for the features Far away, In proximity, No change; see 

Figure A7) and subsequently transformed the ratings to one rating depictable on a scale. 

Figure A7 provides two example ratings. In the first example (for the action Driving a car), 

the participant indicated “Yes” for the feature Far away, and a “No” for the features In 

proximity and No change of location. This answer was transformed to the new rating “3”. In 
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the second example (for the action Arguing), the participant gave the answer “No” for the 

feature Far away, and the answer “Yes” for the features In proximity and No change of 

location. In this case, the answer was transformed to the new rating “1.5” (i.e., the mean of 

the values corresponding to the two features judged with “Yes”). As a result, the number of 

features was reduced to 49, and nine of them could be depicted on a discrete scale. In the 

next step, we re-scaled ratings of all 49 features to a range of 0-1.  

Table A4. List of merged binary features. 

Original features Location on the 
new scale Merged features 

Far away 
In proximity 

No change of location 

3 
2 

1 

Change of location 

A day 

Several hours 
Half an hour to an hour 

A few minutes to half an hour 
A few seconds to a few minutes 

Up to a few seconds 

6 

5 
4 

3 
2 

1 

Duration 

Touching another person 

Contact from a distance 
Indirect contact 

Does not require contact 

4 

3 
2 

1 

Contact with others 

Numbers in the middle column indicate location of each “old” feature on the scale of the new theme. New 

feature labels are provided in the right column. 

Figure A7. Feature redundancy removal. See text above for details. 
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A.3.2.2 Multicollinearity/Variance Inflation Factor 

To estimate the amount of multicollinearity between feature ratings we computed the 

Variance Inflation Factor (VIF) (Table A5a) and between-feature correlations using Pearson 

correlation (Figure A8a). For features with a VIF > 10 and significant between-feature 

correlations (p < 0.05), we collapsed ratings. The ratings were collapsed at the level of 

individual participants. This resulted in the features Upper limbs (by collapsing Arms and 

Shoulders), Hands (by collapsing Dominant hand, Both hands, and Fingers) and Lower limbs 

(by collapsing Legs, Hips, and Feet), for a final set of 44 features in total. Results of the VIF 

for these merged features are shown in Table A5b and results for the between-feature 

correlations are provided in Figure A8b.  
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Table A5. Variance Inflation Factor. (a) Before and (b) after collapsing features.  

a b 
 

Feature VIF 

Arms 
Shoulder 
Dominant hand 
Both hands 
Fingers 
Legs 
Hips 
Feet 
Head 
Mouth 
Targeting a non-manip. object 
Targeting a manip. object 
Targeting a tool 
Targeting a person 
No object involved 
Horizontal 
Vertical 
No movement 
Unspecified trajectory 
Circular arms 
Circular legs 
Rotating arms 
Rotating legs 
Abduction-Adduction arms 
Abduction-Adduction legs 
Sweeping arms 
Sweeping legs 
Up-Down arms 
Up-Down legs 
Straight posture 
Bending 
Sitting 
Laying 
No specific posture 
Indoor 
Outdoor 
Keeping balance 
Harm 
Water 
Season-dependence 
Change of location 
Duration 
Contact with others 
Pace 
Use of force 
Goal-directedness 
Concentration 
Noise 
Valence 

6.365 
6.441 
11.152 
4.894 
11.696 
58.000 
45.948 
33.369 
5.310 
3.590 
3.182 
4.610 
2.694 
6.570 
6.098 
6.533 
4.979 
12.164 
3.295 
4.746 
4.392 
5.637 
5.745 
3.404 
6.892 
4.706 
5.572 
4.512 
5.566 
4.122 
3.789 
3.371 
3.214 
4.436 
10.497 
2.762 
4.706 
3.393 
2.591 
6.964 
6.827 
6.451 
5.168 
4.880 
6.600 
3.269 
3.676 
3.942 
2.577 

 

 

Feature VIF 

Upper limbs 
Hands 
Lower limbs 
Head 
Mouth 
Targeting a non-manip. object 
Targeting a manip. object 
Targeting a tool 
Targeting a person 
No object involved 
Horizontal 
Vertical 
No movement 
Unspecified trajectory 
Circular arms 
Circular legs 
Rotating arms 
Rotating legs 
Abduction-Adduction arms 
Abduction-Adduction legs 
Sweeping arms 
Sweeping legs 
Up-Down arms 
Up-Down legs 
Straight posture 
Bending 
Sitting 
Laying 
No specific posture 
Indoor 
Outdoor 
Keeping balance 
Harm 
Water 
Season-dependence 
Change of location 
Duration 
Contact with others 
Pace 
Use of force 
Goal-directedness 
Concentration 
Noise 
Valence 

5.301 
5.339 
10.663 
4.665 
2.984 
2.379 
3.863 
2.513 
6.103 
4.461 
5.944 
4.411 
11.169 
3.077 
4.242 
3.802 
5.082 
5.208 
2.945 
5.623 
4.260 
4.248 
3.805 
5.316 
3.715 
2.928 
3.214 
2.980 
4.962 
8.321 
2.703 
4.426 
3.268 
2.316 
5.286 
6.661 
5.881 
4.874 
3.861 
5.568 
3.016 
3.262 
2.949 
2.411 

  

Different colors (i.e. yellow, green, and blue) indicate which features were merged together (column a), and 

which final features were formed based on them (column b). 
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a 

 

b 

Figure A8. Between-feature correlations. Stars indicate significant correlation between features, corrected 

for multiple comparisons (FDR, p < 0.05). (a) Before averaging across highly correlated features (see Section 

A.3.2.2). (b) After averaging across highly correlated features. 
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A.3.3 Results 

A.3.3.1 Multi-feature model 

 

Figure A9. Actions that received minimum (left column) and maximum (right column) ratings for some 

exemplary features (Change of location, Contact with others, Noise, Valence). 

 

 

 

  

Change	of	location	

Contact	with	others	

Noise	

Valence	
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A.3.3.2 Feature-based representations of all 11 categories 

 

Figure A10. Feature-based representations of all 11 action categories. Different colors indicate features 

belonging to the same theme. The length of the spikes corresponds to the averaged rating of the corresponding 

feature for that category. Shaded area indicates a 95% confidence interval across actions within each category. 
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A.3.3.3 Feature-based representations of all 100 actions 
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Figure A11. Feature-based representations of individual actions grouped by action categories. One 

hundred actions are depicted as radial plots and grouped by the categories obtained from Experiment 1. Radial 

plots show the importance of various features (obtained from Experiment 2) ranging from 0 to 1. Features are 

color-coded, with features belonging to one theme indicated by the same color (same color code as Figure 2.2). 

A list of the themes and corresponding colors is provided in the legend of the exemplary radial plot on the top 

of the figure.  

  

Riding a bike Rowing a boat Running Shooting an arrow Skateboarding Skiing

Sliding Surfing Swimming Swinging Throwing a Frisbee

Single action: Smoking
Smoking
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A.3.3.4 Quantitative differences between action categories 
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Figure A12. Quantitative differences for feature ratings of individual action categories in comparison to mean ratings obtained for the remaining categories, expressed as 

z-scores. This comparison reveals crucial features that distinguish between action categories. Significant pairwise comparisons are indicated by bold feature labels on the 

x axes (p < 0.05, FDR corrected). 
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A.3.3.5 Feature RDMs 

 

Figure A13. Feature RDMs used to correlate with the category model: unweighted multi-feature RDM, 

weighted multi-feature RDM, 44 single-feature RDMs, and six theme RDMs. Black squares indicate high 

similarity between the actions whereas white squares indicate low similarity. The RDMs were obtained by 

computing the Euclidean distance between pairs of actions. 

A.3.3.6 Correlation between category- and feature-based representations 
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Figure A14. Correlation between category RDM (resulting from Experiment 1) and different feature RDMs 

(see Section Experiment 3, Data analysis, Correlation of category- and feature-based models, for details). The 

figure is an extension of Figure 2.4a. Significant differences between the feature RDMs are indicated by 

horizontal lines above the bars (stimulus bootstrap test, p < 0.05, FDR corrected).  
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Table A6. Correlations between the category RDM (resulting from Experiment 1) and feature RDMs (resulting 

from Experiment 3). Feature RDMs are organized in a descending manner (same order as in Figure A14). 

 Feature RDM correlated with category RDM Kendall’s tA correlation 

Weighted multi-feature 0.1206 

Valence 0.0926 

Unweighted multi-feature  0.0850 

Keeping balance 0.0701 

Lower limbs 0.0671 

No specific posture 0.0621 

Use of force 0.0588 

Body parts 0.0573 

Object-directedness 0.0573 

Trajectory 0.0573 

Type of limb movement 0.0573 

Posture 0.0573 

Location 0.0573 

Noise 0.0474 

No movement 0.0467 

Harm 0.0421 

Straight posture 0.0417 

Concentration 0.0386 

Pace 0.0367 

Laying 0.0354 

Targeting a manipulable object 0.0348 

Targeting a person 0.0318 

Head 0.0314 

Upper limbs 0.0281 

Change of location 0.0279 

Contact with others 0.0249 

Indoor 0.0238 

Targeting a non-manipulable object 0.0203 

Targeting a tool 0.0198 

Sitting 0.0197 

Up-Down legs 0.0193 

Mouth 0.0157 

Abduction-Adduction legs 0.0135 
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Horizontal 0.0135 

Vertical 0.0134 

No object involved 0.0118 

Duration 0.0116 

Outdoor 0.0100 

Circular legs 0.0086 

Sweeping legs 0.0069 

Goal-directedness 0.0060 

Bending 0.0045 

Rotating legs 0.0042 

Sweeping arms 0.0021 

Hands 0.0020 

Abduction-Adduction arms 0.0017 

Season-dependence 0.0017 

Circular arms 0.0003 

Rotating arms -0.0015 

Up-down arms -0.0051 

Water -0.0058 

Unspecified trajectory -0.0091 
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A.3.3.7 Valence-based representation of actions 

 

Figure A15. Valence-based representation of actions. 2-dimensional arrangement of actions obtained from 

the multi-arrangement experiment (Experiment 1; same representation of actions as shown in Figure 2.1), color-

coded with respect to the valence ratings obtained from Experiment 3 (red: negative valence, yellow: positive 

valence). Based on the importance of the feature valence revealed by the results shown in Figure 2.4b, this 

visualization aims to better understand the organization of observed actions according to this feature. 
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B. Study 2 Supplementary materials  
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Figure B1. The complete set of stimuli used in the study. The stimulus set consisted of 100 actions, with four 

different exemplars per action. Here, the stimuli are organized alphabetically, presented in a grid format, 

progressing row-by-row. All four exemplars per action are included. 
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A B 

  

Figure B2. A. Reliability map including voxels above the threshold of 0.25. The voxel threshold was selected 

based on B. B Threshold selection. The red vertical line is positioned at voxel-reliability threshold equal 0.25. 

At this value, the curve reaches a plateau, indicating that increasing the threshold will only minimally increase 

the item reliability, with a risk of discarding informative voxels.  

 

 

Figure B3. (see Figure 3.2 for direct comparison). Results of the group-level searchlight-based RSA for: (A) 

the behavioral action space model (regressing out the low level visual control model and the GIST model); (B) 

the behavioral action space model (regressing out the low level visual control model, the GIST model and the 

action feature model; (C) the action feature model (regressing out the low level visual control model and the 

GIST model). Statistical maps show t-values thresholded at a z-score of 1.65, corresponding to p < 0.05 (one-

tailed), corrected for multiple comparisons (TFCE, p < 0.05, 5000 Monte Carlo permutations). This figure 

shows the same analysis as shown in Figure 3.2, with the only difference that the low-level visual control model 

was constructed on the basis of the first layer of AlexNet. 

Action space model
regressing out the visual control 

model and the GIST model

A Action space model
regressing out the visual control 
model, the GIST model and the 

action feature model

regressing out the visual control 
model and the GIST model

B Action feature modelC

1.65 8.42
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Figure B4 (see Figure 3.3 for direct comparison). Results of the searchlight RSA, carried out separately for 

each of the eight dimensions (regressing out the low-level visual control model and the GIST model). Six out 

of eight dimensions showed significant correlation with neural data after correction for multiple comparisons 

(TFCE, p < 0.05, 5000 Monte Carlo permutations). Statistical maps show t-maps thresholded using TFCE at z-

score of 1.65. The remaining dimensions, namely Arm movement kinematics and Negative Emotions, did not 

survive the correction. This figure shows the same analysis as shown in Figure 3.3, with the only difference 

that the low-level visual control model was constructed on the basis of the first layer of AlexNet. 

  

General movements Goal-directedness Context

Posture Contact with others Object-directedness

1.65 9.05
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Figure B5. The scree plot illustrates the eigenvalues of principal components derived from the Principal 

Component Analysis (PCA). The plot displays a downward curve, indicating the distribution of variance 

explained by each component. The first components explain a large portion of the variability within the dataset, 

hence their eigenvalues are high, whereas the latter components contribute only a small fraction to the overall 

variance. Our focus was to identify components with high eigenvalues, as they provide insights into the most 

important aspects of the dataset. We used the “elbow method” to locate the point on the plot where the drop in 

eigenvalues reaches a plateau, indicating that the next components add relatively little to the information already 

extracted. Based on this approach, we selected eight components (see red line). 
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Table B1. Results of the Principal component analysis for components with eigenvalues greater than 1. Based 

on the scree plot (Figure B5), we selected eight components (marked with a gray background). In the Features 

column, we listed the features that had the most positive and negative loadings for each component, indicating 

the importance of the respective features for a given component. The column Dimension label contains labels 

assigned to the components by the authors of the paper, based on the features associated with each component. 

Dimensions that survived corrections for multiple comparisons in the searchlight-based RSA (see Figure 3.3) 

are highlighted in bold font. 

# % of 
variance Features Dimension label 

1 21.63 

Lower limbs 
Sweeping – legs 
Abduction/Adduction – legs 
Up-down – legs 
Rotating – legs 
Circular - legs 
Keeping balance 
Change of location 
Use of force 
Sitting (negative loading) 
No movement (negative loading) 
Horizontal trajectory 

General movements 

2 11.90 

Rotating – arms 
Sweeping – arms 
Circular - arms 
Unspecified trajectory 
Water 

Arm movement kinematics 

3 7.47 

Goal-directedness 
Abduction/Adduction - arms 
Upper limbs 
Hands 
Targeting a non-manipulable object 
Targeting a tool 

Goal-directedness 

4 6.32 
Indoor (negative loading) 
Outdoor 
Season-dependence 

Context 

5 4.99 
Straight posture 
Laying (negative loading) 
No specific posture (negative loading) 

Posture 

6 4.34 Contact with others 
Targeting a person Contact with others 

7 4.11 
Targeting a manipulable object 
No object involved (negative loading) 
Concentration 

Object-directedness 

8 3.32 
Noise 
Harm 
Valence (negative loading) 

Negative emotions 

9 3.27 Up-down – arms 
Vertical trajectory  Vertical movements 

10 2.91 Mouth 
Head Head 

11 2.54 
Duration 
Pace 
Bending 

Dynamic posture 
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Table B2. Results of (A) the post-session questionnaire, provided to the participants after the MRI session, and 

(B) error rates for identifying catch trials within the MRI session, individual for each participant. Data from the 

participants marked in red were not included in the group level analysis due to excessive head motion (two 

participants) and due to stopping the scan after five runs (see Materials & Methods, Participants for details). 

Data from these three participants were not included in the analysis of the behavioral or the neuroimaging data.  

A B 

PARTICIPANT Comfort Tiredness Verbalization Task Error rate (%) 

#1 5 3 4 2 44.64 

#2 4 2 3 5 35.71 

#3 3 3 5 3 23.21 

#4 5 2 2 6 19.64 

#5 5 3 4 5 8.93 

#6 3 3 6 5 33.93 

#7 3 4 6 2 33.93 

#8 5 4 5 4 26.79 

#9 4 2 6 4 7.14 

#10 5 4 5 5 42.86 

#11 3 3 5 4 26.79 

#12 5 3 5 5 17.86 

#13 4 2 5 5 17.86 

#14 3 4 5 4 16.07 

#15 5 6 6 4 21.43 

#16 6 3 6 5 3.57 

#17 4 5 4 2 17.86 

#18 5 4 3 4 7.14 

#19 5 4 6 3 19.64 

#20 4 3 4 5 37.50 

#21 4 5 4 3 26.79 

#22 5 3 5 5 28.57 

#23 4 4 4 4 44.64 
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C. Study 3 Supplementary materials 
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Figure C1. Overview of the stimuli used in the fMRI experiment. The stimulus set consisted of 160 images of 

actions. There were 20 actions belonging to four action categories (Communication, Grooming, Ingestion, 

Locomotion) and each action was presented with eight exemplary images. Here, the stimuli are organized based 

on categories. Each row represents one action (e.g., arguing), while each column represents an example of a 

given action. 

 

 

Figure C2. Mean decoding accuracy maps for the whole-brain MVPA. We performed a whole-brain searchlight 

analysis to investigate brain regions outside of the AON which would evoke unique for each category neural 

activity patterns. Decoding was performed on each category versus each other category (svm classifier) and 

subsequently averaged across these pairwise classifications. All the maps survived multiple comparison 

correction (TFCE corrected, p < 0.05, 5000 Monte Carlo permutations). The decoding was significant in 

widespread, qualitatively similar maps, consisting of the occipitotemporal, parietal and frontal regions. Due to 

high similarity between the maps, we did not include them in the functional connectivity analysis. See Table 

C2 for details on their peak coordinates. 

Communication Grooming

1.65 17.53

Ingestion Locomotion
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Table C1. Stimuli used for the fMRI experiment. The stimulus set consisted of 20 actions belonging to four 

action categories. 

Action 
category Communication Grooming Ingestion Locomotion 

Actions 

Arguing 
Pointing 
Talking 

Thumbs up 
Waving 

Applying cream 
Applying makeup 

Brushing teeth 
Taking shower 
Washing hands 

Drinking directly 
Drinking using straw 

Eating with 
chopsticks 

Eating with fork 
Eating with hands 

Driving by bike 
Driving by scooter 

Roller skating 
Running 
Walking 

 

 

Table C2. Coordinates of the peaks within the AON regions. The peaks were obtained from the group-level 

statistical maps with a contrast All Categories vs Baseline. 

Hemisphere Region t Voxel location MNI152 

Left LOTC 12.17 [65 26 32] [-40 -74 -8] 

Right LOTC 13.18 [26 26 31] [38 -75 -10] 

Left aIPS 4.07 [57 35 54] [-24 -56 36] 

Right aIPS 5.02 [31 37 53] [28 -52 34] 

Left IFG 5.52 [66 67 48] [-42 8 24] 

Right IFG 5.78 [24 69 48] [42 12 24] 
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Table C3. Clusters identified in the conjunction analysis. Peaks marked with red color are those that were 

subsequently used in the functional connectivity analysis (three peaks with the highest t-values per category). 

L – left hemisphere. R – right hemisphere. 

 
Region size t 

Voxel 
location MNI152 

All categories 
 L Occipital pole (45%) 29603 7.49 [53 13 37] [-16 -100 2] 
 L Insular cortex 1220 4.04 [58 76 36] [-26 26 0] 
 R Inferior frontal gyrus 753 3.92 [24 69 48] [42 12 24] 
 L Paracingulate gyrus 516 3.78 [47 68 59] [-4 10 46] 
 R Frontal orbital cortex 335 3.25 [29 77 36] [32 28 0] 
 L Callosal body 204 3.56 [48 65 46] [-6 4 20] 
 R Cerebellum 110 3.26 [31 30 14] [28 -66 -44] 
 L Cerebellum 101 3.55 [60 31 11] [-30 -64 -50] 
Communication 
 R Supramarginal gyrus  6028 5.32 [18 43 40] [54 -40 8] 
 L Middle temporal gyrus  5276 5.81 [74 40 40] [-58 -46 8] 
 L Precentral gyrus  3652 4.02 [63 66 50] [-36 6 28] 
 R Inferior frontal gyrus 3231 4.83 [26 70 47] [38 14 22] 
 L Cerebellum 2716 4.8 [52 25 17] [-14 -76 -38] 
 R Paracingulate gyrus 721 3.03 [41 80 53] [8 34 34] 
 R Occipital pole 314 2.9 [39 17 45] [12 -92 18] 
 R Amygdala 191 2.97 [31 59 27] [28 -8 -18] 
 R Insular cortex 121 2.84 [26 62 16] [38 -2 -18] 
Grooming 
 L Lateral occipital cortex, superior 

division 
1634 3.41 [56 21 50] [-22 -84 28] 

 L Occipital fusiform gyrus 310 2.67 [56 29 32] [-22 -68 -8] 
 L Lateral occipital cortex, inferior 

division 
212 2.71 [71 28 32] [-52 -70 -8] 

Ingestion 
 L Cingulate gyrus 1985 3.09 [50 81 35] [-10 36 -2] 
 R Postcentral gyrus 1831 3.25 [16 57 53] [58 -12 34] 
 L Precentral gyrus 1197 3.12 [73 63 44] [-56 0 16] 
 L Insular cortex 653 3.59 [64 60 37] [-38 -6 2] 
 R Cingulate gyrus 379 2.54 [45 49 57] [0 -28 42] 
 R Insular cortex 322 3.39 [27 61 39] [36 -4 6] 
 L Frontal orbital cortex 211 3.74 [57 76 27] [-24 26 -18] 
 L Frontal pole 164 2.68 [56 83 54] [-22 40 36] 
 R Frontal pole 125 2.31 [33 84 52] [24 42 32] 
 R Cingulate gyrus 105 2.51 [42 48 71] [6 -30 32] 
 R Middle temporal gyrus 100 2.78 [13 57 28] [64 -12 -16] 
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Locomotion 
 R Parahippocampal gyrus 1187 5.07 [36 46 29] [18 -34 14] 
 L Lingual gyrus 868 5.13 [58 40 32] [-26 -46 -8] 
 Cerebellum 147 3.06 [38 41 59] [14 -44 -16] 

 

 

Table C4. Clusters identified in the searchlight MVP analysis for decoding action categories (svm classifier, z-

normalized). The maps are visualized in Figure C2. L – left hemisphere. R – right hemisphere. 

 
Region size t 

Voxel 
location MNI152 

Communication 
 R Temporal occipital fusiform cortex 96553 17.3 [23 41 26] [44 -44 -20] 
Grooming 
 L Temporal fusiform cortex 79205 17.5 [58 41 29] [-26 -44 -14] 

Ingestion 

 L Temporal occipital fusiform cortex 77803 16.9 [66 40 26] [-42 -46 -20] 

Locomotion 
 L Temporal occipital fusiform cortex 97734 17.2 [66 39 27] [-42 -48 -18] 
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