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nLight-matter interaction is a powerful tool for 

unravelling the properties of novel materials. 
In this work, we study the electron dynamics 
induced in effective Dirac systems, such as 
graphene and topological insulator surface 
states, by time-periodic driving and ultrashort 
laser pulses. We propose that so-called 
Floquet oscillations arise when a static electric 
field drives electrons through the Floquet 
bandstructure established by time-periodic 
driving. This phenomenon is an analogue of 
Bloch oscillations in spatially periodic lattices. 
Moreover, we explore the high-order harmonic 
radiation emitted by topological insulator 
surface states interacting with ultrashort, 
strong laser pulses. We develop a novel 
simulation method based on the propagation 
of wave packets, that takes the Fermi sea into 
account. Our results show how the Berry 
curvature imprints on the emitted spectrum 
and we find a susceptibility of the spectra to 
external magnetic fields.
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Abstract

The interaction of matter with strong laser fields is a powerful tool for studying
and even manipulating a material’s properties. Investigating the light-induced
electron dynamics in novel, Dirac-like quantum materials, such as graphene
and three dimensional topological insulators, is an important step towards
unraveling the full potential of such exotic matter for technological applications.
In this dissertation, we explore the electron dynamics in effective Dirac systems
induced by both time-periodic driving and ultrashort laser pulses.

In the first part, we propose so-called Floquet oscillations in periodically
driven systems as an analogue of the well-known Bloch oscillations in spatially
periodic lattices. The time-periodic driving leads to the formation of Floquet
bands, that describe the dynamics of electrons similar to the usual Bloch
bands. By applying an additional static electric field, electrons are driven
through this Floquet bandstructure and thereby undergo an oscillatory motion
governed by the profile of the Floquet bands, allowing for an imaging of the
latter. Alternatively, Floquet oscillations can be understood as consecutive
transitions of the electron at (multi-)photon resonances of the driving field with
the static system’s bandstructure. Accordingly, the frequency of the Floquet
oscillations does not follow the driving frequency, but is inversely proportional
to it. We demonstrate Floquet oscillations and their properties by propagating
wave packets in effective Dirac systems for two types of driving, and confirm
their potential experimental realization in graphene. We do so both in a
time-dependent framework and by applying Floquet theory. Therefore, our
studies bridge the gap between the Floquet picture and the straightforward
time-dependent analysis.

In the second part, we consider the nonlinear interaction of electrons in
topological insulator surface states with ultrashort laser pulses. These surface
states are also governed by the Dirac equation, and are extremely robust
against perturbations due to their topological protection. The suppression of
backscattering, caused by spin-momentum locking, gives rise to long electron
scattering times and allows for the imprint of coherent transport effects on
the high-order harmonics emitted by the strongly driven electrons. After
performing detailed studies of the single-electron dynamics induced by the
laser pulse, we develop a novel method for simulating high-harmonic generation
from a Fermi sea by propagating wave packets. This method complements
the oftentimes applied semiconductor Bloch equations, and offers a more
intuitive insight into the effective Fermi sea dynamics. Additionally, our



approach allows for the inclusion of spatially dependent potentials and thus
for studying orbital effects of a magnetic field. Our results highlight, how the
Berry curvature imprints on the emitted spectrum. On top of that, we find
evidence for the influence of different momentum-space regions on the emitted
harmonics and a susceptibility of the spectra to external magnetic fields.
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1. Introduction

The fascination with colorful phenomena, such as rainbows, runs through the
entire human history, as recounted e.g. in the book “The rainbow: from myth
to mathematics” by Boyer [1]. Closely related to this fascination is the search
for an understanding of the nature of light itself. Already in the era of the
Roman empire, the natural philosopher Seneca observed the similarity of the
colors created by a conically shaped glass rod and a rainbow. One of the
first actual drawings of such a spectral decomposition based on systematic
experiments was found in the notebooks of da Vinci. The famous polymath
studied the rainbow colors projected onto the floor by light transmitted through
air bubbles in a transparent glass of water, thus excluding his own eyes as
origin of the phenomenon. The term spectrum, however, was only introduced
by Newton about 200 years later, in 1672, in order to describe the colorful
image the sun created in a prism. During the 19th century, the discovery
of dark lines in the solar spectrum, first by Wollaston and then, in refined
resolution, by Fraunhofer, as well as of the dependence of a flame’s color on the
burned material by Brewster and Herschel, among others, revealed the relation
between spectral lines and the matter with which the light interacts [2]. In
1859, Kirchhoff and Bunsen determined that the so-called Frauhofer lines in
the solar spectrum allow conclusions about the elements that sunlight passes
through on its way to earth [3]. Shortly after, in 1865, Maxwell published his
famous differential equations, and thus established the classical understanding
of light as an electromagnetic wave [4].

Nowadays, we additionally have a quantum mechanical interpretation of light,
based on the introduction of energy quantization by Planck in 1901 [5] and
the explanation of the photoelectric effect by Einstein in 1905 [6]. In this
picture, light consists of photons, a massless particle with energy E = hν
depending on the light’s frequency ν and quantized with Planck’s constant
h = 4.135 . . . · 10−15 eV s. When interacting with atoms, molecules, or solids,
photons with energy matching the energy difference between two electronic
states of the material can be absorbed and excite an electron to a higher energy
level. Equivalently, a photon of the same energy is emitted when the electron



2 1. Introduction

relaxes back to its original state. Furthermore, this electronic relaxation can
be triggered by the passing of another photon of the same energy. This process
is called stimulated emission and was predicted by Einstein in 1917 [7]. It
is the basic working principle of the laser, which was first developed in the
middle of the twentieth century [8, 9]. Laser radiation is characterized by its
long coherence length and a narrow beam width. It can be used to achieve
high intensities of radiation and nearly monochromatic light, as well as to
create ultrashort pulses which in turn contain a broader spectral window.
Today, the application of lasers ranges from every-day life (e.g. DVD players
or laser pointers), over industry (cutting tools) and medicine (corrective eye
surgery), to fundamental research in the natural sciences. The significance of
the laser and related scientific achievements is reflected in the award of more
than 30 Nobel Prizes [10].

Just this year (2023), Agostini, Krausz, and L’Huillier were granted the Nobel
Prize for their contributions to the development of “experimental methods
that generate attosecond pulses of light for the study of electron dynamics
in matter” [11]. The first step on the long road towards creating such pulses
was the observation of high-harmonic generation (HHG) from noble gases
by L’Huillier and coworkers in 1988 [12]. In short, this phenomenon arises
when atoms, molecules, or solids interact with high-intensity laser fields. The
laser field drives strongly nonlinear processes in the material, which in turn
generate radiation at frequencies that are integer multiples of the incoming
laser frequency. Even though L’Huillier et al. were not the first to measure
HHG, their experiment was the first to reveal a very clear plateau, and to
thus show what is nowadays considered the typical shape of a high-harmonics
(HHs) spectrum: an intensity fall-off at the lowest-order harmonics, followed
by a plateau over multiple frequencies, and then finally a cutoff with again
decreasing intensity. It is the plateau, that was considered to provide the
bandwidth necessary for the creation of very short pulses [13–15]. However, for
an actual realization, first the mechanisms behind HHG from gases had to be
understood. A first intuition was provided by L’Huillier et al. by solving the
time-dependent Schrödinger equation for single electrons [16]. Soon after, the
rescattering model [17] and the three-step model [18] were presented by Schafer
et al. and Corkum, respectively. Both models are based on the idea that the
laser field first ionizes the atom it interacts with. Then, the field accelerates
the electron away from the ion. Since the field reverses in the next half-cycle,
the electron is moved back towards the ion and may recombine with it. In this
recombination process, the excess kinetic energy of the electron is emitted as a
photon, and thus a higher harmonic of the original laser frequency is created.
In 1994, these semiclassical interpretations were confirmed by a full quantum
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theory [19]. Then, further experimental verification [20] and the development
of techniques for measuring the duration of ultrashort pulses followed [21].
Finally, in 2001, the research groups of both Krausz and Agostini produced
the first attosecond pulses. Krausz achieved isolated pulses of a duration of
650 as [22], whereas Agostini demonstrated a train of pulses with a duration
of 250 as each [23]. By unlocking these ultrashort timescales, the ground for
observing the dynamics of electrons in atoms, molecules, and solids was set.

In this work, we focus on theoretically investigating the dynamics of electrons in
strongly driven Dirac systems. We propose the concept of Floquet oscillations
induced by periodic driving and an additional constant bias, and study HHG
from topological insulator (TI) surface states. Therefore, in the following we
introduce the research field of Floquet engineering and the surge of topological
concepts in condensed matter physics.

The creation of attosecond pulses is one of many technical advancements in
the field of nonlinear light-matter interaction. Since the early days of laser
physics, numerous scientists have worked on improving experimental methods
and theoretical approaches to study nonlinear effects. One branch of research
that emerged from these efforts is Floquet engineering. The goal of such
engineering is to create new, exotic states of matter by modifying a system’s
properties with a time-periodic external potential, typically in form of a laser
field. The influence of the applied potential is described by Floquet’s theorem,
a mathematical framework for the solution of linear differential equations with
periodic coefficients [24]. The first publications using this theorem to solve
the Schrödinger equation for time-periodic Hamiltonians, date from shortly
after the invention of the laser [25–27]. They motivated the development of
various formalisms to compute atomic and molecular multiphoton processes in
intense laser fields based on Floquet’s theorem, as summarized in the review
article [28] by Chu and Telnov. Concerning crystalline solids, already in
1975, Tzoar and Gersten predicted that intense radiation can induce band-gap
openings in the bandstructure. For their calculations, they combined Bloch
and Floquet theory in order to treat the Schrödinger equation of a spatially
and time-periodic Hamiltonian [29]. Even though this demonstrates that the
concept of Floquet engineering is almost as old as the laser itself, new interest
in this field arose with the discovery of novel quantum materials such as TIs
[30, 31], Dirac and Weyl semimetals [32–34], as well as strongly correlated
systems [35]. Floquet engineering is a tool for studying and creating such
novel materials, as reviewed e.g. by Oka and Kitamura in Ref. [36]. In the
following, we focus on TIs and the Dirac semimetal graphene.
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The first experimentally observed fingerprints of topology in condensed matter
physics were the integer and fractional quantum Hall effects in the 1980s,
measured by von Klitzing, and Tsui and Störmer, respectively, and honored
by Nobel Prizes in later years [37, 38]. The effects can be observed in two-
dimensional (2D) electron gases at low temperatures under the influence of
strong magnetic fields, and denote the integer/fractional quantization of the
Hall resistance with the so-called Klitzing constant RK = h/e2, where h is
Planck’s constant and e the elementary charge. The unusual robustness of
the two effects against imperfections like disorder is a typical characteristic
of a topologically protected system. The discovery of the quantum spin Hall
effect in 2005 revealed, that there also exist material systems which have
intrinsic topological properties [39]. Such TIs can be found in 2D and 3D
structures. They are characterized by hosting 1D edge channels and 2D
surface states, respectively, which are topologically protected by the presence
of time-reversal symmetry (TRS). Up to now, only a few representatives
of this new material class have been found, namely HgTe/CdTe quantum
wells [40, 41] in 2D and Bi2Se3, [42], Bi2Te3 [43], and Sb2Te3 [44], as well as
strained bulk HgTe [45] in 3D. Within this work, we focus on the 3D TI Bi2Te3.
In lowest-order momentum approximation, the surface states of 3D TIs are
described by a 2D Dirac cone. The surface states have a helical spin texture
and feature spin-momentum locking, which means that the spin orientation is
fixed by the momentum state and vice versa. Accordingly, scattering, i.e. a
change of momentum, also requires a change of spin. This leads to a strong
suppression of backscattering, since then the spin would also have to be flipped
by 180◦. The special properties of their surface states make TIs interesting
candidates for applications ranging from spintronics to quantum computation
[30]. Nevertheless, fundamental research is still working on uncovering their
full potential.

Already in 1988, Haldane devised a theoretical model based on a 2D honeycomb
lattice with nearest- and second-nearest-neighbor hopping, that exhibits a Hall
effect without the presence of a magnetic field, if the hoppings are chosen such
that TRS is broken [46]. Nowadays, this effect is denoted as the anomalous
Hall effect and the corresponding topological phase as Chern insulator [47–49].
However, with the underlying 2D honeycomb lattice, Haldane’s concept was
considered a mere toy model for a long time, since the existence of a 2D
structure was deemed as thermodynamically unstable [50, 51]. This changed,
when Novoselov and Geim created 2D graphene sheets by exfoliation in 2004
[52], and it turned out that slight crumbling leads to stabilizing effects [53].
By breaking TRS of a graphene sheet with circularly polarized light, i.e. using
Floquet engineering, an anomalous Hall phase is induced [54, 55], just as
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predicted by the Haldane model [46]. Accordingly, Floquet engineering can be
applied to introduce topological phases in matter. These Floquet TIs, as they
were denoted by Lindner et al. [56], can mimic originally undriven topological
phases, such as the Haldane model, but are also able to host a topological
phase that does not have a counterpart in non-driven systems [57–64]. Due
to the energy periodicity within the Floquet picture, edge states cannot only
connect bands inside the first energy Brillouin zone (BZ), but also wrap around
it, leading to peculiar consequences for the classifying topological invariant
[65–69]. Good knowledge and understanding of the Floquet bandstructure
is necessary to study this novel topological phase. The Floquet oscillations
we propose in Chap. 4 offer one possibility to map out Floquet bands and
to gain deeper insights into the relation between the Floquet picture and a
fully time-dependent description of a system. The concept behind Floquet
oscillations is analogous to that of Bloch oscillations [70–72]. By applying
a constant electric field, electrons are driven through the effective Floquet
bandstructure. Since the electron velocity is determined by the quasi-energy
dispersion, their motion in real space is proportional to the Floquet bands,
thus effectively drawing a picture of them [73]. From the perspective of the
time-dependent system, Floquet oscillations can be interpreted as consecutive
jumps between valence and conduction band whenever the periodic driving is
in resonance with the local energy gap. The opposite slopes of the two bands
lead to a reversal of the electron’s motion with every jump, thus explaining
the oscillatory behavior [74]. We demonstrate these Floquet oscillations based
on an effective Dirac Hamiltonian with two different time-periodic driving
protocols and explore the experimental feasibility in graphene.

In Chaps. 5, 6, and 7, we leave the Floquet picture and time-periodic driving
behind, and consider short laser pulses instead. We continue studying effective
Dirac models, but focus on the surface states of the 3D TI Bi2Te3 rather than
graphene. Our research aims at a better understanding of the interaction
of the surface electrons with strong light fields and the resulting emission of
high-order harmonics, as motivated in the following.

Experimental studies of TI surface states are often complicated by the need
to separate the contributions of bulk and surface to the measured signal. For
transport experiments, this issue can be circumvented by studying nanowires
instead of bulk crystals, thereby reducing the ratio of bulk to surface area
[75–77]. An alternative option is to use techniques that are only sensitive
to the surface, such as angle-resolved photoemission spectroscopy (ARPES),
which allows for the direct measurement of the surface bandstructure [42–44,
78, 79]. In 2018, a group of scientists around Huber achieved to take snapshots
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of the charge currents induced in Bi2Te3 surface states by an intense THz
laser pulse with subcycle time resolution using a time-resolved ARPES setup
[80]. Their experiment demonstrated, that the scattering times of the surface
currents are larger than 1 ps, making topological surface states a suitable
platform for all-coherent lightwave-driven electronic devices. Additionally, the
time-resolved observation of light-induced currents offers fascinating insights
into how the electrons interact with the strong laser pulse. Another signature
of strong-field light-matter interaction is the generation of HHs of the incoming
pulse frequency. Within a collaboration of several experimental and theoretical
groups, we contributed to the follow-up experiment of Huber et al., where
the observation of HHG from Bi2Te3 surface states was achieved [81]. In this
experiment, the bulk contribution to the emitted radiation was suppressed by
tuning the laser pulse frequency below the bulk band gap. Then, no resonant
transitions can occur in the bulk crystal, resulting in no free charge carriers
to generate HH emission from the bulk. Due to the gapless spectrum of the
surface states, however, no strong-field interband transitions are needed to
obtain free charge carriers in these states, giving rise to efficient HHG even
at relatively weak driving fields. Such efficient HHG from Dirac states has
also been reported for graphene [82, 83] and the Dirac semimetal Cd3As2 [84].
The aforementioned long scattering times of the surface states additionally
lead to the imprint of coherent transport effects in the HHs spectrum. For
Bi2Te3 this gives rise to an alternating polarization of odd and even harmonics
originating from the threefold symmetric Berry curvature of the surface states
[85], which in turn is a consequence of the hexagonal warping term entering
higher-order momentum expansions of the corresponding surface Hamiltonian
[86–88]. Similar effects, as well as an anomalous laser-ellipticity dependence of
the emitted harmonics, were observed for Bi2Se3 [89, 90]. Recent experiments
even suggest that this ellipticity dependence can be used to distinguish between
topologically trivial and non-trivial phases in Bi2Se3 [91], even though the
existence of universal signatures of topological phases in HHG is still under
debate [92].

For theoretical investigations of HHG in solids [93, 94], the most commonly
used numerical methods are the semiconductor Bloch equations [95], time-
dependent density functional theory (DFT) [96, 97] and methods based on
solving the time-dependent Schrödinger equation [98]. Despite these various
theoretical approaches, there still remain open questions about the interplay
of the different quantum processes occurring during the highly nonlinear
interaction of the laser field and the sample. In Chap. 5, we present our
theoretical studies on the processes that take place when electrons in effective
Dirac systems are accelerated by a strong THz pulse. We compare the
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results of four different Dirac-based models with focus on the Bi2Te3 surface
states. Our findings highlight, how the Berry curvature imprints on the
dynamics with orientation perpendicular to the laser polarization, and thus
also determines whether only odd or also even order harmonics are emitted
from the system. We consider single test charges that are narrow in momentum
space in order to disentangle contributions from different transition regimes.
For the actual computation of HHs spectra, however, methods considering
only single active electrons [99–101] have proven to be rather limited. They
neglect the interference of the emission from different states, which results in
the emergence of peak structures that vanish when computing the spectrum
for an actual Fermi sea [102]. Therefore, approaches calculating HHG in solids
typically integrate over the full BZ [98, 103–105]. This is not possible for
effective models, since they have no periodic structure in momentum space
and are only valid within a certain energy range [106]. In simulations using
the semiconductor Bloch equations for effective Dirac and semiconductor
models, a filled band is approximated by including finite dephasing times and
converging the resulting HHs spectra with respect to the included momentum
space [107, 108]. In Chap. 6, we develop a complementary approach based
on solving the time-dependent Schrödinger equation without dephasing for
wave packets that cover a vast momentum-space area. Instead of converging
the full spectra, we limit the included momentum states by approximately
converging the intraband contribution only, thus assuming strong dephasing for
all states outside of the considered area. Our new method delivers clean HHs
spectra and reproduces the polarization rotation experimentally observed for
the Bi2Te3 surface. Additionally, restricting the evaluated momentum space
reveals a plateau in the HH spectrum that does not emerge without choosing
a fixed boundary for the evaluation. Another advantage of our presented
method is that it can treat Hamiltonians that depend both on position and
momentum, without facing issues like fermion doubling [109–111]. This allows
for including orbital magnetic field effects, which are typically neglected in
studies of HHG. In Chap. 7, we give a first perspective on how magnetic
fields affect HHG in effective Dirac systems, aiming at including light as an
electromagnetic wave instead of approximating it as an electric field only. Still,
within this thesis, we focus on static magnetic fields in addition to the electric
laser pulse. We find that external, out-of-plane magnetic fields are particularly
promising candidates for tuning the frequencies of the emitted harmonics
with polarization perpendicular to the driving field. The gap opened by the
Zeeman coupling competes with the hexagonal warping of the Bi2Te3 surface
states and gives rise to additional emission at odd orders. Moreover, the
circular electron motion induced by the orbital coupling potentially amplifies
the perpendicular emission due to Berry phase effects.



8 1. Introduction

Before we present a detailed discussion of the results already touched upon
in the previous paragraphs, we introduce the basic concepts relevant for our
work in Chaps. 2 and 3. We conclude this thesis with a summary and a brief
overview of interesting questions for future research in Chap. 8.



2. Basic concepts

2.1. Effective Dirac Hamiltonians

Throughout this thesis, we focus on systems with description based on effective
Dirac Hamiltonians. Two prominent examples of Dirac systems in condensed
matter are graphene [32, 52] and the surface states of TIs [30, 31, 40, 41].
However, it is also possible to achieve systems with Dirac dispersion for cold
atoms in artificial honeycomb lattices [112], for plasmons [113] and polaritons
[114], among others.

In this work, we first study Floquet oscillations in effective Dirac systems and
consider graphene as a candidate for the experimental realization. Afterwards,
we focus on TIs and their surface states. From a physical viewpoint, their
effective Dirac Hamiltonians have different origins. For graphene, the spinor
structure stems from the pseudospin, related to the sublattices A and B.
In TI surfaces, on the other hand, the spinor is directly related to the real
electron spin. These material-dependent properties influence e.g. the coupling
of the system to magnetic fields. Mathematically however, the effective Dirac
Hamiltonians of graphene and TI surface states are similar up to first-order
approximation. For higher-order approximations graphene and TI surface
states become different. In this section we introduce the most important
aspects of both systems, concentrating on the 3D TIs Bi2Se3, Bi2Te3 and
Sb2Te3, highlighting the differences and similarities relevant for our work.

2.1.1. Graphene

The first theoretical description of graphene dates back to 1947 when Wallace
studied graphite. He considered it as many monolayers of hexagonal carbon
lattices, i.e. graphene sheets, stacked on top of each other and bound together
by van der Waals forces [115]. Even though for a long time it was believed that



10 2. Basic concepts

a1

a2

A B

Γ
K′

K

b1

b2

kx

ky(a) (b)

Fig. 2.1: (a) Crystal structure of graphene. The arrows indicate the lattice vectors
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)
and the red and blue dots mark the two sublattices A

and B, respectively. (b) Reciprocal lattice of graphene. K and K′ are the high symmetry
points where the Dirac cones are located. b1 = 2π
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(
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√

3
)
and b2 = 2π
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(
1,−
√

3
)
are the

reciprocal lattice vectors.*
* Figure taken from [123].

fabricating such strictly two dimensional (2D) structures is impossible since
they should be thermodynamically unstable [50, 51], graphene sheets became
of theoretical interest due to their relation to quantum electrodynamics [116].
Graphene as quantum system governed by the Dirac equation could offer a
playground for studying quantum relativistic effects.

In 2004 Novoselov and Geim discovered that in fact graphene sheets could be
produced by exfoliation [52] thanks to the stabilizing effect of slight crumbling
[53]. Finally, the stage for accessible experiments on such systems was set.
Shortly after the first demonstration, they observed various characteristics
of massless Dirac fermions in graphene [117], including an anomaly of the
integer quantum Hall effect [118] and the relation E = mcc∗2 for the cyclotron
mass mc and the Fermi velocity vF = c∗ = 106 m s−1. Even the famous
Klein paradox [119], predicted already in 1929, was eventually experimentally
confirmed in graphene [120, 121]. Their contribution to these advancements
in science earned Novoselov and Geim the Nobel prize in 2010.

In the following, we summarize the derivation of the Dirac Hamiltonian as
low-energy approximation from the tight-binding description of graphene
based on the publication of Sasaki and Saito [122]. Note that this summary is
partially adapted from my master’s thesis [123]. For a very detailed overview
of graphene and its properties we recommend Katsnelson’s book [124], which
was also used for writing part of this section.
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Graphene is a 2D sheet of carbon atoms forming a honeycomb crystal lattice.
Its crystal structure, described by the lattice vectors

a1 = a

2
(
3,
√

3
)
, a2 = a

2
(
3,−
√

3
)
, (2.1)

with nearest-neighbor distance a ≈ 1.4 Å, is depicted in Fig. 2.1(a). It is made
up of two sublattices A and B, and the elementary cell consists of two atoms.
As shown in Fig. 2.1(b), the corresponding reciprocal lattice, defined by the
lattice vectors

b1 = 2π
3a

(
1,
√

3
)
, b2 = 2π

3a
(
1,−
√

3
)
, (2.2)

is again hexagonal but rotated by 90◦ against the lattice in real space. The
marked high-symmetry points K and K′ have the coordinates

K =
(2π

3a ,
2π

3
√

3a

)
, K′ =

(2π
3a ,−

2π
3
√

3a

)
. (2.3)

Around these points, the bandstructure can be approximated by the Dirac
Hamiltonian for low energies, giving rise to graphene’s relativistic properties.
For the derivation, one starts with the tight-binding model

Ĥ0 = −γ0
∑
i∈A

∑
a=1,2,3

((
cBi+a

)†
cAi +

(
cAi
)†
cBi+a

)
, (2.4)

with nearest-neighbor hopping γ0 = 2.7 eV and the annihilation (creation)
operators cAi ((cAi )†) for sublattice A at position ri and cBi+a ((cBi+a)†) for
sublattice B at position ri+a = ri + Ra. Here, Ra, with a = 1, 2, 3, points
to the three nearest-neighbor atoms in sublattice B as seen from an atom in
sublattice A.

To find the eigenenergies of Eq. (2.4), one applies Bloch’s theorem and by
choosing the basis states

|Ψk
A〉 = 1√

Nu

∑
i∈A

eik·ri(cAi )†|0〉,

|Ψk
B〉 = 1√

Nu

∑
i∈B

eik·ri(cAi )†|0〉,
(2.5)

with Nu being the number of hexagonal cells, |0〉 the vacuum state and
k = (kx, ky), obtains the eigenequation in (2× 2) matrix form as

E(k)
|Ψk

A〉
|Ψk

B〉

 = −γ0

 0 f(k)
f(k)∗ 0

|Ψk
A〉

|Ψk
B〉

 . (2.6)
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Diagonalization of (2.6) gives the eigenenergies

E(k) = ±γ0|f(k)|, with f(k) =
3∑

a=1
fa(k) =

3∑
a=1

eik·Ra, (2.7)

where (+) is the conduction and (−) the valence band. At the K (K′) point,
where k = kF (k = −kF ), |f(k)| = 0. Thus, conduction and valence band
touch in these points and one obtains the low-energy Hamiltonian by expanding
fa(k) around them. Up to first order in k, at the K point Eq. (2.6) gives

E(kF + k)
|ΨkF+k

A 〉
|ΨkF+k

B 〉

 = 3γ0aCC
2

 0 kx − iky
kx + iky 0

|ΨkF+k
A 〉

|ΨkF+k
B 〉

 , (2.8)

where aCC = a/
√

3 is the atom-atom bond length. In short, Eq. (2.8) defines
the Dirac Hamiltonian

ĤK
0 = ~vFk · σ, (2.9)

with Fermi velocity vF = γ03aCC/2~ (∼ 106 m s−1) and the vector of the Pauli
matrices σ = (σx, σy). In graphene, the latter are operators in pseudospin
space, originating from the sublattices A and B. The derivation at the K′
point is analogous and gives

ĤK′
0 = ~vFk · σ′, (2.10)

with σ′ = (−σx, σy), being the negative complex conjugate of the Hamiltonian
at the K point. Accordingly, the physics at both points are similar. Since for
our work we only consider the low-energy approximation and neglect coupling
between the K- and K′-valley, we will concentrate on the K point whenever
we consider graphene.

The eigenenergies of the Dirac Hamiltonian Eq. (2.9) are sketched in Fig. 2.2(a)
and given by

E±(k) = ±~vF|k| ≡ ±~vFk, (2.11)
with the length |k| ≡ k =

√
k2
x + k2

y. Up to this order, the spectrum is linear
and rotational symmetric. It is also called Dirac cone and consists of two
branches marked in red and blue. Due to the opposed slopes of these branches
[125], their constant group velocity has opposite directions

vg = 1
~

dE(k)
dk

= ±vF, (2.12)

where (+) is the blue and (−) the red branch. This property will play
an important role for the Floquet oscillations introduced in Sec. 4.3. For
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Fig. 2.2: (a) Dirac cone at the K-point of graphene.* Its two different branches with opposed
group velocities vg are shown in red and blue. (b) Energy contour of graphene around
the K-point in second order approximation (Eq. (2.15)). Between 0.5− 1 eV the threefold
symmetry of the trigonal warping starts to appear. For lower energies, the Dirac Hamiltonian
(Eq. (2.10)) provides a sufficient model.
* Panel (a) adapted from [123, 126].

computing the full velocity of a wave function in a Dirac system, one needs
the velocity operator v̂ of the Dirac Hamiltonian (2.9). It reads

v̂ = i
~

[
ĤK

0 , r̂
]

= i
~

[
ĤK

0 , i∇k

]
= vFσ, (2.13)

with r̂ = i∇k being the position operator represented in k space.

The eigenstates in k space are spinors of the form

ϕ±(k) = 〈k|ϕk,±〉 = 1√
2

 1
±eiθk

 , (2.14)

where θk = arctan(ky/kx) defines the polar angle. To achieve the sign conven-
tion such that (+) revers to the conduction and (−) to the valence band, we
use θk = arctan2(kx, ky) throughout this work.

The Dirac cone approximation in Eq. (2.10) is only valid in the limit |k|a� 1
[127]. When investigating the experimental feasibility of Floquet oscillations in
graphene in Sec. 4.5.2, we will include the second order in the approximation
of fa(k) from Eq. (2.7) around the K point. This adds a trigonal warping
term to the Dirac Hamiltonian, modifying it to

ĤK
0 = ~vFk · σ − µ

[(
k2
y − k2

x

)
σx + 2kxkyσy

]
, (2.15)

where µ = 3a2γ0/8 [124]. The trigonal warping breaks the rotational symmetry
of the energy dispersion, implementing a threefold symmetry instead. The
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transition from one symmetry to the other between 0.5− 1 eV is shown in the
contour plot of the (positive) eigenenergies

E±(k) = ±
√

(~vFkx − µ(k2
y − k2

x))2 + (~vFky − 2µkxky)2 (2.16)

of Eq. (2.15) in Fig. 2.2(b). As stated e.g. in the review by Goerbig, this
second-order expansion is indistinguishable from the full tight-binding model
up to energies of 1 eV and still a good approximation for up to 2 eV [127].

2.1.2. Topological insulator surface states

The concept of topology plays an important role in condensed matter physics
nowadays. Phenomena such as the integer and fractional quantum Hall effect
[37, 38] can be explained using the principles of topology. In 2005, with
the discovery of the quantum spin Hall effect in HgTe quantum wells, a new
class of topological materials was introduced: so-called topological insulators
(TIs) [39–41]. These materials feature an insulating bulk but host conducting
surface states that are defined by an odd number of Dirac cones1 in lowest-order
momentum approximation. The surface states are topologically protected by
TRS and robust against any deformation as long as TRS is not broken. As
we will discuss in detail later on, these states feature spin-momentum locking.
Therefore, electronic backscattering is strongly suppressed. HgTe quantum
wells are 2D TIs with one-dimensional (1D) edge channels. Within this work,
we focus on three-dimensional (3D) TIs, where the surface states live in 2D
and wrap around the entire crystal.

The origin of the surface states lies within the ordering and parity of the bulk
bands. By studying which atomic orbitals form valence and conduction band,
one can determine whether a material is topologically trivial or non-trivial.
In topologically trivial semiconductors and insulators, the valence band has
negative parity, whereas the parity of the conduction band is positive around
the Γ point of the Brillouin zone (BZ). In TIs, the band ordering is inverted,
i.e. the conduction band has negative and the valence band positive parity.
Whenever two materials are brought into contact, at the interface their bands
have to continuously transform into one another. However, this is not possible
for bands with different parity, since their states are orthogonal with respect
to each other. Hence, when a material of non-trivial topology is brought into

1Note that this does not contradict the Nielsen-Ninomiya theorem [109–111] discussed in the context of
fermion doubling in Sec. 3.1, since counted over all surfaces a TI hosts an even number of Dirac cones.
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contact with a trivial one, one band has to move down in energy and the
other up such that bands of the same parity connect. The inverted band order
inevitably leads to a band crossing and thus the formation of a Dirac cone
at the interface. Since vacuum states are also of trivial topology, a TI hosts
Dirac states at its surface even without being in contact with a semiconductor
or trivial insulator.

In 2008, the first observation of the surface states of a 3D TI was achieved
in ARPES experiments on the alloy Bi0.9Sb0.1 [78, 79]. Shortly after, the
prediction [86] and experimental confirmation of the 3D TIs Bi2Se3 [42],
Bi2Te3 [43], and Sb2Te3 [44] followed. It was also demonstrated that strain
can induce a topological phase in bulk HgTe crystals [128]. In this section,
we introduce the model Hamiltonian for the surface states of 3D TIs in the
Bi2Se3 family, namely Bi2Se3, Bi2Te3, and Sb2Te3, following the derivations
of Refs. [86, 87]. These materials host a single Dirac cone on their surface
with a spectrum altered by a hexagonal warping term, which is especially
significant in Bi2Te3 [88]. Among others, the warping is predicted to induce an
angle-dependence in the Andreev reflection at a TI - superconductor junction
[129] and changes the charge [130], spin [131], thermoelectric [132], and optical
[133] conductivity of the surface states.

Bi2Se3 (and analogously Bi2Te3 and Sb2Te3) has a rhombohedral crystal
structure with space group D5

3d (R3̄m). Its unit cell consists of two Bi and
three Se atoms lying on different atomic layers. Hence, five of these layers can
be viewed as one unit, also called quintuple layer. Within this layer structure,
one can distinguish two types of Se atoms: the one in the center (Se2) and the
two at the borders (Se1) of the quintuple layer (see Fig. 2.3(a)). The atomic
layers each form a triangular lattice of different positions A, B and C as shown
in Fig. 2.3(b) and are stacked along the z axis with ordering A-B-C-A-B-C-... .
The crystal has threefold rotation symmetry R3 along the z direction, twofold
rotation symmetry R2 along the x direction, inversion symmetry with respect
to the central Se layer and TRS. To see why Bi2Se3 is a 3D TI, a closer look
at the atomic orbitals forming its bandstructure is necessary.

The electron configuration of a single Se atom is 4s24p4 and that of a Bi
atom 6s26p3. For both elements, the outmost occupied shells are p orbitals,
therefore all other orbitals can be neglected when searching for conduction
and valence bands of Bi2Se3. Since neighboring quintuple layers of Bi2Se3
are only coupled by van der Waals force and chemical bonding within one
layer is very strong, it is reasonable to start by considering only a single layer.
As already discussed, the unit cell within one quintuple layer consists of five
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Fig. 2.3: (a) Crystal structure of Bi2Se3. The red box marks one quintuple layer consisting
of two Bi layers and three Se layers, where the two layers at the border (Se1) are distinguished
from the one in the center (Se2). (b) In-plane projection of the different positions A, B, C of
the triangular lattices. (c) Sketch of the bandstructure formation out of the atomic orbitals of
Bi and Se. It is divided into four steps: (I) hybridization of Bi and Se orbitals, (II) inversion
symmetry allowing for the formation of bonding and anti-bonding states with definite parity
that split in energy, (III) crystal field splitting lifting the degeneracy between px,y and pz
orbitals, and (IV) SOC inducing a level repulsion that finally leads to band inversion around
the Fermi energy. The red boxes highlight the most important orbitals.*
* Figure adapted from [86, 87].
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atoms. Each atom has three orbitals px,y,z, giving a total of 15 orbitals per
unit cell, where spin is neglected for now. As displayed in Fig. 2.3(a), Bi and
Se layers alternate within one quintuple layer. Thus, the strongest coupling
occurs between Bi and Se layers. This results in a level repulsion, increasing
(decreasing) the energy levels of Bi (Se) and leading to two (three) hybridized
states |Bα〉 and |B′α〉 (|Sα〉, |S ′α〉 and |S0α〉), where α = px,y,z, see Fig. 2.3(c),
step (I). Due to inversion symmetry, these orbitals can be combined to bonding
and anti-bonding states with definite parity

|P1±, α〉 = 1√
2

(|Bα〉 ∓ |B′α〉) and |P2±, α〉 = 1√
2

(|Sα〉 ∓ |S ′α〉) , (2.17)

where the upper index (±) marks the parity. The coupling between |Bα〉
and |B′α〉 (|Sα〉 and |S ′α〉) gives rise to an energy splitting of bonding and
anti-bonding states, the former being energetically favorable, see Fig. 2.3(c),
step (II). As a consequence, |P1+, α〉 and |P2−, α〉 are the orbitals closest to
the Fermi energy and the other states can be neglected when constructing
conduction and valence band. The next effect that has to be taken into account
is the crystal field splitting. Due to the layered structure, the z direction
differs from the atomic planes in x and y direction. As a consequence, the
energetic degeneracy between pz and px,y orbitals is lifted both for the P1+

and P2− states. The |P1+, px,y〉 and |P2−, pz〉 orbitals rise in energy, whereas
the |P1+, pz〉 and |P2−, px,y〉 orbitals are pushed down, see Fig. 2.3(c), step
(III). Thus, so far the valence band mainly consists of |P2−, pz〉 orbitals and
the conduction band of |P1+, pz〉. Finally, one has to introduce the spin and
consider spin-orbit coupling (SOC). The states get an additional label σ = ±1

2 ,
resulting in |P1+, α, σ〉 and |P2−, α, σ〉. A transformation of the px,y orbitals
to p± gives states with definite orbital angular momentum

|Λ, p±, σ〉 = ∓ 1√
2

(|Λ, px, σ〉 ∓ i|Λ, py, σ〉) , (2.18)

where Λ = P1+, P2−. A careful analysis of the SOC (see Refs. [86, 87]) shows
that it couples the states |Λ, pz,+1

2〉 (|Λ, pz,−
1
2〉) to |Λ, p+,−1

2〉 (|Λ, p−,+
1
2〉),

inducing a level repulsion between them. This pushes |P2−, pz,±1
2〉 up while

|P1+, pz,±1
2〉 is pushed down, leading to a level crossing of these two pairs of

states for sufficiently large SOC, see Fig. 2.3(c), step (IV). In Bi2Se3, Bi2Te3
and Sb2Te3 SOC is large enough and the levels cross. Due to the opposite
parity of the crossing states band inversion is achieved, making Bi2Se3 (and
analogously Bi2Te3 and Sb2Te3) representatives of the class of 3D TIs.

Up to first order in momentum k = (kx, ky) the surface states of 3D TIs are
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described by a Dirac Hamiltonian. For the Bi2Se3 family, one finds [86–88]

Ĥ0(k) = A(kyσx − kxσy), (2.19)

where A = ~vF is the slope determined by the Fermi velocity vF and σx,y are
the Pauli matrices. The eigenstates

ϕ±(k) = 〈k|ϕk,±〉 = 1√
2

 1
±eiθ′k

 , (2.20)

of (2.19) take the same form as the spinors of the low-energy approximation
of graphene, see Eq. (2.14), but here θ′k = arctan(−ky/kx). One can show
that, in contrast to the Dirac Hamiltonian of graphene, see Eq. (2.10), the
Pauli matrices σx,y,z act in spin space for 3D TI surface states. Thus, also the
spinors (2.20) are linked to the spin states at the respective momentum2. This
property is called spin-momentum locking. Around the Dirac point |k| = 0
the spin texture of TI surface states is helical, similar to a Fermi surface in a
trivial 2D electron gas with Rashba SOC. However, the Fermi surface of the
latter consists of two closed curves, whereas the Dirac cone consists of only
one. Hence, in the TI surface backscattering, i.e. k→ −k or vice versa, would
also require flipping the spin and therefore is strongly suppressed [134].

As already mentioned, for higher orders in momentum the spectrum of the
surface states is altered by a hexagonal warping term. That this term is
different from the higher-order expansion of the Dirac Hamiltonian in graphene
given in Eq. (2.15) is a consequence of the Pauli matrices representing the
pseudospin in graphene but the real electron spin in the 3D TIs, since the
time-reversal operator acts differently on these two spaces [88]. Additionally,
particle-hole symmetry (PHS) is broken for the TI surface states. Respecting
the crystal symmetry and TRS, up to third order in momentum one finds the
Hamiltonian [87, 88]

Ĥ(k) = C1 +D(k2
x + k2

y)1︸ ︷︷ ︸
PHS breaking

+A(kyσx − kxσy)︸ ︷︷ ︸
Ĥ0(k)

+ 2R(k3
x − 3kxk2

y)σz︸ ︷︷ ︸
hexagonal warping

, (2.21)

with unit matrix 1. In this representation kx points along the ΓK and ky
along the ΓM direction of the surface’s BZ. This corresponds to the x and y
direction of the surface in real space, respectively. The prefactors C, D, A
and R depend on the material. In this work we focus on Bi2Te3, since there
the hexagonal warping is strongest. The literature values for the prefactors
differ slightly [87, 88]. For concreteness we choose

2Note that we do not say that spinor and spin state are equal since in fact the Pauli matrices are only pro-
portional to the actual spin operators. Accordingly, spinor and spin are also linked by this proportionality.
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Fig. 2.4: (a) Bandstructure of Bi2Te3 for our model system cut at |k| =
√
k2
x + k2

y = 0.3Å−1.
The hexagonal warping and PHS breaking lead to a distortion of the Dirac cone. (b) Energy
difference ∆E between both bands. For small |k|, the rotational symmetry of the Dirac cone
is visible. Then, the sixfold symmetry due to the hexagonal warping emerges. The PHS
breaking does not affect the energy difference between the bands.
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from Ref. [87] for our calculations3. It is important to mention that with this
model only qualitatively correct results are to be expected. Further refinement
would be required for quantitative comparison to experiments. One step
towards this was done by fitting the Hamiltonian parameters to results from
density functional theory, see Sec. 5.2 and Ref. [81].

The eigenenergies of the third-order Hamiltonian (2.21) are given by

E±(k) = C +D(k2
x + k2

y)±
√
A2(k2

x + k2
y) + 4R2(k3

x − 3kxk2
y)2 (2.22)

and plotted in Fig. 2.4(a) for |k| =
√
k2
x + k2

y ≤ 0.3Å−1. The hexagonal
warping and PHS breaking term clearly distort the original Dirac cone. The
sixfold symmetry imposed by the hexagonal warping also appears when looking
at the energy difference ∆E between the bands, see Fig. 2.4(b). The PHS
breaking however does not affect the energy difference since it only couples to
the unit matrix 1. For small |k|, the rotational symmetry of the Dirac cone is
approximately restored.

The eigenstates of the Hamiltonian (2.21) have a more complex form than
those for the simple Dirac Hamiltonian (2.19). The most general way to write

3Note that a different value for C is given in Ref. [87]. However, since it only induces a shift of the Dirac
point in energy we set it to C = 0 eV for simplicity.
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down eigenstates of (2× 2) Hamiltonians is to write the Hamiltonian in the
form

Ĥ(k) = h0(k)1 + hx(k)σx + hy(k)σy + hz(k)σz. (2.23)
Then, the normalized eigenstates4 are

ϕ±(k) = 1√
N

hz(k)±
√
hx(k)2 + hy(k)2 + hz(k)2

hx(k) + ihy(k)

 , (2.24)

where N = hx(k)2 +hy(k)2 +
(
∓hz(k)−

√
hx(k)2 + hy(k)2 + hz(k)2

)2. For the
Hamiltonian (2.21) one can identify h0(k) = C + D(k2

x + k2
y), hx(k) = Aky,

hy(k) = −Akx and hz(k) = 2R(k3
x − 3kxk2

y). Accordingly, the hexagonal
warping plays a very important role in the eigenstates, whereas PHS breaking,
given by h0(k), does not affect the eigenstates. The hexagonal warping term
also greatly alters the geometrical properties of the Hamiltonian. We will
discuss this in more detail in Chap. 5 when studying the influence of Berry
curvature effects on electron dynamics and HHG. There, we will also compare
the model (2.21) with the aforementioned fitted Hamiltonian. To compute
the dynamics, we need the velocity operator v̂ of the Hamiltonian (2.21). It
reads

v̂ = i
~

[
Ĥ(k), r̂

]
= 1

~

2D
kx
ky

1 + A

−σy
σx

 + 6R
k2

x − k2
y

−2kxky

σz
 . (2.25)

For small k it becomes k independent as expected for a Dirac cone and is
similar to the velocity operator in graphene, see Eq. (2.13). For larger k, it is
altered both by PHS breaking and the hexagonal warping.

2.2. Berry phase, connection, and curvature

In 1984, Berry published the paper “Quantal phase factors accompanying
adiabatic changes” [135], where he introduced a geometrical phase a state
acquires when the corresponding Hamiltonian Ĥ(R(t)) is adiabatically changed
along a closed path R(t) in its parameter space. This geometrical phase is an
addition to the dynamical phase. The latter “register[s] the passage of time”
[135]. By now, the geometrical phase is commonly known as Berry phase. It
is gauge invariant and thus a physical observable. As shown by Berry, it can
be computed by integrating a vector field containing the geometric properties

4Naturally, the eigenenergies can also be written down in this general fashion, giving
E±(k) = h0(k)±

√
hx(k)2 + hy(k)2 + hz(k)2.
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of the Hamiltonian over the surface enclosed by the loop R(t). This vector
field is nowadays widely known as Berry curvature.

While the publication process of Berry’s work was still ongoing, Simon showed
that the Berry curvature can also be used to calculate the Chern number
of a system, which he related to the so-called TKNN invariant in the same
publication [136]. The Chern number is a quantity that classifies the topological
phase of a certain kind of system with broken TRS introduced by Chern and
Simons ten years earlier [137], whereas the TKNN invariant was introduced by
Thouless, Kohomoto, Nightingale and den Nijs in 1982 when they explained
the robustness of the quantum Hall effect by identifying it as topological [138].
Since then, the concept of the Berry phase and curvature has found many more
applications in condensed matter physics. It leads to the anomalous velocity
[139], which we discuss in more detail in Sec. 2.3.2, delivers an intrinsic
explanation of the anomalous Hall effect [48] and gives rise to additional
contributions of the electric polarization [140, 141] and orbital magnetization
[142, 143], among others. An overview of the Berry phase’s influence on
electronic properties is given in Ref. [144] and with special focus on the
anomalous Hall effect in Ref. [49].

In the following we introduce and define the Berry phase, connection and
curvature based on Ref. [144]. Since in our work the parameter space is usually
spanned by the quasimomentum k, we take R ≡ k. Assume we have a system
defined by the Hamiltonian Ĥ(k) with eigenstates |ϕk,n〉 and eigenenergies
En(k), where n is the band index. Now, we slowly vary k → k(t) along a
path C, where ki = k(t0) marks the initial k, and study the adiabatic time
evolution of a state |Ψki,n(t)〉. By choosing a fixed gauge we write the state
as

|Ψki,n(t)〉 = exp
(

i γn(t)
)

︸ ︷︷ ︸
geometrical phase factor

exp
(
− i
~

∫ t
0

dt′ En(k(t′))
)

︸ ︷︷ ︸
dynamical phase factor

|ϕk(t),n〉, (2.26)

containing a dynamical and a geometrical phase. With our gauge choice we
require that the phase varies smoothly and is single valued along the path C.
By plugging Eq. (2.26) into the time-dependent Schrödinger equation

Ĥ(k(t))|Ψki,n(t)〉 = i~ d
dt|Ψki,n(t)〉 (2.27)

and multiplying Eq. (2.27) with 〈ϕk(t),n| from the left, one finds that the
geometrical phase γn(t) can be written as

γn(t) =
∫
C

dk ·Ann(k), (2.28)
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where Ann is the Berry connection of band n. It is given by

Ann(k) = i 〈ϕk,n |∇k|ϕk,n〉 . (2.29)

Since Ann(k) is a gauge-dependent quantity, for a long time it was believed
that it is always possible to find a gauge transformation |ϕk,n〉 → eiξ(k)|ϕk,n〉
such that the geometrical phase γn(t) accumulated along the path C vanishes.
This changed with the work of Berry [135] who considered a closed path
C. Then, initial and final point k(t0) = k(tfin) are equivalent and since we
required a single-valued phase, the gauge transformation eiξ(k) has to fulfill

ξ(k(t0))− ξ(k(tfin)) = 2π · integer. (2.30)

The geometrical phase γn cannot be removed anymore and along a closed path
C becomes a gauge-invariant physical quantity,

γn =
∮
C

dk ·Ann(k), (2.31)

also often called Berry phase nowadays. The time dependence of k(t) is
irrelevant when computing γn, only the geometric shape of the closed path C
matters.

In analogy to electrodynamics, one can derive a vector field from the Berry
connection Ann(k). It is called Berry curvature. The Berry curvature contains
the geometric properties of a system and can be considered as the magnetic field
in parameter space. It is gauge invariant and hence observable independently
of any path C a state might take. The anomalous velocity we introduce in
Sec. 2.3.2 is one consequence of that. However, the Berry curvature also has
a significant impact on the dynamics in the non-adiabatic limit of a system,
as we will study in detail in Chaps. 5 and 6. For the 3D quasimomentum
k = (kx, ky, kz), the Berry curvature Ωn(k) of band n is the rotation of the
Berry connection Ann(k),

Ωn(k) = ∇k ×Ann(k). (2.32)

Using Stokes’ theorem, the Berry phase γn from Eq. (2.31) can then also be
expressed as

γn =
∫
S

dS ·Ωn(k), (2.33)

where S is the surface of the Berry curvature enclosed by the path C. If the
systems dimensions are unequal to three, one finds the more general tensor
form

Ωn
µν(k) = ∂

∂kµ
Annν (k)− ∂

∂kν
Annµ (k) (2.34)
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of the Berry curvature. It is related to the vector by

Ωn
µν = εµνζ(Ωn)ζ , (2.35)

where εµνζ is the Levi-Cività antisymmetry tensor.

The Berry curvature can not only be related to the Berry connection Ann(k),
but also to the interband (or transition) matrix element

Ann′(k) = i 〈ϕk,n |∇k|ϕk,n′〉 , (2.36)

which describes the coupling between two bands n, n′. It is similar to the Berry
connection (2.29), but n 6= n′. Its relation to the Berry curvature already
indirectly appeared in 1982 in the publication of Thouless et al. [138] before
the actual introduction of the latter. It follows from expressing the Berry
curvature as a summation over the eigenstates

Ωn
µν(k) = i

∑
n 6=n′

〈
ϕk,n

∣∣∣∣∂Ĥ(k)
∂kµ

∣∣∣∣ϕk,n′
〉 〈
ϕk,n′

∣∣∣∣∂Ĥ(k)
∂kν

∣∣∣∣ϕk,n

〉
− (ν ↔ µ)

[En(k)− En′(k)]2
. (2.37)

As we show in App. A.1, this expression is linked to the interband matrix
elements Ann′(k) and can be rewritten as

Ωn
µν(k) = −i

∑
n 6=n′

[Aµnn′(k)A∗ νnn′(k)− (ν ↔ µ)] . (2.38)

For two-band systems in 2D with (µ, ν) = (x, y) and n, n′ = ±, using relation
(2.35) between the Berry curvature tensor and the vector field, one finds that
Ω±xy = εxyζ(Ω±)ζ . This expression is zero for ζ 6= z, i.e. for such systems only
the z component of the Berry curvature is unequal to zero. Then, Eq. (2.38)
simplifies and the z component of the Berry curvature5 can be computed
as [145]

(Ω±(k))z = ±2Im [Ax+−(k)A∗ y+−(k)] . (2.39)

There also exists another simple and generic way to calculate the Berry
curvature in two-band systems, see Ref. [144], which we employ for our studies.
We start from the general (2× 2) Hamiltonian given in Eq. (2.23) and rewrite
h = (hx, hy, hz) in spherical coordinates

h = h(sin θ cosφ, sin θ sinφ, cos θ), (2.40)
5Note that the relation Ω+

xy = −Ω−xy is a direct consequence of the local conservation law for the Berry
curvature:

∑
n Ωnµν(k) = 0.
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where h =
√
h2
x + h2

y + h2
z, φ = arctan(hy/hx) and cos θ = hz/h. Since h0 does

not affect the Berry curvature, it can be neglected here6. The eigenstates |ϕ±〉
of h in spherical coordinates7 become

|ϕ−〉 =
sin θ

2 e−iφ

− cos θ
2

 , |ϕ+〉 =
cos θ

2 e−iφ

sin θ
2

 , (2.41)

with corresponding eigenenergies ±h. For the lower band (−), one obtains
the Berry connection

A−−θ =
〈
ϕ−

∣∣∣∣∣i ∂∂θ ϕ−
〉

= 0, A−−φ =
〈
ϕ−

∣∣∣∣∣i ∂∂φ ϕ−
〉

= sin2 θ

2 , (2.42)

and thus the Berry curvature

Ω−θφ = ∂

∂θ
A−−φ −

∂

∂φ
A−−θ = 1

2 sin θ. (2.43)

Up to now, we dropped the parameter dependence of h(k) on k. For
k = (kx, ky) as for the systems discussed in this work, see Sec. 2.1, the Berry
curvature (2.43) transforms back into Cartesian coordinates as

Ω±xy(k) = ∓1
2

∂ cos(θ(k))
∂kx

∂φ(k)
∂ky

−
∂ cos(θ(k))

∂ky

∂φ(k)
∂kx

 , (2.44)

which is a simple and general formula for the Berry curvature in two-level
systems.

2.3. Velocity in two-band systems

The velocity expectation value of (time-dependent) states in two-band quantum
systems is a crucial observable throughout this work. We use it to study Floquet
oscillations in Chap. 4 and HHG in Chaps. 5, 6 and 7. Therefore in this section
we will thoroughly introduce all properties of the velocity expectation value
both in time-independent and time-dependent systems relevant for our work.
Note that all the observations made in the following for two-band systems can
easily be extended to systems with more bands.

6In Sec. 2.1.2, Eq. (2.24), we already saw that h0 does not appear in the eigenstates. Thus, by definition
(see Eqs. (2.29), (2.32)), it also does not affect the Berry curvature.

7See equation (2.24) for the eigenstates in Cartesian coordinates.
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We start with time-independent two-band systems with Hamiltonian Ĥ(k)
and consider single k states for simplicity. In the most general case, a state
|Ψk(t)〉 in such a system can be written as

|Ψk(t)〉 = exp
(
− i
~
E+(k)t

)
ck,+|ϕk,+〉+ exp

(
− i
~
E−(k)t

)
ck,−|ϕk,−〉, (2.45)

where |ϕk,±〉 are the eigenstates and E±(k) the eigenengergies of upper (+)
and lower (−) band, ck,± the respective amplitudes of |Ψk(t)〉 in the eigenstates
and exp

(
− i

~E±(k)t
)
is the dynamical phase describing the time evolution of

the state8. Generally, the velocity expectation value vk(t) can be computed
using Ehrenfest’s theorem,

vk(t) = 〈Ψk(t)|v̂|Ψk(t)〉

= i
~

〈
Ψk(t)

∣∣∣∣[Ĥ(k), r̂
]∣∣∣∣Ψk(t)

〉
= 1

~

〈
Ψk(t)

∣∣∣∣∇kĤ(k)
∣∣∣∣Ψk(t)

〉
,

(2.46)

where r̂ = i∇k is the position operator and v̂ = i
~

[
Ĥ(k), r̂

]
= 1

~∇kĤ(k) the
velocity operator. For the state (2.45) one obtains

vk(t) = |ck,+|2〈ϕk,+|v̂|ϕk,+〉+ |ck,−|2〈ϕk,−|v̂|ϕk,−〉︸ ︷︷ ︸
diagonal

+ 2Re
[
c∗k,+ck,− exp

(
− i
~

[E−(k)− E+(k)] t
)
〈ϕk,+|v̂|ϕk,−〉

]
︸ ︷︷ ︸

off diagonal

.
(2.47)

We can separate the resulting velocity vk(t) in a diagonal and an off-diagonal
contribution, associated with the matrix elements of v̂ in the basis of the
eigenstates |ϕk,±〉. As derived in App. A.1, they read

v++
k = 〈ϕk,+|v̂|ϕk,+〉 = 1

~
∇kE+(k), (2.48)

v+−
k = 〈ϕk,+|v̂|ϕk,−〉 = i

~
[E+(k)− E−(k)]A+−(k), (2.49)

and v−−k and v−+
k analogously. A+−(k) is the interband or transition matrix

element defined in Eq. (2.36). The diagonal contribution is also called intraband
or group velocity and combining Eqs. (2.47) and (2.48) can be written as

vk,intra(t) = vk,g(t) = 1
~
|ck,+|2∇kE+(k) + 1

~
|ck,−|2∇kE−(k), (2.50)

8Note that since the Hamiltonian Ĥ(k) is time independent, the integral in the dynamical phase is trivial
and no Berry phase can be acquired.
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i.e. it is defined by the energy dispersion E±(k) [125]. The off-diagonal term
can be identified as Zitterbewegung or interband velocity. For both velocity
contributions, we are not aware of a general and sharp distinction between
the different nomenclatures. However, the term Zitterbewegung tends to be
used for an intrinsic off-diagonal velocity in undriven systems as discussed
in Sec. 2.3.1 and interband velocity for off-diagonal velocities in combination
with external driving, as discussed in Sec. 2.3.2. In any case, the off-diagonal
velocity can also be expressed through the interband matrix element A+−(k)
based on Eqs. (2.47) and (2.49),

vZB
k (t) = vk,inter(t)

= 2Re
[ i
~
c∗k,+ck,− exp

(
− i
~

[E−(k)− E+(k)] t
)

[E+(k)− E−(k)]A+−(k)
]
.

(2.51)

This directly links the off-diagonal velocity and the Berry curvature, see
Eqs. (2.37), (2.38), (2.39). We will further elaborate on this link in Secs. 2.3.1
and 2.3.2 and study its consequences in Chaps. 5 and 6.

2.3.1. Zitterbewegung

This section gives a short introduction of the main characteristics of Zitterbe-
wegung in two-band systems. It summarizes part of the PhD thesis of Reck
[126], where the interested reader may find a more detailed discussion of the
properties of Zitterbewegung in two-band systems and numerical studies on
graphene.

Originally, the term Zitterbewegung refers to a jittery movement of highly
relativistic particles governed by the Dirac equation. It was predicted by
Schrödinger in 1930 [146] and arises since the velocity operator does not
commute with the Dirac Hamiltonian and thus is no constant of motion. In
fact, it is an interference term between particle- and antiparticle-like solution
of the Dirac equation. However, for free particles Zitterbewegung occurs on
such short time and length scales that its experimental observation is still
pending [147].

In principle, the requirement of the Hamiltonian not commuting with the
velocity operator can be met in any two- or more band system as demon-
strated in Ref. [148]. The Zitterbewegung appears as off-diagonal terms of
the velocity operator and “is a general real effect for a nonrelativistic particle
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moving in a crystal, as a consequence of interband transitions” [148], see
Eqs. (2.49) and (2.51). There, the off-diagonal matrix element of the velocity
operator is related to the interband or transition matrix element A+−(k). In
multi-band systems, the interference of particle- and antiparticle-like solution
is replaced by a state that occupies more than one band interfering with
itself, see Eqs. (2.47) and (2.51). The first theoretical proposal to observe
Zitterbewegung in solid state systems was made by Schliemann et al. in III-V
semiconductor quantum wells with SOC [149], which exhibit an energy spec-
trum similar to the Dirac Hamiltonian. Now, theoretical studies also exist
for carbon nanotubes [150], graphene [151–153] and TIs [154], among others.
Experimentally, Zitterbewegung has been demonstrated for single 40Ca+-ions
[155], in Bose-Einstein condensates [156, 157] and in InGaAs [158]. For a more
detailed review of Zitterbewegung in semiconductors and an overview of the
historical background we recommend Ref. [159].

In equation (2.47) we derived the general representation of the velocity expec-
tation value vk(t) of a k mode |Ψk(t)〉, see Eq. (2.45), in a time-independent
two-band system. It contains an off-diagonal term which in undriven systems
is identified as Zitterbewegung9. Additionally, we showed that this term can
be rewritten in terms of the interband matrix element A+−(k), see Eq. (2.51).
From equations (2.47) and (2.51) one can deduce that Zitterbewegung only
appears if the k state has a non-zero amplitude ck,± 6= 0 in both bands.
Moreover, if the velocity operator v̂ commutes with the Hamiltonian Ĥ(k),
the eigenstates |ϕk,±〉 of Ĥ(k) also are eigenstates of v̂ and the Zitterbewegung
vanishes. The link between the off-diagonal velocity and the Berry curvature
implies that a two-band system with non-vanishing Zitterbewegung in both
velocity components vZBx/y,k 6= 0 also has a non-zero Berry curvature Ω±(k).
This also means that in this system either TRS or spatial inversion symmetry
is broken10 and emphasizes that the Zitterbewegung is an intrinsic effect.

That Zitterbewegung is equivalent to an oscillating velocity becomes even more
apparent when rewriting the off-diagonal part of Eq. (2.47) componentwise
as

vZBi,k (t) = Ai,k cos
(
ωZB

k t+ φi,k
)
, (2.52)

9We emphasize the condition of an undriven system here because as we will discuss in Sec. 2.3.2 the term
interband velocity is generally preferred when including driving by electric fields into the system.

10As shown in review [144] the Berry curvature vanishes in systems that have both TRS and spatial inversion
symmetry.
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where i ∈ {x, y} and

amplitude: Ai,k = 2|ck,+||ck,−||〈ϕk,+|v̂|ϕk,−〉|,

frequency: ωZB
k = 1

~
(E− (k)− E+ (k)) ,

phase: φi,k = −
(
arg(c∗k,+ck,−) + arg (〈ϕk,+|v̂|ϕk,−〉)

)
.

(2.53)

The amplitude encodes the conditions for non-vanishing Zitterbewegung of a
single k mode. The frequency is independent of the velocity component i and
given by the energy difference of the two bands. The phase is not important
when considering a single k mode but for instance determines whether the
Zitterbewegung of two modes ±k interferes constructively or destructively.

When considering the Zitterbewegung of wave packets, one will find that it
decays over time. This decay can be explained in a rather intuitive fashion. As
we already stated, Zitterbewegung is an interference effect of states distributing
over two or more bands. In the case of single k modes, i.e. plane waves, the
state spreads over the complete real space and thus both band contributions
overlap for all times. A wave packet made up of more k modes however is
localized in space. Since commonly the contributions of the two bands have
velocities of different signs, eventually the wave packet splits into two parts,
the two band contributions do not interfere anymore and no Zitterbewegung
can be observed. For a mathematical derivation of the decay of Zitterbewegung
we refer to Reck [126, 153] who extensively studied how to prevent or at least
slow down the decaying process.

2.3.2. Influence of electric fields

Electric fields – mostly representing time-dependent laser pulses – play a major
role in the systems studied throughout this work. A homogeneous electric field
Eel(t) can be introduced into a Hamiltonian Ĥ0(k) in two ways. It can either
be expressed by the vector potential A(t), where Eel(t) = − ∂

∂tA(t), which is
included into the Hamiltonian by minimal coupling

Ĥ(k, t) = Ĥ0

(
k + e

~
A(t)

)
, (2.54)

or by the scalar potential φel(r, t), with Eel(t) = −∇rφel(r, t), that is added
to the Hamiltonian,

Ĥ(k, r, t) = Ĥ0(k) + eφel(r, t). (2.55)
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Accordingly, choosing one of the options is equivalent to choosing the gauge of
the electric field Eel(t). In the literature concerning light-driven systems, the
first method based on the vector potential A(t) is also called velocity gauge,
whereas the second option based on the scalar potential is called length gauge.
As we will discuss in Chap. 3, our numerical tool can handle the Hamiltonian in
mixed position-momentum-space representation. Thus we can use both length
and velocity gauge in our studies. In principle, due to gauge invariance both
gauges should give the same results. However, we found several publications
discussing the stability of the gauges with respect to approximations of the
system [160–162]. Based on a comparison of both gauges for a reduced density
matrix approach, Ventura et al. [162] argue that one has to be careful when
applying the velocity gauge in effective Hamiltonians. It also gives rise to
additional terms in the velocity operator v̂ = 1

~∇kĤ(k, t) for Hamiltonians
that are not linear in momentum k [160, 162]. Hence, in our work we mainly
apply the length gauge.

In equation (2.45) we show the time evolution of a state |Ψk(t)〉 under the
time-independent Hamiltonian11 Ĥ0(k). Applying an additional electric field
Eel(t) effectively induces a shift in the momentum k of the state. This shift is
described by the acceleration theorem [70]

~
dk
dt = e

∂A(t)
∂t

+∇rφel(r, t)
 ≡ −eEel(t). (2.56)

Note that the last term holds for any gauge of Eel(t). The shift has to be
taken into account as time dependence of the momentum k → k(t). In the
following we discuss how this time dependence affects the time evolution and
velocity of a state. Our statements apply to any system with momentum
shift and are independent of the cause of the shift. Nevertheless, we focus on
electric fields in our discussion.

To clearly label a state with time-dependent momentum k(t), its initial
momentum ki = k(t0) at starting time t0 has to be known. Since the state is
moving through momentum space, Berry curvature effects can appear in its
dynamics. Furthermore, sufficiently strong electric fields can drive transitions
between the energy bands12, leading to a time dependence of the amplitudes
ck,± → cki,±(t). Altogether, we can now write the time-dependent state in the

11Note that we introduce the subscript 0 to distinguish the original Hamiltonian from the one including the
electric field.

12A more detailed overview of relevant transition mechanisms is given in Sec. 2.4.
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eigenbasis of Ĥ0(k) as

|Ψki(t)〉 = exp
(
− i
~

∫ t
t0
E+(k(t′)) dt′

)
cki,+(t)|ϕk(t),+〉

+ exp
(
− i
~

∫ t
t0
E−(k(t′)) dt′

)
cki,−(t)|ϕk(t),−〉,

(2.57)

where |ϕk(t),−〉 are the eigenstates of Ĥ0(k) at the respective momentum k(t).
In this notation, a potentially arising geometric phase is absorbed in the
amplitudes cki,±(t), see Eq. (2.26) for comparison. The corresponding velocity
expectation value then reads

vki(t) = |cki,+(t)|2〈ϕk(t),+|v̂|ϕk(t),+〉+ |cki,−(t)|2〈ϕk(t),−|v̂|ϕk(t),−〉︸ ︷︷ ︸
intraband

+

2Re
[
c∗ki,+(t)cki,−(t) exp

(
− i
~

∫ t
t0

dt′ [E−(k(t′))− E+(k(t′))]
)
〈ϕk(t),+|v̂|ϕk(t),−〉

]
︸ ︷︷ ︸

interband

.

(2.58)

We now label the two velocity contributions as intraband and interband velocity
since this is the most common nomenclature within the context of light-driven
systems. In principle, the velocity (2.58) is very similar to the velocity of a state
in a system without electric field, see Eq. (2.47). Still, the dynamics introduced
by the electric field can give rise to a much more complex time dependence and
nonlinear effects. As for undriven systems, the intraband velocity is defined by
the band dispersion, see Eq. (2.50). Analogously, all displayed representations
for the off-diagonal velocity, namely Eqs. (2.47), (2.51) and (2.52), also hold
for the interband velocity. The only difference is that now a time dependence
has to be introduced in all parameters. Naturally, this modifies the quantities
related to Zitterbewegung in Eq. (2.53). The movement of the electron through
momentum space leads to a time dependence of the Zitterbewegung frequency
ωZB

k and transitions modulate its amplitude. The resulting velocity has a
more complex time profile and is better known as interband velocity. This
name might originate from the relation between off-diagonal velocity and the
interband or transition matrix element A+−(k), see Eq. (2.51). In the context
of electric fields, this formulation is more intuitive since the transition matrix
also describes how the different states are coupled by the driving13.

In the limit of weak electric fields, i.e. the adiabatic regime where no transitions
between bands occur, the link between velocity, transition matrix element and
13We do not want to elaborate further on how the transition matrix describes the coupling of states here but

refer to the master’s thesis of Ebner for more details on the significance of A+−(k) with focus on Dirac
systems under electric ratiation [163].
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ultimately the Berry curvature, see Eq. (2.51), is even more apparent. Already
in 1954 Karplus and Luttinger showed that the coupling of the bands due to an
electric field within first-order perturbation theory in the field strength gives
rise to an additional term in the velocity expectation value [164]. After the
introduction of the concept of Berry curvature, Chang and Niu demonstrated
that this anomalous velocity is directly related to the latter [139]. They found
that up to first order, the velocity of a state that adiabatically evolves within
band n is given by

vki(t) = 1
~
∇kEn(k(t))︸ ︷︷ ︸

intraband velocity

− e
~
Eel(t)×Ωn(k(t))︸ ︷︷ ︸
anomalous velocity

, (2.59)

where Ωn(k(t)) is the Berry curvature of band n. For a more detailed derivation,
we recommend the review [144]. As extensively studied in [165], by applying
a constant electric field Eel(t) = Eel tuned such that the test state evolves
adiabatically, one can use the anomalous velocity to map the Berry curvature
of a system. We will demonstrate this in Chap. 5 and use the velocity
approximation (2.59) to crosscheck our fully quantum mechanical simulations
in the adiabatic limit.

2.3.3. High-harmonic generation

Throughout this section, we have explored how system properties such as the
bandstructure and the Berry curvature are related to the velocity expectation
value of a single k state. Additionally, we have seen, how introducing a
(time-dependent) electric field can lead to a more complicated time profile
of the velocity, especially when the field strength is large enough to drive
transitions between the bands. In experiments, such electric fields are applied
to a system in terms of an intense laser pulse, where the pulsing is necessary
to avoid sample destruction. The electronic response of the system is then
measured as the power spectrum emitted by the sample and contains the
spectral information of the induced electron dynamics. In the nonlinear regime,
these spectra show HHs of the incoming laser pulse’s frequency.

Such high-harmonic generation (HHG) is used to study atoms, molecules,
and solids. The origin of the field dates back to Goeppert-Mayer, who first
suggested frequency doubling in 1931. In her PhD thesis, she theoretically
predicted that an atom can be excited to a higher energy state by simultane-
ously absorbing two photons, if the combined energy of the photons matches
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the energy difference of the atomic states. In the subsequent relaxation, only
one photon is emitted, which correspondingly has twice the frequency of the
originally absorbed photons [166]. However, experimental observation of such
a nonlinear process was not possible until the invention of the laser, since
a high density of photons is necessary to achieve enough events for actual
detection. In 1961, Franken et al. were able to measure the generation of a
second harmonic of the original laser frequency by illuminating crystalline
quartz with an intense ruby laser [167]. In subsequent years, the field evolved
towards the study of higher-order harmonic generation, aiming at the creation
of coherent radiation in the ultraviolet regime and beyond. Nowadays, HHG
is also employed as a spectroscopic tool for gaining insights into a materials
properties. Measurements of HHs can e.g. be used to detect Bloch oscillations
[168] and interference effects of electrons in a crystal [169], to study the Berry
curvature of a system [81, 170], or to observe heating of Dirac gases [83]. A
summary about recent developments of HHG in condensed matter is given
e.g. in Ref. [94]. In our work, we investigate HHG in effective Dirac systems
with focus on TI surface states, see Chaps14. 5, 6 and 7. In such systems,
the topological protection entails large scattering times of at least 1 ps [80],
and thus a fully quantum mechanical description without dephasing is valid.
For the two-band model introduced in Sec. 2.1.2, Eq. (2.21), the emitted HH
spectra are directly linked to the velocity given in Eq. (2.58), as we show
below.

Generally, the acceleration v̇(t) of an electron due to the laser pulse generates
a power P (t) which is given by Lamor’s formula [171]

P (t) = 2
3

e2

4πε0c3 |v̇(t)|2, (2.60)

where ε0 is the vacuum permittivity and c the speed of light. The corresponding
HH spectra are defined by the Fourier transform P (ω). In the frequency
domain, v̇(ω) = iωv(ω), and thus the power spectrum P (ω) is directly related
to the electron velocity v(ω),

P (ω) = 2
3

e2

4πε0c3 |ωv(ω)|2. (2.61)

Naturally, the power P (ω) can be split in the vector components of the velocity
v(ω) and we can write

P (ω) = 2
3
e2ω2

4πε0c3

(
vx(ω)2 + vy(ω)2) = Px(ω) + Py(ω) (2.62)

14We redirect the reader to these chapters for a more detailed motivation of the respective research.
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for a 2D system. As shown in Eqs. (2.47) and (2.58) the velocity can be
decomposed in intra- and interband contribution as well. Due to the linearity
of the Fourier transform, this also holds in the frequency domain,

v(ω) = vintra(ω) + vinter(ω). (2.63)

Plugging Eq. (2.63) in (2.61) gives

P (ω) = 2
3

e2

4πε0c3 ω
2 ∣∣∣v2

intra(ω) + v2
inter(ω) + 2Re [v∗intra(ω)vinter(ω)]

∣∣∣ . (2.64)

Hence, both velocity contributions and their interference influence the resulting
HH spectrum.

Within this work, we calculate HHs spectra from numerically computed velocity
data. Since this data has a limited amount of data points, we take several
steps to improve the quality of the spectra. First of all, we interpolate the
velocities in order to increase the density of points in time. Then, we damp
the second half of the signal with a Gaussian-shaped decay such that the final
velocity is constant and equal to the initial velocity. This damping acts as
dephasing on the simplest possible level as it does not distinguish between
intra- and interband contributions. Third, we pad the numerical velocity with
zeroes before and after the actual dynamics. These measures are similar to
multiplying the data with a window function, which is a typical procedure
when computing HHs spectra from numerical results [172]. We show the details
and an exemplary study of the effects of our data processing in App. A.9.

2.4. Transition mechanisms in laser-driven
two-level systems

In Sec. 2.3.2 we have discussed how electric fields influence the velocity of
an electron. Now, we want to go into more details on the different regimes
of light-induced electron transitions between bands. In Fig. 2.5 we sketch
the main processes occurring when an electron is driven by an intense laser
field. Therein, the field is indicated by the purple wave and resembles the
laser pulse applied in Chap. 5 and following. Initially, the electron we consider
occupies only the valence band. In panel (a), only intraband dynamics occur
while the electron moves through momentum space. At points of minimal
band gap or when the local gap is in resonance with the driving frequency,
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Fig. 2.5: Electron dynamics in a two-band system driven by an intense laser field sketched
in 1D. (a) Initially, the electron (blue dot) is shifted through momentum space (red arrow).
It only has an intraband velocity. When it reaches a resonance or point of minimal band gap,
it (shaded blue and shaded green dot) is partially excited into the other band (purple arrow).
(b) The two electron parts move within their respective band. Both parts contribute to the
intraband velocity. Their interference additionally gives rise to an interband velocity (dashed
arrow). (c) Due to the oscillation of the light field, the electron parts move back and forth in
momentum space and transitions occur repeatedly.

part of the electron is excited to the conduction band. After such a transition,
both amplitudes cki,± 6= 0 of the electron wave function are non-zero, compare
Eq. (2.57), and the occupation is distributed over valence and conduction
band. The electron amplitudes continue moving within their respective band
and contributing to the intraband velocity. Additionally, their interference
generates an interband velocity, see panel (b). Since a laser pulse is described
by an oscillating electric field15, after one optical half-cycle the electron’s
direction of motion in momentum space is reversed. Its two amplitudes return
to the point of minimal gap or resonance condition and another transition
occurs. Then, their reshuffled amplitudes continue the intraband motion
until their direction in momentum space is reversed again. These processes
are repeated throughout the pulse duration, as indicated in panel (c). The
probability of finding the electron in the valence or conduction band after the
pulse depends on the type of transitions that dominate the process.

The simple sketch in Fig. 2.5 implies that intraband motion and interband
transitions are two connected processes that depend on various system pa-
rameters, such as the energy dispersion and the driving field. One attempt
to disentangle and categorize different transition mechanisms in light-driven
two-band systems was made by Heide et al. [173]. Their analysis is based on a

15Note that we neglect the variation of the fields amplitude throughout the pulse here.
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massive Dirac model in 1D16, where the electron is driven around the minimal
band gap by a linearly polarized laser pulse, as sketched in Fig. 2.5. Dephasing
and dissipation effects are neglected. They distinguish five different categories.
The first one is simply the adiabatic regime where no transitions happen. The
other four describe different transition mechanisms. The Keldysh or adia-
baticity parameter γ determines, whether the system’s driving is within the
perturbative limit or has entered the strong-field regime [174]. The parameter
is defined as

γ = 2πνel
√
m∗∆E

eEel
= ∆Ehνel√

2~vFeEel
= ∆E√

2~ΩR
, (2.65)

where m∗ is the effective electron mass, ∆E the minimal band gap, Eel = |Eel|
the electric field strength, and νel the driving frequency. The first expression
is the original definition by Keldysh [174], the second and third expres-
sion are obtained for the model system in Ref. [173]17 with Rabi frequency
ΩR = vFeEel/(hνel).

As long as γ > 1, i.e. in the perturbative limit, only resonant transitions are
possible. They require a photon energy nhνel ≈ ∆E, where n is an integer.
Due to the relatively low field strength compared to the band gap ∆E and
driving frequency νel, only the single-photon process n = 1 plays a role. In this
regime, an occupation builds up in the conduction band and for sufficiently
long pulses, Rabi oscillations appear. By adequate tuning of the parameters,
the occupation can be completely transferred from valence to conduction band
and remains there18.

For γ < 1 the light-matter interaction exceeds the perturbative limit and
enters the strong-field regime. Then, the intraband motion of the electron
also becomes relevant and one has to consider the time-dependence of its
instantaneous eigenergy. This leads to a more complicated resonance condition.
Besides resonant transitions, Heide et al. [173] use the Landau-Zener formalism
[175–180] to classify three more mechanisms. Within this formalism, non-
resonant transitions that occur when an electron passes a point of minimal
band gap as in Fig. 2.5 are approximated. The transition probability PLZ is
estimated as

PLZ = exp (−2πδLZ) , with δLZ = (∆E/2)2

2~vFeEel
, (2.66)

16They add a mass term Mσz to the Dirac Hamiltonian (2.9) and set ky = 0. The mass term opens a gap
∆E = 2M in the spectrum and the bands look like those sketched in Fig. 2.5.

17Note that in Ref. [173] they mistakenly put a factor of 2 in the denominator instead of the
√

2 given here.
18A more detailed analysis of this mechanism in a gapped Dirac cone is given in the master’s thesis of Ebner

[163].
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see Ref. [173] for details. Hence, the transition probability decreases with
increasing gap ∆E or decreasing field strength Eel.

For δLZ � 1, one finds the impulsive Landau-Zener regime. There, PLZ ≈ 1
and the electron undergoes an (almost) complete transition from one band to
the other whenever it passes the minimal band gap. As a consequence, during
the pulse the population repeatedly jumps from valence to conduction band
and back and for a symmetric pulse and an even number of transitions ends
up in the valence band afterwards. Thus, no population build-up occurs.

A similar behavior is found in the nonimpulsive Landau-Zener regime. The
only difference in this regime is that the population transfer is smoother and
only part of the electron switches band. This can be understood by comparing
the transition time τt to the period of the driving. The transition time
τt = π/ΩR is defined by the Rabi frequency ΩR and can be understood as the
time over which the transition process stretches. If τt > 1/νel, the transition
takes longer than the one half cycle of the pulse. Thus, the occupation change
appears smoother than in the impulsive Landau-Zener regime and classifies as
nonimpulsive.

The last category is the adiabatic-impulsive Landau-Zener(-Stückelberg) regime.
There, PLZ ≈ 0.5 and thus one half of the electron’s wave function stays in
its original band whereas the other half is transferred to the other band.
During the pulse, the wave-function parts repeatedly meet at the band gap
and interfere with each other during transitions. This interference is taken
into account via the Stückelberg phase [175, 178, 181] and modifies the
actual transition such that population build-up can occur and appears rather
effective.

These different categories smoothly transform from one to another when
varying the system parameters. For 2D systems, different regimes can be
accessed for the same laser pulse. By changing the initial position of the
electron in momentum space, one can tune the band-structure cut it moves
through during the pulse. Then, the minimal band gap ∆E the electron
crosses changes, modifying the resonance frequency, the Keldysh parameter γ,
the Rabi frequency ΩR, and the Landau-Zener transition probability PLZ. In
Sec. 5.4 we demonstrate this tunability for four different Dirac models.



3. Simulating wave-packet
dynamics in time-dependent
quantum systems

Throughout this thesis we study electron dynamics in quantum systems with
time-dependent driving. For the numerical simulation of these dynamics we
mainly rely on the C++ library TQT (Time-dependent Quantum Transport)
which was developed by Krückl in the scope of his PhD thesis [182]. Its central
objective is to study time-dependent 1D or 2D systems based on wave-packet
approaches, solving the time-dependent Schrödinger equation

ĤΨ(r, t) = i~ d
dtΨ(r, t) (3.1)

for a wave packet Ψ(r, t) in discrete time steps. The Hamiltonian Ĥ can be
represented as atomic tight-binding or effective continuum model. In the
latter case, it usually originates from the low-energy approximation of a solid’s
bandstructure at special k points and is a good description of the electronic
properties within a certain energy window [106].

In this chapter, we want to introduce the relevant principles and algorithms
implemented in TQT related to wave-packet propagation in quantum systems
without leads. We focus on continuum Hamiltonians, tight-binding models
have not been used for the work presented here. For a more detailed and full-
fledged description of TQT, especially concerning the usage of tight-binding
Hamiltonians and quantum transport calculations with leads, we redirect the
reader to Krückl’s thesis [182]. Additionally, we will present new algorithms
we implemented for our studies and give an overview of the TQT-internal
observables used throughout this thesis.
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3.1. Avoiding fermion doubling in effective Dirac
Hamiltonians

One major strength of TQT lies in treating effective continuum models for
Dirac fermions without the fermion-doubling problem. The latter arises
whenever effective Dirac Hamiltonians are discretized and solved on a spatial
grid. These issues are quite well-known in the context of high-energy physics
[183, 184] and generally defined by the Nielsen-Ninomiya theorem published in
1981 [109–111]. Within the field of condensed matter physics, people became
more and more aware of the problem since the rise of graphene in 2004 [52].
In the context of solids, the Nielsen-Ninomiya theorem does not only have
consequences for the mathematical treatment but also explains why only
an even number of Dirac cones can exist in the bandstructure of a crystal.
Nowadays, Dirac systems play a significant role within the community as they
can be found not only in graphene but also in surface states of TIs. Since
these are the systems we will be working on throughout this thesis, TQT is
the ideal numerical tool for our studies. In order to demonstrate how TQT
avoids fermion doubling, we shortly want to sketch the origin of the latter.
For a detailed and pedagogical introduction of the phenomenon we refer to
the PhD thesis of Kozlovsky [185].

As already mentioned, fermion doubling naturally appears whenever an ef-
fective Dirac Hamiltonian is discretized and solved on a real-space numerical
grid. Such a scheme is e.g. applied in the widely used python package Kwant
[186], which is quite powerful for solving transport problems, and its extension
Tkwant [187], that can treat transport problems for time-dependent Hamil-
tonians. Just like in a crystal lattice, the spatial periodicity will introduce
an artificial BZ. This imposes a periodicity in k on the corresponding energy
dispersion E(k), requiring E(−π/a) = E(π/a), where a is the grid spacing.
For concreteness, let us consider a simple Dirac Hamiltonian in 1D

Ĥ(k) = ~vFkσx, (3.2)

with Fermi velocity vF, Planck’s constant ~ and Pauli matrix σx. When trans-
forming to real space, k → −i∂x. Taking the plane-wave ansatz Ψ(x) = 1√

L
eikxϕ

with spinor ϕ and length L, the continuous problem can easily be solved by
diagonalizing the (2× 2) Hamiltonian, giving the spectrum

Econt(k) = ±~vF|k|. (3.3)

Now, we discretize x on a numerical grid with N lattice points labeled by j.
To obtain periodic boundary conditions, j = 1 is equivalent to j = N + 1.
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Fig. 3.1: Energy dispersion of the continuous (black) and the discretized (red) Dirac Hamil-
tonian. The discretization of the Hamiltonian on a spatial lattice leads to the formation of an
additional Dirac point at the artificially imposed BZ boundaries k/a = ±π. This phenomenon
is called fermion doubling.

Then, x→ ja, Ψ(x)→ Ψ(ja) ≡ Ψj, and the derivative ∂x is approximated by
difference quotients on the grid, i.e.

ĤΨj = −i~vFσx∂xΨj = −i~vFσx
1
2a (Ψj+1 −Ψj−1) = EΨj. (3.4)

Plugging in Ψj = 1√
L

eikjaϕ gives the spectrum

Edis(k) = ±~vF
1
a
|sin(ka)| . (3.5)

As depicted in Fig. 3.1, this periodicity leads to the formation of a spurious
Dirac point at the boundaries of the artificial BZ, giving rise to the name
fermion doubling. Depending on what kind of physics one intends to study,
the additional Dirac cone can completely change the numerical results. Ad-
ditionally, the discretized spectrum is only a good approximation within a
limited range of k around the original Dirac point. Even though there are
options to circumvent the fermion doubling [188], one has to be careful when
applying them since they again can alter the modeled physics. For the studies
presented here, we apply (strong) electric fields to the system. Especially when
studying HHG, the energy dispersion and geometrical properties of the model
Hamiltonian are crucial for the results, as we will demonstrate in Chap. 5.
Therefore, using a numerical method where we circumvent fermion doubling
is very beneficial.

TQT works with Hamiltonians in a mixed real- and momentum-space repre-
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sentation. The most general form these Hamiltonians can take is

Ĥ =
∑

mx,my

cmxmy
(r) k̂mx

x k̂my
y , (3.6)

where cmxmy
(r) are position-dependent matrices and k̂mx

x , k̂my
y are powers mx,

my of the momentum operators1. To avoid transforming k̂x, k̂y to real space,
TQT performs several basis transformations, modifying the Hamiltonian to

Ĥ =
∑

mx,my

cmxmy
(r) F−1

x kmx
x F1

x F−1
y kmy

y F1
y , (3.7)

with the Fourier transforms

F±1
x Ψ(r, t) = 1√

2π

∫
dxe∓ikxxΨ(r, t) and F±1

y Ψ(r, t) = 1√
2π

∫
dye∓ikyyΨ(r, t).

(3.8)
The propagated wave packet Ψ(r, t) is converted between real and momentum
space such that the operators kx, ky, and r can be applied in their respective
scalar representation. Hence, even though the system is discretized on a
numerical grid, fermion doubling is avoided.

TQT uses the algorithm of Fast Fourier transforms [189] for conversions
between the two spaces. For the highest numerical efficiency, the rectangular
grid Nx×Ny, on which the wave packet Ψ(r, t) is cast, should have a number of
Nx = 2n (Ny = 2m), n,m ∈ N, grid points in x (y) direction. When choosing
the optimal grid size Nx ×Ny and grid spacing δx (δy) for one’s calculations,
one has to keep in mind that the momentum-space grid by definition is
kx ∈ [−π/δx, π/δx] (ky ∈ [−π/δy, π/δy]) with spacing δkx = 2π/(Nxδx)
(δky = 2π/(Nyδy)). The center of the real-space grid can be chosen freely by
the user. By default it is set to the origin, such that x ∈ [−δxNx/2, δxNx/2]
(y ∈ [−δyNy/2, δyNy/2]).

3.2. Discrete time evolution of wave packets

We have discussed how TQT treats the position and momentum dependencies
of Hamiltonians Ĥ in Sec. 3.1. Now we want to focus on the actual wave-packet
propagation for explicitly time-dependent Hamiltonians2 Ĥ(t). In general,

1Note that TQT can only treat continuum Hamiltonians that are polynomials in k̂x, k̂y. More complicated
functional dependencies have to be expanded into polynomials beforehand.

2TQT can also treat time-independent Hamiltonians. But this is not needed throughout this thesis and
therefore not explicitly considered here.
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the time evolution is obtained by solving the time-dependent Schrödinger
equation (3.1) for the Hamiltonian Ĥ(t) [190]. For an initial state Ψ(r, t0),
the propagation can be written as

Ψ(r, t) = Û(t, t0)Ψ(r, t0) (3.9)

with the time-evolution operator

Û(t, t0) = T̂ exp
(
− i
~

∫ t
t0
Ĥ(τ) dτ

)
, (3.10)

where T̂ is the time-ordering operator. For time-independent Hamiltonians,
Û(t, t0) simplifies to

Û(t, t0) = exp
(
− i
~
Ĥ (t− t0)

)
. (3.11)

One can exploit expression (3.11) by discretizing the time t into Nt small
steps. The duration δt of these steps has to be chosen sufficiently small such
that the Hamiltonian is approximately constant and the dynamics adiabatic
during each time step. The TQT timeline sets t0 = 0 by definition, so we will
adopt this from now on. Then, one can write

Û(t = Ntδt, 0) ≈
Nt∏
n=1

exp
(
− i
~
Ĥ(nδt)δt

)
(3.12)

for the time evolution operator from t = 0 to t = Ntδt and the time evolution
of the wave packet in Eq. (3.9) reduces to an easy multiplication instead of a
time-ordered product. To efficiently treat the exponential function, different
expansion methods can be used. So far, Chebychev [191], Faber [192, 193],
Lanczos [194, 195], and Arnoldi [196] propagators are implemented in TQT.
The optimal choice depends on the properties of the Hamiltonian Ĥ(t). For
the work presented here, we only used the Lanczos method, so we again
redirect the interested reader to Krückl’s work [182] for more details on the
other propagators.

The Lanczos method is most suitable for explicitly time-dependent Hamilto-
nians Ĥ(t) in closed systems. In this context, closed means that the wave
packet cannot leave the system, i.e. we consider periodic boundaries. When
a wave packet hits the boundary of either real- or momentum-space grid, it
reenters on the other side of the grid. Note however, that the Hamiltonian
Ĥ(t) does not have to be periodic within either of the spaces. Thus, if the wave
packet exceeds the limits of one of the grids within the propagation, this might
affect the numerical results and lead to unphysical signatures in the computed
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observables. This also has to be taken into consideration when defining the
initial wave packet Ψ(r, 0) that is handed over to the propagator. In principle,
the choice of the wave packet’s shape is arbitrary but it’s dimensions in real
and momentum space are linked by the Fourier transforms (3.8) and thus
must be chosen to fit both grids.

For single-particle physics, these limitations are usually not an issue. In
Chaps. 6 and 7 however, we want to explore the role of the Fermi sea and
spatial dependence of the pulse on HHG. For the latter, we implemented an
extended version of the Lanczos propagator in TQT which we will introduce
in Sec. 3.3. This Lanczos Source propagator in certain limits reduces to the
Lanczos propagator and since we give a detailed description of the Lanczos
method there, we omit any further mathematical details at this point.

3.3. Plane waves in spatially localized
time-dependent potentials

So far, it was only possible to study the dynamics of wave packets, that by
definition are localized both in position and momentum space, in TQT. This is
not an issue as long as the applied time-dependent potentials are homogeneous
and non-local in real space and the system’s geometry is trivial3, since then
the initial central position of the wave packet does not play any role for the
outcome of the simulation. If the applied fields become localized and maybe
even inhomogeneous, such as the laser pulses introduced in Chap. 7.4, the
question of where to initialize the wave packet and how to sample the full field
profile arises.

One intuitive approach to this question would be to run several calculations
with different starting positions to eventually sample the complete relevant
real space. Here, we want to pursue a different strategy inspired by the
source-sink algorithm [197] used in Tkwant [187]. It’s advantage is that it
offers the possibility to propagate plane waves and a rather straightforward
option to include Fermi sea effects in the calculation of observables. As
formally demonstrated in App. A.7, one only needs to integrate over all
initially occupied states in order to consider a Fermi sea4. Note that we do not

3We focus on real-space-dependent potentials here since this is what we considered in our work.
4How to realize a Fermi sea using wave packets in spatially uniform potentials is discussed and studied in
detail in Chap. 6.
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want to treat the sink part of the algorithm here. Its basic idea is to include
non-hermitian terms in the Hamiltonian for damping out the wave function
at the boundaries of the system to avoid spurious effects from reflections.
This concept has already been included in TQT by Krückl [182] and is not
necessary for our work.

We implemented the source algorithm in TQT by introducing a Lanczos Source
propagator. It is based on the same principles as the other TQT propagators,
meaning that it also takes Hamiltonians in mixed position and momentum
space representation and uses Fourier transforms to treat the operators in
their respective scalar representation (see Sec. 3.1). A test application of the
algorithm in a Fabry-Perot setup is shown in App. A.12. In the following we
present the theory behind the algorithm and concentrate on the derivation in
real space for the sake of simplicity. The Hamiltonian can be written as

Ĥ(r, t) = Ĥ0(r) + V̂(r, t), (3.13)

where V̂(r, t) contains all time-dependent terms and has to be localized in real
space. The goal of the source algorithm is to compute the time evolution of
a plane wave Ψn(r, t). Since plane waves spread over the whole real space,
this is quite challenging numerically. If Ψn(r, 0) = ϕn(r) is chosen to be an
eigenstate of Ĥ0(r) with eigenenergy En, such that

Ĥ0(r)ϕn(r) = Enϕn(r), (3.14)

one can split the time evolved state into two parts

Ψn(r, t) = ψn(r, t) + exp
(
− i
~
Ent

)
ϕn(r). (3.15)

Here, ψn(r, t) contains all parts with non-trivial time evolution caused by
V̂(r, t) and its initial condition is ψn(r, 0) = 0. Plugging this ansatz into the
time-dependent Schrödinger equation (3.1) gives

i~ d
dtψn(r, t) = Ĥ(r, t)ψn(r, t) + V̂(r, t) exp

(
− i
~
Ent

)
ϕn(r)︸ ︷︷ ︸

source term

. (3.16)

This is the Schrödinger equation for ψn(r, t) with an additional source term
determined by the plane wave ϕn(r). As long as the potential V̂(r, t) is localized,
ψn(r, t) is simply a wave packet generated out of the plane wave ϕn(r) by
the time-dependent potential V̂(r, t). The reduction of the complicated time
evolution of a plane wave to a wave packet is the key idea of Tkwant’s source
algorithm [197].
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For the actual numerical implementation it is favorable to rewrite Eq. (3.15)
to

Ψn(r, t) = exp
(
− i
~
Ent

)
(ψn(r, t) + ϕn(r)), (3.17)

such that the modified Schrödinger equation (3.16) becomes

i~ d
dtψn(r, t) =

(
Ĥ(r, t)− En

)
ψn(r, t) + V̂(r, t)ϕn(r). (3.18)

Thus, the highly oscillatory dynamical phase exp
(
− i

~Ent
)
does not have to

be considered in the differential equation, increasing the numerical stability.

Apart from the source term and the shift Ĥ(r, t)ψn(r, t)→ (Ĥ(r, t)−En)ψn(r, t)
due to our redefinition of Ψn(r, t) in Eq. (3.17), Eq. (3.18) is the same equation
as treated by the other TQT propagators. There, for our type of systems the
Lanczos method is most suitable. Generally, the Lanczos method describes
how to approximate eigenvalue problems for large matrices by projecting them
onto a much smaller subspace [194], thus making them numerically cheap.
Park and Light showed how to apply this method to the Schrödinger equation
[195], Dunbar and Woodbury described how the Lanczos method can be used
on a set of inhomogeneous differential equations [198]. In the following, we
combine both methods to solve the modified Schrödinger equation (3.18).
Note that if one would include sinks in the Hamiltonian, the Arnoldi method
[196] would be needed. In practice, the Arnoldi and Lanczos method are very
similar, so everything derived here can easily be adopted for an Arnoldi Source
propagator.

We start by expanding ψn(r, t) and ϕn(r) into the N -function basis {φi(r)}N

ψn(r, t) =
N∑
i=1

ai(t)φi(r), ϕn(r) =
N∑
i=1

biφi(r). (3.19)

In TQT these φi(r) define the grid in real space and N = NxNy is the number
of grid points. A key requirement for the Lanczos method to work is that the
propagation is performed in small time steps. As explained in Sec. 3.2, the
step size has to be sufficiently small to assure that all parameters are constant
during one step. In the following we therefore drop the time dependency of
Ĥ(r, t) and V̂(r, t) and make the derivation for one single time step. Plugging
our ansatz Eq. (3.19) into Eq. (3.18) gives

i~
N∑
i=1

ȧi(t)φi(r) =
(
Ĥ(r)− En

) N∑
i=1

ai(t)φi(r) + V̂(r)
N∑
i=1

biφi(r), (3.20)
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where d
dtai(t) = ȧi(t). We can now rewrite this as a matrix equation. Note

that the {φi(r)}N basis in general is non-orthogonal but square integrable.
Thus, the equations do not decouple and we get

i~Ŝda(t)
dt = Ĥa(t) + V̂ b, (3.21)

where Ŝ is the overlap matrix with Sij = 〈φi|φj〉, Ĥ is the Hamiltonian
matrix with Hij = 〈φi|Ĥ(r) − En|φj〉 and V̂ is the source matrix with
Vij = 〈φi|V̂(r)|φj〉. In TQT however the {φi(r)}N are orthogonal since two
different grid points r and r′ do not overlap and Ŝ = 1. Nevertheless, we will
keep Ŝ in the following derivation for the sake of generality.

We can now solve Eq. (3.21) for ȧ(t)

ȧ(t) = − i
~
Ŝ−1Ĥa(t)− i

~
Ŝ−1V̂ b. (3.22)

At this point, we can use the Lanczos method to reduce the dimension of
our problem from N to p � N . Its recursive algorithm constructs a set of
p Ŝ-orthogonal vectors {q}p spanning a subspace in which the Hamiltonian
obtains a tridiagonal form. Note that even though our equation is inhomo-
geneous the definition of {q}p is the same as for the standard Schrödinger
equation

Ŝ−1Ĥq0 = α0q0 + β0q1,

Ŝ−1Ĥqk = βk−1qk−1 + αkqk + βkqk+1.
(3.23)

The only thing that changes for the Lanczos Source algorithm so far is the
starting vector q0. In principle, its choice is largely arbitrary, but in Ref. [198]
they state that "the process should contain basis states that are the primary
components of interest". Usually, the Lanczos propagator in TQT takes
q0 = a(t0)/ |a(t0)|, where a(t0) is the result from the prior time step. However,
we have to be careful since q0 must not be zero. Thus, as long as a(t0) = 0 in
our propagation, we take q0 = b/ |b|. As soon as a finite value a(t0) has been
generated by the source term, we start with q0 = a(t0)/ |a(t0)| instead5.

The transformation from the basis {φi(r)}N to the subspace {q}p is given by
the (N × p)-matrix Âp

Âp = [q0 q1 q2 . . . qp−1] (3.24)
5Note that finite for numerics means sufficiently large to avoid issues with numerical precision. Currently,
we demand |a(t0)|2 > 10−10 in order to use it as starting vector.
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and the Hamiltonian matrix Ĥp in this subspace reads

Ĥp =



α0 β0 0 · · · 0 0
β0 α1 β1 · · · 0 0
0 β1 α2 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · αp−2 βp−2
0 0 0 · · · βp−2 αp−1


. (3.25)

Accordingly, we can write a(t) = Âpc(t). Note that Âp is not quadratic and
therefore not invertible. However, since the {q}p are orthonormal by definition,
Â†pÂp = 1. We get

ċ(t) = − i
~
Â†pŜ

−1ĤÂpc(t)− i
~
Â†pŜ

−1V̂ b. (3.26)

Due to the Ŝ-orthogonality of our new basis {q}p, Â†pŜ−1ĤÂp = Ĥp. Thus,
the differential equation (3.26) only consists of p components instead of N
which makes finding its solution numerically by diagonalization much faster
than for the original Eq. (3.22).

Let {h}p be the eigenbasis of Ĥp with eigenvalues λi. Then

T̂p = [h0 h1 h2 . . . hp−1] (3.27)

is the transformation from {q}p to {h}p. Since the eigenvectors {h}p are
orthonormal, T̂−1

p = T̂ †p . We can write the diagonalized form of Eq. (3.26)
as

ḋ(t) = − i
~
T̂pĤpT̂

†
pd(t)− i

~
T̂pÂ

†
pŜ
−1V̂ b︸ ︷︷ ︸

g

, (3.28)

where6 c(t) = T̂ †pd(t). Equation (3.28) finally decouples and can be solved
analytically for each component,

di(t) = di(t0) exp
(
− i
~
λit

)
− gi
λi

[
1− exp

(
− i
~
λit

)]
. (3.29)

This solution is exact as long as b is constant in the considered time step. We
can calculate the initial condition as d(t0) = T̂pc(t0) = T̂pÂ

†
pa(t0). For the

6Note that the transformation is different from the one before since the eigenvectors that build T̂p are those
of Ĥp and not of the diagonalized matrix.



3.4. Including orbital magnetic fields 47

first time steps, d(t0) = 0, but as soon as the source term has generated a
finite a(t0), d(t0) = h0 |a(t0)|.

At last, we can transform the solution back to our original space {φi(r)}N
using a(t) = Âpc(t) = ÂpT̂

†
pd(t) and obtain the time evolved wave packet

ψn(r, t) = ∑N
i=1 ai(t)φi(r). To calculate physical observables, the propagator

in the end adds up both contributions ψn(r, t) and ϕn(r) to construct the full
time dependent state (3.17). The TQT-internal observables relevant for this
work are introduced in Sec. 3.5.

3.4. Including orbital magnetic fields

In Sec. 2.3.2 we thoroughly discussed how electric fields Eel(t) are introduced
in effective model Hamiltonians using either a vector potential A(t) or a scalar
potential φel(r, t). In this section, we focus on how to treat the orbital coupling
of a magnetic field perpendicular to the investigated 2D system, i.e. B ‖ ez.
This magnetic field can either be static, compare Sec. 7.3.2, or time-dependent,
e.g. as the magnetic component of a light field, see Sec. 7.4. In the following,
we start with the static case and then extend it to time-dependent magnetic
fields.

Generally, the orbital magnetic field B is included in the effective model by
minimal coupling of the vector potential A(r), see Eq. (2.54). Here, the spatial
dependence of the vector potential is crucial since the magnetic field is defined
as

B = ∇r ×A(r). (3.30)

The minimal coupling modifies the general polynomial Hamiltonian (3.6) to

Ĥ =
∑

mx,my

cmxmy
(r)

(
k̂x + e

~
Ax(r̂)

)mx
(
k̂y + e

~
Ay(r̂)

)my

, (3.31)

where the vector potential in the 2D plane of the simulation is written as
A(r̂) = (Ax(r̂), Ay(r̂)). Thus, especially for polynomial Hamiltonians with
higher-order momentum terms, including this orbital coupling requires caution
due to commutators of the position and momentum operators. Additionally,
the newly arising terms make the computation with TQT more costly. There-
fore, Krückl developed a TQT-internal routine that efficiently implements the
orbital effect using gauge transformations of the vector potential A(r) [182].
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Due to the gauge invariance, the magnetic field B = Bzez can be expressed
either in the symmetric gauge

A[0](r) = 1
2

−ax(r)
ay(r)

 (3.32)

or in the Landau gauge in x or y direction,

A[−1](r) =
−ax(r)

0

 or A[1](r) =
 0
ay(r)

 . (3.33)

For all three gauges, the vector-field components are given by

ax(r) =
∫ y
y0
Bz(x, y′) dy′ and ay(r) =

∫ x
x0
Bz(x′, y) dx′ (3.34)

with r = (x, y) in the 2D plane. The transformation between different gauges
is described by the scalar potential

Λf←i(r) = i− f
2

∫ x
x0

∫ y
y0
Bz(x′, y′) dy′ dx′, (3.35)

where f, i ∈ [−1, 0, 1] denote the final (f) and initial (i) gauge. This transfor-
mation (3.35) also describes how the propagated wave function Ψ(r, t) changes
with the gauge,

Ψf(r, t) = exp
(
− ie
~

Λf←i(r)
)

︸ ︷︷ ︸
Gf←i

Ψi(r, t). (3.36)

By subsequent gauge transformations Gf←i one can achieve that Ax(r) = 0
(Ay(r) = 0) when the terms with kx (ky) are applied to Ψ(r, t). Since,
conventionally, the vector potential is represented in the symmetric gauge
(3.32) to equally distribute numerical errors into kx and ky, Krückl chose this
gauge as initial and final condition. In combination with the TQT-internal
Fourier transforms (3.7), the Hamiltonian (3.31) thus becomes

Ĥ =
∑

mx,my

cmxmy
(r) G0←+1

[
F−1
x kmx

x F1
x

]
G+1←−1

[
F−1
y kmy

y F1
y

]
G−1←0, (3.37)

treating the orbital coupling in a numerically efficient way. When using this
routine for a spatially independent magnetic field, TQT only needs the field
strength Bz and computes the gauge transformation automatically based on
Eq. (3.35) before starting the propagation. When the magnetic field represents
a light wave however, it depends on position and time, i.e. B → B(r, t),
compare Sec. 7.4. Then, determining the gauge transformation Λf←i(r, t) with
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Eq. (3.35) requires an actual integration, that has to be calculated anew for
every time step. We implemented this procedure in an extra routine that
takes the vector potential A(r, t) instead of the magnetic field as an input.
Moreover, to allow for a freedom of gauge in this input, we added an option
for specifying the original gauge of A(r, t) that is used for defining the gauge
transformation (3.35) accordingly.

3.5. Overview of relevant observables

In order to study the properties of a system, one usually wants to calculate
physical observables. When using TQT, one can either extract the resulting
wave packet Ψ(r, t) or the Fourier transformed state Ψ(k, t) for further pro-
cessing7 or directly compute observables during the propagation. To simplify
the latter, a large variety of observables is already included in the TQT li-
brary. In this section we want to introduce the TQT-internal observables used
throughout this thesis. Note that the Fourier transformation necessary for
the observables evaluated in momentum space is always implemented in the
respective observable and will not be explicitly mentioned in the following.

Center of mass motion (COM)

As the name suggests, the Center of Mass (COM) observable tracks the center
of mass motion of the wave packet Ψ(r, t) in position space or of the wave
packet Ψ(k, t) in momentum space. It calculates the position expectation
value in x and y direction as

x(t) = 〈x̂(t)〉 =
∫∫
|Ψ(r, t)|2x dx dy, y(t) = 〈ŷ(t)〉 =

∫∫
|Ψ(r, t)|2y dy dx,

(3.38)
where the integrals run over the full numerical grid. Additionally, the observ-
able provides the corresponding velocities via derivation, vx(t) = dx(t)/dt,
vy(t) = dy(t)/dt. In momentum space, the expectation values 〈kx(t)〉 and
〈ky(t)〉 are defined analogously as

〈kx(t)〉 =
∫∫
|Ψ(k, t)|2kx dkx dky, 〈ky(t)〉 =

∫∫
|Ψ(k, t)|2ky dky dkx.

(3.39)
7However, one has to be careful since the files containing the full wave function Ψ(r, t) (Ψ(k, t)) can need
rather large amounts of storage.
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Here, it is possible to include a k-mask f(k) and thus to evaluate the observable
in a limited region in momentum space, see Sec. 6.2 for a detailed introduction.
The cut expectation values 〈kx(t)〉cut and 〈ky(t)〉cut are given by

〈kx(t)〉cut =
∫∫
f(k)|Ψ(k, t)|2kx dkx dky,

〈ky(t)〉cut =
∫∫
f(k)|Ψ(k, t)|2ky dky dkx.

(3.40)

Velocity in momentum space

In Chap. 6 we present a method for including Fermi sea effects in the propa-
gation of wave packets that cover a wide range in momentum space. In this
context, we introduce the aforementioned k-mask. In order to use the k-mask
when computing velocities, we implemented a new observable in TQT that
extracts the velocity from the Fourier transformed wave packet Ψ(k, t). This
velocity observable requires the velocity operator v̂k in addition to the wave
packet and is defined as

v(t) =
∫∫

Ψ∗(k, t) v̂k Ψ(k, t) dkx dky. (3.41)

Accordingly, the velocity vcut(t) cut in momentum space by the k-mask f(k)
reads

vcut(t) =
∫∫
f(k) Ψ∗(k, t) v̂k Ψ(k, t) dkx dky. (3.42)

Note that currently this observable can only be applied as long as the system’s
velocity operator v̂k is independent of time.

Intra- and interband velocity

As discussed in Sec. 2.3, the velocity can be decomposed in an intra- and an
interband contribution. For their computation, we introduced the velocity-split
observable in collaboration with Wolfgang Hogger. It is an hereditary class
of the velocity observable in momentum space and also requires the time-
independent velocity operator v̂k as an input. The full velocity v(t) is auto-
matically computed when using the velocity-split observable. Additionally,
one has to hand over the eigenstates ϕn(k) = 〈k|ϕk,n〉 of the time-independent
Hamiltonian8 Ĥ0(k). The observable then computes the diagonal components

8This means, one has to express the system’s Hamiltonian in momentum space Ĥ(r, t) → Ĥ(k, t) and
separate it into the time-independent part Ĥ0(k) and the time-dependent potential V̂(k, t). Then, the
eigenstates |ϕk,n〉 fulfill Ĥ0(k)|ϕk,n〉 = En(k)|ϕk,n〉, where En(k) is the respective eigenenergy.
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vnnk of the velocity matrix, i.e.

vnnk = 〈ϕk,n|v̂k|ϕk,n〉, (3.43)

for each energy band n. During the propagation, the wave packet Ψ(k, t) is
projected onto the different energy bands, giving the occupation

|ck,n(t)|2 = ϕ∗n(k)Ψ(k, t). (3.44)

At last, the intraband contribution of band n to the velocity of the wave
packet is evaluated as

vintra(n, t) =
∫∫
|ck,n(t)|2 vnnk dkx dky. (3.45)

Like for the total velocity (3.42), the introduction of a k-mask f(k) is possible
and gives the cut velocity

vintra,cut(n, t) =
∫∫
f(k) |ck,n(t)|2 vnnk dkx dky. (3.46)

Since the wave packet Ψ(k, t) acquires random phases at each time step during
propagation in TQT, the interband velocity cannot be calculated similarly to
the intraband velocity. We can only compute vinter(t) as the difference between
the total velocity v(t) and the sum over all intraband velocities vintra(n, t),

vinter(t) = v(t)−
∑
n

vintra(n, t). (3.47)

Accordingly, distinguishing the interband contributions between different bands
is not possible for systems with more than two bands. By subtracting the cut
velocities, the effect of a k-mask f(k) is included,

vinter,cut(t) = vcut(t)−
∑
n

vintra,cut(n, t). (3.48)





4. Floquet oscillations in
periodically driven Dirac
sytems

4.1. Introduction

Modifying a systems properties by applying a time-periodic external potential
has become a powerful tool for creating new, exotic states of matter in the last
years. One of the first proposals for so-called Floquet engineering came from
Lindner et al. [56]. They found that the spectrum of a topologically trivial
semiconductor quantum well can become non trivial under illumination with
circularly polarized light. Further studies of such Floquet TIs revealed that
they can host a new topological phase that does not have a counterpart in
non-driven systems [65–68]. This anomalous Floquet topological phase has
already been observed in photonic [57–61] and phononic [62] systems as well
as experimentally characterized in ultracold atom systems [63, 64].

For studying these new states of matter, good knowledge and understanding
of the Floquet quasi bandstructure is crucial. For example, Wintersperger
et al. [63] used Stückelberg interferometry [199, 200] to identify how the gap
closings of the Floquet quasi bandstructure and the emergence of topological
phases relate to each other. The Floquet oscillations we demonstrate in this
chapter offer another option to map out the quasi bandstructure of a Floquet
system.

From a mathematical perspective, Floquet theory and Bloch’s theorem are
equivalent. Both theories treat linear differential equations with periodic
coefficients as described by the French mathematician Floquet in his work in
1883 [24]. In Bloch’s analysis of the quantum mechanics of electrons in crystal
lattices in 1929 [70], these coefficients were periodic in space. Floquet theory
is its analogue for time-periodic systems [25–27]. For Bloch bands, already in
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the beginning of the 20th century Bloch and Zener [70, 71] predicted that an
electron accelerated by a constant external electric field will undergo a time-
periodic motion. This phenomenon, by now well known as Bloch oscillations
[72], was observed for the first time about 60 years after its prediction in
biased semiconductor superlattices [201–203]. Later on, Bloch oscillations and
analogues of them have been realized in a wide range of systems, e.g. cold
atom gases [204, 205] and classical optical [206, 207] and acoustic waves
[208]. Finally, in 2014, Bloch oscillations were measured in a biased bulk
semiconductor [168]. Recently, it has been demonstrated that by adding
Floquet engineering, Bloch oscillations can be switched on and off [209] or
their amplitude increased immensely, leading to “super” Bloch oscillations [73,
210–212].

Here, we focus on the opposite limit: a system under time-periodic driving.
We will show that a particle can undergo spatially periodic motion when
driven through an oscillating Floquet quasi bandstructure by a static electric
field. We call this motion Floquet oscillation since it can be considered as
Bloch-type oscillation within the Floquet quasi bandstructure. As we will
demonstrate, a suitable quasi bandstructure can be generated from a system
with effective Dirac Hamiltonian by applying different time-periodic drivings.
Hence, spatial periodicity is only necessary to create a bandstructure that
can be described by an effective Dirac Hamiltonian within a certain energy
window but does not influence the spatial oscillations otherwise.

There are only a few other works considering Bloch-type oscillations not
dominated by an underlying spatial lattice. However, the mechanisms leading
to Bloch-type oscillations in these studies are of a completely different nature
than what we want to present here. For example, in interacting 1D spinor gases
it is predicted that one can find Bloch-type oscillations due to the dynamical
formation of periodic structures caused by interactions [213]. Experimentally,
this has been observed in an atomic Bose liquid [214]. Another interesting
prediction are Bloch oscillations of light, which should appear as frequency
oscillations of photons [215].

Most of the results presented in this chapter have been published in Ref. [74].
Part of this work (mainly in Secs. 4.3, 4.4.1, 4.4.2) has already been done in
my master’s thesis [123] under the supervision of Phillipp Reck. For the sake
of completeness, we repeat what is necessary and expand on some aspects.
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4.2. Basic concepts of Floquet theory

There exists a large variety of review articles offering introductions to Floquet
theory, e.g. [36, 216–220]. Based on Ref. [217], here we will shortly present
the most important aspects for our work.

We consider a periodically-driven quantum system described by the Hamilto-
nian Ĥ(t) which fulfills

Ĥ(t) = Ĥ(t+ T ), (4.1)
with the driving period T . Generally, to obtain the time evolution of a state
|Ψ(t)〉 one has to solve the time-dependent Schrödinger equation

i~ d
dt|Ψ(t)〉 = Ĥ(t)|Ψ(t)〉. (4.2)

According to Floquet’s theorem, for a time-periodic Hamiltonian Ĥ(t) a
complete, orthonormal basis set is given by the Floquet states

|Ψα(t)〉 = exp
(
− i
~
εαt

)
|Φα(t)〉, (4.3)

where εα is the corresponding quasienergy and |Φα(t)〉 = |Φα(t+ T )〉 a time-
periodic function, also called Floquet mode1. Since these Floquet modes
|Φα(t)〉 have the same periodicity T as the driving, they can be expanded into
a discrete Fourier series in terms of the driving frequency ω = 2π/T ,

|Φα(t)〉 =
∑
n

exp (−inωt) |φnα〉. (4.4)

Analogously, the time-periodic Hamiltonian can be decomposed to

Ĥ(t) =
∑
m

exp (−imωt)Hm. (4.5)

Plugging the ansatz (4.3) and the Fourier series (4.4) and (4.5) into the
Schrödinger equation (4.2) eventually yields

(εα + n~ω) |φnα〉 =
∑
m
H(n−m)|φmα 〉. (4.6)

To compute the Fourier coefficients |φnα〉 and the quasienergies εα, we rearrange
Eq. (4.6) to an eigenvalue equation in Fourier space

Ĥϕα = εαϕα, (4.7)
1Note that in this decomposition the analogy to Bloch’s theorem becomes apparent. The eigenstates of an
electron in a spatially periodic crystal are decomposed into a plane wave with quasimomentum k and a
lattice-periodic function.
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where

Ĥ =



. . . H(−1) H(−2) . .
.

H(1) H(0) − n~ω H(−1) H(−2)

H(2) H(1) H(0) − (n+ 1)~ω H(−1)

. .
.

H(2) H(1) . . .


, ϕα =



...
|φnα〉
|φ(n+1)
α 〉
...


,

(4.8)
and H(0) = 1

T

∫ T
0 Ĥ(t) dt is the dc part of the Hamiltonian. Note that the

matrix Ĥ has a block structure, where each Fourier component H(n−m) =
1
T

∫ T
0 Ĥ(t)ei(n−m)ωt dt has the size (d × d) with d being the dimension of the

Hilbert space spanned by the original Hamiltonian Ĥ(t). Accordingly, the |φnα〉
are vectors with d components. In principle, Ĥ is an infinitely large matrix
due to the Fourier expansion it is based on. Nevertheless, one can find a finite
value N to truncate the matrix, reducing the Fourier expansion to (2N + 1)
coefficients, and still get converged quasienergies and Floquet modes.

This truncation becomes plausible when taking a closer look at the physical
interpretation. Mathematically, the transformation into Fourier space leads
to an overcompleteness of solutions. One can get the same Floquet state
(4.3) for the quasienergy εα and all shifted energies ε̃α = εα + n~ω when using
the Fourier expansion (4.4), all these {εα} being eigenvalues of the infinite
matrix Ĥ. Due to their redundancy however, one can reduce this infinite
number of copies of the spectrum to a first Floquet Brillouin zone (FBZ)
εmin ≤ ε ≤ εmin + ~ω. A common choice is εmin = −~ω/2. The number of
bands in the FBZ is equal to the number of bands of the undriven Hamiltonian
Ĥ(0). To determine the physical energy scale of the system, one can compute
the time-averaged spectral function

Aα(E) =
∑
n
〈φnα|φnα〉 δ (εα + n~ω − E) , (4.9)

giving a spectral weight to the copies of the Floquet bands indicating how
the Floquet states would couple to external degrees of freedom (e.g. leads) at
energy E. In this notation, n = 0 usually labels the bands emerging from the
bands of the undriven system, the copies shifted up (down) by n~ω can be
interpreted as those arising from absorption (emission) of n photons of the
driving field2. Thus, the spectral weight rapidly decreases with increasing n
and eventually goes to zero, determining the range −N ≤ n ≤ N of Fourier
components necessary to capture the full physical properties of the system3.

2Note that depending on the driving this could also be phonons or other (quasi)particles with energy ~ω.
3One has to keep in mind that the truncation of Ĥ distorts the bands of the outer copies. Thus, N has to
be large enough for all physically relevant copies to be fully converged.
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Since the Floquet states (4.3) form a complete, orthonormal basis set, one can
write down the time evolution |Ψ(t)〉 of any initial state |Ψ(0)〉 by projection
on the Floquet states |Ψα(t)〉,

|Ψ(t)〉 =
∑
α
cα|Ψα(t)〉 =

∑
α
cα exp

(
− i
~
εαt

)
|Φα(t)〉

=
∑
α
〈Φα(0)|Ψ(0)〉 exp

(
− i
~
εαt

)
|Φα(t)〉,

(4.10)

|cα|2 = |〈Φα(0)|Ψ(0)〉|2 being the occupation of the Floquet band εα. For a
perfect Floquet system, the amplitudes cα are independent of time. Since
the quasienergies εα are a static quantity, they only capture the stroboscopic
dynamics of the system. The dynamics between two periods T of the driving
are encoded into the Floquet modes |Φα(t)〉. The time evolution (4.10) is very
similar to the the one for a state in a time-independent system as in Eq. (2.45),
Sec. 2.3. This close analogy emphasizes that by changing to the Floquet basis
one maps a time-periodic Hamiltonian onto a time-independent one.

In Sec. 4.4.2, we will employ the time evolution of |Ψ(t)〉 within the Floquet
framework, see Eq. (4.10), to compute velocity expectation values. As for
the static system in Sec. 2.3 we use Ehrenfest’s theorem (2.46) to define the
velocity operator4. For the Floquet state (4.10) the velocity expectation value
is

v(t) = 〈v̂(t)〉 =
∑
α

|cα|2〈Φα(t)|v̂|Φα(t)〉
︸ ︷︷ ︸

diagonal

+
∑
α 6=β

c∗αcβ exp
(
− i
~

(εβ − εα) t
)
〈Φα(t)|v̂|Φβ(t)〉

︸ ︷︷ ︸
off diagonal

.
(4.11)

Similarly to the velocity of static two-band systems derived in Sec. 2.3,
Eq. (2.47), we can divide the velocity into a diagonal and an off-diagonal
contribution in the Floquet basis. Note that due to the basis dependency
of this distinction, only the total velocity v(t) is a physical observable. The
off-diagonal term contains an oscillation of frequency ωZB = (εβ − εα) /~. It
resembles the Zitterbewegung introduced for undriven systems in Sec. 2.3.1.
We will discuss this Floquet Zitterbewegung in more detail in Sec. 4.4.3. As
discussed in Sec. 2.3, one could also identify the velocity contributions as
intraband and interband velocity, respectively, but now within a Floquet

4Note that we drop the index k here.
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bandstructure instead of the static bands5. Since in the Floquet basis the
Hamiltonian of the originally periodically driven system is time indepen-
dent, we prefer the term Zitterbewegung instead of interband velocity in this
context.

Note that for the sake of simplicity so far the derivation has been performed
for a purely time-dependent Hamiltonian. The Hamiltonians we will later
on treat in the framework of Floquet formalism will also depend on the
quasimomentum k. Therefore, we have to project the Floquet states |Ψα(t)〉
and modes |Φα(t)〉 into k space, 〈k|Ψα(t)〉 = Ψα(k, t) and 〈k|Φα(t)〉 = Φα(k, t),
and the quasienergies εα and coefficients cα become k dependent, i.e. εα(k)
and ck,α. This also modifies the velocity to vk(t).

4.3. General idea behind Floquet oscillations

For introducing the concept of Floquet oscillations, let us first briefly recap
the key points of Bloch oscillations [70, 71]. These oscillations arise when
an electron is driven through the bands of a lattice-periodic system by a
constant electric field. For simplicity, we will discuss a 1D system here but all
concepts can trivially be adapted to higher dimensions. Due to the spatial
periodicity with lattice constant a, the resulting bandstructure is periodic in
quasimomentum k and can be reduced to the first BZ with k ∈ [−π/a, π/a].
The relation between the applied electric field Eel and the quasimomentum
k of the electron is described by the acceleration theorem, see Sec. 2.3.2,
Eq. (2.56). For a constant electric field Eel, this will simply lead to a linear
movement of the electron through the bandstructure,

k(t) = k(0)− eEel

~
t, (4.12)

where k(0) is the inital quasimomentum of the electron and e the elementary
charge. The group velocity vg(t) of an electron in a band with dispersion E(k)
is given by

vg(t) = 1
~

dE(k)
dk

∣∣∣∣∣∣
k(t)

, (4.13)

as discussed in Sec. 2.3, Eq. (2.50). Since for the constant electric field k shifts
linearly with t and for the lattice periodic system E(k) is periodic with k, the

5For more details on the relation between intraband and interband velocity in the Floquet basis and the
basis of the time-dependent Hamiltonian, we refer to the bachelor’s thesis of Michael Laumer [221], which
we supervised. He compares both velocities for a Dirac system driven by circularly polarized light.
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electron’s group velocity vg(t) will also be an oscillating quantity. Thus, the
electron performs an oscillatory motion in real space which is well known as
Bloch oscillation nowadays. The period TB of this motion is determined by
the periodicity of the bandstructure, which is equivalent to the width 2π/a of
the first BZ, and the changing rate of k, see Eq. (2.56), resulting in [71]

TB = 2π/a
|eEel|/~

= 2π~
a|eEel|

. (4.14)

Note that all this only applies as long as scattering is negligible. For the
observation of Bloch oscillations it is thus necessary that the mean scattering
time τs > TB.

To define Floquet oscillations, we have to transfer the ingredients for Bloch
oscillations from Bloch to Floquet bands. First and foremost, we need a
system without k-periodic dispersion that under the application of a time-
periodic driving develops a (quasi)periodic Floquet bandstructure in k space.
Remember that Floquet bands by definition are periodic in energy with
multiples n~ω of the driving frequency ω. For oscillations à la Bloch however,
periodicity in quasimomentum k is crucial. This can be achieved quite nicely
in effective Dirac systems. Therefore, from now on we will focus on the
Hamiltonian

Ĥ(k, t) = ~vFk · σ + V (t), (4.15)
introduced in Sec. 2.1.1 with some additional time-periodic driving V (t) with
frequency ω. For V (t) = 0, we recover the Dirac cone with energy branches
E± = ±~vFk with k = |k|. Due to the rotational symmetry of the cone,
without loss of generality we from now on set ky = 0 and thus k = kx.

When treating the Hamiltonian (4.15) within Floquet theory, replica of the
original Dirac cone emerge. In Fig. 4.1(a) we schematically show the original
cone in black and the replica in gray for V (t) → 0. We see that due to the
linearity of the energy dispersion the distance ∆kosc between the crossings
of different replica within the FBZ is independent of k. Since the replica
are always shifted by ~ω with respect to each other, their crossing points
in k are resonance points of the original Dirac cone with the driving field,
i.e. ∆E = n~ω. Increasing the driving strength V (t) couples the different
replica, leading to the opening of band gaps at crossing points. The resulting
bands are sketched by the red dashed lines in Fig. 4.1(a). This rather sim-
ple scheme already demonstrates the suitability of periodically driven Dirac
systems for achieving at least approximately k periodic quasi bandstructures.
In Sec. 4.4 and 4.5 we will show this quantitatively for two different driving
protocols V (t).
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Fig. 4.1: (a) Sketch of the formation of (approximately) k periodic Floquet bands in effective
Dirac systems.* When treating the original Dirac cone (black) within Floquet theory, replica
of it emerge (gray). For a finite driving V (t) 6= 0, the different replica couple and band gaps
are formed. This results in an oscillating Floquet bandstructure as shown by the red dashed
lines. The maxima of the bands are separated by ∆kosc. The blue dashed lines indicate the
FBZ. (b) Mechanism behind Floquet oscillations from the perspective of the static Dirac
bandstructure. The electron (black dot) travels along one branch in k due to the electric field
Eel until the local band gap ∆E = ~ω. Then, it transitions to the other branch. This process
is repeated whenever ∆E = n~ω is in resonance with the driving V (t). Due to the opposing
velocities vg of the branches, the electron performs oscillations in real space.
* Reprinted figure from [74]. Copyright (2020) by the American Physical Society.

In Ref. [73] they derive that both Eqs. (2.56) and (4.13) also hold for Floquet
systems, the latter now being the cycle averaged group velocity

v̄g =
∫ T

0
dt vg(t) = 1

~
dεα(k)

dk

∣∣∣∣∣∣
k0

, (4.16)

where εα is the quasienergy of the state and k0 its k value. Accordingly, as for
the Bloch oscillations, by applying an additional static electric field Eel we
can drive an electron through the Floquet band and if εα(k) is oscillating with
k, the electron’s (cycle averaged) velocity v̄g(t) will also be oscillating. The
resulting oscillatory movement of the electron in real space is what we call
Floquet oscillations. In general, the period of these oscillations is defined by
the k spacing ∆kosc between two adjacent maxima/minima of the quasienergy
εα(k) (as shown in Fig. 4.1) and the velocity dk

dt of the electron in k space (as
defined in Eq. (2.56)), i.e. TF = ∆kosc

|dk/dt| . For the Dirac system this leads to

TF = ω/vF
| − eEel/~|

= ~ω
vF|eEel|

. (4.17)

The period TF of the Floquet oscillations is inversely proportional to the period
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T = 2π
ω of the driving generating the Floquet bandstructure. This becomes

more plausible when looking at Floquet oscillations without actually treating
the Hamiltonian within the Floquet framework, as sketched in Fig. 4.1(b).
From the perspective of the Dirac cone, the static electric field drives the
electron along one branch. Whenever the energy difference ∆E between both
branches is in resonance with the periodic driving’s energy ~ω, i.e. ∆E = n~ω
with n ∈ N, the electron switches branch by absorbing/emitting n quanta
of the periodic driving field. Since both branches have opposite slopes, the
electron’s velocity will change sign whenever it changes from one branch to the
other. This is the process behind Floquet oscillations from the viewpoint of
the static system’s basis (see Sec. 2.1.1). The larger the driving frequency ω,
the longer the distance in k between two points E(k) meeting the resonance
condition ∆E = n~ω and thus the larger the Floquet period TF.

For realistic systems the gaps opening in the Floquet bandstructure will become
smaller with increasing k instead of being constant as depicted in our idealized
sketch in Fig. 4.1(a). This accounts for the fact that absorbing/emitting an
increasing number of quanta n of the driving field becomes less and less likely,
decreasing the probability of the electron switching between both branches of
the Dirac cone. For the observability of Floquet oscillations this is a limiting
factor. To understand this limit within the Floquet framework, we first have
to recognize that the static electric field breaks the perfectly time periodic
character of our system. However, as long as the field is not strong enough to
drive transitions between different Floquet bands, it is sufficient to include its
effect based on the acceleration theorem, see Eq. (2.56), within the Floquet
formalism. This approximation breaks down for smaller gaps between the
Floquet bands or larger static electric fields. Then, considering the adiabatic
time evolution of the electron is not sufficient and one needs to take Landau-
Zener transitions [175–180] between the Floquet bands [222, 223] into account,
which eventually lead to the disappearance of the Floquet oscillations also in
the Floquet picture. This has been studied in my master’s thesis [123] and
will not be repeated here.

4.4. Proof of principle: Periodically opened mass
gap

For a first demonstration of Floquet oscillations, we choose a driving protocol
suitable to achieve a large number of Floquet oscillation cycles. Previous
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research by Reck on the Dirac quantum time mirror [126, 224] includes the
study of single-wave-packet dynamics in a Dirac system where one abruptly
opens and closes a mass gap6. Here, we will periodically repeat this protocol,
giving us the model Hamiltonian

Ĥ(k, t) = ~vFk · σ +
∞∑
l=0

Θ (t− (lT −∆t)) Θ(lT − t)Mσz, (4.18)

where Θ is the Heaviside function, M the strength of the mass term, ∆t the
duration of the gap opening and T the period of the driving. A sketch of one
cycle of this pulsing is given in the lower inset in Fig. 4.2(b).

4.4.1. Floquet bandstructure

To compute the Floquet bandstructure, we have to construct and diagonalize
the Floquet matrix from the Hamiltonian (4.18) as described in Sec. 4.2. For
the dc part we get

H(0)(k) = 1
T

∫ T
0
Ĥ(k, t) dt = ~vFk · σ + ∆t

T
Mσz (4.19)

and for the other components

H(n−m)(k) = 1
T

∫ T
0
Ĥ(k, t) ei(n−m)ωt dt = M

2πi(n−m)
(
1− e−2πi(n−m)∆t

T

)
,

(4.20)
where ω = 2π

T . For the analysis of the bandstructure we again consider an
effective 1D model with k = (kx, 0) without loss of generality, so in the
following kx ≡ k. Since the mass gap is of rectangular shape, finding good
convergence especially of the Floquet modes is challenging. For the data
shown here, we found sufficient convergence going up to n,m = ±100 for the
truncation of the Floquet matrix. In App. A.2 we shortly discuss this choice
and show data for different values of n,m.

6As already stated by Reck, experimental realization of a quickly switched mass gap in graphene, which we
use as origin for the Dirac Hamiltonian employed here (see Sec. 2.1.1), is currently not feasible. However,
a mathematically similar Dirac Hamiltonian arises in TI surface states (see Sec. 2.1.2). There, the
Pauli matrices refer to the electron spin and a mass gap can easily be opened via Zeeman coupling of a
perpendicular magnetic field. The orbital effects related to this magnetic field do not destroy the concept
of the quantum time mirror, but will change the resulting Floquet bandstructure and electron dynamics.
Thus, this mechanism would require further studies. Here, the periodically gapped Dirac Hamiltonian
serves as a toy model and proof of principle of Floquet oscillations. For experimental realizations, we
study gap openings via circularly polarized light in Sec. 4.5.
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Fig. 4.2: Floquet bandstructure (black) of a periodically gapped Dirac cone with
(a) M∆t/~ = 6.3, ∆t/T = 0.5 and (b) M∆t/~ = 0.4, ∆t/T = 0.09 and corresponding
transition probability P (k) (blue). Whenever P (k) goes to zero, the gap between the Floquet
bands closes. One can even tune the system such that the original Dirac cone is preserved.
The lower inset in panel (b) shows the pulse shape for one cycle of the driving. The upper
inset sketches the path of an electron (light blue) through part of the bandstructure driven
by a constant electric field Eel. The band gap in this region is sufficiently large to allow for
Floquet oscillations.*
* Reprinted figure from [74]. Copyright (2020) by the American Physical Society.

We focus on two exemplary parameter sets to demonstrate the large tunability
of this driving protocol. In Fig. 4.2 we show the Floquet bandstructures
for (a) M∆t/~ = 6.3, ∆t/T = 0.5 and (b) M∆t/~ = 0.4, ∆t/T = 0.09. In
panel (a) the parameters are chosen such that the original Dirac cone is
preserved. In panel (b) we show a set with a large area around kvF/ω = 0
where the Floquet spectrum is gapped, making this set a good choice for
demonstrating Floquet oscillations. A sketch of how an electron moves through
part of the suitable bandstructure driven by a static electric field Eel is given
in the upper inset.

In Sec. 4.3 we stated that the gaps in the Floquet spectrum are directly related
to the probability of an electron at kvF/ω switching from one branch of the
Dirac cone to the other due to the applied driving. For a single cycle of our
driving this probability has been derived in detail in Ref. [224], reading

P (k) =
∣∣∣∣〈ϕk,±

∣∣∣∣e−iĤM∆t
∣∣∣∣ϕk,∓

〉∣∣∣∣2

=
∣∣∣∣∣∣− i√

1 + (~vFk/M)2 sin
(
M∆t
~

√
1 + (~vFk/M)2

)∣∣∣∣∣∣
2

,
(4.21)

where ĤM = ~vFk ·σ+Mσz is the Hamiltonian while the mass gap is open and
|ϕk,±〉 is the eigenstate of the Dirac cone without mass (Eq. (2.14), Sec. 2.1.1).
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Plotting P (k) together with the Floquet bands in Fig. 4.2 confirms the relation
between transition probability P (k) and gap opening in the Floquet spectrum.
Accordingly, one can also use the simple formula for P (k) when searching for
suitable parameters to achieve a certain kind of Floquet bandstructure in this
setup.

4.4.2. Analysis of Floquet oscillations

Having analyzed the Floquet bandstructure of our model system in Sec. 4.4.1,
we now want to demonstrate and study Floquet oscillations in this setup.
For concreteness, we choose the parameters M∆t/~ = 0.4 and ∆t/T = 0.09,
resulting in the Floquet spectrum depicted in Fig. 4.2(b). To numerically
compute the Floquet oscillations of an electron moving through the bands as
sketched in the upper inset of Fig. 4.2(b), we apply a negative static electric
field Eel < 0 tuned such that the Floquet period TF/T = ~ω

vF|eEel|T ' 20.8π
(see Eq. (4.17)). We set the field to point along the x direction to be able to
continue considering the effective 1D model as in Sec. 4.4.1. We describe the
electron as a Gaussian wave packet

Ψ(ki, 0) =
√√√√ 1

∆k
√
π

exp
(
− 1

2∆k2 (ki − kc)2
)1

1

 , (4.22)

where the center kc is given by kcvF/ω = 0.35 and the width ∆k/kc = 1/18.
We choose t = 0 for the initial time and define all states depending on their

initial momentum ki. Note that the spinor 1√
2

1
1

 is the eigenstate of the

upper band of the unperturbed Dirac Hamiltonian for ky = 0 and kx > 0 (see
Eq. (2.14)).

We use two complementary approaches to calculate the time-dependent ve-
locity and position expectation value of the electron in this setup. First, we
do a straightforward calculation within the framework of the time-dependent
Hamiltonian (4.18). We numerically calculate the time evolution of the initial
wave packet (4.22) by solving the time-dependent Schrödinger equation using
TQT (see Chap. 3). For these simulations in 1D we set the grid to 8192× 4
data points7 with spacing δx/vF(T −∆t) = 0.025 and δy/vF(T −∆t) = 0.25.
The calculations converge for a time step δt/(T − ∆t) = 0.0025. By di-
rectly including the electric field in the Hamiltonian via the scalar potential

7Since TQT is designed for simulations in 2D, we need a small amount of data points in the y direction in
order to achieve stable results.
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φel(x) = −Eelx, we obtain the exact, quantum mechanical dynamics of the
wave packet. The total Hamiltonian then reads

Ĥ(k, x, t) = ~vFk ·σ +
∞∑
l=0

Θ (t− (lT −∆t)) Θ(lT − t)Mσz + eφel(x), (4.23)

where e is the elementary charge. Due to the orientation of the electric field
along x, studying the dynamics in x direction is sufficient to observe Floquet
oscillations. We compute the position x(t) and the corresponding velocity
vx(t) of the wave packet using the COM observable introduced in Sec. 3.5. The
results are plotted in Fig. 4.3(a). We see that both x(t) and vx(t) are oscillating
quantities, their period matching the prediction TF/T ' 20.8π for the expected
Floquet oscillations. Moreover, x(t) contains all characteristic features of the
corresponding Floquet bandstructure depicted in the upper inset of Fig. 4.2(b),
namely the increasing amplitude of the oscillations and the sharpening of
the turning points. This is a direct consequence of Eq. (4.16), relating the
average group velocity to the Floquet bandstructure, since x(t) = ∫ t

0 vx(t′) dt′.
Especially the velocity vx(t) exhibits additional fast oscillations on top of the
slower Floquet oscillation. They can be attributed to Zitterbewegung and will
be discussed in more detail in Sec. 4.4.3. In Fig. 4.3(b) we show snapshots
of the wave packet’s spatial distribution |Ψ(x, t)|2 taken at the times marked
with crosses in panel (a). They illustrate how the electron’s center of mass
oscillates in real space.

Second, to verify that the observed oscillations can really be understood
by the movement of electrons through the Floquet quasi bandstructure, we
compute our observables x and vx(t) using Floquet theory. By expanding the
initial electron state Ψ(ki, 0) in the Floquet basis derived in Sec. 4.4.1, we can
compute its time evolution Ψ(ki, t) as described in Eq. (4.10). We include the
additional static electric field Eel via the acceleration theorem (2.56),

k → k(t) = ki −
eEel

~
t, (4.24)

and assume that the time evolution of Ψ(ki, t) is perfectly adiabatic within
the Floquet basis, as discussed in Sec. 4.3. In consequence, the amplitudes
cki,α = Φ†α(ki, 0)Ψ(ki, 0) are only computed for the initial state Ψ(ki, 0). They
encode the Gaussian structure of the wave packet and its distribution over
the two Floquet bands. Since we chose an eigenstate of the undriven Dirac
cone for Ψ(ki, 0) (see Eq. (4.22)), the wave packet contains contributions of
both Floquet bands α = ±. We move the wave packet through the Floquet
basis by plugging Eq. (4.24) in the quasienergies εα(k) and the Floquet modes
Φα(k, t). Thus, in contrast to Eq. (4.10), we now have to integrate over the
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Fig. 4.3: Floquet oscillations in a periodically gapped Dirac cone system. (a) Position and
velocity expectation value of Ψ(ki, t) computed both with TQT and a Floquet approach.
Overall, the results of both methods show good agreement. The Floquet oscillations in x(t)
mirror the features of the corresponding Floquet bandstructure depicted in Fig. 4.2(b). The
velocity vx(t) exhibits additional fast oscillations that can be attributed to Zitterbewegung.
(b) Real-space resolved snapshots of the wave packet Ψ(x, t) taken at times marked by the
crosses in panel (a). The wave packet Ψ(x, t) was extracted from the TQT calculation.*
* Reprinted figure from [74] with updated Floquet results. Copyright (2020) by the American Physical Society.
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dynamical phase, obtaining

Ψ(ki, t) =
∑
α=±

cki,α exp
(
− i
~

∫ t
0
εα (k (t′)) dt′

)
Φα(k(t), t), (4.25)

where α = ± labels the respective Floquet band8. With Ψ(ki, t) we can
calculate the velocity expectation value vx(t) following Eq. (4.11). The velocity
operator for our Dirac system is v̂x = vFσx, see Eq. (2.13). In total, we obtain

vx(t) = vF
∫ ∞
−∞

dki
∑

α,β=±
c∗ki,αcki,β exp

[
− i
~

∫ t
0

[εβ (k (t′))− εα (k (t′))] dt′
]

× Φ†α(k(t), t)σxΦβ(k(t), t),
(4.26)

where we average over all initial momenta ki to take the whole wave packet into
account. The corresponding position expectation value x(t) is achieved via
simple integration, x(t) = ∫ t

0 vx(t′) dt′. The results are plotted in Fig. 4.3(a).
Overall, they show good agreement with those obtained from the TQT simu-
lation. There are only a few details which are not perfectly reproduced. They
are especially pronounced in the velocity vx(t) and mainly integrated out in
the position x(t). First of all, the Zitterbewegung is of rectangular shape in
the TQT results. In the Floquet approach, these rectangles are not always
perfectly resolved, which can be attributed to the truncation of the Floquet
matrix at n,m = ±100. However, taking n,m = ±500 did not improve the
results and the intermediate regime n,m = ±200, ±300, ±400 showed even
less agreement. Probably, even larger Floquet matrices are necessary to really
reproduce the rectangular Zitterbewegung. Second, for some time windows
there seems to be a phase shift of π between the Zitterbewegung in the Floquet
and TQT approach. This shift is also observable in the small wiggly motion
of the position x(t) and related to the truncation of the Floquet matrix as
well. Last, a small shift in time builds up between the TQT and Floquet data.
This can be attributed to a slightly different time resolution within the two
numerical implementations. Plots for the discussed parameter exploration as
well as a zoom into the velocity curve demonstrating the discussed deviations
can be found in App. A.2.

In conclusion, in the regime depicted in Fig. 4.3, including the electric field
via the acceleration theorem (4.24) and neglecting Landau-Zener transitions
between the Floquet bands is a good approximation to evolve the wave packet
Ψ(ki, t) within the Floquet basis, see Eq. (4.25), and to observe Floquet

8Note that this is analogous to the time evolution discussed in Sec. 2.3.2 for a state in the basis of a
time-independent Hamiltonian with additionally applied homogeneous electric field.
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oscillations. If we would consider larger time scales, the electron would enter
a k region where the gap between the Floquet bands becomes too small and
Landau-Zener transitions would have to be taken into account. Then, the
Floquet oscillations are diminished or even vanish completely. The results for
x(t) computed with TQT for longer times and thus including the onset of
this regime are shown in App. A.2. A more extensive study can be found in
Ref. [123].

Note that the data shown here for the Floquet approach is an updated version
of the one published in Refs. [74, 123]. When working on the manuscripts
of Refs. [74, 123], we were not aware of the fact that we have to integrate
over the dynamical phase in Eq. (4.25) in order to correctly include the static
electric field Eel into the time evolution of Ψ(ki, t) in the Floquet basis. Since
the dynamical phase only enters the off-diagonal terms of the velocity, see
Eq.(4.11), we could still reproduce the slow Floquet oscillations with the
expansion used in Refs. [74, 123]. Only the fast Zitterbewegung was not
computed correctly.

4.4.3. Zitterbewegung in the Floquet basis

The Floquet oscillations studied in Sec. 4.4.2 contain additional fast oscillations
that are especially pronounced in the velocity expectation value, see Fig. 4.2(a).
We attribute this trembling motion of the electron to Zitterbewegung in the
Floquet basis. There already exist extensive studies of Zitterbewegung in Dirac
systems with time-dependent mass gap by Reck et al. [126, 153]. They found
that Zitterbewegung of wave packets can be revived by abruptly opening
and closing a mass gap and that persistent multimodes emerge when the
mass term oscillates harmonically. However, they discuss Zitterbewegung
in the basis of the undriven Dirac Hamiltonian. Here, we want to focus on
Zitterbewegung in the Floquet basis of the periodically gapped Dirac cone as
derived in Sec. 4.4.1.

We gave a short introduction to Zitterbewegung in two-band systems in
Sec. 2.3.1. Generally, Zitterbewegung is described by the off-diagonal part
of the velocity operator and its frequency ωZB is determined by the energy
difference between both bands at the considered k value. When deriving the
velocity expectation value in the Floquet basis in Sec. 4.2, we also found an



4.4. Proof of principle: Periodically opened mass gap 69

0 0.5 1 1.5 2 2.5 30

0.1

0.2

0.3

-1

-0.5

0

0.5

kcvF/ω = 0.25kcvF/ω = 0.37kcvF/ω = 0.49

t/T ωv/ω

v
x
/
v
F

ṽ
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Fig. 4.4: (a) Velocities of wave packets with different kc in a periodically gapped Dirac cone.
They exhibit Zitterbewegung around a constant value determined by the dispersion of the
Floquet bands. Here, no static drift field is applied such that k and thus ωZB are constant.
(b) Fourier analysis ṽx(ωv) of the velocities after subtracting the respective average velocity to
avoid a zero-frequency peak. The dashed lines mark the expected Zitterbewegung frequency
ωZB. The inset shows the corresponding Floquet bandstructure with the position of the wave
packets marked by dots.*
* Figure adapted from [74]. Copyright (2020) by the American Physical Society.

off-diagonal term containing an oscillation of frequency

ωZB(k) = 1
~

[εβ(k)− εα(k)] , (4.27)

where εβ,α(k) are the Floquet quasienergies, see Eq. (4.11). Using TQT we
compute the velocity vx(t) for a wave packet given by Eq. (4.22) for three
different values of kc in the periodically gapped Dirac system. We employ the
same model parameters as in Sec. 4.4.2 but do not apply an additional static
field Eel such that k and thus ωZB are independent of time. For the wave
packed (4.22) Zitterbewegung in the Floquet basis should arise since it is an
eigenstate of the static Dirac Hamiltonian and thus contains contributions
of both Floquet bands. Indeed, the results shown in Fig. 4.4(a) exhibit fast
oscillations around a constant value, the latter being defined by the slope of
the Floquet dispersion according to Eq. (4.16). Additionally, for all three wave
packets the amplitude of the Zitterbewegung decays as expected. Following
Reck et al. [126, 153] this decay can be understood as the wave packet splitting
into two parts, one occupying the upper and one the lower Floquet band,
and eventually separating completely in real space. Since Zitterbewegung is
an interference effect of contributions from different bands, it can only occur
as long as both contributions overlap. Thus, it is clear that the smaller the
average velocity of the wave packet, the slower the Zitterbewegung decreases.

In Fig. 4.4(b) we analyze the frequency spectrum ωv of the velocities. We
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subtract the average velocity value from the respective curve before performing
the Fourier transform to avoid a zero-frequency peak. The dashed lines mark
the Zitterbewegung frequencies ωZB as expected from Eq. (4.27). The good
agreement of both results confirms that the fast oscillations can be understood
as Zitterbewegung in the Floquet basis.

The inset of Fig. 4.4(b) shows a zoom into the corresponding Floquet band-
structure (a larger k area is plotted in in Fig. 4.2(b)). The kc positions of
the propagated wave packets are marked by dots. To extract the expected
Zitterbewegung frequency ωZB from the Floquet bands, one has to keep in
mind their periodicity in energy. For ωZB the smallest gap has to be considered.
For the red and green position, this gap does not lie within the FBZ but
between the FBZ and the neighboring replicas. The frequency spectrum ωv in
Fig. 4.4(b) does not only contain ωZB but also higher harmonics of it. This
is caused by the rectangular shape of the velocities, which originates from
the underlying Dirac dispersion. The velocity of the wave packet can only
change when the mass gap is open and is constant otherwise9. For our set
of parameters the gap opens only shortly, ∆t/T = 0.09. This short period
appears as a jump in the velocity even when the Zitterbewegung has already
vanished.

The fast oscillations observed on top of the Floquet oscillations are very similar
to those discussed here for the periodically gapped Dirac cone without static
electric field. The main difference is that there is no obvious decay of the
fast oscillations within the time window studied in Fig. 4.3 even though it is
more than five times longer than the time scale considered in Fig. 4.4 without
the electric field. The periodic change of sign of the velocity associated with
the Floquet oscillations prevents the wave-packet contributions of the two
Floquet bands from drifting apart. That the wave packet does not (completely)
split is also confirmed by the snapshots shown in Fig. 4.2(b). Thus, one can
argue that the static drift field leads to refocusing of the wave packet and its
Zitterbewegung does not decay.

9One might ask why there is no Zitterbewegung originating from the static Dirac dispersion. As derived
e.g. in Ref. [126], the Zitterbewegung in a Dirac cone is always perpendicular to the velocity defined by
the band dispersion. Since the wave packet studied here has ky = 0, vx is governed by the band dispersion
and Zitterbewegung appears in vy, which we do not consider.
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4.5. Towards experimental realization: Circularly
polarized light

In Sec. 4.4 we have demonstrated that a large number of Floquet oscillation
cycles can be achieved in Dirac systems with periodically opened mass gap.
For experimental realizations however, using a different driving protocol might
be more convenient. There already exists a lot of research concerning the
Floquet quasi bandstructure of graphene irradiated by circularly polarized
light [54, 225–227], including transport measurements [228] and studies of
topological properties [55, 229–232]. Therefore, it is known that circularly
polarized light can open a band gap in the central region of a Dirac system’s
Floquet bandstructure.

In this section we will study Floquet oscillations in Dirac systems illumi-
nated with circularly polarized light of frequency ω described by the vector
potential

A(t) = A

cos(ωt)
sin(ωt)

 . (4.28)

First, in Sec. 4.5.1, we will show the tunability of Floquet oscillations in this
setup for the simple Dirac Hamiltonian. Then, in Sec. 4.5.2, we will explore
Floquet oscillations in graphene for experimentally realistic parameters, also
considering the influence of trigonal warping as higher-order approximation of
the graphene bandstructure.

4.5.1. Dirac Hamiltonian

We again start with the effective Dirac Hamiltonian derived in Sec. 2.1.1. The
vector potential (4.28) is included into the Hamiltonian via minimal coupling,
k→ k + e

~A(t), so our total Hamiltonian reads

Ĥ(k, t) = ~vFk · σ + evFA(t) · σ = ~vFk · σ + evFA

 0 e−iωt

eiωt 0

 . (4.29)

We construct the Floquet matrix following Sec. 4.2 to then compute the
Floquet bandstructure by diagonalization. For the Hamiltonian (4.29) we
obtain

H(0)(k) = 1
T

∫ T
0
Ĥ(k, t) dt = ~vFk · σ (4.30)
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for the dc part and

H(n−m)(k) = 1
T

∫ T
0
Ĥ(k, t) ei(n−m)ωt dt

= evFA

T

∫ T
0

 0 ei(n−m−1)ωt

ei(n−m+1)ωt 0

 dt

= evFA

 0 δn−m,1
δn−m,−1 0


(4.31)

for the other components, δn−m,±1 = 0 for n−m 6= ±1 being the Dirac delta
and T = 2π/ω. In Fig. 4.5(a) we show the resulting quasienergy spectra
for two different dimensionless driving strengths Ã = evFA

~ω , namely Ã = 0.5
and Ã = 1.1, cut along k = (kx, 0). Again, we can consider this cut without
loss of generality. We see that for the larger amplitude Ã the kx region in
which band gaps between the Floquet bands open increases. This reflects
what we discussed in Sec. 4.3: The coupling between different Floquet bands
at resonance points10 is directly related to the probability of absorbing the
necessary number n of photons to bridge the energy gap E = n~ω between the
branches of the original Dirac cone. Absorbing a larger amount n of photons
becomes more likely for higher amplitudes Ã of the light field. However,
these multiple-photon processes also alter the overall structure of the Floquet
bands. For Ã = 1.1 the distance between local minima of the bands is not
independent of kx anymore, which will lead to a non-constant period of the
Floquet oscillations.

To observe Floquet oscillations for the above described parameters, we again
model the electron as a Gaussian wave packet and propagate it using TQT.
Due to some functional limitations of TQT, implementing the Hamiltonian
(4.29) is not completely straightforward and requires a different gauge of the
circularly polarized light, details are discussed in App. A.3. Now, we explicitly
treat the 2D Hamiltonian and consider a rotationally symmetric Gaussian
wave packet11,

Ψ(ki, 0) = 1
∆k
√
π

exp
(
− 1

2∆k2 (ki − kc)2
) 1
−eiθki

 , (4.32)

where the spinor 1√
2

 1
−eiθki

 is the eigenstate of the lower branch of the

undriven Dirac Hamiltonian (see Eq. (2.14)). We choose kcvF/ω = (−1.22, 0)
10As discussed in Sec. 4.3, the Floquet bands form out of replica of the original Dirac cone that are coupled by

the applied driving field. By definition, the crossing points of these replica within the FBZ are resonance
points of the original Dirac cone with the driving frequency.

11Note that this changes the normalization of the wave packet compared to the 1D wave packet in Eq. (4.22).
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Fig. 4.5: (a) Floquet bandstructure for a Dirac system illuminated with circularly polarized
light for two dimensionless driving strengths Ã = 0.5 (black curves) and Ã = 1.1 (red curves).
Increasing the amplitude Ã leads to coupling of the bands at larger kx values, thus widening
the k window in which Floquet oscillations can occur. (b) Position expectation value x/vFT of
an electron driven through the Floquet bands depicted in panel (a) by a static electric field Eel.
The respective initial momenta are marked by the blue dots in panel (a). The movement clearly
shows Floquet oscillations and resembles the Floquet bands. To highlight this resemblance,
the inital time t0 of the black curve is shifted to t0/T = ~

|eEel|T
(kÃ=1.1

c − kÃ=0.5
c ). For this

electric field strength and resulting Floquet period TF/T ' 140, fast oscillations caused by
the circulating electric field of the light are not resolved and only appear as slight broadening
of the curves.*
* Reprinted figure from [74]. Copyright (2020) by the American Physical Society.

for Ã = 0.5 and kcvF/ω = (−2.07, 0) for Ã = 1.1. For the width ∆k we keep
∆k/|kc| = 1/18 for both driving amplitudes. The position of kc is marked by
the blue dots in Fig. 4.5(a). The simulations in 2D are carried out on a grid
with 8192× 256 data points. The grid spacing and duration of one time step
are the same as in Sec. 4.4.

TQT computes the wave-packet dynamics within the framework of the time-
dependent Hamiltonian (4.29), where the k value follows the vector poten-
tial A(t). The initial wave packet is defined using the kinetic momentum12

k(t) = kcan + e
~A(t), whereas usually k = kcan is the canonical momentum.

Accordingly, we have to shift kTQT
c = kc + e

~A(0) in order to get the correct
comparison with the Floquet bands. Generally, the relation between kFloquet

in the Floquet framework and kTQT(t) in the time-dependent basis is given
by the cycle average

kFloquet = 〈kTQT(t)〉t = 1
T

∫ T
0

kTQT(t) dt. (4.33)

12The gauge-independent form is k(t) = kcan − e
~
∫

E(t′) dt′|t, which is the integral form of the acceleration
theorem (2.56). Thus, the discussed shift is necessary despite the gauge transformation discussed in
App. A.3.
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As long as no vector potential A(t) is applied, both values are the same13. To
simplify the notation, we drop the superscript of kFloquet again in the following
discussion.

We apply an additional negative, static electric field Eel = Eelex, with Eel < 0
and ex being the unit vector in x direction, to drive the electron through the
band-structure cut shown in Fig. 4.5(a). The field strength Eel is set such
that TF/T = ~ω

vF|eEel|T ' 140 (computed for Ã = 0.5). In TQT, Eel is included
via the scalar potential φel(x) = −Eelx. We compute the position expectation
value x(t) of the wave packet for both driving amplitudes Ã using the COM
observable of TQT, see Sec. 3.5. The results are shown in Fig. 4.5(b). To
highlight the similarity between x(t) and the Floquet bands we shifted the
curve corresponding to Ã = 0.5 by t0/T = ~

|eEel|T (kÃ=1.1
c − kÃ=0.5

c ), where
kÃ=1.1
c and kÃ=0.5

c denote the respective initial momenta. Accordingly, t0/T is
the time an electron takes to shift from kÃ=1.1

c to kÃ=0.5
c driven by the electric

field Eel. For the circularly polarized light the k region in which Floquet
oscillations are observable is much more limited than for the periodically
opened mass gap considered in Sec. 4.4. Still, at least four full oscillation
cycles are achievable for the parameters discussed here. Due to the large ratio
TF/T ' 140 between the Floquet oscillation period TF and the light field
period T , the short-time dynamics caused by the circulating vector field only
appear as slight broadening of the curves and are not really resolved.

For a better resolution of the short-time dynamics we increase the static
field strength Eel by a factor of 10, thus reducing the oscillation period to
TF/T = ~ω

vF|eEel|T ' 14. In Fig. 4.6(a) we show the resulting position expectation
value x(t) for a wave packet starting at kcvF/ω = (−0.64, 0) and Ã = 0.5.
Since the increase of the static field strength does not change the underlying
Floquet bandstructure, the Floquet oscillations of Fig. 4.5(b) for Ã = 0.5
are reproduced qualitatively. Only the change in period and a decrease of
the oscillation’s amplitude is apparent. Now, tiny oscillations caused by the
circulating field of the light are resolved. On the right of Fig. 4.6(a) we depict
snapshots of the 2D wave packet’s distribution in real space oscillating around
x = 0. The corresponding points in time are marked by the orange crosses in
the x(t) curve. The full trajectory of the wave packet in x-y plane is plotted
in Fig. 4.6(b), including a red curve as guide for the eye. Again, the Floquet
oscillations in x direction are visible. Additionally, the small oscillations due
to the circulating light field are clearly resolved. The trajectory plot reveals
that they are not uniform but modulated depending on the position. This
13This holds for the periodically gapped Dirac system discussed in Sec. 4.4, for instance.
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Fig. 4.6: (a) Position expectation value and real-space shape of an electron driven through
the Floquet bands for Ã = 0.5 (see Fig. 4.5(a)) starting at kcvF/ω = (−0.64, 0). In comparison
to the oscillations plotted in Fig. 4.5(b) the strength of Eel is increased by a factor of 10,
giving TF/T ' 14. Here, micro motion caused by the circulating light field is resolved. On
the right, snapshots of the wave packet in real space taken at times marked by the orange
crosses in the position curve are depicted. (b) Trajectory of the wave packet from (a) in x-y
plane. It reveals the Floquet oscillations and an additional drift in y direction. The red curve
serves as a guide for the eye.*
* Reprinted figure from [74]. Copyright (2020) by the American Physical Society.
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modulation is attributable to Zitterbewegung. The drift of the wave packet in
y direction is less intuitive. Since it is perpendicular to the electric driving
field Eel, we assume that the drift is caused by an anomalous velocity and thus
a signature of the Floquet band’s Berry curvature Ω(k). For time-independent
systems with static electric field Eel, the anomalous velocity vanom(k(t)) is
given by

vanom(k(t)) = −e
~
Eel ×Ω(k(t)) (4.34)

and has been identified as scattering-independent contribution to the anoma-
lous Hall effect [49, 144], see Sec. 2.3.2. There also exists experimental evidence
for such Hall deflection in periodically driven honeycomb lattices realized in
cold-atom systems [63] and in graphene illuminated with circularly polarized
light [55]. In Sec. 4.5.2 we explore the experimental parameters necessary to
observe Floquet oscillations in graphene. When comparing them to the setup
used for measuring Hall currents in graphene we see that they are of similar
order of magnitude. This fortifies our assumption that the drift is caused
by the Floquet band’s Berry curvature. Nevertheless, computing the Berry
curvature for our Floquet bands and thus proving this assumption could be
done in future research.

4.5.2. Including trigonal warping and realistic parameters

In Sec. 4.5.1 we have demonstrated that at least four complete Floquet
oscillation cycles can be achieved in Dirac systems irradiated with circularly
polarized light. Now, we explore the experimental feasibility. Suitable systems
hosting an effective Dirac dispersion are graphene [32], TIs [30, 31, 40, 41],
and cold atoms in artificial honeycomb lattices [112]. For the latter, vF and
thus the Floquet period can be tuned and relaxation due to disorder or
interaction effects can be avoided. However, reaching the necessary time-scales
for observing Floquet oscillations is still challenging. In 2020, McIver et
al. measured a light-induced anomalous Hall effect in graphene [55]. Their
experiment shows which parameters can already be achieved experimentally
and serves as a benchmark for our studies. Accordingly, in this section we aim
to quantitatively investigate the realizability of Floquet oscillations in real
monolayer graphene.

As discussed in Sec. 2.1.1 the Dirac cone is only a valid approximation of the
graphene bandstructure within a limited energy range. For a good description
of the bands up to 2 eV, one has to include trigonal warping [127]. The
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frequency ω of the light field determines the energy window in which Floquet
oscillations take place. In Sec. 4.3 we argue that Floquet oscillations can be
understood as repeated switching of the electron between the branches of the
Dirac cone while being moved through k space by the static field Eel. This
switching occurs whenever the energy difference ∆E = n~ω. So by tuning ω
one can choose the energy range ∆E corresponding to the absorption/emission
of n = 1, 2, . . . photons. In the Floquet oscillations for Ã = 1.1 up to four-
photon processes are involved, which for ω/2π = 10 THz corresponds to
∆E ' 160 meV. In this range of energy, the Dirac approximation should be
valid. To verify this, we extend our Hamiltonian to

Ĥ(k) = ~vFk · σ − µ
[(
k2
y − k2

x

)
σx + 2kxkyσy

]
. (4.35)

For graphene, vF = 106 m s−1 and µ = 3a2γ0/8 with a = 1.4 Å and γ0 = 2.7 eV,
see Sec. 2.1.1. Again, we take the vector potential (4.28) into account via
minimal coupling, k→ k+ e

~A(t), the trigonal warping term giving rise to non-
linear contributions of A(t). By setting A = 45 nV s m−1 and ω/2π = 10 THz,
we reproduce the dimensionless driving Ã = 1.1 from Sec. 4.5.1. We achieve
results comparable to those displayed in Fig. 4.5(b) by propagating the wave
packet (4.32) with kc = −0.013 1/Å, ∆k/|kc| = 1/18 and applying an electric
field Eel = 30 V cm−1. The corresponding calculations are again performed
using TQT. In Fig. 4.7(a) we compare the Floquet oscillations computed with
and without the trigonal warping term and find good qualitative agreement.
Thus, we conclude that the Dirac approximation is valid for this set of
parameters.

For the experimental observation, it is crucial that the transport relaxation
time τs is larger than the period TF of one Floquet oscillation cycle. For clean,
hexagonal boron nitride-encapsulated graphene, typical relaxation times are
τs = 1–20 ps [233, 234]. For Eel = 30 V cm−1, the period TF = ~ω

vF|eEel| ' 13.5 ps
results. Therefore, in good quality samples at least one oscillation cycle
should be observable. By increasing the electric field by a factor of ten, so
Eel = 300 V cm−1, TF is reduced by a factor of ten to TF ' 1.3 ps. Then, all
four oscillation cycles should be measurable. As depicted in Fig. 4.7(b), also
for the higher electric field trigonal warping can be neglected. However, on this
short time scale the Floquet oscillations are altered by the momentum change
caused by the circulating light field, which is of period T = 2π/ω = 0.1 ps,
and Zitterbewegung.

Finally, we compare the found parameters with those employed in the experi-
mental observation of light-induced Hall currents in graphene [55]. According
to estimates, a measurable topological gap opening is expected for fields
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Fig. 4.7: Floquet oscillations for realistic parameters in graphene computed with (black)
and without (red) trigonal warping. We choose A = 45 nV s m−1 and ω/2π = 10 THz for
the circularly polarized light, reproducing Ã = 1.1 in Sec. 4.5.1. (a) For a static electric
field Eel = 30 V cm−1 Floquet oscillations of period TF ' 13.5 ps are achieved. (b) Increasing
the field to Eel = 300 V cm−1 reduces the period to TF ' 1.3 ps. The motion caused by
the circulating light field with T = 2π/ω = 0.1 ps is clearly resolved on this time scale. In
both cases (a) and (b) the Floquet oscillations are not changed qualitatively when including
trigonal warping.*
* Reprinted figure from [74]. Copyright (2020) by the American Physical Society.

with strength ETHz = 107–108 V m−1 [54, 235, 236]. In their experiments,
McIver et al. apply circularly polarized pulses of frequency ω/2π = 46 THz,
peak field strength ETHz = 4.0 · 107 V m−1 and duration of 500 fs. The
pulsing is necessary to avoid sample destruction. At peak strength, these
parameters correspond to an amplitude A = 140 nV s m−1 and intensity
I = cε0

2 A
2ω2 = 430 MW cm−2 (with speed of light c and vacuum permittivity

ε0), which is two orders of magnitude larger than for our proposed parameters,
there I ' 1 MW cm−2. This discrepancy can be traced back to our lower
frequency ω/2π = 10 THz and light amplitude A = 45 nV s m−1. Still, our
parameters result in a field strength ETHz = Aω ' 0.28 · 107 V m−1. This is a
bit below the estimated lower bound for observable gap openings in graphene
but that does not exclude the observability of Floquet oscillations for our
parameter set. Additionally, the Floquet bandstructure around the Dirac cone
shown in Ref. [55] is also suitable to generate Floquet oscillations. To achieve
the same Floquet period TF = ~ω

vF|eEel| as estimated for our parameters, one has
to increase the static electric field Eel by a factor of 4.6 to Eel ' 1.3 kV cm−1.
Then, TF ' 1.3 ps and thus at the lower bound of typical relaxation times
τs = 1–20 ps in hexagonal boron nitride-encapsulated graphene [233, 234]. In
summary, we can conclude that experimentally realizing Floquet oscillations
in graphene illuminated with circularly polarized light seems feasible.
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4.6. Summary: Extending concepts from Bloch
to Floquet systems

In this chapter, we have proposed the concept of Floquet oscillations. This
oscillatory electron motion arises, when combining a periodically driven system
and a constant, electric bias. The origin of these oscillations can be attributed
to consecutive electron transitions at (multi-)photon resonances of the driving
field with the bandstructure of the static system, since whenever the electron
switches band, its velocity is inverted. However, the phenomenon can also be
interpreted based on the Floquet theorem. From this perspective, Floquet
oscillations highlight, how concepts, well-established for Bloch bands of spa-
tially periodic systems, can be transferred to time-periodic Floquet systems,
as we summarize in the following.

First of all, Floquet oscillations themselves are the analog of Bloch oscillations.
Both phenomena arise when electrons are adiabatically driven through their
respective bandstructure by a constant, electric field. The motion of the
electron follows the band dispersion and becomes oscillatory for bands that
are (quasi)periodic in momentum. The most important difference between the
two phenomena is the nature of the corresponding bandstructures. The Bloch
bands originate from a spatial lattice and the Floquet bands from a lattice in
time. As a consequence, the Bloch bands are periodic in momentum space by
definition, whereas the Floquet bands are periodic in energy but can be tuned
such that (quasi)periodicity in momentum is achieved, at least in a certain
range. This limitation in the momentum periodicity of the Floquet bands
restricts the realizability of Floquet oscillations. Nevertheless, we could show
that up to four oscillation cycles should be observable in graphene illuminated
with circularly polarized light, see Sec. 4.5.2 for details.

Moreover, we found signatures of Zitterbewegung in the Floquet oscillations.
This jittery movement of electrons was originally predicted for highly rela-
tivistic, free particles by Schrödinger [146], but it turned out that the effect
can also appear for nonrelativistic particles in solids [148]. In the context
of condensed matter physics, Zitterbewegung arises due to a particle’s wave
function spreading over more than one band. Then, the different band con-
tributions interfere, which results in a trembling motion of the particle. For
a two-band system, the frequency of this Zitterbewegung corresponds to the
local energy difference between the two bands. In turn, the frequency of the
Zitterbewegung we observed in the Floquet oscillations is determined by the
local energy difference between the Floquet bands, demonstrating that the
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concept of Zitterbewegung also extends to lattices in time.

Lastly, the electron trajectories recorded in Sec. 4.5.1 contain fingerprints of an
anomalous velocity. Such velocities are induced by the system’s Berry curvature
and therefore our observation seems to be a signature of a non-vanishing Berry
curvature in the Floquet bands. We did not have the opportunity to pursue
this further, but similar observations have already been made in experiments
on Floquet TIs. Thereby, anomalous Hall currents have been measured in
periodically driven cold-atom systems [63] and in graphene irradiated with
circularly polarized light [55]. Exploring whether Floquet oscillations offer a
suitable tool for investigating the concept of Berry curvature in the Floquet
basis is an interesting task for future research.



5. Dynamics of test charges in
driven Dirac systems

5.1. Experimental motivation

In Chap. 4 we have studied how (quasi)periodic electron motion arises in
Dirac systems when combining a small, constant electric field and periodic
driving. Then, repeated transitions between the two branches of the Dirac
cone lead to an alternating sign of the electron’s velocity. An even more
abrupt velocity reversal can be achieved when driving the electron from one
branch to the other close to the Dirac point with an intense electric field.
When the electron does not directly move through the Dirac point but on a
bandstructure cut parallel to it, the electron experiences a finite band gap and
switches branch instead of undergoing a transition to the other band. Then,
its velocity immediately switches sign. This process is strongly nonlinear
and, as a consequence, efficient HHG is expected from Dirac materials. In
graphene, HH measurements have been realized both for mid-infrared [82]
and THz [83] light fields. Additionally, third-harmonic generation in the THz
regime for light pulses with a peak strength of only 6.5 kV cm−1 has been
observed in the Dirac semimetal Cd3As2 [84]. Another material class hosting
Dirac states are TIs. As discussed in Sec. 2.1.2, 3D TIs such as Bi2Se3, Bi2Te3,
and Sb2Te3 feature topologically protected 2D Dirac surface states where
electronic backscattering is strongly suppressed by spin-momentum locking.
First signatures of a highly nonlinear optical response of the surface states of
Bi2Se3 have been found experimentally in 2016 [237]. However, for the actual
measurement of HHG in TI surface states a way of disentangling bulk and
surface contribution of the spectrum had to be devised.

Within a collaboration of several experimental and theoretical groups we
investigated how to achieve and understand HHG in TI surface states, focusing
on Bi2Te3. The most important results of these studies are published in
Ref. [81] and summarized in the following. The experimental findings were
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compared to theoretical studies based on the semiconductor Bloch equations
[107] and a first intuition of the processes generating HHs was gained by solving
the semiclassical Boltzmann equation. Our contribution was to provide insights
into the underlying quantum mechanisms and to discuss all results on that
basis. Utilizing TQT, see Chap. 3, we computed the dynamics of wave packets
in Bi2Te3 surface states under the influence of strong laser pulses. We focused
on wave packets that are narrow in momentum space, and thereby represent
single test charges, in order to disentangle the various quantum processes
occurring in different regimes and parts of momentum space.

For the experiments, a laser pulse with frequency νel between 25 THz and
42 THz, and peak field strength of about 10 MV cm−1 was used. Due to the
refractive index nr ≈ 10 of Bi2Te3 this results in a peak field around 3 MV cm−1

in the Bi2Te3 crystal. The key discovery enabling the analysis of HHG from
the surface states of Bi2Te3 was the observation of a drastic change in the
HH spectra depending on the driving frequency νel. For frequencies above
νel & 33 THz only odd-order harmonics were detected. For smaller frequencies,
νel < 33 THz, however, the overall HH intensity dropped and even-order peaks
emerged. This characteristic distinguishes bulk and surface dominated spectra
[89]. From inversion symmetric media such as the bulk Bi2Te3 crystal, only
odd orders of the driving frequency νel are emitted. But the broken inversion
symmetry at the surface of the crystal allows for the emergence of both odd
and even orders. The drop in intensity of the HHs is due to the fact that
naturally the surface hosts less electrons than the bulk. The transition between
bulk and surface-dominated HHG lies around νel = 35 THz, since there the
photon energy hνel is comparable to the bulk band gap of Bi2Te3. When
the photon energies hνel are too small to drive resonant transitions between
bulk valence and conduction band in single-photon processes1, i.e. hνel < Eb,
where Eb is the bulk band gap, the bulk hosts no free charge carriers that
could generate HHs. The spectra are dominated by the surface contribution.
It was also found that the HH spectra emitted from the surface states can
be continuously shifted from integer to non-integer multiples of the driving
frequency by changing the carrier-envelope phase, i.e. the phase between laser-
pulse envelope and oscillation. A deeper theoretical study of the connection
between pulse shape and emitted harmonics revealed that a chirp in the
pulse is actually responsible for these frequency shifts [108]. Additionally, the
experimentalists analyzed the polarization of odd- and even-order harmonics
and observed that the polarization of the even-order harmonics is rotated by a
degree of up to 20◦ with respect to the incoming, linearly polarized, laser field.

1Multiple-photon processes and non-resonant transitions are not efficient for the laser amplitudes used in
the experiment.
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This polarization rotation can be attributed to the Berry curvature of the
Bi2Te3 surface states, as already predicted in earlier works [85]. Similar effects
have also been measured in monolayer MoS2 [238] and α-quartz [170].

Overall, the experimental findings demonstrate that HHG in TI surface states
is governed by the gapless Dirac dispersion, leading to efficient HHG even
at relatively weak driving fields. Strong-field interband transitions are not
necessary to generate free charge carriers due to the semimetallic spectrum.
The suppression of electronic backscattering enables ballistic acceleration of
electrons for timescales longer than 1 ps [80] and thus allows for the observation
of coherent transport effects such as the imprint of the Berry curvature on
the dynamics. In Bi2Te3 this reveals the importance of the hexagonal warping
for an adequate description of the geometrical properties of the surface states.
Nevertheless, many open questions remain. For example, the interplay of
intraband and interband effects in the emitted harmonics as well as the
influence of different regions in momentum space on the resulting spectrum is
still unclear and require further theoretical investigation. In the following, we
present an extension of the results published in [81]. We study the influence
of the Berry curvature and different types of transitions involved in HHG in
Dirac systems by considering single test charges that are narrow in momentum
space. In Chap. 6 we introduce a new method that includes Fermi sea effects
in our wave-packet approach and allows for the investigation of filled bands.
In Chap. 7 we go one step further and apply our methods to explore how
magnetic fields affect HHG in Bi2Te3 surface states.

5.2. Model systems

For our studies of the quantum processes leading to HHG in TI surface states
we want to elaborate on how the dynamics are influenced by the underlying
model system. To this end, we compare four different models: a simple Dirac
cone Ĥc(k), a gapped Dirac cone Ĥg(k), the Bi2Te3 surface model Ĥs(k)
introduced in Sec. 2.1.2, and the Bi2Te3 surface model Ĥf(k) developed in
Ref. [81]. The respective Hamiltonians read

Ĥc(k) = A(kyσx − kxσy),
Ĥg(k) = A(kyσx − kxσy) +Mσz, (5.1)
Ĥs(k) = C1 +D(k2

x + k2
y)1 + A(kyσx − kxσy) + 2R(k3

x − 3kxk2
y)σz,

Ĥf(k) = Cf1 +Df(k)(k2
x + k2

y)1 + Af(kyσx − kxσy) + 2Rf(k)(k3
x − 3kxk2

y)σz.
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Fig. 5.1: (a) Gapped Dirac cone corresponding to the model Hamiltonian Ĥg(k) cut at
|k| = 0.3Å−1. (b) Energy difference ∆Eg between both bands. On this scale, the band gap is
not resolved and the plot is indistinguishable from the energy difference ∆Ec obtained for the
Dirac Hamiltonian Ĥc(k).

For the first three models we take the parameters as given in Sec. 2.1.2, for
the mass M we choose M = 0.02 eV. This value is so small that it barely
modifies the energy spectrum and only opens a gap of 0.04 eV, see Fig. 5.1.
Nevertheless, this gap changes the geometric properties of the system and
thus affects the electron dynamics, as we will see in the following sections.
The Bi2Te3 surface model Ĥf(k) from Ref. [81] was derived as a more realistic
version of Ĥs(k). We will refer to it as fitted Hamiltonian Ĥf(k). In Ĥf(k) a
k-dependence of the prefactors D → Df(k) and R → Rf(k) was introduced,
where

Df(k) = b2

k2
sym

1

1 +
(

k
ksym

)2 , and Rf(k) = r2

k2
asym

1

1 +
(

k
kasym

)4 . (5.2)

Since these prefactors only depend on the absolute value k = |k| =
√
k2
x + k2

y,
they do not change the symmetry properties of Ĥf(k) compared to Ĥs(k) in
Eq. (5.1). The model parameters

Cf Af b2 ksym r2 kasym

−0.176 eV 0.609 eVÅ 0.32 eV 0.12Å−1 1.57 eVÅ 0.215Å−1

result from fitting the bandstructure Ef(k) corresponding to Ĥf(k) to bands
calculated with DFT. The constant Cf takes the Fermi energy of the crystal
used for the experiment in [81] into account. For our calculations with TQT
we have to employ another expansion of the Hamiltonian Ĥf(k), because TQT
can only process Hamiltonians that depend on polynomials of kx, ky. We solve
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Fig. 5.2: (a) Bandstructure of Bi2Te3 for the fitted Hamiltonian Ĥf(k) from Ref. [81] cut
at |k| = 0.3Å−1. The energy scales are smaller and the warping effect stronger than for the
model Hamiltonian from Sec. 2.1.2, Fig. 2.4. (b) Energy difference ∆Ef between both bands.
The comparably strong warping effect is even more apparent, the retrieval of the rotational
symmetry of the Dirac cone around |k| = 0 is not resolved on the shown energy scale.

this issue by expanding the prefactors (5.2) into polynomials and fitting them
to the bands Ef(k), see App. A.4 for more details.

The bandstructure and eigenstates of the fitted Hamiltonian Ĥf(k) are defined
analogously to those of Ĥs(k), see Eqs. (2.22) and (2.24). In Fig. 5.2 we show
(a) the eigenenergies Ef for |k| ≤ 0.3Å−1 and (b) the local energy difference
∆Ef of the fitted Hamiltonian Ĥf(k). Like for the surface model Ĥs(k) from
Sec. 2.1.2, PHS is broken and the rotational symmetry of the Dirac cone is
reduced to a sixfold symmetry, see Fig. 5.1 of the gapped cone for reference.
When directly comparing the spectra of the two surface models, Figs. 5.2
and 2.4, respectively, it is apparent that the warping is stronger in the fitted
model. Additionally, the energy scales are different and the local band gaps
are more than four times smaller for the fitted Hamiltonian. Hence, the
recovery of the rotational symmetry of the Dirac cone is not visible in the
scale of Fig. 5.2(b). Whether and how these different energy scales influence
the electron dynamics caused by an applied electric field will be investigated
in the following sections.

The presented model Hamiltonians all exhibit different Berry curvatures. As
discussed in Sec. 2.2, for two-level systems only the z component [Ω±(k)]z
is non-vanishing. We compute the latter using Eq. (2.44) and show contour
plots for the valence band (−) in Fig. 5.3. For the gapped Dirac cone Ĥg(k)
one obtains

[Ω−(k)]z = A2M

2 (A2|k|2) +M 2)3/2 . (5.3)
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Fig. 5.3: Berry curvature of (a) the Dirac cone Ĥc(k), (b) the gapped Dirac cone Ĥg(k),
(c) the Bi2Te3 surface states Ĥs(k), and (d) the fitted Hamiltonian Ĥf(k) for the Bi2Te3
surface states. Only the z component of the valence band Berry curvature is shown. It
diverges at the Dirac point and is zero for all other k for the Dirac cone Ĥc(k). However, the
divergence is not resolved here. Opening a gap lifts the divergence and the Berry-curvature
peak broadens around the Dirac point, see panel (b). For better resolution, in panel (b) the
logarithm of the Berry curvature is shown. The hexagonal warping of the Bi2Te3 surface
states leads to a more complicated Berry curvature with threefold symmetry. Since the
warping is stronger and the energy scales are smaller for the fitted Hamiltonian Ĥf(k), its
Berry curvature is larger than that of the simple surface model Ĥs(k). Nevertheless, they
share the same symmetry.
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By taking the limit M → 0, Eq. (5.3) gives the Berry curvature of the Dirac
cone Ĥc(k). It is zero for all k except k = 0. At the band touching, the
Berry curvature diverges. Note however that this is not resolved in our plot
in Fig. 5.3(a). When a gap is opened, i.e. M 6= 0, the Berry curvature peak
broadens around the Dirac point, its height decreases with increasing mass
gap. As given in Eq. (5.3), [Ω−(k)]z is positive since we choose a positive
mass M . In panel (c) and (d) we compare the Berry curvatures of the two
surface models2 Ĥs(k) and Ĥf(k) of Bi2Te3. Both Berry curvatures have a
threefold symmetry and the same pattern which arises from the hexagonal
warping. However, the absolute value of the Berry curvature is larger for the
fitted Hamiltonian Ĥf(k) because of its smaller energy scale and the larger
impact of the warping term. Note that the Berry curvature of Ĥf(k) only
appears to extend over a smaller area in momentum space in the plot due to
the scaling of the color bar.

When analyzing the velocities of test charges in these model systems, in many
cases Zitterbewegung arises, see Sec. 2.3.1 for an introduction. For a better
understanding of its features, it is instructive to look at the commutator of
the velocity operator and Hamiltonian of the respective model. Whenever
this commutator is vanishes, no Zitterbewegung is possible. Note that our
following considerations are for the Hamiltonians (5.1) and only hold when no
additional fields are applied. For Ĥc/g(k), the velocity operator v̂c/g is given
by

v̂c/g = A

~

−σy
σx

 , (5.4)

its commutator with Ĥg(k) reads

[
v̂g, Ĥg(k)

]
= 2iA

~

A
 ky
−kx

σz −M
σx
σy

 , (5.5)

and by setting M = 0 we obtain the commutator
[
v̂c, Ĥc(k)

]
. Hence, for the

Dirac cone Ĥc(k) Zitterbewegung in vx (vy) is only nonzero, when ky 6= 0
(kx 6= 0), i.e. the Zitterbewegung is always perpendicular to the electron
motion. For the gapped cone (M 6= 0) also a parallel Zitterbewegung is
allowed due to the second, k-independent term. The velocity operator of

2Since the expressions become rather long for these Hamiltonians we used the software Wolfram Mathematica
10.3 [239] for the computation and refrain from showing the full expressions here.
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Ĥs(k) is given in Eq. (2.25). We compute its commutator with Ĥs(k) as
[
v̂s, Ĥs(k)

]
=

2iA
~

A
 ky
−kx

 σz − 2R
(
k3
x − 3kxk2

y

) σx
σy

 + 6R (kyσy + kxσx)
k2

x − k2
y

−2kxky

 .
(5.6)

In this case, for kx = 0 no Zitterbewegung in vy is possible, but there are
no restrictions for Zitterbewegung in vx. As Ĥs(k) and Ĥf(k) have the same
symmetry, their Zitterbewegung also follows the same rules. The velocity oper-
ator v̂f contains additional terms due to the momentum-dependent prefactors
Df(k) and Rf(k), but only the latter enters the commutator

[
v̂f, Ĥf(k)

]
. Since

the prefactors Df(k) and Rf(k) only depend on the absolute value k = |k|, the
possible directions of Zitterbewegung remain unaffected. For completeness we
show v̂f and

[
v̂f, Ĥf(k)

]
in App. A.5.

5.3. Berry curvature mapping with constant
electric fields

As a first step towards understanding the Berry curvature’s influence on HHG
in TI surface states we want to demonstrate how the Berry curvature Ωn,
where n is the band index, can be extracted from the anomalous velocity, see
Sec. 2.3.2 and Ref. [165]. We focus on our model systems here, which allows
for the simplification of considering two bands labeled by n = ± with Berry
curvature Ω±(k) = [Ω±(k)]zez only along the z direction.

Let us consider two electrons a and b, defined in more detail later, that are
driven through momentum space by a constant electric field Eel. The field
strength |Eel| = Eel is tuned such that the electrons evolve adiabatically within
one band E±(k). For concreteness, we choose the valence band E−(k) in the
following. Then, each electron’s velocity is given by

vkji
(t) = 1

~
∇kE−(kj(t))− e

~
Eel ×Ω−(kj(t)), (5.7)

with j = a, b labeling the electron, kji being the respective initial momentum
and kj(t) the momentum shifted by the electric field Eel, see Eq. (2.56). The
anomalous velocity is perpendicular to both the electric field and the Berry
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curvature. Hence, when applying the electric field along x (y) direction, the
anomalous velocity is solely contained in the y (x) component of the velocity
vkji

(t). Additionally, as long as the x (y) axis is also a symmetry axis of
the dispersion E−(k), by choosing the initial momenta kji of the electrons
symmetrically around the x (y) axis, the y (x) components of their intraband
velocities cancel and only the anomalous velocities remain, i.e.

[
vka

i
(t) + vkb

i
(t)

]
y

= +e
~
Eel

[
Ω−(ka(t)) + Ω−(kb(t))

]
z
, for Eel = Eelex,[

vka
i
(t) + vkb

i
(t)

]
x

= − e
~
Eel

[
Ω−(ka(t)) + Ω−(kb(t))

]
z
, for Eel = Eeley.

(5.8)

If [Ω−(ka(t))]z = [Ω−(kb(t))]z, one can directly extract the Berry curvature
[Ω−(kj(t))]z from this. By repeating the procedure for other pairs of electrons
labeled by j′ = a′, b′ with initial momenta kj

′

i still chosen symmetrically but
such that a different Berry curvature cut [Ω−(kj′(t))]z is explored, one can
eventually map out the entire momentum space. However, this is not our goal
and we restrict ourselves to one pair of electrons for a proof of principle using
the model systems introduced in Sec. 5.2 in the following.

We numerically compute the electron velocities by propagating the electrons
with TQT and evaluating the COM observable, see Chap. 3. Thus, we
obtain the full quantum mechanical velocities. By tuning the parameters
such that we are in the adiabatic regime, these velocities should be equal to
Eq. (5.7). The electrons are modeled as narrow Gaussian wave packets of
width ∆k = 0.002Å−1 and initially given by

Ψj(k, t = 0) = 1
∆k
√
π

exp
(
− 1

2∆k2

(
k− kji

)2
)
ϕ−(k), (5.9)

where ϕ−(k) is the eigenstate of the valence band of the respective model
system, generally defined by Eq. (2.24). In order to achieve [Ω−(ka(t))]z =
[Ω−(kb(t))]z ≡ [Ω−(ka/b(t))]z for the Bi2Te3 surface models, the electric field
Eel has to be applied along the x direction3, i.e. Eel = Eelex. This coincides
with the ΓK direction of the Bi2Te3 surface. Accordingly, the Berry curvature
is encoded in the y component of the velocity. For all model systems, a
cancellation of the intraband velocities of that component is obtained by setting
the initial momenta to ka

i = (−0.25, 0.1)Å−1 and kb
i = (−0.25,−0.1)Å−1.

The electric field is implemented by adding the scalar potential φel(r), with
3For the cone and gapped cone the field direction can in principle be chosen arbitrarily due to their rotational
symmetry.
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Fig. 5.4: Berry curvature of the model Hamiltonians extracted from the anomalous velocity
(solid lines) and computed with Eq. (2.44) (circles). The data shows a cut along kx for
ky = ±0.1Å−1. The noise at the beginning of the curves is caused by the switch-on of the
electric field in the simulations with TQT.

Eel = −∇rφel(r), to the Hamiltonian, see Eq. (2.55). The electrons move
adiabatically through the band when applying an electric field of strength
Eel = −0.05 MV cm−1 for Ĥc/g/s(k). Due to the lower energy scale of Ĥf(k),
in that model the field strength has to be reduced to Eel = −0.01 MV cm−1 in
order to realize the adiabatic limit. For the simulations of Ĥc/g/f(k) we use
1024× 512 data points and a time step of δt = 2 fs in TQT. Due to the larger
curvature of the bands of Ĥs(k), for this Hamiltonian we need 2048× 1024
data points and a time step of 0.5 fs. For all simulations the grid spacing is
set to δx = 6Å and δy = 20Å.

For our choice of initial momenta kji and electric field direction, we can map
the Berry curvature [Ω−(k)]z for a cut at ky = ±0.1Å−1 and kx ≥ −0.25Å−1.
To this end, we take the computed velocities [vkji

(t)]y and solve Eq. (5.8) for
[Ω−(ka/b(t))]z. In Fig. 5.4 we plot the results against the x component of the
time-evolved momenta kjx(t) (solid lines)4 and compare them to data points of
the respective Berry curvatures calculated from Eq. (2.44) (circles). The good
agreement verifies that we can actually extract the Berry curvature from our
simulations.

4Note that the results for Ĥs/f are slightly noisy at the beginning. This is caused by the switch-on of the
electric field in the TQT simulations. Due to the field, the wave packets (5.9) are not perfect eigenstates
of the Hamiltonian anymore and a small Zitterbewegung arises. For the (gapped) Dirac cone this effect is
not resolved in the plot.
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We emphasized that by applying the electric field in x direction, we study
the ΓK direction of the Bi2Te3 surface. By aligning the electric field with the
y direction instead, i.e. Eel = Eeley, the electrons are driven along the ΓM
direction. For the (gapped) Dirac cone, we obtain the same results as for the ΓK
direction when accordingly choosing the initial momenta ka

i = (0.1,−0.25)Å−1

and kb
i = (−0.1,−0.25)Å−1 and evaluating [vkji

(t)]x, due to the system’s
rotational symmetry5. For the Bi2Te3 surface Hamiltonians Ĥs/f(k) with
warping however, the Berry curvature is antisymmetric with respect to the
ky axis, hence [Ω−(ka(t))]z = −[Ω−(kb(t))]z, see Fig. 5.3(c) and (d). The
anomalous velocities of the two modes cancel and no Berry curvature can be
extracted, compare Eq. (5.8).

These results not only show how to map the Berry curvature but also which
velocity components to expect for two test charges that evolve adiabatically.
The symmetry of the band structure and the Berry curvature determine how
the velocities of the two electrons add up. As presented here, for electrons
distributed symmetrically in momentum space with respect to the driving, a
velocity component perpendicular to the applied electric field can only survive
as long as the Berry curvature is non-zero and not antisymmetric for the
two electrons. The velocity parallel to the electric field solely consists of the
intraband term in the adiabatic case. In the models considered here, these
velocities are equal for both test charges and the total parallel velocity is
simply twice the single-electron velocity.

5.4. Laser-driven dynamics – different regimes in
momentum space

In Sec. 5.3 we considered a constant electric field and tuned the field strength
and electron momentum such that the motion is in the adiabatic regime. As a
next step, we introduce an electric field pulse Eel(t) modeling the laser pulse
from the experiment [81] and study which kind of transitions it can drive and
how they affect the electron velocities. We write the pulse as

Eel(t) = Eel exp
−(t− t0)2

2∆t2

 sin (2πνel (t− t0)) ex, (5.10)

5Note that for these simulations the TQT grid has to be rotated, i.e. we need 512× 1024 data points and δx
and δy are interchanged.
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Fig. 5.5: Scaled electric field (black) and corresponding time-dependent momentum (red). As
described by the acceleration theorem (2.56), the change in momentum k̇(t) is proportional
to the electric field.

assuming a perfectly Gaussian pulse shape with standard deviation ∆t = 40 fs
and a constant carrier-wave frequency νel = 25 THz. We focus on polarization
along the ΓK direction of Bi2Te3 where the Berry curvature of the surface
models with warping can be observed by propagating two symmetric test
charges. The time shift t0 = 140 fs is introduced because calculations in TQT
start at t = 0 and the pulse needs to have a negligible amplitude at that time.
Just as the constant field, the pulse induces a shift in the momentum according
to the acceleration theorem (2.56). This shift (red curve and axis) is plotted
in Fig. 5.5 alongside with the pulse (black curve and axis). Whenever the
electric field changes sign, the momentum shift changes direction. Accordingly,
a state oscillates around its initial momentum ki,x. Its momentum ky = ki,y
remains constant.

We explore the different transition regimes for the model Hamiltonians pre-
sented in Sec. 5.2. To this end, we simulate the time evolution of two symmet-
rically arranged wave packets Ψj(k, t), j = a, b, using TQT and compute their
velocities with the COM observable introduced in Sec. 3.5. For the evaluation
we consider the sum of the wave packet’s velocities rescaled by the maximal
parallel intraband velocity vmax

x =
∣∣∣2~ [∇kE−(ka

max)]x
∣∣∣, where ka

max = ka(3.5/νel).
By projecting the wave packets Ψj(k, t) onto the eigenstates ϕ±(k) of the cor-
responding model at each time step during the propagation, their distribution
over valence and conduction band can be traced, i.e.

|c±(t)|2 = 1
N

∫
dk |ϕ∗±(k) Ψj(k, t)|2 , (5.11)
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where N is a constant that ensures that |c+(t)|2 + |c−(t)|2 = 1. As in Sec. 5.3,
the initial wave packets are given by Eq. (5.9) with width ∆k = 0.002Å−1

and start in the valence band. The electric field pulse is included via the (now
time-dependent) scalar potential φel(r, t) and the grid is set to 1024×512 data
points with δx = 6Å and δy = 20Å for all calculations. For simplicity we
restrict our studies to wave packets with initial momentum6 ki = (0,±ki,y)Å

−1.
Then, the wave packets are initially located at the minimal energy gap ∆E(ki)
encountered on the cut of the band structure7 along ±ki,y and oscillate around
it during the pulse.

To categorize the transitions, we adapt the classification of regimes by Heide
et al. [173], see Sec. 2.4 for a summary. For Ĥc/g(k) we obtain exact re-
sults taking the Keldysh parameter γ = ∆E/(

√
2~ΩR) with Rabi frequency

ΩR = vFeEel/(hνel), the transition time τt = π/ΩR, and the Landau-Zener
transition probability PLZ = exp(−2πδLZ) with δLZ = (∆E/2)2/(2~vFeEel) as
derived in [173] by setting ~vF = A and ∆E = ∆Ec/g(ki). In principle, for
Ĥs/f(k) this approach is still a good approximation as long as ki is in a range
where the linear term dominates. Note however, that for Ĥf(k) this range is
rather limited and thus the approximation is not valid for most of the setups
considered in the following. Since the gap ∆E(ki) is momentum dependent in
2D systems, we can employ the same pulse strength Eel to realize different
regimes by simply varying the initial momentum ki of our wave packets. For
Eel = 0.1 MV cm−1 we access the adiabatic regime, resonant transitions and
the nonimpulsive Landau-Zener regime. Only for the impulsive and adiabatic-
impulsive Landau-Zener transitions we increase the field to Eel = 1 MV cm−1

for all model systems, as we have to decrease the transition time τt in order
to realize them. For Eel = 0.1 MV cm−1 we use a time step δt = 0.5 fs in our
simulations. For the larger field strengths we have to reduce it to δt = 0.1 fs
in order to achieve convergence.

5.4.1. Adiabatic regime

In the adiabatic regime, no transitions occur and the test wave packets stay
within the valence band throughout the full propagation. As for the constant
field in Sec. 5.3, their velocities are given by the intraband velocity and for
nonzero Berry curvature (i.e. for Ĥg/s/f(k)) an additional anomalous velocity

6Note that we suppress the superscript j labeling the wave packets from now on for better readability
whenever it is not necessary for clarification.

7Compare Figs. 2.4, 5.1, and 5.2 for the local energy differences ∆E(k) of the models.
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Fig. 5.6: Velocity expectation value for two symmetric test charges in the adiabatic regime,
(a) parallel and (b) perpendicular to the driving field. The frequency of the perpendicular
velocity component for Ĥs(k) and Ĥf(k) is twice the frequency as for Ĥg(k). This frequency
doubling is a direct consequence of the corresponding model system’s Berry curvature.
Comparing the results from the quantum mechanical simulation (lines) with the perturbative
expectation from Eq. (5.7) (triangles) gives good agreement for Ĥc/g/s(k). For Ĥf(k) however,
a slight mismatch in the amplitudes is observed. Additionally, in vy a small Zitterbewegung
remains after the pulse. The inset shows the corresponding occupation of the conduction
band |c+|2 and confirms that the motion is not perfectly adiabatic for Ĥf(k).

appears. To observe the adiabatic regime, we choose the initial momenta ki
such that no resonance condition is met, i.e. ∆E(ki) 6= hνel, and the transition
probability PLZ is approximately 0. In Fig. 5.6 we exemplarily show the
summed velocities for ki = (0,±0.1)Å−1 computed for the model systems
Ĥc/g/s(k) and ki = (0,±0.15)Å−1 for Ĥf(k) using TQT, and compare them
to the velocities resulting from Eq. (5.7). Note that for the latter only the
central mode ki was taken into account.

The parallel component vx only contains the intraband velocity in the adiabatic
regime, for our symmetric test charges a, b with E−(ka(t)) = E−(kb(t)) it is
given by8 [

vka
i
(t) + vkb

i
(t)

]
x

= 2
~

[∇kE−(ka(t))]x . (5.12)

As we set ki,x = 0 in our calculations and the band structures are approximately
parabolic along kx for the chosen ki,y, the temporal shape is dominated by
kx(t), compare Fig. 5.6(a) and Fig. 5.5. Only the sign is inverted. By rescaling
the velocities with their respective maximal intraband velocity vmax

x , all curves
should fall on top of each other. For Ĥc/g/s(k) this is actually the case and

8Note that the slope of the dispersion E−(k) is also important here. We choose the charges a,b such that the
gradients of their dispersion are equal in x direction and of opposite sign in y direction, compare Sec. 5.3.
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therefore we dashed some of the lines for better visibility. For Ĥc(k) and
Ĥg(k) even the velocity vmax

x is equal. This shows that at ky = ±0.1Å−1 the
small gap’s influence on the bandstructure is negligible. For Ĥf(k) however
we observe a mismatch in the amplitudes from Eq. (5.12) and the results
from the TQT simulation. Additionally, after the pulse Zitterbewegung is
discernible9 in vy. The inset of Fig. 5.7(b) shows the occupation |c+(t)|2 of the
conduction band10 for Ĥf(k). It confirms that up to two percent of the test
charges temporarily switch band and an occupation of about 0.17% remains
after the pulse. Therefore, for Ĥf(k) the dynamics deviate significantly from
the purely adiabatic evolution. This also demonstrates that for Ĥf(k) already
at ki = (0,±0.15)Å−1 the approximation of PLZ from Ref. [173] is not valid
anymore.

The perpendicular component vy, see Fig. 5.6(b), is described by the anoma-
lous velocities of both charges. It obtains its temporal shape from the product
of electric field |Eel(t)| and Berry curvature Ω−(ka/b(t)), see Eq. (5.8). Accord-
ingly, even though it is two orders of magnitude smaller than vx, it contains
interesting information about the system’s geometrical properties. For Ĥc(k)
vy is zero since its Berry curvature is zero. For Ĥg(k) the small mass gap gives
rise to a non-zero Berry curvature with k-dependent amplitude but constant
sign. Hence, the temporal shape of vy is defined by the electric field and
the Berry curvature only modulates the amplitude. For Ĥs/f(k) however, the
hexagonal warping induces a k-dependent sign in the Berry curvature, which
for ka/bi,x = 0 means

[
Ω−(ka/b(t))

]
z
∝ ka/bx (t). Furthermore, ka/bx (t) is related to

the electric field via the acceleration theorem (2.56). Neglecting the Gaussian
envelope of the electric field (5.10), this gives

[
vka

i
(t) + vkb

i
(t)

]
y

= +e
~

[Eel(t)]x
[
Ω−(ka(t)) + Ω−(kb(t))

]
z

∝ [Eel(t)]x
[
kax(t) + kbx(t)

]
∝ sin (2πνel(t− t0)) cos (2πνel(t− t0))

∝ sin (4πνel(t− t0)) .

(5.13)

Hence, the symmetry of the Berry curvature of the models with hexagonal
warping induces a frequency doubling for light fields applied along the ΓK

9Even though we are at kx = 0, this does not contradict our conclusion from Eq. (5.6). Since the overall
scale in Fig. 5.6(b) is so small, even the Zitterbewegung contributed by the width of the wave packet can
be resolved.

10The occupation is the same for both test charges, thus we only plot the results for one of them.
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direction of the crystal. This is also clearly visible when comparing vy for
Ĥs/f(k) with vy for Ĥg(k) in Fig. 5.6(b). Concerning HHG, this argument from
the adiabatic limit already suggests the importance of the Berry curvature
for the frequencies and polarizations that are observed in the spectrum. We
study this in more detail in Sec. 5.5 and Chaps. 6 and 7.

5.4.2. Resonant transitions: Rabi-like oscillations

Resonant transitions occur whenever the local energy difference ∆E(k) is
an integer multiple of the photon energy hνel of the laser pulse. In order
to separate resonant transitions from Landau-Zener transitions, one has to
consider the perturbative limit of light-matter interaction, i.e. the regime
where the Keldysh parameter γ > 1. In that case the field strength Eel is low
and accordingly only the first resonance with hνel = ∆E(k) is relevant [173].
In our case, Eel = 0.1 MV cm−1 and hνel ≈ 0.103 eV. To study the resonance
condition hνel ≈ ∆E(ki) with test charges, we need to set ki = (0,±0.016)Å−1

for Ĥc/s(k), ki = (0,±0.015)Å−1 for Ĥg(k), and ki = (0,±0.085)Å−1 for
Ĥf(k). The resulting total velocities and the corresponding occupation of the
conduction band throughout the propagation are shown in Fig. 5.7. For better
visibility, we introduced dashed and dotted lines for overlapping curves and
multiplied the perpendicular velocity vy of Ĥs(k) with a factor of ten. Again,
we rescale the velocities with the intraband velocity vmax

x and only show the
occupation of one test charge since both results are the same.

Typical features of resonant transitions are the build up of an occupation
in the initially empty band – here the conduction band – and the emer-
gence of Rabi-like oscillations for suitable pulse parameters. The former is
nicely demonstrated in the occupation |c+(t)|2 recorded for Ĥf(k), see inset
of Fig. 5.7(a). During the whole pulse duration, the occupation increases
and reaches about 80% at the end of the pulse. Since our simulations do
not contain any dissipation effects, the occupation remains there after the
pulse. The latter appears for Ĥc/g/s(k). As the dispersion is almost identical
for all three models for the chosen ki, the corresponding occupations are also
almost equal. They too reach about 80% but already at t ≈ 3.8/νel. Then,
the population decreases again and levels at about 27% after the pulse. This
behavior is associated with Rabi oscillations. They describe a cyclic population
for periodically driven two-level systems around the resonance condition. The
period TR of such an occupation oscillation is given by the Rabi frequency
2π/TR = ΩR = vFeEel/(hνel) [173]. For Ĥc/g/s(k) we get TR ≈ 3.25/νel and
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Fig. 5.7: Velocity expectation value for two symmetric test charges in the resonant regime,
(a) parallel and (b) perpendicular to the driving field. The inset in panel (a) shows the
corresponding conduction band occupations |c+(t)|2. In the resonant regime, they show
Rabi-like oscillations. For all model systems, vx consists of a mixture of intra- and interband
velocity and Zitterbewegung occurs after the pulse. The perpendicular velocity vy only
contains interband contributions and is determined by the geometrical properties of the
respective model. For better visibility, we multiplied vy for Ĥs(k) by a factor of ten.

for Ĥf(k) TR ≈ 17.5/νel. Since here we additionally have an energy dispersion
and a pulse envelope, the situation is more complex. Still, the Rabi period
TR provides a rough estimate of how many oscillation cycles occur during our
pulse. Accordingly, for Ĥf(k) we see about half an oscillation, whereas for
Ĥc/g/s(k) about 2/3 of a cycle is performed11. By increasing the pulse duration
or the electric field strength Eel, one can tune the population of the conduction
band after the pulse. Remember however, that the field strength is limited
by the requirement of γ > 1. An exploration of different Rabi frequencies in
a gapped Dirac system is given in the master’s thesis of Mario Ebner [163],
which we supervised.

As a consequence of the important role of transitions in the resonant regime, the
velocities of the test charges cannot be described by the perturbative approach
(5.7) anymore. Instead, they are made up of intra- and interband contributions,
see Eq. (2.58). Since we can only access the amplitude |c±(t)| of the state in
the respective band but not its phase arg(c±(t)) using TQT12, a quantitative

11Note that due to the pulse envelope, the beginnig of the simulation is not equal to the beginning of a Rabi
cycle. The onset of the Rabi cycle takes place when the occupation |c+|2 starts to build up, which is at
tνel ≈ 2 for the results presented here.

12Note that the reason for this is a random phase that is generated at each time step during propagation. In
future works a fixed phase could be introduced in TQT to overcome this issue.
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comparison of our results with Eq. (2.58) is not possible13. Nevertheless, we
can draw some qualitative conclusions from the total velocities of both test
charges depicted in Fig. 5.7. The intraband contribution is given by the band
dispersion and the occupation of the respective band, thus oscillating with kx(t).
The x component of the intraband velocity of both test charges is the same and
adds up, whereas the y component has opposite sign and thus cancels, just as
discussed for the adiabatic regime in Sec. 5.4.1. The interband contribution is
defined by the velocity matrix elements v+−

k = (v−+
k )∗ and the local energy dif-

ference ∆E(k). It can be considered as a time-dependent Zitterbewegung with
frequency ωZB(t) = ∆E(k(t))/~, compare Sec. 2.3. In vx, intra- and interband
contribution interfere. For the resonant regime, ωZB(t) ≈ 2πνel by definition.
The momentum shift kx(t) induced by the pulse gives rise to a spread such
that νel ≤ ωZB(t)/2π ≤ 1.2νel for Ĥc/g/s(k) and νel ≤ ωZB(t)/2π ≤ 1.06νel for
Ĥf(k) here. Since the resulting detuning is rather small, the interference of
both components is not apparent in the time-dependence of vx. However,
rescaling the velocities with vmax

x =
∣∣∣2~ [∇kE−(ka

max)]x
∣∣∣, and thus comparing

the amplitudes to the expectations from the adiabatic limit, reveals that the
interference leads to a doubling of the amplitudes for Ĥc/g/s(k). For Ĥf(k) we
even observe a maximal multiplication factor of about six. At the end of the
pulse and afterwards, the intraband velocity goes to zero14 and Zitterbewegung
dominates the velocity vx due to the state spreading over both valence and
conduction band.

The perpendicular velocity vy only consists of the combined interband velocity
of both charges. Its main characteristics can be explained based on the
Berry curvature. Even though the anomalous velocity is a bad approximation
in the resonant regime, it is sufficient to predict the oscillation frequencies
of vy. Just as in the adiabatic limit, for Ĥc(k) the perpendicular velocity
vy is zero, whereas it oscillates with the pulse frequency νel for Ĥg(k) and
with twice the pulse frequency for Ĥs/f(k). However, for Ĥs/f(k) vy does not
oscillate around zero as in the adiabatic limit. To fully understand this, one
would have to analyze the interband velocity in detail, including the phases
of c±(t). This connection is pointed out by the change of sign in vy of Ĥs(k).
It occurs exactly when the corresponding population of the conduction band
starts to decrease again. After the pulse, Zitterbewegung is only resolved
for the gapped Dirac cone Ĥg(k) in Fig. 5.7(b). This can be understood by
looking at the commutators of the respective velocity operators with their

13However, we refer to the master’s theses of Ebner [163] and Riedel [240] for a more detailed analysis of the
phase’s influence on the total velocity of several test charges.

14Note that it only goes to zero since the test charges are at kx = 0. Otherwise, it would go to a constant
value.
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Hamiltonians. As discussed in Sec. 5.2, for kx = 0 only for the gapped cone
Ĥg(k) Zitterbegwegung can arise in vy. Note that during the pulse the electric
field alters the commutator and shifts kx, therefore then vy 6= 0 for Ĥs/f(k) as
well, but with a smaller amplitude than for Ĥg(k).

5.4.3. Landau-Zener tunneling

Transitions in the strong-field regime, i.e. where γ < 1, are best described by
Landau-Zener tunneling. As discussed by Heide et al. [173], one can subdivide
the Landau-Zener regime in three different types which we will discuss in the
following.

Nonimpulsive Landau-Zener regime

According to Heide et al. [173], the nonimpulsive Landau-Zener regime is
characterized by smooth transitions and a return of the propagated state to
its initial band after the pulse. To study this regime, we use the same field
strength, Eel = 0.1 MV cm−1, as for the adiabatic and resonant regime, see
Secs. 5.4.1 and 5.4.2. By setting ki = (0,±0.007)Å−1 for all model systems,
we obtain γ ≈ 1.39 for Ĥg(k) and γ ≈ 1.02 for Ĥc/s/f(k). These values do
not fulfill γ < 1 but are still sufficient to observe the nonimpulsive Landau-
Zener regime. The corresponding estimates for the Landau-Zener transition
probability are PLZ ≈ 0.41 for Ĥg(k), PLZ ≈ 0.60 for Ĥc/s(k), and PLZ ≈ 0.91
for Ĥf(k). In Fig. 5.8 we show the results of the velocities and occupations
obtained by propagating the two test charges in TQT for each model. Again,
the two test charges have the same occupation and we only plot the resulting
|c+(t)|2 for one of them. Additionally we multiplied vy of Ĥs(k) by a factor of
ten for better visibility.

The occupations |c+(t)|2 of the conduction band depicted in the inset of
Fig. 5.8(a) agree with the described features of the nonimpulsive regime.
However, even though the transition probability PLZ is highest for Ĥf(k) and
smallest for Ĥg(k), the latter reaches the largest occupation whereas the former
has the least transitions during the pulse. To understand this, one has to take
the transition time τt = π/ΩR into account, see Sec. 2.4 for an introduction.
If τt > 1/νel, a full Landau-Zener transition takes longer than one optical
half cycle. Hence, it does not reach its maximum and the transition appears
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Fig. 5.8: Velocity expectation value for two symmetric test charges in the nonimpulsive
Landau-Zener regime, (a) parallel and (b) perpendicular to the driving field. The inset in
panel (a) shows the corresponding conduction band occupations |c+(t)|2. In the nonimpulsive
Landau-Zener regime, they change smoothly and return to (approximately) zero after the
pulse. Only for Ĥg(k) a small occupation of 0.3 % remains and Zitterbewegung appears in
both vx and vy. For better visibility, we multiplied vy for Ĥs(k) by a factor of ten.

smooth in a time-resolved plot. Since τt only depends on the field strength Eel
and amplitude νel, here it is simply half of the Rabi period TR we computed in
Sec. 5.4.2, i.e. τt ≈ 1.625/νel for Ĥc/g/s(k) and τt ≈ 8.75/νel for Ĥf(k). Despite
these times being only a rough estimate, they show that for Ĥf(k) the states
complete much less of their transitions than for Ĥc/g/s(k). This results in
the occupation |c+(t)|2 being smaller for Ĥf(k) than for the other models.
Unfortunately, this does not explain why |c+(t)|2 is larger for Ĥg(k) than for
Ĥc/s(k). Finding the reason for that requires further investigation.

As discussed in Sec. 5.4.2, vx contains both intra- and interband velocity.
On first glance, the qualitative features of the corresponding velocities are
similar to those observed in the adiabatic regime, compare Fig. 5.8 to Fig. 5.6.
However, the sign of the oscillations appears to be inverted with respect to the
adiabatic regime and for Ĥf(k) the amplitude is increased by approximately a
factor of four. These observations are fingerprints of the presence of transitions
and indicate that the interband velocity dominates. The sign change is
probably due to the phase introduced by the amplitudes c±(t). As before, vy
only contains the interband velocities. Its frequency again depends on the
model system and results from the respective Berry curvature. As for vx, the
transitions lead to a change of the velocity’s phase compared to the adiabatic
case. Additionally, for Ĥg(k) about 0.3 % of the test charges remain in the
conduction band, resulting in a distinguishable Zitterbewegung after the pulse
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in both vx and vy.

Impulsive and adiabatic-impulsive Landau-Zener regime

In order to access the impulsive and adiabatic-impulsive Landau-Zener regime,
one has to reduce the transition time τt such that τt < 1/νel. Then, a full
Landau-Zener transition is faster than an optical half cycle and the occupation
jumps whenever a transition occurs instead of changing smoothly. For our
pulse, 1/νel = 40 fs and we realize τt < 1/νel by increasing the pulse strength Eel
by a factor of ten to Eel = 1 MV cm−1. Accordingly, the estimated transition
times for this field strength are τt ≈ 0.1625/νel for Ĥc/g/s(k) and τt ≈ 0.875/νel
for Ĥf(k).

Heide et al. [173] characterize the impulsive Landau-Zener regime by a con-
duction band occupation that jumps from zero to one and back to zero almost
perfectly within an optical cycle. This requires PLZ ≈ 1, which is not achievable
in our setup15. Nevertheless, by setting ki = (0,±0.018)Å−1 for Ĥc/g/s(k) and
ki = (0,±0.1)Å−1 for Ĥf(k), we obtain a qualitatively similar behavior, only
with jumps to values |c+(t)|2 < 1. To be precise, we estimate the transition
probability PLZ ≈ 0.72 for Ĥc/s(k), PLZ ≈ 0.69 for Ĥg(k), and PLZ ≈ 0.15
for Ĥf(k). But remember that the latter is a bad approximation16, as is
confirmed by the numerical results for the occupation depicted in Fig. 5.9(a).
For Ĥc/g/s(k) the jumps are at least comparable to the estimated transition
probabilities. For Ĥf(k) however they are about |c+(t)|2 ≈ 0.5 instead of
|c+(t)|2 ≈ 0.15 as suggested by the estimated PLZ. For the models with warp-
ing, i.e. Ĥs(k) and Ĥf(k), we find that the transitions are not the same for
both modes. These discrepancies could be caused by the Stückelberg phase
but further investigation is necessary for a better understanding. The corre-
sponding velocities are shown in Fig. 5.9(b) and (c). The larger field strength
and the abrupt transitions, as compared to the nonimpulsive Landau-Zener
regime in Fig. 5.8, lead to a complicated temporal profile of both parallel
and perpendicular velocity. In vx Zitterbewegung remains after the pulse for
15PLZ ≈ 1 would require starting the wave packets at the Dirac point. Since the eigenstates ϕ±(k = 0) are

not well-defined at that point, this leads to large numerical errors in the propagation of wave packets that
are narrow in momentum space. For the large wave packets employed in Chaps. 6 and 7 however, the
errors are negligible and including the Dirac point is possible.

16Note that this also applies to the transition time τt. For Ĥf(k) we only found impulsive Landau-Zener
transitions for ki & (0,±0.05)Å−1. We suspect, that then the effective vF including the warping is large
enough such that the actual transition time τt is sufficiently small to be in the impulsive Landau-Zener
regime.
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Ĥg(k), vmax
x = 9.8Å fs−1
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Fig. 5.9: Conduction band occupations |c+(t)|2 and velocity expectation values for two
symmetric test charges in the impulsive (left side) and adiabatic-impulsive (right side)
Landau-Zener regime. Panel (b) and (e) show the velocity parallel to the driving field and (c)
and (f) the velocity perpendicular to it. Both regimes are characterized by abrupt jumps in the
occupation and the velocities have a complicated temporal profile. In the adiabatic-impulsive
regime, an occupation builds up in the conduction band. For the Hamiltonians with warping,
Ĥs/f(k) , the transitions for ±ki,y differ and we show both here.
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all systems and the cone Ĥc(k) and gapped cone Ĥg(k) show similar results.
Noticeably, for all systems except the fitted Hamiltonian Ĥf(k), vx does not
oscillate around zero but is negative during the central three oscillation cycles
of the pulse. This is caused by the jumps of the occupation between valence
and conduction band in combination with the intraband motion from positive
to negative momentum. When these two processes are timed as for the test
charges considered here, they result in a constant sign of the parallel velocity.
For Ĥf(k) however the interband velocity is dominant, as already discussed for
the resonant and nonimpulsive Landau-Zener regime. Therefore, its parallel
velocity still oscillates around zero. For the other systems, the interband
velocity mainly appears as high-frequency oscillations on top of the intraband
velocity. As for the other regimes, vy only contains the interband velocities
and reflects the geometrical properties of the model systems. However, es-
pecially for Ĥg(k) and Ĥs(k) the encoded frequencies are not easily visible
anymore and both velocities appear rather similar. In Sec. 5.5.2 we study the
corresponding HH spectra of both velocity components for deeper insights.

The adiabatic-impulsive Landau-Zener regime is also characterized by jumps of
the occupation instead of smooth transitions. However, according to Heide et
al. [173] a Stückelberg phase modifies the repeated transitions such that each
jump has a different final value and an occupation builds up in the conduction
band. They claim that this regime is best realized for PLZ ≈ 0.5 since then
the state is distributed equally over both bands after the first transition and
interference is strongest. However, there are no strict boundaries separating
the regimes. In Fig. 5.9(d) we show occupations with the characteristic
behavior obtained for test charges with ki = (0,±0.007)Å−1 for Ĥc/g/s(k)
and ki = (0,±0.09)Å−1 for Ĥf(k). These parameters correspond to the
transition probabilities PLZ ≈ 0.95 for Ĥc/s(k), PLZ ≈ 0.92 for Ĥg(k) and
PLZ ≈ 0.21 for Ĥf(k). Again, the latter is a bad approximation since the
first Landau-Zener transition reaches |c+(t)|2 ≈ 0.75. As in the impulsive
Landau-Zener regime, for the models with warping, especially Ĥf(k), the
occupations |c+(t)|2 are not equal for the two test charges. Note also that for
all systems ki is close to the resonance conditions, see Sec. 5.4.2 for comparison,
and the test charges cross points with ∆E(k) ≈ hνel when moving through
momentum space. This implies that one can also interpret the adiabatic-
impulsive Landau-Zener regime as an interplay of Landau-Zener transitions
and resonant transitions. In Fig. 5.9(e) and (f) we show the corresponding
velocities. Due to the occupation build-up in the conduction band, one would
expect Zitterbewegung for all systems in vx and for Ĥg(k) in vy. However, it
is only clearly visible for Ĥf(k). We suspect that a spatial separation of the
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wave-packet parts in the other systems causes the absence of Zitterbewegung
after the pulse there but this remains to be verified. Besides that, vx exhibits
a similar complexity as in the impulsive Landau-Zener regime for all model
systems. For the warped Hamiltonian Ĥs(k), the perpendicular velocity vy is
again dominated by the frequency induced by the Berry curvature, compare
Sec. 5.4.1. We do not know why this is the case. For the fitted Hamiltonian
Ĥf(k), vy has a similar temporal shape as in the impulsive Landau-Zener regime,
whereas for the gapped Hamiltonian Ĥg(k), vy appears to be dominated by
Zitterbewegung after t ≈ 2.5νel, as indicated by the decaying amplitude.
The decay to approximately zero also supports our suspicion that the missing
Zitterbewegung after the pulse is due to a spatial separation of the wave-packet
parts.

5.4.4. Summary

In summary, the results presented within this section confirm that all transition
regimes determined by Heide et al. [173] can be realized in the effective Dirac
models introduced in Sec. 5.2. One only has to tune the initial momenta ki of
the propagated wave packets and the field strength Eel of the applied electric
pulse (5.10) accordingly.

In the adiabatic regime, no transitions occur and the velocities can be described
semiclassically using Eq. (5.7). In all other regimes, transitions become
important and the semiclassical approximation is not valid anymore. The
resonant regime is characterized by remnant occupations after the pulse and
Rabi-like oscillations of the band occupation, whereas in the nonimpulsive
Landau-Zener regime the population of the conduction band changes smoothly,
has a symmetric time profile around the pulse center, and returns to zero
after the pulse. In all of these regimes the Berry curvature of the underlying
model system leaves clear fingerprints on the perpendicular velocity vy. This
results in vy = 0 at all times t for the simple Dirac cone Ĥc(k), vy oscillating
with the pulse frequency νel for the gapped Dirac cone Ĥg(k), and a frequency
doubling in vy for the Hamiltonians Ĥs,f(k) with hexagonal warping. The
parallel velocity vx on the other hand is dominated by the driving frequency
νel in these regimes for all model systems.

In the impulsive and adiabatic-impulsive Landau-Zener regime, the transition
time τt is much shorter than an optical cycle, i.e. τt < 1/νel. This results in
jumps in the population instead of smooth transitions. In the impulsive regime,
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all jumps have similar height and the occupation of the conduction band almost
returns to zero after the pulse. In the adiabatic-impulsive regime, however, the
Stückelberg phase leads to all jumps being different and a remnant occupation
of the conduction band after the pulse. The dynamics are strongly nonlinear
in both regimes, therefore the characteristics in the velocities are less clear
then before and require further analysis in frequency space, see Sec. 5.5.

For all regimes, as long as the different wave-packet parts still overlap in real
space, Zitterbewegung can be observed whenever an occupation remains in
the conduction band after the pulse. This Zitterbewegung appears in vx for
all model systems and in vy for the gapped cone Ĥg(k) only, as explained in
Sec. 5.2.

5.5. High-harmonic generation

We discuss different transition regimes and the corresponding velocity expec-
tation values for two symmetric test charges in Sec. 5.4. For the results with
low driving field strength Eel = 0.1 MV cm−1 the main frequency of both the
velocity vx parallel to the driving field and vy perpendicular to it are visible
to the naked eye. For the higher field strength Eel = 1 MV cm−1 this is not as
easy anymore. In order to verify our observations for the low field strength
and to gain more insights into the high-field-strength dynamics we study the
corresponding HHs spectra in the following. In Sec. 2.3.3 we discuss how
the HHs spectra are related to the velocity based on Lamor’s formula and in
App. A.9 we show the technical details of our evaluation.

5.5.1. Influence of the Berry curvature

For the transition regimes realized with Eel = 0.1 MV cm−1 we found that
the parallel velocity is dominated by the driving frequency νel whereas the
perpendicular velocity’s main frequency depends on the underlying model
system. When its Berry curvature is zero as for the Dirac cone Ĥc(k), the
total velocity vy of the two test charges is also zero as there is no anomalous
velocity. For the gapped cone Ĥg(k) the Berry curvature has a constant sign
and the velocity vy is non-zero and oscillates with the driving frequency νel.
Introducing the hexagonal warping as in the surface Hamiltonian Ĥs(k) and
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Ĥg(k), P0 = 1.8 · 10−21 W
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Fig. 5.10: HHs spectrum of the test charges in the adiabatic regime. The respective velocities
are plotted in Fig. 5.6. To distinguish parallel and orthogonal emission, we dashed the spectra
belonging to vx. As predicted, the orthogonal emission Py is zero for the Dirac cone Ĥc(k),
at odd orders for the gapped cone Ĥg(k), and shifts to even orders for the Hamiltonians with
hexagonal warping Ĥs/f(k). Note that the orthogonal spectrum of Ĥc(k) is not shown since it
is below the scale of the plot. We normalized the power P with P0 = Px(νel) for each system.

the fitted Hamiltonian Ĥf(k) for the Bi2Te3 surface states comes along with a
Berry curvature with threefold symmetry and alternating sign along the ΓK
direction of the crystal. As discussed in Sec. 5.4.1, this sign change leads to a
frequency doubling of vy.

In Fig. 5.10 we exemplarily show the HHs spectra of the test charges in the
adiabatic regime, see Fig. 5.6 for the corresponding velocities. The dashed
lines are the curves for parallel emission Px(ν), the solid lines represent the
perpendicular component Py(ω). For better comparability we renormalize all
spectra with the first peak of the parallel component, P0 = Px(νel). Then,
the first peaks of all systems fall on top of each other. The efficiency of the
emission of the third harmonic with parallel polarization is already system
dependent17 and highest for the fitted Hamiltonian Ĥf(k), hinting a stronger
nonlinearity of the bands in this system. After the third peak, the spectra
reach their noise level. In the parallel spectra of Ĥc/g/s(k) we find another
peak around ν ≈ 6.3νel. It is the resonance peak of the test charges at their
17Note that for Ĥc(k) and Ĥg(k) the parallel spectra are completely equal, just as the corresponding velocities.
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initial momentum ki = (0,±0.1)Å−1, since ∆E(ki) ≈ 6.3hνel. Excluding this
peak, we can conclude that in the adiabatic regime we observe only odd HH
orders in the parallel component. The perpendicular spectra Py(ω) on the
other hand depend on the geometric properties of the model Hamiltonians, as
already predicted from the corresponding velocities in Sec. 5.4.1. For the Dirac
cone Ĥc(k) no perpendicular emission is observed, its power P/P0 ≈ 9 · 10−22

is below the scale of our plot. For Ĥg(k) the peaks are the same as for the
parallel component but with lower amplitude. Only for the systems with
hexagonal warping, i.e. Ĥs(k) and Ĥf(k), the peaks are shifted to even orders
and of higher amplitude than the parallel spectrum at these frequencies. For
Ĥf(k) the noise level is reached after the fourth order even though a sixth
order peak is indicated slightly. The spectrum of Ĥs(k) appears to have a
peak structure up to ν/νel ≈ 8, however the origin of the peaks after the
fourth harmonic are unclear to us.

In summary already in the adiabatic regime we find confirmation of the relation
between Berry curvature and the polarization of the emitted harmonics. The
spectra of the velocities for our test cases in the resonant and the nonimpulsive
Landau-Zener regime contain the same qualitative features, only the relative
amplitudes of the peaks shift depending on the regime and thus the initial
momentum. We discuss them in App. A.6 for the sake of completeness.

5.5.2. Increasing the field strength

By increasing the field strength to Eel = 1 MV cm−1 we study the impulsive
and adiabatic-impulsive Landau-Zener regime in Sec. 5.4.3. In Fig. 5.11 we
show the corresponding HH emission. To distinguish emission parallel and
perpendicular to the driving field, we dash the spectra of the parallel velocity
vx. In contrast to the low-field limit, we do not find clearly distinguished,
single peaks for the first harmonics anymore. Therefore we normalize the
spectra to the highest peak around ν/νel ≈ 1 of the parallel spectrum, as
indicated by the dots. For better visibility, we plot the spectra of the fitted
Hamiltonian Ĥf(k) separately, see Fig. 5.11(b) and (d).

Due to the higher field strength, in all settings the spectrum reaches its noise
level at frequencies ν > 10νel. However, as indicated by the rich patterns of
the velocity curves in Fig. 5.9, the spectra contain various frequencies and not
all peaks can be related to multiples of the driving frequency νel. Additionally,
we find that the emission depends not only on the Berry curvature but also on
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Fig. 5.11: HHs spectrum of two test charges in the (a), (b) impulsive and (c), (d) adiabatic-
impulsive Landau-Zener regime. The respective velocities are plotted in Fig. 5.9. To distinguish
parallel and orthogonal emission, we dashed the spectra belonging to vx. The dots mark the
peak from which we extracted the power P0 for each system since at low frequencies the peaks
are split. In the adiabatic-impulsive regime, panel (c), the parallel and orthogonal peaks of
Ĥc/g/s(k) are not located at integer values of ν/νel. The symmetry properties of the Berry
curvature are not as clearly visible as in the low-field regimes, compare Fig. 5.10. Still, the
orthogonal emission Py is (approximately) zero for the Dirac cone Ĥc(k) in both regimes and
for the gapped cone Ĥg(k) parallel and orthogonal component have almost the same peak
structure only with shifted amplitudes. For the warped Hamiltonians Ĥs(k) and Ĥf(k) both
components contain odd and even orders, but their intensity still alternates from parallel to
orthogonal emission.
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the energy scales of the model system. The parallel emission Px of the cone
Ĥc(k), the gapped cone Ĥg(k) and surface Hamiltonian Ĥs(k) is qualitatively
the same, whereas the fitted Hamiltonian Ĥf(k) differs and reaches its noise
level already for lower frequencies.

In the impulsive Landau-Zener regime, see panels (a) and (b), clear harmonic
peaks emerge for frequencies ν ≥ 4νel and we restrict the following discussion
to the clean region. For all systems except the pure Dirac cone Ĥc(k),
both parallel and orthogonal emission contain odd and even orders. The
influence of the Berry curvature is not as dominant as in the low-field regime
discussed in Sec. 5.5.1. Nevertheless, for the warped Hamiltonians Ĥs(k) and
Ĥf(k) the peak of highest intensity switches from parallel to perpendicular
component with odd and even orders, whereas for the gapped cone Ĥg(k)
the perpendicular emission is always stronger than the parallel one. When
comparing the orthogonal emission Py of the gapped cone Ĥg(k) and the
surface Hamiltonian Ĥs(k) one finds an alternating pattern just as in the
low-field regime. By solely examining their time-dependent velocities vy(t) in
Fig. 5.9(c), one might have expected that both contain the same frequencies.
The alternating intensities of those frequencies only appear when analyzing
the corresponding spectra.

In the adiabatic-impulsive Landau-Zener regime, see panels (c) and (d), the
qualitative difference of the fitted Hamiltonian Ĥf(k) to the other three
models is even more apparent. Here, the harmonic peaks lie at integer
multiples of the driving frequency νel for the fitted Hamiltonian Ĥf(k) but are
shifted to noninteger values for the models Ĥc/g/s(k). However, in contrast
to the impulsive regime, the peaks of Ĥc/g/s(k) are separated by 2νel like in
the low-field case. Only for the fitted Hamiltonian Ĥf(k) both components
contain odd and even orders. For all models we can retrieve the characteristic
pattern determined by the respective Berry curvature, namely no perpendicular
emission for the Dirac cone Ĥc(k), perpendicular and parallel emission at the
same frequencies for the gapped cone Ĥg(k) and alternating frequencies of
perpendicular and parallel emission for the warped Hamiltonians Ĥs(k) and
Ĥf(k). Especially for Ĥc/g/s(k) this pattern is more dominant in the adiabatic-
impulsive Landau-Zener regime than for the impulsive Landau-Zener regime.
Besides the shift of the peaks to noninteger multiples of νel and the noisy
structure for ν . 4νel, the Berry curvature features are as clear as in the
low-field regime, see Fig. 5.10 for comparison.
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5.5.3. Conclusion

In this section we have explored how the HHs spectra of two test charges change
depending on the underlying model system and the dominating transition
regime. The latter is determined by the applied pulse and the dispersion
seen by the test charges, which again depends on the initial momentum
ki of the states. Even though the results vary for the different test cases,
we found imprints of the Berry curvature on the emitted harmonics with
polarization perpendicular to the driving field in all of them. In order to
achieve an alternating polarization between odd and even orders, as observed
experimentally for the Bi2Te3 surface [81], including the hexagonal warping
term is crucial. The fitted Hamiltonian Ĥf(k) used for the description of the
experiment in [81] gives different results than the simpler surface Hamiltonian
Ĥs(k) proposed in other literature [87, 88] regarding the onset of the noise
level and thus the last resolved HH peak as well as the relative amplitude of
odd and even order harmonics. These differences can be attributed to the
stronger warping in the fitted Hamiltonian Ĥf(k) as well as the smaller energy
difference ∆E(k) between its bands, compare Figs. 5.2 and 2.4. Nevertheless,
the simpler surface model Ĥs(k) is sufficient to capture the relevant qualitative
features.

In the low-field regime discussed in Sec. 5.5.1, only a few harmonic orders
emerge but the spectra are clean. In the high-field regime in Sec. 5.5.2 on the
other hand, a larger frequency range is covered but the initial momentum ki
plays a distinctive role in the quality of the spectrum. In a real system like the
Bi2Te3 surface, however, the emission is not determined by single test charges
but a Fermi sea that covers a large area of momentum space. Hence, also
various transition regimes enter the actual spectrum. In order to capture the
dynamics of a Fermi sea, we developed a new method based on wave packets
that are large in momentum space compared to the narrow ones used as test
charges in this chapter. We introduce this method in Chap. 6.



6. Wave-packet approach for
high-harmonic generation from
a Fermi sea

6.1. Motivation

For the theoretical investigation of HHG in atoms, molecules, and solids,
various models have been developed in the last decades. In the following, we
focus on the research concerning solids. An overview of this field is given in
the review articles [93, 94]. The most commonly used numerical methods are
the semiconductor Bloch equations [95], time-dependent DFT [96, 97] and
methods based on solving the time-dependent Schrödinger equation [98].

In this work, we aim at a deeper physical understanding of the quantum
processes involved in HHG in TI surface states. Therefore, we want to
employ a method that captures the relevant physics while being based on a
minimal model and as illustrative as possible. In Chap. 5 we have already
shown that we can compute the velocity and emitted spectrum of single
test charges in laser-driven systems by simulating their time evolution with
TQT. Ultimately, this is a numerical method for solving the time-dependent
Schrödinger equation that is applicable to continuum Hamiltonians in mixed
position- and momentum-space representation. In the literature, typically
lattice-periodic Hamiltonians are employed as models and the initial states
can be expressed in the Bloch basis1. Then, the Schrödinger equation is
solved in position space only. Physical observables are either obtained by
integrating over the full BZ [98, 103–105] or within the single-active-electron
approximation [99–101]. The limitations of this approximation are investigated
in Ref. [102]. The authors compare HHs spectra obtained from solving the
semiconductor Bloch equations for a 1D model system with those from the

1An overview of different bases and the corresponding equations of motion can be found in the tutorial [172].
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time-dependent Schrödinger equation in single-active-electron approximation.
They find that for a single electron the spectra contain both odd and even
orders, as well as noninteger harmonics, whereas only the odd orders survive
interference effects when including all occupied states in the calculation. Our
approach in Chap. 5 is comparable to the single-active-electron approximation.
The differences are that we add the observables of two symmetric test charges
and explore different cuts through momentum space instead of only the point of
minimal band gap. Nevertheless, the resulting spectra show similar features as
described in Ref. [102]. Since in experiments the laser pulse inevitably drives all
electrons located within the range of its spot size and penetration depth of the
illuminated crystal, the measured signal is the total of all generated radiation.
Thus, including all initially occupied states when calculating observables is
more realistic than the single-active-electron approximation.

In order to improve our results, we have to modify our method from Chap. 5
such that it represents a completely filled band. Still, we keep using the
effective Hamiltonian (2.21) to describe the TI surface states. As shown
in the experiment in Ref. [81], the bulk bands do not contribute to the
HH emission for frequencies below the bulk band gap. In Chap. 5 we have
thoroughly compared the surface Hamiltonian Ĥs(k) from Eq. (2.21) to the
fitted Hamiltonian Ĥf(k), see Eq. (5.1), originally introduced in Ref. [81],
and found quantitative differences. Nevertheless, we confirmed that due to
having the same symmetries, both Hamiltonians show the same qualitative
features in their HHs spectra. Since the fitted Hamiltonian only works on
a limited momentum window in TQT and is numerically more expensive,
see App. A.4, we restrict our studies of the Bi2Te3 surface to the literature
model Ĥs(k) from now on. We include the laser pulse in the length gauge
(2.55) and compute the time evolution of states by solving the time-dependent
Schrödinger equation in TQT. Its advantages compared to time-dependent
DFT are that it is computationally less expensive and the results are easier to
interpret intuitively. The semiconductor Bloch equations, on the other hand,
have already been applied to TI surface states and general Dirac materials
[81, 107, 108]. The method we introduce in the following allows for a different
perspective on the processes leading to HHG. Additionally, in contrast to the
semiconductor Bloch equations from the cited studies, in TQT we can include
potentials in position space2 even though the system’s Hamiltonian is defined
in momentum space. This offers the possibility of going beyond the dipole
approximation of the light field and including orbital magnetic field effects, as
we discuss in more detail in Chap. 7. In future research one could also think

2Note that in the last years an approach has been developed that treats the semiconductor Bloch equations
in the Wannier basis [241]. Using this basis, including real-space potentials is not an issue anymore.
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about applying structured light [242] instead of a Gaussian laser beam.

6.2. Introduction of methodology

In order to improve our model from Chap. 5, we construct our initial wave
packets such that their propagation serves for computing observables that are
equivalent to those of a Fermi sea. As exploited in Tkwant for transport
calculations [187] and more formally demonstrated in App. A.7, in non-
interacting systems with unitary time evolution including Pauli blocking
into the calculation of observables does not require propagating the anti-
symmetric many-particle wave function. It is sufficient to compute the time
evolution of all initially occupied states like for single particles3. In a non-
interacting framework, all single-particle states lying within the same band
can be combined into one wave packet and thus are propagated simultaneously.
When calculating observables described by operators that are not diagonal in
the eigenbasis of the Hamiltonian, such as the velocity operator, see Sec. 2.3,
this separate treatment of wave packets initialized in the conduction and
valence band is important. Otherwise, the off-diagonal entries of the operator
would lead to unphysical interference between two distinct single-particle wave
functions. For the velocity operator, including states from several bands in
the initial wave packet would lead to spurious interband velocities, compare
Eq. (2.58).

We focus on a two-band system here but adapting the presented formalism
to more-band systems is trivial. To describe the full Fermi sea dynamics we
need a maximum of two wave packets Ψ±(k, t), where ± labels the band index
of the states at initial time t = 0, “+” meaning the conduction and “−” the
valence band, see the sketch in Fig. 6.1(a). The initial wave packets Ψ±(k, 0)
are defined in momentum space and can be written as

Ψ±(k, 0) = 1√
N
g±(k)ϕ±(k), (6.1)

where ϕ±(k) is the spinor defining the eigenstates of the Hamiltonian Ĥ(k, t = 0)
and g±(k) is a band- and k-dependent envelope function specified in more
detail later. The factor 1√

N
ensures normalization of the total wave packet

3Note that for undriven systems one finds that only the states close to the Fermi surface contribute to
observables. Since we consider systems under strong driving here, also states below the Fermi surface are
important.
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Ψ±(k, 0) such that
1 =

∫
dk Ψ∗±(k, 0) Ψ±(k, 0). (6.2)

This normalization implies that the contribution of single k modes to an
observable scales with the size of the wave packet in momentum space. One
should be aware of this scaling when comparing data of differently sized wave
packets and compensate for it if necessary, as demonstrated in Sec. 6.7 for the
computation of HHG for different Fermi energies.

The Fermi energy EF and the temperature T of the initially equilibrated
system set a natural upper bound for the wave packets in energy and therefore
also in momentum. At zero temperature, the highest occupied states lie at the
Fermi energy EF. If the Fermi energy EF is in the valence band or between
the bands, g+(k) = 0 for all k and g−(k) = 0 for E−(k) > EF. If EF lies in
the conduction band, g+(k) = 0 for E+(k) > EF and g−(k) = 1 for all k in
principle. For finite temperature, a drop off modulated by the Fermi-Dirac
distribution

g±(k) = 1
1 + e−[EF−E±(k)]/(kBT ) , (6.3)

with the Boltzmann constant kB, is introduced. Here, ± is the band the
Fermi energy lies in. A more detailed description as well as an analysis of the
influence of the Fermi energy on the emitted HHs is given in Sec. 6.7.

Since we consider effective model Hamiltonians, no band bottom or BZ
boundary exists. In our models, the bands extend to infinity in momentum
and thus the wave packet in the conduction band would be infinitely large.
In the numerical simulations however, the momentum grid is limited to
a finite number of points. Additionally, the effective model is only a valid
approximation of a physical system within a certain energy window. Therefore,
we have to find a lower bound for the initial wave packet Ψ−(k, 0) in the
conduction band. To establish this lower bound, we have to determine which
states actually contribute to the desired observable. If this range is not within
the range of validity of the effective model, another description of the system
has to be considered.

For HH generation, applying a strong electric field pulse Eel(t) is necessary. It
moves the states through momentum space and causes transitions between the
bands. In this way, states initially below the Fermi surface can also contribute
to observables, such as the total velocity, during propagation. In Sec. 2.4
we summarized different types of transition mechanisms focusing on those
occurring at avoided crossings of the bandstructure. For a filled band however,
the situation is more complicated since not all states pass an avoided crossing
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Fig. 6.1: Sketch of the wave packets constituting a Fermi sea at T = 0 K and EF in the
conduction band. (a) Wave packets at t = 0. The conduction band is filled up to the Fermi
energy EF and described by the initial wave packet Ψ+(k, 0). The wave packet Ψ−(k, 0)
initialized in the valence band is limited by the momenta klim. The light red area limited
by the momenta kmax and the energy difference ∆Emax marks the region where transitions
can be driven by the laser pulse. Observables have to be evaluated up to the static boundary
set by the momenta kcut. (b) Wave packets during the propagation, neglecting transitions.
The applied electric field shifts the states in momentum space, changing the bounds of the
wave packets and creating an overlap region between states initially above and below kmax.
To account for this overlap while simulating a filled valence band, observables have to be
evaluated up to kcut. It is chosen such that all states above kcut are always covered by the
wave packet. States lying below kcut must not contribute to the total observables since a
balanced occupation is not guaranteed.

during their propagation. As studied by Mario Ebner in his master’s thesis
under our supervision [163], the transition probability in a two-band system
under the influence of an electric field is proportional to the scalar product
of the electric field Eel(t) and the transition matrix element A+−(k(t)), but
also influenced by the phases acquired by the state before undergoing the
transition. Accordingly, the details of the transition processes are system
dependent. In Sec. 6.3 we analyze how to determine the lower bound of the
wave packet based on the momentum-dependent transitions when computing
HHG in the Bi2Te3 surface states (2.21). For now, let us just state that
there exists a momentum area limited by kmax, that is defined by an energy
difference ∆Emax = E+(kmax) − E−(kmax) between valence and conduction
band, in which the relevant transitions take place.

To establish the lower bound of Ψ−(k, 0) we also have to take the field-induced
motion through momentum space into account, see Eq. (2.56). In Fig. 6.1(b)
the wave packet movement neglecting transitions is depicted schematically
to illustrate the significance of the different k boundaries introduced in the
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following. The electric field shifts the states through momentum space such
that at times t > 0 states initially defined by kmax move to lower energies and
states initially below kmax enter the region with relevant transition probabilities.
To account for this overlap region, the wave packet has to be extended in
momentum. The corresponding cut-off momenta kcut should be chosen such
that they fulfill

|kcut| ≥
∣∣∣∣∣kmax −

e

~

∫ t
0

Eel(t′)dt′
∣∣∣∣∣ (6.4)

at all times t, where we require that kmax and kcut point in the same direction4,
i.e. kmax ‖ kcut. In Sec. 6.3 we investigate how to appropriately set the
limits kcut taking into account that they also determine the region in which
observables have to be evaluated, as will be discussed in more detail later.

To set the actual lower bound of the wave packet, we additionally have to
account for the unbalanced region, also illustrated in Fig. 6.1(b). If one
would take a wave packet that just ends at the momenta kcut at inital time
t = 0, later during propagation |Ψ−(kcut, t)|2 = 0 due to the momentum shift.
Hence, the wave packet Ψ−(k, 0) has to be extended to momenta klim such
that |Ψ−(kcut, t)|2 = |Ψ−(kcut, 0)|2 > 0 for all t included in the propagation5.
Accordingly, klim is defined similar to kcut in Eq. (6.4), requiring

|kcut| <
∣∣∣∣∣klim −

e

~

∫ t
0

Eel(t′)dt′
∣∣∣∣∣ (6.5)

at all times t, for the momenta klim and kcut pointing in the same direction.
For simplicity, in practice we choose the klim such that they are all of the
same length |klim|. Then, the lower bound of the wave packet can be defined
by a Gaussian decay,

g−(k) = exp
−(|k| − |klim|)2

2∆k2

 , for |k| ≥ |klim|, (6.6)

where the width ∆k is chosen such that the decay is fast but numerically
smooth.

As already discussed, for states outside of the bound defined by the momenta
kcut a balanced occupation is not guaranteed throughout propagation. This
can lead to spurious contributions when calculating observables over the full

4Note that in systems without rotational symmetric bands, such as e.g. the Bi2Te3 surface states with
warping (2.21), |kcut| becomes angle-dependent.

5Remember that the “−” in the index marks the initial band of Ψ−(kcut, t). Due to transitions, at t > 0 the
state can have non-zero amplitudes in both bands but its total amplitude squared over both bands has to
be conserved in a filled band.
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wave packet. To avoid artificial effects due to the limitation of the wave
packet at low energies, observables are only evaluated for the wave-packet
parts within the momentum area limited by the momenta kcut. In this work,
the relevant observable is the velocity. For the wave packets Ψ±(k, t) it is
obtained by

v±(t) =
∫

Ψ∗±(k, t) v̂k(t) Ψ±(k, t) dk, (6.7)

the velocity operator taking the form v̂k(t) = 1
~∇kĤ(k, t) in k space, compare

Eq. (2.46). During the propagation, transitions may occur and Ψ±(k, t) is
not consisting of pure conduction or valence band eigenstates anymore. Thus,
computing the velocity via Eq. (6.7) includes both diagonal and off-diagonal
velocity contributions. The wave packets Ψ±(k, t) are not coupled since they
describe a collection of non-interacting single-particle states. Hence, their
velocities have to be computed separately to avoid unphysical interference
terms between different particles. As discussed before, we have to introduce a
cut off at kcut in v−(t) to obtain the velocity for a filled band, i.e.

vcut
− (t) =

∫
f(k) Ψ∗−(k, t) v̂k(t) Ψ−(k, t) dk, (6.8)

where f(k) is a function defining the described cut off. We call this function
k-mask from now on. The total velocity of the Fermi sea is then given by
v(t) = v+(t) + vcut

− (t). Note that we implemented both v±(t) and vcut
− (t) as

an observable in TQT, see Sec. 3.5.

There exist various options for defining the k-mask f(k) in line with the
condition (6.4) for the cut-off momenta kcut. As we show in Sec. 6.3, choosing
the momenta kcut is not equivalent to fully converging the velocity expectation
value vcut

− (t). Instead, it means to determine reasonable, physical criteria that
decide which states contribute to the HHG process and which states can be
neglected. For approaches based on the semiconductor Bloch equations, a
similar effect is achieved by including finite intra- and interband dephasing
times. Accordingly, the optimal choice of kcut and f(k) depends on the
underlying model system. We exemplarily discuss our standard k-mask as
well as the influence of differently shaped k-masks in Sec. 6.3 for the Bi2Te3
surface Hamiltonian (2.21).
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6.3. Demonstration for the Bi2Te3 surface states

6.3.1. Definition of the initial setup

In Sec. 6.2 we introduced the concept of our wave-packet approach for simu-
lating the dynamics of a Fermi sea. Now, we apply this method to the Bi2Te3
surface model (2.21) in order to investigate HHG. We use this first application
to provide a detailed guide on how to use the newly developed approach,
including all relevant sanity checks as well as evaluation methods. The laser
pulse driving the electron dynamics is given by Eq. (5.10),

Eel(t) = Eel exp
−(t− t0)2

2∆t2

 sin (2πνel (t− t0)) ex. (6.9)

We take the same parameters as for the test charges in Sec. 5.4, i.e. ∆t = 40 fs,
νel = 25 THz, t0 = 140 fs, and polarization along the ΓK direction of the
crystal. For the field strength Eel we choose the value Eel = 0.5 MV cm−1.
Note that, except for the comparison with driving along ΓM in Sec. 6.4, we
always choose the laser pulse such that Eel ‖ ex. For the sake of readability,
apart from Sec. 6.4, we refrain from explicitly stating that we are referring to
the dynamics for driving along the ΓK direction.

For simplicity, we set the Fermi energy EF = 0 such that it lies at the Dirac
point, resulting in a filled valence band and an empty conduction band. Then,
we only have to propagate the wave packet Ψ−(k, t) in TQT. To define it
based on Eq. (6.1) with

g−(k) =


1 , for |k| < |klim|
exp

[
− (|k|−|klim|)2

2∆k2

]
, for |k| ≥ |klim|

(6.10)

and Gaussian decay of width ∆k = 0.01Å−1, we need to set a value for |klim|.
In principle, this requires an estimate of the limiting momenta kcut. We are
not yet aware of a reasonable method to do this without monitoring the
transitions of a large wave packet first. Nevertheless, as soon as the limits
kcut are determined for one field strength, we can extrapolate the limits for
other field strengths, as we demonstrate in Sec. 6.6.2. For the calculations
presented in the following, we set |klim| = 0.22Å−1. Then we need 2048×1024
grid points and a spacing of δx = 6Å and δy = 10Å in real space for the
propagation of Ψ−(k, t) in TQT. The time step is set to δt = 0.1 fs.
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6.3.2. Monitoring transitions in momentum space

While propagating the wave packet Ψ−(k, t) in TQT, we record the time and
momentum resolved occupation

|ck,±(t)|2 = N |ϕ∗±(k)Ψ−(k, t)|2. (6.11)

In Fig. 6.2 we show snapshots of |ck,−(t)|2 at different times t. The insets
depict the momentum displacement kx(t)− kx(0), the respective time t of the
snapshot is marked by a red cross. The wave packet Ψ−(k, t) is initialized in
the valence band and centered around the Dirac point k = (0, 0). As defined in
Eq. (6.10), all momenta are equally occupied up to the radius |klim|, then the
wave packet smoothly decays to zero, see panel (a). During the pulse Eel(t),
panel (b) - (e), the wave packet moves in momentum space and around the
Dirac point transitions occur. When states directly cross the Dirac point, they
are completely transferred from one band to the other, which is in accordance
to the impulsive Landau-Zener transitions studied in Sec. 5.4. The transitions
around the Dirac point are more diverse and their full classification remains
an open task for future research. We also observe a complicated interference
pattern that results in a remnant occupation in the conduction band after the
pulse, see panel (f). This occupation is not balanced and manifests itself in a
residual current [243].

Based on these insights in the distribution of the transitions in momentum
space, we estimate momenta kcut, up to which observables have to be evaluated
in order to include all relevant6 dynamics, and thus define the k-mask f(k).
As our standard k-mask we pick a simple sigmoid function

f(k) = 1
1 + ea[∆E(k)−∆Ecut]

, (6.12)

where ∆E = E+(k)− E−(k) with the energies E±(k) from Eq. (2.22). The
parameter a = 900 eV−1 is chosen such that a numerically smooth but fast
cut off is achieved. The boundary of the k-mask is given by the local energy
gap ∆Ecut which we set by fixing kcut = (kx,cut, 0) on the kx axis. The black
lines in Fig. 6.2 indicate these boundaries for kx,cut ∈ [0.11, 0.16]Å−1 in steps
of 0.01Å−1. Within the resolution of Fig. 6.2 all of these k-masks include the
dominating transitions and are covered by the wave packet Ψ−(k, t) at all
times. In Sec. 6.3.3 we study in more detail whether this first impression on
the included transitions is correct. To ensure the coverage of the k-mask, we

6We discuss what we mean by relevant in Sec. 6.3.3.
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(a) (b)

(c) (d)

(e) (f)

t νel = 0 t νel = 2.5

t νel = 3 t νel = 3.5

t νel = 4 t νel = 7.5

kx(t)− kx(0)

kx(t)− kx(0)

kx(t)− kx(0) kx(t)− kx(0)

kx(t)− kx(0)

kx(t)− kx(0)

Fig. 6.2: Snapshots of Ψ−(k, t) at different times t projected on the valence band. The
insets show the course of kx(t)− kx(0), the time t at which the respective snapshot is taken is
marked by the red cross. The occupation |ck,−|2 is renormalized such that 1 = |ck,−|2 + |ck,+|2
at each momentum k with |k| ≤ |klim|. The black lines represent k-masks with different
boundaries ∆Ecut. Initially, the Gaussian wave packet is centered around the Dirac point
k = (0, 0) and fully in the valence band, see panel (a). Then, the electric field pulse drives
transitions in the region around the Dirac point. As shown in panel (b) - (e), states crossing
the Dirac point completely switch from one band to the other, whereas around the Dirac
point a complicated interference pattern appears. These interferences result in a remnant
occupation after the pulse, see panel (f).
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compute the momentum expectation value 〈kx(t)〉cut of the wave packet inside
the k-mask using the COM observable in momentum space7, see Sec. 3.5 for
an introduction. As long as 〈kx(t)〉cut ≈ 0 for all times t, the k-mask f(k)
lies within the boundaries of the wave packet and Eq. (6.5) is fulfilled. The
corresponding data for kx,cut = 0.16Å−1 is shown in App. A.8 and confirms
that all k-masks in Fig. 6.2 comply with Eq. (6.5). Additionally, we evaluate
〈kx(t)〉cut for kx,cut = 0.17Å−1 and find that there Eq. (6.5) is not satisfied
anymore.

6.3.3. Determining the k-mask boundary

So far, we only stated that the k-mask has to cover all relevant transitions,
but without specifying what relevant actually means. In this section, we
study the velocity and HH emission of Ψ−(k, t) resulting from applying the
k-mask (6.12) with the boundaries kx,cut ∈ [0.11, 0.16]Å−1 in steps of 0.01Å−1,
as depicted in Fig. 6.2. Based on our findings, we define criteria for relevant
transitions and discuss the validity of our approach.

Since, within the k-mask, Ψ−(k, t) represents the time evolution of an initially
filled valence band, its velocity vcut

− (t), Eq. (6.8), is zero as long as no transitions
occur. As studied in Sec. 6.3.2, the applied pulse Eel(t) drives transitions
around the Dirac point and after the pulse a residual occupation remains in
the conduction band. In principle, by including a sufficiently large momentum
range in the k-mask, the velocity vcut

− (t) should converge. However, we find
that even though the discrepancies between the curves decrease with increasing
k-mask, we do not reach full convergence within the range of the k-masks
depicted in Fig. 6.2. In Fig. 6.3 we show both the vx and vy component of
vcut
− (t) rescaled with the absolute value of the maximal intraband velocity8
vmax
x = |−0.182 56Å fs−1|. The insets show the difference of the velocities with
respect to the results for the largest k-mask, i.e. kx,cut = 0.16Å−1. For vx (vy),
the curves have deviations of up to two (one) percent of vmax

x . Nevertheless,
with respect to HHG, the order of magnitude of the deviations is inconclusive.

In Fig. 6.4 we plot the HHs spectra of vcut
− (t), see Sec. 2.3.3 and App. A.9 for the

technical details. The powers are normalized to the power P0 = 3.2 · 10−23 W
7Note that usually we only apply this test since it is easier, faster, and takes less storage than computing
and evaluating |ck,±(t)|2.

8The computation and evaluation of the intraband velocity is discussed in more details later.
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Fig. 6.3: Velocity vcut
− (t) of Ψ−(k, t) evaluated for the k-mask (6.12) with different kx,cut,

(a) parallel and (b) perpendicular to the driving field. The velocities are normalized to the
absolute value of the maximal intraband velocity vmax

x = |−0.182 56Å fs−1| corresponding to
kx,cut = 0.16Å−1. The insets show the deviations ∆vx/y of the velocities obtained for different
k-masks with respect to the results for kx,cut = 0.16Å−1. We do not reach full convergence
but the deviations decrease with increasing k-mask size.

of the first harmonic for kx,cut = 0.16Å−1. Both parallel emission Px and
perpendicular emission Py are approximately equal for all k-masks for the
first five harmonics. Then, the spectra reach a plateau and the amplitude of
the peaks decreases with increasing kx,cut. For the parallel emission Px, this
decrease leads to the peaks almost reaching noise level for kx,cut = 0.16Å−1.
The perpendicular emission Py on the other hand is more robust and generally
has a noise level about four orders of magnitude lower than Px. Despite of
this amplitude scaling, we observe that the frequency of the peaks is equal
for all kx,cut up to a certain harmonic indicated by an arrow in Fig. 6.4. At
the marked frequency, the spectrum for kx,cut = 0.11Å−1 has a double peak.
The same feature is observable for all k-masks but shifts from one peak to the
next highest for each step of kx,cut.

From these findings we conclude that full convergence of the velocity is not
necessary as long as only qualitative statements about the emitted HHs
are required. Then, including all relevant transitions can be understood as
including a sufficiently large momentum area such that the position of the
harmonics is fixed in the frequency range of interest. However, when aiming for
quantitative information such as the ratio between parallel and perpendicular
polarization of the harmonics or the cut-off frequency, the results depend on
the choice of the k-mask boundary. Physically, setting the k-mask is similar
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Fig. 6.4: HH spectra corresponding to vcut
− (t) of Ψ−(k, t) evaluated for the k-mask (6.12) with

different kx,cut, (a) parallel and (b) perpendicular to the driving field. We normalize Px and
Py to the power P0 = 3.2 · 10−23 W of the first harmonic for kx,cut = 0.16Å−1. For the lowest
harmonics, the spectra are approximately converged. Then, they reach a plateau where the
frequency position of the peaks is still equal for all k-masks but their amplitude decreases with
increasing kx,cut. Starting from the harmonic indicated by the arrow, double-peak structures
appear. The onset of this regime shifts from one peak to the next highest for each step of
kx,cut. We conclude that the spectra can be considered for qualitative statements until they
enter this last regime.

to introducing a momentum-dependent dephasing time. We say similar since
even though we discard the dynamics outside of the k-mask, we do not include
any dephasing mechanisms in our simulations. Thus, states that temporarily
leave the region of the mask still evolve coherently and do not loose their
phase information.

Altogether, whether and with which boundary the k-mask approach is suitable
for quantitative comparison to experiments depends on the studied material.
Within this work, we focus on extracting qualitative properties of HHG from
the Bi2Te3 surface states (2.21) but also explore how the k-mask boundary and
HH power scale with the field strength, see Sec. 6.6.2. As stated in Ref. [81],
the intraband dephasing time of Bi2Te3 is at least 1 ps, whereas the interband
dephasing time was set to 10 fs in the simulations based on the semiconductor
Bloch equations. This suggests that we obtain the most realistic results
within our wave-packet approach by converging the intraband contribution
to the velocity vcut

− (t). As confirmed in the following, this convergence is
achieved within the explored range, meaning that we only discard interband
contributions when setting the k-mask accordingly. The thus introduced
momentum-dependent interband dephasing offers a complementary approach
to the semiconductor Bloch equations applied in Ref. [81].
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Fig. 6.5: Intraband velocities and corresponding HH spectra for Ψ−(k, t) evaluated for
the k-mask (6.12) with different kx,cut, (a), (c) parallel and (b), (d) perpendicular to the
driving field. We normalize the velocities to the absolute value of the maximal intraband
velocity vmax

x = |−0.182 56Å fs−1| corresponding to kx,cut = 0.16Å−1 and the power spectra
Px and Py to the power P0 = 3.2 · 10−23 W of the first harmonic in the total spectrum
for kx,cut = 0.16Å−1. For the time-resolved velocites, the deviations ∆vx/y decrease with
increasing mask size, see insets of panel (a) and (b). The perpendicular spectra are not
fully converged for any of the k-masks. Since the overall amplitude of Py is three to four
orders of magnitude below the parallel emission Px and the total spectrum in Fig. 6.4 shows
that the perpendicular spectrum is less affected by noise when increasing the k-mask, we
focus on the parallel emission when determining the optimal mask boundary. To define a
quantitative convergence criterion, we focus on the region with the largest deviations in Px,
see zoom in panel (c). As analyzed in the inset next to this zoom, the deviations ∆P of
the highlighted peaks, normalized with respect to the results for kx,cut = 0.16Å−1, converge
exponentially fast with growing mask size. Throughout this work, we settle for the smallest
k-mask with variations below ±2.5 % with respect to the reference k-mask. Accordingly, for
Eel = 0.5 MV cm−1 we choose kx,cut = 0.13Å−1.
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The definitions of intra- and interband velocity are reviewed in Sec. 2.3, and the
corresponding observables in TQT are introduced in Sec. 3.5. The intraband
velocities of Ψ−(k, t) are plotted in Fig. 6.5(a) and (b) for the different k-masks.
Like the total velocity in Fig. 6.3, the curves are rescaled with the absolute
value of the maximum intraband velocity, vmax

x = |−0.182 56Å fs−1|. As shown
in the insets, the deviations ∆vx/y from the respective velocity component
for kx,cut = 0.16Å−1 decrease with increasing kx,cut. For kx,cut ≥ 0.13Å−1, the
difference in vx is less than or equal to 0.1 % of vmax

x . Since the intraband
velocity vy itself is already three orders of magnitude smaller than vmax

x for all
k-masks9, we refrain from further interpretation of its deviations ∆vy.

Moreover, for the evaluation of the total velocity, compare Figs. 6.3 and
6.4, we observed that quantifying the discrepancies in the time domain is
inconclusive with respect to the corresponding HHs spectra. Therefore, we
perform a deeper analysis of the spectra generated by the intraband velocities,
as shown in Fig. 6.5(c) and (d). Again, we normalize the spectra to the power
P0 = 3.2 · 10−23 W of the first harmonic in the total spectrum. Unlike the full
spectra in Fig. 6.4, the intraband spectra appear almost equal for all k-masks.
For a more quantitative comparison, we focus on the peaks with the largest
deviations in the parallel emission, as highlighted in the zoom in Fig. 6.5(c).
In the inset, we plot the scaling ∆P of the peaks, marked by different colors,
with respect to the k-mask boundary. We normalize the curves to the emitted
power for the corresponding largest k-mask with kx,cut = 0.16Å−1. This
analysis reveals an exponentially fast convergence with increasing mask size.
However, the studies on the full spectra in Fig. 6.4 showed that the resolution
of the parallel emission decreases for larger k-masks. Therefore, we define the
convergence criterion such that we settle for a mask size in the center of the
explored range. To be precise, we choose the smallest k-mask with deviations
∆P inside the window of ±2.5 % around the reference k-mask. Accordingly,
for Eel = 0.5 MV cm−1, we set kx,cut = 0.13Å−1.

Concerning the perpendicular emission, see Fig. 6.5(d), small deviations are
resolved for all values of kx,cut. Nevertheless, since the parallel intraband
spectrum is three to four orders of magnitude larger than the perpendicular

9This overall small amplitude is understood by considering that the intraband velocity originates from an
unbalanced occupation. As demonstrated by the momentum resolved transitions in Fig. 6.2, along kx
an unbalanced occupation is clearly visible due to the symmetry breaking caused by the electric field
(6.9). This unbalancing gives rise to the x component of the intraband velocity. Along ky however, the
occupation appears balanced for all snapshots in Fig. 6.2. Nevertheless, as observed for the single test
charges in Sec. 5.4.3, small deviations between states at ±ky are possible, leading to a relatively small but
non-zero intraband velocity in y direction.
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(a) (b)

t νel = 4

Fig. 6.6: Snapshots of Ψ−(k, t) at t νel = 4 projected on the valence band with differently
resolved color bars. Like in Fig. 6.2, the occupation |ck,−|2 is renormalized, such that
1 = |ck,−|2 + |ck,+|2 at each momentum k with |k| ≤ |klim|, and the black lines represent the
k-masks considered within this section. When starting the color bar at |c−|2 = 0.8, see panel
(a), we resolve that the k-mask with kx,cut = 0.11Å−1 neglects some transitions where less
than ∼ 20 % of the state switch to the valence band. By increasing the lower end of the bar
to |c−|2 = 0.99, see panel (b), we find that by choosing kx,cut = 0.13Å−1 for the k-mask, we
include all transitions where up to ∼ 99 % of the state remain in the valence band. This
finding supports considering kx,cut = 0.13Å−1 as the optimal k-mask boundary.

one10 and additionally the total perpendicular spectrum appears less affected
by noise when increasing the k-mask, compare Fig. 6.4, we determine the
k-mask boundary based on the parallel emission only. Besides the convergence,
we note that the intraband spectra do not show clean HH peaks as compared
to the total spectra. This property highlights the importance of the interband
velocity for the process of HHG in Bi2Te3 surface states. We do not perform
a deeper analysis on the interplay between intra- and interband velocity
concerning HHG in this work, but leave this as a task for future research.

In Sec. 6.3.2 we state that within the resolution of the occupation plots in
Fig. 6.2 the dominating transitions are included in all k-masks. When changing
the scale of the color map such that it only resolves band occupations of
|c−|2 ≥ 80 % and |c−|2 ≥ 99 %, respectively, see Fig. 6.6, we find that actually
the k-mask with kx,cut = 0.11Å−1 only covers the regions where up to ∼ 20 %
of the state switch to the conduction band. When setting kx,cut = 0.13Å−1 on
the other hand, also transitions where up to ∼ 99 % of the state remain in the
valence band are considered. This observation offers an alternative criterion
for defining the k-mask boundary which confirms that kx,cut = 0.13Å−1 is a
suitable choice for the parameters studied here. Nevertheless, since saving the
momentum-resolved occupations is storage intensive, we mainly employ the

10Note that this difference in magnitude is also reflected by the corresponding velocities, as discussed
previously.
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convergence of the intraband velocities and spectra for the remainder of this
work.

6.3.4. Influence of the k-mask shape

With our standard k-mask, defined in Sec. 6.3.2 based on the local energy
difference ∆E(k), we focus on convergence of the spectrum along the kx
direction. However, the snapshots of the momentum-resolved occupations in
Figs. 6.2 and 6.6 show that the extent of the region with transitions in ky
direction is smaller than in kx direction due to the polarization of the electric
field. Therefore, one might consider a k-mask that is rather elliptical than
circular more suitable. In this section we define a k-mask that is adapted
to the shape of the transition region in momentum space and explore the
influence of its boundary in ky direction on the resulting HHs spectrum. We
call it minimal k-mask fmin(k) from now on. For simplicity, we thereby keep
the boundary in kx fixed at kx,cut = 0.13Å−1, as determined in Sec. 6.3.3.

We base the description of this minimal k-mask on sigmoid functions similar
to Eq. (6.12). Since we now change the boundary in ky direction while
keeping it fixed in kx, we set the limiting energy gap ∆Ecut by specifying
kcut = (0, ky,cut) on the ky axis. In order to achieve a more elliptical shape, we
then define a momentum shift kshift that shifts the energy difference ∆E(k)
such that on the kx axis ∆Ecut = ∆E(k ± kshift) for k = ∓(0.13, 0)Å−1.
Assuming a perfectly circular energy contour for simplification, we define
kshift as kshift = (0.13, 0)Å−1 − (ky,cut, 0), where ky,cut < 0.13Å−1. Finally, the
minimal k-mask fmin(k) is described as

fmin(k) =


[1 + exp [a (∆E(k + kshift)−∆Ecut)]]−1 , for kx + |kshift| < 0
[1 + exp [a (∆E(k− kshift)−∆Ecut)]]−1 , for kx − |kshift| > 0

[1 + exp [a (∆E(0, ky)−∆Ecut)]]−1 , otherwise
,

(6.13)
with a = 900 eV as for the standard mask (6.12). We change ky,cut in steps of
0.01Å−1 within the range ky,cut ∈ [0.05, 0.12]Å−1 here.

In panel (a) of Fig. 6.7 we depict the contours of the different k-masks fmin(k)
on top of the momentum resolved transitions |c−|2 at tνel = 3.5, 4, 4.5 with
the color scale ranging from 0.99 to 1. For the smallest presented ky,cut, the
masks show the required elliptical shape, whereas for increasing ky,cut they
approach the shape of the standard k-mask f(k). In analogy to the plot for



128 6. Wave-packet approach for HHG from a Fermi sea

0 10 20 30

1e-09

1e-06

0.001

1

P
x
/
P

0

P
y
/
P

0

ν/νel ν/νel

(b) (c)

0 10 20 30 40

1e-12

1e-09

1e-06

0.001

ky,cut = 0.05Å−1

ky,cut = 0.08Å−1

ky,cut = 0.09Å−1

ky,cut = 0.11Å−1

ky,cut = 0.12Å−1

ky,cut = 0.06Å−1
ky,cut = 0.10Å−1

standard k-mask f(k), kx,cut = 0.13Å−1

ky,cut = 0.07Å−1

tνel = 4,|c−|2 at tνel = 3.5, and tνel = 4.5(a)

Fig. 6.7: Analysis of the influence of the minimal k-mask (6.13) for different ky,cut.
(a) Occupation |c−|2 of the valence band, color coded in the range 0.99–1 , alongside the
different k-masks at different times t. The minimal k-mask is better adopted to the transition
region than the standard k-mask (6.12). For ky,cut = 0.07Å−1 the mask includes all transitions
with at least ∼ 1 % of the state switching band. HH spectra (b) parallel and (c) perpendicular
to the driving field corresponding to vcut

− (t) of Ψ−(k, t) evaluated for the k-masks displayed in
(a) compared to those evaluated for the standard k-mask (6.12) with kx,cut = 0.13Å−1 (dark
green). We normalize Px and Py to the power P0 = 3.4 · 10−23 W of the first harmonic of the
parallel spectrum Px for the standard mask. The spectra are approximately converged for
the first harmonics for ky,cut ≥ 0.07Å−1. Starting from the peak indicated by the arrow, the
impact of ky,cut on the peak height varies for each peak. In contrast to the convergence along
kx, see Fig. 6.4, the parallel spectrum Px is above noise level for all ky,cut.

f(k) at tνel = 4, see Fig. 6.6(b), we find that the mask with ky,cut = 0.07Å−1

already includes all transitions where up to ∼ 99 % of the state remain in
the valence band. Note however that along the ky direction we observe the
outermost relevant momenta when the electric field is maximal and the wave
packet centered around the Dirac point due to the avoided crossing along the
ky axis. Along the kx direction instead the maximal momentum shift is crucial
when determining the momentum boundary.

The graphs in panel (b) and (c) of Fig. 6.7 depict the HHs spectra corresponding
to the different k-masks. We compare them against the results from the
standard k-mask with kx,cut = 0.13Å−1, which are highlighted in dark green.
All spectra are renormalized to the first-order peak of the parallel spectrum
for the standard k-mask, namely P0 = 3.4 · 10−23 W. Like for the boundary
variations of the standard k-mask, see Fig. 6.4, the spectra are approximately
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converged for the lowest harmonics as soon as all transitions with at least
∼ 1 % of the state switching band are included within the k-mask. As discussed
before, this is achieved for ky,cut = 0.07Å−1 here. But for harmonics within
the plateau the influence of ky,cut is different on every peak. The onset of the
plateau is indicated by the arrow for both polarizations. The value of the
marked peak is highest for the smallest k-mask and its position in frequency
drifts with ky,cut. By comparing to the results of the standard k-mask, Fig. 6.4,
we observe that the marked harmonic is only part of the plateau for the lowest
kx,cut, indicating that at this order the transition between two regimes occurs.
Unlike the kx boundary, different choices of ky do not have a relevant influence
on the ratio between peak height and the noise level, meaning that for all
ky,cut good spectral resolution is achieved.

We conclude that the choice of the k-mask and its shape has a quantitative
influence on the obtained HHs spectrum. Accordingly, comparison to ex-
perimental data could reveal whether there exists a momentum dependent
dephasing in the investigated material. Additionally, a more detailed study on
the scaling of different harmonics with the k-mask boundaries could provide a
deeper understanding of how different states contribute to the HHG process.
On the other hand, the position of the peaks is mainly independent on the
mask choice, making qualitative statements about HHG from different model
Hamiltonians possible even without precise knowledge about the dephasing
properties. Since the definition of the k-mask (6.12) is simpler than that of
the minimal k-mask (6.13), we continue taking (6.12) as standard k-mask for
the qualitative studies presented in the rest of this thesis.

6.3.5. Comparison to the full wave packet without k-mask

So far we have investigated how the HHs spectra depend on the boundaries of
the k-mask in momentum space. As a last step, we compare the results for
the standard k-mask f(k) with kx,cut = 0.13Å−1 to results obtained for full
wave packets without applying a k-mask. Then, the velocities arising within
the unbalanced region, compare Fig. 6.1, are not excluded.

For the full wave packets on the one hand we choose Ψ−(k, t) defined by
Eqs. (6.1) and (6.10) with |klim| = 0.22Å−1, i.e. the wave packet from which
we also obtain the results with the k-mask. And on the other hand, we
propagate a wave packet that initially covers the momentum area of the
k-mask and thus is also defined based on Eq. (6.1) but by a sigmoid function
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like the standard k-mask (6.12),

g−(k) = [1 + exp [a (∆E(k)−∆Elim)]]−1 , (6.14)

where ∆Elim = E+(klim)− E−(klim) with klim = (kx,cut, 0) = (0.13, 0)Å−1 and
a = 100 eV−1. The velocities and HHs spectra of the three cases are compared
in Fig. 6.8. We dashed the curves belonging to the components parallel to the
driving field in order to distinguish them from the perpendicular ones. The
velocities in panel (a) are rescaled to the respective maximal intraband velocity
vmax
x and for better visibility we multiplied the perpendicular velocities by a
factor of five. The spectra in panel (b) are normalized to the power P0 of the
first harmonic of the respective parallel emission.

The comparison of the velocities in Fig. 6.8(a) shows the dominance of the
contributions from the unbalanced region when included in the evaluation. For
both wave packets without k-mask the sign of the parallel velocity component is
inverted with respect to the velocity evaluated inside the k-mask. As discussed
in Sec. 6.3.3, within the k-mask the velocity depends on the transitions whereas
in the unbalanced region the velocity is determined by the momentum shift
due to the electric field Eel(t). When analyzing the signs of the respective
velocity contributions, one finds that they are always opposite. In the inset of
Fig. 6.8(a) we sketch this analysis for an exemplary point in time and a 1D
Dirac system. We only consider a limited number of states that are covered
by the wave packet. We represent them as filled (empty) circles when they are
occupied (unoccupied). In the depicted case, within the k-mask region the
velocity has negative sign, whereas in the unbalanced region a positive velocity
prevails. Since the unbalanced region contains more unbalanced states, the
total velocity is positive. Accordingly, the sign of the parallel velocity reflects
whether the velocity contribution from within or outside of the k-mask is
larger and thus dominating. For the perpendicular velocity however, only
the balancing of the wave packet along ky plays a role. Since the applied
electric field drives along the kx direction and our wave packets are initially
centered around the Dirac point at k = (0, 0), balancing along ky is only
broken by non-symmetric transitions and not by the driving itself. Hence,
the perpendicular velocities mainly differ in amplitude for the three distinct
cases. For the wave packet with |klim| = 0.22Å−1, evaluated with and without
k-mask, this amplitude difference is caused by the interband contributions
from states outside of the k-mask. Concerning the wave packet with envelope
(6.14), one also has to take into account that due to its smaller total size in
momentum space our normalization, see Eq. (6.2), leads to a higher weighting
of the occupied states, affecting the amplitude of the observed velocity.
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Fig. 6.8: Comparison of (a) velocity and (b) HHs obtained with and without k-mask for
differently sized wave packets. The velocities are normalized to their respective maximal
intraband velocity vmax

x and the spectra to the power P0 of their first harmonic. The
perpendicular velocity components are multiplied by a factor of five for better visibility.
Including the unbalanced region into the evaluation leads to a sign change in the parallel
velocity, whereas it only affects the amplitude of the perpendicular one. The inset in panel
(a) sketches the reason for this sign change for a 1D Dirac system. The region covered by the
wave packet is represented by circles which are filled (empty) for occupied (unoccupied) states.
In the unbalanced region the velocity is positive, while in the area of the k-mask a negative
velocity dominates. Since the unbalanced region contains more states, it determines the sign
of the total velocity when included in the evaluation. Concerning the HHs spectra, applying
the k-mask reveals the plateau which otherwise cannot be resolved due to the influence of the
unbalanced region on the velocity. Additionally, the k-mask leads to a shift of the noise level
to higher harmonic orders. Nevertheless, all spectra exhibit the alternating pattern between
parallel and perpendicular polarization which is caused by the Berry curvature of the warped
Bi2Te3 surface Hamiltonian (2.21).

The corresponding HHs spectra in Fig. 6.8(b) reveal that for both the parallel
and perpendicular emission the k-mask, and thus an evaluation simulating a
filled Fermi sea, as discussed in Sec. 6.2, leads to the appearance of the plateau
in the spectra. For the full wave packet with |klim| = 0.22Å−1, the HHs
amplitude decreases exponentially with increasing harmonic order. The last
distinguishable peak lies at the twelfth harmonic. For the smaller wave packet
with envelope (6.14), the exponential decay is interrupted around the eleventh
harmonic, but no full plateau is formed. The last distinct peak lies around the
18th harmonic and is not centered around an integer multiple of the driving
frequency. Only for the k-mask we observe the plateau and clean harmonics at
integer multiples up to the 19th order. Then, the peaks start to split and shift
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to non-integer multiples, even though the noise level is not reached before the
∼ 25th (∼ 40th) harmonic for the parallel (perpendicular) component, compare
Figs. 6.4 and 6.7. Besides, we find that up to the onset of the plateau at
ν/νel = 8, the spectra of the three cases are almost equal, even though for the
large wave packet with |klim| = 0.22Å−1, apart from the first harmonic, the
peaks are shifted to a lower amplitude than for the other cases. Additionally,
all data sets exhibit the same alternating pattern between odd and even orders,
and parallel and perpendicular emission. We already saw this behavior for
the single test charges in Sec. 5.5. Since the pattern is caused by the Berry
curvature of the model system, it is a fundamental property of the underlying
Hamiltonian and therefore it is not surprising that it persists independently
of the evaluation method and analyzed momentum-space area.

6.3.6. Conclusion

Within this section, we have demonstrated how HH emission from Bi2Te3
surface states is computed using a method based on wave packets. The key idea
of this newly developed approach is to restrict the momentum area over which
observables are calculated using a k-mask. This mask should be chosen such
that it includes all relevant dynamics occurring in the system. We estimate
reasonable boundaries for the k-mask by monitoring how transitions between
valence and conduction band are distributed in momentum space. The shape
of this distribution is elliptical due to the symmetry breaking induced by the
field direction of the applied laser pulse. Nevertheless, we define the limits
of our standard k-mask by the local energy difference between valence and
conduction band, which results in an almost circular mask shape for the
Bi2Te3 surface model (2.21). A variation of the boundaries of this k-mask
demonstrates that the power of the emitted HHs decreases with increasing
mask size, while the frequency of the peaks is mostly independent of the
k-mask. Comparing the results for this standard k-mask to those obtained
for a minimal k-mask adapted to the elliptical shape of the transition region
confirms that the frequency of the peaks is independent of the k-mask shape.
Still, we find an irregular dependency of the peak height of the HH orders
on the boundary of the minimal k-mask in ky direction. Lastly, we examine
how the resulting spectra change when we do not apply any k-mask. Without
a mask, the computed velocities contain spurious contributions caused by
the finite wave packet in momentum space. These contributions modify the
spectra such that the plateau we find when using the minimal or standard
k-mask is not resolved anymore. Moreover, the cutoff of the spectra is shifted
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to lower frequencies. We conclude that limiting the evaluated momentum
space with a k-mask to model a completely filled band is crucial for obtaining
qualitatively meaningful spectra.

In order to make quantitative statements, one has to settle for a criterion on
how to exactly define the k-mask. For Bi2Te3 surface states, experimental
results indicate that only the interband dynamics are damped by dephasing
[80, 81]. Therefore, we determine the optimal limit for the k-mask based on
the convergence of the intraband contribution to the emitted HHs. Since the
standard k-mask applied in Sec. 6.3.3 is simpler and also has a larger impact
on the resulting spectra than the minimal k-mask, we choose this mask shape
for the remainder of this work. To set the k-mask boundary, we focus on
the intraband emission with polarization parallel to the driving laser field.
From these spectra, we choose the smallest k-mask for which the deviations
are below ±2.5 % as compared to the values to which the parallel intraband
spectrum converges. For the electric peak field Eel = 0.5 MV cm−1 studied
throughout this section, the described convergence criterion results in the
k-mask with limit kx,cut = 0.13Å−1.

6.4. Driving along the ΓM direction

So far, we have always applied the electric field pulse along the ΓK direction
of the Bi2Te3 surface, i.e. Eel ‖ ex. Now, we rotate the pulse by 90◦ such that
Eel ‖ ey. Except for the interchange of ex → ey, the pulse is still defined
by Eq. (6.9). Since with this rotated pulse the electrons are driven along
the ΓM direction, states with parallel trajectories and opposite momenta
±ky experience a Berry curvature of opposite sign. Therefore, we expect no
perpendicular velocity component, compare Sec. 5.3, and thus no generation
of harmonics with polarization perpendicular to the incoming radiation. For
our simulations we keep the initial wave packet as defined in Eq. (6.10), but
adjust the grid in TQT to 1024 × 2048 grid points with spacing δx = 10Å
and δy = 6Å. For the evaluation we employ the standard k-mask (6.12). As
for driving along the ΓK direction, our convergence criterion is fulfilled for
kx,cut = 0.13Å−1.

In panel (a) of Fig. 6.9 we compare the parallel (solid lines) and perpendicular
(dashed lines) velocity components for driving along the two crystal axes,
where parallel and perpendicular refers to the polarization of the respective
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Fig. 6.9: Comparison of (a) velocity and (b) HHs obtained for an electric field polarized
along the ΓM and the ΓK direction of the Bi2Te3 surface. The velocities are normalized to
their respective maximal intraband velocity vmax

‖ and the spectra to the power P0 of their
first harmonic. The components parallel to the respective driving are shown as solid lines,
whereas the perpendicular components are dashed. For Eel ‖ ey the velocity and emission
perpendicular to the driving is zero. The inset in panel (a) shows the difference of the
parallel velocities for the two field directions. This difference results in a frequency shift of
the higher-order harmonic peaks in the spectra depicted in panel (b). The inset in panel (b)
demonstrates the scaling of the spectra for driving along the ΓM direction with respect to the
k-mask size. It is similar to the results obtained for driving along the ΓK direction in Fig. 6.4.

field pulse. As predicted, the perpendicular velocity is zero when the electric
field is applied along the ΓM direction. The deviations in the parallel velocities
are only revealed when plotting the difference v‖ex − v‖ey , see the inset of
panel (a). That these deviations are of higher frequency than the incoming
pulse is confirmed by the corresponding HHs spectra in Fig. 6.9(b). When
normalizing the spectra to their respective first harmonic P0 = P‖(νel), the
first peaks of the parallel spectra fall on top of each other with only small
quantitative variations for 1 < ν/νel < 8. For higher harmonic orders however,
the parallel emission for driving along the ΓM direction does not have integer
multiples of the driving frequency but lies in between the peaks of the spectra
for driving along the ΓK direction. Comparison of the spectra for the two
pulse directions implies that for driving along the ΓM direction the Berry
curvature imprints on the parallel emission, leading to a shift of the peak
positions. Such a Berry curvature effect cannot be explained by the anomalous
velocity (2.59). Confirmation of our hypothesis would require higher-order
expansions of (2.59) and also a more extensive comparison of HHG for driving
along the two different directions. This is beyond the scope of this thesis
but will be considered in future research. The scaling of the HHs spectra for
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Eel ‖ ey with the k-mask boundary kx,cut is depicted in the inset of panel (b).
Like for driving along the ΓK direction, compare Fig. 6.4, the first harmonics
of the parallel emission are independent of the choice of kx,cut, whereas the
amplitude of the peaks decreases with increasing k-mask in the range of the
plateau. The perpendicular emission is approximately zero independently of
the k-mask choice.

6.5. Comparison to a gapped Dirac cone system

In Chap. 5 we have extensively studied how the dynamics of single test charges
are influenced by different Berry curvatures of the underlying model system.
We found that for a gapped Dirac cone parallel and perpendicular harmonics
have the same spectral features whereas for the Bi2Te3 surface Hamiltonian
with hexagonal warping an alternating pattern arises for driving along the ΓK
direction. This alternating pattern is reproduced with the Fermi sea approach,
as demonstrated in Sec. 6.3. In the following, we compare the Fermi sea
dynamics of the Bi2Te3 surface states with driving along ΓK direction (Ĥs(k)
in (5.1)) to those of a gapped Dirac cone (Ĥg(k) in (5.1)). We apply the
pulse (6.9) with strength Eel = 0.5 MV cm−1 to both systems. The initial
wave packets are defined by Eq. (6.10) and the k-masks by Eq. (6.12). Also
for the gapped cone our convergence criterion is fulfilled for kx,cut = 0.13Å−1

and the parameters of the simulation can be set as described for Bi2Te3 in
Sec. 6.3.1.

The results of our comparison are shown in Fig. 6.10. Panel (a) contains the
time-dependent velocities and panel (b) the corresponding HHs spectra. To
distinguish components parallel and perpendicular to the driving field, we
dashed all lines referring to the latter. We find that the parallel velocities are
almost identical, whereas the perpendicular ones differ both qualitatively and
quantitatively. As for the single test charges in Sec. 5.4, the perpendicular
velocity for the gapped Dirac cone is larger than for the Bi2Te3 surface
Hamiltonian with warping. These findings are also reflected in the emitted
HHs. The parallel emission is approximately the same for both systems up to
the seventh harmonic. Then, at the plateau, the emission from the gapped
cone is larger but in the end decreases faster into noise than the parallel
emission from the Bi2Te3 surface. For the perpendicular components on the
other hand, up to the seventh harmonic the emission from the gapped cone is
larger. More importantly, the perpendicular peaks for the gapped cone are
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Fig. 6.10: Comparison of (a) velocity and (b) HHs obtained for a gapped Dirac cone system
and the Bi2Te3 surface Hamiltonian (2.21). The velocities are normalized to their respective
maximal intraband velocity vmax

x and the spectra to the power P0 of their first harmonic. The
components parallel to the driving field are shown as solid lines, whereas the perpendicular
components are dashed. The parallel velocities and spectra are almost identical except for
some quantitative deviations at the high-order harmonics. The perpendicular velocity on
the other hand is larger for the gapped cone than for the warped surface states. At low
frequencies, this also applies to the emitted harmonics. The qualitative differences in the
perpendicular velocities result in perpendicular emission at even orders from the gapped cone
and at odd orders for the Bi2Te3 surface states. This discrete shift confirms the observation
about the relation between Berry curvature and the frequencies of the emitted harmonics
made for the single test charges in Sec. 5.5.

located at odd orders just like the corresponding parallel component instead
of being shifted to even orders as for the warped Bi2Te3 surface states. This
confirms that our observation about the relation between Berry curvature and
the frequencies of the emitted harmonics also holds when propagating a full
Fermi sea instead of single test charges.

The discrete shift between the perpendicular emission from a gapped Dirac
cone and a warped Bi2Te3 surface raises the question whether the two spectra
can be continuously transformed into one another or are separated by a sudden
switching. In Sec. 7.3.1 we explore this transition by introducing a gap in
the Bi2Te3 surface Hamiltonian (2.21) with a magnetic field and then tuning
either the width of the gap or the strength of the warping parameter R.
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6.6. Variation of the field strength

6.6.1. Comparison with single test charges

As discussed in the motivation 6.1, the spectra we compute in Sec. 5.5 based
on the propagation of two test charges resemble the single-active electron
approximation [102]. The results we present in Sec. 6.3 already indicate that
with our approach for simulating the full Fermi sea dynamics we obtain cleaner
spectra and resolve higher harmonic orders than with the propagation of solely
two test charges. However, so far we only investigated the moderate electric
field strength Eel = 0.5 MV cm−1. Here, we extend these studies to the low-
and high-field regime discussed in Sec. 5.5 and compare the HHs spectra
of both approaches for the Bi2Te3 surface Hamiltonian (2.21), i.e. Ĥs(k) in
Sec. 5.5.

For the test charges we consider the results for the wave packets with initial
momentum ki = (0,±0.007)Å−1, i.e. as close to the Dirac point as possible11,
since for the single-active electron approximation typically the state at the
minimal band gap is examined. For the pulse we keep the description (6.9) but
with field strengths Eel = 0.1 MV cm−1 and Eel = 1 MV cm−1 as in Sec. 5.5.
To simulate the full Fermi sea, we propagate wave packets with envelope
(6.10) and |klim| = 0.15Å−1 (|klim| = 0.35Å−1) for Eel = 0.1 MV cm−1 (Eel =
1 MV cm−1). The time step is set to δt = 0.5 fs (δt = 0.03 fs) and the numerical
grid has 2048× 1024 (4096× 4096) points with spacing δx = 6Å (δx = 6Å)
and δy = 10Å (δy = 6Å)12. Our convergence criterion is fulfilled for kx,cut =
0.05Å−1 (kx,cut = 0.21Å−1). In Sec. 6.6.2 a more detailed analysis of the
relation between kx,cut and the field strength Eel is performed.

In Fig. 6.11 we plot the normalized spectra obtained for the full Fermi sea
and the single test charges for comparison. Panel (a) contains the low-field
regime and panel (b) the high-field regime with an inset zooming into the
low-order harmonics. Note that the power P0 of the first harmonic is larger
for the single test charges due to the normalization of our wave packets13,
11Remember that for the narrow wave packets numerical issues at the Dirac point limit the momenta ki

we can study. For the large wave packets employed for our Fermi sea approach on the other hand these
problems are negligible.

12Note that for the high field strength a smaller lattice spacing in y direction is necessary to fit the large
wave packet with |klim| = 0.35Å−1 into the momentum space grid with boundary |kmax

y | = π/δy.
13If we would want to compare these quantities and not only the renormalized spectra, we would have to

compensate for the different wave-packet sizes in momentum space.
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Fig. 6.11: Comparison of HHG obtained for single test charges and our Fermi sea approach
for (a) Eel = 0.1 MV cm−1 and (b) Eel = 1 MV cm−1. The spectra are normalized to the
power P0 of their first harmonic. In the low-field regime, already the single test charges
generate clean harmonics, but only reproduce the lowest orders. For the high-field regime
however, solely including the full Fermi sea reveals integer harmonics up to high orders ≥ 60.
Nevertheless, as shown in the inset in panel (b), at low frequencies for both approaches
the peaks are not clearly distinguishable and have a fine structure. This might be due to
resonance effects and/or Zitterbewegung.

as discussed in Eq. (6.2). For Eel = 0.1 MV cm−1 already the single-active
electron approximation delivers clean spectra but contains only the first two
peaks of parallel and perpendicular emission, respectively. By employing the
Fermi sea approach, the parallel (perpendicular) spectrum is extended up to
ninth (twelfth) order. In the high-field regime, the Fermi sea approach reveals
clean HHs up to at least 60th order with alternating polarization pattern
of odd and even harmonics whereas for the test charges not even the 20th
order is resolved. Additionally, the zoom into the low-order harmonics shows
that the peak positions shift when including all states into the propagation.
The first harmonics (up to ∼ eighth order) are not sharply distinguished in
both approaches. Instead, they are split into multiple peaks. As discussed
in App. A.6, this could be caused by the competition between resonance
peaks and HHs, but also Zitterbewegung might play a role here. A deeper
analysis of the contributions to this spectral range remains to be done in
future research. Overall, our findings confirm that – especially for high field
strengths – including the full Fermi sea is necessary in order to obtain clean
HHs and realistic cut-off frequencies.
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6.6.2. Scaling of the emitted power and the k-mask size

In this section we explore the peak-field dependent scaling of the power P
of different harmonic orders as well as of the boundary kx,cut of the k-mask
fulfilling our convergence criterion, as discussed in Sec. 6.3.3. To this end,
we vary the field strength from 0.1–1 MV cm−1 in steps of 0.1 MV cm−1 and
compute HHs spectra for the Bi2Te3 surface Hamiltonian (2.21) as in Sec. 6.6.1.
The simulation parameters are given in App. A.10 alongside the values of
kx,cut, the extracted powers P/P0, and the powers P0 of the first harmonic to
which we normalized the spectra shown in Fig. 6.12.

Panel (a) depicts the emission with polarization parallel to the driving field,
whereas panel (b) contains the spectra with polarization perpendicular to
the incoming laser radiation. For both components we include a close up
on the first 20 harmonics in the lower row. We find that the number of
clearly distinguishable harmonics increases with the peak strength Eel, even
though a more sophisticated quantification is difficult due to noise and non-
integer harmonic peaks arising at the respective highest orders of the spectra.
Interestingly, the noise level is approximately the same for all perpendicular
spectra, whereas it decreases with increasing field strength for the parallel
component. The reason for this difference between the two components is
unclear to us and could be part of future research.

In the inset of panel (a) in Fig. 6.12 we plot the scaling of the power P of
four harmonic orders with the field strength14 Eel. We choose one peak within
the initial intensity fall off and one peak at the onset of the plateau for each
polarization direction. The corresponding peak positions are indicated by the
accordingly colored arrows. We find that for all orders the power initially rises
exponentially with the field strength but then reaches a plateau and/or even
slightly decreases (≤ one order of magnitude) before it rises again but with a
smaller rate15. In the experiment in Ref. [81] also two different scaling regimes
were observed, but without a plateau or decrease in between. However, here
we employ different parameters for the model Hamiltonian than proposed in
Ref. [81] and also apply a smaller driving frequency (νel = 25 THz instead of
νel = 28 THz as in Ref. [81]). Additionally, in Sec. 6.3.4 we found a dependence
of the higher-order peaks on the k-mask shape and we cannot fully exclude

14Note that we propagated wave packets of different widths here and scaled the spectra to their respective
first harmonic with power P0. Therefore, the comparison is always relative to the first harmonic and
further evaluation would be necessary to obtain an absolute result.

15We refrain from extracting the scaling law P/P0 ∝ Enel since a larger evaluation range would be necessary
for a reliable fit of the curves.
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Fig. 6.12: HHs spectra for different peak fields Eel with polarization (a) parallel and
(b) perpendicular to the driving field. The spectra are normalized to the power P0 of their
first harmonic, the corresponding values are given in App. A.10. The lower row displays
a close up on the first 20 harmonics of both polarization directions. The highest resolved
harmonic orders increase with the field strength. The inset in panel (a) shows the scaling of
the power P of the harmonic orders indicated by the accordingly colored arrows. Thereby, we
focus on one peak from the initial intensity fall off and one peak at the onset of the plateau
for each polarization. All four orders first grow exponentially with Eel until reaching a plateau
or even a small decrease. Then, they again increase exponentially but with a slower rate. The
inset in panel (b) depicts the scaling of the k-mask boundary kx,cut with the field strength.
Within the accuracy of our method, we find a perfectly linear dependence apart from the
highest field strength. There, a revision of our convergence procedure is necessary.
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that evaluating the powers relative to their first harmonic P0 plays a role
due to the wave-packet sizes depending on the field strength. Therefore, the
analysis presented here could be revised in future research and also extended
to the fitted Hamiltonian from Ref. [81]. On top of that, a variation of the
pulse frequency νel should be included in order to study its influence on the
generated HHs. A comparison of the field dependence of the HH powers for
different k-masks and the experimental results could serve for determining the
most realistic k-mask and allow for a deeper understanding of the momentum
dependency of the actual Bi2Te3 surface states.

The inset of Fig. 6.12(b) shows the scaling of the k-mask boundary kx,cut with
the field strength Eel. Since the presented analysis is mainly intended as a
guide for narrowing down the momentum area of interest when simulating a
new field strength, we do not include any error bars even though our method
for determining kx,cut is not exact. Additionally, as in Sec. 6.3.3, we only
consider steps of 0.01Å−1, which results in a perfectly linear relation between
kx,cut and the field strength. Repeating the analysis with a finer resolution of
different kx,cut would be necessary to confirm this perfect behavior. Only the
boundary kx,cut for the highest field strength, Eel = 1.0 m V cm−1, falls out of
line. This indicates that we have to redo our convergence test for this value.
However, the k-mask with kx,cut = 0.21Å−1 is the largest that lies within
the boundaries of the wave packet propagated here. Therefore, repeating the
convergence test also requires propagating a larger wave packet and adjusting
the parameters of the simulation, which we leave as a task for future work.
Especially since, with respect to the results for the other field strengths, the
spectra for Eel = 1.0 m V cm−1 appear to be sufficiently converged in order to
extract the statements we discussed in this section.

6.7. Influence of the Fermi energy

So far, we have evaluated HHG for systems with Fermi energy at the Dirac
point, i.e. with EF = 0 for the Bi2Te3 surface Hamiltonian defined in Eq. (2.21).
In this section, we explore how shifting the Fermi energy into the valence or
conduction band affects the HHs spectrum emitted from the Bi2Te3 surface.
Thereby we also provide a guide on how to adjust the propagated wave packets
in order to take the Fermi energy into account correctly.

As discussed in the introduction of our Fermi sea method in Sec. 6.2, the
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initial wave packets Ψ±(k, 0) are generally defined by an envelope function
g±(k) and the eigenstates ϕ±(k) of the respective model system, see Eq. (6.1).
When the Fermi energy lies within the valence band, i.e. EF ≤ 0, it is
sufficient to propagate the wave packet Ψ−(k, t), whereas for a Fermi energy
in the conduction band, i.e. EF > 0, also the propagation of the wave packet
Ψ+(k, t) has to be computed. The insets of Fig. 6.13(a) and (c) sketch the
two situations. The Fermi energy EF defines the Fermi wave vector kF with
E±(kF) = EF, where ± has to be chosen according to the Fermi energy. Since
the energy contours for the warped surface Hamiltonian (2.21) are generally
not rotationally symmetric with momentum k, the Fermi wave vector is angle
dependent. In our simulations we adjust the Fermi energy by fixing the Fermi
wave vector along the kx axis, i.e. kF = (kF, 0).

For EF < 0, the wave packet Ψ−(k, 0) cannot be described by a disk in
momentum space with a Gaussian decay at the border as in Eq. (6.10).
Instead, a hole has to be cut out in the center with boundary defined by the
Fermi energy EF. This hole is realized using the Fermi-Dirac distribution (6.3)
and the envelope g−(k) is then given as

g−(k) =


[1 + exp [− (EF − E−(k)) /kBT ]]−1 , for |k| < |klim|
exp

[
− (|k|−|klim|)2

2∆k2

]
, for |k| ≥ |klim|

, (6.15)

where we set 1/kBT = 900 eV−1, i.e. T ≈ 13 K, in order to achieve a numerically
smooth decay. We apply the pulse (6.9) with peak field Eel = 0.5 MV cm−1

for the subsequent studies and thus set |klim| = 0.22Å−1. For comput-
ing the velocity vcut

− (t), we use the standard k-mask (6.12) with boundary
kx,cut = 0.13Å−1. Then, the Fermi energy has to be chosen such that, during
the time evolution, the Fermi wave vectors kF(t) shifted in momentum by
the electric field pulse do not cross the boundary kx,cut of the k-mask. Oth-
erwise, not all relevant velocities would be included in the evaluation or the
k-mask would have to be increased in order to obtain physical results. For the
simulations in TQT we choose the same system parameters as in Sec. 6.3.1.

In the case EF > 0, the wave packet Ψ−(k, 0) is again defined by the envelope
(6.10). Additionally, we need to propagate Ψ+(k, t) in an extra simulation in
order to prevent interferences between Ψ−(k, t) and Ψ+(k, t), compare Sec. 6.2.
The wave packet Ψ+(k, 0) is simply described by the Fermi-Dirac distribution
(6.3), i.e. its envelope g+(k) reads

g+(k) = [1 + exp [− (EF − E+(k)) /kBT ]]−1 , (6.16)
where we set 1/kBT = 900 eV−1 like for the case EF < 0. Note that when
simulating the evolution of Ψ+(k, t) we do not need to include a k-mask in the
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Fig. 6.13: HHG from the Bi2Te3 surface for different Fermi energies EF. The spectra are
normalized to the power P0 = 3.4 · 10−23 W of the first harmonic of the reference data with
EF = 0. The left column depicts the results for EF ≤ 0 and the right column those for
EF ≥ 0. In both cases, the Fermi energy is specified by the Fermi wave vector kF = (kF, 0).
Panels (a) and (c) show the emission parallel to the applied pulse, whereas panels (b) and (d)
display the perpendicular component. In all cases the high-order harmonics (ν/νel & 11) are
(almost) not dependent on the Fermi energy EF. The low-order harmonics on the other hand
vary with EF. Their relative power P/P0 changes with the Fermi energy and different peaks
become particularly prominent. Especially lowering the Fermi energy in the valence band
reduces the fine structure of the first harmonics and leads to a cleaner peak structure. These
findings indicate that a closer analysis of the dynamics around the Dirac point could reveal
the quantum processes that give rise to the fine structure, whereas focusing on states farther
away from the Dirac point could show the origin of the higher-order harmonics.
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computation of the velocity v+(t), see Eq. (6.7), since unbalanced occupations
in the conduction band are physical. For Ψ−(k, t) we employ our standard
k-mask as defined in Eq. (6.12) with boundary kx,cut = 0.13Å−1 to calculate
vcut
− (t) based on Eq. (6.8), as for the simulations with EF < 0. Likewise, the

parameters in TQT are set as described in Sec. 6.3.1 for all cases. When
evaluating the total velocity v(t) = v+(t)+vcut

− (t) of the Fermi sea, we have to
take into account that the normalization of the wave packets is dependent on
the wave-packet size in momentum space, compare Eq. (6.2). The details of the
rescaling necessary to compute v(t) and to achieve quantitative comparability
of the results for all Fermi energies are discussed in App. A.11.

In Fig. 6.13 we display the results for different Fermi energies EF. Remember
that we define the Fermi energy EF by fixing the Fermi wave vector along the kx
axis, i.e. kF = (kF, 0) and thus EF = E±(kF). In the left column, we consider
the case EF ≤ 0, with the parallel emission in panel (a) and perpendicular
emission in panel (b). Likewise, in the right column, we study the case
EF ≥ 0, with the parallel emission in panel (c) and perpendicular emission in
panel (d). All spectra are normalized to the power P0 = 3.4 · 10−23 W of the
first harmonic of the reference data with EF = 0. First of all, we find that
the high-order harmonics (ν/νel & 11) are almost independent of the Fermi
energy for all considered parameters. Since neither positive nor negative Fermi
energy influence the states initially close to the boundary kx,cut of the k-mask,
this finding indicates that the higher harmonics are mainly contributed by
these outermost states. In turn, the low-order harmonics vary with EF. For
positive Fermi energy, especially the power of the first harmonic increases by
up to almost two orders of magnitude. For the other harmonics, the power
varies with the Fermi energy in a more complicated manner, which has to be
investigated further in future research. For negative Fermi energy, the most
particular observation is that decreasing the Fermi energy reduces the fine
structure of the low-order harmonics, giving rise to a cleaner peak structure.
This suggests that this fine structure stems from the states initially located
close around the Dirac point.

Overall, our observations indicate that a closer analysis of the dynamics around
the Dirac point could reveal the quantum processes that give rise to the fine
structure in future research. Likewise, focusing on states farther away from
the Dirac point could show the origin of the higher-order harmonics.
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6.8. Summary

In this chapter, we presented a novel method using wave packets for simulating
HHG from a Fermi sea. The twist of this method is that by introducing
a k-mask that limits the evaluated momentum space in the valence band,
observables can be calculated for a Fermi sea even in effective model systems
without band bottom. The time evolution of the wave packets is computed
by solving the time-dependent Schrödinger equation without dephasing. By
multiplying the resulting velocity with a Gaussian decay, which is a procedure
also used in approaches with dephasing [172], and by discarding the dynamics
outside of the k-mask a basic kind of dephasing is realized.

After a general description of the fundamental concepts, we demonstrated how
to apply this method in order to compute HHG from Bi2Te3 surface states. To
this end we focused on the model Hamiltonian (2.21) with hexagonal warping
and an electric field pulse polarized along the ΓK direction of the crystal. But
we also included a comparison to HHG for driving along the ΓM direction and
from a gapped Dirac system without warping. First however, we thoroughly
analyzed how the resulting HHs spectrum depends on the size and shape of
the k-mask. These studies on the one hand showed that the position of the
HH peaks is independent of the details of the k-mask, but on the other hand
they revealed the importance of these details with respect to a quantitative
evaluation of the spectra. Accordingly, our method solely allows for qualitative
statements as long as no details about the momentum dependence of dephasing
in the studied materials are known. For Bi2Te3 experiments found intraband
dephasing times of at least 1 ps [80], whereas only 10 fs were assumed for the
interband dephasing time in simulations based on the semiconductor Bloch
equations [81]. Therefore, we expect that we obtain the most realistic results
by only converging the parallel spectra from the intraband component of the
velocity with respect to the k-mask. Then, only interband contributions are
discarded from our observables. Also for the semiconductor Bloch equations,
the choice of the interband dephasing time is oftentimes based on fitting the
results to reference data [107]. Thus, our k-mask approach offers a valuable
perspective on the HHG process and potentially new insights in the role of
dephasing.

Having established a convergence criterion and k-mask shape, we contrasted
results from our Fermi sea approach against those achieved without a k-mask
and from two test charges only. This comparison highlights how much the
spectral quality improves when taking the Fermi sea into account correctly. A
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variation of the applied field strength gave first insights into the dependence
of the emitted harmonics and the k-mask definition on the peak field of the
laser pulse. Lastly, we investigated how the HHs spectra are affected by
tuning the Fermi energy. We found that only the power and peak shape of
the low-order harmonics vary with the Fermi energy, whereas the high-order
harmonics remain (almost) the same for all studied cases. This indicates
that the high-order harmonics are mainly emitted from states closer to the
boundary of our k-mask and thus far away from the Dirac point, whereas the
low-order harmonics are influenced by all parts of the evaluated momentum
space but mainly generated by states passing close to the Dirac point. This
impression is also supported by the results of the variation of the k-mask size,
since there the low-order harmonics were unaffected by increasing the k-mask
whereas the high-order harmonics changed.

In summary, our findings confirm that our wave-packet-based method for
calculating HHG from a Fermi sea is a powerful, complementary approach for
studying HHG using effective model Hamiltonians. Additionally, our obser-
vations suggest that considering the momentum dependence of the emitted
harmonics and also of the dephasing times is an important step towards a bet-
ter understanding of the quantum processes entering the HHG process as well
as for achieving a better agreement between theory and experiment. Another
advantage of our newly developed method is that it allows for integrating
spatially dependent potentials. In principle, this enables considering not only
the electric but also the magnetic component of the light wave. In Chap. 7 we
present first studies on the influence of constant magnetic fields on HHG from
TI surface states using the approach presented here, and give an outlook on
how to include the pulse as an actual electromagnetic wave.



7. Magnetic-field effects on
high-harmonic generation

7.1. Motivation

Already in 1865, Maxwell established the classical interpretation of light as an
electromagnetic wave [4]. Nevertheless, in studies of light-matter interaction,
typically the magnetic component of the light field is neglected, even though
there exist phenomena where the magnetic wave plays a key role. Such optical
processes are e.g. chiral light-matter interactions [244], the enhancement of
Raman optical activity [245] or dipole-forbidden optical transitions in photo-
chemistry [246]. Also, efforts have been made to disentangle the contributions
of electric- and magnetic-dipole transitions in lanthanide ions in experiment
[247]. Still, oftentimes neglecting the magnetic field B(r, t) is justified due
to its small amplitude compared to the electric wave Eel(r, t). The relation
between the peak strength of both fields is given by the refractive index nr of
the medium and the speed of light c as |B| = nr

c |Eel|, see Sec. 7.4 for details.
For bulk Bi2Te3 the refractive index is nr ≈ 10. Thus, for an electric peak
field |Eel| ≈ 3 MV cm−1, as applied for the HHG experiments in Ref. [81],
magnetic peak fields of up to |B| ≈ 10 T occur in the crystal. With these field
strengths in mind, the question whether and how magnetic fields influence
HHG in Bi2Te3 surface states arises.

First studies in this direction have been conducted by Junck et al. [248].
They theoretically investigated the photocurrent response of TI surface states
under circularly polarized light, taking the magnetic field component as
well as the hexagonal warping into account. They found that the dominant
photogalvanic current is helicity independent and results from the interplay
of the orbital and the Zeeman coupling of the magnetic wave to the system.
Even though excitations are mainly induced by the orbital coupling, a net
photogalvanic charge current only arises when including the hexagonal warping
term and applying an additional in-plane magnetic field. However, they did
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not investigate time-dependent currents and short laser pulses. In this chapter,
we extend our studies from Chap. 6 on HHG in Bi2Te3 surface states by
including an additional magnetic field. We start by summarizing the effects
of the Zeeman coupling of a constant magnetic field as found by Alexander
Riedel during his master’s project under our supervision [240]. Then, we
conduct first studies on the influence of orbital effects on HHG from a simple
Dirac cone without hexagonal warping. Lastly, we discuss how the magnetic
component of the light field could be included in the model of the laser pulse
and give an outlook on how the formalism we developed in Chap. 6 could be
modified in order to treat the full electromagnetic field.

7.2. Bi2Te3 surface states in a constant, in-plane
magnetic field

When a magnetic field is aligned in plane with a system, the external field
induces a Zeeman effect but there exists no orbital coupling. In an effective
model such as employed throughout this work, the strength of this Zeeman
coupling is described by an effective g factor [249, 250]. The value of this
g factor is material-dependent and can also vary with the direction of the
applied field. For the Bi2Te3 surface Hamiltonian (2.21) the effective g factor
for in-plane magnetic fields B has been calculated as gx/yeff = 2.6 for both
B ‖ ex and B ‖ ey [87]. The total effective Hamiltonian then reads

Ĥ(k) =D(k2
x + k2

y)1 + A(kyσx − kxσy)

+ 2R(k3
x − 3kxk2

y)σz + 1
2g

x/y
eff µB (Bxσx +Byσy) ,

(7.1)

where µB is the Bohr magneton and Bx (By) the magnetic field component
along the x (y) direction. Rauch et al. investigated the influence of such
Zeeman coupling on the Bi2Te3 surface states [251]. They computed the
topological invariants for a tight-binding model of the bulk crystal with different
Zeeman terms and found that for B ‖ ex the system remains topological and
no gap is opened in the Dirac cone at the surface. For B ‖ ey (and also for
the out-of-plane configuration B ‖ ez) however, the topological protection is
lifted and the surface states become gapped. This anisotropy is due to the
dual topological character of TIs from the Bi2Te3 family. Without external
perturbations, these materials are in a Z2 topological phase and in a topological
crystalline phase with mirror Chern number −1 simultaneously. TIs with
Z2 invariant are characterized by spin polarized surface states that cross the
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fundamental band gap. Their topological protection stems from TRS and
can thus be destroyed by magnetic perturbations. In Chern insulators on the
other hand, the topological protection stems from the crystal symmetry. This
protection can only be lifted by breaking the mirror symmetry of the crystal,
which is e.g. achieved by applying a magnetic field within the mirror plane.
For Bi2Te3 this mirror plane is oriented along the y direction. Therefore, for
B ‖ ey (and B ‖ ez) both topological protections are eliminated and a band
gap opens, whereas for B ‖ ex the crystalline topological phase is still intact
and the Dirac point of the surface states only shifts in momentum.

In his master’s thesis under our supervision, Alexander Riedel investigated
the influence of in- and out-of-plane Zeeman fields on the dynamics of Bi2Te3
surface electrons driven by ultrashort laser pulses [240]. In the following,
we summarize his findings for the in-plane configuration. His results for
the out-of-plane magnetic field are discussed in Sec. 7.3.1. Note that for his
simulations Riedel employed the Hamiltonian parameters from Ref. [88] instead
of the prefactors from Ref. [87] we used for the Bi2Te3 surface Hamiltonian
(2.21) throughout this work. Additionally, Riedel omitted the PHS-breaking
term, i.e. D = 0 in his calculations. For better comparability with the out-
of-plane magnetic field, Riedel increased the effective in-plane g factor to
g
x/y
eff = gzeff = 13 such that it matches the out-of-plane g factor gzeff. His
definition of the electric field pulse was similar to Eq. (5.10) but with a cosine
instead of a sine function and a peak field Eel = 0.3 MV cm−1. For the Fermi
sea calculations presented here, the k-mask was set based on Eq. (6.12) with
∆Ecut = 0.285 eV.

In Fig. 7.1 we show how the velocities change for the described system
parameters when applying an in-plane magnetic field in addition to the electric
field pulse Eel. Panels (a) and (c) treat the configuration B ‖ ex and panels
(b) and (d) the one with B ‖ ey. Likewise, in panels (a) and (b) the electric
field pulse is aligned along the ΓK axis of the Bi2Te3 surface, i.e. Eel ‖ ex, and
in panels (c) and (d) the pulse drives the electrons along the ΓM direction,
i.e. Eel ‖ ey. The insets of panels (a) and (c) depict the velocities for |B| = 0,
whereas the main graphs display the difference ∆v of this velocity and the
corresponding results for |B| > 0. We rescaled all data with the maximal
parallel velocities vmax

x = |−0.089 57Å fs−1| and vmax
y = |−0.098 05Å fs−1|,

respectively. In order to discriminate between parallel and perpendicular
velocity, we dashed the curves representing the component parallel to the
driving field.

On the whole, the variations caused by the magnetic field are at least two
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Fig. 7.1: Effects of an in-plane magnetic field on the dynamics of Bi2Te3 surface states
driven by short laser pulses. The insets of panel (a) and (c) depict the respective reference
velocity for |B| = 0. The four panels display the differences ∆v of the resulting velocities
as compared to this reference velocity for the different possible configurations of the electric
field Eel and the magnetic field B. All data has been rescaled with the maximal parallel
velocities vmax

x = |−0.089 57Å fs−1| and vmax
y = |−0.098 05Å fs−1|, respectively. The dashed

curves correspond to the velocity parallel to Eel, whereas the solid lines represent the velocity
component perpendicular to Eel. Overall, the changes induced by the magnetic field are
at least two orders of magnitude smaller than the total velocity. Nevertheless, we find a
distinctly different behavior for the two magnetic field configurations which is most likely
related to the fact that the Bi2Te3 surface states are still topologically protected for B ‖ ex
whereas a gap is opened in the spectrum for B ‖ ey. For the configuration in panel (d) we
find the most significant magnetic-field effect on the emitted HHs. The resulting spectrum is
shown in the inset and confirms that emission with perpendicular polarization arises with
increasing magnetic-field strength. However, since the power P of the perpendicular emission
does not exceed the parallel one, experimental observation is difficult.*
* Data contributed by Alexander Riedel [240].



7.2. Bi2Te3 surface states in a constant, in-plane magnetic field 151

orders of magnitude smaller than the associated total velocity. Within the
investigated parameter range, these variations scale linearly with the magnetic
field strength |B|, as extracted by Riedel in his work. Interestingly, the
characteristics of the deviations differ for the two magnetic field configurations.
For B ‖ ex, ∆v is larger for vy and its value is mainly positive. This property
does not rotate with the electric field, therefore parallel and perpendicular
velocity component switch between panels (a) and (c) of Fig. 7.1. For B ‖ ey
on the other hand, it is always the velocity component perpendicular to the
electric field pulse for which the variations ∆v are largest and instead of
being mainly positive, ∆v oscillates around zero. This different behavior is
most likely related to the fact that the topological protection stays intact for
B ‖ ex and is destroyed for B ‖ ey. In the first case, the magnetic field merely
distorts the energy bands. Since this change mainly affects the intraband
velocities, the changes induced in the electron velocities are independent of
the direction of the applied driving. In the second case however, a band gap is
opened and thus the overall geometrical properties of the Hamiltonian change.
At least in first-order approximation in the electric field strength, compare
Eq. (2.59), these properties imprint on the velocity component perpendicular
to the driving field, which is in agreement with our observations.

We also find characteristics of the velocity variation ∆v that depend on the
electric field direction. For Eel ‖ ex both velocity components are affected by
the in-plane magnetic field, whereas for Eel ‖ ey the changes in the velocity
component parallel to the applied magnetic field are negligibly small in com-
parison to those in the velocity component perpendicular to the magnetic
field. This is most probably related to the differences between driving along
the ΓM and ΓK direction that we discussed in Sec. 6.4 and that are already
present without an additional magnetic field. Then, the threefold symmetric
Berry curvature of the surface states is symmetric around the ΓK axis and
antisymmetric with respect to the ΓM axis, which leads to a vanishing per-
pendicular velocity component for driving along ΓM. Accordingly, for the
configuration in panel (c) the effects of the in-plane magnetic field on the
perpendicular velocity are approximately zero since for B ‖ ex the geometric
properties of the Hamiltonian remain the same. For B ‖ ey however, the
mirror symmetry of the Bi2Te3 crystal is broken and the gap opening in the
surface states gives rise to a non-zero perpendicular velocity even for driving
along ΓM. Still, we are not sure about the reason why in this configuration the
parallel velocity is only slightly affected by the magnetic field. For a deeper
analysis of the electron dynamics with respect to the different bandstructures
and Berry curvatures induced by the magnetic fields, we refer the reader to
Riedel’s thesis [240].
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Apart from the inset in Fig. 7.1(d) we omit presenting the corresponding
HHs spectra here. Since the effects of the in-plane magnetic field on the
velocities are relatively small, they do not significantly affect the emitted HHs.
We expect the largest influence for the field configuration in panel (d), since
then the perpendicular velocity is zero for |B| = 0 but arises with increasing
magnetic field. Therefore, the magnetic-field effect is not buried within the
dynamics of the system that are independent of the magnetic field. Indeed,
the HHs spectrum shows an increasing power P emitted with polarization
perpendicular to the electric field that scales with the magnetic field strength.
Nevertheless, the amplitude of the spectrum is below the one of the parallel
emission at all frequencies and therefore – at least for the parameters studied
here – the effect is probably not observable in experiment. However, other
Hamiltonian and pulse parameters could be investigated in future research in
order to find parameters with more promising prospects.

In conclusion, together with Alexander Riedel we found effects of a constant,
in-plane magnetic field on the dynamics of electrons in TI surface states with
hexagonal warping. Despite the small amplitude of these effects with respect to
the total dynamics, the velocity variations ∆v potentially contain fingerprints
of the dual topological character of TIs from the Bi2Te3 family and reflect the
distinct symmetries of the system along ΓM and ΓK direction. Nevertheless,
the small amplitude most likely prevents experimental observation at least
within the explored parameter regime.

7.3. Bi2Te3 surface states in a constant,
out-of-plane magnetic field

Having studied the effects of constant, in-plane magnetic fields in Sec. 7.2, we
now turn towards magnetic fields that are perpendicular to the illuminated
Bi2Te3 surface, i.e. B ‖ ez. In this configuration, the magnetic field does not
only couple to the system via a Zeeman term but also induces an orbital effect.
In order to disentangle the two contributions, in the following we consider the
Zeeman and orbital coupling separately. Unfortunately, up to now numerical
issues arise when we try to combine orbital effects and the surface Hamiltonian
(2.21) with hexagonal warping within our TQT simulations. Therefore, we only
consider the full Hamiltonian (2.21) in Sec. 7.3.1 and employ the simple Dirac
cone as a model system for obtaining first results with an orbital magnetic
field in Sec. 7.3.2.



7.3. Bi2Te3 surface states in a constant, out-of-plane magnetic field 153

7.3.1. Influence of Zeeman splitting

As discussed in Sec. 7.2, in an effective model the strength of the Zeeman
coupling is described by an effective g factor. For out-of-plane magnetic fields,
this g factor has been calculated as gzeff = 13 for the Bi2Te3 surface Hamiltonian
(2.21) [87]. Accordingly, neglecting the orbital contribution of the magnetic
field, the total effective Hamiltonian reads

Ĥ(k) = D(k2
x+k2

y)1+A(kyσx−kxσy)+2R(k3
x−3kxk2

y)σz+
1
2g

z
effµBBzσz, (7.2)

with the Bohr magneton µB and the magnetic field strength Bz = |B ·ez| along
the z direction. Like the in-plane field B ‖ ey, the out-of-plane field B ‖ ez
breaks the mirror symmetry of the Bi2Te3 crystal. This lifts the topological
protection of the surface states and their spectrum becomes gapped [251].

In his work, Riedel found that the gap induced by an out-of-plane magnetic
field has a stronger effect on the electron dynamics driven by an external
laser pulse than the gap opened by an in-plane field pointing along the y
direction [240]. In Fig. 7.2 we display the results he obtained for B ‖ ez with
the simulation parameters summarized in Sec. 7.2. Panel (a) depicts the case
where the electric field pulse is applied along the ΓK direction of the crystal
and panel (b) the case with electric driving along the ΓM direction. Since
here the magnetic field has a resolvable impact on the generated harmonics,
we show the frequency spectra in the main graphs and the magnetic-field
dependent changes ∆v of the velocities in the insets. We normalize the spectra
to the first order P0 of the parallel emission and the velocities to the respective
maximal parallel velocity vmax

x/y . In order to discriminate between contributions
parallel and perpendicular to the polarization of Eel, we dashed the lines
corresponding to the parallel components.

As stated by Riedel, the variations ∆v in the velocities are at least one order
of magnitude larger than for the in-plane magnetic fields. Nevertheless, the
temporal shape is similar to what we observe for B ‖ ey, which supports our
hypothesis that this shape originates from the broken topological protection
and the thereby opened band gap. For both electric field configurations, the
magnetic field has a stronger impact on the velocity component, and therefore
HH emission, perpendicular to the polarization direction of the laser pulse.
For |B| = 0, perpendicular emission is suppressed when the laser pulse is
polarized along the ΓM direction, compare Sec. 6.4. With increasing out-of-
plane magnetic field however, such a spectral component emerges, as shown
in Fig. 7.2(b).
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Fig. 7.2: Effects of an out-of-plane magnetic field on the dynamics of Bi2Te3 surface electrons
driven by short laser pulses polarized along the (a) ΓK and (b) ΓM direction of the crystal.
The insets depict the differences ∆v of the resulting velocities as compared to the respective
reference velocity for |B| = 0 shown in Fig. 7.1. This data is rescaled with the corresponding
maximal parallel velocities vmax

x/y , whereas the HHs spectra are normalized to the first-order
parallel emission P0. The dashed curves constitute the component parallel to Eel, whereas the
solid lines represent the perpendicular contribution. The changes induced by the magnetic
field are at least one order of magnitude larger than for the in-plane magnetic field investigated
in Fig. 7.1. Still, the temporal shape of ∆v matches our observations for B ‖ ey, which is
in line with the fact that both magnetic-field configurations lift the topological protection
and open a gap in the surface spectrum. For both polarizations of the laser pulse, the
additional magnetic field mainly affects the perpendicular velocity and spectral component.
For driving along ΓK, panel (a), odd-order harmonics with perpendicular polarization emerge
with increasing field strength |B|, whereas for driving along ΓM, panel (b), both odd and even
orders only arise in the perpendicular spectrum when a magnetic field |B| > 0 is applied.*
* Data contributed by Alexander Riedel [240].

At low-order harmonics, this perpendicular emission lies at odd-order frequen-
cies, as expected for a gapped Dirac system. For HHs on the contrary, the
perpendicular emission consists of both odd and even orders, whereby the
amplitude of the even orders mainly exceeds the one of the odd orders. This
indicates that the magnetic field also gives rise to signatures of the threefold
symmetric Berry curvature in the HHs generated for driving along the ΓM
axis. Nevertheless, even for |B| = 20 T, the perpendicular spectrum is buried
beneath the parallel one, which makes experimental observation difficult – at
least for the parameters discussed here. Still, further investigation of the scal-
ing of the spectra, e.g. with the applied electric-field strength or the warping
parameter, could reveal system configurations where experimental detection
is possible.
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For driving along the ΓK direction, on the contrary, a spectral component
with polarization perpendicular to the incoming laser beam is already present
without an applied magnetic field. Since the magnetic field opens a band gap,
it induces the additional emission of odd-order harmonics in the perpendicular
component. The resulting spectrum plotted in Fig. 7.2(a) can be considered as
an overlap of the emission from the hexagonally warped Bi2Te3 surface and the
gapped Dirac cone we studied in Sec. 6.5. At low harmonic orders, these odd
orders are buried below the parallel emission, at high-order harmonics they
mainly appear as a decrease of the dents between the even-order harmonics of
the perpendicular spectrum. For the system parameters studied by Riedel,
these changes in the dents should in principle appear in measurements since
the perpendicular emission exceeds the parallel one for ν/νel ≥ 4.

We extend the results Riedel obtained for driving along the ΓK direction by
performing simulations for the model Hamiltonian (7.2) with the prefactors
given in Ref. [87], i.e. the system introduced in Sec. 2.1.2 and extensively
studied in Chap. 6 without a magnetic field. We apply an electric field with
pulse shape (6.9) and peak strength Eel = 0.5 MV cm−1 and evaluate the
resulting dynamics within the k-mask (6.12) with kx,cut = 0.13Å−1. Our
primary interest is to see how the emitted harmonics depend on the warping
parameter R and the magnetic field B.

In panels (a) and (b) of Fig. 7.3, we contrast the HH emission for |B| = 0
and |B| = 10 T for warping parameters from R = 0 to R = 25.6614 eVÅ3,
where the highest value is the one computed for the Bi2Te3 surface states in
Ref. [87]. The most prominent change induced by the non-zero magnetic field
is a shift of the peak positions in the emission with polarization perpendicular
to the electric pulse Eel, as highlighted in the close ups of the plateaus of the
spectra1. Without magnetic field and for warping R = 0, our model system is a
simple Dirac cone and, thus, the perpendicular emission is approximately zero.
Increasing the warping parameter R leads to an enhancement of the emitted
power P , but the peak positions are independent of R. With a non-zero
magnetic field, however, for R = 0 the model system represents a gapped
Dirac cone. Therefore, the perpendicular emission is non-zero but at odd-order
harmonics, compare Sec. 6.5. As a consequence, the emitted power does not
only grow with the warping parameter R, but the peak positions also shift
from odd to even orders. We marked this continuous change in the zoom on
the plateau in panel (b).

1Note that for better visibility we omit the parallel emission in these insets.
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Fig. 7.3: Interaction of magnetic field and hexagonal warping in the generation of HHs
for driving along ΓK. Panels (a) and (b) contrast the influence of an increasing hexagonal
warping with and without an additional Zeeman field. The close ups highlight the evolution
of the perpendicular emission within the plateau of the spectrum. While for |B| = 0 T the
emitted power simply grows with the warping parameter, for |B| = 10 T the peaks also shift
from odd to even orders. These spectra combine the properties of a gapped Dirac cone and the
hexagonally warped surface states and the warping parameter R determines which contribution
dominates. In panel (c) we fix the warping and change the magnetic field, revealing that
then the spectra mainly differ in the dents between the even-order peaks of the perpendicular
emission. In panel (d) we explore the scaling of different harmonic orders with the warping
parameter R for the magnetic fields compared in panel (c). We rescale the extracted data with
the power P (Rmax) of the respective harmonic for R = Rmax = 25.6614 eVÅ3 and |B| = 10 T.
The different marks indicate the corresponding harmonic order. This analysis shows that the
magnetic-field effects are strongest at the odd orders of the perpendicular emission.
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In experiment, the warping parameter is a material dependent quantity that
cannot be tuned. In Fig. 7.3 (c) we keep the warping parameter fixed to
25.6614 eVÅ3 and plot the spectra for three different magnetic field strengths.
Like for the system parameters of Riedel shown in Fig. 7.2(a), the magnetic field
leads to the emergence of odd-order harmonics that mainly appear as reduced
dents between the even-order peaks, but for our warping R these features are
buried below the parallel emission. The depth of these dents is determined by
the perpendicularly polarized even-order harmonics emitted from the system
without warping, as shown in the warping sweep in Fig. 7.3(b). Overall,
these findings again highlight that the spectra we observe when an additional
out-of-plane magnetic field is applied can be considered as a combination of
HHG from a hexagonally warped and a gapped Dirac system.

In order to quantify how different harmonics scale with the magnetic field and
the warping parameter, we extract the respective power P at six exemplary
harmonic orders, two within the first intensity fall off, two at the onset, and
two at the cut off of the plateau2. Thereby, we always take one odd and one
even order, as marked in Fig. 7.3(c). For comparability, we rescaled all points
with the power P (Rmax) of the spectrum obtained for R = 25.6614 eVÅ3 and
|B| = 10 T. The different colors denote the corresponding magnetic field
strength and the marks indicate the respective harmonic order as shown in
the spectrum in Fig. 7.3(c). In the upper left panel of Fig. 7.3(d), we consider
the scaling of even-order harmonics in the emission perpendicular to the
driving field. We find that their power increases with the warping R, but the
curves are similar for all harmonic orders and magnetic field strengths. In
the odd-order harmonics of the parallel emission, see the upper right panel of
Fig. 7.3(d), the situation is more complex. For ν/νel = 5, i.e. at the intensity
fall-off at the lowest-order harmonics, the emitted power is independent of
both the magnetic field and the warping. Within the plateau however, see
ν/νel = 9 and ν/νel = 15, the emitted power decreases when the warping grows
stronger, but is still independent of the magnetic field. This different behavior
once more indicates that the two spectral regions are generated in different
areas of momentum space. As discussed in Sec. 6.7, the low-order harmonics
originate from states close to the Dirac point, where the linear Dirac dispersion
dominates over the hexagonal warping. Therefore, the emitted harmonics are
independent of the warping parameter R. The plateau, on the other hand, is
determined by emission from states farther away from the Dirac point and
thus strongly affected by changes of the warping parameter. One might ask,
why these features do not appear in the perpendicular emission. As we have

2Since the peaks are not always exactly located at integer multiples of the driving frequency, we do not
compare the maxima of the peaks but the amplitude P of the spectra at fixed frequency values.
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seen in Chaps. 5 and 6, the perpendicular spectrum is strongly dependent on
the Berry curvature of the system and not only on the band dispersion. Unlike
the energy bands, the Berry curvature is shaped by the hexagonal warping
at all momenta, compare Fig. 5.3. Accordingly, the perpendicular spectra
scale with the warping parameter at all harmonic orders. This difference
also explains why the power of the perpendicular emission increases with the
warping, whereas the power of the plateau in the parallel spectrum decreases.
The Berry curvature grows with the warping, while the strong nonlinearity of
the Dirac dispersion gets reduced by the higher-order momentum term in the
Hamiltonian.

In the lower row of Fig. 7.3(d), we analyze the magnetic-field and hexagonal-
warping dependency of the odd-order harmonics with polarization perpendic-
ular to the laser pulse. Only in these powers, which in most cases appear as
dents instead of peaks in the spectrum, we find a strong influence of both B
and R on the scaling. As discussed previously, this perpendicular emission
at odd orders is a signature of the gap opened by the magnetic field. In
terms of the Berry curvature, this gap opening induces a competition between
the Berry curvature of a gapped Dirac cone and of the hexagonally warped
surface states, see Fig. 5.3 for reference. For the gapped cone, one obtains
only odd harmonics with perpendicular polarization and for the surface states
only even orders, as observed in Sec. 6.5. In the combined case resulting
from the Zeeman coupling, we find that the power emitted at odd orders
grows with the magnetic field strength, as expected for an increasing gap size
within the Berry-curvature interpretation. Additionally, we notice a different
dependency on the warping parameter for each analyzed harmonic, which
in the meantime is independent of the magnetic-field strength. Currently,
we are not sure how to interpret this scaling with the warping parameter.
Nevertheless, the picture of competing Berry curvatures explains the shift
from odd to even harmonics in the perpendicular emission for a fixed magnetic
field and increasing warping parameter, as discussed in Fig. 7.3(b). As long
as the gapped cone dominates, the peaks lie at odd-order harmonics. With
increasing influence of the hexagonal warping term, the peaks continuously
shift towards even orders, but the contribution of the gapped cone is still
present and limits the dents between two neighboring peaks. For the system
parameters from Ref. [87] studied here, the discussed features are buried below
the parallel emission, but in Riedel’s system configuration they exceed the
parallel spectral component, see Fig. 7.2(a). Therefore, further investigation
for realistic material parameters could reveal a setup where experimental
observation of this out-of-plane Zeeman effect is possible.
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7.3.2. Including orbital effects

So far we have only considered the Zeeman effect induced by an out-of-plane
magnetic field B ‖ ez, see Sec. 7.3.1. In the following, we present first studies
on the corresponding orbital contribution. The orbital magnetic-field effect
is introduced into the effective Hamiltonian by minimal coupling, i.e. the
substitution k→ k + e

~A(r). Thereby, the vector potential A(r) describing
the magnetic field B has to fulfill

B = ∇r ×A(r) (7.3)

and for B ‖ ez can be written as A(r) = (Ax(r), Ay(r), 0). In simulations using
TQT the orbital effect can either be introduced by hand when defining the
system’s Hamiltonian or by using a TQT-internal method. The latter option
is especially favorable for models with nonlinear momentum contributions,
since then a definition by hand requires caution with commutators between
the position and momentum operator. The TQT routine circumvents these
commutators by applying subsequent gauge transformations on the vector
potential A(r), see Sec. 3.4 for details.

Even though we employ the TQT-internal function for our calculations, it is
important to know how the minimal coupling changes the Hamiltonian. For
the TI surface states, the model (2.21) with orbital coupling reads

Ĥ(k, r) =D
(kx + e

~
Ax(r)

)2
+
(
ky + e

~
Ay(r)

)21
+ A

[(
ky + e

~
Ay(r)

)
σx −

(
kx + e

~
Ax(r)

)
σy

]

+ 2R
(kx + e

~
Ax(r)

)3
− 3

(
kx + e

~
Ax(r)

) (
ky + e

~
Ay(r)

)2σz.
(7.4)

The terms of second and third order in momentum give rise to products of
kx, ky and the components Ax(r), Ay(r) of the vector potential. Since the
velocity operator is defined as v̂ = 1

~∇kĤ(k, r), it is modified by these mixed
terms and obtains a spatial dependence through A(r). Currently, we have
not implemented the necessary numerical routines to treat such a spatially
dependent velocity operator in TQT. On top of that, we encounter problems
with the stability of our simulations when including the hexagonal warping
term and the orbital coupling simultaneously. Resolving these issues will be
a task for the future. Within this work, we omit the PHS breaking and the



160 7. Magnetic-field effects on high-harmonic generation

hexagonal warping and only study the orbital effects for the simple Dirac
cone

Ĥ(k, r) = A

[
kyσx − kxσy + e

~
(Ay(r)σx − Ax(r)σy)

]
. (7.5)

Then, the velocity operator reduces to

v̂ = A

~

−σy
σx

 . (7.6)

Generally, the equations of motion of a state restricted to one band n and
driven by an electric field Eel and a magnetic field B are given by

dr
dt = 1

~
∇kEn(k) + dk

dt ×Ωn(k) (7.7)

in real space and by
~

dk
dt = −eEel − e

dr
dt ×B (7.8)

in momentum space [252]. For a Dirac dispersion En(k) = n A|k|, with band
label n = ±, the Berry curvature Ωn is zero. In this case, solving Eqs. (7.7)
and (7.8) for Eel = 0 leads to a circular motion of the states, see e.g. Krückl’s
thesis for details [182]. In momentum space, these circles are described by

k(t) = |ki|
cos(ωct+ θk)

sin(ωct+ θk)

 , (7.9)

where ωc = AeB/(~2|ki|) is the cyclotron frequency and ki = |ki| exp(iθk) is
the initial momentum of the state. When additionally applying the electric
field pulse (5.10), these circles are deformed by the drift of the states caused
by the electric field.

Here, we aim at studying how the emitted HHs are affected by the orbital
coupling of the magnetic field. To this end, we use the Fermi sea method as
introduced in Chap. 6 with the static k-mask (6.12). We set the electric peak
strength to Eel = 0.5 MV cm−1 and find convergence for kx,cut = 0.13Å−1. Due
to the circular motion induced by the orbital magnetic field, we increase the
grid size in y direction to Ny = 2048 and reduce the time step to δt = 0.05 fs
for a stable propagation in TQT. The other simulation parameters are set
as listed in App. A.10. We restrict ourselves to comparably small fields,
|B| ≤ 0.1 T, since we observe that the k-mask is not fully covered by the wave
packet at all times, whereby the issue grows with the magnetic field strength.
Due to this problem, the results discussed in the following are preliminary.
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Fig. 7.4: Effect of an orbital magnetic field on HHG from a Dirac cone. (a) HHs spectra for
different magnetic field strengths |B|. The emission parallel to the driving laser’s polarization
is independent of the magnetic field, but a perpendicular component emerges with increasing
|B|. (b) Momentum-space center of mass 〈kx/y〉cut of the wave packet within the k-mask.
Ideally, these curves would be at least eight orders of magnitude smaller than the k-mask
boundary kx,cut, see App. A.8. Here, we find results that are only five to six orders of
magnitude smaller. Since these deviations grow with the magnetic field strength, we restrict
our studies to comparably small values of |B|. In order to determine whether the imperfections
of the k-mask coverage have an influence on the computed HHs, in the inset in panel (a) the
magnetic-field scaling of the marked harmonic orders is compared to the dependency of the
maxima of 〈kx/y〉cut on |B|. For comparability, all curves are plotted relative to their value at
|B| = 0.1 T. Since for 〈ky〉cut the scaling differs from the one of 〈kx〉cut and the power P of
the harmonics, we conclude that the observed orbital effect is physical and not just a result of
the numerical issues with the k-mask. Still, this has to be confirmed by additional simulations
with wave packets with larger |klim| in the future.

In Fig. 7.4(a), we compare the HHs spectra for different magnetic field strengths
|B| obtained for an initial wave packet with envelope as defined in Eq. (6.10)
and |klim| = 0.22Å−1. The parallel emission is not affected by the orbital
effect, whereas the perpendicular emission increases with |B|. Since without
magnetic field the perpendicular emission from a pure Dirac system is zero,
this emerging spectral component is a consequence from additional phases
the states acquire due to the circular motion induced by the orbital field.
Presumably, this phase is the Berry phase, γ± = ±π, a state picks up when
enclosing the Dirac point on its trajectory in momentum space [253]. However,
this interpretation has to be verified in future studies. As no hexagonal
warping is present in our model system, these perpendicular HHs lie at odd-
order multiples of the driving frequency. In the inset of panel (a), we analyze
how the odd harmonic orders we already investigated for the Zeeman field in
Fig. 7.3 scale with the orbital magnetic field. Thereby, we normalize all curves
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to their respective value for |B| = 0.1 T and find a nonlinear dependency on
|B| that is similar for all considered harmonics.

Due to the circular motion in momentum space, the k-mask is not perfectly
covered by the propagated wave packet at all times. In Fig. 7.4(b), we show
the momentum-space center of mass 〈kx/y〉cut of the wave packet within the
k-mask. We find an oscillatory deviation from zero that is five to six orders
of magnitude smaller than the limit kx,cut of the k-mask and grows with the
applied field strength |B|. For a reference, in App. A.8 we check the coverage
of the k-mask for a wave packet without external magnetic fields. There, we
observe that, for a fully covered k-mask, 〈kx/y〉cut is eight orders of magnitude
smaller than kx,cut, whereas imbalances at the borders of the k-mask at the
peaks of the electric pulse lead to spikes that are only three orders of magnitude
smaller than kx,cut. The deviations we obtain with the orbital magnetic field
lie in between the two cases and thus might not affect the computed dynamics.
To gain a first intuition whether the observed features in the HHs spectra in
Fig. 7.4(a) are actually a physical consequence of the orbital magnetic field,
and not only a result from the numerical issue of the temporarily unbalanced
occupation of the k-mask, we extract the scaling or the highest peak of 〈kx/y〉cut
and include it in the inset of Fig. 7.4(a). This comparison reveals that 〈kx〉cut
has indeed the same magnetic-field dependence as the power of the different
harmonics, but 〈ky〉cut shows a linear increase with |B|. Since we only observe
an influence of the orbital effect on the perpendicular emission, we assume
that the emerging spectrum is physical. Nevertheless, the simulations should
be repeated for a wave packet with larger |klim| in the future to confirm this
assumption.

In conclusion, we find first fingerprints of an orbital magnetic field effect
on HHG from a simple Dirac system. Even though the presented data is
preliminary, it strongly indicates that the orbital coupling gives rise to HHs
with polarization perpendicular to the driving laser pulse. We assume that
these additional spectral features arise due to the Berry phase of ±π that
states acquire when circling the Dirac point during the motion induced by
the orbital magnetic field. In future studies, the wave-packet definition has to
be varied in order to confirm these observations. Additionally, our numerical
routine has to be extended such that also systems with higher-order momentum
contributions, like the hexagonal warping of the Bi2Te3 surface states (7.4),
can be simulated. The final step is to combine the Zeeman and the orbital
effect in order to obtain a complete picture of the influence of perpendicular
magnetic fields on HHG from TI surface states.
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7.4. Outlook: Including the pulse as an
electromagnetic wave

Within this thesis, we have approximated the laser pulse as a purely electric
wave of the form (5.10) and disregarded the magnetic contribution. Generally,
the electric field Eel(r, t) and magnetic field B(r, t) are described by a vector
potential A(r, t) and a scalar potential φel(r, t) as

Eel(r, t) = −∂A(r, t)
∂t

−∇rφel(r, t),

B(r, t) = ∇r ×A(r, t).
(7.10)

For an exact representation of a focused, few-cycle laser pulse, defining these po-
tentials in line with Maxwell’s equations becomes challenging. We recommend
using the closed analytical form presented in Ref. [254] for such pulses, if a
full description is necessary. However, oftentimes the scales of the investigated
system allow for simplifications of the pulse form. Since this work has been
motivated by the HHG experiment on Bi2Te3 in Ref. [81], among others,
we take the laser pulse employed there for reference. In the experiment, a
Gaussian laser beam was focused to a spot of about 60µm full width at half
maximum on the Bi2Te3 crystal, see Fig. 7.5(a) for a sketch. Our simulations
are confined to a numerical grid representing a system with less than 2.5µm
width3, however. Thus, in the real space area covered by the wave packet
propagated in these simulations, the Gaussian shape of the laser spot is negli-
gible and we consider a pulse with infinite extension on the 2D surface instead.
Choosing the gauge φel(r, t) = 0 and A(r, t) = (Ax(r, t), 0, 0), we define the
pulse based on the vector potential

Ax(r, t) = −Eel

ω
exp

− t2

2∆t2

 cos
(
nrω

c
(y cos θ − z sin θ) + ωt

)
, (7.11)

where r = (x, y, z) describes the propagation of the wave, θ is the angle of
incidence on the 2D surface, nr the refractive index, ω = 2πνel the pulse
frequency, and c the speed of light. The corresponding system geometry is
sketched in Fig. 7.5(b). Using Eq. (7.10), we obtain the fields

Eel(r, t) =Eel exp
− t2

2∆t2

 sin
(
nrω

c
(y cos θ − z sin θ)− ωt

)
ex

+ Eelt

ω∆t2 exp
− t2

2∆t2

 cos
(
nrω

c
(y cos θ − z sin θ) + ωt

)
ex

(7.12)

3As shown in App. A.10, the largest grid we use in TQT has 4096 points with a spacing of 6Å.
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and

B(r, t) = −Eelnr
c

exp
− t2

2∆t2

 sin
(
nrω

c
(y cos θ − z sin θ) + ωt

)
0

sin θ
cos θ

 .
(7.13)

Since our simulations are restricted to a 2D plane, we set z = 0. Neglecting
the second term of Eel(r, t) in Eq. (7.12), we find the relation |B| = nr

c |Eel|
between the amplitudes of the two waves. By additionally assuming the
approximation y = 0 is justified, we retrieve the electric field (5.10), employed
for the HH simulations shown throughout this thesis, from Eq. (7.12). We
compare the wave forms of the pulses (5.10) and (7.12) for y = z = 0 in
Fig. 7.5(c). The contribution of the second term of Eq. (7.12) is about one
order of magnitude smaller than the peak amplitude of the total pulse. Thus,
the additional term mainly affects the initial and final oscillation cycles,
where the overall amplitude is comparable to the one of this term. We
conclude that the pulse definition (5.10) is a good approximation as long as
magnetic field effects are neglected and y = z = 0. Concerning the validity
of the approximation y = 0, further investigation is necessary. For the pulse
frequency νel = 25 THz and the refractive index nr = 10 of Bi2Te3, we obtain a
wave length λ = c/(nrνel) ≈ 1.3µm, which is of the same order of magnitude as
our system in TQT. However, the relevance of the y dependence is determined
by the extent of the propagated wave packet in real space, which is a quantity
we have not paid particular attention to so far.

In principle, it is possible to implement the fields (7.12) and (7.13) in TQT
via minimal coupling of the vector potential (7.11). As long as the spatial
dependence in y is considered, this minimal coupling induces the orbital effect
of the z component4 of B(r, t). The Zeeman effects have to be added by hand
using the magnetic field (7.13), as described in Secs. 7.2 and 7.3.1. But, as
discussed in Sec. 7.3.2, the spatial dependence of the velocity operator resulting
from higher-order momentum contributions in the system Hamiltonian in
combination with the vector potential (7.11) cannot be treated by the algorithm
yet. Moreover, here A(r, t) also contains a time dependence which we cannot
add to the currently defined velocity operator neither. The only option to
gain first insights into the wave-packet dynamics for the full pulse would be
to omit the k-mask and to use the COM observable instead, see Sec. 3.5 for
an introduction.

The spatial inhomogeneity of the fields (7.12) and (7.13) also gives rise to the
4Note that without the y dependence, the magnetic wave would be zero, compare Eq. (7.10). Then, the
minimal coupling is only another option for applying the electric field Eel(t).
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Fig. 7.5: Sketch of (a) the laser spot from the experiment [81] and (b) the corresponding
field directions. Since the size of our numerical grid is small in comparison to the laser
spot, we assume a homogeneous field distribution in our model. The fields are aligned such
that the electric field polarization lies in the Bi2Te3 surface plane and the magnetic wave
has a component in the sample as well as perpendicular to it, depending on the chosen
angle of incidence θ. (c) Comparison of the definition (5.10) for the electric wave employed
throughout this work and the electric field (7.12) derived from the vector potential (7.11).
Due to the additional spatial dependence, the potential (7.11) also contains the magnetic
component (7.13) of the light field. In this derivation, the electric field obtains a second term,
compare Eq. (7.12). The amplitude of this term is one order of magnitude smaller than the
peak strength of the total pulse and mainly affects the onset and the last oscillations of the
pulse. Thus, we conclude that the definition (5.10) used throughout this work is a good
approximation as long as magnetic-field effects are neglected.

question of where to set the origin of the coordinate system with respect to the
initial position of the propagated wave packet. One solution for this problem is
to average over various configurations of the system in real space. The Lanczos
Source propagator we introduced in Sec. 3.3 offers another possibility to resolve
this issue. With this propagator, plane waves instead of wave packets can be
considered as initial states with the restriction that the applied time-dependent
potentials are localized in real space. The basic idea of the algorithm is to
split the time evolution of the system in a trivial and a non-trivial part, in
order to circumvent numerical issues caused by the plane wave extending over
the full numerical grid. This splitting is achieved by interpreting the localized
potential as a source term that generates a wave packet out of the plane
wave. The wave packet undergoes the non-trivial time evolution caused by
the potential, while the time evolution of the plane wave is simply defined by
the time-independent system. In App. A.12 we show our testing of this new
propagator using a 1D Fabry-Perot system and a comparison with Tkwant.
As discussed in App. A.12.4, by integration over the observables calculated
for all relevant plane waves, the Fermi sea can be taken into account, similar
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to the k-mask approach we introduced for wave packets in Chap. 6. Note
that in this context, relevant refers to all momenta that would lie within the
k-mask when using the wave-packet approach, compare Sec. 6.3.3. For the
Lanczos Source propagator, instead of the vector potential (7.11), a pulse
description that additionally takes the spot size in real space into account
has to be derived based on Ref. [254]. Then, the requirement of a localized
potential is naturally fulfilled. Employing this new propagator to study HHG
with an exact definition of a focused, few-cycle laser pulse is a promising task
for future research.



8. Conclusion

Throughout this thesis we studied the dynamics of Dirac electrons under
different types of driving by employing wave-packet-based approaches. To
conclude our investigations, in the following we briefly summarize our main
findings and give an outlook on interesting questions for future research.

We started our work considering time-periodic driving protocols (Chap. 4).
Then, the electron motion can be understood within the framework of an
effective Floquet quasi bandstructure. We showed that electrons perform
Bloch-like oscillations when they are moved through Floquet bands which
are (quasi)periodic in momentum space by an additional static electric field.
Due to this analogy, we dubbed the phenomenon Floquet oscillations [74].
From the viewpoint of the static system’s bandstructure, Floquet oscillations
can also be interpreted as consecutive electron transitions at (multi-)photon
resonances of the driving field with the local energy gap. Thereby, the inverse
proportionality of the Floquet oscillation’s frequency to the driving frequency
can be explained. For our demonstration, we focused on Dirac-like dispersions,
which are found e.g. in graphene, TIs, and cold atoms in artificial honeycomb
lattices. We investigated two driving schemes that couple the branches of
the Dirac cone and thus lead to the formation of (quasi)periodic Floquet
bands in a certain range of momentum space. We obtained the resulting
Floquet oscillations by propagating wave packets by numerically solving the
time-dependent Schrödinger equation and by computing the wave-packet
dynamics using Floquet theory. In real space, the oscillations feature an
amplitude modulation that resembles the Floquet bands, thus offering an
experimental tool for mapping out Floquet bandstructures. Moreover, Floquet
oscillations are modified by Zitterbewegung and we found first indications
that they contain traces of the Floquet band’s Berry curvature. We also
explored the experimental feasibility of Floquet oscillations in graphene and
concluded that, by correct tuning of the parameters, experimental realization
should be possible. Overall, our studies provide a link between the intuitive
time-dependent picture and the Floquet framework. The potential of using
Floquet oscillations for studying the Berry curvature of the Floquet system
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and for the experimental detection of Zitterbewegung could be investigated
in future research. Additionally, a generalization of the concept to other
bandstructures could be considered in order to identify further platforms
for experimental realization. In principle, by taking small frequencies in
comparison to the bandwidth and a driving mechanism that efficiently couples
the bands, an arbitrary bandstructure can be transformed to (quasi)periodic
Floquet bands. However, suitable parameters have to be found such that the
Floquet oscillation’s period TF is smaller than the scattering time τs of the
electrons in the system. Otherwise, experimental detection of the Floquet
oscillations is not possible.

For the remainder of the presented work (Chaps. 5 - 7), we switched from peri-
odic driving to ultrashort laser pulses. Those studies were initially motivated
by the experimental observation of HHG from the surface states of the 3D TI
Bi2Te3. In a collaboration with several theoretical and experimental groups,
we were able to demonstrate that the emitted harmonics are governed by the
Dirac-like dispersion of the surface states. On top of that, the measurements
confirmed that the polarization of the different harmonic orders contains
fingerprints of the system’s Berry curvature, as already predicted in earlier
works [85]. The results of our joined efforts are published in Ref. [81]. Despite
providing an intriguing insight into the nonlinear dynamics of topologically
protected surface states, the experimental findings also raised further questions
about the occurring processes. In this thesis we displayed a more detailed
analysis of the dynamics of the TI surface electrons under strong and short
laser pulses, focusing on the quantum processes influencing the HHG.

First, we investigated the motion of single test charges, that we modeled as
narrow wave packets in momentum space, in Chap. 5. Thereby we compared
four Dirac-based Hamiltonians with different Berry curvatures: a simple Dirac
cone, a gapped Dirac cone and a higher-order momentum expansion of the
Bi2Te3 surface Hamiltonian which includes a hexagonal warping term. For the
latter we contrasted two different parameter sets from the literature [81, 87].
Our studies of the resulting velocity expectation values for both constant fields
and short pulses confirmed the imprint of the Berry curvature especially on the
velocity component perpendicular to the polarization of the incoming radiation.
By varying the pulse strength and the initial momentum of the wave packets
we explored different transition regimes following the classification of Heide et
al. [173]. Thus, we could affirm that the threefold symmetric Berry curvature
imposed by the hexagonal warping is crucial to recreate the experimentally
observed polarization pattern of the HHs spectrum. Our findings also highlight
the great diversity of the dynamics and transition processes occurring when
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the Bi2Te3 surface interacts with a strong laser pulse. In an experiment at
the current state of the art it is not possible to only select a particular part
of these processes. Instead, the recorded HHs spectra contain the emission
resulting from the interference of all electron dynamics driven within the
bands. Accordingly, computing spectra from the velocities of only a few test
charges is insufficient when looking for the interpretation of experimental data.
Therefore, in Chap. 6, we developed a novel method to simulate HHG from a
full Fermi sea using a wave-packet approach and effective model Hamiltonians
without band bottom. To avoid spurious contributions due to the finite wave
packet, we introduced a k-mask in which the velocities were evaluated. This
k-mask also constitutes the only kind of dephasing entering our ansatz since
it neglects everything outside of its momentum area. Overall, our Fermi sea
approach is complementary to investigating HHG using the semiconductor
Bloch equations without dephasing [95]. Nevertheless, being based on wave
packets, it offers a more intuitive and illustrative insight into the system’s
dynamics. Our studies of the influence of the k-mask shape and the Fermi
energy on the resulting HHs spectra revealed that the low-order harmonics
and their fine structure are mainly contributed by states close to the Dirac
point, whereas the high-order harmonics of the plateau are affected by states
experiencing larger local energy gaps. This momentum dependence indicates
the necessity of introducing momentum-dependent dephasing in future HHs
calculations to improve the agreement between theoretical and experimental
data. Additionally, we could show that our novel method allows for the
qualitative investigation of HHG in Dirac systems and significantly increases
the quality of the resulting HHs spectra as compared to calculations without
a k-mask or for single test charges only.

An advantage of the presented approach over the semiconductor Bloch equa-
tions is that one can integrate spatially dependent potentials into the algorithm.
This enables taking the full electromagnetic wave of the laser pulse into account.
In Chap. 7 we presented first results on how magnetic field effects influence
HHG in effective Dirac systems. Thereby, we focused on constant magnetic
fields for simplicity. The Zeeman coupling of a magnetic field opens band gaps
in the energy dispersion and thus can modify the Berry curvature and therefore
also the HHs spectrum. The orbital effects of an out-of-plane magnetic field
induce a cyclic motion of the states in momentum space, potentially leading
to fingerprints of a Berry phase that is picked up when the Dirac point is
enclosed in the electron trajectory. This phase effect appears to only affect the
HH emission perpendicular to the driving field. Unfortunately, so far it is not
possible to include the hexagonal warping terms and orbital effects into the
simulation simultaneously. Therefore, further development of our numerical
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method and a deeper analysis is required to draw final conclusions on how
static magnetic fields imprint on HHs spectra from Bi2Te3 surface states. To
fully explore the influence of magnetic fields and especially of the magnetic
component of the laser pulse on HHG in TI surface states, not only constant
but also time-dependent magnetic fields have to be investigated. Due to the
relatively large refractive index (nr ≈ 10) of Bi2Te3, the magnetic component
of the light field can reach peak strengths of |B| = nr

c |Eel| ≈ 10 T for an electric
peak field of |Eel| ≈ 3 MV cm−1, which is the order of magnitude applied in
the experiment [81]. Whether the resulting HHs spectra contain fingerprints
of the magnetic component or are unaffected by it, has to be determined in
future studies. For such studies, the strong real-space localization of the wave
packet representing the Fermi sea may become problematic. It is still unclear,
whether this localization leads to spurious effects when considering poten-
tials with an inhomogeneous spatial dependence such as the vector potential
describing the orbital coupling of a magnetic wave. To investigate this, one
might have to switch from wave packets to plane waves that are localized in
momentum space but cover the full real space. The Lanczos Source propagator
we implemented in TQT is capable to treat such plane waves in a setup with
time-dependent and spatially localized potentials. In future studies, it can be
applied to extend our understanding of the interaction of TI surface states
with electromagnetic waves.

But even leaving the magnetic field aside again, further analysis of HHG from
TI surface states is required. As already mentioned, our results indicate that
a better understanding of dephasing mechanisms and their momentum depen-
dence is necessary in order to improve the agreement between experimental
data and theoretical predictions. Additionally, the interplay of intraband and
interband effects in the process of HHG is still not completely clear. Since
these effects are also affected differently by the dephasing mechanisms, other
methods based on e.g. the semiconductor Bloch equations are better suited to
perform a deeper analysis in that direction.

In order to obtain a new perspective on HHG, one could also consider using
approaches based on the Floquet formalism. For continuous radiation, such
methods have already been established [255, 256] and even allowed for obtaining
analytical results [257]. With a newly proposed Floquet group theory, selection
rules for the generated harmonics and their respective polarization have been
derived [258]. A recent experiment demonstrated that the formation of
Floquet bands does not require time-periodic driving but already sets in after
one oscillation cycle of a laser pulse. By employing time-resolved ARPES
measurements, Ito et al. recorded the build-up of the Floquet band’s population
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as well as the intraband motion of the excited electrons in the surface states
of Bi2Te3 [259]. They used a similar laser pulse as for the observation of HHG
from said surface states presented in Ref. [81] and discussed throughout this
work. Hence, Floquet theory could also extend our understanding of HHG
from TI surface states and pulsed systems in general. During our work on this
thesis we assisted first studies of Yuriko Baba which aimed at a theoretical
modeling of the build-up of Floquet bands and their population in Dirac
systems using the so-called t− t′ formulation [260, 261]. In future research,
these investigations could be extended in order to calculate HHs spectra and to
gain deeper insights into the occurring quantum processes from the perspective
of a Floquet framework.

In conclusion, our work established new insights into the interaction of Dirac
systems with strong, time-dependent potentials. We proposed the concept
of Floquet oscillations for time-periodic driving as well as investigated HHG
from Dirac-like states. Additionally, we devised a novel method for calculating
HHG from a Fermi sea based on the propagation of wave packets. Our studies
pave the way for a better understanding of the physical interpretation of
Floquet theory and the quantum processes leading to the generation of HHs
in strongly driven solids.





A. Appendix

A.1. Calculation of the velocity matrix elements

In this section we give a more detailed derivation of the matrix elements of
the velocity operator v̂ = i

~

[
Ĥ(k), r̂

]
in the basis of the eigenstates |ϕk,±〉 of

Ĥ(k). The position operator represented in momentum space is r̂ = i∇k. We
start with the diagonal entry v++

k ,

v++
k =〈ϕk,+|v̂|ϕk,+〉 = i

~

〈
ϕk,+

∣∣∣∣[Ĥ(k), r̂
]∣∣∣∣ϕk,+

〉

= i
~

{〈
ϕk,+

∣∣∣∣Ĥ(k) r̂
∣∣∣∣ϕk,+

〉
−
〈
ϕk,+

∣∣∣∣r̂ Ĥ(k)
∣∣∣∣ϕk,+

〉}

= i
~
{E+(k) 〈ϕk,+ |r̂|ϕk,+〉 − 〈ϕk,+ |r̂|ϕk,+〉E+(k)}

=− 1
~
{E+(k) 〈ϕk,+ |∇k|ϕk,+〉 − 〈ϕk,+ |(∇k|ϕk,+〉)E+(k)

− 〈ϕk,+ | ϕk,+〉 (∇kE+(k))}

=1
~
∇kE+(k).

(A.1)

The component v−−k for the lower band can be computed analogously,

v−−k = 〈ϕk,−|v̂|ϕk,−〉 = 1
~
∇kE−(k). (A.2)

For the off-diagonal entries, the first steps are similar. We begin with v+−
k ,

v+−
k =〈ϕk,+|v̂|ϕk,−〉 = i

~
{E+(k) 〈ϕk,+ |r̂|ϕk,−〉 − 〈ϕk,+ |r̂|ϕk,−〉E−(k)}

=− 1
~
{E+(k) 〈ϕk,+ |∇k|ϕk,−〉 − 〈ϕk,+ |(∇k|ϕk,−〉)E−(k)

− 〈ϕk,+ | ϕk,−〉 (∇kE−(k))}

=1
~

[E−(k)− E+(k)] 〈ϕk,+ |∇k|ϕk,−〉 .
(A.3)
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Using definition (2.36) for the interband or transition matrix element A+−(k),
we can rewrite Eq. (A.3) as

v+−
k = i

~
[E+(k)− E−(k)]A+−(k). (A.4)

The derivation of v−+
k is again analogous,

v−+
k = 〈ϕk,−|v̂|ϕk,+〉 = i

~
[E−(k)− E+(k)]A−+(k). (A.5)

From the hermiticity of the velocity operator v̂ it follows that

A+−(k) = A∗−+(k). (A.6)

When directly evaluating the commutator, one finds that the velocity operator
can also be expressed as

v̂ = i
~

[
Ĥ(k), r̂

]
= 1

~
∇kĤ(k). (A.7)

Thus, by combining Eqs. (A.4) and (A.7) one obtains the relation

A+−(k) = −i〈ϕk,+|∇kĤ(k)|ϕk,−〉
[E+(k)− E−(k)] , (A.8)

and A−+(k) analogously. With this, the link between Berry curvature as
summation over eigenstates, see Eq. (2.37), and from the interband matrix
element, see Eq. (2.38), becomes apparent.

A.2. Further data on Floquet oscillations in
periodically gapped Dirac systems

In this section we show some additional data for the Floquet oscillations
achieved in Dirac systems with periodically opened mass gap. The main
results are discussed in Sec. 4.4.2 in the main text.

In the left panel of Fig. A.1 the velocity curves of Fig. 4.3(a) are plotted again.
The right panel is a zoom into the region marked by the red rectangle. This
segment of the velocity contains all the small deviations between TQT and
Floquet results discussed in Sec. 4.4.2. One example where the rectangular
Zitterbewegung is not well reproduced in the Floquet approach is marked by



A.2. Further data on Floquet oscillations 175

t/
T

0

50

100

150

200

v(t) Floquet
v(t) TQT

-1-0.500.51
vx/vF vx/vF

t/
T

170

180

190

200

210

-0.500.5

Fig. A.1: Velocity of an electron in a periodically gapped Dirac system undergoing Floquet
oscillations. The left panel shows the same velocities as Fig. 4.3(a) in the main text. The
right panel is a zoom into the section marked by the red rectangle in the left panel. It
contains all deviations between Floquet and TQT results discussed in Sec. 4.4.2, namely bad
approximation of the rectangular Zitterbewegung (marked by the red circle), a phase shift of
π between the resulting Zitterbewegung and a small time shift between both curves.

the red circle. Throughout most of the curve displayed in the zoomed graph, a
phase shift of π between the Zitterbewegung computed with TQT and Floquet
is present. The small time shift between both results is also apparent and best
visible whenever the Zitterbewegung switches amplitude.

To check whether the deviations in the Zitterbewegung originate from the
truncation of the Floquet matrix at n,m = ±100, we repeated the calculation
for different values of n,m. The results for the position expectation value in
Fig. A.2(a) agree rather well for all values of n,m. Only the small wiggly
motion stemming from Zitterbewegung has different phases depending on the
truncation of the Floquet matrix. Those phase deviations are much more
pronounced in the velocity, see Fig. A.2(b). For better visibility we only
show the zoomed region already discussed in Fig. A.1. Since the results for
n,m = ±100 and n,m = ±500 are rather similar and taking smaller Floquet
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Fig. A.2: Floquet oscillations of an electron for different sizes n,m of the Floquet matrix.
(a) Position expectation value. Only the phase of the small wiggly motion on top of the
Floquet oscillations differs for different n,m. (b) Zoom into the velocity expectation value as
in Fig. A.1. The different phases of the Zitterbewegung are much more pronounced in the
velocity. Since the results for n,m = ±100 and n,m = ±500 are rather similar, we settled for
the former to reduce numerical costs. Also, in comparison with TQT those are the values
with best agreement during the total propagation time.

matrices saves numerical costs, we chose n,m = ±100 for the data shown
in the main text. Also, considering the agreement with TQT over the full
propagation time as in Fig. A.1, n,m = ±100 and n,m = ±500 show the best
results.

As discussed in Sec. 4.4.2, for longer propagation times the gaps between the
Floquet bands become too small for Floquet oscillations to occur. We studied
this regime in Ref. [123], so we do not want to repeat the discussion here. For
completeness however, in Fig. A.3 we show the position computed with TQT
for longer propagation times. After roughly four cycles of Floquet oscillations
the gaps between the Floquet bands become too small and transitions between
the Floquet bands begin to dominate the dynamics. Then, Floquet oscillations
cannot be observed anymore.
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Fig. A.3: Position expectation value of an electron propagated for a longer time using TQT.
When the electron reaches a region where the gaps between the Floquet bands become rather
small, transitions start to dominate the dynamics and Floquet oscillations cannot be observed
anymore. The curve shown here is just an extension of the one in Fig. 4.3(a).

A.3. Treating circularly polarized light in TQT

Currently, it is not possible to treat systems depending on more than one
time-dependent function with TQT. Circularly polarized light however is
described by the vector potential

A(t) = A

cos(ωt)
sin(ωt)

 (A.9)

and thus contains two time-dependent functions, cos(ωt) and sin(ωt). To
circumvent this issue, we use a gauge transformation,

A′(t) = A(t) +∇Λ(r, t),

φ′(r, t) = φ(r, t)− ∂

∂t
Λ(r, t).

(A.10)

By choosing the function

Λ(r, t) = −A cos(ωt)x, (A.11)

we obtain the potentials

A′(t) = A

 0
sin(ωt)

 ,
φ′(r, t) = −Aω sin(ωt)x,

(A.12)
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reducing the problem to one time-dependent function.

A.4. Fitted Bi2Te3 surface Hamiltonian in TQT

TQT can only process Hamiltonians that are given as polynomials of the
momentum k = (kx, ky). Therefore, it is not possible to work with the fitted
Hamiltonian Ĥf(k) introduced in Sec. 5.2 when using TQT. To get around
this problem, we apply an expansion to the momentum-dependent prefactors
Bf(k) and Rf(k) defined in Eq. (5.2) and write them as

De
f (k) =D1 +D2k

2 +D3k
4 +D4k

6 +D5k
8 +D6k

10 +D7k
12 +D8k

14 +D9k
16,

Re
f (k) =R1 +R2k

2 +R3k
4 +R4k

6 +R5k
8 +R6k

10 +R7k
12 +R8k

14 +R9k
16

+R10k
18,

(A.13)

where k = |k| =
√
k2
x + k2

y. With these polynomials, the rotational symmetry
of the prefactors is preserved and they again do not change the symmetry
properties of the Hamiltonian Ĥf(k).

Using the plot program xmgrace [262] we fit the bandstructure resulting from
the expanded prefactors De

f (k) and Re
f (k), Eq. (A.13), to the bands obtained

from the full prefactors, Eq. (5.2). For simplicity we restrict ourselves to 1D
plots and only fit along the high-symmetry axes ΓK and ΓM, where ky = 0
and kx = 0, respectively. To achieve good agreement, we additionally have to
limit the fitting region to kx,y . 0.4Å−1. The resulting parameters are given
in Tab. A.1.

In Fig. A.4 we compare the bands from DFT, the Hamiltonian Ĥf(k) from
Sec. 5.2 and the results for the expanded prefactors (A.13) along ΓK and ΓM
direction. Within the fitting window, the bands from our expanded prefactors
match nicely with the bands of Ĥf(k) with the full prefactors. Additionally, the
bands from DFT agree reasonably well with those of the model Hamiltonian
Ĥf(k) with and without the expanded prefactors. Outside the fitting window,
i.e. for kx,y > 0.4Å−1 however, the bands from our expansion strongly diverge.
This divergence leads to numerical issues within TQT. For stable calculations,
the grid in momentum space has to be defined such that the diverging regions
are not included. Hence, we can only use the fitted Hamiltonian Ĥf(k) for
problems for which this limited grid is sufficient. Another disadvantage of
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De
f Re

f

D1 18.3218 eV R1 −34.4034 eV
D2 −656.14 eVÅ R2 −38.7236 eVÅ
D3 1.371 36 · 104 eVÅ2

R3 2.684 27 · 104 eVÅ2

D4 −1.714 04 · 105 eVÅ3
R4 −6.588 21 · 105 eVÅ3

D5 1.317 46 · 106 eVÅ4
R5 8.201 46 · 106 eVÅ4

D6 −6.268 11 · 106 eVÅ5
R6 −6.178 08 · 107 eVÅ5

D7 1.796 39 · 107 eVÅ6
R7 2.927 66 · 108 eVÅ6

D8 −2.838 46 · 107 eVÅ7
R8 −8.549 06 · 108 eVÅ7

D9 1.898 08 · 107 eVÅ8
R9 1.407 21 · 109 eVÅ8

R10 −9.997 85 · 108 eVÅ9

Tab. A.1: Parameters of the expanded prefactors (A.13).

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

-0.4

-0.2

0

0.2

0.4

0.6

ΓM
ΓK

ΓM
ΓKΓK

ΓM

kx,y [1/Å]

E
[eV

]
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Fig. A.4: Bandstructure of Bi2Te3 from DFT, for the Hamiltonian Ĥf(k) from Sec. 5.2 and
for the expanded prefactors from Eq. (A.13) along the high-symmetry axes ΓK and ΓM.
Within the fitting window, good agreement is achieved. Since the fitting region was limited
to kx,y . 0.4Å−1, the bands for the expanded prefactors diverge for kx,y > 0.4Å−1.
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the expanded prefactors is that each summand is treated separately in TQT,
see Sec. 3.1. The large number of summands increases the RAM usage and
computation time and thus makes calculations with the fitted Hamiltonian
Ĥf(k) less efficient than with the literature surface Hamiltonian Ĥs(k). Hence,
we refrain from using the fitted Hamiltonian Ĥf(k) after verifying that the
simple model Ĥs(k) leads to qualitatively correct results.

A.5. Velocity operator for the fitted Bi2Te3
surface model

The velocity operator v̂f for the fitted Hamiltonian Ĥf(k), that was introduced
as a more realistic model for the Bi2Te3 surface states in Sec. 5.2, reads

v̂f = 1
~

2Df(k)
kx
ky

1 + (∇kDf(k))
(
k2
x + k2

y

)
1 + Af

−σy
σx



+ 6Rf(k)
k2

x − k2
y

−2kxky

σz + 2 (∇kRf(k)) (k3
x − 3kxk2

y)σz

.
(A.14)

Since all terms containing only the unit matrix 1 drop from the commutator[
v̂f, Ĥf(k)

]
, only the prefactor Rf(k) plays a role there. The commutator

gives

[
v̂f, Ĥf(k)

]
= 2iAf

~

Af

 ky
−kx

σz − 2Rf(k)
(
k3
x − 3kxk2

y

) σx
σy



+ 6Rf(k) (kyσy + kxσx)
k2

x − k2
y

−2kxky



+ 2 (∇kRf(k)) (k3
x − 3kxk2

y) (kyσy + kxσx)
.

(A.15)

As Rf(k) only depends on the absolute value k = |k| of the momentum, the
additional term acts equally on both vector components of the commutator.
Like for Ĥs(k), for kx = 0 Zitterbewegung can only arise in vx, whereas the
latter is possible for any k 6= (0, 0).
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Fig. A.5: HHs spectrum of the test charges in the (a) Rabi and (b) nonimpulsive Landau-
Zener regime. The respective velocities are plotted in Figs. 5.7 and 5.8. To distinguish parallel
and orthogonal emission, we dashed the spectra belonging to Px. As in the adiabatic case, see
Sec. 5.5.1, the orthogonal emission Py is zero for the Dirac cone Ĥc(k), at odd orders for the
gapped cone Ĥg(k), and shifts to even orders for the Hamiltonians with hexagonal warping
Ĥs/f(k). We normalized the power P with P0 = Px(2πνel) for each system.

A.6. Spectra for resonant and nonimpulsive
Landau-Zener regime

In Sec. 5.5.1 we discuss how the Berry curvature of the underlying model
system imprints on the emitted HHs spectrum based on the velocities of two
test charges in the adiabatic regime, see Sec. 5.4.1 for the latter. Applying
the same field strength, Eel = 0.1 MV cm−1, we also studied the resonant
(Sec. 5.4.2) and nonimpulsive Landau-Zener regime (Sec. 5.4.3) by simply
varying the initial momenta ki of the test charges. For completeness, the
corresponding spectra for these two regimes are shown in Fig. A.5. As in
Sec. 5.5.1 in the main text, the dashed lines show the emission Px parallel to
the driving field, whereas the solid lines show the emission Py perpendicular to
it. All spectra are renormalized with their respective first peak of the parallel
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component, P0 = Px(2πνel). Qualitatively, we observe the same features as in
the adiabatic regime. The parallel spectrum contains the first and the third
harmonic for all systems, whereas the perpendicular emission depends on the
Berry curvature of the model system.

Additionally we find that the relative amplitude P/P0 of the perpendicular
emission Py of the gapped cone1 Ĥg(k) increases with decreasing initial mo-
mentum ki. In the adiabatic regime it was about four orders of magnitude
smaller than the parallel emission Px, whereas in the resonant regime both
components are comparable and in the nonimpulsive Landau-Zener regime
the perpendicular third harmonic even exceeds the parallel one and a fifth
harmonic emerges2. This coincides with the fact that for the gapped cone the
Berry curvature is largest at the Dirac point and decreases with increasing
k, see Eq. (5.3) for reference. Concerning the relative amplitudes of the
perpendicular emission Py in the warped systems Ĥs(k) and Ĥf(k) we find a
variation depending on the initial momentum but cannot extrapolate a clear
trend.

Furthermore, in the resonant regime, Fig. A.5(a), the peak of the first harmonic
is split for all model systems. This is probably due to an interference of the
resonance peak of the system with the harmonic since they have the same
frequency. In the nonimpulsive Landau-Zener regime the initial momenta ki
are smaller than for the resonant regime in all systems, thus the resonance
frequency is smaller than the driving frequency νel and no resonance peak
appears.

A.7. From Fermi sea to single-particle states

This section is based on the derivations presented in Ref. [263], Chap. IV,
Sec. 4.

For non-interacting fermions the wave function for M particles can generally
be defined as

Ψ(1, . . . ,M) = 1√
M !

∑
P

(−1)P P̂φα1(1) . . . φαM (M), (A.16)

1Note that this also applies to the ungapped cone Ĥc(k). There we interpret the result as an increasing
noise level when approaching the Dirac point.

2Remember that in the adiabatic regime we use ki = (0,±0.1)Å−1, in the resonant regime
ki = (0,±0.015)Å−1 and in the nonimpulsive Landau-Zener regime ki = (0,±0.007)Å−1.
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where the sum runs over all M ! possible permutations P . An even (odd)
number of permutations obtains a positive (negative) sign, P̂ is the permu-
tation operator, and φαi(i) are the single-particle wave functions for the i-th
electron. If two electrons i and j occupy the same state, i.e. φαi(i) = φαj(j),
Ψ(1, . . . ,M) = 0 due to the Pauli exclusion principle. The different summands
of Ψ(1, . . . ,M) are orthogonal with respect to each other and φ∗αi(i)φαj(j) = δi,j.

We now compute observables for such a state Ψ(1, . . . ,M). Let Ô be an
arbitrary single-particle operator, then

〈Ô〉 = 1
M !

∑
P

(−1)P P̂φ∗α1
(1) . . . φ∗αM (M)

 ×
×
∑
αi
Oαi,αi

∑
P ′

(−1)P ′P̂ ′φα1(1) . . . φαM (M)


=
∑
αi
φ∗αi(i) Oαi,αi φαi(i).

(A.17)

All permutations give the same result due to the single-particle nature of Ô, so
they just cancel the 1

M ! . Additionally, since the summands in Ψ(1, . . . ,M) are
orthogonal with respect to each other, only the same permutations on left and
right side of the operator give non-vanishing terms. The φαi(i) not affected by
Oαi,αi disappear due to their orthonormality. Thus, the observable reduces to
a calculation depending on the single-particle wave functions φαi(i).

As a next step, we include the time dependency of the single-particle wave func-
tions φαi(i)→ φαi(i, t). Since the time evolution considered throughout this
work is unitary, the orthonormality condition still holds, i.e. φ∗αi(i, t)φαj(j, t

′) =
δi,jδt,t′, and we can generalize

〈Ô〉(t) =
∑
αi
φ∗αi(i, t) Oαi,αi φαi(i, t). (A.18)

Note that αi labels the initial parameters of the state φαi(i, t). For our work,
αi = (ki, si) consists of the momentum ki and band index si = ± of electron i
and

φαi(i) = δ(k− ki)ϕsi(ki), (A.19)
with the spinor ϕsi(ki). Then, the φαi(i) are orthonormal,∫

dk δ(k− ki)ϕ∗si(ki) δ(k− kj)ϕsj(kj) = δki,kjδsi,sj . (A.20)

During the time evolution, the state φαi(i, t) may move around in momentum
space and/or switch between bands, but due to the unitarity of the evolution,
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the states stay orthonormal with respect to each other. In consequence,
Eq. (A.18) for the computation of observables still holds.

We can conclude that it is sufficient to calculate the time evolution of the
initially occupied single-particle states in order to obtain observables including
Pauli blocking. Since all operators of interest are diagonal in k, to reduce
computational effort we can combine all initially occupied states φki,si(i, 0) of
one band si to a wave packet and propagate them simultaneously. This leads
us to the initial wave packets

Ψ±(k, 0) = 1√
N
g±(k)ϕ±(k) (A.21)

discussed in Sec. 6.2 in the main text. The limitation to initial wave packets
only containing states from one band si is necessary however due to e.g. the
velocity operator containing off-diagonal terms in the basis of the eigenstates
ϕ±(k). Thus, unphysical interference between single-particle states φki,si(i, 0)
and φkj ,sj(j, 0) with ki = kj but si 6= sj are avoided when calculating observ-
ables. This is discussed in more detail in the main text.

A.8. Benchmarking wave-packet versus k-mask
size

A fast and simple way to check whether the momentum area within the k-mask
is covered by the wave packet Ψ−(k, t) at all times t is to compute the COM
of Ψ−(k, t) within the k-mask, i.e. 〈kx(t)〉cut introduced in Sec. 3.5. Since
the wave packet Ψ−(k, t) and the k-mask f(k) are centered around the Dirac
point k = (0, 0), 〈kx(t)〉cut ≈ 0 as long as the evaluated region is completely
filled. As demonstrated in Fig. A.6, when defining f(k) by Eq. (6.12) and
taking kx,cut = 0.16Å−1 for the system specified in Sec. 6.3.1, the condition
〈kx(t)〉cut ≈ 0 is met. Even though a remainder of the dynamics is resolved, it
is about eight orders of magnitude smaller than the k-mask boundary kx,cut.
For kx,cut = 0.17Å−1 however, we find that at times of maximal excursion of
the wave packet in momentum space the edges of the k-mask are not covered
by Ψ−(k, t) anymore. This issue is indicated by the spikes in 〈kx(t)〉cut that
lead to a change in sign and are only three orders of magnitude smaller than
kx,cut. Within this work, we only consider k-masks that show a similar behavior
as the data presented for kx,cut = 0.16Å−1. Data with spikes similar to those
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Fig. A.6: COM 〈kx(t)〉cut of Ψ−(k, t) evaluated for two k-masks with kx,cut = 0.16Å−1 and
kx,cut = 0.17Å−1, respectively. The inset is a zoom-in on the graphs. For kx,cut = 0.16Å−1

the COM is approximately zero and the k-mask region is covered by the wave packet Ψ−(k, t)
at all times t. For kx,cut = 0.17Å−1 however, at the times of maximal excursion in momentum
space the edges of the k-mask are not covered by Ψ−(k, t) anymore, resulting in spikes of the
expectation value 〈kx(t)〉cut.

for kx,cut = 0.17Å−1 or larger is discarded or recomputed for a wave packet
Ψ−(k, t) with larger bound |klim|.

A.9. Effects of velocity-data processing on
high-harmonics spectra

As sketched in Sec. 2.3.3, we take several steps to process the raw velocity
data from our numerical simulations before calculating the corresponding HHs
spectra. Oftentimes in literature, this processing is realized by multiplying the
time-dependent data with a window function [172]. Within this work, we use
the free software xmgrace [262] to compute the discrete Fourier transform of
the velocity. This program also offers various window functions, of which the
Hanning window is the most suitable for our purpose. However, in order to
have full control over the data processing, we devised our own routine instead
of using the build-in function. In this section we sketch our routine and explore
its effects on the resulting HHs spectrum. For this purpose we use the velocity
data vcut

− (t) obtained for our standard k-mask with kx,cut = 0.13Å−1 in the
setup described in Sec. 6.3. In Fig. A.7(a) we compare the processed data
to the raw data. As shown in Fig. A.7(b), we achieve spectra that have a
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Fig. A.7: Comparison of different data processing for HH-spectra computation. The velocities
are rescaled to their maximal intraband velocity before processing, vmax

x = |−0.182 56Å fs−1|.
(a) Time-resolved velocity data before and after our standard processing. The insets show
zooms on the data without zero padding and on the transition from numerical data to zero
padding with Gaussian decay. (b) HHs spectra of unprocessed and processed data compared
to the Hanning window function of xmgrace. Without processing, the HHs of the parallel
emission cannot be resolved. Our evaluation method adds small wiggles to the peaks with
ν/νel ≥ 20 and reduces the order of magnitude of the spectrum by a factor of three, but
qualitatively it is in good agreement with the Hanning window. (c) Excerpt of the velocity
data and (d) corresponding HHs spectra with Gaussian decays of different widths ∆tg. The
effects of the width is negligible as long as it is not damping most of the dynamics, compare
∆tg = 10 fs. Apart from that, only the wiggles on top of the highest-order peaks increase
in amplitude with increasing ∆tg. When no Gaussian is applied, the spectra are similar
to those of the unprocessed data, only with faster oscillations in the noise of the parallel
spectrum. The power spectrum is normalized to the first harmonic peak for ∆tg = 70 fs with
P0 = 3.4 · 10−23 W.
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significantly lower noise level in the parallel emission than the spectra of the
raw data. Additionally, our spectra are similar to those computed with the
Hanning window of xmgrace, only the overall order of magnitude is reduced
by a factor of three.

First, we interpolate the velocity data such that its time step is reduced to
δt = 0.02 fs from the original time step of the TQT simulation. This assures
that all data has the same time resolution before the Fourier transform is
applied even though the time steps of the original TQT simulations might
differ3. Since the time step is related to the frequency resolution of the discrete
Fourier transform, it is advisable to adjust it beforehand. Then, we damp the
second half of the signal with a Gaussian-shaped decay,

v(t)→ v(t) exp
−(t− t0)2

2∆tg

 , for t ≥ t0, (A.22)

where t0 is the center of the applied light pulse, compare Eq. (6.9). The purpose
of this damping is to reduce the signal to its initial, constant value after a finite
time, thus decreasing the noise level of the HH spectrum. From a physical
perspective, the Gaussian decay mimics dephasing on a very basic level, since it
assures that all dynamics decay within a finite time but without distinguishing
the underlying scattering and decoherence mechanisms. In Fig. A.7(c) we
compare the velocity data multiplied with Gaussians of different width ∆tg.
For the spectra shown in this work, we use t0 = 140 fs and ∆tg = t0/2.
However, as demonstrated in Fig. A.7(d), the exact value of ∆tg is almost
irrelevant. The only exception is that tg must not be so short that it dampens
out almost all dynamics of the second pulse half, as tg = 10 fs here. On the
other hand, even a Gaussian of width ∆tg = 30∆t, where ∆t = 40 fs is the
width of the electric field pulse (6.9), has the desired effect of decreasing the
noise level. Lastly, we pad the velocity data with zeros before and after the
actual dynamics to further increase the quality and resolution of the spectrum,
similar to the effect of a Hanning window. Within this work, we choose the
padding such that the total data set extends from −5000 fs to 5000 fs with a
time step of δt = 0.02 fs. Since the TQT simulation ends at t = 300 fs and the
signal usually has not fully decayed to zero by then even with the Gaussian
damping (A.22), the zero padding after the pulse is actually defined by the
tail of the Gaussian,

v(t) = v(t = 300 fs) exp
−(t− t0)2

2∆tg

 , for t ≥ 300 fs, (A.23)

3Note that for the simulation we always try to take the largest time step possible to decrease computation
time while still obtaining a numerically stable propagation. Accordingly, the time step increases with
decreasing field strength for the HH calculations.
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Eel [MV/cm] Nx ×Ny δx [Å] δy [Å] δt [fs] |klim| [Å
−1] kx,cut [Å

−1]

0.1 2048× 1024 6 10 0.5 0.15 0.05
0.2 2048× 1024 6 10 0.2 0.15 0.07
0.3 2048× 1024 6 10 0.2 0.15 0.09
0.4 2048× 1024 6 10 0.1 0.22 0.11
0.5 2048× 1024 6 10 0.1 0.22 0.13
0.6 4096× 4096 6 6 0.03 0.35 0.15
0.7 4096× 4096 6 6 0.03 0.35 0.17
0.8 4096× 4096 6 6 0.03 0.35 0.19
0.9 4096× 4096 6 6 0.03 0.35 0.21
1.0 4096× 4096 6 6 0.03 0.35 0.21

Tab. A.2: Parameters of the Fermi sea simulations for different field strengths.

with v(t = 300 fs) being the last data point from the TQT simulation. This
procedure leads to a small bend in the time-resolved data as shown in the
inset of Fig. A.7(a).

A.10. Peak-field dependent simulation
parameters for the Fermi sea method

In Chap. 6 we evaluate HHG from a Fermi sea of Bi2Te3 surface states. Most
of our simulations focus on a peak field Eel = 0.5 MV cm−1, but in Sec. 6.6 we
also investigate how the results depend on the field strength Eel. In Tab. A.2
we summarize the parameters we used for our TQT simulations, including
the outer limit |klim| of the wave packet as defined in Eq. (6.10) and the
boundary kx,cut of the k-mask for which we achieved convergence as discussed
in Sec. 6.3.3. Note that we optimized the parameters for Eel = 0.1, 0.3, 0.5, and
1.0 MV cm−1 to shorten the computational time. For the other field strengths
we simply used the parameters such that the calculations are stable and the
wave packets are sufficiently large to cover all relevant transitions, but the
computational time could be reduced by fine tuning of the wave-packet and
grid size as well as the time step δt.
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Eel [MV/cm] P0 [W] P9/P0 P10/P0 P14/P0 P15/P0

0.1 2.1 · 10−24 3.0 · 10−7 5.8 · 10−10 6.5 · 10−13 –
0.2 9.9 · 10−24 2.0 · 10−5 1.1 · 10−6 6.1 · 10−9 –
0.3 3.2 · 10−23 3.0 · 10−5 1.6 · 10−5 3.7 · 10−7 1.9 · 10−7

0.4 1.6 · 10−23 1.6 · 10−5 2.9 · 10−5 7.7 · 10−6 2.2 · 10−6

0.5 3.4 · 10−23 4.0 · 10−6 2.9 · 10−5 1.5 · 10−5 2.4 · 10−6

0.6 9.2 · 10−24 3.2 · 10−6 1.6 · 10−5 1.5 · 10−5 1.3 · 10−6

0.7 1.5 · 10−23 2.6 · 10−5 4.6 · 10−5 9.2 · 10−6 4.7 · 10−7

0.8 2.2 · 10−23 1.5 · 10−4 2.7 · 10−4 6.6 · 10−6 2.4 · 10−7

0.9 3.1 · 10−23 4.4 · 10−4 9.0 · 10−4 4.3 · 10−6 1.7 · 10−7

1.0 4.6 · 10−23 8.3 · 10−4 3.4 · 10−3 3.9 · 10−5 6.1 · 10−7

Tab. A.3: High-harmonic powers of the Fermi sea simulations for different field strengths.

Table A.3 contains the powers P0 of the first harmonic of the HHs spectra
for the different field strengths. We use these values to normalize the results
shown in Fig. 6.12 in the main text. Additionally, in Tab. A.3 we summarize
the normalized powers of the harmonic orders 9, 10, 14, and 15 as plotted in
the inset of Fig. 6.12(a). Note that the values are rounded to one digit since
the readout is not precise as it is difficult to determine the exact maximum of
the harmonic peaks. Nevertheless, the data allows for deducing a trend for
the scaling of the harmonic peaks with the field strength.

A.11. Velocity renormalization for Fermi energy
sweeps

In Sec. 6.7 we study the influence of the Fermi energy EF on the HHs
emitted from the Bi2Te3 surface states. For computing the total velocity
v(t) = v+(t) + vcut

− (t) of the Fermi sea for EF > 0, we have to make v+(t)
and vcut

− (t) comparable. In order to compensate for the different sizes of the
propagated wave packets Ψ±(k, t), we renormalize v+(t) with the norm N+ of
Ψ+(k, t) and then divide it by the norm N cut

− (EF = 0) of Ψ−(k, t) inside the
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kF [Å−1] N+ N cut
− N cut

− (EF = 0)

0.02 4008 170 867 174 878
0.04 16 027 158 843 174 878
0.06 36 092 138 733 174 878
0.08 64 309 110 205 174 878

Tab. A.4: Norms of the different wave packets employed for calculating HHG from Bi2Te3
surface states for different Fermi energies EF. The Fermi energies are defined by the Fermi
wave vector kF = (kF, 0) on the kx axis as EF = E±(kF), where “+” describes a positive and
“−” a negative Fermi energy. N+ denotes the norm for the case EF > 0, whereas N cut

− is the
norm inside the k-mask for EF < 0. The reference norm for EF = 0 is N cut

− (EF = 0).

k-mask4. This gives the total velocity

v(t) = N+

N cut
− (EF = 0)v+(t) + vcut

− (t). (A.24)

Since for all explored cases with EF > 0 we can use the same wave packet
Ψ−(k, 0), this renormalization of v+(t) also ensures the comparability of the
total velocities v(t) for different positive Fermi energies. To achieve this
comparability for the negative Fermi energies as well, we also rescale the
corresponding velocities vcut

− (t) for EF < 0. We thus multiply vcut
− (t) with

their respective norm N cut
− (EF) inside the k-mask and then divide the result

by the norm5 N cut
− (EF = 0) of the wave packet propagated for EF = 0. In

Tab. A.4 we summarize the different values relevant for this renormalization.
We define the Fermi energy EF by the Fermi wave vector kF = (kF, 0) on the
kx axis as EF = E±(kF), where “+” describes a positive and “−” a negative
Fermi energy. Then, we can write the norm N+ for the case EF > 0 and the
norm N cut

− inside the k-mask for EF < 0 in one row. In the end, all data sets
are normalized relative to the wave packet propagated for EF = 0, which also
constitutes Ψ−(k, t) for the calculations with positive Fermi energy. Its norm
is denoted as N cut

− (EF = 0).

4We denote the norm like the one for EF = 0 here since the wave packets Ψ−(k, t) are the same for both
cases.

5This norm is equal to the one for Ψ−(k, t) in the case of positive Fermi energy.
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x1 x2 x3 x4 x5 x6 x7

Vp(x, t)

VB VB
I

II

III

IV

V

p1 p2p3 p4p5

Fig. A.8: Sketch of the simulated Fabry-Perot system with applied pulse Vp(t). The ansatz
for the scattering state in TQT is split into the regions I-V. The time dependent local density
of the total state Ψn(x, t) at initial energy En is measured at the points 1-7. The height of
the barriers is given by VB and their width by d = 3a0. The length of the cavity is l = 70a0.
The points p1 - p5 marked in red refer to the origin of the wave functions for transport from
left to right. The points x1 - x7 indicate where we compare the local densities computed in
TQT and Tkwant.

A.12. Testing the Lanczos Source propagator

A.12.1. Constructing the test system in TQT and Tkwant

In order to test the Lanczos Source propagator, we employ the Fabry-Perot
setup studied in Ref. [264] using Tkwant. In collaboration with Geneviève
Fleury from CEA-Saclay we set up the 1D Fabry-Perot system in Tkwant
and adapt the tight-binding system to a continuum model. The latter we
implement in TQT. For the sake of simplicity, we choose the lattice constant
a0 = 1 in both programs and thus all spatial coordinates are equal. A sketch
of the system is shown in Fig. A.8. We set the width d of the barriers of height
VB to d = 3a0 and the length l of the cavity to l = 70a0.

The tight-binding Hamiltonian in Tkwant is

H0 = −γ
∑
i

c†ici+1 +
∑
i

(2γ + Vi) c†ici, (A.25)

where γ = 1 is the nearest neighbor hopping (and unit of energy), 2γ the
uniform onsite potential and Vi an additional potential defining the barriers
VB around x3 and x5. For all other lattice sites i, Vi = 0 and the eigenenergies
are

E(k) = 2γ(1− cos(ka0)). (A.26)
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To achieve a similar bandstructure (at least for low energies) in TQT we take
the Hamiltonian

H0 = γk2 + VB(x), (A.27)
where γ = ~ since the TQT algorithm scales all energies with ~, and
VB(x) = VB at the same lattice sites as in the Tkwant system and VB(x) = 0
otherwise. For VB(x) = 0 we get the eigenenergies

E(k) = γk2. (A.28)

When comparing the results for TQT and Tkwant we have to keep in mind
that the systems are only equivalent for small energies.

The pulse Vp(x, t) which excites a wave packet ψn(x, t) from the plane wave
ϕn(x) is defined as

Vp(x, t) = Vp exp
−4 log(2)(t− 3τp)2

τ 2
p

 exp
−(x− x2)2

2∆x2

 , (A.29)

with τp/~ = 10/γ, x2 = −50a0 and ∆x = 10a0 both in TQT and tkwant.

A.12.2. Computing the scattering states for TQT

Tkwant uses Kwant [186] routines to calculate the scattering states of the
static system which are then used as basis for the Fermi sea calculations. In
TQT we either have to use wave-packet-based approaches already implemented
by Krückl or to analytically define the scattering states. For the Fabry-Perot
system we go for the analytical solution. We separate our system into five
regions labeled by I-V in Fig. A.8 and make the plane wave ansatz

ϕI(x) = a exp (ik(x− p1)) + b exp (−ik(x− p1)) ,
ϕII(x) = c exp (iκ(x− p2)) + d exp (−iκ(x− p2)) ,
ϕIII(x) = e exp (ik(x− p3)) + f exp (−ik(x− p3)) ,
ϕIV (x) = g exp (iκ(x− p4)) + h exp (−iκ(x− p4)) ,
ϕV (x) = j exp (ik(x− p5)) +m exp (−ik(x− p5)) .

(A.30)

The origins p1 - p5 are marked in red in Fig. A.8. When considering transport
from the left to the right side of the system – which is equivalent to the
transmission from left to right lead in Tkwant – we can choose a freely and
set m = 0. Comparison to the Tkwant scattering states suggests to use
a = −1. The initial energy En of the static state defines k =

√
En/γ and
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κ =
√

(En − VB)/γ. The origin p1 = −110a0 − a0/2 is given by the left edge
of the scattering region in Tkwant. The other parameters are defined by the
barrier positions p2 = 0− a0/2, p3 = p2 + d, p4 = p3 + l, p5 = p4 + d. The shift
by a0/2 is necessary since in Tkwant all potentials effectively begin in the
middle of two lattice sites. The points p2, p3, p4 and p5 also mark the positions
where we have to match the wave functions of the neighboring regions. They
have to fulfill

ϕA(pi) = ϕA−1(pi) and ϕ′A(pi) = ϕ′A−1(pi), (A.31)

where A ∈ [II, III, IV, V ] and pi ∈ [p2, p3, p4, p5]. We use the matching
conditions to compute the prefactors b, c, d, e, f, g, h and j in Mathematica
[239].

Our final goal is to compute observables for a band filled up to the Fermi
energy EF. For this we also need the scattering states for transport from
the right to the left side of the system, i. e. the equivalent of transmission
from right to left lead in Tkwant. Since for this case we plug in negative
values for k, we set j = −1 and b = 0. To be consistent with the phases in
Tkwant, we have to shift ϕV (x) such that its origin lies at the right edge of
the scattering region in Tkwant, meaning p5 → p5 + 110a0. Note that the
matching conditions and the ansatz for the wave functions in other regions
remain the same for both directions.

A.12.3. Comparison of the TQT and Tkwant results for a
single k-mode

For comparing our TQT results to those from Tkwant and thus verifying that
our Lanczos Source propagator works, we run tests for different pulse strengths
Vp and barrier heights VB. As initial energy we choose En = 0.00747759γ. The
observable we compare is the local density |Ψ(xi, t)|2 = | exp(−iEnt)(ψ(xi, t) +
ϕ0(xi))|2 = |ψ(xi, t) +ϕ0(xi)|2, where ϕ0(x) is the scattering state constructed
in Sec. A.12.2 and ψ(x, t) the time dependent state computed by the Lanczos
Source propagator. In Tkwant we obtain the same quantity by evaluating
the implemented density operator for a one-body scattering state with initial
energy En. For the points xi we choose the positions marked in Fig. A.8,
namely x1 = −110a0, x2 = −50a0, x3 = 1a0, x4 = 38a0, x5 = 74a0, x6 = 86a0
and x7 = 186a0.

We expect the best agreement for small energies En, relatively weak barriers
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TQT,Vp= -0.015
tkwant,Vp= -0.0105
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Fig. A.9: Comparison between TQT and Tkwant results for VB = 0.01γ and different
strengths of Vp. Besides a phase shift that appears after the first barrier, the results show
good agreement.
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Fig. A.10: Comparison between TQT and Tkwant results for VB = 0.01γ at x7 for (a) all
pulse strengths Vp and short propagation times and (b) Vp = ±0.0105 and long propagation
times.

VB and small pulse strength Vp since the band structures are only in good
agreement up to certain values of k. This is confirmed by first results shown in
Fig. A.9. The results for the left and inside of the first barrier, see panels (a),
(b), and (c), agree almost perfectly for all pulse strengths Vp. Then, in panels
(d), (e), and (f), at least for the larger pulse strengths, some phase shift starts
to enter. This shift is most probably a result of the dispersion inside the barrier
and seems to only appear at the beginning of the signal. Since at position x7
we only record the beginning of the signal when calculating up to t = 300, we
repeat the calculations for larger propagation times. In Fig. A.10(a) we show
the results for all pulse strengths for the shorter propagation times and in
Fig. A.10(b) we illustrate the longer propagation times for the smallest pulse
strength Vp since there the agreement should be best. Indeed, the results agree
quite nicely which suggests that our Lanczos Source propagator is working.

A.12.4. Comparison of the TQT and Tkwant results for a
Fermi sea

Our last step in testing the Lanczos Source propagator is to take the results
for single k modes and to integrate over them as derived in App. A.7 in order
to compute observables for a Fermi sea. For direct comparison with Tkwant,
we have to adjust the formulation to the notation used in the Tkwant source
code. There, the expectation value of an operator Ô for a Fermi sea is defined
as

〈Ô〉(t) =
∑
α

∫ dE
2π fα(E)〈ΨαE(t)|Ô|ψαE(t)〉, (A.32)
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Fig. A.11: Comparison between TQT and Tkwant results for VB = 0.01γ, Vp = 0.0105,
integrated from k0 = ±0.0001/a0 to kn = ±0.1201/a0 using a Gauss-Kronrod scheme of order
m = 21. In panel (a) the results are all rescaled to 1 whereas in panel (b) the normalization
of the states in TQT is compensated by multiplying the results by the grid size. Due to
the smaller scale of the resulting plot, mismatches are resolved more clearly than in the
comparison in panel (a). However, the overall good agreement shows that the Lanczos Source
propagator and the Gauss-Kronrod integration scheme are working.

where α labels the incoming channel, E the initial energy of the mode, and
fα(E) is the Fermi function of the lead associated with α. To translate
this to TQT, we have to move from an energy-dependent description to a
momentum-dependent one. Since our energy dispersion is parabolic, every
energy E is connected to two k values with opposite sign. To rewrite the
integral from energy to k space, we have to substitute ∫ dE → ∫ 2γk dk. Note
that according to our definition of the scattering states in App. A.12.2, the
positive (negative) k value corresponds to transport from left (right) to right
(left) lead and thus is equivalent to the sum over leads α in Eq. (A.32). In
TQT, we hence calculate the observable 〈Ô〉(t) as

〈Ô〉(t) =
∫ 0

−kF

2γk
2π 〈Ψk(t)|Ô|Ψk(t)〉 dk +

∫ kF
0

2γk
2π 〈Ψk(t)|Ô|Ψk(t)〉 dk, (A.33)

where we insert the Fermi distribution function fα(E) for T = 0 in the
following. Since in Tkwant the scattering states are normalized with respect
to their velocity, we have to divide our TQT results |Ψk(t)〉 by

√
dE
dk =

√
2γk

before performing the integral. Additionally, TQT normalizes the states with
respect to the grid, which defines the scaling factor Nx ·Ny, where Nx and Ny

are the number of TQT grid points in x and y direction, respectively, between
the observables in TQT and Tkwant.

To perform the integration in a numerically efficient way, we subdivide the
integral region into n intervals and use the Gauss-Kronrod method from
Tkwant on each interval to choose the k modes kj we want to sample over
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and to obtain weights wj for each point. It is then sufficient to compute the
time evolution for the modes kj and the integral can be approximated as

∫ kn
k0
f(k) dk =

n−1∑
i=0

∫ ki+1

ki
f(k) dk ≈

n−1∑
i=0

∑
ki≤kj<ki+1

f(kj)wj, (A.34)

where kn = kF . First, we have to check our results for convergence. Conve-
niently, the Gauss-Kronrod routine of Tkwant directly delivers the weights
for the expansion of order m and 2m + 1. If the results are the same for
both orders, convergence is achieved. For the Fabry-Perot system we obtain
convergence for m = 21 per interval and n = 4 intervals, integrating from
k0 = ±0.0001/a0 to kn = ±0.1201/a0 and taking the parameters Vp = 0.0105
and VB = 0.01γ, which already showed good agreement with Tkwant for
the single k mode evaluation in Sec. A.12.3. For this specific case, we have to
run TQT for 344 k modes. We choose k0 = ±0.0001/a0 as lower boundary
of the integral to avoid numerical issues with the band bottom. For the
time-independent case cross checking with Mathematica showed that this gives
approximately the same results for the density as integrating from k0 = 0
to kn. The results are shown in Fig. A.11. In panel (a) we rescaled all final
results to one for better comparability. In panel (b) we did the rescaling as
supposed by the different normalizations, i.e. by simply multiplying the TQT
results by the grid size. The qualitative agreement is good in both cases. Note
that in the second case the scaling is small as compared to panel (a) such
that even a small mismatch is resolved. Nonetheless, we are content with the
agreement we achieved and are convinced that our Lanczos Source propagator
as well as the Gauss-Kronrod integration scheme are working.





Bibliography

[1] C. B. Boyer, The rainbow: From myth to mathematics (T. Yoseloff,
1959).

[2] K. Hentschel, Mapping the spectrum: Techniques of visual representation
in research and teaching (Oxford University Press, 2002).

[3] G. Kirchhoff, “Über die Fraunhofer’schen Linien”, Ber. Akad. Wiss.
Berlin, 662–665 (1859).

[4] J. C. Maxwell, “VIII. a dynamical theory of the electromagnetic field”,
Phil. Trans. R. Soc. 155, 459–512 (1865).

[5] M. Planck, “Ueber das Gesetz der Energieverteilung im Normalspec-
trum”, Ann. Phys. 309, 553–563 (1901).

[6] A. Einstein, “Über einen die Erzeugung und Verwandlung des Lichtes
betreffenden heuristischen Gesichtspunkt”, Ann. Phys. 322, 132–148
(1905).

[7] A. Einstein, “Zur Quantentheorie der Strahlung”, Phys. Z. 18, 121–128
(1917).

[8] J. P. Gordon, H. J. Zeiger, and C. H. Townes, “Molecular microwave
oscillator and new hyperfine structure in the microwave spectrum of
NH3”, Phys. Rev. 95, 282 (1954).

[9] T. H. Maiman, “Stimulated optical radiation in ruby”, Nature 187,
493–494 (1960).

[10] J. M. Dudley, “Light, Lasers, and the Nobel Prize”, Adv. Photonics 2,
050501 (2020).

[11] The Nobel Commitee for Physics, “For experimental methods that
generate attosecond pulses of light for the study of electron dynamics
in matter”, Scientific Background (2023).

[12] M. Ferray, A. L’Huillier, X. F. Li, L. A. Lompre, G. Mainfray, and
C. Manus, “Multiple-harmonic conversion of 1064 nm radiation in rare
gases”, J. Phys. B: At. Mol. Opt. Phys. 21, L31 (1988).

https://www.biodiversitylibrary.org/item/41575#page/680/mode/1up
https://www.biodiversitylibrary.org/item/41575#page/680/mode/1up
http://dx.doi.org/10.1098/RSTL.1865.0008
http://dx.doi.org/10.1002/ANDP.19013090310
http://dx.doi.org/10.1002/ANDP.19053220607
http://dx.doi.org/10.1002/ANDP.19053220607
http://dx.doi.org/10.1103/PhysRev.95.282
http://dx.doi.org/10.1038/187493a0
http://dx.doi.org/10.1038/187493a0
http://dx.doi.org/10.1117/1.AP.2.5.050501
http://dx.doi.org/10.1117/1.AP.2.5.050501
https://www.nobelprize.org/prizes/physics/2023/press-release/
http://dx.doi.org/10.1088/0953-4075/21/3/001


200 Bibliography

[13] T. W. Hänsch, “A proposed sub-femtosecond pulse synthesizer using
separate phase-locked laser oscillators”, Opt. Commun. 80, 71–75 (1990).

[14] G. Farkas and C. Tóth, “Proposal for attosecond light pulse generation
using laser induced multiple-harmonic conversion processes in rare
gases”, Phys. Lett. A 168, 447–450 (1992).

[15] S. E. Harris, J. J. Macklin, and T. W. Hänsch, “Atomic scale temporal
structure inherent to high-order harmonic generation”, Opt. Commun.
100, 487–490 (1993).

[16] A. L’Huillier, K. J. Schafer, and K. C. Kulander, “Theoretical aspects
of intense field harmonic generation”, J. Phys. B: At. Mol. Opt. Phys.
24, 3315 (1991).

[17] K. J. Schafer, B. Yang, L. F. Dimauro, and K. C. Kulander, “Above
threshold ionization beyond the high harmonic cutoff”, Phys. Rev. Lett.
70, 1599 (1993).

[18] P. B. Corkum, “Plasma perspective on strong field multiphoton ioniza-
tion”, Phys. Rev. Lett. 71, 1994 (1993).

[19] M. Lewenstein, P. Balcou, M. Y. Ivanov, A. L’Huillier, and P. B. Corkum,
“Theory of high-harmonic generation by low-frequency laser fields”, Phys.
Rev. A 49, 2117 (1994).

[20] M. Bellini, C. Lyngå, A. Tozzi, M. B. Gaarde, T. W. Hänsch, A.
L’Huillier, and C. G. Wahlström, “Temporal coherence of ultrashort
high-order harmonic pulses”, Phys. Rev. Lett. 81, 297 (1998).

[21] J. M. Schins, P. Breger, P. Agostini, R. C. Constantinescu, H. G. Muller,
G. Grillon, A. Antonetti, and A. Mysyrowicz, “Observation of laser-
assisted Auger decay in argon”, Phys. Rev. Lett. 73, 2180 (1994).

[22] M. Hentschel, R. Kienberger, C. Spielmann, G. A. Reider, N. Milosevic,
T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz,
“Attosecond metrology”, Nature 414, 509–513 (2001).

[23] P. M. Paul, E. S. Toma, P. Breger, G. Mullot, F. Augé, P. Balcou, H. G.
Muller, and P. Agostini, “Observation of a train of attosecond pulses
from high harmonic generation”, Science 292, 1689–1692 (2001).

[24] G. Floquet, “Sur les équations différentielles linéaires à coefficients
périodiques”, Ann. Sci. Éc. Norm. Supér. 12, 47–88 (1883).

[25] J. H. Shirley, “Solution of the Schrödinger equation with a Hamiltonian
periodic in time”, Phys. Rev. 138, B979 (1965).

[26] Y. B. Zel’dovich, “The quasienergy of a quantum-mechanical system
subjected to a periodic action”, Sov. Phys. JETP 24, 1006 (1967).

http://dx.doi.org/10.1016/0030-4018(90)90509-R
http://dx.doi.org/10.1016/0375-9601(92)90534-S
http://dx.doi.org/10.1016/0030-4018(93)90250-9
http://dx.doi.org/10.1016/0030-4018(93)90250-9
http://dx.doi.org/10.1088/0953-4075/24/15/004
http://dx.doi.org/10.1088/0953-4075/24/15/004
http://dx.doi.org/10.1103/PhysRevLett.70.1599
http://dx.doi.org/10.1103/PhysRevLett.70.1599
http://dx.doi.org/10.1103/PhysRevLett.71.1994
http://dx.doi.org/10.1103/PhysRevA.49.2117
http://dx.doi.org/10.1103/PhysRevA.49.2117
http://dx.doi.org/10.1103/PhysRevLett.81.297
http://dx.doi.org/10.1103/PhysRevLett.73.2180
http://dx.doi.org/10.1038/35107000
http://dx.doi.org/10.1126/SCIENCE.1059413
http://dx.doi.org/10.24033/asens.220
http://dx.doi.org/https://doi.org/10.1103/PhysRev.138.B979


Bibliography 201

[27] H. Sambe, “Steady states and quasienergies of a quantum-mechanical
system in an oscillating field”, Phys. Rev. A 7, 2203 (1973).

[28] S. I. Chu and D. A. Telnov, “Beyond the Floquet theorem: Generalized
Floquet formalisms and quasienergy methods for atomic and molecular
multiphoton processes in intense laser fields”, Phys. Rep. 390, 1–131
(2004).

[29] N. Tzoar and J. I. Gersten, “Theory of electronic band structure in
intense laser fields”, Phys. Rev. B 12, 1132 (1975).

[30] M. Z. Hasan and C. L. Kane, “Colloquium: Topological insulators”,
Rev. Mod. Phys. 82, 3045 (2010).

[31] X. L. Qi and S. C. Zhang, “Topological insulators and superconductors”,
Rev. Mod. Phys. 83, 1057 (2011).

[32] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and
A. K. Geim, “The electronic properties of graphene”, Rev. Mod. Phys.
81, 109 (2009).

[33] N. P. Armitage, E. J. Mele, and A. Vishwanath, “Weyl and Dirac
semimetals in three-dimensional solids”, Rev. Mod. Phys. 90, 015001
(2018).

[34] B. Yan and C. Felser, “Topological materials: Weyl semimetals”, Annu.
Rev. Condens. Matter Phys. 8, 337–354 (2017).

[35] M. Imada, A. Fujimori, and Y. Tokura, “Metal-insulator transitions”,
Rev. Mod. Phys. 70, 1039 (1998).

[36] T. Oka and S. Kitamura, “Floquet engineering of quantum materials”,
Annu. Rev. Condens. Matter Phys. 10, 387–408 (2019).

[37] K. von Klitzing, G. Dorda, and M. Pepper, “New method for high-
accuracy determination of the fine-structure constant based on quantized
Hall resistance”, Phys. Rev. Lett. 45, 494 (1980).

[38] D. C. Tsui, H. L. Stormer, and A. C. Gossard, “Two-dimensional
magnetotransport in the extreme quantum limit”, Phys. Rev. Lett. 48,
1559 (1982).

[39] C. L. Kane and E. J. Mele, “Z2 topological order and the quantum spin
hall effect”, Phys. Rev. Lett. 95, 146802 (2005).

[40] B. A. Bernevig, T. L. Hughes, and S.-C. Zhang, “Quantum spin Hall
effect and topological phase transition in HgTe quantum wells”, Science
314, 1757–1761 (2006).

http://dx.doi.org/10.1103/PhysRevA.7.2203
http://dx.doi.org/10.1016/j.physrep.2003.10.001
http://dx.doi.org/10.1016/j.physrep.2003.10.001
http://dx.doi.org/10.1103/PhysRevB.12.1132
http://dx.doi.org/https://doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/https://doi.org/10.1103/RevModPhys.83.1057
http://dx.doi.org/https://doi.org/10.1103/RevModPhys.81.109
http://dx.doi.org/https://doi.org/10.1103/RevModPhys.81.109
http://dx.doi.org/https://doi.org/10.1103/RevModPhys.90.015001
http://dx.doi.org/https://doi.org/10.1103/RevModPhys.90.015001
http://dx.doi.org/10.1146/ANNUREV-CONMATPHYS-031016-025458
http://dx.doi.org/10.1146/ANNUREV-CONMATPHYS-031016-025458
http://dx.doi.org/10.1103/RevModPhys.70.1039
http://dx.doi.org/https://doi.org/10.1146/annurev-conmatphys-031218-013423
http://dx.doi.org/10.1103/PhysRevLett.45.494
http://dx.doi.org/10.1103/PhysRevLett.48.1559
http://dx.doi.org/10.1103/PhysRevLett.48.1559
http://dx.doi.org/10.1103/PhysRevLett.95.146802
http://science.sciencemag.org/content/314/5806/1757
http://science.sciencemag.org/content/314/5806/1757


202 Bibliography

[41] M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L. W.
Molenkamp, X.-L. Qi, and S.-C. Zhang, “Quantum spin Hall insulator
state in HgTe quantum wells”, Science 318, 766–770 (2007).

[42] Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer,
Y. S. Hor, R. J. Cava, and M. Z. Hasan, “Observation of a large-gap
topological-insulator class with a single Dirac cone on the surface”, Nat.
Phys. 5, 398–402 (2009).

[43] Y. L. Chen, J. G. Analytis, J. H. Chu, Z. K. Liu, S. K. Mo, X. L. Qi,
H. J. Zhang, P. H. Lu, X. Dai, Z. Fang, S. C. Zhang, I. R. Fisher, Z. Hus-
sain, and Z. X. Shen, “Experimental realization of a three-dimensional
topological insulator, Bi2Te3”, Science 325, 178–181 (2009).

[44] D. Hsieh, Y. Xia, D. Qian, L. Wray, F. Meier, J. H. Dil, J. Osterwalder,
L. Patthey, A. V. Fedorov, H. Lin, A. Bansil, D. Grauer, Y. S. Hor,
R. J. Cava, and M. Z. Hasan, “Observation of time-reversal-protected
single-Dirac-cone topological-insulator states in Bi2Te3 and Sb2Te3”,
Phys. Rev. Lett. 103, 146401 (2009).

[45] D. A. Kozlov, Z. D. Kvon, E. B. Olshanetsky, N. N. Mikhailov, S. A.
Dvoretsky, and D. Weiss, “Transport properties of a 3D topological
insulator based on a strained high-mobility HgTe film”, Phys. Rev. Lett.
112, 196801 (2014).

[46] F. D. M. Haldane, “Model for a quantum Hall effect without Landau
levels: Condensed-matter realization of the "parity anomaly"”, Phys.
Rev. Lett. 61, 2015 (1988).

[47] F. D. M. Haldane, “Nobel lecture: Topological quantum matter”, Rev.
Mod. Phys. 89, 040502 (2017).

[48] T. Jungwirth, Q. Niu, and A. H. MacDonald, “Anomalous Hall effect
in ferromagnetic semiconductors”, Phys. Rev. Lett. 88, 207208 (2002).

[49] N. Nagaosa, J. Sinova, S. Onoda, A. H. Macdonald, and N. P. Ong,
“Anomalous Hall effect”, Rev. Mod. Phys. 82, 1538 (2010).

[50] R. Peierls, “Quelques propriétés typiques des corps solides”, Annales de
l’I. H. P. 5, 177–222 (1935).

[51] L. Landau, “On the theory of phase transitions”, Phys. Z. Sowjetunion
11, 19–32 (1937).

[52] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V.
Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in
atomically thin carbon films”, Science 306, 666–669 (2004).

http://science.sciencemag.org/content/318/5851/766
http://dx.doi.org/10.1038/nphys1274
http://dx.doi.org/10.1038/nphys1274
http://dx.doi.org/10.1126/science.1173034
http://dx.doi.org/10.1103/PhysRevLett.103.146401
http://dx.doi.org/10.1103/PhysRevLett.112.196801
http://dx.doi.org/10.1103/PhysRevLett.112.196801
http://dx.doi.org/10.1103/PhysRevLett.61.2015
http://dx.doi.org/10.1103/PhysRevLett.61.2015
http://dx.doi.org/https://doi.org/10.1103/RevModPhys.89.040502
http://dx.doi.org/https://doi.org/10.1103/RevModPhys.89.040502
http://dx.doi.org/10.1103/PhysRevLett.88.207208
http://dx.doi.org/10.1103/RevModPhys.82.1539
http://dx.doi.org/10.1016/B978-0-08-010586-4.50034-1
http://dx.doi.org/10.1016/B978-0-08-010586-4.50034-1
http://science.sciencemag.org/content/306/5696/666


Bibliography 203

[53] J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth,
and S. Roth, “The structure of suspended graphene sheets”, Nature
446, 60–63 (2007).

[54] T. Oka and H. Aoki, “Photovoltaic Hall effect in graphene”, Phys. Rev.
B 79, 081406(R) (2009).

[55] J. W. McIver, B. Schulte, F. U. Stein, T. Matsuyama, G. Jotzu, G. Meier,
and A. Cavalleri, “Light-induced anomalous Hall effect in graphene”,
Nat. Phys. 16, 38–41 (2020).

[56] N. H. Lindner, G. Refael, and V. Galitski, “Floquet topological insulator
in semiconductor quantum wells”, Nat. Phys. 7, 490–495 (2011).

[57] T. Kitagawa, M. A. Broome, A. Fedrizzi, M. S. Rudner, E. Berg, I.
Kassal, A. Aspuru-Guzik, E. Demler, and A. G. White, “Observation
of topologically protected bound states in photonic quantum walks”,
Nat. Commun. 3, 882 (2012).

[58] W. Hu, J. C. Pillay, K. Wu, M. Pasek, P. P. Shum, and Y. D. Chong,
“Measurement of a topological edge invariant in a microwave network”,
Phys. Rev. X 5, 011012 (2015).

[59] L. J. Maczewsky, J. M. Zeuner, S. Nolte, and A. Szameit, “Observation
of photonic anomalous Floquet topological insulators”, Nat. Commun.
8, 13756 (2017).

[60] S. Mukherjee, A. Spracklen, M. Valiente, E. Andersson, P. Öhberg, N.
Goldman, and R. R. Thomson, “Experimental observation of anoma-
lous topological edge modes in a slowly driven photonic lattice”, Nat.
Commun. 8, 13918 (2017).

[61] A. D’Errico, F. Cardano, M. Maffei, A. Dauphin, R. Barboza, C. Es-
posito, B. Piccirillo, M. Lewenstein, P. Massignan, and L. Marrucci,
“Two-dimensional topological quantum walks in the momentum space
of structured light”, Optica 7, 108 (2020).

[62] Y. G. Peng, C. Z. Qin, D. G. Zhao, Y. X. Shen, X. Y. Xu, M. Bao, H.
Jia, and X. F. Zhu, “Experimental demonstration of anomalous Floquet
topological insulator for sound”, Nat. Commun. 7, 13368 (2016).

[63] K. Wintersperger, C. Braun, F. N. Ünal, A. Eckardt, M. D. Liberto, N.
Goldman, I. Bloch, and M. Aidelsburger, “Realization of an anomalous
Floquet topological system with ultracold atoms”, Nat. Phys. 16, 1058–
1063 (2020).

[64] F. N. Ünal, B. Seradjeh, and A. Eckardt, “How to directly measure
Floquet topological invariants in optical lattices”, Phys. Rev. Lett. 122,
253601 (2019).

http://dx.doi.org/10.1038/nature05545
http://dx.doi.org/10.1038/nature05545
http://dx.doi.org/10.1103/PhysRevB.79.081406
http://dx.doi.org/10.1103/PhysRevB.79.081406
http://dx.doi.org/10.1038/s41567-019-0698-y
http://dx.doi.org/10.1038/nphys1926
http://dx.doi.org/https://doi.org/10.1038/ncomms1872
http://dx.doi.org/10.1103/PhysRevX.5.011012
http://dx.doi.org/10.1038/NCOMMS13756
http://dx.doi.org/10.1038/NCOMMS13756
http://dx.doi.org/10.1038/ncomms13918
http://dx.doi.org/10.1038/ncomms13918
http://dx.doi.org/10.1364/OPTICA.365028
http://dx.doi.org/10.1038/NCOMMS13368
http://dx.doi.org/10.1038/s41567-020-0949-y
http://dx.doi.org/10.1038/s41567-020-0949-y
http://dx.doi.org/10.1103/PhysRevLett.122.253601
http://dx.doi.org/10.1103/PhysRevLett.122.253601


204 Bibliography

[65] M. S. Rudner, N. H. Lindner, E. Berg, and M. Levin, “Anomalous
edge states and the bulk-edge correspondence for periodically driven
two-dimensional systems”, Phys. Rev. X 3, 031005 (2013).

[66] T. Kitagawa, E. Berg, M. Rudner, and E. Demler, “Topological charac-
terization of periodically driven quantum systems”, Phys. Rev. B 82,
235114 (2010).

[67] A. P. Schnyder, S. Ryu, A. Furusaki, and A. W. Ludwig, “Classifi-
cation of topological insulators and superconductors in three spatial
dimensions”, Phys. Rev. B 78, 195125 (2008).

[68] G. G. Pyrialakos, J. Beck, M. Heinrich, L. J. Maczewsky, N. V. Kan-
tartzis, M. Khajavikhan, A. Szameit, and D. N. Christodoulides, “Bimor-
phic Floquet topological insulators”, Nat. Mater. 21, 634–639 (2022).

[69] M. Wackerl, “Transport in periodically driven systems”, PhD thesis,
University of Regensburg, Germany (2020).

[70] F. Bloch, “Über die Quantenmechanik der Elektronen in Kristallgittern”,
Z. Phys. 52, 555–600 (1929).

[71] C. Zener, “A theory of the electrical breakdown of solid dielectrics”,
Proc. R. Soc. Lond. A 145, 523–529 (1934).

[72] A. Wacker, “Semiconductor superlattices: a model system for nonlinear
transport”, Phys. Rep. 357, 1–111 (2002).

[73] S. Arlinghaus and M. Holthaus, “Generalized acceleration theorem for
spatiotemporal Bloch waves”, Phys. Rev. B 84, 054301 (2011).

[74] V. Junk, P. Reck, C. Gorini, and K. Richter, “Floquet oscillations in
periodically driven Dirac systems”, Phys. Rev. B 101, 134302 (2020).

[75] B. Hamdou, J. Gooth, A. Dorn, E. Pippel, and K. Nielsch, “Surface
state dominated transport in topological insulator Bi2Te3 nanowires”,
Appl. Phys. Lett. 103, 193107 (2013).

[76] J. Dufouleur, L. Veyrat, A. Teichgräber, S. Neuhaus, C. Nowka, S.
Hampel, J. Cayssol, J. Schumann, B. Eichler, O. G. Schmidt, B. Büchner,
and R. Giraud, “Quasiballistic transport of Dirac fermions in a Bi2Se3
nanowire”, Phys. Rev. Lett. 110, 186806 (2013).

[77] L. A. Jauregui, M. T. Pettes, L. P. Rokhinson, L. Shi, and Y. P. Chen,
“Magnetic field-induced helical mode and topological transitions in
a topological insulator nanoribbon”, Nat. Nanotechnol. 11, 345–351
(2016).

[78] L. Fu and C. L. Kane, “Topological insulators with inversion symmetry”,
Phys. Rev. B 76, 045302 (2007).

http://dx.doi.org/https://doi.org/10.1103/PhysRevX.3.031005
http://dx.doi.org/10.1103/PhysRevB.82.235114
http://dx.doi.org/10.1103/PhysRevB.82.235114
http://dx.doi.org/10.1103/PHYSREVB.78.195125
http://dx.doi.org/10.1038/s41563-022-01238-w
http://dx.doi.org/10.1007/BF01339455
http://rspa.royalsocietypublishing.org/content/145/855/523
http://dx.doi.org/10.1016/S0370-1573(01)00029-1
http://dx.doi.org/10.1103/PhysRevB.84.054301
http://dx.doi.org/10.1103/PhysRevB.101.134302
http://dx.doi.org/https://doi.org/10.1063/1.4829748
http://dx.doi.org/10.1103/PhysRevLett.110.186806
http://dx.doi.org/10.1038/NNANO.2015.293
http://dx.doi.org/10.1038/NNANO.2015.293
http://dx.doi.org/https://doi.org/10.1103/PhysRevB.76.045302


Bibliography 205

[79] D. Hsieh, D. Qian, L. Wray, Y. Xia, Y. S. Hor, R. J. Cava, and M. Z.
Hasan, “A topological Dirac insulator in a quantum spin Hall phase”,
Nature 452, 970–974 (2008).

[80] J. Reimann, S. Schlauderer, C. P. Schmid, F. Langer, S. Baierl, K. A.
Kokh, O. E. Tereshchenko, A. Kimura, C. Lange, J. Güdde, U. Höfer,
and R. Huber, “Subcycle observation of lightwave-driven Dirac currents
in a topological surface band”, Nature 562, 396–400 (2018).

[81] C. P. Schmid, L. Weigl, P. Grössing, V. Junk, C. Gorini, S. Schlauderer,
S. Ito, M. Meierhofer, N. Hofmann, D. Afanasiev, J. Crewse, K. A. Kokh,
O. E. Tereshchenko, J. Güdde, F. Evers, J. Wilhelm, K. Richter, U.
Höfer, and R. Huber, “Tunable non-integer high-harmonic generation
in a topological insulator”, Nature 593, 385–390 (2021).

[82] N. Yoshikawa, T. Tamaya, and K. Tanaka, “Optics: high-harmonic gen-
eration in graphene enhanced by elliptically polarized light excitation”,
Science 356, 736–738 (2017).

[83] H. A. Hafez, S. Kovalev, J. C. Deinert, Z. Mics, B. Green, N. Awari, M.
Chen, S. Germanskiy, U. Lehnert, J. Teichert, Z. Wang, K. J. Tielrooij,
Z. Liu, Z. Chen, A. Narita, K. Müllen, M. Bonn, M. Gensch, and D.
Turchinovich, “Extremely efficient terahertz high-harmonic generation
in graphene by hot Dirac fermions”, Nature 561, 507–511 (2018).

[84] B. Cheng, N. Kanda, T. N. Ikeda, T. Matsuda, P. Xia, T. Schumann,
S. Stemmer, J. Itatani, N. P. Armitage, and R. Matsunaga, “Efficient
terahertz harmonic generation with coherent acceleration of electrons
in the Dirac semimetal Cd3As2”, Phys. Rev. Lett. 124, 117402 (2020).

[85] R. E. Silva, Jiménez-Galán, B. Amorim, O. Smirnova, and M. Ivanov,
“Topological strong-field physics on sub-laser-cycle timescale”, Nat.
Photon. 13, 849–854 (2019).

[86] H. Zhang, C. X. Liu, X. L. Qi, X. Dai, Z. Fang, and S. C. Zhang,
“Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single
Dirac cone on the surface”, Nat. Phys. 5, 438–442 (2009).

[87] C.-X. Liu, X.-L. Qi, H. Zhang, X. Dai, Z. Fang, and S.-C. Zhang, “Model
Hamiltonian for topological insulators”, Phys. Rev. B 82, 045122 (2010).

[88] L. Fu, “Hexagonal warping effects in the surface states of the topological
insulator Bi2Te3”, Phys. Rev. Lett. 103, 266801 (2009).

[89] D. Baykusheva, A. Chacón, D. Kim, D. E. Kim, D. A. Reis, and S.
Ghimire, “Strong-field physics in three-dimensional topological insula-
tors”, Phys. Rev. A 103, 023101 (2021).

http://dx.doi.org/10.1038/nature06843
http://dx.doi.org/10.1038/s41586-018-0544-x
http://dx.doi.org/10.1038/s41586-021-03466-7
http://dx.doi.org/10.1126/science.aam8861
http://dx.doi.org/10.1038/s41586-018-0508-1
http://dx.doi.org/https://doi.org/10.1103/PhysRevLett.124.117402
http://dx.doi.org/10.1038/s41566-019-0516-1
http://dx.doi.org/10.1038/s41566-019-0516-1
http://dx.doi.org/https://doi.org/10.1038/nphys1270
http://dx.doi.org/10.1103/PhysRevB.82.045122
http://dx.doi.org/10.1103/PhysRevLett.103.266801
http://dx.doi.org/https://doi.org/10.1103/PhysRevA.103.023101


206 Bibliography

[90] D. Baykusheva, A. Chacón, J. Lu, T. P. Bailey, J. A. Sobota, H. Soifer,
P. S. Kirchmann, C. Rotundu, C. Uher, T. F. Heinz, D. A. Reis, and S.
Ghimire, “All-optical probe of three-dimensional topological insulators
based on high-harmonic generation by circularly polarized laser fields”,
Nano Lett. 21, 8970–8978 (2021).

[91] C. Heide, Y. Kobayashi, D. R. Baykusheva, D. Jain, J. A. Sobota, M.
Hashimoto, P. S. Kirchmann, S. Oh, T. F. Heinz, D. A. Reis, and S.
Ghimire, “Probing topological phase transitions using high-harmonic
generation”, Nat. Photon. 16, 620–624 (2022).

[92] O. Neufeld, N. Tancogne-Dejean, H. Hübener, U. D. Giovannini, and
A. Rubio, “Are there universal signatures of topological phases in high
harmonic generation? Probably not”, Phys. Rev. X 13, 031011 (2023).

[93] C. Yu, S. Jiang, and R. Lu, “High order harmonic generation in solids: a
review on recent numerical methods”, Adv. Phys.: X 4, 1562982 (2019).

[94] E. Goulielmakis and T. Brabec, “High harmonic generation in condensed
matter”, Nat. Photon. 16, 411–421 (2022).

[95] M. Kira and S. W. Koch, Semiconductor quantum optics (Cambridge
University Press, 2011).

[96] E. Runge and E. K. Gross, “Density-functional theory for time-dependent
systems”, Phys. Rev. Lett. 52, 997 (1984).

[97] E. Coccia and E. Luppi, “Time-dependent ab initio approaches for
high-harmonic generation spectroscopy”, J. Phys.: Condens. Matter 34,
073001 (2022).

[98] L. Plaja and L. Roso-Franco, “High-order harmonic generation in a
crystalline solid”, Phys. Rev. B 45, 8334 (1992).

[99] Z. Guan, X. X. Zhou, and X. B. Bian, “High-order-harmonic generation
from periodic potentials driven by few-cycle laser pulses”, Phys. Rev. A
93, 033852 (2016).

[100] X. Liu, X. Zhu, P. Lan, X. Zhang, D. Wang, Q. Zhang, and P. Lu, “Time-
dependent population imaging for high-order-harmonic generation in
solids”, Phys. Rev. A 95, 063419 (2017).

[101] X. Q. Wang, Y. Xu, X. H. Huang, and X. B. Bian, “Interference between
inter- and intraband currents in high-order harmonic generation in
solids”, Phys. Rev. A 98, 023427 (2018).

[102] J. Li, S. Fu, H. Wang, X. Zhang, B. Ding, B. Hu, and H. Du, “Limitations
of the single-active-electron approximation in quantum simulations of
solid high-order harmonic generation”, Phys. Rev. A 98, 043409 (2018).

http://dx.doi.org/https://doi.org/10.1021/acs.nanolett.1c02145
http://dx.doi.org/10.1038/s41566-022-01050-7
http://dx.doi.org/https://doi.org/10.1103/PhysRevX.13.031011
http://dx.doi.org/10.1080/23746149.2018.1562982
http://dx.doi.org/10.1038/s41566-022-00988-y
http://dx.doi.org/10.1103/PhysRevLett.52.997
http://dx.doi.org/10.1088/1361-648X/AC3608
http://dx.doi.org/10.1088/1361-648X/AC3608
http://dx.doi.org/10.1103/PhysRevB.45.8334
http://dx.doi.org/https://doi.org/10.1103/PhysRevA.93.033852
http://dx.doi.org/https://doi.org/10.1103/PhysRevA.93.033852
http://dx.doi.org/https://doi.org/10.1103/PhysRevA.95.063419
http://dx.doi.org/https://doi.org/10.1103/PhysRevA.98.023427
http://dx.doi.org/https://doi.org/10.1103/PhysRevA.98.043409


Bibliography 207

[103] J. N. Domrzalski, T. E. Stevens, R. M. V. Ginhoven, al -, S. A. Policastro,
R. M. Anderson, C. M. Hangarter, M. Korbman, S. Y. Kruchinin, and
V. S. Yakovlev, “Quantum beats in the polarization response of a
dielectric to intense few-cycle laser pulses”, New J. Phys. 15, 013006
(2013).

[104] T. Ikemachi, Y. Shinohara, T. Sato, J. Yumoto, M. Kuwata-Gonokami,
and K. L. Ishikawa, “Trajectory analysis of high-order-harmonic gener-
ation from periodic crystals”, Phys. Rev. A 95, 043416 (2017).

[105] J. Z. Jin, X. R. Xiao, H. Liang, M. X. Wang, S. G. Chen, Q. Gong, and
L. Y. Peng, “High-order harmonic generation from a two-dimensional
band structure”, Phys. Rev. A 97, 043420 (2018).

[106] J. M. Luttinger and W. Kohn, “Motion of electrons and holes in per-
turbed periodic fields”, Phys. Rev. 97, 869 (1955).

[107] J. Wilhelm, P. Grössing, A. Seith, J. Crewse, M. Nitsch, L. Weigl,
C. Schmid, and F. Evers, “Semiconductor Bloch-equations formalism:
Derivation and application to high-harmonic generation from Dirac
fermions”, Phys. Rev. B 103, 125419 (2021).

[108] M. Graml, M. Nitsch, A. Seith, F. Evers, and J. Wilhelm, “Influence of
chirp and carrier-envelope phase on noninteger high-harmonic genera-
tion”, Phys. Rev. B 107, 054305 (2023).

[109] H. B. Nielsen and M. Ninomiya, “A no-go theorem for regularizing
chiral fermions”, Phys. Lett. B 105, 219–223 (1981).

[110] H. B. Nielsen and M. Ninomiya, “Absence of neutrinos on a lattice: (i).
Proof by homotopy theory”, Nucl. Phys. B 185, 20–40 (1981).

[111] H. B. Nielsen and M. Ninomiya, “Absence of neutrinos on a lattice: (II).
Intuitive topological proof”, Nucl. Phys. B 193, 173–194 (1981).

[112] L. Tarruell, D. Greif, T. Uehlinger, G. Jotzu, and T. Esslinger, “Creat-
ing, moving and merging Dirac points with a Fermi gas in a tunable
honeycomb lattice”, Nature 483, 302–305 (2012).

[113] G. Weick, C. Woollacott, W. L. Barnes, O. Hess, and E. Mariani, “Dirac-
like plasmons in honeycomb lattices of metallic nanoparticles”, Phys.
Rev. Lett. 110, 106801 (2013).

[114] T. Jacqmin, I. Carusotto, I. Sagnes, M. Abbarchi, D. D. Solnyshkov,
G. Malpuech, E. Galopin, A. Lemaître, J. Bloch, and A. Amo, “Direct
observation of Dirac cones and a flatband in a honeycomb lattice for
polaritons”, Phys. Rev. Lett. 112, 116402 (2014).

[115] P. R. Wallace, “The band theory of graphite”, Phys. Rev. 71, 622
(1947).

http://dx.doi.org/10.1088/1367-2630/15/1/013006
http://dx.doi.org/10.1088/1367-2630/15/1/013006
http://dx.doi.org/https://doi.org/10.1103/PhysRevA.95.043416
http://dx.doi.org/https://doi.org/10.1103/PhysRevA.97.043420
http://dx.doi.org/10.1103/PhysRev.97.869
http://dx.doi.org/https://doi.org/10.1103/PhysRevB.103.125419
http://dx.doi.org/https://doi.org/10.1103/PhysRevB.107.054305
http://dx.doi.org/10.1016/0370-2693(81)91026-1
http://dx.doi.org/10.1016/0550-3213(81)90361-8
http://dx.doi.org/10.1016/0550-3213(81)90524-1
http://dx.doi.org/https://doi.org/10.1038/nature10871
http://dx.doi.org/https://doi.org/10.1103/PhysRevLett.110.106801
http://dx.doi.org/https://doi.org/10.1103/PhysRevLett.110.106801
http://dx.doi.org/https://doi.org/10.1103/PhysRevLett.112.116402
http://dx.doi.org/https://doi.org/10.1103/PhysRev.71.622
http://dx.doi.org/https://doi.org/10.1103/PhysRev.71.622


208 Bibliography

[116] G. W. Semenoff, “Condensed-matter simulation of a three-dimensional
anomaly”, Phys. Rev. Lett. 53, 2449 (1984).

[117] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson,
I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas
of massless Dirac fermions in graphene”, Nature 438, 197–200 (2005).

[118] K. von Klitzing, “The quantized Hall effect”, Rev. Mod. Phys. 58, 519
(1986).

[119] O. Klein, “Die Reflexion von Elektronen an einem Potentialsprung nach
der relativistischen Dynamik von Dirac”, Z. Phys. 53, 157–165 (1929).

[120] M. I. Katsnelson, K. S. Novoselov, and A. K. Geim, “Chiral tunnelling
and the Klein paradox in graphene”, Nat. Phys. 2, 620–625 (2006).

[121] A. F. Young and P. Kim, “Quantum interference and Klein tunnelling
in graphene heterojunctions”, Nat. Phys. 5, 222–226 (2009).

[122] K.-I. Sasaki and R. Saito, “Pseudospin and deformation-induced gauge
field in graphene”, Prog. Theo. Phys. Supp. 176, 253–278 (2008).

[123] V. Junk, “Dynamics of wave packets in periodically driven Dirac sys-
tems”, Master’s thesis, University of Regensburg, Germany (2018).

[124] M. I. Katsnelson, Graphene: Carbon in two dimensions (Cambridge
University Press, 2012).

[125] C. Zener and J. E. Lennard-Jones, “The general proof of certain funda-
mental equations in the theory of metallic conduction”, Proc. R. Soc.
Lond. A 144, 101–117 (1934).

[126] P. Reck, “Quantum echoes and revivals in two-band systems and Bose-
Einstein condensates”, PhD thesis, University of Regensburg, Germany
(2018).

[127] M. O. Goerbig, “Electronic properties of graphene in a strong magnetic
field”, Rev. Mod. Phys. 83, 1193 (2011).

[128] C. Brüne, C. X. Liu, E. G. Novik, E. M. Hankiewicz, H. Buhmann,
Y. L. Chen, X. L. Qi, Z. X. Shen, S. C. Zhang, and L. W. Molenkamp,
“Quantum Hall effect from the topological surface states of strained
bulk HgTe”, Phys. Rev. Lett. 106, 126803 (2011).

[129] C. Y. Zhu, S. H. Zheng, H. J. Duan, M. X. Deng, and R. Q. Wang,
“Double Andreev reflections at surface states of the topological insulators
with hexagonal warping”, Front. Phys. 15, 23602 (2020).

[130] R. S. Akzyanov and A. L. Rakhmanov, “Surface charge conductivity
of a topological insulator in a magnetic field: The effect of hexagonal
warping”, Phys. Rev. B 97, 075421 (2018).

http://dx.doi.org/10.1103/PhysRevLett.53.2449
http://dx.doi.org/10.1038/nature04233
http://dx.doi.org/10.1103/RevModPhys.58.519
http://dx.doi.org/10.1103/RevModPhys.58.519
http://dx.doi.org/10.1007/BF01339716
http://dx.doi.org/10.1038/nphys384
http://dx.doi.org/10.1038/nphys1198
http://dx.doi.org/https://doi.org/10.1143/PTPS.176.253
http://dx.doi.org/10.1098/RSPA.1934.0036
http://dx.doi.org/10.1098/RSPA.1934.0036
https://epub.uni-regensburg.de/37252/1/PDF%5C_Reck%5C_Quantum%20echoes.pdf
https://epub.uni-regensburg.de/37252/1/PDF%5C_Reck%5C_Quantum%20echoes.pdf
http://dx.doi.org/https://doi.org/10.1103/RevModPhys.83.1193
http://dx.doi.org/https://doi.org/10.1103/PhysRevLett.106.126803
http://dx.doi.org/https://doi.org/10.1007/s11467-019-0941-0
http://dx.doi.org/https://doi.org/10.1103/PhysRevB.97.075421


Bibliography 209

[131] R. S. Akzyanov and A. L. Rakhmanov, “Bulk and surface spin conduc-
tivity in topological insulators with hexagonal warping”, Phys. Rev. B
99, 045436 (2019).

[132] T. Choudhari and N. Deo, “Effect of hexagonal warping of the Fermi
surface on the thermoelectric properties of a topological insulator ir-
radiated with linearly polarized radiation”, Phys. Rev. B 100, 035303
(2019).

[133] Z. Li and J. P. Carbotte, “Hexagonal warping on optical conductivity of
surface states in topological insulator Bi2Te3”, Phys. Rev. B 87, 155416
(2013).

[134] G. Tkachov, Topological insulators : the physics of spin helicity in
quantum transport (Jenny Stanford Publishing, 2016).

[135] M. V. Berry, “Quantual phase factors accompanying adiabatic changes”,
Proc. R. Soc. Lond. A 392, 45–57 (1984).

[136] B. Simon, “Holonomy, the quantum adiabatic theorem, and Berry’s
phase”, Phys. Rev. Lett. 51, 2167 (1983).

[137] S.-S. Chern and J. Simons, “Characteristic forms and geometric invari-
ants”, Ann. Math. 99, 48–69 (1974).

[138] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs,
“Quantized Hall conductance in a two-dimensional periodic potential”,
Phys. Rev. Lett. 49, 405 (1982).

[139] M. C. Chang and Q. Niu, “Berry phase, hyperorbits, and the Hofstadter
spectrum”, Phys. Rev. Lett. 75, 1348 (1995).

[140] R. Resta, “Theory of the electric polarization in crystals”, Ferroelectrics
136, 51–55 (1992).

[141] R. D. King-Smith and D. Vanderbilt, “Theory of polarization of crys-
talline solids”, Phys. Rev. B 47, 1651(R) (1993).

[142] T. Thonhauser, D. Ceresoli, D. Vanderbilt, and R. Resta, “Orbital
magnetization in periodic insulators”, Phys. Rev. Lett. 95, 137205
(2005).

[143] D. Xiao, J. Shi, and Q. Niu, “Berry phase correction to electron density
of states in solids”, Phys. Rev. Lett. 95, 137204 (2005).

[144] D. Xiao, M. C. Chang, and Q. Niu, “Berry phase effects on electronic
properties”, Rev. Mod. Phys. 82, 1959 (2010).

http://dx.doi.org/https://doi.org/10.1103/PhysRevB.99.045436
http://dx.doi.org/https://doi.org/10.1103/PhysRevB.99.045436
http://dx.doi.org/https://doi.org/10.1103/PhysRevB.100.035303
http://dx.doi.org/https://doi.org/10.1103/PhysRevB.100.035303
http://dx.doi.org/https://doi.org/10.1103/PhysRevB.87.155416
http://dx.doi.org/https://doi.org/10.1103/PhysRevB.87.155416
http://www.physics.mcgill.ca/~keshav/551/berryphase2.pdf
http://dx.doi.org/10.1103/PhysRevLett.51.2167
http://dx.doi.org/10.2307/1971013
http://dx.doi.org/10.1103/PhysRevLett.49.405
http://dx.doi.org/10.1103/PhysRevLett.75.1348
http://dx.doi.org/10.1080/00150199208016065
http://dx.doi.org/10.1080/00150199208016065
http://dx.doi.org/10.1103/PhysRevB.47.1651
http://dx.doi.org/https://doi.org/10.1103/PhysRevLett.95.137205
http://dx.doi.org/https://doi.org/10.1103/PhysRevLett.95.137205
http://dx.doi.org/10.1103/PhysRevLett.95.137204
http://dx.doi.org/10.1103/RevModPhys.82.1959


210 Bibliography

[145] A. Chacón, D. Kim, W. Zhu, S. P. Kelly, A. Dauphin, E. Pisanty,
A. S. Maxwell, A. Picón, M. F. Ciappina, D. E. Kim, C. Ticknor,
A. Saxena, and M. Lewenstein, “Circular dichroism in higher-order
harmonic generation: Heralding topological phases and transitions in
Chern insulators”, Phys. Rev. B 102, 134115 (2020).

[146] E. Schrödinger, Ueber die kraeftefreie Bewegung in der relativistischen
Quantenmechanik (Akademie der Wissenschaften in Kommission bei W.
de Gruyter u. Company, 1930).

[147] K. Huang, “On the zitterbewegung of the Dirac electron”, Am. J. Phys.
20, 479–484 (1952).

[148] L. Ferrari and G. Russo, “Nonrelativistic zitterbewegung in two-band
systems”, Phys. Rev. B 42, 7454 (1990).

[149] J. Schliemann, D. Loss, and R. M. Westervelt, “Zitterbewegung of
electronic wave packets in III-V zinc-blende semiconductor quantum
wells”, Phys. Rev. Lett. 94, 206801 (2005).

[150] W. Zawadzki, “One-dimensional semirelativity for electrons in carbon
nanotubes”, Phys. Rev. B 74, 205439 (2006).

[151] T. M. Rusin and W. Zawadzki, “Zitterbewegung of electrons in graphene
in a magnetic field”, Phys. Rev. B 78, 1–9 (2008).

[152] M. I. Katsnelson, “Zitterbewegung, chirality, and minimal conductivity
in graphene”, Eur. Phys. J. B 51, 157–160 (2006).

[153] P. Reck, C. Gorini, and K. Richter, “Steering zitterbewegung in driven
Dirac systems: From persistent modes to echoes”, Phys. Rev. B 101,
094306 (2020).

[154] L. K. Shi, S. C. Zhang, and K. Chang, “Anomalous electron trajectory
in topological insulators”, Phys. Rev. B 87, 161115(R) (2013).

[155] R. Gerritsma, G. Kirchmair, F. Zähringer, E. Solano, R. Blatt, and
C. F. Roos, “Quantum simulation of the Dirac equation”, Nature 463,
68–71 (2010).

[156] C. Qu, C. Hamner, M. Gong, C. Zhang, and P. Engels, “Observation
of zitterbewegung in a spin-orbit-coupled Bose-Einstein condensate”,
Phys. Rev. A 88, 021604(R) (2013).

[157] L. J. Leblanc, M. C. Beeler, K. Jiménez-García, A. R. Perry, S. Sugawa,
R. A. Williams, and I. B. Spielman, “Direct observation of zitterbewe-
gung in a bose–einstein condensate”, New J. Phys. 15, 073011 (2013).

http://dx.doi.org/https://doi.org/10.1103/PhysRevB.102.134115
http://dx.doi.org/10.1119/1.1933296
http://dx.doi.org/10.1119/1.1933296
http://dx.doi.org/10.1103/PhysRevB.42.7454
http://dx.doi.org/https://doi.org/10.1103/PhysRevLett.94.206801
http://dx.doi.org/10.1103/PhysRevB.74.205439
http://dx.doi.org/10.1103/PhysRevB.78.125419
http://dx.doi.org/10.1140/EPJB/E2006-00203-1
http://dx.doi.org/https://doi.org/10.1103/PhysRevB.101.094306
http://dx.doi.org/https://doi.org/10.1103/PhysRevB.101.094306
http://dx.doi.org/https://doi.org/10.1103/PhysRevB.87.161115
http://dx.doi.org/10.1038/nature08688
http://dx.doi.org/10.1038/nature08688
http://dx.doi.org/https://doi.org/10.1103/PhysRevA.88.021604
http://dx.doi.org/10.1088/1367-2630/15/7/073011


Bibliography 211

[158] I. Stepanov, M. Ersfeld, A. V. Poshakinskiy, M. Lepsa, E. L. Ivchenko,
S. A. Tarasenko, and B. Beschoten, “Coherent electron zitterbewegung”,
Preprint (2016) 10.48550/arxiv.1612.06190.

[159] W. Zawadzki and T. M. Rusin, “Zitterbewegung (trembling motion) of
electrons in semiconductors: a review”, J. Phys.: Condens. Matter 23,
143201 (2011).

[160] C. Aversa and J. E. Sipe, “Nonlinear optical susceptibilities of semicon-
ductors: Results with a length-gauge analysis”, Phys. Rev. B 52, 14636
(1995).

[161] Y. C. Han and L. B. Madsen, “Comparison between length and velocity
gauges in quantum simulations of high-order harmonic generation”,
Phys. Rev. A 81, 063430 (2010).

[162] G. B. Ventura, D. J. Passos, J. M. L. D. Santos, J. M. V. P. Lopes,
and N. M. Peres, “Gauge covariances and nonlinear optical responses”,
Phys. Rev. B 96, 035431 (2017).

[163] M. Ebner, “Carrier dynamics in Dirac systems induced by strong light
pulses”, Master’s thesis, University of Regensburg, Germany (2022).

[164] R. Karplus and J. M. Luttinger, “Hall effect in ferromagnetics”, Phys.
Rev. 95, 1154 (1954).

[165] D. Shin, S. A. Sato, H. Hübener, U. D. Giovannini, J. Kim, N. Park, and
A. Rubio, “Unraveling materials Berry curvature and Chern numbers
from real-time evolution of Bloch states”, PNAS 116, 4135–4140 (2019).

[166] M. Göppert-Mayer, “Über Elementarakte mit zwei Quantensprüngen”,
Ann. Phys. 401, 273–294 (1931).

[167] P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation
of optical harmonics”, Phys. Rev. Lett. 7, 118 (1961).

[168] O. Schubert, M. Hohenleutner, F. Langer, B. Urbanek, C. Lange, U.
Huttner, D. Golde, T. Meier, M. Kira, S. W. Koch, and R. Huber,
“Sub-cycle control of terahertz high-harmonic generation by dynamical
Bloch oscillations”, Nat. Photon. 8, 119–123 (2014).

[169] M. Hohenleutner, F. Langer, O. Schubert, M. Knorr, U. Huttner, S. W.
Koch, M. Kira, and R. Huber, “Real-time observation of interfering
crystal electrons in high-harmonic generation”, Nature 523, 572–575
(2015).

[170] T. T. Luu and H. J. Wörner, “Measurement of the Berry curvature of
solids using high-harmonic spectroscopy”, Nat. Commun. 9, 916 (2018).

[171] J. D. Jackson, Classical electrodynamics, 2nd edition (Wiley, 1975).

http://dx.doi.org/10.48550/arxiv.1612.06190
http://dx.doi.org/10.48550/arxiv.1612.06190
http://stacks.iop.org/0953-8984/23/i=14/a=143201
http://stacks.iop.org/0953-8984/23/i=14/a=143201
http://dx.doi.org/10.1103/PhysRevB.52.14636
http://dx.doi.org/10.1103/PhysRevB.52.14636
http://dx.doi.org/https://doi.org/10.1103/PhysRevA.81.063430
http://dx.doi.org/https://doi.org/10.1103/PhysRevB.96.035431
http://dx.doi.org/10.1103/PhysRev.95.1154
http://dx.doi.org/10.1103/PhysRev.95.1154
http://dx.doi.org/10.1073/pnas.1816904116
http://dx.doi.org/10.1002/ANDP.19314010303
http://dx.doi.org/10.1103/PhysRevLett.7.118
https://www.nature.com/articles/nphoton.2013.349#supplementary-information
http://dx.doi.org/10.1038/nature14652
http://dx.doi.org/10.1038/nature14652
http://dx.doi.org/10.1038/s41467-018-03397-4


212 Bibliography

[172] L. Yue and M. B. Gaarde, “Introduction to theory of high-harmonic
generation in solids: tutorial”, JOSA B 39, 535–555 (2022).

[173] C. Heide, T. Boolakee, T. Higuchi, and P. Hommelhoff, “Adiabaticity
parameters for the categorization of light-matter interaction: from weak
to strong driving”, Phys. Rev. A 104, 023103 (2021).

[174] L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave”,
J. Exp. Theor. Phys. 20, 1307–1314 (1965).

[175] L. D. Landau, “A theory of energy transfer on collisions”, Phys. Z.
Sowjetunion 1, 88 (1932).

[176] C. Zener, “Non-adiabatic crossing of energy levels”, Proc. R. Soc. Lond.
A 137, 696–702 (1932).

[177] L. D. Landau, “On the theory of transfer of energy at collisions II”,
Phys. Z. Sowjetunion 2, 118 (1932).

[178] E. K. G. Stückelberg, “Theorie der unelastischen Stösse zwischen
Atomen”, Helv. Phys. Acta 5, 369–422 (1932).

[179] B. M. Breid, D. Witthaut, and H. J. Korsch, “Bloch-Zener oscillations”,
New J. Phys. 8, 110 (2006).

[180] V. Krückl and K. Richter, “Bloch-Zener oscillations in graphene and
topological insulators”, Phys. Rev. B 85, 115433 (2012).

[181] S. N. Shevchenko, S. Ashhab, and F. Nori, “Landau-Zener-Stückelberg
interferometry”, Phys. Rep. 492, 1–30 (2010).

[182] V. Krückl, “Wave packets in mesoscopic systems: From time-dependent
dynamics to transport phenomena in graphene and topological insula-
tors”, PhD thesis, University of Regensburg, Germany (2013).

[183] L. Susskind, “Lattice fermions”, Phys. Rev. D 16, 3031 (1977).
[184] R. Stacey, “Eliminating lattice fermion doubling”, Phys. Rev. D 26,

468 (1982).
[185] R. Kozlovsky, “Magnetotransport in 3D topological insulator nanowires”,

PhD thesis, University of Regensburg, Germany (2020).
[186] C. W. Groth, M. Wimmer, A. R. Akhmerov, and X. Waintal, “Kwant:

a software package for quantum transport”, New J. Phys. 16, 063065
(2014).

[187] T. Kloss, J. Weston, B. Gaury, B. Rossignol, C. Groth, and X. Waintal,
“Tkwant: a software package for time-dependent quantum transport”,
New J. Phys. 23, 023025 (2021).

http://dx.doi.org/10.1364/JOSAB.448602
http://dx.doi.org/https://doi.org/10.1103/PhysRevA.104.023103
http://dx.doi.org/10.1103/PHYSREV.31.66
http://rspa.royalsocietypublishing.org/content/137/833/696
http://rspa.royalsocietypublishing.org/content/137/833/696
http://stacks.iop.org/1367-2630/8/i=7/a=110
http://dx.doi.org/https://doi.org/10.1103/PhysRevB.85.115433
http://www.sciencedirect.com/science/article/pii/S0370157310000815
http://epub.uni-regensburg.de/28081/%0Apapers3://publication/uuid/C8B3C30A-D83D-40E0-8AA9-EC66F3860374
http://dx.doi.org/10.1103/PhysRevD.16.3031
http://dx.doi.org/10.1103/PhysRevD.26.468
http://dx.doi.org/10.1103/PhysRevD.26.468
http://dx.doi.org/10.1088/1367-2630/16/6/063065
http://dx.doi.org/10.1088/1367-2630/16/6/063065
http://dx.doi.org/10.1088/1367-2630/ABDDF7


Bibliography 213

[188] B. Messias de Resende, F. C. de Lima, R. H. Miwa, E. Vernek, and
G. J. Ferreira, “Confinement and fermion doubling problem in dirac-like
hamiltonians”, Phys. Rev. B 96, 161113(R) (2017).

[189] J. W. Cooley and J. W. Tukey, “An algorithm for the machine calcula-
tion of complex Fourier series”, Math. Comp. 19, 297–301 (1965).

[190] P. A. M. Dirac, The principles of quantum mechanics (Clarendon Press,
1930).

[191] H. Tal-Ezer and R. Kosloff, “An accurate and efficient scheme for
propagating the time dependent Schrödinger equation”, J. Chem. Phys.
81, 3967–3971 (1998).

[192] G. Faber, “Über polynomische Entwickelungen”, Math. Ann. 57, 389–
408 (1903).

[193] W. Huisinga, L. Pesce, R. Kosloff, and P. Saalfrank, “Faber and Newton
polynomial integrators for open-system density matrix propagation”, J.
Chem. Phys. 110, 5538–5547 (1999).

[194] C. Lanczos, “An iteration method for the solution of the eigenvalue
problem of linear differential and integral operators”, J. Res. Natl. Bur.
Stand. 45, 255 (1950).

[195] T. J. Park and J. C. Light, “Unitary quantum time evolution by iterative
Lanczos reduction”, J. Chem. Phys. 85, 5870–5876 (1986).

[196] W. E. Arnoldi, “The principle of minimized iterations in the solution of
the matrix eigenvalue problem”, Quart. Appl. Math. 9, 17–29 (1951).

[197] J. Weston and X. Waintal, “Linear-scaling source-sink algorithm for
simulating time-resolved quantum transport and superconductivity”,
Phys. Rev. B 93, 134506 (2016).

[198] W. S. Dunbar and A. D. Woodbury, “Application of the Lanczos
Algorithm to the solution of the groundwater flow equation”, Water
Resour. Res. 25, 551–558 (1989).

[199] S. Kling, T. Salger, C. Grossert, and M. Weitz, “Atomic Bloch-Zener
oscillations and Stückelberg interferometry in optical lattices”, Phys.
Rev. Lett. 105, 215301 (2010).

[200] A. Zenesini, D. Ciampini, O. Morsch, and E. Arimondo, “Observation
of Stückelberg oscillations in accelerated optical lattices”, Phys. Rev. A
82, 065601 (2010).

http://dx.doi.org/10.1103/PhysRevB.96.161113
http://dx.doi.org/10.1090/S0025-5718-1965-0178586-1
http://dx.doi.org/10.1063/1.448136
http://dx.doi.org/10.1063/1.448136
http://dx.doi.org/10.1007/BF01444293
http://dx.doi.org/10.1007/BF01444293
http://dx.doi.org/10.1063/1.478451
http://dx.doi.org/10.1063/1.478451
http://dx.doi.org/10.6028/JRES.045.026
http://dx.doi.org/10.6028/JRES.045.026
http://dx.doi.org/10.1063/1.451548
http://dx.doi.org/10.1090/QAM/42792
http://dx.doi.org/10.1103/PhysRevB.93.134506
http://dx.doi.org/10.1029/WR025i003p00551
http://dx.doi.org/10.1029/WR025i003p00551
http://dx.doi.org/10.1103/PhysRevLett.105.215301
http://dx.doi.org/10.1103/PhysRevLett.105.215301
http://dx.doi.org/10.1103/PhysRevA.82.065601
http://dx.doi.org/10.1103/PhysRevA.82.065601


214 Bibliography

[201] J. Feldmann, K. Leo, J. Shah, D. A. Miller, J. E. Cunningham, T. Meier,
G. V. Plessen, A. Schulze, P. Thomas, and S. Schmitt-Rink, “Optical
investigation of Bloch oscillations in a semiconductor superlattice”,
Phys. Rev. B 46, 7252(R) (1992).

[202] C. Waschke, H. G. Roskos, R. Schwedler, K. Leo, H. Kurz, and K.
Köhler, “Coherent submillimeter-wave emission from Bloch oscillations
in a semiconductor superlattice”, Phys. Rev. Lett. 70, 3319 (1993).

[203] A. A. Ignatov, E. Schomburg, K. F. Renk, W. Schatz, J. F. Palmier,
and F. Mollot, “Response of a Bloch oscillator to a THz-field”, Ann.
Phys. 506, 137–144 (1994).

[204] M. B. Dahan, E. Peik, J. Reichel, Y. Castin, and C. Salomon, “Bloch
oscillations of atoms in an optical potential”, Phys. Rev. Lett. 76, 4508
(1996).

[205] S. R. Wilkinson, C. F. Bharucha, K. W. Madison, Q. Niu, and M. G.
Raizen, “Observation of atomic Wannier-Stark ladders in an accelerating
optical potential”, Phys. Rev. Lett. 76, 4512 (1996).

[206] T. Pertsch, P. Dannberg, W. Elflein, A. Bräuer, and F. Lederer, “Optical
Bloch oscillations in temperature tuned waveguide arrays”, Phys. Rev.
Lett. 83, 4752 (1999).

[207] R. Morandotti, U. Peschel, J. S. Aitchison, H. S. Eisenberg, and Y.
Silberberg, “Experimental observation of linear and nonlinear optical
Bloch oscillations”, Phys. Rev. Lett. 83, 4756 (1999).

[208] H. Sanchis-Alepuz, Y. A. Kosevich, and J. Sánchez-Dehesa, “Acoustic
analogue of electronic Bloch oscillations and resonant Zener tunneling
in ultrasonic superlattices”, Phys. Rev. Lett. 98, 134301 (2007).

[209] C. J. Fujiwara, K. Singh, Z. A. Geiger, R. Senaratne, S. V. Rajagopal,
M. Lipatov, and D. M. Weld, “Transport in Floquet-Bloch bands”,
Phys. Rev. Lett. 122, 010402 (2019).

[210] A. Alberti, V. V. Ivanov, G. M. Tino, and G. Ferrari, “Engineering the
quantum transport of atomic wavefunctions over macroscopic distances”,
Nat. Phys. 5, 547–550 (2009).

[211] E. Haller, R. Hart, M. J. Mark, J. G. Danzl, L. Reichsöllner, and H.-C.
Nägerl, “Inducing transport in a dissipation-free lattice with Super
Bloch oscillations”, Phys. Rev. Lett. 104, 200403 (2010).

[212] K. Kudo and T. S. Monteiro, “Theoretical analysis of super-Bloch
oscillations”, Phys. Rev. A 83, 053627 (2011).

[213] D. M. Gangardt and A. Kamenev, “Bloch oscillations in a one-dimensional
spinor gas”, Phys. Rev. Lett. 102, 070402 (2009).

http://dx.doi.org/10.1103/PhysRevB.46.7252
http://dx.doi.org/https://doi.org/10.1103/PhysRevLett.70.3319
http://dx.doi.org/10.1002/andp.19945060302
http://dx.doi.org/10.1002/andp.19945060302
http://dx.doi.org/https://doi.org/10.1103/PhysRevLett.76.4508
http://dx.doi.org/https://doi.org/10.1103/PhysRevLett.76.4508
http://dx.doi.org/https://doi.org/10.1103/PhysRevLett.76.4512
http://dx.doi.org/https://doi.org/10.1103/PhysRevLett.83.4752
http://dx.doi.org/https://doi.org/10.1103/PhysRevLett.83.4752
http://dx.doi.org/https://doi.org/10.1103/PhysRevLett.83.4756
http://dx.doi.org/https://doi.org/10.1103/PhysRevLett.98.134301
http://dx.doi.org/10.1103/PhysRevLett.122.010402
http://dx.doi.org/https://doi.org/10.1038/nphys1310
http://dx.doi.org/10.1103/PhysRevLett.104.200403
http://dx.doi.org/10.1103/PhysRevA.83.053627
http://dx.doi.org/10.1103/PhysRevLett.102.070402


Bibliography 215

[214] F. Meinert, M. Knap, E. Kirilov, K. Jag-Lauber, M. B. Zvonarev, E.
Demler, and H. C. Nägerl, “Bloch oscillations in the absence of a lattice”,
Science 356, 945–948 (2017).

[215] L. Yuan and S. Fan, “Bloch oscillation and unidirectional translation
of frequency in a dynamically modulated ring resonator”, Optica 3,
1014–1018 (2016).

[216] M. S. Rudner and N. H. Lindner, “Band structure engineering and
non-equilibrium dynamics in Floquet topological insulators”, Nat. Rev.
Phys. 2, 229–244 (2020).

[217] M. S. Rudner and N. H. Lindner, “The Floquet engineer’s handbook”,
Preprint (2020) 10.48550/arxiv.2003.08252.

[218] C. Weitenberg and J. Simonet, “Tailoring quantum gases by Floquet
engineering”, Nat. Phys. 17, 1342–1348 (2021).

[219] M. Holthaus, “Floquet engineering with quasienergy bands of periodi-
cally driven optical lattices”, J. Phys. B: At. Mol. Opt. Phys. 49, 013001
(2015).

[220] U. de Giovannini and H. Hübener, “Floquet analysis of excitations in
materials”, J. Phys. Mater. 3, 012001 (2020).

[221] M. Laumer, “Velocity of Dirac fermions in a Floquet system”, Bachelor’s
thesis, University of Regensburg, Germany (2022).

[222] H. P. Breuer and M. Holthaus, “Quantum phases and Landau-Zener
transitions in oscillating fields”, Phys. Lett. A 140, 507–512 (1989).

[223] Y. I. Rodionov, K. I. Kugel, and F. Nori, “Floquet spectrum and driven
conductance in Dirac materials: Effects of Landau-Zener-Stückelberg-
Majorana interferometry”, Phys. Rev. B 94, 195108 (2016).

[224] P. Reck, C. Gorini, A. Goussev, V. Krueckl, M. Fink, and K. Richter,
“Dirac quantum time mirror”, Phys. Rev. B 95, 165421 (2017).

[225] O. V. Kibis, “Metal-insulator transition in graphene induced by circu-
larly polarized photons”, Phys. Rev. B 81, 165433 (2010).

[226] Y. Zhou and M. W. Wu, “Optical response of graphene under intense
terahertz fields”, Phys. Rev. B 83, 245436 (2011).

[227] S. E. Savel’ev and A. S. Alexandrov, “Massless Dirac fermions in a
laser field as a counterpart of graphene superlattices”, Phys. Rev. B 84,
035428 (2011).

[228] J. Atteia, J. H. Bardarson, and J. Cayssol, “Ballistic transport through
irradiated graphene”, Phys. Rev. B 96, 245404 (2017).

http://dx.doi.org/10.1126/science.aah6616
http://dx.doi.org/10.1364/OPTICA.3.001014
http://dx.doi.org/10.1364/OPTICA.3.001014
http://dx.doi.org/10.1038/s42254-020-0170-z
http://dx.doi.org/10.1038/s42254-020-0170-z
http://dx.doi.org/10.48550/arxiv.2003.08252
http://dx.doi.org/10.48550/arxiv.2003.08252
http://dx.doi.org/10.1038/s41567-021-01316-x
http://dx.doi.org/10.1088/0953-4075/49/1/013001
http://dx.doi.org/10.1088/0953-4075/49/1/013001
http://dx.doi.org/10.1088/2515-7639/ab387b
http://dx.doi.org/10.1016/0375-9601(89)90132-1
http://dx.doi.org/https://doi.org/10.1103/PhysRevB.94.195108
http://dx.doi.org/https://doi.org/10.1103/PhysRevB.95.165421
http://dx.doi.org/https://doi.org/10.1103/PhysRevB.81.165433
http://dx.doi.org/https://doi.org/10.1103/PhysRevB.83.245436
http://dx.doi.org/https://doi.org/10.1103/PhysRevB.84.035428
http://dx.doi.org/https://doi.org/10.1103/PhysRevB.84.035428
http://dx.doi.org/https://doi.org/10.1103/PhysRevB.96.245404


216 Bibliography

[229] H. K. Kelardeh, V. Apalkov, and M. I. Stockman, “Attosecond strong-
field interferometry in graphene: Chirality, singularity, and Berry phase”,
Phys. Rev. B 93, 155434 (2016).

[230] P. Delplace, Á. Gómez-León, and G. Platero, “Merging of Dirac points
and Floquet topological transitions in ac-driven graphene”, Phys. Rev.
B 88, 245422 (2013).

[231] G. Usaj, P. M. Perez-Piskunow, L. E. F. Foa Torres, and C. A. Balseiro,
“Irradiated graphene as a tunable Floquet topological insulator”, Phys.
Rev. B 90, 115423 (2014).

[232] P. M. Perez-Piskunow, L. E. F. Foa Torres, and G. Usaj, “Hierarchy
of Floquet gaps and edge states for driven honeycomb lattices”, Phys.
Rev. A 91, 043625 (2015).

[233] L. Wang, I. Meric, P. Y. Huang, Q. Gao, Y. Gao, H. Tran, T. Taniguchi,
K. Watanabe, L. M. Campos, D. A. Muller, J. Guo, P. Kim, J. Hone,
K. L. Shepard, and C. R. Dean, “One-dimensional electrical contact to
a two-dimensional material”, Science 342, 614–617 (2013).

[234] A. I. Berdyugin, S. G. Xu, F. M. Pellegrino, R. K. Kumar, A. Principi,
I. Torre, M. B. Shalom, T. Taniguchi, K. Watanabe, I. V. Grigorieva,
M. Polini, A. K. Geim, and D. A. Bandurin, “Measuring hall viscosity
of graphene’s electron fluid”, Science 364, 162–165 (2019).

[235] T. Kitagawa, T. Oka, A. Brataas, L. Fu, and E. Demler, “Transport
properties of nonequilibrium systems under the application of light:
Photoinduced quantum Hall insulators without Landau levels”, Phys.
Rev. B 84, 235108 (2011).

[236] L. E. F. Torres, P. M. Perez-Piskunow, C. A. Balseiro, and G. Usaj,
“Multiterminal conductance of a floquet topological insulator”, Phys.
Rev. Lett. 113, 266801 (2014).

[237] F. Giorgianni, E. Chiadroni, A. Rovere, M. Cestelli-Guidi, A. Perucchi,
M. Bellaveglia, M. Castellano, D. D. Giovenale, G. D. Pirro, M. Ferrario,
R. Pompili, C. Vaccarezza, F. Villa, A. Cianchi, A. Mostacci, M. Pe-
trarca, M. Brahlek, N. Koirala, S. Oh, and S. Lupi, “Strong nonlinear
terahertz response induced by Dirac surface states in Bi2Se3 topological
insulator”, Nat. Commun. 7, 11421 (2016).

[238] H. Liu, Y. Li, Y. S. You, S. Ghimire, T. F. Heinz, and D. A. Reis,
“High-harmonic generation from an atomically thin semiconductor”,
Nat. Phys. 13, 262–265 (2017).

[239] Wolfram Research, Inc., Mathematica, Version 10.3, Champaign, IL
(2015).

http://dx.doi.org/10.1103/PhysRevB.93.155434
http://dx.doi.org/10.1103/PhysRevB.88.245422
http://dx.doi.org/10.1103/PhysRevB.88.245422
http://dx.doi.org/10.1103/PhysRevB.90.115423
http://dx.doi.org/10.1103/PhysRevB.90.115423
http://dx.doi.org/10.1103/PhysRevA.91.043625
http://dx.doi.org/10.1103/PhysRevA.91.043625
http://dx.doi.org/DOI: 10.1126/science.1244358
http://dx.doi.org/DOI: 10.1126/science.aau0685
http://dx.doi.org/10.1103/PhysRevB.84.235108
http://dx.doi.org/10.1103/PhysRevB.84.235108
http://dx.doi.org/https://doi.org/10.1103/PhysRevLett.113.266801
http://dx.doi.org/https://doi.org/10.1103/PhysRevLett.113.266801
http://dx.doi.org/10.1038/ncomms11421
http://dx.doi.org/10.1038/nphys3946


Bibliography 217

[240] A. Riedel, “Magnetic field effects on light-driven topological insulator
surface states”, Master’s thesis, University of Regensburg, Germany
(2023).

[241] R. E. Silva, F. Martín, and M. Ivanov, “High harmonic generation in
crystals using maximally localized Wannier functions”, Phys. Rev. B
100, 195201 (2019).

[242] H. Rubinsztein-Dunlop, A. Forbes, M. V. Berry, M. R. Dennis, D. L.
Andrews, M. Mansuripur, C. Denz, C. Alpmann, P. Banzer, T. Bauer, E.
Karimi, L. Marrucci, M. Padgett, M. Ritsch-Marte, N. M. Litchinitser,
N. P. Bigelow, C. Rosales-Guzmán, A. Belmonte, J. P. Torres, T. W.
Neely, M. Baker, R. Gordon, A. B. Stilgoe, J. Romero, A. G. White,
R. Fickler, A. E. Willner, G. Xie, B. McMorran, and A. M. Weiner,
“Roadmap on structured light”, J. Opt. 19, 013001 (2016).

[243] A. Seith, F. Evers, and J. Wilhelm, “Giant DC residual current generated
by subcycle laser pulses”, Preprint (2024) 10.48550/arXiv.2402.
01490.

[244] Y. Tang and A. E. Cohen, “Optical chirality and its interaction with
matter”, Phys. Rev. Lett. 104, 163901 (2010).

[245] X. Zhang, T. Wu, X. Zhang, and R. Wang, “Strongly enhanced Raman
optical activity in molecules by magnetic response of nanoparticles”, J.
Phys. Chem. C 120, 14795–14804 (2016).

[246] A. Manjavacas, R. Fenollosa, I. Rodriguez, M. C. Jiménez, M. A. Mi-
randa, and F. Meseguer, “Magnetic light and forbidden photochemistry:
the case of singlet oxygen”, J. Mater. Chem. C 5, 11824–11831 (2017).

[247] T. H. Taminiau, S. Karaveli, N. F. V. Hulst, and R. Zia, “Quantifying
the magnetic nature of light emission”, Nat. Commun. 3, 979 (2012).

[248] A. Junck, G. Refael, and F. V. Oppen, “Photocurrent response of
topological insulator surface states”, Phys. Rev. B 88, 075144 (2013).

[249] L. M. Roth, B. Lax, and S. Zwerdling, “Theory of optical magneto-
absorption effects in semiconductors”, Phys. Rev. 114, 90 (1959).

[250] R. Winkler, Spin-orbit coupling effects in two-dimensional electron and
hole systems (Springer Berlin, Heidelberg, 2003).

[251] T. Rauch, M. Flieger, J. Henk, I. Mertig, and A. Ernst, “Dual topological
character of chalcogenides: Theory for Bi2Te3”, Phys. Rev. Lett. 112,
016802 (2014).

[252] G. Sundaram and Q. Niu, “Wave-packet dynamics in slowly perturbed
crystals: Gradient corrections and Berry-phase effects”, Phys. Rev. B
59, 14915 (1999).

http://dx.doi.org/https://doi.org/10.1103/PhysRevB.100.195201
http://dx.doi.org/https://doi.org/10.1103/PhysRevB.100.195201
http://dx.doi.org/10.1088/2040-8978/19/1/013001
http://dx.doi.org/10.48550/arXiv.2402.01490
http://dx.doi.org/10.48550/arXiv.2402.01490
http://dx.doi.org/10.48550/arXiv.2402.01490
http://dx.doi.org/https://doi.org/10.1103/PhysRevLett.104.163901
http://dx.doi.org/https://doi.org/10.1021/acs.jpcc.6b03446
http://dx.doi.org/https://doi.org/10.1021/acs.jpcc.6b03446
http://dx.doi.org/10.1039/C7TC04130F
http://dx.doi.org/10.1038/ncomms1984
http://dx.doi.org/https://doi.org/10.1103/PhysRevB.88.075144
http://dx.doi.org/10.1103/PhysRev.114.90
http://dx.doi.org/10.1103/PhysRevLett.112.016802
http://dx.doi.org/10.1103/PhysRevLett.112.016802
http://dx.doi.org/10.1103/PhysRevB.59.14915
http://dx.doi.org/10.1103/PhysRevB.59.14915


218 Bibliography

[253] Z. Yuanbo, T. Yan-Wen, S. H. L., and K. Philip, “Experimental ob-
servation of the quantum Hall effect and Berry’s phase in graphene”,
Nature 438, 201–204 (2005).

[254] D. an der Brügge and A. Pukhov, “Ultrashort focused electromagnetic
pulses”, Phys. Rev. E 79, 016603 (2009).

[255] F. H. Faisal and J. Z. Kamiński, “Floquet-Bloch theory of high-harmonic
generation in periodic structures”, Phys. Rev. A 56, 748 (1997).

[256] F. H. Faisal, J. Z. Kamiski, and E. Saczuk, “Photoemission and high-
order harmonic generation from solid surfaces in intense laser fields”,
Phys. Rev. A 72, 023412 (2005).

[257] T. N. Ikeda, K. Chinzei, and H. Tsunetsugu, “Floquet-theoretical formu-
lation and analysis of high-order harmonic generation in solids”, Phys.
Rev. A 98, 063426 (2018).

[258] O. Neufeld, D. Podolsky, and O. Cohen, “Floquet group theory and its
application to selection rules in harmonic generation”, Nat. Commun.
10, 405 (2019).

[259] S. Ito, M. Schüler, M. Meierhofer, S. Schlauderer, J. Freudenstein, J.
Reimann, D. Afanasiev, K. A. Kokh, O. E. Tereshchenko, J. Güdde,
M. A. Sentef, U. Höfer, and R. Huber, “Build-up and dephasing of
Floquet–Bloch bands on subcycle timescales”, Nature 616, 696–701
(2023).

[260] Y. Baba, “Quantum transport in Dirac materials under external fields
and disorder”, PhD thesis, Universidad Complutense de Madrid, Spain
(2023).

[261] K. Drese and M. Holthaus, “Floquet theory for short laser pulses”, Eur.
Phys. J. D 5, 119–134 (1999).

[262] P. J. Turner, Xmgrace, Version 5.1.25, Center for Coastal and Land-
Margin Research, Oregon Graduate Institute of Science and Technology,
Beaverton, OR (2005).

[263] G. Grosso and G. P. Parravicini, Solid state physics (Academic Press,
2000).

[264] B. Gaury and X. Waintal, “Dynamical control of interference using
voltage pulses in the quantum regime”, Nat. Commun. 5, 3844 (2014).

https://www.nature.com/articles/nature04235#supplementary-information
http://dx.doi.org/10.1103/PhysRevE.79.016603
http://dx.doi.org/10.1103/PhysRevA.56.748
http://dx.doi.org/https://doi.org/10.1103/PhysRevA.72.023412
http://dx.doi.org/https://doi.org/10.1103/PhysRevA.98.063426
http://dx.doi.org/https://doi.org/10.1103/PhysRevA.98.063426
http://dx.doi.org/10.1038/s41467-018-07935-y
http://dx.doi.org/10.1038/s41467-018-07935-y
http://dx.doi.org/10.1038/s41586-023-05850-x
http://dx.doi.org/10.1038/s41586-023-05850-x
http://dx.doi.org/10.1007/s100530050236
http://dx.doi.org/10.1007/s100530050236
http://dx.doi.org/10.1038/ncomms4844


List of publications

[74] V. Junk, P. Reck, C. Gorini, K. Richter, “Floquet oscillations in
periodically driven Dirac systems”, Phys. Rev. B 101, 134302
(2020).

[81] C. P. Schmid, L. Weigl, P. Grössing, V. Junk, C. Gorini, S. Schlaud-
erer, S. Ito, M. Meierhofer, N. Hofmann, D. Afanasiev, J. Crewse,
K. A. Kokh, O. E. Tereshchenko, J. Güdde, F. Evers, J. Wil-
helm, K. Richter, U. Höfer, and R. Huber, “Tunable non-integer
high-harmonic generation in a topological insulator”, Nature 593,
385-390 (2021).





List of Figures

2.1. Crystal structure and reciprocal lattice of graphene. . . . . . . . 10
2.2. Dirac cone and energy countour around the K-point of graphene. 13
2.3. Crystal structure, lattice positions, and band formation for Bi2Se3. 16
2.4. Bandstructure and energy difference between the bands of Bi2Te3. 19
2.5. Electron dynamics in a two-band system driven by an electric field. 34

3.1. Dispersion of the continuous and discretized Dirac Hamiltonian. . 39

4.1. Formation of k periodic Floquet bands and Floquet oscillations
from the perspective of the static Dirac bandstructure. . . . . . . 60

4.2. Floquet bandstructure of a periodically gapped Dirac cone. . . . 63
4.3. Floquet oscillations in a periodically gapped Dirac cone system. . 66
4.4. Velocities and their spectral analysis for wave packets in a period-

ically gapped Dirac cone. . . . . . . . . . . . . . . . . . . . . . . 69
4.5. Floquet bandstructure and Floquet oscillations for a Dirac system

in circularly polarized light. . . . . . . . . . . . . . . . . . . . . . 73
4.6. Floquet oscillations in a Dirac system with circularly polarized light. 75
4.7. Floquet oscillations for realistic parameters in graphene. . . . . . 78

5.1. Bandstructure and energy difference of a gapped Dirac cone. . . . 84
5.2. Bandstructure and energy difference of the fitted Bi2Te3 model. . 85
5.3. Berry curvature of a (gapped) Dirac cone and two Bi2Te3 surface

models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.4. Berry curvature extracted from the anomalous velocity. . . . . . . 90
5.5. Scaled electric field and corresponding momentum change. . . . . 92
5.6. Velocity in the adiabatic limit. . . . . . . . . . . . . . . . . . . . 94
5.7. Velocity in the resonant regime. . . . . . . . . . . . . . . . . . . . 97
5.8. Velocity in the nonimpulsive Landau-Zener regime. . . . . . . . . 100
5.9. Velocity in the impulsive and adiabatic-impulsive Landau-Zener

regime. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.10. HHs spectrum for the adiabatic regime. . . . . . . . . . . . . . . 106
5.11. HHs spectrum for the (adiabatic-)impulsive Landau-Zener regime. 108

6.1. Sketch of the wave packets constituting a Fermi sea at T = 0 K. . 115



222 List of Figures

6.2. Snapshots of the wave packet projected on the valence band. . . . 120
6.3. Velocity of Ψ−(k, t) for different k-masks. . . . . . . . . . . . . . 122
6.4. HH spectrum of Ψ−(k, t) for different k-masks. . . . . . . . . . . 123
6.5. Intraband velocities and HH spectra of Ψ−(k, t) for different k-masks.124
6.6. Zoomed snapshots of the wave packet in the valence band at t νel = 4.126
6.7. Occupation and HH spectrum for k-masks with varying limit in ky.128
6.8. Comparison of velocity and HHs obtained with and without k-mask.131
6.9. Comparison of HHG along the ΓM and the ΓK direction of Bi2Te3.134
6.10. Comparison of HHG in a gapped Dirac cone and Bi2Te3 surface

states. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
6.11. Comparison of HHG from single test charges and our Fermi sea

approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
6.12. Comparison of HHG and scaling of the k-mask for different field

strengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
6.13. HHG from the Bi2Te3 surface for different Fermi energies EF . . . 143

7.1. In-plane magnetic-field effects on surface states driven by laser
pulses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

7.2. Out-of-plane magnetic-field effects on surface states driven by laser
pulses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

7.3. Interaction of magnetic field and hexagonal warping in HHG. . . 156
7.4. Effect of an orbital magnetic field on HHG from a Dirac cone. . . 161
7.5. Sketch of the laser pulse and comparison of different electric-field

descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

A.1. Floquet oscillations in a periodically gapped Dirac system. . . . . 175
A.2. Floquet oscillations for different sizes n,m of the Floquet matrix. 176
A.3. Position expectation value of an electron propagated for a longer

time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
A.4. Bandstructure comparison of the fitted Bi2Te3 model and its ex-

pansion to DFT. . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
A.5. HHs spectrum for the resonant and nonimpulsive Landau-Zener

regime. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
A.6. COM in momentum space within the k-mask. . . . . . . . . . . . 185
A.7. Comparison of different data processing for HH-spectra computation.186
A.8. Sketch of the simulated Fabry-Perot system with applied pulse Vp(t).191
A.9. Comparison between TQT and Tkwant for the Fabry-Perot system.194
A.10. Comparison between TQT and Tkwant for the Fabry-Perot system.195
A.11. Results for the Fabry-Perot system integrated over the Fermi sea. 196



Acknowledgments

In this last paragraph, I want to express my gratitude to all people who
supported me and my work during the last years.

I thank Klaus Richter for making this project possible. He encouraged me
to delve into the theory of time-dependent phenomena in my master’s thesis,
and gave me the opportunity to stay and dive deeper into this research field
for my PhD. He was always there to provide creative input when I was stuck
on a problem but also trusted me in finding my own solutions. In addition
to his scientific counsel, he was always mindful and created a very enjoyable
working atmosphere.

Moreover, I want to thank everyone with whom I collaborated over the last
years. I start with Phillipp Reck, who supervised my master’s thesis and
thereby provided me with the foundation for working on my PhD project. His
introduction into the field and especially the handling of TQT saved me from
many hardships. Next, I want to thank Cosimo Gorini for the various fruitful
discussions and for teaching me to focus on the positive aspects of having
identified a mistake. In Wolfgang Hogger I found a companion to debate
our joint research topics and he enriched this project with his perspective
on the ongoing physics. Even more importantly, he helped me in keeping
up my spirit in stressful times. Special thanks also go to him, Angelika
Knothe, and Michael Barth for their great efforts in proof reading this thesis.
I also want to mention the numerous students I was able to supervise in
the course of this project. Their work was a valuable contribution and I
greatly enjoyed all collaborations. The master’s students Mario Ebner and
Alexander Riedel played an important role in the development of the Fermi
sea approach for wave packets and in understanding magnetic-field effects on
HHG. The bachelor’s students Johanna Meier, Martin Steinau, and Michael
Laumer helped me extend my understanding of Floquet systems, and Malin
Horstmann and Lukas Beringer introduced me to the twists of Klein tunneling
in moiré superlattices. Lastly, I want to thank all members of the chair for
the great lunch and coffee breaks, dinners, and excursions, as well as the



224 List of Figures

multifaceted conversations that made working in this group a real pleasure.

I appreciate having participated in the collaboration initiated by Rupert
Huber to interpret the experimentally observed HH emission from Bi2Te3.
This project inspired the wave-packet analysis I developed in this thesis. I
especially want to thank Christoph Schmid and Leonard Weigl for the insights
into the results from the lab and for the various discussions on the experimental
parameters and their implications for theoretical modeling. From the theory
side, Patrick Grössing was a great coworker, and I really enjoyed our regular
Zoom meetings, where we debated physics and fought the sometimes lonely
working atmosphere during the pandemic.

I acknowledge funding by the Deutsche Forschungsgemeinschaft through the
SFB 1277, project A07. The SFB created a fruitful research environment and
encouraged exchange with other groups. The softskill seminars organized by
the IRTG were a valuable complement to my scientific education.

Last but not least, I thank my partner Martin, my family, and my friends –
in particular my weekly running companion Annka and the P56 gang Jan,
Stefan, Jakob, and Beril – for their support over the last years and for their
understanding of my limited time resources during the last weeks of completing
this dissertation. I know that bearing my moods was challenging sometimes –
especially for Martin, who had to share a home with me – but still you were
always there for me and ready to provide me with the kind of encouragement
I needed at that moment.


	DissUBR_Junk_Softcover_UB_A5_2023_PB
	Junk_Manuskript_06022024
	Introduction
	Basic concepts
	Effective Dirac Hamiltonians
	Graphene
	Topological insulator surface states

	Berry phase, connection, and curvature
	Velocity in two-band systems
	Zitterbewegung
	Influence of electric fields
	High-harmonic generation

	Transition mechanisms in laser-driven two-level systems

	Simulating wave-packet dynamics in time-dependent quantum systems
	Avoiding fermion doubling in effective Dirac Hamiltonians
	Discrete time evolution of wave packets
	Plane waves in spatially localized time-dependent potentials
	Including orbital magnetic fields
	Overview of relevant observables

	Floquet oscillations in periodically driven Dirac sytems
	Introduction
	Basic concepts of Floquet theory
	General idea behind Floquet oscillations
	Proof of principle: Periodically opened mass gap
	Floquet bandstructure
	Analysis of Floquet oscillations
	Zitterbewegung in the Floquet basis

	Towards experimental realization: Circularly polarized light
	Dirac Hamiltonian
	Including trigonal warping and realistic parameters

	Summary: Extending concepts from Bloch to Floquet systems

	Dynamics of test charges in driven Dirac systems
	Experimental motivation
	Model systems
	Berry curvature mapping with constant electric fields
	Laser-driven dynamics – different regimes in momentum space
	Adiabatic regime
	Resonant transitions: Rabi-like oscillations
	Landau-Zener tunneling
	Summary

	High-harmonic generation
	Influence of the Berry curvature
	Increasing the field strength
	Conclusion


	Wave-packet approach for high-harmonic generation from a Fermi sea
	Motivation
	Introduction of methodology
	Demonstration for the Bi2Te3 surface states
	Definition of the initial setup
	Monitoring transitions in momentum space
	Determining the k-mask boundary
	Influence of the k-mask shape
	Comparison to the full wave packet without k-mask
	Conclusion

	Driving along the M direction
	Comparison to a gapped Dirac cone system
	Variation of the field strength
	Comparison with single test charges
	Scaling of the emitted power and the k-mask size

	Influence of the Fermi energy
	Summary

	Magnetic-field effects on high-harmonic generation
	Motivation
	Bi2Te3 surface states in a constant, in-plane magnetic field
	Bi2Te3 surface states in a constant, out-of-plane magnetic field
	Influence of Zeeman splitting
	Including orbital effects

	Outlook: Including the pulse as an electromagnetic wave

	Conclusion
	Appendix
	Calculation of the velocity matrix elements
	Further data on Floquet oscillations in periodically gapped Dirac systems
	Treating circularly polarized light in TQT
	Fitted Bi2Te3 surface Hamiltonian in TQT
	Velocity operator for the fitted Bi2Te3 surface model
	Spectra for resonant and nonimpulsive Landau-Zener regime
	From Fermi sea to single-particle states
	Benchmarking wave-packet versus k-mask size
	Effects of velocity-data processing on high-harmonics spectra
	Peak-field dependent simulation parameters for the Fermi sea method
	Velocity renormalization for Fermi energy sweeps
	Testing the Lanczos Source propagator
	Constructing the test system in TQT and Tkwant
	Computing the scattering states for TQT
	Comparison of the TQT and Tkwant results for a single k-mode
	Comparison of the TQT and Tkwant results for a Fermi sea




