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ABSTRACT

Temporal regularities and the timing of events and actions such
as anticipating enemy movements or planning one’s next move
are essential components of almost every video game. Thus, to
succeed in video games, it is advantageous to anticipate events
and prepare relevant actions before they occur. This work explores
whether elapsed time can be used as a predictive cue for implic-
itly anticipating events in video games. Inspired by findings from
psychology, we implemented multiple time-event correlations in a
custom video game by pairing specific delays with specific game
events. Participants had to shoot targets that appeared at different
locations. After a certain delay (e.g., 0.8 s), the targets appeared
more frequently (80 % of all appearances) at a specific location (e.g.,
left up). Our analysis of 25 participants provides evidence that play-
ers implicitly learned the implemented time-event correlations and
used them to anticipate the location of upcoming targets. This led to
improved game performance. Although no participant realised the
implemented temporal regularities, targets were shot faster when
preceded by the frequently paired delay. Our findings pave the way
for game developers and researchers alike to more creatively com-
bine human temporal processing with temporal aspects of video
games.
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1 INTRODUCTION

Temporal regularities and the timing of events and actions are es-
sential elements of almost every video game. Regardless of whether
a player waits for a skill to be ready in Apex Legends [14], antici-
pates when and where an enemy is going to attack in Counter-Strike
2 [61] or estimates the perfect moment to utilize Returnals’s Over-
load [63] mechanic, which, if timed correctly, drastically increases
weapon reloading speed in the shooting game, timing is crucial.

In our daily lives, we constantly use time to anticipate events.
Consider, for example, how one’s expectancy changes while ringing
a doorbell and waiting for a response. As time passes, we first expect
the door to be opened and prepare to greet the residents. After a cer-
tain waiting time, this expectancy changes to anticipating an unan-
swered doorbell, and we prepare to leave. In cognitive psychological
research, this anticipatory behavior based on temporal information
is called time-based event expectancy [58] and has been studied
applying the time-event correlation paradigm [55, 58, 65]. In this
paradigm, mostly two events are coupled to different foreperiods,
which is the time passed before the event happens. The probabilities
of the events are identical, but crucially the combination of event
and corresponding foreperiod is not. One combination is more fre-
quent, while the other is less frequent. Frequent combinations are
also referred to as valid since they allow, through their prevalence,
the formation of a temporal mental representation of the event.
Conversely, infrequent combinations are the exception and are thus
also called invalid. Using this paradigm, studies showed that after
a certain learning period, participants respond faster to events that
are part of a valid time-event combination than to events that are
part of an invalid time-event combination [55, 57]. However, cur-
rently it is unclear if video game players can profit from the same
systematic performance increase.
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To answer this question, we explore a new concept of using
temporal structures of video games, so-called time-event correla-
tions, to influence player behavior and performance. We investigate
whether players learn multiple associations between specific de-
lays and game events and improve their performance by implicitly
using these learned associations to anticipate game events and
their required actions. To achieve this, we developed a 3D shooting
game and coupled time-event correlations to the in-game targets’
mechanics. However, contrary to classical time-event correlation
studies from cognitive psychological research that use mostly two
time-event correlations, we implemented four different time-target
combinations. We did this to appropriately reflect the larger inter-
action space (compared to classical psychological experiments) of
nowadays’ video games, such as character movement, visual and
auditory feedback, and in-game scores. In our game, players must
shoot targets spawning at four lateral locations with four differ-
ent foreperiods. After a certain foreperiod (e.g., 0.8 s), the targets
appeared more frequently (80 % of all appearances) at a specific
location (e.g., left up). We used the game to conduct a study with
28 players. Our study investigates the implicit adaptation to time-
target combination. Hence, we excluded three participants from
the data analysis whose answers to the post-experience interview
indicates that they explicitly noticed the temporal regularities in
the game. Analysis of the data from 25 players who did not notice
the regularities provides evidence that players implicitly learned
the implemented time-target combinations and used them to an-
ticipate the location of upcoming targets, which led to improved
game performance. Although none of the analyzed participants ex-
plicitly realised the implemented temporal regularities, on average
targets were shot 32ms faster when the frequently paired forepe-
riod preceded them, while the error rate remained constant. Hence,
our work provides first evidence that players in video games can
implicitly utilize multiple time-target combinations to form a solid
mental representation of the temporal regularities of a game. Game
developers can benefit from our findings by implementing time-
event correlations to adjust game difficulty, balance uncertainty and
predictability or augment unavoidable delays with information. We
provide all material via Open Sciences Framework (OSF) to enable
future research to build on our work. The repository includes the
game’s source codes, all the gathered anonymized user data, as well
as the full statistical analysis1.

2 RELATEDWORK

A large body of work investigates time and time perception in
video games from different angles: Researching time as a game
element, through the eye of latency, or how video games alter the
subjective time perception of players. Furthermore, research on
temporal cognition provides a phenomenon that could elucidate
anticipatory player behavior in video games: Time-based event
expectancy.

In the following, we first discuss how time influences video
game design and mechanics and show that research on latency
demonstrates that players are sensible to temporal disturbances.
Next, we discuss how playing video games alters the players’ time
perceptions. We provide an overview of how time-based event

1https://osf.io/kjp9e

expectancy influences behavior and elucidate how it is investigated
in cognitive psychology. We conclude this section by summarizing
why temporality must be considered when designing games and
game mechanics.

2.1 Time in Video Games

Time is a crucial concept underpinning video game mechanics [3,
39]. It dictates the pace at which events unfold and determines
character movements, environmental changes, and resource man-
agement in video games [53]. Players make decisions within specific
time constraints, a dynamic that adds challenge and depth to the
players’ experiences. From the urgency of a time-sensitive puzzle
to the patience required for strategic planning, manipulating time
within gameplay mechanics offers designers numerous ways to
incorporate opportunities and consequences.

Researchers study time in video games from a number of different
perspectives, for example: (1) time as a game mechanic, (2) time as a
measure of latency, or (3) time as a key element of predictability in
video games. Research on time, in general, elucidates how players in
video games are situated in game-specific time frames [39], how to
integrate multiple time scales in a single game [3] or how activities
are paced and synchronized in video games [53]. Other work in
this line investigates how much time players spend on video games
[59], how adolescents underestimate time spent on gaming [60],
or how video games enhance temporal processing abilities [13].
While all of this work, directly or indirectly, states that time is
a crucially important concept in video games, none focuses on
temporal cognition.

The second perspective on time in video games is by understand-
ing the effects of latency. Latency is the time between an user’s
input and a system’s output [67] and, fundamentally, every inter-
active system is affected by it [35]. When investigating temporal
components of video games, it is crucial to account for latency and
its effects, since previous work showed that even small variations in
temporal changes can affect experience and performance. Previous
work, for example, demonstrated that latency above 25ms leads
to a decreased user performance [1, 29] when using touch-based
systems. In later work, Ng et al. [38] even found that users can
perceive latency starting at a value of 2ms. The authors show in
subsequent work that users even could distinguish between 1ms
and 2ms of latency [37]. Since video games are interactive systems
as well, they are also affected by latency [10, 20]. Latency decreases
player performance [19, 21, 49] and gaming experience [6, 15, 24].
Other work, for example, by Halbhuber et al. [23], demonstrated
that the mere expectation of latency in video games induces an ad-
verse placebo (nocebo) effect in video game players. To summarize,
work on latency in video games demonstrates that minor temporal
disturbances of the input-output paradigm and even the expectation
of latency can disturb gaming performance and experience.

Another perspective on time and its effects on players in video
games offers work on predictability. Temporal predictability in
video games, the ability to temporally predict game events based
on the current or past game states, allows players to effectively
divide their attention [62] to optimize the use of in-game resources
in real-time strategy (RTS) games such as StarCraft 2. Predictability
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is even used as a critical element in certain games such as the First-
Person Shooter (FPS) game SUPERHOT [52]. In SUPERHOT, time
only moves if the player’s avatar moves. Thus, if the avatar stands
still, enemies’ movement and hostile projectiles are slowed down
to near-standstill. This distorted temporality allows the player to
carefully plot maneuvers, plan strategies, and predict how the game
will play out in the future [26].

2.2 Time Perception in Video Games

Research on time perception in video games focuses on how video
games alter players’ perceptions of time. For example, Rutrecht et
al. [47] found that players’ subjective time perception correlates
with their experienced flow. Flow, firstly described in 1975 by Csik-
szentmihalyi [12, 27, 36], corresponds to the mental state of being
in the zone. This state includes being highly focused and a strong
feeling of immersion with a high level of enjoyment and fulfill-
ment. In their work, Rutrecht et al. [47] showed that the higher the
flow level while playing, the shorter the perceived subjective time.
Nuyens et al. [40] argue that being in the zone requires players to
direct their attentional resources to the activity at hand, which leads
to fewer mental resources allocated to time perception. The authors
conclude that entering a flow state mainly results in underestimat-
ing subjective time. Other research in this line of work investigates
the effects of in-game music on time perception [46, 48]. For ex-
ample, Rogers et al. [46] found that playing virtual reality video
games with music leads to a significantly faster passing of time
compared to playing without music. In similar work, Cassidy &
MacDonald [9] investigated the effects of music on time percep-
tion and performance in a video game. The authors found that
participants playing with self-selected music resulted in an overes-
timation of elapsed time. Furthermore, the authors argue that the
over-estimation stems from the self-selected music being associ-
ated with personal meaning and, thus, increased engagement with
the ongoing activity. While research on time in video games and
time perception in video game is crucial to understand the general
framework of temporality in games, it does not answer how and if
players can utilize temporal regularities in games to increase their
performance and experience.

2.3 Time-based Event Expectancy

Time-based event expectancy describes the ability to anticipate an
event based on the time that has elapsed until the event occurs.
Rather than just asking "when?" it corresponds to "what based on
when?" [2]. Initially introduced in a cognitive psychological study
by Wagener and Hoffmann [65], time-based event expectancy is
investigated using the time-event correlation paradigm [55, 58, 65].
Two distinguishable events (event A and event B) occur after two
different foreperiods (foreperiod A and foreperiod B). Both events
are equally probable; however, the time-event correlation is not. In
the majority of all trials, foreperiod A leads to event A and forepe-
riod B leads to event B (valid combinations). Crucially, in a minority
of all trials of all tested cases, foreperiod A leads to event B, and
foreperiod B leads to event A (invalid combinations). To allow ob-
servers to unintentionally and subconsciously learn relationships
between duration and events [64], researchers apply clearly distin-
guishable values for both foreperiods, such as 600ms (foreperiod

A) and 1.400ms (foreperiod B) [65]. Other work investigating time-
based event expectancy used 400ms and 1000ms [55] or 500ms
and up to 1500ms [58] to induce time-based event correlations. Re-
search in this line of work showed that response times to an event
in a valid time-event combination are significantly lower relative
to those in invalid combinations [56, 58], even though participants
are not aware of the temporal regularities of the task at hand [64].
While most studies investigating time-based expectancy have ex-
plored the effects of two time-event correlations, only one study
provides evidence that humans can adapt to multiple (three) time-
event correlations [2]. This is particularly relevant in light of video
games. In video games, players typically separate their focus on
multiple in-game actions and elements, such as shooting different
targets, keeping track of their performance, and processing multi-
modal feedback. Previous work does not answer if the increased
attentional resources required to play video games prevent players
from forming implicit time-based event expectancy.

2.4 Summary

A large body of work investigates time in video games from different
perspectives, for example: Time as a game mechanic [3, 4, 39], time
through the eye of latency [10, 11, 19, 24, 33], the effects of (tem-
poral) predictability on player experience [26, 62], or how video
games alter the subjective perception of time in players [46–48].
Altogether, previous work clearly shows that understanding time
and timing in video games is essential for designing video games
and crucial for understanding player behavior and how temporal
components in video games, such as latency, alters it. Further-
more, psychological research provides a concept of temporal ex-
pectancies that elucidates anticipatory behavior: time-based event
expectancy [2, 58, 65]. Previous work highlighted that humans’
response times are significantly decreased when upcoming events
are made predictable through time-event correlations [56]. Consid-
ering the advantages video game players could gain, it stands to
reason that the integration of time-based event expectancy in video
games should be investigated. Currently, however, it is unknown if
the increased attentional resources required when playing video
games hamper the ability to form implicit time-based event ex-
pectancy. Furthermore, it is unclear whether it is possible to adapt
to multiple time-event correlations, a scenario that better reflects
the large interaction space of video games. Ultimately, time-based
event expectancy may be used to alter the predictability of a video
game, which, in turn, may increase overall gaming experience and
performance.

3 INVESTIGATING TIME-BASED EVENT

EXPECTANCY IN VIDEO GAMES

We designed and implemented a custom 3D FPS game to investigate
whether time-event-correlations are applicable as game elements
in video games. We explore whether players can adapt to multiple
time-event correlations, which potentially leads to an increase in
performance. Developing a custom game ensures complete con-
trol over the research environment. Furthermore, we developed
a game from the FPS genre, as they are susceptible to temporal
disturbances [5, 33]. Split-second decision-making and reactions
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are crucial to playing FPS games effectively, contrary to, for exam-
ple, a turn-based strategy game which does not necessarily create
temporal pressure. After developing the game’s foundation, we im-
plemented game mechanics to potentially influence gamers’ perfor-
mances through time-based event expectancy. We then integrated
multiple functions to log player behavior and performance, such as
mouse position, reaction time, and accuracy. Employing this setting,
we conducted an experiment with 28 participants. The participants
were instructed to play our game for approximately 40 minutes
while we recorded the aforementioned in-game data.

3.1 Game Development

We developed and designed our game in the style of the commer-
cially available game Aim Lab [50]. Aim Lab is a so-called aim
trainer and is regularly played by millions of players [32]. Aim
trainers seek to improve player skills in FPS games, such as the
players’ accuracy or reaction times. These types of games are highly
performance-oriented and omit other typical elements of games,
such as a story. However, as aim trainers incorporate typical atomic
FPS game mechanics, such as target tracking and selection, they are
well suited as a platform to investigate time-based event expectancy
in video games. Their fundamental mechanics, for example, track-
ing and shooting targets, allow us to generalize potential findings
of our work to the broader FPS genre. We used the Unity3D (Ver-
sion 2020.3.14f1) game engine for development. After developing
basic game mechanics and the game world, we integrated detailed
mechanics designed around the time-based event expectancy para-
digm. We followed previous work by Thomaschke et al. [56], which
investigated time-based event expectancy in a slightly gamified
approach.

3.1.1 Basic gamemechanics. Figure 1 shows a screenshot fromAim
Lab (left) and our custom game (right). When starting the game, the
players are situated in a small virtual room - the game world. While
in the game, players control the avatar’s weapon movement by
moving the mouse. The avatar is stationary and can not be moved
in the game world. Players can fire their virtual weapon by pressing
the left mouse button. The player’s goal in the game is to shoot
the appearing red spheres as fast as possible. The spheres spawn at
five different locations: (1) middle, (2) left up, (3) right up, (4) left
down, or (5) right down. Only one sphere is visible at any given
time. The game starts with the middle sphere visible. After shooting
the middle sphere, it is destroyed, and one of the lateral spheres
(left up, right up, left down, or right down) appears. A distinct hit
sound is generated upon shooting and destroying the lateral sphere
before the middle sphere spawns again. If the player misses the
lateral target, it gets destroyed as well; however, no hit sound will
be played, and the middle sphere spawns. Players are rewarded
with points for successful hits. On the contrary, they do not earn
points if they miss the lateral target. This procedure is repeated
until the game ends.

3.1.2 Experimental game mechanics. The experimental trial pro-
cedure is illustrated in Figure 2. A trial starts with spawning the
middle sphere. After shooting the middle sphere (fixation target), it
disappears, and the foreperiod begins. The foreperiod, in which no
sphere is present, lasts 0.2 s, 0.8 s, 1.4 s or 2.0 s. After the foreperiod,

the sphere spawns at one of the lateral positions (left up, right up,
left down, or right down). The trial ends with the next shot regard-
less of whether the shot hits the lateral target. After an intertrial
interval of 0.4 s, the subsequent trial starts. Crucial for our investi-
gation is that the spawn time (foreperiod) of the lateral targets is
not randomized (as it is in games such as Aim Lab) but manipulated
through a specific correlation of foreperiod and spawn location to
induce time-based event expectancy in players. While general prob-
abilities of foreperiods (25 % 0.2 s, 25 % 0.8 s, 25 % 1.4 s and 25 % 2.0 s)
and target location (25 % left up, 25 % right up, 25 % left down and
25 % right down) are equally distributed, the combination of spawn
time and location is not. In 80% of of all spawns, the a specific
lateral sphere spawns after a specific foreperiod (e.g. 80 % of the
left upper spheres spawns after 0.2 s). These frequent combinations
are called valid time-target combinations. The counterpart to this
are invalid time-target combinations: In 20 % of the spawns, this
specific lateral sphere spawns after 0.8 s, 1.4 s or 2.0 s following
a hit on the middle sphere. To prevent a potential bias induced
by the spawn location of the lateral target, we counterbalanced
the combinations of foreperiods and target locations across partic-
ipants according to a Latin square (four different game versions).
Figure 3 exemplifies valid and invalid trials for one round of one of
the game versions. While playing, we measured players’ reaction
times to successfully hitting the lateral targets, their error rate and
score. Crucially, in contrast to previous work on time-base event
expectancy [54, 55] our experimental game mechanics employ four
different time-target combinations. Previous work typically investi-
gated implicit adaptation to temporal regularities using a binary
scenario, i.e., two foreperiods paired with two target stimuli, to
allow a clear distinction between valid and invalid combinations.
However, to better reflect the large interaction space and complex-
ity of nowadays’ video games we used four combination pairs. In
principle, this does not change the time-based event paradigm, but
makes a implicit internalization cognitively more demanding.

3.1.3 Game procedure. The game procedure is illustrated in Figure
3. The game started with a short warm-up round (5 trials) to famil-
iarize the players with the setting and the game itself. Following
the warm-up round, participants played ten rounds (two practice
rounds and eight experimental rounds), with each round consist-
ing of 60 trials in randomized order. The first two rounds were
set up as practice rounds in which participants implicitly learned
the implemented time-target combinations. The remaining eight
blocks were experimental rounds in which we hypothesized to mea-
sure the effects of the learned time-target combination. After each
round, an in-game performance overview showcasing accuracy
and the points obtained in the previous round was presented to the
participants. Furthermore, the performance overview showed how
the performance changed compared to the previous round, thus,
motivating participants to beat their last score.

3.2 Experimental Design and Hypotheses

For our investigation, we used a 4 x 2 design with Foreperiod (0.2 s,
0.8 s, 1.4 s and 2.0 s) and Time-Target Combination (valid and
invalid) as within-subject factors. To measure potential effects of
learned time-event-correlations on player performance we assessed
two variables: (1) RTshot - reaction time to successfully hitting the
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Figure 1: The left shows a screenshot from the aim trainer game Aim Lab. The right depicts a screenshot from our custom game.

Both screenshots show the player’s perspective, the player’s virtual weapon, and game targets. Both games display additional

performance information such as the points and the current accuracy.

Figure 2: Illustrates the experimental trial procedure of the game. A trial starts with spawning the middle sphere. After shooting

the middle sphere (fixation target), it disappears and the foreperiod begins. The foreperiod, in which no sphere is present, lasts

0.2 s, 0.8 s, 1.4 s, or 2.0 s. After the foreperiod, the sphere spawns at one of the lateral positions (left up, right up, left down or

right down). The trial ends with the next shot regardless of whether the shot hits the lateral target. After an intertrial interval

of 0.4 s, the next trial starts. RTshot, the reaction time to successfully hitting the lateral target after its appearance is denoted by

an orange arrow.

lateral target after its appearance (orange arrow in Figure 2) and (2)
ERshot - ratio of missed shots on lateral targets. If players indeed use
in-game Time-Target Combination to anticipate target locations,
we should observe faster reaction times (RTshot) in trials with valid
compared to trials with invalid. Furthermore, we hypothesize that
the error rate (ERshot) is lower in trials with valid trials Time-
Target Combination.

3.3 Apparatus

We installed our game on a stationary workstation in our labora-
tory. The workstation (Intel i7, Nvidia GT970, 16GB RAM) was
attached to a monitor (24" FullHD@60Hz), a computer mouse (Log-
itech M10), and a headset. The game ran in full-screen mode. The
laboratory was quiet and free of external disturbances.
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Figure 3: Depicts the game procedure and exemplifies the trial set of one game round of one game version. Participants played

ten blocks each consisting of 60 trials. 80 % of the trials employed a valid and 20% an invalid Time-Target Combination. In

the depicted version 80% of the left upper targets spawn after 0.2 s, 80% of the right up targets spawn after 0.8 s, 80% of the

left down targets spawn after 1.4 s and 80% of the right down targets spawn after 2.0 s. In 20% of all spawns the lateral target

spawns after one of the remaining foreperiods. The order of trials (valid and invalid) was randomized.

3.4 Procedure

Upon arrival, participants were greeted at our laboratory by the
experimenter. Participants were not informed about the exact pur-
pose of the study (investigating time-based event expectancy in
video games) but were told to test a novel game. After giving in-
formed consent and agreement to data collection, they were in-
formed about the study’s procedure. Then, each participant played
the game. Upon finishing the tenth round (two practice rounds
and eight experimental rounds), the game closed automatically
and opened a post-experience questionnaire. The questionnaire
was used to collect demographic information from the participants,
such as their identified gender, age, need for eyesight correction,
state of employment or course of study, information about their
experience with video games, and information about their expe-
rience with working on a computer in general. Participants rated
their experience with video games and computers on a scale based
on weekly hours spent (0 - 3 hours, 3 - 5 hours, 5 - 10 hours, 10 -
15 hours, and more than 15 hours). The study was concluded with
a debriefing, in which the participants were asked about the tem-
poral pattern of the game and whether they noticed any temporal
regularities. In the debriefing, the experimenter first asked whether
the participant noticed any regularities in the game. The debrief-
ing was finished if the participant stated that they did not notice
any regularities. On the other hand, if the participant stated that
they noticed regularities in the game, the experimenter asked what
the noticed regularities were. Then the experimenter asked if the
participant noticed any temporal regularities and if the participant
could state what these temporal regularities were. After these three

additional questions, the debriefing was finished as well. The ex-
perimenter noted all given answers on a beforehand prepared form.
The study lasted about one hour and received ethical clearance via
the research ethics policy of our institution.

3.5 Participants

We recruited 28 participants via mailing lists of our institution.
Since we investigate implicit adaptation to in-game Time-Target
Combination, we excluded three participants whose responses
in the debriefing indicated that they explicitly noted the temporal
regularities of the game. In summary, this leaves data of 25 par-
ticipants for analysis. This sample size still ensured a power of
1 − 𝛽 > .90 [16, 17] to detect an effect size 𝜂2𝑝 of at least 0.2 for the
relevant main effect of (an effect size that is below the effect sizes re-
ported in related work [2, 57, 58]). The remaining participants’ ages
ranged from 20 to 27 years, with an average age of 23.44 years (SD
= 2.10 years). All participants were right-handed and had perfect
or corrected eyesight, which was a requirement for participation.
The majority of participants, 18 of 25 reported they do not play
first-person shooter games at all or for a maximum of three hours
per week. Two participants reported playing first-person shooter
games for 3 to 5 hours per week, three reported 5 to 10 hours per
week, and two reported more than 15 hours per week. All partici-
pants were students at our institution and were compensated with
one credit point for their course of study.

3.6 Statistical Analyses

Raw data and analysis scripts are available via OSF. Data was anal-
ysed in R (version 4.2.3, [44]) using within-subject ANOVAs and
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t-tests (R package rstatix version 0.7.2; [30]). Effects with violations
of sphericity were Greenhouse-Geisser corrected and are reported
with corresponding 𝜀 estimates.

4 RESULTS

In line with previous work investigating time perception [7] and
time-based event expectancy [55], we excluded the warm-up phase
and the first two rounds of the game from the analysis. Thewarm-up
phase was solely implemented to allow participants to familiarize
themselves with the study setup and the game. In the first two
rounds of the study, the participants had not had enough playtime
to implicitly internalize the time-event correlations of the game yet.
Therefore, the effect of anticipated game events based on in-game
Time-Target Combination should evolve in later blocks (exper-
imental blocks). Further pre-processing of the data is described
in the respective section for each measure. In the following, we
first describe the results of the experiment’s debriefing. Then we
continue to analyze the data of RTshot and ERshot.

4.1 Debriefing

Twenty-one participants stated that they noticed some regularity in
the game in the debriefing. However, nine answers were related to
the middle target and that it always spawned in alternation with the
lateral targets. The remaining twelve participants reported notic-
ing some temporal regularities related to the game. Out of those
twelve answers, four replies were not related to the actual temporal
pattern of the game. One participant, for example, stated that the
interval between targets was randomized, and one participant felt
that the targets appeared in a rhythm. Only eight answers out of
the twelve participants that stated that they noticed a temporal
regularity in the game indicated that the participant was aware
of the temporal pattern of the game. Six participants stated that
they felt that each target’s appearance differed. One participant also
reported some temporal relation between side and spawn duration,
and one participant stated that they sometimes had to wait for new
targets to appear. None of the analyzed participants could pinpoint
the temporal regularities of the game precisely.

4.2 RTshot

This measure describes how long it took participants to shoot the
lateral target after its appearance (see orange arrow in Figure 2).
For the analysis of RTshot, we excluded trials in which participants
failed to hit the lateral target (12 % of all trials). The exclusion
of failed shots was necessary since we cannot calculate RTshot
if players did not successfully hit the target. We then excluded
trials with reaction times higher than 4000ms (0.2 % of all trials) as
an extremely high reaction time may indicate a distraction of the
participant. In accordance with related work [8], we then excluded
all trials with reaction times that deviated more than three standard
deviations from the individual condition mean (1 % of all trials).
In sum 86.8 % of all experimental trials were included for RTshot
analysis.

Figure 4 (A) shows mean RTshot values as a function of Forepe-
riod x Time-Target Combination. A 4 (Foreperiod: 0.2 s vs. 0.8 s
vs.1.4 s vs. 2.0 s) x 2 (Time-Target Combination: valid vs. invalid)
ANOVAwith repeated measures on both factors on RTshot revealed

a significant main effect of Time-Target Combination, F (1,24) =
11.27, p = 0.003, 𝜂2𝑝 = 0.32. Participants performed significantly bet-
ter in trials with valid time-target combinations than in trials with
invalid combinations (969ms vs. 1001ms, Figure 4C). Neither the
main effect of Foreperiod, F (1.45,34.83) = 2.55, p = .107, 𝜂2𝑝 = 0.10,
𝜀 = 0.484, nor the interaction effect Time-Target Combination x
Foreperiod F (3,72) = 0.73, p = 0.537, 𝜂2𝑝 = 0.03 was significant.

4.3 ERshot

ERshot measures the ratio of failed shots on the lateral targets and
is specified in percent. Figure 4 (B) shows mean ERshot values
as a function of Foreperiod x Time-Target Combination. A 4
(Foreperiod: 0.2 s vs. 0.8 s vs.1.4 s vs. 2.0 s) x 2 (Time-Target Com-
bination: valid vs. invalid) ANOVA with repeated measures on
both factors on ERshot did not reveal a main effect of Time-Target
Combination, F (1,24) = 1.52, p = 0.229, 𝜂2𝑝 = 0.06 (Figure 4D). The
main effect of Foreperiod was significant, F (2.15,51.51) = 4.64, p =
0.012, 𝜂2𝑝 = 0.16, 𝜀 = 0.715. However, post-hoc pairwise t-tests with
Bonferroni-correction for multiple comparisons did not reveal any
significant differences between the error rates for different foreperi-
ods (all p > .064). The interaction effect Time-Target Combination
x Foreperiod F (3,72) = 0.62, p = 0.606, 𝜂2𝑝 = 0.03 was not significant.

5 DISCUSSION

Our study provides evidence for the relevance and applicability of
time-based expectancy in games and shows that players implicitly
use elapsed time as a predictive cue to anticipate game events.
Based on the implemented target-time combinations, players built
time-based event expectancy that influenced gaming behavior and
performance. Players’ performances increased in trials with valid
time-target combinations, i.e., they shot targets faster than in trials
with invalid combinations. However, error rates were not influenced.
Notably, the found effects do not reflect a strategic behavior. None
of the analyzed participants explicitly noticed the implemented
temporal regularities of the game. Since none of the participants
was consciously aware of the temporal patterns of the game, they
could not be part of an applied strategy.

In this section, we discuss our findings and refer to prior work,
predominately from cognitive sciences investigating time-based
event expectancy to contextualize the found effects. Additionally,
we discuss novel effects not yet investigated in previous work re-
garding game design and player behavior. We continue to discuss
the implications of our findings for researchers, game developers,
and gamers. We conclude with the limitations of our work and
show how future work may continue to explore time-based event
expectancy in video games.

5.1 Effects on Reaction Time

Our findings regarding the reaction time to shoot targets extend
previous work. Thomaschke et al. [56], for example, showed that
reaction times in valid time-event combinations are significantly
shorter than reaction times in invalid combinations. Similarly to our
work, the authors did not find significant effects on the error rate.
Interestingly, in our work, we revealed a large effect [45] (𝜂2𝑝 = 0.32)
of time-based event expectancy on the reaction times. The found
effect is even larger than effects found in related strictly controlled
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Figure 4: Upper Panel: Mean reaction times of successful shots on a lateral target (RTshot, A) and mean error rates (ERshot,
B). Data is shown as a function of Time-Target-Combination: valid (blue solid lines) vs. invalid (orange dashed lines) and

Foreperiod: 0.2 s vs . 0.8 s vs. 1.4 s vs. 2.0 s (X-axis). Lower Panel: Main effect of Time-Target-Combination for RTshot (C)
and ERshot (D). Participants achieved significantly shorter reaction times in trials with valid combinations than in trials

with invalid combinations (C). Results of RTshot show that players implicitly adapted to time-event correlations and thus

utilized the game’s temporal regularities subconsciously. Error rates were not significantly influenced by the validity of

Time-Target-Combination (D). Error bars represent the 95% confidence interval of the means.

psychology experiments (𝜂2𝑝 = 0.11 [64] and 𝜂2𝑝 = 0.26 [56]). The
large effect size is surprising because we initially argued, in line
with previous work [40, 47], that games may hamper the ability
to form time-based event expectancy. Generally speaking, video

games confront players with more information and interaction than
a controlled psychological experiment. Instead of just pressing a sin-
gle button on a keyboard initiated by a target signal, players in our
game had to actively move the crosshair in two dimensions to select
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the targets. Furthermore, the players had to constantly process addi-
tional visual and auditory information, such as weapon movement,
score, score changes, and game sounds. In principle, this additional
information should lead to an increased cognitive load and may hin-
der the internalization of temporal regularities. Our work, however,
shows that playing video games does not suppress the players’ abil-
ity to implicitly adapt to time-target combinations. In addition, it is
important to note that the large effect was observed in a scenario
with four time-event correlations, which presents participants with
a even more cognitivly demanding scenario compared to previous
work that tested two [55, 58] or three time-event correlations [2].
Exploring time-based event expectancy beyond two or three time-
event correlations is crucial for it to be pragmatically applicable in
video games and their large interaction space.

5.2 Implications for Play and Research

Our work has implications for game developers and video game
researchers. Game developers might utilize our findings in game
design. For example, they could adjust the game’s difficulty by ad-
justing the temporal regularities found in the game. On an easy
level, the game, for instance, could employ strong time-target cor-
relations and thus allow the players to form time-based event ex-
pectancy, ultimately increasing the performance and lowering the
overall difficulty. On the other hand, game designers could explic-
itly prevent players from forming time-based event expectancy by
disturbing the temporal predictability of the game mechanics. Pre-
venting players from forming a temporal model of the game would
eventually lead to reduced performance and increased difficulty.
This increase or decrease in difficulty directly influences the play-
ers’ performances and, in turn, may alters the players’ experiences
according to the performance-enjoyment link discussed in previous
work. This work investigates if players who are performing worse
experience less enjoyment and vice versa [31]. Hence, applying
temporal regularities in video games may also alter the players’
gaming experiences.

Moreover, our work shows that time carries information, be-
sides its numerical value, in video games. We show that players
can internalize temporal information to adapt their behavior. Game
developers can build upon those findings to provide, for example,
a consistent interaction that does not violate the expectations of
the players with the game. One example is implementing a user
interface (UI) based on time-based event expectancy. Previous work
investigating user interactions with a website [66] found that users
benefit from a temporally consistent UI. As we showed that video
games do not suppress the ability to form temporal expectancy, the
same approach may be used to improve player-game interaction.
Other ways to utilize our findings in video games may be through
integrating time as a game element. Knowing that players form
implicit expectations about game events may enable game devel-
opers to play with these expectations to alter game experience.
Similarly to work investigating long-term uncertainty in video
games [42, 43], knowledge about time-based event expectancy may
be used to integrate short-term surprises in video games. Knowing
that players form implicit expectations about temporal regularities
in a game may allow developers to alter them. For example, devel-
opers could change the temporal component of quick-time events

in game series such God of War or Uncharted to either validate or
break with players’ expectations to keep player engagement high.
In shooting games certain in-game mechanics could be tied to tem-
poral regularities and irregularities, similar to Returnal’s reloading
mechanism [63].

In addition to time-based event expectancy as a tool to manipu-
late player-game interaction, our findings also open other avenues
to improve the game design. For example, cloud gaming providers
could build upon the information provided by this work to increase
the stability of the gaming experience in high-latency systems.
Cloud gaming services allow players to instantly play almost any
game on almost any device by streaming the game via the Internet.
However, due to the heavy network communication required, cloud
gaming services are affected by high latency [25, 51]. This latency,
in turn, leads to a significant decrease in player performance and
gaming experience [11, 33, 34]. Partly, this may be because high
latency, especially strongly fluctuating latency such as jitter, de-
stroy the temporal predictability of the game and thus prevents
players from forming strong time-event correlations. By embedding
mechanics to enable players to build time-based event expectancy,
for example, by scheduling game events following latency as pro-
posed by Thomaschke et al. [55], cloud gaming could attenuate the
adverse effects of latency. Scheduling game events and a consis-
tent game interaction, for example, could be achieved by artificially
adding latency to create a stable and invariant gaming environment.

Our findings are valuable to other video game researchers. Ul-
timately, video game researchers aim to understand players, the
game itself, and the interaction between player and video game. Un-
derstanding human behavior is crucial in this kind of research. For
decades psychology has investigated human behavior, cognition,
and interaction. Video game researchers benefit from this reservoir
of knowledge. Our work exemplifies that utilizing previously found
phenomena in cognitive sciences could further deepen our knowl-
edge about players, video games, and the way players interact with
games. One example of a cognitive concept studied in psychol-
ogy that is also relevant to video games is binding and retrieval
of perceptual and action features [18, 28]. Binding research has
already demonstrated that our cognitive system momentarily links
temporal information with other internal and external information,
which has consequences for subsequent actions [7, 41]. Similarly,
one could investigate how the temporal features of the game envi-
ronment are integrated into player’s perception and action planning
and how this is reflected in player behavior and performance.

5.3 Limitations and Future Work

Our work induced time-based event expectancy based on time-
target combinations in an aim trainer game. While aim trainers
comprise fundamental gamemechanics of FPS games, such as target
tracking and selection, they lack other game elements, such as a
story or player movement. Thus, while essential concepts can be
translated to the FPS genre, our findings may be less significant
in more complex video games, in which players have to move
around in a game world, process visual and auditory, and have
to defend themselves from opposing entities. Additionally, it is
also possible that our findings do not generalize to all video game
genres. However, recent work showed that the effects of latency
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are independent of the video game’s in-game perspective [22];
thus, it is likely to assume that other temporal components of
video games, such as time-based event expectancy, generalizes to
other gaming scenarios. While the game we used in our study
already drastically increases the ecological validity of our findings
compared to fundamental psychology experiments, it still is a highly
controlled study apparatus. Hence, future work should investigate if
our findings generalize to more ecologically valid games and other
genres. In the same vein, future work should investigate other in-
game mechanics coupled with temporal elements. In our work, we
coupled the location of targets to certain foreperiods. However,
this is not the only possibility. Future work, for example, could
investigate how map awareness in a game such as Counter-Strike
2 interacts with temporal expectations. In Counter-Strike 2, two
teams fight each other for an objective. Often, these fights are won
by well positioning the own team and knowing when and where
enemies could appear. If, for example, no enemy appeared at a
certain location after a certain duration, the team needs to take into
account that the enemies could attack from another location and
prepare for this attack accordingly. This switch in preparation for an
enemy attack, is tied, although not only, to a temporal component.

Another limitation of our work may be the methods used to
incentivize participants to perform as well as they can. After each
round, we implemented a scoring system and presented a perfor-
mance overview showing how participants’ score and accuracy
changed compared to the previous round. However, our work does
not elucidate if the implemented methods motivated the partici-
pants. Thus, future work should investigate if video game players
can be motivated by comparatively simple performance statistics
while establishing a time-based event expectancy.

Furthermore, our work does not elucidate the link between time-
based event expectancy and game experience. However, previous
work indicates that the game experience alters the subjective time
perception [40, 47]. Thus, future work should investigate how time-
based event expectancy and game experience affect each other.
On the same note, while we showed that a stable temporal envi-
ronment allows players to increase their performance, it is also
possible that this internalization leads to performance degradation
if the temporal regularities suddenly change, for example, induced
by an abruptly changing latency. Hence, future work should also
investigate if time-based event expectancy leads to performance
degradation in unstable environments.

Lastly, we investigate four distinguishable foreperiods, 0.2 s, 0.8 s,
1.4 s, and 2.0 s, to allow players to implicitly learn the target-time
combination. We choose the tested foreperiods based on previous
research investigating time-based event expectancy in fundamen-
tal psychological work. However, it remains unclear how close
together foreperiods may converge to still allow the formation
of time-based event expectancy. Related work does not specify
how long the foreperiods must be to allow implicit learning of the
regularities. Future work, thus, should investigate how long the
difference between foreperiods and how long the foreperiods them-
selves have to be to still allow the implicit formation of time-based
event expectancy. Since we found a substantial effect in our work,
researching these questions with video games is promising.

6 CONCLUSION

Despite its promising application in altering game experience and
player performance, it previously was unknown if the time-event
correlation paradigm translates to video games. In this paper, we
present a novel approach to investigating time-based event ex-
pectancy in the context of video games. We developed a 3D video
game and coupled its game mechanics with time-target combina-
tions, allowing players to internalize the game’s temporal regu-
larities. We then conducted a study and analyzed the data of 25
participants. We found that players can use the game’s temporal
regularities to increase performance. Thus, we demonstrate the
robustness and feasibility of the time-event expectancy paradigm
outside of highly controlled psychological experiments. We found
that players had significantly shorter reaction times when the target
stimuli followed a valid time-target combination.

In summary, we found that players form strong temporal models
about the game’s regularities and are thus able to increase their
performance. With our work, we aim to inspire researchers in
both psychology and video games to increase their collaboration.
Furthermore, we show that time-based event expectancy may be a
suitable method to practically regulate different game mechanics,
such as the game’s difficulty. Finally, our work shows that time
in video games carries more information than its mere numerical
value. Players in our study implicitly adapted their behavior to our
game’s temporal regularities, resulting in increased performance.
Our work provides the first step to a novel approach to time in
video games.

REFERENCES

[1] Michelle Annett, Fraser Anderson, Walter F. Bischof, and Anoop Gupta. 2014.
The Pen is Mightier: Understanding Stylus Behaviour While Inking on Tablets.
In Proceedings of Graphics Interface 2014 (Montreal, Quebec, Canada) (GI ’14).
Canadian Information Processing Society, CAN, 193–200. https://doi.org/10.
5555/2619648.2619680

[2] Stefanie Aufschnaiter, Fang Zhao, Robert Gaschler, Andrea Kiesel, and Roland
Thomaschke. 2021. Investigating time-based expectancy beyond binary timing
scenarios: evidence from a paradigm employing three predictive pre-target in-
tervals. Psychological Research (2021), 1–14. https://doi.org/10.1007/s00426-021-
01606-2

[3] Olivier Barreteau and Géraldine Abrami. 2007. Variable time scales, agent-
based models, and role-playing games: The PIEPLUE river basin management
game. Simulation & Gaming 38, 3 (2007), 364–381. https://doi.org/10.1177/
1046878107300668

[4] Lisa Feldman Barrett and W Kyle Simmons. 2015. Interoceptive predictions in
the brain. Nature reviews neuroscience 16, 7 (2015), 419–429. https://doi.org/10.
1038/nrn3950

[5] TomBeigbeder, Rory Coughlan, Corey Lusher, John Plunkett, Emmanuel Agu, and
Mark Claypool. 2004. The effects of loss and latency on user performance in unreal
tournament 2003®. In Proceedings of 3rd ACM SIGCOMM workshop on Network
and system support for games. 144–151. https://doi.org/10.1145/1016540.1016556

[6] Tom Beigbeder, Rory Coughlan, Corey Lusher, John Plunkett, Emmanuel Agu,
and Mark Claypool. 2004. The Effects of Loss and Latency on User Performance
in Unreal Tournament 2003®. In Proceedings of 3rd ACM SIGCOMMWorkshop
on Network and System Support for Games (Portland, Oregon, USA) (NetGames
’04). Association for Computing Machinery, New York, NY, USA, 144–151. https:
//doi.org/10.1145/1016540.1016556

[7] Johanna Bogon, Roland Thomaschke, and Gesine Dreisbach. 2017. Binding time:
Evidence for integration of temporal stimulus features. Attention, Perception, &
Psychophysics 79, 5 (2017), 1290–1296. https://doi.org/10.3758/s13414-017-1330-9

[8] Lauren K Bush, Ursula Hess, and George Wolford. 1993. Transformations for
within-subject designs: a Monte Carlo investigation. Psychological bulletin 113, 3
(1993), 566. https://doi.org/10.1037/0033-2909.113.3.566

[9] GG Cassidy and Raymond AR MacDonald. 2010. The effects of music on time
perception and performance of a driving game. Scandinavian journal of psychology
51, 6 (2010), 455–464. https://doi.org/10.1111/j.1467-9450.2010.00830.x

395

https://doi.org/10.5555/2619648.2619680
https://doi.org/10.5555/2619648.2619680
https://doi.org/10.1007/s00426-021-01606-2
https://doi.org/10.1007/s00426-021-01606-2
https://doi.org/10.1177/1046878107300668
https://doi.org/10.1177/1046878107300668
https://doi.org/10.1038/nrn3950
https://doi.org/10.1038/nrn3950
https://doi.org/10.1145/1016540.1016556
https://doi.org/10.1145/1016540.1016556
https://doi.org/10.1145/1016540.1016556
https://doi.org/10.3758/s13414-017-1330-9
https://doi.org/10.1037/0033-2909.113.3.566
https://doi.org/10.1111/j.1467-9450.2010.00830.x


Implicit Game Event Anticipation Based On Time-Event Correlations MUM ’23, December 03–06, 2023, Vienna, Austria

[10] Mark Claypool and Kajal Claypool. 2006. Latency and Player Actions in Online
Games. Commun. ACM 49, 11 (Nov. 2006), 40–45. https://doi.org/10.1145/1167838.
1167860

[11] Mark Claypool, David Finkel, Alexander Grant, and Michael Solano. 2014. On
the performance of OnLive thin client games. Multimedia systems 20, 5 (2014),
471–484. https://doi.org/10.1007/s00530-014-0362-4

[12] Mihaly Csikszentmihalyi. 1990. Flow: The psychology of optimal experience.
Vol. New York: Basic Books. Harper & Row New York.

[13] Sarah E Donohue, Marty G Woldorff, and Stephen R Mitroff. 2010. Video game
players show more precise multisensory temporal processing abilities. Attention,
perception, & psychophysics 72, 4 (2010), 1120–1129. https://doi.org/10.3758/APP.
72.4.1120

[14] EA. 2022. Apex -Legends-. https://www.ea.com/de-de/games/apex-legends.
Accessed on 2021-01-01.

[15] Ragnhild Eg, Kjetil Raaen, and Mark Claypool. 2018. Playing with delay: With
poor timing comes poor performance, and experience follows suit. In 2018 Tenth
International Conference on Quality of Multimedia Experience (QoMEX). IEEE, 1–6.
https://doi.org/10.1109/QoMEX.2018.8463382

[16] Franz Faul, Edgar Erdfelder, Axel Buchner, and Albert-Georg Lang. 2009. Sta-
tistical power analyses using G* Power 3.1: Tests for correlation and regres-
sion analyses. Behavior research methods 41, 4 (2009), 1149–1160. https:
//doi.org/10.3758/BRM.41.4.1149

[17] Franz Faul, Edgar Erdfelder, Albert-Georg Lang, and Axel Buchner. 2007. G*
Power 3: A flexible statistical power analysis program for the social, behavioral,
and biomedical sciences. Behavior research methods 39, 2 (2007), 175–191. https:
//doi.org/10.3758/BF03193146

[18] Christian Frings, Bernhard Hommel, Iring Koch, Klaus Rothermund, David Dig-
nath, Carina Giesen, Andrea Kiesel, Wilfried Kunde, Susanne Mayr, Birte Moeller,
et al. 2020. Binding and retrieval in action control (BRAC). Trends in Cognitive
Sciences 24, 5 (2020), 375–387. https://doi.org/10.1016/j.tics.2020.02.004

[19] David Halbhuber, Niels Henze, and Valentin Schwind. 2021. Increasing Player
Performance and Game Experience in High Latency Systems. Proceedings of
the ACM on Human-Computer Interaction 5, CHI PLAY (2021), 1–20. https:
//doi.org/10.1145/3474710

[20] David Halbhuber, Maximilian Huber, Valentin Schwind, and Niels Henze. 2022.
Understanding Player Performance and Gaming Experience while Playing a
First-Person Shooter with Auditory Latency. In Extended Abstracts of the 2022
Annual Symposium on Computer-Human Interaction in Play. 24–30. https://doi.
org/10.1145/3505270.3558333

[21] David Halbhuber, Annika Köhler, Markus Schmidbauer, Jannik Wiese, and Niels
Henze. 2022. The Effects of Auditory Latency on Experienced First-Person
Shooter Players. In Proceedings of Mensch und Computer 2022. 286–296. https:
//doi.org/10.1145/3543758.3543760

[22] David Halbhuber, Philipp Schauhuber, Valentin Schwind, and Niels Henze. 2023.
The Effects of Latency and In-Game Perspective on Player Performance and
Game Experience. Proc. ACM Hum.-Comput. Interact. 7, CHI PLAY, Article 424
(oct 2023), 22 pages. https://doi.org/10.1145/3611070

[23] David Halbhuber, Maximilian Schlenczek, Johanna Bogon, and Niels Henze. 2022.
Better Be Quiet about It! The Effects of Phantom Latency on Experienced First-
Person Shooter Players. In Proceedings of the 21st International Conference on
Mobile and Ubiquitous Multimedia (Lisbon, Portugal) (MUM ’22). Association for
Computing Machinery, New York, NY, USA, 172–181. https://doi.org/10.1145/
3568444.3568448

[24] David Halbhuber, Valentin Schwind, and Niels Henze. 2022. Don’t Break my
Flow: Effects of Switching Latency in Shooting Video Games. Proceedings of
the ACM on Human-Computer Interaction 6, CHI PLAY (2022), 1–20. https:
//doi.org/10.1145/3549492

[25] David Halbhuber, Maximilian Seewald, Fabian Schiller, Mathias Götz, Jakob Fehle,
and Niels Henze. 2022. Using Artificial Neural Networks to Compensate Negative
Effects of Latency in Commercial Real-Time Strategy Games. In Proceedings of
Mensch Und Computer 2022 (Darmstadt, Germany) (MuC ’22). Association for
Computing Machinery, New York, NY, USA, 182–191. https://doi.org/10.1145/
3543758.3543767

[26] Christopher Hanson. 2018. Game time: Understanding temporality in video games.
Indiana University Press. https://doi.org/10.2307/j.ctv176q4

[27] J Hendin and M Csikszentmihalyi. 1975. Measuring the flow experience in rock
dancing. Beyond boredom and anxiety (1975), 102–122.

[28] Bernhard Hommel. 1998. Event files: Evidence for automatic integration of
stimulus-response episodes. Visual cognition 5, 1-2 (1998), 183–216. https:
//doi.org/10.1080/713756773

[29] Ricardo Jota, Albert Ng, Paul Dietz, and Daniel Wigdor. 2013. How Fast is Fast
Enough? A Study of the Effects of Latency in Direct-Touch Pointing Tasks. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
(Paris, France) (CHI ’13). Association for Computing Machinery, New York, NY,
USA, 2291–2300. https://doi.org/10.1145/2470654.2481317

[30] Alboukadel Kassambara. 2023. rstatix: Pipe-friendly Framework for Basic Statistical
Tests. https://CRAN.R-project.org/package=rstatix R package version 0.7.2.

[31] Christoph Klimmt, Christopher Blake, Dorothée Hefner, Peter Vorderer, and
Christian Roth. 2009. Player performance, satisfaction, and video game enjoyment.
In Entertainment Computing–ICEC 2009: 8th International Conference, Paris, France,
September 3-5, 2009. Proceedings 8. Springer, 1–12. https://doi.org/10.1007/978-3-
642-04052-8_1

[32] State Space Labs. 2023. Aim Lab. https://aimlab.gg/. Accessed on 2023-08-05.
[33] Shengmei Liu, Mark Claypool, Atsuo Kuwahara, James Scovell, and Jamie. 2021

Sherman. 2021. Lower is Better? The Effects of Local Latencies on Competi-
tive First-Person Shooter Game Players. In CHI Conference on Human Factors in
Computing Systems (Yokohama, Japan) (CHI ’21). Association for Computing Ma-
chinery, New York, NY, USA, 285–297. https://doi.org/10.1145/3411764.3445245

[34] Michael Long and Carl Gutwin. 2018. Characterizing and Modeling the Effects of
Local Latency on Game Performance and Experience. In Proceedings of the 2018
Annual Symposium on Computer-Human Interaction in Play (Melbourne, VIC,
Australia) (CHI PLAY ’18). Association for Computing Machinery, New York, NY,
USA, 285–297. https://doi.org/10.1145/3242671.3242678

[35] I. Scott MacKenzie and Colin Ware. 1993. Lag as a Determinant of Human
Performance in Interactive Systems. In Proceedings of the INTERACT ’93 and
CHI ’93 Conference on Human Factors in Computing Systems (Amsterdam, The
Netherlands) (CHI ’93). Association for Computing Machinery, New York, NY,
USA, 488–493. https://doi.org/10.1145/169059.169431

[36] Csikszentmihalyi Mihaly. 1997. Finding Flow: The psychology of engagement with
everyday life. New York: Basic Books.

[37] Albert Ng, Michelle Annett, Paul Dietz, Anoop Gupta, andWalter F. Bischof. 2014.
In the Blink of an Eye: Investigating Latency Perception during Stylus Interaction.
In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
(Toronto, Ontario, Canada) (CHI ’14). Association for Computing Machinery,
New York, NY, USA, 1103–1112. https://doi.org/10.1145/2556288.2557037

[38] Albert Ng, Julian Lepinski, Daniel Wigdor, Steven Sanders, and Paul Dietz. 2012.
Designing for Low-Latency Direct-Touch Input. In Proceedings of the 25th Annual
ACM Symposium on User Interface Software and Technology (Cambridge, Mas-
sachusetts, USA) (UIST ’12). Association for Computing Machinery, New York,
NY, USA, 453–464. https://doi.org/10.1145/2380116.2380174

[39] Michael Nitsche. 2007. Mapping Time in Video Games.. In Situated Play, Proceed-
ings of DiGRA 2007 Conference. 145–151.

[40] Filip M Nuyens, Daria J Kuss, Olatz Lopez-Fernandez, and Mark D Griffiths.
2020. The potential interaction between time perception and gaming: A narrative
review. International Journal of Mental Health and Addiction 18, 5 (2020), 1226–
1246. https://doi.org/10.1007/s11469-019-00121-1

[41] Roland Pfister, Johanna Bogon, Anna Foerster, Wilfried Kunde, and Birte Moeller.
2022. Binding and Retrieval of Response Durations: Subtle Evidence for Episodic
Processing of Continuous Movement Features. Journal of Cognition 5, 1 (2022).
https://doi.org/10.5334/joc.212/

[42] Christopher Power, Paul Cairns, Alena Denisova, Themis Papaioannou, and Ruth
Gultom. 2019. Lost at the edge of uncertainty: Measuring player uncertainty in
digital games. International Journal of Human–Computer Interaction 35, 12 (2019),
1033–1045. https://doi.org/10.1080/10447318.2018.1507161

[43] Christopher Power, Alena Denisova, Themis Papaioannou, and Paul Cairns.
2017. Measuring uncertainty in games: Design and preliminary validation. In
Proceedings of the 2017 chi conference extended abstracts on human factors in
computing systems. 2839–2845. https://doi.org/10.1145/3027063.3053215

[44] R Core Team. 2023. R: A Language and Environment for Statistical Computing
(version 4.2.3). R Foundation for Statistical Computing, Vienna, Austria. https:
//www.R-project.org/

[45] Judy Robertson and Maurits Kaptein. 2016. Modern statistical methods for HCI.
Springer.

[46] Katja Rogers, Maximilian Milo, Michael Weber, and Lennart E Nacke. 2020. The
Potential Disconnect between Time Perception and Immersion: Effects of Music
on VR Player Experience. In Proceedings of the Annual Symposium on Computer-
Human Interaction in Play. 414–426. https://doi.org/10.1145/3410404.3414246

[47] Hans Rutrecht, Marc Wittmann, Shiva Khoshnoud, and Federico Alvarez
Igarzábal. 2021. Time speeds up during flow states: A study in virtual real-
ity with the video game thumper. Timing & Time Perception 9, 4 (2021), 353–376.
https://doi.org/10.1163/22134468-bja10033

[48] Timothy Sanders and Paul Cairns. 2010. Time Perception, Immersion and Music in
Videogames. BCS Learning & Development Ltd., Swindon, GBR. 160–167 pages.

[49] Andreas Schmid, David Halbhuber, Thomas Fischer, Raphael Wimmer, and Niels
Henze. 2023. Small Latency Variations do not Affect Player Performance in
First-Person Shooters. Proceedings of the ACM on Human-Computer Interaction 7,
CHI PLAY (2023), 197–216. https://doi.org/10.1145/3611027

[50] Statespace. 2021. Aim Lab. https://store.steampowered.com/app/714010/Aim_
Lab/. Accessed on 2023-08-05.

[51] Jiawei Sun and Mark Claypool. 2019. Evaluating Streaming and Latency Com-
pensation in a Cloud-based Game. In Proceedings of the 15th IARIA Advanced
International Conference on Telecommunications (AICT).

[52] SUPERHOT Team. 2021. BULLET-TIME PUZZLER - Time only moves when you
do. https://superhotgame.com/. Accessed on 2022-19-05.

396

https://doi.org/10.1145/1167838.1167860
https://doi.org/10.1145/1167838.1167860
https://doi.org/10.1007/s00530-014-0362-4
https://doi.org/10.3758/APP.72.4.1120
https://doi.org/10.3758/APP.72.4.1120
https://www.ea.com/de-de/games/apex-legends
https://doi.org/10.1109/QoMEX.2018.8463382
https://doi.org/10.3758/BRM.41.4.1149
https://doi.org/10.3758/BRM.41.4.1149
https://doi.org/10.3758/BF03193146
https://doi.org/10.3758/BF03193146
https://doi.org/10.1016/j.tics.2020.02.004
https://doi.org/10.1145/3474710
https://doi.org/10.1145/3474710
https://doi.org/10.1145/3505270.3558333
https://doi.org/10.1145/3505270.3558333
https://doi.org/10.1145/3543758.3543760
https://doi.org/10.1145/3543758.3543760
https://doi.org/10.1145/3611070
https://doi.org/10.1145/3568444.3568448
https://doi.org/10.1145/3568444.3568448
https://doi.org/10.1145/3549492
https://doi.org/10.1145/3549492
https://doi.org/10.1145/3543758.3543767
https://doi.org/10.1145/3543758.3543767
https://doi.org/10.2307/j.ctv176q4
https://doi.org/10.1080/713756773
https://doi.org/10.1080/713756773
https://doi.org/10.1145/2470654.2481317
https://CRAN.R-project.org/package=rstatix
https://doi.org/10.1007/978-3-642-04052-8_1
https://doi.org/10.1007/978-3-642-04052-8_1
https://aimlab.gg/
https://doi.org/10.1145/3411764.3445245
https://doi.org/10.1145/3242671.3242678
https://doi.org/10.1145/169059.169431
https://doi.org/10.1145/2556288.2557037
https://doi.org/10.1145/2380116.2380174
https://doi.org/10.1007/s11469-019-00121-1
https://doi.org/10.5334/joc.212/
https://doi.org/10.1080/10447318.2018.1507161
https://doi.org/10.1145/3027063.3053215
https://www.R-project.org/
https://www.R-project.org/
https://doi.org/10.1145/3410404.3414246
https://doi.org/10.1163/22134468-bja10033
https://doi.org/10.1145/3611027
https://store.steampowered.com/app/714010/Aim_Lab/
https://store.steampowered.com/app/714010/Aim_Lab/
https://superhotgame.com/


MUM ’23, December 03–06, 2023, Vienna, Austria Halbhuber et al.

[53] Precha Thavikulwat. 1996. Activity-driven time in computerized gaming sim-
ulations. Simulation & Gaming 27, 1 (1996), 110–122. https://doi.org/10.1177/
1046878196271008

[54] Roland Thomaschke, Johanna Bogon, and Gesine Dreisbach. 2018. Timing affect:
Dimension-specific time-based expectancy for affect. Emotion 18, 5 (2018), 646.
https://doi.org/10.1037/emo0000380

[55] Roland Thomaschke and Carola Haering. 2014. Predictivity of system delays
shortens human response time. International Journal of Human-Computer Studies
72, 3 (2014), 358–365. https://doi.org/10.1016/j.ijhcs.2013.12.004

[56] Roland Thomaschke, Marina Kunchulia, and Gesine Dreisbach. 2015. Time-
based event expectations employ relative, not absolute, representations of time.
Psychonomic Bulletin & Review 22, 3 (2015), 890–895. https://doi.org/10.3758/
s13423-014-0710-6

[57] Roland Thomaschke, Annika Wagener, Andrea Kiesel, and Joachim Hoffmann.
2011. The scope and precision of specific temporal expectancy: Evidence from a
variable foreperiod paradigm. Attention, Perception, & Psychophysics 73, 3 (2011),
953–964. https://doi.org/10.3758/s13414-010-0079-1

[58] Roland Thomaschke, Annika Wagener, Andrea Kiesel, and Joachim Hoffmann.
2011. The specificity of temporal expectancy: Evidence from a variable foreperiod
paradigm. Quarterly Journal of Experimental Psychology 64, 12 (2011), 2289–2300.
https://doi.org/10.1080/17470218.2011.616212

[59] Simon Tobin, Nicolas Bisson, and Simon Grondin. 2010. An ecological approach
to prospective and retrospective timing of long durations: a study involving
gamers. PloS one 5, 2 (2010), e9271. https://doi.org/10.1371/journal.pone.0009271

[60] Simon Tobin and Simon Grondin. 2009. Video games and the perception of
very long durations by adolescents. Computers in Human Behavior 25, 2 (2009),

554–559. https://doi.org/10.1016/j.chb.2008.12.002
[61] Valve. 2023. Counter Strike 2. https://www.counter-strike.net/. Accessed on

2023-10-11.
[62] Robbert van der Mijn and Hedderik van Rijn. 2021. Attention Does Not Affect

the Speed of Subjective Time, but Whether Temporal Information Guides Per-
formance: A Large-Scale Study of Intrinsically Motivated Timers in a Real-Time
Strategy Game. Cognitive Science 45, 3 (2021), e12939. https://doi.org/10.1111/
cogs.12939

[63] Jason Venter. 2023. Returnal guide: Overload. https://www.polygon.com/returnal-
guide/22421176/overload-projectiles-reload-timing-effects. Accessed on 2023-
10-11.

[64] Gregor Volberg and Roland Thomaschke. 2017. Time-based expectations entail
preparatory motor activity. Cortex 92 (2017), 261–270. https://doi.org/10.1016/j.
cortex.2017.04.019

[65] AnnikaWagener and JoachimHoffmann. 2010. Temporal cueing of target-identity
and target-location. Experimental Psychology (2010). https://doi.org/10.1027/1618-
3169/a000054

[66] Florian Weber, Carola Haering, and Roland Thomaschke. 2013. Improving the
human–computer dialogue with increased temporal predictability. Human factors
55, 5 (2013), 881–892. https://doi.org/10.1177/0018720813475812

[67] Raphael Wimmer, Andreas Schmid, and Florian Bockes. 2019. On the Latency
of USB-Connected Input Devices. In Proceedings of the 2019 CHI Conference on
Human Factors in Computing Systems. 1–12. https://doi.org/10.1145/3290605.
3300650

397

https://doi.org/10.1177/1046878196271008
https://doi.org/10.1177/1046878196271008
https://doi.org/10.1037/emo0000380
https://doi.org/10.1016/j.ijhcs.2013.12.004
https://doi.org/10.3758/s13423-014-0710-6
https://doi.org/10.3758/s13423-014-0710-6
https://doi.org/10.3758/s13414-010-0079-1
https://doi.org/10.1080/17470218.2011.616212
https://doi.org/10.1371/journal.pone.0009271
https://doi.org/10.1016/j.chb.2008.12.002
https://www.counter-strike.net/
https://doi.org/10.1111/cogs.12939
https://doi.org/10.1111/cogs.12939
 https://www.polygon.com/returnal-guide/22421176/overload-projectiles-reload-timing-effects
 https://www.polygon.com/returnal-guide/22421176/overload-projectiles-reload-timing-effects
https://doi.org/10.1016/j.cortex.2017.04.019
https://doi.org/10.1016/j.cortex.2017.04.019
https://doi.org/10.1027/1618-3169/a000054
https://doi.org/10.1027/1618-3169/a000054
https://doi.org/10.1177/0018720813475812
https://doi.org/10.1145/3290605.3300650
https://doi.org/10.1145/3290605.3300650

	Abstract
	1 Introduction
	2 Related Work
	2.1 Time in Video Games
	2.2 Time Perception in Video Games
	2.3 Time-based Event Expectancy
	2.4 Summary

	3 Investigating Time-Based Event Expectancy in Video Games
	3.1 Game Development
	3.2 Experimental Design and Hypotheses
	3.3 Apparatus
	3.4 Procedure
	3.5 Participants
	3.6 Statistical Analyses

	4 Results
	4.1 Debriefing
	4.2 RTshot
	4.3 ERshot

	5 Discussion
	5.1 Effects on Reaction Time
	5.2 Implications for Play and Research
	5.3 Limitations and Future Work

	6 Conclusion
	References

