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ABSTRACT

Tables are focus points for social interactions and support everyday
activities, such as learning, crafting, or dining. These physical in-
teractions on and around the table may be augmented with digital
information and tools projected onto the tabletop. For interaction
with such projected information, touch input suffers from technical
and interactional limitations. Pen input is a more robust alternative
that does not suffer from Midas-touch problems. We developed
a system for tracking the position of an IR-emitting pen tip on a
planar surface with sub-millimeter resolution and an end-to-end
latency of less than 30 ms. Distinguishing between drawing and
hovering states is done by combining a stereoscopic camera setup
and a machine-learning classifier. We demonstrate practical perfor-
mance, uses and limitations through multiple studies and examples.
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1 INTRODUCTION

Tables have been supporting everyday activities and work for mil-
lennia [2]. They are a natural focus point for individual and collab-
orative work, for dining, and for spending time together [38].

As physical and digital life have become ever more interwoven,
it made sense to also bring digital tools to the physical table. In
the early 2000s, several companies brought interactive tabletops to
market - most notably Microsoft and Samsung with the Surface
and SUR40 devices. However, despite significant research, media
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Figure 1: TipTrack enables pen interaction, drawing and
handwriting on unmodified tabletops via a camera-projector
combination mounted above the table. Pen tracking works
well enough for detailed drawings.

attention, and investment, these interactive tabletops have failed
to achieve widespread adoption. Interactive tabletops with built-in
displays are used in special settings - such as museums - but have
inherent limitations that make them unsuitable for use in home
environments [34].

One of the first interactive tabletop prototypes used a different
approach which seems more suitable for everyday use. Pierre Well-
ner’s DigitalDesk [33] was made interactive using a combination
of top-down projection and camera-based tracking of objects and
interactions. This approach has several advantages over glass dis-
plays on four legs. It works with most unmodified tabletops which
people already have in their homes, thus saving space, preserving
the general affordances of a table, and allowing digital equipment
to be updated independently from the furniture. Furthermore, the
top-down approach stays out of the way and allows for projecting
digital augmentations onto objects on the table. However, a major
drawback of top-down projection and optical sensing is that the
users’ actions have to be inferred from captured camera frames.
This is much more difficult than sensing touch and simple objects
from below the surface using capacitive or optical touch screens.

The three most common input modalities on interactive tabletops
are touch, tangibles, and stylus. As they have different advantages
and limitations, ideally all three modalities should be supported.
Tracking tangibles from above is relatively straightforward thanks
to optical markers (fiducials) which can be added to arbitrary objects
[11, 14]. For hand tracking and touch input, multiple camera-based
approaches exist [32, 37]. While touch input is immediate and in-
tuitive, pen input complements it and is better suited for some
application scenarios and tasks. Touch interaction on tabletops
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faces two inherent challenges, independent of sensing approach:
the fat-finger problem — reduced precision due to occlusion of con-
tent below the hand [12] - and the Midas-touch problem: every
time one touches the tabletop, a reaction from the system might be
triggered.

Pen input avoids these challenges, allowing for simpler, more
precise, and more robust pointing and selection: As only little of the
underlying surface is occluded by a pen tip, pointing and writing is
more precise with a pen than with a finger. If the system only reacts
to pen input, and not to touch, the Midas-touch problem does not
occur. People can work with physical objects on the table without
having to worry that they might inadvertently trigger a digital,
projected, object. Furthermore, as there is no fat-finger problem,
Uls designed for pen input can be more condensed than touch-
optimized Uls. Pens are also much better suited for handwriting
or drawing than fingers. However, reliably tracking a pen tip and
determining whether it touches a surface is not trivial.

In this paper, we describe a robust and fast approach for tracking
pens on an unmodified tabletop. Our setup uses two IR cameras
mounted above the tabletop and an active pen with an IR-emitting
tip made from PMMA fiber.

2 REQUIREMENTS FOR A NATURAL
WRITING EXPERIENCE

Physical pens have effectively zero latency, no offset, and work quite
reliably. When the pen touches the paper, it immediately leaves
a small ink stain at exactly the point of contact. These qualities
are essential for a physical pen. On digital devices, users have
gotten accustomed to the inherent latency and limited resolution
of computers compared to pen and paper. However, pen input on
interactive tabletops is so far in the physical domain that people
expect a higher level of performance, comparable to a physical pen.
The following requirements for digital pens in a physical world are
derived from our own experience in building interactive hardware
and software and from anecdotal observations reported in related
work.

For handwriting or drawing, a temporal resolution of at least
100 Hz and a spatial resolution better than 0.5 mm seem essential for
capturing smooth, undistorted strokes and letters of about 10 mm
in height. Higher spatial resolution is always beneficial.

Latency should be as low as possible. While humans can com-
pensate for latencies of up to several hundred milliseconds in a
user interface [25], most people are able to perceive the effects
of latency down to a few milliseconds [24]. In our experience, a
latency of less than 50 ms feels acceptable — however, people notice
and appreciate much lower latencies. It is important to not only
optimize the latency of the tracking system but also the end-to-end
latency of the whole system including camera and projector. An
off-the-shelf display or projector typically has a latency of tens of
milliseconds and the common refresh rate of 60 Hz already intro-
duces an average latency of 8 ms. Thus, achieving low end-to-end
latency inherently requires sensors and projectors with high frame
rates and low internal latency.

The acceptable offset between pen tip and displayed line depends
on the use case. For coarse strokes, an offset of multiple millimeters
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may be okay. However, for cursive handwriting or drawing, sub-
millimeter offsets are desirable. We have observed that even small
offsets make it hard to insert new details to an existing drawing or
to write letters with curved lines.

A further essential requirement is that the tracking system needs
to accurately determine whether the pen tip is in contact with the
surface, or hovering slightly above it. The minimum hover distance
is a measure for how close the pen can be to the surface without the
tracking system registering a contact while still reliably reporting a
contact while the pen tip actually touches the surface. For Uls where
people only click buttons with a pen, and otherwise keep it far from
the surface, a minimum hover distance of several millimeters may
be acceptable. For handwriting, where people only slightly lift off
the pen tip between strokes, a minimum hover distance of less than
one millimeter seems essential. Otherwise, the text will look as if it
was drawn without lifting the pen at all.

In addition to these essential requirements, a good pen tracking
system should allow for simultaneously tracking multiple pens,
distinguishing different pens or users and reporting the angle be-
tween pen and surface. The tracking system should be affordable
and able to cope with changing lighting conditions, different users,
and different sizes of tables. Pens should have an ergonomic shape
and a small tip that occludes little of the surface. They should be
low-cost and require little to no power.

In practice, implementations always have to find a trade-off
between accuracy, latency, robustness, versatility, and cost.

3 RELATED WORK

TipTrack is a tracking technique for pens on arbitrary, unmodified
planar surfaces. In this section, we discuss the state of the art in
pen-tracking techniques on pen-sensitive and unmodified surfaces.
For unmodified surfaces, we discuss both inside-out tracking (the
pen senses its position) and outside-in tracking (sensors in the
environment track the pen’s position).

3.1 Pen tracking techniques for modified
surfaces

3.1.1 Pen-sensitive screens. Pens (and pen-like devices) have been
one of the earliest input devices for interactive digital systems,
predating mouse and touch screen. The OA-1008 consoles developed
for the SAGE system in the 1950s [9] allowed radar officers to select
information on the screen via a light gun. Sutherland’s seminal
Sketchpad prototype [31] was operated via a light pen. The RAND
tablet [6] used capacitive sensing for tracking a pen with high
resolution.

Nowadays, the most common technologies employed in graphics
tablets and pen-sensitive screens are resistive sensing, capacitive
sensing, or electromagnetic resonance sensing. While these tech-
nologies offer high resolution and robust tracking at reasonably
low cost, they require a sensing layer that covers the whole interac-
tive surface. The pen must be in contact or close proximity to the
sensing layer. Therefore, these technologies are not well suited for
pen input on unmodified tabletops.

3.1.2  Pen tracking on non-screen modified surfaces. The RetroDepth
system by Kim et al. [15] captures silhouettes of hands and objects
in a 3D space using a stereo-pair of infrared cameras and multiple
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IR-LEDs. The authors also demonstrate pen input by identifying
the pen tip based on the pen outline. This approach necessitates a
special retro-reflective material attached to the background surface,
however.

InfinitePaint by Fender et al. [10] is a virtual reality application
where users can create digital paintings using a real wet brush. A
single camera tracks strokes of the brush on a special paper that
temporarily turns black upon contact with water. This allows for
precise stroke detection as long as the user does not paint over the
same area twice in quick succession.

3.2 Pen tracking techniques for unmodified
surfaces: Inside-out tracking approaches

A number of specialized sensing techniques have been developed for
tracking pens on large, unmodified surfaces. They can be grouped
into inside-out and outside-in tracking approaches. With inside-
out approaches, a pen has an embedded sensor system inside that
continuously captures some property of the environment around it
and thus infers the pen’s position.

A well-known example are pens with embedded cameras such
as the Anoto Livescribe Smartpens!, Neopen? or TipToi’. These
commercial products contain a high-speed IR-sensitive camera that
captures a unique dot pattern printed on a sheet of paper or any
other surface [4]. From the arrangement and relative position of
the dots, the sensor can determine the pen’s position relative to
the origin of the coordinate system in use. These pens offer high
resolution and low latency but are relatively expensive and require
special paper with a proprietary pattern printed on it. PenLight by
Song et al. [30] features an Anoto pen in the context of a projected
augmented reality tabletop. The authors explore possible use cases
of a pen sized projector attached to the digial pen.

FlashPenby Romat et al. [27] contains a commercial mouse sensor
in its tip which allows for tracking relative movement of the pen tip
on arbitrary surfaces with very high resolution (micrometer range)
and very low latency (low millisecond range). However, in addition
to the sensors inside the pen, a separate external tracking system
for determining the pen’s absolute initial position is required.

DeltaPen by Liithi et al. [18] is a pressure sensitive digital pen
that allows for precise tracking of translation and rotation input on
uninstrumented surfaces. A pressure sensor detects contact with the
surface and two optical flow sensors measure motion and rotation.
The device requires a permanent USB-connection to a computer
for communication and power which limits its flexibility.

An inside-out tracking approach that does not rely on sensors in
or near the pens tip is PenSight by Matulic et al. [22]. The system
features a downward-facing fisheye-camera attached to the top of
a pen. While this approach enables multiple tracking possibilities
of the pen’s surroundings, including the detection of the current
user, as well as hand pose and gesture detection, it does not allow
for the tracking of the pen-tip itself.

!https://www.anoto.com/solutions/livescribe/
Zhttps://neosmartpen.com/
3https://www.ravensburger.de/de-DE/entdecken/tiptoi
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3.3 Pen tracking techniques for unmodified
surfaces: Outside-in tracking approaches

With outside-in tracking, sensors are mounted in the environment
and capture the pen’s position. The pen may either be unmodified
or equipped with simple markers to aid tracking. While electromag-
netic sensing techniques could be used in principle, the large surface
and the presence of metallic objects on the table limits achievable
resolution. Therefore, researchers have primarily pursued optical
outside-in tracking approaches.

WebcamPaperPen by Pfeiffer er al. [26] tracks the tip of an un-
modified ballpoint pen using a webcam. To distinguish between
hover and contact, the distance between the pen tip and its shadow
is measured. The setup requires a white surface as a backdrop to re-
liably find the pen tip and a single spot light to provide the shadow.
It is therefore rather susceptible to changes in lighting conditions.
Pfeiffer et al. seem to be the first to explicitly mention the ’serif’
effect that occurs when the minimum hover distance is to high.
When the pen is lifted from the surface after a stroke, it still draws
a small additional line connected to the last stroke. The authors do
not report latency, minimum hover distance or spatial resolution.

Imad et al. [13] track the tip of a pen with colored markings at
top and bottom end using a stereo camera setup. They report an
achievable spatial resolution of 7 mm in the x axis and 1 mm in the
y axis. No further performance metrics are reported. The figures in
the paper indicate very coarse and noisy tracking, however.

3.3.1 Tracking approaches based on infrared light. Multiple re-
search projects use the optical sensor in Nintendo Wii Remotes
[5, 16] for tracking battery-powered pens with embedded IR LEDs.
The sensor, made by PixArt, has an update rate of up to 100 Hz and
an interpolated resolution of 1024x768 px. It reports the coordinates
and brightness of up to four IR light sources. A pen with an internal
IR LED as tip projects IR light onto close-by surfaces. When the
tip is very close to the surface, the small hot spot generated by the
pen can be tracked using the Wii Remote or any other IR-sensitive
camera. Lee [16] required users to press a button on the pen to ac-
tivate the LED. They do not report latency, update rate, or physical
resolution.

By using a pen with a pressure sensitive tip, Chen et al’s ap-
proach [5] removes the need to actively push a button while draw-
ing, but requires users to constantly push the pen onto the surface,
which seems to impair writing in a natural way. Hover events could
not be detected. The processing pipeline had a significant latency
of about 150 ms.

Lee at al. [17] placed an infrared camera next to a projector
and used a custom infrared pen to turn the projection area on a
wall into a digital whiteboard. The user needs to press a button
on the pen to activate the IR LED. Their approach requires no
hardware on or under the projection surface and could be adopted to
a horizontal tabletop setting. Like the Wii-Remote-based solutions,
this approach can not distinguish between then pen tip hovering
above or touching the surface.

Margetis et al. [21] propose an approach that tracks an IR pen
in a 3D space above a tabletop using stereoscopic images from
two calibrated cameras. Resolution is about 2 mm, update rate is
30 Hz. Latency is not reported. The authors claim that hover/click
states can be distinguished but do not go into detail. A user study
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evaluated mainly the usability of the whole application. It is not
reported whether the system supports handwriting.

In the paper RetroSphere [1] by Balaji et al., the authors present
a pen-like passive controller called "RetroPen". The pen consists of
two retroreflective markers that are tracked by AR glasses featuring
a stereo pair of infrared blob trackers and infrared LED emitters.
Contact to a surface can be detected due to a decrease in distance
between the two markers because of a spring integrated into the
pen. The authors claim a tracking accuracy of about 96.5% with
errors around 3.5 cm over a 100 cm tracking range which does not
allow for precise handwriting input that can be compared to using
a normal ballpoint pen.

3.3.2  Marker-based tracking approaches. A common way to tag
and optically track objects are 2D markers, such as ArUco [11] .
They can even be made invisible to the human eye by 3D printing
them using NIR-fluorescent filament [7, 8].

DodecaPen by Wu et al. [36] does not rely on an infrared-emitting
pen. Instead, the rear end of the pen is augmented with a small
dodecahedron containing printed ArUco markers. A 1.3 MP RGB
camera captures the marker position and orientation with an up-
date rate of 60 Hz. Through various measures, DodecaPen achieves
aresolution of 0.5 mm. However, the position of the pen tip needs to
be inferred from the position and orientation of the dodecahedron.
The system requires good, constant lighting conditions for reliable
marker tracking. End-to-end latency of the system is not reported.
Wau et al. also give a short overview of further tracking techniques.

3.4 Summary

In summary, many fast and robust pen tracking solutions are avail-
able commercially. However, these typically require a sensing layer
or an overlay with markers. Far fewer solutions — mostly research
prototypes — support pen tracking on unmodified surfaces, such as
tabletops. While tracking the tip of an unmodified pen with RGB(-
D) cameras is possible, resolution and robustness are very limited.
DodecaPen tracks markers on the far end of the pen which seems
far more robust and accurate. However, for all of these systems,
image processing is non-trivial and the system is very suscepti-
ble to changing light conditions or low ambient light. Therefore,
many implementations use cameras to track hot spots generated
by IR LEDs embedded into the pen. These systems allow for fast,
robust tracking. However, they do not distinguish between hover
and contact and offer only low spatial resolution.

Unfortunately, latency and minimum hover distance are rarely
reported in previous work which makes it hard to determine practi-
cal performance. However, demo videos of these systems typically
show end-to-end latencies of more than one hundred milliseconds.

4 TIPTRACK IMPLEMENTATION

Our goal with TipTrack was to design a reasonably robust, fast, and
affordable system for tracking pen input on an unmodified tabletop.
The focus is on offering an approach that is replicable, of immediate
practical use, and can be adapted to different use cases. To this end,
we made the following design decisions:

e only track the tip of the pen, not the whole pen
e only track on the surface, not in 3D space
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o use a battery-powered, IR-light-emitting pen to ensure con-
sistent tracking even in low-light conditions

o keep the IRLED on even when the pen is lifted from the table
to support a hover state and remove the need for a switch
within the pen which might alter the tactile properties of
the pen tip

e use a combination of machine learning and heuristics for
robust hover detection and tracking

e use two cameras on the left and right side of the table with
overlapping fields of view in order to mitigate occlusion by
the hand holding the pen , but do not necessarily use them
for simultaneous stereo tracking

e use a PMMA tip (1 mm) in a commercial marker-pen case in
order to offer a natural writing experience

These design decisions are explained in more detail later on.
They also result in a number of inherent limitations which we
discuss afterwards.

TipTrack operates as follows: An IR LED embedded within a
battery-powered pen emits light. This light is emitted through the
pen’s lead which is made of clear PMMA. Most of the light is emitted
through the front of the tip, some through the side. If the pen is close
to a surface, the frontally-emitted light bounces off that surface.
Two synchronized IR cameras mounted above the table capture an
image of the reflected light. A Python script then processes each
image pair in real-time. The pen’s position is determined by the
position of the bright spot of infrared light emitted by the pen.
Around each bright point in the captured images, an area of 48
by 48 pixels is extracted (Fig. 7). A custom-trained convolutional
neural network distinguishes between hover and touch states based
on those regions of interest. Pen state and position are then sent
to a simple renderer written in C++. Alternatively, input events
are generated and passed on to the operating system via Linux’
evdev framework. The overall architecture of the system is shown
in Figure 4.

4.1 Hardware

For our reference implementation of TipTrack, we use a projected
augmented reality setup with two infrared cameras, a 4k video pro-
jector, as well as our custom infrared pen, and a reasonably powerful
PC. Cameras and projector are mounted above the tabletop on a
mobile truss system (Fig. 2).

4.1.1  Projector/Camera Setup. We use an Optoma UHZ50 projec-
tor* to project an interactive application onto a table’s surface with
the projection covering an area of 113 cm X 63 cm. This projector
can produce 4k images (3840 X 2160 pixels) at 60 fps or FullHD im-
ages (1920 X 1080 pixels) at 240 fps. According to the manufacturer,
this projector has a low input lag of 16 ms in 4k mode and 4.9 ms in
FullHD mode. We separately verified these values.

To track the infrared pen on the table, we use two FLIR BFS-U3-
2353M-C cameras® with 8 mm lenses (45 mm full frame equivalent)
and 850 nm IR pass-through filters. Cameras are mounted at a dis-
tance of 120 cm above the table and capture its surface from opposite
sides. We use telephoto zoom lenses and mount the cameras as high

*https://www.optoma.com/ap/product/uhz50/
Shttps://www.flir.eu/products/blackfly-s-usb3/?model=BFS-U3-23S3M-C
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Figure 2: Projected augmented reality setup for our reference
implementation of TipTrack. Two cameras with infrared
filters (1) and a projector (2) are mounted on a truss system.
They are set up to project an interactive application onto a
table (3) from above.

above the surface as possible because occlusion of the pen tip be-
comes less likely the tighter the field of view. Both cameras capture
1920 % 1200 pixel 8 bit monochrome images at 158 Hz. Camera trig-
gers are synchronized via cable. By mounting 850 nm IR filters on
the camera lenses, ambient visible light gets blocked almost entirely,
so ideally only the infrared light from the pen tip is visible in the
camera images. This way, artificial room light, as well as the projec-
tion do not influence pen tracking. While price and specifications
of these cameras are higher than current consumer webcams, they
are still rather affordable and representative of expected webcam
performance in the near future.

4.1.2  System setup and calibration. To allow for precise projection
of drawn content without offset, projector and cameras need to
be calibrated to each other. We start by undistorting each camera
frame after determining the intrinsic parameters of each camera
with the help of a checkerboard calibration pattern. In the next step,
we use a custom calibration tool which allows for selecting the
four corners of the projection in the camera frame. This process is
repeated for each of the two cameras. By using these points to cal-
culate a homography, points can be transformed from the camera’s
coordinate system to the projection’s coordinate system by multi-
plying their coordinates with a transformation matrix. While more
sophisticated approaches for projector-camera calibration exist,
this proved to be sufficient for our prototype. As long as the table
stays approximately at the correct height, no further calibration is
needed.
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Figure 3: Schematic of the infrared pen. A battery-powered
infrared LED shines light through a light guide which is used
as the pen tip. All components are included in an off-the-
shelf felt tip pen. The battery is connected to the LED with
thin copper wires and magnetic contacts.

4.1.3 Infrared Pen. We built a pen emitting infrared light by plac-
ing an infrared LED® inside a black edding 400 permanent marker
case (Fig. 3). A PMMA light guide with a diameter of 1 mm and a
sanded end is hot-glued inside the pen’s tip. It directs the IR light
towards the drawing surface, lights up itself, and provides a writ-
ing experience similar to that of an ordinary ballpoint pen. We
compared side-emitting and conventional light guides and found
that both work similarly well. A 1.5V AAAA battery inside the
pen powers the IR LED. Because there is no room for a proper
battery holder inside the pen, we used magnetic contacts and thin
copper wires to connect the LED to the battery. A fully charged
battery lasts around eight hours before the LED becomes too dim
and tracking gets less reliable. A joule thief circuit could be used to
increase LED brightness for partially discharged batteries, however,
it would have to be built small enough to fit inside the pen. We did
not yet pursue this optimization.

4.2 Image processing

Both cameras capture images at 158 frames per second. TipTrack
processes these images to find and extract each pen’s spot so it can
determine its coordinates and classify whether the pen is touching
the surface or not. All image processing is implemented in Python
3.8 and OpenCV 4 [3]. First, we find the brightest spots in each
camera frame and extract a 48 X 48 pixel region around them. By
applying a threshold keeping only the brightest pixels and calculat-
ing the center of gravity of the remaining shape, we determine the
pen tip’s position in the camera image.

We transform the resulting coordinates into the projection’s
coordinate system by multiplying them with the transformation
matrix from the camera calibration. This procedure is significantly
more time-efficient than applying the homography to the whole
camera frames during runtime. Processing one set of frames from
both cameras takes between 3.5 and 5.5 milliseconds on our system’.

4.3 Pen State Classification

To distinguish between the pen states draw and hover, we use a
convolutional neural network (CNN).

We trained a convolutional neural network (CNN) to distinguish
between the pen states draw and hover. The network is implemented
in TensorFlow 2.0% using the Keras API°. The network structure can
be seen in Fig. 5. Hyperparameters of the network were optimized
via grid search.

6SFH 4550, 850 nm, 2800 mW/sr, @3

7Ubuntu GNU/Linux 20.04, Intel i9 9900k @3.6 GHz, NVIDIA GeForce RTX 2060
8https://www.tensorflow.org/

“https://keras.io/
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Figure 4: TipTrack processing pipeline. Cameras capture the
infrared spot emitted from the pen’s tip. An area around the

resulting bright spot is extracted for pen state classification.

Pen coordinates are calculated by finding the centroid of the
bright spot, and then transferred to the output coordinate
system. A CNN is used to classify the pen state as draw or
hover. A drawing application renders drawn lines which are
then projected onto a table.
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Figure 5: Network architecture of the convolutional neural
network used for pen state classification.

Training data was acquired by manually moving the infrared pen

across the table, continuously capturing images with both cameras.

Those images are cropped to a 48 X 48 pixel region around the
brightest spot and saved with the corresponding label draw or
hover. Capturing a whole training data set of 12000 images this
way takes about 10 minutes. Pen states are easier to distinguish
on bright images as differences between the images become more
apparent. However, with long exposure times, quickly moving the
pen introduces motion blur which deteriorates classification. We
found a sweet spot of 0.8 milliseconds exposure time and 18 dB
sensor gain. With those settings, contrast is high enough while
image noise is still acceptable. Before training, we randomly select
20% of the images for each category to be used as a validation data
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Figure 6: TipTrack can reliably track the infrared pen on
different flat and smooth surfaces, such as paper, cardboard,
wood, and fabric.

Figure 7: Cropped and re-scaled sensor images. If the pen
is hovering over the surface (> 2 mm), a light cone is clearly
visible. When touching the surface, the light cone disappears.
Close hovering (< 2 mm) looks very similar to touching. Hov-
ering far from the surface (> 15 cm) also looks similar, but
the spot is smaller and less bright.

set. The remaining 80% of the images is augmented by rotation in
90° steps and flipping, which increases the amount of training data
by a factor of eight.

We trained our network with a batch size of 128 using an Adam
optimizer with categorial crossentropy as the loss function. If valida-
tion loss stops decreasing for two epochs, learning rate is reduced by
80%. After six epochs, the model reached an accuracy of 97.85% on
the validation data set. Using TensorFlow litel®, the model achieves
a mean prediction time of 1.3 ms with rare outliers.

For our final model, we collected all training data on a light,
untreated wooden tabletop (see Fig. 2). To assess the model’s per-
formance on different surface materials without re-training, we in-
formally tested 11 additional materials (six of them depicted in Fig.
6). We achieve identical tracking and hover-detection performance
for the following surfaces: untreated dark wood, white fibreboard
(acrylic paint), coated fibreboard with a wood texture, paper, card-
board, and a green cutting mat. A slight increase in misclassified
pen events is visible on dark cotton fabric. Tracking does not work
at all on transparent (glass, acrylic) or highly reflective materials
(metal, dark wood with glossy coating).

WOhttps://www.tensorflow.org/lite
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4.4 Drawing Application and Human Interface
Device

We implemented an application that displays lines drawn by users as
a frontend for our system. We used C++ with the SDL2!! framework
as it adds only a small amount of latency even when rendering
complex scenes [29]. This application receives all events via a UNIX
domain socket!?, and draws points and lines on a black canvas,
which is then projected onto the table.

To control arbitrary GUI applications with TipTrack, we imple-
mented a program that translates the pen state to mouse events.
Pen state and coordinates are used in combination with python-
evdev'? to simulate a virtual input device and control the mouse
cursor. Hovering only moves the cursor, whereas a short press or
dragging gesture triggers the left mouse button and a long press at
a constant position triggers the right mouse button.

5 EVALUATION

In order to better understand and document the properties of our
current TipTrack implementation and of the concept in general, we
conducted three studies:

o Inalab study, we investigated subjective qualities of drawing
with TipTrack.

e In an extensive technical benchmark, we measured latency
and tracking resolution of our setup.

e Through multiple in-the-wild evaluations we gathered qual-
itative feedback and quantitative performance data. Partici-
pants were HCI researchers and practitioners at an academic
conference as well as children and teenagers at two Open
Lab Days.

5.1 Subjective Qualities

In order to learn more about how writing with TipTrack feels, we
asked 15 participants to draw simple and complex shapes with
TipTrack. Participants were aged 24-33 years (mean 28); two were
left-handed. All participants were unfamiliar with the system and
we asked them to pay attention to the system’s performance and
give us feedback afterwards.

At the beginning and the end of the session, participants had
to trace a number of crosses with the pen which were projected
onto the tabletop. This was intended to gather data on accuracy
and precision of the system. As we significantly improved TipTrack
performance afterwards, these metrics are obsolete. Thus, we do
not report them.

Then we displayed a random phrase from MacKenzie and Souko-
reff’s phrase set [19] and asked participants to copy it inside a
projected box in the center of the table. This process was repeated
five times each for three differently sized boxes (5 cm, 4 cm, and 3 cm
height) to stimulate size variation in user’s handwriting. Finally,
participants had three minutes to freely draw on the table. After all
tasks were finished, we asked participants to provide feedback on
our system in a short interview.

At this stage, our system had a slight offset between physical pen
and tracked position, which got stronger near the table’s borders

Uhttps://github.com/libsdl-org/SDL
2https://man7.org/linux/man-pages/man7/unix.7.html
Bhttps://python-evdev.readthedocs.io/
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Figure 8: Examples for TipTrack’s capabilities for drawing
and handwriting. Top: phrases written by users during the
handwriting task. Bottom: pictures created by participants
during the drawing task. We increased the line weight for
better visibility at this small size.

(up to about 5 millimeters). Twelve of our 15 participants found this
offset distracting. However most of them got used to it quickly.

A small yellow circle indicated the pen’s current position while
it hovered above the table. Eleven participants found this feature
useful, for example to counteract said offset, three were indifferent
and one participant found it irritating.

For eight participants, the shadow cast by the drawing hand
occluding the projection was a problem when using the system.
This was especially apparent for left-handed users while writing,
and for right-handed participants during the cross-hatching tasks,
as the crosses were projected onto their hands instead of the table.

Additionally, one participant occluded the camera’s line of sight
with their head and two participants noticed that hovering the
pen very closely above the surface could wrongly be detected as
drawing.

Seven of the fifteen participants liked how writing feels with our
system. Four found it acceptable and four would have preferred a
smoother surface. We asked which physical pen our IR pen resem-
bled most closely (multiple answers possible). Most participants
compared it to a felt-tip pen because of the haptics (7) or a ball-head
pen because of the rough writing experience (6). Other pen types
mentioned were a fountain pen (4), tablet (2), a sharpie (1) or a gel
pen (1). Participants also asked for more drawing features, such
as erasing drawn lines or changing line weight and color. Figure 8
shows examples of the phrases and sketches written and drawn by
participants.
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Figure 9: End-to-end latency of TipTrack with different pro-
jector settings.

5.2 Latency Measurements

To measure the end-to-end latency of our system, we used a modi-
fied version of YALMD, an open-source latency measuring device
[28]. For each measurement pass, YALMD turns on an infrared LED
placed on the tabletop and starts a microsecond-resolution timer.
Once the slightly modified TipTrack software detects the bright
spot from the LED in the camera image, it conducts through all of
the image processing and classification steps described in section
4.2. During our latency measurements, TipTrack projects a large
white rectangle instead of a pen stroke. A photo resistor in YALMD
detects the change in brightness once this rectangle is projected
onto the surface and stops its internal timer. This measurement is
repeated 1,000 times for each measurement run.

We measured a mean end-to-end latency of 21.4 ms (16.0 — 26.0 ms)
in 1080p 240 Hz mode and a mean end-to-end latency of 29.6 ms
(20.6 — 41.3 ms) in 4K 60 Hz mode (Fig. 9). In comparison, state-of-
the-art research prototypes which combine high-end projectors
and cameras reach an end-to-end latency below 10ms (e.g., 6 —
7 ms, [23]). For most interactive systems based on commercial off-
the-shelf hardware, end-to-end latency is not reported at all. For
SciSketch (2014, [5]), Chen et al. report a latency of 150 ms, which
they attribute in part to a slow Bluetooth connection and software.

To find performance bottlenecks, we measured partial laten-
cies in our system. We used the LeoBodnar Video Signal Input Lag
Tester' to measure the response time of our projector. In 4k 60 Hz
mode, the projector has an input lag of 16 milliseconds.!® In FullHD
240 Hz mode, the projector has an input lag of 4.9 milliseconds.
Those measurements match the manufacturer’s specifications.

To determine the latency introduced by the cameras, we mea-
sured the end-to-end latency of the camera-based setup as described
above. Then we conducted the same measurements again but in-
stead of capturing camera frames, we triggered the processing
pipeline via auto-generated input events via a USB mouse [35].
We used a Logitech G5, which has a rather consistent latency of
2.2 milliseconds (std: 0.2 ms) [35]. On average, latency with the
camera was 5 milliseconds higher and there was no influence on
latency variance, resulting in an estimated latency of 7 to 7.4 ms
for the camera. As the camera produces a new image every 6.33
milliseconds, this value seems plausible.

www.leobodnar.com/shop/index.php?main_page=product_info&products_id=212

15As this measuring device only outputs a 1080p signal, latency for actual 4K input
may be higher.
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Figure 10: Text written with TipTrack remains readable up
to a minimum letter height of approximately 4 mm.

The remaining 6 — 7 milliseconds of latency are caused by pre-
dictions of the CNN (mean: 2.6 ms for predicting two detected pen
events), image processing, and rendering.

5.3 Tracking Resolution

With the current system, fluid handwriting on the surface is possible
up to a minimum letter height of approximately 4 mm (see Fig. 10).
In this section, we present a systematic benchmark of TipTrack’s
horizontal and vertical tracking resolution.

To measure the spatial tracking resolution of our system, we
used an AxiDraw V3'® robot to move the pen across the surface in
a controlled manner (Fig. 11, left). The AxiDraw has a resolution
of 88 motor steps per millimeter, which is more than sufficient for
this test. For our test, we used the setup depicted in Fig. 2 with
the projection covering an area of 113 cm X 63 cm, resulting in
a pixel size of 0.29 mm X 0.29 mm. The cameras were zoomed in
to just cover the projected area. We moved the pen horizontally
for 24 steps in different increments: 10 mm, 5mm, 2 mm, 1 mm,
0.5mm, 0.2 mm, 0.1 mm. We then calculated the offset between the
pen’s theoretical position and the measured position (Fig. 11, right).
To this end, we normalized all measured trajectories by setting
their start and end points to 0 respectively 100 and calculating the
distance from each measured point to a straight line between start
and end. We found that spatial tracking works robustly down to
0.5 mm steps. However, even for 0.1 mm — the smallest step size we
used - relative error peaks at around 40%, which is 40 micrometers
off.

The vertical resolution, i.e., the minimum distance between pen
and surface that is reliably classified as hovering, is important for
use cases such as writing and drawing. To measure it, we mounted
the AxiDraw vertically so it could move the pen back and forth, as
well as up and down with sub-millimeter precision. We attached
our infrared pen to the robotic arm so that it just touched the table’s
surface (Fig. 12, left). We programmed the AxiDraw to raise the
pen in 0.1 mm steps and draw a short line at every vertical position.
As there is slight mechanical play in the joints and belts of the
AxiDraw when mounted vertically, it would be difficult to precisely
calibrate a zero point at which the pen tip just touches the surface.
Therefore, we used a contact microphone attached to the table to
exactly determine the moment when the pen leaves the surface.
This microphone registers the sound of the pen scratching along

16https://shop.evilmadscientist.com/productsmenu/846
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Figure 11: Measurements of spatial tracking resolution. Left: AxiDraw drawing robot moving the pen across the table for our
resolution measurements. Right: Relative deviation of the pen’s measured position from a straight line when moving the pen
across the table in different step sizes. The fluctuations in accuracy for small step sizes indicate that the pen was moved in

increments smaller than the system’s tracking resolution.
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Figure 12: Results of our test for vertical accuracy. The wave in the center represents scratching sounds of the pen on the table’s
surface. Once the pen physically leaves the table surface, the scratching sounds stop. However, the pen has to be 0.9 mm above

the table’s surface to be confidently classified as hovering.

the table’s surface. Once the pen no longer touches the surface, the
audio amplitude decreases significantly. We define the first vertical
position where no scratching sound is recorded anymore as the
starting point for our measurements. By incrementally raising the
pen and checking our system’s predictions, we could determine
at which vertical position TipTrack starts to classify the pen state
as hover. Our measurements show that up to a vertical distance of
0.8 mm, the pen is registered as touching the surface, i.e., its state is
classified as draw (Fig. 12, right). Between 0.8 and 0.9 mm, there is
ambiguity in predictions with an almost even distribution of draw
and hover. Above 0.9 mm, TipTrack consistently classifies the pen
state as hover.

5.4 In-the-wild Evaluation via Public
Demonstrations

Whether an input device feels just right or too sluggish and im-
precise is ultimately a subjective impression. To gather subjective
feedback on TipTrack, we presented the prototype at three public
events with different audiences:

e an open lab day with about 250 students between eight and
sixteen (July 2022)

e an open lab day with about 300 students and preschoolers
aged between five and sixteen (July 2023)

o the demo session of an HCI conference where over 100 at-
tendees interacted with TipTrack (September 2022)

The goal was to see how users interact with the system, how
robust it is in practice, and to gather qualitative feedback on possible
improvements and use cases.

5.4.1 Open Lab Day 2022. TipTrack was one of several interactive
exhibitions at an open lab day which 250 students from several local
schools attended. More than one hundred students visited our demo.
A drawing application (MyPaint!”) was shown in full-screen mode.
Students could draw and scribble on the table using the pen. While
we had also prepared alternative demos, visitors were so engaged
with the drawing application that we never switched demos. Even
though the setting did not allow for structured observations, we
observed that students enjoyed drawing on the table. They had a
strong sense of agency and were proud of things they produced.
As there was only one pen available, students interacted with each
other and took turns drawing and watching.

As our TipTrack setup was located in a room with large windows
during this event, lighting conditions were changing continuously
over the course of the day. Therefore, tracking quality varied signif-
icantly and we had to re-train the classifier multiple times to adapt
to new conditions.

5.4.2 Open Lab Day 2023. Similar to the Open Lab Day of the
previous year, we exhibited TipTrack for about 300 students from
several local schools and a local preschool. In addition to a simple
drawing application that allowed to playfully try out the system,
we also prepared a short dexterity game which we also used to

http://mypaint.org/
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Figure 13: Aggregated paths drawn by participants in our
2023 demo. The canvas represents the whole projected area
in 4K resolution. The path to follow gets smaller from left to
right.
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Figure 14: Euclidean distance of all points in paths drawn
by participants to the ideal path. One pixel is 0.29 mm wide.
Therefore, 95% of points are less than 6 mm away from the
ideal path.

collect data about the system’s performance. The game’s objective
was to follow a given path from start to finish as accurately and
quickly as possible. The path was projected onto the tabletop and
consisted of three connected segments with progressively decreas-
ing path widths (16 px, 8 px and 4 px at 0.29 mm per pixel). Current
accuracy and a timer were displayed on top. The timer starts with
the player drawing a line through the start region at the left hand
side and stops when the pen reaches the target region on the right
side. During this game, we recorded all pen events to later evaluate
TipTrack’s tracking accuracy in a real-world setting. We asked stu-
dents for their age but not for any further demographic information
as it was not feasible to obtain informed consent in this setting.

In total, 65 students (41 children, 5 — 11 years and 24 teenagers, 12
- 16 years) played the game. Players were rewarded with sweets for
their participation, regardless of their final score. Task completion
time varied greatly among participants, especially between chil-
dren (M: 101.41s, SD: 61.36 s, range: 10.14 — 249.59 s) and teenagers
(M: 32.60's, SD: 36.70 s, range: 9.67 — 184.37 s). While most children
clearly focused on following the path as accurately as possible,
teenagers tried to finish the task quickly while only roughly fol-
lowing the path. Notably, the deviation of drawn lines from the
ideal path did not change as the task’s difficulty increased. Figure
13 depicts all paths drawn over the course of the day.

To evaluate how precisely novice users can follow a path using
TipTrack, we calculated the euclidean distance between each point

Maierhofer et al.

Figure 15: We observed that some children held the pen in
idiosyncratic ways, for example at the rear end or in very
steep angles. Even though the external battery of the pen
we used in our field study certainly influenced users’ grip,
we also observed this behavior when using a pen with an
internal battery.

drawn by participants to an ideal path with a width of one pixel
(Fig. 14). We found that 95% of points were within a distance of
20 px to the ideal path and 99% of points were within a distance of
30 px. As one pixel is approximately 0.29 mm wide, 95% of points
were less than 6 mm away from the ideal path.

One important observation we could make was that young chil-
dren in particular often hold the pen very differently from adults
(nearly perpendicular to the surface or really close to the pen tip,
see Fig. 15) causing additional occlusion of the pen tip. As this leads
to reduced tracking accuracy, these cases represent a worst case
scenario for TipTrack’s performance.

5.4.3 Conference Demo Session. We presented TipTrack at the
demo session of "Mensch und Computer 2022’, the largest German
HCI conference [20]. Over 100 attendees interacted with our system
which gave us the opportunity to get feedback in conversations with
computer scientists, HCI researchers, and designers. Most visitors
were impressed by the system’s low latency and precise tracking.
Some of them thoroughly tested how robust the tracking was by
covering the pen with their hands, quickly moving the pen, trying
to draw very precise lines, or hovering the pen very closely above
the surface. Many attendees asked for a fully-featured drawing
application: first and foremost a way to erase lines, but also to be
able to change line width and color. A few people mentioned the
problem of user’s hands occluding the projection. Some of them
proposed using a short-throw projector at the opposite side of the
table to reduce occlusion. As there were no windows near our
system, tracking worked very robustly for the full three hours of
the event. However, the system crashed occasionally, requiring a
restart of the Python backend. We fixed this issue after the event.
TipTrack won the ‘Best Demo’ award at this conference by a wide
margin with more than twice the votes of the second-placed demo.
However, a contributing factor might have been that the demo was
very accessible compared to more complex applications.

While feedback at exhibitions can not replace the results from
controlled lab studies, it provides insights into public acceptance,
usability problems, and suitability for different user groups. Positive
reception by children, teenagers, and HCI experts suggests that
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TipTrack might be useful and enjoyable for wider audiences. Our
prototypical implementation proved to run very reliably through
all three exhibitions. The technical issues we encountered were
either fixed afterwards or suggest directions for future work (e.g.,
accidental occlusion of the camera’s view or of the projection).

6 LIMITATIONS, FUTURE WORK, AND
APPLICATIONS

We could show that TipTrack is capable of robust pen tracking even
to the degree of enabling fine grained input needed for handwriting
and drawing. However, the system still has some limitations that
we hope to address in future iterations.

6.1 Current technical limitations of TipTrack

TipTrack’s current implementation assumes a planar surface. When
drawing on a non-planar surface or on objects above the tabletop
(e.g., a book lying on the table), the projected strokes will be offset.
As the hover detection is based on the IR hotspot, it still works
reliably in these cases. In order to support drawing on non-planar
or vertically offset surfaces, the vertical position of the pen would
need to be tracked via a stereoscopic camera setup or other sensing
methods. TipTrack already employs two cameras in order to provide
reliable tracking even when one camera’s view is occluded. In order
to offer reliable 3D tracking, at least three cameras should be used.

Even though using a CNN for pen state classification yielded
significantly higher accuracy than earlier experiments with sophis-
ticated heuristics or support vector machines, this approach has
a number of drawbacks. Firstly, the model is optimized for the ex-
act cameras we use in our reference implementation of TipTrack.
With other cameras, a different network architecture might perform
better. Thus, the model’s hyperparameters have to be optimized
again when using different cameras. Additionally, as deep neu-
ral networks are a black box, the system is hard to debug when
tracking accuracy starts to deteriorate during operation. From our
experience, this happens often when the setup is exposed to direct
sunlight. In this case, collecting a new set of training data and re-
training the network can solve the problem temporarily. However,
this is a time-consuming process blocking the system for at least
15 minutes and can be a show-stopper for practical applications
where the setup is unattended.

Even though we could show that our TipTrack implementation
supports handwriting, projection resolution and tracking accuracy
are still limiting factors for how small one can write (see Fig. 10).
Especially when writing very small, hovering very closely above the
surface being wrongly classified as drawing can lead to unwanted
lines within and between letters.

With our reference implementation of TipTrack, our goal was
to find out how fast and accurate such a system can be built with
today’s hardware. Therefore, we used specialized (and therefore
moderately expensive) hardware and did not focus on replicability
in the first place. Even though it is possible to build a TipTrack
setup with significantly cheaper components, this comes with the
cost of higher latency and less accurate tracking. In future work,
we will investigate how TipTrack can be implemented with cheaper
components and how to compensate the loss of spatial and temporal
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resolution. One option would be to predict the pen’s trajectory to
reduce perceived latency.

6.2 Plans for future iterations of TipTrack

Though it has not been explicitly mentioned in this paper, the
current version of TipTrack supports simultaneous operation with
multiple pens.

As long as a pen does not leave the tracking area, its ID will not
change. However, when a pen leaves and re-enters the tracked area,
it will be assigned a new ID and all potential metadata, such as
color and stroke width, gets lost. This problem could be addressed
with more intelligent pens, for example by modulating the LED’s
brightness in unique patterns. However, this solution could nega-
tively influence tracking accuracy and might require higher camera
frame rates.

As we currently use standard AAAA batteries without a power
supply circuit to power the infrared LEDs within TipTrack’s pens,
LED brightness decreases when the battery discharges. Battery
life could be increased by including additional sensors, such as a
pressure sensitive tip that only activates the LED once the pen
touches the surface. Adding a switch or force sensor to the pen
might also allow for easier detection of a hover state. A force sensor
or deformable tip might also be used to add pressure-sensitivity to
pen input, e.g., for drawing applications. However, this approach
might introduce new problems, such as requiring more pressure
on the surface and thus affecting the writing experience. Another
solution would be to use a boost converter IC in combination with
rechargeable batteries. Even though this does not solve the problem
of having to regularly switch and/or recharge batteries, the LED’s
brightness would remain constant regardless of the battery’s charge.
We will evaluate different solutions to counteract battery drain and
its effect on tracking quality in future studies.

TipTrack’s capability to track the pen in a hover state could be
used more extensively for things like preview and menu selection,
similar to the hover feature of the Apple Pencil'®,

We currently use the camera frames solely to distinguish between
draw and hover events. It seems possible to extract additional in-
formation, such as pen tilt and surface material, from the reflection
produced by the pen’s IR LED on the surface.

6.3 Applications

TipTrack is intended to act as a generic input device for tabletops.
It supports both a hover and a touch state, and can emit pointer
events to applications running on the same computer. Therefore,
it can be used to control any application that can be operated by
mouse, touch, or pen input. In addition, TipTrack supports drawing
on the tabletop or arbitrary flat surfaces lying on the table.

Thus, TipTrack can be used in many different application sce-
narios, such as:

o collaborative interaction with digital content

e creating digital art

e interacting with and annotating physical documents and
objects on the table

e interacting with projected interfaces on a workbench

8https://developer.apple.com/news/?id=23ksaoks
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7 CONCLUSION

With TipTrack, we propose and characterize an architecture for
fast and robust optical tracking of a pen tip on a tabletop. Our open-
source proof-of-concept implementation has an end-to-end latency
of about 20 - 30 ms which is much lower than previous approaches
for tabletops and in the same order of magnitude as current state-of-
the-art inductive graphics tablets. Most of this latency is caused by
cameras and projector. Therefore, upcoming hardware generations
with higher update rate and resolution will lower latency further.

Source code and technical documentation for TipTrack are avail-
able on GitHub'? under open source licenses.
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