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We determine the axial, scalar and tensor isovector charges of the nucleon, sigma and cascade baryons as
well as the difference between the up and down quark masses,mu −md. We employ gauge ensembles with
Nf ¼ 2þ 1 nonperturbatively improved Wilson fermions at six values of the lattice spacing in the range
a ≈ ð0.039–0.098Þ fm, generated by the coordinated lattice simulations (CLS) effort. The pion mass Mπ

ranges from around 430 MeV down to a near physical value of 130 MeVand the linear spatial lattice extent
L varies from 6.5M−1

π to 3.0M−1
π , where LMπ ≥ 4 for the majority of the ensembles. This allows us to

perform a controlled interpolation/extrapolation of the charges to the physical mass point in the infinite
volume and continuum limit. Investigating SU(3) flavor symmetry, we find moderate symmetry breaking
effects for the axial charges at the physical quark mass point, while no significant effects are found for the
other charges within current uncertainties.
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I. INTRODUCTION

A charge of a hadron parameterizes the strength of its
interaction at small momentum transfer with a particle that
couples to this particular charge. For instance, the isovector
axial charge determines the β decay rate of the neutron. At
the same time, this charge corresponds to the difference
between the contribution of the spin of the up quarks minus
the spin of the down quarks to the total longitudinal spin of
a nucleon in the light front frame that is used in the collinear
description of deep inelastic scattering. This intimate
connection to spin physics at large virtualities and, more
specifically, to the decomposition of the longitudinal proton
spin into contributions of the gluon total angular momen-
tum and the spins and angular momenta for the different
quark flavors [1,2] opens up a whole area of intense
experimental and theoretical research: the first Mellin

moment of the helicity structure functions g1ðxÞ is related
to the sum of the individual spins of the quarks within the
proton. For lattice determinations of the individual quark
contributions to its first and third moments, see, e.g.,
Refs. [3–8], respectively. Due to the lack of experimental
data on g1ðxÞ, in particular at small Bjorken-x, and
difficulties in the flavor separation, usually additional
information is used in determinations of the helicity parton
distribution functions (PDFs) from global fits to exper-
imental data [9–13]. In addition to the axial charge gA of the
proton, this includes information from hyperon decays, in
combination with SU(3) flavor symmetry relations whose
validity need to be checked.
In this article we establish the size of the corrections to

SU(3) flavor symmetry in the axial sector and also for the
scalar and the tensor isovector charges of the octet baryons:
in analogy to the connection between axial charges and the
first moments of helicity PDFs, the tensor charges are
related to first moments of transversity PDFs. This was
exploited recently in a global fit by the JAM Collaboration
[14,15]. Since no tensor or scalar couplings contribute to
tree-level Standard Model processes, such interactions may
hint at new physics and it is important to constrain new
interactions (once discovered) using lattice QCD input, see,
e.g., Ref. [16] for a detailed discussion. SU(3) flavor
symmetry among the scalar charges is also instrumental
regarding recent tensions between different determinations
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of the pion nucleon σ term, see Ref. [17] for a summary of
latest phenomenological and lattice QCD results and, e.g.,
the discussion in Sec. 10 of Ref. [18] about the connection
between Okubo-Zweig-Iizuka (OZI) rule violation,
(approximate) SU(3) flavor symmetry and the value of
the pion nucleon σ term. Finally, the scalar isovector
charges relate the QCD part of the mass splitting between
isospin partners to the difference of the up and down quark
masses.
Assuming SU(3) flavor symmetry, the charges for the

whole baryon octet in a given channel only depend on two
independent parameters. For the proton and the axial
charge, this relation reads gA ¼ FA þDA, where in the
massless limit FA and DA correspond to the chiral pertur-
bation theory (ChPT) low energy constants (LECs) F and
D, respectively. Already in the first lattice calculations of
the axial charge of the proton [19–21], that were carried out
in the quenched approximation, FA and DA have been
determined separately. However, in spite of the long history
of nucleon structure calculations, SU(3) flavor symmetry
breaking is relatively little explored using lattice QCD: only
very few investigations of axial charges of the baryon octet
exist to date [22–26] and only one of these includes the
scalar and tensor charges [26]. Here we compute these
charges for the light baryon octet. We also predict the
difference between the up and down quark masses, the
QCD contributions to baryon isospin mass splittings and
isospin differences of pion baryon σ terms.
This article is organized as follows. In Sec. II we define

the octet baryon charges and some related quantities of
interest. In Sec. III the lattice setup is described, including
the gauge ensembles employed, the computational methods
used to obtain two- and three-point correlation functions
and the excited state analysis performed to extract the
ground state matrix elements of interest. We continue with
details on the nonperturbative renormalization and order a
improvement, before explaining our infinite volume, con-
tinuum limit and quark mass extrapolation strategy. Our
results for the charges in the infinite volume, continuum
limit at physical quark masses are then presented in Sec. IV.
Subsequently, in Sec. V we discuss SU(3) symmetry
breaking effects, determine the up and down quark mass
difference from the scalar charge of the Σ baryon, split
isospin breaking effects on the baryon masses into QCD
and QED contributions and determine isospin breaking
corrections to the pion baryon σ terms. Throughout this
section we also compare our results to literature values,
before we give a summary and an outlook in Sec. VI. In the
appendices further details regarding the stochastic three-
point function method are given and additional data tables
and figures are provided.

II. OCTET BARYON CHARGES

All light baryons (i.e., baryons without charm or bottom
quarks) with strangeness S < 0, i.e., with a net difference

between the numbers of strange (s) antiquarks and quarks
are usually called hyperons. The spin-1=2 baryon octet,
depicted in Fig. 1, contains the nucleons N ∈ fp; ng,
besides the S ¼ −1 hyperons Λ0 and Σ∈ fΣþ;Σ0;Σ−g
and the S ¼ −2 hyperons Ξ∈ fΞ0;Ξ−g (cascades). We
assume isospin symmetry ml ¼ mu ¼ md, where ml
corresponds to the average mass of the physical up (u)
and down (d) quarks. In this case, the baryon masses within
isomultiplets are degenerate and simple relations exist
between matrix elements that differ in terms of the isospin
I3 of the baryons and of the local operator (current).
Baryon charges gB

0B
J are obtained from matrix elements

of the form

hB0ðp0;s0ÞjūΓJdjBðp;sÞi¼ gB
0B

J ūB0 ðp0;s0ÞΓJuBðp;sÞ ð1Þ

at zero four-momentum transfer q2 ¼ ðp0 − pÞ2 ¼ 0.
Above, uBðp; sÞ denotes the Dirac spinor of a baryon B
with four momentum p and spin s. We restrict ourselves to
ΔI3 ¼ 1 transitions within the baryon octet. In this case
p0 ¼ p, since in isosymmetric QCD mB0 ¼ mB, and it is
sufficient to set p ¼ 0. Rather than using the above I3 ¼ 1
currents ūΓJd (where the vector and axial currents couple
to theW− boson), it is convenient to define I3 ¼ 0 isovector
currents,

OJðxÞ ¼ ūðxÞΓJuðxÞ − d̄ðxÞΓJdðxÞ; ð2Þ

and the corresponding charges gBJ ,

hBðp; sÞjOJjBðp; sÞi ¼ gBJ ūBðp; sÞΓJuBðp; sÞ; ð3Þ

which, in the case of isospin symmetry, are trivially related
to the gB

0B
J :

gNJ ≔ gpJ ¼ gpnJ ; ð4Þ

gΣJ ≔ gΣ
þ

J ¼ −
ffiffiffi
2

p
gΣ

þΣ0

J ; ð5Þ

gΞJ ≔ gΞ
0

J ¼ −gΞ0Ξ−

J : ð6Þ

FIG. 1. The spin-1=2 baryon octet where S, I3 and Q ¼ ð1þ
SÞ=2þ I3 label strangeness, isospin and charge, respectively.
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Note that we do not include the Λ baryon here since in
this case the isovector combination trivially gives zero.
We consider vector (V), axial-vector (A), scalar (S) and
tensor (T) operators which are defined through the Dirac
matrices ΓJ ¼ γ4; γiγ5; 1; σij for J∈ fV; A; S; Tg, with
σμν ¼ 1

2
½γμ; γν�, where i; j∈ f1; 2; 3g and i < j.

The axial charges in the ms ¼ ml ¼ 0 chiral limit are
important parameters in SU(3) ChPT and enter the expan-
sion of every baryonic quantity. These couplings can be
decomposed into two LECs F and D which appear in the
first order meson-baryon Lagrangian for three light quark
flavors (see, e.g., Ref. [27]):

gNA ¼ F þD; gΣA ¼ 2F; gΞA ¼ F −D: ð7Þ

Due to group theoretical constraints, see, e.g.,
Refs. [28,29], such a decomposition also holds for
ms ¼ ml > 0, for the axial as well as for the other charges.
We define for m ¼ ms ¼ ml

gNJ ðmÞ ¼ FJðmÞ þDJðmÞ; ð8Þ

gΣJ ðmÞ ¼ 2FJðmÞ; ð9Þ

gΞJ ðmÞ ¼ FJðmÞ −DJðmÞ; ð10Þ

where F ¼ FAð0Þ, D ¼ DAð0Þ. The vector Ward identity
(conserved vector current, CVC relation) implies that gNV ¼
gΞV ¼ FV ¼ 1 and gΣV ¼ 2FV , i.e., in this case the above
relations also hold for ms ≠ ml, with FVðmÞ ¼ 1
and DVðmÞ ¼ 0.
In this article we determine the charges at many different

positions in the quark mass plane and investigate SU(3)
flavor symmetry breaking, i.e., the extent of violation of
Eqs. (8)–(10). Due to this, other than for J ≠ V where
DV=FV ¼ 0, the functions DJðmÞ and FJðmÞ are not
uniquely determined at the physical point, where
ms ≫ ml. At this quark mass point we will find the
approximate ratios DA=FA ≈ ð1.55− 1.95Þ, DS=FS ≈
−ð0.2 − 0.5Þ and DT=FT ≈ 1.5. The first ratio can be
compared to the SU(6) quark model expectation
DAðmÞ=FAðmÞ ¼ 3=2 (see, e.g., Ref. [30]), which is
consistent with the large-Nc limit [31].

III. LATTICE SETUP

In this section we present the details of our lattice setup.
First, we describe the gauge ensembles employed and the
construction of the correlation functions. The computation
of the three-point correlation functions via a stochastic
approach is briefly discussed. Following this, we present
the fitting analysis and treatment of excited state contri-
butions employed to extract the ground state baryon matrix
elements. The renormalization factors used to match to
the continuum MS scheme and the improvement factors

utilized to ensure leading Oða2Þ discretization effects
are then given. Finally, the strategy for interpolation/
extrapolation to the physical point in the infinite volume
and continuum limit is outlined.

A. Gauge ensembles

We employ ensembles generated with Nf ¼ 2þ 1 fla-
vors of nonperturbatively OðaÞ improved Wilson fermions
and a tree-level Symanzik improved gauge action, which
were mostly produced within the coordinated lattice sim-
ulations (CLS) [32] effort. Either periodic or open boun-
dary conditions in time [33] are imposed, where the latter
choice is necessary for ensembles with a < 0.06 fm in
order to avoid freezing of the topological charge and thus to
ensure ergodicity [34]. The hybrid Monte Carlo (HMC)
simulations are stabilized by introducing a twisted mass
term for the light quarks [35], whereas the strange quark is
included via the rational hybrid Monte Carlo (RHMC)
algorithm [36]. The modifications of the target action are
corrected for by applying the appropriate reweighting, see
Refs. [17,32,37] for further details.
In total 47 ensembles were analyzed spanning six lattice

spacings a in the range 0.039 fm≲ a≲ 0.098 fm, with
pion masses between 430 MeV and 130 MeV (below the
physical pion mass), as shown in Fig. 2. The lattice spatial
extent L is kept sufficiently large, where LMπ ≥ 4 for the
majority of the ensembles. A limited number of smaller
volumes are employed to enable finite volume effects to be
investigated, with the spatial extent varying across all the
ensembles in the range 3.0 ≤ LMπ ≤ 6.5. Further details
are given in Table I. The ensembles lie along three
trajectories in the quark mass plane, as displayed in Fig. 3:

(i) The symmetric line: the light and strange quark
masses are degenerate (ml ¼ ms) and SU(3) flavor
symmetry is exact.

(ii) The trM ¼ const line: starting at theml ¼ ms flavor
symmetric point, the trajectory approaches the
physical point holding the trace of the quark mass
matrix (2ml þms, i.e., the flavor averaged quark
mass) constant such that 2M2

K þM2
π is close to its

physical value.
(iii) Thems ¼ const line: the renormalized strange quark

mass is kept near to its physical value [38].
The latter two trajectories intersect close to the physical
point, whereas the symmetric line approaches the SU(3)
chiral limit. In figures where data from different lines are
shown, we will distinguish these, employing the symbol
shapes of Fig. 2 (triangle, circle, diamond). The excellent
coverage of the quark mass plane enables the interpolation/
extrapolation of the results for the charges to the physical
point to be tightly constrained. In addition, considering the
wide range of lattice spacings and spatial volumes and the
high statistics available for most ensembles, all sources of
systematic uncertainty associated with simulating at
unphysical quark mass, finite lattice spacing and finite
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FIG. 2. Parameter landscape of the ensembles listed in Table I. The ensembles are grouped according to the three quark mass
trajectories (see the text and Fig. 3): (left) the symmetric line (ml ¼ ms), (middle) the trM ¼ const line and (right) the ms ¼ const line.

TABLE I. List of the gauge ensembles analyzed in this work. The rqcd xyz ensembles were generated by the RQCD group using the
BQCD code [39], whereas all other ensembles were created within the CLS effort. Note that for H102 there are two replicas. These have
the same parameters but were generated with slightly different algorithmic setups and, therefore, have to be analyzed separately. N401
and N451 differ in terms of the boundary conditions (bc) imposed in the time direction (open (o) and antiperiodic (p), respectively). The
lattice spacings a are determined in Ref. [17]. In the second to last column t denotes the source-sink separation of the connected three-
point functions. The subscript (superscript) given for each separation indicates the number of measurements performed using the
sequential source (stochastic) method on each configuration (see Secs. III B and III C). The last column gives Ncnfg, the number of
configurations analyzed.

Ensemble β a [fm] Trajectory bc Nt × N3
s Mπ [MeV] MK [MeV] LMπ t=a Ncnfg

A650 3.34 0.098 sym p 48 · 243 371 371 4.43 73; 93; 113; 134 5062
A653 tr M=sym p 48 · 243 429 429 5.12 73; 93; 113; 134 2525
A654 tr M p 48 · 243 338 459 4.04 723; 9

2
3; 11

2
3; 13

2
4

2533
rqcd021 3.4 0.086 sym p 32 · 323 340 340 4.73 82; 102; 124; 144 1541
H101 tr M=sym o 96 · 323 423 423 5.88 82; 102; 122; 142 2000
U103 tr M=sym o 128 · 243 420 420 4.38 81; 102; 123; 144 2470
H102r001 tr M o 96 · 323 354 442 4.92 841; 10

4
2; 12

4
3; 14

4
4

997
H102r002 tr M o 96 · 323 359 444 4.99 841; 10

4
2; 12

4
3; 14

4
4

1000
U102 tr M o 128 · 243 357 445 3.72 81; 102; 123; 144 2210
N101 tr M o 128 · 483 281 467 5.86 81; 102; 123; 144 1457
H105 tr M o 96 · 323 281 468 3.91 821; 10

2
2; 12

2
3; 14

2
4

2038
D101 tr M o 128 · 643 222 476 6.18 81; 102; 123; 144 608
C101 tr M o 96 · 483 222 476 4.63 821; 10

2
2; 12

2
3; 14

2
4

2000
S100 tr M o 128 · 323 214 476 2.98 81; 102; 123; 144 983
D150 tr M=ms p 128 · 643 127 482 3.53 81; 102; 123; 144 603
H107 ms o 96 · 323 368 550 5.12 822; 10

2
2; 12

2
3; 14

2
4

1564
H106 ms o 96 · 323 273 520 3.80 842; 10

4
2; 12

4
3; 14

4
4

1553
C102 ms o 96 · 483 223 504 4.65 842; 10

4
2; 12

4
3; 14

4
4

1500

(Table continued)
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volume can be investigated. Our strategy for performing a
simultaneous continuum, quark mass and infinite volume
extrapolation is given in Sec. III F.

B. Correlation functions

The baryon octet charges are extracted from two- and
three-point correlation functions of the form

CB
2ptðtÞ ¼ Pαβ

þ
X
x0

hBαðx0; tÞB̄βð0; 0Þi; ð11Þ

CB
3ptðt; τÞ ¼ Pαβ

X
x0;y

hBαðx0; tÞOJðy; τÞB̄βð0; 0Þi: ð12Þ

Spin-1=2 baryon states are created (annihilated) using
suitable interpolators B̄ (B): for the nucleon, Σ and Ξ,
we employ interpolators corresponding to the proton, Σþ

and Ξ0, respectively,

Nα ¼ ϵijkuiαðujTCγ5dkÞ; ð13Þ

Σα ¼ ϵijkuiαðsjTCγ5ukÞ; ð14Þ

Ξα ¼ ϵijksiαðsjTCγ5ukÞ; ð15Þ

with spin index α, color indices i, j, k and C being the
charge conjugation matrix. The Λ baryon is not considered
here since three-point functions with the currents OJ ¼
ūΓJu − d̄ΓJd vanish in this case. Without loss of generality,
we place the source space-time position at the origin (0, 0)
and the sink at ðx0; tÞ such that the source-sink separation in
time equals t. The current is inserted at ðy; τÞ with
0 ≤ τ ≤ t.1 The annihilation interpolators are projected
onto zero-momentum via the sums over the spatial sink

TABLE I. (Continued)

Ensemble β a [fm] Trajectory bc Nt × N3
s Mπ [MeV] MK [MeV] LMπ t=a Ncnfg

rqcd030 3.46 0.076 sym p 64 · 323 319 319 3.93 94; 114; 138; 168 1224
X450 sym p 64 · 483 265 265 4.90 92; 112; 134; 164 400
B450 tr M=sym p 64 · 323 421 421 5.19 93; 113; 143; 164 1612
S400 tr M o 128 · 323 354 445 4.36 921; 11

2
2; 133; 14

2; 1624 2872
N451 tr M p 128 · 483 289 466 5.34 944; 11

4
4; 134; 14

4; 1644 1011
N401 tr M o 128 · 483 287 464 5.30 921; 11

2
2; 133; 14

2; 1624 1086
D450 tr M p 128 · 643 216 480 5.32 924; 11

2
4; 134; 14

2; 1624 621
D452 tr M p 128 · 643 156 488 3.84 94; 114; 144; 164 1000
B452 ms p 64 · 323 352 548 4.34 923; 11

2
3; 133; 14

2; 1624 1944
N450 ms p 128 · 483 287 528 5.30 924; 11

2
4; 134; 14

2; 1624 1132
D451 ms p 128 · 643 219 507 5.39 924; 11

2
4; 134; 14

2; 1624 458

X250 3.55 0.064 sym p 64 · 483 350 350 5.47 112; 142; 164; 194 1493
X251 sym p 64 · 483 268 268 4.19 114; 144; 168; 198 1474
N202 tr M=sym o 128 · 483 414 414 6.47 111; 142; 162; 194 883
N203 tr M o 128 · 483 348 445 5.44 1141; 14

4
2; 16

4
3; 19

4
4

1543
N200 tr M o 128 · 483 286 466 4.47 1141; 14

4
2; 16

4
3; 19

4
4

1712
S201 tr M o 128 · 323 290 471 3.02 111; 142; 163; 194 2092
D200 tr M o 128 · 643 202 484 4.21 1121; 14

2
2; 16

2
3; 19

2
4

2001
E250 tr M=ms p 192 · 963 131 493 4.10 114; 144; 164; 194 490
N204 ms o 128 · 483 353 549 5.52 1122; 14

2
2; 16

2
3; 19

2
4

1500
N201 ms o 128 · 483 287 527 4.49 1122; 14

2
2; 16

2
3; 19

2
4

1522
D201 ms o 128 · 643 200 504 4.17 1141; 14

4
2; 16

4
3; 19

4
4

1078

N300 3.7 0.049 tr M=sym o 128 · 483 425 425 5.15 141; 172; 212; 244 1539
N302 tr M o 128 · 483 348 455 4.21 1421; 17

2
2; 21

2
3; 24

2
4

1383
J303 tr M o 192 · 643 259 479 4.18 1422; 17

2
4; 21

2
6; 24

2
8

998
E300 tr M o 192 · 963 176 496 4.26 1423; 17

2
3; 21

2
6; 24

2
6

1038
N304 ms o 128 · 483 353 558 4.27 1422; 17

2
2; 21

2
3; 24

2
4

1652
J304 ms o 192 · 643 261 527 4.21 1423; 17

2
3; 21

2
3; 24

2
4

1630
J500 3.85 0.039 tr M=sym o 192 · 643 413 413 5.24 171; 222; 273; 324 1837
J501 tr M o 192 · 643 336 448 4.26 1721; 22

2
2; 27

2
3; 32

2
4

1018

1Note that in practice we only analyze data with 2a≤τ≤ t−2a.
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position, while momentum conservation (and the sum over
y for the current) means the source is also at rest.
We ensure positive parity via the projection operator

Pþ ¼ 1
2
ð1þ γ4Þ. For the three-point functions,P ¼ Pþ for

J ¼ V, S and P ¼ iγiγ5Pþ for J ¼ A, T. The latter
corresponds to taking the difference of the polarizations
(in the i direction). The interpolators are constructed from
spatially extended quark fields in order to increase the
overlap with the ground state of interest and minimize
contributions to the correlation functions from excited
states. Wuppertal smearing is employed [20], together with
APE-smeared [40] gauge transporters. The number of
smearing iterations is varied with the aim of ensuring that
ground state dominance sets in for moderate time separa-
tions. The root mean squared light quark smearing
radii range from about 0.6 fm (for Mπ ≈ 430 MeV) up
to about 0.8 fm (for Mπ ≈ 130 MeV), whereas the
strange quark radii range from about 0.5 fm (for the
physical strange quark mass) up to about 0.7 fm (for
MK ¼ Mπ ≈ 270 MeV). See Sec. E.1 (and in particular
Table 15) of Ref. [17] for further details. Figure 4 dem-
onstrates that, when keeping for similar pion and kaon
masses the smearing radii fixed in physical units, the
ground state dominates the two-point functions at similar
physical times across different lattice spacings.
Performing the Wick contractions for the two- and three-

point correlation functions leads to the connected quark-
line diagrams displayed in Fig. 5. Note that there are no
disconnected quark-line diagrams for the three-point func-
tions as these cancel when forming the isovector flavor

combination of the current. The two-point functions are
constructed in the standard way using point-to-all propa-
gators. For the three-point functions either a stochastic
approach (described in the next subsection) or the sequen-
tial source method [41] (on some ensembles in combination
with the coherent sink technique [42]) is employed. The
stochastic approach provides a computationally cost effi-
cient way of evaluating the three-point functions for the
whole of the baryon octet, however, additional noise is
introduced. The relevant measurements for the nucleon
(which has the worst signal-to-noise ratio of the octet) have
already been performed with the sequential source method
as part of other projects by our group, see, e.g., Ref. [43].
We use these data in our analysis and the stochastic
approach for the correlation functions of the Σ and the Ξ
baryons. Note that along the symmetric line (ml ¼ ms) the
hyperon three-point functions can be obtained as linear
combinations of the contractions carried out for the currents
ūΓJu and d̄ΓJd within the proton. Therefore, no stochastic
three-point functions are generated in these cases.
We typically realize four source-sink separations with

t=fm ≈ f0.7; 0.8; 1.0; 1.2g in order to investigate excited
state contamination and reliably extract the ground state
baryon octet charges. Details of our fitting analysis are
presented in Sec. III D. Multiple measurements are per-
formed per configuration, in particular for the larger
source-sink separations to improve the signal, see
Table I. The source positions are chosen randomly on each
configuration in order to reduce autocorrelations. On
ensembles with open boundary conditions in time only

FIG. 3. Position of the ensembles in the quark mass plane. The trM ¼ const line (indicated as a blue line) and ms ¼ const line (green
line) intersect close to the physical point (black cross). The symmetric line (orange line), which approaches the SU(3) chiral limit,
crosses the trM ¼ const line around Mπ ¼ 411 MeV.
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the spatial positions are varied and the source and sink time
slices are restricted to the bulk of the lattice (sufficiently
away from the boundaries), where translational symmetry
is effectively restored.

C. Stochastic three-point correlation functions

In the following, we describe the construction of the
connected three-point correlation functions using a computa-
tionally efficient stochastic approach. This method was
introduced for computing meson three-point functions in
Ref. [44] andutilized for baryons inRefs. [45,46] and also for
mesons in Refs. [47,48]. Similar stochastic approaches have
been implemented by other groups, see, e.g., Refs. [49,50].
In Fig. 5 the quark-line diagram for the three-point

function contains an all-to-all quark propagator which
connects the current insertion at time τ with the baryon
sink at time t. The all-to-all propagator is too computa-
tionally expensive to evaluate exactly. One commonly used
approach avoids directly calculating the propagator by

constructing a sequential source [41] which depends on
the baryon sink interpolator (including its temporal position
and momentum). This method has the disadvantage that
one needs to compute a new quark propagator for each
source-sink separation, sink momentum and baryon sink
interpolator. Alternatively, one can estimate the all-to-all
propagator stochastically. This introduces additional noise
on top of the gauge noise, however, the quark-line diagram
can be computed in a very efficient way. The stochastic
approach allows one to factorize the three-point correlation
function into a “spectator” and an “insertion” part which
can be computed and stored independently with all spin
indices and one color index open. This is illustrated in
Fig. 6 and explained in more detail below. The two parts
can be contracted at a later (postprocessing) stage with the
appropriate spin and polarization matrices, such that
arbitrary baryonic interpolators can be realized, making
this method ideal for SU(3) flavor symmetry studies.FIG. 4. Effective masses mB

effðtÞ¼ ln½CB
2ptðt−a

2
Þ=CB

2ptðtþa
2
Þ�=a

of the nucleon (top) and Ξ (bottom) determined on ensembles
with Mπ ≈ 340 MeV and MK ≈ 450 MeV and lattice spacings
ranging from a ¼ 0.098 fm (ensemble A654) down to a ¼
0.039 fm (ensemble J501). The errors of mB

effðtÞ are expected
to increase in proportion to a−1 but they also vary, e.g., with the
number of effectively independent ensembles analyzed.

FIG. 5. Quark-line diagrams of the two-point (left) and con-
nected three-point (right) correlation functions where xsrc¼ð0;0Þ,
xins ¼ ðy; τÞ and xsnk ¼ ðx0; tÞ.

FIG. 6. Schematic representation of the forward (left) and
backward (right, shown in gray) propagating three-point corre-
lation functions with open spin indices that are computed
simultaneously with the stochastic approach. The indices corre-
sponding to the spectator and insertion part from the factorization
in Eq. (21) are color-coded in blue and green, respectively. The
black solid lines correspond to the standard point-to-all propa-
gators, whereas the green wiggly lines represent stochastic time
slice-to-all propagators. The temporal positions of the forward/
backward sink, insertion and source are labeled as x0;fwdjbwd4 , y4
and x4, respectively. The flavor indices are chosen corresponding
to a nucleon three-point function with a ūΓJu-current insertion.
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Furthermore, no additional inversions are needed for
different sink momenta.
As depicted in Fig. 7, we simultaneously compute the

three-point functions for a baryon propagating (forwards)
from source time slice x4 to sink time slice x0;fwd4 and
propagating (backwards) from x4 to x

0;bwd
4 . We start with the

definition of the stochastic source and solution vectors
which can be used to construct the time slice-to-all
propagator (shown as a green wiggly line in Fig. 6). In
the following i∈ f1;…; Nstog is the “stochastic index,” we
denote spin indices with Greek letters, color indices with
Latin letters (other than f or i) and we use flavor indices
fn ∈ fu; d; sg. We introduce (time partitioned) complex Z2

noise vectors [51,52]

ηiðxÞαa ¼
� ðZ2 ⊗ iZ2Þ=

ffiffiffi
2

p
if x4 ¼ x0;fwdjbwd4 ;

0 otherwise;
ð16Þ

where the noise vector has support on time slices x0;fwd4 and
x0;bwd4 . The noise vectors have the properties

1

Nsto

XNsto

i¼1

ηiðxÞαa ¼ O
�

1ffiffiffiffiffiffiffiffi
Nsto

p
�
; ð17Þ

1

Nsto

XNsto

i¼1

ηiðxÞαaη�i ðyÞβb ¼ δxyδαβδab þO
�

1ffiffiffiffiffiffiffiffi
Nsto

p
�
: ð18Þ

The solution vectors sf;iðyÞ are defined through the linear
system

Dfðx; yÞαβabsf;iðyÞβb ¼ ηiðxÞαa; ð19Þ
where we sum over repeated indices (other than f) and
Dfðx; yÞαβab is the Wilson-Dirac operator for the quark flavor

f. Note that su;i ¼ sd;i since our light quarks are mass-
degenerate.
Using γ5-Hermiticity (γ5Dfγ5 ¼ D†

f) and the properties
given in Eqs. (17) and (18), the time slice-to-all propagator
connecting all points of the (forward and backward) sink
time slices x04 to all points of any insertion time slice y4 can
be estimated as

Gf3ðx0; yÞγ
0μ
c0d ≈

1

Nsto

XNsto

i¼1

½γ5ηiðx0Þ�γ
0
c0 ½γ5s�f3ðyÞ�μd: ð20Þ

Combining this time slice-to-all propagator with point-
to-all propagators for the source position x4, the baryonic
three-point correlation functions Eq. (12) can be factorized
as visualized in Fig. 6 into a spectator part (S) and an
insertion part (I), leaving all flavor and spin indices open:

C3ptðp0;qjx04; y4; x4Þα
0αβ0βγ0μνγ

f1f2f3f4

≈
1

Nsto

XNsto

i¼1

X3
c¼1

ðSf1f2ðp0; x04; x4Þα
0αβ0βγ0

ic

× If3f4ðq; y4; x4Þμνγic Þ: ð21Þ

The spectator and insertion parts are defined as

Sf1f2ðp0; x04; x4Þα
0αβ0βγ0

ic

≔
X
x0

ðϵa0b0c0ϵabcGf1ðx0; xÞα
0α

a0aGf2ðx0; xÞβ
0β

b0b

× ½γ5ηiðx0Þ�γ
0
c0e

−ip0·ðx0−xÞÞ; ð22Þ

If3f4ðq; y4; x4Þμνγic

≔
X
y

½γ5s�f3;iðyÞ�μdGf4ðy; xÞνγdceþiq·ðy−xÞ: ð23Þ

Using these building blocks, three-point functions for given
baryon interpolators and currents for any momentum
combination can be constructed. Note that in this article
we restrict ourselves to the case q ¼ p0 ¼ 0. The point-to-
all propagators within the spectator part are smeared at the
source and at the sink, whereas Gf4 is only smeared at the
source. The stochastic source is smeared too, however, this
is carried out after solving Eq. (19). In principle, the
spectator part also depends on f3 because for f3 ¼ s
and f3 ∈ fu; dg different smearing parameters are used.
We ignore the dependence of the spectator part on f3 since
here we restrict ourselves to f3; f4 ∈ fu; dg. For details on
the smearing see the previous subsection. Using the same
set of time slice-to-all propagators, we compute point-to-all
propagators for a number of different source positions at
time slices x4 in-between x0;bwd4 and x0;fwd4 which allows us
to vary the source-sink distances, see Figs. 6 and 7.

FIG. 7. Sketch of the source and sink positions of the
three-point functions realized using the stochastic approach.
Blue diamonds depict the position of the forward (x0;fwdx ) and
backward (x0;bwdx ) sink time slices. Green points correspond to the
source time slices xk4 for k ¼ 0, 1, 2, 3. Each three-point function
measurement is labeled by the source-sink separation, where
the values given correspond to the setup for the ensembles
at β ¼ 3.40.
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The number of stochastic estimates Nsto is chosen by
balancing the computational cost against the size of the
stochastic noise introduced. We find that for Nsto ≳ 100
the stochastic noise becomes relatively small compared to
the gauge noise and we employ 100 estimates across all the
ensembles. In some channels the signal obtained for the
three-point function, after averaging over the forward and
backward directions, is comparable to that obtained from
the traditional sequential source method (for a single
source, computed in the forward direction), as shown in
Fig. 8. Nonetheless, when taking the ratio of the three-point
function with the two-point function for the fitting analysis,
discussed in the next subsection, a significant part of the
gauge noise cancels, while the stochastic noise remains.
This results in larger statistical errors in the ratio for the
stochastic approach. This is a particular problem in the
vector channel. A more detailed comparison of the two
methods is given in Appendix A.
As mentioned above, only flavor conserving currents and

zero momentum transfer are considered, however, the data
to construct three-point functions with flavor changing
currents containing up to one derivative for various differ-
ent momenta is also available, enabling an extensive
investigation of (generalized) form factors in the future.
Similarly, meson three-point functions can be constructed
by computing the relatively inexpensive meson spectator
part and (re-)using the insertion part, see Ref. [48] for first
results.

D. Fitting and excited state analysis

The spectral decompositions of the two- and three-point
correlation functions read

CB
2ptðtÞ ¼

X
n

jZB
n j2e−EB

n t; ð24Þ

CB
3ptðt; τ;OJÞ ¼

X
n;m

ZB
nZB�

m hnjOJjmie−EB
n ðt−τÞeEB

mτ; ð25Þ

where EB
n is the energy of state jni (n ¼ 0; 1;…), created

when applying the baryon interpolator B̄ to the vacuum
state jΩi and ZB

n is the associated overlap factor
ZB
n ∝ hnjB̄jΩi. The ground state matrix elements of interest

h0jOJj0i ¼ gB;lattJ can be obtained in the limit of large time
separations from the ratio of the three-point and two-point
functions

RB
J ðt; τÞ ¼

CB
3ptðt; τ;OJÞ
CB
2ptðtÞ

⟶
t;τ→∞

gB;lattJ : ð26Þ

However, the signal-to-noise ratio of the correlation func-
tions deteriorates exponentially with the time separation
and with current techniques it is not possible to achieve a
reasonable signal for separations that are large enough to
ensure ground state dominance. At moderate t and τ, one
observes significant excited state contributions to the ratio.
All states with the same quantum numbers as the baryon
interpolator contribute to the sums in Eqs. (24) and (25),
including multi-particle excitations such as Bπ P-wave
and Bππ S-wave scattering states. The spectrum of states
becomes increasingly dense as one decreases the pion mass
while keeping the spatial extent of the lattice sufficiently
large, where the lowest lying excitations are multiparticle
states.
One possible strategy is to first determine the energies

of the ground state and lowest lying excitations by fitting to
the two-point function (which is statistically more precise
than the three-point function) with a suitable func-
tional form. The energies can then be used in a fit to the

FIG. 8. Left: polarized nucleon three-point correlation function propagating in the forward and backward directions for a ūγyγzu
current insertion obtained from one stochastic measurement on ensemble N200 (a ¼ 0.064 fm). Note that two different source positions
were needed to obtain the same source-sink separation t ¼ 14a in the two directions, see Fig. 7. Right: forward-backward average of the
stochastic three-point function shown on the left compared to that obtained using the sequential source method (with one source
position, propagating in the forward direction).
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three-point function (or the ratio RB
J ) to extract the charge

gBJ .
2 However, the three-quark baryon interpolators we use

by design have only a small overlap with the multi-particle
states containing five or more quarks and antiquarks and it
is difficult to extract the lower lying excited state spectrum
from the two-point function. Nonetheless, multiparticle
states can significantly contribute to the three-point func-
tion if the transition matrix elements hnjOJj0i are large.
Furthermore, depending on the current, different matrix
elements, and hence excited state contributions, will
dominate. In particular, one would expect the axial and
scalar currents to couple to the Bπ P-wave and Bππ S-wave
states, respectively, while the tensor and vector currents
may enhance transitions between B and Bππ states when
ππ is in a P-wave.
The summation method [41] is an alternative approach,

which involves summing the ratio over the operator insertion
time SBJ ðtÞ ¼

Pt−τ0
τ¼τ0 R

B
J ðt; τÞ, where one can show that the

leading excited state contributions to SBJ ðtÞ only depend on t
[rather than also on t − τ and τ as forRB

J ðt; τÞ]. However, one
needs a large number of source-sink separations (more than
the four values of t that are realized in this study) in order to
extract reliable results from this approach.
These considerations motivate us to extract the charges

by fitting to the ratio of correlation functions using a fit
form which takes into account contributions from up to two
excited states,

RB
J ðt; τÞ ¼ bJ0 þ bJ1ðe−ΔE1ðt−τÞ þ e−ΔE1τÞ þ bJ2e

−ΔE1t

þ bJ3ðe−ΔE2ðt−τÞ þ e−ΔE2τÞ þ bJ4e
−ΔE2t; ð27Þ

whereΔEn ¼ EB
n − EB

0 denotes the energy gap between the
ground state and the nth excited state of baryon B and we
have not included transitions between the first and the
second excited state. The amplitude bJ0 ¼ gB;lattJ gives the
charge, while bJ1;3 and b

J
2;4 are related to the ground state to

excited state and excited state to excited state transition
matrix elements, respectively. In practice, even when
simultaneously fitting to all available source-sink separa-
tions, it is difficult to determine the energy gaps (and
amplitudes) for a particular channel J. Similar to the
strategy pursued in Ref. [53], we simultaneously fit to
all four channels J∈ fV; A; S; Tg for a given baryon. As the
same energy gaps are present, the overall number of fit
parameters is reduced and the fits are further constrained.
To ensure that the excited state contributions are suffi-

ciently under control, we carry out a variety of different fits,
summarized in Table II. We vary

(i) The datasets included in the fit: simultaneous fits
are performed to the data for J∈ fA; S; T; Vg and

J∈ fA; S; Tg. As the axial, scalar and tensor chan-
nels are the main focus of this study, we only
consider excluding the vector channel data.

(ii) The parametrization: either one (“ES ¼ 1”) or two
(“ES ¼ 2”) excited states are included in the fits. In
the latter case, in order to stabilize the fit, we use a
prior for ΔE1 corresponding to the energy gap for
the lowest lying multi-particle state. As a cross-
check we repeat these fits using the average re-
sult obtained for ΔE2 in fits 5–8 as a prior and
leaving ΔE1 as a free parameter (fits 13–20). The
widths of the priors are set to E1=100 and to E2=100,
respectively. In general, the contributions from
excited state to excited state transitions could not
be resolved and the parameters bJ2;4 are set to zero.
We also found that the tensor and vector currents
couple more strongly to the second excited state,
consistent with the expectations mentioned above,
and the first excited state contributions are omitted
for these channels in the ES ¼ 2 fits. Furthermore,
due to the large statistical error of the stochastic
three-point functions for the Σ and Ξ baryons in the
vector channel (see Fig. 9 and the discussion in
Appendix A), we are not able to resolve bV1 (and
analogously bV3 ). For these baryons we also set
bV1;3 ¼ 0 in all the fits.

(iii) The fit range: two fit intervals τ∈ ½δtj; t − δtj� are
used with δt1 ¼ n1a ≈ 0.15 fm and δt2 ¼ n2a≈
0.25 fm.3

A typical fit to the ratios for the cascade baryon is
shown in Fig. 9 for ensemble N302 (Mπ ¼ 348 MeV
and a ¼ 0.049 fm). The variation in the ground state matrix
elements extracted from the 20 different fits is shown in
Fig. 10, also for the nucleon on the same ensemble. See
Appendix C for the analogous plot for the Σ baryon.
Overall, the results are consistent within errors, however,
some trends in the results can be seen across the different
ensembles. In the axial channel, in particular the results for
the fits involving a single excited state (fits 1–4), tend to be
lower than those involving two excited states (fits 5–20).
The former are, in general, statistically more precise than
the latter due to the smaller number of parameters in the fit.
In order to study the systematics arising from any residual

excited state contamination in the final results at the physical
point (in the continuum limit at infinite volume), the
extrapolations, detailed in Sec. III F, are performed for
the results obtained from fits 1–4 (ES ¼ 1) and fits 5–8
(ES ¼ 2), separately. For each set of fits, 500 samples are
drawn from the combined bootstrap distributions of the four

2Given the precision of the two-point function relative to that
of the three-point function, this strategy is very similar to fitting
CB
2pt and CB

3pt simultaneously.

3Due to nj ≥ 2 and its quantization, δt1 and δt2 depend slightly
on the lattice spacing: δtj ≈ 0.20 fm; 0.29 fm (β ¼ 3.34), δtj ≈
0.17 fm; 0.26 fm (β ¼ 3.40), δtj ≈ 0.15 fm; 0.23 fm (β ¼ 3.46),
δtj ≈ 0.13 fm; 0.26 fm (β ¼ 3.55), δtj ≈ 0.15 fm; 0.25 fm
(β ¼ 3.70), δtj ≈ 0.16 fm; 0.27 fm (β ¼ 3.85).
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FIG. 9. Unrenormalized ratios RΞ
J ðt; τÞ, J∈ fA; S; T; Vg [defined in Eq. (26)] for the cascade baryon on ensemble N302

(Mπ ¼ 348 MeV and a ¼ 0.049 fm), where t ≈ f0.7; 0.8; 1.0; 1.2g fm. The gray horizontal lines and bands show the results for
the ground state matrix elements h0jūΓJu − d̄ΓJdj0i ¼ gΞ;lattJ , obtained from a simultaneous fit to the ratios for all channels and source-
sink separations using parametrization 7 [see Eq. (27) and Table II]. The data points with τ∈ ½δt; t − δt�, where δt ¼ 2a, are included in
the fit (the faded data points are omitted), which is the maximum fit range possible for our action. The colored curves show the
expectation from the fit for each source-sink separation.

FIG. 10. Results for the four unrenormalized charges of the nucleon (top) and cascade baryon (bottom) obtained from the fits listed in
Table II for ensemble N302 (Mπ ¼ 348 MeV and a ¼ 0.049 fm). The green (blue) horizontal lines and bands indicate the final results
and errors obtained from the median and 68% confidence level interval of the combined bootstrap distributions determined from the fits
indicated by the green (blue) data points which include one (two) excited state(s). On the right the energy gaps determined in the fits and
those corresponding to the lowest lying multiparticle states are displayed using the same color coding as in Fig. 11.
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fit variations. The final result and error, shown as the green
and blue bands in Fig. 10, correspond to the median and the
68% confidence interval, respectively. Note that we take the
same 500 bootstrap samples for all the baryons to preserve
correlations. The final results for all the ensembles are listed
in Tables XVI–XVIII of Appendix B for the nucleon, sigma
and cascade baryons, respectively.
In terms of the energy gaps extracted, Fig. 10 shows that

we find consistency across variations in the fit range and
whether the vector channel data is included or not.
However, the first excited energy gap ΔE1 obtained
from the single excited state fits tends to be higher than
the lowest multiparticle level, in particular, as the pion mass
is decreased, suggesting that contributions from higher
excited states are significant. This can be seen in Fig. 11,
where we compare the results for the energy gaps for the
cascade baryon with the lower lying noninteracting Ξπ and
Ξππ states for four ensembles with a ¼ 0.064 fm and pion
masses ranging from 414MeV down to 202MeV. Note that
the multi-particle levels are modified in a finite volume,
although the corresponding energy shifts may be small for
the large volumes realized here. There are a number of
levels within roughly 500 MeV of the first excited state.
Some levels lie close to each other and one would not
expect that the difference can be resolved by fits with one or

two excited states. The ΔE2 energy gaps from the two
excited state fits (with the first excited state fixed with a
prior to the lowest multi-particle level) are consistent with
the next level that is significantly above the first excited
state, although for ensemble D200 the errors are too large to
draw a conclusion. Given that more than one excited state is
contributing significantly, we expect that the latter fits
isolate the ground state contribution more reliably. We
remark that within present statistics, two-exponential fits to
the two-point functions alone give energy gaps aΔE ¼
0.390ð37Þ; 0.371ð34Þ; 0.430ð37Þ and 0.312(46) for N202,
N203, N200 and D200, respectively, that are all larger than

TABLE II. Summary of the fits performed. We vary the
combinations of channels J that are fitted simultaneously as
well as the number of excited states (ES) included in the fit and
the fit interval τ∈ ½δt; t − δt� with δt∈ fδt1; δt2g, where
δt1 ≈ 0.15 fm, δt2 ≈ 0.25 fm. The last two columns indicate
which parameters in Eq. (27) are constrained by a prior or set
to zero. All other parameters are determined in the fit.

Fit J δt ES Prior Set to zero

1 A, S, T δt1 1 bJ2, b
J
3, b

J
4, ΔE2

2 A, S, T δt2 1 bJ2, b
J
3, b

J
4, ΔE2

3 A, S, T, V δt1 1 bJ2, b
J
3, b

J
4, ΔE2

4 A, S, T, V δt2 1 bJ2, b
J
3, b

J
4, ΔE2

5 A, S, T δt1 2 ΔE1 bT1 , b
J
2, b

J
4

6 A, S, T δt2 2 ΔE1 bT1 , b
J
2, b

J
4

7 A, S, T, V δt1 2 ΔE1 bT;V1 , bJ2, b
J
4

8 A, S, T, V δt2 2 ΔE1 bT;V1 , bJ2, b
J
4

9 A, S, T δt1 2 ΔE1 bJ2, b
J
4

10 A, S, T δt2 2 ΔE1 bJ2, b
J
4

11 A, S, T, V δt1 2 ΔE1 bJ2, b
J
4

12 A, S, T, V δt2 2 ΔE1 bJ2, b
J
4

13 A, S, T δt1 2 ΔE2 bT1 , b
J
2, b

J
4

14 A, S, T δt2 2 ΔE2 bT1 , b
J
2, b

J
4

15 A, S, T, V δt1 2 ΔE2 bT;V1 , bJ2, b
J
4

16 A, S, T, V δt2 2 ΔE2 bT;V1 , bJ2, b
J
4

17 A, S, T δt1 2 ΔE2 bJ2, b
J
4

18 A, S, T δt2 2 ΔE2 bJ2, b
J
4

19 A, S, T, V δt1 2 ΔE2 bJ2, b
J
4

20 A, S, T, V δt2 2 ΔE2 bJ2, b
J
4

FIG. 11. Results for the first and second excited state energy
gaps of the cascade baryon, ΔE1 (brown data points) and ΔE2

(orange data points), respectively, determined on ensembles lying
on the trM ¼ const trajectory with a ¼ 0.064 fm. The pion mass
decreases from left to right with Mπ ¼ 414 MeV for ensemble
N202 and Mπ ¼ 202 MeV for ensemble D200, see Table I. For
each ensemble, the ΔE1 obtained using fits 1–4 of Table II are
shown on the left and the ΔE1 (fixed with a prior to the lowest
multi-particle energy gap) and ΔE2 resulting from fits 5–8 are
displayed on the right. For comparison, the energy gaps of the
lower lying noninteracting multiparticle states with the quantum
numbers of the cascade baryon are shown as horizontal lines,
where the momenta utilized for each hadron are indicated in
lattice units.

TABLE III. Improvement coefficients bJ for J∈ fA; S; T; Vg
from Refs. [54,55].

β bA bS bT bV

3.34 1.249(16) 1.622(47) 1.471(11) 1.456(11)
3.4 1.244(16) 1.583(62) 1.4155(48) 1.428(11)
3.46 1.239(15) 1.567(74) 1.367(12) 1.410(13)
3.55 1.232(15) 1.606(98) 1.283(14) 1.388(17)
3.7 1.221(13) 1.49(11) 1.125(15) 1.309(22)
3.85 1.211(12) 1.33(16) 0.977(38) 1.247(26)
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aΔE2, with the exception of D200, where the two gaps
agree within errors.

E. Nonperturbative renormalization
and improvement

The isovector lattice charges, gB;lattJ , extracted in the
previous subsection need to be matched to the continuum
MS scheme. The renormalized matrix elements suffer
from discretization effects, however, the leading order
effects are reduced to Oða2Þ when implementing full
OðaÞ improvement. In the forward limit, in addition to
using a nonperturbatively OðaÞ improved fermion action,
this involves taking mass dependent terms into account.
The following multiplicative factors are applied,

gBJ ¼ Zk
Jð1þ amlbJ þ 3am̄b̃JÞgB;lattJ þOða2Þ; ð28Þ

for J∈ fV; A; S; Tg, where ZJ are the renormalization
factors and bJ and b̃J are the OðaÞ improvement coef-
ficients. Note that the renormalization factors for the scalar
and tensor currents depend on the scale, ZS;T ¼ ZS;TðμÞ,
where we take μ ¼ 2 GeV. The vector Ward identity lattice
quark mass amq is obtained from the hopping parameter κq
(q ¼ l; s) and the critical hopping parameter κcrit via
amq ¼ ð1=κq − 1=κcritÞ=2. m̄ ¼ ð2ml þmsÞ=3 denotes
the flavor averaged quark mass. The hopping parameters
for all ensembles used within this work are tabulated in
Table XV of Appendix B. For κcrit we utilize the inter-
polation formula [17]

1

κcrit
¼ 8 − 0.402454g2

1þ 0.28955g2 − 0.1660g6

1þ 0.22770g2 − 0.2540g4
: ð29Þ

The improvement coefficients bJ and b̃J are determined
nonperturbatively in Ref. [54]. We make use of updated
preliminary values, which will appear in a future publica-
tion [55]. These are listed in Tables III and IV, respectively.
Note that no estimates of b̃J are available for β ¼ 3.85.
Considering the size of the statistical errors, the general
reduction of the jb̃Jj values with increasing β (and the
decreasing a), at this lattice spacing we set b̃J ¼ 0 for all J.

For the renormalization factors, we employ the values
obtained in Ref. [56]. The factors are determined non-
perturbatively in the RI0-SMOM scheme [57,58] and then
(for ZS and ZT) converted to the MS scheme using three-
loop matching [59–61]. We remark that the techniques for
implementing the Rome-Southampton method were
extended in Ref. [56] to ensembles with open boundary
conditions in time. This development enables us to utilize
ensembles with a < 0.06 fm, where only open boundary
conditions in time are available due to the need to maintain
ergodicity. A number of different methods are employed in
Ref. [56] to determine the renormalization factors. In order
to assess the systematic uncertainty arising from the
matching in the final results for the charges at the physical
point in the continuum limit, we make use of two sets of
results, collected in Tables V and VI and referred to as Z1

J
and Z2

J, respectively, in the following. The first set of results
are extracted using the fixed-scale method, where the
RI0-SMOM factors are determined at a fixed scale (ignoring
discretization effects), while the second set are obtained by
fitting the factors as a function of the scale and the lattice
spacing, the “fit method.” See Ref. [56] for further details.
In both cases, lattice artefacts are reduced by subtracting
the perturbative one-loop expectation. For the axial and

TABLE IV. Improvement coefficients b̃J for J∈ fA; S; T; Vg
from Refs. [54,55]. Note that no results are available for
β ¼ 3.85.

β b̃A b̃S b̃T b̃V

3.34 −0.06ð28Þ −0.24ð55Þ 1.02(16) 1.05(13)
3.4 −0.11ð13Þ −0.36ð23Þ 0.49(17) 0.41(11)
3.46 0.08(11) −0.421ð83Þ 0.115(19) 0.158(28)
3.55 −0.03ð13Þ −0.25ð12Þ 0.000(37) 0.069(42)
3.7 −0.047ð75Þ −0.274ð65Þ −0.0382ð60Þ −0.031ð18Þ

TABLE V. Set of renormalization factors taken from Ref. [56],
denoted as Z1

J in the text. The factors are determined using
the RI0-SMOM scheme and the “fixed-scale method” with the
perturbative subtraction of lattice artefacts. For ZA and ZV , the
values correspond to those listed under Z0

A and Z0
V , respectively,

which are obtained using renormalization conditions consistent
with the respective Ward identities. The statistical and systematic
errors have been added in quadrature.

β ZA ZMS
S ð2 GeVÞ ZMS

T ð2 GeVÞ ZV

3.34 0.77610(58) 0.6072(26) 0.8443(35) 0.72690(71)
3.4 0.77940(36) 0.6027(25) 0.8560(35) 0.73290(67)
3.46 0.78240(32) 0.5985(25) 0.8665(36) 0.73870(71)
3.55 0.78740(22) 0.5930(25) 0.8820(37) 0.74740(82)
3.7 0.79560(98) 0.5846(24) 0.9055(42) 0.76150(94)
3.85 0.8040(13) 0.5764(25) 0.9276(42) 0.77430(76)

TABLE VI. Set of renormalization factors denoted as Z2
J in the

text. These are determined as in Table V but now using the “fit
method.”

β ZA ZMS
S ð2 GeVÞ ZMS

T ð2 GeVÞ ZV

3.34 0.7579(42) 0.6115(93) 0.8321(95) 0.7072(60)
3.4 0.7641(35) 0.6068(86) 0.8462(88) 0.7168(49)
3.46 0.7695(36) 0.6025(79) 0.8585(84) 0.7250(43)
3.55 0.7774(36) 0.5968(66) 0.8756(76) 0.7367(37)
3.7 0.7895(32) 0.5880(45) 0.9010(63) 0.7544(30)
3.85 0.8006(25) 0.5793(35) 0.9243(55) 0.7699(38)
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vector currents, we also consider a third set of renormal-
ization factors, Z3

J, listed in Table VII, that are obtained
with the chirally rotated Schrödinger functional approach
[62], see Ref. [63]. We emphasize that employing the
different sets of renormalization factors should lead to
consistent results for the charges in the continuum limit.

F. Extrapolation strategy

In the final step of the analysis the renormalized charges
gBJ determined at unphysical quark masses and finite lattice
spacing and spatial volume are extrapolated to the physical
point in the continuum and infinite volume limits. We
employ a similar strategy to the one outlined in Ref. [64]
and choose continuum fit functions of the form

gBJ ðMπ;MK; L; a ¼ 0Þ

¼ c0 þ cπM2
π þ cKM2

K þ cVM2
π
e−LMπffiffiffiffiffiffiffiffiffiffi
LMπ

p ; ð30Þ

to parameterize the quark mass and finite volume depend-
ence, where L is the spatial lattice extent and the coef-
ficients cX, X∈ f0; π; K; Vg are understood to depend on
the baryon B and the current J. The leading order
coefficients c0 give the charges in the SU(3) chiral limit,
which can be expressed in terms of two LECs, e.g., F and
D, for the axial charges, see Eq. (7).
Equation (30) is a phenomenological fit form based on

the SU(3) ChPTexpressions for the axial charge. It contains
the expected Oðp2Þ terms for the quark mass dependence
and the dominant finite volume corrections. The Oðp3Þ
expressions for gBA [65–67] contain log terms with coef-
ficients completely determined by the LECs F andD. In an
earlier study of the axial charges on the ms ¼ ml subset of
the ensembles used here [64], we found that including these
terms did not provide a satisfactory description of the data.
When terms arising from loop corrections that contain
decuplet baryons are taken into account, additional LECs
enter that are difficult to resolve. If the coefficient of the log
term is left as a free parameter, one finds that the coefficient
has the opposite sign to the ChPT expectation without
decuplet loops. We made similar observations in this study
and this is also consistent with the findings of previous

works, see, e.g., Refs. [68–70]. Finite volume effects
appear at Oðp3Þ with no additional LECs appearing in
the coefficients. Again the signs of the corrections are the
opposite to the trend seen in the data and, when included, it
is difficult to resolve the effects of the decuplet baryons. As
is shown in Sec. IV, the data for all the charges are well
described when the fit form is restricted to the dominant
terms, with free coefficients c0, cπ, cK and cV .
We remark that the same set of LECs appear in theOðp2Þ

SU(3) ChPT expressions for the three different octet
baryons (for a particular charge). Ideally, one would carry
out a simultaneous fit to the whole baryon octet (taking the
correlations between the gBJ determined on the same
ensemble into account). However, we obtain very similar
results when fitting the gBJ individually compared to fitting
the results for all the octet baryons simultaneously. For
simplicity, we choose to do the former, such that the
coefficients cX for the different baryons are independent of
one another.
Lattice spacing effects also need to be taken into account

and we add both mass independent and mass dependent
terms to the continuum fit ansatz to give

gBJ ðMπ;MK; L; aÞ ¼ gBJ ðMπ;MK; L; 0Þ
þ caa2 þ c̄aM̄

2a2 þ δcaδM2a2

þ ca;3a3; ð31Þ

where M̄2 ¼ ð2M2
K þM2

πÞ=3 and δM2 ¼ M2
K −M2

π .
The meson masses are rescaled with the Wilson flow
scale t0 [71], Mπ;K ¼ ffiffiffiffiffiffi

8t0
p

Mπ;K to form dimensionless
combinations. This rescaling is required to implement full
OðaÞ improvement (along with employing a fermion action
and isovector currents that are nonperturbatively OðaÞ
improved) when simulating at fixed bare lattice coupling
instead of at fixed lattice spacing, see Sec. 4.1 of Ref. [17]
for a detailed discussion of this issue. The values of t0=a2

and the pion and kaon masses in lattice units for our
set of ensembles are given in Table XV of Appendix B.
We translate between different lattice spacings using t⋆0 ,
the value of t0 along the symmetric line where 12t�0M

2
π ¼

1.110 [72], i.e., a ¼ a=
ffiffiffiffiffiffiffi
8t⋆0

p
. The values, determined in

Ref. [17], are listed in Table VIII. Note that we include a
term that is cubic in the lattice spacing in the fit form,
however, this term is only utilized in the analysis of the
vector charge, for which we have the most precise data.

TABLE VII. Renormalization factors ZA and ZV obtained from
the interpolation formulas in Eqs. (C.7) and (C.8) in Ref. [63],
denoted as Z3

J in the text.

β ZA ZV

3.34 0.7510(11) 0.7154(11)
3.4 0.75629(65) 0.72221(65)
3.46 0.76172(39) 0.72898(39)
3.55 0.76994(34) 0.73905(35)
3.7 0.78356(32) 0.75538(33)
3.85 0.79675(45) 0.77089(47)

TABLE VIII. Values for t⋆0 =a
2 at each β-value as determined in

Ref. [17].

β 3.34 3.4 3.46 3.55 3.7 3.85

t⋆
0

a2
2.204(6) 2.888(8) 3.686(11) 5.157(15) 8.617(22) 13.988(34)
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To obtain results at the physical quark mass point, we
make use of the scale setting parameter

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8t0;phys

q
¼ 0.4098ð20Þð25Þ fm; ð32Þ

determined in Ref. [17] and take the isospin corrected pion
and kaon masses quoted in the FLAG 16 review [73] to
define the physical point in the quark mass plane,

Mphys
π ¼ 134.8ð3Þ MeV; ð33Þ

Mphys
K ¼ 494.2ð3Þ MeV: ð34Þ

In practice, we choose to fit to the bare lattice charges
gB;lattJ rather than the renormalized ones as this enables us to
include the uncertainties of the renormalization and
improvement factors (which are the same for all ensembles
at fixed β) consistently. Therefore, our final fit form reads

gB;lattJ ¼ gBJ ðMπ;MK; L; aÞ
Zk
JðβÞð1þ amlbJðβÞ þ 3am̄b̃JðβÞÞ

; ð35Þ

where the dependence of the factors on the β-value is made
explicit and the superscript k of Zk

J refers to the different
determinations of the renormalization factors that we
consider, k ¼ 1, 2, 3 for J∈ fA; Vg and k ¼ 1, 2 for
J∈ fS; Tg (see Tables V–VII in the previous subsection).
We introduce a separate parameter for Zk

J, bJ and b̃J for
each β-value and add corresponding “prior” terms to the χ2

function. The statistical uncertainties of these quantities are
incorporated by generating pseudobootstrap distributions.
The systematic uncertainty in the determination of the

charges at the physical point is investigated by varying the
fit model and by employing different cuts on the ensembles
that enter the fits. For the latter we consider
(1) no cut: including all the available data points,

denoted as dataset 0, DS (0),
(2) pion mass cut: excluding all ensembles with

Mπ > 400 MeV, DSðM<400 MeV
π Þ,

(3) pion mass cut: excluding all ensembles with
Mπ > 300 MeV, DSðM<300 MeV

π Þ,
(4) a lattice spacing cut: excluding the coarsest lattice

spacing, i.e., the ensembles with a ≈ 0.098 fm,
DSða<0.1 fmÞ, and

(5) a volume cut: excluding all ensembles with
LMπ < 4, DSðLM>4

π Þ.
In some cases, more than one cut is applied, e.g., cut 2 and
4, with the dataset denoted DSðM<400 MeV

π ; a<0.1 fmÞ, etc.
Our final results are obtained by carrying out the averaging
procedure described in Appendix B of Ref. [64] which
gives an average and error that incorporates both the
statistical and systematic uncertainties.

IV. EXTRAPOLATIONS TO THE CONTINUUM,
INFINITE VOLUME, PHYSICAL QUARK

MASS LIMIT

We present the extrapolations to the physical point in the
continuum and infinite volume limits of the isovector
vector (V), axial (A), scalar (S) and tensor (T) charges
for the nucleon (N), sigma (Σ) and cascade (Ξ) octet
baryons.

A. Vector charges

The isovector vector charges for the nucleon, cascade
and sigma baryons are gNV ¼ gΞV ¼ 1 and gΣV ¼ 2, up to
second order isospin breaking corrections [74]. These
values also apply to our isospin symmetric lattice results
in the continuum limit for any quark mass combination and
volume. A determination of the vector charges provides an
important cross-check of our analysis methods and allows
us to demonstrate that all systematics are under control.
To start with, we display the ratios of the hyperon

charges over the nucleon charge in Fig. 12. The renorm-
alization factors drop out in the ratio and lattice spacing
effects are expected to cancel to some extent. As one can
see, the results align very well with the expected values.
For the individual charges, we perform a continuum

extrapolation of the data using the fit form

gV ¼ c0 þ caa2 þ c̄aM̄2a2 þ δcaδM2a2 þ ca;3a3: ð36Þ

Note that there is no dependence on the pion or kaon mass
nor on the spatial volume in the continuum limit. M2 and
δM2 represent the flavor average and difference of the
kaon and pion masses squared, rescaled with the scale

FIG. 12. Ratio of the hyperon (B ¼ Σ;Ξ) vector charges over
the nucleon charge, gBV=g

N
V , as a function of the rescaled pion

mass squared (8t0M2
π ¼ M2

π). The data were extracted using two
excited states in the fitting analysis, see Sec. III D, and not
corrected for lattice spacing or volume effects. Circles (dia-
monds) correspond to the trM ¼ const (ms ¼ const) trajectories,
the triangles to the ms ¼ ml line.

OCTET BARYON ISOVECTOR CHARGES FROM Nf ¼ 2þ 1 … PHYS. REV. D 108, 034512 (2023)

034512-15



parameter t0, while the lattice spacing a ¼ a=
ffiffiffiffiffiffi
8t�0

p
. See the

previous section for further details of the extrapolation
procedure. We implement full OðaÞ improvement and
leading discretization effects are quadratic in the lattice
spacing. However, the data for the nucleon vector charge
are statistically very precise and higher order effects can be
resolved. This motivates the addition of the cubic term in
Eq. (36). The data for gΣV and gΞV are less precise as they are
determined employing the stochastic approach outlined in
Sec. III Cwhich introduces additional noise, seeAppendixA
for further discussion.
The data are well described by Eq. (36), as demonstrated

by the fit, shown in Fig. 13, for gNV which has a goodness of
fit of χ2=Ndof ¼ 0.92. The data are extracted using two
excited states in the fitting analysis (see Sec. III D) and we
employ the most precise determination of the renormaliza-
tion factors (Z3

V , see Table VII). A cut ofMπ < 400 MeV is
imposed on the ensembles entering the fit, however, fits
including all data points are also performed, as detailed
below. When the data are corrected for the discretization
effects according to the fit, we see consistency with gNV ¼ 1,
for all pion and kaon masses. Using the fit to shift the data
points to the physical point, we observe that the lattice

spacing dependence is moderate but statistically signifi-
cant, with a 3–4% deviation from the continuum value at
the coarsest lattice spacing (lower panel of Fig. 13).
In order to investigate the uncertainty arising from

the choice of parametrization and the importance of
the different terms, we repeat the extrapolations employing
five different parametrizations (listed in terms of the
coefficients of the terms entering the fit): ð1; fc0; cagÞ,
ð2; fc0; ca; δcagÞ, ð3; fc0; ca; ca;3gÞ, ð4; fc0; ca; ca;3; δcagÞ
and ð5; fc0; ca; ca;3; c̄a; δcagÞ.4 Regarding the lattice spac-
ing dependence, the mass independent term ca is always
included as the other terms are formally at a higher order.
These five fits are performed on two datasets. The first
set contains ensembles with Mπ < 400 MeV [dataset
DSðM<400 MeV

π Þ], while in the second set the ensembles
with the coarsest lattice spacing are also excluded
(DSðM<400 MeV

π ; a<0.1 fmÞ, þ5 is added to the fit number).
See the end of Sec. III F for the definitions of the datasets.
The results for gNV , displayed in Fig. 14, show that the

cubic term and at least one mass dependent term are needed
to obtain a reasonable description of the data in terms of the
χ2=Ndof . Two of the fit forms with large χ2=Ndof values
(corresponding to 1, 2, 6, 7, with negligible weight in the

FIG. 13. Continuum limit extrapolation of the nucleon iso-
vector vector charge gNV for a five parameter fit [Eq. (36)] using
the renormalization factors Z3

V (see Table VII) and imposing the
cut Mπ < 400 MeV. The data were extracted including two
excited states in the fitting analysis, see Sec. III D. The upper
panel shows the data points corrected for discretization effects
according to the fit. They are consistent with gNV ¼ 1. The bottom
panel shows the lattice spacing dependence at the physical point.
The blue lines and gray bands indicate the expectations from the
fit. For better visibility, the data point for ensemble D452, which
has a relatively large error (see Table XVI), is not displayed.
Circles (diamonds) correspond to the trM ¼ const (ms ¼ const)
trajectories, the triangles to the ms ¼ ml line.

FIG. 14. Results for the nucleon vector charge gNV in the
continuum limit at the physical point obtained using Z3

V (see
Table VII) and five different parametrizations applied to dataset
DSðM<400 MeV

π Þ (fits to Eq. (31) with different coefficients set to
zero labeled 1, …, 5, see the text) and DSðM<400 MeV

π ; a<0.1 fmÞ
(6, …, 10). See Sec. III F for the definitions of the data sets. The
data were extracted including two excited states in the fitting
analysis, see Sec. III D. The model average is shown as the red
data point and the green horizontal line and band. On the right the
model averaged distribution is displayed as a histogram where
also the median and the 68% confidence level interval, which
form the final result, are indicated (green lines). The top panel
shows the weights (gray points) assigned to the individual fits,
with the corresponding χ2=Ndof values given above.

4We also investigated the possibility of residual OðaÞ effects,
in spite of the nonperturbative improvement of the current and the
action. Indeed, the coefficients of additional terms ∝ a were
found to be consistent with zero.
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model averaging procedure) give values that are incon-
sistent with the continuum expectation. The results are
stable under the removal of the coarsest ensembles.
Performing the model averaging procedure, the final
result for the nucleon, given in the last row of the first
column of Table IX, agrees with the expectation gNV ¼ 1

within a combined statistical and systematic uncertainty of
about 1‰.
The above analysis is also performed utilizing the sets

of renormalization factors Z1
V and Z2

V , determined via the
RI0-SMOM scheme [56]. The results for the nucleon vector
charge are compared in Fig. 15. The uncertainties on these
factors are larger, in particular for Z2

V, than those of set Z3
V ,

which is derived using the chirally rotated Schrödinger
functional approach [63]. This translates into larger errors
for gNV for those fits. The lattice spacing dependence is
somewhat different: the first quadratic mass dependent term
in Eq. (36) and the cubic term can no longer be fully
resolved and also parametrization ð2; fc0; ca; δcagÞ gives a
χ2=Ndof ¼ 1.00 (0.95) when employing Z1

V (Z2
V).

The systematic uncertainty of the results due to residual
excited state contamination and the range of pion masses

TABLE IX. Results for gBV, B∈ fN;Σ;Ξg, obtained with three
different sets of renormalization factors. The errors include the
statistical and all the systematic uncertainties.

Renormalization gNV gΣV gΞV

Z1
V (Table V) 0.9975ð22Þð20Þ 2.012ð26Þð16Þ 1.012ð13Þð11Þ

Z2
V (Table VI) 0.9945ð66Þð41Þ 2.014ð36Þð16Þ 1.008ð19Þð8Þ

Z3
V (Table VII) 1.0012ð12Þð11Þ 2.021ð21Þð27Þ 1.015ð10Þð11Þ

FIG. 15. Results for the nucleon vector charge gNV as in Fig. 14 but now also including those obtained employing Z1
V and Z2

V .

FIG. 16. Overview of the results for the vector charges gBV , B∈ fN;Σ;Ξg, obtained from different datasets. These are labeled by the
number of excited states used in the fitting analysis (ES ¼ 1, 2), the pion mass cut imposed (denoted A or B) and the set of
renormalization factors employed (Zk

V , k ¼ 1, 2, 3). Each data point represents a model averaged result. The labelA indicates that 15 fits
[5 fit variations applied to three datasets, DS(0), DSðM<400 MeV

π Þ and DSða<0.1 fmÞ] are averaged, while the results labeled with B are
based on the set of 10 fits utilized in Fig. 14 (5 fit variations applied to two datasets, DSðM<400 MeV

π Þ and DS[M<400 MeV
π , a<0.1 fm)]. See

Sec. III F for the definitions of the datasets. The final results for each Zk
V (filled squares) are listed in Table IX.
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employed in the extrapolations is also considered.
Figure 16 shows the model averaged results discussed so
far, displayed as filled squares, and also those obtained
using several other sets of fits. These are labeled in terms of
the number of excited states (one or two) included in the
fitting analysis, the cuts imposed on the pion mass (A or B)
and the renormalization factors utilized. For the results
from pion mass cut A, 15 fits enter the model average, the
five different parametrizations are applied to three datasets
DS(0), DSðM<400 MeV

π Þ and DSða<0.1 fmÞ. Note that the first
and third dataset include ensembles with pion masses up to
430 MeV. For mass cut B, datasets DSðM<400 MeV

π Þ and DS
[M<400 MeV

π , a<0.1 fm)] are used, giving 10 fits in total. The
results only depend on the choice of renormalization
factors, suggesting that the systematic uncertainties due
to excited state contamination and the cut made on the pion
mass are very small.
Repeating the whole procedure for the sigma and the

cascade baryons gives vector charges which are also con-
sistent with the expected values to within 1.5σ, as shown in
Fig. 16 (see Figs. 41 and 42 in Appendix C for the individual
fits for mass cut B). The statistical noise introduced by the
stochastic approach dominates, leading to much less precise
values and very little variation between the results for the
different hyperon data sets.We take thevalues obtained from
the datasets (2,B, Zk

V), listed in Table IX, as our estimates of
the vector charges as these datasets give the most reliable
determinations of the charges across the different channels
(as discussed in the following subsections).
Overall, the results demonstrate that the systematics

arising from excited state contamination, renormalization
and finite lattice spacing are under control in our analysis in
this channel (to within an error of 1‰ for the nucleon).

B. Axial charges

In the following we present our results for the
nucleon, sigma and cascade isovector axial charges gBA,
B∈ fN;Σ;Ξg. The nucleon axial charge is very precisely
measured in experiment, λ ¼ gNA=g

N
V ¼ 1.2754ð13Þ [75],

and serves as another benchmark quantity when assessing
the size of the systematics of the final results. Note,
however, that possible differences of up to 2%, due to
radiative corrections, between λ computed in QCD and an
effective λ measured in experiment have been discussed
recently [76,77]. Lattice determinations of gNA are known to
be sensitive to excited state contributions, finite volume
effects and other systematics. Whereas there is a long
history of lattice QCD calculations of gNA , see, e.g., the
FLAG 21 review [78], there are very few lattice compu-
tations of hyperon axial charges [22–26] and only few
phenomenological estimates exist from measurements of
semileptonic hyperon decay rates.
We carry out simultaneous continuum, quark mass and

finite volume fits to the individual baryon charges

employing the parametrization in Eq. (31) [with the
continuum form in Eq. (30)]. The discretization effects
are found to be fairly mild and we are not able to resolve the
quadratic mass dependent terms or a cubic term. These
terms are omitted throughout. As already mentioned in
Sec. III F we are also not able to resolve any higher order
ChPT terms in the continuum parametrization.
A five parameter fit, with free coefficients

fc0; cπ; cK; cV; cag, describes the data well, as demon-
strated in Fig. 17 for the nucleon (with χ2=Ndof ¼ 0.86) and

FIG. 17. Simultaneous quark mass, continuum and finite vol-
ume extrapolation of the nucleon isovector axial charge gNA
extracted on ensembles with Mπ < 400 MeV using two excited
states in the fitting analysis (see Sec. III D) and renormalization
factors Z3

A (see Table VII). A five parameter fit form is employed,
see the text. (Top) Pion mass dependence of gNA , where the data
points are corrected, using the fit, for finite volume and discre-
tization effects and shifted (depending on the ensemble) to kaon
masses corresponding to the trM ¼ const and ms ¼ const tra-
jectories. The fit is shown as a gray band with the three trajectories
distinguished by blue (trM ¼ const, circles), green (ms ¼ const,
diamonds) and orange (ms ¼ ml, triangles) lines, respectively.
The vertical dashed line indicates the physical point. (Middle)
Lattice spacing dependence at the physical point in the infinite
volume limit. (Bottom) Finite volume dependence at the physical
point in the continuum limit. The dashed blue line (band) indicates
the infinite volume result. For better visibility, the data points for
ensembles D150, E250, and D452, which have relatively large
errors (see Table XVI), are not displayed. The black cross at the
physical point indicates the experimental value [75].
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Fig. 18 for the sigma and cascade baryons (with χ2=Ndof ¼
0.85 and 1.25, respectively). The data are extracted using
two excited states (ES ¼ 2) in the fitting analysis (see
Sec. III D) and renormalized with factors Z3

A (that are the
most precise of the three determinations considered, see
Table VII). For the cascade baryon, with two strange
quarks, the data on the three quark mass trajectories
(trM ¼ const, ms ¼ const and ml ¼ ms) are clearly delin-
eated, however, note the different scale on the right of
Fig. 18. The availability of ensembles on two trajectories
which intersect at the physical point helps to constrain the
physical value of the axial charge. In terms of the finite
volume effects, only the nucleon shows a significant
dependence on the spatial extent. The quark mass depend-
ence is also pronounced in this case.
As in the vector case, we quantify the systematics

associated with the extraction of the charges at the physical
point (in the continuum and infinite volume limits) by
varying the parametrization and the set of ensembles that
are included in the fit. We consider two fit forms
ð1; fc0; cπ; cK; cV; cagÞ and ð2; fc0; cπ; cK; cV; ca; δcag)
and four datasets, DS(M<400 MeV

π ), DSðM<300 MeV
π Þ,

DSðM<400 MeV
π ; a<0.1 fmÞ and DSðM<400 MeV

π ; LM>4
π Þ, see

Sec. III F for their definitions.

The results of the eight fits and their model averages for
the three different determinations of the renormalization
factors are shown in Fig. 19 for the nucleon and in Fig. 43
of Appendix C for the hyperon axial charges. In all cases,
we find consistent results across the different fits and choice
of renormalization factor suggesting that the statistical
errors dominate. The additional lattice spacing term is
not really resolved with the goodness of fit only changing
slightly, while the errors on the coefficients increase. For
the nucleon and sigma baryon, all fits have a χ2=Ndof < 1
and are given a similar weight in the model average, while
for the cascade baryon, the cut M<300 MeV

π is needed to
achieve a goodness of fit around 1 and these fits have the
highest weight factors.
In order to further explore the systematics, additional

datasets are considered. We assess the sensitivity of the
results to excited state contributions by performing extrap-
olations of the data extracted using only one excited state
(“ES=1”) in the fitting analysis. In addition, as only the
Oðp2Þ ChPT terms are included in the continuum para-
metrization, we test the description of the quark mass
dependence by performing 10 fits, involving the two
parametrization variations above, applied to five datasets,
DS(0), DSðM<400 MeV

π Þ, DSðM<300 MeV
π Þ, DSða<0.1 fmÞ and

FIG. 18. The same as Fig. 17 for the isovector axial charges gBA of the sigma baryon (left) and the cascade baryon (right). For better
visibility, the data points for ensembles D452 and D451, which have relatively large errors (see Table XVIII), are not displayed for the
cascade baryon. Compared to the nucleon, for the analysis of the hyperon charges a reduced set of ensembles is employed, see
Tables XVII and XVIII for a complete list of ensembles.
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DSðLM>4
π Þ. The first, fourth and fifth datasets include

ensembles with pion masses up to 430 MeV.
The results for the axial charges from model averaging

the 10 fits (denoted A) employing the 5 datasets and also
from the 8 fits (denoted B) using the 4 datasets given above,
for the ES ¼ 1 and ES ¼ 2 data and the different renorm-
alization factors are displayed in Fig. 20. Very little
variation is seen in the results in terms of the range of
pion masses included and, as before, the renormalization
factors employed, suggesting the associated systematics are
accounted for within the combined statistical and system-
atic error (which includes the uncertainty due to lattice
spacing and finite volume effects). However, the results are
sensitive to the number of excited states included in the
fitting analysis. This is only a significant effect for the
nucleon, for which the ES ¼ 1 results lie around 2.5σ
below experiment. Similar underestimates of gNA have been
observed in many earlier lattice studies [78].

As detailed in Sec. III D, more than one excited state is
contributing significantly to the ratio of three-point over
two-point correlation functions and including two excited
states in the fitting analysis enables the ground state matrix
element to be isolated more reliably. Considering the pion
mass cuts, to be conservative we take the results of the
model averages of the B datasets (where all the ensembles
have Mπ < 400 MeV) as only the dominant mass depen-
dent terms are included in the continuum parametrization.
Our estimates, corresponding to the (ES ¼ 2, B, Zk

A) results
in Fig. 20, are listed in Table X.

C. Scalar charges

As there is no isovector scalar current interaction at tree-
level in the Standard Model, the scalar charges cannot be
measured directly in experiment. However, the conserved
vector current (CVC) relation can be used to estimate the

FIG. 19. The same as Fig. 15 for the nucleon axial charge gNA . The eight fits correspond to two fit variations, see the text, applied to four
datasets, DSðM<400 MeV

π Þ, DSðM<300 MeV
π Þ, DSðM<400 MeV

π ; a<0.1 fmÞ and DSðM<400 MeV
π ; LM>4

π Þ. The data are extracted using two
excited states in the fitting analysis, see Sec. III D.

FIG. 20. The same as Fig. 16 for the nucleon, sigma and cascade axial charges. The label A indicates that 10 fits enter the model
average corresponding to two fit variations, see the text, applied to 5 datasets, DS(0), DSðM<400 MeV

π Þ, DSðM<300 MeV
π Þ, DSða<0.1 fmÞ and

DSðLM>4
π Þ. For the data points labeled with B, the results of the 8 fits employed in Fig. 19 are averaged. For the nucleon, the FLAG 21

average for Nf ¼ 2þ 1 [53,79] and the experimental value [75] are indicated (black diamonds).
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charges from determinations of the up and down quark
mass difference, δm ¼ mu −md, and the QCD contribution
to baryon mass isospin splittings, e.g., between the mass of
the proton and the neutron, ΔmQCD

N , (for gNS see Eq. (55)
below). Reference [80] finds gNS ¼ 1.02ð11Þ employing
lattice estimates for δm and an average of lattice and
phenomenological values for ΔmQCD

N , which is consistent
with the FLAG 21 [78] Nf ¼ 2þ 1 result of gNS ¼
1.13ð14Þ [53]. Estimates can also be made of the isovector
scalar charges of the other octet baryons, see the discussion
in Sec. VA. Conversely, direct determinations of the scalar
charges can be used to predict δm, as presented in Sec. V C.
So far, there has been only one previous study of the
hyperon scalar charges [26].
For the extrapolation of the scalar charges and the

extraction of the value at the physical point, we follow
the same procedures as for the axial channel, presented in
the previous subsection. The five parameter fit (with
coefficients fc0; cπ; cK; cV; cag) can again account for
the observed quark mass, lattice spacing and volume
dependence as illustrated in Fig. 21 for the nucleon (with
χ2=Ndof ¼ 0.56) and Fig. 46 of Appendix C for the sigma
and cascade baryons (with χ2=Ndof ¼ 0.97 and 1.14,
respectively). The data are extracted using two excited
states in the fitting analysis. For both hyperons, the quark
mass and lattice spacing effects can be resolved, in contrast
to the nucleon, while for all baryons the dependence on the
spatial volume is marginal. When investigating the sys-
tematics in the estimates of the charges at the physical
point, we perform model averages of the results of (A): 8
fits from the two fit variations (as for the axial case) and the
four datasets, DS(0), DSðM<400 MeV

π Þ, DSða<0.1 fmÞ and
DSðLM>4

π Þ, (B): 6 fits from the two fit variations to the
three datasets DSðM<400 MeV

π Þ, DSðM<400 MeV
π ; a<0.1 fmÞ

and DS(M<400 MeV
π , LM>4

π ). Note that a cut on the pion
mass Mπ < 300 MeV is not considered. The scalar matrix
elements are generally less precise than the axial ones and
utilizing such a reduced dataset leads to instabilities in the
extrapolation and spurious values of the coefficients.
For illustration, the values from the individual fits and

the model averages over the B datasets for the two different
determinations of the renormalization factors are given in
Fig. 44 in Appendix C. The results are consistent across the
different fits, although the weights vary. The values of the

scalar charges for all the model averages performed are
compiled in Fig. 22. There are no significant variations in
the results obtained using the different renormalization
factors and datasets (A or B). For the nucleon, there is also
agreement between the values for the data extracted
including one (ES ¼ 1) or two (ES ¼ 2) excited states in
the fitting analysis and consistency with the current FLAG
21 result. For the sigma baryon, and to a lesser extent for
the cascade baryon, there is a tension between the ES ¼ 1
and ES ¼ 2 determinations. As discussed previously, the
(“ES ¼ 2,” B, Zk

S) values are considered the most reliable.
These are listed in Table XI.

TABLE X. Results for gBA, B∈ fN;Σ;Ξg, obtained with three
different sets of renormalization factors. The errors include the
statistical and all the systematic uncertainties.

Renormalization gNA gΣA gΞA

Z1
A (Table V) 1.299ð28Þð29Þ 0.885ð30Þð42Þ −0.269ð14Þð13Þ

Z2
A (Table VI) 1.295ð28Þð29Þ 0.882ð30Þð42Þ −0.269ð14Þð12Þ

Z3
A (Table VII) 1.284ð28Þð27Þ 0.875ð30Þð39Þ −0.267ð13Þð12Þ

FIG. 21. The same as Fig. 17 for the nucleon scalar charge gNS .
The factors Z1

S are used for the matching (see Table V). For
orientation, the FLAG 21 result for Nf ¼ 2þ 1 [53] is indicated
(black diamond) at the physical point. For better visibility, the
data points for ensembles D150, E250, and D452, which have
relatively large errors (see Table XVI), are not displayed.

TABLE XI. Results for gBS , B∈ fN;Σ;Ξg, obtained with two
different sets of renormalization factors. The errors include the
statistical and all the systematic uncertainties.

Renormalization gNS gΣS gΞS

Z1
S (Table V) 1.11ð14Þð16Þ 3.98ð22Þð24Þ 2.57ð11Þð11Þ

Z2
S (Table VI) 1.12ð14Þð17Þ 4.00ð23Þð24Þ 2.57ð11Þð11Þ
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D. Tensor charges

In the isosymmetric limit, the nucleon tensor charge is
equal to the first moment of the nucleon isovector trans-
versity parton distribution function. Due to the lack of
experimental data, estimates of gNT from phenomenological

fits have very large uncertainties, unless some assumptions
are made. In fact, in some analyses, the fit is constrained to
reproduce the lattice results for the isovector charge,
see Refs. [14,15]. The FLAG 21 review [78] gives as
the Nf ¼ 2þ 1 value for the nucleon tensor charge the
result of Ref. [53], gNT ¼ 0.965ð61Þ, whereas, as far as we
know, there is only one previous study of the hyperon
tensor charges [26].
The extraction of the octet baryon tensor charges at the

physical point follows the analysis of the axial charges in
Sec. IV B. In particular, the parametrizations employed
and the datasets considered are the same. Figure 23
displays a typical example of an extrapolation for the
nucleon tensor charge for a five parameter fit with a
χ2=Ndof ¼ 0.63. See Fig. 47 in Appendix C for the
analogous figures for the sigma and cascade baryons.
The variation of the fits with the parametrization and the
datasets utilized and the corresponding model averages,
for the datasets with pion mass cut B (see Sec. IV B), are
shown in Fig. 45.
An overview of the model averaged results for all

variations of the input data is given in Fig. 24. The
agreement between the different determinations suggests
the systematics associated with the extrapolation are under
control. Although the results utilizing data extracted with
two excited states (ES ¼ 2) in the fitting analysis are
consistently above or below those extracted from the
ES ¼ 1 data, considering the size of the errors of the
model averages (which combine the statistical and system-
atic uncertainties), the differences are not significant. Our
estimates for the tensor charges, corresponding to the
(ES ¼ 2, B, Zk

T) values, are listed in Table XII.

V. DISCUSSION OF THE RESULTS

Our values for the vector, axial, scalar and tensor charges
of the nucleon, sigma and cascade baryons are given in

FIG. 22. The same as Fig. 16 for the nucleon, sigma and cascade scalar charges. The label A indicates that 8 fits enter the model
average corresponding to two fit variations, see the text, applied to 4 datasets, DS(0), DSðM<400 MeV

π Þ, DSða<0.1 fmÞ and DSðLM>4
π Þ. For

the data points labeled with B, the two fit variations are performed on 3 datasets, DSðM<400 MeV
π Þ, DSðM<400 MeV

π ; a<0.1 fmÞ and
DSðM<400 MeV

π ; LM>4
π Þ, giving a total of 6 fits for the average. For the nucleon, the FLAG 21 result for Nf ¼ 2þ 1 [53] is also shown

(black diamond).

FIG. 23. The same as Fig. 17 for the nucleon tensor charge gNT .
The factors Z1

T are used for the matching (see Table V). For
orientation, the FLAG 21 result for Nf ¼ 2þ 1 [53] is indicated
(black diamond) at the physical point. For better visibility, the
data points for ensembles D150 and D452, which have relatively
large errors (see Table XVI), are not displayed.
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Tables IX–XII, respectively. In each case, we take the most
precise value as our final result, i.e., the one obtained using
Z3
V and Z3

A for the vector and axial channels, respectively,
and Z1

S and Z
1
T for the scalar and the tensor. In the following

we compare with previous determinations of the charges
taken from the literature and discuss the SU(3) flavor
symmetry breaking effects in the different channels. We use
the conserved vector current relation and our result for the
scalar charge of the sigma baryon to determine the up
and down quark mass difference. We compute the QCD
contributions to baryon isospin mass splittings and evaluate
the isospin breaking effects on the pion baryon σ terms.

A. Individual charges

We first consider the axial charges. Our final values read

gNA ¼1.284ð28Þð27Þ; gΣA¼0.875ð30Þð39Þ; gΞA¼−0.267ð13Þð12Þ: ð37Þ

The result for the nucleon compares favorably with the
experimental value gNA=g

N
V ¼ 1.2754ð13Þ [75] and the

FLAG 21 [78] average for Nf ¼ 2þ 1, gNA ¼ 1.248ð23Þ.
The latter is based on the determinations in Refs. [53,79].
All sources of systematic uncertainty must be reasonably
under control to be included in the FLAG average and a
number of more recent studies incorporate continuum,
quark mass and finite volume extrapolations. A compilation
of results for gNA is displayed in Fig. 25. Although the
determinations are separated in terms of the number of

dynamical fermions employed, including charm quarks in
the sea is not expected to lead to a discernible effect.
Regarding the hyperon axial charges, far fewer works

exist. Lin et al. [22,92] performed the first study, utiliz-
ing Nf ¼ 2þ 1 ensembles with pion masses ranging
between 350 MeV and 750 MeV and a single lattice
spacing of 0.12 fm. After an extrapolation to the physical
pion mass they obtain gΣA ¼ 0.900ð42Þstatð54Þsys and gΞA ¼
−0.277ð15Þstatð19Þsys, where estimates of finite volume and
discretization effects are included in the systematic uncer-
tainty. Note that we have multiplied their result for gΣA by
a factor of two to match our normalization convention.
In Refs. [24,93] ETMC determined all octet and decuplet

FIG. 24. The same as Fig. 16 for the nucleon, sigma and cascade tensor charges. For the nucleon, the FLAG 21 result for Nf ¼ 2þ 1
[53] is also shown (black diamond).

TABLE XII. Results for gBT , B∈ fN;Σ;Ξg, obtained with two
different sets of renormalization factors. The errors include the
statistical and all the systematic uncertainties.

Renormalization gNT gΣT gΞT

Z1
T (Table V) 0.984ð19Þð29Þ 0.798ð15Þð21Þ −0.1872ð59Þð41Þ

Z2
T (Table VI) 0.979ð19Þð27Þ 0.793ð17Þð21Þ −0.1872ð59Þð42Þ

FIG. 25. Compilation of recent lattice determinations of the
nucleon axial charge gNA with Nf ¼ 2þ 1 [26,53,79,81–86] and
Nf ¼ 2þ 1þ 1 [68,69,87–91] dynamical fermions. Values with
filled symbols were obtained via a chiral, continuum and finite
volume extrapolation. The vertical black line gives the exper-
imental result [75].
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(i.e., nucleon, hyperon and Δ) axial couplings employing
Nf ¼ 2þ 1þ 1 ensembles with pion masses between
210 MeV and 430 MeV and two lattice spacings
a∈ f0.065 fm; 0.082 fmg. Using a simple linear ansatz
for the quark mass extrapolation, they quote gΣA ¼
0.7629ð218Þstat and gΞA ¼ −0.2479ð87Þstat, where the errors
are purely statistical.
More recently, Savanur et al. [25] extracted the axial

charges on Nf ¼ 2þ 1þ 1 ensembles with three different
lattice spacings a∈ f0.06 fm; 0.09 fm; 0.12 fmg, pion
masses between 135 MeV and 310 MeV and volumes in
the range 3.3 ≤ LMπ ≤ 5.5. The ratios gΣA=g

N
A and gΞA=g

N
A

are extrapolated taking the quark mass dependence and
lattice spacing and finite volume effects into account. The
experimental value of gNA is then used to obtain gΣA ¼
0.891ð11Þstatð13Þsys (again multiplied by a factor of two to
meet our conventions) and gΞA ¼ −0.2703ð47Þstatð13Þsys.
Finally, QCDSF-UKQCD-CSSM presented results for
the isovector axial, scalar and tensor charges in
Ref. [26]. They employ Nf ¼ 2þ 1 ensembles lying on
a trM ¼ const trajectory with pion masses ranging
between 220 MeV and 470 MeV and five different values
of the lattice spacing in the range ð0.052–0.082Þ fm. The
Feynman-Hellmann theorem is used to calculate the baryon
matrix elements. Performing an extrapolation to the physi-
cal mass point including lattice spacing and finite volume
effects, they find gΣA ¼ 0.876ð26Þstatð09Þsys and gΞA ¼
−0.206ð22Þstatð19Þsys.
We also mention the earlier studies of Erkol et al. [23]

(Nf ¼ 2), utilizing pion masses above 500 MeV, and
QCDSF-UKQCD (Nf ¼ 2þ 1) carried out at a single
lattice spacing [94].
In Fig. 26 we compare the ratios of the hyperon axial

charges to the nucleon axial charge, gBA=g
N
A , from

Refs. [22,24,25], obtained on individual ensembles to
our results. A comparison of the charges themselves cannot
be made since, as mentioned above, Savanur et al. only
present results for the ratio. As the strange quark mass is
held approximately constant in these works, only our
results from the ms ¼ const trajectory are displayed.
Similarly, the QCDSF-UKQCD-CSSM values are omitted
as the ensembles utilized lie on a trM ¼ const trajectory.
We observe reasonable agreement between the data. Note
that our continuum, infinite volume limit result (the gray
band in the figure) for gΣA=g

N
A lies slightly below the central

values of most of our ms ¼ const data points.
The individual hyperon axial charges at the physical point

are shown in Fig. 27, along with a number of phenomeno-
logical determinations employing a variety of quark models
[95–97], the chiral soliton model [98] and SU(3) covariant
baryon ChPT [67]. Within errors, the lattice results are
consistent apart from the rather low value for gΣA fromETMC
[24] and the rather high value for gΞA fromQCDSF-UKQCD-
CSSM [26]. The phenomenological estimates for gΣA are in

FIG. 26. Comparison of lattice determinations [22,24,25] of the
hyperon axial charges for the Σ and Ξ baryons normalized to the
nucleon axial charge. Some of the results from Lin et al. at
heavier pion masses are not shown. The gray vertical dashed line
indicates the physical pion mass point. Only our results from the
ms ¼ const trajectory are shown. The gray bands indicate the
(continuum limit, infinite volume) quark mass behavior accord-
ing to the fits displayed in Figs. 17 and 18. Note that the data
points are not corrected for finite volume or discretization effects.
All data are converted to our phase and normalization conven-
tions, Eqs. (1)–(6). The Lin et al. and ETMC results are obtained
by taking the ratio of the individual charges and employing error
propagation.

FIG. 27. Comparison of our results for the axial charges gΣA and
gΞA (blue symbols and error bands) with other lattice determi-
nations [22,24–26] and phenomenological estimates [67,95–98].
Values with filled symbols were obtained via a chiral, continuum
and finite volume extrapolation. All results are converted to our
phase and normalization conventions, Eqs. (1)–(6).
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reasonable agreement with our value, while there is a large
spread in the expectations for gΞA.
We remark that, in analogy to the CVC relation

(discussed in Sec. V C below), the axial Ward identity,
∂μðūγμγ5dÞ ¼ iðmd þmuÞūγ5d, connects the axial and
pseudoscalar charges,

gBP ¼ mB

ml
gBA; ð38Þ

where mB and ml correspond to the baryon and the light
quark mass, respectively. This relation was employed in
Ref. [80] to determine the pseudoscalar charge of the
nucleon, which is defined as the pseudoscalar form factor in
the forward limit. Taking the baryon masses of isosym-
metric QCD from Table 14 of Ref. [17] and the isospin
averaged light quark mass ml ¼ 3.381ð40Þ MeV in the
Nf ¼ 4 flavor MS scheme at μ ¼ 2 GeV from the FLAG
21 review [78], we find

gNP;Nf¼4 ¼ 356
ð9Þ
ð9Þ; gΣP;Nf¼4 ¼ 308

ð11Þ
ð14Þ;

gΞP;Nf¼4 ¼ −104ð5Þð5Þ: ð39Þ

Turning to the scalar charges, our final results in the three
flavor MS scheme at μ ¼ 2 GeV read5

gNS ¼ 1.11ð14Þð16Þ; gΣS ¼ 3.98ð22Þð24Þ; gΞS ¼ 2.57ð11Þð11Þ: ð40Þ

For the nucleon, our result for gNS agrees with the FLAG 21
value gNS ¼ 1.13ð14Þ for Nf ¼ 2þ 1 [78] (taken from
Ref. [53]) and more recent lattice determinations, see
Fig. 28. There is only one previous lattice determination
of the hyperon scalar couplings by QCDSF-UKQCD-
CSSM [26], who obtain gΣS ¼ 2.80ð24Þstatð05Þsys and
gΞS ¼ 1.59ð11Þstatð04Þsys. These values are much smaller
than ours.
One can also employ the CVC relation and estimates of

the QCD contribution to the isospin mass splittings and
the light quark mass difference to determine the scalar
charges. For a detailed discussion see Sec. V C below.
Reference [80] obtains gNS ¼ 1.02ð11Þ assuming ΔmQCD

N ¼
mQCD

p −mQCD
n ¼ −2.58ð18Þ MeV and the quark mass

difference δm ¼ mu −md ¼ −2.52ð19Þ MeV. Similarly,
using the results by BMWc on the light quark mass

splitting [108] and their QCD contributions to the baryon
mass splittings [109], we obtain

gNS ¼ 1.05ð13Þ; gΣS ¼ 3.35ð19Þ; gΞS ¼ 2.29ð15Þ; ð41Þ

which agree with our results to within two standard
deviations. Note that a smaller value for jδmj (see
Sec. V C) would uniformly increase these charges.
Regarding the tensor charges we find in the Nf ¼ 3 MS

scheme at μ ¼ 2 GeV

gNT ¼0.984ð19Þð29Þ; gΣT ¼0.798ð15Þð21Þ; gΞT ¼−0.1872ð59Þð41Þ: ð42Þ

Since the anomalous dimension of the tensor bilinear is
smaller than for the scalar case, we would expect no
statistically relevant difference between the Nf ¼ 3 and
Nf ¼ 4 schemes at μ ¼ 2 GeV. The nucleon charge agrees
with the FLAG 21 [78] value of gNT ¼ 0.965ð61Þ [53] for
Nf ¼ 2þ 1 and other recent lattice studies. These are shown
in Fig. 29 along with determinations from phenomenology.
The large uncertainties of the latter reflect the lack of
experimental data. In particular, in Refs. [14,15] the JAM
collaboration constrain the first Mellin moment of the
isovector combination of the transverse parton distribution
functions to reproduce a lattice result for gNT . QCDSF-
UKQCD-CSSMalso determined the hyperon tensor charges
]26 ]. Their results gΣT ¼ 0.805ð15Þstatð02Þsys and gΞT ¼

−0.1952ð74Þstatð10Þsys are in good agreement with ours.

FIG. 28. As in Fig. 25 for the nucleon scalar charge gNS
with Nf ¼ 2þ 1 [26,53,81,83–86,106,107] and Nf ¼2þ1þ1

[69,87,89,91] dynamical fermions. González-Alonso et al. esti-
mate the scalar charge via the conserved vector current (CVC)
relation [80].

5Using Version 3 of RunDec [99], we compute the conversion
factor from Nf ¼ 3 to Nf ¼ 4: 1.00082ð2ÞΛð1Þpertð56Þmc

¼
1.0008ð6Þ. The errors reflect the uncertainty of the Λ-parameter
[100], the difference between 5-loop running [101,102]/4-loop
decoupling [103–105] and 4-loop running/3-loop decoupling and
a 200 MeV uncertainty in the charm quark on-shell mass,
respectively: at μ ¼ 2 GeV there is no noteworthy difference
between Nf ¼ 3 and Nf ¼ 4 MS pseudo(scalar) charges.
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B. SU(3) flavor symmetry breaking

On the SU(3) flavor symmetric line, i.e., for
m ¼ ml ¼ ms, the baryon charges gBJ ðmÞ can be decom-
posed into two functions,FJðmÞ andDJðmÞ, see Sec. II and
Eqs. (8)–(10). For the axial charges gBA, the values of these
functions in the SU(3) chiral limit correspond to the LECs
F ¼ FAð0Þ and D ¼ DAð0Þ. We will not consider the
vector channel (J ¼ V) here since FVðmÞ ¼ 1 and
DVðmÞ ¼ 0, which holds even at ms ≠ ml, due to charge
conservation.
Estimates of baryon structure observables often rely on

SU(3) flavor symmetry arguments, however, it is not
known a priori to what extent this symmetry is broken
for ms ≠ ml and, in particular, at the physical point. Since
within this analysis, we only determined three isovector
charges (B∈ fN;Σ;Ξg) for each channel (J∈ fA; S; Tg),
we cannot follow the systematic approach to investigate
SU(3) flavor symmetry breaking of matrix elements pro-
posed in Ref. [29]. Nevertheless, constructing appropriate
ratios from the individual charges will provide us with
estimates of the flavor symmetry breaking effects for each
channel.

Using Eqs. (8)–(10), we obtain for m ¼ ms ¼ ml

2gBJ ðmÞ
gΣJ ðmÞ − 1 ¼ �DJðmÞ

FJðmÞ ; ð43Þ

where “þ” and “−” corresponds to B ¼ N and B ¼ Ξ,
respectively. Figure 30 shows these combinations for the
axial charges, as functions of the squared pion mass,
compared to the chiral, continuum limit expectations
�D=F (yellow bands) determined from our global fit
(see Fig. 18 and Table XIII). The chiral limit value agrees

with our earlier result D=F ¼ 1.641ð27Þð44Þ [64] (model aver-

aging recomputed for D=F instead of F=D) within 1.5
standard errors. The data shown in the figure are not
corrected for volume or lattice spacing effects. Note that the

FIG. 29. As in Fig. 25 for the nucleon tensor charge gNT
with Nf ¼ 2þ 1 [26,53,81,83–86,106,110] and Nf¼2þ1þ1

[69,87,89,91,111,112] dynamical fermions. Recent pheno-
menological estimates are also displayed for comparison
[14,15,113–117]. Values with filled symbols were obtained via
a quark mass, continuum and finite volume extrapolation. In
addition, the filled ETM (2022) [112] point is obtained from a
continuum limit extrapolation of results determined on three
physical point ensembles with large spatial volumes.

FIG. 30. The ratios 2gBA=g
Σ
A − 1 for B∈ fN;Ξg as a function of

the pion mass squared. The latter are rescaled with the Wilson
flow scale t0. The red diamonds are the continuum and infinite
volume limit results at the physical point (indicated by the dashed
vertical line) obtained from our extrapolations of the individual
charges. The yellow bands depict the corresponding ms¼ml¼0
predictions �D=F. Circles (diamonds) correspond to the
trM ¼ const. (ms ¼ const.) trajectories, the triangles to the
ms ¼ ml line. The data are not corrected for lattice spacing or
volume effects.

TABLE XIII. The combinations 2gBJ =g
Σ
J − 1 of Eq. (43) with

B∈ fN;Ξg at the physical point, in the continuum and infinite
volume limit. These are computed from the individual charges in
Tables X (for Z3

A), XI and XII (for Z1
J). The last row gives the

combination DJð0Þ=FJð0Þ in the chiral, continuum and infinite
volume limit (yellow bands in Figs. 30–32), computed from the
individual charges: DJ=FJ ¼ ðgNJ − gΞJ Þ=gΣJ .

B 2gBA=g
Σ
A − 1 2gBS=g

Σ
S − 1 2gBT=g

Σ
T − 1

N 1.93ð12Þð15Þ −0.441ð76Þð89Þ
1.467ð67Þð99Þ

Ξ −1.609ð37Þð40Þ
0.288ð91Þð96Þ −1.469ð17Þð16Þ

DJð0Þ=FJð0Þ 1.79ð11Þð8Þ −0.416ð46Þð49Þ
1.530ð54Þð56Þ
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renormalization factors and improvement coefficients and,
possibly, other systematics cancel from Eq. (43). For the
ratio of the Ξ over the Σ axial charge we see no significant
difference between the physical point value and that
obtained for the same average quark mass at the flavor
symmetric point. The symmetry breaking effect of the
combination involving gNA=g

Σ
A can be attributed to the pion

mass dependence of gNA , see Fig. 17. The red symbols at the
physical point (dashed vertical line) correspond to our
continuum, infinite volume limit extrapolated results, listed
in Table XIII for the combinations Eq. (43).
In Fig. 31 the combinations Eq. (43) are shown for the

isovector scalar charges. These are compared to our SU(3)
chiral limit extrapolated results (yellow bands) and the
continuum, infinite volume limit results at the physical
point (red diamonds). We find no statistically significant
symmetry breaking in this case. However, the statistical
errors are larger than for the axial case and also FS > FA.
Therefore, we cannot exclude symmetry breaking of a
similar size as for the axial charges, in particular, in the ratio
of the Ξ over the Σ baryon charge. Finally, in Fig. 32 we

carry out the same comparison for the tensor charges.
In this case, within errors of a few percent, no flavor
symmetry violation is seen. Moreover, DTðmÞ=FTðmÞ ¼
DTð0Þ=FTð0Þ within errors.
In order to quantify the symmetry breaking effect

between matrix elements involving the current J as a
function of the quark mass splitting ms −ml, we define

δJSUð3Þ ¼
gΞJ þ gNJ − gΣJ
gΞJ þ gNJ þ gΣJ

; ð44Þ

where for ms¼ml, δJSUð3Þ ¼ð2FJ−2FJÞ=ð2FJþ2FJÞ¼0,

see Eqs. (8)–(10). Also from these ratios some of the
systematics as well as the renormalization factors and
improvement terms will cancel. We define a dimensionless
SU(3) breaking parameter x¼ðM2

K−M2
πÞ=ð2M2

KþM2
πÞ∼

ms−ml and assume a polynomial dependence:

δJSUð3Þ ¼
X
n>0

aJnxn: ð45Þ

The data for δASUð3ÞðxÞ depicted in Fig. 33 become more and

more positive as the physical point (vertical dashed line) is
approached. This observation agrees with findings from
earlier studies [22–26]. We fit to data for which the average
quark mass is kept constant (blue circles). However, there is
no significant difference between these and the ms ≈ const
points (black squares). Both linear and quadratic fits in x
(aAn ¼ 0 for n ≠ 1 and aAn ¼ 0 for n ≠ 2, respectively) give

FIG. 31. The same as Fig. 30 for the scalar channel. The yellow
bands depict the ms ¼ ml ¼ 0 predictions �DSð0Þ=FSð0Þ ob-
tained from the extrapolations of the individual charges.

FIG. 32. The same as Fig. 30 for the tensor channel.

FIG. 33. The SU(3) symmetry breaking ratio δASUð3ÞðxÞ
[Eq. (45)] for the axial charges as a function of x ¼ ðM2

K −M2
πÞ=

ð2M2
K þM2

πÞ. Circles (diamonds) correspond to the trM ¼ const
(ms ¼ const) trajectories, the triangle to ms ¼ ml. The gray
(green) band shows the result from a linear (quadratic) one
parameter fit including only the blue data points that correspond
to the ensembles on the trM ¼ const line. Black data points
correspond to ensembles on the ms ¼ const trajectory. The
vertical gray dashed line indicates the physical point. The red
diamond corresponds to the result derived from the values for the
individual charges, see Sec. VA.
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adequate descriptions of the data and agree with our
continuum, infinite volume limit extrapolated physical
point result (red diamond)

δASUð3Þ ¼ 0.075ð23Þð27Þ; ð46Þ

derived from the values for the individual charges. Effects
of this sign and magnitude were also reported previously.
ETMC [24] find gNA þ gΞA − gΣA ¼ 0.147ð24Þ, whereas
Savanur and Lin [25] quote ðgNA þgΞA−gΣAÞ=gNA ¼0.087ð15Þ.
For J ≠ A no statistically significant effects were

observed. Nevertheless, for completeness we carry out
the same analysis for J ¼ S and J ¼ T, see Fig. 34. Our
continuum, infinite volume limit extrapolated physical
point results

δSSUð3Þ ¼ −0.040ð37Þð41Þ; δTSUð3Þ ¼ −0.001ð16Þð23Þ ð47Þ

provide upper limits on the relative size of SU(3) flavor
violation at the physical point.

C. The up and down quark mass difference

Our results on the scalar charges, in particular, gΣS , enable
us to determine the quark mass splitting δm ¼ mu −md.
While we simulate the isosymmetric theory, in Nature
this symmetry is broken. The extent of isospin symmetry
breaking is determined by two small parameters, δm=ΛQCD

and the fine structure constant αQED, which are similar in
size. The vector Ward identity relates δm to the QCD
contributions to baryon mass splittings within an isomul-
tiplet. In particular, to leading order in δm=ΛQCD and αQED,
the difference between the Σþ and Σ− baryon masses is a
pure QCD effect from which, with our knowledge of gΣS , we
can extract δm without additional assumptions.
We consider isospin multiplets of baryons BQ ∈

fNQ;ΣQ;ΞQg with electric charges Q ¼ I3 þ 1
2
ð1þ SÞ∈

f0;�1g (Nþ ¼ p, N0 ¼ n) and define the mass differences
ΔmBQþ1 ¼ mBQþ1 −mBQ . Note that for the Σ there are two
differences [75],

ΔmΣþ ¼ mΣþ −mΣ0 ¼ −3.27ð7Þ MeV; ð48Þ

ΔmΣ0 ¼ mΣ0 −mΣ− ¼ −4.81ð4Þ MeV: ð49Þ

The other splittings read [75]

ΔmΞ ¼−6.85ð21ÞMeV; ΔmN ≈−1.293MeV: ð50Þ

The mass differences can be split into QCD (∼δm) and QED
(∼αQEDΛQCD) contributions:

ΔmB ¼ ΔmQCD
B þ ΔmQED

B : ð51Þ

The splitting depends on the scale, the renormalization
scheme and the matching conventions between QCD and
QCDþ QED. The Cottingham formula [118] relates the
leading QED contribution to hadron masses to the total
electric charge squared times a function of the unpolarized
Compton forward-amplitude, i.e., to leading order in
αQED the electric contribution to charge-neutral hadron
masses should vanish (as was suggested in the massless
limit by Dashen [119]). Moreover, for δm ¼ 0 this implies
that the leading QED contributions to the masses of
the Σþ and Σ− baryons are the same. Therefore, up to
OðαQED; δm=ΛQCDÞ · δm terms,

ΔmQCD
Σ ¼ 1

2
ðmΣþ −mΣ−Þ

¼ −4.04ð4Þ MeV; ð52Þ

ΔmQED
Σþ ¼ 1

2
ðmΣþ þmΣ−Þ −mΣ0

¼ 0.77ð5Þ MeV ¼ −ΔmQED
Σ0 : ð53ÞFIG. 34. The same as Fig. 33 for the scalar (top) and tensor

(bottom) charges.
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From the Ademollo-Gatto theorem [74] we know that the
leading isospin breaking effects on the vector charges
gNV ¼ gΞV ¼ 1 and gΣV ¼ 2 are quadratic functions of
δm=ΛQCD and αQED, whereas the scalar charges gBS are
subject to linear corrections in αQED and δm=ΛQCD.
The Lorentz decomposition of the on-shell QCD matrix

element for the isovector vector current between baryons
B0 ¼ BQþ1 and B ¼ BQ (that differ by ΔI3 ¼ 1 in their
isospin) gives [see Eq. (1)]

i∂μhB0ðp0Þjd̄γμujBðpÞi ¼ gB
0B

V i∂μūB0 ðp0ÞγμuBðpÞ
¼ gB

0B
V ΔmQCD

B ½1þOðδm=ΛQCDÞ�;
ð54Þ

where the leading correction is due to q0 ¼ p0
0 − p0 ¼

ΔmQCD
B ¼ jqj. In the last step we used the equations of

motion. Combining this with the vector Ward identity
i∂μd̄γμu ¼ ðmu −mdÞd̄u gives

gB
0B

V ΔmQCD
B ¼ gB

0B
S ðmu −mdÞ ð55Þ

as the QCD contribution to the mass difference, with
corrections that are suppressed by powers of the symmetry
breaking parameters. Note that the normalization conven-
tion of the charges gBJ defined in Eq. (3),

gpnJ ¼ gNJ ; gΣ
þΣ0

J ¼ −gΣJ =
ffiffiffi
2

p
; gΞ

0Ξ−

J ¼ −gΞJ ;

cancels in the above equation so that we can replace
gB

0B
J ↦ gBJ to obtain

δm ¼ mu −md ¼
gBV
gBS

ΔmQCD
B ; ð56Þ

which we refer to as the CVC relation.6

Using our physical point, continuum and infinite volume

limit result gΣS ¼ 3.98ð22Þð24Þ, assuming gΣV ¼ 2 and applying

Eq. (56) for the Σ baryon, we obtain in the Nf ¼ 3 MS
scheme at μ ¼ 2 GeV

mu −md ¼ −2.03ð12Þð12Þ MeV: ð57Þ

We expect jOðδm=ΛQCD; αQEDÞj ≲ 1% corrections from
higher order effects to this result, which we can neglect
at the present level of accuracy.
We can compare our value of δm with results from the

literature in Table XIV. This includes the Nf ¼ 2þ 1 result
of BMWc [108] and the Nf ¼ 2þ 1þ 1 continuum limit
results of RM123 [121], FNAL-MILC [122] and MILC
[123]. In the latter two cases we convert results for mu=md
into δm as described in the table caption. We see a tension
between the previous determinations and our result on the
two to three σ level.
We remark that all the previous results utilize the

dependence of the pion and kaon masses on the quark
masses and the electromagnetic coupling. We consider our
method of determining the quark mass splitting from the
scalar coupling gΣS and the mass difference between the Σþ

and the Σ− baryons as more direct. In Ref. [124] ΔmQCD
N ¼

−1.87ð16Þ MeV (which agrees within errors with lattice
determinations, including ours, see below) is determined
from experimental input. A larger (negative) QCD differ-
ence would require a larger QED contribution to the proton
mass. As discussed above, the QED contribution to themass
of theΣþ baryon is 0.77(5)MeV (similar in size toΔmQED

N ¼
0.58ð16Þ MeV [124]) and it would be surprising if this
increased when replacing a strange quark by a down quark.
Assuming ΔmQCD

N ¼ −1.87ð16Þ MeV and a value δm ≈
−2.50ð10Þ MeV as suggested by Refs. [108,121–123]
would require a coupling gNS ¼ 0.75ð7Þ to satisfy the
CVC relation Eq. (56). This in turn is hard to reconcile
with the majority of lattice results compiled in Fig. 28. With
a lower value for jδmj (and/or a larger jΔmQCD

N j) this
inconsistency disappears.

D. QCD and QED isospin breaking effects
on the baryon masses

We proceed to compute the QED contributions to the
proton and Ξ− masses, ΔmQED

N and −ΔmQED
Ξ :

TABLE XIV. Comparison of the light quark mass difference.

Nf δm/MeV

RM123 [121] 2þ 1þ 1 −2.38ð18Þ
FNAL-MILCa [122] 2þ 1þ 1 −2.55ð9Þð7Þ
MILCa [123] 2þ 1þ 1 −2.57ð11Þð6Þ
BMWc [108] 2þ 1 −2.41ð12Þ
This work 2þ 1 −2.03ð12Þ

aFNAL-MILC [122] and MILC [123] only quote the ratios
mu=md ¼ 0.4556ð131Þð93Þ and mu=md ¼ 0.4529ð157Þð82Þ , respectively
(all errors added in quadrature). Using the FLAG 21 [78]
average ml ¼ 3.410ð43Þ, we combine these results to form
δm ¼ 2mlðmu=md − 1Þ=ðmu=md þ 1Þ and compute the error
by error propagation.

6Note that also the relations between gB
0B

S and gBS receive
OðαQEDÞ corrections. Therefore terms ∝ mlαQED, ∝ δmαQED and
∝ δ2m=ΛQCD can be added to Eq. (56). Since ml is similar in size
to δm, we can neglect the first of these terms too, whose
appearance is related to the mixing in QCDþ QED of ml and
δm under renormalization. Using the MS scheme at μ ¼ 2 GeV
corresponds to the suggestion of Ref. [120], however, for quark
masses ml ∼ δm this additional scale-dependence can be ne-
glected with good accuracy, as pointed out above. In addition,
there are small Oðα2QEDΛQCDÞ terms due to the QED contribu-
tions to the β- and γ-functions, which are also of higher order.
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ΔmQED
N ¼ ΔmN − gNS ðmu −mdÞ

¼ ΔmN −
2gNS
gΣS

ΔmQCD
Σ ; ð58Þ

ΔmQED
Ξ ¼ ΔmΞ −

2gΞS
gΣS

ΔmQCD
Σ : ð59Þ

This gives

ΔmQED
N ¼ 0.97ð31Þð36Þ MeV;

ΔmQCD
N ¼ −2.26ð31Þð36Þ MeV; ð60Þ

ΔmQED
Σ ¼ 0.77ð05Þ MeV;

ΔmQCD
Σ ¼ −4.04ð04Þ MeV; ð61Þ

ΔmQED
Ξ ¼ −1.65ð37Þð39Þ MeV;

ΔmQCD
Ξ ¼ −5.20ð42Þð44Þ MeV: ð62Þ

For completeness we included the values for the Σ baryons
that we determined from the experimental masses alone,
without lattice input. The above mass splittings agree with
the BMWc [109] continuum limit results from simulations
of QCD plus QED, see Fig. 35 (errors added in quadrature).
Nevertheless, as mentioned above, the value of δm, reported

by BMWc [108] from simulations of QCD with quenched
QED, differs by 2.2 standard deviations from our result in
Eq. (57). Also other lattice results on the QCD contribution
to the mass-splittings (summarized in Fig. 35), obtained at a
single lattice spacing from Endres et al. [125] using QEDTL
and QEDM, Brantley et al. [126] and CSSM-QCDSF-
UKQCD [127] agree within errors.
We mention the possibility of an enhancement of the

(higher order) δ2m=ΛQCD correction to the Σ0 mass due to the
possibility of mixing with the Λ0, which, however, appears
to be a very small effect [128]. A positive contribution to the
Σ0 mass would increase ΔmQED

Σ but leave ΔmQCD
Σ [and

therefore the quark mass difference Eq. (57)] invariant.
The electromagnetic contributions to the p, Σ� and Ξ−

masses are all similar to 1 MeV, with an enhancement for
the heavier, more compact cascade baryon. Recently,
combining the Cottingham formula [118] with experimen-
tal input from elastic scattering and parton distribution
functions, the value ΔmQED

N ¼ 0.58ð16Þ MeV was deter-
mined in Ref. [124]. While within errors our result Eq. (60)
agrees with this value, the number obtained in Ref. [124] is
more inline with the suggested ordering ΔmQED

N <
ΔmQED

Σ < −ΔmQED
Ξ . Combining their value with our deter-

mination of gNS gives δm ¼ −1.69ð28Þð26ÞMeV, somewhat

smaller in modulus than our result Eq. (57) and certainly
in tension with, e.g., δm ¼ −2.41ð12Þ MeV [108].
We find that the effect of md > mu on the Ξ and Σ mass

splittings is much bigger than for the nucleon since this is
proportional to gBS=g

B
V and gNS < gΣS=2 < gΞS . This hierarchy

is due to gNS ≈ FS þDS, gΣS=2 ≈ FS and gΞS ≈ FS −DS with
FS > 0 and DS < 0. Interestingly, the pion baryon σ terms
σπB ¼ σuB þ σdB that encode the up plus down quark mass
contribution to the baryon masses exhibit the opposite
ordering [17], σπN > σπΣ > σπΞ.

E. Isospin breaking effects on the
pion baryon σ terms

Having determined the quark mass differences, we can
also compute the leading isospin violating corrections to
the pion baryon σ terms σπB ¼ σuB þ σdB. One can either
work with matrix elements [129], using the identity

muūuþmdd̄d ¼ mlðūuþ d̄dÞ þ δm
2
ðūu − d̄dÞ; ð63Þ

or one can start from the Feynman-Hellmann theorem

σqB ¼ mq
hBjq̄qjBi
hBjBi ¼ mq

∂mB

∂mq
: ð64Þ

Writing mp ¼ mN þ ΔmQCD
N =2þ ΔmQED

N and mn ¼
mN − ΔmQCD

N =2, where ΔmQCD
N ¼ δmgNS =g

N
V , and realizing

that the dependence of the QED contributions on the quark

FIG. 35. Comparison of the QCD contributions to isospin mass
splittings [75,109,124–127]. Note that in our normalization
mΣþ −mΣ− ≈ 2ΔmQCD

Σ . Values with filled symbols were obtained
via a quark mass, continuum and finite volume extrapolation.
Endres et al. [125] only quote values for ΔmQED

N from which we
compute ΔmQCD

N employing the experimental proton-neutron
mass splitting.
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masses is of higher order in the isospin breaking, we obtain
at linear order

σπp ¼ mu
∂mp

∂mu
þmd

∂mp

∂md
¼ σπN þ 1

2
ΔmQCD

N ; ð65Þ

σπn ¼ mu
∂mn

∂mu
þmd

∂mn

∂md
¼ σπN −

1

2
ΔmQCD

N : ð66Þ

The same can be carried out for the Σ�, Ξ0 and Ξ− baryons.
Using the results for the σ terms of the isosymmetric theory
of Ref. [17], we obtain

σπp ¼ 42.8ð4.7Þð4.7ÞMeV; σπn ¼ 45.0ð4.7Þð4.7ÞMeV; ð67Þ

σπΣþ ¼ 21.9ð3.8Þð6.1ÞMeV; σπΣ− ¼ 29.9ð3.8Þð6.1ÞMeV; ð68Þ

σπΞ0 ¼ 8.6ð4.5Þð6.4ÞMeV; σπΞ− ¼ 13.8ð4.5Þð6.4ÞMeV; ð69Þ

whereas the pion σ term for the Σ0 is not affected at linear

order: σπΣ0 ≈ σπΣ ¼ 25.9ð3.8Þð6.1ÞMeV. We refrain from further

decomposing the pion baryon σ terms into the individual
up and down quark contributions. However, this can
easily be accomplished [129]. It is worth noting that
ðσπΞ− − σπΞ0Þ=σπΞ ≫ ðσπn − σπpÞ=σπN , in spite of the same
isospin difference.

VI. SUMMARY AND OUTLOOK

We determined the axial, scalar and tensor isovector
charges of the nucleon, sigma and cascade baryons using
Nf ¼ 2þ 1 lattice QCD simulations. The analysis is based
on 47 gauge ensembles, spanning a range of pion masses
from 430 MeV down to a near physical value of 130 MeV
across six different lattice spacings between a ≈ 0.039 fm
and a ≈ 0.098 fm and linear spatial lattice extents
3.0M−1

π ≤ L ≤ 6.5M−1
π . The availability of ensembles lying

on three trajectories in the quark mass plane enables SU(3)
flavor symmetry breaking to be explored systematically
and the quark mass dependence of the charges to be tightly
constrained. Simultaneous extrapolations to the physical
point in the continuum and infinite volume limit are
performed. Systematic errors are assessed by imposing
cuts on the pion mass, the lattice spacing and the volume as
well as using different sets of renormalization factors. Our
results (in the MS scheme at μ ¼ 2 GeV) for the nucleon
charges are

gNA ¼ 1.284ð28Þð27Þ; gNS ¼ 1.11ð14Þð16Þ; gNT ¼ 0.984ð19Þð29Þ:

For the hyperon charges we find

gΣA ¼ 0.875ð30Þð39Þ; gΣS ¼ 3.98ð22Þð24Þ; gΣT ¼ 0.798ð15Þð21Þ;

gΞA ¼ −0.267ð13Þð12Þ; gΞS ¼ 2.57ð11Þð11Þ; gΞT ¼ −0.1872ð59Þð41Þ:

A comparison with previous works is presented in
Sec. VA. We quantify SU(3) symmetry breaking effects
for the axial charge at the physical point in terms of the
combination

δASUð3Þ ¼
gΞA þ gNA − gΣA
gΞA þ gNA þ gΣA

¼ 0.075ð23Þð27Þ;

see Fig. 33. In particular the axial charge of the nucleon
deviates from its value in the SU(3) chiral limit, as can be
seen in Fig. 30 and Table XIII. No significant symmetry
breaking is observed for the other charges within current
precision, see Figs. 31, 32, and 34.
To cross-check the analysis methods, the vector charges

are determined and the expected values, gNV ¼ gΞV ¼ 1 and
gΣV ¼ 2, are reproduced reasonably well:

gNV ¼ 1.0012ð12Þð11Þ; gΣV ¼ 2.021ð21Þð27Þ; gΞV ¼ 1.015ð10Þð11Þ:

Furthermore, we exploit the conserved vector current
relation to predict the quark mass difference

mu −md ¼ −2.03ð12Þ MeV

from the scalar charge of the Σ baryon. We utilize this to
decompose isospin mass splittings between the baryons
into QCD and QED contributions [see Eqs. (60)–(62)] and
to predict the leading isospin corrections to the pion baryon
σ terms [see Eqs. (67)–(69)].
A computationally efficient stochastic approach was

employed in the analysis, which allows for the simulta-
neous evaluation of the three-point correlation functions of
all baryons with a variety of current insertions and
momentum combinations. This work is a first step toward
determining hyperon decay form factors which are relevant
for the study of CP violation [130]. A complementary
study of the baryon octet σ terms on the same dataset as
used here is already ongoing [131].
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APPENDIX A: FURTHER DETAILS OF THE
THREE-POINT FUNCTION MEASUREMENTS

1. Comparison of the stochastic
and sequential source methods

We computed the connected three-point functions for all
the octet baryons utilizing the computationally efficient
stochastic approach outlined in Sec. III C. This approach
introduces additional stochastic noise on top of the gauge
noise. In the analysis presented, for the nucleon, we make
use of statistically more precise three-point correlation
function measurements determined via the sequential
source method as part of other projects. In the following,
we compare the computational costs of the stochastic and
the sequential source methods and the results for the ratios
of the three-point over two-point functions for the nucleon.
As a typical example, we consider the measurements

performed on ensemble N200 (Mπ ¼ 286 MeV and
a ¼ 0.064 fm). For our setup, illustrated in Figs. 6 and
7, a total of 4 × 12 solves are needed for the 4 source

positions of the point-to-all propagators. To form the three-
point functions for the nucleon an additional Nsto ¼ 100
light stochastic solves (for the time slice-to-all propagators
connecting the sink and current time slices, the wiggly line
in Fig. 6) are performed. This setup provides 8 measure-
ments of the nucleon three-point function (as shown in
Fig. 7, with the source-sink separations t=a ¼ 11, 14, 16,
19) and includes all polarizations (and the unpolarized
case) as well as a range of sink momenta (almost) for free.
In principle, decuplet baryon three-point functions can also
be constructed at the analysis stage. This setup is evaluated
twice on each configuration leading to a total of 296
inversions. Similarly, an additional ð4 × 12þ 100Þ × 2
strange solves are performed in order to form the three-
point functions for all the (octet and decuplet) hyperons,
including strangeness changing currents that we did not
consider here.
In the sequential source setup, we compute the three-

point function for the nucleon at rest, again for source-sink
separations t=a ¼ 11, 14, 16 and 19. Ten measurements are
carried out per configuration (corresponding to 1, 2, 3 and 4
measurements for each t, respectively), where in each case
the two light quark flavors (u and d) of the current and the
four possible polarizations of the nucleon require 2 × 4
sequential sources to be constructed. This amounts to
performing ð4þ 10 × 2 × 4Þ × 12 ¼ 1008 light solves.
The additional 4 × 12 inversions refer to the point-to-all
propagators for 4 different source positions that connect the
source to the sink (and the current). This is three-times the
cost of the stochastic approach (for the nucleon three-point
functions), which realizes a range of sink momenta.
The ratios of the three-point over two-point functions for

the nucleon obtained from the two different approaches are
compared in Fig. 36. A significant part of the gauge noise
cancels in the ratio, while the (additional) stochastic noise
remains. For our setup, this leads to larger statistical errors
for the stochastic data compared to the sequential source
results. This difference can clearly be seen for the ratio in
the vector channel, for which the gauge noise is minimal,
however, the difference is less pronounced for the other
charges. For the sigma and cascade baryons we generally
find a good statistical signal in the ratios employing the
stochastic approach, see Fig. 37, although, also in this case
the ratios for the hyperon vector charges suffer from large
errors.
In the case of a large-scale analysis effort including high

statistics, as presented in this article, the disk space required
to store the stochastic three-point function data is signifi-
cant. The individual spectator (S) and insertion (I) parts as
defined in Eqs. (22) and (23), respectively, are stored
with all indices open. In general this amounts to N ¼
N½S� þ N½I� complex double precision floating point num-
bers for each gauge field configuration where

N½S� ¼ NS
F · Np0 · Nsnk · Nsrc · Nsto · Nc · N5

s ; ðA1Þ
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FIG. 36. Unrenormalized ratio of three-point over two-point functions for the nucleon vector, axial, scalar and tensor charge (from top
to bottom) on ensemble N200. The left hand side shows the data from the sequential source method from 1, 2, 3 and 4 measurements (for
increasing values of t) compared to the same measurements obtained from the stochastic approach with four measurements for each
value of t on the right-hand side.
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N½I� ¼ NI
F · Nq · N∂μ

· Nτ · Nsrc · Nsto · Nc · N2
s : ðA2Þ

Here NS=I
F denotes the number of flavor combinations for

the spectator and insertion parts (typically 4 and 2,
respectively), Np gives the number of momentum combi-
nations for a maximum momentum jpj (with p either being
the sink momentum p0 or the momentum transfer q),
Nsrc=snk corresponds to the number of source (4) and sink
(2) positions, Nc ¼ 3 and Ns ¼ 4 are the dimensions of
color and spin space and Nτ is the number of current
insertion time slices, usually the distance between the two
sink time slices, see Figs. 6 and 7. N∂μ

refers to the number
of derivatives included in the current insertion. We consider
all currents including up to one derivative (N∂μ

¼ 1þ 4),
although only the currents without derivatives are presented
in this work. This adds up to a file size of the order of GBs
for a single gauge field configuration and disk space usage
of the order of TBs for a typical CLS gauge ensemble.
Storing the data with all indices open allows for a very
flexible analysis. Octet or decuplet baryon three-point
functions can be constructed from the spectator and
insertion parts for different polarizations, current insertions
as well as for a large number of momentum combinations.

2. Treatment of outliers

When analysing the three-point functions on some of the
ensembles, we observe a small number of three-point
function results that are by many orders of magnitude
larger than the rest. These outliers, whose origin currently
remains unexplained, would have a significant impact on
the analysis, as illustrated in Fig. 38 for ensemble D200
(Mπ ¼ 202 MeV and a ¼ 0.064 fm). The three-point func-
tion for the scalar charge with source-sink separation t=a ¼
16 for a single source position is displayed. In this case one
outlier is identified (according to the criterion given below)
and one sees a substantial change in the configuration
average and a reduction in the standard deviation if this
measurement (on a particular configuration) is excluded.
The Mainz group [141] reported similar outliers when
determining the nucleon σ terms on a subset of the CLS

FIG. 37. Unrenormalized ratio of three-point over two-point functions for the Σ (left) and Ξ (right) scalar charge on ensemble N200.

FIG. 38. Nucleon three-point function for the scalar channel
with a source-sink separation t=a ¼ 16 for a single source position
on ensemble D200. The average and standard error is computed
including and excluding one particular gauge configuration.

FIG. 39. The numbers of configurations separated by a distance
jOw

i − Ôj=ΔO from the central value Ô for the three-point
function data of Fig. 38 on the insertion time slice τ=a ¼ 15.
The blue dashed line indicates the cutoff K ¼ 100, which is
exceeded by a single measurement. Note the cut and different
scales of the ordinate. Due to this representation a few histogram
entries are not shown.
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gauge ensembles employed here. We remark that such
outliers do not seem to occur in the distributions of the two-
point function measurements. To overcome this obstacle we
constrain the analyzed data and discard “outlier” configu-
rations on which measurements give contributions that are
very far away from the expected central value. As discussed
in Sec. III Awe employ the appropriate reweighting factors
where wi ¼ wl

i w
s
i is the product of the light and strange

reweighting factors, determined on each configuration i,
see in particular the discussion in Appendix G. 2 of
Ref. [17]. In order to have a robust estimate for the variance
of the reweighted data

Ow
i ¼ wiOi

w
; ðA3Þ

where w ¼ N−1
cnfg

P
i wi, we determine the lower and upper

boundary values Ow
low and Ow

up of the central 68% interval
of this distribution. We then remove configurations i with

jOw
i − Ôj > KΔO; ðA4Þ

where

Ô ¼ Ow
up þOw

low

2
; ΔO ¼ Ow

up −Ow
low

2
; ðA5Þ

setting the cutoff K to a large value (K ¼ 100). In Fig. 39
we show the distribution of the measurements for the
nucleon three-point function for a scalar current (at a single
source position and current insertion time) on the ensemble
D200 discussed above (see Fig. 38). The outlier is more
than 400 ΔO away from Ô. Considering all the three-point
function measurements across the different ensembles, we
uniformly set the cutoff in Eq. (A4) toK ¼ 100 and remove
all configurations from the analysis on which at least one
measurement satisfies this criterion.

APPENDIX B: ADDITIONAL TABLES

In Table XV we include further details on the gauge
ensembles. In Tables XVI–XVIII the results for the
unrenormalized charges for the three octet baryons are
collected.

TABLE XV. The gauge ensembles utilized in this work: the light and strange hopping parameters κl and κs, the gradient flow scale
parameter t0=a2 and the pion (Mπ) and kaon masses (MK) [17].

Ensemble κl κs t0=a2 aMπ aMK

A653 0.1365716 0.1365716 2.1729(50) 0.21235(94) 0.21235(94)
A650 0.136600 0.136600 2.2878(72) 0.1833(13) 0.1833(13)
A654 0.136750 0.136216193 2.1950(77) 0.1669(11) 0.22714(91)
H101 0.13675962 0.13675962 2.8545(81) 0.18283(57) 0.18283(57)
U103 0.13675962 0.13675962 2.8815(57) 0.18133(61) 0.18133(61)
H107 0.13694566590798 0.136203165143476 2.7193(76) 0.15913(73) 0.23745(53)
H102r002 0.136865 0.136549339 2.8792(90) 0.15490(92) 0.19193(77)
U102 0.136865 0.136549339 2.8932(63) 0.15444(84) 0.19235(61)
H102r001 0.136865 0.136549339 2.8840(89) 0.15311(98) 0.19089(78)
rqcd021 0.136813 0.136813 3.032(15) 0.14694(88) 0.14694(88)
H105 0.136970 0.13634079 2.8917(65) 0.1213(14) 0.20233(64)
N101 0.136970 0.13634079 2.8948(39) 0.12132(58) 0.20156(30)
H106 0.137015570024 0.136148704478 2.8227(68) 0.1180(21) 0.22471(67)
C102 0.13705084580022 0.13612906255557 2.8682(47) 0.09644(77) 0.21783(36)
C101 0.137030 0.136222041 2.9176(38) 0.09586(64) 0.20561(33)
D101 0.137030 0.136222041 2.910(10) 0.0958(11) 0.20572(45)
S100 0.137030 0.136222041 2.9212(91) 0.0924(31) 0.20551(57)
D150 0.137088 0.13610755 2.9476(30) 0.05497(79) 0.20834(17)
B450 0.136890 0.136890 3.663(11) 0.16095(49) 0.16095(49)
S400 0.136984 0.136702387 3.6919(74) 0.13535(42) 0.17031(38)
B452 0.1370455 0.136378044 3.5286(66) 0.13471(47) 0.20972(34)
rqcd030 0.1369587 0.1369587 3.914(15) 0.12202(68) 0.12202(68)
N451 0.1370616 0.1365480771 3.6822(46) 0.11067(32) 0.17828(20)
N401 0.1370616 0.1365480771 3.6844(52) 0.10984(57) 0.17759(37)
N450 0.1370986 0.136352601 3.5920(42) 0.10965(31) 0.20176(18)
X450 0.136994 0.136994 3.9935(92) 0.10142(62) 0.10142(62)
D451 0.137140 0.136337761 3.6684(36) 0.08370(31) 0.19385(15)
D450 0.137126 0.136420428639937 3.7076(75) 0.08255(41) 0.18354(12)
D452 0.137163675 0.136345904546 3.7251(37) 0.05961(50) 0.18647(13)

(Table continued)
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TABLE XV. (Continued)

Ensemble κl κs t0=a2 aMπ aMK

N202 0.137000 0.137000 5.165(14) 0.13388(35) 0.13388(35)
N204 0.137112 0.136575049 4.9473(79) 0.11423(33) 0.17734(29)
X250 0.137050 0.137050 5.283(28) 0.11319(39) 0.11319(39)
N203 0.137080 0.136840284 5.1465(63) 0.11245(30) 0.14399(24)
S201 0.137140 0.13672086 5.1638(91) 0.09379(47) 0.15220(37)
N201 0.13715968 0.136561319 5.0427(75) 0.09268(31) 0.17040(22)
N200 0.137140 0.13672086 5.1600(71) 0.09236(29) 0.15061(24)
X251 0.137100 0.137100 5.483(26) 0.08678(40) 0.08678(40)
D200 0.137200 0.136601748 5.1793(39) 0.06540(33) 0.15652(15)
D201 0.1372067 0.136546844 5.1378(66) 0.06472(42) 0.16302(18)
E250 0.137232867 0.136536633 5.2027(41) 0.04227(23) 0.159370(61)
N300 0.137000 0.137000 8.576(21) 0.10642(38) 0.10642(38)
N304 0.137079325093654 0.136665430105663 8.322(20) 0.08840(33) 0.13960(31)
N302 0.137064 0.1368721791358 8.539(19) 0.08701(41) 0.11370(36)
J304 0.137130 0.1366569203 8.497(12) 0.06538(18) 0.13181(14)
J303 0.137123 0.1367546608 8.615(14) 0.06481(19) 0.11975(16)
E300 0.137163 0.1366751636177327 8.6241(74) 0.04402(20) 0.12397(15)
J500 0.136852 0.136852 14.013(34) 0.08116(34) 0.08116(34)
J501 0.1369032 0.136749715 13.928(39) 0.06589(26) 0.08798(23)

TABLE XVI. Results for the unrenormalized nucleon charges gN;latt
J for J∈ fA; S; T; Vg. #ES labels the number of excited states used

to determine the ground state matrix element, see the discussion in Sec. III D.

#ES
1 2

Ensemble gN;latt
A gN;latt

S gN;latt
T gN;latt

V gN;latt
A gN;latt

S gN;latt
T gN;latt

V

A653 1.563(17) 1.449(60) 1.273(13) 1.4140(24) 1.589(18) 1.43(10) 1.279(13) 1.4136(21)
A650 1.554(13) 1.468(68) 1.236(10) 1.4173(35) 1.581(18) 1.41(13) 1.243(12) 1.4171(32)
A654 1.545(22) 1.62(21) 1.216(30) 1.4353(85) 1.538(33) 1.76(34) 1.211(19) 1.4365(87)
H101 1.5662(88) 1.760(55) 1.221(13) 1.39160(46) 1.584(16) 1.795(88) 1.224(13) 1.39152(46)
U103 1.495(17) 1.61(11) 1.219(23) 1.39001(77) 1.511(26) 1.68(13) 1.227(18) 1.38990(66)
H107 1.630(37) 1.46(13) 1.248(19) 1.40067(98) 1.667(29) 1.34(17) 1.260(20) 1.40051(77)
H102r002 1.596(21) 1.70(15) 1.221(22) 1.3986(11) 1.616(29) 1.84(21) 1.231(21) 1.39817(87)
U102a 1.449(41) 1.42(17) 1.180(56) 1.3988(22) 1.448(41) 1.32(24) 1.194(31) 1.3982(11)
H102r001 1.582(15) 1.67(10) 1.230(21) 1.39706(67) 1.598(32) 1.78(19) 1.235(21) 1.39698(62)
rqcd021 1.546(16) 1.67(12) 1.188(22) 1.383(13) 1.567(30) 1.60(23) 1.190(22) 1.383(12)
H105 1.533(29) 1.44(20) 1.194(37) 1.4077(18) 1.524(51) 1.29(44) 1.199(32) 1.4074(15)
N101a 1.623(19) 1.662(87) 1.229(16) 1.40416(63) 1.670(32) 1.64(21) 1.236(18) 1.40411(53)
H106 1.589(34) 1.30(27) 1.223(35) 1.4084(20) 1.597(64) 1.20(50) 1.231(37) 1.4081(17)
C102 1.699(36) 1.70(32) 1.184(25) 1.4083(13) 1.755(58) 1.74(54) 1.198(29) 1.4083(12)
C101 1.675(37) 1.67(17) 1.214(17) 1.40908(85) 1.758(44) 1.76(40) 1.232(18) 1.40872(69)
D101a 1.647(51) 1.74(34) 1.222(40) 1.4091(18) 1.700(80) 2.09(77) 1.236(36) 1.4088(11)
S100a 1.86(98) 1.6(1.2) 1.27(21) 1.4091(49) 1.75(16) 1.6(1.5) 1.257(57) 1.4072(25)
D150a 1.49(21) 2.8(2.9) 0.88(23) 1.430(13) 1.39(31) 5.0(4.0) 0.92(14) 1.430(15)
B450 1.549(12) 1.642(72) 1.228(13) 1.3729(31) 1.587(18) 1.61(13) 1.233(14) 1.3724(27)
S400 1.525(13) 1.645(90) 1.191(22) 1.37682(65) 1.523(28) 1.63(17) 1.193(20) 1.37683(59)
B452 1.555(15) 1.49(10) 1.232(17) 1.3781(38) 1.568(30) 1.39(24) 1.235(19) 1.3781(36)
rqcd030 1.510(14) 1.531(92) 1.178(15) 1.3769(33) 1.553(27) 1.47(20) 1.182(16) 1.3769(30)
N451 1.595(14) 1.603(89) 1.212(15) 1.3828(35) 1.636(31) 1.49(21) 1.217(18) 1.3828(30)
N401 1.584(26) 2.00(27) 1.166(37) 1.3836(11) 1.603(51) 2.27(46) 1.180(31) 1.38328(91)
N450 1.598(13) 1.67(11) 1.208(17) 1.3840(29) 1.625(31) 1.58(26) 1.210(19) 1.3838(29)
X450 1.558(23) 1.99(18) 1.166(23) 1.3884(78) 1.606(51) 2.15(37) 1.174(24) 1.3873(69)

(Table continued)
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TABLE XVI. (Continued)

#ES
1 2

Ensemble gN;latt
A gN;latt

S gN;latt
T gN;latt

V gN;latt
A gN;latt

S gN;latt
T gN;latt

V

D451 1.583(25) 1.42(25) 1.175(36) 1.3807(78) 1.554(80) 0.88(77) 1.176(38) 1.379(10)
D450 1.623(25) 1.46(30) 1.201(22) 1.3761(90) 1.672(66) 1.04(77) 1.207(27) 1.3769(84)
D452b 1.54(21) 0.1(4.5) 0.95(19) 1.07(42) 1.53(32) −1.0ð5.1Þ 1.00(13) 1.13(22)
N202 1.537(12) 1.926(84) 1.170(17) 1.34793(29) 1.556(20) 2.03(11) 1.179(16) 1.34780(28)
N204 1.570(13) 1.694(91) 1.200(14) 1.35344(39) 1.587(25) 1.80(19) 1.205(15) 1.35335(37)
X250 1.5232(98) 1.814(80) 1.163(14) 1.3513(25) 1.546(19) 1.88(15) 1.167(14) 1.3512(23)
N203 1.532(10) 1.748(68) 1.176(16) 1.35169(27) 1.545(26) 1.69(15) 1.176(16) 1.35169(27)
S201a 1.436(25) 1.49(21) 1.155(41) 1.35576(78) 1.52(12) 0.82(98) 1.160(41) 1.3555(10)
N201 1.568(18) 1.67(16) 1.158(21) 1.35653(50) 1.594(36) 1.54(35) 1.162(23) 1.35649(49)
N200 1.565(21) 1.47(15) 1.174(19) 1.35533(37) 1.607(40) 1.33(32) 1.179(22) 1.35530(34)
X251 1.532(25) 1.94(16) 1.135(14) 1.3568(56) 1.604(25) 2.18(26) 1.149(14) 1.3558(41)
D200 1.582(24) 1.94(30) 1.136(32) 1.35952(43) 1.617(61) 2.37(72) 1.140(32) 1.35997(77)
D201 1.562(35) 1.60(41) 1.135(48) 1.35922(82) 1.597(91) 1.82(98) 1.141(45) 1.35922(67)
E250a 1.66(14) 1.8(1.2) 1.134(77) 1.353(28) 2.00(20) 3.2(3.8) 1.175(55) 1.358(13)
N300 1.479(12) 1.813(95) 1.149(20) 1.31543(19) 1.485(22) 1.83(14) 1.152(19) 1.31540(16)
N304 1.495(23) 1.64(18) 1.137(28) 1.31926(32) 1.501(36) 1.52(31) 1.140(27) 1.31924(31)
N302 1.498(19) 1.82(18) 1.097(29) 1.31893(29) 1.523(35) 1.83(30) 1.103(27) 1.31889(27)
J304 1.529(19) 1.77(22) 1.107(22) 1.32310(36) 1.567(39) 1.67(51) 1.113(23) 1.32305(37)
J303 1.518(17) 1.51(14) 1.096(29) 1.32206(21) 1.526(56) 1.16(53) 1.094(36) 1.32198(25)
E300 1.557(37) 1.67(36) 1.086(25) 1.3135(88) 1.646(61) 1.44(92) 1.100(33) 1.312(11)
J500 1.451(11) 1.858(92) 1.108(18) 1.29090(12) 1.453(18) 1.91(11) 1.114(13) 1.290855(87)
J501 1.484(37) 2.13(30) 1.072(59) 1.29352(16) 1.499(38) 2.10(28) 1.088(29) 1.29349(19)

aEnsemble only enters the analysis of the nucleon charges since no data for the hyperon charges are available.
bThe nucleon three-point functions are computed with the “stochastic” approach. (For all the other ensembles the sequential source

method was used.)

TABLE XVII. Results for the unrenormalized hyperon charges gΣ;lattJ for J∈ fA; S; T; Vg. #ES labels the number of excited states used
to determine the ground state matrix element, see the discussion in Sec. III D. The three-point functions are computed employing the
“stochastic” approach.

#ES
1 2

Ensemble gΣ;lattA gΣ;lattS gΣ;lattT gΣ;lattV gΣ;lattA gΣ;lattS gΣ;lattT gΣ;lattV

A653 1.180(10) 4.40(14) 1.018(14) 2.8354(32) 1.189(16) 4.45(14) 1.023(12) 2.8347(27)
A650 1.1764(90) 4.46(12) 0.9968(95) 2.8381(39) 1.190(16) 4.49(15) 1.000(10) 2.8380(37)
A654 1.173(12) 4.01(16) 1.028(13) 2.852(12) 1.204(37) 4.11(30) 1.028(16) 2.850(14)
H101 1.1877(81) 5.03(12) 0.982(10) 2.78711(66) 1.198(13) 5.12(14) 0.987(10) 2.78686(65)
U103 1.137(13) 4.69(18) 0.983(16) 2.78535(89) 1.147(21) 4.75(18) 0.989(16) 2.78507(80)
H107 1.207(18) 4.25(19) 1.030(12) 2.823(15) 1.232(28) 4.35(27) 1.036(13) 2.820(11)
H102r002 1.177(13) 4.67(17) 0.988(13) 2.807(14) 1.199(25) 4.77(22) 0.992(14) 2.805(12)
H102r001 1.157(14) 4.73(19) 0.973(16) 2.788(11) 1.146(27) 4.79(28) 0.978(17) 2.788(11)
rqcd021 1.149(15) 5.27(24) 0.958(19) 2.790(14) 1.145(27) 5.35(33) 0.962(19) 2.790(13)
H105 1.147(22) 4.83(44) 0.958(23) 2.812(20) 1.162(40) 5.25(55) 0.969(21) 2.809(16)
H106 1.139(15) 4.24(20) 0.968(16) 2.796(15) 1.149(38) 4.27(48) 0.970(19) 2.796(15)
C102 1.140(19) 4.32(29) 0.950(27) 2.791(23) 1.133(45) 3.94(76) 0.952(22) 2.792(18)
C101 1.174(21) 4.58(43) 0.957(22) 2.837(21) 1.240(51) 4.80(94) 0.963(21) 2.834(17)
B450 1.1743(76) 4.80(14) 0.992(11) 2.7464(30) 1.195(15) 4.90(18) 0.997(11) 2.7460(28)
S400 1.159(16) 5.25(29) 0.945(17) 2.751(13) 1.180(23) 5.43(27) 0.962(16) 2.752(11)
B452 1.147(13) 4.33(18) 0.990(16) 2.764(13) 1.163(28) 4.45(33) 0.994(16) 2.763(12)
rqcd030 1.140(12) 5.20(22) 0.944(16) 2.7576(35) 1.157(22) 5.41(33) 0.950(15) 2.7573(33)
N451 1.168(15) 4.90(34) 0.976(14) 2.795(18) 1.193(30) 5.43(38) 0.988(11) 2.789(12)
N401 1.130(52) 5.22(68) 0.933(50) 2.781(42) 1.100(67) 5.23(82) 0.949(33) 2.776(31)

(Table continued)
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TABLE XVII. (Continued)

#ES
1 2

Ensemble gΣ;lattA gΣ;lattS gΣ;lattT gΣ;lattV gΣ;lattA gΣ;lattS gΣ;lattT gΣ;lattV

N450 1.148(18) 4.11(17) 0.994(20) 2.738(24) 1.154(43) 3.54(65) 0.992(17) 2.737(21)
X450 1.168(23) 6.05(38) 0.924(25) 2.7700(84) 1.195(49) 6.38(58) 0.933(25) 2.7690(79)
D451 1.143(53) 4.79(95) 0.955(38) 2.67(10) 1.18(15) 3.8(3.0) 0.948(45) 2.624(56)
D450 1.129(63) 4.9(1.1) 0.938(52) 2.721(77) 1.09(11) 3.9(2.1) 0.944(42) 2.730(48)
D452 1.115(52) 4.8(1.1) 0.923(52) 2.789(28) 1.07(14) 5.3(2.6) 0.935(44) 2.787(29)
N202 1.166(10) 5.68(20) 0.939(12) 2.69777(45) 1.182(16) 5.85(15) 0.955(13) 2.69721(41)
N204 1.1465(91) 4.30(12) 0.980(11) 2.686(11) 1.160(26) 4.22(30) 0.979(12) 2.686(12)
X250 1.1549(88) 5.85(20) 0.928(12) 2.7051(32) 1.167(16) 6.12(21) 0.940(12) 2.7046(27)
N203 1.156(12) 5.60(26) 0.941(10) 2.7246(96) 1.182(19) 6.05(22) 0.9623(87) 2.7184(69)
N201 1.150(17) 5.22(43) 0.953(18) 2.737(17) 1.163(42) 5.70(53) 0.965(17) 2.733(14)
N200 1.119(13) 5.03(21) 0.947(13) 2.721(11) 1.116(26) 5.37(36) 0.954(12) 2.720(10)
X251 1.145(16) 6.59(33) 0.903(13) 2.7165(69) 1.195(24) 7.06(37) 0.916(14) 2.7145(55)
D200 1.082(48) 6.4(1.4) 0.841(59) 2.774(26) 1.058(82) 7.7(1.8) 0.867(38) 2.777(29)
D201 1.125(34) 5.7(1.3) 0.924(37) 2.730(31) 1.133(62) 6.8(1.2) 0.944(24) 2.726(19)
N300 1.121(12) 5.52(19) 0.918(17) 2.63208(25) 1.126(19) 5.59(18) 0.925(16) 2.63197(23)
N304 1.106(18) 4.84(31) 0.925(21) 2.642(17) 1.130(30) 4.87(45) 0.928(20) 2.641(15)
N302 1.086(26) 5.41(35) 0.864(34) 2.668(25) 1.118(42) 5.38(49) 0.868(26) 2.666(21)
J304 1.091(29) 5.95(65) 0.864(30) 2.646(25) 1.149(54) 6.61(74) 0.879(23) 2.645(18)
J303 1.100(19) 5.23(59) 0.914(22) 2.671(31) 1.198(61) 5.88(96) 0.927(17) 2.669(26)
E300 1.047(93) 7.9(3.8) 0.853(57) 2.728(87) 1.04(12) 9.1(3.1) 0.884(41) 2.705(55)
J500 1.100(10) 5.78(20) 0.887(13) 2.58250(15) 1.106(15) 5.82(16) 0.894(11) 2.58241(12)
J501 1.053(35) 6.01(86) 0.857(46) 2.629(22) 1.038(54) 6.26(66) 0.878(22) 2.628(19)

TABLE XVIII. Results for the unrenormalized hyperon charges gΞ;lattJ for J∈ fA; S; T; Vg. #ES labels the number of excited states
used to determine the ground state matrix element, see the discussion in Sec. III D. The three-point functions are computed employing
the “stochastic” approach.

#ES
1 2

Ensemble gΞ;lattA gΞ;lattS gΞ;lattT gΞ;lattV gΞ;lattA gΞ;lattS gΞ;lattT gΞ;lattV

A653 −0.399ð16Þ 3.13(18) −0.2495ð54Þ 1.4229(30) −0.401ð11Þ 3.019(89) −0.2534ð38Þ 1.4206(21)
A650 −0.3849ð96Þ 3.13(11) −0.2375ð43Þ 1.4213(28) −0.3905ð95Þ 3.109(92) −0.2423ð43Þ 1.4211(20)
A654 −0.3528ð58Þ 2.65(12) −0.2407ð47Þ 1.4344(67) −0.354ð12Þ 2.63(17) −0.2408ð59Þ 1.4349(67)
H101 −0.3810ð53Þ 3.331(91) −0.2342ð41Þ 1.39556(41) −0.3854ð82Þ 3.349(93) −0.2371ð48Þ 1.39528(40)
U103 −0.3580ð67Þ 3.09(11) −0.2389ð48Þ 1.39547(47) −0.362ð12Þ 3.05(14) −0.2380ð43Þ 1.39563(47)
H107 −0.3602ð71Þ 2.89(16) −0.2413ð41Þ 1.4165(82) −0.3653ð77Þ 2.93(12) −0.2453ð38Þ 1.4126(64)
H102r002 −0.3707ð54Þ 3.122(91) −0.2336ð34Þ 1.4045(52) −0.3708ð92Þ 3.16(12) −0.2357ð42Þ 1.4038(48)
H102r001 −0.3671ð52Þ 3.12(10) −0.2362ð35Þ 1.3987(55) −0.3683ð99Þ 3.16(14) −0.2383ð45Þ 1.3987(52)
rqcd021 −0.418ð17Þ 3.93(22) −0.2211ð82Þ 1.415(15) −0.425ð16Þ 3.81(21) −0.2275ð71Þ 1.409(10)
H105 −0.370ð11Þ 3.25(26) −0.2214ð68Þ 1.4050(86) −0.372ð11Þ 3.24(22) −0.2261ð72Þ 1.4047(73)
H106 −0.3448ð45Þ 2.605(83) −0.2347ð27Þ 1.4052(42) −0.3553ð84Þ 2.56(22) −0.2359ð39Þ 1.4049(46)
C102 −0.3431ð42Þ 2.672(96) −0.2296ð41Þ 1.4007(52) −0.341ð13Þ 2.52(28) −0.2286ð50Þ 1.4000(57)
C101 −0.373ð23Þ 3.15(38) −0.2398ð58Þ 1.423(13) −0.387ð14Þ 3.19(35) −0.2436ð33Þ 1.4177(99)
B450 −0.3822ð73Þ 3.321(81) −0.2322ð46Þ 1.3737(22) −0.3914ð98Þ 3.289(96) −0.2352ð56Þ 1.3737(19)
S400 −0.3560ð57Þ 3.20(12) −0.2332ð41Þ 1.3774(56) −0.3577ð91Þ 3.28(13) −0.2373ð50Þ 1.3778(51)
B452 −0.3484ð52Þ 2.873(96) −0.2309ð35Þ 1.3669(53) −0.3523ð85Þ 2.90(13) −0.2333ð45Þ 1.3680(57)
rqcd030 −0.384ð11Þ 3.93(22) −0.2249ð65Þ 1.3819(34) −0.394ð14Þ 3.96(25) −0.2313ð67Þ 1.3807(28)
N451 −0.3693ð57Þ 3.55(15) −0.2183ð42Þ 1.3969(68) −0.3720ð94Þ 3.74(17) −0.2248ð46Þ 1.3948(55)
N401 −0.372ð13Þ 3.17(18) −0.2296ð58Þ 1.389(13) −0.389ð16Þ 3.07(32) −0.2325ð68Þ 1.388(12)
N450 −0.3489ð63Þ 2.92(14) −0.2294ð42Þ 1.3764(77) −0.351ð14Þ 2.87(27) −0.2297ð59Þ 1.3759(78)
X450 −0.403ð18Þ 4.29(31) −0.2314ð88Þ 1.3809(53) −0.414ð23Þ 4.39(34) −0.2369ð74Þ 1.3810(45)
D451 −0.308ð19Þ 2.70(25) −0.226ð19Þ 1.361(35) −0.286ð36Þ 1.87(98) −0.225ð13Þ 1.351(24)

(Table continued)
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APPENDIX C: ADDITIONAL FIGURES

We provide additional figures (Figs. 40–47).

TABLE XVIII. (Continued)

#ES
1 2

Ensemble gΞ;lattA gΞ;lattS gΞ;lattT gΞ;lattV gΞ;lattA gΞ;lattS gΞ;lattT gΞ;lattV

D450 −0.365ð21Þ 3.79(88) −0.2334ð98Þ 1.391(18) −0.372ð29Þ 4.27(62) −0.2377ð53Þ 1.391(11)
D452 −0.320ð13Þ 3.75(66) −0.2213ð80Þ 1.399(13) −0.292ð33Þ 4.41(95) −0.2268ð84Þ 1.397(11)
N202 −0.3758ð48Þ 3.78(10) −0.2202ð41Þ 1.34982(24) −0.3759ð89Þ 3.817(99) −0.2244ð50Þ 1.34959(23)
N204 −0.3365ð44Þ 2.916(92) −0.2262ð35Þ 1.3484(47) −0.326ð11Þ 2.91(15) −0.2252ð46Þ 1.3479(51)
X250 −0.3753ð54Þ 4.18(14) −0.2195ð43Þ 1.3541(24) −0.3782ð80Þ 4.26(14) −0.2257ð46Þ 1.3536(19)
N203 −0.3612ð42Þ 3.652(95) −0.2178ð30Þ 1.3549(53) −0.3649ð75Þ 3.74(12) −0.2220ð36Þ 1.3542(47)
N201 −0.350ð11Þ 3.44(32) −0.2222ð49Þ 1.377(12) −0.355ð10Þ 3.56(20) −0.2285ð47Þ 1.3714(79)
N200 −0.3515ð42Þ 3.58(13) −0.2147ð38Þ 1.3665(49) −0.3542ð78Þ 3.73(16) −0.2184ð42Þ 1.3653(43)
X251 −0.3942ð89Þ 4.68(18) −0.2226ð60Þ 1.3600(46) −0.409ð11Þ 4.84(21) −0.2295ð43Þ 1.3576(40)
D200 −0.347ð16Þ 4.2(1.0) −0.2127ð76Þ 1.3738(89) −0.350ð15Þ 4.69(49) −0.2237ð51Þ 1.3707(70)
D201 −0.3393ð78Þ 3.38(26) −0.2082ð60Þ 1.3647(83) −0.344ð17Þ 3.47(51) −0.2100ð74Þ 1.3645(84)
N300 −0.3596ð58Þ 3.74(10) −0.2246ð45Þ 1.31662(16) −0.359ð10Þ 3.78(11) −0.2279ð49Þ 1.31649(12)
N304 −0.3307ð51Þ 3.12(11) −0.2196ð43Þ 1.3182(66) −0.325ð10Þ 3.09(17) −0.2169ð42Þ 1.3175(70)
N302 −0.361ð11Þ 3.77(19) −0.2136ð60Þ 1.341(11) −0.373ð15Þ 3.72(22) −0.2170ð66Þ 1.3383(89)
J304 −0.3366ð73Þ 3.45(22) −0.2090ð50Þ 1.3286(83) −0.346ð11Þ 3.63(28) −0.2143ð58Þ 1.3277(67)
J303 −0.3416ð75Þ 3.66(23) −0.2133ð48Þ 1.3306(94) −0.358ð15Þ 3.88(34) −0.2208ð59Þ 1.3298(81)
E300 −0.334ð17Þ 3.75(49) −0.194ð13Þ 1.342(14) −0.340ð31Þ 3.5(1.0) −0.195ð14Þ 1.344(17)
J500 −0.3508ð46Þ 3.89(11) −0.2174ð36Þ 1.291575(73) −0.3454ð91Þ 3.93(11) −0.2198ð38Þ 1.291515(71)
J501 −0.353ð10Þ 4.14(25) −0.2055ð62Þ 1.314(11) −0.356ð13Þ 4.17(21) −0.2071ð55Þ 1.3135(98)

FIG. 40. The same as Fig. 10 for the sigma baryon.
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FIG. 41. The same as Fig. 13 for the isovector vector charges gBV of the sigma baryon (left) and the cascade baryon (right). For better
visibility, the data points for ensemble D451, which have large errors (see Tables XVII and XVIII), are not displayed. See Tables XVII
and XVIII for the set of ensembles used.

FIG. 42. The same as Fig. 15 for the vector charge gBV of the sigma (right) and cascade (left) baryon.

FIG. 43. The same as Fig. 19 for the axial charge gBA of the sigma (right) and cascade (left) baryon.
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FIG. 44. The same as Fig. 19 for the scalar charge gBS of the nucleon (top, left), sigma (top, right) and cascade (bottom) baryons. The
six fits correspond to two fit variations, see the text, applied to three datasets, DSðM<400 MeV

π Þ, DSðM<400 MeV
π ; a<0.1 fmÞ and

DSðM<400 MeV
π ; LM>4

π Þ. The data are extracted using two excited states in the fitting analysis, see Sec. III D. Only two different sets of
renormalization factors are used.

FIG. 45. The same as Fig. 19 for the tensor charge gBT for the nucleon (top, left), sigma (top, right) and cascade (bottom) baryons. The
data are extracted using two excited states in the fitting analysis, see Sec. III D. Only two different sets of renormalization
factors are used.
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FIG. 46. The same as Fig. 21 for the isovector scalar charges gBS of the sigma baryon (left) and the cascade baryon (right). For better
visibility, the data point for ensemble E300, which has a relatively large error (see Table XVII), is not displayed for the sigma baryon.
See Tables XVII and XVIII for the set of ensembles used.

FIG. 47. The same as Fig. 23 for the isovector tensor charges gBT of the sigma baryon (left) and the cascade baryon (right). For better
visibility, the data point for ensemble E300, which has a relatively large error (see Table XVIII), is not displayed for the cascade baryon.
See Tables XVII and XVIII for the set of ensembles used.
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