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We calculate shear viscosity and bulk viscosity in SUð3Þ gauge theory on the lattice at 1.5Tc. The
viscosities are extracted via a Kubo formula from the reconstructed spectral function which we determine
from the Euclidean time dependence of the corresponding channel of the energy-momentum tensor
correlators. We obtain unprecedented precision for the correlators by applying gradient-flow and blocking
methods. The correlators are extrapolated to the continuum and then to zero-flow time. To extract the
viscosities we fit theoretically inspired models to the lattice data and cross-check the fit results using the
Backus-Gilbert method. The final estimates for shear and bulk viscosity are η=s ¼ 0.15–0.48 and
ζ=s ¼ 0.017–0.059.
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I. INTRODUCTION

The shear viscosity η and bulk viscosity ζ of the hot quark-
gluon plasma characterize the dissipation which occurs due
to nonuniform flow, such as occurs in heavy ion collisions.
They have been a topic of intense study for the last two
decades. Experimental results [1–5] suggest a small shear
viscosity; indeed, based on the determined values of elliptic
and higher-order flow as functions ofmomentumand impact
parameter, the best extractions of the shear viscosity are in
the range 1=ð4πÞ < η=s < 2=ð4πÞ [6]. This is close to the
claimed lower bound on η=s obtained from N ¼ 4 super-
symmetric Yang-Mills theory at strong coupling, which
predicts η=s ¼ 1=ð4πÞ [7]. While leading-order weak-
coupling calculations [8,9], extrapolated to the physical cou-
pling strength, suggest a larger shear viscosity η=s ∼ 0.5–1,
the next-to-leading correction to this result at a physically
interesting coupling and temperature reduces the tension,
implying η=s ∼ 0.2 [10]. The size of this difference implies
that the perturbative series shows poor convergence. As
for the bulk viscosity, its extraction from experiments

shows that it is nonzero but somewhat smaller than the
shear viscosity at temperatures of order 200 MeV [6]. At
higher temperatures we have a leading-order perturbative
calculation [11] which shows that, for 0.06 < αs < 0.3,
ζ=s ∼ 0.02α2s . That is, as the theory becomes more con-
formal at higher temperatures, the bulk viscosity is
expected to become small, but it can nevertheless play a
role at lower temperatures where QCD behaves strongly
nonconformally.
We want a first-principles theoretical determinations of

shear and bulk viscosity, to accompany the values extracted
from experiment. The temperatures achieved in real-world
heavy ion collisions are in a range where perturbation
theory does not appear to be applicable, and so truly
nonperturbative methods are needed. Our best first-princi-
ples nonperturbative tool is lattice gauge theory, which we
will pursue in this work. Like previous literature, we will
work within pure SUð3Þ gauge theory, but one focus of our
work is to develop tools which will be straightforward to
extend to the theory with dynamical quarks.
The pioneering works [12–14] established the general

approach for investigating shear viscosity via unequal
Euclidean-time, zero space-momentum energy-momentum
tensor (EMT) correlation functions. More recent stud-
ies [15,16] have extended this work to consider a range
of temperatures. However, these works used rather coarse
and small lattices, meaning that cutoff effects may be
severe. Recently, a lattice calculation using the gradient
flow method was conducted on a 643 × 16 lattice [17].
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In that work, the shear viscosity is extracted at finite flow
time, making the results difficult to interpret [18].
The standard way to investigate transport coefficients on

the lattice is through Kubo formulas, which relate these
coefficients to spectral functions, which in turn are related
to Euclidean correlators through analytic continuation. The
biggest challenge is that the energy-momentum tensor
correlators, from which the viscosities are extracted, are
extremely noisy, such that a noise-reduction technique must
be employed to obtain the necessary precision. In
Refs. [14,16] the multilevel algorithm [19] was used; in
this work we instead make use of the gradient-flow
method [20–23] and the blocking method [24] which we
proposed recently. In comparison to multilevel algorithms,
the gradient flow approach has the advantages that it is
straightforward to apply to the full theory with dynamical
quarks, and it helps with the problem of operator renorm-
alization. This paves the way for a future study in full QCD.
The signal is improved further via the blocking method, up
to a factor of 7 without additional computation cost, as we
demonstrate in [24]. With these two methods we are able to
achieve high precision for the desired correlators.
Our lattice setup consists of five large and fine lattices, of

which the coarsest one (643 × 16) is already as large as the
finest lattice used in previous literature. The largest and
finest lattice in our study is of size 1443 × 36 at β ¼ 7.544
(a ¼ 0.0117 fm). With our setup, including such a fine
lattice, the continuum extrapolation is well-behaved and,
thanks to the large temporal extents of the underlying
lattices, the results of the spectral reconstruction will be
more reliable.
In the following we will start with the definition of the

EMT under gradient flow and explain how shear and bulk
viscosity can be obtained from the EMT correlators. In
Sec. III we give the lattice setup used in this study. Sec. IV
is devoted to the nonperturbative renormalization of the
EMT correlators. After a short illustration to the temper-
ature-correction and tree-level improvement in Sec. V we
continue with the discussions of continuum extrapolation
and flow-time extrapolation in Sec. VI. In Sec. VII we
focus on the extraction of viscosities via spectral analysis
and provide our estimates for the viscosities. The con-
clusion is given in Sec. VIII.

II. TRANSPORT, ENERGY-MOMENTUM
TENSOR, AND GRADIENT FLOW

The fundamental object of our study is the energy-
momentum tensor Tμν, defined as the Noether current of
4-translation symmetry (or equivalently as the variation of
the action with respect to the spacetime metric). Shear
viscosity is the response of Tij to shear flow, under which
the traceless part of ∂ivj is nonzero. Shear flow also couples
to the energy-momentum tensor, so the Kubo relation
describing the shear viscosity involves a correlation func-
tion of two traceless energy-momentum tensors,

ηðTÞ ¼ lim
ω→0

ρshearðω; TÞ
ω

; ð1Þ

ρshearðω; TÞ ¼
1

10

Z
d3xdt eiωth½πijðx; tÞ; πijð0; 0Þ�i;

πij ¼ Tij − 1

3
δijTkk: ð2Þ

Similarly, bulk viscosity is the response of the trace of the
energy-momentum tensor to a divergent fluid flow, which
also couples to the trace of the energy-momentum tensor,

ζðTÞ ¼ 1

9
lim
ω→0

ρbulkðω; TÞ
ω

; ð3Þ

ρbulk ¼
Z

d3xdt eiωth½Tμμðx; tÞ; Tννð0; 0Þ�i: ð4Þ

Our approach will be to use analyticity to relate these
spectral functions to the Euclidean, time-dependent corre-
lation (still at zero momentum or equivalently with

R
d3x),

GðτÞ ¼
Z

∞

0

dω
π

cosh½ωð1=2T − τÞ�
sinhðω=2TÞ ρðω; TÞ: ð5Þ

This expression can in principle be inverted to determine
the spectral function, a task we will return to in Sec. VIII.
Here GðτÞ is the Euclidean function associated to the
respective spectral function, that is,

GshearðτÞ ¼
1

10

Z
d3xhπijð0; 0⃗Þπijðτ; x⃗Þi;

GbulkðτÞ ¼
Z

d3xhTμμð0; 0⃗ÞTμμðτ; x⃗Þi: ð6Þ

Our main task will be evaluating the continuum limit of
these correlation functions precisely.
There are two principle challenges when treating energy-

momentum tensor correlations on the lattice; the correla-
tions are very noisy, and because of the lack of continuous
translation symmetry on the lattice, there is no obvious
choice for the energy-momentum tensor operator. In
particular, different components of πij renormalize differ-
ently, which presents a challenge. Both problems are
ameliorated if we utilize gradient flow to generate our
energy-momentum operators. Gradient flow is defined as
the iterative replacement of the gauge fields AμðxÞ with
fields containing less UV fluctuations, Bμðx; τFÞ, through
the definitions [20]
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Bνðx; τF ¼ 0Þ ¼ AνðxÞ;
_Bμ ¼ DνGνμ;

Gμν ¼ ∂μBν − ∂νBμ þ ½Bμ; Bν�;
Dμ ¼ ∂μ þ ½Bμ; ·�: ð7Þ

That is, at τF ¼ 0 the flowed field is the nonflowed field,
but the field then evolves under a covariant heat equation
which iteratively removes the most UV fluctuations of the
field. Using the flowed field to construct operators such as
the energy-momentum tensor leads to operators with well
behaved renormalization properties and improved rota-
tional invariance. In terms of the gradient-flowed field,
we define the gradient-flowed squared field strength
operator and the traceless tensor operator as

EðτF; xÞ ¼
1

4
Fa
ρσðx; τFÞFa

ρσðx; τFÞ;
Uμνðx; τFÞ ¼ Fa

μρðx; τFÞFa
νρðx; τFÞ − δμνEðτF; xÞ: ð8Þ

The energy-momentum tensor can then be written in terms
of these two operators and two not yet known coefficients
as [25]

TμνðτF; xÞ ¼ c1ðτFÞUμνðτF; xÞ þ 4c2ðτFÞδμνEðτF; xÞ: ð9Þ

Here c1, c2 are the coefficients on the traceless and pure-
trace parts of the tensor, respectively. Arguably one should
perform a vacuum subtraction from EðτF; xÞ, but in practice
we always compute connected correlation functions, which
implements such a subtraction automatically.
There are two approaches to determining the coefficients

c1; c2ðτFÞ. Suzuki has determined them up to 2-loop and
3-loop order in the MS-scheme [26]:

cðN
2LOÞ

1 ðτFÞ ¼
1

g2ðμÞ
X2
n¼0

kðnÞ1 ðLðμ; τFÞÞ
�
g2ðμÞ
ð4πÞ2

�
n
; ð10Þ

cðN
3LOÞ

2 ðτFÞ ¼
1

g2ðμÞ
X4
n¼1

kðnÞ2 ðLðμ; τFÞÞ
�
g2ðμÞ
ð4πÞ2

�
n
; ð11Þ

where the coefficients kðnÞ1 , kðnÞ2 can be found in [27,28].
Here Lðμ; τFÞ≡ logð2μ2eγEτFÞ and the running cou-
pling can be evaluated in the MS-scheme at scale
μ ¼ 1=

ffiffiffiffiffiffiffi
8τF

p
[29]. The series for c2 begins with a constant

and is known to one higher order than for c1; therefore it
suffers very little coupling and renormalization-point
uncertainty, and is more accurate than any numerics-based
nonperturbative estimate which we could develop.
Therefore, we use the series expansion for c2. The error
in this series expansion is negligible, below 0.1%. This will
be swamped by statistical errors in our correlation functions
and will play no role in our error analysis.

In contrast, since c1 depends on the coupling at leading
order, the use of a series expansion is significantly less
reliable. Instead, we will perform a nonperturbative
renormalization on the lattice in Sec. IV, based on ideas
developed by Giusti and Pepe [30].
According to small-flow time expansion [31], any

composite operator at finite flow time can be expressed
as superposition of renormalized operators with finite,
flow-dependent coefficients [32]. That is, one can expand
our stress-tensor operator in an operator product expansion,
where the first term is the desired stress tensor and higher
terms represent various higher-dimension operators with
coefficients containing positive powers of τF. Therefore,
one expects that the correlation functions we evaluate, at
separation τ, correspond to the correct correlation func-
tions, plus corrections which appear as a series expansion in
ðτF=τ2Þ. Determining the desired correlation function there-
fore requires an extrapolation to τF → 0 to eliminate the
effects of these high-dimension contaminants. Only some
finite range of τF values will actually be useful in this
extrapolation; larger values of τF, such that ðτF=τ2Þ is not
small, will be outside of the range where an extrapolation is
possible. Solving Eq. (7) perturbatively suggests that the
flow smears the gauge field with a radius r ≃

ffiffiffiffiffiffiffi
8τF

p
[20]. In

general this radius should be larger than one lattice spacing
to suppress the lattice effects and noise, and at the same
time smaller than half the lattice extent so that the flow
radius does not interact with the lattice periodicity. For a
specific operator there can be further constraints on the
flow radius. How much flow can be applied and what
Ansatz should be used for the τF → 0 extrapolation will be
discussed in a later section.

III. LATTICE SETUP

Our lattice calculations are carried out in SUð3Þ Yang-
Mills theory in four-dimensional spacetime with periodic
boundary conditions for all directions. We summarize the
settings in Table I. The gauge configurations are generated
using the standard Wilson gauge action on five large, fine,
isotropic lattices. On each lattice we generate 10,000
configurations. To ensure the gauge fields are fully ther-
malized the first 4,000 sweeps (each consists of one heat
bath and four over-relaxation steps) are discarded. In the
sampling procedure the configurations are stored after

TABLE I. β values, lattice spacings, lattice sizes, blocking bin
size nσ and number of configurations in this study.

a (fm) a−1 (GeV) Nσ nσ Nτ β T=Tc #Configuration

0.0262 7.534 64 4 16 6.8736 1.5104 10000
0.0215 9.187 80 4 20 7.0350 1.4734 10000
0.0178 11.11 96 4 24 7.1920 1.4848 10000
0.0140 14.14 120 6 30 7.3940 1.5118 10000
0.0117 16.88 144 8 36 7.5440 1.5042 10000
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every 500 sweeps. This removes the autocorrelations in
observables as we have confirmed. All the lattices are set to
the same temperature ∼1.5Tc by tuning the β value. The
scale is set via the Sommer parameter r0 [33] with state-of-
the-art value r0Tc ¼ 0.7457 [34]. The parametrization form
needed in scale setting is taken from [34] with updated
coefficients from [35].
We use the clover definition of the energy-momentum

tensor appearing in Eq. (8). The gradient flow is a
Symanzik improved version [36]. We measure the
EMT correlators at 140 discrete flow times in the rangeffiffiffiffiffiffiffi
8τF

p
T ∈ f0.004;…; 0.375g using an adaptive step-size

method. In this method the step size is updated after each
integration step such that the error in the integration does
not exceed a certain tolerance [37]. The bin size used in the
blocking method is given as nσ in Table I.

IV. RENORMALIZATION

In this section we describe how we determine the
renormalization constants appearing in Eq. (9). We deter-
mine the constant c1 using a method inspired by the work
of Giusti and Pepe [30]. Namely, we observe that the
enthalpy density is given by

hϵþ PiτF ¼ c1ðτFÞ
�
1

3
UiiðτFÞ −U00ðτFÞ

�
; ð12Þ

where “0” denotes the time direction. Since ϵþ P has been
measured at the subpercent level [38], we can determine c1
through the ratio c1ðτFÞ ¼ hϵþ PiτF=h13UiiðτFÞ − U00ðτFÞi.
We will explain below why this also determines the coef-
ficients for the off-diagonal components of the stress tensor,
to sufficient precision for this work.
Unfortunately the enthalpy density is proportional to T4

and therefore to N−4
τ , which leads to a poor signal-to-noise

ratio for the finest lattices. We overcome this limitation by
measuring ϵþ P at a range of Nτ values listed in Table II,
not just the ones given in Table I. This is possible because
the renormalization constant c1 depends on the lattice
spacing but not on the temperature. However, after enough
gradient flow, the gradient flow radius starts to interact with
the periodicity radius and the result becomes contaminated
and unreliable. A leading-order perturbative estimate of this
effect is that [39]

h1
3
Uii −U00iflowed
ð1
3
Uii − U00Þtrue

¼ 1 −
180

π4
e−1=x

�
1þ 1

x
þ 1

2x2

�
;

with x ¼ 8τFT2: ð13Þ

We illustrate the method, and the effect of the different
Nτ choices, in Fig. 1, which shows c1 for our finest lattice at
different temperatures. It can be seen that, at very small
flow times c1, measurements from different temperatures
agree with each other, with smaller statistical errors for the

smaller Nτ values. With increasing flow time, the higher-
temperature c1 values start to deviate from the lower ones.
The point where Eq. (13) implies a 1% correction is marked
for each Nτ value by a vertical bar, and it corresponds well
with the flow time value where a given lattice starts to
deviate clearly from the larger-Nτ lattices.
Our final estimate for c1 will be based on a weighted

average of the value determined from each Nτ value we
explored. The weight is determined as 1=ðσstat þ σsystÞ2
where σstat is the statistical uncertainty from the lattice data
and σsyst is the systematic shift as determined from Eq. (13).
The averaged c1 is the black curve labeled “combined”
in Fig. 1.
We repeat this procedure for the other lattice spacings and

summarize the final c1 in Fig. 2. The statistical error in c1 is
small, ranging from 1.1% at the smallest flow timewe use to
0.27% at the largest flow timewe use. A table presenting the
statistical uncertainties of c1 at each lattice spacing for a
range of flow times is provided in Appendix A.
Let us now focus on the small flow-time region, to

establish how much flow time is enough to eliminate lattice
spacing effects. We have added one more, still finer lattice
(β ¼ 7.793, with Nτ ¼ 48 when T=Tc ¼ 1.5) so that we
can compare to a still more continuumlike case. We can see
that lattice cutoff effects are suppressed at large flow times
but at small flow times they are noticeable. To see down to
what flow time the c1 is free of lattice cutoff effects, we plot
the ratio c1=c1ðβ ¼ 7.793Þ in the right panel. In order to see
more clearly how the different lattice spacings differ from
each other, we have plotted error bars based only on the
statistical errors in the coarser lattices—that is, statistical
errors in the β ¼ 7.793 lattice are treated as a common
systematic error in the right plot. The figure shows that the
lattices give compatible c1 values as long as the flow time is

FIG. 1. c1 measured at several higher temperatures at β ¼ 7.544
and their weighted average. The vertical bars indicate the flow
depth where each Nτ choice is expected to become unreliable.
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large enough, but each lattice starts to deviate at a flow time
such that τF=a2 becomes order one. Specifically, in every
case the deviation from continuum behavior reaches 2%
when τF ≃ 0.4a2. The deviation rapidly becomes more
severe below this point. This deviation from continuum
behavior indicates that the applied gradient flow is not
sufficient to supply a continuumlike, well-renormalized
stress-tensor operator. Since the statistical precision of our
EMT correlator data is typically around 2% and since we
want to keep systematic effects smaller than this, we will
impose the condition τF ≥ 0.4a2 when we perform the
double extrapolation of shear correlators in the next section.
Now we calculate c2. According to Eq. (11), the running

coupling in the MS scheme is needed. For that we first

calculate the coupling in the gradient flow-scheme and then
convert it to the MS scheme. In the gradient-flow scheme
the running coupling can be calculated as [40,41]

g2flow ¼ 128π2

3ðN2
c − 1Þ

1

1þ δðτFÞ
hτ2FEi; ð14Þ

where Nc ¼ 3 and E is the energy density defined in
Eq. (8). δðτFÞ can be found in [40,41] as well. Note that the
energy density should be measured at zero temperature. On
the lattice we take large temporal extents to suppress the
thermal effects. The lattices used to study this quantity are
given in Table III. Because of high computation costs the
two finest lattices have smaller-aspect ratios. However,
based on the three coarse lattices, we have seen that finite
volume effects are small compared to the statistical error of
the correlators.
After obtaining τ2FE in the gradient flow scheme, we can

relate it to the one in the MS scheme [29]. This requires
solving a cubic equation, whose solution gives the running
coupling in the MS scheme. Inserting in Eq. (11), we get the
final c2 shown in Fig. 3. The errors are not visible as they are
tiny and in every casemuch smaller than 1%.We can see that

FIG. 2. Left: combined c1 at different lattice spacings. Right: the ratio of c1=c1ðβ ¼ 7.793Þ. The error in the estimation of c1ðβ ¼
7.793Þ is not included in the ratio. because c1ðβ ¼ 7.793Þ is only used as a normalization and its error is irrelevant to the rest analysis.
The temperature T in the legends aT and τFT2 has been fixed to 1.5Tc.

TABLE II. The lattices with smaller temporal extents for the
determination of c1.

β a½fm�ða−1½GeV�Þ Nh
τ Nh

σ #Configuration

6.8736 0.0262 (7.534) 12 64 1000

7.0350 0.0215 (9.187) 10 80 1000
14 80 1000

7.1920 0.0178 (11.11) 12 96 1000
18 96 1000

7.3940 0.0140 (14.14) 10 120 1000
16 120 1000

7.5440 0.0117 (16.88) 12 140 1000
18 120 1000
24 120 1000

7.7930 0.0087 (22.78) 12 144 500
24 144 500
48 192 700

TABLE III. The lattices at T < Tc for the study of c2.

a (fm) a−1 (GeV) Nσ Nτ β T=Tc #Configuration

0.0262 7.534 64 64 6.8736 0.3776 1000
0.0215 9.187 80 80 7.0350 0.3684 1000
0.0178 11.11 96 96 7.1920 0.3712 1000
0.0140 14.14 96 120 7.3940 0.3780 1000
0.0117 16.88 96 144 7.5440 0.3761 1000

VISCOSITY OF PURE-GLUE QCD FROM THE LATTICE PHYS. REV. D 108, 014503 (2023)

014503-5



unlike c1, the difference of c2 among different lattice
spacings is always small. The ratio c2=c2ðβ ¼ 7.544Þ is
always smaller than 1% at all flow times, suggesting that the
cutoff effects can be ignored for c2.

V. LARGE SEPARATIONS
AND NOISE REDUCTION

Evaluating Eq. (6) involves computing a correlator with
an integral over all values of the spatial separation. To
improve signal-to-noise ratio, in practice one evaluatesR
d3xd3ydthTðx; τ þ tÞTðy; tÞi, that is, one performs an

integral over the coordinates of each operator. The corre-
lation function is dominated by small values of coordinate
difference jx − yj. However, the fluctuations in the corre-
lator, and therefore the noise, are approximately separation
independent. Therefore, the inclusion of large separations
makes the evaluation noisy without contributing mean-
ingfully to the signal.
In Ref. [24] we proposed a way to reduce these noise

contributions. The operator of interest (Tμμ or a component
of πij) is first summed over small volumes called blocks, on
a single τ sheet but with a cubic space extent given in
Table I. We evaluate all block-to-block correlators and then
average all correlators which have the same temporal and
block-center spatial separation. Finally, we examine how
the correlation function varies with the space separation
between blocks, replacing the large-separation, small-sig-
nal values with an asymptotic fit as described in [24].
Each index combination of the hπijðx; τÞπijðy; 0Þi cor-

relator has a distinctive angular structure as a function of
the direction of the x⃗ − y⃗ vector. For instance, from
reflection positivity we know that hTxyðr⃗ÞTxyð0Þi < 0 for
r⃗ pointing along the x-axis or y-axis, but it is positive if r⃗
points along the z-axis or the line x ¼ y. In contrast, the

hðTxx − TyyÞðr⃗ÞðTxx − TyyÞð0Þi correlator is positive along
each lattice axis but is negative along the x ¼ y line. In our
blocking procedure, certain block separations primarily
sample blocks which are separated along lattice axes, while
others sample the directions along lattice diagonals or other
combinations. Therefore, TxyTxy-type correlators will be
larger for some blocks and smaller for others, while
Txx − Tyy-type correlators will show the opposite trend.
Including a single component or a subset of possible
components leads to a correlation function which varies
strongly with separation-direction and therefore jumps up
and down as a function of the block separation. This effect
goes away if we include all traceless ij combinations,
which is therefore obligatory. We illustrate this in Fig. 4,
which shows the ππ correlation function as a function of
block separation.
In general, the lattice renormalization constant c1 is

different for Txx − Tyy than for Txy, because the rotational
symmetry which relates them in the continuum is absent on
the lattice [30,42,43]. We have only evaluated the renorm-
alization constant for the former operator type. However,
the application of gradient flow should remove rotation-
invariance violations in operator normalizations up to
corrections suppressed by Oða2=τFÞ. Therefore, any
effects from this operator normalization issue should be
removed in our fixed-τF continuum limit. A recent masters

FIG. 3. c2 measured at T < Tc at different lattice spacings.

FIG. 4. Traceless spatial stress tensor (shear-channel) correlator
between lattice blocks, at a fixed temporal separation, as a
function of box separation, together with statistical error bars.
The black points contain all traceless stress tensor components,
while the red data points contain only the diagonal-type con-
tributions. Some block separations only occur along lattice axes
where the diagonal-type contributions are largest, while other
block separations occur along lattice diagonals where some
diagonal-type contributions are negative. Hence, the red points
jump around, while the black points follow a smooth curve until
the statistical errors become large.
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thesis1 explores both renormalization constants as a func-
tion of flow and finds that they are consistent with each
other within 2% error bars already for τF=a2 ¼ 0.4, the
smallest value used here.
In order to remove the large-separation data and there-

fore its noise, it is necessary to fit the large-separation tail
to a physically-motivated Ansatz. The fitted value is then

used instead of the data at those separations where the
block-by-block signal-to-noise ratio is poor. For our Ansatz
we will use the leading-order perturbative behavior of
the correlation function, accounting for time periodicity,
gradient flow, and our blocking procedure. In vacuum, the
leading-order correlator of two field strength tensors is

hFa
μνðrÞFb

αβð0Þi ¼
g2δab
π2r4

�
δμαδνβ − δμβδνα −

2

r2
ðrμrαδνβ − rμrβδνα − rνrαδμβ þ rνrβδμαÞ

�
: ð15Þ

Applying gradient flow to a depth τF modifies this expression to [39]

hGa
μνðrÞGb

αβð0ÞiτF ¼
g2δab
π2r4

�
Aðr; τFÞðδμαδνβ − δμβδναÞ þ

Bðr; τFÞ
r2

ðrμrαδνβ − rμrβδνα − rνrαδμβ þ rνrβδμαÞ
�
; ð16Þ

Aðr; τFÞ ¼ 1 −
�
1þ r2

8τF

�
e−r

2=8τF ; Bðr; τFÞ ¼ −2þ
�
2 − 2

r2

8τF
þ
�
r2

8τF

�
2
�
e−r

2=8τF : ð17Þ

Note that this is a continuum, not lattice, expression; but
when τF=a2 > 0.5, the lattice-continuum difference for
flowed correlators is small, and the use of a continuum
limit at fixed flow depth based only on data which satisfies
this criterion should avoid the need to include lattice
spacing corrections as well.

Using these expressions, at finite τF; τ; jr⃗j and with
periodic boundaries in the time direction, the leading-
order stress tensor correlator summed over all transverse-
traceless elements T̂ij ¼ Tij − δijTkk=3 relevant for shear
viscosity and for bulk viscosity are

hT̂ijðr⃗; τÞT̂ijð0; 0ÞiτF ∝
X

n1;n2∈Z

Aðr1ÞAðr2Þ
r41r

4
2

þ Aðr1ÞBðr2Þ þ Aðr2ÞBðr1Þ
2r41r

4
2

þ Bðr1ÞBðr2Þ
6r61r

6
2

�
3ðr1 · r2Þ2 þ r⃗2

�
r21 þ r22 − 4r1 · r2 þ

4

5
r⃗2
��

; ð18Þ

hTμμðr⃗; τÞTννð0; 0ÞiτF ∝
X

n1;n2∈Z

Aðr1ÞAðr2Þ
r41r

4
2

þ Aðr1ÞBðr2Þ þ Aðr2ÞBðr1Þ
2r41r

4
2

þ Bðr1ÞBðr2Þ
6r61r

6
2

ð2ðr1 · r2Þ2 þ r21r
2
2Þ; ð19Þ

where r1 ¼ ðτ þ n1β; r⃗Þ and r2 ¼ ðτ þ n2β; r⃗Þ are the 4-
displacement with the temporal displacement shifted by
independent integer multiples of the inverse temperature β.

VI. TEMPERATURE CORRECTION AND TREE
LEVEL IMPROVEMENT

From Table I it can be seen that the temperatures are not
exactly 1.5Tc on all lattices. This setup is adopted for
historical reasons [44,45], and the deviations of the temper-
ature were only discovered after the correlators were
measured. The temperature differences, though small, must

be accounted for when performing a continuum extrapola-
tion. Because the temperature differences are small and the
lattices are fine enough that the continuum extrapolation is
not very severe, we will content ourselves by evaluating the
temperature dependence at the linearized level and at a
single lattice spacing. We then assume that the established
temperature correction also applies at the other lattice
spacings. We choose to perform a linear temperature-
dependence analysis on the lattice which has the largest
deviation from T ¼ 1.5Tc, namely the 20 × 803 lattice with
β≡ β1 ¼ 7.035 and T ¼ 1.4734Tc. For this lattice, we
choose a second β value, β2 ¼ 7.0767, corresponding to
T ¼ 1.5501Tc, and we repeat our correlation function
studies on this lattice. Since the renormalized correlators1Jonas Winter, private communication.
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contain two parts, namely the renormalization constants c1
or c2 and the bare correlators, the corrections for both parts
should be considered. The renormalization constants have
been determined precisely in Sec. IV at β values listed in
Table I. To obtain the one at β ¼ 7.0767 we linearly
interpolate between β ¼ 7.035 and β ¼ 7.192. We then
calculate the renormalized correlators, denoted asG1 andG2

for the lower and higher temperature, respectively, by
multiplying the bare correlations functions and the squared
renormalization constants. We then evaluate the difference,
−1þG2ðτÞ=G1ðτÞ, representing the temperature depend-
ence of the correlation function, as a function of τ and τF.
Statistical errors are computed using bootstrap sampling,
and sinceG1,G2 arise from different ensembles, their errors
are independent and can be propagated via Gaussian error
propagation.
Figure 5 shows the thermal correction for the largest

gradient flow depth we use (and therefore the least noisy
data). The figure shows that the temperature effect is nearly
τ independent except at the smallest τ values (which are
contaminated by lattice effects). Based on this result, we
treat −1þG2=G1 as a function of τF only, determining its
value based on the weighted average of all the points at
τ=a ≥ 4 at each τF. As the figure shows, the thermal
corrections are relatively small, considering that the tem-
perature difference 1.5501 − 1.4734 ¼ 0.0767Tc is signifi-
cantly larger than any of the individual deviations from
1.5Tc shown in Table I. We will therefore use the
determined slope P ¼ ðG2=G1 − 1Þ=ðT2 − T1Þ, averaged
over τ values, and apply it as a linearly interpolated
correction to all data. For instance, data at temperature T
can be interpolated to the temperature T0 through
GðT0Þ ≃GðTÞð1þ PðT0 − TÞÞ. A detailed analysis on
the uncertainties in the temperature correction can be found

in Appendix B. The appendix also presents an alternative
model, which gives a consistent result.
Next, consider discretization effects associated with

computing on a lattice rather than in continuous space.
To suppress the lattice discretization effects, we apply tree
level improvement to the bare correlators. Specifically, if
we assume that the lattice correlation functions will deviate
from the continuum ones in the same way as occurs at
lowest-perturbative order, then we can remove this effect by
rescaling by the ratio of leading-order continuum to lattice-
correlation functions [46,47],

Gt:l:ðτTÞ ¼ GlatðτTÞ ·
GLO

contðτTÞ
GLO

lat ðτTÞ
: ð20Þ

The leading-order continuum correlators in shear channel
and bulk channel can be found in [13,14]

GLO;shear
cont ðτTÞ

T5
¼ 32dA

5π2

�
fðxÞ − π4

72

�
;

GLO;bulk
cont ðτTÞ

T5
¼ 484dA

16π6
g4
�
fðxÞ − π4

60

�
; ð21Þ

where x ¼ 1–2τT, fðxÞ ¼ R
∞
0 ds s4cosh2ðxsÞ=sinh2s and

dA ¼ 8 counting the number of gluons. The leading-order
lattice correlator for clover discretization is available in [47].
For better visibility we always normalize the tree-level
improved correlators with a normalization correlator Gnorm

calculated at τF ¼ 0, where for shear channelwe useGnorm ≡
GLO;shear

cont and for bulk we use Gnorm ≡GLO;bulk
cont =g4.

After temperature corrections, tree-level improvement
and renormalization, in Fig. 6 we show the lattice

FIG. 5. The temperature correction when going from β1 ¼ 7.035 to β2 ¼ 7.0767 on an 803 × 20 lattice, for shear (left) and bulk
(right). Each data point is found at the maximum flow time used in the flow-time extrapolation (see Sec. VII).
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correlators normalized by the free continuum correlators on
1443 × 36 lattice at different flow times, in both the shear
and the bulk channels. We have not plotted data down to
small flow times because it has large errors. We can see that
as flow time increases the signal-to-noise ratio improves.
At very large flow times the signal is strongly modified by
flow effects and we leave the regimewhere an extrapolation
τF → 0 can be performed.

VII. DOUBLE EXTRAPOLATION

The double extrapolation contains two steps: first we
perform the continuum extrapolation a → 0, and then we
perform a flow-time-to-zero extrapolation. As we pointed
out in Ref. [18], this has the advantage that the continuum
extrapolation eliminates terms of form a2=τF, so that the τF
extrapolation will consist only of positive powers. Before
the continuum extrapolation, the correlators on coarse
lattices have to be interpolated to the separations of the

finest lattice, for details see, for example, references [18,48].
In the continuum extrapolation we use the Ansatz

Gt:l:ðNτÞ
GnormðNτÞ

¼ m · N−2
τ þ b; ð22Þ

because the lattice action has leading discretization errors
of order a2. Here m and b are fit parameters that can be
different for each temporal separation and flow time. The
continuum estimates for the (normalized) correlators are
given by b≡Gcont=Gnorm.
Figure 7 shows how good the fit Ansatz, Eq. (22), works

at an intermediate flow time τFT2 ¼ 0.00416. We can see
for the bulk channel that in some cases the fit is poor in the
sense that χ2=dof > 1. Our procedure is to enlarge the error
bars by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2=dof

p
in these cases. After the continuum

extrapolation we collect the continuum estimates for each
flow time and show them in gray bands in Fig. 8.

FIG. 6. Tree-level-improved EMT correlators in the shear channel (left) and bulk channel (right) normalized by the leading-order
correlator on the 1443 × 36 lattice at different flow times. (The tree-level correlator used for the normalization in the bulk channel is
missing a factor of g4, which explains the large ratio.)

FIG. 7. The continuum extrapolation of EMT correlators in shear channel (left) and bulk channel (right) at flow time τFT2 ¼ 0.00416,
fit using Eq. (22). The error bars on data points are statistical; the errors on the extrapolated values are the uncertainties from the
extrapolated fit.
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Now we consider the τF → 0 extrapolation. To perform
the extrapolation, we need to understand the functional
dependence on τF, and we need to determine over what
range of τF values to perform the extrapolation. For general
values of τF=τ2, the correlator is a complicated function of
this ratio, in some cases even taking on a different sign than
the small-τF value [39]. However, if τF=τ2 is small, then as
discussed near the end of Sec. II, we expect the flowed
stress tensor to be described in terms of an operator product
expansion, with the leading coefficient equaling the stress
tensor and with higher-dimension operators suppressed by
powers of τF. As a result, in this regime the small-τF
expansion of the correlation function should approach
τF → 0 with polynomial-in-τF corrections. (We will ignore
possible anomalous dimensions in this discussion.)
The more fitting coefficients we use, the larger the errors

in the resulting fit. Therefore, we want to avoid using two
extrapolation coefficients, e.g., a fit of form GðτF=τ2Þ ¼
Aþ BτF=τ2 þ Cτ2F=τ

4. And if we use a wide enough data
range that the τ2F=τ

4 coefficient is really relevant, then there
is a danger that we also need still higher-order coefficients.
Therefore, we will restrict ourselves to a region where the
total variation in GðτF=τ2Þ appears to be at most 20% from
its extrapolated value. In this range, within the few %
accuracy which is our goal, we expect that a linear
extrapolation, e.g., GðτF=τ2Þ ¼ Aþ BτF=τ2, should be
sufficient. Based on our previous experience with the
topological density operator [48], we expect that a fitting
range out to

ffiffiffiffiffiffiffiffiffiffiffi
8τmax

F

p ¼ 0.5220τ should remain in this
small-correction regime. We will fit a range of τF from
this maximum down to half this value, because the
correlator becomes so noisy at smaller τF that extending
the range further is not helpful. In addition, to prevent
lattice spacing effects of form a2=τF, we restrict to values
with τF=a2 ≥ 0.4 as already discussed. For small τ values
this constraint excludes too much of the τF range over
which we want to extrapolate, which prevents us from

determining the correlator at small temporal separations.
The resulting correlators within the range ½0.5τmax

F ; τmax
F � are

shown as colored bands in Fig. 8.
For the extrapolation of the bulk viscosity correlators we

have taken a slightly different approach, based on the
work of [25,26,49]. A recent three-loop calculation of the
flow-dependence of the EMT trace suggests a finite-τF
fitting function of form [26]

θðτFÞ ¼
�
1 − c

�
g2ðμðτFÞÞ
ð4πÞ

�
3
�
θðτF ¼ 0Þ; ð23Þ

where c and θðτF ¼ 0Þ are fit parameters. Since what we
measured in this study is the correlators of θ, we take the
square root of the correlators and fit it to Eq. (23). The fitted
curves are shown as dashed black lines in Fig. 8 and the
extrapolated correlators are shown as colored points at
τFT2 ¼ 0. It can be seen that the fit function is almost
linear, indicating that a fit to an Ansatz linear in flow time
(as used in [18,48]) would give similar results. Appendix C
presents more details on both the continuum and the small
flow-time extrapolations. The double extrapolated correla-
tors in both channels are shown in Fig. 9.

VIII. SPECTRAL ANALYSIS

This section is devoted to the spectral extraction from the
extrapolated correlators. We first reconstruct the spectral
function using χ2-fits with models based on perturbative
calculations and then determine the viscosities using the
Backus-Gilbert (BG) method [50].
The spectral reconstruction performed here is math-

ematically ill-posed [51]. One feature of this is the
difficulty in quoting a robust spectral function since
uniqueness of any solution is a priori not given.
In the case of the spectral analysis via fit this issue presents

itself as the difficulty in finding a global, well-determined
minimum. In principle, if the “correct” Ansatz were known,

FIG. 8. The τF → 0 extrapolation of continuum-extrapolated EMT correlators in the shear channel (left) and bulk channel (right).
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with enough data points and without considering any noise
the analysis should yield a global minimum in the χ2-plane.
Without this knowledge and with noise included, however,
this minimum is less well determinable and a fit often yields
χ2-values that are not very sensitive to the parameter choices.
Consequently, it becomes difficult to choosewith confidence
which solution and Ansatz is the best description. In the
followingwe address this difficulty by augmenting our study
with a spectral analysis using a method that does not rely on
an Ansatz per se in form of the BG method.

A. Spectral function from model fits

According to Eqs. (1) and (3), the viscosities are
proportional to the slope of the spectral function at zero
frequency. But the large frequency part also contributes
considerably to the correlators and they can be computed
perturbatively. For the shear channel the large frequency
part has been computed both at leading order (LO) and at
next-to-leading order (NLO) [52],

ρLOshearðωÞ ¼
dAω4

10π
coth

�
ω

4T

�
;

ρNLOshearðωÞ ¼ ρLOshearðωÞ − 4dAω4 coth

�
ω

4T

�
g2ðμ̄ÞNc

ð4πÞ3

×

�
2

9
þ ϕη

TðωÞ
�
: ð24Þ

Note that our definition of the spectral function differs from
that in Ref. [52] by a relative minus sign. Here dA ¼
N2

c − 1 ¼ 8 is the dimension of the adjoint representation.
In the region of ω ≪ πT, the one-loop running coupling
can be fixed via the “EQCD” renormalization point [53]

lnðμ̄optðTÞÞ≡ ln ð4πTÞ − γE −
1

22
: ð25Þ

Using this relation the coupling is fixed to the value
g2ðμ̄optðTÞÞ ¼ 2.2346 atT ¼ 1.5Tc, wherewe use an updated
relation Tc ¼ 1.24ΛMS [34]. For large ω, due to the lack of
explicit logarithms of the renormalization scale in Eq. (24), a
natural choice is given by μ̄optðωÞ ¼ ω [52]. Combining the
above two conditions a switching point for the renormaliza-
tion scale atω=T ¼ 2.146π can be found. The dimensionless
function ϕη

TðωÞ was first determined in Ref. [52] but with a
computational error, which was found in Ref. [54]. In [54]
another term fromHTL resummationwas introduced. Such a
termonly affects small frequencies andwedonot include it in
our spectral analysis, as we do not expect HTL to be reliable
at the nonperturbative regime of small frequencies.
For the bulk channel the LO and NLO spectral function

are also available [55]

ρLObulkðωÞ ¼
dAc2θω

4g4

4π
coth

�
ω

4T

�
;

ρNLObulk ðωÞ ¼ ρLObulkðωÞ þ dAc2θω
4 coth

�
ω

4T

�
g6ðμ̄ÞNc

ð4πÞ3

×

�
22

3
ln

μ̄2

ω2
þ 73

3
þ 8ϕTðωÞ

�
; ð26Þ

where cθ ≈ −b0=2 − b1g2=4, b0 ¼ 11Nc
3ð4πÞ2 and b1 ¼ 34N2

c
3ð4πÞ4.

ϕTðωÞ can be found in [55]. At LO, the running coupling
can not be fixed. For simplicity we fix it to the one at the
switching point at NLO. One can also fix it to another point,
however this will not have effect on our spectral
reconstruction as we shall see later there will be a rescaling
factor to account for this uncertainty. At NLO, for ω ≫ πT

FIG. 9. Double-extrapolated correlators in the shear channel (left) and bulk channel (right). Note that GnormðτTÞ in the bulk channel is
missing a factor of g4, which explains the size and possibly the slope of the resulting correlator ratio.
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the optimization of the scale μ̄ and the running coupling can
be determined [55]

lnðμ̄optðωÞÞ≡ lnðωÞ − 73

44
: ð27Þ

In the opposite regime one should use Eq. (25). Equating
Eqs. (25) to (27) leads to a switching point ω=T¼11.276π.
For an arbitrary ω the larger optimization scale from the
two equations should be used.
The infrared behavior of the spectral function is not

known a priori, and must be modeled. In previous
work [48] we have considered several proposed IR behav-
iors, generally finding that the data is not very restrictive
between different IR Ansätze choices. In this work we will
consider one model with an infrared “peak” and perturba-
tive UV behavior, and two “peak-free”models in which the
IR behavior is linear in ω, the UV behavior is perturbative,
and the spectral function increases continuously between
them,

M1∶
ρðωÞ
ωT3

¼ A
T3

þ B
ρpertðωÞ
ωT3

;

M2∶
ρðωÞ
ωT3

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
A
T3

�
2

þ
�
B
ρpertðωÞ
ωT3

�
2

s
;

M3∶
ρðωÞ
ωT3

¼ A
T3

C2

C2 þ ðω=TÞ2 þ B
ρpertðωÞ
ωT3

: ð28Þ

Here B is a coefficient allowing for a rescaling of the
perturbative result, and A is the size of the IR contribution,
which determines the transport coefficient of interest. In the
first model, we consider a simple sum of an IR and a UV

behavior; in the second, we consider a smooth switch-over
between IR and UV behavior. In the third model, the IR
behavior is a Lorentzian with width parameter C. For
simplicity, we have fixed the width parameter C to unity,
but we also explored other values and we find a rather weak
dependence of the fit quality on the choice. We will use the
range of fit values for A between these models as an
estimate of the value and uncertainty in the viscosity,
though realistically the true spectral function may look
different than any of our models and this introduces a
potentially large systematic uncertainty in our final result.
In addition, for the bulk-viscous channel, there is a known
constant contribution arising from the dependence of Tμμ

on the energy density and on the fluctuations in the system
energy. Specifically, the spectral function is known to
possess a delta function at zero frequency, equal to

ρ=ωT3 ¼ π EþP
T3

ð3c2s−1Þ2
c2s

δðωTÞ. Equivalently, one can subtract

an τ-independent constant of corresponding size from the
Euclidean correlation function. We adopt the values EþP

T3 ¼
5.098 and c2s ¼ 0.2848 that can be calculated from [38].
For the bulk channel our fit has two parameters on 13

data points, leaving 11 degrees of freedom. The leading-
order fit shows a poor χ2=dof, with values of 3.9, 5.4 and
6.3 for M1, M2, and M3 with C ¼ 1. But using the NLO
spectral function returns a good fit, with χ2=dof of 0.4, 0.5
and 0.6. This suggests that the NLO corrections and in
particular the running of the coupling improve the estima-
tion significantly and brings it close to our nonperturbative
determination. The resultant ζ=T3 is 0.086(0.008), 0.133
(0.010), and 0.303(31) for M1, M2, and M3ðC ¼ 1Þ,
respectively.
For the shear channel we find that when using the LO

spectral function the χ2=dof is 4.1, 3.99, and 3.98, and for

FIG. 10. The comparison of fit correlators and lattice correlators (left) and the fit spectral function in the shear channel. In M3 the
width of the Lorentzian peak C has been fixed to 1.
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the NLO spectral function it is 3.7, 4.8, and 3.66,
respectively. This indicates that both LO and NLO calcu-
lations fail to capture our nonperturbative results for the
Euclidean correlator. This indicates that the true form of the
spectral function is something more complicated than our
relatively simple proposals in Eq. (28).
As one attempts to capture possibly missing structure, we

have considered amending the UV part of the spectral
function with an anomalous dimension, namely changing
Eq. (24) by replacingω4withω4þγ .With thismodificationwe
find that the χ2=dof becomes ∼2.0 − 2.1 for all models, both
for the LO and theNLO spectral function. The returned value
of the viscosity, with statistical errors, is η=T3 ¼ 0.84ð0.14Þ,
1.10(0.14) for LO and 0.77(0.16) and 1.09(0.15) for NLO, all
using the first twomodels.ModelM3withC ¼ 1 usingNLO
and an anomalous dimension returns η=T3 ¼ 2.46ð54Þ.
Using an anomalous dimension improves the fit, but
χ2=dof of 2 with eight degrees of freedom still represents
a rather poor fit. We show the ratio of fit correlators to the
lattice data, and the resulting spectral functions in Figs. 10 and
11 for the shear and bulk channel, respectively. It would be
interesting to explore other models for the IR behavior and to
see if any such model can improve the quality of our fit.

B. Spectral function from Backus-Gilbert method

The technical difficulty in performing the spectral
reconstruction can be traced in part to two issues, the
finiteness of the number of data points and their noise. The
first implies a discretization of the integral transform

GðτÞ ¼
Z

∞

0

dωρðωÞKðτ;ωÞ ⇝ GðτiÞ ¼
XNτ

i¼1

ρðωÞK̃ðτi;ωÞ

ð29Þ

i.e., the underlying task is an inverse problem to find ρ at a
given ω, schematically written as ρ ¼ P

i K̃
−1
i Gi.

Consider an estimator ρ̂ of the spectral function at a
given ω̄ by (see e.g., [56,57])

ρ̂ðω̄Þ ¼ fðω̄Þ
Z

∞

0

dωδðω̄;ωÞρðωÞfðωÞ−1; ð30Þ

where fðωÞ is an arbitrary rescaling function and δðω̄;ωÞ is
a smooth function, normalized to

R
∞
0 dωδðω̄;ωÞ ¼ 1, that

may be parametrized as δðω̄;ωÞ ¼ P
i qiðω̄ÞKðτi;ωÞ [50].

This so-called resolution function acts as an averaging
kernel that enables formulating the spectral function
estimator as

ρ̂ðω̄Þ ¼ fðω̄Þ
X
i

qiðω̄ÞGðτiÞ: ð31Þ

In this form it becomes clear that constructing ρ̂, or by
extension ρ, depends crucially on the number of coeffi-
cients available, i.e., the number of data points, and their
behavior (how stable and regular the inverse is). Typically
one is faced with a situation where the coefficients are large
and highly fluctuating, requiring very precise determina-
tions, but at the same time the connected matrix is nearly
singular, requiring a regulator to be inverted safely. The
added effect of noise in the data further complicates this
situation as it affects the precision with which the coef-
ficients can be determined.
Keeping this in mind, one recipe to evaluate ρ̂ðω̄Þ is

given by the Backus-Gilbert method (BGM) [50].
Construct the coefficients qi such that the width Γ, or
spread, of the resolution function in ω becomes minimal,
i.e., in the ideal case limΓ→0 ρ̂ ¼ ρ. Then the solution can be
shown to be

FIG. 11. The comparison of fit correlators and lattice correlators (left) and the fit spectral function in the bulk channel.
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qiðω̄Þ ¼
P

jW
−1
ij ðω̄ÞRðτjÞP

kjRðτkÞW−1
kj ðω̄ÞRðτjÞ

; ð32Þ

Wijðω̄Þ ¼ λ

Z
∞

0

dωKðτi;ωÞðω− ω̄Þ2Kðτj;ωÞ þ ð1− λÞSij;

RðτiÞ ¼
Z

∞

0

dωKðτi;ωÞ: ð33Þ

Here we immediately introduced a regularization scheme
Wij ¼ λWnoreg

ij þ ð1 − λÞSij, where S is the covariance
matrix of the lattice correlators and 0 ≤ λ ≤ 1 is the
regularization parameter. Other regularization schemes,
such as the Tikhonov scheme where Sij ¼ 1, have also
been used in literature, see e.g., [16]. Another recipe where
the qiðω̄Þ are determined with a fixed input resolution
function was presented in [58].
In our implementation we further consider the rescaling

function fðω̄Þ [57]. It rescales the spectral function inside
the integral of Eq. (30) prior to reconstruction and is or may
be reintroduced afterwards. The coefficients qi are changed
as a result and the procedure can be understood as related to
a kernel transformation. In particular divergent behaviors of
the kernel, such as that at ω → 0 can be handled in this way.
Additionally certain well established, global trends of the
spectral function can be built-in, for example the large
frequency behavior ∼ω4. As such the procedure can also be
seen as introducing prior information and some level of
model dependence. Here we consider the function f ¼
ðω=TÞ4= tanh3ðω=4TÞ introduced to regularize the diver-
gence at ω ¼ 0 and to encode the information on the
asymptotic trend.

One key difficulty in the BGM, or any spectral
reconstruction, is the determination of its errors, both
statistical and systematic. The number of points, the
rescaling function, the regularization parameter and the
noise of the data all feed into the estimator result. Here, we
focus on the impact of the regularization parameter λ. We
also tested the impact of using different numbers of points
and rescaling functions, but find that using the maximum
number of points that have a stable solution and the above
mentioned scaling function f lead to the smallest spread of
the resolution function. So in this study we use all the
available data points. Note that λ to some extent also
controls the impact of noise given by the covariance
through the regularization prescription.
Choosing λ one would like to use the value which

minimizes Γðδðω̄;ωÞÞ in the frequency window of interest.
In the left panel of Fig. 12 we show the resolution function
dependence for a broad range λ in the shear channel. We see
that the width is Γðδðω̄;ωÞÞ ∼ 5T except for the two
smallest λ, which implies that the dependence of Γ on λ
is weak. At the same time, when plotting the obtained
spectral functions depending on λ in the right panel of
Fig. 12, we see that the variance of the spectral function and
crucially the value of the intercept at ω̄ ¼ 0 depend strongly
on this parameter. Based on the discussion above the
increasing variance with λ can be understood as insufficient
regularization, while the decreasing variance with λ but
increasing width of the resolution implies the data and
coefficients cannot be combined to form sharp, localized
features.
Nevertheless, a robust result over a broad range in λ

implies a stable solution of the reconstruction. As such
scanning through λ in (0,1) does suggest a lower bound for

FIG. 12. The resolution function (left) and output spectral function (right) at ω̄ ¼ 0 in shear channel at some selected λ values from
Backus-Gilbert analysis.
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the intercept and thereby theviscosity. For the shear viscosity
we find η=T3 ≥ 0.81 (see right panel of Fig. 12). Similarly
for bulk viscosity we obtain ζ=T3 ≥ 0.059.We can see the fit
results determined in previous section safely lie in this range.
One could imagine using a criterion for λ based on the

variance of the output spectral function instead of the spread
of the resolution function, given the strong dependence
observed,. The Morozov discrepancy principle [59] could
be used for this: It states that δρ̂ðω̄Þ=ρ̂ðω̄Þ ¼ δGðτÞ=GðτÞ,
where δGðτÞ denotes the average correlator variance. Since
we are mainly interested in ω̄ ¼ 0 one could impose this
condition by matching δρ̂ð0Þ=ρ̂ð0Þ ¼ δGðT=2Þ=GðT=2Þ, as
the long-τ correlator data dominates the low-ω spectral
function regime [60]. This neglects the resolution function
and the matching gives just a rough approximation to the
more complicated underlying relation. However, applying
this criterionwe arrive at results for η=T3 and ζ=T3 that agree
with the quoted plateau values above.

IX. CONCLUSION

We have calculated the energy-momentum tensor corre-
lators in both the shear and the bulk channel at 1.5Tc in the
quenched approximation on five large and fine lattices. To
improve the signal-to-noise ratio we have applied both the
gradient flow method and the blocking method. We
thoroughly studied the temperature corrections and the
renormalization of the operators. The correlators have been
extrapolated first to the continuum limit and then to the
τF → 0 limit. The final correlators are used to extract the
shear and bulk viscosity based on perturbative models. For
the bulk channel, we find that the NLO spectral function
can describe our lattice data when adding a transport part
with appropriate interpolation. For the shear channel we
were unable to find a fit with better than χ2=d:o:f: ¼ 2. To
further improve the fit quality, we need either a more
flexible model or a better theoretical understanding of the
expected spectral function.
In fitting our data, we find that the statistical errors are

significantly smaller than the difference in fit values found
from various-fit Ansätze choices, despite relatively little
difference in the fit quality from the different Ansätze
choices. This is summarized in Table IV. Therefore we will
estimate the lowest and highest value of viscosity to be the
extreme values we found among the fit functions. Using
s=T3 ¼ 5.098 from [38], our shear and bulk results become

η=s ¼ 0.15 − 0.48; T ¼ 1.5Tc;

ζ=s ¼ 0.017 − 0.059; T ¼ 1.5Tc: ð34Þ

The lower estimates are above the lower bounds from the
Backus-Gilbert analysis. The upper bounds are based on a
model which assumes that there is a relatively narrow feature
near ω ¼ 0, namely a Lorentzian-type peak with a width of
1T. If a strongly-coupled medium does not support long-

lived excitations, this assumption appears unlikely and the
lower limit is more likely to be correct. However, the data
cannot definitively prove or disprove this theoretical preju-
dice. The shear viscosity we obtained in Eq. (34) is close to
the hydrodynamic estimate 1 < ð4πÞη=s < 2.5 [61].
In our opinion, there are two pressing tasks to further

improve on this work. The first is to find bettermodels for the
spectral function’s behavior at low to intermediate frequen-
cies ω ∼ ½1 − 5�T. This will allow a fitting extraction which
makes maximal use of the high-quality data which is now
available. The second task is to extend these results to the
unquenched case. This is not just a matter of performing
much more expensive unquenched simulations. It is also
necessary to understand the renormalization of the more-
complicated unquenched stress tensor operator at the percent
level, which appears to be possible but quite challenging.
Some progress in this direction has been made recently by
Dalla Brida et al. [62], but precision studies including
gradient flow do not yet exist. We leave these developments
for future work. All data from our calculations, presented in
the figures of this paper, can be found in [63].
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APPENDIX A: UNCERTAINTIES OF THE
RENORMALIZATION CONSTANTS

In Sec. IV we introduce the renormalization coefficients
c1,c2 to beusedwith the traceless andpure-trace stress tensor
operators respectively. The coefficient c2 is determined very
accurately from an analytical perturbative series, so there is
no need to specify it further than through Eq. (11).

TABLE IV. Bulk and shear viscosity fit results for three models,
described in the previous section. The errors are statistical only;
the difference between different fit models represents a system-
atic error. In each case, the NLO spectral function at large
momentum was used in the fit.

Model

Measure ζ=T3 η=T3

M1 0.086(8) 0.77(16)
M2 0.133(10) 1.09(15)
M3 0.303(31) 2.46(54)
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The coefficient c1 depends more strongly on flow depth
and lattice spacing, and our nonperturbative determination
contains statistical error bars. Therefore, we present tabu-
lated values with errors in Table V for future reference. The
errors are an important ingredient in our error analysis and
error budget, though the errors in the correlation functions
themselves are typically larger.

APPENDIX B: UNCERTAINTIES IN THE
TEMPERATURE CORRECTION

In correcting for the slight temperature variation between
our lattices, we made the assumption that the temperature
dependence in the spectral function is approximately
separation-independent. Looking at Fig. 5, it also looks

reasonable to assume that the correction is linear in τT.
Therefore, we consider this Ansatz, and consider the
difference between the two assumptions as a source of
systematic uncertainty. This difference is shown for the
specific case of the shear channel, the 64 × 16 lattice, and
the flow depth τFT2 ¼ 0.00416 (same as the one used in
Fig. 7 and Fig. 13). Note that at this flow time the usable
data points must have τT > 0.35. The figure shows that the
difference in these approaches generates an effect which is
small compared to, e.g., statistical errors.

APPENDIX C: THE UNCERTAINTIES IN THE
DOUBLE EXTRAPOLATION

The errors in the continuum extrapolation, shown in
Fig. 7, are statistical errors arising from the data and from
c1. For the data presented, the bulk-viscous extrapolations
are almost flat, but this is not true in general when we
consider other flow depths. We tested for the need for a
linear term in the extrapolation by repeating the fits
assuming no lattice spacing dependence (simply averaging

FIG. 13. The difference of correlators obtained in two different
ways of treating the slope of the correlators with respect to τT in
the temperature correction. Note only data at τT > 0.35 can be
used in later flow-time extrapolation according to the flow-time
limitation.

FIG. 14. The difference of continuum-extrapolated correlators
in shear channel with (top) and without (bottom) the coarsest
lattice.

TABLE V. c1 × 10 at selected flow times in the valid flow time
window for all the lattices. The value, and errors, at flow times
between the listed values are reliably determined by interpolation.

τFT2

N3
s × Nt 643 × 16 803 × 20 963 × 24 1203 × 30 1443 × 36

0.00158 5.40(6) 5.23(1) 5.22(1) 5.24(2) 5.21(2)
0.00203 5.14(5) 5.00(1) 5.01(1) 5.03(2) 5.01(2)
0.00254 4.93(4) 4.82(1) 4.83(1) 4.85(1) 4.85(2)
0.00310 4.75(3) 4.67(1) 4.68(2) 4.69(2) 4.69(2)
0.00372 4.59(2) 4.52(1) 4.53(2) 4.54(2) 4.55(2)
0.00439 4.45(2) 4.38(1) 4.39(2) 4.40(2) 4.41(2)
0.00513 4.32(2) 4.25(1) 4.27(1) 4.28(2) 4.29(2)
0.00591 4.20(1) 4.14(1) 4.15(1) 4.17(2) 4.17(2)
0.00861 3.88(1) 3.83(1) 3.84(1) 3.87(1) 3.87(1)
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data across all lattices). This increases the χ2=d:o:f:
(averaged over all flow times valid for the flow-time
extrapolation) from 1.78 to 4.75, showing that linear
extrapolation is in fact needed.
We also tried continuum extrapolation excluding the

coarsest lattice 643 × 16, which suffers the most severe
discretization effects. We compare the continuum extrapo-
lated correlators in Fig. 14, taking the shear channel as an
example. We can see the central values only change very
mildly, while the errors increase slightly, as expected. Such
changes will affect our estimate of the viscosities by less
than the quoted statistical errors.
Next consider the extrapolation to zero flow depth. In the

main text we argue that the operator product expansion
predicts flow-depth effects which are polynomial in
ðτF=τ2Þ, at least where this parameter is small. We can
then compare three small-flow fit models: a constant, a
linear extrapolation, and a quadratic fit,

F1∶ GðτF=τ2Þ ¼ A;

F2∶ GðτF=τ2Þ ¼ Aþ BτF=τ2;

F3∶ GðτF=τ2Þ ¼ Aþ BτF=τ2 þ Cτ2F=τ
4: ðC1Þ

In Table VI we summarize the flow extrapolated results
in the shear channel for the relative error of A in percentage
(averaged over τT ∈ ½0.22; 0.5�) and averaged χ2=d:o:f:
using each of these models, all performed in the same flow-
time windows which we use in the main text. It can be seen
that fitting the data in Fig. 8 without a linear term leads to a

very poor fit, with χ2=d:o:f: values in the range of [5.5,
28.4]. Adding a τ2F term over-fits the data, dramatically
increasing the errors, but is not justified by the very small
improvement in χ2.

APPENDIX D: RELATIVE IMPORTANCE
OF STATISTICAL ERROR SOURCES

Statistical errors arise both in our determined c1, c2 values
(normalization coefficients for the stress tensor) and directly
as statistical fluctuations in the measured correlators. To
compare the relative importance of these two sources, we
have repeated our analysis but leaving out the errors in c1 (the
errors in c2 are so small that they make no difference).
Table VII shows that leaving out the errors in c1 (middle
column) only slightly reduces the final statistical error in the
fully extrapolated correlation function. Therefore, the errors
in the Euclidean data are, in practice, dominated by statistical
errors in the determined correlation functions.
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