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Abstract We extend our analysis of bound states in N = 1
supersymmetric Yang–Mills theory by the consideration of
baryonic operators, which are composed of three gluino
fields. The corresponding states are similar to the baryons
in QCD, but due to the difference between gluino and quark
fields, their properties and the fermion line contractions
involved in their correlation functions are different from
QCD. In this work, we first explain the derivation of these
operators and the contractions needed in numerical calcula-
tions of their correlators. In contrast to QCD the correlators
contain a spectacle piece, which requires methods for all-to-
all propagators. We provide a first estimate of the two-point
function and the mass of the lightest baryonic state in N = 1
supersymmetric Yang–Mills theory.

1 Introduction

Supersymmetry (SUSY) provides field theoretic models,
which are interesting in view of various aspects of elemen-
tary particle theory. Supersymmetric extensions of the Stan-
dard Model are able to resolve the hierarchy problem [1],
and they include dark matter candidates [2]. Supersymmetry
enforces structural properties on models that can be investi-
gated by perturbative or nonperturbative methods. This arti-
cle addresses theN = 1 supersymmetric Yang–Mills (SYM)
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theory, which represents the supersymmetric extension of
the gluonic sector of the Standard Model [3]. Gluons are
described as usual by non-abelian gauge fields Aa

μ(x) for
gauge group SU(Nc), where a = 1, . . . , N 2

c − 1. In addi-
tion to the gluons, SYM theory contains gluinos as their
superpartners. Gluinos are Majorana fermions transforming
under the adjoint representation of the gauge group. They
are described by gluino fields λa(x). In Minkowski space,
the on-shell Lagrangian for N = 1 SYM theory, describing
strongly interacting gluons and gluinos, is given by

LSYM = −1

4
Fa

μνF
a,μν + i

2
λ̄aγ μ

(
Dμλ

)a − mg̃

2
λ̄aλa . (1)

Here Fa
μν is the non-abelian field strength tensor, and Dμ is

the covariant derivative in the adjoint representation of the
gauge group. The Lagrangian also includes a gluino mass
term with mass mg̃ . For mg̃ �= 0 this term breaks SUSY
softly, which means that it does not affect the renormalisation
properties of the theory and that the spectrum of the theory
depends on the gluino mass in a continuous way.

In our previous investigations of SYM theory, we have
concentrated on the low-lying mass spectrum of the theory
with gauge group SU(2) and SU(3), which we have calculated
nonperturbatively from first principles using Monte Carlo
techniques [4–8]. In addition, we have studied the SUSY
Ward identities [9,10]. The particle spectrum of SYM theory
is expected to consist of color neutral bound states of glu-
ons and gluinos, which should form mass degenerate super-
multiplets, if SUSY is not broken [11,12]. In our numerical
calculations, extrapolated to the continuum limit, we indeed
obtain mass degenerate supermultiplets [8].

The predictions of [11,12] for the low-lying supermul-
tiplets are based on effective Lagrangeans, which describe
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bound states of two gluinos, bound states of a gluon and
a gluino, and glueballs. Our previous numerical calcula-
tions have been focused on these types of particles. Due
to the fact that gluinos are in the adjoint representation of
the gauge group, it is, however, also possible for any num-
ber Nc of colors to form color neutral bound states of three
gluinos. As they are analogous to the baryons of QCD, we
call these bound states generally “baryons”, even for gauge
group SU(2), although bound states of Nc fermions would
commonly be called baryons.

Baryonic states in SYM theory have so far not being con-
sidered in the literature. It is the aim of this article to describe
the theoretical framework for a numerical study of baryons
in SYM theory, and to present the results of an explorative
calculation.

Related baryonic states have been investigated in SU(2)
Yang–Mills theory coupled to one Dirac fermion in the
adjoint representation [13] with a different motivation from
our study. In this case, there are conjectures about baryonic
fields as dominant low energy degrees of freedom [14].

For the Monte-Carlo simulations on a Euclidean four-
dimensional hypercubic lattice we use the action proposed by
Curci and Veneziano [15]. The gauge part Sg of the complete
action S = Sg + S f is the usual plaquette action

Sg = − β

Nc

∑

p

Re
[
tr

(
Up

)]
, (2)

with the inverse gauge coupling given by β = 2Nc/g2. In
the fermionic part S f the gluinos are implemented as Wilson
fermions:

S f = 1

2

∑

x

{
λ̄axλ

a
x − κ

4∑

μ=1

[
λ̄ax+μ̂

Vab,xμ(1 + γμ)λbx

+λ̄axV
T
ab,xμ(1 − γμ)λbx+μ̂

] }
(3)

≡ 1

2

∑

x,y

λ̄ax D
ab
w (x, y)λby, (4)

where Dw is the Wilson–Dirac matrix. The link vari-
ables in the adjoint representation are given by Vab,xμ =
2 tr (U †

xμTaUxμTb), where Ta are the generators of the gauge
group. The hopping parameter κ is related to the bare gluino
mass mg̃ by κ = 1/(2mg̃ + 8). In order to approach the limit
of vanishing gluino mass, the hopping parameter has to be
tuned properly. In our numerical investigations the fermionic
part is additionally O(a) improved by adding the clover term
−(csw/4) λ̄(x)σμνFμνλ(x) [16].

2 Baryon correlation functions

2.1 Baryon operators

The mass of the lightest baryonic bound state in a channel
specified by particular quantum numbers is obtained from the
correlation function of a corresponding interpolating opera-
tor W (x). Zero spatial momentum is enforced by summing
over spatial coordinates,

W0(t) =
∑

�x
W (t, �x). (5)

We consider local baryon operators W (x) containing the
product of three gluino fields λ(x) at the same point x . A pos-
sible general construction, similar to the Rarita–Schwinger
field [17], is

W (x) = tabc�
Aλa(x)

(
λT
b (x)�Bλc(x)

)
, (6)

where �A and �B are 4 × 4 spin matrices, and W (x) is a
spinor. We choose �A = 1 for simplicity, and denote �B =
�. In order that the baryon operator is a color singlet, tabc
has to be an invariant color tensor. One choice would be
the completely antisymmetric structure constants fabc of the
gauge group. In the case of SU(2) this is the antisymmetric
tensor εabc. The matrix � has then to be symmetric, otherwise
W (x) would be zero identically due to the Grassmann nature
of the gluino field. For SU(3) there is another choice, namely
the symmetric color tensor dabc. In this case � has to be
antisymmetric.

The spin of the baryon depends on the choice of �. Taking
the Majorana condition

λ̄(x) = λT (x)C (7)

into account, where C is the charge conjugation matrix, the
factor λT

b (x)�λc(x) transforms as a singlet under spatial rota-
tions for � = Cγ4,Cγ5, iγ4Cγ5. Consequently, for these
choices W (x) describes a baryon with spin 1/2. On the other
hand, for � = Cγi , i = 1, 2, 3, the factor λT

b (x)�λc(x)
transforms as a spatial vector, and W (x) will in general con-
tain spin 3/2 and spin 1/2 contributions [18]. The projections
to definite spin are involved and are discussed in [19].

2.2 Baryonic correlation functions

The correlation functions, needed for the computation of
baryon masses, are obtained from the interpolating field
W (x) and its conjugate field W (x) as
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B(x, y) = 〈W (x)W (y)〉, (8)

where W (x) is given by

W (x) = (CW (x))T (9)

up to a sign depending on the choice of the spin matrix [20].
With explicit Dirac indices the correlation function reads

Bαδ(x, y) = 〈Wα(x)W
δ
(y)〉 = 〈Wα(x)Cδα′

Wα′
(y)〉

= tabcta′b′c′�βγ �β ′γ ′
Cδα′

× 〈λα
a (x)λβ

b (x)λγ
c (x)λα′

a′ (y)λ
β ′
b′ (y)λ

γ ′
c′ (y)〉.

(10)

In the numerical calculations the fermionic expectation val-
ues

〈O〉F =
∫
Dλ O e−S f (11)

in a given gauge field background are needed. By Wick’s
theorem they can be expressed in terms of the gluino two-
point function

K αβ
ab (x, y) = 〈λα

a (x)λβ
b (y)〉F . (12)

The antisymmetric matrix K is related to the gluino propa-
gator by

K αβ
ab (x, y) = − (�(x, y)C)

αβ
ab , (13)

where the propagator � = D−1
w is the inverse of the Wilson-

Dirac matrix Dw. For the product of six gluino fields, taking
into account the fermionic signs, we get the following 15
terms:

〈λα
a (x)λβ

b (x)λγ
c (x)λα′

a′ (y)λ
β ′
b′ (y)λ

γ ′
c′ (y)〉F

= +K αβ
ab (x, x)K γα′

ca′ (x, y)K β ′γ ′
b′c′ (y, y)

− K αβ
ab (x, x)K γβ ′

cb′ (x, y)K α′γ ′
a′c′ (y, y)

+ K αβ
ab (x, x)K γ γ ′

cc′ (x, y)K α′β ′
a′b′ (y, y)

− K αγ
ac (x, x)K βα′

ba′ (x, y)K β ′γ ′
b′c′ (y, y)

+ K αγ
ac (x, x)K ββ ′

bb′ (x, y)K
α′γ ′
a′c′ (y, y)

− K αγ
ac (x, x)K βγ ′

bc′ (x, y)K α′β ′
a′b′ (y, y)

+ K αα′
aa′ (x, y)K

βγ

bc (x, x)K β ′γ ′
b′c′ (y, y)

− K αα′
aa′ (x, y)K

ββ ′
bb′ (x, y)K

γ γ ′
cc′ (x, y)

+ K αα′
aa′ (x, y)K

βγ ′
bc′ (x, y)K γβ ′

cb′ (x, y)

− K αβ ′
ab′ (x, y)K

βγ

bc (x, x)K α′γ ′
a′c′ (y, y)

+ K αβ ′
ab′ (x, y)K

βα′
ba′ (x, y)K γ γ ′

cc′ (x, y)

− K αβ ′
ab′ (x, y)K

βγ ′
bc′ (x, y)K γα′

ca′ (y, y)

+ K αγ ′
ac′ (x, y)K βγ

bc (x, x)K α′β ′
a′b′ (y, y)

− K αγ ′
ac′ (x, y)K βα′

ba′ (x, y)K γβ ′
cb′ (x, y)

+ K αγ ′
ac′ (x, y)K ββ ′

bb′ (x, y)K
γα′
ca′ (x, y). (14)

In the correlation function some of these terms can be com-
bined, using the fact, that tabc is totally antisymmetric and
�βγ is symmetric, or vice versa. We are then left with

Bαδ(x, y) = tabcta′b′c′�βγ �β ′γ ′
Cδα′

×
{

− 2K αα′
aa′ (x, y)K

ββ ′
bb′ (x, y)K

γ γ ′
cc′ (x, y)

− 4K αβ ′
ab′ (x, y)K

βγ ′
bc′ (x, y)K γα′

ca′ (x, y)

− 2K αβ
ab (x, x)K γα′

ca′ (x, y)K γ ′β ′
c′b′ (y, y)

− 4K αβ
ab (x, x)K β ′γ

b′c (y, x)K γ ′α′
c′a′ (y, y)

− 1K αα′
aa′ (x, y)K

βγ

bc (x, x)K γ ′β ′
c′b′ (y, y)

+ 2K αβ ′
ab′ (x, y)K

βγ

bc (x, x)K γ ′α′
c′a′ (y, y)

}
. (15)

In the special case� = Cγ4, which we consider in our numer-
ical work, expressing the correlation function in terms of the
propagator leads to

Bαα′
(x, y) = − fabc fa′b′c′(Cγ4)

βγ (Cγ4)
β ′γ ′

×
{

+ 2�αα′
aa′ (x, y)�

ββ ′
bb′ (x, y)�

γγ ′
cc′ (x, y)

+ 4�
αβ ′
ab′ (x, y)�

βγ ′
bc′ (x, y)�γα′

ca′ (x, y)

+ 2�
αβ
ab (x, x)�δα′

ca′ (x, y)�
δ′β ′
c′b′ (y, y)Cγ δCδ′γ ′

+ 4�
αβ
ab (x, x)�β ′γ

b′c (y, x)�γ ′α′
c′a′ (y, y)

+ 1�αα′
aa′ (x, y)�

βδ
bc (x, x)�

δ′β ′
c′b′ (y, y)Cγ δCδ′γ ′

+ 2�αδ′
ac′ (x, y)�

βδ
bc (x, x)�

β ′α′
b′a′ (y, y)Cγ δCδ′γ ′

}
.

(16)

With respect to the dependence on the space-time coordi-
nates the first two terms are summed up to the sunset con-
tribution BSset(x, y), and the remaining four terms to the
spectacle contribution BSpec(x, y), whose graphical repre-
sentations are given in Fig. 1.

According to the availability of gauge ensembles and to
obtain first result for baryon masses, it is numerically less
expensive and convenient to consider gauge group SU(2).
In this case the baryon operator contains the antisymmetric
structure constants tabc = εabc, and the spin matrix � has to
be symmetric. We consider the choice � = Cγ4.

For zero momentum states, projection to definite parity
can be accomplished with the projection operators P± =
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Fig. 1 The “Sunset” and “Spectacle” contributions to the baryon cor-
relation function in SYM theory

1
2 (1 ± γ4) [21]. This finally gives

B±
Sset(x, y) = −εabcεa′b′c′(Cγ4)

βγ (Cγ4)
β ′γ ′

Pαα′
±

×
〈
+ 2�αα′

aa′ (x, y)�
ββ ′
bb′ (x, y)�

γγ ′
cc′ (x, y)

+ 4�
αβ ′
ab′ (x, y)�

βγ ′
bc′ (x, y)�γα′

ca′ (x, y)

〉
, (17)

and

B±
Spec(x, y) = −εabcεa′b′c′ (Cγ4)βγ (Cγ4)β

′γ ′
Pαα′
±

×
〈
+ 2�

αβ
ab (x, x)�δα′

ca′ (x, y)�
δ′β′
c′b′ (y, y)Cγ δCδ′γ ′

+ 4�
αβ
ab (x, x)�β′γ

b′c (y, x)�γ ′α′
c′a′ (y, y)

+ 1�αα′
aa′ (x, y)�

βδ
bc (x, x)�δ′β′

c′b′ (y, y)Cγ δCδ′γ ′

+ 2�αδ′
ac′ (x, y)�

βδ
bc (x, x)�β′α′

b′a′ (y, y)Cγ δCδ′γ ′〉
. (18)

3 Numerical results

We have investigated the baryonic states in N = 1 super-
symmetric Yang–Mills theory with gauge group SU(2) by
means of numerical Monte Carlo techniques. The correla-
tion functions have been calculated based on configurations
produced in previous work [4,22].

As explained in the previous section, the baryon correlator
consists of a sunset and a spectacle contribution that require
different numerical methods. In both cases, the inverse of
the Wilson-Dirac operator is required, which is provided by
standard iterative solvers for a given input vector.

In the sunset contribution, all propagators connect the two
lattice points and a point source can be chosen for the inver-
sion. To complete the contractions, this has to be repeated
for all spin and color indices on the source side.

The spectacle part contains closed loop contributions
(�(x, x) and �(y, y)), in which the propagator connects
each point with itself. These require techniques for a stochas-

tic estimation of all-to-all propagators. We have already
applied similar techniques for the estimation of mesonic
operators in SYM, see [7] for further details. Similar tech-
niques are also applied to flavour singlet mesons in QCD.
The disconnected meson correlator is a product of �(x, x)
and �(y, y), each loop traced separately with appropriate
insertions of gamma matrices over spin and color. For an
estimation of �, an inversion of the Dirac operator is done
for several stochastic source vectors, which leads to an addi-
tional noise contribution in the signal. In practice we use 40
stochastic estimators combined with the exact inverse com-
puted on the subspace spanned by 200 lowest eigenmodes of
γ5 multiplied with the even-odd preconditioned Dirac oper-
ator.1

The main difference between disconnected mesons and
the baryon spectacle contribution is the additional fermion
line connecting the two loops at x and y with a propagator.
This is done by an inversion with a wall source vector at a
time slice x0 filled with appropriate entries from the stochas-
tically estimated loop (�(x, x)). The resulting sink vector is
consequently contracted with the loop (�(y, y)) at different
time slices y0. The whole procedure is repeated for all source
time slices x0 to get the best signal for the average correlator
B(y0, x0).

All of our numerical calculations have been performed
with our own code base, that allows flexible lattice simula-
tions of gauge theories coupled to fermions and scalar fields
in different representations. One of our code developments
has been published [23]. This development does not contain
the baryon measurement, but it has been used to cross check
intermediate results.

3.1 Discrete symmetries of the correlation functions

To cross-check the correctness of the numerical data for the
correlation function of Eq. (16), discrete symmetries for time
reversal (T ) and parity (P) are used [19,24]. The baryon
correlation function transforms according to

B(x, y) → BP (xP , yP ) = 〈WP (xP )W
P

(yP )〉
= γ4B(xP , yP )γ4, (19)

B(x, y) → BT (xT , yT ) = 〈WT (xT )W
T

(yT )〉
= γ4γ5B(xT , yT )γ5γ4. (20)

We consider the zero spatial momentum correlation function

B(t) =
∑

�x,�y
t=x0−y0

B(x, y). (21)

1 It is explained in [7], how the eigenvalues and eigenvectors of this
hermitian preconditioned Dirac operator provide a first approximation
of the inverse, and the stochastic noise vectors are projected onto the
orthogonal subspace to improve it.
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Fig. 2 Numerical results for
the sunset contributions of the
correlation functions B1(t) and
Bγ4 (t) at β = 1.75 and
κ = 0.14925 for gauge group
SU(2)

Fig. 3 Numerical results for
the baryon correlation functions
for a positive parity and b
negative parity at β = 1.75 and
κ = 0.14925 on a 243 × 48
lattice. In addition to the full
correlators, the sunset (“Sset”)
and spectacle (“Spec”)
contributions are shown

Table 1 Masses of the baryon and two-particle bound states [4] inN=1
SUSY Yang–Mills theory with gauge group SU(2) for β = 1.75 and
κ = 0.14925

amB+
Sset

amB−
Sset

amB− ama-π amgg̃ ama-η′

1.020(47) 1.207(82) 0.24(18) 0.20381(80) 0.3740(75) 0.299(28)

Table 2 Estimates of the mass m and multiplicative factor A for neg-
ative parity using the fit function A e−mt . The errors are denoted by σ

Fit range (t) A σA m σm

6–8 1.5e−04 2.8e−04 0.32 0.25

6–9 1.4e−04 2.0e−04 0.31 0.18

7–9 1.0e−04 2.2e−04 0.26 0.29

With the help of γ5-hermiticity of the Wilson-Dirac matrix
we arrive at

B1(t) = −B1(Nt − t), (22)

Bγ4(t) = Bγ4(Nt − t), (23)

where B1(t) = 1
4 tr [B(t)], Bγ4(t) = 1

4 tr
[
B(t)γ4

]
, and Nt is

the time extent of the lattice.
We have checked these symmetries for the sunset contri-

butions, for which much more precise numerical results are
available compared to the spectacle contributions. Figure 2
confirms that the sunset contribution of B1(t) is antisymmet-
ric, and the one of Bγ4(t) is symmetric within errors.

Table 3 Masses are estimated by fitting the function A1 e−m1t+A e−mt

to the correlator data for different fit ranges (negative parity)

Fit range (t) m1 σm1 m σm

3–7 1.83 0.12 0.28 0.42

3–8 1.803 0.098 0.21 0.25

3–9 1.813 0.095 0.24 0.18

4–8 1.69 0.66 0.14 0.58

4–9 1.78 0.57 0.23 0.29

Table 4 The parameters A and A1 for the fits in Table 3

Fit range (t) A1 σA1 A σA

3–7 2.61e−01 8.3e−02 1.1e−04 3.4e−04

3–8 2.46e−01 6.6e−02 0.6e−04 1.2e−04

3–9 2.53e−01 6.7e−02 0.8e−04 1.1e−04

4–8 1.8e−01 5.6e−01 0.4e−04 1.7e−04

4–9 2.4e−01 6.0e−01 0.7e−04 1.7e−04

3.2 Baryonic correlation functions and masses

The numerical results of this exploratory study have been
obtained for one ensemble of SU(2) SYM presented in [4,22].
The lattice has size 243 × 48, and the parameters are β =
1.75 and κ = 0.14925. A tree level Symanzik improved
gauge action and a Wilson-Dirac operator with one level stout
smeared links has been applied. In total 1743 configurations
have been considered for the analysis.
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The resulting propagators for positive and negative parity
with their respective sunset and spectacle contributions are
presented in Fig. 3. A standard Jackknife procedure has been
applied for error estimation.

The sunset contribution provides a much better signal than
the spectacle one for all of the correlators. This contribution is
similar to baryonic operators in QCD and hence an accuracy
comparable with QCD data is achieved. In SYM, however,
the sunset contribution does not correspond to the correlator
of a particle state. Only in a theory with a larger number of
fermion species the sunset contribution is related to a physical
bound state. In this sense the sunset contribution in SYM
can be considered as a partially quenched approximation to
a particle correlator. The sunset contribution can be fitted
quite accurately to a single exponential for both parities. The
corresponding masses are rather large compared to the meson
masses, see Table 1.

The complete correlators are obtained by adding the spec-
tacle contributions, which are much more noisy. The negative
parity channel of the complete correlator provides a sufficient
signal for an estimation the mass. An estimation of the pos-
itive parity mass has, however, not been possible with the
current data.

The negative parity state appears to be significantly lighter
than the one obtained considering only the sunset contribu-
tion. The estimation of the lightest mass is in this case rather
challenging since there seems to be a large excited state con-
tribution, i. e. the prefactor of its exponential is quite large.
In the following we explain the methods used to obtain the
result for the negative parity state of Table 1.

As a first test we have assumed a single exponential form
of the correlator to obtain an effective mass at two lattice
points. An estimate for the mass averaging these data in
the range t ∈ [6, 8] would be around mB− = 0.31(35).
The masses obtained from a single exponential fit in differ-
ent t-ranges are summarized in Table 2. This mass estimate
seems to decrease at larger t towards values below 0.3, but
at the same time the signal gets overwhelmed by the error.
A possible estimate is mB− = 0.31(18) from the fit interval
t ∈ [6, 9]. This is an indication that excited state contamina-
tion is rather large at the accessible t-range of the correlator.

In order to remove the excited state contamination, we
have done double exponential fits. The results in Tables 3
and 4 show that this provides more consistent data even at
smaller t ranges compared to the single exponential fit. A
mass estimate is mB− = 0.24(18) from the fit interval t ∈
[3, 9]. As can be seen from the values of the prefactor A1 in
Table 4, there is a large contribution from the heavy mass of
the excited state.

We have tested further methods like a fit of the excited
state contamination using only the sunset part, but without
reasonable improvement. Our final best estimates in Table 1
have been obtained from a multistate fit analysis which uses

the cosh function and Akaike information criterion (AIC)
explained in [25] and references therein. Note that all meth-
ods provide results consistent within the errors.

4 Conclusion

We have presented a discussion of baryonic bound states in
N = 1 supersymmetric Yang–Mills theory. It is usually not
expected that these are part of the lightest multiplets of the
theory. These states are similar to baryonic states of QCD,
but their correlators have a different type of contractions and
require a spectacle contribution in addition to the usual sunset
diagrams.

We have done a first exploratory numerical study of corre-
lators and particle masses for these bound states. The sunset
contribution alone leads to a rather heavy particle mass. It
is quite challenging to provide a reasonable result includ-
ing the spectacle contribution due to the small signal to noise
ratio. Our first estimates suggest a mass in the negative parity
channel which is compatible with the lightest multiplet. This
might be due to an overlap with the gluino-glue bound state,
which is the fermionic member of the lightest multiplet.

Further improvements of the measurement are possible.
The most relevant one is a detailed analysis of smearing meth-
ods to reduce the overlap with excited states. We plan to test
this in a subsequent analysis of the SYM spectrum.

Acknowledgements We thank Henning Gerber and Philipp Scior
for many helpful discussions and aid with the numerical work. The
authors gratefully acknowledge the Gauss Centre for Supercomputing
e. V. (www.gauss-centre.eu) for funding this project by providing com-
puting time on the GCS Supercomputer JUQUEEN and JURECA at
Jülich Supercomputing Centre (JSC) and SuperMUC at Leibniz Super-
computing Centre (LRZ). Further computing time has been provided on
the compute cluster PALMA of the University of Münster. This work
is supported by the Deutsche Forschungsgemeinschaft (DFG) through
the Research Training Group “GRK 2149: Strong and Weak Interac-
tions - from Hadrons to Dark Matter”. G. B. is funded by the Deutsche
Forschungsgemeinschaft (DFG) under Grant Nos. 432299911 and
431842497. S. Ali acknowledges financial support from the Deutsche
Akademische Austauschdienst (DAAD).

Data Availability Statement This manuscript has no associated data
or the data will not be deposited. [Authors’ comment: The data that
support the findings of this study are available from the corresponding
author, S.A., upon reasonable request.]

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indi-
cated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-

123



Eur. Phys. J. C (2023) 83 :558 Page 7 of 7 558

right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
Funded by SCOAP3. SCOAP3 supports the goals of the International
Year of Basic Sciences for Sustainable Development.

References

1. J.D. Lykken, arXiv:1005.1676 [hep-ph]
2. G. Jungman, M. Kamionkowski, K. Griest, Phys. Rep. 267, 195

(1996). arXiv:hep-ph/9506380
3. D. Amati, K. Konishi, Y. Meurice, G.C. Rossi, G. Veneziano, Phys.

Rep. 162, 169 (1988)
4. G. Bergner, P. Giudice, I. Montvay, G. Münster, S. Piemonte, JHEP

1603, 080 (2016). arXiv:1512.07014 [hep-lat]
5. S. Ali, G. Bergner, H. Gerber, P. Giudice, S. Kuberski, I. Mont-

vay, G. Münster, S. Piemonte, EPJ Web Conf. 175, 08016 (2018).
arXiv:1710.07464 [hep-lat]

6. S. Ali, G. Bergner, H. Gerber, P. Giudice, I. Montvay, G. Münster,
S. Piemonte, P. Scior, JHEP 1803, 113 (2018). arXiv:1801.08062
[hep-lat]

7. S. Ali, G. Bergner, H. Gerber, S. Kuberski, I. Montvay, G. Münster,
S. Piemonte, P. Scior, JHEP 1904, 150 (2019). arXiv:1901.02416
[hep-lat]

8. S. Ali, G. Bergner, H. Gerber, I. Montvay, G. Münster, S. Piemonte,
P. Scior, Phys. Rev. Lett. 122, 2216011 (2019). arXiv:1902.11127
[hep-lat]

9. S. Ali, G. Bergner, H. Gerber, I. Montvay, G. Münster, S. Piemonte,
P. Scior, Eur. Phys. J. C 78, 404 (2018). arXiv:1802.07067 [hep-lat]

10. S. Ali, G. Bergner, H. Gerber, I. Montvay, G. Münster, S. Piemonte,
P. Scior, Eur. Phys. J. C 80, 548 (2020). arXiv:2003.04110 [hep-lat]

11. G. Veneziano, S. Yankielowicz, Phys. Lett. B 113, 231 (1982)
12. G.R. Farrar, G. Gabadadze, M. Schwetz, Phys. Rev. D 58, 015009

(1998). arXiv:hep-th/9711166
13. Z. Bi, A. Grebe, G. Kanwar, P. Ledwith, D. Murphy, M.L. Wagman,

PoS(LATTICE2019) 127 (2019). arXiv:1912.11723 [hep-lat]

14. M.M. Anber, E. Poppitz, Phys. Rev. D 98, 034026 (2018).
arXiv:1805.12290 [hep-th]

15. G. Curci, G. Veneziano, Nucl. Phys. B 292, 555 (1987)
16. S. Musberg, G. Münster, S. Piemonte, JHEP 1305, 143 (2013).

arXiv:1304.5741 [hep-lat]
17. W. Rarita, J. Schwinger, Phys. Rev. 60, 61 (1941)
18. C. Gattringer, C.B. Lang, Quantum Chromodynamics on the Lat-

tice: An Introductory Presentation, Lecture Notes in Physics, vol.
788 (Springer, Berlin, 2010)

19. D.B. Leinweber, W. Melnitchouk, D.G. Richards, A.G. Williams,
J.M. Zanotti, Baryon spectroscopy in lattice QCD, in Lattice
Hadron Physics, Lecture Notes in Physics vol. 663. (Springer,
2005) p. 71–112. arXiv:nucl-th/0406032

20. S. Ali, Ph.D. thesis, University of Münster, June (2019)
21. I. Montvay, G. Münster, Quantum Fields on a Lattice (Cambridge

University Press, Cambridge, 1994)
22. G. Bergner, I. Montvay, G. Münster, U.D. Özugurel, D. Sandbrink,

JHEP 1311, 061 (2013). arXiv:1304.2168 [hep-lat]
23. S. Piemonte, Y.M. Leonard, GitHub repository,

github.com/spiemonte/LeonardYM (2020)
24. A. Donini, M. Guagnelli, P. Hernandez, A. Vladikas, Nucl. Phys.

B 523, 529 (1998). arXiv:hep-lat/9710065
25. A. Bazavov et al., Phys. Rev. D 100, 094510 (2019).

arXiv:1908.09552 [hep-lat]

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1005.1676
http://arxiv.org/abs/hep-ph/9506380
http://arxiv.org/abs/1512.07014
http://arxiv.org/abs/1710.07464
http://arxiv.org/abs/1801.08062
http://arxiv.org/abs/1901.02416
http://arxiv.org/abs/1902.11127
http://arxiv.org/abs/1802.07067
http://arxiv.org/abs/2003.04110
http://arxiv.org/abs/hep-th/9711166
http://arxiv.org/abs/1912.11723
http://arxiv.org/abs/1805.12290
http://arxiv.org/abs/1304.5741
http://arxiv.org/abs/nucl-th/0406032
http://arxiv.org/abs/1304.2168
http://arxiv.org/abs/hep-lat/9710065
http://arxiv.org/abs/1908.09552

	Baryonic states in mathcalN=1 supersymmetric SU(2) Yang–Mills theory on the lattice
	Abstract 
	1 Introduction
	2 Baryon correlation functions
	2.1 Baryon operators
	2.2 Baryonic correlation functions

	3 Numerical results
	3.1 Discrete symmetries of the correlation functions
	3.2 Baryonic correlation functions and masses

	4 Conclusion
	Acknowledgements
	References




