
Heavy Quark Diffusion from 2+ 1 Flavor Lattice QCD with 320 MeV Pion Mass

Luis Altenkort ,1,* Olaf Kaczmarek ,1 Rasmus Larsen,2 Swagato Mukherjee ,3

Peter Petreczky ,3 Hai-Tao Shu ,4,† and Simon Stendebach 5

(HotQCD Collaboration)

1Fakultät für Physik, Universität Bielefeld, D-33615 Bielefeld, Germany
2Department of Mathematics and Physics, University of Stavanger, Stavanger, Norway
3Physics Department, Brookhaven National Laboratory, Upton, New York 11973, USA

4Institut für Theoretische Physik, Universität Regensburg, D-93040 Regensburg, Germany
5Insitut für Kernphysik, Technische Universität Darmstadt, Schlossgartenstraße 2, D-64289 Darmstadt, Germany

(Received 22 February 2023; revised 17 April 2023; accepted 24 April 2023; published 6 June 2023)

We present the first calculations of the heavy flavor diffusion coefficient using lattice QCD with
light dynamical quarks corresponding to a pion mass of around 320 MeV. For temperatures
195 MeV < T < 352 MeV, the heavy quark spatial diffusion coefficient is found to be significantly
smaller than previous quenched lattice QCD and recent phenomenological estimates. The result implies
very fast hydrodynamization of heavy quarks in the quark-gluon plasma created during ultrarelativistic
heavy-ion collision experiments.
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Introduction.—Heavy charm and bottom quarks are
produced only during the earliest stages of ultrarelativistic
heavy-ion collisions. They participate in the entire evolu-
tion of the quark-gluon plasma (QGP), and emerge as
open heavy-flavor hadrons or quarkonia. These heavy-
flavor hadrons provide valuable insights into the QGP.
Experiments at the relativistic heavy ion collider (RHIC)
and large hadron collider (LHC) show that the yields of
heavy flavor hadrons at low transverse momentum (pT) are
asymmetric along the azimuthal angle, meaning that the
elliptic flow parameter (v2) is large [1–3]. These observa-
tions indicate that heavy quarks participate in the hydro-
dynamic expansion of the QGP. Understanding the origin
of the hydrodynamic behavior of heavy quarks is key to
understanding the near-perfect fluidity of the QGP.
The motion of a heavy quark with mass M ≫ T,

immersed in a QGP at temperature T, can be effectively
described by Langevin dynamics [4]. The heavy quark
momentum diffusion coefficient, κ, quantifies the momen-
tum transfer to the heavy quark from the QGP background
through random momentum kicks which are uncorre-
lated in time. Specifically, 3κ is the mean squared mo-
mentum transfer per unit time. For sufficiently low pT,

hydrodynamization of heavy quarks in the QGP can be
characterized by the diffusion constant in space Ds ¼
2T2=κ [4], where 6Ds is the mean squared distance
traversed per unit time by the heavy quark inside the
QGP. The available perturbative QCD results for κ [5]
provide reliable estimates only for asymptotically large T.
For practical phenomenological studies of heavy-ion colli-
sions lattice QCD results for κ are needed. Until now, lattice
QCD based determinations of κ have been limited only to
pure gauge theory, therefore neglecting dynamical fermions
entirely. Here, we report the first continuum-extrapolated
lattice QCD calculations of κ in 2þ 1-flavor QCD with a
physical strange quark mass and degenerate up and down
quarkmasses corresponding to a pionmassmπ ≃ 320 MeV.
Theoretical framework.—Themomentum diffusion coef-

ficient κ can be obtained from the zero-frequency limit of the
spectral function corresponding to the conserved current-
current correlation function of heavy quarks. Relying on
M ≫ T and M ≫ ΛQCD, the QCD Lagrangian can be
expanded in powers of 1=M. By integrating out the heavy
quark fields one arrives at the heavy quark effective theory.
In this effective theory the heavy-quark current-current
correlator at leading order in 1=M becomes equivalent to
the correlation function of the color-electric field [6,7]:

GE ¼ −
X3
i¼1

hReTr½Uð1=T; τÞEiðτ; 0ÞUðτ; 0ÞEið0; 0Þ�i
3hReTrUð1=T; 0Þi :

ð1Þ
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Here, Uðτ1; τ2Þ is the temporal Wilson line between
Euclidean time τ1 and τ2, and Eiðx; τÞ ¼ Uiðx; τÞU4ðxþ
î; τÞ −U4ðx; τÞUiðxþ 4̂Þ is the discretized chromoelectric
field [7]. GE receives only a finite renormalization at
nonzero lattice spacing [8]. In the continuum limit the
corresponding spectral function, ρEðω; TÞ, can be obtained
by inverting [7]:

GEðτ; TÞ ¼
Z

∞

0

dω
π

ρEðω; TÞ
cosh½ωτ − ω=ð2TÞÞ�

sinh½ω=ð2TÞ� ; ð2Þ

where

κðTÞ ¼ 2T lim
ω→0

½ρEðω; TÞ=ω�; ð3Þ

up to corrections proportional to T=M.
The leading order (LO) [7] and next-to-leading order

(NLO) [7] perturbative QCD estimates predict ρEðω; TÞ ∝
ω3, which should be valid for sufficiently large T and/or ω.
Therefore, GEðτ; TÞ is expected to receive significant
contributions also from the high-frequency regions.
Lattice QCD calculations.—We performed calculations

in 2þ 1 flavor QCD with a physical strange quark mass,
ms, and degenerate up, down quark masses ml ¼ ms=5
using the highly improved staggered quark (HISQ) action
[9] and tree-level improved Lüscher-Weisz gauge action
[10,11]. In the continuum limit our choice of ml corre-
sponds to mπ ≃ 320 MeV. The lattice spacing a and the
quark masses are fixed as in Refs. [12,13]. We carried out
calculations on 963 × Nτ lattices with 1=a ¼ 7.036 GeV
and Nτ ¼ 20, 24, 28, 32, and 36, that correspond to
temperatures T ¼ 352, 293, 251, 220, and 195 MeV,
respectively. To control discretization effects we also
performed calculations on 643 × Nτ lattices (Nτ ¼ 20,
22, and 24) at different lattice spacings, chosen such that
the above temperature values are reproduced. Further
details on the lattice setup are given in the Supplemental
Material [14].
Naive measurements of GEðτ; TÞ are highly susceptible

to high-frequency fluctuations in the gauge fields and
exhibit a poor signal-to-noise ratio. In quenched QCD,
the multilevel algorithm [43] has been applied to overcome
this problem. However, this algorithm is not applicable for
QCD with dynamical fermions. To overcome the noise
problem for our calculations with dynamical fermions we
use the Symanzik-improved [15] gradient flow [44]. In
quenched QCD it was demonstrated [16,17] that this
approach is as effective as the multi-level algorithm for
noise reduction, while also renormalizing GE nonpertur-
batively. By evolving the gauge fields in the fictitious flow
time, τF, as dictated by the force given by the gradient of the
gauge action, the gradient flow smears the gauge fields over
the radius

ffiffiffiffiffiffiffi
8τF

p
. Renormalization artifacts of the electric

field operators Ei due to finite lattice spacing a are highly

suppressed for
ffiffiffiffiffiffiffi
8τF

p
> a. However, the flow radius should

always be smaller than the relevant physical scales,
implying the constraint

ffiffiffiffiffiffiffi
8τF

p
< τ < 1=ð2TÞ.

For GE it was found that the more strict criterionffiffiffiffiffiffiffi
8τF

p
=τ < 1=3 should be respected [16,17,45].

Results.—Since ρE ∝ ω3 for large ω, GE is a steeply
falling function of τ. Therefore, it is convenient to normal-
ize it by the leading-order perturbative result [7], with the
Casimir factor, CF ¼ 4=3, and the coupling constant, g,
scaled out, that is, with Gnorm ≡GLO

E =ðg2CFÞ.
At small τ the lattice results will suffer from significant

discretization effects. Furthermore, the distortions of the
correlation functions due to gradient flow are the largest at
small τ. The cutoff effects as well as the distortions due to
gradient flow are also present in the free field theory. We
can use the free theory result to estimate and partly correct
for these effects. To reduce lattice cutoff effects as well as
distortions due to gradient flow we perform tree-level
improvement, meaning that we multiply the chromoelectric
correlator by the ratio of the free correlator obtained in the
continuum and the one calculated on the lattice (in
perturbation theory) with the given Nτ at nonzero flow
time: GEðτ; TÞ → GEðτ; TÞ × ½GnormðτTÞ=Gnorm

τF ðτT;NτÞ�.
The details of calculating Gnorm

τF ðτT;NτÞ can be found in
Supplemental Material [14].
The lattice chromo-electric correlators after tree-level

improvement and normalized by Gnorm for the 963 × Nτ

lattices are shown in Fig. 1. We show the results for two
different amounts of gradient flow, adjusted for each
separation τ by fixing

ffiffiffiffiffiffiffi
8τF

p
=τ. In addition, we show the

results from the coarsest lattices (643) as open symbols. We
see that gradient flow is effective in reducing UV noise
even for the largest lattice with Nτ ¼ 36. After tree-level
improvement, the difference of GE=Gnorm obtained on the
finest and the coarsest lattice is generally smaller than the
statistical errors of the data obtained on the finest lattice.
The flow time dependence is also quite small for τT > 0.25
if the ratio of the flow radius

ffiffiffiffiffiffiffi
8τF

p
to τ is between 0.25

and 0.3. For τT < 0.25 the amount of flow necessary to
suppress discretization artifacts already comes close to the
relevant physical scale of τ=3, leading to large distortions.
For this reason the corresponding data points need to be
omitted from the analysis.
Naively one expects that at high (but not extremely high)

temperatures GE=Gnorm should not be different from unity
since GLO

E ≈ g2CF is a good approximation for GE and
CFg2 ≃ 1. An interesting feature of the results shown in
Fig. 1 is that the ratioGE=Gnorm has a much larger deviation
from one than in the quenched case. In quenched QCD,
GE=Gnorm reaches a value of about 4 at most [18]. This is
due to the fact that the τ values in physical units (fm)
accessible in full QCD are larger and, as we will see later,
the value of κ in temperature units also turn out to be larger.
As in quenched QCD, deviations from unity of GE=Gnorm
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are the largest at the lowest temperature, and become
smaller as the temperature increases.
Next, we perform the continuum and flow-time-to-zero

extrapolation of the chromoelectric correlator. First, we
interpolate the correlators obtained on 643 × Nτ lattices in τ
for various values of τF=τ2. From these interpolations we
determine the correlator on coarser lattices for values of τ
that are available for the finest 963 × Nτ lattices and then
perform continuum extrapolations for each τT and τF=τ2.
As is apparent from Fig. 1, the cutoff effects are small
except for small values of τT. We perform the continuum
extrapolation assuming that discretization errors go like
ðaTÞ2 ∼ 1=N2

τ , which turns out to be capable of describing
our data well; see Supplemental Material [14].
Finally, we perform the flow-time-to-zero extrapo-

lation of the chromoelectric correlators. In the region

a ≪
ffiffiffiffiffiffiffi
8τF

p
≪ τ we expect a linear τF dependence as

suggested by NLO perturbation theory [19]. And indeed,
for 0.25 <

ffiffiffiffiffiffiffi
8τF

p
=τ < 0.3 a linear dependence seems to

describe the data. Therefore, we use a linear extrapolation
in τF in this region to obtain the zero flow time limit, see
Supplemental Material [14]. The continuum and zero flow
time extrapolated results for the chromoelectric correlators
are shown in Fig. 2. The extrapolations do not change the
qualitative features of the correlation function but lead to a
significant increase of the statistical errors.
With the continuum and flow-time-extrapolated data for

the chromoelectric correlator we are in the position to
estimate the heavy quark diffusion coefficient κ. To do so
we need a parametrization of the spectral function that
enters Eq. (2). Any parametrization of the spectral function
should take into account its known behavior at small and
large ω. For small ω the spectral function is solely
determined by the heavy quark diffusion coefficient and
has the form [7]: ρEðω; TÞ ≃ ρIRðω; TÞ ¼ κω=ð2TÞwhile at
sufficiently large frequency the ω dependence of the
spectral function should be described by perturbation
theory due to asymptotic freedom in QCD. Moreover,
thermal corrections to the spectral function are very small
for ω ≫ T. Therefore, we assume that at large energies the
spectral function is given by the LO or NLO perturbative
T ¼ 0 result up to a constant: ρEðω ≫ TÞ ¼ ρUVðωÞ ¼
KρLO;NLOðωÞ. The factor K accounts for the fact that the
perturbative calculations may not be quantitatively reliable
due to missing contributions from higher orders.
Perturbative calculations at NLO [7,20], classical sim-

ulations in effective three-dimensional theory [21], and

FIG. 2. The continuum and zero flow time extrapolated results
for the chromoelectric correlator at different temperatures as a
function of τT. Also shown is the result for the highest temper-
ature at nonzero lattice spacing corresponding to Nτ ¼ 20 and
flow time

ffiffiffiffiffiffiffi
8τF

p
=τ ¼ 0.3. The dashed lines indicate fitted model

correlators for the “smax” model using the NLO ρUV.

FIG. 1. The chromoelectric correlator normalized by its weak-
coupling structure at tree level (Gnorm) as a function of τ calculated
on the 963 × Nτ lattices (open symbols) and 643 × 20 lattices
(filled symbols) at two different flow times in units of τ.
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strong coupling calculations [22] show that the spectral
function is a smooth monotonically rising function
of ω. Based on this, as well as the above considerations,
we use the following two forms of the spectral function
in our analysis that also have been used already in
quenched QCD [18,23]: ρmax ¼ maxðρIRðω; TÞ; ρUVðωÞÞ
and ρsmax ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2IRðω; TÞ þ ρ2UVðωÞ

p
, which we refer to as

the maximum (max) and the smooth maximum (smax)
Ansätze, respectively. The latter is consistent with the
perturbative NLO calculation [20] and OPE considerations
[46] when it comes to the leading thermal correction at
ω ≫ T. We also consider a third Ansatz for the spectral
function, that is given by ρIRðω; TÞ up to ω ¼ ωIR, and by
ρUV for ω > ωUV, and for ωIR < ω < ωUV we interpolate
with a power-law form ρðω; TÞ ¼ cωp. The parameters c
and p are chosen such that the spectral function is
continuous at ω ¼ ωIR and ωUV. This form of the
spectral function has been used in Ref. [18]. Based on
theoretical results we choose ωIR ¼ T and ωUV ¼ 2πT, see
Supplemental Material [14].
Using the above three Ansätze for the spectral functions

and the spectral representation of the chromoelectric
correlator we fitted the continuum- and flow-time-extrapo-
lated results treating κ and K as fit parameters and thus
estimated the heavy quark diffusion coefficient. It turns out
that the maximum Ansatz gives the largest value of κ, while
the power-law form gives the smallest value. Using the LO
or NLO form of ρUV does not lead to significant change in
the value of κ, meaning that the estimated values of κ are
not too sensitive to the modeling of the high energy part of
the spectral function.
Each model is fitted onto the same 1000 bootstrap

samples of the double-extrapolated correlator data. We
collect all results from all models in a single “distribution”
for the fit parameter κ=T3. We determine a confidence
interval by considering the median of this distribution, and
then adding or subtracting the 34th percentiles on each side,
which gives the lower and upper bounds of the interval. For
better readability we quote the central value of the interval
with the distance to the bounds as the uncertainty. We
obtain κðT¼195MeVÞ¼11.0ð2.5ÞT3, κðT¼220MeVÞ¼
8.4ð2.4ÞT3, κðT ¼ 251 MeVÞ ¼ 6.9ð2.2ÞT3, and
κðT ¼ 293 MeVÞ ¼ 5.8ð2.0ÞT3.
As already noted above, the shape of the correlation

function for τT > 0.25 does not seem to be significantly
changed by the continuum and flow-time-to-zero extrap-
olations. Therefore, we also performed the above analysis
using the nonzero lattice spacing data at 1=a ¼ 7.036 GeV
and nonzero relative flow times

ffiffiffiffiffiffiffi
8τF

p
=τ ¼ 0.3. We find

that the estimated values of κ agree with the ones obtained
from the continuum- and flow-time-extrapolated data
within errors. This is due to the fact that the systematic
uncertainties associated with modeling of the spectral
function are much larger than the effect of the continuum
and zero-flow-time extrapolation. For this reason we also

estimate the heavy quark diffusion coefficient at nonzero
lattice spacing and flow time for the highest temperature
resulting in κðT ¼ 356 MeVÞ=T3 ¼ 4.8ð1.7Þ.
Conclusion.—We carried out first lattice QCD calcula-

tions of the heavy quark diffusion constant in 2þ 1 flavor
QCD at leading order in the inverse heavy quark mass
and in the phenomenologically relevant region of
195 MeV < T < 352 MeV. Our results for Ds as function
of T=Tc are summarized in Fig. 3. Here we use Tc ¼
180 MeV because the calculations are performed at
mπ ≃ 320 MeV, see Supplemental Material [14]. Our
results are smaller than the quenched lattice QCD results
[18,24]. At the lowest temperature our result agrees, within
errors, with the strong coupling expectations from
AdS=CFT [6,47]. At the highest temperature our result
Ds is compatible with the NLO perturbative prediction [5]
within the uncertainties. In comparisons to some phenom-
enological determinations, namely, the Bayesian analysis
[48] of heavy-ion collision data, and the ALICE
Collaboration’s model fits to their data [49], the lattice
QCD results forDs are systematically smaller. On the other
hand, the T-matrix approach on Ds [50,51] seems to agree
with the lattice results.
The present study can be extended in two different ways.

Based on the previous lattice QCD studies of QCD
equation of state [13], quark number susceptibilities
[25,52], and static quark free energies [53] with light quark
mass ml ¼ ms=5 compared to those with nearly physical
light quark mass ml ≃ms=20, we expect the effect larger

FIG. 3. The spatial heavy quark diffusion coefficient in units of
2πT from our lattice calculations compared to the AdS=CFT
estimate [6], NLO perturbative calculation [5], and the quenched
lattice QCD calculations [16,18,24]. For the quenched lattice data
we show the result of Ref. [18] for T ¼ 1.1Tc, the result of
Ref. [16] for T ¼ 1.5Tc, and the results of Ref. [24] for the
remaining temperatures. For the NLO calculations we used two
values of the renormalization scale, μ ¼ 2πT (lower dashed line)
and μ ¼ 4πT (upper dashed line). Also shown are the phenom-
enological estimates [48–51], see main text.
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than physical quark mass on Ds to be small in the
temperature range considered in this study. However, such
effects might be significant for temperatures closer to the
QCD crossover temperature. Thus, we plan to extend the
present calculations to smaller temperatures with physical
values of the light quark masses. The heavy quark mass
suppressed effects to the heavy quark diffusion coefficients
are expected to be relatively small based on the calculations
performed in quenched QCD [17,54]. We plan to estimate
these corrections also in 2þ 1 flavor QCD.

The computations in this Letter were performed using
SIMULATeQCD [55,56]. Parts of the computations in this
Letter were performed on the GPU cluster at Bielefeld
University. We thank the Bielefeld HPC.NRW team for
their support.

All data from our calculations, presented in the figures
of this paper, can be found in [57].
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