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Abstract

We consider the renormalization of the three-quark operators without derivatives at next-to-next-to-
leading order in QCD perturbation theory at the symmetric subtraction point. This allows us to obtain 
conversion factors between the MS scheme and the regularization invariant symmetric MOM (RI/SMOM, 
RI′/SMOM) schemes. The results are presented both analytically in Rξ gauge in terms of a set of master 
integrals and numerically in Landau gauge. They can be used to reduce the errors in determinations of 
baryonic distribution amplitudes in lattice QCD simulations.
© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons .org /licenses /by /4 .0/). Funded by SCOAP3.

1. Introduction

Light cone distribution amplitudes (DAs) play an important rôle in the analysis of hard exclu-
sive reactions involving large momentum transfer from the initial to the final state. The cases of 
baryon asymptotic states have been considered already long ago [1–3].

The theoretical description of DAs is based on the relation of their moments to matrix elements 
of local operators. Such matrix elements involve long-distance dynamics and, thus, cannot be 
accessed via perturbation theory alone.
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Fig. 1. Matrix element 〈O(p4)ū(p1)d̄(p2)s̄(p3)〉 of a three-quark baryonic operator in momentum space, where we omit 
all spinor and color indices. The momentum p4 = −(p1 + p2 + p3) is the one coming into the operator.

First estimates of the lower moments of the baryon DAs have been obtained more than 30 
years ago using QCD sum rules [4–8]. An alternative way to access the moments is to calculate 
them from first principles using lattice QCD. Such studies for the nucleon DAs have a long 
history [9–12]. More recently, this analysis has been extended to include the full SU(3) octet of 
baryons [13].

To renormalize the matrix elements on the lattice, the RI′/SMOM scheme [14] was used in 
Ref. [13]. However, in order to embed lattice estimations of hadronic matrix elements into the 
complex of other studies and to assure comparability, it is necessary to present the result in the 
widely used MS scheme. Since the RI′/SMOM prescription can be used in both perturbative 
and nonperturbative calculations, the conversion from the RI′/SMOM to the MS scheme can be 
evaluated perturbatively as a power series in the strong-coupling constant αs(μ) at some typical 
mass scale μ of the order of a few GeV.

The letter “S” in RI′/SMOM stands for symmetric configuration of kinematics. For the bilinear 
quark operator, this implies that the virtualities of the momenta of the quarks and the operator 
itself are all taken at the same euclidean point μ2. Such analyses including operators with zero, 
one, and two derivatives, were done at one loop in Refs. [14,15] and at two loops in Refs. [16–20]. 
These calculations were performed fully analytically. In our previous works [21,22], we have 
evaluated the matching constants for the bilinear quark operators with up to two derivatives and 
up to three loops with RI′/SMOM subtraction numerically. Our results for the mass operator [21]
have been confirmed later in Ref. [23]. Similar results in the RI′/MOM scheme may be found in 
Refs. [16,24].

By contrast, baryonic operators consist of three quark fields, which we may call u, d , s, the 
actual flavor structure being irrelevant for the following discussion, and a number of covariant 
derivatives Dμ:

εijk
(
Dμ1 . . .Dμl

u
)i

ξ1

(
Dμl+1 . . .Dμl+m

d
)j

ξ2

(
Dμl+m+1 . . .Dμl+m+n

s
)k

ξ3
,

where i, j, k are color indices, μi are Lorentz indices, and ξi are spinor indices. The matrix 
element of such an operator is shown schematically in Fig. 1.

The simplest baryonic operators, without derivatives, were studied in perturbative QCD a long 
time ago. In Refs. [25,26], the anomalous dimensions of the octet baryonic currents were evalu-
ated at two loops in the MS scheme working in Feynman gauge. In Ref. [27], the renormalization 
of the three-quark operators with open indices, which are considered also here, was performed 
at two loops in Feynman gauge as well. In Ref. [28], this was extended to arbitrary gauge, and 
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the anomalous dimensions of the baryonic operators were provided at three loops, thus lifting the 
results of Refs. [25–27] by one loop.

In addition, in Ref. [28], two-loop matrix elements were evaluated at the RI′/MOM subtraction 
point with zero-momentum operator insertion. Specifically, the kinematics of the MOM scheme 
adopted in Ref. [28] implies that p2

1 = p2
2 = p2

3 = μ2 for some euclidean point μ2, while p4 =
0. However, it has been argued that the presence of zero momentum can generate additional 
sensitivity to infrared dynamics, which aggravates lattice QCD analyses [14]. This problem may 
be avoided by selecting a more symmetric kinematic configuration of the baryonic current matrix 
elements, where all four virtualities p2

i are taken to coincide at some euclidean point μ2. This 
leaves residual freedom of how to fix the scalar products pi · pj with i �= j . The most symmetric 
setting would be pi · pj = −μ2/3 for i �= j . However, this choice of kinematics turns out to be 
technically inconvenient in lattice QCD analyses. A recent such analysis [13] used the following 
kinematics:

p2
1 = p2

2 = p2
3 = p2

4 = μ2 ,

p1 · p2 = p3 · p1 = −μ2

2
,

p2 · p3 = 0 , (1)

where μ2 is the euclidean subtraction point of the SMOM scheme. To allow for direct compar-
isons of our results with those of Ref. [13], we adopt Eq. (1) in this paper.

An auxiliary analysis, based on differential equations, has revealed that even in the most sym-
metric kinematics, let alone the kinematics of Eq. (1), the analytic results beyond one loop cannot 
be expressed in terms of polylogarithms, but include a more complicated class of special func-
tions, involving elliptic structures. In this work, we present our two-loop results in numerical 
form. We perform the renormalization of the three-quark operators for RI′/SMOM kinemat-
ics, which allows for the lowest moments of the baryonic DAs to be converted between the 
RI′/SMOM and MS schemes.

It is well known that the MS renormalization prescription is ambiguous for operators with 
more than one open spinor chain. This happens because there are more tensor structures in d
dimensions than in four. In particular, there are operators in d dimensions that have no counter-
parts in four dimensions. These operators vanish as d → 4 and are traditionally called evanescent 
operators. One cannot simply ignore these structures, since they mix with the physical operators 
under renormalization [29,30], thus leading to finite contributions.

To take these contributions properly into account, we use the renormalization scheme 
proposed in Ref. [27]. The idea is to express all d-dimensional operators in terms of d-
dimensional tensor structures built from antisymmetrized products of n gamma matrices, �n =
(1/n!)γ[μ1 . . . γμn]. All structures involving �n with n > 4 are evanescent and vanish for d = 4. 
We first renormalize the coefficients in front of these tensor structures and then take the limit 
d → 4. Since the γ matrix structures are now convoluted with renormalized, finite quantities, we 
can safely put �n = 0 for n > 4.

This scheme has another very useful property: we completely avoid any problems with γ5 in 
dimensional regularization. However, the disadvantage of this scheme is that we are confronted 
with a large number of different spin tensor structures.

This paper is organized as follows. In Section 2, we introduce our notations and definitions. In 
Section 3, we discuss the tensor decomposition and the renormalization procedure. In Section 4, 
we present sample results, while our complete results are provided in ancillary files submitted 
to the ArXiv along with this paper. In Section 5, we present our conclusions. In Appendix A, 
3



B.A. Kniehl and O.L. Veretin Nuclear Physics B 992 (2023) 116210
we expose the relevant spin tensor structures. In Appendix B, we list useful four-dimensional 
identities for the spin tensor structures.

2. Basic setup

The basic object for the three-quark operators without derivatives located at the origin is the 
amputated four-point function,

Hβ1β2β3,α1α2α3(p1,p2,p3) = −
∫

d4x1 d4x2 d4x3e
i(p1·x1+p2·x2+p3·x3)εb1b2b3εa1a2a3

× 〈ub1
β1

(0)d
b2
β2

(0)s
b3
β3

(0)ū
a1
α′

1
(x1)d̄

a2
α′

2
(x2)s̄

a3
α′

3
(x3)〉

× G−1
2 (p1)α′

1α1
G−1

2 (p2)α′
2α2

G−1
2 (p3)α′

3α3
, (2)

where all quantities are to be understood as Euclidean. The quark flavors are called u, d , and s, 
but the only essential feature is that they are all different. All masses are supposed to vanish. αi

and βj are spinor indices, ak and bl are color indices in the fundamental representation, and pm

are external momenta. The matrix element of the three-quark operator is shown schematically in 
Fig. 1.

The two-point function G2(p) required for the amputation of the external legs is defined by

δa′a G2(p)α′α =
∫

d4x eip·x〈ua′
α′(0)ūa

α(x)〉 . (3)

Our goal is to evaluate the matrix element (2) in the kinematics defined by Eq. (1) at the 
two-loop order.

3. Tensor decomposition and projection

As was already mentioned in the Introduction, we renormalize Eq. (2) without contracting 
the spinor indices and projecting on some particular baryonic currents. For this purpose, let us 
decompose the tensor in Eq. (2) as

Hβ1β2β3,α1α2α3(p1,p2,p3) =
N∑

n=1

Tn,β1β2β3,α1α2α3(p1,p2,p3) fn

({pi · pj }
)

, (4)

where Tn are spin tensor structures and fn are scalar form factors. The explicit construction 
of these structures is discussed in Appendix A. The form factors fn generally depend on six 
kinematic invariants, p2

1, p2
2, p2

3, p1 · p2, p2 · p3, and p3 · p1. In the following discussion, we 
omit spinor indices and arguments, and simply write

H =
N∑

n=1

Tn fn . (5)

The upper limit N of summation in Eqs. (4) and (5) is the number of the linearly independent 
spin tensor structures. It depends on the number of loops. We also have to distinguish between the 
decompositions in d and four dimensions. In d dimensions, the number of independent structures 
is larger, owing to the presence of evanescent operators. The values N of independent form 
factors through two loops are given in Table 1.
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Table 1
Number of form factors for different numbers of 
loops in d and four dimensions.

# of loops 0 1 2

N (in d dimensions) 1 67 581
N (in 4 dimensions) 1 64 247

Let us introduce the following notation. If Xβ1β2β3,α1α2α3 is an object with six spinor indices, 
we denote by tr3(X) the trace over three pairs of indices, i.e.,

tr3(X) =
4∑

α1,α2,α3=1

Xα1α2α3,α1α2α3 . (6)

Using this definition, we can introduce the symmetric N × N matrix

Mkn = tr3(TkTn) , (7)

where Tj are the spin tensor structures from Eqs. (4) and (5). Then, the projectors on the form 
factors fj take the form

Pl =
N∑

k=1

M−1
lk Tk , (8)

where M−1 is the inverse matrix, and we obviously have

fl = tr3 (PlH) . (9)

The use of Eqs. (8) and (9) for unrenormalized amplitudes is delicate within dimensional reg-
ularization, since the projectors Pl depend nontrivially on the dimension d . A better way is to 
first renormalize the amplitude H in Eq. (2) and then to use the projectors in four dimensions. In 
order to achieve this, we construct N scalar amplitudes ak as

ak = tr3(TkH) , k = 1, . . . ,N . (10)

After renormalization of all amplitudes ak in the MS scheme, the form factors can be obtained 
as

fl =
N∑

k=1

M−1
lk ak , (11)

where M−1 is now taken in four dimensions. In this limit, all elements of M−1 are just rational 
numbers.

However, in four dimensions, we cannot apply the formula in Eq. (11) directly, since the 
determinant of the matrix Mlk is then zero. This may be understood from Table 1 by observing 
that the number of independent structures in four dimensions is less than in d dimensions. In this 
case, we need to solve for the unknown �f the system (in matrix notation)

M �f = �a , (12)

where �f = (f1, . . . , fN)T , etc.
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The system (12) is over-determined, but consistent by construction. We find the solution for 
�f in the form

�f = �f0 +
Nd−N4∑

j=0

Cj �yj , (13)

where �f0 is some particular solution of system (12), the vectors �yj form a basis of the Nd −N4 =
334 dimensional null space of the matrix M , and Cj are arbitrary constants.

After renormalization, we have 581 two-loop form factors fn in four dimensions, 247 of 
which are linearly independent. We have calculated all of them analytically in Rξ gauge in terms 
of a set of complicated master integrals, which we have evaluated numerically.

Our calculational procedure is similar to Refs. [21,22]. As usual, the evaluation of the Feyn-
man diagrams is organized in two steps: the reduction to master integrals and the evaluation of 
the latter. After the projection and the evaluation of the color and Dirac traces, we first reduce the 
large number of Feynman integrals using integration-by-parts (IBP) relations [31] to a small set 
of master integrals. This is done with the help of the computer package FIRE [32]. Besides the 
IBP relations, we have additional relations arising from the symmetric kinematics. With these 
new relations, we can further reduce the number of master integrals. Finally, we can express all 
the Feynman diagrams in terms of 4 one-loop master integrals, to be evaluated analytically, and 
44 two-loop master integrals, to be evaluated numerically. As a by-product of our analytic two-
loop calculation, we reproduce the well-known renormalization constant of the baryonic operator 
in the MS scheme at this order [25–28].

For the numerical evaluation of the two-loop master integrals, we adopt the method of sector 
decomposition [33,34], which is based on the analytic resolution of singularities and the succes-
sive numerical integration of the parametric integrals by Monte Carlo methods. This is done with 
the help of the program package FIESTA [35]. At the two-loop level, we have up to seven-fold 
parametric integrals resulting usually in several hundreds of so-called sector integrals, which 
are then evaluated numerically using the program library CUBA [36]. With a typical sample of 
108 function calls, we achieve a relative accuracy of order 10−6 for individual master integrals. 
However, due to large cancellations between different terms, the resulting relative accuracy is 
expected to be worse.

4. Results

Because of their large number, we refrain from listing the renormalized two-loop form factors 
fn here, but supply them in ancillary files submitted to the ArXiv along with this manuscript. 
Specifically, we present our analytic results in Rξ gauge in the form of Eq. (13) including explicit 
expressions with the constants Ci , and our numerical results for Ci = 0. To obtain the results in 
Landau gauge, one sets ξ = 0.

To illustrate the structure and typical size of the corrections, we present here, in numerical 
form, the two-loop form factor f1, corresponding to the structure �0 ⊗ �0 ⊗ �0, in Rξ gauge. 
We have

f1

f1,Born
= 1 + a

3
[3 − c2 + ln 2 + ξ(9 − 2c1 − c2 − ln 2)]

+ a2
[
10.4515(4) + 3.5881(4)ξ + 1.4232(2)ξ2 − 0.68933(2)nf

]
= 1 + a(0.6204053307351691 + 0.5957023845688996 ξ)
6
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+ a2
(

10.4515(4) + 3.5881(4)ξ + 1.4232(2)ξ2 − 0.68933(2)nf

)
, (14)

where f1,Born = εijkεijk = 6 is the Born result, a = αs/π , nf is the number of light quark flavors, 
ξ is the gauge parameter, and

c1 = 4√
3

Cl2
(π

3

)
= 2.3439072386894588906... , (15)

c2 = 2 Cl2
(π

2

)
= 1.8319311883544380301... , (16)

with

Cl2(θ) = −
θ∫

0

dφ ln

(
2 sin

φ

2

)
(17)

being Clausen’s integral. The errors quoted in Eq. (14) reflect the uncertainties from the numeri-
cal integration of the two-loop master integrals.

Having all spin tensor components of the matrix element H in Eq. (2) at our disposal, we are 
now in a position to build any baryonic current without derivatives. As examples, let us evaluate 
the matrix elements of the baryonic currents previously considered in Refs. [25,26,28],

(O1)α = εijkui
α

[
(uj )T Cdk

]
, (18)

(O2)α = εijkγ5u
i
α

[
(uj )T Cγ5d

k
]

, (19)

where C is the unitary, antisymmetric matrix, with C−1 = C† = −C∗, of charge conjugation,

CγμC−1 = −γ T
μ , (20)

Cγ5C
−1 = γ T

5 . (21)

The matrix γ5 in Eqs. (19) and (21) is taken to be four-dimensional, since we are working here 
with finite renormalized quantities.

The matrix elements of the baryonic currents O1 and O2 in Eqs. (18) and (19) may be decom-
posed as

〈
(O1,2)δ(p4)ūα(p1)ūβ(p2)d̄γ (p3)

〉 = ∑
n

(
�αδ ⊗ �βγ

)
n
f

O1,2
n , (22)

with some scalar form factors f O1,2
n being linear combinations of fl as defined in Eq. (9). It is 

actually sufficient to consider O1, since the expression for O2 may be obtained by multiplying 
that for O1 with γ5 ⊗ γ5. Exploiting the four-dimensional identities listed in Appendix B, we 
may reduce the number n of form factors in Eq. (22) down to 32, some of which are zero.

Omitting spinor indices, we thus obtain

O1 = I ⊗ I [1 + a(2.00280429 + 0.549441049 ξ)

+ a2(26.486(1) + 3.03333(7)ξ + 1.3064(3)ξ2 − 2.79941(6)nf )]
+ (

I ⊗ σp1p2 + I ⊗ σp3p1

) [−a × 0.52086828

+ a2(−10.85904(3) − 0.03004(3)ξ − 0.12631(9)ξ2 + 0.75237(3)nf )]
+ I ⊗ σp p [a(1.38629436 + 0.462098120 ξ)
2 3
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+ a2(34.345(1) + 5.98739(6)ξ + 1.95648(2)ξ2 − 2.4645(1)nf )]
+ γ5 ⊗ γ5 a2(−1.59871(1) − 0.02545(2)ξ)

+ (
γ5 ⊗ γ5σp1p2 + γ5 ⊗ γ5σp3p1

)
a2(0.14070(2) + 0.22190(3)ξ)

+ γ5 ⊗ γ5σp2p3 a2(0.19179(7) + 0.03528(2)ξ)

+ (
σp1p2 ⊗ I − σp3p1 ⊗ I

) [−a × 0.52086828

+ a2(12.9088(4) + 0.6163(4)ξ + 0.1125(1)ξ2 − 0.752365(4)nf )]
+ (

γ5σp1p2 ⊗ γ5 − γ5σp3p1 ⊗ γ5
)
a2(−0.3571(1) − 0.02859(4)ξ)

+ (
σp1p2 ⊗ σp1p2 − σp3p1 ⊗ σp3p1

) [a(0.076423831 − 0.076423831 ξ)

+ a2(0.6196(9) − 0.652(2)ξ − 0.196(7)ξ2 − 0.084915(3)nf )]
+ (

σp2p3 ⊗ σp1p2 − σp2p3 ⊗ σp3p1

)
a2(−0.0041(4) − 0.0301(1)ξ)

+ (
σp1p2 ⊗ σp3p1 − σp3p1 ⊗ σp1p2

)
a2(−0.5875(8) − 0.1445(5)ξ + 0.0346(1)ξ2)

+ (
σp1p2 ⊗ σp2p3 − σp3p1 ⊗ σp2p3

)
a2(1.1520(6) + 0.7480(8)ξ + 0.1593(1)ξ2)

+ σp2p3 ⊗ σp2p3 a2(2.95198(6) − 6.2222(3)ξ)

+ (
σμp2 ⊗ σμp1 − σμp3 ⊗ σμp1

) [a × 0.111111111

+ a2(2.6434(7) − 0.06095(1) + 0.0387(1)ξ)]
+ (

σμp1 ⊗ σμp2 − σμp1 ⊗ σμp3
) [a(0.37154525 + 0.26043414 ξ)

+ a2(9.6843(8) + 3.0743(2)ξ + 0.9510(1)ξ2 − 0.697562(2)nf )]
+ (

σμp2 ⊗ σμp3 − σμp3 ⊗ σμp2
)
a2(1.3642(2) + 0.5083(1)ξ)

+ (
σμp2 ⊗ σμp2 − σμp3 ⊗ σμp3

) [a × 0.22222222

+ a2(2.9803(8) + 0.1734(1)ξ − 0.208701(1)nf )]
+ σμp1 ⊗ σμp1 a2 × 4.2853(1) . (23)

5. Conclusion

In this work, we have established a framework for the evaluation of the corrections to the 
baryonic current without derivatives through the two-loop order. The main difficulty in the study 
of the baryonic operators is the presence of evanescent operators that mix under renormalization 
with the physical operators. This leads to a large mixing matrix and the necessity for finite renor-
malizations. On the other hand, if we use the open-indices approach, there is no ambiguity in the 
interpretation within the MS scheme. Exploiting this observation, we have evaluated all the form 
factors appearing through two loops and presented them in a numerical form that is ready for use 
in lattice QCD simulations.
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Appendix A. Spin tensor structures

In this Section, we explicitly enumerate all linearly independent spin tensor structures Tn

through two loops in d dimensions. All tensors Tn are represented as tensor products of three 
Dirac structures, as

Tα1α2α3,β1β2β3 = �α1β1 ⊗ �α2β2 ⊗ �α3β3 . (24)

The building blocks � are antisymmetric products of Dirac γ matrices,

�0 = 1 , (25)

�μ1μ2 = 1

2!γ[μ1γμ2] , (26)

�μ1μ2μ3μ4 = 1

4!γ[μ1γμ2γμ3γμ4] , (27)

where 1 is the unit Dirac matrix and square brackets [. . . ] denote antisymmetrization. Notice that 
Dirac structures with odd numbers of Dirac matrices do not appear in our calculation.

We also introduce the following notation for the contraction of a vector and a tensor 
(Schoonship notation):

pμ�...μ... = �...p... . (28)

Furthermore, we introduce the following wildcards: p can take one of p1, p2, p3, pp can take 
one of p1p2, p2p3, p3p1, and ppp stands for p1p2p3.

For the sake of systematics, we assign to each tensor structure a signature, which is an ordered 
triplet of the numbers 0, 2, and 4 of γ matrices appearing in each � factor, and a number [p]
counting the overall appearances of momenta. Furthermore, we distinguish between symmetric 
and non-symmetric structures. The symmetric structures do not have co-partners arising under 
the change of order of the � factors in the tensor products, while the non-symmetric ones do. 
So, the numbers of non-symmetric structures should be multiplied by 3. In Tables 2 and 3, we 
systematically list the symmetric and non-symmetric tensor structures, respectively, and specify 
the number (#) of entities for each signature and each value of [p]. We also give the total number 
(##) of entities for each signature.
9
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Table 2
Symmetric structures ordered according to their signatures and values 
of [p], numbers # of entities for given signature and value of [p], and 
total numbers ## of entities for given signature.

signature [p] tensor structure # ##

000 0 �0 ⊗ �0 ⊗ �0 1 1

222 0 �μ1μ2 ⊗ �μ2μ3 ⊗ �μ3μ1 1
222 6 1/(−μ2)3 �pp ⊗ �pp ⊗ �pp 27 28

Table 3
Non-symmetric structures. The meaning of the columns is the same as in Table 2.

signature [p] tensor structure # ##

200 2 1/(−μ2)1 �pp ⊗ �0 ⊗ �0 3 3

220 0 �μ1μ2 ⊗ �μ1μ2 ⊗ �0 1
220 2 1/(−μ2)1 �pμ1 ⊗ �pμ1 ⊗ �0 9
220 4 1/(−μ2)2 �pp ⊗ �pp ⊗ �0 9 19

222 2 1/(−μ2)1 �pμ1 ⊗ �pμ2 ⊗ �μ1μ2 9
222 2 1/(−μ2)1 �pp ⊗ �μ1μ2 ⊗ �μ1μ2 3
222 4 1/(−μ2)2 �pp ⊗ �pμ1 ⊗ �pμ1 27 39

402 2 1/(−μ2)1 �ppμ1μ2 ⊗ �0 ⊗ �μ1μ2 3
402 4 1/(−μ2)2 �pppμ1 ⊗ �0 ⊗ �pμ1 3 6

420 2 1/(−μ2)1 �ppμ1μ2 ⊗ �μ1μ2 ⊗ �0 3
420 4 1/(−μ2)2 �pppμ1 ⊗ �pμ1 ⊗ �0 3 6

440 0 �μ1μ2μ3μ4 ⊗ �μ1μ2μ3μ4 ⊗ �0 1
440 2 1/(−μ2)1 �pμ1μ2μ3 ⊗ �pμ1μ2μ3 ⊗ �0 9
440 4 1/(−μ2)2 �ppμ1μ2 ⊗ �ppμ1μ2 ⊗ �0 9
440 6 1/(−μ2)3 �pppμ1 ⊗ �pppμ1 ⊗ �0 1 20

422 0 �μ1μ2μ3μ4 ⊗ �μ1μ2 ⊗ �μ3μ4 1
422 2 1/(−μ2)1 �pμ1μ2μ3 ⊗ �pμ1 ⊗ �μ2μ3 9
422 2 1/(−μ2)1 �pμ1μ2μ3 ⊗ �μ2μ3 ⊗ �pμ1 9
422 2 1/(−μ2)1 �ppμ1μ2 ⊗ �μ2μ3 ⊗ �μ3μ1 3
422 4 1/(−μ2)2 �ppμ1μ2 ⊗ �pμ1 ⊗ �pμ2 27
422 4 1/(−μ2)2 �ppμ1μ2 ⊗ �pp ⊗ �μ1μ2 9
422 4 1/(−μ2)2 �ppμ1μ2 ⊗ �μ1μ2 ⊗ �pp 9
422 4 1/(−μ2)2 �pppμ1 ⊗ �pμ2 ⊗ �μ1μ2 3
422 4 1/(−μ2)2 �pppμ1 ⊗ �μ1μ2 ⊗ �pμ2 3
422 6 1/(−μ2)3 �pppμ1 ⊗ �pp ⊗ �pμ1 9
422 6 1/(−μ2)3 �pppμ1 ⊗ �pμ1 ⊗ �pp 9 91

Appendix B. Four-dimensional identities

In d = 4 dimensions, all � matrices with more than four indices vanish. For Eqs. (26) and 
(27), we may write

�μ1μ2 = σμ1μ2 ,

�μ μ μ μ = εμ μ μ μ γ5 , (29)
1 2 3 4 1 2 3 4

10
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where εμ1μ2μ3μ4 is the totally antisymmetric tensor.
For any four-momenta q1, . . . , q4, the following identities hold:

�μ1μ2μ3μ4 ⊗ �μ1μ2μ3μ4 = 24γ5 ⊗ γ5 ,

�μ1μ2μ3q1 ⊗ �μ1μ2μ3q2 = 6(q1 · q2)γ5 ⊗ γ5 ,

�μ1μ2q1q2 ⊗ �μ1μ2q3q4 = 2 [(q1 · q3)(q2 · q4) − (q1 · q4)(q2 · q3)]γ5 ⊗ γ5 ,

�μ1q1q2q3 ⊗ �μ1q1q2q3 =
[
q2

1q2
2q2

3 + 2(q1 · q2)(q2 · q3)(q3 · q1)

− q2
1 (q2 · q3)

2 − q2
2 (q3 · q1)

2 − q2
3 (q1 · q2)

2
]
γ5 ⊗ γ5 ,

�μ1μ2q1q2 ⊗ �μ1μ2 = −2γ5 ⊗ γ5σq1q2 ,

�μ1q1q2q3 ⊗ �μ1q4 = −(q1 · q4)γ5 ⊗ γ5σq2q3 − (q2 · q4)γ5 ⊗ γ5σq3q1

− (q3 · q4)γ5 ⊗ γ5σq1q2 . (30)

There is one more identity that relates the 19 structures of the form σμν ⊗ σμν , σμp ⊗ σμp, 
and σpp ⊗ σ pp in four dimensions. This relation is quite cumbersome for arbitrary kinematics. 
We present it here for the particular kinematics of Eq. (1):

0 = σμν ⊗ σμν + 4

(−μ2)2

(
σp1p2 ⊗ σp1p2 + σp2p3 ⊗ σp2p3 + σp3p1 ⊗ σp3p1

)

− 2

(−μ2)2

(
σp1p2 ⊗ σp2p3 + σp3p1 ⊗ σp2p3 + σp2p3 ⊗ σp1p2 + σp2p3 ⊗ σp3p1

)

− 2

(−μ2)

(
σμp1 ⊗ σμp2 + σμp2 ⊗ σμp1 + σμp1 ⊗ σμp3 + σμp3 ⊗ σμp1

)

− 1

(−μ2)

(
σμp2 ⊗ σμp3 + σμp3 ⊗ σμp2

)

− 3

(−μ2)

(
σμp2 ⊗ σμp2 + σμp3 ⊗ σμp3

) − 4

(−μ2)
σμp1 ⊗ σμp1 . (31)

Appendix C. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /
j .nuclphysb.2023 .116210.
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