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We present a study of lattice-QCD methods to determine the relevant hadronic form factors for radiative-
leptonic decays of pseudoscalar mesons. We provide numerical results for Dþ

s → lþνγ. Our calculation is
performed using a domain-wall action for all quark flavors and on a single RBC/UKQCD lattice gauge-
field ensemble. The first part of the study is how to best control two sources of systematic error inherent in
the calculation, specifically the unwanted excited states created by the meson interpolating field and
unwanted exponentials in the sum over intermediate states. Using a 3D sequential propagator allows for
better control over unwanted exponentials from intermediate states, while using a 4D sequential propagator
allows for better control over excited states. We perform individual analyses of the 3D and 4D methods, as
well as a combined analysis using both methods, and find that the 3D sequential propagator offers good
control over both sources of systematic uncertainties for the smallest number of propagator solves. From
there, we further improve the use of a 3D sequential propagator by employing an infinite-volume
approximation method, which allows us to calculate the relevant form factors over the entire allowed range
of photon energies. We then study improvements gained by performing the calculation using a different
three-point function, using ratios of three-point functions, averaging over positive and negative photon
momentum, and using an improved method for extracting the structure-dependent part of the axial form
factor. The optimal combination of methods yields results for the Dþ

s → lþνγ structure-dependent vector
and axial form factors in the entire kinematic range with statistical plus fitting uncertainties of order 5%,
using 25 gauge configurations with 64 samples per configuration.

DOI: 10.1103/PhysRevD.107.074507

I. INTRODUCTION

In this paper, we develop and test lattice-QCD methods
for computing the hadronic matrix elements describing
radiative-leptonic decays of pseudoscalar mesons, i.e.,
H → l−ν̄γ or H → lþl−γ. Such transitions are of interest
both for soft photons and for hard photons, as discussed in
the following.
Knowledge of the radiative-leptonic decay rate in

the region of small (soft) photon energies is required
to include OðαemÞ electromagnetic corrections to purely
leptonic decays, needed for subpercent precision deter-
minations of Cabibbo-Kobayashi-Maskawa (CKM)
matrix elements. According to the well-known Bloch-
Nordsieck mechanism [1], the integral of the radiative
decay rate in the phase space region corresponding to

soft photons must be added to the decay rate with
no real photons in the final states (the so-called virtual
electromagnetic contribution to the decay rate, which
has recently been computed on the lattice [2,3]) in order
to cancel infrared divergent contributions appearing
in unphysical quantities at intermediate stages of the
calculations. While for π−→μ−ν̄μðγÞ and K−→μ−ν̄μðγÞ,
at the current level of precision it is sufficient to evaluate
the real soft-photon contributions in an effective theory in
which the meson is treated as a pointlike particle,
structure-dependent contributions to the real photon
emission are significant for π− → e−ν̄eðγÞ and K− →
e−ν̄eðγÞ [4].
In the region of hard (experimentally detectable) photon

energies, radiative-leptonic decays represent important
probes of the internal structure of the mesons and also
provide sensitive probes of physics beyond the Standard
Model inducing nonstandard currents and/or nonuniversal
corrections to the lepton couplings. For example, the
rare decays B0

s → lþl−γ and B0 → lþl−γ are sensitive
to all operators in the b → slþl− and b → dlþl−

effective Hamiltonians, respectively, unlike their purely

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 107, 074507 (2023)

2470-0010=2023=107(7)=074507(27) 074507-1 Published by the American Physical Society

https://orcid.org/0000-0001-8178-8407
https://orcid.org/0000-0002-2020-8971
https://orcid.org/0000-0003-1034-1004
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.107.074507&domain=pdf&date_stamp=2023-04-19
https://doi.org/10.1103/PhysRevD.107.074507
https://doi.org/10.1103/PhysRevD.107.074507
https://doi.org/10.1103/PhysRevD.107.074507
https://doi.org/10.1103/PhysRevD.107.074507
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


leptonic counterparts [5–11]. There are presently hints of
lepton-flavor-universal new physics contributing to the
Wilson coefficient Cbsll

9 [12], to which Bs → μþμ− is
insensitive but which can be probed in a novel way with
Bs → μþμ−γ. In addition, because the hard photon in the
final state removes the helicity suppression, B0

ðsÞ → lþl−γ

decays can also be used to test electron-vs-muon lepton
universality [13], which would not be possible with purely
leptonic B0

ðsÞ → lþl− decays. Radiative-leptonic B− →

l−ν̄γ decays at high photon energy can provide novel
determinations of jVubj using light leptons and are also well
suited to constrain the first inverse moment of the B-meson
light-cone distribution amplitude, an important input in
QCD-factorization predictions for nonleptonic B decays
that is presently poorly determined [14–23].
The experimental status for radiative-leptonic decays

(with detected photons of energy above some specified
lower limit) can be summarized as follows. For the kaon
and pion decays K− → e−ν̄γ, K− → μ−ν̄γ, π− → e−ν̄γ, and
π− → μ−ν̄γ, there are already precise measurements of the
differential branching fractions [4,24–29]. For the
charmed-meson radiative-leptonic decays Dþ → eþνγ
and Dþ

s →eþνγ, the BESIII Collaboration has reported

upper limits on the branching fractions with Eð0Þ
γ >10MeV

of 3.0 × 10−5 and 1.3 × 10−4, respectively [30,31]. In the
bottom sector, the Belle Collaboration reported an upper

limit BðB− → l−ν̄γ; Eð0Þ
γ > 1 GeVÞ < 3.0 × 10−6, close to

the Standard-Model expectation [32]. It is expected that
Belle II will eventually measure the B− → l−ν̄γ branching
fractions with 3.6% statistical uncertainty [33]. For the
flavor-changing neutral current decays B0 → lþl−γ,
BABAR reported upper limits for the branching fractions
of order 10−7 in Ref. [34].More recently, LHCbobtained the
result BðB0

s→μþμ−γÞ<2.0×10−9 for mμμ>4.9GeV [35].
In the Standard Model, the hadronic contributions to the

H → l−ν̄γ decay rate at leading order in αem are the decay
constant fH and two form factors FV and FA;SD, which are
functions of the photon energy in the meson rest frame and
are the focus of this work. The form factors parametrize, in
momentum space, a meson-to-vacuum QCD matrix
element of two currents at different spacetime points: the
flavor-changing quark weak current and the quark electro-
magnetic current.
For low photon energies, the form factors can be

studied using chiral perturbation theory (ChPT), which
has been done for light-meson radiative-leptonic decays in
Refs. [36–40]. Although these ChPT calculations represent
a systematic effective-field-theory approach to the problem,
the low-energy constants entering in the final results at
Oðp6Þ have been estimated in phenomenological analyses
relying in part on model-dependent assumptions. Heavy-
meson radiative-leptonic decays have been studied theo-
retically using quark models [41–50], QCD factorization,
soft-collinear effective theory, perturbative QCD [9,14–23],

light-cone sum rules [51–56], heavy-hadron ChPT [57],
and dispersion relations [58,59]. These approaches again
have various limitations, being either model dependent,
making truncations in the 1=mQ and αs expansions, or
requiring a large number of external inputs.
All of these limitations can be overcome, at least in

principle, using lattice gauge theory, a nonperturbative
formulation of QCD that does not introduce new param-
eters beyond those of QCD itself and whose precision is
limited only by the available computing resources.
Numerical lattice-QCD calculations based on the path-
integral formulation are performed in Euclidean spacetime,
which may pose challenges for time-dependent matrix
elements. As we showed in Ref. [60] and discuss again
here (and as was also shown independently in Ref. [61]),
for on-shell photons, the hadronic tensor describing radi-
ative-leptonic decays can be obtained directly from a large-
Euclidean-time limit of a Euclidean three-point function.
Nevertheless, in practice, it is necessary to account for the
subleading time dependence when analyzing the simulation
results [62].
While the present work was in progress, an independent

lattice study of radiative-leptonic decays was published in
Ref. [61]. That work used the twisted-mass formulation of
lattice fermions and considered decays of charged pions,
kaons, and D and Ds mesons. For the charmed mesons, the

energy of the final-state emitted photon Eð0Þ
γ was less than

about 400 MeV in the rest frame of the decaying hadron.
For the pion and kaon radiative-leptonic decays, the results
of Ref. [61] cover the full kinematic range and were
compared to experimental data in Ref. [63]. Significant
deviations between theory and experiment were found, in
particular for K → μνγ at large photon energy.
Herewe extend our preliminary work [60,62] and present

a detailed study of nonperturbative latticemethods to extract
the structure-dependent form factors contributing to the
amplitudes of radiative three-body decays H → l−ν̄γ. For
that purpose, the relevant nonlocal matrix elements are
calculated using two different methods, which we call the
“3D method” and the “4D method,” in order to control the
two major sources of systematic errors related to unwanted
exponentials in the sum over intermediate states and to
unwanted excited states created by the meson interpolating
field (Ref. [61] used only a 4D method and use constant fits
to the data where it had plateaued). To explore a wider range
of photon energies, we perform new calculations using an
infinite-volume approximation technique. We also imple-
ment more sophisticated fits to remove unwanted exponen-
tials. In this study we make use of one of the “24I” RBC/
UKQCD lattice gauge-field ensembles with 2þ 1 flavors of
domain-wall fermions and the Iwasaki gauge action [64],
with inverse lattice spacing a−1 ¼ 1.785ð5Þ GeV and pion
mass mπ ¼ 340ð1Þ MeV [65]. We consider the process
D−

s → l−ν̄γ, for which we provide, for the first time, model-
independent determinations of the form factors in the full
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kinematically allowed photon-energy range. This paper
focuses on a detailed investigation of lattice data-generation
and data-analysis methods. Computations at the physical
pion mass and for mesons other than the Ds, extrapolations
to the continuum limit, and phenomenological studies of the
decay observables are left for future work.
The structure of the remainder of this paper is as follows.

In Sec. II A we review the Minkowski-space hadronic
tensor and in Sec. II B demonstrate how it is related
to a Euclidean-time three-point correlation function. We
describe the 3D and 4D methods in Sec. III. The details of
the lattice gauge-field ensemble and the lattice actions and
parameters are given in Sec. IV. Section V compares the
statistical precision of the vector form factor using noise
and point sources. The fit methods used to remove
unwanted exponentials from intermediate and excited
states are described in Sec. VI. We compare form factors
calculated from individual analyses of the 3D and 4D
methods, as well as a combined analysis using both
methods, in Sec. VII. The infinite-volume approximation
technique is reviewed in Sec. VIII A. In Sec. VIII B we
show how the Minkowski hadronic tensor can be calculated
using a different three-point function with the electromag-
netic current instead of the weak current at the coordinate
origin. We explain a number of improvements for deter-
mining the relevant form factors and demonstrate the level
of improvement of each method in Sec. IX. The final
improved analysis procedure, as well as the final form-
factor results, are presented in Sec. X, and we conclude
in Sec. XI. The Appendix contains a discussion of
discretization effects using the lattice vector Ward-
Takahashi identity.

II. THEORETICAL SETUP

A. Decay amplitude and correlation functions
in Minkowski spacetime

In this work, we focus on charged-current decays H →
γlν̄ mediated by the V − A weak current in the Standard
Model, but most of our methods are also applicable to other
types of currents. Here, H is a pseudoscalar meson
composed of quarks q1 and q̄2. Using the weak effective
Hamiltonian, and assuming thatH is negatively charged for
concreteness, the amplitude for this process can be written
as [20,66]

AðH−→ γl−ν̄Þ

¼GFVq1q2ffiffiffi
2

p hl−ν̄γjlγμð1− γ5Þν · q̄1γμð1− γ5Þq2jHi ð1Þ

(the decay process for the positively charged pseudoscalar
meson is given by replacing l → l and ν̄ → ν). Note the
appearance of the CKM matrix element Vq1q2 . The electro-
magnetic component of the amplitude is computed to first
order in perturbation theory, resulting in

AðH− → γlν̄Þ ¼GFVq1q2ffiffiffi
2

p ½eðϵ�Þμlγνð1− γ5Þν ·TμνðpH;pγÞ

− ieQlfH ·l=ϵ�ð1− γ5Þν�; ð2Þ

where e is the elementary electric charge, ϵμ is the photon
polarization vector,Ql is the charge of the lepton in units of
e, and fH is the H meson decay constant. The remaining
hadronic piece is contained in the hadronic tensor

TμνðpH;pγÞ

¼−i
Z

dtem

Z
d3xeipγ ·xh0jTðJemμ ðtem; x⃗ÞJweakν ð0ÞÞjHðp⃗HÞi;

ð3Þ

where the electromagnetic current (EM) is given by
Jemμ ¼ P

q Qqq̄γμq, and the weak current is given by
Jweakν ¼ q̄1γνð1 − γ5Þq2. The hadronic tensor can be written
as the sum Tμν ¼ T<

μν þ T>
μν of the contributions from the

two different time orderings of the currents, corresponding
to the integrals over tem from −∞ to 0 and from 0 to þ∞,
respectively. The form-factor decomposition for real pho-
tons, i.e., p2

γ ¼ 0, is given by [20]

Tμν¼ϵμντρpτ
γvρFVþi½−gμνðv ·pγÞþvμðpγÞν�FA

þiQl
vμvν
ðv ·pγÞ

mHfHþðpγÞμðpγÞνF1þðpγÞμvνF2; ð4Þ

where pμ
H ¼ mHvμ. To calculate the decay rate, Tμν is

contracted with the photon polarization vector ϵμ. Because
ϵμ · p

μ
γ ¼ 0, the form factors F1 and F2 do not contribute to

the decay rate. For a given meson H, the axial form factor
FA and vector form factor FV are functions of v · pγ , which
is the photon energy seen in the rest frame of the

pseudoscalar meson, denoted by Eð0Þ
γ . We define a con-

venient dimensionless variable xγ ≡ 2Eð0Þ
γ =mH, which

takes values 0 ≤ xγ ≤ 1 −m2
l=m

2
H for physically allowed

values of Eð0Þ
γ .

Unlike the vector form factor, the axial form factor is
composed of two pieces, namely a structure-dependent
contribution and a pointlike contribution. The pointlike
contribution describes the part of the decay amplitude when
the photon does not probe the internal structure of H and is

given by ð−QlfH=E
ð0Þ
γ Þ. Note that this piece is divergent as

Eð0Þ
γ goes to zero. The structure-dependent part of the axial

form factor is finite and can be calculated by subtracting the

pointlike contribution, FA;SD ¼ FA − ð−QlfH=E
ð0Þ
γ Þ. Note

that in Ref. [61], FA;SD is denoted as FA. Additionally, the
sign convention in Ref. [61] for FA;SD is flipped relative to
the convention used in this work.
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In Sec. II B, we demonstrate how to relate the hadronic
tensor to a Euclidean three-point function. This is done by
comparing the spectral decompositions of T<

μν and T>
μν to

the spectral decompositions of the corresponding time
orderings of the Euclidean three-point function. Here,

we first consider the spectral decomposition of the hadronic
tensor in Minkowski spacetime. By inserting a complete set
of energy-momentum eigenstates and performing the
integrals over time, we find

T<
μν ¼ −i

Z
0

−∞ð1−iϵÞ
dtem

Z
d3xe−ipγ ·xh0jJweakν ð0ÞJemμ ðtem; x⃗ÞjHðp⃗HÞi

¼ −
X
n

h0jJweakν ð0Þjnðp⃗H − p⃗γÞihnðp⃗H − p⃗γÞjJemμ ð0ÞjHðp⃗HÞi
2En;p⃗H−p⃗γ

ðEγ þ En;p⃗H−p⃗γ
− EH;p⃗H

− iϵÞ ð5Þ

and

T>
μν ¼ −i

Z
∞ð1−iϵÞ

0

dtem

Z
d3xe−ipγ ·xh0jJemμ ðtem; x⃗ÞJweakν ð0ÞjHðp⃗HÞi

¼ −
X
m

h0jJemμ ð0Þjmðp⃗γÞihmðp⃗γÞjJweakν ð0ÞjHðp⃗HÞi
2Em;p⃗γ

ðEγ − Em;p⃗γ
− iϵÞ : ð6Þ

Here we use notation appropriate for the case of a finite spatial volume in which the spectrum is discrete. In infinite volume,
the sums

P
n and

P
m would also contain integrals over the continuous spectrum of multiparticle states.

B. Correlation functions in Euclidean spacetime

In this section, we show how to extract Tμν from the Euclidean-time three-point correlation function

C3;μνðtem; tHÞ ¼
Z

d3x
Z

d3ye−ip⃗γ ·x⃗eip⃗H ·y⃗hJemμ ðtem; x⃗ÞJweakν ð0Þϕ†
HðtH; y⃗Þi; ð7Þ

where the meson interpolating field is given by ϕ†
H ¼ −q̄2γ5q1 [the momentum arguments of C3;μνðtem; tHÞ are omitted for

brevity]. For a finite integration range T > 0, we define the time-integrated correlation functions, for both time orderings, as

I<μνðtH; TÞ ¼
Z

0

−T
dtemeEγtemC3;μνðtem; tHÞ; I>μνðtH; TÞ ¼

Z
T

0

dtemeEγtemC3;μνðtem; tHÞ: ð8Þ

Inserting two complete sets of energy-momentum eigenstates and performing the integrals over Euclidean time, we find

I<μνðtH;TÞ¼
X
l;n

h0jJweakν ð0Þjnðp⃗H− p⃗γÞihnðp⃗H− p⃗γÞjJemμ ð0Þjlðp⃗HÞihlðp⃗HÞjϕ†
Hð0Þj0i

2En;p⃗H−p⃗γ
2El;p⃗H

ðEγþEn;p⃗H−p⃗γ
−El;p⃗H

Þ eEl;p⃗H
tH ½1−e−ðEγ−El;p⃗H

þEn;p⃗H−p⃗γ ÞT �; ð9Þ

I>μνðtH; TÞ ¼
X
l;m

h0jJemμ ð0Þjmðp⃗γÞihmðp⃗γÞjJweakν ð0Þjlðp⃗HÞihlðp⃗HÞjϕ†
Hð0Þj0i

2Em;p⃗γ
2El;p⃗H

ðEγ − Em;p⃗γ
Þ eEl;p⃗H

tH ½eðEγ−Em;p⃗γ ÞT − 1�: ð10Þ

We can achieve saturation by the ground state for the initial-state pseudoscalar meson H by taking the limit tH → −∞. For
large jtHj with tH < 0, we find

I<μνðtH;TÞ→
hHðp⃗HÞjϕ†

Hð0Þj0ieEH;p⃗H
tH

2EH;p⃗H

X
n

½1−e−ðEγ−EH;p⃗H
þEn;p⃗H−p⃗γ ÞT � h0jJ

weak
ν ð0Þjnðp⃗H− p⃗γÞihnðp⃗H− p⃗γÞjJemμ ð0ÞjHðp⃗HÞi

2En;p⃗H−p⃗γ
ðEγ þEn;p⃗H−p⃗γ

−EH;p⃗H
Þ ;

ð11Þ

I>μνðtH; TÞ →
hHðp⃗HÞjϕ†

Hð0Þj0ieEH;p⃗H
tH

2EH;p⃗H

X
m

½eðEγ−Em;p⃗γ ÞT − 1� h0jJ
em
μ ð0Þjmðp⃗γÞihmðp⃗γÞjJweakν ð0ÞjHðp⃗HÞi

2Em;p⃗γ
ðEγ − Em;p⃗γ

Þ : ð12Þ
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Each term in the sum over intermediate states in Eq. (11)
differs from the desired Minkowski-space result (5) by a
factor of ½1 − e−ðEγ−EH;p⃗H

þEn;p⃗H−p⃗γ ÞT �, and each term in the
sum over intermediate states in Eq. (12) differs from
the desired Minkowski-space result (6) by a factor of
½eðEγ−Em;p⃗γ ÞT − 1�. We now argue that these factors become
equal to 1 (i.e., the exponentials vanish) for large T.
Starting with the tem < 0 time ordering, we notice that,

because the electromagnetic-current operator cannot
change the flavor quantum numbers of a state, the low-
est-energy state appearing in the sum over n is the

pseudoscalar meson H. The unwanted exponential will

vanish if jp⃗γjþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

Hþðp⃗H−p⃗γÞ2
q

>
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

Hþp⃗2
H

p
, which is

always true for jp⃗γj > 0. Looking now at the tem > 0 time
ordering, because the states in the sum over m have mass,

jp⃗γj −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

m þ p⃗2
γ

q
< 0 is also satisfied for jp⃗γj > 0. The

hadronic tensor can therefore be extracted by

Tμν ¼ − lim
T→∞

lim
tH→−∞

2EH;p⃗H
e−EH;p⃗H

tH

hHðp⃗HÞjϕ†
Hð0Þj0i

IμνðtH; TÞ; ð13Þ

where IμνðtH; TÞ ¼ I<μνðtH; TÞ þ I>μνðtH; TÞ. We denote
linear combinations of I<μνðtH; TÞ and I>μνðtH; TÞ that are
used to extract the form factor F ¼ FV; FA; FA;SD; fH
as F<ðtH; TÞ and F>ðtH; TÞ, respectively, such that
FðtH; TÞ ¼ F<ðtH; TÞ þ F>ðtH; TÞ. For example, in the
rest frame of the meson with photon momentum
p⃗γ ¼ ð0; 0; pγ;zÞ, for the tem < 0 time ordering we
have F<

V ðtH; TÞ ¼ ðI<21ðtH; TÞ − I<12ðtH; TÞÞ=ð2pγ;zÞ.
Before proceeding, it is worth noting that, on a periodic

lattice, one must be careful however when taking the
T → ∞ limits. Figure 1 depicts the different time orderings
for the three-point correlation function in Eq. (7) on a
periodic lattice. For the tem > 0 time ordering, the largest
possible value of T is aNT=2þ tH, where NT is the number
of lattice sites in the Euclidean-time direction. Integrating
past this time will incur systematic errors from wraparound
effects. For the tem < 0 time ordering, the largest possible
value of T is −tH. Additionally, as one integrates closer to
the interpolating field, excited-state effects become larger.
We will discuss these effect further in Sec. VI.

III. SEQUENTIAL PROPAGATORS

In this section, we describe two different methods of
calculating the time-integrated correlation function
IμνðtH; TÞ on the lattice, which are illustrated in Fig. 2.
One method, which we refer to as the 3D method, uses a
three-dimensional (time-slice source) sequential propagator
through the interpolating field ϕ†

H. In this way, for a fixed
value of the source-sink separation tH, one calculates the
three-point function in Eq. (7) for all values of tem. The
second method, which we refer to as the 4D method,

FIG. 1. Schematic visualization of the different time orderings
for the Euclidean-time three-point function in Eq. (7). The tem
coordinate describes the location of the electromagnetic current.
The coordinate tem increases in the clockwise direction and forms
a circle due to periodic boundary conditions. The weak current is
at time tem ¼ 0 and the interpolating field is at time tem ¼ tH . The
orange and blue segments of the circle correspond to the time
orderings tem < 0 and tem > 0, respectively. The green segment
corresponds to the unphysical situation where the electromag-
netic current is at an earlier time than the interpolating field. The
purple segment is also unphysical. For the tem < 0 time ordering,
one must use values of the integration range such that T < jtHj.
For the tem > 0 time ordering, on the other hand, one must use
values of the integration range such that T < aNT=2 − jtHj,
where NT is the number of lattice sites in the Euclidean-time
direction.

FIG. 2. The left (right) figure is a schematic drawing of the 3D (4D) methods. For both methods, the initial noise source is located at
the weak-current time. The sequential propagator for the 3D (4D) method is shown in green (orange) and the sequential source is circled
in green (orange).
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uses a four-dimensional sequential propagator through the
electromagnetic current. The four-dimensional sequential
source is nonzero on the range −T ≤ tem ≤ T, where T is
the desired integration range, and must be multiplied by the
factor eEγ tem [the details of the four-dimensional sequential
source depend on the specific method used to calculate the
time integrals I>μνðtH; TÞ and I<μνðtH; TÞ]. Using the 4D
method, for a fixed value of the integration range T, one
calculates the time-integrated correlation function
IμνðtH; TÞ, directly on the lattice, for all values of the
source-sink separation tH. From this, we see that the 3D
method is better suited to control unwanted exponentials
from finite integration range T, while the 4D method is
better suited to control unwanted exponentials from excited
states created by the interpolating field ϕ†

H. The results in
Ref. [61] were calculated using the 4D method, integrating
over the full time extent of the lattice, i.e., T ¼ NT=2.
One limitation of the 4D method is that, because the

integral over tem is performed directly on the lattice, the two
different time orderings of IμνðtH; TÞ cannot be resolved.
Because the intermediate states of the two time orderings
are not the same in general, at finite T, one must use a fit
form with multiple exponentials to remove the unwanted
exponentials that come with the intermediate states. It is
possible, however, to modify the 4D method such that one
calculates the two time orderings separately. To do so, one
performs two sequential solves through the electromagnetic
current but limits the extent of the sources in the time
direction to only be nonzero for the desired time ordering.
We will refer to this method as the 4D>;< method.
In this work, in order to control systematic errors from

the unwanted exponentials, we perform the calculation for
multiple values of tH when using the 3D method and
multiple values of T when using the 4D or 4D>;< methods.
To properly compare the methods, it is important to
consider the number of propagator solves required for
each. Table I shows the number of propagator solves
required in terms of the number of meson momenta
NpH

, photon momenta Npγ
, source-sink separations NtH

(for the 3D method), and integration ranges NT (for the 4D
and 4D>;< methods). Note that these numbers are for a
single source on a single configuration. The factor of 2 in
front of every entry accounts for the two components of the
electromagnetic current. Using point sources allows one to
get all values of pγ for free if using the 3D method and all
values of pH for free if one uses the 4D or 4D>;< methods.

In the 4D method, one must perform a sequential solve for
each γμ matrix, which is the source of the factor of 4 in front
of Npγ

. The same is true for the 4D>;< method, except one
solve must now be done for each time ordering, resulting in
the factor of 8. The 3D method on the other hand only
requires a single sequential solve for a given pH.

IV. LATTICE PARAMETERS

In this section, we describe the properties of the lattice
we perform calculations on as well as the details of our
numerical setup. As previously described in the introduc-
tion, we have performed two sets of calculations. We start
with the common parameters between them and then
discuss the differences.
Both calculations were performed on a single RBC/

UKQCD ensemble [64] (one of the “24I” ensembles) which
was generated using the Iwasaki gauge action and 2þ 1
flavors of domain-wall fermions using N5 ¼ 16 lattice sites
in the fifth dimension. The sea-quark masses and gauge
coupling are amu;d ¼ 0.005, amsea

s ¼ 0.04, and β ¼ 2.13,
respectively, and the ensemble has an inverse lattice spacing
of a−1 ¼ 1.785ð5Þ GeV [65]. For the valence strange
quarks, we use the same domain-wall action as used for
the sea quarks [64], except that we use the physical mass
amval

s ¼ 0.0323. The charm valence quark is implemented
using a Möbius domain-wall action with L5=a¼12,
aM5 ¼ 1.0, amf ¼ 0.6, and stout-smeared gauge links
using three iterations with ρ ¼ 0.1 [67]. The charm-quark
mass obtained from these parameters is close to physical. All
calculations use all-mode averaging [68]. We currently
neglect the disconnected diagrams that correspond to self-
contracting the quark and antiquark in the electromagnetic
current. These contributions are expected to be small due to
combined 1=Nc and flavor-SUð3Þ suppression (the sum of
the up, down, and strange disconnected contributions would
vanish for equal quark masses because the electric charges
sum to zero).
We use local currents in our calculation. The matching

factors of the individual quark components of the electro-
magnetic current were computed nonperturbatively using
charge conservation. We employ “mostly nonperturbative”
renormalization of the weak axial-vector and vector cur-
rents [69,70] and use the tree-level values for the residual
matching factors. For the strange-quark nonperturbative
matching factor, we use the value calculated by the

TABLE I. Number of propagator solves required for a single configuration for a single source in terms of the desired
number ofmesonmomentaNpH

, photonmomentaNpγ
, number of source-sink separationsNtH for the 3Dmethod, and

number of integration ranges NT for the 4D methods. Results for the 3D, 4D, and 4D>;< methods are shown.

Source 3D 4D 4D>;<

Point 2ð1þ NtHNpH
Þ 2ð1þ 4NTNpγ

Þ 2ð1þ 8NTNpγ
Þ

Z2 wall 2ð1þ NtHNpH
þ NpH

Npγ
Þ 2ð1þ 4NTNpγ

þ Npγ
NpH

Þ 2ð1þ 8NTNpγ
þ Npγ

NpH
Þ
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RBC-UKQCD Collaborations [64] of ZðssÞ
V ¼0.71651ð46Þ.

We calculated the charm-quark matching factor to be

ZðccÞ
V ¼ 1.0205ð57Þ. Notice that the errors of both ZðssÞ

V

and ZðccÞ
V are at the subpercent level and therefore have a

negligible effect on the final values of the form factors
presented in this work.
The results in Secs. V–VII were calculated using either

Z2 random-wall sources or point sources on Ncfg ¼ 25

configurations, both using one exact and 16 sloppy samples
per configuration. We use gauge-covariant Gaussian smear-
ing for the strange-quark field using a width of σ ¼ 4.35
and nS ¼ 30 smearing iterations. For the strange quark, we
combined conjugate gradient (CG) with low-mode defla-
tion where we calculated the lowest 400 eigenvectors of the
domain-wall-fermion operator. The strange-quark sloppy
solves were performed using 110 CG iterations. For the
charm quark, we always performed exact solves and did not
implement low-mode deflation. For all 3D-method data in
these sections, we performed calculations using three
values of the source-sink separation −tH=a ∈ f6; 9; 12g.
For all 4D-method and 4D>;<-method data in these
sections, we performed calculations using three values of
the integration range T=a ∈ f6; 9; 12g. Further details of
the calculations performed in these sections are shown in
Table II.
The calculations in Secs. VIII–X were performed using

only the 3D method for two values of source-sink
separation −tH=a ∈ f9; 12g. We use a combination of
point sources and Z2 random-wall sources and perform
calculations on Ncfg ¼ 25 configurations with four and
two exact samples per configuration, respectively. Sixty-
four sloppy samples per configuration were used for
both noise and point sources. As will be described in
Sec. VIII A, using point sources, for a given value of p⃗H,
we are able to extract all values of p⃗γ , even noninteger
multiples of 2π=L. We performed calculations in the
meson rest frame for photon momenta in the ẑ direction
pγ;z ∈ 2π=Lf0.1; 0.2; 0.4; 0.6; 0.8; 1.0; 1.4; 1.8; 2.2; 2.4g.
Using Z2 random-wall sources we performed calculations
in the rest frame of the meson for two values of photon
momenta pγ;z ∈ 2π=Lf0; 1g. As explained in Sec. IX A,
the Z2 random-wall source data are used to reduce
statistical noise of the point source data.

Another set of questions are the particular details of how
the time integrals I>μνðtH; TÞ and I<μνðtH; TÞ are calculated—
in particular, how the tem ¼ 0 contribution is distributed
between the two time orderings and how the time integrals
are approximated. For the 3D method, these details can be
decided during the analysis stage. For the 4D>;< method
however, these details must be decided while calculating
the propagators. Note that, because the 4D method does not
resolve the two time orderings, the question of how to
distribute the tem ¼ 0 contribution is irrelevant. The results
shown in Secs. V–VII assign the entire tem ¼ 0 contribu-
tion to I>μνðtH; TÞ, approximate I>μνðtH; TÞ by summing
from tem ¼ 0 to tem ¼ T with equal weights, and approxi-
mate I<μνðtH; TÞ by summing from tem ¼ −a to tem ¼ −T
with equal weights. On the other hand, the results shown in
Secs. VIII–X assign half of the tem ¼ 0 contribution to each
time ordering and approximate I>μνðtH; TÞ and I<μνðtH; TÞ
using the trapezoid rule. These differences lead to discrep-
ancies between some of the results shown in the different
sections. In particular, discrepancies could appear for
intermediate form-factor data as a function of T as well
as form-factor results for individual time orderings. We
found that changing how the time integral is approximated
had no statistically significant effect on the final values of
the form factors.

V. COMPARING STATISTICAL PRECISION
OF NOISE AND POINT SOURCES

In this section, we compare the statistical precision of the
vector form factor calculated using both noise and point
sources.1 For both noise and point sources, calculations
were done on the same Ncfg ¼ 25 configurations, both
using one exact and 16 sloppy solves per configuration.
Before proceeding, we point out that for Ncfg ¼ 25, the
error on the error is ∼15%. Additionally, while we did not
perform calculations using point sources for the 4D and
4D>;< methods, we expect that data to exhibit the same
general behavior as we observe for the 3D method.

TABLE II. The methods, sources, and momenta for which we performed calculations in Secs. V–VII. When only
the z component of the momentum is listed, the other momentum components are zero. For 3D point sources, “all”
indicates these momenta can be calculated for free for a given value of p⃗Ds

. We did not perform calculations using
point sources for the 4D or 4D>;< methods.

Method Source Meson momentum Photon momentum

3D Z2-wall p⃗Ds
¼ ð0; 0; 0Þ jp⃗γ j2 ∈ ð2π=LÞ2f1; 2; 3; 4g

3D Point pDs;z ∈ 2π=Lf0; 1; 2g All
4D Z2-wall pDs;z ∈ 2π=Lf−1; 0; 1; 2g pγ;z ¼ 2π=L
4D>;< Z2-wall pDs;z ∈ 2π=Lf−1; 0; 1; 2g pγ;z ¼ 2π=L

1Note that we did not perform the necessary calculations to
extract FA;SD using the improved method presented in Sec. IX C
and therefore do not consider it here.
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Figure 3 compares the statistical uncertainty of
F<
V ðT; tHÞ and F>

V ðT; tHÞ calculated using the 3D method
for both point and noise sources. Specifically, Fig. 3 shows
the ratio of the statistical uncertainty from using point
sources to using noise sources, as a function of summation
range T. For the tem < 0 time ordering, the ratio approaches
a constant value of ∼2.5 as T approaches −tH. The ratio for
the tem > 0 time ordering decreases as the summation range
is increased. The data shown in Fig. 3 were calculated in the
rest frame of the meson with p⃗γ ¼ 2π=Lð0; 1; 1Þ; we
observed that these general trends also hold for other
values of p⃗γ given in Table II.
The differences in behavior of the two time orderings can

be understood by considering the maximum Euclidean-
time separation between any of the three operators in the
correlation function. The maximum time separation
between any two operators in the tem < 0 time ordering
is equal to a constant given by the source-sink separation
tH. For the tem > 0 time ordering, on the other hand, the
maximum separation is given by −tH þ T, which grows
with summation range. The relative statistical uncertainty is
generally observed to increase more quickly for noise
sources than point sources as the maximum separation
increases, leading to the behavior observed in Fig. 3.
To determine which source offers the best precision to

computational cost ratio, we need to refer back to Table I and
compare the number of solves required for the 3D method
for both noise and point sources. Using point sources, for a
given meson momentum one calculates all values of photon
momentum for free. The reduction in the number of required
solves per configuration can be used to perform the
calculation on more configurations. Therefore, if the square
root of the ratio of the number of solves for point to noise
sources is larger than the ratio of their statistical uncertain-
ties, point sources will be more cost effective. The number of
photon momenta that should be used in this comparison is
the number of momenta that provide physically allowed
values of xγ. In the rest frame of the Ds meson with L ¼ 24

and a−1 ¼ 1.785ð5Þ GeV, there are four values of pγ that
are kinematically allowed. Plugging in NpDs

¼ 1, Npγ
¼ 4,

and NtH ¼ 3, one finds that noise sources require twice as
many solves as point sources. Therefore, looking at Fig. 3,
we observe that noise sources are more cost effective for the
tem < 0 time ordering. For the tem > 0 time ordering, we
find that noise sources are more cost effective for smaller
values of T, and point sources become more cost effective
for larger values of T.
One additional factor to consider is that noise sources

benefit from volume averaging, while point sources do not.
Because our numerical test was performed on a relatively
small lattice with NL ¼ 24 spatial lattice sites, noise
sources are expected to improve relative to point sources
by a larger margin for lattices with more spatial sites.

VI. FIT METHOD

In this section we describe the fit methods used to
remove unwanted exponentials from the form-factor
results presented here and in Sec. VII. Before proceeding,
it will be useful to introduce the notation IμνðtH; TÞ ¼
IAμνðtH; TÞ þ IVμνðtH; TÞ, where IVμνðtH; TÞ and IAμνðtH; TÞ are
the weak vector and axial-vector current components of
IμνðtH; TÞ, respectively.
We start by studying, in continuum QCD, the quantum

numbers of the states that have a nonzero contribution to
the sum over states in the spectral decompositions of
I<μνðtH; TÞ and I>μνðtH; TÞ.2 For the tem < 0 time ordering,
the states jnðp⃗H − p⃗γÞi must have the same quark-flavor

FIG. 3. Ratio of statistical uncertainties of point to noise sources as a function of summation range. The left and right plots show
F<
V ðT; tHÞ and F>

V ðT; tHÞ, respectively. Lines with different colors and line styles indicate different source-sink separations. For both
noise and point sources, calculations were performed on the same Ncfg ¼ 25 configurations, both using one exact and 16 sloppy samples
per configuration.

2Note that because we neglect disconnected diagrams in this
present work, certain states will not contribute to the spectral
decomposition of I<μνðtH; TÞ and I>μνðtH; TÞ that would otherwise.
This is expected to have a more significant effect for the tem > 0
time ordering, where, for example, a ππ-like state will not
contribute as a result of neglecting the disconnected diagrams
for the Ds decay.
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quantum numbers as the initial pseudoscalar meson H.
Additionally, parity constrains the JP quantum numbers of
the states that contribute, which are in general different for
the weak axial-vector and weak vector current components.
For I<;Aμν ðtH; TÞ one finds that the allowed values are
JP ∈ f0−; 1þ; 2�;…g, which implies that the lowest-
energy state that contributes to I<;Aμν ðtH; TÞ is the pseudo-
scalar meson itself. Moving on to I<;Vμν ðtH; TÞ, one finds
that the allowed values are JP ∈ f0þ; 1−; 2�;…g, which
implies that the lowest-energy state that contributes to
I<;V
μν ðtH; TÞ is the vector meson (H�) associated with the
initial-state pseudoscalar meson; e.g., for H ¼ Ds it would
be a (D�

s)-like state. We calculate the energies of theDs and
D�

s states for all necessary combinations of p⃗Ds
− p⃗γ by

performing single-exponential fits of the associated
two-point functions projected to definite momenta. The
results of these fits are then used as Gaussian priors in the
form-factor fits, where the prior value and prior width are
set as the central value and uncertainty of the fit results,
respectively. For the tem > 0 time ordering, the states
jmðp⃗γÞi are flavorless and we leave their energies as fit
parameters. Parity constrains the quantum numbers of
the states that contribute to the sum over states in
I>;A
μν ðtH; TÞ and I>;Vμν ðtH; TÞ to be JP ∈ f0þ; 1−; 2�;…g
and JP ∈ f1−; 2�;…g, respectively.
From this discussion we also learn that in general, for a

particular momentum and a given time ordering, the same
states contribute to all μ, ν components of IAμνðtH; TÞ and
similarly for IVμνðtH; TÞ. Therefore, while the matrix ele-
ments multiplying the unwanted exponentials will in
general be different for different μ, ν indices, the energies
appearing in the exponents will be the same. Because only
IVμνðtH; TÞ contributes to FVðtH; TÞ and only IAμνðtH; TÞ
contributes to FAðtH; TÞ, FA;SDðtH; TÞ, and fHðtH; TÞ, one
can fit the form factors directly without mixing unwanted
exponentials. Fitting the form factors directly offers two
advantages over fitting IμνðtH; TÞ. First, fitting the form
factors requires fewer fit parameters, which helps stabilize
the fits. Second, consider the scenario where taking linear
combinations of IμνðtH; TÞ results in cancellations that
reveal features in the form factors that IμνðtH; TÞ is not
sensitive to. If one fits IμνðtH; TÞ first, these features could
be missed by the fit and would then propagate as a source of
systematic uncertainty in the form factors. This possibility
is eliminated by fitting the form factors directly.
To help constrain the energy gap ΔE between the ground

state and the first excited state created by the interpolating
field, we first perform two-exponential fits to the pseudo-
scalar two-point function. The result of the fit for ΔE is
then used as a Gaussian prior in the form-factor fits, with
the prior width equal to the statistical uncertainty scaled by
a factor 1.5. We extract FVðtH; TÞ, FAðtH; TÞ and fHðtH; TÞ
from the time-integrated correlation function. We then

calculate the structure-dependent axial form factor by

FA;SDðtH; tÞ ¼ FAðtH; TÞ − ð−QlfHðtH; TÞ=Eð0Þ
γ Þ. We per-

form simultaneous fits to the form factors FVðtH; TÞ,
FAðtH; TÞ, fHðtH; TÞ, and FA;SDðtH; tÞ for all kinematic
points. This takes advantage of the fact that data on a given
ensemble will have common energies, including the
excited-state energy gap, as well as energies that appear
in unwanted exponentials from intermediate states.
We fit our data as a function of both source-sink

separation tH and integration range T. Because each
successive value of T is a sum of the previous values of
T, the data for a given value of tH are highly correlated.
These large correlations manifest as small eigenvalues in
the correlation matrix, which makes correlated fits to this
data unstable. We instead perform uncorrelated fits and use
jackknife to estimate uncertainties of the fit parameters. To
replace the χ2 as a goodness of fit, we check that the fit
result of an individual form factor at a given momentum is
stable under variations of the fit range. For the 3D method,
we perform simultaneous fits to all values of tH while
searching for stability in T. For the 4D and 4D>;< methods,
we perform simultaneous fits to all values of T searching
for stability in tH. The global fits are then performed using
these chosen stable fit ranges.
The fit form used for the 3D method data includes

one exponential to account for the unwanted exponential
from the lowest-energy excited state created by the inter-
polating field and one exponential for the unwanted
exponential that comes with the lowest-energy intermediate
state. The fit forms used for the tem < 0 and tem > 0 time
orderings of the 3D method data for a form factor F ¼
FV; FA;SD; FA; fH are given by

F<ðtH; TÞ ¼ F< þ B<
Fe

−ðEγ−EHþE<ÞT þ C<
Fe

ΔEtH ; ð14Þ

F>ðtH; TÞ ¼ F> þ B>
Fe

ðEγ−E>ÞT þ C>
Fe

ΔEtH : ð15Þ

The fit form used for the tem > 0 time ordering of the 4D>;<

data is the same as the 3D method, and the fit form for the
tem > 0 time ordering of the 4D>;< data is the same as the
3D method except with C<

F ¼ 0. Recall from Sec. II B that
for tem < 0, excited-state effects become larger as one
integrates toward the interpolating field. For this reason,
stability tests for the tem < 0 time ordering are done by
varying both the minimum fit range as well as the distance
from the interpolating field. For tem > 0, on the other hand,
we only need to check for stability in the minimum
fit range.
Because the 4D data are a sum of both time orderings,

one possible fit form would be a sum of those in Eqs. (14)
and (15). However, we perform fits to regions of the data
that have plateaued in tH and therefore use the fit form

FðTÞ ¼ F þ B<
Fe

−ðEγ−EHþE<ÞT þ B>
Fe

ðEγ−E>ÞT: ð16Þ
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To help stabilize the fits to the 4D-method data, we put
a Gaussian prior on the fit parameter E> centered at the
ϕ-meson mass with a width of 200 MeV.
Figure 4 shows example Ds stability-test-fit plots for the

3D method as well as the result of the fit on top of the data.
For the 3D method we find that, in general, the global fit
does not significantly reduce the statistical errors. Similar
plots for the 4D>;< method are shown in Fig. 5. The global

fit to this 4D>;< method data improves the statistical
precision by a larger factor than for the 3D method data.
One possible explanation for this improvement is that all
4D>;< method data were calculated using the same value of
p⃗γ . The fit forms for the different momentum combinations
of F>

V ðtDs
; TÞ included in the global fit therefore all have

the fit parameter E> in common. This can be seen by
looking at the spectral decomposition in Eq. (10), which

FIG. 5. F>
V data calculated using the 4D>;< method. The left plot shows F>

V resulting from a fit for different fit ranges
ð−tDs;min; tDs;maxÞ=a for a fixed choice of −tDs;min=a ¼ 11. The red square is the chosen stable fit range and is the result of the
global fit to all 4D>;< method data. The right plot shows F>

V ðtDs
; TÞ calculated using the 4D>;< method as a function of tDs

. The three
different colored, shaped data points correspond to different values of T. The red horizontal band is the one-sigma extrapolated value of
F>
V and corresponds to the red band in the left plot. The blue, orange, and green bands are the one-sigma global fit results for T=a ¼ 6, 9,

12, respectively. The vertical black dashed lines indicate the data included in the fit. The data were calculated with p⃗Ds
¼ 2π=Lð0; 0; 1Þ

and p⃗γ ¼ 2π=Lð0; 0; 1Þ.

FIG. 4. F<
V data calculated using the 3D method. The left plot shows F<

V resulting from a fit for different fit ranges
ðTmin; Tmax þ tDs

Þ=a. The red square is the chosen stable fit range and is the result of the global fit to all 3D method data. Fit
ranges where −tDs

=a ¼ 6 has no data points indicates that dataset was left out of the fit. The right plot shows F<
V ðtDs

; TÞ calculated using
the 3D method as a function of T. The three differently colored, shaped sets of data points correspond to different values of tDs

. The red
horizontal band is the one-sigma extrapolated value of F<

V and corresponds to the red band in the left plot. The blue, orange, and green
bands are the one-sigma global fit results for −tDs

=a ¼ 6, 9, 12, respectively. The error bands are only shown for data included in the fit.
The data were calculated with p⃗Ds

¼ 0 and p⃗γ ¼ 2π=Lð1; 1; 1Þ.
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indicates that the value of the energy E> for a given
component of the weak current depends only on p⃗γ .

VII. COMPARING 3D AND 4D METHODS

In this section, we compare the 3D, 4D, and 4D>;<

methods. Before proceeding, recall that the 3D method
offers better control over taking T → ∞, while the 4D and
4D>;< methods offer better control over the tH → −∞
limit. The 3D and 4D=4D>;< methods therefore comple-
ment each other with regard to control over the two types of
unwanted exponentials appearing in the calculation. To test
if this complementarity can be exploited to improve the
quality of the fits, we also perform simultaneous fits to the
3D and 4D>;< methods. As a metric we will compare the
vector form factor as a function of xγ . Note that some data
at different xγ values are in different little groups of the
cubic group and therefore can have different discretization
errors.
We start by comparing the 4D and 4D>;< methods. The

left plot in Fig. 6 shows the results of FV as a function of xγ
calculated using the 4D and 4D>;< methods. We observe
that for all values of xγ , the 4D>;< method yields smaller
statistical uncertainties than the 4D method. Recall that,
when using the 4D>;< method, the different time orderings
can be resolved. This allows the use of more detailed fit
forms and the fits can be done at earlier values of tH,
resulting in the smaller uncertainties. Looking at Table I,
the computational cost of the 4D>;< method is roughly
twice as much as the 4D method. However, the ability to
resolve the time orderings using the 4D>;< method allows
for a more robust control over systematic uncertainties from

unwanted exponentials. For this reason, we choose to
compare the 4D>;< to the 3D method moving forward.
The right plot in Fig. 6 shows FV as a function of xγ

calculated using the 3D and 4D>;< methods, as well as
simultaneous fits to all data from both datasets. Focusing
first on the individual fits, we see that for the value of xγ
where we have data for both, the fit results agree and are of
similar precision. We find that performing simultaneous fits
to both datasets results in a factor ∼2 improvement for this
particular xγ value. For values where we have only 3D or
4D>;< method data, we find little to no improvement in
statistical precision. Additionally, performing combined
fits to the 3D and 4D>;< method data did not have a
significant improvement in the stability of the global fit.
Moving on to the computational cost, looking at Table I, the
3D method generally requires less solves than the 4D>;<

method. This is due to the number of sequential solves
required, which for the 3D method is NtHNpH

and for the
4D>;< method is 8NTNpγ

. As explained in Sec. III, the
factor of 8 results from having to do a solve for each γμ
matrix associated with the electromagnetic current, for each
time ordering. From this, if one uses only a single method,
the 3D method offers similar precision and control over the
unwanted exponentials compared to the 4D>;< method but
for a significantly cheaper computational cost.
If one uses both methods, however, our results suggest

that a factor of ∼2 improvement in precision could be
achieved by performing calculations using both methods
for each xγ. This would also allow for more robust control
of both sources of systematic uncertainties from unwanted
exponentials. However, even if one keeps NT and Npγ

small, the additional solves required for the 4D>;< method

FIG. 6. Comparison of the 3D, 4D, and 4D>;< methods for FV, plotted as a function of xγ (note that these are not our final results for
the form factor; see Fig. 14 for the final results with all improvements). Left: The red diamonds (blue squares) were calculated using the
4D (4D>;<) method. Right: The blue squares (orange circles) show results using only 4D>;< (3D) method data. The green triangles show
results of simultaneous fits to both the 4D>;< and 3D data (since all fits include data at multiple xγ values, we can obtain results from the
combination of methods even at xγ where we do not have both 3D and 4D>;< correlation functions). Points at the same xγ are shifted
slightly for clarity.
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will be significant relative to using only the 3D method.
One could instead perform the calculation using the 3D
method for more values of tH and more configurations,
improving both the precision and control over unwanted
exponentials, for less computational cost than using both
methods. For these reasons, we proceed using the 3D
method.

VIII. IMPROVED THREE-POINT
FUNCTION CALCULATION

In the following, we describe our improved methods of
calculating lattice correlators that will be used to extract the
form factors using the 3D method. We begin by discussing
the infinite-volume approximation, which allows us to
calculate the three-point functions at arbitrary photon
momentum (i.e., not subject to the usual restriction from
the periodic boundary conditions) with errors exponentially
small in the lattice volume. Then, in Sec. VIII Bwe introduce
an alternate three-point function that can be used to extract
the form factors. We demonstrate how it can be extracted for
free by reusing propagators required to calculate the original
three-point correlation function in Eq. (7).

A. Infinite-volume approximation

In this section we describe our approach to estimate
momentum-projected correlation functions at arbitrary
momenta (i.e., not restricted to integer multiples of
2π=L) with exponentially small errors in the finite volume.
We simplify the discussion without loss of generality and
consider the case of one spatial dimension with even integer
extent L (here we use lattice units). Let CLðxÞ be a finite-
volume correlator and C∞ðxÞ the corresponding correlator
in the L → ∞ limit. We assume there exist c; d;Λ;Λ0 ∈ Rþ
and L0 ∈ N for which

jC∞ðxÞ − CLðxÞj ≤ ce−ΛL ð17Þ

for all x with −L=2 ≤ x ≤ L=2 and L ≥ L0 and

jC∞ðxÞj ≤ de−Λ
0jxj ð18Þ

for all x with jxj > L=2. We now define

C̃LðqÞ≡ XL=2−1
x¼−L=2

CLðxÞeiqx ð19Þ

and

C̃∞ðqÞ≡ X∞
x¼−∞

C∞ðxÞeiqx: ð20Þ

Under the above assumptions, it then follows that there is a
c̃ ∈ Rþ for which

jC̃∞ðqÞ − C̃LðqÞj ≤ c̃e−Λ0L ð21Þ

for all q∈ ½−π;π� and all L ≥ L0, with Λ0 ≡minðΛ;Λ0=2Þ.
In other words, C̃LðqÞ is exponentially close to the infinite-
volume version C̃∞ðqÞ. In practice, the coordinate x is often
the relative distance between vertices y and z; i.e., we are
interested in

C̃ðqÞ≡X
y;z

Cðy; zÞeiqðy−zÞ: ð22Þ

The constraint of Eq. (18) can be satisfied if Cðy; zÞ
eventually decreases exponentially as coordinates y and
z are separated. The implementation of Eq. (19), however,
requires the truncation of the double sum over y and z to
−L=2 ≤ y − z < L=2. We are able to do this with point
sources for either y or z but not if sequential solves and wall
sources are used for both y and z. We therefore develop a
method in Sec. IX A that combines the statistical benefits of
a sequential solve with the improved momentum resolution
offered by a point-source-based setup.
In practice, Λ ¼ mπ but Λ0 can be substantially larger

such that Λ0 ¼ mπ often holds.
Finally, we would like to point out that the method is

similar in spirit to the QED∞ method [71]. In Ref. [72] an
extension of this method was presented that allows for the
calculation of QED self-energies with only exponentially
small finite-volume errors.

B. Three-point function with electromagnetic
current at origin

The three-point function in Eq. (7) used to extract the
hadronic tensor has the weak current fixed to the origin. In
this section, we show how Tμν can be extracted from a
similar correlation function, except with the electromag-
netic current fixed to the origin, given by

CEM
3;μνðtW; tHÞ ¼ eEHtW

Z
d3x

Z
d3yeiðp⃗γ−p⃗HÞ·x⃗eip⃗H ·y⃗

× hJemμ ð0ÞJweakν ðtW; x⃗Þϕ†
HðtH; y⃗Þi: ð23Þ

The superscript EM is used throughout this work to
differentiate between the correlation function with the
weak current at the origin in Eq. (7). The additional factors
eEHtW and e−ip⃗H ·x⃗ are required to shift the interpolating field
in Euclidean time and space, respectively, relative to the
other operators. Note that the phase to project to definite
photon momentum is flipped relative to the three-point
function in Eq. (7). When using point sources, this
correlation function can be calculated for free by reusing
propagators used to calculate the three-point function in
Eq. (7). In particular, two sets of propagator solves must be
performed, one for each component of the electromagnetic
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current Jemμ . For example, when H ¼ Ds, the sequential
propagator calculated for the strange- (charm-) quark
contribution of Jemμ when the weak current is at the origin
is the same sequential propagator needed for the charm-
(strange-) quark contribution of Jemμ when the electromag-
netic current is at the origin.
We define the time integrals of this correlation function

for the different time orderings as

IEM;>
μν ðtH; TÞ ¼

Z
T

0

dtWe−Eγ tWCEM
3;μνðtW; tHÞ; ð24Þ

IEM;<
μν ðtH; TÞ ¼

Z
0

−T
dtWe−EγtWCEM

3;μνðtW; tHÞ: ð25Þ

By inserting two complete sets of states and performing the
integrals over time, we find the spectral decompositions

IEM;>
μν ðtH;TÞ¼

X
n;l

h0jJweakν ð0Þjnðp⃗H− p⃗γÞihnðp⃗H − p⃗γÞjJemμ ð0Þjlðp⃗HÞihlðp⃗HÞjϕ†
Hj0i

2En;p⃗H−p⃗γ
2El;p⃗H

ðEγ þEn;p⃗γ−p⃗H
−EHÞ

eEl;p⃗H
tH ½1−e−ðEγþEn;p⃗γ−p⃗H−EHÞT � ð26Þ

and

IEM;<
μν ðtH; TÞ ¼

X
m;l

h0jJemμ ð0Þjmðp⃗γÞihmðp⃗γÞjJweakν ð0Þjlðp⃗HÞihlðp⃗HÞjϕ†
Hj0i

2Em;p⃗γ
2El;p⃗H

ðEγ − Em;p⃗γ
þ ΔEl;p⃗H

Þ eEl;p⃗H
tH ½eðEγ−En;p⃗γþΔEl;p⃗H

ÞT − 1�; ð27Þ

where ΔEl ¼ El;p⃗H
− EH;p⃗H

is the excited-state energy gap
for the lth excited state created by the interpolating field.
Using similar arguments as in Sec. II B, we find that, for
p⃗γ ≠ 0, the hadronic tensor can be extracted by

T<
μν ¼ − lim

T→∞
lim

tH→−∞

2EH;p⃗H
e−EH;p⃗H

tH

hHðp⃗HÞjϕ†
Hð0Þj0i

IEM;>
μν ðtH; TÞ; ð28Þ

T>
μν ¼ − lim

T→∞
lim

tH→−∞

2EH;p⃗H
e−EH;p⃗H

tH

hHðp⃗HÞjϕ†
Hð0Þj0i

IEM;<
μν ðtH; TÞ: ð29Þ

The largest possible integration ranges for the tW < 0 and
tW > 0 time orderings are −tH and aNT þ tH, respectively,
where NT is the number of temporal lattice sites. As before,
as one integrates closer to the interpolating field for tW < 0,
excited-state effects become larger.
Notice that the spectral decompositions of the tW > 0

time ordering of IEMμν and the tem < 0 time ordering of Iμν
are equal up to excited-state effects; the same is true for the
tW < 0 and tem > 0 time orderings of IEMμν and Iμν. This
implies that one can perform simultaneous fits to the IEM;>

μν

and I<μν data using common fit parameters and similarly for
the IEM;<

μν and I>μν data. As an example of the different
behavior of the two datasets with T, Fig. 7 shows the
weak axial-vector component of both I<00ðtH; TÞ and
IEM;>
00 ðT; tHÞ, calculated in the rest frame of the meson
with p⃗γ ¼ 2π=Lð0; 0; 0.6Þ using −tH=a ¼ 9. Looking at
the blue triangles, for T < jtHj, the I<μνðtH; TÞ data begin to
plateau as T is increased up until the maximum value of
T ¼ −tH. For the IEM;<

μν ðtH; TÞ data, on the other hand, it is
possible to integrate past T ¼ −tH because one is integrat-
ing away from the interpolating field in this case.

This example leads to a clear scenario where having both
sets of data would be crucial for the analysis. In particular,
consider the possibility where the results of the fits to the
I<μνðtH; TÞ data were not stable for all allowed values of
T < jtHj. To get around this problem, one option would be
to extend the allowed values of T by increasing the source-
sink separation tH. However, because increasing tH gen-
erally results in noisier data, it might not be practical to
extend tH large enough to observe stability in the fit range
for T. Another option would be to add additional expo-
nential terms in the fit form, but because fits with multiple
exponentials are generally unstable, this might not be
possible without introducing priors on the energies of
the intermediate state, which could bias the results.
A better solution to the problem would be to perform
the calculation for IEM;>

μν ðtH; TÞ, which would allow one to

FIG. 7. I<μνðT; tHÞ and IEM;>
μν ðT; tHÞ as a function of T for

−tH=a ¼ 9. Notice that I<μνðT; tHÞ can only be evaluated up to
T ¼ −tH, while IEM;>

μν ðT; tHÞ can be evaluated for larger values of
T. Both were calculated in the rest frame of the meson with
p⃗γ ¼ 2π=Lð0; 0; 0.6Þ. The indices shown are μ ¼ ν ¼ 0.
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extend the fit range in T while keeping tH constant. A
similar situation can occur for tW < 0 and tem > 0 data,
except that now IEM;<

μν ðtH; TÞ has a limited range of
T < jtHj, and I>μνðtH; TÞ can be evaluated for larger values
of T.
Considering instead the opposite scenario where one

observes stability for both time orderings of both
IEMμν ðtH; TÞ and IμνðtH; TÞ, having both sets of data provides
improvements to the extracted form factors beyond simply
extra statistics. This can be understood by considering the
maximum Euclidean-time separation of the three operators
in the correlation functions. The maximum separation for
the tem < 0 time ordering is tH, while for tW > 0 the
maximum separation is T þ jtHj. It is therefore expected
that, for the same value of tH, the I<μν data will be more
precise than the IEM;>

μν data; using similar arguments, the
IEM;<
μν data are expected to be more precise than the I>μν data.
In Sec. IX D we compare the form factors extracted the

individual datasets, as well as the improvements achieved
by performing simultaneous fits to both datasets.

IX. IMPROVED FORM-FACTOR
DETERMINATION

In this section we describe improvements to the original
3D method calculation presented in Secs. VI and VII. In
particular, the four improvements we make are

(i) Section IX A shows improvements by taking ratios
of the point source data to noise source data.

(ii) Section IX B shows improvements from averaging
over positive and negative photon momentum.

(iii) Section IX C shows improvements by extracting
FA;SD using a method that removes contact terms
that diverge at small xγ .

(iv) Section IX D shows improvements by doing a
combined analysis of both data calculated using
the original three-point function in Eq. (7) and the
alternate three-point function in Eq. (23).

As each improvement is presented, we also present
numerical studies that demonstrate the level of the improve-
ments. Note that, when doing comparisons of different
methods, we still implement all the other improvements not
being studied. So, in any given analysis, three of the four
improvements are being used.
Another modification to the analysis is that we now fit

the contributions to the form factors from the separate
quark components of the electromagnetic current sepa-
rately. This is done for two reasons. First, these separate
contributions are well-defined QCD form factors and are
therefore of phenomenological interest. The second is that,
in general, the intermediate states that contribute to the
different quark contributions are different. Fitting them
separately therefore reduces the possible number of expo-
nential that contribute at finite integration range T, which
stabilizes the fits. We denote the charm- and strange-quark

components of the form factors with superscripts (c) and

(s), respectively, such that, e.g., FV ¼ FðcÞ
V þ FðsÞ

V . The
details of the final analysis methods are presented in Sec. X.

A. Ratio methods

To be able to use the infinite-volume approximation in
Sec. VIII A, one must use point sources. In our analysis in
Sec. V, we found that noise sources generally perform
better than point sources for the same statistics. Because of
this, we would like a way to improve the precision of point
sources to be similar to that of noise sources. In this section,
we present a method that achieves this which works by
taking ratios of correlation functions calculated using both
point and noise sources.
Specifically, suppose we calculate a three-point function

[either in Eq. (7) or Eq. (23)] using point sources in the rest
frame of the meson at photon momentum p⃗γ , denoted as
Cpoint
3;μν ðp⃗γ; t; tHÞ. Here t could be either tem or tW. Using

noise sources, we calculate the same correlation function
but at a photon momentum p⃗� that is allowed by periodic
boundary conditions, denoted as CZ2

3;μνðp⃗�; t; tHÞ. The
improved estimator is calculated using the ratio

Cimproved
3;μν ðp⃗γ; t; tHÞ¼Cpoint

3;μν ðp⃗γ; t; tHÞ
CZ2

3;μνðp⃗�; t; tHÞ
Cpoint
3;μν ðp⃗�; t; tHÞ

; ð30Þ

where it is understood that one must first calculate the
expectation values of the individual correlation functions
before taking the ratio. Note that the value of p⃗� must be
chosen such that the expectation value of the denominator
is nonzero. In our analysis, we perform calculations for p⃗γ

in the z direction and calculate two values of p⃗� ¼
2π=Lð0; 0; p�

zÞ with p�
z ∈ f0; 1g.

When deciding what ratio to take for the weak axial-
vector component of the three-point function, for each
value of p⃗γ , t, and tH, we try four ratios, calculate the
statistical uncertainty for each of the four possible ratios,
and choose to implement the method with the smallest
statistical uncertainty. The four ratios we consider are
(1) no ratio,
(2) ratio using p�

z ¼ 0,
(3) ratio using p�

z ¼ 1, and
(4) ratio using the two values of p�

z linearly interpolated
to the value of p⃗γ .

Because the expectation value of the weak vector compo-
nent of the three-point correlation function is zero when
both the meson and photon momentum are zero, we only
consider methods 1 and 3 in this case. Additionally, when
calculating FA;SD by subtracting the correlation function at
zero photon momentum as described in Sec. IX C, we take
ratios after subtracting.
To test the improvements gained using this ratio method,

we compare the form factors as a function of xγ both using
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the improved correlation function in Eq. (30) and using the
original correlation function without multiplying by the
ratio. The analysis of a specific component of a given form
factor was performed using the same fit forms and fit ranges
for both the original and improved data. The fit forms and
fit ranges were chosen by performing a stability analysis to
the improved data. The results for both FA;SD and FV are
shown in Fig. 8.
Looking first at FA;SD, we observe a ∼4 times reduction

in the statistical error for small xγ , with the improvements
generally decreasing as xγ increases. More specifically, the
time orderings tem < 0 and tW > 0 see the greatest
improvement in precision. The time orderings tem > 0
and tW < 0 for the charm-quark component of the EM
current sees a factor ∼2 improvement, while the strange-
quark component of the EM current sees little to no
improvement. We observe only modest reductions in
statistical noise for the vector form factor FV.

B. Averaging over �p⃗γ
One advantage of our improved method is the ability to

average over the positive and negative photon momenta for
free. In this section, we compare the precision of the form
factors calculated by performing this average to form
factors calculated using only positive photon momentum.
As in Sec. IX A, the analysis of a specific component of a
given form factor was performed using the same fit forms
and fit ranges for the analysis of both data. The fit forms
and fit ranges were chosen by performing a stability
analysis to the data averaged over photon momentum.
Looking at Fig. 9, we see that at small xγ , averaging over

�p⃗γ results in anywhere from a factor of 3 to factor of 9

improvement in precision for FðcÞ
V , FðsÞ

V and FV . The
dramatic improvement in precision at small xγ can be
understood by first noting that the form-factor decompo-
sition of Tμν in Eq. (4) implies the weak vector component
of the three-point correlation function is purely real. This
information can be used to show that FV receives a pure
noise contribution, which is exactly canceled out by

averaging over positive and negative photon momentum,
leading to the dramatic improvement. On the other hand,
the weak axial-vector component of the three-point corre-
lation function is purely imaginary and does not receive a
pure noise contribution. For this reason, averaging over
�p⃗γ has only a modest improvement in precision for FA;SD.
Another observation from Fig. 9 is that there is a strong

cancellation between the strange- and charm-quark con-
tributions of FV (similar cancellations were also observed
in the DsD�

sγ couplings [73,74], which correspond to pole
residues in the Ds → lν̄γ form factors). Additionally,

although results for FðcÞ
V and FðsÞ

V agree between averaging
and not averaging, there is a slight tension for FV at small
xγ . Recall that our updated analysis method involves first

fitting the FðcÞ
V ðtH; TÞ and FðsÞ

V ðtH; TÞ data and then taking
linear combinations of the fit results to extract FV . To

ensure that fitting FðcÞ
V ðtH; TÞ and FðsÞ

V ðtH; TÞ first and then
taking linear combinations does not introduce systematic
uncertainties in the results for FV, we also did the analysis
performing fits to FVðtH; TÞ directly. We found that the
results for FV between the two analysis methods were
consistent within errors, and from this conclude that the
tension in Fig. 9 is the result of a statistical fluctuation.

Furthermore, we also found that fitting FðcÞ
V ðtH; TÞ and

FðsÞ
V ðtH; TÞ first resulted in slightly smaller statistical

uncertainties than fitting FVðtH; TÞ directly.

C. Comparing different methods to calculate FA;SD

In this section, we compare three different methods for
calculating FA;SD, denoted using the superscripts I, II, and
III, as in FI

A;SD, F
II
A;SD, and FIII

A;SD, to differentiate between
them. We use method III in the final analysis presented
in Sec. X.
Using method I, the structure-dependent part of the axial

form factor is first calculated as a function of tH and T,
denoted FA;SDðtH; TÞ. It is calculated as FA;SDðtH; TÞ ¼
FAðtH; TÞ − ð−QlfHðtH; TÞ=Eð0Þ

γ Þ, where FAðtH; TÞ and

FIG. 8. Left (right) compares FA;SD ðFVÞ as a function of xγ using the ratio method and without using the ratio method. The ratio
method results in a more significant improvement for FA;SD. Points at the same xγ have been shifted slightly for clarity.
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fHðtH; TÞ are extracted from appropriate linear combina-
tions of the time-integrated correlation function. We then fit
FA;SDðtH; TÞ to take the T → ∞ and tH → −∞ limits. To
understand how the fits to FA;SDðtH; TÞ are performed, we
must first understand what intermediate states contribute in
the spectral decomposition. In particular, subtleties appear
when considering the time ordering tem < 0 and tW > 0. As
explained in Sec. VI, the lowest-energy intermediate state
that contributes to the weak axial-vector component of the
time-integrated correlation function for these time order-
ings is the initial-state pseudoscalar meson H. Looking at

the form of the spectral decomposition in Eqs. (9) and (26),
for p⃗H ¼ 0⃗, each term in the sum is proportional to
h0jJweakν ð0Þjnð−p⃗γÞi. In this case the state is n ¼ H, and
this matrix element is the definition of the pseudoscalar
decay constant, i.e., h0jJweakν ð0ÞjHð−p⃗γÞi ∼ iðpγÞνfH. This
implies that the state n ¼ H only contributes for indices ν
with ðpγÞν ≠ 0. Our analysis uses p⃗γ in the ẑ direction, and
so this state only contributes in the ν ¼ 0, 3 matrix
elements. The axial form factor FA is extracted using the
indices ðμ; νÞ ∈ fð1; 1Þ; ð2; 2Þg, and the decay constant
is extracted using the indices ðμ; νÞ ∈ fð0; 0Þ; ð3; 0Þg.

FIG. 9. Left (right) column compares FA;SD ðFVÞ calculated using only positive ðpγÞz to FA;SD ðFVÞ calculated averaging over positive
and negative ðpγÞz. The different rows show the full form factors, as well as the individual charm- and strange-quark current

components. For FV, F
ðcÞ
V , and FðsÞ

V , dramatic improvements in precision are observed for small xγ , with the improvement generally

decreasing with xγ . Only modest improvements are observed for all FA;SD, F
ðcÞ
A;SD, and F

ðcÞ
A;SD data. Points at the same xγ have been shifted

slightly for clarity.
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Therefore, when fitting FA;SDðtH; TÞ ¼ FAðtH; TÞ−
ð−QlfHðtH; TÞ=Eð0Þ

γ Þ, the lowest-energy state that appears
for the tem < 0 and tW > 0 time orderings is n ¼ H. The
unwanted exponential in this case decays in T according to
the combination of energies Eγ þ EH;p⃗γ

−mB, which
approaches zero as p⃗γ → 0. An example of the behavior
in T for pγ;z ¼ 0.6 × 2π=L is given in Fig. 7. Looking at
Fig. 10, FI

A;SD is precise at large xγ , and the error increases
dramatically for xγ ≲ 0.1. Part of the increase in error is due
to the long extrapolation in T performed for the tem < 0 and
tW > 0 data. Another factor is that, for smaller xγ, we did
not observe stability in the tem < 0 data for any of the
possible values of T < jtHj. Specifically, stability was not

observed for FðcÞ
A;SD with pγ;z ∈ 2π=Lf0.1; 0.2g and for

FðsÞ
A;SD with pγ;z ∈ 2π=Lf0.1; 0.2; 0.4; 0.6; 0.8; 1.0g. For

these cases, we used only the tW > 0 data. Lastly, we
observe that as xγ decreases, there are cancellations as
large as 98% between the two time orderings for the
smallest xγ .
Method II improves upon the first by exactly subtracting

the unwanted exponential contribution from the n ¼ H
state to the tem < 0 and tW > 0 time orderings using a
technique put forth in Ref. [75]. The procedure follows
from the observation that, when the energy of the lowest-
energy intermediate state contributing to the spectral
decomposition of the time-integrated correlation function

is known, e.g., when determined by fitting to a two-point
function, this information can be combined with the three-
point correlation function to exactly subtract the unwanted
exponential associated with that state. As a concrete
example, consider the spectral decomposition for IA;<μ0 with

p⃗H ¼ 0⃗ and p⃗γ ¼ ð0; 0; pγ;zÞ. In this case, assuming
ground-state saturation has been achieved for the interpo-
lating field, the lowest-energy unwanted exponential when
n ¼ H takes the form

−
h0jJA0 ð0ÞjHð−p⃗γÞihHð−p⃗γÞjJemμ ð0ÞjHð0⃗ÞihHð0⃗Þjϕ†

Hð0Þj0i
2EH;p⃗γ

2mHðEγ þ EH;p⃗γ
−mHÞ

emHtHe−ðEγ−mHþEH;p⃗γ ÞT; ð31Þ

where JAν ð0Þ is the axial-vector component of the weak
current. Because IA;<30 is the integral of CA

3;μ0ðtH; temÞ over
tem, the spectral decompositions are equal up to the factor
ðEγ þ EHp⃗γ

−mHÞ in the denominator. Therefore, the
unwanted exponential in Eq. (31) can be exactly subtracted
by taking the combination

IA;<μ0 ðT; tHÞ þ CA
3;μνð−T; tHÞ

e−EγT

Eγ þ EH;p⃗γ
−mH

: ð32Þ

A similar procedure can be done for data with the
electromagnetic current at the origin. Note that, for
tW > 0, this combination subtracts the unwanted exponen-
tial corresponding to n ¼ H for the ground state as well as
excited states created by the interpolating field. For
tem < 0, however, the cancellation only occurs for the
ground-state contribution. One must use a modified fit form
to account for this given by

F<
A;SDðT; tHÞ ¼ F<

A;SD þ Be−ðEγ−mHþE<ÞT

þ Aexce−ΔEðTþtHÞe−ðEγ−mHþEH;p⃗γ ÞT

þ CeΔEtH ; ð33Þ

where the term proportional to Aexc accounts for the
imperfect cancellation when excited states contribute.
Because the unwanted exponential with the smallest
energy has been subtracted, the data plateau more quickly
with T. This allows one to fit earlier in T to the more
precise data and also results in a shorter extrapolation in T.
Additionally, fits to all tem < 0 data were stable for the
allowed values of T < jtHj. The results for FII

A;SD are
shown in Fig. 10. As expected, the data agree for larger xγ,
and the error bars are significantly reduced for small xγ .
However, because the large cancellation between the
two time orderings is still present, the error bars using
this method also increase dramatically as one goes to
smaller xγ.

FIG. 10. FA;SD as a function of xγ calculated usingmethods I–III.
Method III is significantly more precise at small xγ . Methods I
and II disagree with method III at smaller xγ, due to Oðan=xγÞ
discretization effects.
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The third method, originally put forth in Ref. [61],
calculates FA;SD by exploiting properties of the weak axial-
vector three-point function at zero photon momentum.
Further details and comments are given in the Appendix.
To summarize, one can extract the structure-dependent part
of the axial form factor by replacing the original correlation
function

Z
d3x

Z
d3ye−ip⃗γ ·x⃗hJemμ ðtem; x⃗ÞJAν ð0Þϕ†

HðtH; y⃗Þi ð34Þ

by

Z
d3x

Z
d3yðe−ip⃗γ ·x⃗−1ÞhJemμ ðtem;x⃗ÞJAν ð0Þϕ†

HðtH;y⃗Þi ð35Þ

for μ ¼ ν ∈ f1; 2g (herewe set p⃗H ¼ 0) and similarly for the
case in which the electromagnetic current is fixed at the
origin. By applying the same steps previously used to extract
FAðtH; TÞ from Eqs. (34) and (35) instead, one directly
obtains FA;SDðtH; TÞ. One advantage of this method is that
FA;SD is extracted only using the ðμ; νÞ ∈ fð1; 1Þ; ð2; 2Þg
indices, and so the staten ¼ H does not contribute to tem < 0
and tW > 0 data. This implies that the data for these time
orderings will plateau more quickly in T, and a shorter
extrapolation is required. Additionally, using this method
results in at most a 50% cancellation between the time
orderings at the smallest xγ . Looking at Fig. 10, these factors
lead to significantly more precise results at small xγ. One
downside to this method was that stability was not observed
for the tW < 0 time ordering for any photon momentum, and
we only used the tem > 0 data. For this reason, the results for
FIII
A;SD at large xγ are less precise than the other two methods.
Another advantage of method III has to do with

discretization effects. It was shown in Ref. [61] that
subtracting the pointlike contribution to FA using the decay
constant fH calculated in the usual way from a two-point
function results in Oðan=xγÞ discretization effects, in spite
of the naive expectations based on the lattice Ward identity.
Calculating FA;SD using method III, however, was shown to
avoid this problem [61], with only discretization errors of
the form Oða2Þ. While methods I and II extract fH using
the time-integrated three-point function and not the two-
point function, we observe that those procedures still result
in discretization errors of the form an=xγ. In fact, since the
axial form factor FA and the decay constant fH are
computed from different combinations (see above) of the
time-integrated-correlation-function components, which,
we note, are not related by Hð3Þ symmetry and have their
own lattice artifacts, residual discretization effects that scale
as ∼1=xγ will survive in FA;SD once the pointlike part of the
axial form factor is subtracted. On the contrary, in method
III a unique combination of the time-integrated-correlation-
function components is involved, leading to a complete can-
cellation of the unphysical, infrared-divergent contribution

to FA;SD at finite cutoff. This is corroborated by the findings
of Fig. 10, where the results for FIII

A;SD agree with methods I
and II at large xγ but disagree for xγ < 0.6. In the light of
the above considerations we choose to use method III in our
final analysis presented in Sec. X.

D. Comparing the different three-point
function analyses

In this section, we compare form-factor results calculated
using the three-point functions in Eqs. (7) and (23). For the
comparison, we perform fits to the individual datasets, as
well as simultaneous fits to both sets of data. Note that, for
the strange-quark electromagnetic-current contribution to
the tW < 0 time ordering of FA;SD, we found that the fit
results were not stable for any allowed values of integration
range T. For that particular dataset we therefore only used
tem > 0 data. We begin this section by providing theoretical
arguments for which method will be more precise at
extreme values of xγ and conclude by discussing the
form-factor results.
Starting with the tem < 0 data, as the integration range T

is increased, the maximum distance between any of the
three operators is fixed by the source-sink separation tH.
For the tW > 0 data, however, the maximum distance is
given by T þ jtHj, which increases with T. This implies that
the signal for the tW > 0 data will decrease with T, while
the signal for the tem < 0 data will be relatively constant
with T. Because the unwanted exponentials for the tem < 0
and tW > 0 data decay more quickly as p⃗γ is increased, one
must fit larger values of T for small p⃗γ . Taken together,
these facts imply that the tem < 0 data will be more precise
than the tW > 0 data, with a larger relative improvement for
small pγ . Similar arguments can be made for the tem > 0

and tW < 0 data, except that as p⃗γ is increased, the
unwanted exponentials decay more slowly with T, and
the roles of the tem > 0 and tW < 0 are flipped with regards
to the minimum distance between the operators. Therefore,
the improvement in precision of the tW < 0 data over the
tem > 0 data will be more significant at large xγ .
Figure 11 shows the different time orderings of

FA;SD and FV as a function of xγ determined using each
method separately, as well as from a combined analysis. As
expected, at small xγ , results using tem < 0 data are more
precise than using tW > 0 data for both FV and FA;SD.
Looking at the vector form factor, for larger xγ, we observe
that the tW < 0 result is more precise than the tem > 0 result.
Whilewe cannot perform the same comparison forFA;SD, we
observed a similar trend for the charm-quark-current con-
tribution to the tW < 0 and tem > 0 time ordering of FA;SD.
To summarize, data calculated using either of the three-

point functions in Eq. (7) or Eq. (23) have inherent
limitations to the precision that can be achieved at the
extreme values of xγ. However, we found that performing
combined fits to both sets of data allows us to achieve
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a high precision for both small and large xγ . Additionally,
for intermediate xγ values, we see an overall improvement
compared to a single method. Lastly, because we had to
discard the tW < 0 data for the strange-quark-current
contribution for FA;SD, it was crucial to the analysis that
we performed the calculation using both methods.

X. FORM-FACTOR RESULTS USING
ALL IMPROVEMENTS

In this section we summarize the improved methods used
to extract the form factors.

Using the 3D method, we calculate the three-point
functions with the weak and electromagnetic currents at
the origin using the infinite-volume approximation method
described in Sec. VIII A. Calculations are performed in the
rest frameof themeson for photonmomenta in the ẑ direction
pγ;z∈2π=Lf0.1;0.2;0.4;0.6;0.8;1.0;1.4;1.8;2.2;2.4g. The
three-point functions are averaged over positive and neg-
ative photon momentum. We also calculate the three-point
function using Z2 random-wall sources for photon momen-
tum pγ;z ∈ 2π=Lf0; 1g and take ratios with the point
source data as explained in Sec. IX A. We then extract the
form factors as a function of tH and T by taking linear

FIG. 11. Left (right) column compares FA;SD ðFVÞ calculated using only the three-point function in Eq. (7) (labeled “weak”), only the
three-point function in Eq. (23) (labeled “em”), and a simultaneous fit of both datasets (labeled “combined”). The different rows show
the full form factors, as well as the individual-time-ordering contributions. The vertical axis label F<

V indicates the tem < 0 and tW > 0

data, and the label F<
V indicates the tem > 0 and tW < 0 data; similar labels are used for FA;SD. The tem < 0 data are more precise than the

tW > 0 data for small xγ , and the tW < 0 data are more precise than the tem > 0 data for large pγ .
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combinations of the improved time-integrated correlation
functions.
Contrary to the analysis methods outlined in Sec. VI, in

the final analysis we perform stability-test fits to the two
individual quark components of the electromagnetic-
current contributions to the form factors; the full form
factors are obtained by summing the fit results of these
contributions. As before, we check that the fit result of an
individual dataset is stable under variations of the fit range.
This stability analysis is first performed to the data with the
weak and EM currents at the origin separately. For the
tem < 0 and tW < 0 data, we search for stability under
variations of the minimum fit ranges T<

min and T<;EM
min , as

well as the distances from the interpolating field T<
max þ tH

and T<;EM
max þ tH. For the tem > 0 and tW > 0 data, on the

other hand, stability is only checked under variations of the
minimum fit ranges T>

min and T>;EM
min . The stable fit ranges

determined from these individual fits are then used to
perform simultaneous fits to the tem < 0 ðtem > 0Þ and
tW > 0 ðtW < 0Þ data. To check that the combined fits are
also stable, we perform fits to a number of different fit
ranges varied about these chosen fit ranges. In particular,
we vary each of the three possible fit ranges individually by
−1, 0, and þ1, resulting in 27 total fits. For simultaneous
fits to the tem < 0 and tW > 0 data, the three fit ranges we
vary are T<

min, T
>;EM
min , and T<

max þ tH, and for simultaneous
fits to the tem > 0 and tW < 0 data, the three fit ranges we
vary are T>

min, T
<;EM
min , and T<;EM

max þ tH. Because we found
that performing global fits to all xγ did not significantly
improve the precision of the extrapolated values for the
form factors when using the 3D method, we now take the
stable fit range to the fits at a single xγ as the final value.
The most detailed fit forms used in the analysis for the
tem < 0 and tW > 0 data are given by

FðqÞ;<ðtH;TÞ¼FðqÞ;<

þB<
FðqÞ ð1þB<

FðqÞ;exce
ΔEðTþtHÞÞe−ðEγ−EHþE<

FðqÞ
ÞT

þC<
FðqÞeΔEtH ; ð36Þ

FðqÞ;>;EMðtH; TÞ ¼ FðqÞ;< þ B<
FðqÞe

−ðEγ−EHþE<

FðqÞ
ÞT

þ C<;EM
FðqÞ eΔEtH ; ð37Þ

where F ¼ FV; FA;SD. Note that these fit forms have the
parameters FðqÞ;<, B<

FðqÞ , EH, E<
FðqÞ and ΔE in common. The

fit forms for the tem > 0 and tW < 0 data are given by

FðqÞ;>ðtH; TÞ ¼ FðqÞ;> þ B>
FðqÞe

ðEγ−E>

FðqÞ
ÞT

þ C>
FðqÞeΔEtH ; ð38Þ

FðqÞ;<;EMðtH;TÞ ¼FðqÞ;>

þB>
FðqÞ ð1þB>

FðqÞ;exce
ΔEðTþtHÞÞeðEγ−E>

FðqÞ
ÞT

þC>;EM
FðqÞ eΔEtH ; ð39Þ

which have the parameters FðqÞ;>, B>
FðqÞ , E>

FðqÞ , and ΔE in
common. In the cases where the data plateau quickly in T

we use a fit form with Bð<Þ;ð>Þ
FðqÞ ¼ 0.

For fits to FV , we calculate the vector-meson ðD�
sÞ

energies for all values of p⃗Ds
− p⃗γ using a lattice dispersion

relation of the form

EH� ¼ mH� þ αjp⃗j2 þ βjp⃗j4: ð40Þ

The parameters mH� , α and β are determined by
performing fits to vector-meson energies determined from
the associated vector-meson two-point functions for
jp⃗j2 ∈ ð2π=LÞ2f0; 1; 2; 3; 4g. For reasons explained in
Sec. VIII A, this lattice dispersion relation is valid for
momenta at noninteger multiples of 2π=L up to errors
suppressed exponentially in the volume. The vector-meson
energies are used as priors in fits for the tem < 0 and tW > 0
time orderings of FV , with the prior equal to the central
value and the prior width equal to the uncertainty of the fit
result. The Ds mass determined from fits to the associated
two-point function is used as a prior in the fits, with the
prior value and prior width equal to the central value and
the uncertainty of the fit result, respectively. The excited-
state energy gap ΔE between the ground state and the first
excited state created by the interpolating field is extracted
by performing two-exponential fits to the two-point func-
tion. The fit result for ΔE is used as a prior in the form-
factor fits, with the prior equal to the central value and the
prior width equal to the uncertainty of the fit result scaled
by a factor 1.5.
The vector-form-factor fits are performed using the meth-

ods outlined in Sec. VI. Figure 12 shows examples of the
error bands from fits to FV with p⃗γ ¼ 2π=Lð0; 0; 0.6Þ. We
calculate the structure-dependent part of the axial form
factor using the improved method in Sec. IX C, and the fits
to FA;SDðtH; TÞ must be modified accordingly. The
improved method involves taking combinations of corre-
lation functions for the same μ, ν indices of Iμν at both
nonzero photon momentum and zero photon momentum.
This combination will receive contributions from two sets
of intermediate states, each with different momentum.
Fitting each of these states is in general difficult. To get
around this, we perform fits accounting only for the
unwanted exponential that is expected to be dominant.
For the tem > 0 and tW < 0 data, the unwanted exponen-
tials decay more slowly as pγ is increased. The states with
pγ ¼ 0 are therefore subleading, and the fits to the tem > 0

and tW < 0 data only include the pγ ≠ 0 states. On the
other hand, the unwanted exponentials for the tem < 0 and
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FIG. 12. Fit results for FV with p⃗γ ¼ 2π=Lð0; 0; 0.6Þ. The green horizontal band is the one-sigma region of the desired constant term
in the fit form. The blue and red bands are the one-sigma bands of the fits as a function of T for tH=a ¼ −9 and tH=a ¼ −12,
respectively. For the tem > 0 and tW > 0 time orderings, the black vertical dashed lines indicate the fit range used. For the tem < 0 and
tW < 0 time orderings, the error bands are only shown for data included in the fit.
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FIG. 13. Fit results for FA;SD with p⃗γ ¼ 2π=Lð0; 0; 1.4Þ. The green horizontal band is the one-sigma region of the desired constant
term in the fit form. The blue and red bands are the one-sigma bands of the fits as a function of T for tH=a ¼ −9 and tH=a ¼ −12,
respectively. For the tem > 0 and tW > 0 time orderings, the black vertical dashed lines indicate the fit range used. For the tem < 0 and

tW < 0 time orderings, the error bands are only shown for data included in the fit. Fits to FEM;ðsÞ;>
A;SD ðtH; TÞwere not stable for any allowed

fit ranges, and these data were not included in the final analysis.
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tW > 0 data decay more quickly as pγ is increased, and so
the fits to these data only include the states with pγ ¼ 0.
Figure 13 shows examples of the error bands from fits
to FA;SD with p⃗γ ¼ 2π=Lð0; 0; 1.4Þ. Note that fits to

FEM;ðsÞ;<
A;SD ðtH; TÞ were not stable for any allowed values

of the fit ranges for all values of pγ; these data were
therefore not included in the final analysis.
The results of FA;SD and FV , as well as the individual

quark electromagnetic-current contributions to the form
factors, are shown in Fig. 14 as a function of xγ . Note that
these results are from a single ensemble and still contain
nonzero-lattice-spacing and unphysical-pion-mass system-
atic errors.

XI. CONCLUSIONS

In this work, we presented a study of lattice-QCD
data-generation and analysis methods to determine the
form factors describing radiative-leptonic decays of pseu-
doscalar mesons. We calculated the relevant nonlocal
matrix elements using the 3D, 4D, and 4D>;< methods
and performed fits to the data to remove unwanted
exponentials in the sum over intermediate states and from
excited states created by the meson interpolating field. We
demonstrated that the 3D method offers good control over
both types of unwanted exponentials for a significantly
reduced number of propagator solves compared to the 4D
and 4D>;< methods.

FIG. 14. Results of FA;SD and FV , as a function of xγ calculated using the complete analysis method. Also shown are the contributions
from the individual quark flavors in the electromagnetic current. The data shown in these plots are also provided in machine-readable
files [76]. Note that these results are from a single gauge-field ensemble and thus not yet extrapolated to the continuum limit and physical
pion mass.
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From there, we further improved upon the 3D method by
calculating the three-point function using the infinite-
volume approximation method, which allows us to access
the full range of kinetically allowed photon momenta
without having to perform calculations in the moving
frame of the meson. We then showed that the hadronic
tensor could be extracted using an alternate three-point
function with the electromagnetic current at the origin
rather than the weak current at origin. The alternate three-
point function can be calculated by reusing propagators
required for the original three-point function. Performing
simultaneous fits to both datasets resulted in reductions in
statistical noise for both FA;SD and FV , with the largest
improvements at small and large xγ . Furthermore, having
both datasets increases the maximum possible fit range in T
for data used to calculate a given time ordering of the
hadronic tensor. Calculating both datasets and exploiting
this property were found to be crucial for extracting FA;SD.
Further improvements in the statistical precision were

achieved by multiplying the desired three-point function by
ratios of three-point functions calculated using noise and
point sources. This procedure resulted in significant
improvements in precision for FA;SD and modest improve-
ments for FV. We also averaged the three-point functions
over positive and negative photon momentum, which
resulted in significant improvements in precision for FV
at small xγ and modest improvements for FA;SD. Lastly, we
extracted FA;SD using a subtraction method that utilizes the
properties of the three-point function as pγ → 0. This
method has a number of advantages, including an increased
precision at small xγ, data plateauing more quickly in T,
and removal of Oðan=xγÞ lattice artifacts that diverge for
xγ → 0. The optimal combination of methods yields results
for the Dþ

s → lþνγ structure-dependent vector and axial
form factors in the entire kinematic range with statistical
plus fitting uncertainties of order 5%, using 25 gauge
configurations with 64 samples per configuration.
Using the improved lattice methods developed in this

work, we plan to perform calculations on more ensembles
and perform extrapolations to the physical pion mass and
the continuum for the pion, kaon, DðsÞ, and BðsÞ radiative-
leptonic-decay form factors. For the BðsÞ decays, using the
domain-wall action will require extrapolating in the mass.
Alternatively, one could perform calculations at the physi-
cal b-quark mass using the “relativistic heavy-quark action”
[77]. In that context, a new nonperturbative method to tune
the parameters of the relativistic heavy-quark action has
been developed in Ref. [78] from which extensions of the
present study to B-meson physics could benefit. We also
plan to calculate the contributions from the quark-discon-
nected diagrams.
Precise determinations of the QCD form factors for

radiative-leptonic decays are relevant for a number of
phenomenological reasons. At small photon energies, a
calculation of the radiative-leptonic decay rate is needed in

order to include OðαemÞ corrections to purely leptonic
decays. At large photon energies, radiative-leptonic decays
are useful probes of the internal structure of the mesons as
well as sensitive probes of physics beyond the Standard
Model. Additionally, the methods and main outcomes
presented in this study could be relevant for the lattice
calculation of transition form factors describing the inter-
action between pseudoscalar mesons and two off-shell
photons, since similar Euclidean correlation functions
are involved. From such form factors, important informa-
tion can be extracted on parton distribution amplitudes in
hadrons (see, e.g., Ref. [79]), as well as on the hadronic
light-by-light contribution to the muon anomalous mag-
netic moment (see, e.g., Ref. [80] and references therein).
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APPENDIX: THE WEAK AXIAL-VECTOR
THREE-POINT FUNCTION AT ZERO

PHOTON MOMENTUM

In the following, we discuss the nontrivial limit of the
three-point axial-vector correlation function CA

3;μν as the
momentum of the photon, pγ, goes to zero. This is a key
element in the subtraction of the pointlike contribution
from the relevant hadronic matrix element. To this end we
retrace the main steps of the study put forth in Ref. [61].
The starting point is to scrutinize the electromagnetic Ward
identity (WI) that connects the three-point axial correlation
function CA

3;μν with the axial-pseudoscalar correlation
function and, consequently, the matrix element TA

μν with
the decay constant fH of the meson. As discussed in
Ref. [61], a careful analysis of the cutoff effects reveals
that the WI does not exclude the possibility of different
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artifacts appearing in the decay constant extracted from the
three-point function and that from the two-point function.
However, thanks to a proper change to the kernel of CA

3;μν it
is possible to nonperturbatively subtract infrared-divergent,
Oðan=xγÞ discretization effects which can jeopardize the
extraction of FA;SD at small values of xγ .
In general, the lattice vector WI at finite lattice spacing

reads

�
δO

δαVðxÞ
����
αV ðxÞ¼0

�
−
�
O

δSF
δαVðxÞ

����
αV ðxÞ¼0

�
¼ 0; ðA1Þ

where SF is the lattice fermion action, O is a generic
operator, and h� � �i represents the matrix element of
the operators on the vacuum, which is invariant under
vectorlike rotations controlled by the continuous para-
meter αVðxÞ.
In the case of the correlation function CA

3;μν, defined as

CA
3;μνðtem;tH;p⃗γ;p⃗HÞ
¼a6

X
x⃗;y⃗

e−ip⃗γ ·x⃗þip⃗H ·y⃗hJ em
μ ðtem; x⃗ÞJAν ð0Þϕ†

HðtH;y⃗Þi; ðA2Þ

the WI, at fixed lattice spacing, related to the conserved
electromagnetic current J μ

em is given by

X
x⃗;y⃗

e−ip⃗γ ·x⃗þip⃗H ·y⃗h∇�
μJ em

μ ðtem; x⃗ÞJAν ð0Þϕ†
HðtH; y⃗Þi

¼ a−4
X
x⃗;y⃗

e−ip⃗γ ·x⃗þip⃗H ·y⃗fδtem;0δx⃗;0⃗ − δtem;tHδx⃗;y⃗g

× hJAν ð0Þϕ†
HðtH; y⃗Þi; ðA3Þ

where ∇�
μ is the backward discretized derivative and ϕ†

H a
pseudoscalar interpolating operator having the flavor
quantum numbers of the incoming meson.
To implement method III described in Sec. IX C, we are

interested in studying the limit p⃗γ → 0⃗. This can be done by
using the exact WI satisfied by CA

3;μνðtem; tH; p⃗γ; p⃗HÞ at
finite lattice spacing; in particular we aim to understand the
structure of the correlation functionCA

3;μνðtem; tH; p⃗γ; p⃗HÞ at
p⃗γ ¼ 0⃗. To this end, we consider the two-point correlation
functions on the right-hand side of Eq. (A3) when ν is a
spatial index (the case ν ¼ 0 is similar). From the spectral
decomposition we get

a3
X
y⃗

eip⃗·y⃗hJAk ð0Þϕ†
HðtH; y⃗Þi

¼ pkfHðp⃗ÞGHðp⃗Þ
2EHðp⃗Þ

e−tHEHðp⃗Þ þ � � � ; ðA4Þ

where the dots represent subleading exponentials. In the
previous expression fHðp⃗Þ, GHðp⃗Þ, and EHðp⃗Þ are,

respectively, the decay constant, the matrix element of
the pseudoscalar density used as interpolating operator, and
the energy of the meson.
By differentiating Eq. (A3) with respect to the compo-

nent ðpγÞj of p⃗γ, using the previous expression and the
symmetries of the lattice hypercubic group and then setting
p⃗γ ¼ 0⃗, one gets

CA
3;jkðtem; tH; 0⃗; p⃗HÞ

¼ a−1δtem;tH
fHðp⃗HÞGHðp⃗HÞ

2EHðp⃗HÞ
e−tHEHðp⃗HÞ

×

�
δjk −

ðpHÞjðpHÞk
E2
Hðp⃗HÞ

½1þ tHEHðp⃗HÞ þOða2Þ�
�
þ � � � ;

ðA5Þ
where the ellipsis represents subleading exponentials.
As can be seen, the structure of CA

3;jkðtem; tH; 0⃗; p⃗HÞ is
highly nontrivial. Note in particular the term linear in tH
that arises as a manifestation of the singular behavior at
large distances of the correlation function. In the rest frame
of the meson (p⃗H ¼ 0⃗), which we use in our study, the
terms in square brackets of Eq. (A5) disappear leading to

CA
3;jkðtem; tH; 0⃗; 0⃗Þ

¼ δjka−1δtem;tH
fHð0⃗ÞGHð0⃗Þ

2mH
e−tHmH þ � � � : ðA6Þ

Therefore, we conclude that CA
3;jkðtem; tH; 0⃗; 0⃗Þ can be

analyzed to extract the coefficient of the leading exponen-
tial, viz. the decay constant appearing in the lattice matrix
element of the axial current.
We observe that the use of a nonconserved electromag-

netic current Jemμ does not induce the presence of contact
terms which could spoil the enforcement of the correct WI
in the continuum limit. By dimensional analysis, the
coefficient of the leading term in the operator product
expansion of Jemμ ðxÞJAν ð0Þ scales as ∼1=jxj3 at small
distances, leading to discretization terms after summation
over x. The use of an improved estimator to extract the
structure-dependent form factor FA;SDðEγÞ makes it pos-
sible to nonperturbatively subtract those lattice artifacts.
This can be achieved by computing the subtracted corre-
lation function

a6
X
x⃗;y⃗

ðe−ip⃗γ ·x⃗ − 1ÞhJemj ðtem; x⃗ÞJAk ð0Þϕ†
HðtH; y⃗Þi for j ¼ k;

ðA7Þ
whose kernel sufficiently suppresses short-distance con-
tributions. In this way we are able to use less computa-
tionally costly, nonconserved, local lattice vector currents.
Note that, by construction, the estimator (A7) vanishes
identically at xγ ¼ 0 with vanishing noise.
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