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QCD matrix elements of axial and vector currents between nucleons are required for the Monte Carlo
reconstruction of the energy of neutrinos that are detected in long baseline oscillation experiments in the
quasielastic regime. The cleanest approach for determining the axial matrix elements is lattice QCD.
However, the extraction of these from the corresponding correlation functions is complicated by very large
excited state contributions, that are related to transitions from the nucleon to a nucleon-pion pair. In this
pilot study with a pion mass mπ ¼ 429 MeV, we demonstrate for the first time that these contributions
can be removed by including five-(anti)quark operators into the basis of interpolators used to create the
nucleon. The same techniques will be needed to compute transition matrix elements between the nucleon
and nucleon-pion scattering states that are relevant in the resonance production regime.
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I. INTRODUCTION

The groundbreaking discovery of atmospheric and solar
neutrino oscillations more than two decades ago by the
Super-Kamiokande [1] and SNO [2] experiments, respec-
tively, required an adjustment of the Standard Model to
accommodate massive neutrinos. The present generation of
terrestrial long baseline neutrino oscillation experiments,
aimed at a more precise determination of the neutrino
masses and mixing parameters, NOvA [3] and T2K [4] as
well as the future DUNE [5] experiment and the upgrade of
T2K to the Hyper-Kamiokande detector [6] determine the
fluxes of muon and antimuon neutrinos via their interaction
with nuclear targets in a near and a far detector. The
neutrino energies of the scattering events are reconstructed
via Monte Carlo event generators [7,8], which require
knowledge of the differential neutrino-nucleon cross sec-
tion. For neutrino energies below 1 GeV this is dominated
by (quasi-)elastic scattering, while from about 400 MeV
onward also resonance production with nucleon-pion (Nπ)
final states sets in [9].
Focusing on low energies, the cross section is propor-

tional to the square of a combination of nonperturbative
nucleon vector and axial matrix elements, which can

be parametrized in terms of form factors. The two vector
form factors as functions of the squared four-momentum
transfer (Q2) are sufficiently well known from experiment.
However, the two isovector axial form factors GAðQ2Þ and
G̃PðQ2Þ are much less well constrained experimentally,
apart from GA in the forward limit (Q2 ¼ 0, i.e. the axial
charge gA [10]) and G̃Pð0.88m2

μÞ ¼ g�P at the muon capture
point of muonic hydrogen [11]. Fortunately, these form
factors can be computed directly from QCD via lattice
simulation. However, there is a tension [12,13] between
recent lattice results [14–18] and analyses of neutrino-
deuteron scattering experiments [19]. Therefore, it is
important to establish the reliability of the lattice determi-
nations. This requires the investigation of all systematics
and, in particular, the one associated with extracting the
nucleon matrix elements from correlation functions at finite
Euclidean times. The latter receive contributions also from
single- and multiparticle states with the same quantum
numbers as the nucleon (normally referred to as excited
states). At zero momentum, the lowest excitations with
positive parity include Nπ P-wave and Nππ S-wave
scattering states, whereas, at nonvanishing momentum,
parity is not a good quantum number and also Nπ in
an S-wave can contribute. Toward small pion masses, the
mass gap between the ground state and the first excitation
decreases, and the spectrum becomes more dense. Bearing
in mind that the signal-to-noise ratio of correlation func-
tions decreases exponentially with the Euclidean time
separations, it can be very challenging to reliably extract
nucleon matrix elements. In order to control the leading
excited state contributions to these nucleon to nucleon form
factors, we will, for the first time, explicitly calculate matrix
elements that are also related to nucleon to Nπ transition
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form factors, which are required for a firm understanding of
the resonance production regime.
Reliable continuum limit results for the axial form

factors should reproduce the experimentally known values
of gA and g�P and also be consistent with the partially
conserved axial current (PCAC) relation [also referred to as
the axial Ward identity (AWI)], which relates the axial form
factors to the pseudoscalar form factor. In many previous
simulations gA was reproduced; however, g�P (defined at
Q2 > 0) was found to be smaller than the experimental
value, and also the AWI between form factors was
significantly violated [16,20–23]. Since the AWI was found
to be satisfied on the level of the correlation functions in the
continuum limit [24], the inconsistency had to be related
to the difficulty of isolating the ground state contribution
when extracting the form factors [14,15,24]. While the
interpolator that is used to create the nucleon was found to
have little overlap with excited states, as evidenced by
analyses of two-point functions, transition matrix elements
between different states, contributing to the spectral decom-
position of the three-point function, appeared to be
enhanced. Indeed, in chiral perturbation theory (ChPT)
the axial and pseudoscalar currents directly couple to the
pion. Regarding the pseudoscalar current or the time
component of the axial current, N to Nπ transitions can
contribute substantially to the three-point functions [25–27]
(see also Refs. [28,29]). At a small but nonvanishing
momentum, the leading such contribution increases in
proportion to the ratio of the nucleon mass over the pion
energy, mN=Eπ [25,26]. These terms were taken into
account in recent analyses of the Euclidean time depend-
ence of lattice correlation functions, where form factors
were obtained, that are consistent with the AWI [14,15,17].
However, the size of the excited state contamination, found
in these analyses, is quite large in some channels for the
Euclidean times that are accessible at present. A more
reliable approach would be to construct optimized inter-
polators to minimize the dominant (Nπ) excited state
contributions.
In this work, we take into account directly the Nπ

contribution by constructing nucleon-pion-like interpola-
tors [ðqqqÞðq̄qÞ with the quarks q ∈ fu; dg], O5q, and
computing the associated two-point and, for the first time,
three-point correlation functions between the standard
three-quark nucleon interpolator O3q and O5q. Using this
basis, that has good overlap both with the nucleon ground
state and the lowest lying Nπ state, nucleon to nucleon
three-point functions can be constructed with minimized
Nπ contributions, enhancing the reliability of the extraction
of the nucleon matrix elements. As mentioned above, this is
the first step toward determining nucleon to nucleon-pion
matrix elements, associated with neutrino scattering in the
resonance production regime [9,13,30]. In this pilot study
we carry out the analysis for a single unphysical pion mass
mπ ¼ 429 MeV. It turns out that even at this relatively

large value the Nπ contribution is very significant and that
this can effectively be removed with our approach. We
expect this method to work even better at the physical pion
mass: ChPT becomes more reliable as the pion mass is
reduced, and the tree-level Nπ contribution is even more
dominant, which is consistent with the observations made
in Refs. [14,15,25–27].

II. DEFINITION OF THE FORM FACTORS

We define local isovector pseudoscalar and axial cur-
rents,P¼ d̄γ5u andAμ¼ d̄γμγ5u, respectively. The Lorentz
decompositions into form factors of the respective matrix
elements read as

hnp0 jPjppi ¼ ūp0GPðQ2Þγ5up; ð1Þ

hnp0 jAμjppi ¼ ūp0

�
γμGAðQ2Þ þ qμ

2mN
G̃PðQ2Þ

�
γ5up; ð2Þ

where we assume isospin symmetry (i.e. mN ¼ mp ¼ mn

and ml ¼ mu ¼ md for the quark masses), up is the spinor
of a nucleon with three-momentum p, qμ ¼ p0

μ − pμ is the
four-momentum transfer and Q2 ¼ −qμqμ. Note that the
above decomposition of the axial matrix element does not
hold if the two states differ in their mass, e.g., if a nucleon
is on the right-hand side and a Nπ on the left. The AWI
∂μAμ ¼ 2imlP implies the relation between form factors,
mNGAðQ2Þ ¼ mlGPðQ2Þ þ ðQ2=4mNÞG̃PðQ2Þ, which is
exact in the continuum limit but will be affected by
moderate discretization effects at our lattice spacing a ≈
0.098 fm [14,24]. In addition, the pion pole dominance
(PPD) assumption gives the approximate relation,
G̃PðQ2Þ ≈ 4m2

NGAðQ2Þ=ðm2
π þQ2Þ. While this only holds

exactly for mπ ¼ 0, in Ref. [14] it was found to hold within
uncertainties of 1%–2% at the physical point in the
continuum limit, with violations of less than 3% up to
mπ ≈ 420 MeV. Deviations from these relations can be
quantified in terms of the differences from unity of the
combinations

rPCAC ¼ 4mNmlGPðQ2Þ þQ2G̃PðQ2Þ
4m2

NGAðQ2Þ ; ð3Þ

rPPD ¼ ðm2
π þQ2ÞG̃PðQ2Þ
4m2

NGAðQ2Þ : ð4Þ

III. ANALYSIS

We construct the matrices of two- and three-point
correlation functions (see the Supplemental Material [31]),

C2ptðp; tÞij ¼ hOiðp; tÞŌjðp; 0Þi; ð5Þ
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CJ
3ptðp0; t;q; τÞij ¼ hOiðp0; tÞJ ðq; τÞŌjðp; 0Þi; ð6Þ

where we indicate the three-momentum transfer in the
argument of the local current J ∈ fP;Aμg. The interpo-
lators Oi ∈ fO3q;O5qg are projected onto the G1 repre-
sentation of the double cover of the cubic group 2Oh (or,
for nonvanishing momentum, the relevant little group)
[32–34], corresponding to spin and helicity 1=2 in the
continuum, as well as to definite momentum and isospin.
For instance, I3 ¼ −1=2 corresponds to O3q ∼ n and

O5q ∼
ffiffiffiffiffiffiffiffi
1=3

p
nπ0 −

ffiffiffiffiffiffiffiffi
2=3

p
pπ−. The Wick contractions of

the correlation functions are evaluated using the sequential
method [35] for quark-line connected topologies, while
the stochastic “one-end-trick” [36–38] is used for discon-
nected diagrams.
For the results shown here, about 200 propagators (see

the Supplemental Material [31]) for each of the six source-
sink separations have been computed on 800 gauge
configurations. In view of the computational cost, we carry
out the analysis on a single coordinated lattice simulations
([39]) ensemble (A653, see Ref. [40]) with the spatial
volume L3 ¼ ð24aÞ3, employing Nf ¼ 3 nonperturba-
tively improved Wilson fermions with a lattice spacing
a ≈ 0.098 fm and the pion mass mπ ¼ 429 MeV. The best
results were obtained, using extended (smeared) quark
fields in the nucleon and pion interpolators. (For details on
the smearing, see Appendix C.1 and Table 15 of Ref. [40]).
We extract the generalized eigenvalue and eigenvector

matrices Λðp; t; t0Þ ¼ diagðλ1ðp; t; t0Þ; λ2ðp; t; t0ÞÞ and
Vðp; t; t0Þ ¼ ðv1ðp; t; t0Þ; v2ðp; t; t0ÞÞ, respectively, by
solving the generalized eigenvalue problem (GEVP)
[41–44] for the matrix of two-point functions,
C2ptðp; tÞVðp; t; t0Þ ¼ C2ptðp; t0ÞVðp; t; t0ÞΛðp; t; t0Þ, for
fixed reference times t0, where we employ the normaliza-
tion vα⊺C2ptðt0Þvα ¼ 1. For large times t the eigenvalues
will decay exponentially with the energy of the state:
λαðp; t; t0Þ → dαðp; t0Þe−EαðpÞðt−t0Þ, where dα ≲ 1.
The effective energies Eα

effðtÞ ¼ a−1 ln½λαðtÞ=λαðtþ aÞ�
are shown in Fig. 1 for p ¼ 0 and t0 ¼ 0.2 fm. The lowest
energy coincides with the nucleon mass on this ensemble
[40], while the second level is close to the sum of the
nucleon and pion energies for the lowest P-wave momen-
tum combination. Therefore, we will identify N with α ¼ 1
and Nπ with α ¼ 2. Note that the eigenvectors are very
stable in t and that the contribution of O5q (subscript i ¼ 2)
to the nucleon state is suppressed by more than 1 order
of magnitude relative to O3q. Nevertheless, as we will see,
the impact on three-point functions can be significant.
We also solve the GEVP for moving frames, in particular
for p ¼ ez≕ 2π

L ð0; 0; 1Þ (jezj ≈ 530 MeV). Regarding O5q,
we consider the combinations O3qðezÞOq̄qð0Þ and
O3qð0ÞOq̄qðezÞ, with Oq̄q being a pion interpolator.
Solving the GEVP, in both cases we find the effective

energy of the second eigenvalue for t > 0.5 fm to be
consistent with the NðezÞπð0Þ and Nð0ÞπðezÞ noninteract-
ing energies, respectively.
Considering these results, we employ the generalized

eigenvectors for t0 ¼ 0.2 fm and t ¼ 0.5 fm to construct
the GEVP-optimized correlation functions,

C2ptðp; tÞα ¼ vαi ðpÞC2ptðp; tÞijvαj ðpÞ; ð7Þ

CJ3ptðp0; t;q; τÞαβ ¼ vαi ðp0ÞCJ
3ptðp0; t;q; τÞijvβj ðpÞ; ð8Þ

where α; β ∈ fN;Nπg. Note that here we only present
results for α ¼ β ¼ N, and we neglect the i ¼ j ¼ 2

element (5q to 5q) of CJ
3pt that, in this case, is suppressed

by the second power of the small eigenvector component
vN5q. In addition, from ChPT we would only expect non-
diagonal elements of the matrices of correlators to be
enhanced. The nucleon matrix elements of interest are then
extracted by forming the GEVP ratios [45–47]

RJ ðp0; t;q; τÞ ¼ CJ3ptðp0; t;q; τÞNN

C2ptðp0; tÞN

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2ptðp0; τÞNC2ptðp0; tÞNC2ptðp; t− τÞN
C2ptðp; τÞNC2ptðp; tÞNC2ptðp0; t− τÞN

s

∝ hNp0 jJ jNpi ðt≫ τ≫ 0Þ; ð9Þ

where excited state contributions of the type N → Nπ and
Nπ → N are explicitly removed. Forming the same ratio
for the usual two- and three-point functions, C2pt;11

FIG. 1. Top: the effective energies obtained solving the GEVP
for p ¼ 0 and t0 ¼ 0.2 fm, compared with the nucleon mass and
the lowest energy levels of noninteracting Nπ P- and Nππ
S-waves. Bottom: the moduli of the corresponding generalized
eigenvector components.
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and CJ
3pt;11, will give the same result in the limit of large t

and τ. Any time dependence observed for these ratios
(GEVP-improved or not) is an indication of remaining
excited state contamination.

IV. RESULTS IN THE FORWARD LIMIT

For p0 ¼ p the combination under the square root in
Eq. (9) cancels. We consider two kinematic combinations:
p0 ¼ p ¼ 0 and p0 ¼ p ¼ ez. Regarding the rest frame, the
three-point functions vanish due to parity for J ¼ A4 and
J ¼ P, while J ¼ Ai (with the spin projected in the i
direction) at large Euclidean time separations gives the
axial charge gA. Contamination from the coupling to Nπ
states exists, however, only as a loop effect in ChPT.
Indeed, even when using the standard ratio, for t > 0.8 fm
the data near τ ¼ t=2 show no time dependence within their
errors. Fitting the (unimproved) ratio for 1.15 fm < t <
1.4 fm, we find gA¼1.156ð7Þ at our unphysical pion mass.
Also in the moving frame the Nπ contributions to Ai

only appear as loop effects, and we find that the corre-
sponding standard ratio is almost constant (black stars in
Fig. 2). However, regarding A4 and P, N to Nπ transitions
appear at tree level and are enhanced by one power of
mN=Eπ , relative to the N to N matrix elements of interest.
The ratio RA4

will be proportional to gA at large times too;
however, using the O3q interpolators, we find substantial
excited state contamination, which is indicated by its strong

dependence on the source-sink separation; see the blue
symbols in the upper panel of Fig. 2. A difference between
the ratios for Ai and A4 at p0 ¼ p ≠ 0 was also observed,
e.g., in Ref. [48], using standard interpolators. In contrast,
the GEVP-improved ratios (red symbols) already agree for
t > 0.6 fm with the value extracted from the standard ratios
for Az obtained at p ≠ 0 (light green band) and at p ¼ 0
(dark green band).
A similar, dramatic reduction of the excited state

contamination is observed for the pseudoscalar current
for the GEVP-optimized correlation functions. For this
current, due to charge conjugation symmetry, diagonal
matrix elements vanish. Therefore, the deviation from zero
of the standard ratio in the lower panel of Fig. 2 is entirely
an excited state effect, which is removed within the present
errors for the GEVP-optimized ratio. This demonstrates
that the dominant contribution is from N to Nπ transitions,
which is consistent with the tree-level ChPT expectation.

V. RESULTS FOR NONVANISHING
MOMENTUM TRANSFER

When determining the axial and pseudoscalar form
factors, the excited state contamination is prominent for
correlation functions involving the currents J ∈ fA4;Pg
[14,25–27], that can transfer the momentum to a pion at
tree level in ChPT. This contribution, which is proportional
to mN=Eπ [25,26], is largest at small momentum transfer.
Therefore, we consider these two currents and set q ¼ ez to
a single unit of lattice momentum (jqj ≈ 530 MeV). With
p0 ¼ 0 and p ¼ −q, this corresponds to Q2 ≈ 0.3 GeV2.
Our results for the two ratios for the standard and optimized
correlation functions are shown in Fig. 3. Clearly, the time
dependence is much reduced for the GEVP-optimized
results: at the source, excited states are effectively removed;
however, at the sink (that is at rest) there are clearly residual
effects from higher excitations.
The ratios at large times (green bands) are proportional to

the respective matrix elements which, using the decom-
positions (1) and (2), are related to a linear combination of
GA and G̃P for A4 and GP for P, respectively.
The axial form factor GA ¼ 0.91� 0.01 is extracted

from the standard correlation functions with Ai and ei⊥q.
These show ground state dominance within our range of t
and τ. Indeed, the large tree-level Nπ ChPT diagrams do
not contribute to this channel, and only Nπ loop diagrams
appear [25]. The ground state matrix element is propor-
tional only to GA, and we use the value we extract as a prior
in fits to the other channels. We fit the GEVP-optimized
ratios for the pseudoscalar and the temporal axial currents
simultaneously to constants plus exponentials ∝ e−ΔEðt−τÞ.
We find ΔE ≈ 2mπ for the gap between the nucleon ground
state and this first excitation. The resulting matrix elements
then give the pseudoscalar and induced pseudoscalar form
factors atQ2 ≈ 0.3 GeV2, the latter after subtracting theGA

FIG. 2. Comparison of the ratios in Eq. (9) in the forward limit,
constructed from the standard and GEVP-optimized correlation
functions, with p ¼ p0 ¼ ez as a function of the current insertion
time τ for a number of different source-sink separations t, where
a ≈ 0.098 fm. Top: renormalized ratio for the time component of
the axial current. Also shown are the standard ratios for Az at
p ¼ ez and t ¼ 10a (black stars). The dark and light green bands
correspond to gA, extracted from this ratio at p ¼ 0 and at p ¼ ez,
respectively, using different t. Bottom: the same for the pseu-
doscalar current. The green band highlights the expected result.
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contribution. The results for GP and G̃P as well as for the
PCAC and PPD ratios of Eqs. (3) and (4) are shown in
Fig. 4. We also include results that are obtained using the
ChPT guided methods of Ref. [14] (M1) and a simultaneous
fit to the channels A4, P and Ai with q ¼ ei, inspired
by [15] (M2). In spite of the large excited state contribu-
tions, the results using modern multistate analysis tech-
niques agree within errors with the GEVP results, at least at
mπ ¼ 429 MeV. At this single lattice spacing, the ratio
rPCAC somewhat differs from 1.

VI. CONCLUSIONS

Given the current tension [12,13] between results for the
axial form factor obtained from lattice QCD and from
reanalyses of historical neutrino-deuteron scattering experi-
ments [19], it is important to rigorously investigate the
systematics associated with the lattice approach. The PCAC
relation between form factors has only recently been
verified in some studies [14,15,17], and this provides an
important cross check. We have shown that the very large
excited state contributions encountered can be removed
by including Nπ-type interpolators. This confirms ChPT
expectations, even at our relatively large pion mass, and
supports assumptions made in recent determinations of
the axial form factor [14–18]. In the near future, we will
repeat the study at a smaller pion mass where excited state
contributions are even larger, with the aim of also deter-
mining N to Nπ matrix elements that are relevant for the
scattering of neutrinos with energies larger than 400 MeV.
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