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Abstract Quantum Chromodynamics, the theory of quarks
and gluons, whose interactions can be described by a local
SU(3) gauge symmetry with charges called “color quantum
numbers”, is reviewed; the goal of this review is to provide
advanced Ph.D. students a comprehensive handbook, help-
ful for their research. When QCD was “discovered” 50 years
ago, the idea that quarks could exist, but not be observed,
left most physicists unconvinced. Then, with the discovery
of charmonium in 1974 and the explanation of its excited
states using the Cornell potential, consisting of the sum of
a Coulomb-like attraction and a long range linear confin-
ing potential, the theory was suddenly widely accepted. This
paradigm shift is now referred to as the November revolu-
tion. It had been anticipated by the observation of scaling in
deep inelastic scattering, and was followed by the discov-
ery of gluons in three-jet events. The parameters of QCD
include the running coupling constant, αs(Q2), that varies
with the energy scale Q2 characterising the interaction, and
six quark masses. QCD cannot be solved analytically, at
least not yet, and the large value of αs at low momentum
transfers limits perturbative calculations to the high-energy
region where Q2 � Λ2

QCD � (250 MeV)2. Lattice QCD
(LQCD), numerical calculations on a discretized space-time
lattice, is discussed in detail, the dynamics of the QCD vac-
uum is visualized, and the expected spectra of mesons and
baryons are displayed. Progress in lattice calculations of
the structure of nucleons and of quantities related to the
phase diagram of dense and hot (or cold) hadronic matter
are reviewed. Methods and examples of how to calculate
hadronic corrections to weak matrix elements on a lattice
are outlined. The wide variety of analytical approximations
currently in use, and the accuracy of these approximations,
are reviewed. These methods range from the Bethe–Salpeter,
Dyson–Schwinger coupled relativistic equations, which are
formulated in both Minkowski or Euclidean spaces, to expan-
sions of multi-quark states in a set of basis functions using
light-front coordinates, to the AdS/QCD method that imbeds
4-dimensional QCD in a 5-dimensional deSitter space, allow-
ing confinement and spontaneous chiral symmetry breaking
to be described in a novel way. Models that assume the num-
ber of colors is very large, i.e. make use of the large Nc-
limit, give unique insights. Many other techniques that are
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tailored to specific problems, such as perturbative expansions
for high energy scattering or approximate calculations using
the operator product expansion are discussed. The very pow-
erful effective field theory techniques that are successful for
low energy nuclear systems (chiral effective theory), or for
non-relativistic systems involving heavy quarks, or the treat-
ment of gluon exchanges between energetic, collinear par-
tons encountered in jets, are discussed. The spectroscopy of
mesons and baryons has played an important historical role
in the development of QCD. The famous X,Y,Z states – and
the discovery of pentaquarks – have revolutionized hadron
spectroscopy; their status and interpretation are reviewed as
well as recent progress in the identification of glueballs and
hybrids in light-meson spectroscopy. These exotic states add
to the spectrum of expected qq̄ mesons and qqq baryons.
The progress in understanding excitations of light and heavy
baryons is discussed. The nucleon as the lightest baryon is
discussed extensively, its form factors, its partonic structure
and the status of the attempt to determine a three-dimensional
picture of the parton distribution. An experimental program
to study the phase diagram of QCD at high temperature and
density started with fixed target experiments in various lab-
oratories in the second half of the 1980s, and then, in this
century, with colliders. QCD thermodynamics at high tem-
perature became accessible to LQCD, and numerical results
on chiral and deconfinement transitions and properties of
the deconfined and chirally restored form of strongly inter-
acting matter, called the Quark–Gluon Plasma (QGP), have
become very precise by now. These results can now be con-
fronted with experimental data that are sensitive to the nature
of the phase transition. There is clear evidence that the QGP
phase is created. This phase of QCD matter can already be
characterized by some properties that indicate, within a tem-
perature range of a few times the pseudocritical temperature,
the medium behaves like a near ideal liquid. Experimental
observables are presented that demonstrate deconfinement.
High and ultrahigh density QCD matter at moderate and low
temperatures shows interesting features and new phases that
are of astrophysical relevance. They are reviewed here and
some of the astrophysical implications are discussed. Pertur-
bative QCD and methods to describe the different aspects
of scattering processes are discussed. The primary parton–
parton scattering in a collision is calculated in perturba-
tive QCD with increasing complexity. The radiation of soft
gluons can spoil the perturbative convergence, this can be
cured by resummation techniques, which are also described
here. Realistic descriptions of QCD scattering events need to
model the cascade of quark and gluon splittings until hadron
formation sets in, which is done by parton showers. The full
event simulation can be performed with Monte Carlo event
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generators, which simulate the full chain from the hard inter-
action to the hadronic final states, including the modelling of
non-perturbative components. The contribution of the LEP
experiments (and of earlier collider experiments) to the study
of jets is reviewed. Correlations between jets and the shape
of jets had allowed the collaborations to determine the “color
factors” – invariants of the SU(3) color group governing the
strength of quark–gluon and gluon–gluon interactions. The
calculated jet production rates (using perturbative QCD) are
shown to agree precisely with data, for jet energies span-
ning more than five orders of magnitude. The production of
jets recoiling against a vector boson, W± or Z , is shown to
be well understood. The discovery of the Higgs boson was
certainly an important milestone in the development of high-
energy physics. The couplings of the Higgs boson to massive
vector bosons and fermions that have been measured so far
support its interpretation as mass-generating boson as pre-
dicted by the Standard Model. The study of the Higgs boson
recoiling against hadronic jets (without or with heavy flavors)
or against vector bosons is also highlighted. Apart from the
description of hard interactions taking place at high energies,
the understanding of “soft QCD” is also very important. In
this respect, Pomeron – and Odderon – exchange, soft and
hard diffraction are discussed. Weak decays of quarks and
leptons, the quark mixing matrix and the anomalous mag-
netic moment of the muon are processes which are governed
by weak interactions. However, corrections by strong inter-
actions are important, and these are reviewed. As the mea-
sured values are incompatible with (most of) the predictions,
the question arises: are these discrepancies first hints for New
Physics beyond the Standard Model? This volume concludes
with a description of future facilities or important upgrades of
existing facilities which improve their luminosity by orders
of magnitude. The best is yet to come!
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Preface

Quantum Chromodynamics or QCD was developed and
defined over a brief period from 1972–1973. One of us (EK)
wrote an article early in 2021 on the scalar glueball and
searched the literature to find where glueballs were first
mentioned. This was at the 16th International Conference on
High-Energy Physics (ICHEP 72). In the winter of 2021/2022
he thought it was time to prepare a volume dedicated to
50 Years of QCD. He got approval from the EJPC, and asked
FG to join the effort. Here is the result.

It’s been quite an adventure to guide and prepare this vol-
ume. From the start it was to be published as a single article,
organized and edited by the two coeditors, with integrated
contributions from invited scientists familiar with all aspects
of the subject. Our initial outline included only eight sections,
but as we got advice from our conveners and early contribu-
tors, the number of sections grew to the 14 you see here, and
in some cases the number of subsections in each section also
grew. The subject is both beautiful and vast, and keeping this
volume “limited” in length was a real challenge.

Our goal was to prepare a volume for young Ph.Ds and
postdocs that could serve as a readable resource and intro-
duction to specialties outside of their own field of research –
a shortcut to acquiring the broad familiarity that usually takes

time to acquire. We also invited our contributors to reflect on
how they developed their ideas/insights, usually discouraged
in scientific articles. We believe that what has resulted is truly
unique.

The volume begins with the personal reflections of two
scientists who were contributors to the foundations of QCD
(Sect. 1), and follows with three early developments that
quickly showed that QCD as on the right track (Sect. 2).
Prominent among these was the “November revolution,”
where the discovery and explanation of the states of char-
monium lead quickly to the Cornell potential and an early
description of why quarks could not be seen, convincing
many doubters that quarks were real.

After establishing that the QCD fine structure constant,
αs , is too large at hadronic scales for perturbation theory
to work (Sect. 3), we describe in some detail Lattice QCD
(Sect. 4), believed now to be the only method that can give
exact predictions for QCD (with numerical errors, of course,
which are decreasing rapidly as the computations and com-
puters improve). Unfortunately, Lattice QCD does not give
much of an intuitive picture of how the physics works, so
approximate analytic methods are needed (and will probably
always be needed) and these are summarized in Sects. 5 and 6,
including effective field theories, a powerful tool with many
applications. Perhaps some day we will have exact analytic
solutions, but not today.

From there our account turns to experimental manifes-
tations of QCD (with theoretical support), starting with the
exploration of the QCD phase diagram in heavy ion colli-
sions and in dense matter (Sect. 7), followed by the study
of mesons (Sect. 8) and baryons (Sect. 9) that reveal the
existence of “exotic” states like glueballs, hybrids, hadronic
molecules, and tetra- and pentaquarks. A special focus is
given to the nucleon and its structure (Sect. 10). Then, colli-
sions at high energies are discussed, from the hard scattering
of two partons followed by their hadronization (Sect. 11); the
production and identification of jets of particles culminated
in the discovery of the Higgs boson and measurements of its
properties (Sect. 12); weak decays, precision analyses of the
quark mixing matrix, and the anomalous magnetic moment
of muons that show the first hints of New Physics beyond
the Standard Model (Sect. 13). The volume concludes with
a brief account of experimental projects under construction
or already funded (Sect. 14). We do not discuss the many
exciting theoretical or experimental ideas that are currently
in the drawing board, or as theorists sometimes say, on the
“second sheet” (when they are joking about wonderful ideas
still in an imaginative state). These we save for the next vol-
ume!

It has been a great experience for us to work on this
volume; we hope you will find some pleasure in skimming
through it.
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1 Theoretical Foundations

Conveners:
Franz Gross and Eberhard Klempt
It was a long path before the principles of Quantum Chromo-
dynamics could be formulated. With the discovery of elec-
trons by Thompson in 1897, protons by Rutherford in 1917,
neutrons by Chadwick in 1932, and the prediction of neu-
trinos by Pauli in 1930, the basis was completed of what
we now call “the first generation of elementary particles”.
With pions as mediators of the strong interaction – pro-
posed by Yukawa in 1935 and confirmed by Powell and his
collaborators in 1947, a consistent picture of particles and
their interactions, gravitational, electromagnetic, weak and
strong, seemed to have emerged. Only the muon, discovered
in 1936, was superfluous. It could not be an excited state of
the electron, there was no μ → eγ decay. Hence Isidor I.
Rabi asked: “Who ordered that”? Nowadays, the muon has
a well defined place as member of the second lepton family
in analogy to the electron in the first lepton family.

But then, the number of particles grew rapidly: the charged
Kaon was discovered, the Λ and the Σ . Some particles like
the Δ(1232) baryon were found to be extremely short-lived.
More and more resonances were found, their number started
to explode. Attempts to break up protons or neutrons into
“truly elementary” constituents by bombardment of protons
with energetic particles failed.

A theory to understand the zoo of particles was missing.
“Nuclear democracy” was declared: all particles were sup-
posed to be “elementary” and be formed by forces arising
from the exchange of these particles. Reactions were studied
within S-matrix theory, Regge pole analysis, dispersion rela-
tion and other theorems derived in function theory. A field
theory of strong interactions was thought to be impossible.

The early development or “discovery” of QCD proceeded
in three steps: the first step was the quark model by Gell-
Mann and Zweig which allowed the zoo of particles to be
organized into multiplets under the SU(3) symmetry when
baryons were thought of as composed of three quarks and
mesons of a quark and an antiquark. The Pauli principle then
required a quark property for which Gell-Mann coined the
name color. The second step was the idea that color could
be the charge of strong interaction, and that colored quarks
would interact by the exchange of gluons carrying color
themselves.

One problem remained: in spite of excessive searches, no
quarks were observed even when nucleons were bombarded
with projectiles of the highest energy available at that time.
This problem was solved in the breakthrough papers of Gross,
Wilczek and Politzer demonstrating that the observation of
quasi-free quarks (asymptotic freedom) in deep inelastic scat-
tering is compatible with strong confining forces (infrared
slavery).

This first section contains two personal accounts of the
early development or “discovery” of QCD. Leutwyler’s con-
tribution starts with a broad picture of the chaotic state of
“theories” of the strong interactions in the 1960s and carries
us through to the present day. He describes how many thought
field theory could not work for the description of “nuclear
forces.” They thought the use of dispersion relations and uni-
tarity would provide a better approach, but now we know that
these are only useful tools. His discussion of how the exact
and approximate symmetries of QCD lead to an understand-
ing of the mass scales of the quarks shows how much the
development of QCD and the standard model have brought
order out of chaos, and have led to a deep understanding of
the physics.

The second contribution by Fritzsch gives a more focused
and personal account of how some issues that had to be sur-
mounted before QCD became the accepted theory of the
strong forces. He describes several arguments that led them
to the necessity for three colors of quarks (and the SU(3)
color symmetry). He reminds us that QCD and the existence
of quarks did not become widely accepted until the discov-
ery of the J/ψ , among the topics discussed in the following
Sect. 2.

Both of these accounts of the history and the physics are
exciting to read, and a broad introduction to this volume. We
hope you will enjoy them as much as we have.

1.1 The strong interaction1

Heinrich Leutwyler

1.1.1 Beginnings

The discovery of the neutron in 1932 [2] may be viewed as the
birth of the strong interaction: it indicated that the nuclei con-
sist of protons and neutrons and hence the presence of a force
that holds them together, strong enough to counteract the
electromagnetic repulsion. Immediately thereafter, Heisen-
berg introduced the notion of isospin as a symmetry of the
strong interaction, in order to explain why proton and neutron
nearly have the same mass [3]. In 1935, Yukawa pointed out
that the nuclear force could be generated by the exchange of a
hypothetical spinless particle, provided its mass is intermedi-
ate between the masses of proton and electron – a meson [4].
Today, we know that such a particle indeed exists: Yukawa
predicted the pion. Stueckelberg pursued similar ideas, but
was mainly thinking about particles of spin 1, in analogy with
the particle that mediates the electromagnetic interaction [5].

In the thirties and fourties of the last century, the under-
standing of the force between two nucleons made consider-

1 The present section is an extended version of my lecture notes On the
history of the strong interaction [1].
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able progress, in the framework of nonrelativistic potential
models. These are much more flexible than quantum field the-
ories. Suitable potentials that are attractive at large distances
but repulsive at short distances do yield a decent understand-
ing of nuclear structure: Paris potential, Bonn potential, shell
model of the nucleus. In this framework, nuclear reactions,
in particular the processes responsible for the luminosity of
the sun, stellar structure, α-decay and related matters were
well understood more than 60 years ago.

These phenomena concern interactions among nucleons
with small relative velocities. Experimentally, it had become
possible to explore relativistic collisions, but a description in
terms of nonrelativistic potentials cannot cover these. In the
period between 1935 and 1965, many attempts at formulating
a theory of the strong interaction based on elementary fields
for baryons and mesons were made. In particular, uncount-
able PhD theses were written, based on local interactions of
the Yukawa type, using perturbation theory to analyze them.
The coupling constants invariably turned out to be numer-
ically large, indicating that the neglect of the higher order
contributions was not justified. Absolutely nothing worked
even half way.

Although there was considerable progress in understand-
ing the general principles of quantum field theory (Lorentz
invariance, unitarity, crossing symmetry, causality, analytic-
ity, dispersion relations, CPT theorem, spin and statistics)
as well as in renormalization theory, faith in quantum field
theory was in decline, even concerning QED (Landau pole).
To many, the renormalization procedure – needed to arrive
at physically meaningful results – looked suspicious, and
it appeared doubtful that the strong interaction could at all
be described by means of a local quantum field theory. Some
suggested that this framework should be replaced by S-matrix
theory – heated debates concerning this suggestion took place
at the time [6]. Regge poles were considered as a promising
alternative to the quantum fields (the Veneziano model is born
in 1968 [7]). Sixty years ago, when I completed my studies,
the quantum field theory of the strong interaction consisted
of a collection of beliefs, prejudices and assumptions. Quite
a few of these turned out to be wrong.

1.1.2 Flavor symmetries

Symmetries that extend isospin to a larger Lie group pro-
vided the first hints towards an understanding of the structure
underneath the strong interaction phenomena. The introduc-
tion of the strangeness quantum number and the Gell-Mann–
Nishijima formula [8,9] was a significant step in this direc-
tion. Goldberger and Treiman [10] then showed that the axial
vector current plays an important role, not only in the weak
interaction (the pion-to-vacuum matrix element of this cur-
rent – the pion decay constant Fπ – determines the rate of
the weak decay π → μν) but also in the context of the

strong interaction: the nucleon matrix element of the axial
vector current, gA, determines the strength of the interaction
between pions and nucleons:

gπN = gAMN/Fπ .

At low energies, the main characteristic of the strong inter-
action is that the energy gap is small: the lightest state occur-
ring in the eigenvalue spectrum of the Hamiltonian is the
pion, with2 Mπ � 135 MeV, small compared to the mass
of the proton, Mp � 938 MeV. In 1960, Nambu found out
why that is so: it has to do with a hidden, approximate, con-
tinuous symmetry [11]. Since some of its generators carry
negative parity, it is referred to as a chiral symmetry. For
this symmetry to be consistent with observation, it is essen-
tial that an analog of spontaneous magnetization occurs in
particle physics: for dynamical reasons, the state of lowest
energy – the vacuum – is not symmetric under chiral transfor-
mations. Consequently, the symmetry cannot be seen in the
spectrum of the theory: it is hidden or spontaneously broken.
Nambu realized that the spontaneous breakdown of a con-
tinuous symmetry entails massless particles analogous to the
spin waves of a magnet and concluded that the pions must
play this role. If the strong interaction was strictly invariant
under chiral symmetry, there would be no energy gap at all
– the pions would be massless.3 Conversely, since the pions
are not massless, chiral symmetry cannot be exact – unlike
isospin, which at that time was taken to be an exact sym-
metry of the strong interaction. The spectrum does have an
energy gap because chiral symmetry is not exact: the pions
are not massless, only light. In fact, they represent the lightest
strongly interacting particles that can be exchanged between
two nucleons. This is why, at large distances, the potential
between two nucleons is correctly described by the Yukawa
formula.

The discovery of the Eightfold Way by Gell-Mann and
Ne’eman paved the way to an understanding of the mass pat-
tern of the baryons and mesons [13,14]. Like chiral sym-
metry, the group SU(3) that underlies the Eightfold Way
represents an approximate symmetry: the spectrum of the
mesons and baryons does not consist of degenerate multi-
plets of this group. The splitting between the energy levels,
however, does exhibit a pattern that can be understood in
terms of the assumption that the part of the Hamiltonian that
breaks the symmetry transforms in a simple way. This led to
the Gell-Mann–Okubo formula [14,15] and to a prediction
for the mass of the Ω−, a member of the baryon decuplet
which was still missing, but was soon confirmed experimen-
tally, at the predicted place [16].

2 I am using natural units where h̄ = c = 1.
3 A precise formulation of this statement, known as the Goldstone the-
orem, was given later [12].
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1.1.3 Quark model

In 1964, Gell-Mann [17] and Zweig [18] pointed out that the
observed pattern of baryons can qualitatively be understood
on the basis of the assumption that these particles are bound
states built with three constituents, while the spectrum of
the mesons indicates that they contain only two of these.
Zweig called the constituents “aces”. Gell-Mann coined the
term “quarks”, which is now commonly accepted. The Quark
Model gradually evolved into a very simple and successful
semi-quantitative framework, but gave rise to a fundamental
puzzle: why do the constituents not show up in experiment?
For this reason, the existence of the quarks was considered
doubtful: “Such particles [quarks] presumably are not real
but we may use them in our field theory anyway …” [19].
Quarks were treated like the veal used to prepare a pheasant
in the royal french cuisine: the pheasant was baked between
two slices of veal, which were then discarded (or left for the
less royal members of the court). Conceptually, this was a
shaky cuisine.

If the flavor symmetries are important, why are they not
exact? Gell-Mann found a beautiful explanation: current
algebra [14,19]. The charges form an exact algebra even
if they do not commute with the Hamiltonian and the frame-
work can be extended to the corresponding currents, irrespec-
tive of whether or not they are conserved. Adler and Weis-
berger showed that current algebra can be tested with the
sum rule that follows from the nucleon matrix element of the
commutator of two axial vector charges [20,21]. Weinberg
then demonstrated that even the strength of the interaction
among the pions can be understood on the basis of current
algebra: the ππ scattering lengths can be predicted in terms
of the pion decay constant [22].

1.1.4 Behavior at short distances

Bjorken had pointed out that if the nucleons contain point-
like constituents, then the ep cross section should obey scal-
ing laws in the deep inelastic region [23]. Indeed, the scat-
tering experiments carried out by the MIT-SLAC collabo-
ration in 1968/69 did show experimental evidence for such
constituents. Feynman called these partons, leaving it open
whether they were the quarks or something else. For an
account of the experimental developments, see the Nobel
lectures of Taylor, Kendall and Friedman [24–26]. The com-
parison of the data on νp and ν̄ p scattering from Gargamelle
[27,28] with the MIT-SLAC results confirmed that the par-
tons indeed have fractional charges compatible with the pre-
dicted charges of quarks,+ 2

3e and− 1
3e. The evaluation of a

sum rule for the momenta of the charged partons showed that
(in the infinite momentum frame) half of the proton momen-
tum is carried by neutral partons; now we know that these
are gluons. Later, the CDHS collaboration also demonstrated

that the quarks do have spin s = 1/2 while the gluons have
spin s = 1 [29].

The operator product expansion turned out to be a very
useful tool for the short distance analysis of the theory –
the title of the paper where it was introduced [30], “Non-
lagrangian models of current algebra,” reflects the general
skepticism towards Lagrangian quantum field theory that I
mentioned in Sect. 1.1.1.

1.1.5 Color

The Quark Model was difficult to reconcile with the spin-
statistics theorem which implies that particles of spin 1

2 must
obey Fermi statistics. Greenberg proposed that the quarks
obey neither Fermi-statistics nor Bose-statistics, but “para-
statistics of order three” [31]. The proposal amounts to the
introduction of a new internal quantum number. Indeed,
Bogolyubov, Struminsky and Tavkhelidze [32], Han and
Nambu [33] and Miyamoto [34] independently pointed out
that some of the problems encountered in the quark model
disappear if the u, d and s quarks occur in 3 states. Gell-Mann
coined the term “color” for the new quantum number.

One of the possibilities considered for the interaction that
binds the quarks together was an abelian gauge field analo-
gous to the e.m. field, but this gave rise to problems, because
the field would then interfere with the other degrees of free-
dom. Fritzsch and Gell-Mann pointed out that if the gluons
carry color, then the empirical observation that quarks appear
to be confined might also apply to them: the spectrum of the
theory might exclusively contain color neutral states [35].

In his lectures at the Schladming Winter School in 1972
[36], Gell-Mann thoroughly discussed the role of the quarks
and gluons: theorists had to navigate between Scylla and
Charybdis, trying to abstract neither too much nor too little
from models built with these objects. The basic tool at that
time was current algebra on the light cone. He invited me
to visit Caltech. I did that during three months in the spring
break of 1973 and spent an extremely interesting period there.
The personal recollections of Harald Fritzsch (see Sect. 1.2)
describe the developments that finally led to Quantum Chro-
modynamics.

As it was known already that the electromagnetic and
weak interactions are mediated by gauge fields, the idea that
color might be a local symmetry as well does not appear as
far fetched. The main problem at the time was that for a gauge
field theory to describe the hadrons and their interaction, it
had to be fundamentally different from the quantum field
theories encountered in nature so far: all of these, includ-
ing the electroweak theory, have the spectrum indicated by
the degrees of freedom occurring in the Lagrangian: photons,
leptons, intermediate bosons, … The proposal can only make
sense if this need not be so, that is if the spectrum of physical
states in a quantum field theory can differ from the spectrum

123



Eur. Phys. J. C          (2023) 83:1125 Page 9 of 636  1125 

of the fields needed to formulate it: gluons and quarks in the
Lagrangian, hadrons in the spectrum. This looked like wish-
ful thinking. How come that color is confined while electric
charge is free?

1.1.6 Electromagnetic interaction

The final form of the laws obeyed by the electromagnetic
field was found by Maxwell, around 1860 – these laws sur-
vived relativity and quantum theory, unharmed. Fock pointed
out that the Schrödinger equation for electrons in an electro-
magnetic field,

1

i

∂ψ

∂t
− 1

2m2
e
( �∇ + i e �A)2ψ − e ϕ ψ = 0, (1.1)

is invariant under a group of local transformations:

�A ′(x) = �A(x)+ �∇α(x), ϕ ′(x) = ϕ(x)− ∂α(x)

∂t
ψ(x)′ = e−ieα(x) ψ(x), (1.2)

in the sense that the fields �A′, ϕ′, ψ ′ describe the same physi-
cal situation as �A, ϕ, ψ [37]. Weyl termed these gauge trans-
formations (with gauge group U(1) in this case). In fact, the
electromagnetic interaction is fully characterized by symme-
try with respect to this group: gauge invariance is the crucial
property of this interaction.

I illustrate the statement with the core of Quantum Elec-
trodynamics: photons and electrons. Gauge invariance allows
only two free parameters in the Lagrangian of this sys-
tem: e,me. Moreover, only one of these is dimension-
less: e2/4π = 1/137.035 999 084 (21). U(1) symmetry
and renormalizability fully determine the properties of the
e.m. interaction, except for this number, which so far still
remains unexplained.

1.1.7 Nonabelian gauge fields

Kaluza [38] and Klein [39] had shown that a 5-dimensional
Riemann space with a metric that is independent of the
fifth coordinate is equivalent to a 4-dimensional world with
gravity, a gauge field and a scalar field. In this framework,
gauge transformations amount to a shift in the fifth direc-
tion: x5′ = x5 + α(�x, t). In geometric terms, a metric space
of this type is characterized by a group of isometries: the
geometry remains the same along certain directions, indi-
cated by Killing vectors. In the case of the 5-dimensional
spaces considered by Kaluza and Klein, the isometry group
is the abelian group U(1). The fifth dimension can be com-
pactified to a circle – U(1) then generates motions on this
circle. A particularly attractive feature of this theory is that
it can explain the quantization of the electric charge: fields
living on such a manifold necessarily carry integer multiples
of a basic charge unit.

Pauli noticed that the Kaluza-Klein scenario admits a nat-
ural generalization to higher dimensions, where larger isom-
etry groups find place. Riemann spaces of dimension > 5
admit nonabelian isometry groups that reduce the system to a
4-dimensional one with gravity, nonabelian gauge fields and
several scalar fields. Pauli was motivated by the isospin sym-
metry of the meson-nucleon interaction and focused atten-
tion on a Riemann space of dimension 6, with isometry group
SU(2).

Pauli did not publish the idea that the strong interaction
might arise in this way, because he was convinced that the
quanta of a gauge field are massless: gauge invariance does
not allow one to put a mass term into the Lagrangian. He
concluded that the forces mediated by gauge fields are neces-
sarily of long range and can therefore not mediate the strong
interaction, which is known to be of short range. More details
concerning Pauli’s thoughts can be found in [40]. The paper
of Yang and Mills appeared in 1954 [41]. Ronald Shaw, a stu-
dent of Salam, independently formulated nonabelian gauge
field theory in his PhD thesis [42]. Ten years later, Higgs [43],
Brout and Englert [44] and Guralnik, Hagen and Kibble [45]
showed that Pauli’s objection is not valid in general: in the
presence of scalar fields, gauge fields can pick up mass, so
that forces mediated by gauge fields can be of short range.
The work of Glashow [46], Weinberg [47] and Salam [48]
then demonstrated that nonabelian gauge fields are relevant
for physics: the framework discovered by Higgs et al. does
accommodate a realistic description of the e.m. and weak
interactions.

1.1.8 Asymptotic freedom

Already in 1965, Vanyashin and Terentyev [49] found that
the renormalization of the electric charge of a vector field is
of opposite sign to the one of the electron. In the language
of SU(2) gauge field theory, their result implies that the β-
function is negative at one loop.

The first correct calculation of the β-function of a non-
abelian gauge field theory was carried out by Khriplovich,
for the case of SU(2), relevant for the electroweak interac-
tion [50]. He found that β is negative and concluded that
the interaction becomes weak at short distance. In his PhD
thesis, ’t Hooft performed the calculation of the β-function
for an arbitrary gauge group, including the interaction with
fermions and Higgs scalars [51,52]. He demonstrated that
the theory is renormalizable and confirmed that, unless there
are too many fermions or scalars, the β-function is negative
at small coupling.

In 1973, Gross and Wilczek [53] and Politzer [54] dis-
cussed the consequences of a negative β-function and sug-
gested that this might explain Bjorken scaling, which had
been observed at SLAC in 1969. They pointed out that QCD
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predicts specific modifications of the scaling laws. In the
meantime, there is strong experimental evidence for these.

1.1.9 Arguments in favor of QCD

The reasons for proposing QCD as a theory of the strong
interaction are discussed in [55]. The idea that the observed
spectrum of particles can fully be understood on the basis of
a theory built with quarks and gluons still looked rather ques-
tionable and was accordingly formulated in cautious terms.
In the abstract, for instance, we pointed out that “…there are
several advantages in abstracting properties of hadrons and
their currents from a Yang–Mills gauge model based on col-
ored quarks and color octet gluons.” Before the paper was
completed, the papers by Gross, Wilczek and Politzer quoted
above circulated as preprints – they are quoted and asymp-
totic freedom is given as argument #4 in favor of QCD. Also,
important open questions were pointed out, in particular, the
U(1) problem.

Many considered QCD a wild speculation. On the other
hand, several papers concerning gauge field theories that
include the strong interaction appeared around the same time,
for instance [56,57].

1.1.10 November revolution

The discovery of the J/ψ was announced simultaneously at
Brookhaven and SLAC, on November 11, 1974. Three days
later, the observation was confirmed at ADONE, Frascati and
ten days later, theψ ′was found at SLAC, where subsequently
many further related states were discovered. We now know
that these are bound states formed with the c-quark and its
antiparticle which is comparatively heavy and that there are
two further, even heavier quarks: b and t .

At sufficiently high energies, quarks and gluons do mani-
fest themselves as jets. Like the neutrini, they have left their
theoretical place of birth and can now be seen flying around
like ordinary, observable particles. Gradually, particle physi-
cists abandoned their outposts in no man’s and no woman’s
land, returned to the quantum fields and resumed discussion
in the good old Gasthaus zu Lagrange, a term coined by Jost.
The theoretical framework that describes the strong, elec-
tromagnetic and weak interactions in terms of gauge fields,
leptons, quarks and scalar fields is now referred to as the
Standard Model – this framework clarified the picture enor-
mously.4

4 Indeed, the success of this theory is amazing: Gauge fields are renor-
malizable in four dimensions, but it looks unlikely that the Standard
Model is valid much beyond the explored energy range. Presumably
it represents an effective theory. There is no reason, however, for an
effective theory to be renormalizable. One of the most puzzling aspects
of the Standard Model is that it is able to account for such a broad range

1.1.11 Quantum chromodynamics

If the electroweak gauge fields as well as the leptons and the
scalars are dropped, the Lagrangian of the Standard Model
reduces to QCD:

LQCD = −1

4
F A
μνF

Aμν + i q̄γ μ(∂μ + igs
1

2
λAAA

μ)q

−q̄RMqL − q̄LM†qR − θ ω. (1.3)

The gluons are described by the gauge field AA
μ , which

belongs to the color group SUc(3) and gs is the corresponding
coupling constant. The field strength tensor F A

μν is defined
by

F A
μν = ∂μAA

ν − ∂νAA
μ − gs fABCAB

μAC
ν , (1.4)

where the symbol f ABC denotes the structure constants of
SU(3). The quarks transform according to the fundamental
representation of SUc(3). The compact notation used in (1.3)
suppresses the labels for flavor, color and spin: the various
quark flavors are represented by Dirac fields, q = {u, d, s, c,
b, t} and qR = 1

2 (1+ γ5)q, qL = 1
2 (1− γ5)q are their right-

and left-handed components. The field u(x), for instance,
contains 3×4 components. While the 3×3 Gell-Mann matri-
ces λA act on the color label and satisfy the commutation
relation

[λA, λB] = 2i f ABCλ
C , (1.5)

the Dirac matrices γ μ operate on the spin index. The mass
matrix M, on the other hand, acts in flavor space. Its form
depends on the choice of the quark field basis. If the right-
and left-handed fields are subject to independent rotations,
qR → VR qR, qL → VL qL, where VR, VL ∈ U(N f ) represent
N f ×N f matrices acting on the quark flavor, the quark mass
matrix is replaced by M → V †

R MVL. This freedom can
be used to not only diagonalize M, but to ensure that the
eigenvalues are real, nonnegative and ordered according to
0 ≤ mu ≤ md ≤ · · · ≤ mt .

As it is the case with electrodynamics, gauge invariance
fully determines the form of the chromodynamic interaction.
The main difference between QED and QCD arises from the
fact that the corresponding gauge groups, U(1) and SU(3),
are different. While the structure constants of U(1) vanish
because this is an abelian group, those of SUc(3) are differ-
ent from zero. For this reason, gauge invariance implies that
the Lagrangian contains terms involving three or four gluon
fields: in contrast to the photons, which interact among them-
selves only via the exchange of charged particles, the gluons
would interact even if quarks did not exist.

Footnote 4 Continued
of phenomena that are characterized by very different scales within one
and the same renormalizable theory.
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The Lagrangian in Eq. (1.3) includes a parity-violating
term proportional to the winding number density,

ω = g2
s

32π2 F
A
μν F̃

Aμν, (1.6)

where F̃ Aμν ≡ 1
2ε

μνρσ F A
ρσ is the dual of the field strength.

The constant θ is referred to as the vacuum angle. Since
ω can be represented as a derivative, ω = ∂μ f μ, the θ -
term looks irrelevant: only the integral over the Lagrangian
counts, so that the contribution from this term is determined
by the behaviour of the gauge field at the boundary of space-
time. In the case of QED, where renormalizability allows
the presence of an analogous term, quantities of physical
interest are indeed unaffected by such a contribution, but
for QCD, this is not the case. Even at the classical level,
nonabelian gauge fields can form instantons, which minimize
the Euclidean action for a given nonzero winding number
ν = ∫

d4x ω.
The θ -term did not play a significant role in the develop-

ments that led to QCD. Indeed, neither the QCD Lagrangian
specified in Ref. [55], nor the discussion of the origins of
QCD in Sect. 1.2 of the present review involve such a term.
Also, there is no experimental evidence indicating that the
strong interaction might violate parity. In the present under-
standing of QCD, however, the θ -term plays a central role,
because it is intimately related to an important property of
QCD: the Ward identity obeyed by the singlet axial current
contains an anomaly proportional to ω. An immediate con-
sequence of this identity is that the change of the quark field
basis considered above entails a change not only of the quark
mass matrix, but also of the vacuum angle. Quite apart from
that, the anomaly very strongly affects the physics of the
strong interaction, in particular the spectrum of the theory –
some of the implications are briefly discussed below.

1.1.12 Theoretical paradise

In order to briefly discuss some of the basic properties of
QCD, let me turn off the electroweak interaction, treat the
three light quarks as massless and the remaining ones as
infinitely heavy:

mu = md = ms = 0, mc = mb = mt = ∞. (1.7)

The Lagrangian then contains a single parameter: the cou-
pling constant gs , which may be viewed as the net color of
a quark. Unlike an electron, a quark cannot be isolated from
the rest of the world – its color gs depends on the radius of
the region considered. According to perturbation theory, the
color contained in a sphere of radius r grows logarithmically

with the radius5:

αs ≡ g2
s

4π
= 2π

9 | ln(r Λ)| . (1.8)

Although the classical Lagrangian of massless QCD does
not contain any dimensionful parameter, the corresponding
quantum field theory does: the strength of the interaction
cannot be characterized by a number, but by a dimensionful
quantity, the intrinsic scale Λ.

The phenomenon is referred to as dimensional transmu-
tation. In perturbation theory, it manifests itself through the
occurrence of divergences – contrary to what many quantum
field theorists thought for many years, the divergences do
not represent a disease, but are intimately connected with the
structure of the theory. They are a consequence of the fact
that a quantum field theory does not inherit all of the prop-
erties of the corresponding classical field theory. In the case
of massless Chromodynamics, the classical Lagrangian does
not contain any dimensionful constants and hence remains
invariant under a change of scale. This property, which is
referred to as conformal invariance, does not survive quan-
tization, however. Indeed, it is crucial for Quantum Chro-
modynamics to be consistent with what is known about the
strong interaction that this theory does have an intrinsic scale.

Massless QCD is how theories should be: the Lagrangian
does not contain a single dimensionless parameter. In prin-
ciple, the values of all quantities of physical interest are pre-
dicted without the need to tune parameters (the numerical
value of the mass of the proton in kilogram units cannot be
calculated, of course, because that number depends on what
is meant by a kilogram, but the mass spectrum, the width of
the resonances, the cross sections, the form factors, … can
be calculated in a parameter free manner from the mass of
the proton, at least in principle).

1.1.13 Symmetries of massless QCD

The couplings of the u-, d- and s-quarks to the gauge field
are identical. In the chiral limit, where the masses are set
equal to zero, there is no difference at all – the Lagrangian
is symmetric under SU(3) rotations in flavor space. Indeed,
there is more symmetry: for massless fermions, the right- and
left-handed components can be subject to independent flavor
rotations. The Lagrangian of QCD with three massless flavors
is invariant under SU(3)R×SU(3)L . QCD thus explains the
presence of the mysterious chiral symmetry discovered by
Nambu: an exact symmetry of this type is present if some of
the quarks are massless.

Nambu had conjectured that chiral symmetry breaks down
spontaneously. Can it be demonstrated that the symmetry
group SU(3)R ×SU(3)L of the Lagrangian of massless QCD

5 The formula only holds if the radius is small, r Λ� 1.
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spontaneously break down to the subgroup SU(3)R+L? To
my knowledge an analytic proof is not available, but the work
done on the lattice demonstrates beyond any doubt that this
does happen. In particular, for mu = md = ms , the states
do form degenerate multiplets of SU(3)R+L and, in the limit
mu,md ,ms → 0, the pseudoscalar octet does become mass-
less, as required by the Goldstone theorem.

1.1.14 Quark masses

The 8 lightest mesons, π+, π0, π−, K+, K 0, K̄ 0, K−, η, do
have the quantum numbers of the Nambu–Goldstone bosons,
but massless they are not. The reason is that we are not living
in the paradise described above: the light quark masses are
different from zero. Accordingly, the Lagrangian of QCD is
only approximately invariant under chiral rotations, to the
extent that the symmetry breaking parameters mu, md , ms

are small. Since they differ, the multiplets split. In particular,
the Nambu–Goldstone bosons pick up mass.

Even before the discovery of QCD, attempts at estimating
the masses of the quarks were made. In particular, nonrel-
ativistic bound state models for mesons and baryons where
constructed. In these models, the proton mass is dominated
by the sum of the masses of its constituents:mu+mu+md �
mp, mu � md � 300 MeV.

With the discovery of QCD, the mass of the quarks became
an unambiguous concept: the quark masses occur in the
Lagrangian of the theory. Treating the mass term as a per-
turbation, one finds that the expansion of m2

π+ in powers of
mu , md , ms starts with m2

π+ = (mu + md)B0 + · · · The
constant B0 also determines the first term in the expansion of
the square of the kaon masses: m2

K+ = (mu +ms)B0 + · · · ,
m2

K 0 = (md +ms)B0+· · · Since the kaons are significantly
heavier than the pions, these relations imply that ms must be
large compared to mu , md .

The first crude estimate of the quark masses within QCD
relied on a model for the wave functions of π , K , ρ, which
was based on SU(6) (spin-flavor-symmetry) and led to B0 �
3
2mρFρ/Fπ . Numerically, this yields B0 � 1.8 GeV. For the
mean mass of the two lightest quarks, mud ≡ 1

2 (mu + md),
this estimate implies mud � 5 MeV, while the mass of the
strange quark becomes ms � 135 MeV [58]. Similar mass
patterns were found earlier, within the Nambu–Jona–Lasinio
model [59] or on the basis of sum rules [60].

1.1.15 Breaking of isospin symmetry

From the time Heisenberg had introduced isospin symmetry,
it was taken for granted that the strong interaction strictly
conserves isospin. QCD does have this symmetry if and only
if mu = md . If that condition were met, the mass difference
between proton and neutron would be due exclusively to the

e.m. interaction. This immediately gives rise to a qualitative
problem: why is the charged particle, the proton, lighter than
its neutral partner, the neutron?

The Cottingham formula [61] states that the leading con-
tribution of the e.m. interaction to the mass of a particle is
determined by the cross section for electron scattering on this
particle. We evaluated the formula on the basis of Bjorken
scaling and of the experimental data for electron scattering on
protons and neutrons available at the time. Since we found
that the electromagnetic self energy of the proton is larger
than the one of the neutron, we concluded that the strong
interaction does not conserve isospin: even if the e.m. inter-
action is turned off, mu must be different from md . In fact,
the first crude estimate for the masses of the light quarks [62],

mu � 4 MeV, md � 7 MeV, ms � 135 MeV, (1.9)

indicated that md must be almost twice as large as mu .
It took quite a while before this bizarre pattern was gen-

erally accepted. The Dashen theorem [63] states that, in a
world where the quarks are massless, the e.m. self energies
of the kaons and pions obey the relation m2 em

K+ − m2 em
K 0 =

m2 em
π+ −m2 em

π0 . If the mass differences were dominated by the
e.m. interaction, the charged kaon would be heavier than the
neutral one. Hence the mass difference between the kaons
cannot be due to the electromagnetic interaction, either. The
estimates for the quark mass ratios obtained with the Dashen
theorem confirm the above pattern [64].

1.1.16 Approximate symmetries are natural in QCD

At first sight, the fact that mu strongly differs from md is
puzzling: if this is so, why is isospin such a good quantum
number? The key observation here is the one discussed in
Sect. 1.1.12: QCD has an intrinsic scale, Λ. For isospin to
represent an approximate symmetry, it is not necessary that
md − mu is small compared to mu + md . It suffices that
the symmetry breaking parameter is small compared to the
intrinsic scale, md − mu � Λ.

In the case of the eightfold way, the symmetry breaking
parameters are the differences between the masses of the
three light quarks. If they are small compared to the intrinsic
scale of QCD, then the Green functions, masses, form factors,
cross sections … are approximately invariant under the group
SU(3)R+L . Isospin is an even better symmetry, because the
relevant symmetry breaking parameter is smaller,md−mu �
ms−mu . The fact thatm2

π+ is small compared tom2
K+ implies

mu + md � mu + ms . Hence all three light quark masses
must be small compared to the scale of QCD.

In the framework of QCD, the presence of an approximate
chiral symmetry group of the form SU(3)R×SU(3)L thus has a
very simple explanation: it so happens that the masses of u, d
and s are small. We do not know why, but there is no doubt that
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this is so. The quark masses represent a perturbation, which in
first approximation can be neglected – in first approximation,
the world is the paradise described above.

1.1.17 Ratios of quark masses

The confinement of color implies that the masses of the
quarks cannot be identified by means of the four-momentum
of a one-particle state – the spectrum of the theory does
not contain such states. As parameters occurring in the
Lagrangian, they need to be renormalized and the renormal-
ized mass depends on the regularization used to set up the
theory. In the MS scheme [65–67], they depend on the run-
ning scale – only their ratios represent physical quantities.
Among the three lightest quarks, there are two independent
mass ratios, which it is convenient to identify with

S = ms

mud
, R = ms − mud

md − mu
, (1.10)

where mud ≡ 1
2 (mu + md).

Since the isospin breaking effects due to the e.m. interac-
tion are not negligible, the physical masses of the Goldstone
boson octet must be distinguished from their masses in QCD,
i.e. in the absence of the electroweak interactions. I denote
the latter by m̂ P and use the symbol m̂K for the mean square
kaon mass in QCD, m̂2

K ≡ 1
2 (m̂

2
K+ + m̂2

K 0). The fact that the
expansion of the square of the Goldstone boson masses in
powers of mu , md , ms starts with a linear term implies that,
in the chiral limit, their ratios are determined by R and S. In
particular, the expansion of the ratios of m̂2

π+ , m̂2
K+ and m̂2

K 0

starts with

2m̂2
K

m̂2
π+
= (S + 1){1+ΔS}, (1.11)

m̂2
K − m̂2

π+

m̂2
K 0 − m̂2

K+
= R{1+ΔR}, (1.12)

where ΔS as well as ΔR vanish in the chiral limit – they
represent corrections of O(M). The left hand sides only
involve the masses of π+, K+ and K 0. Invariance of QCD
under charge conjugation implies that the masses of π−, K−
and K̄ 0 coincide with these. There are low energy theorems
analogous to (1.11), (1.12), involving the remaining mem-
bers of the octet, π0 and η, but these are more complicated
because the states |π0〉 and |η〉 undergo mixing {at leading
order, chiral symmetry implies that the mixing angle is given
by tan(2θ) = √

3/2R}. In the isospin limit, {mu = md ,
e = 0}, the masses of π0 and π+ coincide and m̂η obeys
the Gell-Mann–Okubo formula, (m̂2

η − m̂2
K )/(m̂2

K − m̂2
π ) =

1
3 {1+ O(M)}.

While the accuracy to which S can be determined on the
lattice is amazing, the uncertainty in R is larger by almost an

order of magnitude [68]:

S = 27.42(12), R = 38.1(1.5). (1.13)

The reason is that R concerns isospin breaking effects. The
contributions arising from QED are not negligible at this
precision and since the e.m. interaction is of long range, it is
more difficult to simulate on a lattice.

The difference shows up even more clearly in the cor-
rections. The available lattice results [68] lead to ΔS =
−0.055(6), indicating that the low energy theorem (1.11)
picks up remarkably small corrections from higher orders
of the quark mass expansion. Those occurring in the Gell-
Mann–Okubo formula are also known to be very small. The
number ΔR = −0.016(57) obtained from the available lat-
tice results is also small, but the uncertainty is so large that
even the sign of the correction remains open.

The quantities ΔS , ΔR exclusively concern QCD and
could be determined to high precision with available meth-
ods, in the framework of N f = 1 + 1 + 1: three flavors
of different mass. For isospin breaking quantities, the avail-
able results come with a large error because they do not
concern QCD alone but are obtained from a calculation of
the physical masses, so that the e.m. interaction cannot be
ignored. A precise calculation of m̂π+ , m̂K+ , m̂K 0 within
lattice QCD would be of considerable interest as it would
allow to subject a venerable low energy theorem for the quark
mass ratio Q2 ≡ (m2

s −m2
ud)/(m

2
d −m2

u) [69] to a stringent
test. The theorem implies that the leading contributions to
ΔR and ΔS are equal in magnitude, but opposite in sign:
ΔR = −ΔS+O(M2) [70]. The available numbers are con-
sistent with this relation but far from accurate enough to allow
a significant test. There is no doubt that the leading terms
dominate if the quark masses are taken small enough, but
since the estimates for ΔR and ΔS obtained at the physical
values of the quark masses turn out to be unusually small, it
is conceivable that the corrections of O(M2) are of compa-
rable magnitude. For mu = md , the masses of the Goldstone
bosons have been worked out to NNLO of Chiral Perturba-
tion Theory [71]. An extension of these results to m̂π+ , m̂K+ ,
m̂K 0 for mu �= md should be within reach and would allow
a much more precise lattice determination of ΔR .

1.1.18 U(1) anomaly, CP-problem

Even before the discovery of QCD, it was known that, in
the presence of vector fields, the Ward identities for axial
currents contain anomalies [72–74]. In particular, an external
e.m. field generates an anomaly in the conservation law for
the axial current ūγ μγ5u − d̄γ μγ5d. The anomaly implies
a low energy theorem for the decay π0 → γ + γ , which
states that, to leading order in the expansion in powers of the
momenta and for mu = md = 0, the transition amplitude is
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determined by Fπ , i.e. by the same quantity that determines
the rate of the decay π+ → μ+ νμ.

In QCD, the conservation law for the singlet axial current
contains an anomaly,

∂μ(q̄γ
μγ5q) = 2i q̄Mγ5q + 2N f ω, (1.14)

where N f is the number of flavors and ω is specified in (1.6).
The phenomenon plays a crucial role because it implies that
even if the quark mass matrix M is set equal to zero, the sin-
glet axial charge is not conserved. Hence the symmetry group
of QCD with 3 massless flavors is SU(3)R×SU(3)L×U(1)R+L,

not U(3)R×U(3)L. QCD is not invariant under the chiral trans-
formations generated by the remaining factor, U(1)R-L. This
is why the paradise described above contains 8 rather than 9
massless Goldstone bosons.

The factor U(1)R-L changes the phase of the right-handed
components of all quark fields by the same angle, q ′R = eiβqR,
while the left-handed components are subject to the oppo-
site transformation: q ′L = e−iβqL. This change of basis can
be compensated by modifying the quark mass matrix with
M′ = e2iβM, but in view of the anomaly, the operation
does not represent a symmetry of the system. The relation
(1.14) shows, however, that current conservation is not lost
entirely – it only gets modified. In fact, if the above change
of the quark mass matrix is accompanied by a simultane-
ous change of the vacuum angle, θ ′ = θ − 2β, the physics
does remain the same. Note that, starting from an arbitrary
mass matrix, a change of basis involving the factor U(1)R-L

is needed to arrive at the convention where M is diagonal
with real eigenvalues. In that convention, the vacuum angle
does have physical significance – otherwise only the product
eiθM counts.

The Lagrangian of QCD is invariant under charge conju-
gation, but the term −θ ω has negative parity. Accordingly,
unless θ is very small, there is no explanation for the fact that
CP-violating quantities such as the electric dipole moment
of the neutron are too small to have shown up in experiment.
This is referred to as the strong CP-problem.

There is a theoretical solution of this puzzle: if the light-
est quark were massless, mu = 0, QCD would conserve
CP. The Dirac field of the u-quark can then be subject to
the chiral transformation u′R = eiβuR, u′L = e−iβuL with-
out changing the quark mass matrix. As discussed above,
the physics remains the same, provided the vacuum angle is
modified accordingly. This shows that if one of the quarks
were massless, the vacuum angle would become irrelevant. It
would then be legitimate to set θ = 0, so that the Lagrangian
becomes manifestly CP-invariant.

This ‘solution’, however, is fake. Ifmu were equal to zero,
the ratio R would be related to S by R = 1

2 (S− 1). The very
accurate value for S in Eq. (1.13) would imply R = 13.21(6),
more than 16 standard deviations away from the result quoted
for R.

1.1.19 QCD as part of the standard model

In the Standard Model, the vacuum contains a condensate
of Higgs bosons. At low energies, the manner in which the
various other degrees of freedom interact with these plays
the key role. Since they do not have color and are electri-
cally neutral, their condensate is transparent for gluons and
photons. The gauge bosons W±, Z that mediate the weak
interaction, as well as the leptons and quarks do interact
with the condensate: photons and gluons remain massless,
all other particles occurring in the Standard Model are hin-
dered in moving through the condensate and hence pick up
mass. In cold matter only the lightest degrees of freedom sur-
vive: photons, gluons, electrons, u- and d-quarks – all other
particles are unstable, decay and manifest their presence only
indirectly, through quantum fluctuations.

At low energies, the Standard Model boils down to a
remarkably simple theory: QCD + QED. The Lagrangian
only contains the coupling constants gs , e, θ and the masses
of the quarks and leptons as free parameters, but describes
the laws of nature relevant at low energies to breathtaking
precision. The gluons and the photons represent the gauge
fields that belong to color and electric charge, respectively.
Color is confined, but electric charge is not: while electrons
can move around freely, quarks and gluons form color neutral
bound states – mesons, baryons, nuclei.

The structure of the atoms is governed by QED because
the e.m. interaction is of long range. In particular, their size is
of the order of the Bohr radius, aB = 4π/e2me, which only
involves the mass of the electron and the coupling constant
e. The mass of the atoms, on the other hand, is dominated
by the energy of the gluons and quarks that are bound in the
nucleus. It is of the order of the scale ΛQCD, which charac-
terizes the value of gs in a renormalization group invariant
manner. Evidently, the sum of the charges of the quarks con-
tained in the nucleus also matters, as it determines the number
of electrons that can be bound to it. The mass of the quarks,
on the other hand, plays an important role only in so far as it
makes the proton the lightest baryon – the world would look
rather different if the neutron was lighter …

The properties of the interaction among the quarks and
gluons does not significantly affect the structure of the atoms,
but from the theoretical point of view, the gauge field theory
that describes it, QCD, is the most remarkable part of the
Standard Model. In fact, it represents the first non-trivial
quantum field theory that is internally consistent in four-
space-time dimensions. In contrast to QED or to the Higgs
sector, QCD is asymptotically free. The behavior of the quark
and gluon fields at very short distances is under control. A
cutoff is needed to set the theory up, but it can unambigu-
ously be removed. In principle, all of the physical quanti-
ties of interest are determined by the renormalization group
invariant quark mass matrix, by the vacuum angle θ and a
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scale. In the basis where the quark mass matrix is diagonal
and real, the vacuum angle is tiny. We do not know why this
is so, nor do we understand the bizarre pattern of eigenvalues.

1.2 The origins of QCD

Harald Fritzsch
Murray Gell-Mann and I started to collaborate in October
1970. We considered the results of the experiments on deep
inelastic scattering at the Stanford Linear Accelerator Center.
James Bjorken had predicted, using current algebra, that the
cross sections showed at large values of the virtual photon
mass and the energy transfer to the nucleon a scaling behav-
ior, i.e. the cross section is a function of the ratio x , where
x is the ratio of the square of the virtual photon mass to the
energy transfer to the nucleon, multiplied with the nucleon
mass. This ratio x varies from zero to one.

Since in the scaling region the cross sections were deter-
mined by the commutator of two electromagnetic currents
at nearly lightlike distances, Gell-Mann and I assumed, that
this commutator near the light cone is given by the free quark
model. Thus the Bjorken scaling followed from this assump-
tion.

The interaction between the quarks was assumed not to
be present near the light cone. The cross section in the deep
inelastic region determined the distribution functions of the
three quarks and antiquarks, which are given by the proton
matrix element of the commutator of the electromagnetic
current.

In the free quark model the commutator near the light
cone is given by a singular function, multiplied by a bilocal
function of quark fields [75]. The matrix elements of these
bilocal operators determined the quark distribution functions
of the nucleon. The integral of the quark distribution func-
tions gives the contribution of all the quark momenta to the
nucleon momentum.

Gell-Mann and I expected that the momentum sumrule of
the proton constituents should be +1. However, it turned out
that the integral
∫ 1

0
x

[
u(x)+ u(x)+ d(x)+ d(x)+ s(x)+ s(x)

]
dx

(0.52± 0.03). (1.15)

was found to be only≈ 0.5 [28], thus indicating that besides
the charged partons there must exist also neutral partons in
the proton (see also “Behavior at short distances” 1.1.4 in the
preceding contribution). This observation was the first indi-
cation that the strong interactions are described by a gauge
theory. In such a theory there would be besides the quarks
and antiquarks also neutral gluons.

Afterwards Gell-Mann and I considered several problems
of the quark theory. The Ω− particle was a bound state of

three strange quarks. The three spin vectors of the quarks
were symmetricals arranged, and the space wave function
was symmetric, since the Ω− is the ground state of three
strange quarks. Thus an interchange of two strange quarks
was symmetric, but according to the Pauli principle it should
be antisymmetric.

Another problem was related to the electromagnetic decay
of the neutral pion. The decay rate, calculated in the quark
model, is much smaller than the observed decay rate, only
about 1/9 of the observed rate.

We also studied the cross section for the reaction electron–
positron annihilation into hadrons. The ratio R of the cross
section for hadron production and the cross section for the
production of a muon pair can be calculated in the quark
model. It is given by the sum of the squares of the electric
charges of the three quarks, i.e. 2/3. But according to the
experiments at the CEA accelerator at Harvard university
this ratio was about three times larger: R � 2.

To solve theses problems, Murray Gell-Mann, William
Bardeen and I introduced for the quarks a new quantum num-
ber, which we called “color”. Each quark is described by a
red, a green and a blue quark. The three colors can be trans-
formed by the color group SU(3)C, which is assumed to be an
exact symmetry. Measurable quantities, e.g. cross sections or
the wave functions of hadrons, are color singlets.

The quark wave function ψΩ of the Ω− is also a color
singlet:

ψΩ � (rgb − grb + brg − rbg + gbr − bgr). (1.16)

This wave function is antisymmetric under the exchange of
two quarks – there is no problem with the Pauli principle.
The quark wave functions of mesons are also color singlets:

ψmeson � (r̄r + ḡg + b̄b). (1.17)

The decay amplitude for the neutral pion decay is three times
larger, if the quarks are colored. Thus the decay rate is nine
times larger and agrees with the observed decay rate [76]. The
ratio R for electron–positron annihilation, given by the sum
of the squares of the quark charges, is now also three times
larger: R � 2. Thus the introduction of the color quantum
number solved the three problems mentioned above.

The color quantum number also explains why mesons are
quark–antiquark bound states and baryons are three quark
bound states, since they must be color singlets. Thus the
mesons and baryons could be considered to be “white” states,
since a particular color cannot be seen from the outside – the
color quantum number is only relevant inside the mesons and
baryons.

In the spring of 1972 Gell-Mann and I tried to understand
why a colored quark cannot be observed – it is confined
inside a baryon or meson or inside an atomic nucleus. We
considered to use the color symmetry group as a gauge group.
The gauge bosons of such a gauge theory would be color
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octets. I proposed to call these gauge bosons “chromons”,
but Gell-Mann insisted to call them “gluons”, mixing the
English language and the Greek language.

We called this new gauge theory “Quantum Chromody-
namics” (QCD). The Lagrangian of QCD is [35,55]:

L = q

[

iγ μ

(

∂μ + igs
λA

2
AA

μ

)

− m

]

q − 1

4
F A
μνF

Aμν,

(1.18)

where the λA are the Gell-Mann matrices, and

F A
μν = ∂μAA

ν − ∂νAA
μ − gs fABCAB

μAC
ν . (1.19)

f ABC are called SU(3) structure constants. This Lagrangian
is very similar to the Lagrangian of Quantum Electrodynam-
ics. The electromagnetic field is replaced by the eight gluon
fieldsAA, the electron mass by the quark mass, and the charge
e is replaced by the strong coupling gs . The strong interaction
constant is defined by αs = g2

s /4π .
However, the big difference between Quantum Electrody-

namics and Quantum Chromodynamics is the presence of the
A2 term in F A

μν , not present in Quantum Electrodynamics.
This term shows that a gluon interacts not only with a quark,
but also with another gluon, and gives rise to 3- and 4-gluon
couplings.

The quark masses, which appear in the Lagrangian of
QCD, are not the masses of free quarks, but the masses, rele-
vant inside the hadrons. The masses of the quarks depend on
the energy scale. They are large at small energies and small at
high energies. Here are the typical masses for the up-quark,
the down-quark and the strange quark at the energy given by
the mass of the Z -boson, MZ � 91.2 GeV:

mu � 1.2 MeV, md � 2.2 MeV, ms � 53 MeV. (1.20)

These masses describe the symmetry breaking of the SU (3)F

flavor group. Interesting is the violation of the isospin sym-
metry. The down quark is heavier than the up quark. For this
reason the neutron is heavier than the proton, and the proton
is stable. If there would be no isospin violation, i.e.mu = md ,
the proton would be heavier than the neutron due to the elec-
tromagnetic self-energy and it would decay into the neutron
– life would not be possible.

Gell-Mann and I assumed that the interaction in QCD is
zero at light-like distances. The light cone current algebra,
which we had discussed in Ref. [75], would not be changed.
The confinement of colored states, i.e. the quarks and the
gluons, would be due to the interaction at long distances.

Soon we realized that our assumption, that there is no
interaction near the light-cone, was not correct. David Gross,
Frank Wilczek and, independently, David Politzer calcu-
lated this interaction, which is the interaction, given by the
Lagrangian, but near the light-cone the relevant coupling con-
stant is not zero, but only very small.

The QCD Lagrangian describes a theory, which is asymp-
totically free. At small distances the interaction is very small,
at large distances the interaction is strong. Thus the coupling
constant is not constant, but a function of the energy. The
sliding of the coupling constant gs as a function of the renor-
malization mass μ is given by the beta-function β(gs):

μ
d

dμ
gs(μ) = β(gs). (1.21)

This beta function is positive for many theories, for example
quantum electrodynamics. The fine structure constant α is at
the energy of 100 GeV about 10% larger than at low energies.

The beta function can be calculated in perturbation theory.
One finds for QCD:

μ
d

dμ
gs(μ) � − 1

16π2

(

11− 2

3
n f

)

g3
s (μ). (1.22)

Here the coefficient “11” describes the contribution of the
gluons to the beta function. The asymptotic freedom of QCD
is due to this coefficient – it is related to the self-interactions
of the gluons. The number n f is the number of the different
quark flavors. For the three quarks up, down and strange one
has n f = 3.

In QCD one can describe the energy dependence of the
coupling constant by introducing a scale parameter Λ:

αs(μ
2) � 4π

(

11− 2

3
n f

)

ln

(
μ2

Λ2

) . (1.23)

This scale parameter has been measured by many experi-
ments (see Sect. 3.2):

Λ = (332± 17)MeV. (1.24)

In experiments one has measured the scale dependence of
the coupling constant. It agrees very well with the theoret-
ical prediction. We also mention the value of the coupling
constant at the mass of the Z -boson, where it was possible to
measure the coupling constant rather precisely (see Sect. 3.2):

αs = 0.1181± 0.0011. (1.25)

In QCD, Bjorken scaling in deep inelastic scattering is not
an exact property of the strong interactions. The quark distri-
bution functions change slowly at high energies. This change
can be calculated in perturbation theory (see Sect. 2.3). The
results agree rather well with the experimental results. Also
the gluon distribution function g(x) has been measured.
Since the gluons and the quarks contribute to the momen-
tum of a high energy proton, the following sum rule must be
obeyed:
∫ 1

0
x

[
g(x)+ u(x)+ u(x)+ d(x)+ d(x)

+s(x)+ s(x)] dx = 1. (1.26)
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Using the scale parameter Λ, one can in principle calculate
many properties of the strong interactions, for example the
masses of the hadrons like the proton mass: mp = const×Λ.
The proton mass depends also on the quark masses, however
the up and down quark masses are very small and can be
neglected. The calculations of the hadron masses are com-
plicated and are often carried out by discretizing space and
time (see Sect. 4 on Lattice QCD).

In QCD one can also change the three quark masses. For
example we can assume that the three quark masses are zero.
In this case the flavor group SU (3)F × SU (3)F would be
unbroken. The three pions, the four K -mesons and the η

– meson would be massless and the eight vector mesons
would have the same mass. There is not a ninth massless
pseudoscalar meson, since the singlet axial current has an
anomaly:

∂μ
(
ūγ μγ5u + d̄γ μγ5d + s̄γ μγ5s

)

= const × g2
s ε

μνρσ F A
μνF

A
ρσ . (1.27)

where εμνρσ is the totally antisymmetric tensor. In Ref. [35]
Gell-Mann and I also studied what happens if the quarks are
removed from the QCD Lagrangian. In this case only the
eight gluons are present. At low energies there would be a
discrete spectrum of particles, which consist of gluons – the
glue mesons, gluonium particles or glueball (see Sect. 8.4).
If the three quarks are introduced, the glue mesons would
mix with the quark–antiquark mesons. The experimentalists
have thus far not clearly identified a glue meson. Presumably
in nature there are only mixtures of glue mesons and quark–
antiquark mesons. But there might be mesons, which are
essentially glue mesons, since the mixing is very small for
these mesons.

It is useful to consider the theory of QCD with just
one heavy quark Q. The ground-state meson in this hypo-
thetical case would be a quark–antiquark bound state (see
Sects. 8.1, 8.6). The effective potential between the quark
and its antiquark at small distances would be a Coulomb
potential proportional to 1/r , where r is the distance between
the quark and the antiquark. However, at large distances the
self-interaction of the gluons becomes important. The glu-
onic field lines at large distances do not spread out as in
electrodynamics. Instead, they attract each other. Thus the
quark and the antiquark are connected by a string of gluonic
field lines. The force between the quark and the antiquark is
constant, i.e. it does not decrease as in electrodynamics. The
heavy quarks are confined.

In the annihilation of electrons and positrons at very high
energies it has been possible to test the theory of quan-
tum chromodynamics rather precisely. If an electron and a
positron collide, a quark and an antiquark are produced. The
two quarks move away from each other almost with the speed

of light. Since the two quarks do not exist as free particles,
they fragment into two jets of hadrons, mostly pions. These
particles form two narrow jets. These jets have been observed
since 1979 at the collider at DESY, later at the LEP-collider
at CERN. Sometimes a quark emits a high energy gluon,
which also fragments into hadrons. Thus three jets are pro-
duced, two quark jets and one gluon jet. Such three jet events
have been observed since 1979 at DESY, later at CERN (see
Sect. 2.2).

Now we consider high energy collisions of atomic nuclei,
for example collisions of lead nuclei. Such collisions are
studied at the Relativistic Heavy Ion Collider (RHIC) in
Brookhaven, at Fermilab and at the LHC in CERN. In such
collisions a new state of matter is produced for a short time,
a quark–gluon-plasma. Astrophysicists assume that such a
plasma exists also for a long time near the center of a large
neutron star (see Sect. 7.1).

Right after the Big Bang the matter was a quark–gluon-
plasma. During the expansion of the universe the plasma
changed later into a gas of protons and neutrons (see
Sect. 7.2).

In the fall of 1973 I was convinced, that Gell-Mann and I
had discovered the correct theory of the strong interactions:
Quantum Chromodynamics. Almost every day I discussed
this theory with Richard Feynman, and he also thought that
it was correct. In 1974 Feynman gave lectures on QCD. But
Gell-Mann still thought that the true theory of the strong
interactions should be a theory based on strings.

In the years after 1973 it became clear that QCD is the
correct theory of the strong interactions. I was proud that I
had contributed to the birth of this theory, which is now a
major part of the Standard Theory of particle physics.

2 Experimental foundations

Conveners:
Eberhard Klempt and Franz Gross

Quantum Chromodynamics or QCD: What a gorgeous the-
ory! You start with free colored quarks. You request invari-
ance with respect to the exchange of colors at any time and
any space point, and the quarks interact. That is all that QCD
requires (see Sect. 1). QCD is based on a simple Lagrangian
but embodies an extremely rich phenomenology which is still
being explored. Nowadays, QCD is the accepted theory of
the strong interaction and is used as a “working horse” to
interpret experimental data. In the early days, however, the
realms of perturbative and nonperturbative approaches were
not understood, radiative corrections were not applied, and
QCD was not uncontested: Still in 1979, five leading theo-
reticians at CERN, de Rújula, Ellis, Petronzio, Peparata, and
Scott presented a “theatre” discussion in five acts at the Inter-
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national School of Subnuclear Physics on “Point like Struc-
tures inside and outside hadrons” in Erice in which achieve-
ments and failures of perturbative QCD were discussed [77].
In 1992, however, in a workshop at Aachen [78], QCD was
grown up “from a rather fragile construction of ideas into an
actual microscopic quantum field theory of the strong inter-
actions” [79].

In this section, milestones are discussed which convinced
even sceptical physicists of the quark model and of the new
theory. Important first steps to verify the quark model and
QCD were already discussed by Leutwyler in first section
(see Sect. 1.1).

A breakthrough was achieved in the November revolu-
tion: Charmonium was discovered at SLAC, the c-quark was
shown to exist, the GIM mechanism (proposed by Glashow,
Iliopoulos and Maiani in 1964 [80]) explaining the absence
of neutral currents in weak interactions found experimen-
tal confirmation. John B. Kogut’s contribution remembers
the excitement in these days. A new spectroscopy came into
life, many new resonances were discovered, some of them
with completely unexpected properties that are still studied
today, both experimentally (see Sect. 8.5) and theoretically
(see Sect. 8.6).

One year later, the τ -lepton [81] was discovered (later
also its neutrino [82]), the b-quark and the rich bottomo-
nium spectrum [83]. Schaile and Zerwas [84] determined
the weak isospin of the b-quark and established the b and t
quarks as members of the third generation before the t-quark
– completing the third family of fermions – was discovered
[85]. The need for a third family had already been claimed
by Kobayashi and Maskawa to explain CP violation in K
decays [86].

San Lau Wu recalls her personal contributions to the dis-
covery of gluons at DESY where events were found in which
e+e− annihilate into three bunches of particles, three jets.
The three jets were interpreted as processes in which the two
quarks – observed as jets – radiate off a gluon which mani-
fests itself as the third jet.

The evidence for the correctness of QCD grew rapidly.
A huge activity was started at the SPS at CERN and else-
where performing QCD analyses exploiting the Altarelli-
Parisi equations [87], now called DGLAP equations. At that
time, nobody in the western countries had realized the impor-
tant contributions of Gribov and his school.

Yuri Dokshitzer – the “D” in DGLAP – reminds us of
the most important steps. Scaling, observed already in 1972,
proved the existence of interaction centers – called partons
by Feynman – inside of nucleons. In the meantime, elastic
and inelastic scattering off nucleons has grown to an indus-
try supplying us with a detailed view of internal structure
of nucleons (see Sect. 10). From the ratio of the cross sec-
tions for e+e− annihilation into hadrons over that for μ+μ−
the number of colors Nc = 3 was deduced. And the strong

interaction constant αs was shown to decrease with momen-
tum transfer opening QCD to perturbative approaches (see
Sect. 3.2). Dokshitzer introduces many basic concepts like jet
finding algorithms, evolution, divergences and resummation,
which will be discussed in more detail in Sect. 11.

2.1 Discovery of heavy mesons as bound states of heavy
quarks

John B. Kogut

2.1.1 SLAC, light quarks and deep inelastic scattering

Many physicists and accelerators contributed to the establish-
ment of the Standard model. But two accelerators were par-
ticularly important to US-based researchers. They were the
2-mile Linac and the 80 m diameter electron–positron ring,
SPEAR (Stanford Positron–Electron Asymmetric Rings), of
the Stanford Linear Accelerator Center (SLAC), Fig. 1. The
Linac, which was built under the direction of SLAC’s first
director, W. Panofsky (“PIEP”), and started operations in
1965, discovered the light constituents of the protons, the
u, d and s quarks, by measuring the inclusive deep inelas-
tic cross section of e− + p → e−′ + X . The deep inelastic
scattering program was critical to the founding of Quantum
Chromodynamics (QCD) and is discussed extensively else-
where in this journal review.

When I arrived at SLAC as an incoming graduate stu-
dent in 1967, theoretical research revolved around Bjorken
(“bj”) scaling, and the parton model of bj and Feynman. One
of the tools of the trade was the Infinite Momentum Frame
(IMF). D. Soper, bj and I put the IMF on a firm founda-
tion by quantizing Quantum Electrodynamics (QED) on the
light cone [88]. This work initiated the program of light cone
formulations of field theories (later called light front quanti-
zation by some advocates) that will be reviewed in Sect. 5.3.
Later, S. Berman, bj and I developed the parton picture of
the final states of inclusive processes involving large momen-
tum transfers [89] and introduced parton fragmentation func-
tions. This work had to address the mysterious phenomenon
of quark confinement, the fact that quarks were “observed”
when their properties were measured in deep inelastic pro-
cesses, but no quarks were found isolated in the debris of the
collisions. Although considerable progress has been made
and many field theoretic mechanisms have been studied and
proposed, especially in the context of Lattice formulations
of QCD, the quark confinement problem remains open. It
certainly was on many physicists’ minds in the early days.

2.1.2 Charmonium and The November Revolution

Several years later, during the summer of 1974, experimen-
talists from SLAC presented some intriguing data from the
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Fig. 1 Aerial view of SLAC, 2020: The Linac, SPEAR and their
descendents

earliest runs of their very new electron–positron collider,
SPEAR. A later section of this article will sketch the history
of electron–positron colliders at SLAC since these machines
were so central to the establishment of the Standard Model.
The data of the summer of 1974 focused on the ratio R,

R = σe+e−→hadrons

σe+e−→μ+μ−
(2.1)

which, when plotted against the CM energy, showed a high,
broad peak around 3.0–3.5 GeV. This suggested new inter-
actions in the reaction’s direct channel. One popular specu-
lation was that a new quark threshold had been reached. A
notable paper [90] stated that the reported broad peak in R
should be accompanied by narrow resonant peaks at slightly
lower energies. On November 11, 1974, SPEAR announced
such a narrow peak at an energy 3.105 GeV [91] with an
electronic width of Γe ≈ 5.5 keV. Brookhaven also found
this state in proton–proton collisions in fixed target experi-
ments at the Alternating Gradient Synchrotron (AGS) [92]
but that experiment didn’t have the resolution of the rela-
tively clean electron–positron collisions at SPEAR to mea-
sure its narrow width (see Fig. 2). With the news of a nar-
row state at 3.105 GeV, the high energy theory community
exploded with speculations. The charmed quark hypothesis
was just one of many competitors. Recall that the 1960–
1970s was an era of discovery of many strong interaction
states that were described by non-field theoretic approaches
to high energy physics, such as Regge poles, bootstraps, etc.
The field was stunned again two weeks later, on November
25, 1974, when SPEAR announced a second narrow peak
at energy 3.695 GeV [93]! This challenged all the specula-
tions circulating worldwide. The charm hypothesis was the
most appealing to myself and collaborators since we were
students of deep inelastic scattering and local field theory.
The charm hypothesis was critical to the phenomenology
of the electroweak sector of the Standard Model: the four
quark model of u, d, s and c quarks solved the problem of
neutral strangeness changing weak currents (the GIM mech-
anism [80]) of the three quark model. In addition, for the

Fig. 2 The discovery of the J at BNL [94] and of the ψ at SLAC [95]

cancellations of the GIM mechanism to work effectively, the
charm quark could not be too heavy. There were estimates
that its mass mc ≤ 2.0−2.5 GeV which put it inside the
interesting range to explain the new resonances. In fact, the
conventional quark model of mesons and baryons predicted
that the charmed meson threshold of the SPEAR experiment,
the minimum energy to produce two free charmed mesons,
each consisting of a charmed quark and a light (u, d, or s)
quark or anti-quark, should be Mc = 2mc + 0.7 GeV. Since
the second state at 3.695 GeV was very narrow, Mc had to
be above 3.695 GeV. So, if mc lay in the range 1.5–2.0 GeV,
the charm hypothesis appeared to be compatible with all the
known data. The only “fly in the ointment” was that SPEAR
had not announced the discovery of charmed mesons above
3.695 GeV. Nervous charm enthusiasts worried that maybe
the charm idea was flawed!

Following Ref. [90], the new states were tentatively called
“charmonium”, in analogy to positronium. Then the 3.105
state would be the 13S1 state of a c and c̄, and the 3.695
would be the 23S1. S-waves were required so that the c
and c̄ would couple directly to the virtual photon created
in the direct channel when the electron and positron anni-
hilated. I recall that when these ideas were first discussed,
many researchers sought to understand positronium better
and ran off to their physics libraries and read Schwinger’s
classic works on the subject! Positronium spectroscopy had
been calculated in great detail. This was possible because
the static electron–positron interaction potential was just
Coulomb’s law. One needed the generalization of this inter-
action potential to strong interactions, QCD, to repeat those
exercises for charmonium. At short distances it was plausi-
ble to assume a Coulomb-like formula with the fine structure
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constant replaced by αs = g2/4π , where g is the strong
coupling constant of QCD. In fact, g should be the running
coupling, a scale dependent quantity, and αs should be small,
say αs ∼ 0.2 for mass scales of ∼ 2 GeV to accommodate
the success of the parton model in deep inelastic scatter-
ing where experiments suggested that the parton distribution
functions satisfy Bjorken scaling to good approximation for
Q2 ≈ 2−3 GeV2. Next, one needed the potential at inter-
mediate distances, where the cc̄ pair feels the QCD forces
of confinement but the system is below the charm threshold
so that screening by light quarks is not yet active. Studies of
model field theories of confinement [96] and the lattice ver-
sion of QCD [97,98] led to the idea that chromo-electric flux
tubes form in this kinematic region and lead to a linear con-
fining potential between heavy colored quarks. These ideas
lead to the static cc̄ potential [99],

V (r) = −αs

r

{

1− r2

a2

}

(2.2)

where a sets the scale of the linear potential. The need for
the linear term in Eq. (2.2) was actually compelling in the
original data. The ratio of the squares of the wave functions
of the two charmonium states at the origin was called

η =
∣
∣
∣
∣
ψ(13S1; r = 0)

ψ(23S1; r = 0)

∣
∣
∣
∣

2

= 3.105

3.695

Γe(3105)

Γe(3695)
≈ 1.4−1.7

(2.3)

where we related the wave functions at the origin to the elec-
tronic width of each state and used early data to evaluate η.
What do the values 1.4–1.7 imply about the potential? One
can check that for a harmonic potential η = 2/3, for a lin-
ear potential η = 1 and for a Coulomb potential η = 8.
So, to accommodate Eq. (2.3), a combination of a linear
confining potential and Coulomb potential was preferred. In
Ref. [99] the parameters in the potential (αs, a) were deter-
mined from the experimental data of the day by solving the
radial Schrodinger equation and imposing the constraints: 1.
The mass difference between the two charmonium states is
0.59 GeV, 2. Γe(3105) = 5.5 keV, 3. mc should lie between
1.5 and 2.0 GeV, and 4. αs should be between 0.2 and 0.3.
At this point the authors of Ref. [99] needed a convenient
computer program to solve the radial Schrodinger equation
with a potential of the form Eq. (2.2). Luckily, we had access
to a skilled computational physicist with a trove of software
programs! That computational physicist was K. G. Wilson
who used numerical methods to teach undergraduate quan-
tum mechanics. Remember that this was 1974 when uni-
versities had computer centers with IBM mainframes driven
by punch cards! A good fit was found with his program for
mc = 1.6 GeV, αs = 0.2, and a = 2 fm. It was important to
check that these parameters led to a non-relativistic descrip-
tion of the charmonium bound states. In fact, the average

Fig. 3 Charmonium spectroscopy. Note the P-waves 3PJ and the
radiative transitions

velocity-squared of the charmed quarks in the bound states
was computed to be (v/c)2 ≤ 1/25. The bound states of the
cc̄ system that resulted are shown in Fig. 3.

The most relevant result in Fig. 3 was the existence of
the P wave states that lie between the 3.105 and 3.695 GeV
states. For a pure Coulomb potential the P wave states would
be degenerate with the 3.695 state. However, for a linear
potential, the 23S1 state resides at higher energy than the P
wave states, as shown in the figure, because the 23S1 has
a radial node. The existence of these states led to the main
point of Ref. [99]: there are additional states which could be
found experimentally at SPEAR and they constitute strong,
new evidence for the charm hypothesis! Strong E1, electric
dipole, transitions would produce monochromatic photons
when the 3.695 state decays to one of the P waves and then
additional monochromatic photons should appear when each
P wave decays to the 3.105 state! These monochromatic pho-
tons should be “easy” to find at SPEAR because it had a 4π
general purpose detector, the Mark I. The energies of the P
waves and the strengths of the E1 transitions followed from
the wave functions found from the radial Schrodinger equa-
tion. These results were catalogued in Ref. [99] and were
refined in later more ambitious publications. Of course, the
wave functions and the radiative transition rates depend much
more sensitively on the parameters in the potential than the
energies of the P waves themselves. In any case, the pre-
dictions of Ref. [99] were reasonable guides for the exper-
imental program which discovered the states and the radia-
tive transitions in 1976, the same year that the charmed D
mesons were also identified in the final states of the electron–
positron collisions! Many more predictions and calculations
were presented in Ref. [99]] and in similar works done by
other groups [100]. Some of these points will be discussed
in later chapters in this journal review. In addition, more
sophisticated potentials than Eq. (2.2) were eventually stud-
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ied. Tensor interactions, fine and hyperfine interactions were
added in, and their effects are shown in some of the splittings
in Fig. 3 (Refs. [99,100]). And the influence of the nearby
threshold at Mc on the bound states was also accounted for.
All of these developments did not change the main thrust of
Ref. [99]: the existence of the P wave states and their radia-
tive transitions were special to the charm quark interpretation
of the SPEAR experiment and gave additional motivation to
the early acceptance of the Standard Model.

2.1.3 Electron–positron colliders at Stanford

Now let’s change the viewpoint of this article and turn to the
accelerator physicists and the experimentalists at SPEAR.
There is a cliché that behind every invention there is a
visionary. In the case of electron–positron colliders, one of
the field’s several visionaries was definitely Gerry O’Neil.
Other visionaries were Burt Richter and Martin Perl. Profes-
sor O’Neil taught me physics in college, but he was more
interested in building accelerators to collide electrons and
positrons head-on in their center of mass frame to create pure
electromagnetic energy and search for new states of mat-
ter. I recall that he traveled to Novosibirsk, where a collider
was being constructed, several times during a one semester
undergraduate course on modern physics. Upon each return
he “debriefed” his class on the progress of his efforts. In
1965 Gerry O’Neil and others from Princeton and Stanford
built two 300 MeV electron storage rings in the High Energy
Physics Laboratory (HEPL) at Stanford. These rings resulted
in electron–electron collisions which successfully increased
the limits of validity of Quantum Electrodynamics. However,
it was basically a “single experiment” machine, so during
construction Gerry and his collaborators also sketched an
outline of a 3 GeV electron–positron colliding beam facil-
ity. These ideas evolved into the blueprints for the famous
SPEAR collider at SLAC. To many persons’ surprise, just
as electron–positron collider ideas were gaining traction,
Gerry’s visionary ideas moved in a different direction: to
outer space projects, such as a permanent space station in an
earth orbit. He left the fledgling field of colliders just as it
was about to yield great discoveries!

The construction of SPEAR began in 1970 under the
direction of Burt Richter and John Rees, and it was com-
pleted quickly (in 20 months, four months ahead of sched-
ule) in 1972 and at modest cost. The final SPEAR design
was the result of several revisions, forced on the group by
budget restrictions and engineering considerations. During
one of the revisions, the two planned rings for the electrons
and positrons became one and SPEAR was no longer asym-
metric. Nonetheless, the inventors kept the appealing name
“SPEAR”!

Wolfgang Panofsky was still the Director of SLAC and
had lobbied the US Congress and the funding agency, the

Fig. 4 The 80 m SPEAR Ring in a parking lot at SLAC. The photo
also shows the separate e+ and e− beam lines and the detector hall

Atomic Energy Commission (AEC), the predecessor of the
Department of Energy, to fund the construction of SPEAR as
a federal project. However, there were many projects com-
peting with SPEAR at the time, and it did not achieve federal
project status. However, Panofsky and Richter did not want
to delay its construction, so the AEC allowed SPEAR to be
built using ordinary laboratory operating funds! This meant
that it had to be done cheaply. Some have estimated the cost
between 2 to 5 million dollars. So, the usual idea of having
the accelerator constructed underground within an enclosed
building had to be abandoned. SPEAR was built outside on
a parking lot (Fig. 4), with concrete blocks providing the
shielding!

Of course, the accelerator needed a detector or two at
its beam intersection regions. Richter and others formed a
Berkeley/Stanford team to design and build a multipurpose
detection system surrounding one of the SPEAR interaction
regions (Fig. 5). The result was the Magnetic Detector or
Mark I. This was the first 4π general purpose detector. It
proved crucial in the coming discovery process. Other detec-
tor designs with limited angular apertures would have suf-
fered from the relatively low statistics of the early machines
and wouldn’t have operated as well with diverse final states
consisting of photons, leptons and various light mesons.

It was clear at the time that electron–positron colliders
had many attractive properties: 1. All the energy of the beams
goes into creating new particles, unlike fixed target machines,
2. The beams consist of pointlike particles, so the interactions
are simple and clean theoretically. However, they suffer from
one limitation: radiation losses. However, it turned out that
“one man’s problem is another man’s opportunity”. From
the beginning, several Stanford faculty members realized
SPEAR’s potential to produce useful synchrotron radiation,
so they asked Panofsky and Richter to devise a way to form an
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Fig. 5 Photograph of the wide angle SLAC-LBL Mark I detector in
1974

X-ray beam out of SPEAR. The X-ray synchrotron radiation
emitted by the circulating beams in the machine was much
higher in intensity, by a factor of 10 to 100, than any other
facility in the world. It could be used for imaging and struc-
tural analysis in many areas of research, from semiconductor
materials to protein molecules. So, Richter’s team attached
an extra vacuum chamber to SPEAR and made provision for
a hole in the shielding wall for the beamline. This was the
start of The Stanford Synchrotron Radiation Project (SSRP).
Even though it began as a parasitic operation, synchrotron
radiation represented an unparalleled opportunity!

Richter also saw the SLAC Linac as a light source. These
ideas led to the invention and development of a undulator
so that the Linac’s electron beam could become the source
for the most intense Free electron Laser (FEL) on the planet.
The LCLS (Linear Collider Light Source) was born in 2009.
It has led to revolutions in our understanding of the tem-
poral dynamics of atoms, molecules and condensed matter
systems. This is another story which we can’t cover here, but
it is amusing to understand that a “problem” with circular
colliders grew into a new generation of accelerator facilities!

2.1.4 The revolution begins

In the spring of 1973, SPEAR began to gather high-energy
physics data. By the next year, the machine was measuring
very erratic but generally much larger than expected val-
ues of R, Eq. (2.1), the ratio of hadron production to lep-

Fig. 6 The SPEAR Control Room during the Big Night. SLAC and
LBL physicists analyzing the raw data

ton production. These early measurements were done with
wide energy resolution, several hundred MeV, to produce
and measure many interactions and final state particles. But
there were “inconsistencies” in the data: small changes in
the beam energies sometimes led to large changes in the
observed value of R. These were the first signs of a new parti-
cle, which Richter’s team called the “ψ”. “Nobody dreamed
that there was any state, particle, that was as narrow in width
as the W turned out to be,” said Richter in 2003. “So the first
question was what the hell was wrong with the apparatus, is
there something wrong with the computers, is there some-
thing wrong with the data taking?” [101]. No-one could find
any such errors, and some researchers on the Mark I col-
laboration pushed to rescan the region. In fact, by this time,
SPEAR had been upgraded and Robert Hofstadter, who was
running an experiment at SPEAR’s other detector, wanted to
move on to higher energies. Finally, Richter decided to go
ahead with rechecking the anomalous results, but only for
one weekend in November 1974.

2.1.5 Minute-by-minute developments in the
SPEAR control room

“During the night of 9–10 November, the hunt began, chang-
ing the beam energies in 0.5 MeV steps. By 11.00 a.m.
Sunday morning the new particle had been unequivocally
found. A set of cross section measurements around 3.1 GeV
showed that the probability of interaction jumped by a fac-
tor of ten from 20 to 200 nanobarns. In a state of euphoria,
the champagne was cracked open and the team began cel-
ebrating an important discovery. While Gerson Goldhaber
retired to write up the findings ‘on-line’ for immediate pub-
lication, Fig. 6, it was decided to polish up the data by going
slowly over the resonance again. The beams were nudged
from 1.55 to 1.57 MeV and everything went crazy. The inter-
action probability soared higher; from around 20 nanobarns
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the cross section jumped to 2000 nanobarns and the detector
was flooded with events producing hadrons. Pief Panofsky,
the Director of SLAC, paced around the control room invok-
ing the Deity in utter amazement at what was being seen. This
heavy particle, displaying such extraordinary stability, they
called ‘ψ’ and they announced it in a paper beginning with the
words ‘We have observed a very sharp peak’. Within hours
of the SPEAR measurements, the telephone wires across the
Atlantic were humming as information, enquiries and rumors
were exchanged” [102].

Just two weeks later, the scene repeated itself, except at
a higher energy, 3.695 GeV. And the next S-wave charmo-
nium state was found. Physicists around the country had
“befriended” various members of the SLAC/LBL group in
the control room by now and news of the new resonance
spread across the country within minutes. I heard about it in
an early morning phone call with bj. I also learned that it was
he who had suggested the high resolution scans in energy
that led to both discoveries!

SPEAR meanwhile continued to yield breakthroughs. In
1976 the P-waves were discovered through their radiative
transitions [103] and charmed mesons [104] were found
above threshold as well.

Those were the days!

2.1.6 The path forward. Hamiltonian lattice gauge theory
and statistical field theory

After Ref. [99] was published, it was time to move on to
more fundamental considerations. I believed that the most
important implications of the potential model had been
made and working through additional details was less impor-
tant. Instead, there were major challenges in developing an
approach to QCD that would lead to systematic, potentially
exact, predictions of the theory. This was the thrust of Wil-
son’s lattice formulation of QCD [97], which will be dis-
cussed at length in Sect. 4 below. A Hamiltonian version of
the theory [98] was also developed because it emphasized 1.
The spectroscopy of the theory, and 2. The quantum character
of the states. An added bonus of this development was a new
formulation for strongly coupled systems for applications to
condensed matter physics [105]. This development mirrors
the past of SPEAR: SPEAR started out by establishing the
Standard model of high energy physics, and now is pushing
the frontiers of imaging, free electron lasers and quantum
systems. In parallel, the lattice Hamiltonian form of strongly
coupled gauge theories is playing a role in the development of
Quantum Information Systems that may lead to new quan-
tum computers and quantum detectors. These subjects are
now the central themes in a new generation of studies and
workshops on quantum physics [106,107]. References [98]
and [105], which were originally conceived for QCD, are
proving useful here, and are, in fact, among the most cited

publications in the 48 year history of lattice gauge theory.
Perhaps, these contributions will inspire the next generation
of theorists who will push the frontiers of strongly coupled
gauge theories into the next era.

2.2 Experimental discovery of gluons

Sau Lan Wu

2.2.1 Yang–Mills non-Abelian gauge particles

It was in 1954 when Chen Ning Yang and Robert Mills,
who was a graduate student, shared the same office at the
Brookhaven National Laboratory and developed their non-
Abelian gauge theory. Their office was shared with another
famous physicist Burton Richter, who was also a graduate
student at that time. Almost exactly 25 years later, the first
Yang–Mills non-Abelian gauge particle was observed at the
German National Laboratory called Deutsches Elektronen-
Synchrotron (DESY). Here are some of the interesting dates.
The idea of Yang and Mills was first presented at the April
1954 meeting in Washington, DC of the American Physi-
cal Society and the full Yang–Mills paper was submitted for
publication on June 28, 1954 [41]. The first public announce-
ment for the experimental discovery of the first Yang–Mills
gauge particle was made at the Neutrino 79 conference on
June 18–22, 1979 [108], and the first full paper was received
for publication on August 29, 1979 [109].

The word “gluon” was originally introduced by Murray
Gell-Mann to designate a hypothetical neutral vector field
[14] coupled strongly to the baryon current, without reference
to color. Since then, the meaning of this word has changed:
nowadays, this word “gluon” is used exclusively to mean the
Yang–Mills non-Abelian gauge particle for strong interac-
tions.

2.2.2 Harvard to M.I.T. to Wisconsin

After being awarded my Ph.D. degree at Harvard University,
Samuel S. S. Ting of M.I.T. kindly offered me a postdoctoral
position in his group. A few years later, I felt that, for the
development of my career in physics, it was time for me
to get a faculty position. Sam then helped me to look for
a faculty position at the University of Michigan, where he
received his own doctoral degree. I got into contact with
Michael Longo, a professor of physics there, and he was very
supportive. Therefore I applied to the University of Michigan.
Since thanks to Longo I got on the so-called short list of
candidates, I was invited to go to Ann Arbor for an interview.

In the meantime, I contacted David Cline, a professor of
the University of Wisconsin I had met before. David told
me that he would forward my name to Ugo Camerini, a col-
league of his at Wisconsin. I contacted Ugo. Shortly before

123



 1125 Page 24 of 636 Eur. Phys. J. C          (2023) 83:1125 

my scheduled interview at Ann Arbor, I got a telegram from
the University of Michigan saying that the position had been
given to somebody else. I hesitated about going to that inter-
view, but my friends told me that I should nevertheless keep
the appointment. In the meantime, I got an invitation from
the University of Wisconsin for an interview. Thus I trav-
eled from Europe for an interview at Michigan first, and then
continued to Wisconsin for another one.

I remember very well that, when I had the interview at
the University of Wisconsin in Madison, Don Reeder took
me out to dinner at an Italian restaurant close to the Univer-
sity Square and we had a very nice discussion. Don was at
that time not only a Professor of Physics but also the Princi-
pal Investigator for the funding of experimental high-energy
physics. Afterwards, I met with a number of faculty members
in high-energy physics, and they were all very supportive.
Again through the effort of Cline, I also got an offer from
Fermilab. I had to make a decision, and I finally chose the
University of Wisconsin. It was one of the best decisions I
have made.

2.2.3 DESY

After becoming an assistant professor at the University of
Wisconsin-Madison in 1977, I had to make the decision of
what important problem in physics to tackle. Once again, I
got wise advice from David Cline, who had helped me so
much. He told me: “Sau Lan, you do not need to work with
anybody, and you have no boss. You are your own boss, and
you decide what to work on.” At that time, the Department
of Energy gave one lump sum of money to the University
of Wisconsin for the faculty members in experimental high-
energy physics to share. From this funding, Don Reeder gave
me the positions of three post-docs and one graduate student.

I spent the first months of my assistant professorship think-
ing about what physics to work on.

At that time, we knew of four quarks: the up quark, the
down quark, the strange quark, and the newly discovered
charm quark from the J/ψ , which has led to the Nobel Prize
for Sam Ting and Burt Richter. The immediate and impor-
tant question is: how do these quarks interact with each? For
this, we knew very little at that time besides that this inter-
action is likely to be mediated by a Yang–Mills non-Abelian
gauge particle – the gluon. In other words, while the elec-
tromagnetic interaction is transmitted by the photon, which
is an Abelian gauge particle, this additional interaction is
transmitted by a Yang–Mills non-Abelian gauge particle.

Indirect indication of gluons had been first given by deep
inelastic electron scattering and neutrino scattering. The
results of the SLAC-MIT deep inelastic scattering experi-
ment [110–113] on the Callan–Gross sum rule were incon-
sistent with parton models that involved only quarks. The
neutrino data from Gargamelle [114] showed that 50% of

the nucleon momentum is carried by isoscalar partons or
gluons. Further indirect evidence for gluons was provided
by the observation of scale breaking in deep inelastic scatter-
ing [115–117]. The very extensive neutrino scattering data
from BEBC and CDHS Collaborations [118–120] at CERN
made it feasible to determine the distribution functions of the
quark and gluon by comparison with what was expected from
QCD, and it was found that the gluon distribution function is
sizeable. This information about the gluon is interesting but
indirect. The discovery of the gluon requires direct observa-
tion.

During my first year as an assistant professor at the Uni-
versity of Wisconsin, I was fascinated by the Yang–Mills
non-Abelian gauge theory. This was to be contrasted with
the experimental situation at that time: while photons were
everywhere in the detectors, no Yang–Mills gauge particle
had been observed in any experiment.

From these considerations, I formulated the following
problem for myself: how could I discover experimentally
the first Yang–Mills gauge particle?

From previous experience with electron accelerators and
proton accelerators at DESY and BNL, it was soon clear to
me that the experimental discovery of the first Yang–Mills
gauge particle was more likely at an electron machine rather
than a proton machine. At that time, two electron–positron
colliding beam accelerators were being built: PEP at SLAC
and PETRA at DESY; after visiting both SLAC and DESY,
I decided that PETRA was a better choice for me.

At PETRA (Positron–Electron Tandem Ring Accelera-
tor), there were five experiments: CELLO, JADE, MARK J,
PLUTO, TASSO. I approached first the PLUTO Collabora-
tion and then the JADE Collaboration, but nothing worked
out. Then my luck changed completely: I ran into Björn Wiik,
one of the two co-spokesman of the TASSO Collaboration,
the other one being Günter Wolf. Björn asked me what I was
doing; when I told him my situation, he was surprised and
said to me: “Come to see me in my office this afternoon.”
When I went to his office, he asked me: “Why don’t you
join the TASSO Collaboration instead?” I said that I would
love to do that. Björn said that he would talk to Günter and
also to Paul Söding, a senior physicist in TASSO, and let me
know. Thanks to Björn, this was how I became a member of
the TASSO Collaboration at DESY. All three of them, Björn,
Günter, and Paul, are excellent physicists.

After becoming a member of the TASSO Collaboration,
the physics problem that I formulated for myself took on a
concrete form: how could I discover experimentally the first
Yang–Mills gauge particle with the TASSO detector?

A feature of the TASSO detector is the two-arm spec-
trometer, which leads to the name TASSO – Two – Arm
Spectrometer SOlenoid. The end view of this detector, i.e.,
the view along the beam pipe of the completed detector, is
shown in Fig. 7. When TASSO was first moved into the
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Fig. 7 End view of the TASSO detector

PETRA beams in 1978, not all of the detector components
shown in Fig. 7 were in working order. For my purpose of the
experimental discovery of the first Yang–Mills non-Abelian
gauge particle, the most important component of the TASSO
detector was the drift chamber, which was already function-
ing properly.

2.2.4 Three-jet events

One of the simplest ways to produce a photon – the Abelian
gauge particle for electromagnetic interactions – is through
electron bremsstrahlung process, i.e.,

e e→ e e γ.

Ellis, Gaillard and Ross had suggested that hard gluons
should be emitted by quarks via bremsstrahlung in analogy
with the radiation of electromagnetic bremsstrah-lung [121]

e+e− → q q̄ g

where q is the quark of Gell-Mann [17] and Zweig [18], and
g is the gluon – the Yang–Mills non-Abelian gauge particle
for strong interactions.

This seemed to be the way to discover the gluon experi-
mentally, but I faced the following two major problems.

(1) How can these production processes e+e− → qq̄g be
found in the TASSO detector?

(2) How high does the center-of-mass e+e− energy have to
be for this process to be seen clearly?

A couple of years before I became a faculty member at
the University of Wisconsin, the production process

e+e− → qq̄

was observed at the SPEAR e+e− collider at SLAC [122].
In the MARK I detector at SPEAR, both the quark q and the
anti-quark q̄ were observed as jets, i.e., groups of particles
moving in nearly the same direction. With this experimental
information from MARK I, I had to make my best guess as to
how the gluon bremsstrahlung process e+e− → qq̄g would
look like in the TASSO detector. Since the gluon is the Yang–
Mills non-Abelian gauge particle for strong interactions, it is
itself a source for gluon fields. It therefore seemed reasonable
to believe that the gluon in the gluon bremsstrahlung process
would be seen in the detector also as a jet, just like the quark
and the antiquark.

Therefore the gluon bremsstrahlung process e+e− →
qq̄g leads to three-jet events.
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Fig. 8 Two-jet and three-jet configurations at SPEAR and PETRA
respectively

Using the SPEAR information on the quark jets from
the process, e+e− → qq̄ , I convinced myself that three-
jet events, if they were produced, could be detected once the
PETRA energy went above three times the SPEAR energy
i.e., 3× 7.4 ∼ 22 GeV. The arguments were as follows:

Figure 8 shows a comparison of the two-jet configuration
at SPEAR with the most favorable kinematic situation of
the three-jet configuration at PETRA. If the two invariant
masses are taken to be the same, i.e.,

√
3E2 ≈ 7.4 GeV, then

the total energy of the three jets is 3E2 ≈ 13 GeV, which
must be further increased because each jet has to be narrower
than the SPEAR jets. This additional factor is estimated to
be 180◦/120◦ = 1.5, leading to about 20 GeV. Phase space
considerations further increase this energy to about 22 GeV.

This answers the question (2) above.
This estimate of 22 GeV was very encouraging because

PETRA was expected to exceed it soon; indeed, it provided
the main impetus for me to continue the project to discover
the first Yang–Mills non-Abelian gauge particle.

At the same time, l had to address the question (1) above:
how could I find three-jet events at PETRA? I made a num-
ber of false starts until I realized the power of the following
simple observation. By energy–momentum conservation, the
two jets in e+e− → qq̄ must be back-to-back. Similarly,
the three jets in e+e−→ qq̄g must be coplanar. Therefore,
the search for the three jets can be carried out in the two-
dimensional event plane, the plane formed by the momenta
of q, q̄ and g. A few pages of my notes written in June 1978
and further historical details can be found in Ref. [123].

The procedure of mine did not identify which jet would
be the gluon. Still, this procedure has a number of desirable
features.

– First, all three jet axes are determined, and they are in the
same plane. This is the feature that played a central role
in the later determination of the spin of the gluon.

– Secondly, particle identification is not needed.
– Thirdly, the computer time is moderate for the “slow”

computers at that time even when all the measured
momenta are used.

– Finally, it is not necessary to have the momenta of all the
produced particles; it is only necessary to have at least one
momentum from each of the three jets. Thus, for example,
my procedure works well even when no neutral particles
are included.

This last advantage is important, and it is the reason why
this procedure is a good match to the TASSO detector at the
time of the PETRA turn-on.

I had Georg Zobernig as my post-doc; he was and is excel-
lent in working with computers. My procedure of identify-
ing the three-jet events in order to discover the gluon, pro-
grammed by Zobernig on an IBM 370/168 computer, was
ready before the turn-on of PETRA in September of 1978.
For that time in 1978, the programming was highly non-
trivial. In his later publications, he has used the name Haimo
Zobernig.

2.2.5 Discovery of the gluon

When we had obtained data for center-of-mass energies of
13 GeV and 17 GeV, Zobernig and I looked for three-jet
events. It was not until just before the Neutrino 79 (Interna-
tional Conference on Neutrino, Weak Interactions and Cos-
mology at Bergen, Norway) in the late spring of 1979 that
we started to obtain data at the higher center-of-mass energy
of 27.4 GeV. We found one clear three-jet event from a total
of 40 hadronic events at this center-of-mass energy. This first
three-jet event of PETRA, as seen in the event plane, is shown
in Fig. 9. When this event was found, Wiik had already left
Hamburg to go to the Bergen Conference. Therefore, during
the weekend before the conference, I took the display pro-
duced by my procedure for this event to Norway to meet Wiik
at his house near Bergen. During this weekend, I also tele-
phoned Günter Wolf at his home in Hamburg and told him of
the finding. Wiik showed the event in his plenary talk “First
Results from PETRA”, acknowledging that it was my work
with Zobernig by putting our names on his transparency of
the three-jet event, and referred to me for questions. Donald
Perkins of Oxford University took this offer and challenged
me by wanting to see all forty TASSO events. I showed him
all forty events, and, after we had spent some time together
studying the events, he was convinced.

With these three-jet events, the question is: what are the
three jets? Since quarks are fermions, and two fermions (elec-
tron and positron) cannot become three fermions, it imme-
diately follows that these three jets cannot all be quarks and
antiquarks. In other words, a new particle has been discov-
ered.

The earliest papers related to the PETRA three-jet events
are Refs. [108,109,124,125] all by members of the TASSO
Collaboration, and TASSO Note 84, June 26, 1979 (by Sau
Lan Wu and Haimo Zobernig). Reference [124] provides the

123



Eur. Phys. J. C          (2023) 83:1125 Page 27 of 636  1125 

Fig. 9 The first three-jet event from electron–positron annihilation, as
viewed in the event plane. It has three well separated jets [108]

method of analysis used in the four later papers, which all
give experimental results.

Very shortly afterwards, the other experiments at PETRA
– JADE, MARK J, and PLUTO Collaborations – published
their own three-jet analyses. Their early papers related to the
PETRA three-jet events are Refs. [126–128], and their results
all confirm the earlier ones of TASSO. Since this discovery of
the gluon was the highlight of the 1979 Lepton-Photon Con-
ference at Fermi National Accelerator Laboratory (FNAL),
Leon Lederman, Director of FNAL, called a press confer-
ence on the discovery of the gluon. Recent reviews of the
discovery of gluons including further studies of jets can be
found in Refs. [129,130].

Because of the discovery of the gluon by the TASSO Col-
laboration, Söding, Wiik, Wolf, and I were awarded the 1995
European Physical Society High Energy and Particle Physics
Prize. With my leading role in this discovery, I was chosen
to give the acceptance speech at the EPS award ceremony.

This was how the first Yang–Mills non-Abelian gauge par-
ticle was discovered experimentally at DESY, Hamburg, Ger-
many in the spring of 1979, a quarter of a century after the
original paper of Chen Ning Yang and Robert Mills. Four
years later, the second and third Yang–Mills non-Abelian
gauge particles – the W and Z – were discovered at CERN
by the UA1 and UA2 Collaborations [131–134].

The experimental discovery of these Yang–Mills non-
Abelian gauge particles points to another prophetic feature
of the original paper of Yang and Mills [41]: the mass of the
first Yang–Mills gauge particle has been found to be nearly
zero, while those of the second and third Yang–Mills gauge
particle are quite high – about 80 GeV for the W and 91 GeV
for the Z . The relevant sentence in the original paper [41]

is the following: “We have therefore not been able to con-
clude anything about the mass of the b quantum.” For further
comments on this point, see pp. 19–21 of [135].

2.2.6 Some later developments

The discovery of the gluon in 1979 was not only the discovery
of a new elementary particle, but also the first elementary
boson that has been seen experimentally as a jet. Indeed, it is
so far the ONLY elementary boson seen this way. In principle,
a scalar quark would share this property, but no scalar quark
has ever been observed in any experiment.

The discovery of such a new type of elementary particle is
guaranteed to lead to subsequent new understanding of fun-
damental physics, both experimental and theoretical. Here I
will discuss one of the of the most important experimental
consequences of this 1979 discovery of the gluon; the role it
plays in the 2012 discovery of the Higgs particle.

An important theoretical topic, the very recent understand-
ing of the quark–gluon coupling constant gs , is discussed in
considerable detail in Sect. 3, and briefly in my Summary
and Outlook, Sect. 2.2.8.

2.2.7 Role of gluon in the discovery of the Higgs particle
[43–45]

Since the gluon is the Yang–Mills gauge particle for strong
interactions, to a good approximation a proton consists of a
number of gluons in addition to two u quarks, one d quark,
and some sea-quarks. Since the coupling of the Higgs par-
ticle to any elementary particle is proportional to its mass,
there is little coupling between the Higgs particle and these
constituents of the proton. Instead, some heavy particle needs
to be produced in a proton–proton collision, for example at
LHC, and is then used to couple to the Higgs particle. Among
all the known elementary particles, the top quark t , with a
mass of 173 GeV/c2, is the heaviest [136,137].

The top quark, which may be virtual, is produced pre-
dominantly together with an anti-top quark or an anti-bottom
quark [138]. Since the top quark has a charge of +2/3 and is
a color triplet, such pairs can be produced by

(a) a photon: γ → t t̄ ;
(b) a Z : Z → t t̄ ;
(c) a W : W+ → t b̄; or
(d) a g: g→ t t̄ .

As discussed in the preceding paragraph, there is no photon,
or Z , or W as a constituent of the proton. Since, on the other
hand, there are gluons in the proton, (d) is by far the most
important production process for the top quark.

Because of color conservation – the gluon has color but not
the Higgs particle – the top and anti-top pair produced by a
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Fig. 10 Feynman diagram for the Higgs (H) production by gluon–
gluon fusion (also called gluon fusion)

gluon cannot annihilate into a Higgs particle. In order for this
annihilation into a Higgs particle to occur, it is necessary for
the top or the anti-top quark to interact with a second gluon to
change its color content. It is therefore necessary to involve
two gluons, one each from the protons of the two opposing
beams of LHC, and we are led to the diagram of Fig. 10 for
Higgs production. This production process is called “gluon–
gluon fusion” (also called “gluon fusion”). As expected from
the large mass of the top quark, this gluon–gluon fusion is by
far the most important Higgs production process, and shows
the central role played by the gluon in the discovery of the
Higgs particle in 2012.

The percentage of this gluon–gluon fusion contribution to
the Higgs production cross section depends on the mass of the
Higgs particle. For the actual mass of the Higgs particle, the
gluon contributes, through this gluon–gluon fusion process,
about 90% of Higgs production at the Large Hadron Collider.
A more dramatic, but perhaps unfair, way of saying the same
is that, if there were no gluon, the Higgs particle could not
have been discovered for years!

2.2.8 Summary and outlook

One of the most influential papers in theoretical physics dur-
ing the second half of the twentieth century – very likely
the most important and influential one – is that of Yang and
Mills published in 1954 [41]. The importance of this paper
on the non-Abelian quantum gauge theory is due to that (1)
it presents a completely new idea, and (2) it points out the
direction for the later development of the understanding of
particle physics.

Twenty five years later, in 1979, the first such particle –
the Yang–Mills non-Abelian gauge particle for strong inter-
actions, later called the gluon, even though this word “gluon”
refers originally to a different proposed particle – was exper-
imentally discovered with the TASSO Collaboration at the
German Laboratory DESY [108,109].

Another 33 years later in 2012, this gluon played a cen-
tral role in the discovery of the Higgs particle [43–45] by
the ATLAS Collaboration [139] and the CMS Collaboration
[140] at CERN: this Higgs particle is produced predomi-
nantly through gluon fusion, i.e., the fusion of one gluon
from one proton beam with another gluon from the opposing
proton beam.

As soon as the gluon was discovered in 1979, the obvi-
ous question was immediately raised: What determines the
strength of the gluon-quark coupling constant? I have kept
this important question in my mind for 40 years. The con-
ventional answer is discussed in Sect. 3 below, but I have a
novel idea about how the Standard Model might be modified
to determine gs . I refer to this idea as the “basic standard
model.” It is discussed in two unpublished notes [141,142].

2.3 Successes of perturbative QCD

Yuri Dokshitzer
Fifty years is a long time, though not for a theory as ambi-
tious as QCD. To cover all the pQCD applications would be
mission impossible. There are many review papers, both top-
ical and anniversary, some good, some excellent. My review
is biased, focusing on issues that I personally find important
and/or entertaining.

QCD?
Sure. It is undoubtedly the true microscopic theory of hadrons
and their interactions. Whether it deserves a status of a well
formulated Quantum Field Theory (QFT) is another matter.
QCD is an ultimate proof of non-maliciousness of the God
of physics. This theory is as amazing as it is embarrassing, in
enabling us to predict so much while understanding so little.

Perturbative?
A perturbative (PT) approach means casting an answer as
power series in a small expansion parameter. By calculat-
ing more terms of the series one aims at increasing accuracy
of a theoretical prediction. The quark–gluon dynamics does
offer such parameter: the QCD coupling. At small distances
it becomes reasonably small thanks to asymptotic freedom,
inviting us to draw and calculate Feynman diagrams for inter-
acting quark and gluon fields.

Successes?
Countless experimental findings speak loudly and clearly in
favor of pQCD. However, until the color confinement prob-
lem is solved, we have to invent hypotheses and build models
linking quark–gluon dynamics and the hadron world. It is
useful to keep this in mind when what is commonly referred
to as a QCD prediction confronts reality.

By trial-and-error we learn.

2.3.1 pQCD: domain of interest

The name of the pQCD kingdom is Hard Processes. We call
“hard” any process involving hadrons where the energy–
momentum that color objects exchange or acquire from
(transfer to) colorless fields is much larger than the confine-
ment scale O(ΛQCD). Classical examples are e+e− annihi-
lation into hadrons, Deep Inelastic lepton–hadron Scattering
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(DIS), or the Drell–Yan process of production in hadron col-
lisions of massive lepton pairs or any other heavy colorless
objects like W±, Z0, H bosons. To the same family belong
production of heavy quarks and their bound states, as well as
large-pT photons and hadron jets.

Heavy quarks are often thought to be more friendly
towards pQCD than their light siblings. This is true, but not
because a massive quark couples to the gluon field more
weakly than a massless one. The QCD interaction strength
is universal, as a matter of principle. An internal structure
of a D meson is as non-perturbative (NP) as that of K or
π . At the same time, heavy quarks are typically produced
with relatively large transverse momenta pT ∼ mQ and are
closer to one another inside the QQ̄ bound states. This is
what actually explains that friendliness motto.

Sometimes pQCD applies even to light hadrons. This
occurs when a hadron is put under a condition forcing its
valence quarks to sit tight in order to hide their color. Small-
size configurations dominate when an initial state hadron,
in spite of having experienced a hit with large momentum
transfer, is forbidden to break up and is asked to scatter elas-
tically. Alternatively, a hadron can be squeezed by demanding
its exclusive production in the final state.

This class of phenomena goes under the name of color
transparency. Diffractive dissociation of an energetic pion on
a nuclear target is a bright example. Normally a big nucleus
would absorb the projectile. However, if an incident pion
happens to be in a squeezed state, its valence quarks act as
a small-size color dipole. Its interaction with the medium
weakens and the pion gets a chance to penetrate the nucleus,
defying the exponential attenuation wisdom. What one finds
behind the target then is a pair of quark jets, because the
probability for such a qq̄ configuration to return back into a
normal pion state is too small to be counted on.

Also pQCD unexpectedly finds its place in the hA (AA)
interaction environment where multiple scattering of a pro-
jectile effectively pushes up the characteristic hardness scale,
〈k2

T 〉 ∝ A1/3, putting interesting physics like induced gluon
radiation or jet quenching under pQCD control.

Whatever the hardness of the process, it is hadrons, not
quarks or gluons, that hit the detectors. This makes the appli-
cability of the pQCD approach, even to hard processes, far
from obvious. One relies on plausible arguments (complete-
ness, duality) and tries to learn from inclusive hadron observ-
ables that are less vulnerable to our ignorance about confine-
ment.

2.3.2 pQCD: domain of applicability

The main lesson we learned from confronting QCD expecta-
tions with reality is quite encouraging. The strong interaction
that is supposed to hold color bearers inside hadrons turns
out to be not so strong, if you think about it. The strong color

Fig. 11 DIS structure function F2 = νW2 precociously scales with
momentum transfer q2 [112]

force gets easily screened at large distances by light quarks
that pop up from the vacuum. We have not yet mastered this
mechanism quantitatively. Meanwhile, the very fact that the
confinement happens to be “soft” dramatically enlarges the
pQCD playing ground.

Precocious pQCD
The parton model [143] pictured electron–nucleon interac-
tions as elastic scattering of an incident electron that trans-
fers, via virtual photon exchange, momentum q to a point-
like constituent of the target hadron – a parton. Inelastic-
ity of the ep collision is characterized by a dimensionless
Lorentz-invariant parameter x = −q2/2(q · P) which deter-
mines an invariant mass W of the final hadronic system:
W 2 − M2

P = 2(q · P)(1 − x). The physical meaning of
the Bjorken variable x becomes transparent in a reference
frame where the virtual photon has zero energy component,
q0 = 0, and collides with the proton head-on (Breit frame).
Here x becomes a fraction of the large proton momentum P
carried by the hit parton (ppart � x P).

This picture culminated in the Bjorken hypothesis: that
the probability of finding a given parton inside the nucleon is
independent from the momentum transfer q2. The Bjorken
scaling was expected to hold asymptotically, that is when |q2|
is so large as to ensure insignificance of any re-interaction
between constituents. In the Bjorken limit |q2| → ∞
the elastic ep cross section dies out, while proton breakup
into large-mass hadron systems dominates: hence Deep and
Inelastic.

The first SLAC–MIT observation of DIS sent a striking
message. Defying expectation, the scaling regime manifested
itself surprisingly early, right above 1 GeV momentum trans-
fer, as shown in Fig. 11. Charged constituents (read: quarks),
probed with better than 0.2 fm resolution, behaved as free
objects. And 50 years later they still do.

Another evidence in favor of precocious freedom comes
from e+e− annihilation into hadrons which provides the
cleanest environment for exploring QCD. Here all the murky
hadron dynamics is restricted to the final state, and we can
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Fig. 12 In e+e− annihilation, a quark and an antiquark born with
momenta above 1 GeV fly away as free partons

watch what happens to a pair of bare quarks created in the
annihilation point and moving apart with light speed.

Figure 12 shows the total hadroproduction cross section,
normalized by the QED cross section e+e− → μ+μ− as
a function of annihilation energy

√
s = 2Eq . We see that

first the quark and the antiquark interact in the final state
producing hadron resonances (vector mesons ρ, ω, φ). As
soon as the quark energy exceeds 1 GeV, the stormy sea calms
down abruptly and turns into still waters. Quarks with larger
energies forget about one another and behave as free particles.
They separate unimpeded and develop their private multi-
hadron images – jets. (The story repeats above the charm
threshold.)

This plot contains more than a mere counting of the num-
ber of families of colored quarks,

R(s) = σe+e−→hadr.

σe+e−→μ+μ−
, Rq.m. = Nc

∑

f

e2
f .

Notice a slight non-linearity of the pQCD red line in Fig. 12.
Its origin – a QCD correction to the annihilation cross section
due to gluon radiation:

R(s)

Rq.m.(s)
= 1+ 3CF

4

αs(s)

π
+ · · · ,

where CF=(N 2
c−1)/2Nc = 4/3 is the quark “color charge”

(quadratic Casimir operator of the fundamental represen-
tation of the SU (Nc) group). The running coupling effect
timidly winks at us.

Tau-lepton as a pQCD blessing.
Even at smaller momentum scales, pQCD can be successfully
applied. It suffices to “properly place your eyes”,6 that is to
choose the right question to ask.

6 M. B. Voloshin.

An amusing and practically important example of preco-
cious pQCD control is provided by hadronic decays of the
τ -lepton. Given lepton-quark universality of the weak inter-
action, by simply counting degrees of freedom one would
expect

Rτ = τ → ντ + hadrons

τ → ντ + e−ν̄e
= Nc = 3.

Experimentally it is 20% higher: Rτ � 3.64. Quite a serious
discrepancy. We could refuse to discuss it by presenting a
legitimate excuse: the lepton mass mτ � 1.78 GeV is too
small for pQCD to apply.

Meantime, there is a more constructive way to address
this discrepancy. In the spirit of the Bloom–Gilman duality
idea that has emerged in the DIS context [144], it is tempting
to explore whether hadron and quark languages would com-
plement each other. The lepton τ decays via many hadronic
channels with squared invariant mass s = (Pτ − pν)2 =
mτ (mτ − 2Eν) ranging from m2

π � 0 all the way up to m2
τ .

Summing over all hadron states and integrating over s one
has a good chance to mimic the QCD prediction, should there
be one.

On the QCD side, since the gluon interaction does not dis-
criminate quark flavors (W− → dū, sū in place of γ ∗ → uū
or dd̄ ), formation of the final state via virtual W− is no dif-
ferent from that in the e+e− annihilation case. This allows
one to express the pQCD correction to the branching ratio
Bh via αs(m2

τ ) – the strong coupling at the tau-mass scale.
Moreover, by employing the Shifman–Vainshtein–Zakharov
(SVZ a.k.a. ITEP) sum rules (discussed in Sect. 5.7) designed
to match theoretical quark–gluon calculations with hadron
phenomenology via dispersion relations [145], it was possi-
ble to prove that the NP contributions are negligible [146]
being suppressed as a high power of the τ mass, (Λ/mτ )

6

[147].
The creator has chosen the τ mass wisely. It lies conve-

niently inside a window where αs(m2
τ ) is sufficiently large as

to make pQCD correction significant and well visible, and at
the same time not too large to undermine the PT treatment.
This resulted in [148,149]

αs(m
2
τ ) = 0.345± 0.010,

which value is three times larger that the reference QCD
coupling at the Z -boson scale, αs(M2

Z ), and is indispensable
as a lever arm for visualizing asymptotic freedom, see Sect. 3
of this volume.

2.3.3 (p)QCD: precursors and hints

QCD inherited quite a dossier of puzzles from the constituent
quark model. It is worth recalling certain successes of the pre-
QCD quark picture of hadrons, some of which are short of a
miracle.
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Inheritance
Among the first dynamical applications of the constituent
quark model of hadrons were the 2-to-3 ratio of the total
πp and pp cross sections [150] and an intriguingly simple
additive pattern of magnetic moments of baryons (see [151]
and references therein). In these and many other phenomena,
well before QCD, quarks already demanded to be treated as
independent quasi-free entities.

Probably the most amusing example of such inheritance is
the so-called quark (or, more precisely, “constituent”) count-
ing rule [152,153]. It links the exponent of the energy fall-off
of large-angle a + b→ c+ d scattering cross sections with
the number of “constituents” of the participating (initial and
final) particles: N = na + nb + nc + nd :

dσ

dt
∝ sN−2, −t/s = O(1). (2.4)

A chilling example of this scaling law is provided by the pro-
cess of photo-disintegration of a deuteron [154]. The scaling
Eq. (2.4) with N = 13 holds in the photon energy inter-
val 1GeV < Eγ < 4GeV while the cross section falls by
whopping six orders of magnitude! (see [155] to enjoy the
picture).

Hints.
An approximate constancy of the total hadron–hadron scat-
tering cross sections hinted at the presence of a vector field
(J=1) as a strong interaction mediator. Invention of gluons
inspired a model of the Pomeron as a two-gluon t-channel
exchange [156–158]). It was a little while before the Low-
Nussinov Pomeron picture was confirmed and extended by
rigorous analysis of high-energy scattering in a non-Abelian
QFT [159], to become known as the BFKL Pomeron.

Another early benefit that QCD has offered was an (at
least qualitative) explanation of the famous Okubo–Zweig–
Iizuka (OZI) rule. It postulated that interacting hadrons do
not mind exchanging constituent quarks but hate to allow a
quark and its antiquark that are present in the initial state to
annihilate. The OZI rule was forged to explain unwillingness
of φ mesons (φ = ss̄) to decay into light u, d-built mesons.
According to QCD, annihilation of a qq̄ pair that constitutes
a vector meson has to proceed via 3-gluons, so that the decay
width becomes small: Γ/M ∝ α3

s . It may look too brave to
rely on the asymptotic freedom concept at scales as small
as Mφ/2 = O(0.5 GeV). However, bound states of heav-
ier quarks (J/ψ = cc̄ and Υ = bb̄ families) can be related
with their QED counterpart – the C-odd e+e− bound state –
orthopositronium [90]. Constructing the ratio of the widths
of hadronic and radiative decays

J/ψ, Υ → ggg→ X, J/ψ, Υ → γ gg→ γ + X,

one arrives at a reasonable quantitative estimate of the QCD
coupling at mc and mb scales, correspondingly. Here gluons
manifested themselves as mediators of the strong interaction.

Gluons as hidden constituents of the proton also showed
up indirectly in DIS as electrically neutral matter that carries
about a half of the energy–momentum of the fast proton.

The last but not the least: the nature of multi-particle pro-
duction in the processes involving hadrons also necessitates
the presence of a vector field as interaction mediator.

Indeed, the bulk of inelastic high energy hadron–hadron
collisions was long known to produce multi-particle final
states with hadrons having finite transverse momenta and
distributed uniformly in rapidity. In 1968 Gribov considered
a fast proton with large energy E � Mp fluctuating into a
system of ln E quasi-real particles as an s-channel image of
the t-channel vacuum pole (a.k.a. Pomeron) exchange [160].
Feynman has reverted the picture by prescribing ln E hadron
multiplicity to a fragmenting quark with energy E [161].

A uniform rapidity plateau is the key attribute of vector
particles, hinting at gluon radiation underlying production of
hadrons.

2.3.4 pQCD: modus operandi

Massless gluons and quarks are treated by pQCD as if they
were photons and electrons. This is clearly not a nice thing
to do. In the QED case electrons and photons are legitimate
QFT objects. They know how to propagate freely, have a def-
inite relation between energy and momentum and therefore
can be prescribed a physical (measurable) mass. Causality
and unitary unequivocally dictate the analytic structure of
their respective Green functions and interaction amplitudes
in general.

Quarks and gluons don’t have this luxury. Being well
aware of this complication, pQCD ignores it in a hope to
be considered innocent until proven guilty.

Renormalization: scale
To calculate probability of radiation, a gluon is put on mass-
shell, k2 = 0, as if it were a photon. Intensity of pho-
ton radiation is proportional to the fine structure constant
αe.m. � 1/137.04, whichever the process and its hardness.
The on-mass-shell value of the QED coupling is a measurable
quantity that determines multitude of macroscopic electro-
magnetic phenomena.

In QCD, on the contrary, the on-mass-shell couplingαs(0)
is undefinable simply because “on-mass-shell gluon” is an
oxymoron, as is “on-mass-shell quark”. One has to choose
some sufficiently large momentum scale μR � ΛQCD and
employ αs(μ

2
R) as an expansion parameter to construct the

PT series. This is called the renormalization scale.
The dependence of αs on μR (hence, running coupling)

is governed by the β-function, see Sect. 3.1. The first two
coefficients β0 and β1 of the Taylor series of β(αs) are driven
by the ultraviolet (UV) behavior of the theory. Their values
are universal, while βn≥2 depend on the way αs is defined.
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Obviously, physical observables should not dependent on
the choice of μR . This enforces, through running, a definite
μR-dependence of the coefficients of higher order terms of
the series, starting from the next-to-leading (NLO) one. In
practice only a few terms of PT expansion are known for a
given observable (say, Born + NLO + NNLO, with N3LO
becoming available in certain cases). One puts the residual
μR-dependence of truncated series to a good use. By vary-
ing μR in some interval (conventionally, between μR/2 and
2μR) one gets an ad hoc estimate of theoretical uncertainty
due to unknown higher orders.

Renormalization: scheme
By slightly lowering the dimension of the world, 4 → D=
4−2ε, one trades UV divergences for singularities in ε to tame
the misbehaving integrals. Logarithmic UV-divergences of
loop integrals that renormalize the coupling translate then
into a pole at ε = 0. By dropping it (“minimal subtraction”)
together with a boring constant (an artifact of the trick) one
arrives at a finite answer – the MS coupling. Dimensional
regularization (DREG) [162,163] is a gentle procedure in that
it respects and preserves internal symmetries of the problem
(with gauge invariance the first to name).7 Being well suited
for multi-loop calculations, the MS scheme has become the
standard of the trade.

Alternatively, one can introduce αs directly from a phys-
ical observable without bothering about the UV problem
[165]. Called effective couplings, many have been suggested
since, emerging from e+e− hadronic annihilation data [166],
the Bjorken sum rule [167], static heavy quark interaction
potential [168] or intensity of dipole gluon radiation off non-
relativistic heavy quarks [169], etc. Effective couplings can
be related to one another via the MS expansions (see, e.g.
[170]).

There is one scheme that deserves special credit. Known
as Monte Carlo (MC), Catani–Marchesini–Webber (CMW),
bremsstrahlung, or simply “physical scheme”, it first appea-
red implemented in the HERWIG MC parton cascades gen-
erator [171] and rediscovered in the context of an optimized
pQCD description of inclusive heavy quark fragmentation
functions [172]. The same coupling shows up in the anoma-
lous dimension of a cusped Wilson line (Polyakov anomalous
dimension) [173,174].

This scheme adds to the MS coupling a definite O(α2
s )

piece that keeps emerging in a multitude of observables.
Among them the behavior of DIS parton distributions (pdf)
and jet fragmentation functions (ff) in the quasi-elastic limit
1−x � 1, threshold effects, quark and gluon Sudakov form
factors and Regge trajectories, etc.

7 When dealing with a sypersymmetric dynamics, one has to sharpen
the DREG tool to preserve the fermion–boson symmetry. This is
achieved by turning to the dimensional reduction (DRED) [164].

The reason is simple: it is the scheme that defines the
coupling by the radiation intensity of gluons with relatively
small energies. Radiation of soft gluons is classical by nature.
In accord with the Low theorem it is fully determined by the
classical trajectory of the charge (be it electromagnetic or
color one) and is insensitive to quantum properties of the
particle that caries it [175].

Infrared-finite coupling
The QCD coupling grows with distance and becomes
infinitely large at some point. This is true both at the one-loop
level (β0) where it develops a simple pole, c.f. (1.8), and in
the two-loop approximation when one takes into account the
β1 term in the running of the coupling. This is often referred
to as the Landau pole/singularity in memory of the discovery
70 years ago by L. Landau and collaborators of the explosive
behavior of running coupling in the context of QED.

Beyond the two loops, however, the situation changes.
With the sign of β2 depending on the scheme, some effective
charges at this level stop suffering from the Landau singu-
larity and instead freeze in the origin [166,176,177]. Actu-
ally, this freezing is as much an artifact as the Landau pole
itself. To unambiguously define αs and establish its behav-
ior at small momenta is inconceivable without cracking the
confinement problem.

At the same time, the very supposition that αs(k2) is finite
for any k2 ≥ 0 (more accurately, is integrable over the
infra-red domain) enhances the predictive power of pQCD.
The Parisi–Petronzio analysis of the differential distribution
of Drell–Yan pairs with very small transverse momenta qT
and large invariant masses q2 � q2

T provided a key exam-
ple [178]. It was enough to assume that such a “good cou-
pling” existed to get a PT prediction that actually did not
depend on details of its behavior in the origin and agreed with
the data.

Assuming the existence of a dispersion relation made it
possible to quantify the leading power-suppressed NP contri-
butions by expressing their magnitude via momentum inte-
grals of the “good coupling” over the NP domain [179].
This approach proved to be especially productive in the
realm of jet shapes, the majority of which suffer from sig-
nificant 1/Q hadronization corrections [180] (see [155] for
details).

2.3.5 Partons and jets

The word jets appeared (though only once!) in a monumental
parton-model study of inclusive production of a nucleon in
e+e− (the process related by crossing with lepton–nucleon
DIS) [181].

The picture of quark jets has been elaborated [182], and
the Feynman conjecture implemented as a working hypothe-
sis to characterize the final state structure of hadroproduction
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processes with large transverse momenta [89]. In a footnote
the authors remarked: “The question of the ultimate fate of
the fractional charge may be a difficulty of the quark–parton
model”. Since “the important longitudinal distances in con-
figuration space for electroproduction” increase linearly with
energy and may become macroscopically large [183] “This
may imply that the active parton tends to travel a consider-
able distance without interaction before disintegrating into
a jet of hadrons. Thus, there can be a separation of frac-
tional charge over large distances in configuration space
as well as momentum space”. The footnote ended with a
prophetic remark: “However, this does not mean that partons
must “backflow” that distance to provide the necessary neu-
tralization of fractional charge. This can be accomplished,
for example, by a polarization current created by parton–
antiparton pairs created from the vacuum by the field of the
active parton”.

The worry was answered 5 years later when, with
the advent of QCD, responsibility for confining fractional
charges has been laid upon color.

In 1974 Kogut and Susskind came up with a picture of
a flux tube (color string) that connects the quarks. With
the color field strength increasing with quark separation, a
chain of successive vacuum breakups, q → q + q ′q̄ ′ →
(qq̄ ′)meson+q ′ → etc, contained fractional charges, together
with the open color, inside colorless hadrons.

The authors have also remarked that hard gluon bremsstr-
ahlung off the qq̄ pairmay be expected to give rise to three-jet
events in the e+e− annihilation into hadrons.

The time had come for pQCD to face the challenge.

Gluon jets
To unequivocally confirm QCD’s claim to an honorable place
of the theory of strong interactions, gluons had to be found
manifesting as true particles.

Section 2.2 is devoted to the groundbreaking discovery of
3-jet e+e− → qq̄g events. We’ll stay on the theory side and
peek into a seminal paper that set up the 3-jet quest [121].
What a shaky ground the authors were pushing off back in
1976! Quote:

• no direct experimental evidence yet exists for gluons
(except possibly the fact that not all the nucleon’s momen-
tum is carried by known quark constituents),

• there is no direct evidence for asymptotic freedom
(though there may be some deviations from scaling in
DIS at high Q2),

• fashion sets αs(Q) to lie between 0.2 and 1 for Q2 ∼
10 GeV2.

The authors professed coplanar structure of the final state,
cross section scaling in xT = 2pT /Q, verified asymptotic
2-jetness, and rightly guessed a 10% fraction of 3-jet events.

Moreover, they drew a picture with two hadron chains
stemming from the gluon fragmentation and remarked, with-
out much ado:

Looking at [this] one might naively expect more
hadrons to be produced in gluon fragmentation than in
quark fragmentation, and therefore that f (x) for gluons
should be more concentrated at low x .

That is, higher hadron multiplicity and softer energy spec-
trum in a gluon jet as compared to quark one. This little
picture became a precursor of the Lund model interpretation
of a gluon as a “kink” on the color string connecting the
separating quark and antiquark [184].

IRCS ideology
In 1977 Sterman and Weinberg drew an image of two-jet
events as opposite cones of angular size δ containing all but
a small fraction ε of the total annihilation energy.

In the Born approximation, e+e− → qq̄ , the back to
back quarks fit in with unit probability. In the next order
in αs there emerge a negative virtual correction to σqq̄ and
a new 3-particle production cross section σqq̄+g , both infi-
nite. However, the collinear divergence at kT ∝ Θ → 0
(present in all logarithmic QFTs with massless fields) and
the soft divergence, k0 → 0 (specific for vector gluons and
photons), cancel in the sum, leaving behind a finite correction
∝ αs ln δ ln ε.

The SW construction became the first hadron observable
that, after the total cross section σtot(e+e− → X), enjoyed
the power of the Bloch–Nordsieck theorem. An ideology of
Infrared-and-Collinear Stability (IRCS) was born:

If radiative corrections to a given observable happen
to be free from collinear and soft gluon divergences
and thus the result is finite, feel free to confront the
PT answer directly with experiment, without worrying
about NP hadronization effects.

The flag got hoisted over the boot camp from where pQCD
went on a rampage to conquer multiple production of hadrons
in hard interactions: “the detailed results of perturbation the-
ory for production of arbitrary numbers of quarks and gluons
can be reinterpreted in quantum chromodynamics as predic-
tions for the production of jets” [185].

Defining and finding
A narrow bunch of hadrons is not good enough: one needs
an operational definition in order to deal with jets, to predict,
study and work with them. There emerged two major threads:
1) to look for a set of cones (of certain angular size) that would
embed the final-state hadrons in an optimal way and 2) to look
for a pair of particles closest in the momentum space and (if
judged close enough) join them into one, thus recursively
reducing an ensemble of N hadrons to a few clusters – jets.
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The original JADE clustering jet finder used an invariant
mass of the pair as closeness measure. It did well exper-
imentally, but did not satisfy theorists. By the time when
the Workshop on Jet Studies at LEP and HERA was taking
place in Durham in 1990, theorists became too greedy. To
deal with respectful IRCS observables (which JADE finder’s
output are) was no longer enough for them.

Jet rates suffer from (or enjoy, up to you) large double-
logarithmic corrections, and theorists were eager to make
all-order resummed predictions. And the JADE finder did not
allow that because of a weird way it was dealing with small-
momenta particles (soft gluons). At a brainstorm session a
proposal from the audience was made to replace the invari-
ant mass distance measure m2

ik � 2Ei Ek(1 − cosΘik) by
the relative transverse momentum k2

T � 2 min{Ei , Ek}(1 −
cosΘik) to cure the problem. The next morning Siegfried
Bethke who spent a sleepless night testing the new idea came
up with encouraging news: the kT measure did well in yield-
ing jets less affected by hadronization.

First reported in the summary of the Hard QCD work-
ing group [186], the “Durham” algorithm [187] has got a
“Geneva” cousin [188], and then “Cambridge” [189] and
“Aachen” [190] fraternal twins that have further reduced
hadronization effects. The kT -algorithm, generalized to DIS
and hadron–hadron collisions [191], allowed theorists to pro-
duce all-order resummed expressions for the jet rates in e+e−
and elsewhere.

For 15 years or so the clustering algorithms lagged behind
the cone-based ones. And for a good reason: N 3 operations
needed to sort out a final state containing N particles. Given
that in the pp environment (not mentioning pA and AA) mul-
tiplicities are large, this made clustering procedures imprac-
tical.

The tables turned when an ingenious application of com-
binatorial geometry to the momenta clustering problem by
Cacciari and Salam has reduced the calculation load down
to N ln N . Development of the “fast-kT ” clustering proce-
dure permitted to analyze large multiplicity final states “in
no time” [192]. This was especially welcome since all then-
known cone-based finders were caught red-handed at violat-
ing the IRCS demand one way or another.

A long and turbulent history of competing jet-finders has
terminated with invention of the “anti-kT ” jet finding algo-
rithm [193]. It came in time – right before the start of the LHC
operation. It satisfied both theorists (as pQCD-friendly, IRCS
respecting) and experimenters (fast and producing aestheti-
cally pleasant roundish jets), and has established itself as the
main (if not only) tool of the trade since. A full coverage of
Jetography can be found in an excellent review [194].

Heavy quark jet
QCD expected the jets initiated by heavy quarks Q to have
a hole in the forward direction – dead cone of the size Θ0�

mQ/E . Indirect consequences of this specific feature have
been experimentally confirmed a while ago: Q loses little
energy (leading particle effect), light hadron multiplicity in a
Q-jet is reduced by a constant, Nq(E)− NQ(E) � Nq(mQ)

[172].
A direct observation of the dead cone by the ALICE was

recently reported in Nature [195].

2.3.6 Many jets, some loops

To construct a scattering amplitude at leading order (LO:
Born approximation with the minimal power of the coupling
constant) one sums up topologically different tree diagrams,
each of which is a product of internal Feynman propagators
and vertices. Momenta of all internal lines are fixed by kine-
matics so that no integration is involved. Because of heav-
ier combinatorics and more complicated color structure, the
complexity of the scattering amplitude increases with the
number of external legs (read: jets).

Loops and divergences
QCD jets have become an indispensable tool for collider
experiments in search for new physics. It is imperative to
know the yield and structure of multi-jet final states with
the best accuracy possible. One has to go beyond the Born
approximation and calculate, step by step, higher order cor-
rections. A virtual correction (VC) generates a loop along
with an integration over the 4-momentum flowing through
the loop. With loops in the game, complexity of the task
rises to all new level.

UV divergences being dealt with, VC is still divergent in
the collinear and soft corners of the integration space. But so
is the inclusive (integrated) cross section of the same order
in αs . This time, due to real emission (RE) of an infinitely
soft gluon or a collinear 2-parton configuration in the final
state phase space. Combining VC with RE one gets rid of
almost all divergences. The surviving collinear divergences
hide into initial state pdf (and ff, should there be hadrons
explicitly registered in the final state). Apart from that, the
answer is finite. However it is difficult to get by subtracting
infinities. One needs to regularize VC and RE separately and
consistently or, better still, to perform subtraction at the level
of the integrand to avoid divergences altogether.

NLO
Early NLO studies sent a rather disturbing message: large
corrections were found both to Drell–Yan [196] and large-pT
production [197] putting under question the very applicabil-
ity of the PT approach. There is a good physical reason why
those corrections turned out to be alarmingly large. I will
hide it from you for lack of space-time. One way or another
the initial shock was mitigated and a systematic attack on the
NLO started.
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The method that has been proposed for e+e− annihila-
tion, used DREG to deal with the VC+RE problem [198].
An idea to employ the notion of color dipoles to accurately
treat collinear and soft singularities and cancel them at the
integrand level gave more flexibility and allowed to construct
a popular general purpose scheme for calculating the NLO
jet cross sections in any hard process [199].

L-loop VCs are given by 4L-dimensional Feynman inte-
grals. They are analytic functions of external momentum
invariants and can be reduced to a finite set of basic scalar
integrals.

The problem has been fully solved for L = 1 [200]. This
means that today all NLO amplitudes are known (with 6-
gluon scattering marking the present-day complexity limit)
[201]. Parton showers have been promoted to NLO as well
[202].

NNLO
Since 2015, the number of important processes controlled
in the following order of pQCD (NNLO) has been steadily
increasing. In the bibliography titles of the Les Houches 2019
Summary [203] next-to-next-to, or NNLO appears 155 times.
Drell–Yan/Higgs [204–207] and semi-inclusive DIS [208,
209] allowed to peek into N3LO.

Just enjoy the names that appear in the N≥2LO context:
CoLoRFulNNLO and Projection-to-Born methods, Nested
soft-collinear and N -jettiness subtractions. A Shakespearean
review [210] discusses pros and contras of DREG vs. sub-
traction regularization.

Mathematical aspects
To calculate Feynman integrals analytically is notoriously
hard. General techniques for attacking loop amplitudes were
listed and demonstrated in 1996 and are being used since:
spinor helicity formalism, color decompositions, supersym-
metry, string theory, factorization and unitarity [211].

The Loop-Tree duality approach (LTD) was initiated [212]
and later generalized to become Four-dimensional Unsub-
traction (FDU) [213].

Proceedings of the topical Florence workshop (cunningly
named WorkStop/ThinkStart) [214] link to 200+ articles that
cover the basics and the progress.

An all-in assault [215] resulted in an astonishing sym-
biosis of theoretical physics and pure mathematics. Particle
theorists, maybe already familiar with integrability, now have
to learn twisted cohomology groups, Hopf algebra, algebraic
number theory and other scary things.

2.3.7 Resummation and evolution

Art of expansion
Series in αs can behave well, as for R(e+e−), or look trou-
bling as is the case of diphoton production, where moving
from NLO to NNLO changes the cross section by 50% [216].

In fact, independent of the observable, PT series in QFT
are asymptotic, so that beyond N1/αLO things are bound to
go haywire. This was not much trouble for QED, but it should
be kept in mind for QCD, where the number of reliable terms
in the expansion may be not so large.

Examining how violently a specific series diverges, hints at
how much the NP physics affects a given observable (infrared
renormalons [217]).

Resummation
Often αs acquires one or even two enhancement factors:
αs ln Q2 (SL), αs ln2 Q2 (DL), and the PT expansion fails.
When this happens, in order to get a reliable approximation
one has to collect enhanced contributions and sum them in
all orders. The Sterman-Weinberg 2-jet cross section acquires
DLogs because of a veto imposed on accompanying gluon
radiation. The QT -spectrum of a Drell–Yan pair or of a
hadron registered in the current fragmentation of DIS in the
kinematical region QT � Q, and an almost back-to-back
energy–energy correlation in e+e− were the first examples
of inclusive observables which, in spite of not being subject
to any explicit veto, are still affected by DLogs [218,219].

In all these cases the origin of one of the logs is soft gluon
radiation which is relatively easy to control. This makes
resummation of DL-enhanced contributions straightforward
and gives rise to Sudakov form factors. Quark and gluon form
factors manifest themselves in a multitude of observables
characterized by the presence of two different momentum
scales. In particular, in distributions of various jet shapes, jet
rates, etc.

It is important to emphasize that the very possibility of an
all-order resummation depends on whether the operational
definition of jets corresponds to the dynamics of the QCD
parton multiplication picture (kT -algorithms vs. JADE, as
discussed above).

All-order resummation of single-logarithmic contribu-
tions (SLogs) becomes mandatory when we deal either with
quasi-collinear configurations of partons with comparable
energies (DGLAP physics) or with ensembles of soft glu-
ons at large angles with respect to energetic emitters (radia-
tive corrections to parton scattering amplitudes). In both
cases particles involved are strongly ordered in transverse
momenta.

Factorization
A particle with the smallest kT in the game factors out, in a
sense that a singular contribution comes only from its attach-
ment to an external leg. Generalization of the Low theorem
from ω � me to arbitrary photon energies [220] was a pre-
cursor of the QCD kT /collinear factorization.

Another arbitrary scale enters: factorization scale μF . It
sets a conventional border between PT and NP ingredients
of the problem. In IRCS observables μF gets replaced by a
variable related to resolution, rendering two well separated
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physical scales. For example, yQ2 � Q2 for jet rates, (1−
T )Q2 � Q2 for the differential thrust distribution, etc.

Whenever there isFactorization, one can carry outResum-
mation, and interpret the results in terms of Evolution and
corresponding Evolution Equations.

A few examples of the application of this idea, both well-
known and lesser-known.

KL
The Kirschner–Lipatov equation resums DLogs in parton
scattering amplitudes with quark exchange in the t-channel
[221]. Such amplitudes fall as the energy s increases, and
higher-order DL contributions decelerate this fall. These
DLog effects are inherently different from the DLog effects
due to accompanying soft gluon radiation (Sudakov form
factors).

By isolating the virtual particle with the lowest kT in the
Feynman graph, and using gauge invariance and the unitarity
relation, one can form the kernel of the evolution equation
for the partial wave amplitudes, with ln kT as the “evolution
time”.

KOS
Kidonakis, Oderda and Sterman have set the quest of resum-
mation of SL radiative corrections to 2 → 2 QCD parton
scattering amplitudes [222]. In QCD it becomes a multi-
channel problem, since each gluon emission (either virtual
or real) changes the color state of a parton pair. For gluon–
gluon scattering, the anomalous dimension is a 6⊗ 6 matrix
(for the general SU (Nc) case; which reduces to 5 ⊗ 5 for
SU (3)). It depends on the scattering angle and, obviously, on
the rank of the color group, Nc. Three of the eigenvalues of
the anomalous dimension matrix are proportional to Nc, and
thus respect the so-called Casimir scaling (the perturbative
expansion running in Nc), see e.g. [223]. The Nc-dependence
of the other three eigenvalues is more involved [224]. They
solve the cubic equation whose coefficients exhibit a weird
symmetry between the number of colors and the scattering
angle:

Nc ⇐⇒ ± ln(s2/tu)

ln(t/u)
.

This symmetry can hardly be accidental, but its origin
remains a mystery.

ERBL
The ERBL equation applies to exclusive high-Q2 reactions
involving mesons and baryons, e.g. electromagnetic pion
form factor [225,226] or photo- (electro-) production of vec-
tor mesons like J/ψ [227,228]. Separate components of the
valence quark wave function (distribution amplitude) acquire
different log Q behavior – anomalous dimensions. The dom-
inant component in the Q2 →∞ limit is called the asymp-
totic wave function: ψπ(z) ∝ z(1−z) with z the longitudinal
momentum of the fast pion carried by a quark.

It is manifest in the distribution of energy between the two
quark jets stemming from diffractive dissociation of a pion
in π A collisions [229].

DGLAP
The parton model implied limited transverse momenta. In
logarithmic QFTs, instead, k2

T are broadly distributed up to
the external momentum transfer scale Q2, resulting in viola-
tion of the Bjorken scaling. The first systematic analysis of
DIS structure functions and e+e− fragmentation functions
was carried out in the Leading Logarithmic Approximation
(LLA) based on selection of enhanced contributions in each
order of PT series,

∑
n Cn(x)(g2 log Q2)n , in the framework

of then-known QFT models [230,231].
In 1974 the results were recast in the language of pdf

evolving via Markov chain of independent 1 → 2 parton
splittings [232].

In 1977 arrived the QCD parton dynamics whose name
was eventually settled as DGLAP [87,233]. It was received
with enthusiasm and gave rise to a host of new ideas: jet
calculus, preconfinement, parton showers, to name a few.

With anomalous dimensions now known in 3 loops [234,
235], DGLAP does its job, predicting pdf evolution due to
space-like cascades. Thanks to factorization, they describe
the flux of initial-state partons as an input for any hard lepton–
hadron or hadron–hadron interaction. The same universality
applies to the final state (time-like cascades).

Parton cascades
Partons have space-like momenta (k2 < 0) in the initial state
cascades; in the final state they are time-like (k2 > 0). In the
LLA, parton splitting functions in space-like (S) and time-
like kinematics (T ) are the same: P(S)

ba (z) = P(T )
ba (z), and

so are the anomalous dimensions – Mellin image of P(z).
Beyond LLA P(T )(z) departs from P(S) acquiring, in partic-
ular, (αs ln2 z)k terms in NkLL.

Originally, the picture of QCD partons was treating the
Bjorken/Feynman variable x as being of the order one. Then
αs ln2 z = O(αs)� 1 and causes no trouble. However, when
x gets parametrically small so that αs ln2 x ∼ 1, an entire
tower of these enhanced terms has to be resummed.

This can be achieved by modifying the “time” in the evolu-
tion equation from ln kT to ln Θ . In other words, by replacing
the kT -ordered cascades (S) by ordering of successive split-
ting angles (T). Angular Ordering (AO) takes care of destruc-
tive soft-gluon interference and affects particle production.

BFKL
The BFKL equation [159,236] was derived in the LLA in
g2 ln s=O(1) to predict high-energy behavior of scattering
amplitudes in Yang–Mills theory.

Gluons reggeize (spin of a t-channel gluon becomes effec-
tively t-dependent, J= Jg(t)). In the vacuum channel lad-
der diagrams dominate with two Low–Nussinov gluons,
now reggeized, connected by multiple gluon rungs strongly
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ordered in rapidity (multiregge kinematics). This yielded the
growing total cross section σtot ∝ scαs . The NLL correction
lowered the exponent. A power-like energy growth contra-
dicts the asymptotic Froissart theorem, σtot≤ A ln2 s, but at
available energies is legitimate. A need to rescue s-channel
unitarity ignited new ideas and, correspondingly, equations:
McLerran–Venugopalan Color Glass Condensate model of
high-energy saturation (CGC), Balitsky–Kovchegov (BK)
and Jalilian-Marian, Iancu, McLerran, Weigert, Leonidov
and Kovner (JIMWLK) equations, for references [237].

The true problem is that the high energy scattering does not
belong to the pQCD jurisdiction. This is not a hard process as
long as no large-kT scale is involved. As a result, the “BFKL
Pomeron” is sensitive to the behavior of the coupling in the
NP domain [238,239]. Strictly speaking it would be safer
to apply to compact projectiles like bound states of heavy
quarks, say σ

J/ψ J/ψ
tot (s).

Triggering a jet with pT ∼ Q in DIS target fragmenta-
tion region should expose the BFKL dynamics (Mueller–
Navelet jets [240]). DGLAP evolution gets suppressed over a
large rapidity interval, leaving room for PT-controlled BFKL
growth. Experimental data are not yet conclusive [241].

Applied to DIS, BFKL predicts a steep growth of pdf in the
x = Q2/s → 0 limit, equivalent to s → ∞. With DGLAP
having its own way of making pdf rise, the two are difficult
to disentangle.

BFKL vs. DGLAP
The meaning of evolution in the two cases is essentially
different. Action d/d ln k2

T , dynamics in x (DGLAP), vs.
action d/d ln(1/x), dynamics in �kT (BFKL). The kernel of
the DGLAP evolution equation is a function of the longi-
tudinal momentum Pba(x), the BFKL kernel lives in the
plane of transverse momenta K (�kT , �qT ). Eigenvalues of
DGLAP are anomalous dimensions; the spectrum of BFKL
– Regge trajectories. The origin of DGLAP evolution is the
kT -factorization [242]; BFKL rests upon t-channel unitarity.
In spite of all the difference the two are intimately related
[243].

2.3.8 Soft gluons and LPHD

It is soft gluon radiation that bears responsibility for faster-
than-logarithmic growth of particle multiplicities in hard pro-
cesses.

Hadron energy spectra in jets brought an exotic fruit. It
was not poisonous, but still not easy to digest.
Inside jet

LEP [244], HERA [245] and Tevatron have found that
the shape of single-inclusive energy spectra of all-charged
hadrons (dominated by pions) is mathematically similar to
that predicted by pQCD for soft gluons [246]. And this in
spite of the fact that the characteristic hump that the spec-

trum develops because of soft-gluon coherence was situated
as low as 1 GeV at LEP (and well below at TASSO energies).

CDF studies proved the origin of the hump due to parton
cascading (as opposed to nonrelativistic finite mass effects)
[247] and confirmed the pQCD expectation that the particle
yield scales with maximal kT of partons, Ejet sin Θc, with
Θc the half-angle of the jet cone [248].

Inter-jet particles
Studies of hadron flows in-between jets added insult to injury.
The message here is even more surprising. Information about
the color structure of the ensemble of hard partons that form
the jets is transmitted to pions with energies of 200–300 MeV,
which make up the bulk of the hadrons produced away from
the jets (“QCD Radiophysics”) [249]. For example, a com-
parison of the hadron yield in the direction transverse to the
3-jet-event plane with the pQCD prediction of the soft gluon
radiation pattern [250], yielded an independent measurement
of the ratio of quark and gluon color charges [251], compet-
ing with results from hard gluon physics (scaling violation
and 4-jet rates) [149].

From a theory standpoint, this similarity was not entirely
unexpected. There was a premonition based on a semi-
classical analysis of the structure of parton cascades in the
configuration space which concluded that when the time
comes for a given parton to hadronize, other partons are too
far away, leaving no chance for cross-talk [252].

Local Parton–Hadron Duality (LPHD) as a Nature-
approved supplement to pQCD sends a powerful message
to the future quantitative theory of confinement: the Poynt-
ing vector of the color field should translate into Poynting
vector of the hadron matter practically undamaged.

2.3.9 Conclusions

There are a number of pQCD-related stories I have left untold.
Why did it take almost 20 years for the inclusive energy–

energy correlation in e+e− → h1h2X , believed to be the
most reliable IRCS pQCD prediction, to agree with the exper-
imental data?

Why did the discovery of angular ordering – so important
for understanding the coherent nature of particle production
– remain unpublished for a long time?

What would make you submit to Phys. Lett. an article
under the wrong title [253]?

How is it that a specific jet shape distribution turns out to
be narrower than that of the underlying parton ensemble, in
spite of usual smearing at the hadronization stage?

How tragic was a misprint in Ref. [254]?
I am confident that by the time QCD-60 gets published,

there will be many more pQCD success stories to tell, in
addition to anecdotes.
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3 Fundamental constants

Conveners:
Eberhard Klempt and Giulia Zanderighi
The previous two sections reviewed the early history of QCD.
Early experiments had provided first support for the quark
model, which was definitely established when the charmo-
nium states were discovered. The new theory of strong inter-
action seemed to account for the non-observation of free
quarks (infrared slavery) and for possibility to understand
deep inelastic lepton scattering off nucleons (asymptotic free-
dom). The following sections turn the focus to major aspects
of the development of the theory of QCD. Of course, no theo-
retical discussion can neglect comparisons with experimental
data, but we will return to a systematic review of the exper-
imental data and how they compare with QCD predictions
only in Sect. 8. Those who want to jump directly to the data
might choose to proceed to Sect. 8, and return to these earlier
sections when needed.

The masses of the six quarks and the strong interaction

constant gs or αs = g2
s

4π are fundamental constants of QCD.
The masses and αs are called “constants” even though they
depend on the momentum transfer at which they are probed.
Quark masses have the additional complication that there
are no free quarks for which masses could be determined
from experiment directly. Section 3.1 reviews how the quark
masses are defined and renormalized, and describes briefly
what measurements are compared with lattice predictions in
order to determine the values of these fundamental parame-
ters. Some quark masses are very small and others are very
large. For the different quark masses, special techniques have
been developed such as Effective Field Theory or Heavy
Quark Symmetry. These will be discussed later.

Section 3.2 reviews recent determinations of αs and dis-
cusses systematic uncertainties and the procedure used by
the current Particle Data Group (PDG) to obtain the world
average value of αs . As it turns out, αs runs; it is small at
high momentum transfer q2 and large at low q2. A precise
knowledge of this coupling constant is needed to predict any
background process in high-energy collisions and to achieve
precision in the calculation of signal processes. Later in this
review, analytic approximations to QCD are discussed that
allow for an extension of αs determinations to very low q2

where αs seems to saturate at αs ≈ 3 (Sect. 5.5).
The editors decided to place the determinations of quark

masses and αs early in the volume in order to emphasize that
the size of αs(Q2) at low Q2 means that perturbation the-
ory cannot work at the modest values of Q2 characteristic of
matter in its ground state. Nonperturbative methods will be
required. Some may prefer to read Sect. 3.1 after the discus-
sion of LQCD (in Sect. 4) and Sect. 3.2 after discussion of
the measurements presented in Sect. 12.

3.1 Lattice determination of αs and quark masses

Luigi Del Debbio and Alberto Ramos
Lattice QCD provides a first-principles, non-perturbative
description of the strong interaction in the Standard Model
(see Sect. 4.1). Current state of the art simulations include
sea quark effects, electromagnetic interactions, and isospin
breaking, yielding accurate predictions for low-energy hadr-
onic quantities that are not accessible in perturbation
theory.

By discretizing space-time in a cubic lattice with spacing
a, lattice QCD provides a non-perturbative regularization of
QCD. Moreover this formulation is amenable to numerical
simulations using Monte Carlo methods. A key ingredient
in any lattice calculation consists in removing the regula-
tor (i.e. taking the continuum limit a → 0). This requires
to tune the bare parameters of the lattice QCD action (n f

bare quark masses in lattice units ami , and the bare coupling
g0) in order to reproduce some hadronic input. Note that
since the input of any simulation are dimensionless quanti-
ties, only dimensionless predictions can be made. Typically
one uses meson masses (π, K and D in case that the simula-
tion includes the charm quark) in units of a reference hadronic
quantity to fix the values of the bare quark masses. The ref-
erence quantity, usually the mass of the omega baryon MΩ

or the π/K meson decay constants fπ , fK is the quantity
used to set the scale: all dimensionless predictions are com-
puted in units of this reference scale. This tuning of the bare
parameters in favor of physical observables constitutes the
renormalization of the theory. Once this process is carried
out one can make solid predictions for many other hadronic
quantities, and also determine the values of the fundamen-
tal parameters of QCD. All in all, quark masses are com-
puted in units of the reference scale. The running of the
strong coupling is also computed at energy scales measured
in units of the same reference scale. Using as input the exper-
imental value of this reference scale (MΩ , fπ , fK or any
other convenient choice), one can quote physical dimension-
full predictions.8 In this way Lattice QCD is able to con-
nect the experimentally observed hadron spectrum (meson
and baryon masses) with the fundamental quark masses and
strong coupling.

Here we address conceptually how the fundamental
parameters of QCD are extracted from Lattice QCD compu-
tations, and what are the dominating sources of uncertainty.
We will also comment on a few recent results. For a detailed
overview on lattice determinations of the strong coupling,
we point the reader to the recent review [255]. An exhaus-
tive and critical list of lattice determinations both of quark

8 The interested reader can consult the section on scale setting in the
review [255] and in the 2021 FLAG document [256] for a more detailed
discussion.
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masses and the strong coupling is available in the excellent
FLAG review [256].

3.1.1 The scale of the strong interactions

It is convenient to frame the determination of the strong cou-
pling constant as a determination of the intrinsic scale of
QCD. We start from an observable P that depends on a sin-
gle scaleμ (i.e. P(μ)). Ideally this observable should be easy
to determine from numerical lattice simulations and with a
known perturbative expansion. As we will see later there are
several possibilities. Once an observable is chosen, it can
be used to define a renormalization scheme (renormalized
coupling with Minimal Subtraction) via

ḡ2
s (μ) ∝ P(μ), (3.1)

where the proportionality factor (a simple normalization) is
fixed by

ḡ2
s (μ)

μ→∞∼ ḡ2
MS

(μ) (3.2)

with ḡ2
MS

(μ) ≡ (4π)αMS(μ). It is convenient to work in
mass independent renormalization schemes (i.e. the observ-
able P(μ) is defined in the chiral limit mq = 0). In these
schemes the energy dependence of the coupling ḡs(μ) is
described by the renormalization group (RG) function that
has a known perturbative expansion

βs(ḡ) = μ
d

dμ
ḡs(μ)

ḡ→0∼ − ḡ3
s

∞∑

k=0

bk ḡ
2k
s , (3.3)

where the first two perturbative coefficients

b0 = 1
(4π)2

(
11− 2n f

3

)
, (3.4a)

b1 = 1
(4π)4

(
102− 38n f

3

)
, (3.4b)

n f is the number of fermions in the fundamental represen-
tation (i.e. quarks). Different renormalization schemes are
related perturbatively by

ḡ2
s′(μ)

ḡs→0∼ ḡ2
s (μ)+ css′ ḡ

4
s (μ)+ · · · . (3.5)

It is easy to check that the first two coefficients of the β-
function Eq. (3.4) are invariant under such changes of scheme
(i.e. they are scheme independent).

Integrating the evolution equation (3.3) yields

log
μ1

μ2
=

∫ ḡ2

ḡ1

dx

βs(x)
, (3.6)

where ḡ1 = ḡs(μ1) and ḡ1 = ḡs(μ1). The integral can be
rewritten as

∫ ḡ2

ḡ1

dx

βs(x)
= 1

2b0

(
1

ḡ2
1

− 1

ḡ2
2

)

+ b1

b2
0

log
ḡ1

ḡ2

+
∫ ḡ2

ḡ1

dx

[
1

βs(x)
+ 1

b0x3 −
b1

b2
0x

]

. (3.7)

Note that given the asymptotic form of the βs function
(Eq. 3.3), the original integral in Eq. (3.6) is divergent when
either ḡ1 → 0 or ḡ2 → 0. On the other hand the integral in
Eq. (3.7) is finite in these limits (cf. the integrand is O(x)).
This observation allows us to split the integral in Eq. (3.7) as∫ ḡ2
ḡ1
= ∫ 0

ḡ1
+ ∫ ḡ2

0 and write Eq. (3.6) in the following way

logμ1− 1

2b0 ḡ2
1

− b1

b2
0

log ḡ1 (3.8)

+
∫ ḡ1

0
dx

[
1

βs(x)
+ 1

b0x3 −
b1

b2
0x

]

= (3.9)

logμ2− 1

2b0 ḡ2
2

− b1

b2
0

log ḡ2 (3.10)

+
∫ ḡ2

0
dx

[
1

βs(x)
+ 1

b0x3 −
b1

b2
0x

]

. (3.11)

Note that this last equation claims that a function of μ1 (the
left hand side) is equal to a function of μ2 (the right hand
side). The only solution is that both are constant. The constant
is defined to be logΛs and we can write

Λs = μ
[
b0 ḡ

2
s (μ)

]− b1
2b2

0 e
− 1

2b0 ḡ
2
s (μ)

× exp

{

−
∫ ḡ(μ)

0
dx

[
1

βs(x)
+ 1

b0x3 −
b1

b2
0x

]}

.

(3.12)

Note that the integration of the renormalization group equa-
tion here is exact, valid beyond perturbation theory. The com-
bination on the right-hand side of Eq. (3.12) has units of
mass, and is independent of μ. It is called the Λ-parameter
and can be understood as the intrinsic scale of QCD. It is a
free parameter, which provides a boundary condition for the
evolution equation of the coupling.

Determining Λ is equivalent to determining the coupling
constant. It is customary to report the value of αs(M2

Z ) in the
MS scheme, however the latter can be used together with the
perturbative expansion of the beta function to compute the
Λ-parameter. While the two pictures are clearly equivalent,
there are some advantages in focussing on Λ as the main
character of our story:

– It makes clear that the determination of the strong cou-
pling constant really amounts to the determination of one
energy scale.

– Although the Λ-parameter depends on the renormaliza-
tion scheme. The relation between Λ-parameters in two
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Fig. 13 Any quantity determined in a lattice simulation must be deter-
mined at energy scales between the intrinsic UV cutoff of a few GeV
(given by the lattice spacing ΛUV ∼ a−1) and the IR cutoff (given by

the volume simulated ΛIR ∼ L−1. On a typical state of the art simu-
lations these scales are a few GeV and a few dozen MeV respectively

different schemes is exactly given by a one-loop compu-
tation. In order to see this we recall that by convention
couplings in different schemes are normalized so that
they agree to leading order (cf. Eq. 3.2). This implies
that renormalized couplings in two schemes s and s′ are
related perturbatively by

ḡ2
s′(μ)

ḡs→0∼ ḡ2
s (μ)+ css′ ḡ

4
s (μ)+ · · · , (3.13)

with css′ a finite number. This implies that the relation

Λs′

Λs
= exp

(−css′
2b0

)

(3.14)

is exact.
– The Λ-parameter is defined non-perturbatively. Even for

schemes that are intrinsically defined in a perturbative
context: MS is a “perturbative scheme”, but ΛMS is a
meaningful quantity beyond perturbation theory thanks
to Eq. (3.14).

– Even if the actual precision in the determination of the
strong coupling looks impressive (≈ 0.7%), this amounts
to a determination of the Λ-parameter with approxi-
mately a 4% uncertainty. In particular some sub-percent
effects (QED and isospin breaking corrections) are sub-
dominant for lattice extractions of the strong coupling.

3.1.2 Challenges in extractions of the strong coupling

The extraction of the Λ-parameter in units of a well deter-
mined hadronic scale μhad (like the proton mass) via
Eq. (3.12) requires the knowledge of the β-function in the
scheme of choice, βs(x), for values x ∈ [0, gs(μhad)].
Although in principle Lattice QCD can determine the running
of gs(μ) at any energy scale (it is just the scale dependence of
the observable O(μ) in Eq. (3.1)), computational constraints
impose that a typical lattice simulation can only resolve a
certain range of scales. In particular if we want to describe
hadronic physics, we can reach at most scales μPT ∼ 2−5
GeV (see Fig. 13). For this reason, any lattice QCD extraction
of the strong coupling uses the perturbative expansion

O(μ) =
nPT∑

k=0

ckα
k
MS

(μ)+O
(
αn+1

MS
(μ)

)
+O

(
Λp

μp

)

,

(3.15)

The known perturbative coefficients ci (i = 1, . . . , nPT)

together with the known 5-loop running of the beta function
allow us to estimate the high-energy contribution

∫ ḡ(μPT)

0
dx

[
1

βs(x)
+ 1

b0x3 −
b1

b2
0x

]

, (3.16)

to ΛMS. It is worthwhile to emphasize a few subtleties
involved in this procedure. Since we only know a few terms
in the perturbative expansion of the observable, the miss-
ing higher orders are a source of systematic error in the
determination of Λ. In fact it is easy to convince oneself
that it introduces uncertainties of order

O(ḡ2nPT(μPT)). (3.17)

A further source of systematic error comes from non-
perturbative (power corrections) to the perturbative expan-
sion. These corrections are suppressed as

O
(
Λp

μp

)

.

Both sources of systematic effect can be eliminated by just
pushing μPT to a high enough scale, but with data only avail-
able in a limited range of energies it is challenging to estimate
the size of these corrections. Moreover, the perturbative cor-
rections O(α

nPT+1
MS

(μ)) decrease very slowly (i.e. logarithmi-
cally) with the scale μPT. This makes reducing perturbative
uncertainties an exponentially difficult problem.

The window problem
The need to use low energies to determine the Λ parame-
ter in terms of a known, precise, hadronic input, is at odds
with the need to reach large energy scales where perturba-
tion theory is applicable with high enough accuracy. This is
usually referred to as the window problem. In practice scales
of a few GeV are reached and the estimates of perturbative
uncertainties remain the main source of error in most lat-
tice calculations. Reference [255] estimates that perturbative
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uncertainties alone amount to about 1–2% error in αs(MZ )

for any method that suffers from the window problem.

Dedicated approaches
There exists however a known solution to overcome this
intrinsic difficulty, and it comes under the name of finite
size scaling [257]. The idea consists in decoupling the sim-
ulations where the hadronic input is determined from the
simulations used to determine the running of the coupling.
Each simulation can only resolve a limited range of scales,
but a recursive procedure called finite size scaling allows us
to relate the energy scales resolved in different simulations
(see below for more details). Another recent proposal [258]
does not provide a complete solution to the window prob-
lem, but reduces the problem substantially. In particular in
this approach we are only concerned with power corrections,
that decrease much faster with the energy scale than pertur-
bative ones.

3.1.3 Lattice observables

There is a wide variety of lattice observables that are used for
a determination of the strong coupling. This rich landscape
allows for multiple independent determinations, providing a
robust cross-check of the methodologies. Here we want to
emphasise the broad range of observables. For a full review
and combination of the results we refer the reader to Refs.
[255] and [256].

We first review the dedicated strategies that aim at solv-
ing (or ameliorating) the window problem with a dedicated
approach. Typically they require dedicated simulations and
the uncertainties are statistically dominated.

Finite size scaling.
An ingenious solution to the window problem is obtained by
separating the RG evolution, resolving only a limited range
of scales in each single simulation, and adopting a recursive
procedure to connect different simulations. The main idea
is to use a finite-volume renormalization scheme, where the
renormalization scale is identified with the inverse volume
of the lattice. The renormalized coupling, denoted here as

ḡ2
SF(μ), (μ = 1/L), (3.18)

is extracted from observables computed in Monte Carlo sim-
ulations. The running of the coupling is encoded in the so-
called step scaling function,

σs(u) = ḡ2(μ)

∣
∣
∣
ḡ2(μ/s)=u, (μ = 1/L), (3.19)

which yields the value of the renormalized coupling at the
scale μ as a function of its value at the scale μ/s, where s a
scaling factor. The step scaling function is evaluated numer-
ically by computing ḡ2

SF(μ) on pairs of lattices of size L
and sL . Thereby multiple simulations on physical volumes

much smaller than the typical hadronic scales are used to
compute the non-perturbative evolution of the coupling from
a hadronic scale μhad up to a high-energy scale, μPT, where
the matching with perturbation theory is fully under control.
While these volumes are too small to study hadronic physics,
they are perfectly suitable to study the RG flow of the cou-
pling. The only experimental input needed in this procedure
is one dimensionful quantity that needs to be compared to one
lattice measurement in a large volume in order to set the scale
in physical units. It is interesting to remark that the strong
coupling constant in this approach is determined from just
one experimental dimensionful quantity. Perturbation the-
ory is only used at scales larger than the perturbative scale,
μPT = snμhad. This scale can be made (almost) arbitrarily
large with a modest (but dedicated) computational effort (typ-
icallyμPT ∼ 100 GeV). Finally it is worthwhile to emphasise
that for the determinations based on finite size methods, the
main source of uncertainty is statistical rather than system-
atic. Dedicated simulations will allow further improvements.

Heavy quark decoupling
Recently a new way to ameliorate the window problem has
been proposed [258] (see also the review [259]). It is well
known that the QCD coupling with nl massless quarks and
nh heavy quarks (with mass M � Λ), can be matched using
perturbation theory to the coupling of QCD with nl massless
quarks. This matching is done in perturbation theory to high
order and the perturbative and non-perturbative corrections
are very small. These perturbative decoupling relations can
also be understood as relations between the Λ parameters
with nl + nh flavors and the Λ parameter with nl flavors

Λ(nl )

Λ(nl+nh) = Pnl,nl+nh (M/Λ). (3.20)

Both perturbative and non-perturbative uncertainties are very
small in these relations even for quark masses of the order of
the charm [260].

The main point of this new proposal consists in simulat-
ing n f fictitious heavy quarks. Since all quarks are heavy, a
coupling computed in this setup ḡ(n f )(μ,M) is, up to heavy
mass corrections just a pure gauge coupling

ḡ(n f )(μ,M)

g(0)(μ)

Λ/M→0∼ 1+O(M−2), (3.21)

where O(M−2) represent corrections that can be (M/μ)2 or
(M/Λ)2. Conversely we can declare that both couplings are
the same at slightly different values of the scale

ḡ(n f )(μ(n f ),M) = g(0)(μ(0)), (3.22)

implying the relation between scales

μ(n f )

μ(0)

Λ/M→0∼ 1+O(M−2). (3.23)
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Together with the basic definition of the Λ parameter
Eq. (3.12), this last relation allows immediately to write a
relation between Λ parameters

Λ(0)

μ(0)

Λ/M→0∼ P0,n f (M/Λ)
Λ(n f )

μ(n f )
+O(M−2) (3.24)

This strategy allows us to determine the n f -flavor Λ-
parameter from the pure gauge one. One only needs the val-
ues of a massive coupling with either three or four flavors
in order to apply the matching condition Eq. (3.22), and the
pure gauge Λ-parameter

Λ(n f ) = lim
M→∞

μ(n f )

P0,n f (M/Λ)
× Λ(0)

μ(0)
(3.25)

The limit of infinite mass ensures that all corrections (both
perturbative and power corrections) vanish, which makes this
an exact relation.

Although this strategy does not completely solve the win-
dow problem, the slowly decreasing perturbative uncertain-

ties are only present in the pure gauge determination of Λ(0)

μ(0) .
Note that the pure gauge theory is much more tractable: sim-
ulations are much cheaper, algorithms are better, and the step
scaling strategy is much more straightforward. Perturbative
uncertainties in the decoupling of heavy quarks are negligi-
ble, and only the power corrections O(M−2) have to be dealt
with. A recent publication [261], using quarks in the range
2–12 GeV shows that precise results can be obtained with
this strategy. The uncertainty is still dominated by statistical
uncertainties, and in fact a substantial part of it comes from
the pure gauge running, which can be further reduced.

Now we move to strategies that suffer from the window
problem described above. In all these methods the uncertain-
ties are dominated typically by the uncertainties associated
with the truncation of the perturbative expansion Eq. (3.15),
or the cutoff effects arising from the difficulty in performing
a continuum extrapolation for quantities defined at scales of
a few lattice spacings.

Ghost-ghost-gluon vertex
The QCD vertices are computed numerically and com-
pared to their perturbative expansion. As the field correlators
involved are not gauge-invariant, these calculations require a
gauge-fixing procedure, which has potential extra uncertain-
ties due to Gribov copies [262,263]. Non-perturbative cor-
rections and lattice cutoff effects are sizeable in the regime
of current simulations (see [255] for a review.).

Static potential
The interaction between static quarks is known to high orders
in perturbation theory, and the data seems to follow to per-
turbative prediction down to scales of the order of 1.5 GeV.
The main drawback comes from the fact that the observable
is not IR-safe, which leads to the resummation of soft and

ultra-soft divergences, and hence the introduction of an extra
soft scale in the problem.

Heavy-quark correlators
The pseudoscalar density correlators are defined as

G(x0) = a6(am0)
2
∑

x

〈ψγ5ψ(x, x0) ψγ5ψ(0, 0)〉. (3.26)

Note that after summing over all spatial sites on the right-
hand side, the correlator only depends on x0. The normal-
ization is fixed by multiplying the field correlator by the
factor a6(am0)

2. Their moments have a well-defined per-
turbative expansion in powers of the strong coupling con-
stant. These correlators are computed in lattice simulations,
which yield a good statistical precision on the final result.
The main drawback of this approach is the large cutoff effects
that affect the quantities used. It is very challenging indeed to
explore energy scales larger than the physical charm quark
mass mc ∼ 1.4 GeV, which is clearly not in the perturba-
tive regime. The recent work in Ref. [264] explores different
energy scales in the range m̄c − 3m̄c, but the continuum
extrapolation is very challenging already at μ � 2mc.

Wilson loops
The expectation values of Wilson loops of multiple sizes
m × n are computed at the scale of the lattice cutoff 1/a.
While these quantities are not extrapolated to their contin-
uum limit, they can be computed in bare lattice perturbation
theory. The perturbative series can then be translated into an
expansion in the remormalized coupling αMS(μ). The typi-
cal scale for these observables is μ ∼ 1/a. Unfortunately the
known perturbative orders are not sufficient to describe the
data and several coefficients of the expansion need to be fit-
ted. While the statistical uncertainty of these determinations
is excellent, they are plagued by the systematic errors due to
the perturbative truncation.

Hadron vacuum polarization (HVP)
The strong coupling constant can be extracted from the cor-
relators of vector and axial vector currents:

Va
μ(x) = ψ̄aγμψa(x),

Aa
μ(x) = ψ̄aγ5γμψa(x),

after a decomposition in Fourier space (with Jμ = Vμ, Aμ)

∫
d4x eıpx 〈Jaμ(x)Jaν (0)〉
= (δμν p

2 − pμ pν)Π
(1)
J (p2)− pμ pνΠ

(0)
J (p2).

The quantity

Π(p2)

= Π
(0)
V (p2)+Π

(1)
V (p2)+Π

(0)
A (p2)+Π

(1)
A (p2)

123



Eur. Phys. J. C          (2023) 83:1125 Page 43 of 636  1125 

is dimensionless and has a perturbative expansion

Π(p2)
p→∞∼ c0 +

4∑

k=1

ck(s)α
k
MS

(μ)+O(α5
MS

),

(s = p/μ)

known up to 5-loops. The constant term c0(s) is divergent,
so that the strong coupling is usually extracted from the dif-
ference Π(p2)−Π(p2

ref), or the Adler function

D(p2) = p2 dΠ(p2)

dp2 . (3.27)

The main issue with extractions based on the HVP is that
power corrections are significant even for large momenta
[265]. Reference [266] pushes the determination to high ener-
gies, so that the data can be described without any power
corrections, but then cutoff effects become larger and the
window of scales to obtain the strong coupling decreases.

Dirac spectral density
The density of the eigenvalues of the Dirac operator,

ρ(λ) = 1

V

〈
∑

k

[δ(λ− ıλk)+ δ(λ+ ıλk)]

〉

, (3.28)

has recently been used to determine the strong coupling via
its perturbative expansion

ρ(λ) = 3λ3

4π2

(
1− ρ1(s)αMS(μ)− ρ2(s)α

2
MS

(μ)

− ρ3(s)α
3
MS

(μ)+ O(α4
MS

)
)
, (s = μ/λ).

The extraction of the spectral density is usually performed
at very low energy scales in order to keep the discretiza-
tion effects under control. Recent work [267] imposes a cut
aλ < 0.5 in order to avoid a substantial deviation from
the continuum result. This restricts the energy scales that
can be reached with their data-set (with lattice spacings
a−1 = 2.5, 3.6 and 4.5 GeV) to λ < 1.2 GeV.

3.1.4 Determinations of the quark masses

Because of confinement, only color-neutral states are observ-
ed as physical states and therefore the quark masses cannot be
measured directly in experiments. On the other hand lattice
QCD offers a unique opportunity to determine these quanti-
ties. In fact the n f bare quark masses appearing as parameters
in the lattice QCD action have to be tuned using n f physi-
cal observables in order to make any meaningful prediction.
Once this tuning is performed, we only need to renormalize
its values to some convenient scheme. The scale dependence
of renormalized values for quark masses in mass-independent
renormalization schemes is described by the mass anomalous

dimension, γ (ḡ), which only depends on the gauge coupling
and obeys the RG equation

μ
d

dμ
m̄i (μ) = γ (ḡ)m̄i (μ)

ḡ→0∼ − ḡ2
∞∑

k=0

dk ḡ
2k, (3.29)

where the leading perturbative coefficient

d0 = 1

(4π)2

(

11− 2n f

3

)

(3.30)

is scheme-independent. As for the coupling, the quark masses
are defined in a given renormalization scheme and at a given
renormalization scale; the conventional practice is to quote a
value for the masses in the MS scheme, m̄MS(μ) (with μ = 2
GeV for light quarks), but as in the case of the coupling we
find more natural to work with renormalization group invari-
ant (RGI) quantities. The evolution equation, Eq. (3.29), can
be integrated exactly to yield

Mi = m̄i (μ)
(

2b0 ḡ(μ)2
)−d0/(2b0)

× exp

{

−
∫ ḡ(μ)

0
dx

[
γ (x)

β(x)
− d0

b0x

]}

. (3.31)

Once again we can think of the RGI mass Mi as a scale-
independent energy that specifies the boundary condition for
the mass evolution and hence fully determines the renormal-
ized mass at all energies. An additional benefit of quoting
RGI quark masses is that they are scheme independent (and
therefore well defined beyond perturbation theory). On the
other hand, the determination of RGI quark masses requires
the knowledge of the evolution of the coupling. Given that
the current precision of the Λ parameter (about 4%) is much
lower than the precision of quark masses at low energies
(about 1%), the values of quark masses at a few GeV are
much more precise than their RGI counterparts. Note how-
ever that this usually means that perturbation theory has been
used at a few GeV, and all the caveats about the use of per-
turbation theory at medium energies raised in the previous
section are also applicable here; the determination of quark
masses is also plagued by a window problem. However from
a practical point of view, the perturbative uncertainties in this
case seem to be much better behaved than in the case of the
extractions of the strong coupling.

Nowadays the most precise results available in the FLAG
review [256] for light and heavy quark masses are obtained
in the isosymmetric limit. There are few subtleties involved
in these extractions; they originate from the fact that experi-
mental inputs include QED and isospin-breaking corrections,
while these effects are not included in the lattice simulations.
These effects are small but they are relevant at the level of
precision of state-of-the-art lattice computations. Ideally one
would like to subtract the isospin breaking corrections from
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the experimental data. The problem is that electromagnetic
interactions affect the RG functions (both β(ḡ) and γ (ḡ))
with O(αEM) contributions: quarks with different electric
charges (like the u and d quarks) run differently. QED makes
the isospin symmetric point ill defined. Even if we impose
m̄u(μ) = m̄d(μ) at μ = 2 GeV, the u and d quarks will
be non-degenerate at another generic renormalization scale.
Since the subtraction of isospin breaking corrections depends
on the definition of the isospin symmetric limit, it is clear
that there are (small) ambiguities whatever convention one
chooses. The FLAG review [256] contains a detailed discus-
sion both in the quark mass section and in the scale setting
section about this particular issue, and the reader is encour-
aged to consult it for more details.

We end this introduction by emphasizing that the inclusion
of the leading QED and strong isospin breaking corrections
(including quark loop effects) is an active area of research
in lattice QCD. Results with a first principles description of
the standard model at low energies, including QCD, QED
and strong isospin breaking, are rapidly becoming the new
standard for lattice computations where this level of precision
is required.

3.1.5 Quark mass definitions

Here we consider the determination of quark masses in QCD
alone (i.e. a sensible definition of the isospin symmetric point
has been made). Quark currents play a central role in QCD.
In particular, the axial current and pseudo scalar density

Aa
μ(x) = ψ̄(x)γμγ5

σ a

2
ψ(x), (3.32)

Pa(x) = ψ̄(x)γ5
σ a

2
ψ(x), (3.33)

are expected, in the continuum, to obey the PCAC relation

∂μA
a
μ(x) = mPa(x). (3.34)

This relation is often used to define renormalized quark
masses. The reason is that we expect the same relation to
hold in the lattice regularized theory after renormalization
and up to cutoff effects.9 The axial current and pseudo scalar
density are renormalized multiplicatively

(AR)
a
μ(x) = ZAA

a
μ(x), (3.35)

(PR)
a(x) = ZP (μ)Pa(x). (3.36)

Note that the axial current renormalization factor is scale
independent. Quark masses are also expected to renormalize
multiplicatively m̄(μ) = Zm(μ)m0, leading to the lattice

9 Depending on the type of fermion formulation used and other details,
the cutoff effects can be O(a) or O(a2). In practice most lattice deter-
minations nowadays choose to eliminate the linear effects in a.

version of the PCAC relation

∂μA
a
μ(x) =

2Zm(μ)ZP (μ)

ZA
m0P

a(x). (3.37)

This relation allows to determine the renormalized quark
masses via the relation

m̄(μ) = Zm(μ)m0 =
ZA〈∂μAa

μ(x)Oext〉
ZP (μ)〈Pa(x)Oext〉 , (3.38)

with much freedom to choose the probe Oext. Note that the
running of the quark masses is given by the scale-dependent
renormalization factor ZP (μ). There are several methods to
determine it on the lattice. Most recent works use nonpertur-
bative renormalization schemes.

RI-(S)MOM schemes
These renormalization schemes are conceptually very simi-
lar to the one used in perturbation theory. There exist several
possibilities, but all are based on imposing a suitable renor-
malization condition to some Green functions with external
momenta playing the role of the renormalization scale. In
principle the renormalization scheme is formulated in infi-
nite volume and at zero mass. In this setup the connection
with perturbation theory is known to high accuracy (up to
4-loops), but this setup cannot be simulated directly on the
lattice, so the infinite volume and zero mass limit require a
dedicated study. In particular these methods suffer from a
window problem (the impossibility to keep the volume large
and at the same time have access to high energy scales where
perturbation theory can be trusted).

Finite volume schemes
In these schemes the renormalization condition is imposed
in a finite volume L , which plays the role of the renormaliza-
tion scale (i.e. μ ∼ 1/L). With a smart choice of boundary
conditions one can directly simulate massless quarks. Con-
tact with perturbation theory is typically only known up to
2-loops, but using the techniques of finite size scaling, this
matching can be performed at very high energies (i.e. 100
GeV), where perturbative uncertainties are negligible.

3.1.6 Approaches for heavy quarks

Heavy quarks are difficult to simulate on the lattice. The
reason is that in order to have discretization errors under
control, the lattice cutoff a−1 has to be much larger than
all other scales considered in the problem. In particular we
require am � 1. The lattice community has typically dealt
with this problem using an effective description for the heavy
quarks (see for example Refs. [288] and [289]). This topic is
beyond the scope of this review. Here instead we will focus
on some recent works that use a relativistic formulation for
the heavy quarks. In particular the recent work [287] uses the
expansion of a heavy-light meson mass Mhl as a function of
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the heavy quark pole mass mh

Mhl = mh + Λ̄+ μπ − μG(mh)

2mh
+O(1/m2

h). (3.39)

Here Λ̄ is the binding energy, μπ/2mh is the kinetic energy
and μG(mh) is the hyperfine energy. This relation allows to
fit meson masses to the heavy quark pole mass, and therefore
to determine it by using the perturbative relation

mh ∼ m̄MS

(

1+
∞∑

k=0

rnα
n+1(m̄MS)

)

. (3.40)

The problem of this approach is that the pole mass has a
terribly behaved perturbative expansion. In fact

rn = (2b0)
nΓ (n + 1+ b1/(2b

2
0)). (3.41)

Reference [287] uses instead the minimal renormalon sub-
traction scheme, that has better PT properties.

Making a long story short, heavy-light meson masses are
directly related to quark masses, without the need of any
non-perturbative renormalization. This approach is used to
determine the b meson mass. Masses of other quarks are
extracted from appropriate quark mass ratios, that do not
need the determination of any renormalization constant.

It has to be pointed out that the heavy quark masses used
in this work are often of the order of the lattice UV cutoff, i.e.
aM ∼ 1, and that the direct connection between heavy-light
meson masses and quark masses depends on the application
of a particular resummed perturbative relation at relatively
low energy scales. Despite these caveats, it is clear that this
work has looked into the future by simulating relativistic
heavy quarks close to the b meson mass.

3.1.7 Conclusions

We conclude this section by summarising briefly the status
of the determinations of the fundamental parameters of the
SM from lattice QCD.

With the advent of dynamical quark simulations and new
methods for non-perturbative renormalization, lattice QCD
determinations of the strong coupling and quark masses have
become both very accurate and very precise. Even if numer-
ical simulations do not qualify as a proof, many of us believe
that these computations have fulfilled the dream of connect-
ing the fundamental quark masses and strong coupling to the
well measured spectra of hadrons from first principles.

There are two challenges that lattice QCD computations
face in this game. On one hand the strong coupling and quark
masses are useful when quoted in the MS-scheme, requiring
to make contact with perturbation theory while most lattice
simulations are performed to explore hadronic low energy
scales. On the other hand experimental input (hadron masses)
have electromagnetic and strong isospin breaking correc-

tions, while most lattice QCD simulations are performed in
the isospin symmetric limit.

The window problem
Connecting the perturbative and hadronic regimes of QCD
is hard. These two scales are separated by a large gap in
energy scales, due to the logarithmic running of the strong
coupling with the renormalization scale. It is very challeng-
ing to accommodate these disparate scales in a single lattice
simulation, and if one insists on doing so, compromises have
to be made and perturbation theory has to be used at a few
GeV.

Isospin breaking corrections
The simulation of electromagnetism on the lattice poses its
own challenges (see [290] for a review), related to the descrip-
tion of charged states in presence of long range interactions.
The simulation of non-degenerate light quarks is also numer-
ically challenging. These facts explain that most lattice com-
putations are performed in the isospin symmetric limit.

The lattice community has made great progress on these
fronts in recent years. The window problem has a known
solution since the early 1990s: finite size scaling [257]. It
has been applied to Nf = 0, 2, 3, 4 QCD [291–293] and
to the determination of quark masses [294–296], but these
determinations traditionally produced results for the strong
coupling with large statistical uncertainties. Thanks to recent
developments [297], finite size scaling studies can achieve
a subpercent level of precision in the strong coupling [298].
These techniques have also been applied to the determination
of quark masses [270,296,299]. Finite size scaling has been
for a long time the only solution to the window problem,
until a new method based on decoupling of heavy quarks
has been proposed [258]. This new method largely reduces
the window problem and recent results show that the strong
coupling can also be determined using these techniques with
a sub-percent precision [261]. This strategy has not yet been
applied to the determination of quark masses, but the method
should also lead to precise determinations of the running of
quark masses.

With the advent of dynamical fermion simulations the pre-
cision of lattice determinations of quark masses has rapidly
reached a very mature status. Renormalization is nowadays
performed in a fully non-perturbative way, and using differ-
ent strategies. Although contact with perturbation theory has
to be made, and in principle there is also a window problem
present in the extraction of quark masses, perturbative uncer-
tainties in this case seem to be much better behaved than in
the case of extractions of the strong coupling. All in all, at the
current level of precision the presence of electromagnetism
and strong isospin in nature is the main factor limiting the
precision of many lattice computations. But the field evolves
very quickly and there exist several lattice computations of
the individual light quark masses mu,md that directly com-
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Table 1 FLAG averages of the RGI quark masses in MeV for
the u, d, s, c and b quarks (see [256]). Several works contribute to
these averages [264,264,268–273,273,273–275,275,275–287] com-

puted with either Nf = 2 + 1 or Nf = 2 + 1 + 1 lattice simulations
with about a percent precision for all different quark masses

MRGI
u MRGI

d MRGI
s MRGI

c MRGI
b [MeV]

Nf = 2+ 1 3.15(13) 6.49(14) 128(2) 1526(17) 6881(63)

Nf = 2+ 1+ 1 2.97(11) 6.53(11) 129.7(1.5) 1520(22) 6934(58)

pute the QED effects in the quenched approximation. We
are convinced that unquenched results will follow soon, and
isospin breaking corrections will be applied to the determi-
nations of all quark masses.

Only 15 years after the first lattice QCD simulations
with dynamical quarks, lattice QCD has been able to deter-
mine from first principles the strong coupling with a 0.7%
error. Quark masses are determined with a percent error
(see Table 1), and soon these computations will include full
isospin breaking corrections. The implications of these cal-
culations are far reaching in constraining the SM descrip-
tion of physical phenomena. Lattice determinations of αs are
the most precise (see the next section). The FLAG average
based on Nf = 2 + 1 + 1 simulations of the u quark mass
is MRGI

u = 2.97(11) MeV (based on the works [269,287],
see also [268]). This value, derived from first principles of
QCD, disfavors a popular solution to the strong CP problem
(a massless u quark) by 30 standard deviations.

3.2 The strong-interaction coupling constant

Giulia Zanderighi

3.2.1 The world average determination of αs

We summarize here the current procedure used in the PDG
[300] to obtain the world average value of αs(M2

Z ) and its
uncertainty, and we discuss future prospects for its improve-
ment.

Preliminary considerations
All observables involving the strong interaction depend on
the value of the strong coupling constant. This implies that a
number of different observables can be used to determine the
coupling constant, provided that a suitable theoretical predic-
tion is available for that observable. Figure 14 presents val-
ues for αs derived from different observables. The following
considerations are used to assess if a particular observable is
suitable for use in the determination of the strong coupling
constant:

– The observable’s sensitivity to αs as compared to the
experimental precision. For example, for the e+e− cross
section to hadrons (e.g. the R ratio), QCD effects are only

Fig. 14 Measurements of the coupling constant αs , as a function of
the energy scale Q. The level of precision of the perturbative prediction
used in the measurement of αs is indicated in brackets (NLO next-to-
leading order, NNLO next-to-next-to-leading order, NNLO+res. NNLO
matched to a resummed calculation, N 3LO next-to-next-to-leading
order). Figure taken from Ref. [300]

a small correction, since the perturbative series starts at
order α0

s , but the experimental precision is high. Three-
jet production, or event shapes, in e+e− annihilation are
directly sensitive to αs since they start at order αs . Four-
and five-jet cross-sections start at α2

s and α3
s respectively,

and hence are very sensitive toαs . However, the precision
of the measurements deteriorates as the number of jets
involved increases.

– The accuracy of the perturbative prediction, or equiva-
lently of the relation between αs and the value of the
observable.
The minimal requirement is generally considered to
be an NLO prediction. The PDG imposes now that at
least NNLO accurate predictions be available. In certain
cases where phase space restrictions require it, fixed-
order predictions are supplemented with resummation.
An improved perturbative accuracy is necessary to guar-
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antee that the theoretical uncertainty is assessed in a
robust way.

– The size of non-perturbative effects. Sufficiently inclu-
sive quantities, like the e+e− cross section to hadrons,
have small non-perturbative contributions ∼ Λ4/Q4.
Other quantities, such as event-shape distributions, typi-
cally have contributions∼ Λ/Q. All other aspects being
equivalent, observables with smaller non-perturbative
corrections are preferable.

– The scale at which the measurement is performed. An
uncertainty δ on a measurement of αs(Q2), at a scale
Q, translates to an uncertainty δ′ = α2

s (M
2
Z )/ α2

s (Q
2)×

δ on αs(M2
Z ). For example, this enhances the already

important impact of precise low-Q measurements, such
as from τ decays, in combinations performed at the MZ

scale.

The PDG determination of αs first separates measure-
ments into a number of different categories, then calculates
an average for each category. This average is then used as an
input to the world average. The PDG procedure requires:

1. a specification of the conditions that a determination of
αs should fulfill in order to be included in the average;

2. a specification of the separations of the different extrac-
tions of αs(M2

Z ) into the separate categories;
3. a specification of the procedure within each category to

compute the average and its uncertainty;
4. a specification of the manner in which the different sub-

averages and their uncertainties are combined to deter-
mine the final value of αs(M2

Z ) and its uncertainty.

Details of the PDG averaging procedure
In the following, we summarize the procedure adopted in the
last edition of the PDG [300]. There, the selection of results
from which to determine the world average value of αs(M2

Z )

is restricted to those that satisfy a well defined set of criteria.
These are that the fit should be

1. accompanied by reliable estimates of all experimental and
theoretical uncertainties;

2. based on the most complete perturbative QCD predictions
of at least next-to-next-to leading order (NNLO) accuracy;

3. published in a peer-reviewed journal at the time of writing
of the PDG report.

Note that the second condition to some extent follows from
the first. In fact, determinations of the strong coupling from
observables in e+e− involving e.g. five or more jets are
very sensitive to αs , and could provide additional constraints.
However, these observables are currently described only at
leading order (LO) or next-to-leading order (NLO), and the

determination of the theoretical uncertainty is thus consid-
ered not sufficiently robust. It is also important to note that
some determinations are included in the PDG, but the uncer-
tainty quoted in the relevant publications is increased by the
PDG authors to fulfill the first condition. Similarly, in some
cases the central value used in the PDG differs from the one
quoted in some publications, but can be extracted from the
analysis performed in that work.

Categories of observables
All observables used in the determination of αs(M2

Z ) in the
PDG averaging procedure are classified in the following cat-
egories

– “Hadronic τ decays and low Q2 continuum” (τ decays
and low Q2): the coupling constant is here determined at
the τ mass, therefore once it is evolved up to the Z mass
the uncertainty shrinks. Perturbative calculations for τ

decays are available at N3LO, however there are different
approaches to treat the perturbative and non-perturbative
contributions that result in significant differences. These
discrepancies are currently the limiting factor in reducing
the uncertainty in this category.

– “Heavy quarkonia decays” (QQ̄ bound states): calcula-
tions are available at NNLO and N3LO.

– “PDF fits” (PDF fits): this category includes both global
PDF fits and analyses of singlet and non-singlet struc-
ture functions. To quantify the theory uncertainty, half of
the difference between results obtained with NNLO and
NLO predictions is added in quadrature.

– “Hadronic final states of e+e− annihilations” (e+e− jets
and shapes): these fits use measurements at PETRA and
LEP. Non-perturbative corrections are important, going
as Λ/Q and can be estimated either via Monte Carlo
simulations or analytic modeling.

– “Observables from hadron-induced collisions” (had-ron
colliders): NNLO calculations for t t̄ or jet production at
both the LHC and HERA, and Z+jet production at the
LHC have allowed measurements for these processes to
be used inαs determinations. An important open question
is whether a simultaneous PDF and αs fit has to be carried
out in order to avoid a potential bias.

– “Electroweak precision fit” (electroweak): αs determina-
tions are averaged from electroweak fits to data from the
Tevatron, LHC, LEP and the SLC. These fits rely on the
strict validity of the Standard Model.

– “Lattice”: the average determined by the FLAG group in
2019 [301] from an input of 8 determinations was used
in the last PDG determination; the subsequent 2021 αs
average is very consistent with that of 2019.

Detailed information about which observables are included
in the different categories can be found in Ref. [300].
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Table 2 PDG average of the categories of observables. These are the
final input to the world average of αs

Category αs(M2
Z )

τ decays and low Q2 0.1178± 0.0019

QQ̄ bound states 0.1181± 0.0037

PDF fits 0.1162± 0.0020

e+e− jets and shapes 0.1171± 0.0031

Hadron colliders 0.1165± 0.0028

Electroweak 0.1208± 0.0028

Lattice 0.1182± 0.0008

Average and uncertainty in each category
In order to calculate the world average value of αs(M2

Z ), a
preliminary step of pre-averaging results within each cate-
gory listed in Sect. 3.2.1 is carried out. For each sub-field,
except for the “Lattice” category, the unweighted average
of all selected results is taken as the pre-average value of
αs(M2

Z ), and the unweighted average of the quoted uncer-
tainties is assigned to be the respective overall error of this
pre-average. An unweighted average is used to avoid the
situation in which individual measurements, which may be
in tension with other measurements and may have under-
estimated uncertainties, can considerably affect the deter-
mination of the strong coupling in a given category. As
an example, the determination of αs(M2

Z ) from e+e− jets
and shapes currently averages ten determinations and arrives
at αs(M2

Z ) = 0.1171 ± 0.0031. Since two determinations
[302,303], both based on a similar theoretical framework,
arrive at a small value of αs(M2

Z ) and have a very small
uncertainty, if one were to perform a weighted average
one would arrive at αs(M2

Z ) from e+e− jets and shapes
of αs(M2

Z ) = 0.1155 ± 0.0006, which is not compatible
with the current world average. This would, in fact, consid-
erably change the world average because of the very small
uncertainties. The current procedure is instead robust against
αs(M2

Z ) determinations that are outliers with small uncer-
tainties as compared to the other determinations in the same
category. For the “Lattice QCD” (lattice) sub-field, the PDG
adopts the LAG2019 average value and uncertainty for this
sub-field [301]. FLAG2019 also requires strict conditions on
its own for a determination to be included in their average,
which are in line with those used in the PDG. The results
of the averages of the categories are given in Table 2. From
the table, it is clear that determinations from different cate-
gories are compatible with each other and accordingly can
be combined to give rise to a final average.

Final average
Since the six sub-fields (excluding lattice) are largely inde-
pendent of each other, the PDG determines a non-lattice
world average value using a standard ‘χ2 averaging’ method.

This results in the final average of the six categories of

αs(M
2
Z ) = 0.1175± 0.0010, (without lattice), (3.42)

which is fully compatible with the lattice determination. In a
last step the PDG performs an unweighted average of the val-
ues and uncertainties of αs(M2

Z ) from the non-lattice result
and the lattice result presented in the FLAG2019 report,
which results in the final average of

αs(M
2
Z ) = 0.1179± 0.0009, (final average). (3.43)

Performing a weighted average of all seven categories
would instead give rise to αs(M2

Z ) = 0.1180± 0.0006. The
PDG uncertainty is instead more conservative and about 50%
larger. These final results are summarized in Fig. 15.

3.2.2 Outlook

Despite the numerous determinations of the strong coupling
constant, it remains to date the least well-known gauge cou-
pling, with an uncertainty of about 1%. Still it is a remarkable
success that all determinations from all categories agree well
with each other, all within about one sigma. Future improve-
ments are likely to be driven by those categories which today
have the smallest uncertainties, i.e. lattice determinations, τ
decays and low Q2 measurements.

As far as the category “τ decays and low Q2 measure-
ments” are concerned, it is important to mention that the
uncertainty quoted in the latter category includes the dif-
ference in the extractions that are obtained using contour
improved perturbation theory (referred to as CIPT) and fixed
order perturbation theory (FOPT). Recent arguments suggest
that FOPT are to be preferred, see also dedicated discussions
on this point in Ref. [304]. If this is confirmed, the value of
αs(M2

Z ) in this category would shift slightly to lower values,
and would allow one to quote a reduced theoretical uncer-
tainty since this additional source of uncertainty would be
completely removed. Further improvements could also come
from a better understanding of non-perturbative effects.

Important progress is also expected in the category “e+e−
jets and shapes”, where the calculation of power corrections
in the 3-jet region [180,305] could have a sizeable impact,
and improve fits of the coupling from event shapes. In fact,
in current determinations that rely on an analytic compu-
tation of non-perturbative power corrections, these calcula-
tions are performed in the two-jet limit and applied to the
kinematic region used in the fits where events typically have
an additional hard emission, i.e. to three-jet configurations.
A treatment of these corrections in the three-jet region is now
possible, at least for some observables and the impact of this
improved treatment of non-perturbative effects on αs(M2

Z )

in this category is eagerly awaited.
As far as the hadron collider category is concerned, it is

an open question if it is always preferred to fit αs(M2
Z ) and
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Fig. 15 Summary of the determinations of αs(M2
Z ) from the seven

sub-fields used in the PDG [300], as discussed in the text. The yellow
(light shaded) bands and dotted lines indicate the pre-average values
of each sub-field. The dashed line and blue (dark shaded) band repre-
sent the final world average value of αs(M2

Z ). The ‘*’ symbol within
the “hadron colliders” sub-field indicates a determination including a
simultaneous fit of parton distribution functions. All other “hadron col-
lider” determinations instead use a set of parton distribution functions
as input to the fit. Figure taken from Ref. [300]

the parton distribution functions simultaneously and how to
best deal with correlations between the parton distribution
function parameters and αs(M2

Z ) in the cases where the fit is
not performed simultaneously. In view of many more NNLO
results to come and many more data from the LHC, we can
expect theoretical work and advances in addressing this ques-
tion. Ratios of cross sections are less sensitive to parton dis-
tribution functions and therefore could be considered more
suitable to extract αs . For instance, NNLO predictions for
3-jet production will enable to perform fits of αs(M2

Z ) from
ratios with at least partial cancellation of some uncertainties.

It is not clear whether this reduction in uncertainty also holds
for the PDF dependence of such ratio predictions. Moreover,
for predictions of ratios of cross sections, the natural central
scale choice in numerator and denominator are in general not
the same. Data from the “hadron collider category” at high
Q2 will also be crucial to test the running of the coupling to
highest energy scales. Such tests are important since heavy
states that couple strongly could modify the running of αs at
high Q2.

Finally, it is important to mention that the recent years have
seen remarkable advances in the determination of αs(M2

Z )
from lattice calculations, also thanks to the FLAG effort
which imposes strict quality criteria for lattice determinations
to be included in the FLAG average. This is now the single
most precise result of all categories included in the PDG and
agrees remarkably well (both in terms of central value and
uncertainty) with the PDG world average of αs without lat-
tice data. Further improvements from lattice calculations are
also expected in the coming decade. Given all the progress
to be expected in the coming years in various aspects and
categories, a determination of αs with sub-percent precision
seems finally within reach.

4 Lattice QCD

Conveners:
Kostas Orginos and Franz Gross
The previous sections have shown how early measurements,
phenomenology, and theoretical arguments lead to the dis-
covery of the QCD Lagrangian, and how the parameters in
the Lagrangian, the QCD fine structure constant αs and the
quark masses mh , could be fixed from experiment.

With this section, we begin a systematic study of the theory
(and provide the discussion needed to understand Sect. 3).
Since αs is not small at energy scales appropriate to the
study of cool nuclear matter, a non-perturbative method is
needed. Lattice QCD (LQCD) is currently the only known
way to obtain accurate, non-perturbative QCD predictions.
Since this method is both complicated and not well covered
in most textbooks, this section presents a detailed, systematic
study of LQCD.

LQCD began in 1974, shortly after Quantum Chromody-
namics was established, when Kenneth Wilson published a
seminal paper in which he formulated the theory on a space-
time lattice. This formulation had profound implications. It
preserved the gauge invariance of the theory while regulating
ultraviolet divergences and providing a definition of QCD as
the continuum limit of the lattice theory. However, one may
argue that the most crucial implication was the fact that it
offered a pathway to non-perturbative computations. Quan-
tities such as the spectrum of stable hadrons, decay constants,
and Parton distribution functions to name a few, could now
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in principle be computed from the fundamental theory with-
out the need for uncontrolled approximations. In the begin-
ning, however, this formulation of QCD lent itself to a dif-
ferent type of analytic computations such as the strong cou-
pling expansion where Wilson showed that color charges are
indeed confined in the strong coupling limit.

Numerical investigations of Lattice QCD (LQCD) started
a few years later with the pioneering work of Michael Creutz
in 1980. There for the first time, the SU(2) pure Yang–Mills
theory was investigated using Monte Carlo methods. Sub-
sequently, many groups around the world started studying
Lattice QCD, developed methods and algorithms, and inves-
tigated the efficacy of the available computer hardware for
numerical calculations in LQCD. Although the fundamen-
tal principles of such calculations were clear, it was evident
from the beginning that the computational cost for achiev-
ing phenomenologically relevant results was enormous. In
addition, the limitations of Euclidean time formulation as
well as the computational limitations imposed by finite vol-
ume and lattice spacing made it clear that computational
power alone will not be enough. Therefore, intense theo-
retical research to develop methods and algorithms started
in the 1980s. Together with that effort, many groups devoted
efforts to designing custom-made supercomputers that were
best suited for the problem at hand. The idea of a massively
parallel computer to solve scientific problems seemed at odds
at the time with the vector machines that defined the com-
mercially available high-performance computers. Yet in the
1990s the rise of massively parallel computers, commercial
or custom-made, led to major advances in LQCD. The new
century brought a combination of powerful supercomputers,
sophisticated numerical techniques, and advanced theoretical
approaches that allowed for the first time to compute physical
quantities at phenomenologically relevant accuracy.

Lattice QCD is now an established field that can provide
results at unprecedented accuracy and can help move for-
ward our fundamental understanding of particle physics. The
impact of lattice QCD computations on strong interaction
physics is evident throughout this volume. Nearly every sec-
tion contains references to landmark lattice QCD computa-
tions. In this section, a brief introduction to the formulation
of lattice QCD is given by Gottlieb, followed by De Tar’s
review of the basic LQCD algorithms. Leinweber discusses
the structure of the QCD vacuum as it emerges from numer-
ical experiments. Karsch reviews computations at non-zero
temperatures and densities relevant to understanding quark–
gluon plasma physics.

The discussion then continues with a focus on appli-
cations. Dudek reviews hadron spectroscopy with empha-
sis on finite volume methods that allow for the extraction
of scattering amplitudes from Euclidean time correlation
functions. Constantinou/Orginos discuss computations of the
nucleon structure including modern approaches that allow

for the extraction of momentum-fraction-dependent distri-
butions from Euclidean time computations. Finally, Davies
reviews computations for Weak matrix element computations
which play a central role in the experimental program for
probing physics beyond the standard model (BSM).

4.1 Lattice field theory

Steven Gottlieb

4.1.1 Introduction

In perturbative quantum field theories loop integrals lead
to infinities. To deal with these infinities, a regularization
scheme must be introduced. Examples of regularization
schemes are Pauli–Villars modification of particle propa-
gators and dimensional regularization in which the num-
ber of space-time dimensions of the system becomes a vari-
able. After regularization, calculations no longer suffer from
infinities, but they do depend on a new parameter specific to
the regularization scheme, e.g., Λ a large mass in the Pauli–
Villars scheme, or ε = 4− d in the case of dimensional
regularization. Since physical results should be independent
of the regularization scheme, a renormalization procedure is
introduced so that the so-called bare parameters of the the-
ory depend on Λ or ε in such a way that physical observables
do not as there is a cancellation between the regularization
dependence of the bare parameters and those of the loop inte-
grals.

In lattice field theories (LFTs), the theory is modified so
that (in finite volume) there are no longer an infinite number
of degrees of freedom. For instance, in a scalar field theory
instead of a real or complex value of the field at each of the
infinite points of space time, there are only a finite number
of real or complex degrees of freedom defined on a hyper-
cubic grid of space time points. In this case, the parameter
that characterizes the regulator is the distance between the
space time points called the lattice spacing, usually denoted
a. Usually, periodic boundary conditions in space and anti-
periodic boundary conditions in time are used. As we will
see in more detail below, the field can be Fourier trans-
formed and in momentum space there is a maximum momen-
tum as each component of the momentum is in the range
−π/a < pi ≤ π/a. In a finite volume, there is also a mini-
mum spacing between allowable momenta components that
serves as an infrared regulator. To summarize, the lattice
field theory regularizes the theory by introducing a maxi-
mum momentum, and the renormalization program is imple-
mented by requiring that physical quantities be independent
of the lattice spacing as a → 0. Also, since the lattice the-
ory only has hypercubic and not full rotational symmetry,
we must demonstrate that the latter is restored for distances
much larger than a.
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Actions for a free scalar theory
To see how LFTs work, let’s start with a free scalar field
theory in the continuum, transform it to a Euclidean field
theory and then put it on a lattice. Start with the Lagrangian
density

L(x) = 1

2
[∂μφ(x)∂μφ(x)− m2φ(x)2] (4.1)

and the action

S =
∫

dt L =
∫

dt
∫

d3xL(x)

=
∫

d4x
1

2
[∂μφ(x)∂μφ(x)− m2φ(x)2]

=
∫

d4x
1

2
[∂tφ(x)∂tφ(x)

−∇φ(x) · ∇φ(x)− m2φ(x)2] (4.2)

where φ(x) is the scalar field andm is its mass. The Feynman
path integral is defined as

Z =
∫
[dφ] exp{i S}, (4.3)

where [dφ] denotes the integration measure of all possible
fields φ(x). To Euclideanize the theory let t → −iτ which
changes the sign of the time derivative term in the Lagrangian
density. It also adds a factor −i because of the change of
integration variable in the action. So, the Euclidean action is
defined to be

SE =
∫

d3xdτ
1

2
[∂τφ(x)∂τφ(x)

+∇φ(x) · ∇φ(x)+ m2φ(x)2], (4.4)

and the path integral becomes

Z =
∫
[dφ]exp{−SE }. (4.5)

At this point, it is traditional to rename τ to t , the time variable
with which we started, or let τ = x4. In any case, the field φ

is defined on a 4-dimension Euclidean domain, SE is positive
definite, and this looks like a partition function of a statisti-
cal mechanical system. The transformation to Euclidean time
allows us to use the importance sampling techniques of sta-
tistical mechanics (Monte Carlo methods) introduced in the
next section.

To convert to a lattice theory, introduce a spacing a
between the points of a hypercubic grid, so the lattice field
φn is defined on a discrete set of points n = (n1, n2, n3, n4)

in R4 and x = an. Typically, work is done in a finite volume
so that ni is an integer between 0 and Ni − 1, where Ni is
the extent of the lattice in the i-th direction. The derivatives
must be replaced by a finite difference approximation. There
is more than one way to do this. Pretending for the moment

that φ depends only on a single variable x , a forward differ-
ence is defined by

Δ+φ(x) = φ(x + a)− φ(x)

a
. (4.6)

Taylor expanding φ(x + a) gives

Δ+φ(x) = φ′(x)+ a

2
φ′′(x)+ · · · . (4.7)

Note that the symmetric finite difference operator

ΔSφ(x) = φ(x + a)− φ(x − a)

2a
(4.8)

= φ′(x)+ a2

6
φ′′′(x)+ · · · (4.9)

is a much better approximation of the continuum derivative
since the correction is second order in the small lattice spac-
ing a.

Actions for a gauge invariant scalar theory with a φ4-type
interaction
To introduce gauge invariance, change the real scalar field to
a complex field, and introduce a φ4-type interaction term

S =
∫

d4x[∂μφ∗(x)∂μφ(x)− m2φ∗(x)φ(x) (4.10)

− λ(φ∗(x)φ(x))2]. (4.11)

A global gauge transformation is just a change φ → φ′ =
Ωφ where Ω is complex phase factor, Ω = exp iθ , with θ a
real number independent of x . The action is clearly invariant
under this gauge transformation since (φ′)∗ = Ω∗φ∗ and for
every factor of Ω coming from transforming φ, there is a
corresponding factor of Ω∗ from transforming φ∗. A cubic
term in the action would break this gauge invariance.

To generalize to local gauge invariance, allow θ to become
a function of x . The mass and interaction terms are clearly
still invariant because they only depend on x . However, the
first term with derivatives transforms in a non-trivial way.

∂μφ
′(x) = ∂μ(Ω(x)φ(x))

= (∂μΩ(x))φ(x)+Ω(x)(∂μφ(x)). (4.12)

To handle the extra term depending on ∂μΩ(x), define a
covariant derivative Dμ that has the property

D′μφ′(x) = Ω(x)Dμφ(x), (4.13)

so that the covariant derivative Dμφ(x) transforms under
a gauge transformation the same way that φ(x) does. To
accomplish this, introduce a vector field Aμ(x), and define
the covariant derivative to be

Dμ = ∂μ + ieAμ. (4.14)

Using this definition in (4.13) gives the constraint

(∂μ + ieA′μ)(Ω(x)φ(x)) = Ω(x)(∂μ + ieAμ)φ(x). (4.15)
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Requiring that this hold for any field φ(x) gives the gauge
transformation for the field Aμ

A′μΩ = ΩAμ + i

e
∂μΩ. (4.16)

This derivation has preserved the order of the terms, so that
this equation will hold even for non-Abelian theories in which
Ω is a matrix. Solving for A′μ in this most general case gives

A′μ = ΩAμΩ
−1 + i

e
(∂μΩ)Ω−1. (4.17)

For the Abelian theory, this reduces to

A′μ = Aμ − 1

e
∂μθ. (4.18)

This all works out very nicely in the continuum theory.
Wilson’s brilliant insight [97] was to define the lattice theory
not with variables from the gauge algebra, but with variables
that are elements of the gauge group, denotedU (n,m). These
are called link variables. or parallel transporters because they
allow the comparison of a field at one point on the lattice with
a neighboring point in a gauge covariant way. If U (n,m) is
associated with the link connecting nearest neighbor points
n and m, then

U (m, n) = U †(n,m) = U−1(n,m) (4.19)

where the second identity follows from the fact that U is a
unitary matrix. So, defining Unμ = U (n, n + μ̂), Eq. (4.19)
shows that U (n + μ̂, n) = U †

nμ.
We want the productUnμφn+μ̂ to transform under a gauge

transformation the same way that the field does at the point
n. In other words, under a gauge transformation U → U ′
and φn → φ′n = Ωnφn , so we must have

U ′nμφ′n+μ̂
= ΩnUnμφn+μ̂. (4.20)

Since φ′n+μ̂
= Ωn+μ̂φn+μ̂, this implies

U ′nμ = ΩnUnμΩ
−1
n+μ̂

. (4.21)

Hence, the products of link variables along a path transform
as Ωn if the left-most point is n and Ω−1

m , if the right-most
point is m. With suitable products of link variables, we can
transport a field as far as we wish and have it transform as a
variable that ‘lives’ at the left-most point in the product.

The difference Unμφn+μ̂ − φn transforms in a gauge
covariant way, since under a gauge transformation it picks
up a factor of Ωn . The relationship between the group ele-
ment Unμ and the gauge field Aμ(x) that takes a value in the
Lie algebra is

Fig. 16 Top: The two paths that contribute to [Dμ, Dν ]. The μ-
direction is the horizontal axis, and ν is vertical. On the left, we have
DμDν , on the right DνDμ Bottom: The links of a plaquette whose
lower-left corner is site n, with directions same as in top figure

Unμ = P exp

{

ie
∫ an+aμ̂

an
dyν Aν(y)

}

= exp

{

iea
[
Aμ(an + aμ̂/2)+ a2

24
∂2
μAμ(an + aμ̂/2)

+ · · ·
]}

= 1+ iaeAμ(an + aμ̂/2)+ · · · . (4.22)

where the lattice spacinga is shown explicitly, and it is natural
to relate the link variable U to the (continuum) gauge field at
the midpoint of the link. Note that in Wilson’s original work,
the lattice gauge field variables are Anμ, i.e., they are labeled
by the left-hand site of the link.

Having defined the covariant derivative, the field strength
tensor can be calculated. In the continuum:

Fμν = ie[Dμ, Dν] (4.23)

where the square brackets denote the commutator. This for-
mula also holds in the case of non-Abelian gauge theory for
which Aμ(x) is a matrix in the Lie algebra of the gauge group.

On the lattice, the covariant derivative involves parallel
transport from a neighboring site (Fig. 16). Since there are
two covariant derivatives a field is transported from two sites
away:

DμDνφn = Unμ(U(n+μ̂)νφn+μ̂+ν̂

−φn+μ̂)−Unνφn+ν̂ − φn
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= UnμU(n+μ̂)νφn+μ̂+ν̂

−Unμφn+μ̂ −Unνφn+ν̂ − φn . (4.24)

The last three terms are symmetric under the interchange
of μ and ν, so only the first term contributes to the commuta-
tor. Thus, the field strength tensor is the difference between
the product of the two two-link paths connecting sites n and
n + μ̂+ ν̂. In one path we move in the μ direction first and
in the other we move in the ν direction first. Also, the field
strength tensor is gauge covariant as the common endpoints
of the two paths determine how Fnμν transforms:

F ′nμν = Ωn FnμνΩ
−1
n+μ̂+ν̂

. (4.25)

In the continuum the gauge action is proportional to F2
μν ,

and is gauge invariant. Having just determined that Fμν can
be expressed in terms of a two-link path, we might expect that
a four-link path would yield F2

μν . It is easy to construct gauge
invariant products of links. If we take the trace of the product
of links along any closed path, it will be gauge invariant. The
only closed four-link paths are those around the elementary
squares of the lattice. The term plaquette is sometimes used
to refer to the elementary squares of a hypercubic lattice. The
plaquette is also used to refer to the product of the four link
matrices around the square, or to the trace of this matrix. The
context should make clear whether the author is referring to
a shape, a matrix, or a number. Here the plaquette Unμν will
be the trace of the product of the four links

Unμν = Tr(UnμU(n+μ̂)νU
†
(n+ν̂)μ

U †
nν) (4.26)

The Wilson plaquette gauge action is defined as

SW = 1

g2

∑

n

∑

μ�=ν

(3− ReUnμν). (4.27)

Actions for fermions
In the continuum, the free fermion action SF is given by:

SF =
∫

d4xψ̄(x)(iγ μ∂μ − m)ψ(x), (4.28)

where the gamma matrices obey {γ μ, γ ν} = 2gμν . Going
through the transformation to Euclidean space time, we
introduce the Euclidean gamma matrices γ E

4 = γ 0 and
γ E
i = −iγ i . These gamma matrices obey {γ E

μ , γ E
ν } = 2δμν .

The Euclidean action is given by

SEF =
∫

d4xψ̄(x)(γ E
μ ∂μ + m)ψ(x). (4.29)

We simplify notation below by dropping the superscript E
on the Euclidean gamma matrices. To include the interac-
tion with the gauge field, the ordinary partial derivative in
Eq. (4.28) is replaced by the covariant derivative. For SEF , a
gauge covariant finite difference approximation is used

∂μψ(x)→ 1

2a
(Unμψn+μ̂ −U †

(n−μ̂)μ
ψn−μ̂) (4.30)

which is the analog of ΔS introduced in Eq. (4.8). This action
is called the naive fermion action, and we are about to see that
it suffers from the so-called “fermion doubling problem.”

To explore this, consider the case of a free fermion, so the
link variables may be replaced by the unit matrix. Going to
momentum space, let

ψn =
∑

p

e(iap·n)ψ(p). (4.31)

On the lattice there is maximum value for each momen-
tum component because if apμ = 2π then the exponential
will always be always be the same as for pμ = 0. Thus,
the momentum components can be restricted to be less than
(2π)/a or more symmetrically,

− π

a
< pμ ≤ π

a
. (4.32)

Because of the periodic boundary conditions on a lattice of
finite extent, say L in each direction, there is another restric-
tion that apμL = 2π j for some integer j . Thus the allowable
momentum components are restricted to (2π j)/(aL), so for
finite L the lattice provides an infrared as well as an ultra-
violet cutoff. However, as L goes to infinity, the momentum
becomes a continuous variable, and in this case Eq. (4.31)
becomes

ψn =
∫ π/a

−π/a
d4 p e(iap·n)ψ(p). (4.33)

The fact that ψ̄ and ψ are displaced from each other on the
lattice results in factors of exp±i pμa. The final result for the
Euclidean action, written in momentum space, is

SEF =
∫

d4 p

[
i

a

∑

μ

ψ̄(p)γμ sin(pμa)ψ(p)+ mψ̄(p)ψ(p)

]

=
∫

d4 p ψ̄(p) S−1(p) ψ(p), (4.34)

The fermion doubling problem
At this point, most authors go on to solve for the free quark
propagator and examine the pole structure. Let’s just look
at the current expression and compare with the continuum.
When pμa is small, we may approximate sin(pμa)→ pμa
so the factor of a−1 before the sum is cancelled and this looks
a lot like i /p + m. As pμ continues to grow toward π/(2a),
the sin function flattens out and then starts to return to zero
at pμ = π/a. That means at the end of the Brillouin zone,
there is again a region were there is linear dependence on the
momentum. More concretely, let pμ = π/a − k and note
that sin(pμa) = sin(ka). We also need the region where
pμ = −π/a + k to have a region in momentum space just
like the one at the origin. Since any component of p can be
near zero, or at the edge of the Brillouin zone there are 24

regions in momentum space where the action takes the form

123



 1125 Page 54 of 636 Eur. Phys. J. C          (2023) 83:1125 

of a free action. We wanted one fermion and we wound up
with 16! This is the crux of the doubling problem.

In his Erice lectures, Wilson provided a fix [306]. He added
to the action a higher dimensional term, the lattice Lapla-
cian, multiplied by the lattice spacing. This term vanishes as
a → 0. The covariant version of the second derivative ∇2

μ is
defined

∇2
μψn = 1

a2

(
Unμψn+μ̂ +U †

(n−μ̂)μ
ψn−μ̂ − 2ψn

)
. (4.35)

The Wilson fermion action is therefore

SFW = Snaive − ar

2

∑

x

ψ̄(x)
∑

μ

∇2
μψ(x)

= ψ̄MW (m)ψ, (4.36)

where r is a free parameter, usually set to r = 1, and Snaive
is given by Eq. (4.29) after substituting Eq. (4.30). Fourier
transforming, the free inverse propagator now is

aS−1(p) = i
∑

μ

γμ sin(apμ)+am−r
∑

μ

(
cos(apμ)−1

)
.

(4.37)

The last term, proportional to r , vanishes near p = 0, but
near the edge of the Brillouin zone cos(apμ) = −1 and the
doublers, with n momentum components pμ = ±π/a, now
attain masses m+2nr/a, and only one fermion, with p ≈ 0,
remains light. The Wilson term cures the doubling problem,
but the action with m = 0 no longer has a chiral symmetry so
there is an additive mass renormalization, and we must fine
tune the parameters to determine where the fermion mass
vanishes. The Wilson fermion action has errors O(a).

An important property of the Wilson Dirac operator is its
γ5 Hermiticity. That is

M†
W (m) = γ5MW (m)γ5. (4.38)

We will see in the next section that det MW (m), the fermion
determinant, arises from integrating over the fermion fields.
A consequence of γ5 Hermiticity is that det M†

W (m) =
det MW (m). If a theory has two equal mass fermions, the
fermion determinant will be positive (semi-) definite as

det(MW (m)MW (m)) = det(M†
W (m)MW (m)). (4.39)

In addition to the dimension-5 operator Wilson intro-
duced, there is a second operator introduced by Sheik-
holeslami and Wohlert [307] that can be adjusted to reduce
the error to O(a2). The operator is the lattice analog of
ψ̄(x)σμνFμν(x)ψ(x) where σμν = i

2 [γμ, γν] is the commu-
tator of the γ matrices and Fμν(x) is the field strength tensor
defined in Eq. (4.23). Previously, we were considering elec-
tromagnetism, but the same formula applies to non-Abelian
theories if we replace e by g, the coupling constant for the
non-Abelian group. A lattice expression for the field strength

tensor can be constructed from four suitably oriented (uncon-
tracted) plaquettes surrounding site n. This has come to be
known as the clover action because the four plaquettes look
like a four-leaf clover and clover is easy to spell. Thus, the
Sheikholeslami-Wohlert or clover term in the action is

SSW = iag

4
cSW

∑

n,μ,ν

ψ̄nσμνFnμνψn, (4.40)

whereFnμν is the clover-like term discussed above. The coef-
ficient cSW can be tuned either perturbatively [308,309], or
better yet, non-perturbatively [310,311]. The addition of the
clover term is an example of an improvement program intro-
duced by Symanzik [312,313].

A number of collaborations generate ensembles of gauge
configurations using the Wilson-clover action. The scientific
output from the expense of creating these configurations is
greatly enhanced by sharing them for complementary inves-
tigations. The CLS, HSC, PACS, and QCDSF Collabora-
tions are among those generating ensembles. Reference [314]
describes the ensembles generated by a dozen collaborations
and their plans to share them as presented at Lattice 2022.
This paper also covers several of the other quark actions dis-
cussed below.

4.1.2 Twisted mass quarks

One issue with the Wilson formulation is that for small mass,
it is possible to encounter so-called ‘exceptional configura-
tions’ for which it is very difficult, if not impossible, to con-
struct the quark propagator [315]. This was particularly an
issue in the quenched approximation in which the fermion
determinant is neglected. It can also slow down generation of
configurations with dynamical quarks. For a theory with two
light flavors, such as u and d, the twisted mass operator was
invented to ensure that the fermion determinant is positive
definite [316]. If the lattice Dirac operator is D + m, then

Dtwist = D + m + iμγ5τ3, (4.41)

where τ3 operates on the two flavors of quarks. Then
det Dtwist = det((D +m)†(D +m)+ μ2). So, as long as μ

is non-zero, det Dtwist is positive and exceptional configura-
tions are avoided. This action has been used by the European
Twisted Mass Collaboration for over 15 years. The collab-
oration is now the Extended Twisted Mass Collaboration as
there are non-European members.

4.1.3 Staggered quarks

Staggered quarks are an alternative to Wilson quarks that
reduce the degree of doubling and retain some of the chiral
properties of the continuum theory [98,317–319]. One must
be careful in reading the literature since some authors use x0
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for the time coordinate and others use x4. This can have con-
sequences for the field redefinition essential to the reduction
in the number of fermions. Here we adopt the conventions in
Refs. [320] and [321] rather than those in Ref. [322]. The key
simplification is to rearrange the Dirac components at each
site of the lattice in such a way that the action can be seen as
comprised of four non-interacting fields. In this way, we may
retain a single field component at each site and the doubling
is reduced from 16 to 4. Initially, it was thought that this could
be interpreted as four flavors or quarks, say, u, d, s, and c, but
the modern interpretation is that each flavor has four ‘tastes.’
Tastes are not physical, so we must take a fourth root of the
fermion determinant for each quark, and must be careful in
constructing hadron operators to avoid mixing tastes as phys-
ical operators should really be constructed from a single taste.
In the continuum limit, taste breaking vanishes so operators
with mixed tastes should become degenerate with single taste
operators. The rooting procedure and its validity is quite a
technical subject. We refer the interested reader to Sec. III.C
of Ref. [322] for a detailed discussion with references to the
original literature.

Define a local redefinition of the Dirac components of the
quark field by ψn = Ωnψ

′
n and ψ̄n = ψ̄ ′nΩ

†
n . The 4 × 4

matrix Ωn is defined as

Ωn = γ
n0
0 γ

n1
1 γ

n2
2 γ

n3
3 . (4.42)

This may appear more complicated than it really is. Note that
as γ 2

μ = 1, each gamma matrix appears in Ωn only when the
corresponding coordinate is odd. There are only 16 distinct
values for Ωn , and if we translate two sites in any direction,
we have the same matrix. We will see that staggered quarks
are naturally defined on 24 sub-hypercubes of the lattice. The
gamma matrices are unitary and Hermitian, so

Ω†
nγμΩn+μ̂ = (−1)n0+···+nμ−1 ≡ αμ(n). (4.43)

The hopping term in the naive fermion action

ψ̄nγμUnμψn+μ̂ (4.44)

is transformed into

ψ̄ ′nΩ†
nγμUnμΩn+μ̂ψn+μ̂ = ψ̄ ′nαμ(n)Unμψn+μ̂. (4.45)

The same factor appears in the hopping term that involves
ψn−μ̂ since Ωn+μ̂ = Ωn−μ̂ as the two sites differ by two
units in the μ-direction. The gamma matrices have disap-
peared, and we are left with a unit matrix in Dirac index space,
so there are four equivalent non-interacting components ψ ′n .
We may discard three of the four components and write the
staggered action in terms of a single component field χ .

Sstag = 1

2a

∑

n,μ

χ̄nαμ(n)[Unμχn+μ̂ −U †
(n−μ̂)μ

χn−μ̂]

+ m
∑

n

χ̄nχn . (4.46)

As mentioned above, becauseαμ(n) is periodic in each direc-
tion with period two, it is possible, perhaps natural, to inter-
pret the 16 components on the sites of each 24 as the com-
ponents of four Dirac spinors, i.e., the four tastes.

For the free theory, the four tastes can be expressed in the
following way. Let y be a 4-component integer valued vector
labeling the hypercubes. Let η be a four component vector
whose components may only take the value 0 or 1. That is,
η labels the 16 sites of a hypercube. For each hypercube y,
the sites of the original lattice take the values 2y+ η for one
of the 16 values of η. Let α be a Dirac component index and
a be a taste label. Both α and a range between 1 and 4. We
have

ψαa
y = 1

8

∑

η

Ωαa
η χ2y+η. (4.47)

This is not gauge covariant since we are adding together χ

values from different lattice sites, so in the interacting case,χ
at each site must be multiplied by suitable parallel transporter
to move it to the origin of the hypercube. In practice, one
really does not have to worry about this.

For Wilson quarks the action was improved by adding the
clover term. For staggered quarks there have been similar
advances by improving the action. For the most simple stag-
gered action, the errors are O(a2). Naik [323] introduced a
3-link hopping term. The gauge action was also improved
by adding 2× 1 rectangles, and 6-link terms that circle a 3-
dimensional cube, sometimes called the bent chair diagram,
known as the Lüscher–Weisz gauge action [324,325]. These
terms are depicted in the top of Fig. 17. Essential benefits
come from averaging or smearing the gauge fields in the 1-
link hopping terms. These smearings are designed to reduce
taste symmetry breaking. There have been two major rounds
of these improvements, the first is known as the asqtad action
[326–330] and the second is known as the highly improved
staggered quark or HISQ action [331]. The paths for the
fermion link smearings are shown in the bottom of Fig. 17.
The HISQ action employs two levels of smearing. Refer-
ence [322] details the asqtad and HISQ actions and provides
many physics results using the former action. The MILC Col-
laboration generates HISQ ensembles that are also used by
the Fermilab Lattice and HPQCD Collaborations, and others.
These improvements make the coding more complicated and
require more floating point operations on a fixed grid size,
but the payoffs can be enormous as the errors for the same
lattice spacing are significantly reduced with the improved
actions. If, say, an improvement would allow one to work at
twice the lattice spacing as without the improvement there
would be a significant reduction in computer time as halving
the lattice spacing increases the work by a factor of 32 or
more.
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Fig. 17 Top: Loops that are included in the gauge action for asqtad
and HISQ quarks. Bottom: For the asqtad action, the one-link hopping
term in the naive staggered quark action is replaced by a combination of
1-, 3-, 5-, and 7-link smearings. The right-most 5-link term is known as
the Lepage term. This figure is adopted from Ref. [330]. There is also a
straight 3-link term known as the Naik term. For the HISQ action, there
are two levels of smearing, but no additional paths are involved

4.1.4 Improving chiral symmetry

When the quark mass vanishes, the theory contains an impor-
tant continuous symmetry known as chiral symmetry. The
dynamical breaking of this symmetry is responsible for the
pions being so light. The Wilson action explicitly breaks this
symmetry, and the staggered actions discussed above only
maintain some of the symmetry. However, there are other
lattice actions that have much better chiral symmetry. These
include the domain wall and overlap actions.

In the continuum, chiral symmetry follows from the fact
that γ5 anticommutes with the kinetic operator D = /D.
In 1982, Ginsparg and Wilson [335] considered the conse-
quences of a generalized lattice chiral symmetry which is
currently expressed as

Dγ5 + γ5D = aDγ5D. (4.48)

Note the factor of the lattice spacing a on the RHS. As a → 0,
we restore chiral symmetry; however, even at non-zero a
there is a more complicated chiral symmetry for operators
that obey Eq. (4.48).

ψ → ψ ′ = exp
(
iαγ5

(
1− a

2
D

))
ψ (4.49)

with a similar expression for ψ̄ . As a → 0, Eq. (4.49)
approaches the usual expression for a chiral rotation, but at
non-zero lattice spacing the transformation is more compli-
cated as D is a finite difference operator. Reference [335] was
not heavily cited until 1998 when the overlap operator that
was developed by Narayanan and Neuberger [336–339] was
shown to obey Eq. (4.48) [340]. If A obeys γ5 Hermiticity,
let H = γ5A, then

Dov = 1

a
(1+ γ5 sign[H ]) (4.50)

defines the overlap operator. An alternative expression is

Dov = 1

a
(1+ γ5H(HH)−1/2). (4.51)

A suitable choice for A is DW (0) − r , with 0 < r < 2.
Numerically, it is difficult to compute the sign function or the
inverse square root of a matrix. The χQCD Collaboration
uses overlap fermions.

Two other papers from 1998 were also important in reviv-
ing interest in the Ginsparg–Wilson (GW) relation. In Ref.
[341], Hasenfratz, Laliena, and Niedermayer showed that the
fixed point action obeys the GW relation. Luscher demon-
strated that the GW relation leads to an exact chiral symmetry
even at non-zero lattice spacing [342].

In 1992, Kaplan introduced domain wall fermions in
which chiral modes are bound to a defect in a 5-dimensional
(5D) theory [343]. The theory was further developed by
Shamir [344,345], and Furman and Shamir [346]. We adapt
here the notation of Ref. [347]. Points in the five dimensional
lattice are labeled bym in the four dimensional space and r in
the 5th dimension, with r = 0, . . . , N5− 1. The 5D fermion
field is Ψ (m, s). The 5D Dirac operator consists of two parts:

Ddw(n, s;m, r) = δs,r D(n;m)+ δn,mDdw
5 (s, r). (4.52)

The first term can be an ordinary Wilson operator with a
modified mass:

D(n;m) = (4− M5)δn,m − 1

2

±4∑

μ=±1

(1− γμ)Un;mδn+μ̂,m

(4.53)

where we use notation Un;m to avoid having to specify her-
mitian conjugation for negative directions. Using P± =
(1± γ5)/2,

Ddw
5 (s; r) = δs,r − (1− δs,N5−1)P−δs+1,r

−(1− δs,0)P+δs−1,r + m(P−δs,N5−1δ0,r

+P+δs,0δN5−1,r ). (4.54)

The physical 4D fields come from the boundaries of the 5D
field:

ψ(n) = P−Ψ (n, 0)+ P+Ψ (n, N5 − 1). (4.55)

Domain wall fermions are used extensively for dynamical
quarks, especially by the RBC/UKQCD and JLQCD Collab-
orations.

4.1.5 Continuum limit

To control systematic errors it is crucial to tune the quark
masses to their physical value, to have a volume that is large
enough to avoid finite volume errors, and to take the limit
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Fig. 18 Left: We show how taste breaking of pseudoscalar mesons
decreases as the lattice spacing is reduced for two types of improved
staggered quarks asqtad (blue) and HISQ (red). Different symbols
denote different taste mesons. The quantity plotted is the difference
of squared mesons masses for the plotted meson mass (ξ ) and the Gold-
stone taste combination (γ5). The horizontal axis is the α2

s a
2 in units

determined by the heavy quark potential r1. Taste symmetry is restored
in the continuum limit and taste breaking is much smaller for HISQ
than for asqtad. See Ref. [332] for details. Right; The ρ meson mass
as a function of lattice spacing for multiple actions shows a common

continuum limit, but some actions have much more gentle lattice spac-
ing dependence than others. Red octagons are unimproved staggered
fermions with Wilson gauge action, diamonds are unimproved stag-
gered fermions with Symanzik improved gauge action, crosses are Naik
fermions and blue squares are asqtad fermions, both with Symanzik
improved gauge action. For comparison we also show in light blue tad-
pole clover improved Wilson fermions with Wilson gauge action [333]
(fancy squares) and with Symanzik improved gauge action [334] (fancy
diamonds). (See Ref. [322] for details)

a → 0. In the early days, it was too expensive to use physi-
cally light u and d quarks, so one also had to use chiral pertur-
bation theory to extrapolate to those quark masses. Because
QCD has the property of asymptotic freedom, the coupling
constant goes to zero as the cutoff goes to infinity. On the
lattice, the inverse lattice spacing plays the role of the cutoff.
By dimensional transmutation, instead of expressing physi-
cal results in terms of the coupling, we do it in terms of the
lattice spacing. In the left panel of Fig. 18, we show how
taste breaking decreases as a → 0 in accord with expected
behavior for both asqtad and HISQ quarks. This also clearly
shows that taste breaking is much smaller for HISQ (as it
was designed with that in mind). In the right panel, we show
how the ρ meson mass depends on the lattice spacing. Some
of these results are rather old, and some are in the quenched
approximation; however, the point to be made is that different
ways of putting quarks on the lattice have the same contin-
uum limit, although the rate at which they approach that limit
will vary.

Modern calculations use multiple lattice spacings to con-
trol the continuum limit. Results using various quark actions
are compared by the Flavor Lattice Averaging Group [256].
Calculations must use at least three lattice spacings to sat-
isfy the quality criteria. Some calculations use five or six
lattice spacings and can span a range as wide as about 0.15
fm to 0.03 fm. There is strong evidence from many different

physical quantities that different quark actions agree in the
continuum limit. Differences between calculations with and
without a dynamical charm quark tend to be quite small. See
Sects. 4.5 and 4.7 for results comparing different actions.

4.1.6 Further reading

I have made no attempt at a historically accurate account
of lattice QCD, and due to space limitations much has been
left out. Here I list some books on the topic. As far as I
know, “Quarks, gluons and lattices” by Creutz is the first
monograph[348]. Creutz also edited “Quantum Fields on the
Computer,” which covers scalar and Yukawa theories in addi-
tion to QCD [349]. Proceedings from the 1989 TASI summer
school edited by DeGrand and Toussaint [350] was an early
essential reference. Books by Rothe [351] and by Montvay
and Munster [352] appeared in the early 1990s. The former
is now in its fourth edition and is available online via open
access. Since 2000, at least three books have been published.
Authors are Smit [321]; DeGrand and DeTar [320]; and Gat-
tringer and Lang [347].

4.1.7 Personal remarks

In 1975, I had the opportunity to take my first European
physics trip when I attended the Erice summer school in
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Sicily. Little did I know as I listened to Ken Wilson lecture on
quark confinement and lattice gauge theory how profoundly
his work would impact my own. (As an undergraduate, I
only remember talking to Wilson once when he kindly gave
me advice on which graduate schools I should apply to.) I
recall being quite friendly with Michael Creutz during the
school. Claudio Rebbi was one of the lecturers. I have had
many great interactions with both of them. I was in awe of
seeing Paul Dirac walking quietly around the school. Tom De
Grand would later become a collaborator. Sidney Coleman,
of course, gave a great series of lectures.

During my postdoc at Argonne, Creutz was kind enough
to send me a printed copy of his code. I had a great title
for a paper: “Looking for Glue in SU(2).” Unfortunately, I
didn’t really know anything about glueballs, so I did not pur-
sue that. While at Fermilab, I was looking for something new
and worked on the Migdal–Kadanoff recursion relations with
Khalil Bitar and Cosmas Zachos (who I had known when he
was an undergrad and I was in graduate school). Don Wein-
garten visited and I started my career of Monte Carlo lattice
calculations (using SU(3) not SU(2)). Hank Thacker, Paul
Mackenzie, Weingarten, and I used some of the VAX com-
puters at Fermilab for our calculations to examine ρ decay.
We worked on a 62 × 12 × 18 lattice and had so few con-
figurations we joked that we knew each one by name. For
no good reason, I still have some of the magnetic tapes on
which we stored the configurations. This project continued
when I moved to UC San Diego. A year later, my grad school
housemate Doug Toussaint arrived as an assistant professor.
I started working with him, and more senior people such as
Bob Sugar and Julius Kuti. A few years later the MILC Col-
laboration started, and I would like to mention fellow found-
ing members Claude Bernard and Carleton DeTar. Lattice
gauge theory has been my life ever since then.

4.2 Monte-Carlo methods

Carleton DeTar

4.2.1 Introduction

In 1980, Michael Creutz pioneered the numerical simulation
of lattice QCD [353,354] with studies of Wilson’s lattice for-
mulation of SU(2) Yang–Mills theory. This feasibility study
started a vast enterprise devoted to “solving” QCD in the
nonperturbative regime. Later on, as computing power grew,
it became possible to include quarks, thus bringing simula-
tions in contact with reality. This subsection introduces basic
methods for carrying out the numerical simulation of lattice
QCD using Monte Carlo methods. It concludes with a men-
tion of ongoing improvements.

4.2.2 Lattice path integration

Partition function
The most widely used strategy for numerical simulation of
QCD starts from a Feynman path integral formulation [355],
which is based on the partition function

Z =
∫
[dUdψdψ] exp[−S(U, ψ,ψ)] (4.56)

where

S(U, ψ,ψ) = SW + ψMψ (4.57)

is the Euclidean action for the lattice SU(3) gauge fieldU and
quark field ψ , as defined in Sect. 4.1. For simplicity here, we
treat only one quark flavor, and we suppress the color (c),
vector (μ), and spatial (n) indices on Ucc′,μ(n) and the color,
spin (α), and spatial indices on ψc,α(n). Note that for lattice
volume V (number of sites) there are 4V SU(3) matrices
denoted by U and V spin/color vector fields denoted by ψ .

The integration over the gauge links U is done over the
classical SU(3) gauge field Uμ(n) on each lattice link. We
use the invariant Haar measure dUμ(n) on each link. (We
won’t need it, but there is an Euler-angle representation of the
measure [356].) The integration is done without gauge fixing.
Since the action S is gauge invariant and the gauge group
is compact, the integral over gauge choices is finite. In the
Feynman formulation, fermion fields, in particular ψ , must
be anticommuting Grassmann variables. This assures that
they obey Fermi-Dirac statistics. It would be challenging to
treat them directly in a computer simulation, but, fortunately,
they can be integrated out using only the identities listed
below and their analogs, leaving expressions involving only
the classical gauge field. For a few more details, see Ref.
[320].

In a Euclidean spacetime with finite time extent T , the
quantity Z in Eq. (4.56) is the thermal partition function for
the theory defined by the action S with hamiltonian H at
inverse temperature β = T . Thus

Z(β) = Tr exp(−βH). (4.58)

The zero temperature limit corresponds to an infinite time
extent.

Grassman calculus
We need three important identities from the Grassmann cal-
culus:
∫
[dψdψ] exp(−ψMψ) = det M (4.59)

∫
[dψdψ]ψc,α(n)ψc′,α′(n

′) exp(−ψMψ)

= M−1
c,α;c′,α′(n, n

′) det M (4.60)
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∫
[dψdψ]ψc,α(n)ψc′,α′(n

′)ψd,β(m)ψd ′,β ′(m
′)

exp(−ψMψ) = [M−1
c,α;c′,α′(n, n

′)M−1
d,β;d ′,β ′(m,m′)

−M−1
c,α;d ′,β ′(n,m

′)M−1
d,β;c′,α′(m, n′)] det M (4.61)

The inverse of the fermion matrix M is the fermion propaga-
tor. We see that each ψ , ψ pair in the integrand contributes
a fermion propagator. All pairings can occur, as in the last
example. The minus sign there arises from the anticommut-
ing property of the fields.

Observables
Physical quantities are defined in terms of observables
O(U, ψ,ψ) constructed from the variables U , ψ , and ψ . To
obtain the expectation value of the observable, we calculate

〈O〉 = Z−1
∫
[dUdψdψ]O(U, ψ,ψ) exp[−S(U, ψ,ψ]

(4.62)

Meson propagator
For example, we might want to determine the mass of a pseu-
doscalar meson. To do so we work with an “operator” that
“creates” or “destroys” the meson:

OPS(p, t) =
∑

r

exp(ip · r)ψ(r, t)γ5ψ(r, t), (4.63)

where p is the momentum. Note that if we replace the Grass-
mann field with a quantum field, the same operator in quan-
tum field theory would create or destroy the meson. The sum
over spatial sites r = (x, y, z) for fixed t and p gives a meson
of momentum p at Euclidean time t . To obtain the mass, we
calculate at zero momentum and large |t ′ − t |
CPS(t

′, t) = 〈OPS(0, t ′)OPS(0, t)〉
= z2

PS exp[−MPS|t ′ − t |] (4.64)

where zPS is the amplitude and MPS is the meson mass. In
effect, we are creating the meson at time t and destroying
it at time t ′. The meson propagates between these times. In
Minkowski space the meson propagator would be propor-
tional to the phase factor exp[−iMPS|t ′ − t |]. In Euclidean
space here, it falls exponentially in the time separation at a
rate controlled by the mass MPS . This expression is strictly
valid only for large time separations |t ′ − t |. At smaller sepa-
rations, we would get additional, higher-mass contributions.

The meson interpolating operators are sometimes called
“source” and “sink”. Which is which depends on the point
of view, since they can serve a dual purpose.

Integrating out the fermion fields
Let’s examine the expectation value in Eq. (4.61) in more
detail. Note that we can integrate out the fermion fields
exactly by making use of the identities in Eqs. (4.59) and
(4.61). When we insert the product of two interpolating oper-
ators from Eq. (4.63) into Eq. (4.61) we get a product of two

Fig. 19 Quark line connected and disconnected diagrams

Grassmann fields ψ and two Grassmann fields ψ . According
to Eq. (4.61), we get

CPS(t
′, t)

=
〈∑

r;r′
{Trcs γ5M

−1(r, t; , r′, t ′)γ5M
−1(r′, t ′; r, t))

−Trcs γ5M
−1(r, t; r, t)Trcs γ5M

−1(r′, t ′); r′, t ′)}
〉

G

(4.65)

where Trcs denotes a trace over color and spin indices and
we have defined, for any function E of the gauge field,

〈E〉G = Z−1
∫
[dU ]E exp[−SW ] det M. (4.66)

With the fermion fields integrated out, the Feynman path
integrals now involve only integration over the classical
gauge field, which is amenable to numeric integration. The
meson propagator in Eq. (4.65) has two terms that are rep-
resented diagrammatically in the two panels of Fig. 19. We
call the two contributions quark-line “connected” and quark-
line “disconnected”. The loop in the disconnected diagram
represents the annihilation of the quark and antiquark in the
interpolating operator. It contributes only if the meson is a
flavor singlet. With the addition of flavor we would find that
the pion does not have this term.

Form of the meson propagator
On a finite lattice with Euclidean time extent T and the usual
periodic/antiperiodic boundary conditions on the fields, the
meson correlation function CPS(t ′, t) gets another contri-
bution as the meson propagates in the opposite direction
from the source, exploiting the periodic/antiperiodic bound-
ary condition, and arriving again at the sink. The distance
traveled in Euclidean time is now T − |t ′ − t |. Thus we have

CPS(t
′, t) = z2

PS exp[−MPS|t ′ − t |]
+z2

PS exp[−MPS(T − |t ′ − t |)]. (4.67)

Figure 20 illustrates the result of a calculation of the pion
propagator showing both forward and backward propagation.

Decay constant
The amplitude zPS is proportional to the meson decay con-
stant fPS :

zPS = ZPS fPS (4.68)
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Fig. 20 Zero momentum pion propagator at lattice spacing a = 0.06
fm as a function of Euclidean time expressed in units of the lattice
spacing (courtesy William Jay). The source is at t = 0. In this case
T = 192a

where ZPS is a renormalization constant (“matching factor”)
that relates the lattice interpolating operator to a physical
continuum interpolating operator.

Form factor
Form factors give information about hadron structure and
decay. Here we illustrate the construction of the electromag-
netic form factor for the meson illustrated above. We calcu-
late the three-point function

Cμ(t,q, t ′, t ′′) = 〈OPS(t,q)Jμ(t ′,q)OPS(t
′′, 0)〉, (4.69)

where Jμ(t ′,q) is the current density projected onto spa-
tial three momentum q and 0 denotes zero momentum. For
simplicity we have chosen zero momentum for the meson
interpolating operator at time t ′′, and we have enforced three-
momentum conservation. (In Euclidean space-time, we don’t
have energy conservation, but the meson propagators are on
shell.)

Form of the three-point function
For t � t ′ � t ′′ the three-point function has the form

Cμ(t,q, t ′, t ′′) = zPS(q)ZV zPS(0) exp(−MPS|t ′ − t |)
×Fμ(q) exp(−MPS|t ′′ − t ′|) (4.70)

where Fμ(q) is the desired form factor. The current renor-
malization constant ZV matches the lattice current Jμ to the
continuum current.

Integrating out the fermion fields
There are a variety of choices for the current density. We
could work with the conserved lattice Noether current. Or
we could work with a “local” current

Jμ(r, t) = Qψ(r, t)γμψ(r, t). (4.71)

where Q is the charge. This current is not conserved at
nonzero lattice spacing, but with suitable renormalization,
it should give the same result as the conserved current in the
continuum limit. We use the local current here for simplicity.

We integrate out the fermion fields following the same
steps as for the meson propagator. We display, here, only the
quark-line-connected contribution:

Cμ(t,q, t ′, t ′′) =
∑

r,r′,r′′
exp(−ir · q) exp(ir′ · q)

×
〈
Trcs γ5M

−1(r, t; , r′, t ′)γμM−1(r′, t ′; r′′, t ′′))

× γ5M
−1(r′′, t ′′, r, t)

〉

G
(4.72)

The quark-line structure is the closed loop diagrammed in
the left panel of Fig. 19.

4.2.3 Monte Carlo methods

Importance sampling
The path integral in Eq. (4.66) involves integration over
so many variables that Monte-Carlo importance sampling
becomes the only method of choice. A single point in the
domain of integration is specified by the gauge field val-
ues U on each link – called a gauge field configuration. The
integrand is sampled over random gauge-field configurations
with probability density P of encountering a given configu-
rationU . If the sampling is designed so that P is proportional
to the integrand weight factor

P ∝ exp[−SW ] det M], (4.73)

then in an ensemble of such gauge configurations Ui for i =
1, . . . , N , the expectation value of an observable E is simply
the ensemble average in the limit N →∞.

〈E〉 = lim
N→∞

1

N

N∑

i=1

E(Ui ). (4.74)

Of course, the weight factor must be positive definite in order
to be treated as a probability density. This is usually the case,
but there are important exceptions. One can use the same
path-integral formalism to treat a grand-canonical ensemble
of fermions at nonzero fermion number (or flavor) density;
see Sect. 4.4. In this case the fermion determinant acquires a
complex phase (the so-called “sign problem”) that obviates
a probabilistic treatment.

Markov chain
There are various methods for generating such an ensemble.
They all involve creating a Markov chain of gauge configu-
rationsUi , i.e., a sequence generated by a stochastic rule that
takes the previous configuration U and produces a new con-
figuration U ′. The Markov chain proceeds from an arbitrary
starting configuration. With a properly devised stochastic
rule, after a sufficient number of steps the probability distri-
bution approaches the desired distribution of Eq. (4.73). We
say that the distribution has “reached equilibrium”. Of course
we must also take care that the distribution is “ergodic” in the
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sense that all important regions of the integrand are included
in the ensemble – that the distribution isn’t “frozen” around
one local minimum of the effective action at the expense of
other equally important minima.

Heatbath algorithm
The heatbath algorithm runs through the lattice updating each
gauge link, one at a time. For the gauge link matrix Uμ(n),
the integrand weight is regarded as defining a probability
distribution R[Uμ(n)] for the gauge link being updated. One
chooses a new gauge link Uμ(n)′ from that distribution and
then moves on to the next gauge link. The name “heat bath”
comes from early studies of SU (2) pure gauge theory in
which the effective action was proportional to a coupling
constant that could be interpreted as an inverse Monte-Carlo
temperature (not to be confused with the temperature of the
partition function). So the update was analogous to exposing
each link to a heat bath of that temperature. The heat bath
method has fallen into disuse in lattice QCD now that more
calculations include fermions, because the fermion determi-
nant has a nontrivial dependence on the gauge links, which
makes selecting a new link matrix Uμ(n) from a local prob-
ability distribution R[Uμ(n)] too expensive to implement.

Metropolis–Hastings algorithm
A classic method for generating the desired Markov chain
uses the algorithm of Metropolis et al. and Hastings [357],
usually abbreviated as the “Metropolis” algorithm. It works
with a general class of stochastic rules for proposing a new
gauge configuration U ′ and then either accepts or rejects
the new configuration based on a criterion designed to lead
asymptotically to the desired ensemble:

– Propose a new configurationU ′ with probability Q(U ′←
U ). The transition must satisfy the reversibility condition:

Q(U ← U ′) = Q(U ′ ← U ). (4.75)

Also, it must be possible after some number of steps to
reach any configuration with nonzero probability.

– Choose a random number λ distributed uniformly on
[0, 1].

– If the proposed change decreases the effective action
ΔSeff = Seff(U ′)− Seff(U ) < 0 then accept the change.

– Otherwise, accept the change if exp[−ΔSeff ] > λ. Oth-
erwise, reject it.

The transition process defined by Q(U ′ ← U ) is quite gen-
eral, which makes the algorithm particularly useful.

4.2.4 Molecular dynamics

By far the most common present-day method for generating
the Markov chain uses a “molecular dynamics” method. We

illustrate it for a scalar field φ with path-integral partition
function

Z =
∫
[dφ] exp[−S(φ)]. (4.76)

We pair a dummy “momentum” p(n) with the field φ(n) on
each site of the lattice and rewrite the partition function as

Z ′ =
∫
[dp][dφ] exp[−p2/2− S(φ)]. (4.77)

The momentum integral is trivial and results in an immaterial
constant factor. We then take a lesson from classical statistical
mechanics and observe that this partition function describes a
statistical ensemble of “particles” of unit mass, one per lattice
site, and unit temperature kT = 1 moving in an interacting
“potential” S(φ). The ensemble is microcanonical with total
energy

Etot = p2/2+ S(φ). (4.78)

The Hamilton equations of motion are, as usual,

dφ(n)/dτ = p(n) (4.79)

dp(n)/dτ = −∂S/∂φ(n), (4.80)

where τ is a fictitious “Monte Carlo time”. We then observe
that if the system is large and the interactions are nontrivial,
the classical motion of the system will lead to a Maxwell-
Boltzmann distribution in the coordinates φ given by

P(φ) ∝ exp[−S(φ)]. (4.81)

In standard practice, one chooses an arbitrary starting field
configuration φ and sets the initial momenta according to the
Gaussian distribution exp[−p2/2]. Using a numerical inte-
grator, one integrates the equations of motion over some time
interval Δτ , at which time one saves an “updated” configu-
ration φi . Thus the Markov chain is defined by the values of
φ at a series of time intervals or a series of what are called
“molecular dynamics trajectories”.

Refreshed and hybrid Monte Carlo
The total energy Etot is constant over a given trajectory. But it
has no particular physical significance. To improve coverage
of phase space it is common, at the beginning of each trajec-
tory, to “refresh” the momenta p by drawing new values from
their Gaussian distribution. Thus each trajectory starts in a
new direction with a new total energy, but the coordinates φ

are kept continuous.
Another common variation of the method combines

refreshed molecular dynamics with the Metropolis et al.
method. This combination is called “hybrid Monte Carlo”
[358]. That is, one starts a trajectory with coordinates p, φ. At
the end of the trajectory, one has coordinates p′, φ′. The tran-
sition φ′ ← φ is taken as a Metropolis move. The random-
ness in the refreshed initial momentum p makes the move
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stochastic. Time-reversal invariance in τ assures detailed bal-
ance. If a trajectory is rejected, one reverts to the coordinate
φ at the beginning of the trajectory, selects a new stochastic
momentum, and tries again. The hybrid scheme helps com-
pensate for possible inaccuracies in the numerical integration
scheme, since it absolves many sins.

Autocorrelations
Markov chains have inherent correlations between successive
members. These “autocorrelations” are undesirable, because
they reduce the statistical independence of terms in the
ensemble averages of Eq. (4.74) that give expectation val-
ues of physical observables. Autocorrelation is especially a
concern with methods that make a series of small changes in
the field configuration. With refreshed molecular dynamics
one can adjust the trajectory length Δτ to help reduce corre-
lations between successive terms φi . One might expect that
longer trajectories are better in this regard, but the “molecu-
lar motion” can contain cycles that bring parts of the system
close to their original values. With hybrid schemes, longer
trajectories can lead to lower Metropolis acceptance, which
impedes progress. Shorter trajectories suffer from greater
autocorrelation. Thus there is usually an optimum choice for
the trajectory length that needs to be found empirically.

Molecular dynamics for the gauge field
The methods described above for a scalar field carry over
to the SU(3) gauge field U . The gauge momentum, actually
associated with the vector potential, Aμ(n), is given by a
traceless antihermitian 3x3 matrix Hμ(n) for each Uμ(n).
The molecular dynamics hamiltonian is, then,

H = 1

2

∑

n,μ

Tr Hμ(n)
2 + Seff (4.82)

where we recall that

Seff = SW + ln det[M] (4.83)

To remain an SU(3) matrix, the equation of motion forUμ(n)
must be

dUμ(n)/dτ = i Hμ(n)Uμ(n). (4.84)

The equation of motion for Hμ(n) can be found by requir-
ing that the molecular dynamics Hamiltonian H remain con-
stant in molecular-dynamics time [359]. For the sake of ped-
agogy, we first ignore the fermion determinant and consider
the unimproved SU(3) gauge theory; see Sect. 4.1:

SW = β

6

∑

n,μ�=ν

[3− Re TrUμν(n)] (4.85)

where Uμν(n) is the plaquette product in the μν plane with
corner at site n. The plaquette can also be written as
∑

ν

ReUμν(n) = Uμ(n)Vμ(n)+ Vμ(n)
†Uμ(n)

† (4.86)

where Vμ(n) is the sum of all “staples” attached to the link
Uμ(n). Armed with this notation, we can write

0 = Ḣ =
∑

n,μ

Tr

[

Ḣμ(n)Hμ(n)+ β

6

(
U̇μ(n)Vμ(n)+ h.c.

)
]

,

(4.87)

and, using Eq. (4.84), we get

0 =
∑

n,μ

Tr

[

Ḣμ(n)Hμ(n)+ β

6

(
i Hμ(n)Uμ(n)Vμ(n)− h.c

)
]

,

(4.88)

or

0 =
∑

n,μ

Tr Hμ(n)[Ḣμ(n)+ i Fμ(n)] (4.89)

where the gauge force is

Fμ(n) = −β

6
(Uμ(n)Vμ(n)− h.c.). (4.90)

Since Hμ(n) in Eq. (4.89) is traceless the expression in brack-
ets must be proportional to the identity matrix cI . But if it is
to remain traceless, we must have c = 0. So, finally, we get

i Ḣμ(n) = Fμ(n) = −β

3
Uμ(n)Vμ(n)|TA, (4.91)

where TA denotes the traceless, antihermitian part. The
Eqs. (4.84) and (4.91) form the basis for molecular dynamics
evolution of the pure gauge theory.

Spectrum of the Dirac matrix
The Dirac matrix has the form (see Sect. 4.1)

M(U ) = m + D(U ). (4.92)

where m is the quark mass. For all fermion formulations in
common use today, the operator D satisfies “γ5 hermiticity”,
namely

D† = γ5Dγ5 (4.93)

for some definition ofγ5. (For brevity, we drop the (U )depen-
dence of M and D in the following.) This implies that the
complex eigenvalues of D appear in complex conjugate pairs.
Thus we can write the fermion determinant as

det M =
∏

Imλi=0,i

(m + λi )
∏

Imλi>0

(m2 + |λi |2). (4.94)

In order for det M to serve as a probability weight, it must be
real and positive definite. Indeed, for all but the Wilson and
clover actions, the real parts of the eigenvalues are nonnega-
tive. For domain-wall and Wilson fermions, the eigenvalues
λi populate an ellipse in the right-half plane with voids, as
illustrated in Figs. 21 and 22. For staggered fermions, they
lie entirely on the imaginary axis (not shown). For overlap
fermions, they lie on a circle in the right-half complex plane
tangent to the imaginary axis (also not shown). For Wilson
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Fig. 21 The spectrum of the free Wilson Dirac operator for a massless
quark [360]

Fig. 22 The spectrum of the domain wall operator at quark mass 0.05.
[361]

and clover fermions, they appear mostly in the right-half
plane, but real, negative eigenvalues are possible, depend-
ing on the gauge configuration U . The eigenvalues of M are
m + λi , so negative λi usually causes trouble for M only
for light quarks. As the lattice spacing is decreased, negative
real parts become less frequent. Twisted-mass fermions (see
Sect. 4.1) do not have this problem at maximal twist [362].

The Φ algorithm
The fermion determinant in Eq. (4.66) can be cast in a form
compatible with the molecular-dynamics treatment of the
gauge field. Perhaps the simplest approach is the “Φ algo-
rithm”. We introduce a complex lattice scalar field Φ, often
called a pseudofermion field, and first try

det M =
∫

dΦdΦ∗ exp[−Φ∗M−1Φ]. (4.95)

This works as long as the eigenvalues of M have positive defi-
nite real parts. However, this form is awkward to implement.
A more convenient form works with the normal operator
M†M . From γ5 hermiticity we have

det M = det[γ5M
†γ5] (4.96)

det M2 = det[M†M] (4.97)

so

det M2 =
∫

dΦdΦ∗ exp{−Φ∗[M†M]−1Φ}. (4.98)

Now the integral is always well defined for nonzero quark
mass, but the square doubles the number of fermions. That
could be acceptable if we are simulating up and down quarks
in the isospin symmetric limit (mu = md ), but it would be
a bad approximation for the other quarks. Remedies are dis-
cussed below. We continue with this form.

Molecular dynamics with fermions
To simulate Eq. (4.98), we note that the integrand has the
form exp(−R†R) for R = M−1Φ, so if we draw R from a
Gaussian distribution, thenΦ = MR is distributed according
to the desired weight.

The Φ algorithm begins a short trajectory by constructing
Φ = MR for a given starting gauge field U . The gauge field
is then evolved with Φ fixed. The force exerted on the gauge
field in Eq. (4.91) acquires a new contribution, namely, the
fermion force:

i FF,μn = ∂

i∂Aμ,n
Φ∗[M†M]−1Φ

= X∗ ∂

i∂Aμ,n
(M†M)X, (4.99)

where M†MX = Φ. Typically, one refreshes the gauge
momentum, evolves the gauge field at the initial fixed value
of Φ, and then repeats.

Rational function approximation
As we saw above, working with the normal operator M†M
doubles the number of fermion species. To eliminate the
doubling, we should replace M†M with

√
M†M . Similarly,

for staggered fermions, we start with four tastes per flavor,
which suggests (M†M)1/8. With staggered fermions, the nor-
mal operator is checkerboard block-diagonal, so restricting
the calculation to even lattice sites eliminates the normal-
operator doubling. We then want (M†M)1/4|even.

Such fractional powers are difficult to implement. A
now commonly used remedy introduces a rational-function
approximation for the fractional power [363]. Expanded in
terms of its poles, the rational function approximation for a
real function f (x) of real x has the form

f (x) ≈ r(x) =
N∑

i=1

αi

x − βi
, (4.100)

where αi and βi are parameters of the rational function, and
N is a suitably high order. The approximation deteriorates for
small x . It is designed to work over an interval [xmin, xmax].
The smaller xmin or the finer the desired accuracy, the larger
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the needed order N . The Zolotarev method [364] is widely
used to obtain an efficient set of parameters αn and βn .

We note that M†M = D†D+m2 for mass m. It is conve-
nient to treat this expression as a function of x = D†D. So
to apply the rational function approximation, we write

(M†M)h ≈ rh(D
†D) =

N∑

i=1

αh,i

D†D − βh,i
, (4.101)

where we have labeled the coefficients of the expansion with
the desired power h. So, finally, we have

det(M†M)h ≈
∫

dΦdΦ∗ exp[−Φ∗rh(D†D)]Φ] (4.102)

To implement the Φ algorithm with fractional power h,
∫

dΦdΦ∗ exp{−Φ∗(M†M)hΦ}, (4.103)

we choose Gaussian random R and calculate

Φ = [M†M]−h/2R (4.104)

using a rational function approximation r−h/2(D†D). Then
we calculate the fermion force with

i FF,μn = ∂

i∂Aμ,n
Φ∗(M†M)hΦ

= Φ∗ ∂

i∂Aμ,n
rh(D

†D)Φ (4.105)

=
∑

i

X∗i αh,i
∂

i∂Aμ,n
[M†M]Xi , (4.106)

where Xi = [D†D − βh,i ]−1Φ. Here the rational function
parameters are appropriate for rh . The Xi are obtained using
a multishift conjugate-gradient solver.

Multiple flavors
The rational function approximation can be extended to han-
dle the products of determinants that arise with multiple fla-
vors. For example, suppose we are simulating two degenerate
light quarks (up and down) ml = mu = md and one strange
quark ms . We use f to distinguish the flavors in the fermion
matrix M f . After integrating out the Grassmann fields, the
fermion integrand becomes

det(M†
l Ml) det(M†

s Ms)
1/2. (4.107)

We could simulate this product by introducing a separate
pseudofermion field for each flavor and proceeding as we
did for a single flavor for each contribution. However, we
can also simulate it using just one pseudofermion field:
∫

dΦdΦ∗ exp{−Φ∗(M†
l Ml)

−1(M†
s Ms)

−1/2Φ} (4.108)

We construct a rational function that approximates the entire
product.

(M†
l Ml)

−1(M†
s Ms)

−1/2 = r−1,−1/2(D
†D), (4.109)

where we have added more labels to r(x). The Φ algorithm
is otherwise similar to that of the single-flavor case.

4.2.5 Improvements

Hasenbusch term
One popular and effective improvement [365] introduces a
“preconditioning” determinant, a “Hasenbusch term”, with
moderately large mass mx together with its compensating
inverse, for example, as

(M†
l Ml)

−1(M†
s Ms)

−1/2(M†
x Mx )

3/2(M†
x Mx )

−3/2. (4.110)

The first three factors are then assigned a single pseud-
ofermion field and approximated with a single rational func-
tion, and the fourth factor is assigned a separate pseud-
ofermion field with a separate rational function. The Hasen-
busch term tends to reduce the condition number of the prod-
uct operator, thus reducing the needed rational function order
and the associated computation time. The last (compensat-
ing) factor also has a lower condition number because of the
larger mass.

Multigrid solvers
To evaluate the rational function in Eq. (4.106) requires solv-
ing a large linear system. As the lattice spacing decreases,
the condition number of the linear system grows, making
the conventional conjugate-gradient calculation more costly.
This “critical slowing down” can be mitigated by using an
adaptive geometric multigrid solver instead [366,367]. So far
the benefits of using multigrid solvers for gauge-field evo-
lution have been demonstrated only for the Wilson-clover
action [368]. Algorithms for multigrid solvers for staggered
fermions [369] and domain-wall fermions [361,370] are
newer, so it remains to be seen whether they will lead to
improvements in molecular dynamics evolution for those
fermion formulations as well.

Accelerating molecular dynamics
As the lattice spacing decreases, the gauge-field evolution
slows, and it gets trapped in a subset of gauge configura-
tions with the same total topological charge. Thus it takes
more computational time to obtain a new, statistically uncor-
related gauge configuration. Long-distance decorrelation is
slower than short-distance. This observation suggests Fourier
transforming Hamilton’s equation for the gauge momentum,

idHμ(n) = Fμ(n)dτ (4.111)

to (coordinate) momentum space, and, instead of using a
common time step dτ for each momentum component, con-
sider using a larger time step for the low-momentum modes
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[371] to move them farther. This method never proved effec-
tive enough to use in full-scale simulation. Modern versions
of the Fourier acceleration scheme are under investigation.
See, for example, [372].

Trivializing map
If we can find an invertible map of the gauge fieldU to a new
field V ,

U = F(V ), (4.112)

such that the Jacobian of the transformation cancels the gauge
action:

det[∂Uμ(n)(V )/∂Vν(m)] exp[−S(U )] = 1, (4.113)

then the path integral becomes trivial [373–375]. Lüscher
describes this as a “map to the strong-coupling limit” and
discusses possible maps for the pure gauge action. Of course,
finding such a map is entirely nontrivial, but if one can at
least find one that moves the action partially toward strong
coupling, then one could construct a hybrid Monte Carlo
scheme that updates the gauge field according to the recipe

U → V → V ′ → U ′ (4.114)

where the V → V ′ step uses standard gauge evolution for the
transformed gauge field V . This stronger coupling evolution
would suffer less from critical slowing down. Recently, there
have been efforts to find such a map using machine-learning
methods. See, for example, Ref. [376].

4.2.6 Personal remarks

I first learned about the lattice formulation of QCD and its
virtues when Ken Wilson gave a seminar at the MIT Cen-
ter for Theoretical Physics around the time he was develop-
ing his lattice formulation. I was quite impressed with how
easily confinement, in the form of an area law for Wilson
loops, emerged in the strong-coupling regime. But I wasn’t as
brave or savvy as Creutz in proceeding to develop numerical
methods for working out the nonperturbative consequences
of Wilson’s formulation. I didn’t turn to numerical lattice
calculations until shortly after Creutz’s seminal papers. For
the rest of my career, I have enjoyed participating in and
contributing to the remarkable progress in this field. As a
graduate student schooled in the analytic S-matrix and boot-
strap, I was pleased when I could make a strong-interaction
prediction to an accuracy of 25%, based on phenomenolog-
ical considerations. There was always the inevitable doubt
about the validity of the methods. Today, in some cases, we
are able to obtain per mille accuracy for aome hadronic prop-
erties. Furthermore, we have little doubt that our results are a
correct prediction of the Standard Model, since our methods
are grounded in first-principles. That has been enormously
satisfying.

4.3 Vacuum structure and confinement

Derek Leinweber

4.3.1 Introduction

The self interactions of gluons make the empty vacuum unsta-
ble to the formation of quark and gluon field configura-
tions which permeate spacetime. These ground-state QCD-
vacuum field configurations form the foundation of matter.
Lattice QCD simulations enable first principles explorations
of this nontrivial vacuum field structure.

These gluon field configurations form the foundation of
every lattice QCD calculation. Each field configuration on
its own contains a rich diversity of emergent nonperturbative
structure. It is the process of averaging over thousands of field
configurations that restores the translational invariance of the
vacuum. Each field configuration with its own rich structure
is uncorrelated with other configurations considered in the
averaging process.

Deep insight into the mechanisms giving rise to the
observed quantum phenomena can be obtained through the
visualization of these complex scientific data sets constructed
in Lattice QCD simulations, insights that would otherwise
remain hidden in the typical gigabyte data sets of modern
quantum field theory.

The essential, fundamentally-important, nonperturbative
features of the QCD vacuum fields are: the dynamical gen-
eration of mass through chiral symmetry breaking, and the
confinement of quarks. But what are the fundamental mecha-
nisms of QCD that underpin these phenomena? What aspect
of the QCD vacuum causes quarks to be confined? Which
aspect is responsible for dynamical mass generation? Do the
underlying mechanisms share a common origin?

In this brief review, we will address these questions in a
chronological manner to convey the progress in developing
an understanding of the essential mechanisms underpinning
the phenomena of QCD.

4.3.2 Nonperturbative vacuum structure

Among the earliest of vacuum-structure visualizations are
images of the Euclidean action density, or energy density

SE (�x, t) = 1

2
Fab
μν(�x, t) Fba

μν(�x, t), (4.115)

= Tr
( �E2(�x, t)+ �B2(�x, t)

)
, (4.116)

where Fab
μν is the Euclidean field strength tensor

Fab
μν = ∂μA

ab
ν − ∂ν A

ab
μ + ig[Aab

μ , Aba
ν ], (4.117)
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Fig. 23 Frames from the
animation of Ref. [377]
illustrating the Euclidean action
density or energy density of
Eq. (4.116) (left) and the
corresponding topological
charge density of Eq. (4.118)
(right) at an instant in time. The
spatial volume is approximately
2.4 by 2.4 by 3.6 fm

with color indices a, b = 1, 2, 3. The corresponding topo-
logical charge density proportional to �E(�x, t) · �B(�x, t)

q(�x, t) = g2

32π2 εμνρσ Fab
μν(�x, t) Fba

ρσ (�x, t), (4.118)

is also of interest as it characterizes the profile of instantons,
nontrivial solutions of the classical Yang–Mills equations,
discussed in further detail in Sect. 5.11.4.

Reference [378] provides one of the earliest observations
of instanton-like objects in lattice gauge-field configurations.
Here cooling with the standard Wilson action was used to
suppress short-distance field fluctuations enabling the obser-
vation of long-distance structures.

However a problem with the use of the standard Wilson
action or even the O(a2)-improved plaquette plus rectan-
gle action is that the lattice action of an instanton can be
reduced by shrinking the size of an instanton [379] through
lattice-spacing errors. Instantons shrink under cooling with
these lattice actions and “fall through the lattice.” This led to
the development of highly-improved actions [380,381] elim-
inating errors to O(a4) or even over-improved actions where
improvement terms are tuned to stabilize instantons, ensuring
their stability under smoothing algorithms [379,382].

The results presented in this section are based on pure
SU(3) gluon fields created with the standard Wilson action
atβ = 6.0 on a 243×36 lattice with a lattice spacing, a � 0.1
fm. The first coordinate of the Euclidean lattice was used for
the time axis creating a 242 × 36 spatial volume. It is these
calculations [383] that captured the attention of Prof. Frank
Wilczek as he prepared his 2004 Nobel Prize lecture. Refer-
ence [384] provides a link to the QCD Lava Lamp animation
that appeared in his Nobel Lecture [385]. In support of the
Nobel Lecture a web page incorporating the best algorithms
and visualization techniques of the time was created [386].
Parallel spatially-uniform O(a4)-improved smoothing algo-
rithms [387] and an O(a4)-improved lattice field strength
tensor [380] were formulated to accurately retain and present
the long-distance nonperturbative properties of the ground-
state vacuum fields. These images and animations [377,386]
have since appeared in popular-science publications, leading
YouTube channels [388,389], etc. [390].

Figure 23 displays two frames from the animation of Ref.
[377]. Here 25 sweeps of three-loop, mean-field, O(a4)-
improved cooling has been applied. Areas of high energy
density are rendered in red and regions of moderate energy
density are rendered in blue. The lowest energy densities are
not rendered such that one can see into the volume. Simi-
larly the topological charge density has regions of positive
density rendered in red through yellow and regions of nega-
tive density rendered blue through cyan. While instanton-like
objects are manifest, current research is examining the extent
to which instanton-dyon degrees of freedom [391], i.e. frac-
tionally charged regions, can be observed within these field
configurations.

To directly view the the eight chromo-electric and eight
chromo-magnetic gluon fields composing the vacuum, one
must select a gauge. Figure 24 presents a stereoscopic illus-
tration of one of the chromo-magnetic fields in Landau gauge
[392]. Here the color and length of the arrows describe the
magnitude of the vector fields. Animations of the fields are
also available [377].

To see the 3D image of Figs. 24 and 31, try the following:

1. If you are viewing the image on a monitor, ensure the
image width is 12 to 13 cm.

2. Bring your eyes very close to one of the image pairs.
3. Close your eyes and relax.
4. Open your eyes and allow the (blurry) images to line up.

Tilting your head from side to side will move the images
vertically.

5. Move back slowly until your eyes are able to focus.
There’s no need to cross your eyes!

With its lattice implementation of chiral symmetry, the
overlap-Dirac operator provided a new approach to the explo-
ration of the nonperturbative structure of the vacuum with-
out resorting to smoothing algorithms [341]. Here low-lying
Dirac eigenmode densities could be used to construct the
topological charge density with the level of smoothness
inversely related to the number of low-lying modes one
considers [393]. Strong correlation with the instanton-like
objects observed via smoothing algorithms was observed.
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Fig. 24 Stereoscopic image of
one of the eight
chromo-magnetic fields
composing the nontrivial
vacuum of QCD. Hints for
stereoscopic viewing are
provided in the text

The zero modes are chiral and are distributed across topo-
logical charge regions of a unique sign. Low-lying eigen-
mode densities are also highly correlated with the topologi-
cal structures revealed under smoothing [393]. These corre-
lations between gluonic and fermionic structures expose the
dynamics underpinning dynamical chiral symmetry breaking
and the origin of mass.

The manner in which the topological charge density is ren-
dered can lead to rather different views on the nature of how
topological charge is distributed in the vacuum. Figure 25
illustrates two different renderings of the same topological
charge density. The sheet-like structure associated with the
sign-changing nature of the topological charge density corre-
lator 〈 q(0) q(x) 〉 [394,395] is manifest when all magnitudes
of the topological charge density are rendered down to zero.
This is the celebrated sheet-like structure of the topologi-
cal charge density [396]. However, when the rendering is
restricted to larger values, one reveals a more lumpy struc-
ture with regions of significant coherent topological charge
density.

More recently explorations of correlations between QCD
phenomena and QED phenomena have commenced draw-
ing on QCD+QED lattice simulations [290,397,398]. First
results [399,400] and links to associated animations are
reported in Ref. [390].

4.3.3 Center cluster structure of QCD vacuum fields

Further insight into the structure of QCD vacuum fields, their
temperature dependence, and their evolution under Monte-
Carlo evolution can be obtained through the consideration
of the local Polyakov loop. The expectation value of the
Polyakov loop is related to the finite temperature phase tran-
sition in QCD. It has an expectation value of zero in the con-
fined phase and becomes nonzero in the deconfined phase.

Fig. 25 The short-distance sheet-like structure of the vacuum is made
apparent in the left-hand illustration by rendering all magnitudes of
the topological charge density down to zero. Negative charge density is
rendered green to blue, and positive charge density is yellow to red. The
same data is rendered in the right-hand plot, this time only rendering the
regions having large topological charge density, revealing a structure of
topological lumps

The local Polyakov loop is the traced gauge-invariant
product of time-oriented gauge links around the time extent
of the lattice at each spatial point

L(�x) = Tr
Nt∏

t=1

U4(t, �x) = ρ(�x) eiφ(�x), (4.119)

Here, U4 is the time-oriented link variable on a lattice with
lattice spacing a, given by

Uμ (x) = P exp

(

ig
∫ x+μ̂a

x
dxμAμ(x)

)

. (4.120)

Center clusters [401,402] are defined in terms of L(�x).
They are regions of space where the local Polyakov loop
prefers a single complex phase associated with the center
of SU(3). The deconfinement transition occurs through the
growth of a center cluster.
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Fig. 26 Center clusters on a gauge field configuration at T =
0.89(1) TC (left), T = 1.14(2) TC (middle), and T = 1.36(2) TC
(right), This rendering from Ref. [402] is based on the proximity of
the local Polyakov loop phase, φ(�x), to one of the three center phases

of SU(3). The length of each side of the cubic volume is 2.4 fm. The
percolation of the red phase in the middle and right-hand plots illustrates
the deconfinement of quarks above TC

In the final expression of Eq. (4.119), the local Polyakov
loop is decomposed into a phase, φ(�x) and a magnitude,
ρ(�x). Both the proximity of the phase to one of the cube-
roots of one and the magnitude are considered in visualizing
the structure of the center domains of the gluon field. In
either case, the most proximal cube root of one to the phase
is indicated by the use of color.

In Ref. [402] an anisotropic gauge action was used to
explore the evolution of coherent center domains in the
gluon field under both temperature and the Hybrid Monte
Carlo (HMC) update algorithm. To investigate the larger-
scale behavior of the clusters, small scale noise is removed
from the visualization by performing four sweeps of stout-
link smearing [403] prior to calculating the Polyakov loops.

In Fig. 26, clusters are rendered where the phase φ(�x) is
within a small window around each center phase, and the rest
of the volume is rendered transparent. Within these coher-
ent center domains, color-singlet quark–antiquark pairs or
three-quark triplets have a finite energy and are spatially cor-
related. Thus, these fundamental domains govern the size
of the quark cores of hadrons. As one domain dominates the
vacuum above the critical temperature, the correlation length
diverges and quarks become deconfined.

The evolution of these clusters with HMC simulation time
is presented in Ref. [405], showing how center clusters are
slowly moving with correlations in the center clusters per-
sisting for approximately 5 seconds corresponding to 25
HMC trajectories. The temperature dependence of the center-
cluster structure is also explored in these animations where
a single phase eventually dominates above the critical tem-
perature, as illustrated in Fig. 26.

4.3.4 Flux tubes in QCD ground-state vacuum fields

Early seminal work on the static quark potential considered
the transverse fluctuations of confining strings connecting

Fig. 27 Gauge-link paths for three static quark propagators, U1, U2,
andU3, are connected in a gauge-invariant manner via spatially smeared
link paths. εabc and εa

′b′c′ provide color anti-symmetrisation at the
source and sink respectively, while τ indicates evolution of the three-
quark system in Euclidean time [404]

static quark–antiquark pairs in non-Abelian gauge theories
[406–408]. In the large L limit one finds a logarithmic rela-
tionship between the flux-tube width, σ , and its length, L
with σ 2(L/2) ∼ σ 2

0 ln(L/λ). The string model describes the
divergence of the width as the flux-tube length L → ∞ as
arising from the large quantum mechanical fluctuations of a
thin bare flux tube connecting the quark with the antiquark.
This prediction was observed in a precise manner in a (2 +
1)-dimensional SU(2) Yang–Mills theory lattice calculation
using a multi-level algorithm [409].

Flux tubes in the QCD-vacuum fields of lattice QCD are
revealed by examining the correlation between ground-state
field properties and the positions of static quarks within the
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fields. One begins with the standard approach of connect-
ing static quark propagators by spatial-link paths in a gauge
invariant manner. For mesonic systems, this is the standard
Wilson loop. However, for baryonic systems one needs the
structure illustrated in Fig. 27. The spatial link paths are typ-
ically broadened through a smearing algorithm to approxi-
mate the shape of the flux tube and thus obtain better over-
lap with the ground state potential of interest. While early
calculations tuned the amount of smearing to provide opti-
mal overlap with the ground state, more modern approaches
create a basis of smeared sources and solve the generalized
eigenvalue problem [410–412] to obtain the optimal com-
bination of sources. The static quark propagators are con-
structed from time directed link products at fixed spatial coor-
dinate,

∏
i Ut (�x, ti ), using the untouched “thin” links of the

gauge configuration.
The correlation of the gluon field with the static quark

positions is characterized by the gauge-invariant Euclidean
action density SE (�y, t) observed at spatial coordinate �y and
Euclidean time t measured relative to the origin of the three-
quark Wilson loop. For the results presented herein, the action
density is calculated using the highly-improved O(a4) three-
loop improved lattice field-strength tensor [380] on four-
sweep APE-smeared gauge links [404].

Defining the quark positions as �r1, �r2 and �r3 relative to
the origin of the three-quark Wilson loop, and denoting the
Euclidean time extent of the loop by τ , one evaluates the
following correlation function

C(�y; �r1, �r2, �r3; τ)
=

〈
W3Q(�r1, �r2, �r3; τ) SE (�y, τ/2)

〉

〈
W3Q(�r1, �r2, �r3; τ)

〉 〈
SE (�y, τ/2)

〉 , (4.121)

where 〈· · · 〉 denotes averaging over configurations and trans-
lational/reflection/rotational lattice symmetries [404]. Note
that the correlation is examined at the midpoint in the time
evolution of the static quark propagation to ensure the three
quark state has relaxed to its ground state form. For fixed
quark positions and Euclidean time, C is a scalar field in
three dimensions.

This measure has the advantage of being positive definite,
eliminating any sign ambiguity on whether vacuum field fluc-
tuations are enhanced or suppressed in the presence of static
quarks. The correlation, C , is generally less than 1, signal-
ing the expulsion of vacuum fluctuations from the interior
of heavy-quark hadrons. In other words, flux tubes represent
the suppression of the vacuum field fluctuations that form the
foundation of matter.

Figure 28 provides an illustration of the correlation C(�y).
For values of �y well away from the quark positions �ri , there
are no correlations andC → 1. As the separation between the
quark–antiquark pair changes, the flux tube of Fig. 28 (top)
gets longer, but the diameter of the tube and the depth of the

expulsion remain approximately constant. As it costs energy
to expel the vacuum field fluctuations, the confinement poten-
tial grows linearly as the quark separation increases.

Of historical significance was the endeavor to determine
whether baryon flux tubes are Y-shape or Δ-shape (empty
triangle) in nature. For the latter, the expectation was two-
body tube-like structures around the edge of the three-quark
system would dominate. Quantitative analyses of the static
quark potential and the distribution of flux tubes led to a
consensus [413] that the distribution is Y shape for large
quark separations more than∼ 0.5 fm from the system center
with the observation of filled Δ shapes at shorter-distance
separations. The Y-shape ground state localizes at the Steiner
point which minimizes the total string length.

The characteristic sizes of the flux-tube and node were
quantified in Ref. [404]. The ground state flux-tube radius is
∼ 0.4 fm with vacuum-field fluctuations suppressed by 7%.
The node connecting the flux tubes is larger at 0.5 fm with a
suppression of the vacuum action at 8%.

It is also of interest to consider flux-tube dynamics. Non-
trivial flux-tube dynamics give rise to hybrid quarkonium
states where excited gluon fields give rise to excited poten-
tials between a static quark–antiquark pair. The energy spec-
trum of the excited gluon field was summarized in Refs.
[414,415]. With the static potentials determined via lattice
simulations, the spectrum of conventional and hybrid quarko-
nium states were found to be in good agreement with the
spin-averaged experimental measurements of bottomonium
states [414].

4.3.5 Flux tube string breaking in QCD

With the advent of numerical simulations incorporating the
dynamics of light fermion loops in the QCD vacuum, the
observation of flux-tube breaking or string breaking was
keenly anticipated. The idea is that for increasing quark sepa-
rations, eventually there would be enough energy in the flux
tube joining the two static b quarks that it would become
energetically favorable to break the string through the cre-
ation of a light quark–antiquark pair and the formation of
two B mesons. Even to this day, this implicit form of string
breaking has yet to be observed. The difficulty lies in the
extraordinarily poor overlap of the two-B meson state with
the spatial flux-tube operators used to create the string state.

This situation is in contrast to explorations of the struc-
ture of the Λ(1405) baryon, where lattice-QCD calcula-
tions of the quark-sector contributions to the baryon mag-
netic moment indicate a molecular meson–baryon structure
[416,417]. Here a three-quark operator carrying the quan-
tum numbers of the Λ(1405) have implicitly excited quark–
antiquark pairs to form the five-quark molecule.

In the absence of implicit string breaking, Bali et al. [418]
led the breakthrough in observing string breaking in QCD
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Fig. 28 The suppression of QCD vacuum fields, as represented by the
energy density, from the region between a quark–antiquark meson (top)
or three-quark baryon (bottom). Quark positions are illustrated by the
colored spheres. The separation of the quarks in the meson are 0.50 fm
(left), 1.00 fm (middle), and 1.50 fm (right). The baryon frames illus-
trate the spherical cavity (or bag) observed at small quark separations
of 0.27 fm from the center (left), the development of a filled-Δ shape at
moderate separations of 0.42 fm (middle) and finally the emergence of

a Y-shape flux tube (right) at large quark separations of 0.72 fm from
the system center [404]. The surface plot illustrates the reduction of the
vacuum energy density in a plane passing through the centers of the
quarks. The vector field illustrates the gradient of this reduction. The
tube joining the quarks reveals the positions in space where the vacuum
energy density is maximally expelled and corresponds to the “flux tube”
of QCD

via a variational method with explicit B-meson operators.
These interpolating fields mix with the traditional flux-tube
operators in a matrix of correlation functions. Upon solving
for the energy eigenstates, mixed states with their associated
avoided level crossings are observed.

Following the notation of Ref. [418], the calculation
proceeds as follows. The QQ static quark operator con-
nected with an optimized spatially smeared flux-tube opera-
tor Vt (r, 0) from position 0 to r at Euclidean time t is

Q(r,t)
γ · r
r

Vt (r, 0) Q(0,t), (4.122)

where γ · r/r selects the spin-symmetric state to be com-
bined with the symmetric gluonic string Vt (r, 0), enabling
mixing with two pseudoscalar B mesons. Note, the anti-
symmetric spin-combination is obtained via γ · r/r → γ5

and yields the same energy levels, as both spin cases are
calculated from the same Wilson loop.

Similarly, the BB meson interpolating field for a pseu-
doscalar B meson at r and a B meson at 0 at Euclidean time
t is

Q(r,t) γ5 q
i
(r,t) q̄

i
(0,t) γ5 Q(0,t), (4.123)

where qi(r,t) annihilates the light-quark flavor, i . The four
elements of the correlation matrix are obtained from the four
combinations of these two operators.

Contracting the heavy-quark operators in the standard
flux-tube operators provides

[
Q(r,t)

γ · r
r

Vt (r, 0)Q(0,t)

]†
Q(r,0)

γ · r
r

V0(r, 0)Q(0,0)

= 2 tr
{
V †
t (r, 0)Ur(t, 0) V0(r, 0)U †

0 (t, 0)
}
≡

(4.124)

where the heavy-quark mass dependence has been sup-
pressed for simplicity. Here Ur(t, 0) denotes the product of
time-oriented links at the position r from time 0 to t and the
trace is over color indices. This is the standard Wilson loop
depicted by the r (horizontally) by t (vertically) rectangle in
Eq. (4.124).

Similarly, contracting out the quark field operators in the
mixed correlator provides

Q(0,t) γ5 q
i
(0,t) q̄

i
(r,t) γ5 Q(r,t) Q(r,0)

γ · r
r

V0(r, 0) Q(0,0)

≡ = (4.125)

where the wavy line depicts a light quark operator. Finally,
contraction of the quark operators in the BB correlator pro-
vides
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Fig. 29 From Ref. [418], the two energy levels obtained in the vari-
ational analysis are plotted as a function of the static quark–antiquark
separation r/a with lattice spacing a ≈ 0.083 fm. Energy values are
relative to twice the mass of the B-meson, 2mB (horizontal line). The
curve corresponds to the three parameter fit of E1(r) = V0+σr − e/r ,
for 0.2 fm ≤ r ≤ 0.9 fm < rc with rc ≈ 15 a ≈ 1.25 fm.. The bottom
plot zooms into the avoided level crossing

Q(0,t) γ5 q
i
(0,t) q̄

i
(r,t) γ5 Q(r,t) Q(r,0) γ5 q

j
(r,0) q̄

j
(0,0) γ5 Q(0,0)

≡
(

δi j −
)

. (4.126)

Considering n f fermion flavors, one finally arrives at the
correlation matrix

C(t) =

⎛

⎜
⎜
⎜
⎜
⎝

√
n f

√
n f −n f +

⎞

⎟
⎟
⎟
⎟
⎠

. (4.127)

Calculation of the light-quark propagators demands the
use of all-to-all techniques. Reference [418] used a trun-
cated eigenmode approach, complemented by a stochastic

estimator technique, improved by hopping parameter accel-
eration. Through the use of a tuned flux-tube operator and
tuned smeared-local quark propagators in the meson opera-
tors, the correlation matrix is parameterized in terms of two
low lying energy eigenstates and solved.

Figure 29 illustrates the two energy levels obtained in the
n f = 2 analysis of Ref. [418]. Remarkably, the region of
mixing is small and the energy associated with the mixing
is subtle. The analysis has since been extended to 2 + 1
light+strange fermion flavors in Ref. [419] where both B
and Bs mesons participate in the mixing.

These results reflect the diverse nature of these two states.
Indeed with so little overlap between the two states away
from the avoided crossing region, a string-oriented system
may evolve such that it maintains the string structure at very
large separations [420]. In this “sudden approximation,” the
system evolves along the red lines of Fig. 29 providing a
pathway to extraordinarily high energy excitations. The sub-
sequent decay is considered “adiabatic” [420] where hadrons
then follow the energy-eigenstate curves and split into frag-
ments.

4.3.6 Impact of dynamical fermions on vacuum field
structure

With the advent of full QCD simulations incorporating the
effects of light dynamical-fermion flavors, attention turned to
understanding how these light fermion loops in the vacuum
changed the QCD ground-state structure. Drawing on gauge
fields from the MILC collaboration [421,422], advances
in instanton-preserving smoothing algorithms [382] were
deployed to reveal the impact of dynamical fermions on the
topological charge density of the gauge fields [395].

The MILC simulations were performed using a one-loop
Symanzik improved gauge action and an improved Kogut-
Susskind quark action. Using the static quark potential, the
lattice spacings were determined and tuned to be the same
in all the runs to better expose differences due to dynamical
fermions. At large distances, screening of the string tension
was observed for light dynamical flavors [421,422].

Figure 30 illustrates the topological-charge densities
revealed following four sweeps of over-improved stout-link
smearing [395]. The top illustration from quenched QCD, is
qualitatively different from the lower illustration for a 2+ 1
flavor dynamical-fermion configuration.10 The zero modes

10 In the top illustration, one can see through the bulk of the topo-
logical charge distribution and observe the white background and the
dotted lattice grid lines. This is not the case in the lower illustra-
tion where the topological charge fills out the space. Only a sprin-
kling of white space is observed. The quark-mass dependence of the
dynamical-fermion illustration is subtle [395] indicating that the qual-
itative differences in the distributions comes about through the intro-
duction of dynamical fermions in generating the configurations through
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Fig. 30 The topological charge density from Ref. [395] for the
quenched (top) and the light-quark dynamical ensemble from the MILC
Collaboration [421,422], with dynamical masses of amu,d = 0.0062,
am=0.031

associated with well-separated topological objects act to sup-
press the fermion determinant, such that the top configuration
is improbable in full QCD. In the full-QCD simulations, the
topological objects grow in size and number [395] to sup-
press the zero modes.

4.3.7 Center vortex structure of QCD vacuum fields

The essential, fundamentally-important, nonperturbative fea-
tures of the QCD vacuum fields are the dynamical generation
of mass through chiral symmetry breaking, and the confine-
ment of quarks. But what is the fundamental mechanism of
QCD that underpins these phenomena?

One of the most promising candidates is the center vortex
perspective of QCD vacuum structure. While the ideas of a
center-vortex dominated vacuum were laid down long ago
[423–425], it wasn’t until 1997 when Jeff Greensite, Man-
fried Faber, et al. demonstrated that lattice QCD techniques
could be used to explore the importance of these ideas [426–
431]. Indeed by the end of the millennium, the field had
attracted broad interest with a comprehensive review in 2003
[432].

This perspective describes the nature of the nontrivial vac-
uum in terms of the most fundamental center of the gauge
group. Herein our focus is on the SU (3) gauge group where
center vortices are characterized by the three center phases,
3
√

1.

Footnote 10 Continued
Monte-Carlo methods. Not only are the objects in the quenched simula-
tion further apart, a statistical analysis indicates there are fewer objects
and the objects themselves are smaller in size when compared with the
dynamical fermion distributions [395]. The physics underpinning these
differences in the topological charge density distributions can be under-
stood in terms of the modes of the Dirac operator generated by these
distributions.

By identifying center vortices within the ground-state
fields and then removing them, a deep understanding of their
contributions has been developed. Removal of center vortices
from the ground-state fields results in a loss of dynamical
mass generation and restoration of chiral symmetry [433–
435], a loss of the string tension [436–439], a suppression of
the infrared enhancement in the Landau-gauge gluon propa-
gator [437,440–442], and the possibility that gluons are no
longer confined [442].

One can also examine the role of the center vortices alone.
Remarkably, center vortices produce both a linear static quark
potential [436,438,439,443,444] and infrared enhancement
in the Landau-gauge gluon propagator [441,442]. The pla-
nar vortex density of center-vortex degrees of freedom scales
with the lattice spacing providing a well defined contin-
uum limit [436]. These results elucidate strong connections
between center vortices and confinement.

A connection between center vortices and instantons was
identified through gauge-field smoothing [444]. An under-
standing of the phenomena linking these degrees of freedom
was illustrated in Ref. [445]. In addition, center vortices have
been shown to give rise to mass splitting in the low-lying
hadron spectrum [433,434,446].

Still, the picture in pure SU (3) gauge theory is not perfect.
The vortex-only string tension obtained from pure Yang–
Mills lattice studies has been consistently shown to be about
∼ 60% of the full string tension. Moreover, upon removal
of center vortices the gluon propagator showed a remnant of
infrared enhancement [441]. In short, within the pure gauge
sector, the removal of long-distance non-perturbative effects
via center-vortex removal is not perfect.

Understanding the impact of dynamical fermions on the
center-vortex structure of QCD ground-state fields is a con-
temporary focus of the center-vortex field [435,438,439,442,
447,448]. Herein, changes in the microscopic structure of
the vortex fields associated with the inclusion of dynami-
cal fermions are illustrated. The introduction of dynamical
fermions brings the phenomenology of center vortices much
closer to a perfect encapsulation of the salient features of
QCD, confinement and dynamical mass generation through
chiral symmetry breaking.

As such, it is interesting to ask, what do these center-vortex
structures look like? To this end, we present visualizations of
center vortices as identified on lattice gauge-field configura-
tions. Some of these visualizations are presented as stereo-
scopic images. See the instructions provided in Sect. 4.3.2
for help in viewing these images.

Center vortex identification
Center vortices are identified through a gauge fixing pro-
cedure designed to bring the lattice link variables as close
as possible to the identity matrix multiplied by a phase
equal to one of the three cube-roots of 1. Here, the original
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Fig. 31 Stereoscopic image of
center vortices as identified on
the lattice from Ref. [447].
Vortex features including vortex
lines (jets), branching points
(3-jet combinations), crossing
points (4 jets), indicator links
(arrows) and singular points
(spheres) are described in the
text

Monte-Carlo generated configurations are considered. They
are gauge transformed directly to Maximal Center Gauge
[436,449,450]. This brings the lattice link variables Uμ(x)
close to the center elements of SU (3),

Z = exp

(
2π i

3
n

)

I, (4.128)

with n = −1, 0, or 1 enumerating the three cube roots of 1
such that the special property of SU (3)matrices, det(Z) = 1,
is satisfied. One considers gauge transformations Ω such
that,
∑

x,μ

∣
∣trUΩ

μ (x)
∣
∣2 Ω→ max, (4.129)

and then projects the link variables to the center

Uμ(x)→ Zμ(x) where Zμ(x) = exp

(
2π i

3
nμ(x)

)

I.

(4.130)

Here, n has been promoted to a field, nμ(x), taking a value of
−1, 0, or 1 for each link variable on the lattice. In this way, the
gluon field,Uμ(x), is characterized by the most fundamental
aspect of the SU (3) link variable, the center, Zμ(x). In the
projection step, eight degrees of freedom are reduced to one
of the three center phases. This “vortex-only” field, Zμ(x),
can be examined to learn the extent to which center vortices
alone capture the essence of nonperturbative QCD.

The product of these center-projected links, Zμ(x), around
an elementary 1 × 1 square (plaquette) on the lattice also
produces a centre element of SU (3). The value describes the
center charge associated with that plaquette

z =
∏

�
Zμ(x) = exp

(
2π i

m

3

)
, m = −1, 0, or 1. (4.131)

The most common value observed has m = 0 indicating that
no centre charge pierces the plaquette. However, values of

m = ±1 indicate that the center line of an extended three-
dimensional vortex pierces that plaquette.

The complete center-line of an extended vortex is iden-
tified by tracing the presence of nontrivial center charge,
m = ±1, through the spatial lattice. Figure 31 exhibits rich
emergent structure in the nonperturbative QCD ground-state
fields in a stereoscopic image. Here a 3D slice of the 4D
space-time lattice is being considered at fixed time. Features
include:

Vortex Lines:
The plaquettes with nontrivial center charge, characterized
by m = +1 or −1, are plotted as jets piercing the center
of the plaquette. Both the orientation and color of the jets
reflect the value of the non-trivial center charge. Using a
right-hand rule for the direction, plaquettes with m = +1 are
illustrated by blue jets in the forward direction, and plaquettes
with m = −1 are illustrated by red jets in the backward
direction. Thus, the jets show the directed flow of m = +1
center charge, z = e2π i/3, through spatial plaquettes. They
are analogous to the line running down the center of a vortex
in a fluid.

Vortices are somewhat correlated with the positions of
significant topological charge density, but not in a strong
manner [445]. However, the percolation of vortex structure
is significant and the removal of these vortices destroys most
instanton-like objects.

Branching Points or Monopoles:
In SU (3) gauge theory, three vortex lines can merge into or
emerge from a single point. Their prevalence is surprising,
as is their correlation with topological charge density [445].

Vortex Sheet Indicator Links:
As the vortex line moves through time, it creates a vortex
sheet in 4D spacetime. This movement is illustrated by arrows
along the links of the lattice (shown as cyan and orange
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Fig. 32 From Ref. [448], the center-vortex structure of a ground-state
vacuum field configuration in pure SU(3) gauge theory (left) is com-
pared with a field configuration in dynamical 2+1 flavor QCD corre-
sponding to mπ = 156 MeV (right). The flow of +1 center charge

through the gauge fields is illustrated by the jets. Blue jets are used
to illustrate the single percolating vortex structure, while other colors
illustrate smaller structures

arrows in Fig. 31) indicating center charge flowing through
space-time plaquettes in the suppressed time direction.

Singular Points:
When the vortex sheet spans all four space-time dimensions,
it can generate topological charge. Lattice sites with this
property are called singular points [431,451–453] and are
illustrated by spheres. The sphere color indicates the number
of times the sheet adjacent to a point can generate a topolog-
ical charge contribution [445].

Reference [448] presents the first results demonstrating
the impact of dynamical fermions on the center-vortex struc-
ture of QCD ground-state fields. There matched lattices
were considered, one in pure-gauge and the other a 2 + 1-
flavor dynamical-fermion lattice from the PACS-CS Collab-
oration [454]. These 323 × 64 lattice ensembles employ
a renormalisation-group improved Iwasaki gauge action
and non-perturbatively O(a)-improved Wilson quarks, with
CSW = 1.715.

The lightest u- and d-quark-mass ensemble identified by
a pion mass of 156 MeV [454] is presented here. The scale is
set using the Sommer parameter [455] with r0 = 0.4921
fm providing a lattice spacing of a = 0.0933 fm [454].
A matched 323 × 64 pure-gauge ensemble using the same
improved Iwasaki gauge action with a Sommer-scale spacing
of a = 0.100 fm was created [448] to enable comparisons
with the PACS-CS ensembles.

The center-vortex structure of pure-gauge and dynamical
fermion ground-state vacuum fields is illustrated in Fig. 32
from Ref. [448], where interactive 3D plots of this struc-
ture which can be activated in Adobe Reader. The impact of
dynamical fermions on the center-vortex structure is much
more significant than that discussed in Sect. 4.3.6.

In both illustrations, the vortex structure is dominated by
a single large percolating structure. Whereas small loops will
tend to pierce a Wilson loop twice with zero effect, it is this

extended structure that gives rise to a net vortex piercing of a
Wilson loop and the generation of an area law associated with
confinement. These two illustrations are representative of the
ensemble in that the vortex structure is typically dominated
by a single large percolating cluster.

Closer inspection reveals a continuous flow of center
charge, often emerging or converging to monopole or anti-
monopole vertices where three jets emerge from or converge
to a point. These are referred to as branching points, as a+1
center charge flowing out of a vertex is equivalent to+2 cen-
ter charge flowing into the vertex and subsequently branching
to two +1 jets flowing out of the vertex.

With the introduction of dynamical fermions, the struc-
ture becomes more complex, both in the abundance of vor-
tices and branching points. The average number of vor-
tices composing the primary cluster in these 322 × 64 spa-
tial slices roughly doubles from ∼ 3000 vortices in the
pure gauge theory to ∼ 6000 in full QCD. Still, there are
322 × 64× 3 = 196,608 spatial plaquettes on these lattices
and thus the presence of a vortex is a relatively rare occur-
rence.

By counting the number of vortices between branching
points one discovers the distribution is exponential, indi-
cating a constant branching probability. This probability is
higher in full QCD by a ratio of ∼ 3/2.

With an understanding of the impact of dynamical-
fermion degrees of freedom on the center-vortex structure
of ground-state vacuum fields, attention has turned to under-
standing the impact on confinement. In a variational analy-
sis of standard Wilson loops composed of several spatially-
smeared sources to isolate the ground state potential, the
static quark potential has been calculated on three ensembles
including the original untouched links, Uμ(x), the vortex-
only links, Zμ(x), and vortex-removed links, Z†

μ(x)Uμ(x)
[442] where the multiplication of the conjugate of the centre-
projected field ensure all plaquettes have z = 0.
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Fig. 33 The static quark potential, as presented in Ref. [438], calcu-
lated on the vortex-modified dynamical-fermion ensemble, correspond-
ing to a pion mass of 156 MeV. The lower plot shows the local slope
from linear fits of the potentials in the upper plot over a forward-looking
window from r to r + 4a

For the original untouched configurations, the static quark
potential is expected to follow a Cornell potential

V (r) = V0 − α

r
+ σ r. (4.132)

As center vortices are anticipated to encapsulate the non-
perturbative long-range physics, the vortex-only results
should give rise to a linearly rising potential. On the other
hand, the vortex-removed results are expected to capture the
short-range Coulomb behavior. Figure 33 from Ref. [442]
illustrates the static quark potentials obtained from these
three ensembles for the dynamical 2 + 1-flavor ensemble
with a pion mass of 156 MeV [454].

Qualitatively, center vortices account for the long-distance
physics. The removal of center vortices completely removes
the confinement potential. And while the vortex-only string
tension is typically 60 % of the original string tension
in the pure gauge sector, the introduction of dynamical
fermions has improved the vortex-only phenomenology sig-
nificantly. Vortices alone capture both the screening of the
pure-gauge string tension and the full string tension of
the original untouched ensemble. This result is associated
with the significant modification of the center-vortex struc-
ture of ground-state vacuum fields induced by dynamical
fermions.

The improved separation of perturbative and nonpertur-
bative physics through the consideration of vortex-removed
and vortex-only ensembles in full QCD is also manifest
in the nonperturbative gluon propagator [442]. This time
vortex removal removes the infrared enhancement of the
gluon propagator, leaving a tree-level structure. Indeed the
vortex-removed Euclidean correlator remains positive defi-
nite, admitting the possibility of a positive-definite spectral

density associated with free gluons. The vortex-only ensem-
bles capture the infrared enhancement of the gluon propa-
gator and the screening of this enhancement in full QCD
[442].

Similarly, dynamical mass generation in the nonperturba-
tive quark propagator is suppressed under vortex removal in
full QCD while the vortex-only ensemble provides dynam-
ical mass generation [435]. While explicit chiral symmetry
breaking through the quark mass, leaves a remnant of dynam-
ical mass generation, it is anticipated that for sufficiently light
current quark masses, chiral symmetry will be restored [434]
and dynamical mass generation will be completely elimi-
nated in the vortex-removed theory.

In summary, center-vortex structure is complex. Each
ground-state configuration is dominated by a long-distance
percolating center-vortex structure. In SU (3) gauge field the-
ory, a proliferation of branching points is observed, with fur-
ther enhancement as light dynamical fermion degrees of free-
dom are introduced in simulating QCD. There is an approx-
imate doubling in the number of nontrivial center charges
in the percolating vortex structure as one goes from the
pure-gauge theory to full QCD. Increased complexity in
the vortex paths is also observed as the number of branch-
ing points is significantly increased with the introduction
of dynamical fermions. In short, dynamical-fermion degrees
of freedom radically alter the center-vortex structure of the
ground-state vacuum fields. This change in structure acts to
improve the phenomenology of center vortices better repro-
ducing the string tension, dynamical mass generation and bet-
ter removing nonperturbative physics under vortex removal.
This represents a significant advance in the ability of cen-
ter vortices to capture the salient nonperturbative features of
QCD.

4.3.8 Summary

In the 50 years following the advent of QCD, the complex-
ity of the nontrivial QCD vacuum has been exposed. Many
theoretical ideas have been created and developed to explain
the salient features of this nontrivial vacuum and their explo-
ration continues. Numerical experiments within the realm of
lattice QCD have been particularly useful in testing the verac-
ity of the theoretical ideas proposed. Today, these numeri-
cal experiments are exploring the ideas of instanton-dyons
and center-vortices as the essential features of QCD vacuum
structure, confining color and dynamically generating mass
through dynamical chiral symmetry breaking. The results are
fascinating, and encourage further exploration of the essence
of QCD vacuum structure.
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4.4 QCD at non-zero temperature and density

Frithjof Karsch

4.4.1 QCD thermodynamics on Euclidean lattices

The path integral formulation of QCD can easily be applied
to cases of non-vanishing temperature (T ) and other external
control parameters, e.g. the chemical potentials (μ f ) that
couple to the conserved currents of quark-flavor number.

Using the lattice regularization scheme of QCD, intro-
duced by K. Wilson [97], QCD thermodynamics is formu-
lated on Euclidean space-time lattices of size N 3

σ Nτ where,
for a given lattice spacing (a), the lattice extent in Euclidean
time controls the temperature T = 1/Nτa and the spatial
extent is related to the volume of the thermodynamic system,
V = (Nσa)3. The chemical potentials enter directly in the
fermion matrices, M f , which arise from the QCD Lagrangian
after integrating out the fermion fields.

Bulk thermodynamics can then be derived from the lattice
regularized partition function,

Z =
∫ Nτ∏

x0=1

Nσ∏

xi=1

3∏

ˆν=0

DUx,ν̂ e
−SG

×
∏

f=u,d,s..
det M f (m f , μ f ), (4.133)

where x = (x0, �x) labels the sites of the 4-dimensional lat-
tice, SG denotes the gluonic part of the Euclidean action,
which is expressed in terms of SU (3) matrices Ux,ν̂ and M f

is the fermion matrix for quark flavor f . It is a function of
quark mass, m f and flavor chemical potential μ̂ f ≡ μ f /T .
Basic bulk thermodynamic observables (equation of state,
susceptibilities, etc.) can then be obtained from the logarithm
of the partition function, Z , which defines the pressure, P ,
as

P/T = 1

V
ln Z(T, V, �μ, �m) . (4.134)

Applying standard thermodynamic relations one obtains
other observables of interest; e.g. the energy density is related
to the trace anomaly of the energy–momentum tensor, Θμμ,

Θμμ

T 4 = ε − 3P

T 4 ≡ T
∂P/T 4

∂T
, (4.135)

and the conserved charge densities are obtained as,

nX

T 3 =
∂P/T 4

∂μ̂X
, X = B, Q, S . (4.136)

While the framework of lattice QCD provides easy access
to QCD thermodynamics at vanishing values of the chemical
potentials, major difficulties arise at μ f �= 0. The fermion
determinants, detM f (m f , μ f ), are no longer positive defi-
nite when the real part of the chemical potential is non-zero,

Reμ̂ f �= 0. This includes the physically relevant case of
strictly real chemical potentials. The presence of a complex
valued integrand in the path integral makes the application
of standard Monte Carlo techniques, which rely on a prob-
abilistic interpretation of integration measures, impossible.
The two most common approaches to circumvent this prob-
lem are to either (i) perform numerical calculations at imag-
inary values of the chemical potential, μ̂2

f < 0 [456,457],
or to (ii) perform Taylor series expansions around μ̂ f = 0
[458,459]. In the former case numerical results need to be
analytically continued to real values of μ f . In the latter case
the QCD partition function is written as,

P/T 4 = 1

VT 3 ln Z(T, V, �μ) =
∞∑

i, j,k=0

χ
BQS
i jk

i ! j !k! μ̂
i
Bμ̂

j
Qμ̂

k
S ,

(4.137)

with χ
BQS
000 ≡ P(T, V, �0)/T 4 and expansion coefficients,

χ
BQS
i jk (T ) = ∂P/T 4

∂μ̂i
B∂μ̂

j
Q∂μ̂

k
S

∣
∣
∣
∣
∣
μ̂=0

, (4.138)

can be determined in Monte Carlo simulations performed at
μ̂X = 0.

The phase structure of QCD can be explored using suitable
observables that are sensitive to the spontaneous breaking and
the eventual restoration of global symmetries. They can act
as order parameters in certain limits of the parameter space
spanned by the quark masses. In QCD exact symmetries exist
either in the chiral limit, i.e. at vanishing values of n f quark
masses, or for infinitely heavy quarks, i.e. in pure SU (Nc)

gauge theories, with Nc denoting the number of colors.
In order to probe the restoration of the global chiral sym-

metries one analyzes the chiral condensate and its suscepti-
bilities,

〈χ̄χ〉 f = T

V

∂

∂m f
ln Z = T

V
〈TrM−1

f 〉 , (4.139)

χ
f g
m = ∂〈χ̄χ〉 f

∂mg
, χ

f
t = T

∂〈χ̄χ〉 f
∂T

. (4.140)

The former is an order parameter for the restoration of the
SU (n f )L × SU (n f )R chiral flavor symmetry of QCD and
distinguishes, in the limit of vanishing quark masses, a sym-
metry broken phase at low temperature from a chiral sym-
metry restored phase at high temperature,

lim
m!→0

〈χ̄χ〉!
{
> 0 T < Tχ
= 0 T ≥ Tχ

. (4.141)

Similarly one considers the Polyakov loop 〈L〉 and its sus-
ceptibility χL ,

〈L〉 = 1

N 3
σ

〈
∑

�x
TrL �x

〉

, L �x =
Nτ∏

x0=1

U
(x0,�x),0̂ ,
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Fig. 34 First evidence for the existence of a deconfinement phase tran-
sition in SU (2) gauge theories using the Polyakov loop expectation
value as an order parameter (left) [460] and a first extrapolation of the
phase transition temperature to the continuum limit (middle) [461] . The

right hand figure shows a first comparison of the temperature depen-
dence of the Polyakov loop (W ≡ 〈|L|〉) and chiral condensate (〈ψ̄ψ〉)
order parameters in a SU(3) gauge theory [462]

χL = N 3
σ

(
〈L2〉 − 〈L〉2

)
, (4.142)

to probe the breaking and restoration of the global Z(Nc)

center symmetry of pure SU (Nc)gauge theories; i.e. SU (Nc)

gauge theories at finite temperature, formulated on Euclidean
lattices, are invariant under global rotation of all temporal
gauge field variables, U�x,0̂ → zU�x,0̂, with z ∈ Z(Nc).
The Polyakov loop expectation value vanishes as long as this
center symmetry is not spontaneously broken.

The Polyakov loop expectation value also reflects the long
distance behavior of Polyakov loop correlation functions,

|〈L〉|2 ≡ lim
|�x |→∞

GL(�x)
{
= 0 ⇔ Fq = ∞, T ≤ Td
> 0 ⇔ Fq <∞, T > Td

(4.143)

where

GL(�x) = e−Fq̄q (�x,T )/T = 〈TrL�0TrL†
�0〉 (4.144)

is the correlation function of two Polyakov loops. It denotes
the change in free energy (excess free energy, Fq̄q ), that is
due to the presence of two static quark sources introduced
in a thermal medium. At zero temperature this free energy
reduces to the potential between static quark sources.

At least in the case of pure gauge theories this provides
a connection between the confinement-deconfinement phase
transition and the breaking of a global symmetry, the Z(Nc)

center symmetry of the SU (Nc) gauge group. This symme-
try, however, is explicitly broken in the presence of dynam-
ical quarks with mass m f < ∞. Unlike chiral symmetry
restoration, deconfinement thus is not expected to be related
to a phase transition in QCD with physical quark masses.
Nonetheless, the consequences of deconfinement, related to
the dissolution of hadronic bound states, becomes clearly
visible in many thermodynamic observables.

4.4.2 Early lattice QCD calculations at non-zero
temperature

Almost immediately after the formulation of QCD as the the-
ory of strong interaction physics, its consequences for strong
interaction matter at non-zero temperature were examined
[463,464]. It rapidly became obvious that fundamental prop-
erties of QCD, confinement and asymptotic freedom on the
one hand [464,465], and chiral symmetry breaking on the
other hand [466], are likely to trigger a phase transition in
strong interaction matter that separates a phase being dom-
inated by hadrons as the relevant degrees of freedom from
that of almost free quarks and gluons. The notion of a quark–
gluon plasma was coined at that time [467].

Soon after these early, conceptually important develop-
ments it was realized that the formulation of QCD on discrete
space-time lattices, which was introduced by K. Wilson as a
regularization scheme in QCD [97], also provides a powerful
framework for the analysis of non-perturbative properties of
strong interaction matter through Monte-Carlo simulations
[353]. This led to a first determination of a phase transition
temperature in SU (2) [460,461] and SU (3) [462,468,469]
gauge theories, and a first determination of the equation
of state of purely gluonic matter [470,471]. The interplay
between deconfinement on the one hand and chiral symme-
try restoration on the other hand also was studied [462] early
on and the question whether or not these two aspects of QCD
may lead to two distinct phase transitions in QCD has been
considered ever since. Some results from these first lattice
QCD studies of the thermodynamics of strong interaction
matter are shown in Fig. 34.

At physical values of the quark masses, neither deconfine-
ment nor the effective restoration of chiral symmetry leads to
a true phase transition. Still the transition from the low tem-
perature hadronic to the high temperature partonic phase of
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Fig. 35 The so-called color averaged, heavy quark free energy (Fav ≡
Fq̄q ) in the vicinity of the pseudo-critical transition temperature (Tpc)
in 2-flavor QCD [472]. Results shown cover a temperature range from
T/Tpc � 0.75 to T/Tpc � 2

QCD is clearly visible in the pseudo-critical behavior of the
heavy quark free energy and the chiral condensate respec-
tively. Some recent results on these observables, obtained in
simulations of QCD with light, dynamical quark degrees of
freedom, are shown in Figs. 35 and 36.

4.4.3 Global symmetries and the QCD phase diagram

The early studies of QCD thermodynamics made it clear
that universality arguments and renormalization group tech-
niques, successfully developed in condensed matter physics
and applied in statistical physics to the analysis of phase tran-
sitions, also can be carried over to the analysis of the phase
structure of quantum field theories [473,474]. The renormal-
ization group based arguments for the existence of a second
order phase transition in the universality class of the 3-d Ising
model in a SU (2) gauge theory, and a first order transition for
the SU (3) color group of QCD [475] have been confirmed
by detailed lattice QCD calculations [476,477].

In the presence of n f light, dynamical quarks, distin-
guished by a flavor quantum number, it is the chiral symme-
try of QCD that triggers the occurrence of phase transitions
[466]. In addition to a global U (1) symmetry that reflects
the conservation of baryon number and is unbroken at all
temperatures and densities, the massless QCD Lagrangian is
invariant under the symmetry group

U (1)A × SU (n f )L × SU (n f )R . (4.145)

The SU (n f )L × SU (n f )R symmetry corresponds to chiral
rotations of n f massless quark fields in flavor space. This
symmetry is spontaneously broken at low temperatures, giv-
ing rise to n2

f − 1 massless Goldstone modes, which for
n f = 2 are the three light pions of QCD. They have a non-
vanishing mass only because of the explicit breaking of chi-
ral symmetry by a mass term in the QCD Lagrangian that

Fig. 36 Quark mass dependence of chiral order parameter, M , defined
in Eq. 4.146 for QCD with two degenerate light quark masses and a
strange quark mass tuned to its physical value. Shown are results from
calculations on lattices with temporal extent Nτ = 8 performed for sev-
eral values of the light quark masses [478,479]. The light quark masses,
m!, are expressed in units of the strange quark mass, H = m!/ms . In the
figure we give 1/H = ms/m! together with the corresponding values
of the Goldstone pion mass

couples to the chiral order parameter field χ̄ f χ f . The axial
U (1)A group corresponds to global rotations of quark fields
for a given flavor f . Although it is an exact symmetry of
the classical Lagrangian, it is explicitly broken in the quan-
tized theory. This explicit breaking of a global symmetry,
arising from fluctuations on the quantum level, is known as
the U (1)A anomaly.

The renormalization group based analysis of the chiral
phase transition, performed by Pisarski and Wilczek [466],
made it clear that the chiral phase transition is sensitive to
the number of light quark flavors that become massless. Fur-
thermore, it has been argued in [466] that the order of the
transition may be sensitive to the magnitude of the axial
anomaly at non-zero temperature, which is closely related to
the temperature dependence of topological non-trivial field
configurations.

Although it was generally expected that the chiral phase
transition in 3-flavor QCD becomes a first order phase tran-
sition in the chiral limit [466], there is currently no direct
evidence for this from lattice QCD calculations. In fact, the
current understanding is that the chiral phase transition is
second order for all n f ≤ 6 [480].

In Fig. 37 (top) we show the original version of the QCD
phase diagram in the plane of two degenerate light (m!)

and strange (ms) quark masses, proposed in 1990 [481],
together with an updated version from 2021 [480]. Here
m! denotes the two degenerate up and down quark masses,
m! ≡ mu = md . This sketch of our current understanding of
the 3-flavor phase diagram also is supported by the increas-
ing evidence for a non-singular crossover transition in QCD
with physical light and strange quark masses and the absence
of any evidence for a first order phase transition at lighter-
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Fig. 37 Sketch of the phase diagram of QCD in the plane of degenerate,
light up and down quark masses and a strange quark mass (Columbia
plot). The figure shows the original version from 1990 [481] (top) and
an updated version from 2021 [480] (bottom)

than-physical values of the light and strange quark masses
[480,482]. In the chiral limit, i.e. for vanishing up and down
quark masses,11 a second order phase transition will then
occur.

4.4.4 The chiral phase transition at vanishing chemical
potential

The occurrence of the chiral phase transition is signaled by
the vanishing of the light quark chiral condensate. In order
to remove multiplicative and additive divergences in 〈χ̄χ〉!
one considers instead the order parameter M which is a com-
bination of light and strange quark condensates,

M = 2
(
ms〈ψ̄ψ〉! − m!〈ψ̄ψ〉s

)
/ f 4

K , (4.146)

11 Lattice QCD studies of the (2+1)-flavor phase diagram generally are
performed with degenerate up and down quark masses.

and its derivative with respect to the light quark masses, i.e.
the chiral susceptibility χM

χM = ms

(
∂M

∂mu
+ ∂M

∂md

)

mu=md≡m!

. (4.147)

Here the kaon decay constant fK = 156.1(9)/
√

2 MeV, has
been used to introduce a dimensionless order parameter. The
scaling behavior of M andχM , have been used to characterize
the chiral phase transition,

M ∼
m! → 0

⎧
⎨

⎩
A

(
T 0
c −T
T 0
c

)β

, T < T 0
c

0 T ≥ T 0
c

(4.148)

χM
∼

m! → 0

⎧
⎨

⎩

∞, T ≤ T 0
c

C
(
T−T 0

c
T 0
c

)−γ

, T > T 0
c

(4.149)

where β, γ are critical exponents.
We note that the low temperature behavior of the order

parameter susceptibility, χM , is quite different from that
known, for instance, in the 3-d Ising model. The suscepti-
bility diverges in the massless limit at all values of the tem-
perature, T ≤ T 0

c . This is a consequence of the breaking of a
continuous rather than a discrete symmetry. The former gives
rise to Goldstone modes, the pions in QCD, which contribute
to the chiral condensate and as such to the order parameter
M , i.e.,

M ∼ a(T )
√
m! , T < T 0

c . (4.150)

As a consequence the chiral susceptibility diverges below
T 0
c , χM ∼ 1/

√
m!, while at T 0

c its divergence is controlled
by the critical exponent δ = 1+ γ /β,

χM ∼
{
H−1/2 T < Tχ
H1/δ−1 T = Tχ

, (4.151)

with H = m!/ms . As 1− 1/δ > 1/2 in all relevant univer-
sality classes χM develops a pronounced peak at small, but
non-zero values of the quark masses,

χ
peak
M ≡ χM (Tpc(H)) ∼ H1/δ−1 , H = m!/ms . (4.152)

The location of such a peak in either χM or similarly
in T ∂M/∂T , defines pseudo-critical temperatures, Tpc(H),
which converge to the unique chiral phase transition, T 0

c , at
H = 0. Some results on the quark mass dependence of M
and χM are shown in Figs. 36 and 38, respectively. A scal-
ing analysis of these observables, performed in [478], led to
the determination of the chiral phase transition temperature
[478],

T 0
c = 132+3

−6 MeV. (4.153)
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Fig. 38 Same as Fig. 36 but for the chiral susceptibility

Similar results have also been obtained in [483] where a quite
different discretization scheme for the fermion sector of QCD
has been used.

For physical light and strange quark masses, correspond-
ing to H � 1/27, one finds as a pseudo-critical temperature
[484],

Tpc = 156.5(1.5) MeV , (4.154)

which is in good agreement with other determinations of
pseudo-critical temperatures in (2 + 1)-flavor QCD [485–
487].

The chiral symmetry group SU (2)L × SU (2)R is isomor-
phic to the rotation group O(4). It thus is expected that the
chiral phase transition for two vanishing light quark masses
is in the same universality class as 3-d, O(4) symmetric spin
models. In fact, the rapid rise of χM , shown in Fig. 38, is
consistent with a critical exponent in this universality class,
δ = 4.824 [488]. However, a precise determination of this
exponent in 2-flavor QCD is not yet possible. This leaves
open the possibility for other symmetry breaking patterns
and other universality classes playing a role in the chiral
limit of 2-flavor QCD [489]. In fact, the discussion of such
possibilities is closely related to the yet unsettled question
concerning the influence of the axial U (1)A symmetry on
the chiral phase transition. For a recent review on this ques-
tion see, for instance [490].

Thermal masses and screening masses
The restoration of symmetries is reflected also in the mod-
ification of the hadron spectrum at non-zero temperature.
Interactions in a thermal medium lead to modifications of
resonance peaks that can modify the location of maxima
and the width of spectral functions that control properties of
hadron correlation functions. This gives rise to so-called ther-
mal masses as well as thermal screening masses that control
the long-distance behavior of hadron correlation functions in
Euclidean time and spatial directions, respectively.

Fig. 39 Temperature dependence of masses of parity partners in the
baryon octet [491]

A consequence of U (1)A breaking in the vacuum or at
low temperature is that masses of hadronic states that are
related to each other through a U (1)A transformation differ,
while they become identical, or close to each other, when the
U (1)A symmetry is effectively restored. This is easily seen
to happen at high temperature. The crucial question, of rel-
evance for the QCD phase transition, however, is to which
extent U (1)A symmetry breaking is reduced, or already dis-
appeared at the chiral phase transition temperature. Settling
this question requires the analysis of observables sensitive
to U (1)A breaking close to T 0

c and for smaller-than-physical
light quark masses.

The calculation of in-medium modifications of hadron
masses is difficult, but has been attempted for quark masses
close to their physical values [491]. Results for the tempera-
ture dependence of the mass-splitting of parity partners in the
baryon octet [491] are shown in Fig. 39. These results sug-
gest a strong temperature dependence of the negative parity
states while the positive parity partners are not sensitive to
temperature changes. At Tpc the masses of parity partners
are almost degenerate.

More easily accessible are so-called screening masses,
which also are obtained from ordinary hadron correlation
functions and can be analyzed close to the chiral limit. Rather
than analyzing the long-distance behavior of hadron corre-
lation functions in Euclidean time, one extracts a so-called
screening mass from the long-distance behavior in one of
the spatial directions [494,495]. Finite temperature meson
screening correlators, projected onto lowest Matsubara fre-
quency of a bosonic state, p0 ≡ ω0 = 0, and zero transverse
momentum, p⊥ ≡ (px , py) = 0, are defined by

GΓ (z, T ) =
∫ β

0
dτ

∫
dxdy

〈
MΓ (�r , τ )MΓ (�0, 0)

〉

∼
z →∞ e−mΓ (T )z , �r ≡ (x, y, z) , (4.155)
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Fig. 40 Screening masses (top) and the related susceptibilities (bot-
tom) of scalar and pseudo-scalar mesons [492,493]

where MΓ ≡ ψ̄Γ ψ is a meson operator that projects onto a
quantum number channel that is selected through an appro-
priate choice of Γ -matrices [492,494]. At large distances
this permits the extraction of the screening mass, mΓ , in the
quantum number channel selected by Γ from the exponen-
tial fall-off of these correlation functions. In Fig. 40 (left)
we show results for the scalar and pseudo-scalar screening
masses obtained in (2+1)-flavor QCD calculations for differ-
ent values of the light to strange quark mass ratio. The inte-
grated correlation functions define susceptibilities in these
quantum number channels, which also should be degener-
ate, if U (1)A is effectively restored. Both observables seem
to suggest that there remains a significant remnant of U (1)A
breaking at the chiral phase transition temperature, T 0

c , which

however reduces quickly above the chiral transition and gives
rise to an effective restoration of U (1)A at T � 1.1T 0

c .
In the region T > T 0

c the difference between pseudo-
scalar and scalar susceptibilities is related to the so-called
disconnected part, χdis , of the chiral susceptibility, χM =
χdis + χcon , with

χdis = 1

4Nτ N 3
σ

(
〈(TrM−1

! )2〉 − 〈TrM−1
! 〉2

)
, (4.156)

χcon = 1

2Nτ N 3
σ

〈TrM−2
! 〉 . (4.157)

While the disconnected chiral susceptibility can in general be
expressed in terms of an integral over the quark mass deriva-
tive of the eigenvalue density [496], ρ(λ), of the fermion
matrix M f , it is directly related to an integral over ρ(λ) in
the chirally symmetric high temperature phase,

χdis =
∫ ∞

0
dλ ρ(λ)

2m2
!

(λ2 + m2
!)

2
. (4.158)

In the chiral symmetric phase the density of vanishing eigen-
values, ρ(0), vanishes. In order for χdis to be nonetheless
non-zero in the chiral limit, the density of near-zero eigenval-
ues needs to converge to a non-vanishing value (δ-function)
at λ = 0 in the limit m! → 0 and V →∞. Controlling the
various limits involved and also taking into account that the
pseudo-critical transition temperature, Tpc(H), has a size-
able quark mass dependence is difficult. Nonetheless, studies
of the temperature dependence of the eigenvalue density of
the Dirac matrix are crucial for a detailed understanding of
the influence of the U (1)A anomaly on the QCD phase tran-
sition. Not surprisingly, it turns out that at non-zero values
of the lattice spacing the spectrum of low lying eigenvalues
is quite sensitive to the fermion discretization scheme. Using
fermions with good chirality even at non-zero lattice spacing
seems to be advantageous, although after having performed
the extrapolation to the chiral limit, they should lead to results
identical with those obtained, e.g. within the staggered dis-
cretization scheme. Current results are ambiguous. We show
in Fig. 41 results from a calculation of eigenvalue distri-
butions obtained from calculations with dynamical overlap
fermions [497,498]. These calculations provide evidence for
a large density of near-zero eigenvalues and a non-zero eigen-
value density, possibly building up at λ = 0. This is in con-
trast to calculations performed with domain wall fermions
[499] as well as so-called partially quenched calculations
that use the overlap fermion operator to calculate eigenvalue
distributions on gauge field configurations generated with
dynamical staggered fermions [500]. Obviously this subtle
aspect of the chiral phase transition is not yet resolved and
the analysis of U (1)A restoration will remain to be a central
topic in finite temperature QCD in the years to come.
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Fig. 41 Eigenvalue density of the overlap fermion matrix obtained in
calculations with dynamical overlap fermions [497]

Fig. 42 Sketch of a possible QCD phase diagram in the space of tem-
perature (T ), baryon chemical potential (μB ) and light quark masses
(mu,d )

4.4.5 The chiral phase transition at non-vanishing
chemical potential

In the studies of QCD at non-vanishing baryon chemical
potential the search for the existence of a second order phase
transition at physical values of the quark masses, the criti-
cal end point (CEP), finds particular attention. It separates
the crossover regime at small values of the chemical poten-
tial from a region of first order phase transitions, which is
predicted in many phenomenological models to exist at high
density. The CEP is searched for extensively in heavy ion
experiments and, if confirmed, would provide a solid predic-
tion for the existence of first order phase transitions in dense
stellar matter, e.g. in neutron stars.

The dependence of the transition temperature on the chem-
ical potentials, e.g. Tpc(μB), can be deduced from the μB-

dependent shift of the peak in the chiral susceptibility. At
non-vanishing values of the baryon chemical potential, μB ,
the QCD phase transition temperature in the chiral limit as
well as the region of pseudo-critical behavior in QCD with its
physical quark mass values shifts to smaller values of the tem-
perature. This shift has been determined in calculations with
imaginary values of the chemical potentials as well as from
Taylor series expansions of the order parameter M and its
susceptibility χM . Using a Taylor series ansatz for Tpc(μB),

Tpc(μB) = T 0
pc

(

1− κB
2

(
μB

T 0
c

)2

− κB
4

(
μB

T 0
c

)4
)

(4.159)

one finds for the curvature coefficients κB
2 � 0.012 while the

next correction is consistent with zero in all current studies,
e.g. κB

4 = 0.00032(67) [487]. The pseudo-critical temper-
ature Tpc at physical values of the light and strange quark
masses thus drops to about 150 MeV at μB � 2Tpc. This
is still considerably larger than the chiral phase transition
temperature, T 0

c , determined at μB = 0. As various model
calculations [504,505] suggest that the CEP at non-zeroμB is
located at a temperature belowT 0

c one thus needs to get access
to thermodynamics at large chemical potentials. Assuming
that the curvature of the pseudo-critical line does not change
drastically at large values of the chemical potentials, our cur-
rent understanding of the QCD phase diagram in the m!-T -
μB space (see Fig. 42) suggests that a possible CEP in the
phase diagram may exist only at a temperature,

TCEP (μCEP
B ) < 130 MeV, μCEP

B > 400 MeV . (4.160)

Reaching the region μB/T > 3 is a major challenge for any
of the currently used approaches in lattice QCD calculations
as well as for collider based heavy ion experiments that search
for the CEP.

4.4.6 Equation of state of strongly interacting matter

The equation of state (EoS) of strongly interacting matter, i.e.
the pressure and its derivatives with respect to temperature
and chemical potentials provides the basic information on
the phase structure of QCD. It is of central importance not
only for the analysis of critical behavior in QCD but also
for the analysis of experimental results on strong interaction
thermodynamics that are obtained in relativistic heavy ion
collision experiments.

At vanishing values of the chemical potentials the QCD
EoS is well controlled and consistent results for pressure,
energy and entropy densities, as well as derived observ-
ables such as the speed of sound or specific heat, have been
obtained by several groups [501,502]. We show results for
some of these observables in Fig. 43. The figure on the right
shows the square of the speed of sound, c2

s , as function of
the energy density. It can be seen that c2

s has a minimum in
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Fig. 43 Left: Pressure, energy and entropy densities in (2+1)-flavor QCD at vanishing chemical potential. The figure is taken from [501]. Also
shown in the figure are results obtained with the stout discretization scheme for staggered fermions [502]. Right: The speed of sound as function
of energy density

Fig. 44 μB -dependent contribution to the pressure (left) and net
baryon number density (right) in (2+1)-flavor QCD at several values
of the baryon chemical potential chemical potential, μ/TB = 1.0, 1.5,
2.0, 2.5, (bottom to top) and for μ̂B = 2.0. Shown are results from Tay-

lor expansion up to eighth order in μ̂B in the pressure series for isospin
symmetric (μQ = 0) strangeness neutral (nS = 0) matter and cor-
responding Padé approximants obtained from these Taylor expansion
coefficients. The figures are taken from [503]

the transition region, sometimes called the softest point of
the QCD EoS [506]. The energy density in the vicinity of
the pseudo-critical temperature (Tpc � 155 MeV) is found
to be,

εc � (350± 150) MeV/fm3 , (4.161)

which is compatible with the energy density of the nucleon,
mN/(4πr3

N/3) for nucleon radii in the range rN = (0.8−1)
fm. Also shown in the top figure is the trace of the energy–
momentum tensor, (ε−3P)/T 4. Its deviation from zero gives
some hint to the relevance of interactions in the medium (for
an ideal gas as well as to leading order in high tempera-
ture perturbation theory one has ε = 3P). Not unexpected
this is largest close to the transition region and decreases
only slowly in the high temperature regime. This large devi-

ations from ideal gas or perturbative behavior is seen in many
observables at temperature Tpc < T < 2Tpc.

Calculations of the equation of state as a function of T
and μB have been performed using direct simulations at
imaginary chemical potentials, which then get analytically
continued to real values of the chemical potentials [507], as
well as calculations using up to eighth order Taylor expan-
sions in μB [503]. Results of such calculations agree well
for μB/T ≤ (2−2.5). In Fig. 44 we show results for the
μB-dependent contribution to the pressure and net baryon
number density. Comparing Fig. 44 (left) with Fig. 43 (left)
shows that at μB/T � 2 and T � Tpc the pressure increases
by about 30%, which is due to the increase in number of
baryons in the medium.

At larger values of the baryon chemical potential the Tay-
lor series will not convergence due to the presence of either
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poles in the complex μB-plane or a real pole, that may cor-
respond to the searched for CEP. The occurrence of poles in
the complex plane also generates problems for the analytic
continuation of results obtained in simulations at imaginary
values of μB as a suitable ansatz for the continuation needs
to be found. Many approaches to improve over straightfor-
ward Taylor series approaches or simulations at imaginary
chemical potential are currently being discussed [508–511].
In the context of Taylor expansions a natural way to proceed
is to use Padé approximants, which provide a resummation
of the Taylor series and reproduce this series, when expanded
for small μB [503,512]. Results from [4,4] and [3,4] Padé
approximants for the pressure and number density series,
respectively, are also shown in Fig. 44. The good agreement
with the Taylor series for μB/T ≤ 2.5 gives confidence in
the validity of the Taylor series results and once more seems
to rule out the occurrence of a CEP in this parameter range.

4.4.7 Outlook

Achieving better control over the influence of the axial
anomaly on the QCD phase transition in the chiral limit at
vanishing chemical potentials and getting better control over
the dependence of the QCD phase diagram at large non-zero
values of the chemical potentials certainly are the two largest
challenges in studies of QCD thermodynamics for the next
decade.

4.5 Spectrum computations

Jozef Dudek

4.5.1 Motivation for hadron spectroscopy

Many decades of experimental data collection has lead to a
compendium of observed hadrons [513], most of which are
short-lived resonances. The job of hadron spectroscopy is to
understand the patterns in the spectrum, such as the distri-
bution of states by spin, parity and flavor, and which decays
are preferred by which states. These patterns are typically
interpreted in terms of models or ‘pictures’ of hadron struc-
ture in which e.g. certain mesons are assigned status as qq̄ ,
as glueballs, as hybrids, as higher quark Fock states, or as
molecular states of lighter hadrons [514].

For a long time, simplified dynamical models whose con-
nection to QCD is often obscure have dominated the field,
and through these significant intuition has been developed,
but in recent years lattice QCD has matured to the level where
it can address the physics of excited hadrons directly. Using
this tool we aim to build an understanding of how QCD binds
quarks and gluons into hadrons from first principles.

Fig. 45 Summary of hadron spectrum calculations taken from Ref.
[515]. Different symbol shapes indicate different quark discretizations,
while the colors (red, orange, green, blue) indicate an increasing level
of systematic control in the calculation. b-flavored meson masses are
shifted down by 4000 MeV

4.5.2 Precise mass determination for stable hadrons

As described in Sect. 4.2, hadron masses can be deter-
mined from the large time behavior of two-point correla-
tion functions utilizing operators with the quantum numbers
of hadrons constructed from quark and gluon fields. These
correlation functions are calculated using quark propagators
computed with a particular choice of discretization of the
QCD action, and particular values of parameters which set
the lattice spacing and the quark masses. When seeking pre-
cise determination of hadron masses, one can calculate with
several quark masses and lattice spacings, and attempt to
extrapolate to the physical limit where the quark mass takes
its true value and where the lattice spacing becomes zero.

Figure 45 (taken from Ref. [515]) summarizes a number
of efforts in this direction, showing the masses for low-lying
mesons and baryons constructed from light, strange, charm
and bottom quarks, comparing the computed values to mea-
sured values. Clear agreement is observed for many stable
or nearly-stable hadrons. With increasing levels of precision
on the mass estimates, the role of small effects like QED
become important, and in recent years, these too have been
estimated (e.g. Refs. [516–519]) .

4.5.3 Expanding the scope of lattice spectroscopy

There are relatively few calculations in which hadron masses
have been determined with a somewhat complete study of
systematics, and they have been largely restricted to those
situations where only a single completely-connected Wick
contraction features in the relevant correlation function, and
where the state of interest is the lightest with a given quantum
number.
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Examples which require something beyond this include
isoscalar mesons in which quark–antiquark annihilation dia-
grams must be computed. Conventional propagator tech-
niques cannot handle these diagrams, and while various
stochastic techniques have been used, it was the introduction
of the distillation approach [520] which not only opened up
isoscalar meson spectroscopy but also the determination of
multiple excited states.

Distillation is in essence a quark-field smearing imple-
mentation, where the smearing operator,

�(x, y) =
N∑

i=1

vi (x) v
†
i (y),

is constructed from a limited number of low-lying eigenvec-
tors of the gauge-covariant spatial Laplacian,

−∇2vi (x) = λivi (x).

All quark fields in hadron interpolating operators are smeared
by this operator, enhancing overlap with low-lying states. The
unique advantage of this approach though is the way that
the outer-product nature of the smearing operator allows a
factorization of correlation functions into objects describing
hadron operators, independent of objects called “perambula-
tors” describing quark propagation,

τi j (t, t
′) =

∑

x,y

v
†
i (x)M

−1(x, t; y, t ′)v j (y).

Annihilation contributions can be handled straightforwardly
using timeslice-to-timeslice perambulators, τi j (t, t).

The factorization within distillation allows for massive
re-use of the propagation objects, so that the inversion time
cost of building a set of perambulators is amortized over a
huge number of subsequent calculations.12 In the context of
determining excited states, it allows for the computation of
many correlation functions using a large basis of interpolat-
ing operators.

While in principle any single correlation function

C(t, 0) =
∑

n

an e
−Mnt

contains information about the entire excited spectrum,
{Mn}, in practice determining the spectrum by fitting sub-
leading time-dependence is highly unstable. It is obvious for
example, that degenerate or near-degenerate states cannot be
distinguished by their time-dependence alone. A much more
powerful approach makes use of orthogonality – if one con-
siders a large basis of hadron interpolating operators all with
the same overall quantum numbers, we expect there to be one
linear combination that most effectively produces the ground

12 There is also a stochastic implementation of distillation [522], which
is argued to have a better cost-scaling with the volume of the lattice, but
at the cost of somewhat less flexibility in re-use.

state, another that produces the first-excited state and so on.
It is straightforward to show that if one forms the matrix of
two-point correlation functions

Ci j (t) = 〈0|Oi (t)O
†
j (0)|0〉,

with a basis of operators {Oi }i=1...N , the optimal combina-
tions correspond to the eigenvectors of the generalized eigen-
value problem,

C(t) vn = λn(t, t0)C(t0) vn,

where the eigenvalues give access to the corresponding mass
or energy spectrum, λn(t, t0) ∼ e−En(t−t0). This approach is
typically referred to as variational analysis [410–412].

An example of a large basis of operators with the quan-
tum numbers of mesons is the one presented in Ref [521],
where smeared quark field bilinears featuring up to three
gauge-covariant derivatives are used [523–526]. In order to
respect the reduced rotational symmetry of the cubic lattice,
operators of definite J P are subduced into irreducible repre-
sentations (irreps) of the cubic symmetry. Using a basis like
this, with the variational analysis approach presented above,
can lead to results like those shown in Fig. 46. The extracted
spectrum shows many of the systematics of the experimen-
tal meson spectrum such as the J PC ordering of states and
the presence of an “OZI-rule” in the hidden-light/hidden-
strange composition of isoscalar mesons (dominantly ideal
flavor mixing except for a few notable exceptions like 0−+).
Also present in these extracted spectra are mesons with exotic
J PC = 1−+, 0+−, 2+−, i.e. those not accessible to just a qq̄
pair. Examining which interpolating operators are the largest
components in the optimal operators for these states, we
observe the presence of non-trivial gluonic structures, and
it is natural to interpret these states as hybrid mesons. Non-
exotic J PC states high in the spectrum are also observed
to have these gluonic operator overlaps (states outlined in
orange in Fig. 46), and this leads to an identification of the
lightest supermultiplet of hybrid mesons [527], ruling out
certain previously reasonable models.

A closely related calculation using a large basis of oper-
ators with baryon quantum numbers appeared in Refs.
[528,529], with the spectra for N # (isospin-1/2) and Δ#

(isospin-3/2) excitations shown in Fig. 47.
The calculation presented in Fig. 46 was performed with a

light quark mass heavier than physical, and at a single lattice
spacing, and as such the results cannot be treated as precise, or
suitable for direct comparison to experiment. But in the case
of excited spectroscopy, precision is not the main aim, rather
the intent is to build an understanding of the systematics of
the hadron spectrum having a direct connection to QCD. In
fact there is a more relevant problem with these results – they
do not reflect the complete physics of excited states which
lie above hadronic decay thresholds – these states should be
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Fig. 46 Spectrum of excited mesons extracted from lattice QCD cal-
culation with heavier that physical light quarks. States labelled by their
J PC . Vertical height of each box represents the statistical uncertainty.
Isoscalar meson boxes show the hidden-light (black) versus hidden-

strange (green) composition. States with orange outlines have large
overlap with operators featuring the chromomagnetic field, suggesting
an identification as the lightest supermultiplet of hybrid mesons. Taken
from Ref. [521]

Fig. 47 Spectrum of excited baryons extracted from lattice QCD cal-
culation with heavier than physical light quarks. States labelled by their
J P . Vertical height of each box represents the statistical uncertainty.

States colored orange have large overlap with operators featuring the
chromomagnetic field, suggesting an identification as the lightest super-
multiplet of hybrid baryons. Taken from Refs. [528,529]

unstable resonances, and resonances are not simply charac-
terized by a mass.

4.5.4 Resonances and the finite-volume approach to
scattering

The simplest context in which resonances appear is elastic
hadron–hadron scattering in which the initial and final states
are identical, and the amplitude can be expanded in partial-
waves. Resonances of definite spin appear as enhancements
in a single partial-wave in the continuous energy spectrum,

and formally may be associated with pole singularities at
complex values of the scattering energy.

In a finite spatial volume, such as that provided by the
lattice, there can be no continuous energy spectrum, and
instead only a discrete spectrum, but it is easy to see that this
spectrum should be volume-dependent and sensitive to the
infinite-volume scattering amplitudes. This can be illustrated
in one-dimensional quantum mechanics [320] – a finite-
length of L can be implemented by applying periodic bound-
ary conditions to a scattering wavefunction and its derivative.
This leads to a quantization condition on possible allowed
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momenta, pn = 2π
L n − 2

L δ(pn), where δ(p) is the elastic
phase-shift that describes scattering.

This observation is the core principle behind the lattice
QCD approach to scattering. If the discrete spectrum of states
in the finite spatial volume defined by the lattice can be
obtained, it can be used to provide a set of constraints on
the energy dependence of scattering amplitudes.

The analogous formalism for relativistic scattering in three
spatial dimensions was derived in Refs. [530,531], and has
been extended many times to now be in a form that is appli-
cable to any number of coupled channels of two-body scat-
tering (see the review, Ref. [532]). One way of writing this
quantization condition is

det
[
1+ iρ(E) t(E)

(
1+ iM(E, L)

)] = 0, (4.162)

where the scattering t-matrix is a dense matrix in the space of
scattering channels, but block diagonal in angular momen-
tum, !, while the matrixM, which features known functions
(of essentially kinematic origin) of energy and box-size, is
block-diagonal in channels, but dense in !.

The presence of multiple ! in the quantization condition is
an important complicating factor that reflects the fact that the
basis of partial waves of definite !, in which one naturally
expands scattering, is not respected by the reduced rotational
symmetry of the cubic boundary of the lattice. The angular
momentum barrier at low energies ensures that in practice
only a small finite number of ! values need to be considered.

Equation (4.162) can be interpreted as follows: if one knew
the scattering amplitudes t(E), one would seek to find all the
zero-crossings of the determinant function for a fixed value
of L , and these would determine the finite-volume spectrum,
En(L), corresponding to this scattering amplitude. Of course
in practice, lattice QCD will supply the discrete finite-volume
spectra and one must work backwards to find the correspond-
ing t(E).

One situation in which this is relatively straightforward
is when we are in an energy region where only elastic scat-
tering is kinematically allowed, and where one partial wave,
!, is dominant. In this case Eq. 4.162 reduces to the simple
form cot δ!(E) = M!,!(E, L). In this case, given a lattice
QCD determined finite-volume energy E , one simply plugs
into the right-hand-side to obtain a value of the scattering
phase-shift at that energy. If enough finite-volume energies
are determined, in one or more lattice volumes, the energy
dependence of δ!(E) can be mapped out.

So the job of lattice QCD computation in studies of reso-
nances is to provide accurate discrete finite-volume spectra.
In order for calculations to resolve the full discrete spectrum
of states (as opposed to the limited set described in the previ-
ous section) it proves necessary to include in the basis of oper-
ators a set which resemble pairs of mesons. These “meson–
meson-like” operators are typically constructed from a prod-
uct of two quark-bilinears, with each one being projected into

a definite momentum. The important difference with respect
to the single quark-bilinear operators described in the previ-
ous section, is that the “meson–meson-like” operators sam-
ple the entire spatial volume, causing them to have a much
enhanced overlap with finite-volume eigenstates resembling
a pair of mesons.

A basis of “meson–meson-like” operators can be con-
structed [533–535] and a natural guide to which are required
in any given calculation comes from a non-interacting energy
associated with each such operator. For example, opera-
tors resembling a pair of pions with ! = 0 can be con-
structed as

∑
p̂ Oπ (p)Oπ (-p) where Oπ (p) is a quark bilin-

ear with the quantum numbers of a pion, and where the
sum is over directions of momentum allowed on a cubic lat-
tice. These operators naturally have a non-interacting energy
En.r. = 2

√
m2

π + p2 associated with them that corresponds to
the energy a state interpolated by this operator would have if
there were no residual pion–pion interactions. Because there
are interactions, the actual energy spectrum will differ from
this, but it should be clear that operators with non-interacting
energy far above the energy region under consideration will
not need to be included.

Adding “meson–meson-like” operators to the basis
increases the variety of Wick diagrams that need to be eval-
uated, and in general diagrams including quark–antiquark
annihilation are present. Distillation is a very powerful tool to
evaluate these diagrams using previously computed peram-
bulators, without the need to make further approximations,
or to introduce noise through stochastic approaches.

4.5.5 Elastic meson–meson scattering

An example of the approach described in the previous sec-
tion is presented in Fig. 48 which shows the P-wave of ππ

scattering with isospin–1. The calculation, done with light-
quark masses such that the pion mass is 391 MeV, computed
the finite-volume spectrum in three lattice volumes. The pan-
els on the left show the spectra in the rest frame ([000]) and
several frames in which the ππ system has a net momentum
P = 2π

L [nxnynz]. Each discrete energy is used to obtain a
value of δ1 at the same energy, and these are plotted in the
right panel, where the behavior is clearly that of a narrow
resonance. The energy dependence can then be fitted using
a Breit–Wigner or other suitable amplitude parameterization
from which the mass and width of the ρ resonance can be
determined.

Calculations like this one, of theρ resonance, have become
mainstream within the lattice community [533,535–547],13

and the vector K ∗ resonance in Kπ scattering is similar
(although in this case one has to deal with the effect of

13 One calculation has considered the ρ in ππ scattering using two
lattice spacings [544], finding no statistically significant differences.
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Fig. 48 Isospin–1 ππ scattering with J P = 1− from lattice QCD
with mπ = 391 MeV taken from Ref. [533]. Left five panels show dis-
crete spectrum of states in three lattice volumes, for five values of total
ππ momentum. Red curves indicate the non-interacting ππ energies,

and the green dashed line shows the K K̄ threshold where scattering
ceases to be elastic. Rightmost panel shows the P-wave elastic scatter-
ing phase-shift determined using the discrete spectrum points which is
observed to correspond to a narrow ρ resonance

Fig. 49 Isospin–0 ππ scattering with J P = 0+ from lattice QCD at
two pion masses taken from Ref. [558]. Intersection of p cot δ0 with
−|p| indicates the presence of a bound-state σ at the heavier pion mass
which is not present at the lower pion mass, or in experiment, where a
broad resonance is believed to be present

S-wave scattering in moving frames) [541,548–552]. The
elastic scattering amplitudes do not need to be resonant for
this approach to be used, an example is ππ scattering with
isospin–2 where the relatively weak effects can be resolved
[534,542,553–557].

Pion–pion scattering with isospin–0 has received less
attention [557–559]. In order to evaluate the relevant cor-
relation functions, many diagrams featuring qq̄ annihilation
are required. One example calculation [558] that made use
of distillation to evaluate all these diagrams is summarized in
Fig. 49, where a function of the phase-shift as a function of
energy is shown for calculations at two different light quark
masses. The behavior at the heavier quark mass is that of
a system featuring a stable bound state, while at the lower
quark mass, which much more closely resembles the exper-
imental data, there appears to be a broad resonance. These
results provide the first signs within QCD of the quark mass
evolution of the σ meson.

Scattering of mesons featuring charm or bottom quarks
can be studied using the same technology [561–573]. Rel-
atively few calculations have so far attempted to deter-
mine meson–baryon scattering and the baryonic resonances
therein [574–576], largely because of the increased com-
putational cost of such efforts above what is required for
meson–meson scattering, and the fact that the lowest-lying
resonance, the Δ(1232), only becomes unstable for decay to
Nπ at relatively low light-quark masses.

4.5.6 Coupled-channel scattering

The bulk of experimentally observed hadron resonances can
decay into more than one hadronic final state, and as such can
be considered to be resonances in coupled-channel scatter-
ing. Coupled-channel scattering (in a particular partial wave)
can be described by a t-matrix, ti j (E), where the indices i, j
run over hadronic channels, e.g. ππ, K K̄ . . ..

Equation (4.162) controls how the discrete spectrum in a
finite volume is related to the t-matrix, but practical use of this
equation when lattice QCD-obtained finite-volume spectra
are in hand requires some thought. It is not possible to work
energy-level by energy-level as we did for elastic scattering,
as the t-matrix contains multiple unknowns at each energy.
Rather, a successful approach has been to parameterize the
energy-dependence of t(E), and to attempt to describe the
entire finite-volume spectrum using this parameterization. A
χ2 can be defined which quantifies the difference between the
finite-volume spectrum obtained from solving Eq. (4.162) for
a particular parameterization and the lattice QCD obtained
spectrum. This χ2 can be minimized by varying the free
parameters to obtain a best fit.

In order to carry this out, it is necessary to construct
appropriate parameterizations of t(E)which must include all
kinematically open channels in the energy region being con-
sidered. They must also exactly respect two-body unitarity
which is implicit in Eq. (4.162). A rather general framework
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Fig. 50 Coupled ππ, K K̄ scattering (also ηη, not shown) computed
on three lattice volumes with mπ = 391 MeV. Taken from Ref. [560].
Lower panels show resonance pole locations found by analytically con-

tinuing into the complex energy plane. In J P = 0+ case, ratio of cou-
plings of f0 resonance to ππ , K K̄ given. In J P = 2+ case, branching
fractions of two resonances to ππ , K K̄ final states are given

to achieve this is to use parameterizations of the K -matrix,
which is flexible enough to handle both resonant and non-
resonant cases in any number of channels.

The first lattice QCD calculation of coupled-channel scat-
tering considered the πK , ηK system which was found to be
almost decoupled, with resonances appearing coupled only
toπK [577,578]. Since then there has been a steady stream of
calculations of meson–meson scattering of gradually increas-
ing complexity [535,560,566,579–584].

An example of what can be extracted from lattice QCD
for coupled-channel scattering is shown in Fig. 50, taken
from Ref. [560]. In this calculation of coupled ππ, K K̄ , ηη

scattering, performed with 391 MeV pions, the finite vol-
ume spectrum was found in three lattice volumes and several
moving frames, leading to 57 energy levels to constrain the
S-wave t-matrix and 36 levels to constrain the D-wave.

We observe a highly non-trivial energy-dependence in the
S-wave where a broad enhancement at low energies is fol-
lowed by a dip in the ππ → ππ amplitude at the K K̄
threshold, while amplitudes leading to a K K̄ final state turn
on rapidly at threshold. While this energy dependence does
not “by-eye” immediately suggest a simple resonance inter-
pretation, the t-matrix can be analytically continued to com-
plex energies, and two poles are found: one lies below ππ

threshold and corresponds to the stable σ discussed earlier,
while the second lies close to the K K̄ threshold, and might be
associated with the experimental f0(980) resonance (which
also appears as a sharp dip in ππ scattering). This resonance
pole has large couplings to both ππ and K K̄ . These results
prove to be robust to variations in the detailed form of the
amplitude parameterization.

The D-wave result reflects more closely our intuitive pic-
ture of resonances, with two bumps appearing, associated to

two pole singularities. The lighter state dominantly couples
to ππ , and a heavier narrower state is dominantly coupled
to K K̄ , a situation that is very similar to the experimen-
tal f2(1270), f ′2(1525) states. The selective final state cou-
plings reflect the ‘OZI-rule’ emerging dynamically from a
non-perturbative calculation if we interpret the lighter state
as dominantly uū + dd̄ and the heavier as dominantly ss̄.

A different complication can occur when the scattering
hadrons have non-zero spin. In this case, the same total J P

can be constructed by more than one hadron-spin, orbital
angular momentum combination. For example, if one scatters
a vector ω meson from a pion, J P = 1+ can be constructed
from ! = 0 or from ! = 2, or using the spectroscopic nota-
tion, 3S1,

3D1. In this case, even if πω is the only channel
accessible, one still has a system of coupled-partial-waves,
and a two-dimensional t-matrix.

A version of Eq. (4.162) still holds in such situations,
and once again, provided enough energy levels can be com-
puted in lattice QCD to provide sufficient constraint, the t-
matrix can be determined. An example is shown in Fig. 51
where coupled πω, πφ scattering was studied with pions of
mass 391 MeV. With light quarks as heavy as this, the ω and
φ mesons are absolutely stable. A clear resonant behavior
is observed which can be associated with the experimental
b1(1235) state, and the couplings at the pole yield a value for
the D/S amplitude ratio, a quantity that has been measured
previously (references are listed in Ref. [513]).

The coupled channel technology has also been applied
to scattering systems with charmed mesons [566,584], and
recently, for the first time to a scattering system housing an
exotic J PC resonance believed to be a hybrid meson [582].
For meson resonances having decays only to one or more
two-body final states, rigorous study within lattice QCD is
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Fig. 51 Coupledπω, πφ scattering, withπω in coupled partial waves,
3S1,

3D1, computed on three lattice volumes with mπ = 391 MeV.
Taken from Ref. [581]. b1 resonance pole and coupling to channels
shown in bottom panel

today a reality, with observables being the mass and width of
the resonance, as well as the couplings to decay channels, all
of which follow from scattering amplitudes. Going beyond
this, more information about resonances can be obtained if we
generalize away from scattering to also consider processes
in which an external current probes the system.

4.5.7 Beyond scattering

An extension of the finite-volume formalism allows us to
study systems in which a stable hadron emits or absorbs an
electroweak current and transitions into a pair of strongly-
interacting hadrons which may resonate. Applications incl-
ude semileptonic heavy flavor decays with resonances in the
final state, e.g. B → !+!−K ∗ where the K ∗ decays to Kπ .
To date the only application of this technology has been to
a simpler reaction, γπ → ππ , where the final state fea-
tures the ρ resonance [585–587]. The approach requires first
the determination of the ππ elastic scattering amplitude as
described earlier, followed by computations of three-point
correlation functions, from which transition matrix elements
are extracted. The effect of the finite-volume is encoded in a
correction to the normalization of theππ state [588–590] that

Fig. 52 Upper panel shows the transition amplitude for πγ → ππ

with J P = 1− computed from a lattice QCD calculation with mπ =
391 MeV for two sample values of the photon virtuality. The lower
panel shows the corresponding ππ → ππ elastic scattering amplitude.
Taken from Ref. [586]

requires knowledge of the scattering amplitude. Figure 52
illustrates one result of such a calculation, showing the tran-
sition matrix element for πγ → ππ (for two sample values
of photon virtuality) along with the elastic ππ scattering
amplitude – the clear ρ resonance is present in both.

As well as computation of experimentally measurable pro-
cesses (such as the heavy flavor decays), this approach also
allows us to compute in lattice QCD quantities that cannot
be easily accessed in experiment. For example, analytically
continuing the transition amplitude obtained above to the
ρ resonance pole, one obtains a resonance transition form-
factor ρ → πγ ∗, whose virtuality dependence can be used
to infer structural information about the ρ. A recent exten-
sion of the finite-volume formalism [592] to be able to handle
processes like ππγ → ππ will allow us to compute the true
resonance form-factors.

4.5.8 The three-hadron frontier and other challenges

The progress reported above in the two-hadron sector has
opened up the world of hadron resonance spectroscopy to
first principles study using lattice QCD, but to go further
an extension in formalism is required. The applicability of
Eq. (4.162) is limited to energies below the lowest three-
hadron threshold, and this is particularly constraining as the
light quark mass is decreased and the threshold for πππ

becomes very low, lower than the mass of most interesting
resonances.

Development of finite-volume formalism to extend into
the three-body sector has been underway for some time, mak-
ing use of several approaches to three-body scattering, and
they are now converging to a consensus, as reviewed in Ref.
[593]. The resulting formalism is, as one might expect, sig-
nificantly more complicated than in the two-body case, but
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Fig. 53 A lattice QCD determination of the spectra in two volumes of isospin–2 ππ and isospin–3 πππ with mπ = 391 MeV. Orange curves
show a description of these spectra using two-body and three-body finite-volume formalism with the amplitudes shown on the right. Taken from
Ref. [591]

the essential idea is still the same – the input from lattice is a
set of discrete energy levels, now computed in channels with
the quantum numbers of a three-hadron system.

The lattice QCD determinations of the finite-volume spec-
tra follow a similar pattern to those described above, includ-
ing now operators resembling systems of three-hadrons, but
these are relatively straightforward to compute. The first
investigations have focussed mostly on systems of maxi-
mal isospin [591,594–598], e.g. πππ with isospin–3, where
there are no resonances either in the three-hadron system,
nor in the two-hadron subsystems.

An example is presented in Fig. 53 where we see discrete
lattice QCD energy levels in two volumes for theππ isospin–
2 system and theπππ isospin–3 system. These spectra can be
described by two-body and three-body scattering amplitudes
propagated through the finite-volume formalism, as shown
by the orange curves. The amplitudes, as shown on the right
of the figure (see the paper for the definition of the quantities
plotted), are essentially structureless as expected in this non-
resonant system. With proof-of-principle calculations like
this one now done, the field is moving towards cases in which
there are resonances, either in two-body subchannels, or in
the three-body system, or both.

4.5.9 Summary

The progress in applying lattice to problems in hadron spec-
troscopy, as illustrated in this volume, suggests we have the
beginnings of a rigorous foundation for the subfield, ground-
ing it in first-principles QCD. The experimental hadron spec-
trum is already well studied, and there is a considerable
corpus of model-based understanding, with which the lat-
tice effort has to catch up. But already, with examples like
the hybrid meson spectrum, lattice calculations are resolv-
ing long-standing conflicts. The ability to resolve excited
hadrons as they truly are, as unstable resonances, makes a
more direct connection to experiment possible, and the fact
that calculations are possible of quantities which cannot be
easily reached in experiments, like resonance form-factors,
provides an opportunity to explore the internal structure of
states that are otherwise poorly understood.

4.6 Hadron structure

Martha Constantinou and K. Orginos
The structure of the nucleon has been a central compo-

nent to the development of QCD. Fundamental properties of
strong interactions, such as asymptotic freedom, were dis-
covered while trying to unravel the nature of the nucleon.
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Hofstadter’s elastic electron scattering experiments [599]
discovered the first indications of a complex structure inside
the proton. Later on, Deep Inelastic Scattering (DIS) discov-
ered that partons, the constituents of the nucleon, are nearly
free at short distances and led to the discovery of asymptotic
freedom. Confinement, the fact that partons cannot break free
from a hadron, is also a property of strong interactions that
emerges from the study of hadronic structure. It was asymp-
totic freedom that eventually convinced theorists that QCD
can describe the rich phenomenology of strong interactions.

Since its first exploration more than half a century ago,
hadronic structure continues to be studied intensely both
experimentally and theoretically. Theoretical studies include
computations of various hadronic properties using lattice
QCD, which offers a powerful non-perturbative, and sys-
tematically improvable way of computing fundamental prop-
erties of hadrons. This section summarizes the current sta-
tus of lattice QCD calculations relevant to hadron structure.
We start from simple observables such as nucleon charges
which are important matrix elements for searches for physics
beyond the standard model. We then proceed to a review of
computations of nucleon form factors which are observables
that give us information about the low energy structure of
the hadron. Finally, we discuss modern methods for obtain-
ing distribution functions from lattice QCD. Parton distribu-
tion functions are the simplest of such observables, which
are relevant to understanding high-energy scattering experi-
ments and give us a one-dimensional picture of the hadron.
Generalized parton distribution functions (GPDs) and Trans-
verse Momentum dependent distributions (TMDs) and their
determination from lattice QCD will also be discussed.

4.6.1 Nucleon charges

Nucleon matrix elements of local quark bi-linear operators of
the form OΓ,τ (t) = q̄(t)Γ τq(t) define the nucleon charges.
Here Γ is a general spin matrix and τ a flavor matrix. Isovec-
tor charges are obtained when τ = τ3 the diagonal flavor
Pauli matrix, while flavor diagonal charges are defined with
an appropriate choice of τ that selects individual flavors.
Nuclear matrix elements are obtained through computations
of three-point functions of the form

Cs,s′
Γ,τ (t

′, t) = 〈Ns(t)OΓ,τ (t
′)Ns′

(0)〉, (4.163)

where Ns(t) is a nucleon interpolating field at time t , with
helicity s and projected to zero momentum. Typical nucleon
interpolating fields can be written as

∑
abc,i jk εabcC

s
i jkq

a
i q

b
j

qck with Cs
i jk appropriate weights. For a discussion of how

these weights are obtained, see Ref. [600]. In the limit of
t � t ′ � 0 the above correlator can be written as

Cs,s′
Γ,τ (t

′, t) = zs(zs
′
)∗〈s|OΓ,τ |s′〉e−MN t (4.164)

Fig. 54 Lattice QCD determinations of the isovector axial charge com-
pared to the experimental world average is taken from PDG. Figure from
Ref. [256], and reprinted based on the arXiv distribution license

where 〈s|OΓ,τ |s′〉 is the desired nucleon matrix element and
MN is the nucleon mass and zs is the overlap factor 〈0|Ns |s〉.
Using appropriate fitting procedure together with a nucleon
two-point function

C(t) = 〈Ns(t)N
s
(0)〉 = zs(zs)∗e−MN t (4.165)

one obtains the desired matrix element. In general, these
matrix elements require renormalization to obtain the matrix
element at a given scale μ in a particular renormalization
scheme. For a review of various methods used in lattice QCD
to renormalize quark bi-linear operators, we refer the reader
to Ref. [601]. Following this procedure, the nucleon charges
have been obtained from lattice QCD. The isovector and fla-
vor diagonal charges are essential quantities that, together
with experimental observation, can constrain Beyond the
Standard Model (BSM) theories. Therefore a significant
effort in lattice QCD has been devoted to precise compu-
tations of the nucleon charges.

Establishing the lattice formulation of QCD requires that
experimentally well-known quantities are correctly repro-
duced from numerical simulations. The axial charge of the
nucleon, gA, falls under this category and has been under
investigation for several years. The field exhibits tremen-
dous progress and among the highlights is the calculation of
gA with controlled statistical uncertainties. The Flavor Lat-
tice Averaging Group (FLAG) periodically reviews lattice
results on several quantities, including gA, and produces the
FLAG averages. In Fig. 54, we provide a summary plot of lat-
tice calculations [256] demonstrating that lattice results have
improved in accuracy over the years and recent calculations
at the physical point agree with the experimental average.
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The overall progress stimulated an intense activity in the
field of hadron structure with the study of a large class of
observables, some of which are known experimentally, but
many that are still unexplored or difficult to measure [256,
602]. The investigations include nucleon charges such as the
tensor and scalar and form factors for mesons and baryons.
Selected results with simulations at physical quark masses
can be found in Refs. [256,602].

4.6.2 Nucleon form factors

The Nucleon form factors are important properties of the
nucleons that are essential for understanding their interac-
tions in low-energy scattering experiments. They convey
information about the internal structure of the hadron and
their response to external probes, such as electromagnetic
and weak currents. Properties such as the internal distribu-
tion of electric currents and charge and the size of the hadron
can be deduced from electromagnetic form factors. Axial
form factors describe the response of the hadron to external
weak interaction probes. Future experiments, such as DUNE
at Fermilab [603] and Hyper-Kamiokande [604], that aim
to understand the properties of neutrinos, will require pre-
cise knowledge of the Nucleon axial form factors in order to
achieve the precision they aim for. Therefore, lattice QCD
computations of the Nucleon form factors are deemed essen-
tial and are vigorously pursued by several groups at this point.
Advances in lattice QCD methods and computer hardware
make such computations possible with sufficient precision
to impact phenomenology [605].

Nucleon form factors are matrix element computations
that require 3-point function computations

Cs,s′
Γ,τ (t

′, t; �p, �p′) = 〈Ns( �p, t)OΓ,τ (t
′)Ns′

( �p′, 0)〉, (4.166)

where �p′, �p are the initial and final momenta of the hadrons.
In the limit of t � t ′ � 0, the above correlator can be written
as the matrix element associated with the form factor, which
emerges as:

Cs,s′
Γ,τ (t

′, t; �p, �p′) = z(p)s z(p′)s′
∗
e−E(p)(t−t ′)

×〈s, �p|OΓ,τ |s′, �p′〉e−E(p′)t ′ (4.167)

where E(p) is the energy of the nucleon with momentum
p and zs is the overlap factor 〈0|Ns( �p)|s, �p〉. The matrix
element 〈s, �p|OΓ,τ |s′, �p′〉 is related to the appropriate form
factor for the operator OΓ,τ and is extracted with appropriate
fitting methodology (see Refs. [605–607] for details of some
of these methods).

In the case of the electromagnetic form factor where Γ =
γμ and the flavor matrix combines the flavors of quarks with

their appropriate charges, the matrix element is

〈s, �p|
∑

f

e f q̄ f γμq f |s′, �p′〉

= Ū ( �p)
[

F1(Q
2)+ iσμν

2M
qνF2(Q

2)

]

U ( �p′) (4.168)

where U ( �p) is the spinor associated with the nucleon, qμ =
pμ − p′μ, Q2 = −q2, and F1, F2 the two Lorentz invariant
Dirac and Pauli form factors. The electric and magnetic form
factors are defined as

GE (Q
2) = F1(Q

2)− Q2

4M2 F2(Q
2)

GM (Q2) = F1(Q
2)+ F2(Q

2). (4.169)

With these form factors we can define the charge radius 〈r2
E 〉

and the magnetic radius 〈r2
M 〉 of the nucleon as

〈r2
E 〉 = −6

dGE (Q2)

dQ2

∣
∣
∣
∣
Q2=0

〈r2
M 〉 = −

6

GM (0)

dGM (Q2)

dQ2

∣
∣
∣
∣
Q2=0

. (4.170)

Because of the finite volume in lattice QCD computations,
the form factors are only known on a set of discrete points.
The full Q2 dependence is recovered by fitting the data points
to particular phenomenologically motivated forms. The sim-
plest such form is the dipole:

Fdipole(Q
2) = rF

(
1+ Q2

M2
F

)2 , (4.171)

where rF is the residue and M2
F is a mass parameter associ-

ated with the form factor at hand. This simple parametriza-
tion works well for the lattice calculations that are typically
restricted to low Q2. Recently the z-expansion [608] given
by

F(Q2) =
∞∑

k=0

ak z(Q2)k, (4.172)

with

z(Q2) =
√
tcut + Q2 −√tcut − t0√
tcut + Q2 +√tcut − t0

, (4.173)

has been employed for a more flexible parametrization. The
position of the cut, tcut, is the time-like kinematic thresh-
old for particle production associated with the current whose
form factor is discussed. The parameter t0 is the point in Q2

that is mapped to z = 0 and is chosen for convenience.
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Fig. 55 Status of recent lattice QCD results for the isovector nucleon
electric form factor in comparison with the Kelly parametrization of
experimental results (figure from Ref. [609]). Reprinted under the terms
of the Creative Commons Attribution 4.0 International license

Multiple lattice QCD collaborations have recently com-
puted the nucleon vector form factors. Several lattice collab-
orations have recently computed the isovector electric form
factor (i.e., the difference between the proton and the neu-
tron form factors). After many years of study of various sys-
tematics involved, we now have computations with physical
quark masses, careful analysis of excited state contamina-
tion of the ground state matrix element, and large enough
volumes to avoid finite volume effects. In Fig. 55, the lat-
tice data together with the Kelly parametrization [610] of
experimental results are presented. The lattice data of PND-
ME20 [607] are plotted as blue circles, the Mainz21 [611]
data are the orange triangles, the ETMC18 [612] data are
the green diamonds, and the PACS18 [613] data are the red
triangles. All these calculations are performed with differ-
ent methodologies and approaches in treating excited state
effects and varying fermion actions in both the sea and the
valence sectors. PNDME20 uses the HISQ action in the sea
sector and smeared Clover action in the valence sector. The
ETMC18 calculations use the twisted mass action. Both the
Mainz21 and the PACS18 collaborations use Clover fermion
actions. Clearly, there are some tensions between various
collaborations that will be resolved in future, more refined
calculations. However, it should be noted that there is a fairly
good agreement between the state-of-the-art calculations and
experiment.

Lattice QCD computations of the form factors can lead
to the determination of the radii of the nucleon. In addi-
tion, direct methods of determining the nucleon radii also
exist. Lattice QCD calculation results for the magnetic and
the charge isovector radius of the nucleon are presented
in Fig. 56. In this figure, the magenta right triangles are
PNDME20 [607] using the mixed actions with Clover on
HISQ, and the green triangles are from ETM18/20 [612,614]
using the twisted-mass action. Calculations using the Clover

Fig. 56 Lattice results for charge magnetic radii of the nucleon. The
vertical bands are the estimates from experiment (see text for details)

fermion action are represented by the maroon octagons
[611] from Mainz21, the blue diamonds from PACS18/20
[613,615], the red circle is from LHPC17, and the magenta
left triangles from NME21 [606]. Note that results from
[614,615] are obtained with methods that directly estimate
the slope of the form factor at Q2 = 0. The vertical bands
represent the phenomenological values for the radii obtained
from the experiment by combining data from the proton and
the neutron. In particular the isovector charge r ivE and mag-
netic r ivM radii are given by

r ivE =
√
r2
Ep − r2

En , r ivM =
√

μpr2
Mp − μnr2

Mn

μp − μn
, (4.174)

where r2
Ep, r2

En are the proton and neutron charge radii, r2
Mp,

r2
Mn are the proton and neutron magnetic radii, and μp, μn

are the proton and neutron magnetic moments. By combining
results exclusively from the particle data group (PDG) [616]
we obtain the red bands. For the charge radius, the cyan band
is obtained by using the CODATA2018 value for the proton
charge radius and the neutron charge radius from the recent
work in [617]. The cyan band for the magnetic radius was
obtained using the proton radius obtained by [618] and the
rest of the needed quantities from PDG.

In the case of the isovector axial form factors, one can
take τ+ as the flavor matrix and Γ = iγ5γμ and the resulting
matrix element is

〈s, �p|q̄(iγ5γμτ
+)q|s′, �p′〉

= Ū ( �p)
[
FA(Q

2)+ qμ
M

γ5FP (Q
2)

]
U ( �p′), (4.175)

with FA and FP being the corresponding invariant form fac-
tors. In Fig. 57, recent lattice QCD computations of the
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Fig. 57 Lattice QCD results for the nucleon axial form factor com-
pared to the experimental results from neutrino deuteron scattering.
Figure from Ref. [605] and reprinted under the terms of the Creative
Commons Attribution 4.0 International license

axial form factor are presented. The red band denotes the
parametrized experimental results from neutrino deuteron
scattering [619]. The purple band are results from NME21
[606], and the green band are results from RQCD20 [620],
where continuum, chiral and finite volume extrapolations
have been performed. The rest contain results [613,615,621–
624] from a few ensembles and are presented as points with-
out the interpolating curves. It is clear that although there
is tension between lattice QCD results and experiment, lat-
tice QCD calculations are consistent with each other. As
it is argued in Ref. [605] that lattice QCD calculations of
axial nucleon form factors may play an essential role in
future experiments and thus help us better understand neu-
trino physics.

4.6.3 Partonic structure

Information on the internal structure of hadrons is obtained
through their partonic content, particularly parton PDFs,
GPDs, and TMDs (see Sect. 10). These quantities are light-
cone correlation functions and cannot be calculated using
the Euclidean formulation of lattice QCD due to the rotation
t → iτ . The most common avenue to proceed is to calcu-
late Mellin moments of distribution functions, which provide
partial information on distribution functions.

Lattice QCD calculations have focused on proton charges,
vector, and axial form factors, that are, the first Mellin
moments of PDFs and GPDs, respectively. There are also
limited studies of the scalar and tensor charges, as well as
the second Mellin moments of PDFs and GPDs.

In theory, one can use a large number of Mellin moments
to reconstruct the parton distributions using an operator
product expansion (OPE). Practically, a proper and exact
reconstruction is not possible due to the challenges of cal-
culating reliably high moments; the signal-to-noise rapidly

decreases, and an unavoidable power-law mixing occurs
beyond the fourth moment [625–629]. Therefore, alterna-
tive methods are needed to obtain the x dependence of dis-
tribution functions from a Euclidean formulation. The real-
ization that matrix elements of momentum-boosted hadrons
coupled with bilinear non-local operators can be related to
light-cone distributions has transformed the field of PDF,
GPDs, and TMDs calculations. The pioneering method of
Large-Momentum Effective Theory (LaMET) that uses the
aforementioned non-local operators has renewed the inter-
est of the community to access the x dependence of par-
ton distributions. Over the years, there have been several
methods proposed: a technique based on the hadronic ten-
sor [630–632], auxiliary quark field approaches [633–635],
a method to obtain high Mellin moments using smeared oper-
ators [636], LaMET [637,638], pseudo-ITD [639], current–
current correlators [640–642], and a method based on OPE
[643].

In this review, we highlight selected results demonstrating
the field’s progress. More details can be found in the recent
reviews [644–648].

Isovector PDFs
The isovector leading-twist PDFs have been the most well-
studied and serve as a benchmark of the various method-
ologies to extract x dependence from lattice data. Results
with ensembles at physical quark masses have already been
obtained for the unpolarized [649–652], helicity [649,650,
653] and transversity [650,654,655] PDFs for the pro-
ton. Here we focus on the unpolarized case that has the
most results allowing comparison between different meth-
ods and lattice formulations. The work of Ref. [650] uses a
twisted-mass fermions ensemble with physical pion mass and
employs the quasi-PDFs method. The lattice spacing is about
0.09 fm, and the nucleon momentum boost is up to 1.4 GeV.
The unpolarized PDF of Ref. [651] has been obtained using
the pseudo-ITD framework on three clover Wilson ensembles
with pion mass 172, 278, and 358 MeV; a chiral extrapolation
has been performed to get the physical point. The pseudo-ITD
methodology computes the Lorentz invariant amplitudes that
contribute to the non-local matrix element and isolates the
amplitude that contains the leading twist contribution. This
amplitude is a function of the so-called Ioffe time ν, which
is the Fourier-dual of the momentum fraction x [656–658].
The analysis of [651] includes lattice data up to Ioffe time
ν = 8 for the near-physical mass ensemble. Finally, the work
of Ref. [652] extends and reanalyzes the data of Ref. [650]
within the pseudo-ITD framework with up to ν = 8. Having
three independent calculations of the unpolarized PDF allows
one to compare them and understand potentially systematic
effects related to the method and computational setup. Such a
comparison can be found in Ref. [651], which we include in
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Fig. 58 Lattice results for the unpolarized PDF using quasi-PDFs
[650] (red band) and pseudo-ITDs from Ref. [651] (gray band) and
Ref. [652] (blue band). Plot from Ref. [651]. Reprinted under the terms
of the Creative Commons Attribution 4.0 International license

Fig. 58. A good agreement is observed between the different
calculations, which is very encouraging, as each methodol-
ogy may suffer from different systematic effects.

Gluon PDFs
In general, gluon contributions are limitedly studied due
to the enhanced gauge noise, the involvement of discon-
nected diagrams, and the challenges in the non-perturbative
renormalization. In the case of x-dependent gluon PDFs, the
renormalization cancels out using the pseudo-ITD method,
which is a significant advantage. Recently, there have been
calculations of the gluon PDF for the proton and the pion
using the pseudo-ITD method [659,660]. Reference [659]
presents a calculation using clover fermions at a pion mass
mπ = 358 MeV. One novelty of the calculation is the use of
the momentum-smeared distillation technique [661] to sup-
press gauge noise. The work also employs Jacobi polynomi-
als to reconstruct the x dependence of the distribution [662].
The main results are shown in Fig. 59. The work of Ref.
[660] presents a calculation of the gluon PDF for the pion
using two HISQ coarse ensembles (a = 0.12, 0.15 fm) and
pion masses mπ = 220, 310, 690 MeV. While the current
status of gluon PDFs is exploratory, the available results are
promising.

Individual quark PDFs
Calculations of individual-quark PDFs are challenging due to
the involvement of disconnected diagrams that increases the
statistical fluctuations of the correlators. The flavor decom-
position of quark PDFs is interesting in its own right but is
also needed to form the flavor-singlet combination to elim-
inate mixing with the gluon PDF. The mixing holds only
for the unpolarized and helicity cases; there is no gluon
transversity. Furthermore, the strange and charm quark PDFs
are more susceptible to mixing as they enter the sea sec-

Fig. 59 Lattice QCD results on the gluon PDF from Ref. [659] (cyan
band) compared to estimates from global analyses [663–665]. Reprinted
under the terms of the Creative Commons Attribution 4.0 International
license

tor from gluon splitting. The effect of mixing is expected to
be smaller for the light quarks that appear in the valence
sector of the proton. The individual light quark unpolar-
ized, helicity, and transversity PDFs were calculated in Refs.
[666,667] using an ensemble of twisted mass fermions at
mπ = 260 MeV. The work shows that disconnected con-
tributions to the unpolarized and transversity PDFs are tiny
and can be neglected. However, calculations at the physical
value of the quark masses are needed to confirm this. Ref-
erences [666,667] include the strange quark contributions,
which may have increased systematic effects due to the mix-
ing with the gluon PDFs. The same holds for Ref. [668]
(clover on HISQ, mπ = 220, 310, 690 MeV), which calcu-
lates the strange and charm quark PDFs for the proton.

GPDs
Another progress for lattice QCD is related to calculating x-
dependent GPDs. These are computationally more expensive
than PDFs due to the momentum transfer between the ini-
tial and final hadronic states. The momentum transfer must
be equally split between the initial and final states, as the
GPDs are defined in the symmetric frame; such a frame is
computationally costly, preventing the extraction of GPDs
for a dense set of values of t . A novel approach that related
light-cone GPDs to Lorentz-invariant amplitudes has been
recently proposed [669]. First results on the proton unpolar-
ized and helicity GPDs have been obtained using the quasi-
distribution approach [666]. The calculation is performed on
a 260 MeV pion mass ensemble of twisted mass fermions.
The work was extended for the chiral odd twist-2 GPDs in
Ref. [670]. In Fig. 60, we compare the three types of GPDs
for zero and nonzero skewness. As can be seen, the intro-
duction of nonzero skewness leads to the appearance of a
nontrivial ERBL region. Another calculation of the unpolar-
ized GPDs can be found in Ref. [671], which was originally
reported in a non-symmetric frame similar to the one used
for frame-independent form factors.
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Fig. 60 Top: H , H̃ , HT GPDs t = −0.69 GeV2, ξ = 0. Bottom: H ,
H̃ , HT GPDs t = −1.02 GeV2, ξ = 1/3. The unpolarized, helicity,
and transversity data are shown with red, yellow, and purple bands,
respectively. Figure from Ref. [670] and reprinted under the terms of
the Creative Commons Attribution 4.0 International license

TMDs
Unlike PDFs and GPDs, TMDs contain, in addition, rapid-
ity divergences that require regularization. The regulator is
encapsulated within the so-called soft function. The evo-
lution in rapidity of the soft function can be studied sepa-
rately through the Collins–Soper (CS) kernel. Aspects of the
soft function are actively studied in lattice QCD [668,672–
676,678], which is the ideal formulation as the soft-function
is a non-perturbative quantity. A summary plot for the CS
kernel is shown in Fig. 61.

Higher-twist
One of the latest developments in extracting x-dependent
distribution functions is the exploration of twist-3 PDFs and
GPDs that contain information on quark–gluon–quark cor-
relations [679]. They are also related to the transverse force
acting on transversely polarized quarks [680] and to the
nuclear electric dipole moments [681]. First exploratory stud-
ies of twist-3 PDFs e(x), gT (x), and hL(x) can be found in
Refs. [677,682–684], with numerical results for gT (x) and
hL(x). An interesting investigation of twist-3 PDFs is the

Fig. 61 Lattice QCD determinations of the Collins–Soper evolution
kernel obtained from Ref. [672] (SWZ 20), Ref. [673] (LPC 20), Ref.
[674] (Regensburg/NMSU 21), and Ref. [675] (ETMC/PKU 21), and
Ref. [676] (SWZ 21). Figure adapted from Ref. [676] and reprinted
under the terms of the Creative Commons Attribution 4.0 International
license

Fig. 62 The Wandzura–Wilczek approximation for gT . Figure from
Ref. [677] and reprinted under the terms of the Creative Commons
Attribution 4.0 International license

Wandzura–Wilczek (WW) approximation [685] according to
which the twist-3 gT can be fully determined by its twist-2
counterpart, g1. The WW approximation can also be stud-
ied for hL . In Fig. 62 one can see gWW

T , demonstrating that
the approximation holds in some regions of x , but an overall
violation of up to 40% is permitted. Note that the 2-parton
twist-3 PDFs mix with quark–gluon–quark correlations and
the mixing should be addressed within the matching kernel
[686,687].

4.6.4 Outlook

Since the early days of lattice QCD in the 1980s, hadron
structure calculations have been pursued vigorously. Over
the years, the methods used to perform these calculations
have improved steadily, and the Monte Carlo methods for
sampling the QCD vacuum have reached the degree of effi-
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ciency required for such computations. Furthermore, com-
puter hardware has now reached the Exaflop era. As a result,
calculations for hadron structure are now achieving unprece-
dented precision in some cases (ex., nucleon charges). In
other cases, new horizons open up, such as the ability to
compute the momentum fraction x-dependence of distribu-
tion functions. In the future, lattice QCD computations of
hadronic structure will continue to improve and provide us
with the theoretical input needed to understand strong inter-
action physics better.

4.7 Weak matrix elements

Christine Davies
Quarks have the special property that they experience all of
the fundamental forces in the Standard Model. As well as
exchanging the gluons that keep them confined into hadrons,
quarks can also occasionally emit weak interactionW bosons
or QED photons. Because W and γ have no color charge they
escape cleanly from the hadron, carrying valuable informa-
tion about the structure of the bound state. This structure is
determined by strong interaction physics and so predictions
from QCD can be tested against experimental information
on these processes. The number of different quark flavors,
and hadrons constructed from them, makes a rich mine for
lattice QCD to work in.

In the bigger picture of the Standard Model we need to
determine accurately the couplings between quarks and the
W boson given by the elements of the CKM matrix ([688],
Sect. 13.2). This programme is a crucial ingredient in con-
straining the possibilities for new physics beyond the Stan-
dard Model. However, quarks are not free particles when they
emit W bosons. The experimental measurement of appropri-
ate hadronic weak decay rates allows us to determine CKM
elements but only if, as discussed above, we have under-
stood the strong interaction physics that confines the quarks
through calculation of the appropriate hadronic matrix ele-
ments of the weak current. As we will see below, some of
the experimental information for weak (and electromagnetic)
decay rates is very accurate and correspondingly accurate
theoretical calculations in QCD are needed to make the most
of it. These have always been a high priority for lattice QCD.
Results have improved over time to the point where uncer-
tainties are now below 1% in some cases. We will discuss the
current status below, and briefly mention developments that
will lead to improvements in future.

4.7.1 Decay constants

Decay constants are the hadronic parameters that encode the
amplitude for finding the valence quark and anti-quark of
a meson at the same point. This is then the parameter that
is needed to determine the rate of annihilation of mesons

Fig. 63 Schematic diagram of a meson annihilation to leptons via the
coupling of the valence quark–antiquark pair to a W or γ . The decay
constant parameterises the amplitude to find the quark and antiquark at a
point, the key hadronic information needed to determine the annihilation
rate

with appropriate flavor quantum numbers to a W or γ (see
Fig. 63). For a pseudoscalar meson the decay constant, f ,
is defined from the vacuum to meson matrix element of the
axial current. For meson P of quark content ab

〈0|aγμγ5b|P(p)〉 ≡ fP pμ. (4.176)

For a meson at rest, applying the partially-conserved axial
current (PCAC) relation ∂μAμ = (ma + mb)Ps to relate
axial-vector and pseudoscalar currents gives

(ma + mb)〈0|aγ5b|P( �p = 0)〉 = fPM
2
P , (4.177)

where MP is the meson mass.
In lattice QCD the matrix element on the l.h.s. of

Eq. (4.176) or (4.177) is obtained from the two-point correla-
tion function between source and sink ab currents (Sect. 4.2)
with Euclidean time separation, t , between them. The two-
point function has contributions, exponential in t , from a
tower of ab mesons. The exponential corresponding to the
ground-state (lowest mass) meson dominates at large t and
this is the meson for which the parameters of the fit, the ampli-
tude and mass, are most precisely determined. This mirrors
experiment, where accurate meson weak or electromagnetic
annihilation rates are possible when strong-interaction decay
channels are heavily suppressed (not usually true for excited
states). Note, however, that lattice QCD can determine f for
mesons which do not have the flavor quantum numbers to
annihilate to W or γ – these results are still useful in other
contexts.

The fit to the two-point function C(t) gives both the
ground-state meson mass and its decay constant. The con-
tribution of the ground-state to C(t) is

C(t) = a0(e
−M0t + e−M0(T−t))+ · · · . (4.178)

Here T is the lattice time extent and . . . represents contribu-
tions from higher mass states. M0 is the ground-state meson
mass and the amplitude a0 is given by
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a0 = (〈0|J |P0〉)2/(2M0) (4.179)

where J is the current used at the source and sink of C(t).
The decay constant for P0 can then be obtained from a0 using
Eq. (4.176) or (4.177) as appropriate for J .

Decay constants for light pseudoscalar mesons ( fπ and
fK ) have been calculable in lattice QCD with errors at the
few percent level since 2004 [689]. This was one of the first
calculations to be done once ensembles of gluon field config-
urations were available (from the MILC collaboration) that
included u, d and s sea quarks with multiple values of the
lattice spacing and light enough u/d quarks for a reason-
ably well-controlled extrapolation to the physical continuum
limit.

To achieve a small uncertainty in the result for the ground-
state meson mass and decay constant it is important to have a
large sample of correlators (to achieve small statistical errors)
at multiple values of the lattice spacing using a discretisation
of the QCD action with small discretisation errors (Sects. 4.2,
4.1). An accurate determination of the lattice spacing (to con-
vertC(t)’s fit parameters from lattice units to GeV) is needed.
Attention must also be paid to the effect of the finite-volume
of the lattice on the π and K . Finite-volume (and discreti-
sation) effects are incorporated into the chiral perturbation
theory [690] used to fit the results as a function of u/d quark
mass (or Mπ ) to extrapolate to the continuum limit with phys-
ical quark masses. Mπ is used to fix the average u/d quark
mass (u and d are taken to be degenerate in almost all cal-
culations) and the physical value appropriate to a calculation
in which the quark electric charges are ignored is the experi-
mental value of the π0 mass. MK fixes the s quark mass and
the physical value used is an average of the masses of K 0

and K+ with an allowance for QED effects [689].
For decay constants a further important consideration is

the normalisation of the axial vector current that appears in
Eq. (4.176) so that it matches that of the continuum QCD
current. For lattice QCD actions that have an exact PCAC
relation (such as asqtad staggered quarks used in [689])
no renormalisation is needed. Rather than use the partially
conserved axial current (which is a complicated point-split
construction) it is easiest to use the pseudoscalar current,
which is local, and calculate the decay constant directly from
Eq. (4.177). The quark masses that appear in this expression
are then the bare lattice quark masses being used in the cal-
culation.

The key physics importance of the lattice QCD calcula-
tions of fπ and fK is in determining the rate for π+/K+
annihilation to a W boson, which can be measured accu-
rately in experiment. The annihilation rate for meson P with
appropriate quark flavor quantum numbers is

Γ (P → !ν) = G2
F |Vab|2

8π
f 2
Pm

2
!MP

(

1− m2
!

M2
P

)2

(4.180)

up to well-studied QED corrections. Only the A of the V − A
weak interaction contributes in this case, so that Γ ∝ f 2

P .
Vab is the appropriate CKM element; this can be determined
from the experimental measurement of Γ given a value for
fP from lattice QCD.

Several systematic errors are reduced in an analysis of the
ratio of widths for K and π [693]. This enables the ratio
|Vus |/|Vud | to be determined and converted to a result for
|Vus | using accurate |Vud | values from super-allowed nuclear
β decay [616]. Lattice QCD calculations have then largely
concentrated on determining the ratio fK / fπ , equivalent to
fixing the lattice spacing from fπ . Following a great deal
of work by the lattice community, current day results have
improved to the point where the uncertainty on fK+/ fπ+ is
reduced to 0.2%. The recent FLAG review [256] quotes an
average of

fK+/ fπ+ = 1.1932(21), n f = 2+ 1+ 1 (4.181)

from lattice QCD results that include u, d, s and c quarks
in the sea obtained in Refs. [692,694–696]. The average is
dominated by the result from the Fermilab Lattice/MILC col-
laborations [692]. The lattice calculations now include an
analysis of the impact of the u/d mass difference; work is
ongoing to analyse QED effects on the lattice [697].

Heavier pseudoscalar mesons also annihilate to W s, giv-
ing access to other CKM elements. For example, the rate for
B → !ν depends on |Vub| and fB . The experimental deter-
mination of the decay rates is harder and they currently have
larger uncertainties than for K and π [616]. On the lattice
QCD side the heavier masses of the c and b quarks increase
discretisation errors, since they take the form of powers ofma
for quark mass m. To counteract this lattice QCD theorists
must improve the discretisation of the QCD (Dirac) action
to increase the power of ma (for ma < 1) with which these
errors first appear. A very successful action in this regard is
the Highly Improved Staggered Quark (HISQ) action [331]
developed by the HPQCD collaboration, with tree-level dis-
cretisation errors starting at (ma)4.

This discretisation allowed the first 1% accurate calcula-
tions for charmed meson decay constants [703]. The current
state-of-the-art results are from the Fermilab Lattice/MILC
collaborations using HISQ quarks and have 0.3% uncertain-
ties [692]. The dominant uncertainty in the values of Vcs and
Vcd from meson leptonic decay is then from the experimental
decay rate [616].

For b quarks discretisation errors are even more of a
headache. During the 1990s methods were developed that
exploited the nonrelativistic nature of the b quark in its bound
states, thus removing the b quark mass as a dynamical scale
(so that discretisation errors instead depend on the much
smaller scales of the b quark kinetic energy and momentum).
These approaches are based on the discretisation onto a lattice
of Heavy Quark Effective theory (HQET) [704] (for ‘heavy-
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light’ hadrons) and of non-relativistic QCD (NRQCD) [289]
(applicable also to heavyonium). It was also shown that the
large-mass limit of the clover-improved Wilson quark action
[307] could be interpreted as a nonrelativistic effective theory
[705]. A limitation of these formalisms is the need to nor-
malise the weak current to match that of continuum QCD; this
requires challenging calculations in lattice QCD perturbation
theory and has only been done through O(αs) [706–708].
The ETM collaboration developed a ratio approach [709] to
interpolate between results for quark masses around c using
the twisted mass quark formalism [316] and the infinite-mass
(static) limit. These methods have been able to achieve a 2%
uncertainty on B decay constants [709,710].

As increased computational power could be exploited to
generate gluon field configurations with finer values of the
lattice spacing, alternative methods became available. The
MILC collaboration led the way including 2 + 1 flavors of
asqtad sea quarks with a range of lattice spacing values down
to a = 0.044 fm. On these lattices the HPQCD collaboration
showed that b quarks could be treated with the relativistic
HISQ formalism (with its absolute current normalisation) if
calculations were done for a range of quark masses > mc

and a range of lattice spacing values [691]. Fig. 64 shows
the lattice results for the heavy-strange meson along with the
joint fit of the dependence on the heavy meson mass and the
lattice spacing. This enables a curve for the dependence of
the decay constant on the heavy meson mass to be obtained
in the continuum limit, from which the decay constant for
the Bs meson can be read. At the same time the dependence
on heavy meson mass becomes clear; fDs > fBs but only
by about 10%, rather less than the leading order result from
HQET, fP

√
MP = constant [711] would suggest. The Fer-

milab Lattice/MILC collaborations have now extended this
to B mesons and including 2 + 1 + 1 flavors of HISQ sea
quarks for uncertainties on fB and fBs below 1% [692].

The SU(3)-isospin-breaking ratio of decay constants,
fPs/ fP , is calculated to better than 0.4% in Ref. [692] with
results summarized in Fig. 65. The ratios are all close to 1.2
but there are small and significant differences as the mesons
increase in mass from K/π to Bs/B.

Vector mesons with appropriate quark flavor quantum
numbers can also annihilate to leptons via a W boson.
Although the decay rate is not suppressed by lepton masses
in that case (because of the meson spin) it is nevertheless
hard to see experimentally because it is overwhelmed by the
QED radiative decay V → Pγ ; it may be possible in future
for the D∗s [712]. The vector leptonic decay proceeds through
the vector piece of the weak current and is determined by the
corresponding vector decay constant. The lattice QCD vector
current must again be normalized to match continuum QCD.
Although in principle a conserved vector current can be used,
it is easier to use a local vector current and renormalise it.
There are a number of techniques to do this (Sect. 4.2). The

Fig. 64 The decay constant of the heavy-strange pseudoscalar meson
as a function of its mass from lattice QCD calculations [691] using the
HISQ action [331]. Points with different colors are results for different
lattice spacing values, with smaller lattice spacings having more reach
to heavier masses. The grey curve is the continuum limit of an HQET-
inspired fit to the results including discretisation effects. The result for
fBs can be read off at the mass of the Bs meson

Fig. 65 SU(3)-isospin breaking ratios of decay constants from lattice
QCD. fK / fπ is from Eq. (4.181) [68], other results from Ref. [692]

ratio of vector to pseudoscalar decay constants for heavy-
light mesons has been calculated using NRQCD [700] (with
perturbative renormalisation [713]) and using twisted-mass
quarks [699] (using a MOM scheme [714]). Interestingly
it is found that the ratio of fV / fP is larger than 1 for D
mesons and less than 1 for B mesons. Reference [699] gives
1.078(36) for fD∗/ fD and 0.958(22) for fB∗/ fB .

Vector qq mesons can annihilate to !! via a γ , and such
decay rates have been determined experimentally to better
than 2% for heavyonium mesons [616]. This provides an
excellent opportunity for accurate comparison of lattice QCD
and experiment for a decay rate free from CKM elements
since

Γ (V → !+!−) = 4πα2e2
q

3

f 2
V

MV
, (4.182)

with eq the valence quark electric charge in units of e. Results
for f J/ψ [279] and fΥ [702] calculated with HISQ quarks,
normalized via an SMOM scheme [715,716] show good
agreement with values inferred from the experimental decay
rates, providing a solid underpinning for the other decay con-
stants being discussed here.

Figure 66 summarises the values of meson decay con-
stants that are well-determined in lattice QCD, arranged by
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Fig. 66 Summary of meson decay constant values calculated in lattice
QCD and arranged in order of their size. Points with error bars use
different symbols for values needed to determine weak or QED leptonic
decay rates or those not linked to any simple decay mode. The decay
constants inferred from experimental values for QED leptonic decay
are given by blue bands. For weak decays, experimental results must be
combined with lattice QCD to obtain CKM elements; fπ can be inferred
from the π+ leptonic rate taking |Vud | from nuclear β decay [616] and
is shown by a purple band at 130.56(14) MeV. The lattice QCD result
for fπ comes from RBC/UKQCD [285], using the Ω baryon mass to
fix the lattice spacing. Other results shown use fπ to determine the
lattice spacing, and so do not give a value for that quantity. fK is taken
from Eq. 4.181; fB , fD , fDs from Ref. [692]; fBc [698], fD∗

(s)
/ fD(s)

and fB∗
(s)
/ fB(s) [699]; fB∗c / fBc [700]; fφ [701] and charmonium and

bottomonium results [279,281,702]

value order. It does not include values for mesons, such as
the ρ or K ∗, that have a large decay width from a strong-
interaction decay mode (Sect. 4.5). Notice that the range of
decay constant values, from fπ+ = 130.2(9) MeV [285] to
fηb = 724(12) MeV [702] is much smaller than the range of
meson masses. As discussed above, decay constants reflect
meson internal structure set by momenta inside the bound
state rather than quark masses. For mesons containing u/d
quarks the range of variation is even smaller, less than a fac-
tor of two from fπ to fD+ = 212.7(6) MeV [692], and
the ordering is not intuitively obvious. Results are shown
for decay constants relevant to weak leptonic decays (where
comparison to experimental results yields a determination of
the relevant CKM element) as well as those relevant to QED
leptonic decays (where direct comparison to experimental
rates is possible). It also includes decay constants that cannot
be simply related to a decay process, but which nevertheless
help to fill in the ‘big picture’ that we now have from lattice
QCD for these simple matrix elements.

4.7.2 Mixing matrix elements and bag parameters

A fascinating phenomenon for neutral K and B mesons is
that of ‘oscillations’, induced by the tiny weak interaction
coupling between the mesons and their antiparticles. For
exact CP invariance the eigenstates of the Hamiltonian are
then +/− combinations of the strong-interaction P0 and

P
0

states, analogous to the eigenstates of two weakly cou-
pled pendulums. An initial P0 beam, created by a strong-
interaction process, is equivalent to setting one pendulum
swinging. At later times it becomes clear that the other pen-

dulum is swinging/P
0

is present (from interrogating the beam
via suitable decay processes). The oscillation frequency is set
by the eigenstate mass difference ΔMP and can be measured
very precisely in experiment. The coupling is a second-order
weak process with the short-distance contribution given by
the ‘box diagram’ of Fig. 67. As such it is sensitive to new
physics that can be tested with accurate matrix elements for

the box diagram between P0 and P
0
, calculated in lattice

QCD.
At the hadronic mass scales of the lattice the box diagram

shrinks to an effective 4-quark operator (multiplied by a Wil-
son coefficient). For the SM case, the ‘left-left’ operator is

O(1) =
[
h
α
γμ(1− γ5)!

α
] [

h
β
γμ(1− γ5)!

β
]
. (4.183)

h is either s or b andα/β are color indices. Matrix elements of
further (BSM) 4-quark operators have also been calculated,
see Ref. [256].

The matrix element of Eq. (4.183) between P0 and P
0
,

having a hadron on either end, is much harder to determine
in lattice QCD than a decay constant, so results are not as
mature and have larger uncertainties. The renormalisation of
the 4-quark operator to match continuum QCD is also more
challenging. Results are most usefully presented in terms of
‘bag parameters’ by removing factors of masses and decay
constants from the matrix elements that would appear in
the ‘vacuum saturation approximation’, i.e. inserting |0〉〈0|
between the two halves of the 4-quark operator. For O(1) this
gives [717]

〈P0|O(1)|P0〉 = 8

3
f 2
PM

2
P B

(1)
P (μ) (4.184)

where the leftover ‘fudge factor’, BP , is the bag parame-
ter. It is normally quoted in the MS scheme; note its scale-
dependence. Historically the assumption was then made that
B ≈ 1 but lattice QCD can achieve a much better result than
this.

The bag parameter is often converted from B(1)(μ) to its
renormalisation-group-invariant (RGI) value,

B̂(1) = cRGIB
(1)(μ) (4.185)

where cRGI is calculated to two-loops in perturbative QCD
[256] and takes values 1.369 for BK (when μ = 2 GeV) and
1.516 for BB (when μ = mb)).

Reference [256] quotes an average for B̂(1)
K = 0.7625(97)

as an average of several lattice QCD results [285,718–
720] using different lattice QCD actions and renormalisation
approaches with n f = 2 + 1 sea quarks; Ref. [721] gives
an n f = 2 + 1 + 1 result. B meson results are less accu-

123



 1125 Page 102 of 636 Eur. Phys. J. C          (2023) 83:1125 

Fig. 67 Schematic diagram of the short-distance contribution to neu-
tral meson mixing via the ‘box diagram’ (left) involving W bosons and
top quarks. The matrix element that must be calculated in lattice QCD
is that of the equivalent 4-quark operator (right)

Fig. 68 A comparison of RGI bag parameters from lattice QCD for K 0,
D0, B0 and Bs , showing significant deviations from the naive vacuum
saturation approximation estimates of 1 and a trend with meson mass

rate, because of a significantly worse signal/noise problem
in the determination of the correlation functions [722]; direct
determination of BB rather thanO(1) matrix elements cancels
discretisation and light quark mass effects, however. Results
including n f = 2 + 1 + 1 sea quarks are available from
HPQCD using NRQCD b quarks (with O(αs) renormalisa-
tion [723]), giving B̂(1)

Bd
= 1.222(61) and B̂(1)

Bs
= 1.232(53))

[722]; n f = 2 + 1 results using other lattice QCD actions
are given in [724–726]. Note that B̂Bs/B̂Bd is consistent with
1 (1.008(25) from [722]), showing that the SU(3)-breaking
in the 4-quark matrix elements is entirely that of the decay
constants.

Figure 68 compares the results for B̂, including a value
for B̂D [721] that lies between B̂K and B̂B . The D0 box
diagram is mediated by down-type quarks and is expected
to contribute only a small part of ΔMD , dominated by long-
distance contributions. The short-distance results can be used
to constrain new physics, however, see Ref. [727].

For B/Bs mesons the box diagram with top quarks of
Fig. 67 dominates mixing (since Vtb ≈ 1) so that

ΔMq =
G2

FM
2
WMBq

6π2 S0(xt )η2B

∣
∣
∣V ∗tqVtb

∣
∣
∣
2
f 2
Bq B̂

(1)
Bq

, (4.186)

and lattice QCD results for the bag parameters can be com-
bined with (the very accurate) experimental results for the
oscillation frequency to determine CKM elements |Vts | and
|Vtd | that multiply the effective 4-quark operator. Agreement
is seen within 2σ with CKM values from tree-level weak
decays and unitarity [722].

For K oscillations the situation is more complicated
because of sizeable long-distance contributions to ΔMK

involving u- and c-mediated contributions. At the same time
analysis of K → ππ amplitudes [256] is also needed to
determine the direct and indirect CP-violation parameters,
ε′ and ε that describe the CP-properties of the mass eigen-
states and their decays. These are very hard calculations that
have required the development of new techniques, and results
are still at a fairly early stage, e.g. often only available at one
value of the lattice spacing. The RBC/UKQCD collaboration
has led the way here, exploiting the excellent chiral proper-
ties of the domain-wall quark action. They have calculated the
amplitude A2 to the isospin 2 two-pion state (the ΔI = 3/2
amplitude) [728] and the amplitude A0 to the isospin 0 state
(ΔI = 1/2) [729]. This enables a result of Ref. [729]

ε′/ε = 21.7(8.4)× 10−4 (4.187)

in good agreement with experiment (16.6(2.3)×10−4), sug-
gesting no violation of the CKM paradigm at this level of
accuracy. At the same time the lattice QCD results provide
some insight into the observed ΔI = 1/2 rule by which A0

exceeds A2 by a factor of 20. A factor of 2 is provided by
perturbative QCD corrections to the coefficients of the appro-
priate 4-quark operators; lattice QCD shows that the other
factor of 10 arises from the fact that, contrary to naive expec-
tations, the contributions from different color contractions
of the dominant operator tend to cancel in A2 and reinforce
each other in A0 [729,730]. The development of methods to
determine the long-distance contributions to ΔMK [731] are
also aimed at long-distance contributions to K+ → π+νν
and K → π!+!−.

Future improvements here require improved renormalisa-
tion techniques for lattice 4-quark operators. Gradient flow
methods look promising here, see e.g. Ref. [732].

4.7.3 Form factors

Semileptonic weak decays of hadrons in which one of the
constituent quarks changes flavor and the virtual W boson
emitted is seen as a !νl pair (see Fig. 69) provide a huge range
of possibilities for determining CKM elements and under-
standing hadron structure. The hadronic parameters that con-
trol the rate of these processes are known as form factors and
they are functions of q2, the squared 4-momentum trans-
fer from parent hadron, $, to child, χ . The kinematic range
of q2 is from q2

max = (M$ − Mχ )
2 (where ! and ν! have

maximum back-to-back momentum in the $ rest-frame) to 0
(where χ and the !ν! pair are back-to-back). The form fac-
tors are largest at q2

max and fall towards q2 = 0, reflecting the
internal momentum transfer via gluon exchange necessary to
achieve the final state configuration.

Form factors are defined from matrix elements between
$ and χ of weak currents. The simplest situation is when
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Fig. 69 Schematic diagram of a meson to meson semileptonic decay.
The hadronic information needed to determine the rate is parameterized
by form factors

both $ and χ are pseudoscalar mesons. In that case only the
vector current and vector form factor, f+(q2), contribute to
the decay rate for $ → χ!ν for zero lepton mass, with m!-
dependent corrections from the scalar form factor, f0(q2).
We have

dΓ

dq2 =
G2

F

24π3 |Vab|2(1− ε)2 × [| �pχ |3(1+ ε

2
)| f+(q2)|2 +

| �pχ |M2
$

(

1− M2
χ

M2
$

)2
3ε

8
| f0(q2)|2] (4.188)

for quark transition a → b, ε = m2
!/q

2, and �pχ is the 3-
momentum of child χ in $’s rest frame. The form factors are
defined from matrix elements

〈χ |Vμ|$〉 = f $→χ
+ (q2)

[

pμ$ + pμχ −
M2

$ − M2
χ

q2 qμ

]

+ f $→χ
0 (q2)

M2
$ − M2

χ

q2 qμ, (4.189)

〈χ |S|$〉 = M2
$ − M2

χ

ma − mb
f $→χ
0 (q2), (4.190)

with kinematic constraint f+(0) = f0(0). Equation (4.190)
makes use of the partially conserved vector current relation
∂μVμ = (ma −mb)S that means f0 is correctly normalized
in lattice QCD [733]. The renormalisation factor, ZV , for
the vector current can then be determined by, for example,
matching f0(q2

max) from Eqs. (4.189) and (4.190) (see Ref.
[734]).

To determine the form factors in lattice QCD requires the
calculation of three-point correlation functions with appro-
priate source and sink operators for parent and child hadrons,
and a current insertion at an intermediate time between them.
Usually the parent hadron is taken to be at rest on the lattice
and different spatial momenta are given to the child to map
out the q2 range. Fitting the three-point correlation function
simultaneously with the two-point correlation functions for

parent and child allows the parent-to-child matrix elements
to be determined and Eqs. (4.189) and (4.190) applied. To
obtain form factors in the continuum limit, interpolation in
q2 and extrapolation to a = 0 and physical quark masses is
needed. Modern calculations (see, for example, Ref. [734])
transformq2 into a region within the unit circle in z-space and
then apply a polynomial fit in z that allows for discretisation
effects and mistuning of quark masses.

The channel K → π!ν is a key for the determination of
Vus . The q2 range for this decay is very small and so con-
ventionally experiment accounts for the q2 dependence of
Eq. (4.188) and gives the final result as a value for |Vus | f+(0).
Combining charged and neutral meson decay rates with
QED radiative and strong-isospin-breaking corrections gives
a result with 0.2% accuracy : Vus f+(0) = 0.21635(39)(3)
[735], where the first, dominant, error is from the experi-
ment. The 0.2% accuracy is now also available from lattice
QCD with 2+1+1 flavors. Reference [256] gives f+(0) =
0.9698(17) from averaging [736,737]. The two lattice QCD
calculations take contrasting approaches. Reference [736]
determines f+(q2) and f0(q2), interpolating to q2 = 0 and
testing q2 dependence against experiment; Ref. [737] tunes
to q2 = 0 using twisted boundary conditions [738] and cal-
culates f0(0) since this needs no renormalisation. The result
for Vus from K → π!ν then shows an intriguing 3σ tension
with CKM first row unitarity [735] and 2.5σ tension with
Vus from K → !ν [616].

D meson decays (to K or π ) have a larger q2 range and
experimental data is available in bins of q2. This provides
the opportunity to test the q2-dependence predicted by QCD
against experiment as well as to determine Vcs and Vcd . Fig-
ure 70 shows how this is done [734]. The upper plot shows the
determination of the f+ and f0 form factors and the lower
plot shows the result of determining Vcs bin-by-bin in q2

using Eq. (4.188). A good fit is obtained to a constant with
Vcs = 0.9663(80), with errors from lattice QCD, experi-
ment and QED corrections making similar contributions to
the total uncertainty. See Ref. [739] for a determination of
Vcd using lattice QCD D → π form factors.

The semileptonic decays of B mesons have a huge poten-
tial in searches for new physics as well as in giving access
to key CKM elements Vub and Vcb. Form factors for these
decays are challenging for lattice QCD, however, because the
large b quark mass means a large q2 range. To reach q2 = 0
the child spatial momentum must approximate MB/2. Large
values of a| �p| induce poor signal/noise in correlation func-
tions as well as discretisation effects, so early lattice QCD
calculations worked close to q2

max with nonrelativistic for-
malisms for the b quark.

To determine Vub from B → π!ν, Ref. [256] performs
a joint fit to lattice form factor results from Refs. [741,742]
(which use different variants of the improved Wilson action
for the b quark and different light quarks) and experimen-
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Fig. 70 (Upper) Data points show lattice QCD results at multiple val-
ues of q2 and multiple lattice spacings. Blue and red curves show the
final determination of f0 and f+ in the continuum limit at physical
quark masses. (Lower) Bin-by-bin values of Vcs from combining these
form factors with experimental data. The constancy of Vcs shows that
the q2 dependence predicted by QCD matches that of experiment [734]

tal data from BaBar and Belle, leaving Vub as a parameter.
Such a fit allows experimental information onq2-dependence
to constrain the lattice results. The value for Vub obtained,
3.74(17)×10−3 is 1.7σ lower than that obtained from inclu-
sive b→ u determinations that do not specify the final state
hadron.

The transitions b → c have also shown a persistent ten-
sion between inclusive and exclusive results. Here the pre-
ferred exclusive method is to use B → D∗ decay. Although
a pseudoscalar to vector transition is more complicated, with
4 form factors, only the axial vector A1 form factor con-
tributes at q2

max. Lattice QCD therefore initially concentrated
on this point [743,744]. Now it has become clear that the q2-
dependence of the differential rate must be understood from
the lattice QCD side and form factors have been calculated
by the Fermilab Lattice/MILC collaboration [745] that cover
more of the q2 range using their improved-Wilson action for
both b and c. This does not resolve the inclusive/exclusive
Vcb tension but points the way to improved future analyses.

Recent B form factors have been calculated using rel-
ativistic formalisms that can make use of nonperturbative

Fig. 71 (Upper) Comparison of b → s form factors for meson tran-
sitions with different spectator quarks. Increasing the spectator mass
to that of c quarks reduces the form factors at low q2 values [740].
(Lower) The dependence on heavy meson mass, MH , of the form fac-
tors for H → K decay at q2

max and q2 = 0. Notice the slow downward
drift at q2 = 0 and for f0(q2

max) as H varies from D to B, but much
stronger variation upwards for f+ and fT (the tensor form factor) at
q2

max (remembering that q2
max depends on MH )

current normalisation techniques discussed for Eqs. (4.189)
and (4.190). They obtain results for multiple heavy quark
masses and lattice spacings and fit to obtain results for B
mesons in the continuum limit in a similar way to that for
decay constants in Fig. 64. Calculations include HPQCD’s
form factors for Bs → Ds [746], Bs → D∗s [747] and
B → K [740] using HISQ quarks and JLQCD’s form factors
for B → π using domain-wall quarks [748]. This is likely
to be the way forward for the future.

It is important to remember that QCD provides a smooth
connection between different form factors as we change the
mass for one or other of the participating quarks. In this way
lattice QCD can provide ‘a big picture’ for form factors.
Figure 71 shows this connection for different spectator (not
part of the weak current) quarks for the b → s transition. It
also shows results for H → K decay where H is a meson
containing a heavy quark with mass varying from c to b [740].

Future calculations will improve B form factor uncertain-
ties to the 1% level [749] for the increased datasets planned
from LHC and Belle II. New developments include tech-
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niques for inclusive B decays [750] and for handling final-
state mesons that decay strongly (e.g. for B → K ∗!ν anal-
ysis) [589]. An important focus will be improving lattice
calculations needed to understand ‘B anomalies’ seen, for
example in ratios of branching fractions to different flavors
of leptons and differential rates for flavor-changing neutral
current b → s transitions (e.g. B → K!+!−) that proceed
through loops in the SM.

The lattice QCD calculation of form factors for weak
decays of baryons is still in its infancy, because of the extra
challenges provided by the poorer signal-noise. The nucleon
axial coupling, gA, has been a particular focus of attention
and is discussed in Sect. 4.6. A notable success has been the
use of lattice QCD form factors for Λb → Λc and Λb → Λ

[751] to determine Vub/Vcb by LHCb [752]. This is clearly
a developing area for the future.

5 Approximate QCD

Conveners:
Stanley J. Brodsky and Franz Gross
The previous sections have introduced the QCD Lagrangian
and shown how to make numerical predictions using LQCD.
These predictions are subject to numerical uncertainties, but
otherwise use the Lagrangian fully, without truncations, and
can be systematically improved by going to smaller and
smaller lattice spacings; in this sense they are sometimes
referred to as “exact” calculations.

The disadvantage of LQCD predictions, however, is that
they usually do not give much insight into the physical pro-
cesses involved – they do not help us “understand” how cer-
tain physical properties emerge from QCD. Analytical solu-
tions usually lead to this understanding, even though even
after 50 years we still have no method to solve the equations
of QCD analytically!

In situations where the momentum transfers are large, so
that the coupling constantαs is small, we can use perturbation
theory to gain physical insight. But even then, higher order
corrections will have loops with low momenta and large val-
ues ofαs so that these terms can only be estimated. For “cold”
nuclear matter under normal conditions, the only analytical
approaches today are to develop theoretical models which
usually are tailored to treating some part of the problem care-
fully, and lumping other parts into “constants” which must
be fit to data. Study of a variety of these models will be the
subject of the next two sections of this volume.

At the heart of all modern models are quarks. Early mod-
els of mesons and baryons assigned (constituent) masses to
the u and d quarks of 300 -350 MeV, and ∼500 MeV to the
strange-quark mass, in sharp contrast to the (current) quark
masses that enter the QCD Lagrangian (see Sect. 3.1). Nev-
ertheless, quark models met with considerable success and

are still used as benchmarks when data on spectroscopy are
interpreted. These models are reviewed in Sect. 5.1 (see also
Sect. 8 for mesons and Sect. 9 for baryons). The section then
moves on to a discussion of the Bethe Salpeter (BS) and
Dyson Schwinger (DS) equations (Sect. 5.2), where quark–
gluon interactions are treated microscopically, much as pion–
nucleon interactions were described in an earlier era. Here
the multiple interactions make it impossible to treat them all
systematically, and the equations must be truncated, intro-
ducing approximations with an accuracy that is sometimes
hard to estimate. Light front coordinates are the preferred
way to describe multi-quark systems, and Sect. 5.3 describes
methods for expanding multi-quark quark wave functions in
a light front basis that avoids some of the issues with the
microscopic description, but also requires truncations of the
expansion to a finite number of basis states.

These methods handle the confinement of quarks in differ-
ent ways with very different assumptions. In Sect. 5.4, recent
developments based on superconformal quantum mechan-
ics, light-front quantization, and its holographic embedding
in a higher-dimension classical gravity theory, known as
AdS/QCD, have led to new analytic insights into the non-
perturbative structure and dynamics of hadrons in physical
spacetime, such as color confinement and chiral symmetry
breaking. This contribution is followed by a short discus-
sion (Sect. 5.5) of the model dependence of predictions of
the behavior of the strong fine structure constant, αs(Q2) at
small Q, where it becomes large. This discussion comple-
ments and completes the discussions of αs(Q2) in Sect. 3.
Next, the interesting features that can be drawn from the study
of QCD with a large number of colors, and the solvable ’t
Hooft model, are reviewed in Sect. 5.6.

The next four contributions in this section discuss approx-
imations that treat specific issues: the use of sum rules based
on the operator product expansion (OPE) to explain prop-
erties of mesons and other physical quantities (Sect. 5.7);
approximations that work for high energy reactions which
can be factorized into reaction specific high energy parts
that can be computed perturbatively and low energy, reaction
independent parts expressed in terms of unknown functions
that are extracted from many experiments (Sect. 5.8); the
power counting rules that describe the behavior of exclusive
processes at very high energy (Sect. 5.9); and finally the pos-
sibility of new hidden color states, i.e. virtual colored degrees
of freedom occupied by groups of quarks at short distances
(Sect. 5.10).

Finally, a theoretical discussion of the complexity of the
QCD vacuum needed to understand confinement and chiral
symmetry breaking is presented in Sect. 5.11. This discussion
is complementary to the Lattice discussion of the same topic,
Sect. 4.3.

This Sect. 5 covers a very wide range of topics, but as you
will see from what follows, is only part of the theoretical tool
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box developed to “solve” a theory based on a Lagrangian that
can be written in one line!

5.1 Quark models

Eric Swanson

“It is more important to have the right degrees of
freedom moving at the wrong speed, than the wrong
degrees of freedom moving at the right speed.”
– Gabriel Karl, as frequently quoted by Nathan Isgur.

5.1.1 Early quark models

The phrase “quark model” originally meant something like
the “quark idea”, referring to the introduction of quarks as
the elements of the fundamental representation of SUF (3)
by Gell-Mann and Zweig in 1964 [17,18,753]. Gell-Mann
initially avoided attributing physical reality to the quark con-
cept, and it was others, such as Dalitz [754], Becchi and Mor-
pugo [755], Rubinstein, Scheck and Socolow [756], and Lip-
kin and Scheck [757] who developed the idea into a viable and
predictive model in the sense we use now. That this was not
a simple task is illustrated by a famous line from Kokkedee’s
review of the quark model, “The quark model should …not
be taken for more than it is, namely, the tentative and sim-
plistic expression of an as yet obscure dynamics underlying
the hadronic world” [758].

Kokkedee’s pessimism was not misplaced. The inability
to observe free quarks was originally explained by assum-
ing that they had very high masses. The existence of rela-
tively light hadrons then implied that the interquark binding
force was “ultra-strong”, which in turn requires relativistic
and nonperturbative techniques. These technical problems
were further exacerbated by the “statistics problem”, wherein
bound states of fermions must be antisymmetric. Thus, for
example, the Δ++ requires an antisymmetric spatial wave-
function, in contrast with expectations for a low lying state.
No satisfactory solution to the problem was found, in spite
of the great contortions theorists invented.

Nevertheless, a few determined individuals persisted with
the notion that quarks are “real”. Early computations drew
from long tradition in nuclear physics [755,759,760] and
tended to focus on electroweak transitions since the cou-
plings are weak and the effects of unknown spatial wave-
functions can be ignored (in magnetic dipole transitions) or
simply modelled (in electric dipole transitions). These com-
putations typically assumed nonrelativistic dynamics, fac-
torized spatial wavefunctions, and electroweak currents cou-
pling directly to quarks. The state of the art was formal-
ized in a classic paper from 1967 by van Royen and Weis-
skopf, which placed the topic on firm footing (even though
the quark model problems remained unresolved) [761]. By

1969, Copely, Karl, and Obryk had brought the quark model
to a high level of predictiveness, introducing explicit simple
harmonic oscillator wavefunctions and a “constituent” quark
mass of roughly one third the proton mass, in line with its
modern value [762].

5.1.2 QCD-improved quark models

It is no surprise that the advent of QCD revolutionized the
conceptualization and application of the quark model, releas-
ing a flood of research. QCD, of course, is the theory of
hadrons; thus the quark model was no longer the first and
final word for hadronic properties, and it quickly evolved
into its current role as a computationally feasible model for
QCD in the strong coupling regime.

Already by 1975 (November 1974), Appelquist and
Politzer famously applied QCD to the R ratio (proportional
to the cross section for e+e− to hadrons) and noted that lad-
der exchanges of gluons should give rise to “orthocharmo-
nium” (the J/ψ) and “paracharmonium” (the ηc) states [90].
This was the time of the “November revolution” described in
Sect. 2.1 above. These notions were greatly expanded by De
Rujula, Georgi, and Glashow, who argued that one gluon
exchange should dominate the short-distance quark inter-
action and that it explained a wealth of experimental data,
concluding that “The naive quark model, supplemented by
color gauge theory, asymptotic freedom, and infrared slav-
ery, is turning out to be not so naive, and more than just a
model.” [763]. In fact the results were successful enough that
the authors initiated and ended the field in the same paper,
declaring,

Not until many of these predicted charmed states are
discovered and measured can the subject of hadron
spectroscopy join its distinguished colleagues, atomic
and nuclear spectroscopy, as subjects certainly worthy
of continued study, but understood (at some level) in
principle.

Needless to say, such proclamations seem premature to mod-
ern eyes!

Amongst the first to join the fray were Isgur and Karl, who
wrote a complete model Hamiltonian for baryons, assuming
nonrelativistic dynamics, a quadratic confinement potential,
and short distance spin-dependence as given by one gluon
exchange [764]. (For a full discussion of baryon quark mod-
els, see Sect. 9.1) The resulting reasonably complete descrip-
tion of the low lying baryon spectrum and its properties
caused a sensation, as it was realized that comprehensive and
quantitative computations of hadronic properties were pos-
sible. However, there was a price to be paid: the good results
were obtained only upon neglecting the spin–orbit interac-
tion arising from one gluon exchange. It is, of course, difficult
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to argue in favor of one aspect of perturbative QCD while
neglecting another! By way of defense, Isgur and Karl noted
that the confinement interaction should contribute Thomas
precession spin–orbit interactions, even though it is spin-
independent, and that the long range spin–orbit interaction
tends to cancel that due to one gluon exchange.

The issue of the spin-dependence of the long range (con-
finement) interaction reappeared in a nearly contemporary
and seemingly disconnected area. At issue was the Dirac
structure of a (presumed) relativistic long range two-body
interaction for quarks,

1/2
∫∫

J (x)K (x − y)J (y),

where the current is written as J = ψ̄Γ ψ , ψ is a quark field,
and Γ is a four-by-four Dirac matrix. In 1978, Schnitzer
realized that the masses of several newly discovered char-
monia and bottomonia permitted settling the issue in favor
of a scalar (Γ = 1) confinement interaction [765,766].

Of course, assuming that the interaction between quarks
is specified by a current–current operator yields more than
spin-dependence – it also gives the amplitude for quark pair
creation, and therefore opens the field of strong hadronic
transitions to investigation. (Such investigations actually date
to the beginnings of the quark model, starting with Micu’s
hypothesis that quark pairs are produced in a spin-triplet
angular-momentum-one state [767,768].)

In 1978, Eichten et al. produced the most famous version
of such a model, the “Cornell model” (first introduced in
1975), in an ambitious attempt to understand the properties
of charmonia, including their coupling to the open charm
continuum [769]. Pragmatism forced compromise: the Cor-
nell group had to assume a color density current to obtain
agreement with the – by now well-established – one-gluon-
exchange short-range structure of the quark interaction, and
in disagreement with the decay model of Micu (which is
admittedly a guess) and Schnitzer’s scalar confinement. Nev-
ertheless, the model is well-constrained and does admirably
well in predicting a wealth of charmonium properties.

By 1985 the field had progressed enough that comprehen-
sive models capable of describing all mesons and baryons
were being attempted. The most famous of these is that due to
Godfrey and Isgur (mesons) and Capstick and Isgur (baryons)
[770,771]. The model has much in common with earlier ones
such as Ref. [772]. The model assumes relativistic quark
kinematics, the full one-gluon-exchange short-range inter-
action, and a scalar confinement interaction (including its
spin–orbit relativistic correction). All interactions were con-
voluted over a Gaussian to ameliorate the strength of the
short range terms (which are not legal operators in quantum
mechanics).

A model of the running strong coupling was used because
there is strong evidence that weaker spin-dependent interac-

tions are required for heavier quarks. The possibility of quark
annihilation in isoscalar channels was allowed by including
a phenomenological term. The model was “relativized” by
including factors of (m/E)ν , where ν is a model parame-
ter, in various matrix elements. Finally, additional factors of
meson and quark mass were introduced to certain rates to
bring their form into alignment with low energy theorems.
The resulting masses, strong decays, and electroweak tran-
sitions have served as a benchmark in hadronic physics over
the intervening 37 years.

5.1.3 Bag models

The advent of QCD raised the possibility of inventing field-
theoretic models of hadrons. The opportunity was seized first
by Ken Johnson, who drew an analogy to bubble nucleation
in first-order phase transitions to imagine a hadron as per-
turbative fields confined to a vacuum bubble of size about 1
fm. The resulting model, developed with colleagues in 1974,
became known as the “MIT bag model” [773]. The starting
point is a postulated nontrivial QCD vacuum that exerts a
pressure (described by the constant B) on a region of trivial
space-time (called the “bag”). The model Hamiltonian is

Lbag = (LQCD − B) θ(bag) (5.1)

where θ is zero outside the bag region. Because the action
involves an integration over a finite region of space, the loca-
tion of the bag surface is itself a dynamical field, related
through the Euler–Lagrange equations to the quark and gluon
fields by a complicated, nonlinear expression. As a result
quantization is very difficult and semiclassical approxima-
tions are used to study the system. In particular, the “static
bag approximation” is made, wherein quarks and gluons are
presumed to be confined to a region of a given radius (it
is possible to make more complicated models where small
oscillations in the bag surface are permitted). The result-
ing equations of motion describe free fields subject to cavity
boundary conditions, which can be obtained by summing
cavity modes.

Almost simultaneously, similar ideas were being explored
at Stanford, giving rise to the “SLAC bag model” [774]. In
this case a scalar field played a role similar to the bag. Sym-
metry breaking in the scalar vacuum served to confine quarks
to a small region where the scalar field exhibits soliton-like
behavior. However, this implies that quarks are confined to a
spherical shell, which contradicts experiment [775]. A subse-
quent model, called the “soliton bag model”, is able to avoid
this feature while interpolating the MIT and SLAC bag mod-
els [776]. Many variant bag models have been developed
over the years that seek to address various shortcomings.
For example, the MIT, SLAC, and soliton models all violate
chiral symmetry. This can be overcome by explicitly intro-
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ducing pion fields [777,778] or topological features [779].
Other models will be discussed below.

A number of advantages of bag models are apparent:
hadrons are bound systems of relativistic quarks and glu-
ons, obey asymptotic freedom automatically, are confined
to regions of order 1 fm in size, and respect color gauge
invariance. These benefits spurred a large theoretical effort in
hadronic modelling that lasted through the 1980s, and contin-
ues at a reduced level to the present. Unfortunately, the com-
plexity of the model introduces a number of conceptual and
technical difficulties. The cavity approximation, for exam-
ple, is not translationally invariant and no projection onto
momentum eigenstates exits. This has the practical demerit
of introducing undesired center-of-mass degrees of freedom
to the problem. Quark and gluon propagators can be formed
by summing over appropriate cavity modes, but in practice
this is difficult, and evaluating Feynman diagrams is techni-
cally cumbersome [775]. For example, self-energy diagrams
are difficult to evaluate and are often ignored. Similarly, the
expectation value of the bag Hamiltonian has a sum over zero
point energies that diverges. Renormalizing this quantity is
subtle, and the zero point energy is often replaced with a
simple model. Lastly, the rigid cavity gives rise to spurious
states that must be identified.

Early MIT bag-model computations contained three para-
meters, the bag constant, the gauge coupling, and a zero-
point energy parameter. Fits to the ρ, N , and Δ masses then
fixed these constants. Unfortunately the resulting value for
the strong coupling wasαS ≈ 2.2, which gives spin splittings
that are too large in other hadrons. The resulting phenomenol-
ogy is often of poor quality; for example, an early calcu-
lation of P-wave masses gives disappointing results [780].
Bag model phenomenology is clearly geared toward light
hadrons. Heavy quark states, on the other hand, are surely
described by nonrelativistic kinematics, a string-like confine-
ment mechanism, and a value of the strong coupling that is set
by αS(mQ). These features can be incorporated by allowing
the bag to distort into a tube shape (in practice the distor-
tion is small) and refitting the model parameters [781]. The
resulting model does a reasonable job with the low lying
charmonium and bottomonium vectors, predicts a J/ψ − ηc
splitting of 180 MeV (the measured value is 113 MeV), and
J PC = 1−± charmonium (bottomonium) hybrids at mass of
approximately 4.0 (10.49) GeV.

One of the great advantages of bag models is that they
made it clear that states incorporating gluonic degrees of free-
dom (glueballs and hybrids) should be considered seriously.
Early contributions to the theory of glueballs include Jaffe
and Johnson [782], who examined many novel states in the
model, and Barnes, Close, and Monaghan, who computed
spin-dependent mass shifts in the glueball spectrum [783].
These shifts are very large when common model parameters
are used, giving glueball masses of m(0++) = 100 MeV,

Table 3 Diquark quantum
numbers

J P Color Flavor

0+ 3̄ 3̄

1+ 3̄ 6

0− 3̄ 6

1− 3̄ 3̄

m(0−+) = 400 MeV, and m(2++) = 1300 MeV, all of
which are in strong disagreement with modern lattice values
[780].

Studies of hybrid (qq̄g) mesons originated in the MIT bag
model [784] only a few years after the advent of both QCD
and bag models, thereby raising interest in these novel states
and highlighting the unusual (“exotic”) quantum numbers
that are available to these systems. Early computations in the
MIT bag model worked to first order and focussed on light
hybrid mesons [785,786], obtaining, for example, a J PC =
1−+ light hybrid mass of 1300 MeV [787].

Problems with complexity and fidelity have caused bag
models to largely fall out of favor as descriptions of hadrons.
They do, however, continue to find applications in models of
strongly interacting matter or other complex hadronic sys-
tems.

5.1.4 Diquark models

Two quarks in a baryon experience a (perturbative) mutual
attraction that is one half of the strength of that between a
quark and an antiquark in a meson. If the third quark is iso-
lated in some sense, it is fruitful to consider this quark–quark
state as a compact object, called a diquark. More generally, a
diquark is any system of two quarks considered collectively.
The idea is already mentioned by Gell-Mann in 1964 [17]
and was introduced in Refs. [789] and [790] as a way to
reduce three-body dynamics to the computationally simpler
two-body dynamics.

In general a pair of quarks, denoted [qq] in the follow-
ing, can form 3̄ and 6 color states, with the former being
antisymmetric and the latter being symmetric under quark
interchange. Because a pair of quarks in the 6 representa-
tion has a (perturbative) repulsive interaction ( +αS/(6r)),
diquarks are only considered in the 3̄ representation. In this
case, possible quantum numbers for [qq ′] are as listed in
Table 3. The first two of these entries are often called “good”
and “bad” diquarks respectively [788].

An early application of diquarks was to the description of
light baryons [791]. The primary effect is a reduction in the
number of degrees of freedom compared to a “symmetric”
quark model, with commensurate decrease in the complexity
of the excitation spectrum. For example, a symmetric quark
model will feature orbital excitations in two relative coordi-
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Fig. 72 a Quark content of a diquark–antidiquark nonet. b Mass levels of ideally mixed qq̄ nonet and diquark–antidiquark nonet. c Light scalar
mesons. The shaded region indicates large widths. Figure from Ref. [788]

nates (often taken to be the Jacobi coordinates �ρ and �λ) while
a quark–diquark bound state can only have orbital excitations
in a single relative coordinate. Recent progress in the field
is telling us that this simple diagnostic is incompatible with
our knowledge of the excited baryon spectrum: one degree
of freedom is not sufficient to explain the richness of of the
spectrum of light-quark baryons (see Sect. 9.2).

Light baryons do experience flavor-dependent correla-
tions, which might be attributed to diquarks. For example,
a neutron will have a negative charge radius because the d
quarks are in a spin-one state and are repelled via the hyper-
fine interaction, leaving the positive u quark in the center (on
average). Similarly, diquark overlaps (denoted by I ) affect
static observables like the ratio of magnetic moments and the
ratio of axial and vector couplings:

μp

μn
= −4+ 5I

2+ 4I
,

∣
∣
∣
∣
GA

GV

∣
∣
∣
∣ =

2+ 3I

2+ I
. (5.2)

Unfortunately, the additional freedom (represented by I )
does not permit a simultaneous fit to the experimental values
of − 1.46 and 1.25, respectively [791].

At a more formal level, the similarity of light quarks makes
it difficult to separate one quark from the other two. In the
extreme case of identical quarks, antisymmetrization of the
state implies that such a separation is not feasible. This was
noted long ago by Lichtenberg [792], who suggested includ-
ing exchange forces to accommodate transitions of the form
q[qq] → [qq]q. Of course this implies that the diquark can
no longer be thought of a simple quasiparticle, but is rather
something with internal structure that can be modified and
excited.

Perhaps the most famous application of light diquarks is
a model of the scalar mesons. In the 1970s Jaffe noted that a

good diquark and a good antidiquark naturally make a scalar
nonet of states, as shown in Fig. 72a. This nonet forms a
spectrum as shown in panel (b) with counting that contrasts
strongly with the “normal” qq̄ scheme, shown at the top of
panel (b). Remarkably this scheme agrees with the observed
spectrum, as shown in panel (c) [788]. This ostensibly simple
observation has a long and somewhat controversial history, as
general acceptance of the existence of the light scalar mesons
f0(600) and κ has waxed and waned over the years.

More recently, the diquark simplification has been applied
to Bethe–Salpeter approaches to the baryon spectrum with
some success [793]. The concept has also found support
in lattice computations that see evidence for the good light
diquark [794].

The discovery of the X (3872) prompted a surge in mod-
elling of exotic hadronics, and led to renewed interest in
diquarks. A prominent model, due to Maiani and collabo-
rators [795], advocated that the X (3872) is a J P = 1+ dou-
ble diquark state with composition [cq]1[c̄q̄]0 + [cq]0[c̄q̄]1.
This assignment sets the mass of the open charm diquark,
m[cq] = 1933 MeV, and implies a rich spectrum of exotic
states. A novel prediction of the model is that two neutral
vector exotic states should exist with a mass difference of
approximately 8 MeV. Focussing on flavor quantum num-
bers, these are mixtures of [cu][c̄ū] and [cd][c̄d̄]. Amongst
others, scalar states are predicted at 3723 MeV and 3832
MeV. In spite of the explanatory power of the model, and
reasonable agreement with properties of the X (3872), none
of these additional states have been observed. (For a complete
discussion of this issue, see Sect. 8.5.2.)

Notwithstanding the checkered history of the diquark
model, it must become relevant as quark masses become
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much greater than the QCD scale, Λ. In this case the quarks
will sit deeply in a Coulombic well, are compact, and are
described well by perturbative gluon exchange. It is widely
believed that bottom quarks are sufficiently heavy for these
phenomena to occur. If a pair of bottom quarks forms a hadron
with light degrees of freedom (such as light quarks or glu-
ons), then it is reasonable to model the bottom quarks as a
[bb] diquark, and this expectation becomes rigorous as the
heavy quark mass becomes very large.

A consequence of this concerns spin splittings in heavy-
light mesons and baryons, as first observed by Savage and
Wise [796]. In the following Q represents a quark with mass
larger than the QCD scale, Λ (thus b, c), while q represents
a quark with mass much less than Λ. The latter then refers to
u and d quarks. The strange quark is ambiguous in this clas-
sification, and is sometimes grouped with the light quarks,
and sometimes with heavy quarks. In practice heavy quark
symmetries only become clear at the bottom mass and higher,
while light quark (chiral) symmetry applies well to u and d
quarks, and fairly well to s quarks.

Heavy quark spin degrees of freedom interact via their
color dipole moments, which permits relating spin splittings
in QQq baryons and Q̄′q states, with a relationship given by

mΣ∗(Q) − mΣ(Q) = 3

2

mQ′

mQ

(
αS(mQ)

αS(mQ′)

)9/33−2n f

× (
mV (Q′) − mP(Q′)

)
. (5.3)

Here V and P refer to vector and pseudoscalar mesons,
while Σ∗ and Σ refer to ground state and spin-excited QQq
baryons.

A slightly more model-dependent application establishes
that the heavy J P = 1+ udb̄b̄ tetraquark state must be
strongly bound. The argument relies on the spin splittings,
Σb − Λb and Ξ ′

b − Ξb, which indicate that the (3̄F , 0, 3̄c)
light diquark lies approximately 100 MeV below the spin-
averaged light diquark mass. This diquark interacts with a
b meson with quantum numbers (1F ,

1
2 , 3c) to produce the

relevant baryons. As argued above, and verified by small
B∗ − B and Σ∗

b − Σb mass splittings, the heavy (di)quark
spin must decouple from the light degrees of freedom. Thus
a light diquark has a similar mass when coupled to a heavy
[b̄b̄] diquark. Since the heavy diquark has quantum numbers
(3F , 0, 3c), the [ud][b̄b̄] tetraquark has quantum numbers
I = 0, 1/2 and J P = 1+. Recent lattice field theory com-
putations have proven these expectations correct [797].

Diquarks continue to find application in a variety of
areas: reducing the daunting complexity that arises in Bethe–
Salpeter equations for many-quark systems, Sect. 5.2, the
operator-product expansion, Sect. 5.7, instanton vacuum
modelling, Sect. 5.11, heavy quark effective field theory,
Sect. 6.1, models of quark matter, Sect. 7.2, tetraquark mod-

els, Sect. 8.5, baryons, Sects. 9.1, 9.2, 9.4, and models of
hadronization, Sect. 11.4.

5.1.5 Current developments

The advent of new theoretical tools and the discovery of
many novel hadrons have fueled the continued development
of the constituent quark model. Amongst the latter are the
X (3872) that strongly hints at qqq̄q̄ structure and the impor-
tance of coupling mesons to the meson–meson continuum.
Strong evidence for states consisting of qqqqq̄ , called “pen-
taquarks”, also exists. At the same time, the maturation of
lattice field theory has permitted the theoretical exploration
of many nonperturbative hadronic properties and novel states
involving glue, such as glueballs and hybrids. Such stud-
ies also inform the development of refined quark models
that are capable of describing an ever greater range of phe-
nomena. The development of effective field theory and its
application to hadronic physics has also greatly expanded
and strengthened the base upon which quark models are
developed. Finally, field-theoretic nonperturbative methods,
such as those based on the Schwinger–Dyson and Bethe–
Salpeter methods, have served to expand the understanding
and purview of quark models.

These new tools have helped to clarify several longstand-
ing issues in the field. For example, it is well-known that the
pion is anomalously light because it is the pseudo-Goldstone
boson of QCD, reflecting the (broken) near chiral symmetry
of the theory. Alternatively, the pion is light in quark models
because the hyperfine interaction drives its mass well below
that of the rho meson. The size of this mass splitting is infinite
according to the one gluon exchange interaction (because it
is proportional to δ(r))! In practice the hyperfine operator
is smeared, which introduces a smearing parameter that can
be fit to obtain the pion mass. This is hardly a satisfactory
situation! In spite of this, Isgur has argued that the smooth
evolution of hyperfine splitting from bottomonium to light
quarks (Fig. 73) is a sign that the formalism is correct [798].
How these views can be made consistent is demonstrated in
a specific model in Ref. [799], wherein it is shown how chi-
ral symmetry breaking induced by a nontrivial vacuum and
an effective hyperfine interaction mesh in a smooth fashion.
Further insight is gained from the Schwinger–Dyson formal-
ism, which convincingly demonstrates that chiral symmetry
breaking gives rise to both a light pion and a dynamical quark
mass that can be interpreted as the constituent quark [800].

Recent results from the lattice and other theoretical anal-
yses indicate that long-held notions are likely incorrect. For
example, scalar confinement cannot be correct–it has been
known since the 1980s that a confining scalar qq̄ interac-
tion implies an anti-confining qqq interaction because of
the lack of an antiquark line. (This disaster was avoided in,
for example, the Godfrey–Isgur and Capstick–Isgur mod-
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Fig. 73 “A graphic illustration of the universality of meson dynamics”.
Figure taken from the original [798]

els by simply applying an extra sign.) The problem appears
again in attempts at inducing chiral symmetry breaking in
model field theories, where it is learned that scalar confine-
ment interactions do not lead to a stable BCS-like vacuum
[801]. In fact, it is not clear at all that the long range quark
interaction need be described by a two-body interaction of
the sort given above; QCD is much more complicated than
this simple model [802].

Recent computations in lattice field theory have essen-
tially settled the matter. This work relies on the model-
independent expansion of the quark interaction in terms
of nonperturbative matrix elements of gluonic operators
[802,803], which are evaluated numerically. The results dis-
agree strongly with an assumed scalar long range interac-
tion. They do agree in large part with a Dirac vector interac-
tion, with the exceptions that the hyperfine interaction resem-
bles a smeared delta function and the spin orbit interactions
have effective string tensions that are reduced by a factor of
approximately 77% [804]. The picture emerging is that per-
turbative gluon exchange dominates the interaction at very
short distances (less than 0.1 fm) and an effective vector-
like interaction dominates at intermediate ranges. At long
range (greater than 1 fm), one must saturate gluon exchange
with a sum over hybrid intermediate states. This brings in
the nonperturbative matrix elements of chromoelectric and
chromomagnetic fields (mentioned above) that give rise to the
nontrivial structure seen in lattice field theory. It is somewhat
ironic that early enthusiasm for perturbative gluon exchange
has evolved in this fashion!

Other quark model lore from the 1980s has been swept
away in a similar fashion. For example, the Godfrey–Isgur
computation of meson decay to γ γ employed a perturbative
amplitude with a “mock meson” correction factor involving
the meson mass. More sophisticated computations, where the
amplitude is computed with relativistic quark currents and a
sum over intermediate states is made, reveal good agreement
with data and no need for artificial factors [805].

Fig. 74 “The adiabatic potentials of the flux tube model (a) and of the
�Fi · �Fj potential model (b) for two qqq̄q̄ geometries.” Figure taken
from the original [798]

5.1.6 Open problems

One of the major goals in modern quark modelling is incor-
porating the effects of nonperturbative gluonic degrees of
freedom, which, of course, permits modelling glueballs and
hybrid hadrons. Outright guesses from the past have been
superseded by a body of lattice explorations of gluonic prop-
erties. Among these are the spectrum of adiabatic gluonic
excitations [414,806], the gluelump (bound states of gluons
and a static adjoint color source) spectrum [410,807–809],
and properties of charmonium hybrids [810–812]. Of partic-
ular interest is the confirmation that the heavy quark multiplet
structure anticipated in Ref. [414] is reflected in the charmo-
nium spectrum [810]. It is interesting, and very suggestive,
that this multiplet structure can be reproduced by degrees of
freedom consisting of a quark, an antiquark, and an effec-
tive axial gluon with quantum numbers J PC = 1+− [527],
pointing the way to possible future models.

The advent of compelling experimental evidence for tetra-
and pentaquark states has heightened interest in modelling
multiquark hadrons. This is an old field, which in the past suf-
fered from sufficiently poor computations that Isgur dubbed
it the “multiquark fiasco” [798]. Many technical problems
were present in these calculations, but the chief physics prob-
lem is the nature of the quark interaction when more than
three quarks are present. The issue, for example, is that a
qqq̄q̄ can separate into two meson–meson channels and that
the gluonic degrees of freedom should experience adiabatic
surface crossing when transitioning between these configu-
rations (see Fig. 74). Thus new gluonic interactions are nec-
essarily introduced in multiquark states. Of course, one could
always model these as a sum of two-body interactions with
a perturbative color structure, but this seems unlikely to be
viable. A widely accepted model of multiquark gluodynam-
ics does not exist yet, and is urgently needed.

Multiquark states necessarily couple to systems of mesons
and baryons, which makes it incumbent on modellers to
understand the effects of coupled channels on hadronic prop-
erties. This requires knowing the effective quark pair opera-
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tor. A common model, dating to 1969, has already been men-
tioned [767], but this can surely be improved. As a result,
existing models of Fock sector mixing remain speculative.
The problem is not amenable to effective field theory, so
progress will likely rely on input from lattice field theory.
Progress is urgent since channel coupling effects are expected
to be important in many sectors of the spectrum, including
the perpetually enigmatic light scalars mesons, and all states
near thresholds, such as the X (3872), the Pc pentaquarks,
and the Zc and Zb states.

It is perhaps a surprise that a model dating back nearly
60 years remains an active field of research. Such are the mys-
teries of QCD. On thing is certain: the quark model remains
the de facto standard by which hadrons are interpreted.

5.2 DS/BS equations

Franz Gross and Pieter Maris

5.2.1 Introduction

In this section we look at two closely related approaches
to treating the strong interactions that existed before 1972,
and remained very useful, even after the onset of QCD.
One of these originated with papers by Dyson (1949) [813]
and Schwinger (1951) [814,815], referred to as the Dyson–
Schwinger equations (DSEs), and the second is the well
known Bethe–Salpeter equation (BSE) [816], introduced in
1951.14

In general, the DSEs form an infinite set of coupled inte-
gral equations for the Green’s functionsGn of a quantum field
theory.15 These equations are exact, but in practical calcula-
tions this set has to be truncated. The equations can be derived
formally from the matrix elements of the Lagrangian density
(as was done in the original papers), or in the path-integral
formalism using functional derivatives [823], but Feynman
diagrams can be used to provide a simple, pictorial way to
understand them. Using QED as an example,16 Fig. 75 shows
the exact DSEs needed to describe the self-energy of each
fermion, and the dressed ψ iγ

μψi Aμ vertex Γ
μ
i .

The fermion–antifermion scattering amplitude G4 of the
two different fermions can be written as a series of interac-
tions shown in the upper line of Fig. 76. Here the kernel K
is the sum of irreducible contributions to the off-shell scat-
tering (i.e.diagrams that cannot be reduced by drawing an

14 Although the BSE can be used to describe scattering, this seminal
paper was entitled A relativistic equation for bound state problems,
particularly serendipitous for applications to QCD, where all physical
states are bound states of quarks, antiquarks and gluons.
15 For recent reviews of the DSEs in the context of QCD and hadron
physics, see Refs. [800,817–822]
16 When applied to QCD, with the photon replaced by a gluon, addi-
tional terms, such as the 3-gluon vertex, must be added.

Fig. 75 Top row: The exact DSE for the inverse dressed fermion prop-
agator (in the dotted box), and its approximation to 4th order in QED.
Bottom row: two versions of the exact DSE for the dressed QED vertex
Γμ (green diamond): Diagram (A) in terms of the qq̄ irreducible kernel
K , and (B) in terms of the full scattering amplitude G4. The thick green
(dashed red) lines are the fermion (photon), solid green (red) circles are
the fermion (photon) self energies so that a fully dressed propagator is
a green (red) line with a green (red) circle; and small red dots label the
point coupling γμ and have no structure (renormalization constants are
ignored here)

Fig. 76 Diagrammatic representation of the BSE propagator for two
unequal mass particles m1 > m2. The first line represents the iteration
of an irreducible kernelK, which is summed by the BSE (first part of the
second line). If the propagator has a pole, then the BSE vertex function
satisfies the homogeneous BSE shown in the last line

internal line through the diagram that intersects only the two
fermions). The infinite series of iterations of the irreducible
diagrams (each referred to as reducible because it can be
cut into two pieces by an internal line which intersects only
the two particles), connected by dressed propagators, is then
summed by the equation shown on the left-hand side (LHS) of
the middle line. This is the DSE17 for the scattering amplitude
G4. If a bound state exists, it shows up as pole in this scat-
tering amplitude, as illustrated on the right-hand side (RHS)
of the second line in Fig. 76. The BSE for the Bound State
Amplitude (BSA) or vertex function,Γ (shown in the bottom
line), has the same kernel as G4. Figure 77 shows contribu-
tions to the QED kernel up to order g6. There is no known
way to sum these contributions in closed form.

The bound state BSE
As an example, the BSE for a q Q̄ bound state in QED is

17 For two particle scattering, DSE and BSE are used interchangeably.
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Fig. 77 Diagrammatic representation of the BSE kernel up to 6th order
in g. Diagram (2) is the dressed xbox diagram and diagrams (3) are
irreducible photon dressings of the box and xbox

ΓMB (p; P̂) =
∫

d4k

(2π)4 Ki j (p, k; P̂)OiχMB (k; P̂)O j

→ 4πα

∫
d4k

(2π)4 Dνμ(p, k; P̂)γ νχMB (k; P̂)γ μ, (5.4)

where χMB (k; P̂) is the BS wave function

χMB (k; P̂) = S2(k2)ΓMB (k; P̂)S1(k1), (5.5)

with Si (ki ) the dressed propagator for particle i and P̂2 =
M2

B . The first line is exact, with the kernel written in the gen-
eral form K = Ki jOi ⊗O j

18; the second line is the ladder
truncation with the kernel describing one photon exchange
only, so K → 4παDνμγ

ν ⊗ γ ν . Dirac indices have been
suppressed, and the four-momentum of the incoming Q is
p1 = p − (1− η)P̂ and of the outgoing q is p2 = p + η P̂ ,
reflecting the fact that the total momentum P̂ is conserved
in relativistic equations. The physical observables do not
depend on the choice of η, and the natural choice for mesons
with equal-mass constituents (like a pion) is η = 1

2 . The
canonical normalization condition for the BSE bound state
vertex function can be derived directly from the inhomoge-
neous BSE (see e.g. Refs. [823,824]).

Very soon after the BSE was introduced, Wick [825]
showed that the equation could be transformed from
Minkowski space to Euclidean space by rotating the time
component to the imaginary axis {t, r} → {iτ, r} (now
referred to as a Wick rotation). Building on Wick’s results,
Cutkosky [826] found all the exact solutions to the bound
state BSE in ladder truncation for a scalar theory of the
χ2φ type where the exchange particle φ is massless. The
solutions are symmetric under the O(4) symmetry group,
and hence have the same degeneracy as the nonrelativistic
hydrogen atom. Some of the solutions correspond to excita-
tions in the time direction that have no nonrelativistic ana-
logues. Furthermore, these solutions have a negative norm (at
least in QED and QCD), and are therefore unphysical. As far
as we know, no other analytic solutions have been found, but
in the last 25 years accurate solutions of the BSE in ladder

18 Each of the operators Oi describes the structure of the dressed ver-
tices, including possibilities like those illustrated in diagrams (2) and
(3) of Fig. 77.

truncation have been obtained numerically for both scalar
and fermionic systems, discussed below.

Several facts about the BSE are sometimes overlooked:

• The equation shown in Fig. 76 is exact, but only if the
exact kernel and self energies are known.

• All applications of the BSE are therefore approximations
using an approximate kernel and self-energies.

• In addition to Eq. (5.4), which is a homogeneous equa-
tion, there is also a canonical normalization condition for
the BSA; one should not normalize the BSA to just any
seemingly convenient observable.

Methods to solve the BSE in Minkowski metric
Due to the presence of poles in both the constituent propaga-
tors and in the kernel (coming from the exchanged bosons),
it is highly nontrivial to solve the BSE numerically in
Minkowski metric, even in ladder truncation. There are two
methods to investigate the BSE directly in Minkowski met-
ric, both dating back to the late 60s: the Covariant Spectator
Theory (CST) which we discuss in Sect. 5.2.2, and use of the
Nakanishi representation (also known as Perturbation The-
ory Integral Representation) [827].

The Nakanishi representation for the BSA is a spectral
representation in which the singularities that arise from the
poles in the propagators are isolated, allowing the BSE to be
reduced to an integral equation for the (non singular) spec-
tral function. This has been done initially for scalar field the-
ory [828], and subsequently for fermion–antifermion bound
states [829–831]. The obtained BSAs have been bench-
marked against direct numerical solutions of the ladder BSE
for Euclidean (spacelike) relative momenta.

Recently, the scalar BSE in ladder truncation has also
been investigated in Minkowski metric by starting in the
Euclidean formulation and rotating the p4 axis to i p0 (i.e.
undoing the Wick rotation numerically) [832], and by using
contour deformations in order to avoid singularities [833].
These methods give, within numerical precision, the same
results for the BSA in the timelike region as the Nakanishi
representation.

Connection to the light-front wavefunction
The use of the light-front (LF, first referred to as the infi-
nite momentum frame) was introduced by Weinberg in 1966
[834], and the technique was developed very extensively in
the 1980s by Lepage and Brodsky [226] and many others.
It is now a standard method for describing the structure of
hadrons and calculating a range of observables. Application
of this technique will be extensively discussed in Sect. 5.3.
Use of the LF is not manifestly rotationally invariant, but this
can be handled by imposing the so-called angular conditions;
see, for example, Ref. [835].

The LF wave function can be obtained from χ(p; P) by
integrating over p− = p0 − p3, leaving p0 + p3 ≡ x P+
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and p⊥ = {px , py} as independent variables. It turns out that
the LF wave function, ψ(x, p⊥), is only nonzero for 0 <

x < 1, and vanishes outside this range, even though p+ runs
from minus infinity to plus infinity. This has been confirmed
numerically for scalar theories in ladder truncation.

Instead of solving the BSE in Minkowski metric, and then
projecting onto the light-front, one can also reconstruct the
LF wave function (or e.g. parton distributions) from their
moments, which can be evaluated directly from the BS wave
function [836–838]. One caveat to keep in mind is that the
BSE is typically solved in covariant gauges; the most com-
monly used gauge in the literature is the Landau gauge,
though other gauges such as Feynman gauge are also used.
On the other hand, the LF wave function is usually investi-
gated in LF gauge.19 This makes it nontrivial to compare LF
wave functions obtained from the explicitly covariant BSE
to LF wavefunctions obtained within a LF approach.

5.2.2 The covariant spectator theory (CST)

The CST, which is related, but not identical, to the BSE, can
be obtained from the BSE if the internal loop energy is eval-
uated keeping only the pole contribution from the heaviest
particle [839].20 If m+ = m1 > m2 = m−, η = 1

2 , treating
particle 1 as outgoing, and working in the rest frame where
P = {W, 0}, then p1 = 1

2 P − p, and the one-channel CST
equation can be obtained from (5.4) using the prescription21

Γ (p; P) = −i
∫

d4k

(2π)4

F(p, k; P)

d+(k)d−(k)

→
∫

d3k

(2π)32E+k

[
F(p, k̂; P)

δ2
m +W (2E+k −W )

]

, (5.6)

where d±(k) = m2± − (k∓ 1
2 P)2 − iε, F is any covariant

function, k̂1 = 1
2W − k̂ = {E+k ,k}, (E+k )2 = m2+ + k2,

so that (̂k+)2 = m2+, and δ2
m = m2− − m2+. The CST equa-

tion is covariant in three dimensional space, and, unlike the
LF, is rotationally invariant. The major motivation for the
use of CST equations is that they have a smooth nonrela-
tivistic limit, and in a few cases their ladder approximation
is more accurate than the ladder approximation to the BSE.
Their major disadvantage is that their kernels can be singular,
and the treatment of these introduces an additional level of
phenomenology (see below).

In scalar field theories when m1 →∞, it has been shown
that the sum of all ladders and crossed ladders (the general-

19 For further discussion of the LF calculations and an explanation of
the LF gauge see Sect. 5.3.
20 This is sometimes referred to as “restricting the particle to its mass
shell.”
21 With our choice of momenta, this is obtained by closing the k0 con-
tour in the upper half plane and keeping only the positive energy pole
of particle 1, at k0 = 1

2W − E+k .

ized ladder sum) is given by the solution of the CST equation
with only the one-boson-exchange (OBE) kernel (see Refs.
[824] and [839]).22 This is referred to as the cancellation
theorem.

While the complete cancellation holds only in an excep-
tional case, partial cancellations occur for other cases. Using
the Feynman–Schwinger representation [840], it is possi-
ble to calculate the exact result for the generalized ladder
sum without vertex or self-energy corrections. For scalar
theories where m1 = m2 �= ∞ and the exchanged mass
μ = 0.15m [841], the BSE in ladder approximation gives
only about one-quarter of the correct binding energy (at large
coupling), while the one-channel CST equation, also in lad-
der approximation, gives a little more that half the correct
result. The OBE approximation in the light-front approach
gives the same result as the BSE in ladder approximation
[842].23 Another approach, the equal-time (ET) favored by
Tjon [844] is slightly better than the CST, but only the CST (to
our knowledge) uses the same two-body scattering amplitude
in both the two-body and three-body systems. In a later paper
[845], it was shown that the contributions of all self-energies
and vertex corrections for scalar QED are very small, so that
in this case the generalized ladders dominate (and are well
approximated by the CST and ET). These remarkable results
apply only to scalar theories, so the main justification for the
use of the CST must rest on its simple nonrelativistic limit.

It turns out that the one-body CST prescription (5.6) must
be generalized if it is to be used for all cases including m− =
m+ and W → 0. To treat these limits successfully, all four
k0 poles from the two fermion propagators must be included.
There are two poles in the upper half k0 plane (r = −) and
two in the lower half (r = +), and if s = ± denotes the
poles from particles m±, then they can all be denoted by
ks0r = r Es

k + 1
2 sW − irε. Since the contour can be closed

in either half plane (but not both), we average over the two
choices. This gives the new prescription

Γ (p; P)→ 1

2

∑

s,r

∫
d3k

(2π)32Es
k

[
F(p, k̂sr ; P)

sδ2
m −W (2rsEs

k +W )

]

,

(5.7)

where k̂sr = {ks0r ,k} with (E±k )2 = m2± + k2.
The sum on the RHS of this equation has four terms, and

substituting the four values p→ p̂sr into the LHS gives four
coupled equations.24 As discussed above, only one channel

22 In other words, when m1 → ∞, the CST in OBE approximation
gives the same result as the BSE for a kernel containing all irreducible
crossed ladders.
23 This is not true for three-body systems, due to contributions with two
(or more) exchange bosons in flight, which are included in the ladder
BSE, but not in the OBE approximation on the light-front [843].
24 This should be considered the correct form for the CST in all cases,
but often some of the channels can be ignored.
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is needed when m+ →∞. When the particles are identical,
symmetry under interchange requires that the equation trans-
form into itself when p1 ↔ p2, or k1 ↔ k2, and looking at
ks0r shows that this requires (if P is not small) at least the
channels where {r, s} = {+,+} and {−.−}, so that rs = +
in both cases. Looking at (5.7), it is clear that it is symmet-
ric under this transformation, remembering that for identical
particles, δ2

m = 0 and E+k = E−k . Finally, when W is small,
there will be a singularity at W = 0 unless all four channels
are kept.

Unfortunately, when a OBE kernel connects a channel
with particle 1 on-shell to a channel with particle 2 on-shell,
the kernel will develop singularities. These are discussed in
detail in Ref. [846], but the preferred way to remove them
was only developed recently.25

Nuclear physics applications of the CST
The two-channel CST has been used to give a high preci-
sion fit to the np scattering data below 350 MeV (χ2 = 1.12
using only 15 parameters [846]), to explain the deuteron form
factors (giving a quadrupole moment within 1% of its exper-
imental value [848]), and to study the three nucleon system.
All of these studies were done with two models. The simplest
and most successful one uses a covariant OBE kernel con-
sisting of the exchange of 6 mesons: π , η, σ0 and σ1 (scalar
mesons with isospin 0 and 1), and ρ and ω. An interesting
feature of these OBE models is that they include an off-shell
coupling for the σ mesons of the form

Λσ (p, k) = gσ − νσ

[
1− /p + /k

2m

]
, (5.8)

where the term proportional to νσ will give zero when the
nucleons are on shell (with /p → m ← /k). As it turns out
(see below), this off-shell coupling is very important to the
success of the model.

In the early days before the advent of QCD and powerful
computers, the study of three nucleon systems posed special
problems. The Alt–Grassberger–Sandhas equations [849],
developed in 1967, introduced a systematic procedure for
finding the solutions of n-body problems from the solution
of the n − 1 body problem. Examples of early papers work-
ing directly with the the three nucleon equation are found in
Ref. [850], which presents solutions with realistic potentials,
and Ref. [851], which solves the 3-body BSE with separable
kernels.

The three-body CST equation given in Ref. [853] was
used to compute the triton binding energy [854], and the
three-nucleon form factor [855,856]. During these studies a
remarkable discovery was made: the best fits to the np data

25 FG: These singularities troubled me for years. They are integrable,
giving finite results, but only with the method described in Ref. [847]
do I feel the problem is fully under theoretical control.

Fig. 78 The red line (left-hand scale) shows how χ2 varies with νσ ,
with the best fit at νσ � −2.6. The blue line (right-hand scale) shows
the (linear) variation of the triton binding energy with νσ , with the best
fit also at νσ � −2.6. (From Ref. [852].)

require νσ �= 0,26 and the same value of νσ also gives the
best fit to the triton binding energy! This shows that three
body-forces are not needed to explain this observable. This
discovery, first found in 1996 [854], is shown with the latest
(and best) fits in Fig. 78. It is a robust result that has continued
to hold as the fits were improved, and is still not understood.

Meson spectrum in the CST
In the CST treatment, mesons are qq bound states with one
quark confined to its mass-shell. States like the ρ, where
mρ > 2mq , could have both the quark and anti-quark on-shell
at the same time unless the interaction forbids it. Fortunately,
the structure of the CST equations permits an attractive rela-
tivistic generalization of linear confinement. This definition
of confinement was first introduced in 1991 [857], and in
1999 it was shown explicitly that the confining interaction
does indeed guarantee that meson vertex functions are zero
when both quark and antiquark are on shell [858]. Subse-
quently, an improved definition [859] was found. For any
smooth S-state function φ(p) the action of the linear con-
finement kernel is
〈
VLφ

〉
(p1) = −

∫

k

m

Ek

8πσ [φ(̂k1)− φ( p̂R)]
(p1 − k̂1)4

(5.9)

where the spin dependence, and the form factors that pro-
vide convergence at large momenta have been omitted, σ is
the string tension, p1 and k̂1 are the momenta of particle 1,
k̂2

1 = m2
1 is on-shell, and p̂R is chosen to reduce the singu-

26 FG: Originally we (Stadler and I) tried to fit the np data without the
off-shell coupling, and got the very high χ2 that an extrapolation of
the curve shown in Fig. 78 suggests. Only after a frantic attempt to do
better did we discover the importance of νσ . Later, we were surprised
to realize that the same mechanism also gave the correct triton binding
energy.
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Fig. 79 The form factor of a bound state (meson or deuteron). Left
panel: the four diagrams that give the lowest anomalous thresholds for
the dispersion integrals, with dispersion cuts shown by the dashed lines.
Note the multiple spectators on shell. The dashed red line represents the
exchanged particles that bind the state. Right panel: diagram showing
the triangle (or impulse) contribution expressed in terms of the BS vertex
function Γ and dressed current (large red dot), needed to ensure gauge
invariance (only in a CST calculation is the spectator on-shell)

larity at (p1 − k̂1)
4 = 0 to an integrable principal value (for

details see Ref. [859]). Extension of this definition to states
with non-zero angular momentum is discussed in Ref. [860].
Using this confining kernel, together with a phenomenologi-
cal constant plus a one-gluon-exchange (OGE) contribution
in a 1-channel CST equation, gives a good account of the
spectrum of heavy-heavy and heavy-light mesons [861,862],
as shown in Fig. 88.27 The 4-channel CST equation also
provides a good description of the pion consistent with the
axial-vector Ward–Takahashi identity (AV-WTI) [859].

The origin of the CST – FG
My involvement with this subject began in 1960 when nucle-
ons and pions were thought to be fundamental particles and
S-matrix theory was believed to be the best way to tackle the
strong interactions. For my Ph.D. it was suggested that I look
at the deuteron electromagnetic form factor. The upshot of
my study lead to the realization that the form factor was dom-
inated by a large number of meson-exchange processes, the
first four of which are shown in the left panel of Fig. 79,28 and
that these were best calculated by introducing a new equation

27 Since both the light front and CST are relativistic wave functions
depending on only three variables, it has long been thought that, perhaps,
they can be transformed into one other. The basis for such a comparison
might be based on a connection between one of the components of the
CST internal momentum (take pz for example) and the LF momentum
fraction x , and a good candidate is Ep + pz = yD0, where D0 is the
energy of the bound state, and y = x . This transformation suggests an
equivalence in some cases [863], but since 0 ≤ y ≤ ∞, it is clear that
y �= x . Our conclusion is that CST and LF wave functions seem to
describe the physics differently.
28 A novel feature of the dispersion integrals describing these processes
is the presence of anomalous thresholds starting at si < 4m2. The
imaginary part of the dispersion integral in the anomalous region (from
si to 4m2) is given entirely by the contributions from these diagrams
when the four-momentum of all the spectators are on shell. For diagram
Footnote 28 Continued

that would sum these contributions – the one-channel CST
equation.

If the internal propagators in the triangle diagram (right
panel of Fig. 79) are dressed by form factors, then the off-
shell nucleon current must also be dressed in order to ensure
gauge invariance.29

5.2.3 DSE for the quark propagator

We now turn to a discussion of the DSE for the quark propa-
gator. The exact equation for the quark propagator is shown
in the upper left-hand box in Fig. 75. In Euclidean metric
({γμ, γν} = 2δμν , γ †

μ = γμ and a · b = ∑4
i=1 aibi ) it is

given by

S(p)−1 = i � p Z2 + mq (μ) Z4

+ Z1 g
2
∫

d4k

(2π)4
Dμν(q) γμ

λi

2
S(k)

λi

2
Γν(k, p),

(5.10)

where Dμν(q = k − p) is the renormalized dressed gluon
propagator, and Γν(k, p) is the renormalized dressed quark–
gluon vertex. The solution of Eq. (5.10) can be written as

S(p) = 1

i /pA(p2)+ B(p2)
= Z(p2)

i /p + M(p2)
, (5.11)

renormalized according to S(p)−1 = i /p + mq(μ) at a suf-
ficiently large spacelike μ2, with mq(μ) the current quark
mass at the scale μ. For divergent integrals a translationally-
invariant regularization is necessary. Note that in the chiral
limit, the current quark massmq(μ) is absent from Eq. (5.10)
and there is no mass renormalization.

The most commonly used truncation is the rainbow trunca-
tion (analogous to the ladder truncation to the BSE discussed
above), in which the dressed gluon propagator and the quark–
gluon vertex are replaced by their bare counter-parts, with a
model effective running coupling

Z1g
2Dμν(q)γμ ⊗ Γν(k, p) → 4π αs(q

2) Dfree
μν (q)γμ ⊗ γν.

(5.12)

This truncation is the first term in a systematic expansion
[866,867]; furthermore, the preferred gauge for the fermion

(1) this threshold is at

s0 = M2
B

m2

(
4m2 − M2

B

)
� 16mε

where ε = 2m − MB is the binding energy [864]. For diagrams (2a)
and (2b), one additional spectator is on shell, and for diagram (3), two
additional spectators are on shell. The thresholds for these diagrams are
larger than s0 but still much less than the normal threshold of 4m2.
29 D. O. Riska and I constructed such a current [865], which is used in
all CST calculations. This current plays a role analogous to the BC or
CP currents discussed below.
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Fig. 80 Dynamical quark mass function M(p2) for spacelike
momenta: using the rainbow truncation with the Maris–Tandy
model [868] (top, adapted from [869]), and from quenched (N f = 0)
and unquenched (N f = 3 chiral quarks) DSEs using the CP vertex
[870], as well as results obtained with a bare quark–gluon vertex, com-
pared to quenched lattice data in the overlap [871] and Asqtad [872]
formulations (bottom, adapted from [873])

DSE is Landau gauge, which has the advantage that asymp-
totically, Z(p2)→ 1.

By choosing a suitable model for the effective running
coupling αs that reduces asymptotically to leading-order per-
turbation theory, realistic quark mass functions, as shown in
Fig. 80, are obtained. In particular, with a nonzero current
quark mass, the dynamical mass function behaves at large
p2 like

M(p2) � m̂
(
ln

[
p/ΛQCD

])γm , γm = 12

11Nc − 2N f
, (5.13)

with the anomalous mass dimension, γm , in agreement with
perturbation theory. In the chiral limit this model gives a
nontrivial solution for the mass function that falls off like a

power-law, modified by logarithmic corrections [874]

Mchiral(p
2) � 2π2γm

3

−〈q̄q〉0
p2

(
ln

[
p/ΛQCD

])1−γm
, (5.14)

with 〈q̄q〉0 the quark condensate, in agreement with the Oper-
ator Product Expansion [875].

Of course, quantitative details of the quark propagator
functions in the infrared region do depend on the trunca-
tion. The bottom panel of Fig. 80 shows the quark mass
function M(p2) of the quark propagator in the chiral limit,
obtained from the coupled quark, ghost, and gluon DSEs
using the Curtis-Pennington (CP) vertex30 suitably general-
ized for use in a non-Abelian QFT [870]. Qualitatively, these
results agree with the quark mass functions shown in the top
panel (both in the chiral limit, and with a nonzero current
quark mass), though quantitatively they clearly do depend
on both the details of the effective interaction and the vertex
Ansatz.

Do real quark mass poles exist?
Knowledge of the behavior of the quark propagator in the
complex momentum plane is necessary not only to solve the
BSE at the bound state mass pole, but also because of pos-
sible connections to confinement, the CST, and the LF wave
function. In QED, we know that real mass-poles must exist
on the time-like axis, but early DSE studies of the fermion
propagator in ladder truncation suggested the existence of
complex “mass-like” singularities instead of real mass-poles
at timelike momenta [877–879]. The absence of a mass-pole
in the fermion propagator on the timelike axis would prevent
the fermion from being on-shell, and could be an indica-
tion of confinement [880,881].31 More recently however, is
has been shown that, with proper regularization of poten-

30 The CP vertex [876] is a nonperturbative Ansatz for the electron–
photon vertex that satisfies the Ward–Takahashi Identity.
31 PM: My interest in the fermion DSE started with my Masters
research in the late 80s, with the question whether or not there was
a dynamical mass generation in (2+1)-dimensional QED. In addition to
dynamical chiral symmetry breaking, QED3 also exhibits confinement;
these two features make it an illustrative toy model for QCD. Consis-
tent treatment of the photon propagator turns out to be crucial in QED3:
in the quenched approximation (no fermion loops, and hence no vac-
uum polarization), there is a logarithmically rising potential between a
fermion and anti-fermion. This logarithmically confining potential per-
sist in the presence of massive fermion loops in the vacuum polarization,
but with massless fermions, this confining potential disappears. With
the coupled DSEs for the fermion and photon propagator, it was found
that there is a critical number of fermion flavors of about N f ∼ 3 to 4,
below which there is both dynamical mass generation and a confining
potential. Furthermore, it was found that in the presence of the loga-
rithmically confining potential, the fermion propagator exhibits a pair
of ‘mass-like’ singularities at complex conjugate momenta in the com-
plex momentum plane, whereas in the absence of this logarithmically
confining potential, the fermion propagator appears to have a real mass-
pole at timelike momenta, as one would expect based on perturbation
theory.
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tially divergent integrals (e.g. using Pauli–Villars), that at
least in weak-coupling quenched QED, the DSE for the elec-
tron propagator has the expected analytic structure, namely
a mass-pole in the timelike region. This was obtained both in
Feynman gauge and in Landau gauge; and using two inde-
pendent numerical methods, explicitly rotating the spacelike
region to the timelike region and using the Nakanishi formal-
ism [882].

In QCD however, quarks (and gluons) are confined, and
the quark propagator need not have a mass-pole at time-
like momenta. A convenient way to study this is to use the
Schwinger function, Δ(t), defined by

Δs,v(t) =
∫

d3x
∫

d4 p

(2π)4 e
i(tp4+�x · �p)σs,v(p2)

= 1

π

∫ ∞

0
dp4 cos(t p4)σs,v(p

2
4) ≥ 0 (5.15)

where σs,v(p2) is the scalar or vector part of the dressed
quark propagator,

S(p) = i /p σv(p
2)+ σs(p

2) . (5.16)

For a propagator with a real mass-pole in the timelike region,
this Schwinger function falls off like an exponential. In con-
trast, a propagator with a pair of complex-conjugate mass-
like singularities, the Schwinger function is not positive-
definite and exhibits an oscillatory behavior

Δ(t) ∼ e−a t cos(bt + δ). (5.17)

In Ref. [873] a striking qualitative difference between the
use of a bare quark–gluon vertex and the BC [883] or CP
vertex was found: with a bare vertex, the Schwinger function
behaves like a pair of complex-conjugate mass-like poles for
the quark propagator, whereas the results with the BC and
the CP vertex behave like a real mass-pole in the timelike
region. Qualitatively similar results were found employing
different models for the effective running coupling, including
(3+1) dimensional QED. The existence of a pair of complex-
conjugate mass-like singularities in the DSE solutions of the
dressed quark propagator in rainbow truncation was also con-
firmed by direct analytic continuation of the quark DSE into
the complex-momentum plane; the obtained real and imag-
inary parts of these singularities agree with those extracted
from the Schwinger function. Whether or not confinement
is realized through the absence of mass-like singularities on
the real timelike axis remains to be seen. Note that these
results are not inconsistent with the CST, which assumes the
existence of real quark mass poles.

5.2.4 Pions: Goldstone bosons of QCD

Pions, and to some extent also kaons, are the pseudo-
Goldstone bosons of QCD: in the chiral limit, mq = 0, chiral

symmetry is broken dynamically, which implies the existence
of massless Goldstone bosons. In the flavor SU(2) chiral
limit, there are three Goldstone bosons (three pions); and in
the flavor SU(3) chiral limit, there would be eight Goldstone
bosons. In the real world, the up, down, and strange quarks
are not massless, but have a small current quark masses; in
addition, one of the eight ‘would-be’ Goldstone bosons mixes
with the isoscalar pseudoscalar meson (which is massive due
to the axial anomaly) to form the η and η′. This explains
qualitatively why the three pions and four kaons are so much
lighter than all other mesons, among other things. Therefore,
in order to describe pions (and kaons), any truncation has
to respect all constraints coming from chiral symmetry. Fur-
thermore, it implies that the pion BSA is closely related to the
(dynamically generated) scalar part of the quark self-energy,
which can be made explicit by using the AV-WTI [884].

The axial-vector vertex Γ
μ

5 satisfies a DSE as illustrated
in the second row of Fig. 75, with an inhomogeneous term
γ 5γ μ. But even without solving the DSE, one can relate this
vertex directly to the dressed quark propagators via the AV-
WTI

PμΓ
μ

5 (p; P) = S−1(p2)γ5 + γ5S
−1(p1)

− 2mq(μ) Γ5(p; P), (5.18)

where Γ5(p; P) is the pseudoscalar vertex, which also sat-
isfies a DSE as shown in Fig. 75, with inhomogeneous term
γ 5. This can be compared to the more familiar vector WTI
for the quark–photon vertex (which satisfies the same DSE
with inhomogeneous term γ μ),

PμΓ
μ(p; P) = S−1(p2)− S−1(p1) (5.19)

which ensures electromagnetic current conservation.
Meson poles in the quark–antiquark scattering amplitude,

G4, also appear in these vertices, depending on their quan-
tum numbers. For the quark–photon vertex this automatically
leads to Vector Meson Dominance (VMD), a model for the
coupling of photons to hadrons that predates QCD [885] (see
below). In the case of the axial-vector vertex, near a pseu-
doscalar meson pole at P̂2 = −M2

PS, we have32

Γ
μ

5 (p; P) ≈ ΓPS(p; P̂)

P2 + M2
PS

Z2Nc

∫
d4k

(2π)4 Tr[χPS(k; P̂) γ5 γμ]

= ΓPS(p; P̂)

P2 + M2
PS

fPS P̂
μ (5.20)

with fPS the pseudoscalar decay constant, which governs the
coupling of a pseudoscalar meson to the axial-vector current.

Similarly, pseudoscalar mesons appear as poles in the
pseudoscalar vertex, and near P̂2 = −M2

PS this vertex

32 Remember we are using Euclidean metric here.
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behaves as

Γ5(p; P) ≈ ΓPS(p; P̂)

P2 + M2
PS

Z4Nc

∫
d4k

(2π)4 Tr[χPS(k; P̂) γ5]

= ΓPS(p; P̂)

P2 + M2
PS

rPS(μ) (5.21)

with rPS(μ) the (renormalization-scale dependent) residue in
the pseudoscalar channel. The AV-WTI relates the residues
at these poles

fPS M2
PS = −2mq(μ) rPS(μ), (5.22)

which holds for any pseudoscalar meson. Therefore, in the
chiral limit, mq(μ) = 0, either fPS or MPS must be zero. (If
they are both zero, chiral symmetry will not be dynamically
broken; see below.)

Furthermore, expanding the AV-WTI in powers of M2
PS

in the chiral limit, mq(μ) = 0, and using the most general
Dirac decomposition of ΓPS

33

ΓPS(k; P̂) = γ5
[
i E + /̂P F + /k G + σμν kμ P̂ν H

]
(5.23)

one finds, to leading order in MPS,

fPSE(p; 0) = B(p2) (5.24)

where B(p) is the scalar part of the quark self-energy.
Thus, if chiral symmetry is dynamically broken, that is, if

mq(μ) = 0 but B(p2) �= 0, fPS is nonzero, see Eq. (5.24),
and pions necessarily emerge as massless Goldstone bosons,
see Eq. (5.22). Furthermore, the pseudoscalar component of
the pion BSA is proportionally to the (dynamically gener-
ated) scalar self-energy of the quarks. In addition, the AV-
WTI implies that the decay constant of excited pions (which
necessarily have nonzero mass) has to vanish in the chiral
limit.

These relations are exact, and the asymptotic behavior of
the canonical pion BSA component can be obtained from the
asymptotic behavior of the mass functions shown in Fig. 80.
The same asymptotic behavior of the canonical BSA compo-
nent also holds with nonzero current quark masses; as well
as for excited pseudoscalar mesons.

Finally, with the definition of rPS implicitly given in
Eq. (5.21) and the relation (5.24), we arrive at the well-known
Gell-Mann–Oakes–Renner relation

f 2
π m2

π = 2mq(μ) 〈q̄q〉μchiral, (5.25)

with the chiral condensate

〈q̄q〉μchiral = Z4Nc

∫
d4k

(2π)4

4 Bchiral(k2)

k2A2(k2)+ B2
chiral(k

2)
. (5.26)

33 Here E , F , G, and H scalar functions of k2 and k · P̂; for equal-
mass mesons with η = 1

2 , the functions E , F , and H are even in k · P̂ ,
whereas G is odd in k · P̂ .

Note that the renormalization scale dependence of the cur-
rent quark mass, mq(μ), exactly cancels that of the chiral
condensate.

5.2.5 Mesons in rainbow-ladder (RL) truncation

Different types of mesons, such as pseudoscalar (pions,
kaons) or vector mesons (ρ, φ), are obtained by consider-
ing the most general Dirac and flavor (isospin) structure for
the meson of interest, and solving the BSE, Eq. (5.4), at the
bound state pole.34

To obtain practical solutions from the exact BSE, Eq. (5.4),
the kernel K must be truncated; furthermore, one needs to
approximate the dressed quark propagators. The most com-
monly used truncation is the ladder truncation, in which
the BSE kernel K in Eq. (5.4) is replaced by an one-gluon
exchange (or, in the case of QED, a one-photon exchange)

Ki j (p, k; P̂)Oi ⊗O j → 4π α(q2) Dfree
μν (q) λ

i

2 γμ ⊗ λi

2 γν,

(5.27)

with a model for the effective running coupling α(q2). Here
we use the ladder truncation, in combination with quark prop-
agators that are the solution of the DSE in rainbow truncation
– hence we refer to it as the Rainbow-Ladder (RL) truncation.

The resulting approximate BSE is solved numerically,
starting from the Euclidean metric, and analytically continu-
ing P̂2 to negative values while keeping the integration vari-
able Euclidean. This leads to complex momenta for the quark
propagators, which is trivial with bare constituent propaga-
tors; it is also well-defined and straightforward to implement
for (nonperturbatively) dressed propagators as long as there
are no singularities in either the (dressed) propagators or
the model for the effective interaction over a well-defined
domain in the complex momentum plane, depending on the
meson mass, choice of η, and choice of frame35 – though
one may have to solve the quark DSE numerically over this
domain.

In the previous section we showed in detail that the pion is
the Goldstone boson associated with chiral symmetry break-
ing; it becomes massless in the chiral limit; and its canonical
BSA component is given by the scalar self-energy of the
quark. The ladder truncation by itself, in combination with
bare propagators, does not preserve these features of the pion.

34 The bound state mass is not known a priori; therefore one has to
vary P̂2 until one finds a solution. This is most conveniently done by
introducing a fictitious eigenvalue λ in front of the LHS of Eq. (5.4) to
turn it into an eigenvalue problem, and search for a solution with λ = 1
by varying P̂2.
35 The BSA is frame independent, but in Euclidean metric, k·P is purely
imaginary in the restframe (remember P̂2 is negative), and becomes
generally complex in a moving frame. It has been shown that physical
observables are indeed frame independent by solving the BSE in RL
truncation explicitly in a moving frame [886].
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However, the RL truncation with consistent dressed quark
propagators does preserve the Goldstone nature of the pion,
which one can prove analytically using Eq. (5.18) and per-
forming a shift in integration variables.36

The RL truncation has been used extensively over the past
25 years, not only for pions, but also for other quantum num-
bers, and both for light systems, heavy systems, and heavy-
light systems. A commonly used model for the interaction
is the Maris–Tandy model [868]. This model is finite in the
infrared region, with sufficient strength for dynamical chi-
ral symmetry breaking, and agrees perfectly with pQCD for
q2 > 25 GeV2. The dynamical mass function of the up/down
quarks, strange quarks, and charm quarks were shown in
Fig. 80.

For the light pseudoscalar and vector mesons, consisting
of u, d, and s quarks, we find excellent agreement with the
experimental data, not only for the spectrum, but also for
the decay constants. For the charmed mesons (both charmo-
nium, and heavy-light systems) we also find agreement with
experiment, within our numerical precision which is domi-
nated by the need to solve the quark propagator over a large
domain in the complex momentum plane. Results for axial-
vector and scalar mesons are much less in agreement with
experiment, but it is known that leading-order corrections to
the RL truncation are significantly larger in the axial-vector
and scalar channels than in the pseudoscalar and vector chan-
nels. Furthermore, the scalar mesons are notoriously difficult
to describe, and are likely to have a significant 4-quark con-
tent (in particular the broad σ meson, if it can be called a
meson).

Meson form factors and scattering
With the BSA we can evaluate a range of other physical
observables. We have already mentioned the electroweak
decay constant, but more interesting are processes with three
external probes such as mesons and/or photons. Consider
the elastic form factor of a meson: the right panel of Fig. 79
shows the coupling of a photon to a meson in impulse approx-
imation. One can show analytically that if one considers the
dressed quark–photon vertex as the solution of its inhomoge-
neous BSE using the same RL kernel as for the quark prop-
agators and the meson BSE, current conservation is auto-
matically guaranteed. Another advantage of using such a
dressed quark–photon vertex, instead of a bare vertex, is
that vector meson poles will automatically appear as poles at
Q2 = −M2

V in the dressed vertex; thus, VMD is unambigu-
ously included in this approach [887].

A practical challenge is that at least one of the mesons
in Fig. 79 has to be in a moving frame. For small values
of Q2 one can use a Taylor expansion of the BSA in the

36 Hence the need for translationally-invariant regularization of poten-
tially divergent integrals – this is also necessary for ensuring current
conservation in electromagnetic interactions.

Fig. 81 Spacelike pion form factor: comparison between experiment
and a VMD model, DSE in RL truncation [869,887], and a recent LF
calculation [888]. For the experimental data, see Refs. [889,890] and
references therein

rest frame, but explicitly solving the BSE in a moving frame
greatly improves the accessible domain in Q2 and reduces
numerical uncertainties associated with e.g. a Taylor expan-
sion. Figure 81 shows the predictions from the Maris–Tandy
model in RL truncation for the pion elastic form factor, which
are in perfect agreement with the data. For comparison, we
also include a simple VMD model, as well as a recent LF
calculation [888] discussed in more detail in Sect. 5.3.

Similar diagrams can and have also been used for elec-
troweak transition form factors and the anomalous π0 → 2γ
process [891]. One finds generally good agreement with
experimental data, thanks to the fact that this approach sat-
isfies all constraints coming from electromagnetic current
conservation, chiral symmetry, and dynamical chiral symme-
try breaking; furthermore, it includes unambiguously VMD
effects, and it also agrees with perturbative QCD at large
momenta. This is not to say that there are no short-comings
in this approach: obviously there is physics beyond the RL
truncation that is important, some of which are discussed
below.

More challenging are scattering observables involving
four external mesons and/or electroweak probes. Based on
the success of describing form factors in impulse approxima-
tion, one might consider just the box diagram with dressed
vertices and propagators for such processes. However, it
turns out that this is insufficient, and does not reproduce the
expected results for e.g. ππ scattering or γ 3π coupling –
which are both constrained by chiral symmetry. For a con-
sistent description of scattering observables involving four
external probes, one needs to include the same RL kernel
inside the box diagram as well, resummed to all orders, as
indicated in Fig. 82. With these ladder diagrams added to
the box diagram, it has been shown explicitly that both the
anomalous γ 3π process [892] and ππ scattering [893] are
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Fig. 82 RL truncation for γ 3π consistent with chiral symmetry and
electromagnetic current conservations: quark propagators, vertices and
box-diagram all dressed with the same RL kernel (adapted from [892])

in perfect agreement with chiral symmetry and electromag-
netic current conservation. The same approach can in princi-
ple also be used for other processes, involving other mesons,
and it would be very interesting to extend this approach in
the future to e.g. Compton scattering on hadrons, as well as
pion–nucleon scattering.

5.2.6 Beyond the RL approximation

Over the past two decades significant progress has been made
in improving the RL truncation while preserving the relevant
vector and axial-vector WTIs [867,894,895]. Although the
details of these investigations differ, the general conclusion
is that corrections beyond RL are relatively small in the pseu-
doscalar and vector channels, but can be significantly larger
in the axial-vectors and scalar channels. This makes it under-
standable why the pseudoscalar and vector meson masses
and decay constants are in such good agreement with data,
but at the same time an accurate description of mesons with
other quantum numbers requires going beyond RL.

One of the more promising methods to go beyond the RL
truncation is based on the n-Particle Irreducible (n-PI) effec-
tive action, in particular the 2-PI and 3-PI effective action up
to 3 loops [822,896]. This generally leads to coupled integral
equations for the quark, gluon, and ghost propagators, the
quark–gluon vertex (and possibly other vertices), and possi-
bly higher n-point functions. Computationally, solving these
coupled sets of integral equations in multiple variables is
significantly more complicated and time consuming than the
RL truncation, but with current (and future) computational
resources, the resulting integral equations can be solved for
selected cases. The spectrum obtained for the light mesons
(including the axial-vector mesons) is in good agreement
with available data, see Fig. 83; the only obvious disagree-
ment is in the scalar channel, where pion loops play an impor-
tant role.

Higher Fock components
Although the RL truncation appears to be quite successful
for a range of meson observables, it has its limitations. Con-
sider the pion form factor: Fig. 81 shows this form factor in

Fig. 83 Light meson spectrum beyond RL truncation (Figure adapted
from [896])

Fig. 84 Pion form factor with pion loops in the timelike region (figure
adapted from [897])

the spacelike region, but we can also extend these calcula-
tions to the timelike region. In the timelike region, we find
a pole at Q2 = −M2

ρ ; exactly as one would expect, because
we already know that the homogeneous BSE for the vector
channel has a solution at P̂2 = −M2

ρ . However, this pole is
above the 2π threshold – in the real world, this pole is shifted
to the second Reimann sheet, and there is a resonance peak
with non-zero width at Q2 = −M2

ρ . Indeed, incorporating
pion loops in the dressed quark–photon vertex in the timelike
region changes the vector-meson pole to a resonance peak,
and the resulting form factor is in good agreement with the
data [897], see Fig. 84. Although the center of the peak is
slightly shifted compared to the data, the peak height and
width are in good agreement with the data in the timelike
region

Similarly, pion loops are likely to be important for the
scalar mesons, which can be included by incorporating con-
figurations with two quarks and two anti-quarks in the BSE.
This leads to a set of coupled equations between the usual
quark–antiquark components, as well as ‘meson–meson’
contributions and ‘diquark–diquark’ contributions. This has
recently been implemented for the scalar channel [898],
which reveals that the σ meson is indeed dominated by two-
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Fig. 85 Baryon spectrum in RL truncation in the quark–diquark pic-
ture (blue bars) and as three-quark bound state (open boxes), compared
to experimental spectrum (figure adapted from [899])

pion contributions, as one might expect. This approach will
also be very useful to investigate exotic mesons, tetraquarks,
and in the future also pentaquarks, all within the same frame-
work.

5.2.7 Baryons

The notion of diquarks has been around for almost as long as
QCD; see e.g. Ref. [791] and Sect. 5.1.4. Initial DSE stud-
ies of baryons were therefore formulated in terms of bound
states of a quark and a diquark; specifically a scalar and an
axialvector diquark.

However, as described in Sect. 5.2.2, three fermion states
can also be described by a 3-body BSE, and in recent years
there has been significant progress in describing and under-
standing baryons as three-quark bound states using the DSE
with essentially the same RL approximations as used for the
mesons. An effective interaction is modeled using the Dirac
structure of a one-gluon exchange between two quarks, see
Eq. (5.27), in combination with consistent nonperturbatively
dressed quark propagators. Figure 85 shows the calculated
spectrum for nucleon and Delta resonances together with
the experimental spectrum. The results for the ground state
nucleons, as well as their radial excitations, are in fair agree-
ment with experiment, both in the quark–diquark and the
three-quark bound state pictures. For the other quantum num-
bers we see noticable differences between the quark–diquark
and three-quark bound state results (and note that not all
quantum numbers have been done as a three-quark bound
state). The obtained bound state amplitudes can be used for
the evaluation of nucleon form factors, see e.g. [899] and
references therein, analogous to the calculation of the pion
form factor discussed earlier.

5.2.8 Conclusions

At the energy scales of mesons and barons, nonperturbative
methods are needed, and the DSEs and BSE (or the CST)
work very well. The main shortcoming of these methods is
that the kernels needed to solve for the self energies of wave
functions are unknown, and must be modeled. The combina-
tion of the ladder (L) truncation of the BSE with the closely
related rainbow (R) truncation of the DSE for self energies
are reasonably successful, in particular in describing chiral
symmetry breaking and the role of the pion as the Goldstone
boson of QCD. The few calculations beyond the RL trunca-
tion that exist show that the additional effects are not large,
except in particular spin-isospin channels.

We expect this technique to develop in the years ahead
and to remain an attractive method for theoretical study of
QCD.

5.3 Light-front quantization

James Vary, Yang Li, Chandan Mondal and Xingbo Zhao
In this section, we discuss non-perturbative light-front
Hamiltonian quantization methods. We primarily focus on
introducing the Hamiltonians for QED and QCD derived
in the light-cone gauge (for extensive reviews, see Refs
[900,901]). We introduce methods of solution and results
for mesons and baryons. We focus on the Discretized Light
Cone Quantization (DLCQ) and Basis Light Front Quanti-
zation (BLFQ) methods due to their ability to include gluons
and sea quarks dynamically.

Light-front quantization is the natural language for descri-
bing the partonic degrees of freedom of QCD at high ener-
gies. This connection has been extensively exploited in phe-
nomenological approaches to hard inclusive and exclusive
processes (see Sects. 5.8, 5.9). In these approaches, instead
of solving the QCD dynamics, the symmetries and proper-
ties of QCD are employed to construct phenomenological
partonic amplitudes or densities on the light front.

Before introducing specific light-front Hamiltonian meth-
ods of solution, let us recap the key concepts of the light-
front Hamiltonian approach that spring from Dirac’s formu-
lation of Poincare’ invariant quantum frameworks [902]. Our
choice of light-front variables can be summarized in relation
to equal-time variables by introducing

P=(P0+P3, P0−P3, P⊥)=
(

P+, M
2 + (P⊥)2

P+
, P⊥

)

,

where P and M represent the 4-momentum and mass of the
hadron, respectively. For the hadron’s constituents (quarks,
antiquarks, gluons), which we refer to as partons, we adopt
p⊥i as the transverse momentum of the i th parton, xi =
p+i /P+ is its longitudinal momentum fraction, λi is its
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light-front helicity [903], and roman alphabet subscripts run
through the partons of the hadron.

The Hamiltonian eigenvalue problem for the mass-squared
eigenstates and their associated light-front wave functions
(LFWFs) begins with defining the light-front Schrödinger
equation for the system’s eigenstates. Taking P⊥ = 0 and
H = P+P−

H |P,Λ〉 = M2|P,Λ〉 (5.28)

where Λ is the hadron’s light-front helicity and H contains
kinetic, interaction and Lagrange multiplier terms

H =
∑

i

p⊥2
i + m2

i

xi
+ Hint + λCMHCM . (5.29)

Here, the sum is over all partons and mi is the mass of the
i th parton. The role of the Lagrange multiplier term ensures
factorization of the state vector’s transverse component into
an internal, boost invariant, component times a center of mass
(CM) component [904].

We note that this eigenvalue problem applies to systems
with arbitrary baryon number so that, for example, it applies
to atomic nuclei as well. An eigenstate of a system can be
written in terms of a Fock-space expansion over sectors with
N -partons as

|P,Λ〉 =
∑

N

∑

λ1,...,λN

∫ ∏N
i=1 dxidp⊥i

[
2(2π)N

]2√
x1xN

δ

(

1−
N∑

i=1

xi

)

× δ2

(
N∑

i=1

p⊥i

)

ψΛ{λi }N ({pi }N )|{λi , pi }N 〉, (5.30)

whereψΛ
λ1,...,λN

(p1, . . . , pN ) is the light-front helicity ampli-
tude for each component. Each of the multi-parton basis
states |{λi , pi }N 〉 is defined as a properly normalized string
of N fermion, anti-fermion and gluon creation operators act-
ing on the vacuum. Eq. (5.30) is schematic since, for fixed
N , there can be many subcases with the same net fermion
number. We note that the kinetic term in Eq. (5.29) is diag-
onal in this multi-parton basis. In the following sections, we
introduce the discretized and basis function alternatives to
Eq. (5.30).

For gauge theories, a traditional approach is to adopt the
light-front gauge, A+ = 0, and to reduce the Hamiltonian to
the minimum number of dynamical degrees of freedom using
constraint equations. For QED and QCD this produces the
Hint term of Eq. (5.29) expressed in terms of Pauli spinors
with the boson-fermion vertices (QED and QCD) as well
as boson-boson vertices (QCD only). In addition to these
vertices, the gauge-fixing and reduction procedures lead
to higher-order instantaneous interactions which manifest
divergences. The resulting 3(7) vertices for QED [88] (QCD
[905,906]) are deceptively simple and are shown in Fig. 86.

Fig. 86 Vertices appearing in the LF Hamiltonian term Hint of
Eq. (5.29) upon choosing the LF gauge A+ = 0 for QED [88] and
additional vertices for QCD [905,906]. See [900] for a recent review.
Solid lines represent fermions (vertices with antifermions are obtained
by reversing a fermion line) and wavy lines represent gauge bosons. A
graph that includes a fermion or boson with a horizontal line through
it represents an instantaneous interaction term. Though one LF time
ordering is pictured (increasing LF time flows to the right), all allowed
LF time orderings are included in Hint . Thus, for example, an incoming
line can be switched to an outgoing line at any vertex and vice-versa

Like its Lagrangian counterpart, Hamiltonian field the-
ory needs to be regularized and renormalized. Dimensional
regularization is only available for perturbative calculations.
In non-perturbative solutions, the invariant mass cutoff and
the Pauli–Villars regularization are often adopted. Since non-
perturbative eigenvalue problems have to be solved numeri-
cally, finite discretization schemes are also needed. One can
choose to use the discretization to define the regularization.
DLCQ and BLFQ are such schemes. Alternatively, the dis-
cretization can be used purely as the numerical method. The
problem remains to take the continuum limit. Thanks to the
kinematical nature of the light-front boosts, cluster decom-
position remains available in the continuum scheme. Hence
perturbative type renormalization can be extended to this
scheme, as realized in Fock sector dependent renormalization
[907].

The similarity renormalization group (SRG) approach is
another non-perturbative approach based on Wilson’s renor-
malization group evolution [908,909]. Thanks to asymptotic
freedom, the SRG transformation can be evaluated perturba-
tively up to some scale, say, a few GeV. Different schemes
were designed for implementing SRG, notably the Bloch–
Wilson formulation [910] and the renormalization group pro-
cedure for effective particles (RGPEP [911]). An RGPEP
effective Hamiltonian for heavy flavor hadrons is derived
using a gluon mass ansatz [912]. In the gluon sector, it
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successfully reproduces asymptotic freedom in the 3-gluon
effective vertex [913].

The Fock space expansion (Eq. 5.30) provides the most
straightforward representation of the eigenvalue problem
Eq. (5.28). Within this basis, the eigenvalue equation beco-
mes an infinite tower of coupled integral equations. The inte-
grations can be evaluated using standard numerical tech-
niques; however, truncation is needed to obtain numer-
ical solutions. The situation is similar to the Dyson–
Schwinger/Bethe–Salpeter equations approach in the covari-
ant formulation (see Sect. 5.2). The light-front Tamm–
Dancoff approximation (LFTDA) truncates the Fock sections
in terms of the particle number [914]. LFTDA can be system-
atically renormalized using the Fock sector dependent renor-
malization [907]. This was used to investigate various theo-
ries within few-body truncation (see Ref. [901] for a review).
Typically, the convergence of the Fock sector expansion can
be checked numerically [915], although the numerical com-
plexity increases dramatically as the number of Fock sectors
increases. The light-front coupled cluster method was pro-
posed to improve the convergence and pathology associated
with the hard Fock sector truncation by adopting a coherent
basis [916].

Another major development in light-front quantization is
the discovery of the remarkable connection between light-
front dynamics, its holographic mapping to gravity in a
higher-dimensional anti-de Sitter (AdS) space, and con-
formal quantum mechanics, known as light-front hologra-
phy (LFH). This approach introduces a remarkably simple
yet universal confining potential, which underlines the vari-
ous phenomenological applications in light-front QCD. See
Sect. 5.4 for details.

5.3.1 Discretized light-cone quantization

While lattice calculations (see Sect. 4) solve QCD in
Euclidean spacetime, DLCQ formulates the problem directly
in Minkowski spacetime using a discretized momentum basis
(see Ref. [900] and references therein).

In DLCQ, one defines a mesh in momentum space that
corresponds to standing waves in a box of length L in each
transverse direction and a similar set of modes in the longi-
tudinal direction. Either periodic or anti-periodic boundary
conditions are applied. Early applications of DLCQ to gauge
theories included solving QED for positronium at strong cou-
pling [917]. Similarly, early successes include solving QCD
in 1+1 dimensions [918]. Moving to QCD in 3+1 dimen-
sions with DLCQ revealed formal and numerical challenges
but produced many valuable results as reviewed in Ref. [901].

A hybrid light-front DLCQ/lattice formulation was intro-
duced and employed to evaluate parton distribution functions
for a sample set of meson states over a range of coupling
strengths [919,920]. These applications of DLCQ motivated

the quest for an approach that both preserves the LF kine-
matic symmetries and provides a computational path with
improved numerical efficiency.

5.3.2 Basis light front quantization

The quest to develop LF Hamiltonian approaches in Minkow-
ski-space that retain all available kinematic symmetries
began with adoption of basis function methods for solving
light front wave equations [921]. Later, the BLFQ approach
[922] was introduced to treat gauge theory Hamiltonians
using basis-functions that satisfied very general mathemati-
cal conditions and respected the LF kinematic symmetries.
In addition, the BLFQ framework is well-suited for a longer-
term goal of developing basis functions that approximated
anticipated dynamical features of QCD such as confinement
and chiral symmetry breaking for applications to hadron
spectra. Such basis functions have the promise of facilitating
convergence in non-perturbative LF QCD calculations.

In BLFQ, one introduces an alternative to the momen-
tum space representation of the LF eigenstate presented in
Eq. (5.30). Instead of working with LF plane waves, BLFQ
introduces a superposition of orthonormal N-parton Fock
space states expressed as independent partons in some con-
venient orthonormal single-parton basis. That is, we replace
the conventional quantization in terms of LF plane waves
with LF quantization in modes of a solvable single-parton
LF Schrödinger equation akin to Eq. (5.28). Thus, the LF
many-parton basis states can be written as strings of fermion,
antifermion and boson creation operators that populate inde-
pendent modes of the single-parton LF Schrödinger equa-
tion. All applications described below elect the 2D Harmonic
Oscillator for the transverse modes owing to the ability to
preserve transverse boost invariance. This choice is further
motivated by holographic light-front QCD (see Sect. 5.4 for
details) and has been our default choice for practical calcula-
tions. For the longitudinal modes there have been a number of
choices including DLCQ. In principle, the basis is arbitrary
within general mathematical restrictions so convenience and
numerical efficiency are the key drivers for the choices rep-
resented in applications to date.

Let us label the set of quantum numbers for each single-
parton mode with a lower-case Greek letter. This Greek
label symbolizes the collection of all space-spin-color-flavor
degrees of freedom of a single parton in QCD. Fermion
and boson single-parton states are orthonormal and com-
plete. Their creation operators satisfy the conventional anti-
commutation (commutation) relations for fermions (bosons).
In BLFQ, an eigenstate of a system can then be written in
terms of a Fock-space expansion over sectors with N -partons
as
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|P,Λ〉 =
∑

N

∑

{αi }N
ψΛ{αi }N |{αi }N ,Λ〉, (5.31)

where the inner sum includes all allowed configurations of
N -partons satisfying global symmetry constraints such as
baryon number, charge, total helicity projection on the x−
direction, total LF momentum, flavor, etc. For states with two
or more bosons, an additional factor is applied to maintain
normalization when bosons occupy the same mode.

Up to this point, the Hamiltonian eigenvalue problem of
Eq. (5.28) is infinite dimensional in both the number of
single-parton modes and the number of Fock sectors. With
a well-chosen BLFQ single-parton basis (see Sect. 5.3.7 for
recent advances) and the vertices of QCD from Fig. 86, one
hopes to achieve reasonable bound state properties with prac-
tical cutoffs in these sums suitable for low-resolution appli-
cations of QCD for spectra, electroweak transitions, form
factors at low-Q2, etc.

5.3.3 BLFQ with QED applications

Early applications of BLFQ aimed at solving strong cou-
pling QED problems in order to establish computational tech-
niques and validate BLFQ for achieving converged results
in agreement with other methods. These test cases were
demanding since they employed the transverse 2D harmonic
oscillator and DLCQ for the longitudinal direction to form a
basis space that, while suitable for bound state problems in
QCD, is far from ideal for these QED applications.

The first application successfully solved for the electron
anomalous magnetic moment in an external 2D harmonic trap
and took the limit of removing the trap to verify agreement
with the well-known Schwinger result [923]. For this appli-
cation, the first and second vertices in Fig. 86 are included
and sector-dependent renormalization [907] was successfully
employed.

The next major advance successfully calculated the elec-
tron anomalous magnetic moment directly in free space and
at the physical coupling [924,925] using the same LF Hamil-
tonian and renormalization procedures as Ref. [923] except
that the instantaneous vertex was omitted. The demands on
the numerical procedures increased dramatically due, in large
part, to the slow convergence rate with increasing basis cut-
off. The extrapolated result agrees with the Schwinger result
to within 0.06% which approximately corresponds to the
level of agreement expected between a non-perturbative and
a perturbative calculation.

Moving ahead from these early applications, the goals
of BLFQ were extended to evaluate additional observables
familiar to hadronic physics using the resulting LFWFs. In
particular, the BLFQ approach was applied to evaluate the
GPDs [926] and the TMDs of the dressed electron [927]. In

Fig. 87 Positronium spectrum extracted from a BLFQ calculation of
QED with an unphysically large coupling α = 0.3 [928]. The positron-
ium masses are expressed in terms of the electron mass m f . The photon
mass, μ, serves as an infrared regulator. The positronium states are
labeled by the spectroscopic notation N 2S+1L J . The O(α4) perturba-
tive results are marked by red crosses on the vertical axis [929]. The
blue crosses are obtained from extrapolating Nmax → ∞ at fixed and
sufficiently large K . For comparison, the results with extrapolated K
are shown in solid red disks. The blue and red curves are second order
polynomials used to fit and extrapolate the regulator μ to zero

all cases, the non-perturbative BLFQ results compared favor-
ably with results from perturbation theory at weak coupling.

The next major application was to solve for the low-lying
spectrum of positronium at strong coupling (α = 0.3) in
the valence space of the electron and the positron using a
derived effective interaction [932]. The application of BLFQ
to positronium adopted the LF effective one-photon exchange
interaction of Ref. [933], where they achieved a delicate
cancellation of the instantaneous photon interaction term
through a suitable choice of energy denominators in second
order perturbation theory. These calculations were performed
in the fermion single-particle basis with the 2D transverse
harmonic oscillator and DLCQ for the longitudinal basis.
Convergence was achieved directly in K and by extrapola-
tion in Nmax, the regulators introduced above. The results
for the lowest bound states of positronium as a function of
the photon regulator mass are shown in Fig. 87. At zero reg-
ulator mass, one obtains good agreement with results from
perturbation theory. The resulting LFWFs were employed to
demonstrate methods of calculating GPDs [934] and reveal
relativistic effects in strongly-coupled positronium.

More recently, the BLFQ approach has been successfully
applied to solve for the structure of the photon [935]. The
basis space consists of the photon sector and the electron–

123



 1125 Page 126 of 636 Eur. Phys. J. C          (2023) 83:1125 

positron sector so that only the first interaction term from
Fig. 86 is retained in solving the Hamiltonian eigenvalue
problem of Eq. (5.28). The basis space is defined as for the
positronium application above with the addition of the Fock
sector for the photon as a single-particle state. Factorization
of the CM motion from the LFWFs is addressed using the
Lagrange multiplier term in Eq. (5.29) as was accomplished
in Ref. [928]. Using sector-dependent renormalization, one
achieves the real photon eigenstate to be massless as desired.

The LFWFs obtained for the massless photon are there-
fore a superposition of a bare photon and an electron–positron
pair. These LFWFs provide non-trivial Transverse Momen-
tum Distributions (TMDs) and Parton Distribution Functions
(PDFs) which are, in principle, experimentally measurable.
Ref [935] provides BLFQ results for TMDs and PDFs in
addition to comparisons with results from perturbation the-
ory showing reasonable agreement is obtained as expected.

5.3.4 BLFQ for QCD with effective interactions

The high-precision results from the BLFQ treatment of
QED problems (Sect. 5.3.3) provide an avenue to treat the
one-gluon-exchange interaction between fermions in QCD
(HOGE ), which is the dominant short-distance physics for
hadrons. The confining interaction from Light-Front Holog-
raphy (Sect. 5.4), supplemented by a convenient form for
confinement in the longitudinal direction, form the long-
distance part of the physics (Hcon). The short distance and
long distance terms then lead to the total LF effective inter-
action, Hint = Hcon + HOGE . Similar to the nuclear Shell
Model, the solvable part of the Hamiltonian can be cho-
sen to be the kinetic energy plus the confining interaction,
H0 = Hkin + Hcon , to implement LFH, augmented with
longitudinal confinement, in the zeroth order.

The first application was to compute the spectra and wave
functions of heavy quarkonia [930,942]. Figure 88 shows the
charmonium and bottomonium spectra obtained from BLFQ.
Two parameters, the quark mass and the confining strength,
were tuned to fit the available experimental measurements,
resulting an r.m.s. deviation of the masses about 40 MeV in
each system.

The obtained LFWFs were used to evaluate a wide range
of observables, including the decay constants [930,942],
light-cone distribution amplitudes [930], form factors [943],
radiative transitions [936,938,944], semi-leptonic transitions
[945], parton distributions [939] and GPDs [943]. Figure 89
shows the BLFQ results of the charmonium dilepton (for
vector mesons, e.g. J/ψ) or diphoton (for the rest) widths in
combination with the masses [936], and compared with the
available experiments as well as other theoretical approaches
whenever available. Figure 90 shows the diphoton transi-
tion form factor of ηc from BLFQ, and compared with the
BABAR measurement. The M1 widths of the radiative tran-

Fig. 88 Charmonium (upper panel) and bottomonium (lower panel)
spectra obtained from BLFQ [930], CST [861] and DSE/BSE [931]
and compared with the PDG data [616]. See also Sect. 5.2. The vertical
axis is the hadron mass in GeV. The horizontal axis is the quantum
numbers J PC , where J is the total spin, P , C are the parity and charge
conjugation, respectively

Fig. 89 The BLFQ predictions of the charmonium dilepton (for the
vectors) or diphoton (for the rest) widths in combination with the mass
spectrum. The experimental data as compiled by the PDG are shown in
stars. Lattice and DSE/BSE predictions are shown for comparison (see
Ref. [936] and the references therein)
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Fig. 90 The singly-virtual two-photon transition form factors of ηc
from BLFQ as compared with the BABAR measurement [937] and
the predictions from DSE/BSE. The BLFQ/DA result is obtained from
pQCD predictions with LCDA obtained from the BLFQ light-front wave
functions. The TFF at Q2 = 0 is extracted from the diphoton width.
See Ref. [936] and the references therein

sitions across the heavy quarkonium systems are shown in
Fig. 91, and compared with the PDG values. The PDF of the
hadron at the initial scale μ0 can be obtained by integrating
out the transverse momentum. The PDFs of ηc obtained from
BLFQ are shown in Fig. 92.

Applications to heavy-light quarkonia have also been
achieved [945–948]. Here, the bottomonia and charmonia
results were used to determine the quark masses and the
confining strength was calculated using the relationship of
heavy-quark effective theory as the r.m.s. of the strengths
from the corresponding pure flavor systems. This led to
successful applications to the spectra, decay constants and
other properties of mixed flavor heavy quarkonia without
adjustable parameters.

A major step forward was to apply BLFQ with effec-
tive interactions to light mesons [949–952]. In addition to
the confining interactions as well as the one-gluon-exchange
interaction, a Nambu–Jona–Lasinio (NJL) interaction was
incorporated to generate the well-known ρ-π splitting [949].
The obtained LFWFs were used to investigate the partonic
structures of the pion. The pion PDF from BLFQ with the
effective interactions including the NJL interaction is shown
in the top panel of Fig. 93 where the PDF is compared with
the PDF from BLFQ calculations that include one dynamical
gluon (see Sect. 5.3.5).

More recently, the BLFQ formalism has been success-
fully applied to solving for the structure of the nucleon
[941,954,955] as well as Λ, Λc, and their isospin triplet
baryons, i.e, Σ0, Σ+, Σ− and Σ0

c , Σ+
c , Σ++

c [956]. The
investigated observables include the electromagnetic and
axial form factors, transverse densities, PDFs, GPDs, radii,
axial and tensor charges of the baryons. The electromag-
netic form factors of the nucleons are compared with the
experimental data as well as other approaches in Fig. 250 in
Sect. 10.1. Overall, the theoretical predictions are in good

agreement with the experimental measurement for the pro-
ton, while the neutron results somewhat deviate from exper-
imental data. The neutron’s charge form factor falls well
below the data at low Q2, where both experimental and the-
oretical uncertainties are large. The magnetic moment of
the nucleon is related to the nucleon magnetic form fac-
tor at Q2 = 0. We obtained the magnetic moment of the
nucleon close to the recent lattice QCD results as shown
in Table 4. From the electromagnetic form factors, one can
also compute the electromagnetic radii of the nucleon. We
summarize our predictions in Table 4. These results are in
reasonable agreement with experiment (see Sect. 10.1). Fig-
ure 94 shows the nucleon axial form factor (see Sect. 10
for details), GA = Gu

A − Gd
A as a function of Q2, while

the contributions from up and down quarks to GA(Q2) are
also displayed. Our results are compared with the available
data from (anti)neutrino scattering off protons or nuclei and
charged pion electroproduction experiments and the lattice
QCD simulations. Considering the experimental uncertain-
ties and our treatment of the BLFQ uncertainties, we found
good agreement with experiment.

At Q2 = 0, the axial form factor is identified as the axial
charge, gA = GA(0). Our prediction, presented in Table 4,
is somewhat higher than the extracted data. This discrep-
ancy suggests the need to incorporate higher Fock sectors,
which have a significant effect on the quark contribution to
the nucleon spin. The corresponding axial radius rA is in
excellent agreement with the extracted data from the analy-
sis of neutrino-nucleon scattering experiments [619,957].

At leading twist, the complete spin structure of the nucleon
is explained in terms of three independent PDFs, namely, the
unpolarized, the helicity, and the transversity. The obtained
LFWFs were also used to evaluate these leading twist quark
PDFs. Figure 95 (pink bands) shows the unpolarized PDFs
of the valence quarks at μ2 = 10 GeV2 for valence-only
space results [941] compared with the global fits. The error
bands in our PDFs are due to the 10% uncertainties in the
initial scale μ2

0 = 0.195 ± 0.020 and the coupling constant
αs . Our unpolarized valence PDFs for both the up and the
down quarks agree well with the global fits. According to
the Drell–Yan–West relation [958,959], at large scale the
valence quark distributions fall off at large x as (1 − x)p,
where p denotes the number of valence quarks and for the
nucleon p = 3. In our BLFQ approach, we observed that the
up quark unpolarized PDF falls off at large x as (1− x)2.99,
whereas for the down quark the PDF goes as (1 − x)3.24.
These are in accord with the Drell–Yan–West relation and
favour the perturbative QCD prediction [960].

The helicity PDFs are displayed in Fig. 96 (upper panel:
pink bands), at the scale μ2 = 3 GeV2, for the up and down
quarks in the proton. Our BLFQ predictions are compared
with the measured data from COMPASS [961]. We found
that our down quark helicity PDF agrees reasonably well
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Fig. 91 M1 transition form factor at Q2 = 0 for charmonia and bottomonia obtained from BLFQ and compared with several theoretical predictions
as well as the experimental data (see Ref. [938] and the references therein)

Fig. 92 The PDFs of ηc(1S) obtained from BLFQ [939]. The bands
represent the range of the distributions for the initial scales μ0 = mq
to 2μh . The lines with different color correspond to the different final
scales: μ1 = 20 GeV (blue), μ2 = 80 GeV (green), and μ3 = 1500
GeV (red). The solid, thick long-dashed, dashed, dashed-dot, and dashed
double-dot lines represent the x-PDFs of the valence quark, gluon, sea
quark (u/d/s/c), sea quark (b), and sea quark (t), respectively

with the experimental data from COMPASS [961]. For the up
quark, the g1(x) solved in the valence-only space is however
overestimated at low x , whereas it tends to agree with the
data above x ∼ 0.25 regime.

The obtained LFWFs were also employed to compute the
valence quark GPDs for zero skewness [941] and to study
quark angular momentum densities inside the proton [963].
The helicity non-flip unpolarized GPD in impact parameter
space, Hq(x, b⊥), can be interpreted as the number density
of quarks with longitudinal momentum fraction x at a given
transverse distance b⊥ in the nucleon [964]. One can then
define the x dependent squared radius of the quark density
in the transverse plane as [962]:

Fig. 93 The PDFs of the pion from BLFQ including one dynamical
gluon labeled as “This work” [888]. Upper panel: the black lines are the
BLFQ results evolved from the initial scale (0.34± 0.03 GeV2) using
the NNLO DGLAP equations to the experimental scale of 16 GeV2.
The red lines correspond to BLFQ-NJL predictions [940]. Results are
compared with the original analysis of the FNAL-E615 experiment data
and with its reanalysis (E615 Mod-data). Lower panel: the BLFQ result
for the pion gluon PDF atμ2 = 4 GeV2 is compared with the global fits,
JAM and xFitter. See Ref. [888] and the references therein for details

〈b2⊥〉q(x) =
∫
d2 �b⊥b2⊥Hq(x, b⊥)
∫
d2 �b⊥Hq(x, b⊥)

. (5.32)

Figure 97 shows the x-dependent squared radius of the pro-
ton, 〈b2⊥〉(x) = 2eu〈b2⊥〉u(x)+ed〈b2⊥〉d(x) and compares the
BLFQ prediction with the available extracted data within the
range 0.05 � x � 0.2 from the DVCS process [962]. As
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Table 4 The electromagnetic properties (magnetic moments in units of
nuclear magnetons and radii in units of fm), axial charge, axial radius,
tensor charge, and the first moment of transversity PDFs. The BLFQ
results are compared with the data extracted from experiments and the
lattice QCD simulations (see Ref. [941] and the references therein)

Quantity BLFQ Experiments Lattice

μp 2.44(3) 2.79 2.43(9)

μn −1.40(3) −1.91 −1.54(6)

rp
E 0.802(40) 0.833(10) 0.742(13)

rp
M 0.834(29) 0.851(26) 0.710(26)

(rn
E)

2 −0.033(198) −0.116(2) −0.074(16)

rn
E 0.861(20) 0.864(9) 0.716(29)

guA 1.16(4) 0.82(7) 0.830(26)

gdA −0.248(27) −0.45(7) −0.386(16)

gu−dA 1.41(6) 1.2723(23) 1.237(74)

rA 0.680(70) 0.667(12) 0.512(34)

guT 0.94(15) 0.39(15) 0.784(28)

gdT −0.20(4) −0.25(20) −0.204(11)

〈x〉u−dT 0.229(48) − 0.203(24)

can be seen from Fig. 97, the BLFQ prediction for 〈b2⊥〉(x)
is consistent with the extracted data. We also evaluated the
proton’s transverse squared radius [962]

〈b2⊥〉 =
∑

q

eq

∫ 1

0
dx f q(x) 〈b2⊥〉q(x). (5.33)

In our BLFQ approach, we obtained the squared radius of the
proton, 〈b2⊥〉 = 0.40 ± 0.04 fm2, close to the experimental
data [962]: 〈b2⊥〉exp = 0.43± 0.01 fm2.

BLFQ has been recently applied to investigate the all-
charm tetraquark system [965]. The results suggest that the
lowest two-charm-two-anticharm state is not a tightly bound
tetraquark. In particular, the lowest tetraquark mass extrapo-
lated to the continuum limit in longitudinal resolution K lies
above the extrapolated threshold for two separated mesons.

5.3.5 BLFQ beyond the valence Fock sector

In this section, we review more recent applications of BLFQ
with the inclusion of dynamical gauge degrees of freedom: to
positronium at strong coupling (α = 0.3) with one dynamical
photon earlier in DLCQ [966] and now in BLFQ [967,968];
to mesons with one dynamical gluon [888] and to the proton
with one dynamical gluon [953].

For the BLFQ application to QED, the positronium sys-
tem with one dynamical photon presents valuable challenges
with respect to non-perturbative renormalization [967–969].
The dynamics of the single fermion system must first be
obtained and then embedded in the positronium system with
consistent counting of the basis space quanta. That is, within

Fig. 94 The axial form factors GA = Gu
A − Gd

A and Gu
A, Gd

A as the
function of Q2 from BLFQ. The blue band (GA), pink band (Gu

A), and
orange band (Gd

A) are the BLFQ results, which are compared with the
experimental measurements as well as the lattice results. The black line
represents the dipole fit of the experimental data. See Ref. [941] and
the references therein

Fig. 95 The unpolarized valence quark and gluon PDFs of the proton.
The BLFQ results (blue bands: obtained with one dynamical gluon; pink
bands: obtained from a light-front effective Hamiltonian based on only
a valence Fock representation [941]) are compared with the NNPDF3.1
and MMHT global fits. (The inset) the ratio of the valence quark PDFs is
compared with the extracted data from JLab MARATHON experiment.
See Ref. [953] and the references therein

a given Fock sector of positronium and within a given con-
figuration, the distribution of quanta for that configuration
dictates the renormalized mass of the fermion to be applied
and the basis space in which that mass was determined. With
this dynamical approach, the leading self-energy divergence
is taken into account which opens a path to proceed to larger
basis spaces.

Going beyond the leading Fock component for QCD,
BLFQ has been successfully employed to solve the unfla-
vored light mesons and nucleon with one dynamical gluon
[888,953]. In particular, we adopted an effective light-front
Hamiltonian and solved for their mass eigenvalues and eigen-
states at the scales suitable for low-resolution probes. Our
Hamiltonian incorporates light-front QCD interactions [900]
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Fig. 96 Upper panel: the helicity PDFs for the valence quarks and
the gluon in the proton. We compare BLFQ predictions (blue bands:
obtained with one dynamical gluon [953]; pink bands: obtained from a
light-front effective Hamiltonian based on only a valence Fock repre-
sentation [941]) with data from COMPASS Collaboration [961]. Lower
panel: the gluon helicity PDF in the proton. We compare the BLFQ
prediction (blue bands) with global analyses by JAM (gray band) and
NNPDFpol1.1 (magenta band). The inset shows the gluon helicity PDF
on a linear scale. See Ref. [953] and the reference therein

Fig. 97 x-dependence of 〈b2⊥〉 for quarks in the proton from BLFQ
[941]. The line corresponds to the BLFQ predictions and the band indi-
cates its uncertainty. The data points are taken from Ref. [962]

relevant to constituent |qq̄〉 and |qq̄g〉 Fock sectors of the
mesons and |qqq〉 and |qqqg〉 Fock sectors of the nucleon
with a complementary 3D confinement [942]. By solving
this Hamiltonian in the leading two Fock components and

fitting the constituent parton masses and coupling constants
as the model parameters [888], we obtained a good quality
description of light meson mass spectroscopy[888].

We computed the pion electromagnetic form factor and the
PDFs from our Hamiltonian’s LFWFs. The BLFQ prediction
of the electromagnetic form factor of the charged pion is
compared with the experimental data in Fig. 81 in Sect. 5.2.
Figure 93 shows our results for the pion PDFs and compares
the valence quark distribution after QCD evolution with the
data from the E615 experiment as well as the reanalysis of
the E615 experiment. The pion PDFs previously obtained in
BLFQ-NJL model [940,949,951] based on a valence Fock
representation have also been included for comparison. The
error bands in our evolved PDFs are manifested from an
adopted 10% uncertainty in our initial scale, μ2

0 = 0.34 ±
0.03 GeV2, which we determined by requiring the result after
evolution to generate the total first moments of the valence
quark and the valence antiquark distributions from the global
QCD analysis, 〈x〉 valence = 0.48 ± 0.01 at μ2 = 5 GeV2

[970]. We found a good agreement between our prediction
for the pion valence quark PDF and the reanalyzed E615 data,
while the BLFQ-NJL model favours the original E615 data.

The lower panel of Fig. 93 shows the gluon PDF in the
pion. Including one dynamical gluon, the gluon density in the
pion significantly increases compared to that in the BLFQ-
NJL model as well as to the global fits [971]. The BLFQ-NJL
model is based on the pion valence Fock component and glu-
ons are produced solely from the scale evolution. However,
the model, which includes a dynamical gluon at the initial
scale, results in a larger gluon PDF at large-x (> 0.2) after
scale evolution.

We produced the unpolarized and polarized valence quark
and gluon distributions in the proton using the resulting
LFWFs for the proton with one dynamical gluon. We evolved
our initial PDFs from the model scale, μ2

0 = 0.23 ∼ 0.25
GeV2, to the relevant experimental scales. The blue bands in
Figures 95 and 96 show our results for the proton unpolar-
ized and polarized PDFs, respectively. We obtained a good
consistency between our prediction for the valence quark
PDFs and the global fits. The ratio dv(x)/uv(x) reason-
ably agrees with the extracted data from the MARATHON
experiment at JLab [972]. At the endpoint, we predicted that
limx→1 dv/uv = 0.225± 0.025.

We found that the down quark unpolarized PDF falls off
at large x as (1 − x)3.5±0.1, whereas for the up quark PDF
exhibits (1− x)3.2±0.1. These findings support the perturba-
tive QCD prediction [960]. We observed that the gluon PDF
is suppressed at small-x and shifts towards the global fits
[664,973] with the addition of a dynamical gluon, whereas
the PDF for x > 0.05 agrees with the global fits.

Our helicity PDFs for both the up and down quarks
(Fig. 96: upper panel) are reasonably consistent with the
experimental data from COMPASS [961]. We noticed that
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the up quark polarized PDF improves significantly at small-
x region with the treatment for the nucleon with dynamical
gluon. We observed a fair agreement between our prediction
for the gluon helicity PDF (Fig. 96: lower panel) and the
global analyses by the JAM [974] and the NNPDF Collab-
orations [975]. Note that there still remain huge uncertain-
ties both in the large-x region and especially in the small-x
region, where even the sign is uncertain. [976]. The partonic
spin contributions to the proton spin are given by the first
moment of the polarized PDFs. We found that the gluon car-
ries 26% of the proton spin [953], which is likely to increase
when more dynamical gluons are included.

5.3.6 Full BLFQ

The applications of BLFQ to hadron structures demonstrated
so far have adopted explicit Fock sector truncations. The
incorporation of a dynamical gauge boson (Sect. 5.3.5) has
shown promising improvements in comparison with valence
Fock sector only. A major next step is the full BLFQ [922], in
which the Hamiltonians are solved non-perturbatively with
basis regulators only and without additional Fock space trun-
cation. The elimination of the additional Fock space trun-
cation positions BLFQ on the path to a genuine ab initio
approach to QCD. Initial applications which qualify as full
BLFQ include solving scalar 1+1 D field theories without
Fock space truncation [977].

The full BLFQ is posed as a quantum many-body problem
while the number of partons is not fixed. The single-particle
harmonic oscillator basis with the longitudinal discretized
momentum basis is the preferred choice of basis, together
with the Nmax-K regularization,
∑

i

[
2ni + |mi | + 1] ≤ Nmax,

∑

i

p+i =
2πK

L
.

(5.34)

As such, all kinematical symmetries of the LFQCD Hamil-
tonian, including the the factorization of the center-of-mass
motion, are preserved in the many-body Hilbert space. This
basis corresponds to a pair of soft IR and UV resolutions and
a collinear resolution,

b2/(Nmax − 1) �
∑

i

k2
i⊥
xi

� b2(Nmax − 1), (5.35)

Δx � K−1. (5.36)

Here, b = √
P+Ω . P+ is the longitudinal momentum of

the bound state. Ω is the scale parameter of the transverse
harmonic oscillator functions. Note that, if zero modes are
omitted as is conventional, the Nmax-K regularization ren-

ders the number of partons finite, and no further Fock sector
truncation is needed.

A fundamental challenge of the full BLFQ is the expo-
nential increase of the dimensionality of the Hilbert space,
dim H = NdN , (N = max{Nmax, K }), a property shared
by all strong coupling non-perturbative quantum many-body
problems. Nevertheless, meaningful results may be achiev-
able with continuing advances in high-performance comput-
ers at and beyond exascale (1018 floating point operations per
second). On the other hand, future quantum computers offer
the promise to provide supremacy over even the best high-
performance computers, in particular for non-perturbative
quantum many-body problems such as posed by full BLFQ
[978].

5.3.7 BLFQ with chiral symmetry breaking

Due to the light quark mass, m{u,d} � Λ
qcd

, chiral sym-
metry plays an important role on the light meson spectrum
and structures. In particular, the pion is the Goldstone boson
of the spontaneously broken chiral symmetry. Formally, chi-
ral symmetry implies a partially conserved axial-vector cur-
rent (PCAC). In BSE, this relation leads to a set of rela-
tions between the pion Bethe–Salpeter amplitudes and the
quark self-energy (see Sect. 5.2). Recently, it was revealed
that PCAC also leads to a chiral sum rule for the pion LFWFs
[979].

It was long pointed out that chiral symmetry breaking in
LFQCD is manifested in a different way from the instant
form (see Ref. [980] for a recent review). In the instant form,
chiral symmetry breaking is due to the condensate of quark–
antiquark, viz. 〈q̄q〉 �= 0. The light-front vacuum is trivial
due to the positivity of the longitudinal momenta. Therefore,
the vacuum condensate on the light front can only happen
through the zero modes. Indeed, the wee parton condensate is
long conjectured to be the mechanism for symmetry breaking
on the light front, which is supported by 1+1D theories and
has shown to be a useful starting point for BLFQ applications
[981].

On the other hand, the axial charge on the light front
annihilates the light-front vacuum, Q5|0〉 = 0, which sug-
gests that the chiral condensate should be encoded within the
hadron LFWFs [982]. One of the traces of the chiral symme-
try breaking in the pion LFWFs is the chiral sum rule [979].
Taking advantage of light-front holography, this sum rule has
been shown to be also consistent with the chiral symmetry
breaking in AdS/QCD.

5.3.8 Nonperturbative reactions in BLFQ

One major advantage of the Hamiltonian formalism of quan-
tum field theory is that it allows for tracking time evolution
of quantum field configurations in real time.
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Fig. 98 The evolution of the transverse density of a quark within a
classical color field of a heavy nucleus at different light-front time x+.
The four “snapshots” are from Ref. [985]

As an extension of BLFQ, the time-dependent Basis Light-
front Quantization (tBLFQ) has been developed as a time-
dependent nonperturbative approach to quantum field the-
ory [983]. In tBLFQ the light-front Schrödinger equation is
solved to simulate the time evolution of quantum field con-
figurations:

i
∂

∂x+
|ψ; x+〉 = 1

2
P−(x+)|ψ; x+〉, (5.37)

where |ψ; x+〉 represents the quantum field system under
consideration and P−(x+) is the light-front Hamiltonian,
which includes the interactions among the fields under con-
sideration. The tBLFQ approach is suitable for studying par-
ticle evolution in a strong and possibly time-dependent back-
ground field. The tBLFQ approach motivated a nonpertur-
bative approach simulating nuclear reactions in low energy
nuclear physics, named time-dependent Basis Function (tBF)
[984].

One of the major goals of tBLFQ is to understand the non-
perturbative dynamics in QCD, as in hadron scattering. The
investigations of quark scattering with a nucleus constitute a
first step toward this goal. In Ref. [985], tBLFQ is employed
to simulate the scattering of an ultrarelativistic quark off a
heavy nucleus at high energies. The color glass condensate,
a classical effective theory of QCD, is adopted as a model for
the color field of the heavy nucleus. The results can signif-
icantly reduce the theoretical uncertainties in the small p⊥
region of the differential cross section which has important
implications for the phenomenology of the hadron-nucleus
and deep inelastic scattering at high energies. One important
feature of tBLFQ is that it allows one to take “snapshots” of
the system at intermediate times of the evolution, which pro-
vide physical insights into the nonperturbative mechanism
in time-dependent processes. For example, Fig. 98 shows
the evolution of the probability distribution of a quark in the
transverse direction at different light-front times x+. In Ref.
[987] a calculation is performed in an extended Fock space

where one dynamical gluon is included, which paves the way
for studying partons’ radiational energy loss in nuclear matter
[988].

In addition to the applications in QCD, tBLFQ has also
been employed to study various nonperturbative processes in
strong field QED [983,989–992].

The tBLFQ approach can be further improved in three
directions: (i) increase in the level of complexity and real-
ism of the background field: (ii) expansion to reaction pro-
cesses of a wider class; (iii) the expansion of the Fock space
in the description of quantum field configurations. While
this can lead to more accurate simulation of dynamical pro-
cesses, it will dramatically increase the required computa-
tional resources. Therefore, it is desirable to explore numeri-
cal algorithms for tBLFQ on next-generation advanced com-
putational platforms.

5.3.9 Comparisons between BLFQ and BSE

The similarities and differences of the light-front and the
BSE (see Sect. 5.2) approaches motivate a direct compari-
son of the amplitudes obtained from these two approaches
[862]. Figure 88 shows the comparison of quarkonia spectra
obtained from BLFQ and CST. In both approaches, the model
parameters were fixed by fitting to the experimentally mea-
sured quarkonia masses. Then, the obtained wave functions
were used to compute physical observables. Figure 99 com-
pares the axial-vector LFWFs obtained from BLFQ and CST.
The Brodsky–Huang–Lepage prescription [986] was used to
convert the CST amplitude to the LFWFs [862]. Qualita-
tively, the wavefunctions are similar. However, some spin
components show different characteristics due to the differ-
ent implementation of discrete symmetries, which can be
discerned in high-energy exclusive processes.

5.4 AdS/QCD and light-front holography

Stanley J. Brodsky, Guy F. de Téramond, and Hans Gün-
ter Dosch

5.4.1 Introduction

In spite of the important progress of Euclidean lattice QCD
[97] and other nonperturbative approaches, a basic under-
standing of fundamental features of hadron physics from first
principles, such as the mechanism of color confinement and
the origin of the hadron mass scale, as well as general fea-
tures of hadron structure, spectroscopy and dynamics, have
remained among the most important unsolved challenges of
the last 50 years in particle physics. Furthermore, other essen-
tial properties of the strong interactions, which were mani-
fest in dual models and developed before QCD, are also not
explicit properties of the QCD Lagrangian.
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Fig. 99 Comparison of selected LFWFs of hb obtained from BLFQ
and CST [862]. The latter were converted from the BSA with the
Brodsky–Huang–Lepage prescription [986]. The non-relativistic dom-
inant spin components from both approaches (top panels) are qualita-
tively the same. However, subdominant LFWFs may appear dramat-
ically different, some of which are in leading twist (bottom panels).
This can be tested in high-energy exclusive processes. The discrepancy
stems from the different implementation of the discrete symmetries on
the light cone in BLFQ and CST

Recent theoretical developments for understanding fea-
tures of hadronic physics are based on AdS/CFT – the corre-
spondence between classical gravity in a higher-dimensional
anti-de Sitter (AdS) space and conformal field theories
(CFT) in physical space-time [993–995]. AdS/CFT has pro-
vided a semiclassical approximation for strongly-coupled
quantum field theories, giving physical insights into non-
perturbative dynamics. In practice, the AdS/CFT dual-
ity provides an effective weakly coupled description in a
(d + 1)-dimensional AdSd+1 space in terms of a flat d-
dimensional superconformal, strongly coupled quantum field
theory defined on the AdS asymptotic boundary, the physi-
cal four-dimensional Minkowski spacetime, where boundary
conditions are imposed [996]. This is illustrated in Fig. 100

Fig. 100 This figure attempts to show how different values of the AdS
holographic coordinate z correspond to different scales at which the
proton is examined. Events at short distances in the ultraviolet happen
near the four-dimensional AdS boundary (large circumference). The
red inner sphere represents large distance infrared events where AdS is
modified to model confinement. The green cone represents the warping
of AdS space and is due to its negative curvature. A proton (blue ball
with seeds) evolves from a small size near the ultraviolet boundary
to larger sizes as it propagates towards the infrared region of AdS as
perceived by an observer in physical Minkowski space

for d = 4, where the asymptotic surface of the 5-dimensional
AdS5 space is the physical four-dimensional Minkowski
spacetime.

Anti-de Sitter AdSd+1 is the maximally symmetric d + 1
space with negative constant curvature and a d-dimensional
flat spacetime boundary. In Poincaré coordinates xM =(
x0, x1, . . . , xd−1, z

)
, where the asymptotic border of AdS

space is given by z = 0. The line element is

ds2 = gMNdx
MdxN

= R2

z2

(
ημνdx

μdxν − dz2
)
, (5.38)

where ημν is the usual Minkowski metric in d dimensions,
and R is the AdS radius. The group of transformations leaving
the AdSd+1 metric invariant, the isometry group SO(2, d),
has dimension (d + 1)(d + 2)/2. Five-dimensional anti-
de Sitter space AdS5 has thus 15 isometries, which induce
in the Minkowski-space boundary the symmetry under the
conformal group with 15 generators in four dimensions: 6
Lorentz transformations plus 4 spacetime translations plus 4
special conformal transformations plus 1 dilatation [997].
This conformal symmetry implies that there can be no
scale in the boundary theory and therefore no discrete spec-
trum.

The relation between the dilatation symmetry and the sym-
metries in AdS5 can be seen directly from the AdS metric
since (5.38) is invariant under a dilatation of all coordinates:
A dilatation of the Minkowski coordinates xμ → eσ xμ

is compensated by a dilatation of the holographic variable
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z → eσ z. Therefore, the variable z acts like a scaling vari-
able in Minkowski space: different values of z correspond
to different energy scales at which a measurement is made.
As a result, short spacetime intervals map to the boundary
in AdS space-time near z = 0. This corresponds to the
ultraviolet (UV) region of AdS space. On the other hand,
a large four-dimensional object of confinement dimensions
1/Λ2

QCD maps to the large infrared (IR) region of AdS space
z ∼ 1/ΛQCD. Thus, in order to incorporate confinement in
the gravity dual the conformal invariance must be broken by
modifying AdS space in the large z IR region. For example,
a simple way to obtain confinement and discrete normaliz-
able modes (Fig. 100) is to introduce a sharp cut-off at the IR
border z0 ∼ 1/ΛQCD , as in the “hard-wall” model of Ref.
[998].

In general, one can deform the original AdS background
geometry, giving rise to a less symmetric gravity dual. This
approach provides useful tools for constructing dual grav-
ity models in higher dimensions which incorporates con-
finement and basic QCD properties in physical spacetime.
The resulting gauge/gravity duality is broadly known as
the AdS/QCD correspondence, or simply holographic QCD,
which has become an extensive field of research. The extent
to which the full theory of QCD can be described in such
a framework remains unclear. It has become clear, how-
ever, that holographic models motivated by the AdS/CFT
correspondence can capture essential features of QCD and
may give important insights into how QCD works. Different
models can be derived via a top-down approach from brane
configurations in string theory, as well as from more phe-
nomenological bottom-up models, which are not constrained
by string theory, and are therefore more flexible for incorpo-
rating key aspects of QCD. The best known example of the
first category is the Witten–Sakai–Sugimoto model [999],
which contains vector mesons and pions in its spectrum aris-
ing from the breaking of chiral symmetry. Conversely, in
the bottom-up hard-wall model of Refs. [1000,1001], the
global SU (2)× SU (2) chiral symmetry of QCD becomes a
gauge invariant symmetry on the gravity side. The AdS/QCD
model of Refs. [1000,1001] has also been extended by
using the “soft-wall” model introduced in Ref. [1002] in
order to reproduce the observed linearity of Regge trajec-
tories.

A third approach to AdS/QCD, holographic light-front
QCD (HLFQCD) [1003], is based on the holographic embed-
ding of Dirac’s relativistic front form of dynamics [902] into
AdS space. In the front form, the initial surface is the tangent
plane to the light cone x0+ x3 = 0, the null plane, thus with-
out reference to a specific Lorentz frame, in contrast with the
usual instant form where quantization is defined at x0 = 0.
This precise mapping between semiclassical LF Hamiltonian
equations in QCD and wave equations in AdS space, [1004]
leads to relativistic wave equations in physical space-time

(similar to the Schrödinger or Dirac wave equations in atomic
physics) and provides an effective computational framework
of hadron structure and dynamics [1003].37

A remarkable property of HLFQCD is the embodiment
of a superconformal algebraic structure which not only
introduces a mass scale within the algebra, but also deter-
mines the interaction completely [1010–1015].38 Further
extensions of HLFQCD provide nontrivial interconnections
between the dynamics of form factors and quark and gluon
distributions [1019–1021] with pre-QCD nonperturbative
approaches such as Regge theory and the Veneziano model.

In this section we give an overview of relevant aspects
of the holographic embedding of QCD quantized in the
light front, with an emphasis on the underlying supercon-
formal structure for hadron spectroscopy and hadron dual-
ity for amplitude dynamics. Introductory reviews are given
in Refs. [1003,1022–1024]. Other reviews describing dis-
tinct approaches and aspects of holographic QCD in the
context of the gauge/gravity correspondence in addition to
Refs. [996,999], are given in Refs. [1025–1027] and in the
book [1028], with applications to other topics such as holo-
graphic renormalization group flows, QCD at finite temper-
ature and density, hydrodynamics and strongly coupled con-
densed matter systems.39

5.4.2 Semiclassical approximation to light-front QCD

A semiclassical approximation to QCD has been obtained
using light-front (LF) physics, where the quantization surface
is the null plane, x+ = x0 + x3 = 0 [902]. Evolution in LF
time x+ is given by the Hamiltonian equation [900]

i
∂

∂x+
|ψ〉 = P−|ψ〉, P−|ψ〉 = P2⊥ + M2

P+
|ψ〉, (5.39)

37 The origins of the light-front holographic approach can be traced
back to the original article of Polchinski and Strassler [998], where
the exclusive hard-scattering counting rules [153,1005], a property of
hadrons in physical spacetime, can be derived from the warped geometry
of five-dimensional AdS5 space. Indeed, one can show that a precise
mapping between the hadron form factors in AdS space [1006] and
physical spacetime [958,959] can be carried out for an arbitrary num-
ber of quark constituents [1007–1009]. The key holographic feature is
the identification of the invariant transverse impact variable ζ for the
n-parton bound state in physical 3+1 spacetime with the holographic
variable z, the fifth dimension of AdS.
38 The idea to apply an effective supersymmetry to hadron physics is
certainly not new [1016–1018], but failed to account for the special
role of the pion. In contrast, in the HLFQCD approach, the zero-energy
eigenmode of the superconformal quantum mechanical equations is
identified with the lightest meson which has no baryonic supersymmet-
ric partner.
39 Hadron models from effective string configurations in holographic
5-dimensional AdS backgrounds [1029] are useful to describe multiple
quark configurations including heavy quarks. See Refs. [1030,1031]
and references therein.
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for a hadron with 4-momentum P = (P+, P−,P⊥), P± =
P0 ± P3, where P− is a dynamical generator and P+ and
P⊥ are kinematical. The simple structure of the LF vac-
uum allows a quantum-mechanical probabilistic interpreta-
tion of hadron states in terms of the eigenfunctions of the LF
Hamiltonian equation (5.39) in a constituent particle basis,
|ψ〉 =∑

n ψn|n〉, similar to usual Schrödinger equation. The
LF wave functions (LFWFs), ψn , underlie the physical prop-
erties of hadrons in terms of their quark and gluon degrees of
freedom. For a qq̄ bound state we factor out the longitudinal
X (x) and orbital ei Lθ dependence from ψ ,

ψ(x, ζ, θ) = ei Lθ X (x)
φ(ζ )√

2πζ
, (5.40)

where ζ 2 = x(1 − x)b2⊥ is the invariant transverse sep-
aration between two quarks, with b⊥, the relative impact
variable, conjugate to the relative transverse momentum
k⊥ with longitudinal momentum fraction x . In the ultra-
relativistic zero-quark mass limit the invariant LF Hamil-
tonian PμPμ|ψ〉 = M2|ψ〉, with P2 = P+P−− P2⊥ can be
systematically reduced to the wave equation [1004]:

(

− d2

dζ 2 −
1− 4L2

4ζ 2 +U (ζ )

)

φ(ζ ) = M2φ(ζ ), (5.41)

where the effective potential U comprises all interactions,
including those from higher Fock states. The critical value
of the LF orbital angular momentum L = 0 corresponds
to the lowest possible solution. The LF equation (5.41) is
relativistic and frame-independent; It has a similar structure
to wave equations in AdS provided that one identifies ζ = z,
the holographic variable [1004].

5.4.3 Higher integer-spin wave equations in AdS

We start with the AdS action for a tensor-J field ΦJ =
ΦN1...NJ in the presence of a dilaton profile ϕ(z) responsible
for the confinement dynamics

S =
∫

dd x dz
√
g eϕ(z)

(
DMΦJ D

MΦJ − μ2Φ2
J

)
, (5.42)

where g is the determinant of the metric tensor gMN , μ is the
AdS mass and DM is the covariant derivative which includes
the affine connection.40,41 The variation of the AdS action

40 The affine connection, the vielbein and the spin connection are
important elements in curved spaces, particularly if higher spins are
involved. A brief introduction, useful for actual computations in AdS
space, is given in Appendix A of Ref. [1003].
41 In the holographic approach the gluon field emerges as a constituent
of the spin-2 metric field gMN in AdS, which is dual to the Pomeron in
the 4-dimensional physical space (see Sect. 5.4.15).

leads to the wave equation
[

− zd−1−2J

eϕ(z)
∂z

( eϕ(z)

zd−1−2J ∂z

)
+ (μ R)2

z2

]

ΦJ (z)

= M2ΦJ (z), (5.43)

after a redefinition of the AdS mass μ, plus kinematical con-
straints to eliminate lower spin from the symmetric tensor
ΦN1...NJ [1032]. By substituting

ΦJ (z) = z(d−1)/2−J e−ϕ(z)/2 φJ (z) (5.44)

in (5.43), we find the semiclassical light-front wave equa-
tion (5.41) with

UJ (ζ ) = 1

2
ϕ′′(ζ )+ 1

4
ϕ′(ζ )2 + 2J − d + 1

2ζ
ϕ′(ζ ), (5.45)

as long as ζ = z. The precise mapping allows us to write
the LF confinement potential U in terms of the dilaton pro-
file which modifies the IR region of AdS space to incorpo-
rate confinement [1003], while keeping the theory confor-
mal invariant in the ultraviolet boundary of AdS, namely
ϕ(z) → 0 for z → 0. The separation of kinematic and
dynamic components allows us to determine the mass func-
tion in the AdS action in terms of physical kinematic quan-
tities with the AdS mass-radius (μR)2 = L2 − (d/2 − J )2

and d, the number of transverse coordinates [1004,1032],
consistent with the AdS stability bound [1033].

5.4.4 Higher half-integer-spin wave equations in AdS

A similar derivation follows from the Rarita–Schwinger
action for a spinor field ΨJ ≡ ΨN1...NJ−1/2 in AdS [1032]
for half-integral spin J . In this case, however, the dilaton
term does not lead to an interaction [1034], and an effective
Yukawa-type coupling to a potential V in the action has to
be introduced instead [1035–1037]:

S =
∫

dd x dz
√
g Ψ̄J

(
iΓ AeMA DM − μ+ z

R
V (z)

)
ΨJ ,

(5.46)

where eMA is the vielbein and the covariant derivative DM

on a spinor field includes the affine connection and the spin
connection. The tangent space Dirac matrices obey the usual
anticommutation relations {Γ A, Γ B} = 2ηAB . The variation
of the AdS action leads to a system of linear differential
equations which is equivalent to the second order equations
[1032]

(

− d2

dζ 2 −
1− 4L2

4ζ 2 +U+(ζ )
)

ψ+= M2ψ+,

(5.47)
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(

− d2

dζ 2 −
1− 4(L + 1)2

4ζ 2 +U−(ζ )
)

ψ− = M2ψ−,

(5.48)

with ζ = z, |μR| = L + 1/2 and equal probability∫
dζ ψ2+(ζ )2 = ∫

dζ ψ2−(ζ ). The semiclassical LF wave
equations for ψ+ and ψ− correspond to LF orbital angular
momentum L and L + 1 with

U±(ζ ) = V 2(ζ )± V ′(ζ )+ 1+ 2L

ζ
V (ζ ), (5.49)

a J -independent potential, in agreement with the observed
degeneracy in the baryon spectrum.

5.4.5 Superconformal algebraic structure and emergence
of a mass scale

Embedding light-front physics in a higher dimension gravity
theory leads to important insights into the nonperturbative
structure of bound state equations in QCD for arbitrary spin,
but it does not answer the question of how the effective con-
finement dynamics is actually determined, and how it can be
related to the symmetries of QCD itself. An important clue,
however, comes from the realization that the potential V (ζ )

in Eq. (5.49) plays the role of the superpotential in super-
symmetric (SUSY) quantum mechanics (QM) [1038].

Supersymmetric QM is based on a graded Lie algebra
consisting of two anticommuting supercharges Q and Q†,
{Q, Q} = {Q†, Q†} = 0, which commute with the Hamil-
tonian H = 1

2 {Q, Q†}, [Q, H ] = [Q†, H ] = 0. If the state
|E〉 is an eigenstate with energy E , H |E〉 = E |E〉, then, it
follows from the commutation relations that the state Q†|E〉
is degenerate with the state |E〉 for E �= 0, but for E = 0
we have Q†|E = 0〉 = 0, namely the zero mode has no
supersymmetric partner [1038]; a key result for deriving the
supermultiplet structure and the pattern of the hadron spec-
trum.

Following Ref. [1011] we consider the scale-deformed
supercharge operator Rλ = Q + λS, with K = 1

2 {S, S†}
the generator of special conformal transformations. The gen-
erator Rλ is also nilpotent, {Rλ, Rλ} = {R†

λ, R
†
λ} = 0,

and gives rise to a new scale-dependent Hamiltonian G,
G = 1

2 {Rλ, R
†
λ}, which also closes under the graded alge-

bra, [Rλ,G] = [R†
λ,G] = 0. The new supercharge Rλ has

the matrix representation

Rλ =
(

0 rλ
0 0

)

, R†
λ =

(
0 0
r†
λ 0

)

, (5.50)

with rλ = −∂x+ f
x +λx, r†

λ = ∂x+ f
x +λx . The parameter f

is dimensionless and λ has the dimension of [M2], and thus, a
mass scale is introduced in the Hamiltonian without leaving

the conformal group. The Hamiltonian equation G|E〉 =
E |E〉 leads to the wave equations

[

− d2

dx2 −
1− 4( f + 1

2 )
2

4x2 + λ2 x2 + 2λ
(
f − 1

2

)
]

φ+

= Eφ+, (5.51)
[

− d2

dx2 −
1− 4( f − 1

2 )
2

4x2 + λ2 x2 + 2λ
(
f + 1

2

)
]

φ−

= Eφ−, (5.52)

which have the same structure as the Euler–Lagrange equa-
tions obtained from the AdS/CFT correspondence, but here,
the form of the LF confinement potential, λ2x2, as well as
the constant terms in the potential are completely fixed by
the superconformal symmetry [1014,1015].

5.4.6 Light-front mapping and baryons

Upon mapping (5.51) and (5.52) to the semiclassical LF
wave equations (5.47) and (5.48) using the substitutions x #→
ζ, E #→ M2, f #→ L + 1

2 , φ+ #→ ψ− and φ− #→ ψ+, we
find

U+ = λ2ζ 2 + 2λ(L + 1), (5.53)

U− = λ2ζ 2 + 2λL , (5.54)

for the confinement potential for baryons [1014]. The solu-
tion of the LF wave equations for this potential gives the
eigenfunctions

ψ+(ζ ) ∼ ζ
1
2+Le−λζ 2/2LL

n (λζ
2) (5.55)

ψ−(ζ ) ∼ ζ
3
2+Le−λζ 2/2LL+1

n (λζ 2) (5.56)

with eigenvalues M2 = 4λ(n + L + 1). The polynomials
LL
n (x) are associated Laguerre polynomials, where the radial

quantum number n counts the number of nodes in the wave
function. We compare in Fig. 101 the model predictions with
the measured values for the positive parity nucleons [513]
for
√
λ = 0.485 GeV.

5.4.7 Superconformal meson–baryon symmetry

Superconformal quantum mechanics also leads to a con-
nection between mesons and baryons [1015] underlying the
SU (3)C representation properties, since a diquark cluster can
be in the same color representation as an antiquark, namely
3̄ ∈ 3× 3. The specific connection follows from the substi-
tution x #→ ζ, E #→ M2, λ #→ λB = λM , f #→ LM− 1

2 =
LB + 1

2 , φ+ #→ φM and φ2 #→ φB in the superconformal
equations (5.51) and (5.52). We find the LF meson (M) –
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Fig. 101 Model predictions for the orbital and radial positive-parity
nucleons (up) and positive and negative parity Δ families (down) com-
pared with the data from Ref. [513]. The values of

√
λ are

√
λ = 0.485

GeV for nucleons and
√
λ = 0.498 GeV for the deltas

baryon (B) bound-state equations

(

− d2

dζ 2 −
1− 4L2

M

4ζ 2 +UM

)

φM = M2 φM , (5.57)

(

− d2

dζ 2 −
1− 4L2

B

4ζ 2 +UB

)

φB = M2 φB, (5.58)

with the confinement potentials

UM = λ2
M ζ 2 + 2λM (LM − 1), (5.59)

UB = λ2
B ζ 2 + 2λB(LB + 1). (5.60)

The superconformal structure imposes the condition λ =
λM = λB and the remarkable relation LM = LB + 1, where
LM is the LF angular momentum between the quark and

antiquark in the meson, and LB between the active quark and
spectator cluster in the baryon. Likewise, the equality of the
Regge slopes embodies the equivalence of the 3C − 3̄C color
interaction in the qq̄ meson with the 3C − 3̄C interaction
between the quark and diquark cluster in the baryon. The
mass spectrum from (5.57) and (5.58) is

M2
M = 4λ(n + LM ) and M2

B = 4λ(n + LB + 1). (5.61)

The pion has a special role as the unique state of zero mass
and, since LM = 0, it does not have a baryon partner.

AdS space is effectively modified in the IR by the dilaton
profile in Eq. (5.42), while retaining conformal invariance
in the UV (near the boundary of AdS space): It leads to the
effective confinement potential U (z) in Eq. (5.45). The dila-
ton profile can be determined from the superconformal alge-
bra by integrating Eq. (5.45) for the effective potential (5.59).
We obtain ϕ(z) = λz2. The dilaton is uniquely determined,
provided that it depends only on the modification of AdS
space [1039].

5.4.8 Spin interaction and diquark clusters

Embedding the LF bound-state equations in AdS space
allows us to extend the superconformal Hamiltonian to
include the spin–spin interaction, a problem not defined in the
chiral limit by standard procedures. Since the dilaton profile
ϕ(z) = λz2 is valid for arbitrary J , it leads to the additional
term 2λS in the LF Hamiltonian for mesons and baryons,
G = 1

2 {Rλ, R
†
λ} + 2λS, which maintains the meson–baryon

supersymmetry [1040]. The spin S = 0, 1, is the total inter-
nal spin of the meson, or the spin of the diquark cluster of
the baryon partner. The effect of the spin term is an overall
shift of the quadratic mass,

M2
M = 4λ(n + LM )+ 2λS, (5.62)

M2
B = 4λ(n + LB + 1)+ 2λS, (5.63)

as depicted in Fig. 102 for the spectra of the ρ mesons and
Δ baryons by shifting one unit the value of LB [1015]. This
shift leads to a degeneracy of meson and baryons states, a
property known as the MacDowell symmetry [1041,1042].

For the Δ baryons the total internal spin S is related to the
diquark cluster spin S by S = S + 1

2 (−1)L , and therefore,
positive and negative Δ baryons have the same diquark spin,
S = 1. As a result, all the Δ baryons lie, for a given n, on
the same Regge trajectory, as shown in Fig. 101. Plus parity
nucleons are assigned S = 0 and are well described by the
holographic model as shown in Fig. 101. For negative parity
nucleons both S = 0 and S = 1 are possible, but their
precise comparison with data is not as successful as for the
Δ baryons and positive parity nucleons.
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Fig. 102 Supersymmetric vector meson and Δ partners from Ref.
[1015]. The experimental values of M2 from Ref. [513] are plotted vs
LM = LB+1 for

√
λ � 0.5 GeV. Theρ andω mesons have no baryonic

partner, since it would imply a negative value of LB

5.4.9 Inclusion of quark masses and longitudinal dynamics

Finite quark masses break conformal invariance and pose a
special challenge for all AdS/CFT approaches since the dual
quantum field theory is inherently conformal. In the usual
formulation of bottom-up holographic models one identi-
fies quark mass and chiral condensates as coefficients of a
scalar background field X0(z) in AdS space [1000,1001]. A
heuristic way to take into account the occurrence of quark
mass terms, is to include the quark mass dependence in the
invariant mass squared which controls the off-shell depen-
dence of the LF wave function [1003,1043]. This substitu-
tion leads, upon exponentiation, to a natural factorization
of the transverse, φ(ζ ), and the longitudinal, χ(x), wave
functions in (5.40), where χ(x) = x−1/2(1 − x)−1/2X (x).
For hadrons with quark masses mi , one finds for the longi-
tudinal wave functions and the quadratic mass corrections
[1003,1040,1043]

χIM(x) = N exp
(
− 1

2λ

∑

i

m2
i

xi

)
, (5.64)

ΔM2 =
∫

dx δ
(∑

i

xi − 1
)∑

i

m2
i

xi
χ2

IM(x), (5.65)

where N is a normalization factor and (IM) refers to the
invariant mass LFWF.

The effective quark masses can be obtained by com-
paring the holographic results with the observed pseu-
doscalar masses. One obtains mq = 0.046 GeV for the
light quark mass and ms = 0.350 GeV for the strange
mass, with values between the Lagrangian and the con-
stituent masses [1003,1040,1043]. The analysis has been
consistently applied to the radial and orbital excitation spec-
tra of the light meson and baryon families, giving the value√
λ = 0.523 ± 0.024 GeV [1040]. The comparison of the

Fig. 103 The K ∗ and Σ∗ trajectories from supersymmetric HLFQCD
in Ref. [1044] with

√
λ = 0.51 GeV. The error bars are smaller that the

symbols in the figure and were not included

predicted K ∗ and Σ∗ trajectories with experiment shown in
Fig. 103 is a clear example of the validity of the supersymmet-
ric meson–baryon connection including light quark masses.
Starting with Ref. [1045], the application of the light-front
holographic wave functions to diffraction physics has also
been successful.

For heavy quarks the mass breaking effects are large. The
underlying hadronic supersymmetry, however, is still com-
patible with the holographic approach and gives remarkable
connections across the entire spectrum of light and heavy-
light hadrons [1039,1044]. In particular, the lowest mass
meson of every family has no baryon partner, conforming to
the SUSY mechanism. Compatibility with heavy quark sym-
metry [1039,1044,1046–1050] predicts a dependence of the
holographic mass scale λ on the quark mass.42

The extension of the LF holographic framework to incor-
porate longitudinal dynamics and chiral symmetry break-
ing, inspired in the original work of ’t Hooft [1053], has
recently attracted much interest [942,981,1051,1054–1064];
however, in contrast with the transverse dynamics, the longi-
tudinal confinement potential is not uniquely determined by
the symmetries of the model.

5.4.10 Completing the supersymmetric hadron multiplet

Besides mesons and baryons, the supersymmetric multiplet
Φ = {φM , φ+B , φ

−
B , φT } contains a further bosonic partner,

a tetraquark, which, follows from the action of the SUSY
operator R†

λ (5.50) on the negative-chirality component of a
baryon [1040], as illustrated in Fig. 104. A clear example is
the SUSY positive parity J P multiplet 2+, 3

2
+
, 1+ of states

f2(1270), Δ(1232), a1(1260) where the a1 is interpreted as
a tetraquark.

Unfortunately, it is difficult to disentangle conventional
hadronic quark states from exotic ones and, therefore, no
clear-cut identification of tetraquarks for light hadrons, or

42 For a relation with linear confinement see Refs. [1051,1052].
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Fig. 104 The meson–baryon–tetraquark supersymmetric 4-plet
{φM , φ+B , φ

−
B , φT } follows from the two step action of the supercharge

operator R†
λ (5.50): 3̄ → 3× 3 on the pion, followed by 3 → 3̄× 3̄ on

the negative chirality component of the nucleon

Table 5 Predicted masses for double heavy bosons from Ref. [1050].
Exotics which are predicted to be stable under strong interactions are
marked by (!)

Quark content J P Predicted
mass
[MeV]

Strong decay Threshold
[MeV]

cqcq 0+ 3660 ηcππ 3270

ccqq(!) 1+ 3870 D∗D 3880

bqbq 0+ 10020 ηbππ 9680

bbqq(!) 1+ 10230 B∗B 10800

bcqq(!) 0+ 6810 BD 7150

hadrons with hidden charm or beauty, is possible [1040,
1049,1065]. The situation is, however, more favorable for
tetraquarks with open charm and beauty which may be sta-
ble under strong interactions and therefore easily identified
[1066]. In Table 5, the computed masses from Ref. [1050]
are presented. Our prediction [1050] for a doubly charmed
stable boson Tcc with a mass of 3870 MeV (second row) has
been observed at LHCb a year later at 3875 MeV [1067], and
it is a member of the positive parity J P multiplet 2+, 3

2
+
, 1+

of states χc2(3565), Ξcc(3770), Tcc(3875). The occurrence
of stable doubly beautiful tetraquarks and those with charm
and beauty is well established, see also Ref. [1066].

5.4.11 Holographic QCD and Veneziano amplitudes

The hadronic mass spectrum (5.61), which follows from the
scale deformed superconformal equations (5.51) and (5.52),
shows remarkable features which were essential ingredients
to the pre-QCD physics of strong interactions. Starting from
the S-matrix, Chew and Frautschi [1068] proposed to extend
the concept of Regge trajectories [1069], α(t) = α0 + α′t ,
also to positive t-values. It led to a quadratic mass spec-
tra, linear in the angular momentum, just as the spectra of

Eq. (5.61). The analogy goes further: Veneziano [7] con-
structed a hadronic scattering amplitude

A(s, t) ∼ B(1− α(s), 1− α(t)), (5.66)

based on Euler’s Beta function B(u, v) = Γ (u)Γ (v)
Γ (u+v)

, which
incorporates the duality in strong interactions [1070] and lin-
ear Regge trajectories. It is easy to see that this amplitude
leads to particle poles at masses exactly matching Eq. (5.61),
if one identifies the slope of the trajectory with the scale λ:
α′ = 1/4λ. In fact, from the analytic structure of the Beta
function, particle poles appear at each value where α(t) is a
negative integer. This leads to “Regge-daughter trajectories”,
which are identified with the radial excitations numbered by
the integer n in (5.61). But there is an important difference in
the theoretical foundation: in the Veneziano approach, linear
trajectories were assumed to exist, whereas here they are a
consequence of the model, especially of the superconformal
model, where the Regge intercept α0 is also determined, and
expressed in terms of quark masses.

5.4.12 Electromagnetic form factors in holographic QCD

Holographic QCD incorporates important elements for the
study of hadronic form factors, such as the connection
between the twist of the hadron to the fall-off of its current
matrix elements for large Q2, and important aspects of vector
meson dominance which are relevant at lower energies. The
expression for the electromagnetic (EM) form factor (FF) in
AdS space has been given by Polchinski and Strassler [1006]

F(Q2) =
∫

dz

z3 V (Q2, z)Φ2(z), (5.67)

in their influential article describing deep inelastic scattering
(DIS) using the gauge/gravity correspondence.43 It is writ-
ten as the overlap of a normalizable mode Φ(z), represent-
ing a bound-state wave function in AdS for the initial and
final states, with a non-normalizable solution V (Q2, z) of
the wave equation (5.43) for a spin one conserved current in
AdS, with μ = 0 and M2 → −Q2. The bulk-to boundary
propagator, V (Q2, z) carries momentum Q2 = −t > 0 from
the external EM current. A precise mapping can be carried
out to physical spacetime provided that the invariant trans-
verse impact variable ζ for an arbitrary number of quarks is
identified with the holographic variable z [1007].

For the soft-wall model (SWM) of Ref. [1002] Φτ (z) ∼
zτ e−λz2/2, and V (Q2, z) is given in terms of the Tricomi
function, V (Q2, z) ∼ U (Q2/4λ, 0, λz2). It corresponds to
a conserved vector current with vanishing mass μ = 0 in

43 For recent DIS studies examining various holographic QCD models
see Ref. [1071] and references therein.
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AdS. The result for the FF [1003] can be brought into the
form of an Euler Beta function

FSWM
τ (t) ∼ B(τ − 1, 1− t/4λ). (5.68)

It generates a series of poles located at M2
n = 4λ(n + 1),

and thus to the Regge intercept α0 = 0 [1072]. Therefore,
one has to perform a pole shift [1003,1019,1020,1073] in the
expression (5.68) in order to bring the analytical structure of
the FF in accordance with the spectra predicted by HLFQCD,
which is in perfect agreement with observations. This shift
leads to [1019]

FHLF
τ (t) ∼ B

(
τ − 1, 1/2− t/4λ

)
, (5.69)

for the EM form factors in HLFQCD.

5.4.13 Form factors in dual models and holographic QCD

In a model extending the duality concept incorporated in
Eq. (5.66) to reactions involving external currents, Ademollo
and Del Giudice [1074], and Landshoff and Polkinghorne
[1075], proposed a a Veneziano-like amplitude

Fγ (t) ∼ B
(
γ, 1− αρ(t)

)
, (5.70)

in order to describe the electromagnetic FF; here αρ(t) is the
Regge trajectory of the ρ meson which couples to the quark
current in the hadron, and the parameter γ controls the rate
of decrease of the FF. In fact, from Stirling’s formula we
find the asymptotic behavior Fγ (Q2) ∼ (

1/Q2
)γ

for large
Q2 = −t .

In LF QCD the parameter γ has a well defined interpreta-
tion. To see this, we compare the asymptotic expression for
Fγ (Q2) with the result from hard scattering counting rules at

large Q2 [153], Fτ (Q2) ∼ (
1/Q2

)τ−1
, where the twist τ is

the number of constituents N in a given Fock component of
the hadron. Thus, one has to choose in Eq. (5.70) γ = τ −1,
in order to incorporate the scaling counting rule. This brings
us to our final result for the analytical expression of the elec-
tromagnetic FF in the extended duality model [1019]

Fτ (t) = 1

Nτ

B (τ − 1, 1− α(t)) , (5.71)

with Nτ = B(τ − 1, 1 − α(0)), a remarkable expression
which incorporates, at tree level, both the nonperturbative
pole structure of the form factor and the hard scattering
behavior.

For τ = N , the number of constituents, the FF (5.71) is
an N − 1 product of poles located at [1003]

−Q2 = t = M2
n =

1

α′
(
n + 1− α(0)

)
> 0. (5.72)

It generates the radial excitation spectrum of the exchanged
vector mesons in the t-channel. For example, the ρ trajec-
tory has Regge intercept α0 = 1/2 and slope α′ ≡ 1/4λ,
with λ � (0.5 GeV)2. Thus M2

n = 4λ(n + 1
2 ), correspond-

ing to the ρ vector meson and its radial excitations for n =
0, 1, 2, . . . , τ−2 in agreement with Eq. (5.62). In general, the
hadron wave function is a superposition of an infinite num-
ber of Fock components, and thus the full form factor should
be written as a superposition F(Q2) =∑

τ Cτ Fτ (Q2), with∑
τ Cτ = 1, if all possible states are included. In practice,

one expects a rapid convergence in the number of poles, with
a dominant contribution from the ρ vector meson plus con-
tributions from the higher resonances ρ′, ρ′′, …, etc.

As a simple example, consider the valence contribution to
the nucleon EM (spin non-flip) Dirac form factors by writing
the flavor FFs as

Fu(t) =
(

2− r

3

)
F3(t)+ r

3
F4(t), (5.73)

Fd(t) =
(

1− 2r

3

)

F3(t)+ 2r

3
F4(t), (5.74)

where Fτ (Q2) is given by (5.71). The holographic constraint
of equal probability for nucleon states with LF orbital angu-
lar momentum L and L+1 (Sect. 5.4.4) determines the value
r = 3/2, since the probability of the total quark spin along
the plus z-direction for L = 0 (twist 3) should be identi-
cal to the probability of having total quark spin along the
minus z-direction for L = 1. Actually, the values found in
the recent analysis in Ref. [1020] deviate by 10 ∼ 15 %
for the u-flavor FF and remain almost identical for the d
quark in the valence approximation. This leads to the results
show in Fig. 105 for the nucleon isospin FF combination,
F I=0,1 = Fp(t)± Fn(t), where we compare the model pre-
dictions with the analysis of Ye et al. [1076]. Detailed studies
show the importance of higher (large distance meson cloud)
Fock components for the spin-flip Pauli FF [1073].

5.4.14 Quark distribution functions and the
exclusive–inclusive connection

The mathematical structure of the Veneziano-type FFs (5.71),
not only incorporates the hard scattering amplitude’s depen-
dence on twist, but it also gives important insights into the
structure of the parton distributions since it becomes pos-
sible to include the Regge behavior at small values of x ,
as well as the exclusive–inclusive connection [958,1078] at
large values of the longitudinal momentum x [1019]. In fact,
the relation between the behavior of the structure function
near x = 1 with the falloff of the FF at large t , described in the
article of Landshoff and Polkinghorne [1075], is very close
to the Drell–Yan “exclusive–inclusive” connection, also for-
mulated in 1970 [958].
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Fig. 105 The LFHQCD prediction for the I = 0, 1 isospin com-
binations of nucleon factors from Ref. [1020] is compared with the
z-expansion data analysis of Ye et al. [1076] (grey band): (blue line)
valence contribution only, (red line) including uū and dd̄ pairs. The
inset from Ref. [1077] represents the ρ Regge trajectory in Eq. (5.71)
for
√
λ = 0.534 GeV and αρ(0) = 0.483

Using the integral representation of the Beta function, the
FF (5.71) can be expressed in a reparametrization invariant
form

Fτ (t) = 1

Nτ

∫ 1

0
dx w′(x)w(x)−α(t) [1− w(x)]τ−2 .

(5.75)

The trajectory α(t) of the vector current can be com-
puted within the superconformal LF holographic frame-
work, and the intercept, α(0), incorporates the quark masses
[1014,1015]. The functionw(x) is a flavor-independent func-
tion with w(0) = 0, w(1) = 1 and w′(x) ≥ 0.

The flavor FF can be written in terms of its generalized par-
ton distribution (GPD) [1079–1081], Hq(x, t) ≡ Hq(x, ξ =
0, t), at zero skewness, ξ ,

Fq(t) =
∫ 1

0
dx Hq(x, t)

=
∫ 1

0
dx q(x) exp [t f (x)] , (5.76)

with the profile function, f (x), and the particle distribution
function (PDF), qτ (x), both determined by w(x):

f (x) = 1

4λ
log

( 1

w(x)

)
, (5.77)

qτ (x) = 1

Nτ

w′(x)w(x)−α(0)[1− w(x)]τ−2, (5.78)

with α′ = 1/4λ. Boundary conditions follow from the Regge
behavior at x → 0, w(x) ∼ x , and at x → 1 from

Fig. 106 Comparison for xq(x) in HLFQCD with global fits from
[1019]. Up: proton valence approximation (red band). Data analysis
from MMHT2014 (blue bands) [973], CT14 [1082] (cyan bands), and
NNPDF3.0 (grey bands) [1083]. Down: pion results (red and light blue
bands). NLO global fits from [1084,1085] (gray band and green curve)
and the LO data extraction [1086]. HLFQCD results are evolved from
the initial scale μ0 � 1 GeV at NLO and NNLO

the exclusive–inclusive counting rule [958,1078], qτ (x) ∼
(1− x)2τ−3, which fixes w′(1) = 0. A simple ansatz for
w(x), w(x) = x1−x exp(−a(1− x)2), fulfills all conditions
mentioned above. The flavor independent parameter a has
the value a � 0.5 [1019].

Using the expression (5.76) at t = 0 and Eqs. (5.73–
5.74), we obtain for the unpolarized quark distributions in
the valence approximation

uv(x) =
(

2− r

3

)
q3(x)+ r

3
q4(x), (5.79)

dv(x) =
(

1− 2r

3

)

q3(x)+ 2r

3
q4(x), (5.80)

with normalization
∫
dx uv(x) = 2 and

∫
dx dv(x) = 1. The

PDF qτ (x) is given by (5.78) and r = 3/2. Our PDF results
for the nucleon, Eqs. (5.79–5.80), and for the pion [1019],
are compared with the global data analysis in Fig. 106. If
the reparametrization function w(x) is fixed by the nucleon
PDFs, then the pion PDF is a prediction. pQCD evolution is
performed from an initial scale determined fromμ0 � 1 GeV
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Fig. 107 HLFQCD predictions from Ref. [1020] for the quark helicity
asymmetry ratio Δq+/q+, q+ = q + q̄, are compared with existing
data. The blue band is the valence contribution, the red band includes
qq̄ components and the dashed green band also includes the intrinsic
sea contribution

from the soft-hard matching procedure described in Ref.
[1087]. Our result for the pion PDF in Fig. 106 is in good
agreement with the data analysis in Ref. [1084] and consis-
tent with the nucleon global fit through the GPD universality
introduced in [1019]. It leads to a 1 − x falloff, in contrast
with the (1 − x)2 pQCD result at large-x [1085,1088], an
issue much debated recently [837,1089,1090].

An analysis of the polarized quark distribution in the
proton has been performed in Ref. [1020], assuming the
Veneziano-type FF (5.71), with the separation of chiralities
from the axial current. The model predictions for the ratio
of polarized to unpolarized quark distribution functions is
compared with available data in Fig. 107.

Another application of the LF holographic ideas is the
computation of the intrinsic charm-anticharm asymmetry in
the proton [1091], c(x)− c̄(x) =∑

τ cτ
(
qτ (x)− qτ+1(x)

)
,

with
∫ 1

0 dx[c(x)−c̄(x)] = 0. The normalization of the charm
form factor was computed using lattice QCD [1091], and the
J/ψ trajectory in the GPDs from HLFQCD and heavy quark
effective theory [1049]. A similar procedure was used to
determine the intrinsic strange–antistrange asymmetry in the
proton with the Regge trajectory in the holographic expres-
sions corresponding to the φ meson current [1077], and most
recently to study color transparency in nuclei [1092] (see
Sect. 5.9), and to model the EMC effect in various nuclei
[1093].

5.4.15 Gravitational form factors, gluon distributions and
the Pomeron trajectory

Gravitational form factors (GFFs) are the hadronic matrix
elements of the energy momentum tensor (EMT) and
describe the coupling of a hadron to the graviton, thus pro-
viding key information on the dynamics of quarks and glu-
ons within hadrons. In holographic QCD Pomeron exchange

is identified as the graviton of the dual AdS theory [1094–
1099]. The Pomeron couples as a rank-two tensor to hadrons
and interacts strongly with gluons. Since we are interested
in obtaining the intrinsic gluon distribution in the nucleon,
we use the soft Pomeron of Donnachie and Landshoff [1100]
with the Regge trajectory αP (t) = αP (0)+ α′P t , with inter-
cept αP (0) � 1.08 and slope α′P � 0.25 GeV−2 [513].

To actually compute the GFF one considers the pertur-
bation of the gravity action by an arbitrary external source
at the AdS asymptotic boundary which propagates inside
AdS space and couples to the EMT [1009,1101]. In analogy
to the EM FF (5.67), the spin non-flip GFF A(t) is written
as the overlap of a normalizable mode Φ(z), representing a
bound-state wave function, with a non-normalizable mode
H(Q2, z), the bulk-to-boundary propagator, corresponding
to the gravitational current in AdS. We obtain [1009,1101]

A(t) =
∫

dz

z3 H(Q2, z)Φ2(z). (5.81)

For the soft-wall profile introduced in Ref. [1002], the
propagator in AdS, H(Q2, z), is also given by a Tricomi
function [1003,1101], H(Q2, z) ∼ U

(
Q2/4λg,−1, λgz2

)
.

The effective physical scale λg is the scale of the Pomeron,
λg = 1/4α′P � 1 GeV2, which couples to the constituent

gluon over a distance
√
α′P ∼ 1/

√
4λg , described by the

wave function Φ
g
τ (z) ∼ zτ e−λgz2/2. Our final result is [1021]

Ag
τ (Q

2) = 1

Nτ

B
(
τ − 1, 2− αP (Q

2)
)
, (5.82)

with Nτ = B (τ − 1, 2− αP (0)). As for the EM FF, in writ-
ing (5.82) we have also shifted the Pomeron intercept to its
physical value αP (0) ≈ 1, since the holographic result (5.81)
leads to a zero intercept. For integer twist, the GFF (5.82) is
expressed as a product of τ − 1 timelike poles located at

−Q2 = M2
n =

1

α′P
(n + 2− αP (0)) , (5.83)

the radial excitation spectrum of the spin-two Pomeron. The
lowest state in this trajectory, the 2++, has the mass M �
1.92 GeV, compared with the lattice results M � (2.15−2.4)
GeV [513].44 We notice that Eq. (5.82) is the Veneziano
amplitude of the FF for a spin-two current [1074,1075].

The lowest twist contributions to the GFF corresponds to
the τ = 4 Fock state |uudg〉 in the proton and the τ = 3 com-
ponent |ud̄g〉 in the pion, both containing an intrinsic gluon.
The results for Ag(t) are compared in Fig. 108 with recent

44 There exist many computations of glueballs in top-down holographic
models, see for example, [1102]; and also in bottom-up models starting
from [1103]. For a recent computation, see for example [1104], and
references therein.
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Fig. 108 Gluon gravitational form factor Ag(Q2) of the proton (blue)
and the pion (red) in comparison with lattice QCD computations [1105,
1106]. The value Ag(0) corresponds to the momentum fraction carried
by gluons at the scale μ = 2 GeV. The bands indicate the uncertainty
of λg by ±5% and the normalization from the momentum sum rule

lattice computations. We find for the gluon mass squared
radius 〈r2

g 〉p = 2.93/λg = (0.34 fm)2 for the proton and
〈r2

g 〉π = 2.41/λg = (0.31 fm)2 for the pion. The model
predictions in Fig. 108 have no free parameters [1021].

The intrinsic gluon distributions in the proton and the pion
can be determined from the gravitational form factor (5.82)
following the same procedure used in Sect. 5.4.14. The results
are given in [1021] and agree very well with the data analysis
from [663,664,971,1107,1108]. The model uncertainties for
large x-values are smaller than those from the phenomeno-
logical analysis.

By using the gauge/gravity duality a simultaneous descrip-
tion of the BFKL hard Pomeron [159,236,1109] and the soft
Regge domain has been proposed in Ref. [1094]. This model,
however, did not solve the problem of the large difference
of intercept values between both Pomerons. Using the scale
dependence of the gluon distribution functions, our results
give strong support to a single Pomeron with a scale depen-
dent intercept [1110], which was proposed in Ref. [1111] in
order to explain the diffractive scattering data at LHC ener-
gies [1112,1113].

5.4.16 Summary

Holographic light front QCD is a nonperturbative analytic
approach to hadron physics. It originates from the precise
mapping of light front expressions of form factors in AdS
space for an arbitrary number of partons [1007]. The holo-
graphic embedding in AdS also leads to semiclassical rela-
tivistic wave equations, similar to the Schrödinger equation
in atomic physics, for arbitrary integer or half-integer spin
[1004,1032]. The model embodies an underlying supercon-
formal algebraic structure from SU (3)C color symmetry: It

is responsible for the introduction of a mass scale within the
superconformal group, and determines the effective confine-
ment potential–It is not supersymmetric QCD, a theory which
includes squarks and gluinos, but an effective hadronic super-
symmetry. There is a zero eigenmode which is identified with
the pion: It is massless in the chiral limit. The new framework
leads to relations between the Regge trajectories of mesons,
baryons, and tetraquarks. It also incorporates features of pre
QCD, such as Veneziano model and Regge theory. Further
extensions incorporate the exclusive–inclusive connection in
QCD and provide nontrivial relations between hadron form
factors and quark and gluon distributions. Measurements of
the strong coupling in the nonperturbative domain [1114] are
remarkably consistent with the predicted form in holographic
QCD [177], a relevant issue in QCD which is discussed in
the next Sect. 5.5. Holographic light front QCD has led to
significant advances in understanding hadron phenomena by
incorporating emerging QCD properties in an effective com-
putational framework of hadron structure.

5.5 The nonperturbative strong coupling

Alexandre Deur
The perturbative framework of QCD (pQCD) has been
remarkably successful in describing the interactions between
the fundamental constituents of hadrons in high energy
experiments, thus establishing QCD as the theory of the
strong force at small distances [300]. Most of nature’s strong
force phenomena, however, are governed by large-distance,
nonperturbative physics [783,1115–1119] where the meth-
ods of pQCD are not applicable. The Landau pole at low-
energies in the running of the QCD coupling is an example
of the expected failure of perturbation theory as the cou-
pling increases. A nonperturbative treatment is necessary and
allows us to define renormalization scheme dependent cou-
pling constants.

Studying αs(μ) at low energy has been challenging: not
only do nonperturbative calculations represent a difficult
problem to solve, but more generally, we only know in the
pQCD framework how to relate the αs calculated in different
schemes. Worst, there is no obvious prescription of how to
define the coupling. One reason why a variety of definitions
is possible is that αs(μ) need not be an observable. In fact, in
most approaches – including the standard pQCD treatment
– it is not an observable. For example α

pQCD
s depends on the

choice of renormalization scheme, generally taken to be MS.
Such arbitrary dependence on a human convention shows that
αs(μ) is not an observable. In addition, the quark–gluon,
3-gluon, 4-gluon or ghost-gluon vertices may have differ-
ent couplings,45 i.e., several couplings, with distinct magni-

45 When needed, we will use superscripts to qualify the coupling. For

examples, αpQCD,MS
s is the perturbative coupling in the MS scheme, or
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tudes as well as differing μ-dependence, may be necessary
to characterize QCD. This happens because the Slavnov–
Taylor Identities (STI) [1120,1121], the QCD equivalent
of QED’s Ward-Takahashi relation [1122,1123], may not
hold under certain choices of gauges and renormalization
schemes, such as the MOM scheme. With the oft-used MS
scheme, the STI hold, viz,

α
qg,MS
s = α

3g,MS
s = α

4g,MS
s = α

gh,MS
s

but MS is not practical for nonperturbative methods such as
Lattice QCD and in the nonperturbative domain, the differ-
ence between

α
qg,MOM
s , α

3g,MOM
s , α

4g,MOM
s , α

gh,MOM
s

is conspicuous. A wholly different approach is to define
αs(μ) to be an observable [165], in analogy with the observ-
able QED coupling α [1124], but while this circumvents the
issues of breaking the STI and of scheme and gauge depen-
dence, the prescription is rarely used in pQCD.

Many definitions of αs have been considered, resulting
in a range of values of αs(μ � Λs) from 0 to ∞, generat-
ing much confusion. Adding to this is the fact that, unlike the
high-energy domain where pQCD rules, there is no obviously
superior method to study the nonperturbative behavior of
αs(μ). This is, of course, due to the challenge of solving QCD
nonperturbatively. All major non-perturbative approaches,
See Sects. 4, 5.2, 5.4 have been used (with the conspicu-
ous exception of chiral effective field theory, Sect. 6.2, since
its hadronic degrees of freedom do not couple with αs) as
well as many models. These methods using different type
of approximations, and the models being not directly based
on QCD’s Lagrangian or its symmetries, results have often
differed. Yet a number of studies have converged toward a
fruitful definition of αs(μ) which allows us to account for
low energy phenomenology [1125,1126]. Before describing
it, we will first recall in broad brushstrokes the history of
this endeavor, referring only to pioneering attempts and not
the important body of subsequent works that clarified and
refined these attempts.

Soon after the advent of QCD, it was realized that αs(μ)

may display a plateau when μ→ 0 (it is said to freeze at low
μ) [1127–1129], viz, the β function of QCD, Eq. (1.21) may
obey β(μ → 0) → 0. The actual freezing value αs(0) was
debated and ranged from typically 0.5 to 5 [1125]. A pioneer-
ing and influential work in this context is due to Cornwall
[1130] who used the Dyson–Schwinger equations (DSE),
the gluon self-energy and initiated a method (the Pinch tech-
nique, PT) that allows to obtain gauge-independent results.
The ensuing coupling α

gse,PT
s displays a freezing behavior

α
qg,MOM
s , α3g,MOM

s , α4g,MOM
s and α

gh,MOM
s are the couplings for the

quark–gluon, 3-gluon, 4-gluon or ghost-gluon vertices, respectively,
computed in the MOM scheme.

in qualitative agreement with quark models (e.g., Ref. [770]
and Sect. 5.1) and quarkonium spectrum models, e.g., Ref.
[99].

A freezing of αs(μ) was by no mean the only proposal:
others reasoned that it should diverge as 1/μ2 [1131], that it
should monotonically increase with 1/μ, but without diverg-
ing [1132], or that it should vanish as μ → 0 [172,1133].
In all these cases, β(μ → 0) �= 0. As we alluded to, multi-
ple reasons caused these widely varying expectations [1125]:
differences in the basic definition of αs(μ); choice of vertex
used to compute it; calculation artifacts from approximations
(e.g., discretization in lattice QCD or truncation prescription
for the DSE and other functional methods); choice of gauge
and renormalization scheme;46 or the existence of multiple
solutions to the QCD equations providing αs(μ) without
a decisive argument on which one is realized in nature. A
prominent example is the decoupling [1133] and the scaling
[1137] solutions that yield a vanishing or a freezingα

gh,MOM
s ,

respectively. Functional methods and lattice QCD have pro-
duced both solutions, albeit well-controlled lattice calcula-
tions appear to yield only the decoupling solution. In these
calculations α

gh
s , called the Taylor coupling [1120], is most

often used because it is the simplest coupling that can be
computed from QCD correlation functions.

It is generally believed, after much discussion, that the
decoupling solution is the one realized in nature, which sim-
ply means that in the particular gauges where ghost fields
appear, the gluon and ghost fields decouple at low μ. This
is an important finding regarding the behavior of gluons
and ghosts but it does not directly illuminate the strength
of the strong force at low energy. Besides using correlation
functions, other prevalent approaches to define αs(μ) are
effective charges [165] and analytic approaches [179,1132]
– both methods promote αs(μ) to an observable quantity – or
direct use of phenomenology, for example, using constituent
quark models, the QQ potential or the hadronic spectrum
[99,770,1131,1138–1141]. Like the DSE, that must choose
a truncation prescription, or like lattice QCD with space-
time discretization, other methods also use approximations

46 Methods which optimize the perturbative series by removing renor-
malization scale ambiguities have rendered this issue negligible. A first-
principle method, the BLM procedure [1134], follows by observing that
in QED, only the vacuum polarization contributions to the photon prop-
agator cause the coupling to run. Analogously for any pQCD series for
an observable, the BLM method absorbs all β-terms in the pQCD series
into the QCD running coupling; the resulting series coefficients match
the corresponding “conformal” series with β = 0. The resulting scale-
fixed series is free of the renormalon divergence (Sects. 2.3.7 and 5.7.5)
and are scheme invariant. The different Q2 scales for αs that appear
at each order of the series characterize the virtuality of the propaga-
tors in the amplitude, as in QED. In fact, the BLM method reduces to
Gell-Mann-Low scale setting in the Abelian limit NC → 0. An anal-
ogous procedure applies to the running quark mass. The BLM method
is systematically extended to NLO using the Principle of Maximum
Conformality [1135]. See reviews [1087,1126,1136].
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or/and include model-dependencies. While the systematic
effects arising from the approximations or modeling are typ-
ically not well controlled, the spread of results arising from
methods with very distinct approximations allows for a better
understanding of the methods’ uncertainties.

After many studies and developments, of which the afore-
said narrative is too a laconic cartoon, a coupling was iden-
tified and computed using a formalism guarantying that the
STI hold in the nonperturbative domain [1142]. Therefore,
QCD is here characterized by a single coupling, independent
of the choice of vertex or process used to define it (process-
independent, PI). In addition, the Pinch technique [1130] is
used to guaranty gauge-independence. The calculation, using
either the DSE or lattice QCD results on correlation func-
tions, yields a coupling α

PI,Pinch
s in agreement with the phe-

nomenological coupling [1114,1144,1145] derived from the
Bjorken sum rule [23] using the effective charge (EC) method
[165], αEC,g1

s , and with α
AdS/QCD
s obtained using AdS/QCD

[177,1087,1126], See Sect. 5.4.
The latter is derived starting from the observation that

for strongly coupled systems with a gravity dual, the radial
direction z in the bulk can be associated with the energy
scale of the boundary theory [1148]: Large values of μ cor-
respond to small values of z near the high-momentum con-
formal boundary of AdS, μ ∼ 1/z. Conversely, large-z dis-
tances in the low-momentum region of AdS correspond to
low energy scales in the physical theory. The dilaton factor
exp(ϕ(z)) is a measure of the departure from conformality at
the asymptotic AdS boundary, z → 0, and should grow for
large values of z, signaling confinement: It acts as an effective
coupling in AdS space. We can use the procedure introduced
in [177] to obtain the μ dependence of α

AdS/QCD
s from the

Hankel transform of the dilaton factor [177]

α
AdS/QCD
s (μ) ∼

∫ ∞

0
zdz J0(zμ)e−λz2 ∼ e−μ2/4λ, (5.84)

where the overall normalization is not provided within
AdS/QCD. The freezing value of the effective coupling
α

EC,g1
s (0) = π is used. The dilaton profile λz2 is deter-

mined by the superconformal structure (Sect. 5.4.7). The
transition between the predicted Gaussian form (5.84) and
the log behavior expected from pQCD is determined from
the matching of the perturbative and nonperturbative cou-
plings and their derivatives for

√
λ = 0.534 GeV. The spe-

cific matching allows us to determine the perturbative QCD
scaleΛ in terms of the hadronic mass scale

√
λ [1149] for any

choice of renormalization scheme, including the MS scheme
[1087].

The couplings α
AdS/QCD
s , αPI,Pinch

s and α
EC,g1
s are shown

in Fig. 109. When compared in the same renormalization
scheme, they agree reasonably well with earlier determina-
tions, such as α

gse,PT
s or that of the Godfrey–Isgur quark

Fig. 109 Nonperturbative strong couplings calculated with the holo-
graphic QCD framework (αAdS/QCD

s , red line) [177], and Dyson–
Schwinger formalism using the lattice determinations of correlations
functions (αPI,Pinch

s , magenta band) [1142,1143]. The experimental
extractions of αEC,g1

s [1114,1144,1145] following the effective charge
definition [165] are shown by the symbols. The green band and the
dashed line is α

EC,g1
s deduced from the Bjorken [23] and Gerasimov–

Drell–Hearn [1146,1147] sum rules, respectively

model [770], see Sect. 5.1 and Refs. [1087,1125]. The cou-
plings in Fig. 109 are in close agreement and have been
used in the derivation of many crucial nonperturbative quan-
tities, including the QCD scale ΛMS

s [1150], as well as elas-
tic and transition form factors [1151–1153], parton distribu-
tions (including generalized ones) [836,1019,1154–1157],
the hadron mass spectrum [1149,1158], or the pion decay
constant [1158].

In summary, several definitions of the strong coupling in
the nonperturbative domain are possible. Most are scheme
and gauge dependent. They tend to vanish as μ → 0 in a
non-freezing behavior, viz the QCD β-function itself does
not vanish. This informs us on how quark, gluon and ghost
fields interact at low energy in the chosen scheme, but does
not directly provide a universal parameter reflecting QCD’s
strength. In contrast, a set of calculations [177,1142] and phe-
nomenological extractions [1114,1144,1145] based on the
effective charge prescription [165], following that of QED
[1124], provide observable couplings that agree which each
other. The consistency of these various approaches in deter-
mining a single coupling

α
SE,g1
s � α

AdS/QCD
s � αPI,Pinch

s

and its success in computing a wide range of nonpertur-
bative quantities suggest that a compelling candidate for a
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canonical nonperturbative QCD coupling has been identi-
fied. It freezes at low energy, a satisfactory behavior since
in the nonperturbative domain, the coupling should be finite
and non-vanishing, determined by the physics of color con-
finement, and its scale parameter should be set by a typical
hadronic mass, e.g., that of the nucleon. An infrared fixed
point is in fact a natural consequence of color confinement:
since the propagators of the colored fields have a maximum
wavelength, all loop integrals in the computation of the gluon
self-energy should decouple at Q2 → 0 [1159].

5.6 The ’t Hooft model and large N QCD

Tom Cohen
In 1973 the QCD Lagrangian was first written down [55]. In
the same year, the one-loop function was calculated [53,54,
1160,1161] indicating that that the theory was asymptotically
free, but also implying that the coupling constant grew at low
momenta. This meant that perturbation theory in the coupling
à la QED is inapplicable for low momentum observables such
hadron masses, charge radii and the like. The following year
’t Hooft [1162] proposed an entirely new expansion for the
theory – an expansion in 1/Nc where Nc is the number of
colors – which, it was hoped, would allow for a systematic
computation of these observables.

While the dream of using the 1/Nc expansion to com-
pute these quantities directly for QCD in 3+1 dimensions
has been elusive, the 1/Nc expansion and the associated large
Nc limit have played a significant role during the past half
century in at least three ways: they have provided a tool for
the theoretical exploration of models beyond QCD, includ-
ing most famously, the AdS/CFT connection [993,996] for
N = 4 super Yang–Mills; they have provided a qualita-
tive and occasionally semi-quantitative tool to understand a
significant amount of phenomenology (for example in Ref.
[1163]); and, they have provided an organizing principle for
deciding which terms should be large in phenomenological
models or effective field theory treatments (for example in
Ref. [1164]).

The underlying idea of the 1/Nc expansion is that three is
sufficiently large so that a multicolored world with arbitrarily
many colors is sufficiently close to the physical world – at
least for some observables of interest – that the Nc → ∞
world is a good starting point for an expansion and that sys-
tematic 1/Nc corrections are controllable. This section will
provide an elementary introduction to the large Nc limit and
1/Nc expansion with an emphasis on the underlying foun-
dational ideas of the subject. An excellent review of these
foundational ideas can be found in Sidney Coleman’s Erice
lectures [1165]; a more modern review of the large Nc limit
and 1/Nc expansion for field theories with an emphasis on
lattice results can be found in Ref. [1166], while a review of
large Nc baryon spectroscopy can be found in Ref. [1167].

5.6.1 Large Nc scaling

The keys to ’t Hooft’s analysis [1162] are two related insights.
The first is that a smooth large Nc limit depends on the QCD
coupling, g, scaling with Nc as

g2 = λ/Nc (5.85)

where λ is independent of Nc. Superficially, this might seem
like a weak coupling limit that justifies standard perturbation
theory. However, it does not: color factors in loops grow with
Nc and can compensate for the small coupling. The second
key insight was related to the color factors in loops. ’t Hooft
developed a clever double line notation for gluons that allows
one to easily analyze the scaling behavior of Feynman dia-
grams. The notation exploits the fact that gluons are in the
adjoint representation: they are associated with color matri-
ces with two indices, one carrying a fundamental color and
the other an anti-fundamental color. Thus if one ignores the
fact that the matrices are traceless (a 1/N 2

c effect), the color
carried by a gluon propagator is identical to that of a quark
line side-by side with an anti-quark line. For the purposes of
counting color factors at leading order in 1/Nc – and for that
purpose only – it is legitimate to replace gluon propagators
in Feynman diagrams with parallel quark–antiquark lines.
A closed loop of fundamental or antifundamental color in a
diagram corresponds to one factor of Nc since there are Nc

fundamental colors.
Armed with this, it is straightforward to deduce the fol-

lowing asymptotic scaling behavior for connected diagrams
with no external lines:

– Planar connected diagrams of gluons (diagrams in which,
except at vertices gluon lines, do not cross when written
in a plane ) with no external lines grow asymptotically
with Nc as N 2

c .
– A diagram containing a non-planar gluon line reduces the

asymptotic Nc scaling of a planar diagram by a factor of
N−2
c . Multiple non-planar gluons reduce the Nc counting

by a factor of at least N−2
c per non-planar gluon.

– A planar diagram that contains quark loops that form the
boundary of the diagram, reduces the asymptotic Nc scal-
ing by a factor of N−1

c per quark loop relative to a purely
gluonic diagram. Quark loops that cannot be written in
this form reduce the Nc scaling by larger amounts.

Note that planar diagrams containing gluons can still be
very complicated and can contain arbitrarily many gluon
propagators. The fact that planar diagrams of gluons gener-
ically scale as N 2

c can be understood in the following way:
a closed loop consisting of a single gluon line scales as N 2

c :
in double line form, it has two loops. Any planar diagram
of gluons can be constructed starting from this single gluon
loop: simply add planar gluons to it one-by-one until one
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has the diagram of interest. It is easy to see that any planar
gluon added to a previous planar diagram in this construction
adds one additional color loop (for a factor of Nc) but also
two factors of the coupling constant g at the vertices where
the new gluons couple to the old diagram; since g2 ∼ 1/Nc

this cancels the additional color loop factor preserving the
asymptotic scaling as N 2

c . By inductive reasoning, it is clear
that all diagrams of this class diagrams scale asymptotically
as N 2

c .
The fact that adding a non-planar diagram reduces the

scaling by a factor of N−2
c can be understood in a similar

way. If one starts with a planar diagram of gluons and adds
a non-planar gluon to it, the number of color loop factors
decreases by one for a suppression factor of 1/Nc while two
additional factors of g must be added for another factor of
1/Nc. Thus for example a diagram with a single non-planar
gluon will scale asymptotically as N 0

c .
Similarly the scaling of diagrams containing quark loops

that form the boundary of the diagram can be understood by
noting that such diagrams can always be obtained starting
from a planar diagram of gluons and then inserting a quark
loop into a gluon propagator. Doing so does not change the
number of color loop factors but adds two coupling coupling
constants for each quark loop which together scale as N−1

c
per quark loop.

The scaling rules for diagrams allow one to deduce the
asymptotic scaling for the properties of glueballs and mesons
[1162,1168]. This can be done via the study of correlators
of local gauge-invariant operators, J , that carry the quantum
numbers of the glueballs or mesons of interest. For concrete-
ness, consider J to be a quark bilinear such as J = qq for the
case of mesons (where for simplicity spin and flavor will be
neglected in the discussion as they do not affect the Nc scal-
ing) and an operator such as J = Fa

μνF
a μν for the case of

glueballs. The correlator can be obtained by inserting these
operators into closed loop diagrams. Doing so does not alter
the leading Nc scaling of the diagram. Thus if one is study-
ing correlators carrying glueball quantum numbers, then the
leading diagrams scale as N 2

c ; similarly if one is studying a
correlator carrying meson quantum numbers, then one needs
to have a quark loop in the diagram and the leading diagram
scales as Nc.

Consider the two-point correlation function:

ΠJ (q
2) = −i

∫
d4xe−iqμxμ 〈T (J (x)J (0))〉

=
∫

ds
ρ(s)

q2 − s + iε

(5.86)

where up to an overall factor ρ(s), the spectral density, is
given by the imaginary part of the correlator. It scales with
Nc in the same way as the correlator. The contributions to the
spectral density from a given diagram can be extracted from
its imaginary part. Moreover, cutting a diagram at various

points between the sources reveals the gluon and quark con-
tributions to the imaginary part, which by construction will
form color singlet combinations. Using the double line nota-
tion, it is easy to see that no matter where the diagrams are
cut between the sources, at leading order in 1/Nc all of the
quark and gluons indices contract into a single color singlet
combination – i.e. one that cannot be broken into multiple
color singlet combinations.

If additionally one assumes confinement in the most basic
sense that all asymptotic states are color singlets, this means
that at leading order in the 1/Nc expansion, the operator J
creates single hadron states. By matching the Nc counting
of the leading diagram to the propagation of a single hadron
one sees that

〈meson|Jmeson|vac〉 ∼ Nc

〈glueball|Jglueball|vac〉 ∼ N 2
c

(5.87)

With this one can deduce numerous properties [1162,
1168] of QCD as a theory of hadrons by matching correlators
at the quark–gluon level to descriptions at the hadronic level.
One finds:

– The masses of mesons and glueballs become independent
of Nc as Nc →∞.

– Mesons and glueballs become stable as Nc →∞.
– The physics of mesons and glueballs can be described

by an effective tree-level theory with vertices that scale

at leading order as N
2−ng− 1

2 nm
c , where nm and ng are the

number of meson lines and gluon lines respectively at the
vertex. This implies that

1. Interactions between these hadrons are weak.
2. Meson decay amplitudes scale asymptotically as

N−1/2
c and their widths as N−1

c . Glueball decay
amplitudes scale as N−1

c and their widths as N−2
c

3. Meson–meson scattering amplitudes scale as 1/Nc.
Glueball-glueball scattering amplitudes scale as
1/N 2

c , while meson–glueball scattering amplitudes
scales as 1/Nc.

4. In decays of hadrons into mesons, when all else is
equal, processes with fewer mesons as decay products
are favored by powers of Nc. Thus for example the
partial decay width of a meson into a ρ-meson and
a pion scales as 1/Nc while the rate into three pions
directly scales as 1/N 2

c .

– There are an infinite number of distinct mesons for each
quantum number. This can be seen by matching the corre-
lator to one at large space-like q2 which can be computed
perturbatively [1168].

– Quantum number exotic hybrid mesons (states whose
quantum numbers cannot be obtained as a quark–
antiquark state in a simple quark model but require at
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least one additional gluon) behave like ordinary mesons
in Nc scaling [1169]. At large Nc they are narrow, there
are an infinite number of them for any quantum num-
ber and their interactions with each other and with other
mesons and glueballs scale according to the same rules
as ordinary mesons.

– The OZI rule [18,1170,1171] becomes exact in the large
Nc limit.
This implies glueball-meson mixing is suppressed.

– Tetraquark states do not exist at large Nc [1168,1172].

These properties can be viewed as predictions of QCD:
they specify which quantities are dominant assuming that
the large Nc world is a reasonable proxy for our world. But,
at best they make qualitative predictions since the coeffi-
cients multiplying the leading terms in the expansion are not
specified by this analysis. Moreover in the physical world
Nc is only three so one might expect that assuming domi-
nance of the leading-order predictions of the 1/Nc expansion
would at best be a crude description of the phenomenology.
In addition, the extent to which the phenomenology is quali-
tatively described by the leading-order behavior depends on
the observable in question.

In the meson sector the large Nc world might well be
considered as a crude but recognizable caricature of much
of the observed Nc = 3 phenomenology, at least for meson
constructed from light quarks. There are numerous mesons
that are comparatively narrow – with widths much smaller
than masses. There are often several identified mesons in a
single spin-isospin-parity channels; presumably the number
of identifiable meson would increase if Nc were made larger.
The OZI rule is typically well satisfied phenomenologically;
indeed it was proposed based on phenomenological grounds
before the formulation of QCD [18,1170,1171].

While many qualitative aspects aspects of meson physics
can be deduced from the behavior of the theory at large Nc,
there are observables in the meson sector for which sublead-
ing effects are sufficiently large that the leading behavior in
a 1/Nc expansion does not describe the physical world even
qualitatively. For example, the would-be nonet of pseduo-
Goldstone bosons; a nonet would exist if the OZI-rule held
– as it does at large Nc. However experimentally there is
an octet split from a much heavier η′ meson. Of course
this splitting is related to topology and the axial anomaly
citetHooft:1986ooh, but in a large Nc world these effects
would be suppressed by an overall factor of N−2

c [1173].
The fact that in the physical world the splitting is large shows
that the large Nc world is quite different from ours for this
observable .

In fact, there are large classes of observables for which
the the large Nc world appears to be quite different from
the Nc = 3 world. At large Nc there should be a very large
number of species of narrow glueballs that are weakly mixed

with mesons. However, in the physical of world of Nc = 3
there are comparatively few glueball candidates [616] and the
evidence for such states is typically somewhat murky, either
because the evidence of the resonance is weak or because of
mixing with ordinary mesons makes their “glueball” status
unclear. Indeed, the identification of a resonance as a glueball
may depend on there being an “extra” isoscalar state com-
pared to what one expects from a naive quark model. Nev-
ertheless, large Nc analysis of glueballs is of value at a the-
oretical level and to a limited extent also acts to inform phe-
nomenology: by providing a regime in which narrow, weakly
mixed glueballs must exist, minimally it demonstrates that
there is nothing in the basic structure of gauge theories con-
taining both light quark and gluon degrees of freedom that
forbids the existence of glueball states.

In a a similar way, the spectrum of quantum number exotic
hybrid mesons in nature look quite different than in a large
Nc world: there are few candidates for such hadrons carrying
light quarks quantum numbers [616]. Moreover, the evidence
for those candidates is also typically murky due to inconclu-
sive evidence for a resonance. Again the large Nc analysis
demonstrates that there is nothing in the basic structure of
gauge theories forbidding hybrid mesons. Large Nc also pre-
dicts that there should not be resonances in tetraquark chan-
nels. However, a clear signal for a quantum number exotic
tetraquark has recently been found [1067]. As it happens this
state is associated with heavy quarks – it is a doubly charmed
state – and it is easy to see that heavy quark limit and the large
Nc limits are not expected to commute for these channels. If
one increased Nc while keeping the quark masses fixed, it is
expected that this state would disappear.

5.6.2 The ’t Hooft model

The Nc scaling rules presented above can be thought of as
predictions about the physical world, but only in a qualita-
tive sense – and they fail, even qualitatively, for many observ-
ables. Initially it was hoped that the 1/Nc expansion could be
used as the basis of a quantitative treatment that was largely
analytic at low order, in much the same as a expansion in α

provided a quantitative treatment of QED. However, for QCD
in 3+1 dimensions this has not worked out: even at lowest
order in the expansion, the theory has proved to be intractable.
Interestingly, however, QCD in 1+1 dimension, the so-called
’t Hooft model [1053] was solved (initially for one flavor) at
leading order in the expansion in the early 1970s.

Note that the large Nc scaling arguments given above did
not depend on QCD being in 3+1 dimensions; they should
hold in 1+1 dimension as well. Thus, one can use the explicit
solutions of the ’t Hooft model as a way to check the self-
consistency of these rules.

The ’t Hooft model has a critical property in common with
QCD – confinement. It is useful to recall, however, that the
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mechanism of confinement in 1+1 dimensions is very differ-
ent than in 3+1 dimensions. It occurs for a rather trivial reason
– electric flux lines cannot spread out and thus even electrody-
namics is confining in 1+1 dimension. The physics of gauge
fields in 1+1 dimensions is also very simple: the field strength
tensor, Fμν , has an electric component E = F01 = −F10 but
no magnetic component. Thus in 1+1 dimensional QED, the
gauge field is not associated with a propagating photon; the
Euler–Lagrange equation for the gauge field is not dynam-
ical, but simply an equation of constraint fixing the electric
field from the charge density j0 = ψγ0ψ . This is because the
Gauss law (plus some conditions at infinity) fully determines
the electric field. Something completely analogous occurs in
the ’t Hooft model.

While the color electric field in QCD in 1+1 dimension
can be fixed given the color charge density of the quarks, the
gauge field, Aμ, itself depends on making a gauge choice.
Certain gauges, such as the axial gauge of A1 = 0 or the
light-cone gauge have a particular useful property: they auto-
matically suppress gluon–gluon couplings. In the axial gauge
this is clear since all of the nonlinear terms involve products
of A1 and A0. Gluon–gluon couplings vanish in the light-
cone gauge for similar reasons. Since it is these non-linear
couplings that make QCD complicated, QCD in 1+1 dimen-
sions greatly simplifies.

The ’t Hooft model simplifies further at leading order in
the 1/Nc expansion. The leading diagrams for the jμ cor-
relator (which carries meson quantum numbers) are planar
with a single quark loop bounding the diagram. This means
that no gluon lines can either cross (due to the large Nc con-
straint ) nor interact (due to the lack of gluon–gluon inter-
actions. Accordingly the correlator is given by the so-called
rainbow-ladder approximation: each quark propagator has
a self-energy given by the sum of rainbow diagrams, while
the interactions between quark lines is the the sum of ladder
diagrams. The sum of these diagrams can be reduced analyt-
ically to integral equation between spinor-valued objects.

These simplify further into simple integral equations if
one uses the light-cone gauge, which is based on light-cone
coordinates:

x± = x0 ± x1

√
2

(5.88)

and has a metric given by g+− = g−+ = 1 and g++ =
g−− = 0. The light cone gauge condition is

A− = A+ = 0 ; (5.89)

among other things it has the virtue of being Lorentz invari-
ant.

At leading order in large Nc the spectral function for
this correlator is expected to be saturated by arbitrarily nar-
row meson states. Since the explicit form of the correlator
is calculable, one can develop a light-cone Bethe–Salpeter

type eigenvalue equation for μ2 the meson mass, and ψ(K ),
the light-cone Bethe–Salpeter amplitude for the meson. It is
given in terms of a light-cone momentum, K appropriately
scaled so that ψ(K ) vanishes at K = 0 and K = 1 and ψ(K )

is only defined for 0 ≤ K ≤ 1. It is given by the following
integral equation

μ2
nψn(K ) = m2 − g2

π

K (1− K )
ψn(K )

− g2

π

∫ 1

0
dK ′ P

(K − K ′)2 ψn(K
′)

(5.90)

where P indicates principal value, μn is the meson mass for
the nth meson, ψn(K ) is the Bethe–Salpeter amplitude for
that state, m is the quark mass and g is the coupling constant
(which has dimensions of mass in 1+1 dimensions).

While there is no analytic solution to this integral eigen-
value equation, it can easily be solved numerically to give the
meson spectrum for the model. Note that Nc is not present in
this expression showing self-consistently that meson masses
are independent of Nc at large Nc as deduced from general
scaling rules.

The fact that ψ(K ) vanishes at the K = 0 and K = 1
implies that the spectrum will be discrete – there are no solu-
tions corresponding to two free quarks; the model correctly
incorporates confinement. It is easy to show that for all val-
ues of m and g, μ2 is real. This shows self-consistently that
mesons are stable at large Nc and verifies the general analysis
discussed above. Moreover it can be shown that μ2 is always
positive, showing that no matter how large the coupling, g,
there are no tachyonic states that would signal an instability.

For asymptotically large values of n, it is easy to find the
eigenvectors and Bethe–Salpeter amplitudes:

μn = g2πn, ψ(K ) = sin(nπK ). (5.91)

This asymptomatic form shows that solutions exist for arbi-
trarily high n, indicating the self-consistency of the large Nc

analysis, which predicted that there are an infinite number of
mesons at large Nc.

The limit of zero quark mass in the ’t Hooft model at large
Nc is interesting as it provides an opportunity to study chiral
symmetry and its spontaneous breaking [1174]. The regime
in which chiral symmetry breaking takes place requires that
care be taken in the ordering of limits. One must take the limit
of Nc → ∞ (with the ’t Hooft coupling, g2Nc, held fixed),
prior to the m → 0 limit. This limiting procedure insures
that the ratio g

m goes to zero in the combined limit. In this
limit, it can be shown [1174], that chiral condensate is given
by

〈qq〉 = −Nc

√
g2Nc

12π
. (5.92)
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Thus the ’t Hooft model provides a simple illustration of how
chiral symmetry breaking can work in a gauge theory.

However, the nature of spontaneous chiral symmetry
breaking in the ’t Hooft model is rather subtle. Note that
the spontaneous breaking of chiral symmetry is a violation
of Coleman’s theorem [1175] which rules out spontaneous
symmetry breaking of a continuous symmetry for theories in
1+1 dimensions. Thus, spontaneous chiral symmetry break-
ing seems paradoxical.

The resolution of the paradox was provided by Witten
[1176] in his analysis of an analogous problem: spontaneous
chiral symmetry breaking in the Thirring model at large Nc. It
turns out that that the spontaneous chiral symmetry breaking
is an artifact of working at infinitely large Nc from the outset;
it is absent for any finite Nc, no matter how large. Thus, as the
large Nc limit is approached the condensate is always strictly
zero and there are no Goldstone bosons. However, the theory
is in a Berezinski–Kosterlitz–Thouless phase [1177,1178]
in which the symmetry is “almost broken” and correlation
functions of qq behave in a nontrivial way. For space-like
separations

〈T [qq(x, t)qq(0, 0)]〉 ∼ (x2 − t2)
const
Nc . (5.93)

One sees that for any finite Nc correlation functions qq fall
off at large distance and thus do not saturate as they would
if a condensate had formed. However, they also do not fall
off exponentially as they would if qq created massive parti-
cles. Instead, there are long-range correlations: the correla-
tion functions fall as a power law with distance. Moreover,
the power depends on Nc in such a way that it goes to zero at
infinite Nc. Thus if one takes Nc to be infinite at the outset,
the systems acts as though spontaneous symmetry breaking
had occurred.

The large Nc properties of glueballs deduced earlier can-
not be checked in the ’t Hooft model for a very simple reason:
in 1+1 dimension there are no glueballs.

5.6.3 Baryons

Of course mesons, glueballs and hybrids are not the only
hadrons, there are also baryons. Unfortunately, the direct
study of correlation functions via diagrammatic methods as
was done for meson and glueballs does not work for baryons.
This is for an obvious reason: a baryon contains (at least) Nc

quarks so that the number of quark lines in diagrams must
grow with Nc. Among other things, this destroys the domi-
nance of planar diagrams.

Witten argued that one can deduce the correct scaling
behavior of large Nc baryons by first considering the case
in which all of the quarks are heavy (with masses much
larger than the QCD scale) [1168]. In that situation, quark–
antiquark pairs are suppressed and the propagation of quarks

is non-relativistic. At the most trivial level, it ought to be
apparent that in this regime Mbaryon ≈ NcMQ where MQ is
the mass of a heavy quark: the dominant term in the mass of
a nonrelativistic system is the mass of the constituents and
the baryon contains Nc quarks. Thus the mass of the baryon
scaling of the baryon mass with Nc is

Mbaryon ∼ Nc . (5.94)

Of course this result is from the leading term in a com-
bined expansion built around the heavy quark and large Nc

limits with the heavy quark limit taken first; one might worry
that the limits do not commute for the baryon mass. How-
ever, it is straightforward to see that subleading terms in a
1/MQ expansion of the baryon mass also have a leading-
order term in the Nc expansion that scales like Nc. This
suggests that this scaling could be general and hold inde-
pendently of the quark mass. To see how this comes about,
recall that in a heavy quark expansion for the baryon mass, the
leading term – the direct quark mass contribution – is essen-
tially not dynamical; the dominant subleading terms overall
are the leading dynamical ones. The effective heavy quark
lagrangian includes a nonrelativistic kinetic energy for the
quarks and a color-Coulomb interaction between them. Wit-
ten [1168] demonstrated that at large Nc, the Hartree mean-
field approximation to the non-relativistic color Coulomb
problem becomes exact. In the Hartree approximation, cor-
relations are neglected and each quark sits in an effective 1-
body potential derived from interactions with the other Nc−1
quarks (which sit in the ground state of the same potential).

Since the color-Coulomb interaction between two quarks
has two factors of the coupling constant g, it scales as 1/Nc.
The mean-field Hamiltonian between one quark and the
remainder has that quark interacting with Nc − 1 quarks
and interactions add coherently. Thus, the mean-field Hamil-
tonian scales as (Nc − 1)/Nc and at asymptotically large
Nc becomes independent of Nc. The one-body equation for
a single quark is then independent of Nc at large Nc and
the quark’s ground state wave function is also independent
of Nc. This means that the spatial extent of the Hartree
potential is itself independent of Nc. The contribution of the
kinetic energy to the mass scales as is Nc since there are
Nc quarks. The potential energy contributes 1

2 Nc〈VHartree〉,
where 〈VHartree〉 is the expectation value of the mean-field
potential for a single quark; the factor of 1

2 is because the
interaction energy in a pair of quarks is split between them.
Thus the direct quark mass term, the kinetic energy term and
interaction term all scale linearly with Nc, strongly suggest-
ing that Mbaryon ∼ Nc independent of the quark mass.

Moreover there is a very powerful argument from Witten
[1168] that the results deduced from this mean-field behav-
ior should persist when the quarks are light. Formally one
would need to start with a relativistic many-body equation
for bound states – a type of Bethe–Salpeter equation gener-
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alized to many particles – and show that the analog of the
Hartree approximation becomes exact in the large Nc limit.
While that would be technically quite complicated, it seems
apparent that all of the scaling from the Hartree approxima-
tion for heavy quarks should go through provided that irre-
ducible n-body interactions between quarks scales as Nn−1

c .
If this is true it is easy to see that the analog of the Hartree
potential will be independent of Nc: at asymptotically large
Nc: there are Nc 2-body interactions that each scale as 1/Nc,
N 2
c three-body interactions that each scale as 1/N 2

c , N 3
c four

body-interactions that each scale as 1/N 3
c and so forth. Each

of these has a net contribution that is independent of Nc indi-
cating that this generalized mean-field interaction for a single
quark is independent of Nc. Moreover demonstrating that n-
body interactions between quarks scales as Nn−1

c is straight-
forward using diagrammatic arguments similar to those used
for the glueball and meson sectors.

Using this Hartree picture it is possible to deduce [1168]
the asymptotic scaling of numerous baryon properties:

– Ground state baryon masses scale asymptotically as Nc.
– The size of ground state baryons generically is indepen-

dent of Nc. Explicitly this means that form factors of
external currents for baryons (such as electric factors)
generically scale as N 0

c f (q2/N 0
c ); for q2 of order N 0

c
the form factor is independent of Nc. This in turn means
the moments of distributions (which are related to deriva-
tives of form factors) such as 〈r2〉, 〈r4〉 are independent
of Nc at large Nc.

– Generic couplings between a ground state baryon and n
mesons scale as N 1−n/2

c . Among other things this means
that

1. Meson–baryon couplings scale generically as N 1/2
c .

2. Meson–baryon scattering amplitudes are generically
independent of Nc for large Nc

– Couplings between a meson, a ground state baryon and
an excited baryon are generically independent of Nc and
excited baryons have widths that are independent of Nc.
Unlike in the glueball and meson sectors, these states are
not narrow at large Nc, nor can you can conclude that
there an infinite number of them.

Witten observed [1168] an interesting pattern to the scal-
ing properties for baryons given above. They scale asymptot-
ically with 1/Nc in the same way as analogous properties of
solitons scale a with coupling constants squared. This insight
lead to a renaissance of interest [1179–1181] in the Skyrme
model [1182] as a model for baryons.

The scaling laws given above are generic. Spin and fla-
vor considerations may act to suppress certain couplings
below these generic results. Moreover, for the case of two or
more degenerate flavors, the notion of “ground state baryon”

becomes a bit involved. Both of these issues are related to
an emergent spin-flavor symmetry – a symmetry that is not
manifest in the QCD lagrangian but emerges at large Nc. In
general, this symmetry is a contracted SU (2N f )where N f is
the number of degenerate light flavors – it reduces to SU (4)
if one considers the up and down quarks to be effectively
degenerate and the strange quark much heavier.

An initial hint that a new symmetry beyond mere isospin
symmetry was emergent at large Nc could be seen in the 2-
flavor Skyrme model [1179], treated classically (with requan-
tized collective coordinates to restore broken symmetries).
This treatment corresponds to leading order in the 1/Nc

expansion. It was found that rather than having the nucleon
as the sole ground state, one had a tower of states with I = J
(the first two being the nucleon (I = 1

2 , J = 1
2 ) and the Δ

(I = 3
2 , J = 3

2 ) with the levels in the tower degenerate at
leading order in 1/Nc [1179]; the splittings can be shown to
be O(N−1

c ). Moreover, it was found that the ratios of the val-
ues of certain observables held independently of the param-
eters of the model or even the precise form of the Skyrme
Lagrangian [1183]. It was realized that this behavior was not
a property of Skyrme models per se but rather reflected an
underlying symmetry of baryons [1184–1186].

The symmetry can be seen to be required for the con-
sistency [1185] of large Nc scaling provided that the pion–
nucleon coupling scales with Nc generically – i.e. as N 1/2

c .
With this scaling, the Born approximation for pion–nucleon
nucleon would scale linearly with Nc. However, unitarity
constrains the scattering amplitudes to scale no faster than
N 0
c . Clearly, something must cancel the Born amplitude in

any channel where the meson–baryon coupling scales gener-
ically. In the case of scalar-isoscalar mesons, it is easy to
show that the heavy mass of the baryon at large Nc implies
that at leading order, the contribution of the cross-Born dia-
gram cancels the contribution of the Born diagram. However,
pions are derivatively coupled and hence couple to the spin
of the nucleon and are isovectors so they also couple to
the isospin. The various components of spin do not com-
mute with each other and similarly with the various com-
ponents of isospin and, as a result, the cancellation between
the Born and cross-Born contributions to π − N scattering
appears to be spoiled. However, the cancellation between
the Born and cross-Born contributions at the level of pion–
nucleon scattering will be restored provided that the Δ is
treated as being degenerate (at this order) with the nucleon
and the ratio of gπNΔ (the transition coupling between the
pion the nucleon and the Δ ) is taken to be a prescribed
number times gπNN [1185]. Applying the same logic to the
process π + N → π +Δ, requires gπΔΔ to be a fixed mul-
tiple of gπNΔ. At this order in 1/Nc, the Δ and the nucleon
are degenerate and the Δ should be treated as stable. Thus
one can legitimately consider π − Δ scattering. Applying
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the same logic, one deduces the existence of a degenerate
I = 5

2 , J = 5
2 baryon and so forth generating a tower of

states that become degenerate at large Nc. Presumably the
the nucleon and Δ correspond approximately to the observed
states in the N = 3 world, while the I = 5

2 , J = 5
2 is a large

Nc artifact.
It is possible to show that the structure described above

is encoded in a contracted SU (4) Lie algebra for two-flavor
QCD. The fixed ratio of the coupling constants are given
by the Clebsch–Gordan coefficients of the group. The same
logic that gives rise to the contracted SU (4) symmetry, gives
a contracted SU (6) for 3-flavor QCD to the extent that one
can approximate the strange quark as being nearly degen-
erate with the up and down quarks [1186]. Moreover, it
is possible to show that for certain observables the lead-
ing corrections to the the contracted SU (2N f ) symmetry
is of order 1/N 2

c rather than 1/Nc [1187]. This fact allows
one to make some semi-quantitative predictions based on
the emergent symmetry encoded in the large Nc limit for
baryons. A good example of this are the mass relations of
Ref. [1163].

5.6.4 Nucleon–nucleon interactions and nuclear physics

The study of nucleon–nucleon interactions is complicated
for kinematical reasons associated with the large nucleon
mass. There are two kinematic regimes of interest: one in
which the momentum transfers are independent of Nc and
the other in which the momentum transfers are of order
Nc – i.e. in which the velocities are independent of Nc.
Physical observables associated with nucleon–nucleon scat-
tering do not have a smooth large Nc in the regime in
which momentum transfers are of order N 0

c , but an analy-
sis based on a time-dependent Hartree picture suggests that
some scattering observables will have smooth large Nc lim-
its [1168] in the regime of momentum transfers of order
Nc. These observables do not include many standard scat-
tering observables such as phase shifts; the ones that have
smooth limits appear to be those in which one follows the
bulk flow of quantities of interest [1188]. Presumably the
total cross-section also has a smooth limit [1189]. There is
some predictive power for the spin and flavor dependence of
such observables owing to the contracted SU (4) symmetry
[1188,1189].

In the regime in which momentum transfers are of order
unity – the regime of relevance to nuclear structure – the
logic of Ref. [1168] implies that the nucleon–nucleon inter-
action strength is of order Nc, which is formally of the same
order as the nucleon mass, while its range is independent
of Nc. This implies that nuclear matter would be crystalline
at large Nc, with nucleons constrained to be near the min-
imum of the potential from other nucleons. This is radi-
cally different from what is seen nature, suggesting that a

1/Nc expansion around the large Nc limit is not a useful
approach to nuclear structure. Interestingly, however, if one
focuses solely on the spin-flavor structure of the nucleon–
nucleon potential – a quantity that is not directly physi-
cal – there is a hierarchy in the strength of various spin-
flavor contributions. This hierarchy is qualitatively similar
to what one would obtain from the contracted SU (4) spin-
flavor symmetry of large Nc QCD [1190,1191]. This behav-
ior is consistent with what one would expect if the nucleon–
nucleon force was described via meson exchanges, as has
been typically done in nuclear physics. Since the overall
potential strength at the one-meson exchange level is large
in some channels, consistency requires subtle cancellations
when multiple-meson exchange are included. Such cancella-
tions naturally occur due to the contracted SU (4) symmetry
[1192].

5.6.5 Other large Nc limits

The large Nc limit of QCD is an extrapolation from our world
at Nc = 3 to a large Nc world. However, that extrapolation is
not unique. The standard approach discussed above involves
keeping the number of flavors fixed while letting Nc go to
infinity. However, there is an alternative, the Venziano limit
[1193] in which the ratio of the number of colors to the num-
ber of flavors is held fixed as Nc →∞. The large Nc world
for these two limits are quite different.

There is yet another large Nc limit that exploits the
fact that at Nc = 3, the representation for fundamental
color and for the antisymmetric combination of two anti-
fundamental colors are identical (i.e. r is indistinguishable
from

(
gb − bg

)
/
√

2). However quarks with fundamental
color and with two-index antisymmetric color extrapolate
to large Nc quite differently – there are Nc distinct quark
colors for the former and Nc(Nc − 1)/2 ∼ N 2

c for the lat-
ter.

The large Nc limit based on quarks in the two-index anti-
symmetric representation, denoted QCD(AS), has remark-
able formal connections to supersymmetric QCD [1194–
1196]. Phenomenologically, QCD(AS) has scaling of meson
properties with Nc similar to those of glueballs; one impor-
tant difference between QCD(AS) at large Nc and the con-
ventional large Nc limit is that in QCD(AS) quantum num-
ber exotic tetraquarks are not forbidden; indeed, they are
required [1197]. The description of baryons for QCD(AS) is
in analogy to Witten’s but a somewhat new type of analy-
sis is required [1198]. Formally, the predictions for baryon
spectroscopy are distinct in QCD(AS) and QCD with quarks
in the fundamental representation [1199], but phenomeno-
logical predictions for both expansions work to the order
expected in describing real world data.
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5.7 OPE-based sum rules

SVZ sum rules, 1
MQ

expansion and all that
Mikhail Shifman

5.7.1 Preamble

Rewind to autumn of 1971. I am a student at ITEP in Moscow,
working on my Masters degree. The famous paper of Gerhard
’t Hooft [52] was published in Nuclear Physics in October,
but neither myself nor anybody else in ITEP immediately
noticed this ground-breaking publication. At that time I did
not even know what Yang–Mills theories meant. Now, when I
think of the inception of QCD, the memories of this paper and
its sequel [51] (issued in December of 1971) always come to
my mind. For me, psychologically this was the beginning of
the QCD era.

To give an idea of the scientific atmosphere at that time
(1972) I looked through the Proceedings of the 1972 Interna-
tional Conference On High-Energy Physics [1200]. Theoret-
ical talks were devoted to dual models (a precursor to string
theory), deep inelastic scattering and Bjorken scaling, current
algebra, e+e− → hadrons, etc. In three talks – by Zumino,
Bjorken and Ben Lee – the Weinberg-Salam model (a pre-
cursor to the present-day Standard Model) was reviewed.47

Ben Lee was the only person to refer to ’t Hooft’s publica-
tions [51,52]. The last talk of the conference summarizing
its major topics was delivered by Murray Gell-Mann. In this
talk Gell-Mann discusses, in particular, whether quarks are
physical objects or abstract mathematical constructs. Most
interesting for us is his analysis of the π0 → 2γ decay.
Gell-Mann notes that if quarks are fermions then the theo-
retically predicted amplitude is a factor of 3 lower than the
corresponding experimental result, but makes no statement
of the inevitability of the quark color.48

In October 1972 I was accepted to the ITEP graduate
school. My first paper on deep inelastic scattering in the
Weinberg-Salam model was completed in early 1973; simul-
taneously, I started studying Yang–Mills theories (in particu-
lar, the Faddeev–Popov quantization [1201]49) in earnest. At
the same time, somewhere far away, behind the Iron Curtain,

47 There is a curious anecdote I heard later: In December 1979, after the
Glashow–Weinberg–Salam Nobel Prize ceremony, a program was aired
on Swedish radio. At some point, Weinberg quoted a phrase from the
Bible. Salam remarked that it exists in the Quran too, to which Weinberg
reacted: “Yes, but we published it earlier!”
48 For me personally the following remark in his talk was a good les-
son for the rest of my career: “Last year the rate of K 0

L → μ+μ−
decay was reported to be lower than allowed by unitarity unless fantastic
hypotheses are concocted. Now the matter has become experimentally
controversial.” Alas…concocting fantastic hypotheses was the core of
my Masters thesis.
49 A longer and more comprehensible version appeared in Russian as
Kiev preprint ITP 67-36. In the beginning of the 1970s, it was translated

Callan and Gross searched for a theory with an ultraviolet
fixed point at zero. In July of 1973 Coleman and Gross sub-
mitted to PRL a paper asserting that “no renormalizable field
theory that consisted of theories with arbitrary Yukawa, scalar
or Abelian gauge interactions could be asymptotically free”
[1202]. Damn Iron Curtain! If Gross asked anyone from the
ITEP Theory Department he would have obtained the answer
right away. The above theorem was known to the ITEP the-
orists from the Landau time. For brevity I will refer to it as
the Landau theorem, although it was established by his stu-
dents rather than Landau himself. The general reason why
this theorem holds was also known – the Källen–Lehman
(KL) representation of the polarization operator plus unitar-
ity.

An explanatory remark concerning the Landau theorem
might be helpful here. For asymptotic freedom to take place
the first coefficient of the β function must be negative. The
sign of the one-loop graphs which determine the coupling
constant renormalization is in one-to-one correspondence
with the sign of their imaginary parts (this is due to the disper-
sion KL representation for these graphs). Unitarity implies
the positivity of the imaginary parts which inevitably leads
to the positive first coefficients in the β functions in renor-
malizable four-dimensional field theories based on arbitrary
Yukawa, scalar or Abelian gauge interactions. This situa-
tion is that of the Landau zero charge in the infrared rather
than asymptotic freedom. In Yang–Mills theories in physi-
cal ghost-free gauges some graphs have no imaginary parts
which paves the way to asymptotic freedom (see e.g. [1203]).

In fact, it is quite incomprehensible why asymptotic free-
dom had not been discovered at ITEP after ’t Hooft’s 1971
publication. In Ref. [1203] the reader can find a narrative
about this historical curiosity.

May 1973 should be viewed as the discovery of asymptotic
freedom [53,54]. That’s when the breakthrough papers of
Gross, Wilczek and Politzer were submitted – simultaneously
– to PRL. David Gross recollects [1202]:

We completed the calculation in a spurt of activ-
ity. At one point a sign error in one term convinced
us that [Yang–Mills] theory was, as expected, non-
asymptotically free. As I sat down to put it together and
to write up our results, I caught the error. At almost the
same time Politzer finished his calculation andwe com-
pared, through Sidney, our results. The agreement was
satisfying.

It took a few extra months for QCD to take off as the the-
ory of strong interactions. The events of the summer of 1973
that led to the birth of QCD are described by H. Leutwyler

Footnote 49 Continued
in English by B. Lee (NAL-THY-57, 1972). Apparently, in [52], [51] ’t
Hooft used the short version while I could use the longer one.
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in Sect. 1.1 of this Volume. To my mind, the final accep-
tance came with the November Revolution of 1974 – the
discovery of J/ψ and its theoretical interpretation as ortho-
charmonium.50 In the fall of 1973 we submitted a paper
[1205] explaining why the Landau theorem in four dimen-
sions fails only in Yang–Mills theory.

QCD and its relatives are special because QCD is the
theory of nature. QCD is strongly coupled in the infrared
domain where it is impossible to treat it quasiclassically –
perturbation theory fails even qualitatively. It does not cap-
ture the drastic rearrangement of the vacuum structure related
to confinement. The Lagrangian is defined at short distances
in terms of gluons and quarks, while at large distances of
the order of � Λ−1

QCD (where ΛQCD is the dynamical scale
of QCD, which I will refer to as Λ below) we deal with
hadrons, e.g. pions, ρ mesons, protons, etc. Certainly, the lat-
ter are connected with quarks and gluons in a divine way, but
this connection is highly nonlinear and non-local; even now,
50 years later, the full analytic solution of QCD is absent.

Non-perturbative methods were desperately needed.

5.7.2 Inception of non-perturbative methods

Four years before QCD Ken Wilson published a break-
through paper [30] on the operator product expansion (OPE)
whose pivotal role in the subsequent development of HEP
theory was not fully appreciated until much later. What is now
usually referred to as Wilsonian renormalization group (RG),
or Wilsonian RG flow, grew from this paper. The Wilsonian
paradigm of separation of scales in quantum theory was espe-
cially suitable for asymptotically free theories. Wilson’s for-
mulation makes no reference to perturbation theory, it has
a general nature and is applicable in the non-perturbative
regime too. The focus of Wilson’s work was on statistical
physics, where the program is also known as the block-spin
approach. Starting from microscopic degrees of freedom at
the shortest distances a, one “roughens” them, step by step,
by constructing a sequence of effective (composite) degrees
of freedom at distances 2a, 4a, 8a, and so on. At each given
step i one constructs an effective Hamiltonian, which fully
accounts for dynamics at distances shorter than ai in the coef-
ficient functions.

QCD required a number of specifications and adjustments.
Indeed, the UV fixed point in QCD is at αs = 0; hence,
the approach to this fixed point at short distances is very
slow, logarithmic rather than power-like, characteristic for
the αs �= 0 fixed point. In fact, it is not the critical regime at
the UV fixed point per se we are interested in but rather the

50 I should also mention a highly motivating argument due to S. Wein-
berg who proved [1204] that (in the absence of the U(1) current gluon
anomaly) mη′ ≤

√
3mπ . This argument seemingly was discussed dur-

ing ICHEP 74 in July 1974.

Fig. 110 The penguin
mechanism in flavor-changing
decays. Any of three heavy
quarks c, b or t can appear in the
loop

regime of approach to this critical point. Moreover, it was
not realized that (in addition to the dynamical scale Λ) the
heavy quarks provide an extra scale – the heavy quark mass
mQ – which must be included in OPE where necessary.

Surprisingly, in high-energy physics of the 1970s the
framework of OPE was narrowed down to a very limited
setting. On the theoretical side, it was discussed almost exclu-
sively in perturbation theory. On the practical side, its appli-
cations were mostly narrowed down to deep inelastic scat-
tering, where it was customary to work in the leading-twist
approximation.

The fact that the UV fixed point is at zero makes OPE
both more simple and more complicated than in the general
case. On one hand, the anomalous dimensions of all com-
posite local operators which might be relevant in the given
problem scale only logarithmically. On the other hand, slow
(logarithmic) fall off of “tails” instead of desired power-like
makes analytic separation of scales technically difficult.

I believe that we – Arkady Vainshtein, Valentin Zakharov
and myself – were the first to start constructing a QCD version
of OPE. The first step in this direction was undertaken in 1974
in the problem of strangeness-changing weak decays [1206,
1207] (currently known as the penguin mechanism in flavor-
changing decays). A mystery of ΔI = 1

2 enhancement in K
decays had been known for years (for a review see [1208]
and Sect. 13.3). A suggestion of how one could apply OPE
to solve this puzzle was already present in Wilson’s paper
[30]. Wilson naturally lacked particular details of QCD. The
first attempt to implement Wilson’s idea in QCD was made in
[1209,1210]. Although these papers were inspirational, they
missed the issue of a “new” OPE needed for QCD realities.
Seemingly, we were the first to address this challenge, more
exactly two of its features: mixed quark–gluon operators (in
[1206,1207] we introduced

Openg = s̄Lγμ
(
DνG

μν
)
dL

which is purely ΔI = 1
2 ) and coefficients logarithmically

depending on the charmed (i.e. heavy at that time) quark
mass. Currently, c, b, t quark masses appear in the pen-
guin operators (illustrated in Fig. 110), the latter two being
genuinely heavy. Through equations of motion the oper-
ator Openg reduces to a four-quark operator but its chi-
ral structure is different from conventional, namely, it con-
tains both left-handed and right-handed quark fields since
DνGμν ∼∑

q q̄γ
μq. Combined with another revolutionary
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Table 6 The lowest-dimension
operators in OPE. Γ is a generic
notation for combinations of the
Dirac γ matrices

Normal dim 3 4 5 6 6

Operator Oq = q̄q OG = G2
μν OqG = q̄σμνGμνq O4q = (q̄Γ q)2 O3G = GGG

finding of QCD, the extraordinary smallness of the u and d
quark masses, mu,d ∼ 5 MeV (see Sect. 1.1.15), the mixed
chiral structure of the emerging four-fermion operator pro-
vides the desired enhancement of the ΔI = 1

2 amplitude. It
took us over 2 years to fight a succession of referees for pub-
lication of Ref. [1207]. One after another, they would repeat
that mixed-chirality four-fermion operator in the considered
theory was complete nonsense. Currently, the penguin mech-
anism in flavor changing weak transitions is a basic theoretic
element for a large variety of such decays. As Vainshtein put
it [1208], “Penguins spread out but have not yet landed.”

Systematic studies of Wilsonian OPE in QCD can be
traced back to the summer of 1977 – that is when the gluon
condensate OG (see Table 6) was first introduced [1211].
Vacuum expectation values of other gluon and quark oper-
ators were introduced in Ref. [145], which allowed one to
analyze a large number of vacuum two- and three-point
functions, with quite nontrivial results for masses, coupling
constants, magnetic moments and other static characteris-
tics of practically all low-lying hadronic states of mesons
and baryons. A consistent Wilsonian approach requires an
auxiliary normalization point μ which plays the role of a
regulating parameter separating hard contributions included
in the coefficient functions and soft contributions residing
in local operators occurring in the expansion. The degree of
locality is regulated by the same parameter. “Hard” versus
“soft” means coming from the distances shorter than μ−1 in
the former case and larger than μ−1 in the latter.

After setting the foundation of OPE in QCD [145] we
were repeatedly returning to elaboration of various issues,
in particular, in the following works: [1212], [1213], and
[1214].

5.7.3 SVZ sum rules. Concepts

The 1998 review [1213] summarizes for the reader founda-
tions of the Shifman–Vainshtein–Zakharov (SVZ) sum rules
in a pedagogical manner. At short distances QCD is the the-
ory of quarks and gluons. Yang–Mills theory of gluons con-
fines. This means that if you have a heavy probe quark and
an antiquark at a large separation, a flux tube with a constant
tension develops between them, preventing their “individ-
ual” existence. In the absence of the probe quarks, the flux
tube can form closed contours interpreted as glueballs. This
phenomenon is also referred to in the literature as the area
law or the dual Meißner effect. Until 1994 the above picture
was the statement of faith. In 1994 Seiberg and Witten found

an analytic proof [1215,1216] of the dual Meißner effect in
N = 2 super-Yang–Mills.51 The Seiberg-Witten solution
does not apply to QCD, rather to its distant relative. The real
world QCD, with quarks, in fact has no area law (the gen-
uine confinement is absent) since the flux tubes break through
the quark–antiquark pair creation. Moreover, light quarks are
condensed, leading to a spontaneous breaking of chiral sym-
metry, a phenomenon shaping the properties of the low-lying
hadronic states, both mesonic and baryonic. The need to ana-
lytically understand these properties from first principles led
us to the development of the SVZ method.

The quarks comprising the low-lying hadronic states, e.g.
classical mesons or baryons, are not that far from each other,
on average. The distance between them is of order of Λ−1.
Under these circumstances, the string-like chromoelectric
flux tubes, connecting well-separated color charges, do not
develop and details of their structure are not relevant. Further-
more, the valence quark pair injected in the vacuum – or three
quarks in the case of baryons – perturb it only slightly. Then
we do not need the full machinery of the QCD strings52 to
approximately describe the properties of the low-lying states.
Their basic parameters depend on how the valence quarks of
which they are built interact with typical vacuum field fluc-
tuations.

We endowed the QCD vacuum with various condensates –
approximately a half-dozen of them – in the hope that this set
would be sufficient to describe a huge variety of the low-lying
hadrons, mesons and baryons. The original set included 53

the gluon condensate G2
μν , the quark condensate q̄q, the

mixed condensate q̄σμνGμνq, various four-quark conden-
sates q̄Γ qq̄Γ q, and a few others (see Table 6). Later this
set had to be expanded to address such problems as, say, the
magnetic moments of baryons.

Our task was to determine the regularities and parameters
of the classical mesons and baryons from a limited set of the
vacuum condensates. Figure 111 graphically demonstrates
the SVZ concept. On the theoretical side, an appropriate n-
point function is calculated as an operator product expansion
truncated at a certain order. In most problems only conden-
sates up to dimension 6 (Table 6) are retained. In the “exper-
imental” part the lowest-lying meson (or baryon) is singled

51 More exactly, confinement through the flux tube formation was
proven in the low-energy limit of this theory upon adding a small defor-
mation term breaking N = 2 down to N = 1.
52 Still unknown.
53 A meticulous writer would have used the notation

〈
G2

μν

〉
, etc. but I

will omit bra and ket symbols where there is no menace of confusion.
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Fig. 111 A two-point correlation function in the QCD vacuum. The
left side is the OPE sum with a finite number of the lowest-dimension
operators ordered according to their normal dimensions. The right side
is the sum over mesons with the appropriate quantum numbers. The
ground state in the given channel is singled out. The excited states are
accounted for in the quasiclassical approximation. We define a positive
variable Q2 = −q2 and a sliding μ2 parameter used as a separation
parameter in OPE. For better convergence a Borel transformation is
applied as explained below

out, while all higher states are represented in the quasiclassi-
cal approximation. Above an effective “threshold” s0, where
the spectral density becomes smooth, we apply quark–hadron
duality to replace it by a perturbative spectral density. Then
the parameter s0 is fitted along with the parameters of the
lowest lying state – its mass and residue.

Acting in this way, one can determine the parameters
f0 and m0 defined in Fig. 111 and their analogs in other
problems. Of course, without invoking the entire infinite set
of condensates one can only expect to obtain the hadronic
parameters in an admittedly approximate manner.

5.7.4 Borelization

Analyzing the sum rules displayed in Fig. 111 we realized
that their predictive power was limited – summation on both
sides of the equation does not converge fast enough. On the
right-hand side the contribution of high excitations is too
large – the lowest lying states are “screened” – because the
weight factors fall off rather slowly. Likewise, to achieve
reasonable accuracy on the left-hand side one would need
to add operators other than those collected in Table 6. At
that time we knew next to nothing about higher-dimension
operators, of dimension � 7. The Borel transform came to
the rescue.

The Borel transformation is a device well-known in math-
ematics. If one has a function f (x) expandable in the Taylor
series, f (x) = x

∑
n anx

n with the coefficients an which
do not fall off sufficiently fast, one can instead introduce its
Borel transform

B f = x
∑

n

an
n! x

n (5.95)

and then, if needed, reconstruct f .54

54 The Borel transform is closely related to the Laplace transform.

Fig. 112 Graph showing four loops renormalizing a gluon line (rep-
resented by the dotted line). A renormalon is the sum over n of such
diagrams with n loops

If we apply this procedure to the sum rule in Fig. 111 we
obtain for a given hadronic state i

B
f 2
i

m2
i + Q2

= B
f 2
i

Q2

∑

n

(−1)n
[m2

i

Q2

]n

→ f 2
i

Q2

∑

n

(−1)n

n!
[m2

i

Q2

]n

= f 2
i

Q2 exp

(

−m2
i

Q2

)

→ f 2
i

M2 exp

(

− m2
i

M2

)

(5.96)

where, in the final step (for historical reasons), I replaced Q2

by a Borel parameter M2. If M2 can be chosen sufficiently
small, higher excitations are exponentially suppressed.

Simultaneously, we improve the convergence of OPE on
the left-hand side by applying the same operator B. If the
operator 〈On〉 has dimension 2dn , then the Borell transfor-
mation of the left hand side yields

B
∑

n

1

(Q2)dn
〈On〉 →

∑

n

1

(dn − 1)!
1

(M2)dn
〈On〉, (5.97)

where I have again replaced Q2 by the Borel parameter M2.
Since the expansion (5.97) goes in inverse powers of M2,
it is necessary to keep M2 large enough. The two require-
ments on M2 seem contradictory. However, for all “typical”
resonances, such as say ρ mesons, they can be met simul-
taneously [145,1217,1218] in a certain “window.” The only
exception is the J P = 0± channel. There are special reasons
why 0± mesons are exceptional, see [1219].

5.7.5 Practical version of OPE

At the early stages of the SVZ program the QCD practi-
tioners often did not fully understood the concept of scale
separation in the Wilsonian OPE. It was generally believed
that the coefficients are fully determined by perturbation the-
ory while non-perturbative effects appear only in the OPE
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operators.55 This belief led to inconsistencies which revealed
themselves e.g. in the issue of renormalons (see below). A
set of graphs represented by renormalons is constructed from
a single gluon exchange by inserting any number of loops in
the gluon line like beads in a necklace (Ref. [1220]). Being
treated formally this contribution, shown in Fig. 112, diverges
factorially at high orders. I vividly remember that after the
first seminar on SVZ in 1978 Eugene Bogomol’nyi asked
me each time we met: “Look, how can you speak of power
corrections in the n-point functions at large Q2 if even the
perturbative expansion (i.e. the expansion in 1/ log(Q2/Λ2))
is not well defined? Isn’t it inconsistent?” I must admit that
at that time my answer to Eugene was somewhat evasive.

The basic principle of Wilson’s OPE – the scale separa-
tion principle – is “soft versus hard” rather than “perturba-
tive versus non-perturbative.” Being defined in this way the
condensates are explicitly μ dependent. All physical quan-
tities are certainly μ independent; the normalization point
dependence of the condensates is compensated by that of the
coefficient functions – see Fig. 111.

The problem of renormalons disappears once we intro-
duce the normalization point μ. With μ � Λ, there is no
factorial divergence in high orders of perturbations theory.
Renormalons conspire with the gluon condensates to pro-
duce, taken together, a well-defined OPE. The modern con-
struction goes under the name of the “renormalon conspir-
acy”; it is explained in detail in my review [1214]. I hasten
to add, though, that the renormalons acquire a life of their
own in those cases in which OPE does not exist. Qualita-
tively, they can shed light on scaling dimensions of non-
perturbative effects. The most clear-cut example of this type
is the so-called “pole mass of the heavy quarks” [1221,1222]
and its relation to a theoretically well-defined mass parameter
[1223].

In some two-dimensional solvable models exact OPE can
be constructed which explicitly demonstrates the μ depen-
dence of both the coefficient functions and the condensates
in the Wilsonian paradigm and its cancellation in the phys-
ical quantities (for a recent study see e.g. [1224]). Needless
to say, if QCD was exactly solved we would have no need in
the SVZ sum rules.

We had to settle for a reasonable compromise, known as
the practical version of OPE. In the practical version we
calculate the coefficient functions perturbatively keeping a
limited number of loop corrections. The condensate series is
truncated too. The condensates are not calculated from first
principles; rather a limited set is determined from indepen-
dent data.

The practical version is useful in applications only pro-
vided μ2 can be made small enough to ensure that the “per-

55 Unfortunately, this misconception lasted through the 1980s and was
visible in the literature even in the 1990s and later.

turbative” contributions to the condensates are much smaller
than their genuine (mostly non-perturbative) values. At the
same time,αs(μ2)/π must be small enough for the expansion
in the coefficients to make sense. The existence of such “μ2

window” is not granted a priori and is a very fortunate feature
of QCD. We did observe this feature empirically in almost
all low-lying hadrons [1225,1226].56 At the same time, we
identified certain exceptional channels revealing unforeseen
nuances in hadronic physics [1219].

5.7.6 Implementation of the idea and results

After the strategic idea of quark and gluon interaction with the
vacuum medium became clear we delved into the uncharted
waters of microscopic hadronic physics. Remember, in 1977
nobody could imagine that basic hadronic parameters for
at least some hadrons could be analytically calculated, at
least approximately. As a show-case example we chose the
most typical mesons, ρ and φ, to calculate their couplings to
the electromagnetic current and masses. The agreement of
our results with experiment was better than we could a pri-
ori expect. At first we were discouraged by a “wrong” sign
of the gluon condensate term in the theoretical part of the
appropriate SVZ sum rule. We suddenly understood that this
sign could be compensated by the four-quark condensate –
a real breakthrough. In November of 1977 we published a
short letter [1211] which still missed a number of elements
(e.g. Borelization) developed and incorporated later, one by
one. We worked at a feverish pace for the entire academic
year, accumulating a large number of results for the hadronic
parameters. All low-lying meson resonances built from the
u, d, s quarks and gluons were studied and their static prop-
erties determined from SVZ: masses, coupling constants,
charge radii, ρ–ω mixing, and so on, with unprecedented
success. In summer of 1978, inspired by our progress, we
prepared a number of preprints (I think, eight of them simul-
taneously57) and submitted to ICHEP-78 in Tokyo. Clearly
none of us were allowed to travel to Tokyo to present our
results.

I cannot help mentioning an incident that occurred in the
spring of 1978 when we were mostly done with this work. The
episode may have been funny were it not so nerve-wracking.
When we decided that the calculational stage of the work was
over, I collected all my drafts (hundreds of sheets of paper
with derivations and math expressions), I organized them in
proper order, selected all expressions we might have needed
for the final draft of the paper and the future work, meticu-

56 Theoretical understanding of the roots of this phenomenon remains
unclear. Seemingly, it has no known analogues in two-dimensional mod-
els.
57 In the journal publication they were combined in three articles occu-
pying the whole issue of Nucl. Phys. B147, N o5, 1979.
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lously rewrote them in a voluminous notebook (remember,
we had no access to photocopying machines), destroyed the
original drafts, put the notebook in my briefcase and went
home. It was about midnight, and I was so exhausted that I
fell asleep while on the metro train. A loud voice announc-
ing my stop awoke me, and I jumped out of the train, leav-
ing the briefcase were it was, on the seat. By the time I
realized what had happened the train was gone, and gone
with it forever my calculations …I have never recovered my
briefcase with the precious notebook…After a few agoniz-
ing days it became clear that the necessary formulas and
expressions had to be recovered anew. Fortunately, Vain-
shtein and Zakharov had kept many of their own deriva-
tions. Vainshtein never throws away anything as a matter of
principle. Therefore, the problem was to dig out “informa-
tive” sheets of paper from the “noise” (this was hindered
by the fact that Vainshtein was in Novosibirsk while we
were in Moscow). Part of my drafts survived in the drawers
of a huge desk that I had inherited from V. Sudakov. Bet-
ter still, many crucial calculations were discussed so many
times by us, over and over again, that I remembered them
by heart. Nevertheless, I think it took a couple of uneasy
weeks to reconstruct in full the contents of the lost note-
book.

The SVZ method was further developed by many follow-
ers (e.g. the so-called light-cone sum rules for form-factors),
see [1227] and [1228]. A broad picture of the hadronic world
was obtained by the 1980s and later [1229]. Today the pio-
neering SVZ paper is cited 6000+ times. Until 1990s, when
lattice QCD based on numeric calculations, started approach-
ing its maturity, the SVZ method was the main tool for ana-
lyzing static hadronic properties.

5.7.7 Reliability and predictive power

The SVZ method is admittedly approximate. Yet, it is not a
model in the sense that it cannot be arbitrarily bent to accom-
modate “wrong” data. It is instructive to narrate here the story
of an alleged discovery of an alleged “paracharmonium”
referred to as X (2.83) in January of 1977 [1230]. It was
widely believed then that X (2.83) was the 0− ground sate of
c̄c quarks,ηc. If this was the case the mass difference between
J/ψ and ηc would be close to 270 MeV. Shortly after, the
interpretation of X (2.83) as ηc was categorically ruled out
by the SVZ analysis [1231] which predicted that the above
mass difference must be 100 ± 30 MeV. Two years later, a
new experiment [1232] negated the existence of the X (2.83)
state. In the very same experiment the genuine paracharmo-
nium was observed at 2.98±0.01 GeV, in perfect agreement
with [1231]. For us this was a triumph and a lesson – if one
believes in a theory one should stand for it!

5.7.8 OPE-based construction of heavy quark mass
expansion

In the 1980s and early 1990s OPE was generalized to cover
theoretical studies of mixed heavy-light hadrons, i.e. those
built from light, q, and heavy, Q, flavors. In the 1990s those
who used 1/mQ expansion in theoretical analysis of Qq̄
and Qqq systems numbered in the hundreds. A large range
of practical physics problem related to Qq̄ and Qqq sys-
tems were solved. Lattice analyses of such systems even now
remain hindered, and in many instances the 1/mQ expansion
remains the only reliable theoretical method.

As I have mentioned in the second paragraph of Sect. 5.7.2,
heavy quarks in QCD introduce an extra scale, mQ . To qual-
ify as a heavy quark Q the corresponding mass termmQ must
be much larger than ΛQCD. The charmed quark c can be con-
sidered as heavy only with some reservations while b and
t are bona fide heavy quarks. The hadrons composed from
one heavy quark Q, a light antiquark q̄ , or a “diquark” qq,
plus a gluon cloud (which also contains light quark–antiquark
pairs) – let us call them HQ – can be treated in the framework
of OPE. The role of the cloud is, of course, to keep all the
above objects together, in a colorless bound state. The light
component of HQ , its light cloud, has a complicated struc-
ture; the soft modes of the light fields are strongly coupled and
strongly fluctuate. Basically, the only fact which we know for
sure is that the light cloud is indeed light; typical excitation
frequencies are of order ofΛ. One can try to visualize the light
cloud as a soft medium.58 The heavy quark Q is then sub-
merged in this medium. The latter circumstance allows one
to develop a formalism similar to SVZ in which the soft QCD
vacuum medium is replaced by that of the light cloud. As a
result, an OPE-based expansion in powers of 1/mQ emerges
(see Fig. 113). When heavy quarks are in soft medium the
heavy quark–antiquark pair creation does not occur and the
field-theoretic description of the heavy quark becomes redun-
dant. A large “mechanical” part in the x dependence of Q(x)
can be a priori isolated, Q(x) = exp(−imQt)Q̃(x). The
reduced bispinor field Q̃(x) describes a residual heavy quark
motion inside the soft cloud; the heavy quark mass appears
only in the form of powers of 1/mQ (first noted in 1982).

Comprehensive reviews on the OPE-based heavy quark
theory exist [711,1223,1235,1236]. There the reader will
find exhaustive lists of references to original publications.
Therefore, in my presentation below I will be brief, with a
focus on a historical aspect, as I remember it, and limit myself
to a few selected references.

In the early 1980s abundant data on the meson and baryon
HQ states started to appear. Theoretical understanding of the
total decay rates beyond the free-quark calculations became a

58 Hard gluons do play a role too. They have to be taken into account
in the coefficient functions as will be mentioned In Sect. 5.7.10.
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Fig. 113 1/mQ expansion for a HQ weak inclusive decay rate (see Eq.
(5.99)). Depicted are two operators, the leading Q̄Q and a subleading
(Q̄q3)(q̄3Q). Both are sandwiched between the heavy hadron states
〈HQ | and |HQ〉 and the decay rate is determined by the imaginary part.
The grey area depicts the soft quark–gluon cloud. Adapted from Refs.
[1233,1234]

major goal. This challenge paved the way to the beginning of
the 1/mQ expansion in HQ hadron physics in the mid 1980s.
The decay rate into an inclusive final state f can be written in
terms of the imaginary part of a forward scattering operator
(the so-called transition operator) evaluated to second order
in the weak interactions [1233,1234],

ImT̂ (Q→ f→Q)= Im
∫

d4x i T
(
LW (x)L†

W (0)
)

(5.98)

where T denotes the time ordered product and LW is the
relevant weak Lagrangian at the normalization point μ ∼
mQ . The factor exp(−imQt) mentioned above is implicit in
Eq. (5.98). Descending to μ � mQ one arrives at the OPE
expansion

Γ (HQ → f ) = G2
F |VCKM|2m5

Q

∑

i

c̃( f )i (μ)
〈HQ |Oi |HQ〉μ

2MHQ

∝
[

c( f )3 (μ)
〈HQ |Q̄Q|HQ〉(μ)

2MHQ

+c( f )5 (μ)m−2
Q

〈HQ |Q̄ i
2σGQ|HQ〉(μ)

2MHQ

+
∑

i

c( f )6,i (μ)m−3
Q
〈HQ |(Q̄Γi q)(q̄Γi Q)|HQ〉(μ)

2MHQ

+O(1/m4
Q)+ · · ·

]
, (5.99)

where Γi represent various combinations of the Dirac γ

matrices, see also Table 6. In SVZ we dealt with the vac-
uum expectation values of relevant operators while in the
heavy quark physics the relevant operators are sandwiched
between HQ states.

5.7.9 Applications

The expansion (5.99) allowed us to obtain [1233,1234] the
first quantitative predictions for the hierarchies of the life-
times of Qq̄ mesons and Qqq baryons (Q was either c or
b quark) in the mid-1980s – another spectacular success of

the OPE-based methods. The dramatic story of ηc narrated
in Sect. 5.7.7 repeated itself. With the advancement of exper-
iment in the late 1990s, a drastic disagreement was allegedly
detected in the ratio τ(Λb)/τ(Bd)exp = 0.77 ± 0.05 com-
pared to the theoretical prediction

τ(Λb)/τ(Bd)theor = 0.9± 0.03

(e.g. [1223]). In the 2010s the Λb lifetime was remeasured
shifting the above experimental ratio up to 0.93±0.05. Hur-
rah!

In the mid-1980s, at the time of the initial theoretical stud-
ies of the Hc and Hb lifetime hierarchies [1233,1234], next
to nothing was known about heavy baryons. Since then enor-
mous efforts were invested in improving theoretical accu-
racy both in mesons and baryons in particular by includ-
ing higher-dimension operators in the inverse heavy quark
mass expansion and higher-order αs terms in the OPE coef-
ficients. The status of the Inverse Heavy Quark Mass Expan-
sion (IHQME) for HQ lifetimes as of 2014 was presented
in the review [1237]. The advances reported there and in
more recent years cover more precise determination of the
matrix elements of four-quark operators via HQET sum rules
[1238], calculations of the higherαs corrections, in particular,
α3
s corrections to the semileptonic b quark decay [1239], the

first determination of the Darwin coefficient for non-leptonic
decays [1240,1241], etc. Comparison with the current set of
data on τ(Hc) can be found in [1242]. In this context I should
also mention an impressive publication [1243] (see also refer-
ences therein) which, in addition to a comprehensive review
of the OPE-based analysis of the Hc lifetimes, acquaints the
reader with a dramatic story of the singly charmed baryon
hierarchy. Indeed, according to PDG-2018 the lifetime ofΩ0

c
is 69±12 fs while PDG-2020 yields τ(Ω0

c ) = 268±24±10
fs! The jump in the Ω0

c lifetime by a factor of 3 to 4 compared
to the previous measurements was reported by LHCb [1244–
1246].59 With these new data the observed hierarchy of life-
times changes: Ω0

c moves from the first place (the shortest
living Hc baryon) to the third. The question arises whether
the OPE-based theory can explain the current experimental
situation τ(Ξ0) < τ(Λ+c ) < τ(Ω0

c ) < τ(Ξ+). In [1243] it
is argued that the answer is “yes, it is possible” (see Fig. 5
in [1243]) provided one takes into account 1/m4

c contribu-
tions due to four-quark operators and αs corrections in the
appropriate coefficient functions.60

59 Of course, this could happen only because (presumably) statistical
and/or systematic errors in the previous measurements were grossly
underestimated. It is also curious to note that 30 years ago Blok and I
argued [1247, Secs. 4.2 and 6] that Ω0

c could be the longest living singly
charmed baryon due to its ss spin-1 diquark structure.
60 The four-quark operators introduced in [1233,1234] responsible for
the Pauli interference yield corrections O(1/m3

c ), see Eq. (5.99). The
authors of [1243] go beyond this set.
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I should emphasize that the theoretical accuracy in the Hc

family is limited by the fact that the expansion parameter
ΛQCD/mc is not small enough. Even including sub-leading
contributions will hardly provide us with high-precision the-
oretical predictions. For Hc states IHQME at best provides
us with a semi-quantitative guide. On the other hand, in the
theory of Hb decays one expects much better precision.

5.7.10 Around 1990s and beyond

(1) Heavy quark symmetry when mQ →∞
The light-cloud interpretation as in Fig. 113 immediately
implies that at zero recoil the (appropriately normalized)
B → D formfactors reduce to unity. This is called
the “small velocity (SV) limit theorem” [1248,1249]. The
above“unification” is similar to the vector charge non-
renormalization theorem at zero momentum transfer, say, for
the ūγ μd current. The D and B masses are very far from
each other. One has to subtract the mechanical part of the
heavy quark mass in order to see that all dynamical parame-
ters are insensitive to the substitution Q1 ↔ Q2 in the limit
mQ1,2 → ∞, with the SV limit ensuing at zero recoil. Per-
haps, this is the reason why it was discovered so late. The
next step was made by Isgur and Wise who generalized this
symmetry of the zero-recoil point by virtue of the Isgur-Wise
function [1250,1251].

(2) HQET
Heavy quark effective theory which emerged in the 1990s
[704,1252] formalizes and automates a number of aspects
of the generic 1/mQ expansion. In fact, it immediately fol-
lows from the construction similar to (5.99). Simplified rules
of behavior proved to be very helpful for QCD practitioners
in the subsequent development of various applications. In
HQET the reduced field Q̃ is treated quantum-mechanically,
its non-relativistic nature is built in, and the normalization
point μ is � mQ from the very beginning.61 Applying the
Dirac equation to eliminate small (lower) components in
favor of the large components it is easy to derive the expan-
sion of L0

heavy, up to terms 1/m2
Q ,

L0
heavy = Q̄(i �D − mQ)Q

= Q̄
1+ γ0

2

(

1+ (σπ)2

8m2
Q

)[

π0 − 1

2mQ
(πσ )2 −

− 1

8m2
Q

(
−( �D �E)+ 2σ · �E × π

)
]

61 I personally prefer to consider the heavy quark expansions directly
in full QCD in the framework of the Wilson OPE bypassing the inter-
mediate stage of HQET.

×
(

1+ (σπ)2

8m2
Q

)
1+ γ0

2
Q + O

(
1

m3
Q

)

,

(5.100)

where σ denote the Pauli matrices and

(πσ )2 = π2 + σ �B,
�E and �B denote the background chromoelectric and chro-
momagnetic fields, respectively. Moreover, the operator πμ

is defined through

i DμQ(x) = e−imQvμxμ
(
mQvμ + i Dμ

)
Q̃(x)

≡ e−imQvμxμ
(
mQvμ + πμ

)
Q̃(x) (5.101)

where vμ is the heavy quark four-velocity. The set of opera-
tors presented in (5.100) plays the same basic role in 1/mQ

expansion as the set in Table 6 in SVZ sum rules.
In the remainder of this section I will briefly mention some

classic problems with heavy quarks which were successfully
solved in the given paradigm.

(3) CGG/BUV theorem
Up to order 1/m2

Q all inclusive decay widths of the HQ

mesons coincide with the parton model results for the Q
decay [1253,1254],

Γ = Γ0

(

1− μ2
π

2m2
Q

)

, μ2
π =

1

2MHQ

〈HQ |Q̄ �π2Q|HQ〉

(5.102)

where Γ0 is the parton model result. There are no corrections
O(1/mQ). This is known as the CGG/BUV theorem.

(4) Spectra and line shapes
Lepton spectra in semileptonic HQ decays were derived in
[1255]. The leading corrections arising at the 1/mQ level
were completely expressed in terms of the difference in the
mass of HQ and Q. Nontrivial effects appearing at the order
1/m2

Q were shown to affect mainly the endpoint region; they
are different for meson and baryon decays as well as for
beauty and charm decays.

The theory of the line shape in HQ decays, such as B →
Xsγ where Xs denotes the inclusive hadronic state with the s
quark, resembles that of the Mössbauer effect. It is absolutely
remarkable that for 10 years there were no attempts to treat
the spectra and line shapes along essentially the same lines
as it had been done in deep inelastic scattering (DIS) in the
1970s. Realization of this fact came only in 1994; technical
implementation of the idea was carried out in [1256,1257],
and [1258].

(5) Hard gluons
Hard-gluon contributions special for the heavy quark the-
ory result in powers of the logarithms αs log

(
mQ/μ

)
. They

determine the coefficients ci in Eq. (5.99) through the anoma-
lous dimensions of the corresponding operators. They were
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discovered in [1259,1260] and were called the hybrid loga-
rithms. In HQET they are referred to as matching logarithms.
(6) In conclusion
Concluding the heavy quark portion I should add that Kolya
Uraltsev (1957–2013), one of the major contributors in heavy
quark theory died in 2013 at the peak of his creative abilities
(see [1220]).

Concerning the OPE-based methods in QCD in general,
I would like to make an apology to the many authors whose
works have not been directly cited. The size limitations are
severe. The appropriate references are given in the review
papers listed in the text above.

Just for the record, a couple of reviews which are tangen-
tially connected to the topic of the present article are given
in Refs. [1261] and [1262].

5.7.11 Recent developments unrelated to the OPE-based
methods

Quantum field theories from the same class as QCD are
now experiencing dramatic changes and rapid advances in
a deeper understanding of anomalies. I want to mention two
crucial papers: [1263] and [1264]. The latter demonstrates
that at θ = π there is a discrete ’t Hooft anomaly involv-
ing time reversal and the center symmetry. It follows that at
θ = π the vacuum cannot be a trivial non-degenerate gapped
state.

5.8 Factorization and spin asymmetries

Jianwei Qiu

5.8.1 QCD factorization

Hadrons, such as the proton, neutron and pion, are relativis-
tic bound states of strongly interacting quarks and gluons of
QCD. Without being able to see any quark or gluon directly in
isolation, owing to the color confinement of QCD, it has been
an unprecedented intellectual challenge to explore and quan-
tify the internal structure of hadrons in terms of their con-
stituents, quarks and gluons, and the emergence of hadrons
from quarks or gluons. Actually, the QCD color interaction
is so strong at a typical hadronic scale O(1/R) with a hadron
radius R ∼ 1 fm that any scattering cross section with identi-
fied hadron(s) cannot be calculated fully in QCD perturbation
theory.

QCD factorization [242] has been developed to describe
high energy hadronic scattering with a large momentum
transfer Q � 1/R ∼ ΛQCD by taking the advantage of the
asymptotic freedom of QCD by which the color interaction
becomes weaker and calculable perturbatively at short dis-
tances. QCD factorization provides a controllable and con-

Fig. 114 a Sketch for scattering amplitude of inclusive DIS. b Leading
order contribution to inclusive DIS cross section in its cut diagram
notation

sistent way to approximate QCD contributions to good or
factorizable hadronic cross sections by demonstrating

– all process-dependent nonperturbative contributions to
these good cross sections are suppressed by powers of
ΛQCD/Q, which could be neglected if the hard scale Q
is sufficiently large,

– all factorizable nonperturbative contributions are process
independent, representing the characteristics of identified
hadron(s), and

– the process dependence of factorizable contributions is
perturbatively calculable from partonic scattering at the
short-distance.

With our ability to calculate the process-dependent short dis-
tance partonic scatterings perturbatively at the hard scale
Q, the prediction of QCD factorization follows when cross
sections with different hard scatterings but the same non-
perturbative long-distance effect of identified hadron are
compared. QCD Factorization also supplies physical con-
tent to these perturbatively uncalculable, but universal long-
distance effects of identified hadrons by matching them to
hadronic matrix elements of active quark and/or gluon oper-
ators, which could be interpreted as parton distribution or
correlation functions of the identified hadrons, and allows
them to be measured experimentally or by numerical simu-
lation.

Inclusive scattering with one identified hadron
The deeply inelastic scattering (DIS) between a lepton e of
momentum l and a hadron h of momentum p, e(l)+h(p)→
e(l ′)+ X , as shown in Fig. 114a where l ′ is scattered lepton
momentum and X represents all possible final states, is an
inclusive scattering with one identified hadron. With a large
momentum transfer,q = l−l ′ and Q ≡ √−q2 � ΛQCD, the
DIS experiment at SLAC in 1969 discovered the point-like
spin-1/2 partons/quarks inside a proton [110], which helped
the discovery and formulation of QCD.

For inclusive DIS with two characteristic scales: Q(�
ΛQCD) and ΛQCD, QCD factorization is to consistently sep-
arate QCD dynamics taking place at these two distinctive
scales by examining scattering amplitudes in terms of general
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Fig. 115 a Pinch surface for
inclusive DIS with collinear and
longitudinally polarized gluons
(curly lines) and soft gluons
(dashed lines). b Leading power
factorized contribution to
inclusive DIS with all collinear
and longitudinally polarized
gluons detached from the hard
part H and reconnected to the
gauge links

properties of Feynman diagrams in QCD perturbation theory.
This leads to a factorization formalism, which is an approxi-
mation up to corrections suppressed in powers of ΛQCD/Q.
For example, considering the leading order (LO) contribution
to the inclusive DIS, as presented in Fig. 114b in its cut dia-
gram notation, graphical contributions to the cross sections
are represented by the scattering amplitude to the left of the
final state cut (the red thin line) and the complex conjugate
amplitude to the right. The scattering σ̂LO(Q, k) between the
lepton of momentum l and a quark (or a parton) of momen-
tum k, is taking place at the hard scale Q, while the dynam-
ics describing the quark inside the hadron, J (k, p), is at the
hadronic scale 1/R ∼ ΛQCD. The validity of such perturba-
tive QCD factorization requires the suppression of quantum
interference between the dynamics taking place at these two
different momentum scales. This in turn requires that the
dominant contributions to the factorized formalism should
necessarily come from the phase space where the active par-
ton(s) linking the dynamics at two different scales are forced
onto their mass shells, and are consequently long-lived com-
pared to the time scale of the hard collision at the scale Q.
This requirement is naturally satisfied for the LO contribution
in Fig. 114b,

σLO
DIS ∝

∫
d4k

[

σ̂LO(Q, k)
1

k2 + iε
J (k, p)

1

k2 − iε

]

≈
∫

dk+

2k+
d2kT σ̂LO(Q, k̂)

×
∫

dk2 1

k2 + iε
J (k, p)

1

k2 − iε
+O

[
Λ2

QCD

Q2

]

(5.103)

where the light-quark mass was neglected, and the active
quark of momentum k is perturbatively pinched to be on-
shell, k2 ≈ k̂2 = 0 with

k̂ =
(

k+,
k2
T

2k+
, �kT

)

in the notation of light-cone coordinates, leading to a fac-
torization formalism (see Eq. (5.103)) with all perturbatively

pinched poles absorbed into the nonperturbative function of
the identified hadron.

However, beyond the LO inclusive DIS, all internal loop-
momentum integrals to any scattering amplitude are defined
by contours in complex momentum space, and it is only
at momentum configurations where some subset of loop
momenta are pinched that the contours are forced to or near
mass-shell poles that correspond to long-distance behavior.
The importance of such pinched surfaces in multidimen-
sional momentum space was identified in the Libby-Sterman
analysis [1265,1266] that categorized all loop momenta
into three groups: hard, collinear, and soft, along with the
reduced diagrams by contracting off-shell lines to points,
from which factorization formalisms can be derived. As
shown in Fig. 115a for inclusive DIS, the identified hadron
is associated with a group of collinear parton lines, and at
the leading power, one physically polarized collinear parton
plus infinite longitudinally polarized collinear gluons (curly
lines) link the identified hadron to the hard part, H , in which
all parton lines are off-shell by the hard scale Q. At the same
time, the soft gluon lines (dashed lines in Fig. 115a) can
attach to both the hard and collinear lines of the identified
hadron. Since all parton propagators in H are off-shell by Q,
a soft gluon attachment to any of these lines in H is neces-
sarily to increase the number of off-shell propagators in H ,
and effectively suppresses the hard part by an inverse power
of Q, making the contribution power suppressed. Therefore,
we do not need to consider soft contributions to the inclusive
DIS cross section at the leading power in 1/Q expansion.

The collinear and longitudinally polarized gluons have
their polarization vectors proportional to their momenta in a
covariant gauge. By applying the Ward Identity, all attach-
ments of collinear and longitudinally polarized gluons to the
hard part H can be detached and reconnected to the gauge
link pointing to the “−” light-cone direction if the identified
hadron is moving in the “+” light-cone direction [242,1267],
as sketched in Fig. 115b. After taking the leading power con-
tribution from the spinor trace of the active quark line in
Fig. 115b [1267,1268], the inclusive DIS cross section at the
leading power can be factorized as [1269–1271]
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E ′
dσDIS

eh→eX

d3l ′
(l, p; l ′) =

∑

f=q,q̄,g

∫
dx φ f/h(x, μ

2)

× E ′
dσ̂e f→eX

d3l ′
(l, k̂; l ′, μ2)+O

[
Λ2

QCD

Q2

]

(5.104)

where k̂ ≡ xp+, l ′T ∼ Q � ΛQCD, and E ′dσ̂e f→eX/d3l ′
is the short-distance part of DIS cross section on a par-
ton state of flavor f and collinear momentum fraction x
of the colliding hadron, with its long-distance contributions
to the cross section systematically absorbed into the non-
perturbative functions φ f/h(x, μ2), which are defined in
terms of hadronic matrix elements of active parton opera-
tors [1272]. For example, for an unpolarized active quark,

φq/h(x, μ
2) =

∫
dξ−

2π
eixp

+ξ−〈h(p)|ψq(0)
γ+

2

×W[0,ξ−]ψq(ξ
−)|h(p)〉, (5.105)

where W[0,ξ−] = Pexp
[
ig

∫ ξ−
0 dη−A+(η−)

]
is the gauge

link. The φ f/h(x, μ2) carries nonperturbative information of
the identified hadron, and is referred as an universal parton
distribution function (PDF) for finding a parton of flavor f
inside a colliding hadron h, carrying its momentum fraction
x , probed at a hard factorization scale μ ∼ Q. PDFs are
discussed in more detail in Sect. 10.2.

With the precise definition of φ f/h(x, μ2), the QCD fac-
torization formalism, such as the one in Eq. (5.104), pro-
vides a systematic way to calculate the short-distance par-
tonic scattering, E ′dσ̂e f→eX/d3l ′, in QCD perturbation the-
ory. By applying the factorization formalism in Eq. (5.104)
to a parton state of flavor f , |h(p)〉 → | f (p)〉, we can use
perturbation theory to calculate

E ′
dσ̂e f→eX

d3l ′

order-by-order in powers of the strong coupling constant
αs by perturbatively calculating the DIS cross section on a
parton of flavor f on the left of Eq. (5.104), and PDFs of
the same parton on the right with the collinear divergence
regularized. QCD factorization ensures that the regularized
collinear divergence of the partonic scattering cross section
on the left-hand-side of Eq. (5.104) will be exactly cancelled
by the regularized collinear divergence of the PDFs of the
same parton on the right [1267].

The inclusive DIS cross section can be physically mea-
sured in experiments and should not depend on how we
describe it in terms of QCD factorization, or the choice of
factorization scale μ. That is, we require

dσeh→eX/d logμ2 = 0,

Fig. 116 a Sketch for scattering amplitude of inclusive single hadron
production in high energy e+e− collisions. b Leading order contribution
to inclusive single hadron production in its cut diagram notation

Fig. 117 a Sketch for scattering amplitude of Drell–Yan production
of a massive lepton pair. b Leading order contribution to the Drell–Yan
cross section in its cut diagram notation

which implies evolution equations of PDFs, known as the
DGLAP equations [87,230,232,233]

dφ f/h(x, μ2)

d logμ2 =
∑

f ′

∫ 1

x

dx ′

x ′
Pf/ f ′

( x

x ′
, αs(μ

2)
)

×φ f ′/h(x
′, μ2) (5.106)

where the evolution kernels Pf/ f ′(x/x ′, αs(μ2)) are calcu-
lable in perturbative QCD when the strong coupling con-
stant αs(μ) is sufficiently small [234,235]. Although PDFs
are nonperturbative, their factorization scale dependence is a
QCD prediction, which has been confirmed to great accuracy
[663,664].

Another example of a factorizable inclusive cross section
with one identified hadron is single-inclusive hadron pro-
duction in high energy electron–positron collision, e−(l) +
e+(l ′)→ h(p)+ X with an observed hadron energy Ep �
ΛQCD, as sketched in Fig. 116a. Like the inclusive DIS in
Eq. (5.103), the active parton momentum k, in Fig. 116b,
linking the hard e+e− annihilation that produces this active
parton and describes how it hadronizes into the observed
hadron, is perturbatively pinched to its mass-shell, which is
necessary for the factorization. For the leading power contri-
bution beyond the LO in Fig. 116b, similar to inclusive DIS,
we do not need to worry about soft interactions between the
hard part and the collinear partons along the direction of
the produced hadron. By applying the Ward Identity, in the
same way as in the factorization of inclusive DIS, the attach-
ment of collinear and longitudinally polarized gluons from
the observed hadron to the hard part, H , can be detached and
reconnected to the gauge link to become a part of the non-
perturbative, but universal, fragmentation functions (FFs) of
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Fig. 118 a Sketch for the leading QCD pinch surface for Drell–Yan
production of lepton pair with collinear and longitudinally polarized
gluons in curly lines and soft gluons in dashed lines. b QCD contribu-

tion to Drell–Yan process with all collinear and longitudinally polarized
gluons detached from the hard part and reconnected to the gauge lines

the identified hadron, leading to the factorization formalism,

Ep
dσe+e−→hX

d3 p
(s, p) =

∑

f

∫
dz

z2 Dh/ f (z, μ
2)

× Ek
dσ̂e+e−→k̂ X

d3k̂
(s, k̂, μ2)+O

[
Λ2

QCD

Q2

]

(5.107)

where active parton momentum is k̂ = p/z,

√
s =

√
(l + l ′)2

is the collision energy, and Dh/ f (z, μ2) is the FF to find a
hadron h emerged from a produced parton of flavor f while
carrying the parton’s momentum fraction z [1272]. The fact
that such a physical cross section should not depend on how
we factorized implies evolution equations for the FFs, like
DGLAP for PDFs.

Extracting the universal PDFs and FFs from experimen-
tal data – exploiting the QCD factorization formalisms which
involve one identified hadron in Eqs. (5.104) and (5.107) – is a
challenging inverse problem. Although the scale dependence
of PDFs and FFs is a prediction of QCD dynamics, measure-
ments of such cross sections with one identified hadron are
not sufficient to disentangle the flavor and momentum frac-
tion dependence of all PDFs and FFs, which is necessary for
the predictive power of the QCD factorization approach to
describe high energy hadronic cross sections.

Inclusive scattering with two identified hadrons
The Drell–Yan (DY) production of lepton pairs via a vec-
tor boson in hadron–hadron collisions, A(p) + B(p′) →
V (q) + X with V (q)[= γ ∗,W/Z , H0, . . .] → l + l ′, as
sketched in Fig. 117a, is an ideal example of the study of
QCD factorization for inclusive observables with two iden-
tified hadrons [242].

Fig. 119 Sketch for factorized Drell–Yan production of a massive lep-
ton pair at the leading power with all soft gluon interactions factorized
into a multiplicative soft factor

From the LO contribution in Fig. 117b, both active par-
tons (quark or antiquark) of momentum k and k′ coming
from colliding hadrons A(p) and B(p′), respectively, are
perturbatively pinched to their mass-shell, which is neces-
sary for being able to factorize the nonperturbative hadronic
information of colliding hadrons from the hard collision to
produce the massive lepton pairs. Beyond the LO, each col-
liding hadron is associated with a group of collinear partons,
and for the leading power contribution, only one physically
polarized active parton plus infinite collinear and longitudi-
nally polarized gluons from each hadron should attach to the
hard part, H , with the remaining collinear partons forming
a (spectator) jet function, which is the same as the inclusive
scattering with one identified hadron. The key difference for
QCD factorization of inclusive scattering with two identi-
fied hadrons from that with one hadron, according to the
Libby-Sterman analysis [1265,1266], is the soft interaction
between the collinear partons of two different hadrons, as
shown by the dashed lines in Fig. 118a. Still the soft inter-
action between the collinear partons and the hard part can
be neglected when calculating the leading power contribu-
tions. However, these long-distance soft interactions between
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Fig. 120 Sample diagram responsible for soft gluon interaction to have
its momentum pinched in the Glauber region

hadrons have the potential to break the universality of the
factorizable nonperturbative contribution from each identi-
fied hadron, and invalidate the predictive power of the QCD
factorization approach for studying hadronic cross sections
with identified hadrons.

When the colliding hadrons A(p) and B(p′) are moving
in the +z and −z direction, respectively, the factorization of
collinear and longitudinally polarized gluons from the hard
part H is effectively the same as what was done for the case
of single identified hadron. Since collinear and longitudi-
nally polarized gluons have their polarization vectors pro-
portional to their momenta in a covariant gauge, by applying
the Ward Identity all collinear and longitudinally polarized
gluons from hadron A(p) can be detached from the hard part
and reconnected to the gauge link in the “−” light-cone direc-
tion, while those from hadron B(p′) can be reconnected to
the gauge link in the “+” light-cone direction, as sketched in
Fig. 118b.

In order to achieve the factorization, we need to get rid of
the soft gluon interactions, the dashed lines in Fig. 118b. If
we scale collinear parton momenta from colliding hadron A,
ki = (k+i , k−i , kTi ) ∼ (1, λ2, λ)Q with λ ∼ O(ΛQCD/Q),
we maintain k2

i ∼ O(λ2Q2) → 0 as the loop momenta
approach to the pinch surface. If we can choose soft-
gluon loop momenta to have the scaling behavior, ls ∼
(λs, λs, λs)Q, where λs ∼ λ2 (or λ) so that all components
vanish at the same rate. We then have (ki + ls)2 ∼ 2k+i l−s ∼
O(λ2/Q2). That is, in a covariant gauge we only need to
keep the “−” components of the soft gluon momenta flow-
ing into the jet of collinear partons from the colliding hadron
A. Correspondingly, the Lorentz indices connecting to the
soft gluons from the jet function J (k, p) of hadron A will be
in the “+” direction. Therefore, we can use the Ward Identity
to detach the soft gluons from the jet of collinear partons
from colliding hadron A and reconnect them into a gauge
link or an eikonal line. Applying the same reasoning with
the role of the “±” components switched, we can detach all
soft gluon interactions to the jet of collinear partons from
colliding hadron B, and to factorize all soft gluon interac-
tions with two colliding hadrons into an overall soft factor,
as shown in Fig. 119.

However, this factorization can fail if the soft gluon
momenta are trapped in the Glauber region. In this region

the “±” components of the soft gluons are small compared
to their transverse components, i.e.l±s / lTs ∼ O(λ), so that we
cannot neglect the transverse components, keeping only one
“+” or “−” components [242]. It is the soft-gluon interaction
between the spectators of two colliding hadrons that can trap
the± components of the soft gluon momenta in the Glauber
region. For example, in Fig. 120, the pair of propagators of
momenta, p−k− l and k+ l, pinches the “−” component of
l to be, l− ∝ l2T , while the pair of propagators of momenta,
p′ − k′ + l and k′ − l, pinches the “+” component of l to
be, l+ ∝ l2T , such that the soft gluon interaction between
two jets of collinear partons from the colliding hadrons is
pinched in the Glauber region; in this case the leading soft
gluon interactions could break the universality of PDFs and
the predictive power of the QCD factorization approach.

Removal of the trapped Glauber gluons might be the most
difficult part of the QCD factorization proof [242]. It was
achieved in three key steps: (1) all poles in one-half plane
cancel after summing over all final-states (no more pinched
poles), (2) all l±s -type integrations can be deformed out of the
trapped soft region, and (3) all leading-power spectator inter-
actions can be factorized and summed into an overall unitary
soft factor of gauge links (or eikonal lines) as argued above
and shown in Fig. 119. The soft factor is process independent
and made of four gauge links, along the light-cone directions
conjugated to the directions of two incoming hadrons in the
scattering amplitude, and the two in the complex conjugate
scattering amplitude, respectively. For the collinear factoriza-
tion, the soft factor = 1 due to the unitarity, and we have the
corresponding factorization formalism for inclusive Drell–
Yan production at the leading power,

dσ (DY)

A+B→ll ′+X

dQ2dy
=

∑

f f ′

∫
dx dx ′ φ f/A(x, μ) φ f ′/B(x

′, μ)

× dσ̂ f+ f ′→ll ′+X (x, x ′, μ, αs)

dQ2dy

+O
[
Λ2

QCD

Q2

]

, (5.108)

where
∑

f f ′ runs over all parton flavors including quark and
antiquark, as well as gluon.

To help separate the flavor dependence of PDFs, the
lepton–hadron semi-inclusive DIS (SIDIS), e(l) + h(p) →
e(l ′)+h′(p′)+ X , as shown in Fig. 121a, is another example
of QCD factorization with two identified hadrons. From the
LO contribution in Fig. 121b, both active partons of momen-
tum k and k′ are perturbatively pinched to their mass-shell,
leading to a potential factorization of PDF from colliding
hadron and FF of the fragmenting parton to the observed
hadron. Beyond the LO, like the Drell–Yan process, there
could be soft interactions between the jet of collinear par-
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Fig. 121 a Sketch for scattering amplitude of lepton–hadron SIDIS.
b Leading order contribution to SIDIS cross section in its cut diagram
notation

tons of the hadron h and the jet of collinear partons along the
direction of observed hadron h′.

Integrating over the transverse momentum of the observed
final-state hadron to keep the SIDIS as a process with a single
hard scale Q, and following the same factorization arguments
for inclusive Drell–Yan processes, the SIDIS cross section
can be factorized as

E ′
dσ SIDIS

eh→eh′X
d3l ′dz

(l, p; l ′, z)

=
∑

f, f ′=q,q̄,g

∫
dz′ dx Dh′/ f ′(z

′, μ2) φ f/h(x, μ
2)

×E ′
dσ̂e f→e f ′X
d3l ′dz′

(l, k̂; l ′, z′, μ2)+O
[
Λ2

QCD

Q2

]

(5.109)

where k̂ = xp, z′ = p′/k′ and z = p · p′/p · q.
Inclusive jet production in hadronic collisions: A(p) +

B(p′) → ∑
j J j (p j ) + X is another observable with two

identified hadrons although many hadrons were measured in
the final-state when jets were constructed. When final-state
jets are well-separated, the cross section for jets with large
transverse energy has the same factorized formula as that in
Eq. (5.108) except the perturbatively calculated hard part,
σ̂ f f ′→ll ′X is replaced by the corresponding short-distance
hard part, σ̂ f f ′→Jet [1273]:

dσ (Jet)
A+B→Jet+X

dpT dy
=

∑

f f ′

∫
dx dx ′ φ f/A(x, μ) φ f ′/B(x

′, μ)

×dσ̂ f+ f ′→Jet+X (x, x ′, μ, αs)

dpT dy

=
∑

f f ′

∫
dx dx ′ φ f/A(x, μ) φ f ′/B(x

′, μ)

×
[
∑

c

∫
dz

z
Jc(z, pT R, μ)

dσ̂ f+ f ′→c+X

dpcT dyc
+ σ̃ (pT , y)

]

(5.110)

where pT and y are the transverse momentum and rapid-
ity of the observed jet, respectively. Like all perturbatively
calculable hard parts of QCD factorization, the hard part for

Fig. 122 a Sketch for scattering amplitude of hadronic production of
single hadron at large transverse momentum. b Its contribution to the
cross section in the cut diagram notation

the jet production, σ̂ f f ′→Jet is process-dependent, depending
on whether the jet is produced in hadron–hadron or lepton–
hadron collisions, as well as the choice of the jet algorithms.
In Eq. (5.110), the process-dependent short-distance hard
part for the jet production was reorganized into a process-
independent jet function, Jc from a single parton of flavor
c, leaving all process-dependence into the production of this
parton, σ̂ f+ f ′→c+X and σ̃ (pT , y) which might be neglected
if logarithms of the jet production dominates [1274].

Inclusive scattering with three identified hadrons
Inclusive single hadron production at large transverse mome-
ntum pT in hadronic collisions: A(p)+B(p′)→ h(ph)+X
is a well-measured observable involving three identified
hadrons, as shown in Fig. 122. Due to the additional iden-
tified hadron in the final-state, the unitarity sum of final-
state hadrons used to prove the factorization of DY-type two-
hadron observables needs to be modified.

Luckily, because of the large pT of the observed final-state
hadron, the potentially dangerous gluon interactions between
the observed hadron and the spectators of colliding hadrons
are suppressed by the power of 1/pT , and the leading power
pQCD factorization does hold [1275],

dσAB→hX (p, p, ph)

dy dp2
T

=
∑

f, f ′,c

∫
dz

z2 dx dx ′ Dh/c(z, μ
2)

×φ f/A(x, μ
2) φ f ′/B(x

′, μ2)

× dσ̂ f f ′→cX (x, x ′, pc = ph/z)

dyc dp2
cT

.

(5.111)

With proper PDFs and FFs, the NLO pQCD calculations
for single hadron production gave an excellent description
of RHIC data [1276]. However, the same formalism consis-
tently underestimates the production rate at the fixed target
energies [1277]. It was shown that high order corrections at
the fixed target energies are very important, and the threshold
resummation significantly improves the comparison between
the theory and experimental data [1278].

QCD global analysis and predictive power
Much of the predictive power of QCD factorization for cross
sections involving identified hadron(s) relies on the univer-
sality of the PDFs and/or FFs and our ability to solve the
inverse problem to demonstrate the existence of one set of
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PDFs and FFs that are capable of describing all data of good
(e.g. factorizable) cross sections with properly calculated
short-distance partonic scattering cross sections in QCD per-
turbation theory.

The QCD global analysis is a program to test the consis-
tency of QCD factorization by fitting all existing data from
high energy scatterings with universal PDFs and/or FFs and
corresponding factorization formalisms, from which the best
set of PDFs and/or FFs will be extracted. The QCD factoriza-
tion formalism has been extremely successful in interpreting
high energy experimental data from all facilities around the
world, covering many orders in kinematic reach in both par-
ton momentum fraction x and momentum transfer of the hard
collision Q, and as large as 15 orders of magnitude in differ-
ence in the size of observed scattering cross sections, which is
a great success story of QCD and the Standard Model at high
energy. It has given us the confidence and the tools to discover
the Higgs particle in proton–proton collisions [139,140], and
to search for new physics [1279].

QCD factorization for two-scale observables
The hard probe with a single large momentum transfer
Q (� 1/R) is so localized in space that it is not very sensi-
tive to the details of confined three-dimensional (3D) internal
structure of the colliding hadron, in which a confined par-
ton should have a characteristic transverse momentum scale
〈kT 〉 ∼ 1/R � Q and an uncertainty in transverse position
〈bT 〉 ∼ R � 1/Q. Recently, new and more precise data are
becoming available for two-scale observables with a hard
scale Q to localize the collision to probe the partonic nature
of quarks and gluons along with a soft scale to be sensitive to
the dynamics taking place at O(1/R). At the same time, the-
ory has made major progresses in the development of QCD
factorization formalism for two types of two-scale observ-
ables, distinguished by their inclusive or exclusive nature,
which enables quantitative matching between the measure-
ments of such two-scale observables and the 3D internal par-
tonic structure of a colliding hadron.

For inclusive two-scale observables, one well-studied
example is the Drell–Yan production of a massive boson that
decays into a pair of measured leptons in hadron–hadron
collisions as a function of the pair’s invariant mass Q and
transverse momentum qT in the Lab frame [1280]. When
Q � qT � 1/R, the measured transverse momentum of the
pair is sensitive to the transverse momenta of the two col-
liding partons before they annihilate into the massive boson,
providing the opportunity to extract the information on the
active parton’s transverse motion at the hard collision, which
is encoded in transverse momentum dependent (TMD) PDFs
(or simply, TMDs), φ f/h(x, kT , μ2) [1280].

Like PDFs, TMDs are universal distribution functions
describing how a quark (or gluon) with a momentum frac-
tion x and transverse momentum kT interacts with a colliding

hadron of momentum p with xp ∼ μ ∼ Q � kT . Another
well-studied example is the SIDIS when the produced hadron
is almost back-to-back to the scattered lepton in the Lab
frame, or in the Breit frame, the transverse momentum of
the produced hadron phT is much smaller than the hard scale
Q [1281,1282].

A necessary condition for QCD factorization of observ-
ables with identified hadron(s) is that the active parton link-
ing the process-dependent short-distance dynamics and the
process-independent nonperturbative physics of identified
hadron(s) is perturbatively pinched to its mass-shell so that it
is long-lived compared to the time scale of the hard collision.
In this case the quantum interference between the perturba-
tively calculable hard collisions at the hard scale Q and the
process-independent part of leading nonperturbative infor-
mation of the identified hadron(s) is strongly suppressed by
the power of ΛQCD/Q. The pinch does not require the active
parton’s momentum to be collinear to the hadron momen-
tum. The necessary condition is satisfied if the active parton
momentum has a transverse component with 〈kT 〉 � Q; the
same condition that should be satisfied by the TMD factor-
ization of Drell–Yan and SIDIS process for the leading power
contribution in qT /Q or phT /Q, respectively. Although this
condition is not necessarily sufficient, the TMD factorization
for Drell–Yan process at the leading power of qT /Q → 0
was justified [1267,1280], and the same for the SIDIS at
leading power of phT /Q [1283–1285]. More discussion on
the impact of TMD factorization for the spin asymmetries
will be given in Sect. 5.8.2.

Without breaking the colliding hadron, the exclusive
observables could provide different aspects of the hadron’s
internal structure. Exclusive lepton–nucleon scattering with
a virtual photon of invariant mass Q � 1/R could pro-
vide various two-scale observables, such as the deeply virtual
Compton scattering (DVCS) [1286], where the hard scale is
Q and the soft scale is t ≡ (p− p′)2. When Q � √|t |, such
two-scale exclusive processes are dominated by the exchange
of an active qq̄ or gg pair and can be systematically treated
using the QCD factorization approach; factorized in terms
of generalized PDFs or GPDs [1287–1290]. Recently, a new
class of single diffractive hard exclusive processes (SDHEP)
was introduced [1291,1292]. This approach is not only suf-
ficiently generic to cover all known processes for extracting
GPDs, but also well-motivated for the search of new pro-
cesses for the study of GPDs. It was demonstrated that many
of those new processes can be factorized in terms of GPDs
and could provide better sensitivity to the parton momentum
fraction x dependence of GPDs.

5.8.2 Spin asymmetries

A measured cross section is always a positive and classi-
cal probability even though its underlying dynamics could
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be sensitive to quantum effects. On the other hand, a spin
asymmetry, defined to be proportional to a difference of two
cross sections with one (or more) spin vector(s) flipped, can
probe QCD dynamics that a spin-averaged cross section is
not sensitive to, and provide a better chance to explore the
dynamics of quantum effects. It also provides opportunities
to explore the origin of proton spin by carrying out scattering
experiments with polarized protons.

Quark and gluon contributions to proton spin
The leading power collinear factorization formalisms can
also apply to asymmetries of cross sections between two lon-
gitudinally polarized particles [1267]. Instead of measuring
nonperturbative PDFs of a hadron, the double longitudinal
spin asymmetry

ALL ≡ Δσ

σ
= σ(++)− σ(+,−)

σ (+,+)+ σ(+,−)
, (5.112)

where± indicates the helicity of the active parton compared
to the longitudinal spin direction of the colliding particle,
is sensitive to the active parton’s helicity distribution inside
a polarized colliding hadron. The double longitudinal spin-
dependent cross sections, Δσ is given by the same factoriza-
tion formalisms introduced in the Sect. 5.8.1 with the spin-
averaged collinear PDFs replaced by corresponding helicity
distributions,

φ f/h(x, μ
2)→ Δφ f/h(x, μ

2)

= 1

2

[

φ+/+(x, μ2)− φ−/+(x, μ2)

]

.

The same leading power collinear factorization for-
malisms introduced in the Sect. 5.8.1 can also apply to parity
violating single longitudinal spin asymmetries of cross sec-
tions between one unpolarized and one longitudinally polar-
ized particles,

AL ≡ σ(+)− σ(−)

σ (+)+ σ(−)
. (5.113)

The single longitudinal spin-dependent cross section, Δσ =
σ(+) − σ(−) with spin direction of the polarized parton
flipped is also given by the same factorization formalisms
by replacing one of the spin-averaged collinear PDFs, corre-
sponding to the hadron that is replaced by a polarized collid-
ing particle, by corresponding helicity distribution. With the
flavor sensitivities of the weak interaction, the single longitu-
dinal spin asymmetries measured by the RHIC spin program
have provided important information on the flavor separation
of quark helicity distributions [1276,1293].

The double and single longitudinal spin asymmetries,
defined in Eqs. (5.112) and (5.113), respectively, have been
studied in both hadron–hadron collisions at RHIC [1276] and
lepton–hadron collisions [1294,1295], and will be a major
program at the future EIC [1293].

After over 30 years since the discoveries made by the EMC
collaboration, many polarized experiments have been carried
out worldwide, the RHIC spin program in particular. From
the range of momentum fraction x accessible by existing
experimental data, we learned that the proton spin gets about
30% from quark helicity and 40% from gluon helicity. The
rest could come from the region of x that we have not been
able to explore and/or from the orbital or transverse motion
of quarks and gluons inside the bound proton [1293]. (See
the discussion in Sect. 10.3.)

Double transverse-spin asymmetries
The double transverse spin asymmetries are,

ANN = σ(↑,↑)− σ(↑,↓)
σ (↑,↑)+ σ(↑,↓) ,

where↑ and↓ indicate the direction of spin vectors transverse
to the momentum direction of the colliding particles. Since
QCD factorization requires that the factorized short-distance
dynamics is not sensitive to the details of hadronic physics,
the spin asymmetries are proportional to the difference of
hadronic matrix elements of parton fields with the hadron
spin flipped,

A ∝ σ(Q, �s)− σ(Q,−�s)
∝ 〈p, �s|O(ψq , A

μ
g )|p, �s〉 − 〈p,−�s|O(ψq , A

μ
g )|p,−�s〉.

(5.114)

The parity and time-reversal invariance of QCD requires

〈p, �s|O(ψq , A
μ
g )|p, �s〉

= 〈p,−�s|PT O†(ψq , A
μ
g )T −1P−1|p,−�s〉. (5.115)

Therefore, only partonic operators O(ψq , A
μ
g ) satisfying

〈p,−�s|PT O†(ψq , A
μ
g )T −1P−1|p,−�s〉

= ±〈p,−�s|O(ψq , A
μ
g )|p,−�s〉 (5.116)

or

〈p, �s|O(ψq , A
μ
g )|p, �s〉 = ±〈p,−�s|O(ψq , A

μ
g )|p,−�s〉

(5.117)

contribute to the factorizable spin asymmetries. Those oper-
ators that lead to a “+” sign should contribute to spin-
averaged cross sections, while those lead to a “−” sign
should contribute to spin asymmetries. Only the leading twist
quark operator that defines the quark transversity distribution
δq(x, μ2)

δq(x, μ2) = ψq(0)γ
+γ⊥γ5ψq(ξ

−),

(or h1(x, μ2)), is relevant to the double transverse spin asym-
metries of observables with a single large momentum trans-
fer Q in proton–proton collisions of transversely polarized
protons.
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The QCD factorization for the leading power contribu-
tion to the Drell–Yan production of a massive lepton pair in
a collision with two transversely polarized protons should
follow the same arguments that led to those in Fig. 119.
Here all collinear and longitudinally polarized gluons fac-
torized into gauge links, and soft gluon interactions are fac-
torized into an overall soft-factor. The factorization of spinor
traces of the Fermion lines needs to be modified to reflect the
transverse-spin projector γ±γ⊥γ5 (where ± indicates the
two possibilities due to two colliding hadrons) instead of the
γ± and γ±γ5 for unpolarized and longitudinally polarized
active quarks. Therefore, the QCD factorization formalism
for the numerator of the double transverse-spin asymmetries
is the same as that in Eq. (5.108), except the unpolarized
PDFs are replaced by the quark transversity distributions of
various flavors (no gluon transversity distribution in a spin-
1/2 transversely polarized proton), and the hard part is calcu-
lated with γ±γ⊥γ5 spin projection for transversely polarized
quarks. The collinear transversity distribution has the same
definition as the quark distribution in Eq. (5.105) with the
quark operator replaced by

1

2
ψq(0)γ

+γ⊥γ5W[0,ξ−]ψq(ξ
−)

and the unpolarized hadron state |h(p)〉 is replaced by a trans-
versely polarized hadron state |h(p), �s⊥〉.
Single transverse-spin asymmetries
The transverse single-spin asymmetry (SSA),

AN ≡ σ(sT )− σ(−sT )
σ (sT )+ σ(−sT ) ,

is defined as the ratio of the difference and the sum of
the cross sections when the spin of one of the identi-
fied hadron sT is flipped. Two complementary QCD-based
approaches have been proposed to analyze the physics behind
the measured SSAs: (1) the TMD factorization approach
[1281,1282,1296–1299], and (2) the collinear factorization
approach [1300–1308].

In the TMD factorization approach, the asymmetry was
attributed to the spin and transverse momentum correlation
between the identified hadron and the active parton, and rep-
resented by the TMD parton distribution or fragmentation
function. For example, the Sivers effect [1281] describes how
hadron spin influences the parton’s transverse motion inside
a transversely polarized hadron, while the Collins effect
[1282] describes how the parton’s transverse spin affects its
hadronization.

The TMD factorization approach is more suitable for eval-
uating the SSAs of scattering processes with two observed
and very different momentum scales: Q1 � Q2 � ΛQCD

where Q1 is the hard scale while Q2 is a soft scale sensitive
to the active parton’s transverse motion or momentum. For
example, the Drell–Yan lepton pair production when Q �

qT is a process that can be studied in terms of the TMD fac-
torization [1267]. In addition, the SIDIS when the transverse
momentum of observed final-state hadron ph � Q in the
photon–hadron Breit frame is an ideal observable for study-
ing AN , since the leading power contribution to the TMD
factorization of SIDIS is known to be valid [1267,1283].
Although the AN in SIDIS can receive contribution from
various sources, including the Sivers effect (Sivers function
f ⊥1T ) and Collins effect (Collins function H⊥1 ), as well as
contribution from the pretzelosity distribution h⊥1T [1284], it
is the choice of angular modulation that allows us to separate
these three sources of contributions in SIDIS,

ASivers
N ∝ 〈sin(φh − φs)〉UT ∝ f ⊥1T ⊗ D (5.118)

ACollins
N ∝ 〈sin(φh + φs)〉UT ∝ h1 ⊗ H⊥1 (5.119)

APretzelosity
N ∝ 〈sin(3φh − φs)〉UT ∝ h⊥1T ⊗ H⊥1 (5.120)

where D is the normal unpolarized FF, the subscript “UT”
stands for unpolarized lepton and transversely polarized
hadron, φh is an angle between the leptonic plane and the
hadronic plane in SIDIS and φs is the angle between the
hadron transverse spin vector and the leptonic plane.

The predictive power of TMD factorization leads one to
expect that the TMDs will be process-independent. However,
it was found that the Sivers function measured in SIDIS and
that in Drell–Yan process could differ by a sign. Such simple
and generalized universality should preserve the predictive
power of TMD factorization approach. Theoretically, such
sign change can be better verified from the operator definition
of the Sivers function. The quark Sivers function is defined
as the spin-dependent part of the TMD parton distributions
[1297,1309],

fq/h↑(x, k⊥, s⊥) =
∫

dy−d2y⊥
(2π)3 eixp

+y−e−i �k⊥·�y⊥

×〈p, s⊥|ψ̄(0)W[0,y]ψ(y)|p, s⊥〉|y+=0,

(5.121)

where W[0,y] is the gauge link for the leading power initial-
and final-state interactions between the struck parton and
the spectators or the remnant of the polarized hadron. The
form of the gauge links including the phase of the interac-
tions depends on the color flow of the scattering process and
is process dependent. Luckily, the parity and time-reversal
invariance of QCD removes almost all process dependence
of the TMDs. By applying Eq. (5.115) to the matrix element
in Eq. (5.121), we have

f SIDIS
q/h↑ (x, k⊥, S⊥) = f DY

q/h↑(x, k⊥,−S⊥). (5.122)

Therefore, the Sivers function has an opposite sign in SIDIS
and DY [1307,1310]. Experimentally, it is important to verify
such a relationship.
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In the collinear factorization approach, all active partons’
transverse momenta are integrated into the collinear distri-
butions, and the explicit spin-transverse momentum corre-
lation in the TMD approach is now included in the high-
twist collinear parton distributions or fragmentation func-
tions. Since the massless quark in short-distance hard colli-
sions cannot flip the spin in QCD, the SSAs in the collinear
factorization approach are generated by quantum interfer-
ence between a scattering amplitude with one active parton
and an amplitude with two active partons. The necessary
spin-flip for SSAs is achieved by angular momentum flip
between single active parton state and the state of two active
partons. Such nonperturbative effect is represented by twist-
3 collinear parton distributions or fragmentation functions,
which has no probability interpretation, and the spin flip was
made possible by QCD color Lorentz force [1301,1302].
The collinear factorization approach is more relevant to the
SSAs of scattering cross sections with a single hard scale
Q � ΛQCD. The validity of QCD factorization for SSA
in the collinear factorization approach requires study of the
collinear factorization beyond the leading power (or twist-2)
contribution.

It was demonstrated that QCD factorization works for the
first sub-leading power contribution to the hadronic cross
section, but, not beyond [1311]. That is, QCD factoriza-
tion should work for the 1/Q2 power correction to inclu-
sive and unpolarized Drell–Yan cross section [1312], 1/p2

T
corrections to unpolarized single high-pT particle produc-
tion in hadron–hadron collisions [1313], and 1/pT power
correction to single high-pT particle production in hadron–
hadron collisions with one of them transversely polarized
[1301–1303,1314]. It is the QCD factorization for the 1/pT
power correction to single high transverse momentum pT
particle production in hadron–hadron collisions with one
of them transversely polarized that enables the systematic
collinear factorization approach to study AN . For example,
the SSA of single high-pT hadron production in hadronic
collisions, A(p, sT ) + B(p′) → h(Ph) + X , can be factor-
ized [1301,1303]

AN (sT ) ∝ T (3)(x, x, sT )⊗ σ̂ ⊗ D f (z)

+δq(x, sT )⊗ σ̂D ⊗ D(3)(z, z)+ . . . , (5.123)

whereT (3) and D(3) are twist-3 three-parton correlation func-
tions and fragmentation functions, respectively, and δq (or
h1) is the leading power transversity distribution, with “. . . ”
representing a small contributions [1315]. Various extrac-
tions of T (3) and D(3) from experimental data have been
carried out [1304,1316].

The SSA is a physically measured quantity and should
not depend on how we describe it from QCD factorization
or the choice of factorization scheme or scale, which leads
to evolution equations of factorized nonperturbative distri-

butions or twist-3 quark–gluon correlation functions rele-
vant to the SSA [1317]. A complete set of the correlation
functions was generated by inserting (1) the field operator∫
dy−1

[
i STρ iε

ρσ
T F +

σ (y−1 )
]

into the matrix element of twist-
2 PDFs, and (2) the operator

∫
dy−1

[
i SσT F

+
σ (y−1 )

]
into the

matrix element of twist-2 helicity distributions [1317]. A
close set of evolution equations of these twist-3 correlation
functions as well as the leading order evolution kernels were
derived [1317–1319].

Although the two approaches each have their own kine-
matic domain of validity, they are consistent with each
other in the perturbative regime to which they both apply
[1320,1321].

5.9 Exclusive processes in QCD

George Sterman

5.9.1 Exclusive amplitudes for hadrons: geometry and
counting rules

The analysis of exclusive reactions played a role in the devel-
opment of quantum chromodynamics, and became a sub-
ject of ongoing research within QCD. This section reviews
some of the early history, landmark developments and ongo-
ing research in this lively topic, concentrating on wide-angle
scattering. The reader is referred especially to the preceding
contribution on factorization in cross sections, to Sect. 10 on
the structure of the nucleon and Sect. 11 on QCD at high
energy for closely related subject matter.

Prehistory
For many years, exclusive reactions were the language
of experimental strong interaction physics at accelerators.
In such reactions, up to low GeV energies (BeV at the
time), new resonances were found, whose quantum numbers
were revealed in the analysis of their decays. As energies
increased, the analysis of exclusive reactions gave rise to
theoretical advances like Regge theory, and the Veneziano
amplitude [7], resulting eventually in string theory. Around
the same time, the quark model for hadron spectroscopy was
developed.

With the advent of multi-GeV hadronic and leptonic accel-
erators, any nonforward exclusive final state became a small
part of the cross section. Nevertheless, if we assume that elas-
tic scattering results directly from pairwise scattering ampli-
tudes for constituent quarks, simple counting combined with
the optical theorem leads to successful predictions on the
ratios of total cross sections [1322]. Other pioneering con-
cepts introduce a geometrical picture of colliding hadrons,
whose interactions extend over their entire overlap during
the scattering [1323]. This picture is agnostic on the dynami-
cal nature of the strong interactions that mediate momentum
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transfer. The dual amplitudes of Ref. [7] are exponentially
suppressed for fixed-angle scattering, and indeed, exponen-
tial fall-off in |t | is characteristic of near-forward cross sec-
tions at high energy [1324]. For |t | in the range of a few GeV,
however, this decrease moderates to a power. This, along with
the observation of power-law fall-off for form factors [599]
suggested that fixed-angle amplitudes might, indeed must,
reflect a point-like substructure for nucleons and mesons.
This section will review some of the guiding developments
in this area, which grew along with QCD, and which con-
tinue to shape contemporary theoretical and experimental
programs.

Hadrons in the language of partons
Hadrons are bound states, whose fine-grained properties are
nonperturbative, yet based in the interactions of the quarks
and gluons that appear in the Lagrangian density of QCD. To
describe how partons can mediate the scattering of hadrons,
we introduce a Fock space picture of the hadronic state with
on-shell momentum, in terms of P+ = (1/

√
2)(P0 + P3),

mass mH and spin sH , as [900]

|H, P+, sH 〉 =
∑

FH

cF |
{
fi , xi ,ki,⊥, λi

}
FH 〉, (5.124)

where the infinite sum is over partonic Fock states, FH , each
consisting of a set of constituents, { fi . . . }, labelled by fla-
vors, fi , by the fraction xi of �PH , transverse momenta ki,⊥
and helicity λi . In QCD, the Fock states are labelled as well
by the manner in which the colors of constituents combine
to form color singlets. From these states, in principle, we
can construct any of the universal quantities of perturbative
QCD that can be written as expectation values of the hadronic
state, including collinear and transverse momentum parton
distributions. Here, however, we will for the most part make
use of only the valence state, Fval, with three constituents
for a nucleon, two for a meson. Of course, we assume that
cFval is nonzero in Eq. (5.124). The Fock state formalism puts
this approximation in context, pointing the way to systematic
expansions.

Constituent counting.
Influenced by the success of the parton model applied to
quarks, and assuming a constituent expansion like the one
just described, Brodsky and Farrar [1325], and Matveev,
Muradian and Tavkhelidze [1005] realized that under broad
assumptions on the strong interactions, the behavior in
momentum transfer of a wide range of exclusive processes
can be summarized by a simple rule, which goes under the
name of quark, or more generally constituent, counting. We
can see how this works by considering the very high-energy
elastic scattering of two hadrons, in the first instance assumed
to consist of a fixed set of “valence” partons, specified by the
quark model ([uud] for the proton, for example), moving

within a limited region of space, which we can think of a
sphere of radius RH for hadron H .

Following the intuitive analysis of partons in deep-
inelastic scattering, we imagine that hadrons can be thought
of as Lorentz contracted and time dilated. Large momentum
transfer requires all ni valence (anti-)quarks of the initial-
state hadrons i to arrive within a region of area 1/Q2, where
Q is the momentum transfer. Now the hadrons don’t know
they are going to collide, so we assume their partons are more
or less randomly scattered about within the areas of their
Lorentz-contracted wave functions. Then the likelihood for
them all to be within this small area is of order
(

1

Q2 × 1

πR2
H

)ni−1

for each hadron of radius RH . But this must also be true of
both incoming and outgoing states, so that their wave func-
tions may overlap.

At the moment of collision, we don’t have to make an
assumption on the details of the hard scattering that redirects
the partons, but we assume that otherwise the amplitude is a
function only of the scattering angle. Then, at fixed t/s (that
is fixed center of mass scattering angle), we find the quark
counting rules of Refs. [1005] and [1325],

dσ

dt
= f (t/s)

s2

(
1

s πR2
H

)∑4
i=1 (ni − 1)

. (5.125)

Figure 123 illustrates the scales involved, and the system
just before and after the hard scattering. This relation pro-
vides a set of predictions for power-behavior, for exam-
ple dσpp→pp/dt ∝ s−10, which are generally successful
[1327]. The determination of normalizations would require,
of course, control over the short-distance interactions of the
constituents, to which we will return below. For applications
of these ideas to nuclei, see Sect. 5.10.

Quark exchange, spin and transparency.
Before going further into the technical status of exclusive
amplitudes, it is natural to observe several fundamental con-
sequences of this picture. First, assuming that the integrals
over fractional momenta are insensitive to the endpoints,
the rules of quark counting follow immediately by dimen-
sional counting in the (in principle) calculable partonic scat-
tering amplitudes. The picture is quite general, and applies as
well to lepton–hadron elastic scattering. The constituent rules
then determine the power behavior of hadronic form factors
in momentum transfer, Q: Q−2 for mesons and Q−4 for
baryons. In all processes, any scattering mediated by larger
numbers of constituents is power-suppressed.

In the scattering of hadrons, there are generally many
ways in which quarks can flow from the initial to the final
state. Almost all of these describe quark exchange, whether
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Fig. 123 The geometry of constituent counting for π − π scattering
(ni = 2). The top represents the pion in a valence state that can con-
tribute to an exclusive reaction, as seen along the collision axis by an
oncoming hadron. From Ref. [1326]

in elastic scattering like π+ p → π+ p, but especially for
charge-exchange exclusive processes, likeπ− p→ π0n. The
valence Fock states described above, considered as functions
of the transverse momenta of the constituents, can be used to
construct a picture of 2 → 2 exclusive amplitudes based on
the overlaps of incoming and outgoing states. These consid-
erations lead to a variety of quite successful predictions for
dependence on momentum transfer [1328]. A particularly
striking example is the difference between proton–proton
and antiproton–proton scattering, where the latter provides
no opportunity for quark exchange. The ratio of these cross
sections is about forty to one [1328].

For hadrons with light-quark valence structure (pions,
nucleons) we anticipate that the scatterings will be com-
puted with zero quark masses. Then, in any theory based
on the exchange of vector gluons, the helicities of the quarks
are conserved, and since the scattering is in valence states
at small transverse sizes, the helicities of the valence states
directly determine the spins of the external hadrons. This fea-
ture leads to many predictions for amplitudes in which spins
are prepared and measured [1327]. Unlike constituent count-
ing rules, however, predictions for spin more often fail; for
the example of proton–proton scattering, see Ref. [1329].

Finally, specializing to color-singlet hadrons in a theory
with colored quarks, another fundamental prediction of this
picture is transparency [1330], which refers to predictions for
exclusive hard-scattering in nuclei. On the one hand, exclu-
sive scattering emerges only from valence parton configura-
tions, with all partons in a small regions of coordinate space.
On the other hand, at high energies, the lifetime of such a
virtual state is dilated by a large factor. Thus we anticipate
that both the incoming and outgoing hadrons in an exclusive
reaction propagate as effectively point-like particles through
the surrounding medium, in particular, through a nucleus.
For proton–nucleon elastic scattering with momentum trans-

fer Q, the incoming proton must be in a state of effective
area 1/Q2 on its way into the nucleus, and will be invisible
to the color fields of nucleons it encounters, whose partons
are typically spread out over scales of the order of the pro-
ton’s radius. Only when it encounters a constituent nucleon
that happens to be in a corresponding tiny valence state can it
undergo elastic scattering, producing again a pair of “stealth”
nucleons that are just as invisible on the way out. While the
amplitude for this to happen remains just as small as for free
proton–proton or proton–neutron scattering, it is not sup-
pressed by initial- or final-state interactions, in contrast to
most cross sections on nuclei. These considerations are sum-
marized in the elegant prediction for scattering on a nucleus
of atomic number Z ,

dσ

dt
[p + Z → p + p + (Z − 1)]

s→∞, t/s fixed→ Z
dσ

dt
[p + p→ p + p] . (5.126)

This is the case, at least asymptotically, and the manner in
which asymptotic behavior is reached for varied elastic reac-
tions is a subject of ongoing experimental (see for example,
Refs. [229,1331]) and theoretical investigation [1332,1333].

Splitting the hard scattering: Landshoff mechanism.
Without further assumptions, the same geometric – partonic
considerations sketched above can lead to an alternative pic-
ture and prediction for asymptotic behavior, first formulated
by Landshoff [1334]. To be specific, let’s consider meson–
meson elastic scattering (ni = n f = 2). Then, instead of a
single short-distance scattering involving all four incoming
and outgoing partons, we imagine two independent hard scat-
terings of parton pairs, each resulting in two pairs of partons
travelling in the same direction, and forming the outgoing
mesons. The geometric picture is shown in Fig. 124. We
assume that the separation b between the short-distance col-
lisions of individual pairs of partons is generically of order
RH , the hadronic radius62 Relative to the strict short-distance
picture of Fig. 123, this reaction is enhanced by the ratio
RH/(1/Q) = RH Q in the amplitude for mesons, which is
the ratio of the scale of the hard scattering to the size of the
overlap between the hadrons, as shown in the figure. Simi-
larly, there is an enhancement of (RH Q)2 for baryons, for
which

dσ

dt
= f (t/s)

s2

(
1

s πR2
H

)6

. (5.127)

In the forward region with a still-large momentum transfer,
s � −t � ΛQCD, we anticipate a factor 1/Q2 ∼ 1/t for
each hard scattering, and we find

62 We will come back to this assumption below.
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Fig. 124 Geometric enhancement in the Landshoff mechanism. The
pairs of colliding partons (within each pair, one from each colliding
hadron) are separated by distance b. Within each pair, partons are sep-
arated by a much smaller distance of order 1/Q. From Ref. [1326]

dσ

dt
= f (0)

t2

(
1

t πR2
H

)6

. (5.128)

Experimentally, at wide angles, data appear to prefer the
direct counting behavior of Eq. (5.125), but at large t and even
higher s, a behavior like Eq. (5.128) is observed [1335,1336].

5.9.2 Computing hard exclusive amplitudes in QCD

The considerations described above are based in the parton
model, although they are a significant step beyond the classi-
cal parton model results, because the hard scattering is itself
a strong interaction. With these concepts in hand, the next
great step was to apply field theoretic analysis to elastic scat-
tering, relying on asymptotic freedom to calculate short dis-
tance interactions where large momenta are exchanged, and
on ideas of factorization to separate the dynamics binding
each hadron from the short distance scattering and from each
other. Before we review this landmark analysis for exclusive
processes with hadrons, it is useful to touch on elastic scatter-
ing amplitudes for partons. These, of course, are not directly
physical, but they play an important role in the factorized
hadronic analysis that follows, and also in other areas, par-
ticularly jet cross sections.

Partons: exclusive amplitudes in QCD.
We consider partonic scattering amplitudes at “wide angles”,
labelling the combination of incoming and outgoing (mass-
less) partons and their momenta as f ,

f : f1(p1)+ f2(p2)→ f3(p3)+ f4(p4)

+ · · · + fn+2(pn+2). (5.129)

To define such an amplitude in perturbation theory requires
the regulation of infrared singularities associated with the
virtual states that include zero-momentum lines and/or lines
collinear to the external particles. This is conventionally done
by dimensional regularization, that is, by treating the number
of dimensions as a parameter, d = 4− 2ε, and continuing ε

away from zero. Starting at one loop, infrared singularities

manifest themselves as poles in ε, generally two per loop.
Despite the growing order of the poles, the amplitude can be
written in a factorized form, [1337–1339]

M[ f ]
L

(
vi ,

Q2

μ2 , αs(μ
2), ε

)
=

∏

i∈ f

J [i]
(Q′2

μ2 , αs(μ
2), ε

)

×S[ f ]L I

(
vi ,

Q2

μ2 , αs(μ
2), ε

)
H [ f ]I

(
βi ,

Q2

μ2 , αs(μ
2), s

)
.

(5.130)

In this expression, the functions J [i] contain all poles in ε due
to virtual lines collinear to the velocities, denoted vi (v2

i = 0)
of the massless external partons i . These infrared poles are
universal among the amplitudes of different partonic scatter-
ing processes. That is, they only depend on whether or not
the external parton is an (anti)quark or gluon. The infrared
factors diverge very rapidly as ε→ 0, that is, in four dimen-
sions. Many details can be found in Ref. [1340], but to get an
idea of the strength of the infrared singularities, it is sufficient
to see leading poles of the two-loop exponent of a jet func-
tion, given in terms of its expansion in terms of anomalous
γ
[i]
K ,

J [i]
(
Q2

μ2 , αs(μ
2), ε

)

∼ exp

{

−
( αs

8π

)(
1

ε2 γ
[i] (1)
K

)

+
(αs

π

)2
[
β0

8

1

ε2

3

4ε
γ
[i](1)
K − 1

2

(
γ
[i](2)
K

4ε2

)]

+ . . .

}

.

(5.131)

Here γ
[i]
K = ∑

n γ
[i](n)
K (αs/π)n is the coefficient of the

1/[1 − x]+ term of the DGLAP evolution kernel for par-
ton i , often denoted Ai (αs), with γ

[q](1)
K = CF , and β0 is the

lowest-order coefficient of the QCD beta function. The anal-
ysis that leads to the exponentiation of double infrared poles
for partonic amplitudes relies on enhancements of radiation
by accelerated massless charged particles at low angle and
energy in gauge theories. The systematic treatment of these
effects often goes by the name “Sudakov resummation”, a
term we will encounter below when we return to the Land-
shoff mechanism.

In Eq. (5.130), S[ f ]L I is a matrix in the space of color
exchanges, labelled by color tensors L and I (for example,
octet or singlet exchange), which contains the remaining
poles, all due to virtual lines with vanishing momenta. The
soft matrix, S[ f ]L I also has an expression in terms of calcula-
ble “soft” anomalous dimensions, which have wide uses in
inclusive as well as exclusive cross sections. The remaining
set of functions, H [ f ]I are free of infrared poles and contain
all dependence on momentum transfers.

Hadrons: factorization and evolution for form factors and
exclusive amplitudes.
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Historically, the analysis of hadronic exclusive amplitudes
in QCD predated that for partonic amplitudes just discussed.
This was possible because in these amplitudes external par-
ticles are, by construction, color singlets. We assume that
the picture given above for quark counting still applies,
that the elastic amplitudes result from redirecting valence
quarks and antiquarks into collinear configurations in the
final state, and that those configurations are color singlets.
Then purely soft, as opposed to collinear, singularities dis-
appear. Comparing to the partonic amplitude, Eq. (5.130),
we derive an expression for the hadronic amplitude without
a soft matrix, and with dimensionally-regularized jet func-
tions replaced by hadronic wave functions [225,226,1270]. A
short-distance, hard-scattering function denoted H describes
the short-distance scattering of ni valence quarks/antiquarks
from each external hadron, i . The general form, in this case
for 2 → 2 scattering, is

M(s, t; λi ) =
∫ 4∏

i=1

[dxi ] φi (xi,m, λi , μ)

×H

(
xi,nx j,m pi · p j

μ2 ; λi
)

. (5.132)

In contrast to partonic scattering, which describes the short-
distance scattering of a single physical parton for each direc-
tion, hadronic wave functions, φi (xi,m, λi , μ), depend on
how their valence partons share the momentum of their
external hadron, labelled by fractions xi,m ,

∑
m xi,m = 1.

Hadronic helicities, labelled by λi , determine spin projec-
tions for the quark constituents of the valence state. The inte-
grals over fractional momenta are denoted (here, for baryons)
by the notation,

[dxi ] = dxi,1dxi,2dxi,3 δ

(

1−
3∑

n=1

xi,n

)

. (5.133)

The factorization requires the choice of a factorization scale,
μ, which is naturally of the order of the renormalization
scale for the matrix element that defines the wave functions
φ(xi , λi , μ). A representative example is forπ+, whose wave
function is the matrix element of the valence quark operators
that absorb an up quark and an anti-down quark, between the
single-pion state and the QCD vacuum. In this case, defin-
ing x1 = 1 − x2 ≡ x as the fraction of the up quark, the
expression (in a physical gauge) is

φπ(x, μ) = p · n
∫ ∞

−∞
dλ

4π
ei(xp)·(λn)

×〈0|d̄(0) n · γ γ5

2
√

2nc
u(λn)|π+(p)〉, (5.134)

where the vector nμ is light-like and oppositely directed to
the pion’s momentum pμ, and nc is the number of colors. The
matrix element requires renormalization because its fields are
separated by a light-like distance, proportional to nμ.

We note the many similarities between the exclusive
amplitudes Eq. (5.132) and factorized forms of inclusive
cross sections in deep-inelastic and hadron–hadron scatter-
ing. The role of wave functions here is played by parton
distributions there, and in both cases there is a convolution in
partonic momentum fraction(s). In both cases also, the pres-
ence of a factorization scale, μ, implies evolution equations,
there for parton distributions and here for wave functions,

μ
∂

∂μ
φ(x, μ) =

∫ 1

0
dy V (x, y, αs(μ)) φ(y, μ). (5.135)

The evolution kernel V (x, y, αs) incorporates cancellations
between constituent self-energies and diagrams with gluons
exchanged between constituents. In general, the factorization
scale is proportional to the momentum transfer, and these
evolution equations make it possible to extrapolate wave
functions (and parton distributions) from one scale to another.
While space does not allow a review of the kernel and the
solutions of these equations here, an especially beautiful con-
sequence of the particular evolution equations for pion wave
functions is that at asymptotically large μ the wave functions
approach known, fixed, finite expressions,

lim
μ→∞φπ(x, μ) = 3 fπ√

nc
x(1− x), (5.136)

where fπ is the pion decay constant and again nc the number
of colors (3 for QCD of course). Again, this is a consequence
of the detailed nature of the kernel in the evolution equation,
(5.135), which follows in turn from the underlying factoriza-
tion for hard exclusive processes, Eq. (5.132).

Exceptional momentum configurations.
In their original form, the factorized amplitudes of Eq.
(5.132) apply to a very wide set of processes, including elas-
tic form factors for pions and mesons, for which the external
leptons can be counted as if they were hadrons with a sin-
gle parton. Like any such factorized expression, however, its
predictive power depends on its stability under higher-order
corrections. Of particular interest are the limits where one
fractional momenta xi approaches unity and the others van-
ish, a configuration for elastic scattering often referred to as
the Feynman mechanism (see Lecture 29 of Ref. [1341]).
Noting the example of Eq. (5.136), we generally expect, and
in case of pions in the valence state can prove, that wave
functions vanish sufficiently rapidly in these limits to pre-
serve the stability of the factorized amplitude in Eq. (5.132).
The onset of this limit is not easy to determine, however,
and has been the subject of discussion in the literature. For
form factors particularly, alternative treatments based on dis-
persion relations and QCD sum rules, provide an alternative
picture for currently accessible momentum transfers [1342].
The situation for baryonic wave functions is even more com-
plex, because the Feynman mechanism is not suppressed at
fixed orders [1343]. At high momentum transfers, this may
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be resolved by higher-order corrections [1344] (see below),
but phenomenological analyses based on the Feynman mech-
anism are also of interest [1345].

Another point of concern is the Landshoff mechanism
identified above, in which subsets of the partons scatter elas-
tically at different points in the space transverse to the beam
directions, as in Fig. 124. This process is actually lower order
in αs , but more importantly it is sensitive to the transverse
structure of the external hadrons, that is, on information that is
not included in the wave functions discussed above. However,
the resummation of higher-order QCD corrections shows that
large transverse separations are suppressed, returning us to
expectations very similar to those of Eq. (5.132).

Sudakov resummation and asymptotic behavior.
As we have seen in Fig. 124 and Eq. (5.127), the Landshoff
enhancement to inclusive amplitudes is due to the assumed
possibility of separating hard scatterings between subsets of
valence partons. As noted above, to estimate the enhance-
ment we assume that the separation is generically of the
order of the hadronic radius. The analysis through Sudakov
resummation follows from the observation that the separa-
tion of partonic hard scatterings in an overall hadronic exclu-
sive amplitude requires the scattering of isolated non-singlet
color charges without radiation. In isolation, these acceler-
ated charges would result in infrared singularities, as in Eq.
(5.131) above, which would make the amplitude vanish in
four dimensions. In our case, however, the outgoing config-
urations of the scattered partons are almost collinear, and the
divergences (infrared poles) cancel. The larger the separa-
tion b between the hard scatterings, however, the larger the
finite remainder. The result is that any process with separated
hard scatterings is suppressed relative to the acceleration of
locally singlet charge configurations, which shows that the
assumption of separated hard scatterings among pairs of par-
tons made in our analysis of the Landshoff mechanism was
not in fact warranted.

The observations above, which are the basis of trans-
parency, can be quantified, by treating the distance between
the hard scatterings in Fig. 124 as an impact factor, b, con-
jugate to transverse momentum. An analysis treating both
transverse and longitudinal momenta of quarks leads to a fac-
torized expression for hadronic scattering amplitude in terms
of a wave function that depends on both the quark transverse
momentum and longitudinal momentum fraction. As with
the classic form, Eq. (5.132), there is a close analogy to par-
ton distributions encountered in inclusive cross sections, in
this case transverse momentum distributions (TMDs). The
necessary wave functions generalize the light-cone matrix
elements like Eq. (5.134) by displacing the fields in trans-
verse (impact parameter) directions relative to the opposite-
moving light cone.

Fig. 125 Transverse separations in a multiple hard scattering. Note that
the eight potentially independent integrals over momentum fractions are
replaced by only two integrals, the same for each external hadron. From
Ref. [1326]

This factorization in impact parameter space requires a
soft matrix, which ties together soft radiation from the two
(or three) separated hard scatterings in Fig. 124. Referring to
the diagram in Fig. 125 for a baryonic exclusive process, we
anticipate a perturbative suppression whenever the distances
between hard scatterings, b1 and b2 in the figure, increase
beyond the scale of the momentum transfer. For this process,
we note that all four partons external to each hard scattering
must carry the same momentum fraction. So the eight inte-
grals over momentum fractions are reduced to two, which we
label x and y here.

The form of factorization corresponding to Fig. 125 is
then given at scattering angle θ and momentum transfer Q
by [1346]

M(s, t) = 1

2π2 sin2 θ

∑

f

∫ 1

0
dxdy θ(1− x − y)

×
∫

db1db2 Trcolor

[
U (bi Q)H1H2H3

]

×
∏

i=1,2,3,4

Ri (x, y, b1, b2), (5.137)

where the color Trace
[
U (bi Q)H1H2H3

]
ties color together

and includes εabc for colors of three quarks, with possible
color exchange in each hard scattering,

Hi (xi p1, xi p2, xi p3, xi p4) ∼ 1/(xi Q)2.

In Eq. (5.137) we may define x1 = x , x2 = y and x3 =
1− x − y.

The wave functions, R(x, y, b1, b2) drive the suppression
of large bi , and behave as

Ri (x, y, bi ) ∼ φi (x, y, b1, b2, μ ∼ 1/〈b〉)
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× exp

[

−αs

π
γ
[q][1]
K

3∑

a=1

ln2
(

1

xaQba

)]

, (5.138)

where γ
[q]
K is the same anomalous dimension as for the

quark jets in the partonic amplitude, Eq. (5.131). The
φi (x, y, 1/〈b〉) are normal partonic wave functions of the
form encountered above, now evaluated at a renormaliza-
tion scale set by the inverse of the average impact parameter
spacing between the hard scatterings. The exponential sup-
pression by double logarithms of b in Eq. (5.138) is the result
of the systematic treatment of states with soft and collinear
virtual radiation, and is thus an example of Sudakov resum-
mation [1347]. It forces the impact parameters to vanish, on
a scale that is for all intents and purposes of order 1/

√−t .
Combined with the 1/t behaviors of the three partonic hard
scatterings, the full amplitude behaves as nearly 1/t4, con-
sistent with the original constituent counting rules of Eq.
(5.125). The momentum transfer at which this behavior sets
in, however, may be quite large, especially given the factors
of x and y, which are always less than unity, in the arguments
of logarithms.

5.9.3 Toward the future

The true asymptotic behavior of many exclusive reactions in
QCD is by now well characterized, but much remains to be
understood. In particular, it is not fully clear to what extent
the success of constituent counting rules provides us with a
quantitative understanding of the normalizations of ampli-
tudes at accessible momentum transfers, and when to expect
predictions based on helicity conservation and transparency
to apply. Progress in these directions will be part of the future
of QCD, a future in which the gap between partonic and
hadronic degrees of freedom is bridged.

5.10 Hidden color

Alexandre Deur
Nuclear physics is one of the first rungs of the complex-
ity ladder rising from our current fundamental understand-
ing of Nature in terms of the Standard Model. The effective
degrees of freedom (d.o.f.) that emerge in nuclear physics
are the hadrons, namely nucleons, mesons and their excited
states. Yet, effective theories are intrinsically limited, their
effective d.o.f. being insufficient to account for peculiar phe-
nomena, e.g., diffraction for geometrical optics. Then, more
fundamental d.o.f. are necessary. Likewise, certain nuclear
phenomena are not reducible to hadronic d.o.f. and either par-
tonic d.o.f. or new effective d.o.f. are necessary. Hidden color
(HC) is such a phenomenon. In conventional nuclear physics,

a nucleus – such as the deuteron63 – is effectively a bound
state of individual nucleons. However, at the more fundamen-
tal level of QCD, the nuclear eigenstate can also have addi-
tional multi-quark Fock states which have zero color overall,
but do not cluster as a collection of nucleons. These Fock
states represent the HC d.o.f. of nuclei.

The possibility of HC d.o.f. [1348–1353] arises from
observing that the representation of color singlet multihadron
systems allows for colored cluster (Cc, colored “hadrons”)
components, e.g., a red-red-blue cluster bound to a green-
green-blue cluster contributing to the deuteron wavefunc-
tion. Such a configuration can equivalently be reexpressed as
a sum of singlet components, but without well-defined clus-
tering properties since a given valence quark has a substantial
probability to belong to any of the singlet states. Therefore,
regardless of what (equivalent) representation is preferred, it
cannot be expressed with singlet hadronic clusters, i.e., col-
orless hadronic d.o.f. This is HC. Clearly, HC goes beyond
traditional nuclear physics but is a natural expectation of
the underlying theory, QCD. HC predicts nuclear states not
describable with usual hadronic d.o.f. but with multiquark
wavefunctions, e.g., 6-quark singlet states, or singlet systems
made of Cc. The latter perspective renders intuitive that HC
states are short-distance binding configurations.

For example, in a hadronic basis of nucleon N , Δ and Cc

d.o.f. (for simplicity we ignore other N∗ isobars contribu-
tions), the deuteron is a sum of NN , ΔΔ and CcCc compo-
nents, the latter dominating at short distance, viz, large Q2

[1329]:

|D〉 = |NN 〉 + |ΔΔ〉 + |CcCc〉
with

|NN 〉 = 1
3 |[6]{33}〉 + 2

3 |[42]{33}〉 − 2
3 |[42]{51}〉, (5.139)

|ΔΔ〉=√
4
45 |[6]{33}〉+√

16
45 |[42]{33}〉+√

25
45 |[42]{51}〉,

(5.140)

|CcCc〉 =
√

4
5 |[6]{33}〉 −√

1
5 |[42]{33}〉, (5.141)

where [ ] and { } label respectively the orbital and spin-isospin
symmetries which are characterized by the bracketed number
in the usual Young tableau way, e.g.,

[6] ≡
signifies 6 quarks in s-shell, or

[42] ≡

is for 4 quarks in s-shell and 2 in p-shell [1354]. For
Q2 →∞, [6]dominates over [42]. Thus, the deuteron state is

63 Throughout this section, deuteron is used as example of nuclear
system, but the discussion is generic to multi-nucleon systems.
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[6]{33} symmetric (and totally antisymmetric overall), from
which 4/5 comes from the HC component, Eq. (5.141). The
80% dominance of HC at large Q2 is therefore expected to
control elastic scattering off the deuteron in this limit. In fact,
the ratio of the reduced deuteron form factor (i.e., normal-
ized to the nucleon form factor squared) to that of the pion is
about 15% for Q2 of a few GeV2, indicating 15% of HC in
|D〉 at this scale [1329]. That |NN 〉 and |ΔΔ〉nearly vanish at
large Q2 means that two singlet hadrons tend to not be found
close to each others, i.e., the traditional (viz, between sin-
glet hadrons) nuclear force is repulsive at short distance. The
rise with Q2 of [6] over [42] tells us that the components of
|D〉 behave differently with Q2. Their evolutions come from
gluon exchange and were calculated in Refs. [1355–1357]. It
was shown that the singlet pn state of the deuteron prevalent
at small Q2 evolves into 5 states: itself and 4 HC states.

The number of HC states quickly increases with the mass
number A of the system. For A = 1 there is 1 singlet state
and no HC state:

3⊗ 3⊗ 3 = 10⊕ 8⊕ 8⊕ 1,

the last being the color singlet, the nucleon. For the deuteron,
A = 2 and

3⊗ 3⊗ 3⊗ 3⊗ 3⊗ 3

= 28⊕ 5(35)⊕ 9(27)⊕ 15(10).

⊕ 16(8)⊕ 5(10∗)⊕ 5(1),

with the 5 last states 5(1) being the singlet states. Since there
can be only one singlet state made of colorless 3-quark clus-
ters – the traditional pn (or isobars) state – the four remaining
singlet states are HC states. For A = 3, there are 41 HC states
[1358]. Calculating strictly within QCD the Q2-evolution
of nuclear amplitudes is presently not possible: Just |D〉 at
leading order involves millions of Feynman graphs. Using a
hadronic effective QFT is not helpful because adding the HC
d.o.f. negates the theory predicability [1358]. A solution is to
use the reduced nuclear amplitude technique [1348,1359].
Based on LF QCD [900,1360], it models nuclear scattering
amplitudes that obey QCD counting rules [153] (Sect. 5.9)
and gauge invariance. The method neglects nuclear binding
so that a nucleus is modeled as a cluster of collinear hadrons.
Thus, the nuclear LFWF factorizes as a product of LFWF of
nucleons in the nucleus times those of quarks in a nucleon:
ψA = ψN/A

∏
N ψq/N , with the convenient LFWF proba-

bilistic interpretation of the Fock states retained.
What are the possible signals for HC? An intuitive one

is the yield ratio (γ d → Δ++Δ−)/(γ d → pn); if |D〉 con-
tained only a state of two weakly bound singlet hadrons,

du
u© du

d©,

it would not break into a

uu
u© dd

d©= Δ++Δ−.

However, a 6-quark |uuuddd〉 state can well split into Δ++
and Δ−.

There are other possible HC signatures [1329]: the dom-
inance of HC at short distances makes large angle Comp-
ton scattering and pion photoproduction off the deuteron
prime channels to search for HC. In electron scattering, the
deuteron form factor at large Q2 should not be explainable
with hadronic d.o.f. Likewise, the deuteron inclusive ten-
sor spin structure function b1, a leading-twist quantity, is
expected to be especially sensitive to HC [1361]. Short range
correlation (SRC) measurements can also provide a signal for
HC as they probe the 2-nucleon potential at short distance.
Thus, SRC data should be sensitive to the repulsion expected
by HC and signaled by the vanishing of the |NN 〉 and |ΔΔ〉
components. The quasi-elastic reaction (to access large x)
at high Q2 resolves the nucleons of a nucleus and provides
the SRC of nucleon pairs. The ratio of pn over pp pairs was
found to be 5 times larger than the standard hadronic expec-
tation [1362,1363]. This may stem from the repulsive core
of the 2-nucleon potential. Furthermore, the measurement
of the strength of 3-nucleon correlations in A > 2 nuclei
indicates that their contribution is larger in heavy nuclei than
initially expected, suggestive of the rapid increase of number
of HC states with A. A challenge with SRC measurements is
the fast Q2 fall-off of form factors, so one may alternatively
study, also at large Q2 and high x , the behavior of inclu-
sive structure functions which should obey in that regime the
QCD dimensional counting rules based on the number ns of
spectator partons [153] (see Sect. 5.9),

xF(x) ∼ (1− x/2)2ns−1.

In the maximum x → 2 limit for the deuteron, ns = 5 for HC
(6-quark system) but ns = 2 without a dominant HC state.
HC evidence may come from indirect observations: without
HC, the only process binding hadrons not sharing covalent
quarks is glueball exchange. HC provides additional pro-
cesses [1355] which may be necessary to explain the struc-
ture of neutron stars [1364,1365].

HC may have already been observed. We mentioned the
SRC observations and that the deuteron form factor normal-
ized to the nucleon form factor squared is 15% that of the
pion. The I (J P ) = 0(3+) of the well-established d∗(2380)
(or D03) p-n resonance [1366–1374] compellingly suggests
that it is a 6-quark system with dominant HC [1375–1380].
Furthermore, while its dynamical decay properties can also
be explained by a ΔΔ state, the narrow 70 MeV width of the
d∗ is 3 times smaller than expected for the ΔΔ but agrees
with a HC state. References [1381,1382] reviewed recently
the d∗(2380) properties. Similarly, the narrow de-excitation
of 4 He∗ through e+e− emission seen at ATOMKI [1383]
can be understood as the 4He nucleus being excited into a
12-quark HC state made of 6 colored ud pairs (hexadiquark)
[1384]: it was shown that the ATMOKI anomaly cannot be
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accounted for by standard electromagnetic decay without
producing first a HC state [1385]. The latter also explains
the unusually strong binding of the 4He nucleus. Another
possible observation of HC comes the b1 data from HER-
MES [1386]. They are positive for x < 0.1 but appear to
become negative around x � 0.3, which is expected of a
6-quark HC state [1361].

These signals each hint at the existence of hidden-color
degrees of freedom. By reaching higher x and Q2, the 12
GeV upgrade of JLab and the future EIC [1293] will provide
the opportunity to confirm this fundamental feature of QCD.

5.11 Color confinement, chiral symmetry breaking, and
gauge topology

Edward Shuryak

5.11.1 Overview

Nontrivial topological structures of non-Abelian gauge fields
were discovered in the 1970s, starting with the ’t Hooft–
Polyakov monopole [1387,1388] and Belavin–Polyakov–
Schwartz–Tyupkin (BPST) instanton [1389]. These two
sets of objects were soon related to two main nonperturbative
phenomena – confinement and chiral symmetry breaking.

Confinement was connected to the so called “dual super-
conductor” model [1387,1390]. This model suggests that
magnetically charged monopoles can form a Bose–Einstein
condensate, which expels color-electric fields into flux tubes,
like a condensate of Cooper pairs in superconductors expels
magnetic fields into Abrikosov flux tubes.

Chiral symmetry breaking is connected to instantons,
which describe vacuum tunneling between topological bar-
riers. These have fermionic bound states – technically called
zero modes. In the QCD vacuum the density of these
states is high enough, so that they are “collectivized” into
quark condensates 〈q̄q〉 �= 0. This condensate breaks the
SU (N f )A X U (1)A chiral symmetry of massless QCD.

For decades, theory and phenomenology of monopoles
and instantons were developed separately, but in the last two
decades, following a breakthrough paper by Kraan and van
Baal [1391] studies of decon f inement and chiral symme-
try restoration phase transitions, based on new semiclassical
objects, called instanton-monopoles or instanton-dyons lead
to a united quantitative description of both phase transitions,
in QCD and even in its “deformed” versions.

5.11.2 Color confinement and deconfinement

Discovery of QCD 50 years ago put into motion many impor-
tant developments in the 1970s. Asymptotic freedom led to
a weak coupling regime at small distances and a flourish-
ing “perturbative QCD” describing hard processes. Going in

the opposite direction (small momenta or large distance, also
called “infrared” or IR), one finds growing QCD coupling.
In pure gauge theories the potential energy of a static quark
and antiquark pair grows linearly with increasing separation,
V (Rqq̄) ∼ σ Rqq̄ . Therefore, with a finite amount of energy
one cannot separate color charges: they are “confined”. Fur-
thermore, all electric fields are expelled from the vacuum
and get confined as well, into so called “electric flux tubes”
(also known as “QCD strings”). Their “tension” (energy per
length) is σ ≈ 1GeV/fm. In QCD with dynamical quarks,
a new qq̄ pair can be created, breaking the flux tube into
two. Yet it is still true that any objects with nonzero color
charge – such as quarks and gluons – do not exist as inde-
pendent physical objects in the QCD vacuum. This is one of
the definitions of “color confinement.”

This attractive picture of course needed to be tested. K.
Wilson [97] promoted the statement about a linear potential to
a more abstract mathematical form: the vacuum expectation
value of the Wilson line

W =
〈 1

Nc
Tr P exp

(
i
∫

C
dxμA

a
μT

a
)〉
, (5.142)

over some contour C of sufficiently large size with color
gauge fields. Here T a are color algebra generators, and P exp
means products of exponents along a given contour C . Wil-
son’s criterium states that in confining theories

W = exp[−σ ∗ Area(C)] (5.143)

falls exponentially with the area of a surface inclosed by the
contourC . If it is a rectangular contour T ∗L in 0–1 plane, the
area = T ∗L and σ is then identified with the string tension.
The very first numerical studies of non-Abelian gauge the-
ory on the lattice, by M. Creutz [354] indeed found that the
area law holds for large enough loops, and that σ is indeed
physical, that is it has correct dependence on the coupling as
dictated by asymptotic freedom. (Needless to say, numerical
evidence is not taken for a proof by mathematically inclined
folks, and an analytic proof is still missing. A million dollar
prize for such a proof still waits to be awarded.)

In Quantum Electrodynamics (QED) charge renormaliza-
tion makes the coupling larger at small distances (large
momenta transfers or UV limit), but small at large distances,
which is explained by very intuitive “vacuum polarization”
picture, in which virtual e+e− pairs screen the charges.
Screening of the charges by a QED medium – e.g. plasma of
the Sun – is well known and tested.

One may now ask what happens in a “QCD medium”.
Asymptotic freedom tells us that, contrary to QED, at small
distances the coupling decreases. But what would happen
at large distances? Calculation of the polarization tensor
[1392] had shown that, like in QED, the medium screens
the charges. Therefore, at high enough temperature the inter-
action becomes weak at all distances. Therefore hot/dense
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QCD matter must be in a phase called a Quark–Gluon
Plasma (QGP). It is the “normal phase” of QCD in which
fields in the QCD Lagrangian – quarks and gluons – cor-
respond to quasiparticles which move relatively freely. It
must be distinct from the QCD vacuum and low-T hadronic
phase, as there is no place for confinement, chiral condensate
and other nonperturbative phenomena there. The “confin-
ing” QCD vacuum and the QGP must therefore be separated
by a phase transition: and it is indeed seen in experiment
and lattice studies, which now put the critical temperature at
Tdeconfinement ≈ 155 MeV.

As discussed in detail in section on symmetries of QCD,
at vanishing quark masses it has additional chiral symmetries
. Without mass terms, in the Lagrangian the left and right-
polarized components do not directly interact with each other
and independent flavor rotations become possible. Such dou-
bled flavor symmetry can be decomposed into a vector (the
sum) and the axial (the L-R difference) symmetries. One
of them, called axial SU (N f )A symmetry (N f = 3 is the
number of light quark flavors, u, d, s), is spontaneously bro-
ken in the QCD vacuum, which possesses a nonzero quark
condensate 〈q̄q〉 �= 0. The melting (disappearance) of this
condensate should happen at another transition T > Tchiral .
Although in various settings Tdeconfinement �= Tchiral, in QCD
they seem to coincide, again based on numerical lattice evi-
dence.

Another chiral symmetry called U (1)A is broken by
the quantum anomaly and is not actually a symmetry at
all. (“Anomaly” means that while it is a symmetry of the
Lagrangian, it is not a symmetry of the quantum partition
function.)

5.11.3 Electric–magnetic duality and monopoles

Already our brief discussion above should have convinced
the reader that the QCD vacuum is quite complicated,
with one outstanding feature being the expulsion of color-
electric fields into the flux tube. Already, in the 1970s
[1390,1393,1394], an analogy between this phenomenon
and an expulsion of magnetic fields from superconductors
lead to the so called “dual superconductor” model of con-
finement.

In superconductors of the second kind there exist the so
called magnetic flux tubes or f luxons. Magnetic fields are
confined inside the tubes because of solenoidal (super)current
of Cooper pairs on their surface. QCD flux tubes transfer flux
of electric field instead. The word “dual” is used indicating
that one has to interchange electric and magnetic fields. If so,
the current in the solenoid needs to be magnetic. What can it
be made of?

The apparent asymmetry of Maxwellian electrodynamics
bothered theorists since late 1800s: can one allow magnetic
charges, by adding a nonzero r.h.s. to the∇ · �B equation? An

interesting motion for a set of electric and magnetic charges
was predicted by J.J. Thomson and H. Poincare. With discov-
ery of quantum mechanics, Dirac [1395] famously observed
that if they exist, then consistency of the theory requires that
the product of electric and magnetic coupling be quantized.
As he emphasized, the existence of one monopole in the Uni-
verse would be enough to demand quantization of all elec-
tric charges, an empirical fact to which no other explanation
existed. QED magnetic monopoles have been looked for in
exceedingly more sensitive experiments, but so far none have
been found.

Yet certain Non-Abelian gauge theories with adjoint
scalars do possess solitonic magnetic monopole solutions
of the equations of motion, as discovered independently by
′t Hooft and Polyakov [1387,1388] . Their prominent fea-
ture is that their magnetic charges comply with earlier ideas
by Dirac about special conditions, making “invisible” Dirac
strings and allowing coexistence of magnetic and electric
charges in quantum settings. Here we cannot give justice to
the explicit solution and its properties: the interested reader
can find a detailed pedagogical description in books such as
[1396]. Now, monopoles made of glue and scalars are bosons,
so at low enough temperature their ensemble should undergo
Bose–Einstein Condensation (BEC). If that happens, a “mag-
netically charged” monopole condensate would expel the
(color)electric field into electric confining flux tubes, and
explain confinement!

Seiberg and Witten [1215] have given an analytic proof in
theories with more than one supersymmetry (which possess
the needed adjoint scalars). They were able to get the exact
dependence of the effective electric coupling on the vacuum
expectation value (VEV) of the scalar g2(〈φ〉). When the
VEV is large, the theory is similar to electroweak theory,
with gluons and gluinos being light and weakly interacting,
and monopoles very heavy. When the VEV decreases, the
coupling increases to O(1), and magnetic monopoles and
dyons (particles with both electric and magnetic charges)
have masses comparable to that of gluons and gluinos.
Finally, near certain singular points the electric coupling goes
infinitely strong, with gluons and gluinos much heavier than
monopoles. An effective description in this regime is dual
QED describing magnetic interactions of light monopoles.
The remarkable fact is that opposite motion of electric and
magnetic couplings follows exactly the “consistency condi-
tion” of QED gelectric · gmagnetic = const pointed out by
Dirac [1395] nearly a century ago!

All this is very beautiful, creating significant theoretical
activity at the turn of the century, but we need to return to
QCD. It does not have adjoint scalar fields, so one cannot
directly build ’t Hooft–Polyakov monopoles. However, by
special procedures, it was possible to identify monopoles
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Fig. 126 Upper panel: QCD electric flux tube in QCD vacuum (upper)
and magnetic flux tube in superconductor (lower). The current rotated
around is made of monopoles (upper) and Cooper pairs (lower), respec-
tively. Lower panel: plot shows the lattice data on the distribution of
the electric field strength (squares) and the monopole Bose condensate
(discs) in cylindrical coordinates versus the distance in the transverse
plane. As one can see, the field is maximal at the center where the
monopole condensate vanishes. The flux tube is generated by two static
quark–antiquark external sources (not shown). The lines correspond to
a solution to (dual) Ginzburg–Landau equations

on the lattice, and locate their paths and correlations. It was
observed, in particular, that these monopoles do indeed rotate
around the confining flux tubes, producing solenoidal mag-
netic currents needed to stabilize them. The picture turns
out to be a dual copy (meaning interchange electric↔mag-
netic) to well known magnetic flux tubes in superconductors.
Figure 126 (displaying the result of lattice simulations sum-
marized in the review [1397]) shows the distribution of the
electric field and magnetic monopole condensate in a plane
transverse to the electric flux tube. Furthermore, it has been
shown [1398] that BEC phase transition of monopoles does
coincide with the deconfinement transition at finite temper-
ature Tc of (pure gauge) theories.

Ensembles of monopoles in QCD were studied, with
important applications. Monopole correlations reveal Coul-
omb-like forces between monopoles [1399], with their

Fig. 127 Top: Example of paths of 7 identical particles which undergo
a permutation made up of a 1-cycle, a 2-cycle and a 4-cycle. Middle:
Normalized densities of k−quark clusters ρk/T 3 as a function of tem-
perature in units of critical temperature Tc. Bottom: Effective chemical
potential μeff (T ) versus temperature, is shown to vanish exactly at the
critical temperature defined by thermodynamics

charges “running” in the direction opposite to that of electric
charges [1400], exactly as predicted by Dirac! It has been
shown [1401] that monopoles also play important role in
deconfined QGP phase at T > Tc: in particular they dominate
jet quenching in quark–gluon plasmas created in heavy ion
collisions, and explain unusually small viscosities observed.

The idea of Bose-clusters is explained in the top pane
of Fig. 127: identical bosons may have “periodic paths” in
which some number k of them exchange places. Such clusters
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are widely known to the community doing many body path
integral simulations for bosons, e.g. liquid He4. Feynman
argued that in order for the statistical sum to be singular at Tc,
the sum over k must diverge. In other words, one may see how
the probability to observe k-clusters Pk grows as T → Tc
from above. In Fig. 127(middle) from [1398] one sees the cor-
responding data for the cluster density. Their dependence on
k was fitted by two expressions,ρk ∼ exp (−kμeff(T )) /k5/2

or the same without the k−5/2 factor, to show that the criti-
cal T is not sensitive to these details of the fit. The effective
chemical potential μeff(T ) plotted versus temperature in the
bottom panel of Fig. 127. vanishes exactly at the deconfine-
ment temperature T = Tc (defined by different methods).
This means that monopoles indeed undergo Bose–Einstein
condensation at exactly T = Tc.

5.11.4 Topological landscape

Magnetic monopoles were only the first of the solitons (solu-
tions to nonlinear classical equations of motion, stable in the
sector with fixed topology). In fact there exist a whole zoo
of them, even in pure gauge theory without any scalar fields.

Gauge symmetry of QCD allow transformations of fields
with arbitrary SU (3) matrices Ω(x), with arbitrary depen-
dence on space-time point x . Those matrices can be divided
into topologically distinct classes. Introducing the Chern–
Simons number NCS [1402] for the gauge potentials

NCS ≡ εαβγ

16π2

∫
d3x

(

Aa
α∂β A

a
γ +

1

3
εabc Aa

αA
b
β A

c
γ

)

,

(5.144)

one may prove that if it is an integer, then the gauge configu-
ration with minimal energy is “pure gauge”, the field strength
Ga

μν = 0 and the minimal energy is zero. Thus the values of
NCS numerate “classical vacua” with different topologies.

Yet when NCS is in between these integers, the field
strength and the minimal energy is nonzero. This creates
a “topological landscape”, an infinite sequence of classical
vacua separated by barriers, see Fig. 128. By minimizing the
energy at fixed NCS (and r.m.s. size ρ) of the configurations,
one can derive [1403] the shape of this barrier in parametric
form. The configuration energy and Chern–Simons number
are expressed in terms of a parameter κ as follows

Umin(κ, ρ) = (1− κ2)2 3π2

g2ρ
,

NCS(κ) = 1

4
sign(κ)(1− |κ|)2(2+ |κ|). (5.145)

The value κ = 0 corresponds to the top of the barrier:
this configuration is called the “sphaleron” (which in Greek
means “ready to fall”). It is a solution of the classical equa-
tions of motion, a magnetic ball in which field lines of �Ba

(a = 1, 2, 3 since it is restricted to the SU(2) subgroup of

Fig. 128 The “topological landscape”: minimal potential energy Umin
(in units of 1/g2ρ) versus the Chern–Simons number NCS . Valleys at
integer values are separated by barriers. The terminology and arrows
are described in the text

SU(3)) rotate around the x, y, z axes. Since it corresponds
to an energy maximum (rather than minimum), a small per-
turbation would force it to fall down the barrier profile: this
process (also studied analytically and numerically) is called
“the sphaleron explosion”. (We indicated it on the right side
of Fig. 128 by red downward arrow.)

Sphalerons were originally discovered in electroweak the-
ory [1404,1405]: in this case the sphaleron energy is very
large, about 8 TeV. There were long debates whether those
can be produced at LHC or future colliders: so far not a
single event of this kind has been observed. Production
of sphaleron-like hadronic clusters with various sizes and
masses, in pp collisions at RHIC and LHC, are under con-
sideration, see more in review [1406]. Green arrows on the
r.h.s. of Fig. 128 indicate the instanton-sphaleron process in
which vacuum is excited to a “turning point” magnetic con-
figuration at the side of the barrier, from which it explodes
(rolls downward).

Quantum mechanics allows potential barriers to be pene-
trable due to “tunneling”. So, at any energy, even zero, tun-
neling events occur, changing NCS spontaneously. Under the
barrier the potential energy is larger than the total, and the
kinetic energy is negative E − U = K < 0. Since it is pro-
portional to momentum squared K ∼ π2, the motion should
occur with imaginary momentum. That lead to the idea to
describe this motion in imaginary time τ = i t , or Euclidean
space-time. Explicit solutions describing tunneling have been
found [1389], and are known as the BPST instantons (indi-
cated by the horizontal blue line on the left of Fig. 128). To
find them one assumes the solution is spherically symmetric
in 4-d, and can be described by scalar trial radial function f ,
with

gAa
μ = ηaμν∂νF(y), F(y) = 2

∫ ξ(y)

0
dξ ′ f (ξ ′) (5.146)

with ξ = ln(x2/ρ2) and η the ’t Hooft symbol defined by

ηaμν =
⎧
⎨

⎩

εaμν μ, ν = 1, 2, 3,
δaμ ν = 4,
−δaν μ = 4.

(5.147)

We also define ηaμν by changing the sign of the last two
equations. Putting this expression into the gauge Lagrangian
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Fig. 129 QCD lattice configuration under “deep cooling”: blue and
yellow regions are locations of instantons and anti-instantons. One can
also see a few magnetic flux tubes

one finds that it takes the form

Leff =
∫

dξ

[
ḟ 2

2
+ 2 f 2(1− f )2

]

(5.148)

where the dot is the derivative with respect to ξ . This corre-
sponds to the motion of a particle in a double-well potential.
Note that, since L = K − U , the sign in front of the poten-
tial is inverted, giving two maxima rather than minima. The
instanton solution is the one “sliding” from one maximum,
at ξ = 0, to the other at ξ = 1.

As an individual instanton is basically a 4d ball of Ga
μν

fields, the gauge field vacuum (in Euclidean time) can be
described by an ensemble of instantons and antiinstantons
(those with η̄aμν). The so called instanton liquid model (ILM)
[1407] concluded that the instanton size and density

ρ = 1

3
fm, nI+ Ī =

1

R4 = 1 fm−4 (5.149)

led to chiral symmetry breaking, reproducing parameters of
chiral perturbation theory and pion properties. Note that the
4d ball volume isπ2ρ4/2, and the diluteness nI+ Ī π2ρ4/2 ∼
1/20 � 1 of the ensemble is quite small. Yet, they are inter-
acting with each other strongly, thus the use of the word
“liquid” in the name. Many years later, numerical simula-
tions on the lattice have shown what it looks like, see Fig. 129
from [1408] . Technically, this is a lattice gauge field “deeply
cooled” (with the action minimized) which removes gluons
but keeps the gauge topology intact. One can find more on
lattice topology in Sect. 4.3.2.

5.11.5 Instantons bind quarks, and by this generates chiral
dynamics

G. ‘t Hooft [1409] has found that instantons bind massless
fermions at zero energy. Technically, these are solutions of
the Dirac equation in the instanton field, called fermionic

zero modes. The Pauli principle applies, and each instan-
ton (a gauge field ball) binds one of each light quark, u, d, s.
Therefore an “instanton liquid” contains “collectivized” light
quark states. It is analogous to a ensemble of atoms: while
each has its own electrons, at a finite density of atoms, these
electrons can be in different phases, e.g. “insulating” or “con-
ducting,” depending on whether collective electron states do
or do not have nonzero density of states on the Fermi surface.
Similarly, an ensemble of instantons can have a spectrum of
Dirac eigenvalues λ, either wi th or wi thout a gap at λ = 0:
in the latter case (analogous to a conductor) the chiral sym-
metry is spontaneously broken. With the ILM parameters
mentioned above, one can prove that this is indeed the case
in the QCD vacuum, and in fact it correctly reproduces the
density of Dirac eigenvalues at zero (proportional to “vac-
uum quark condensate”) 〈q̄q〉 ≈ −(240 MeV )3 known from
phenomenology.

This physics can be described in different, simpler terms.
Massless quark fields in QCD have left and right-polarized
components which, according to the QCD Lagrangian, have
independent flavor symmetries. Yet, as quarks get dressed
by nontrivial vacuum fields they may get mixed together so
that the quarks develop nonzero “constituent quark masses”
Meff ∼ 350–400 MeV. The nucleon mass is about 3Meff : so
the phenomenon of chiral symmetry breaking explains the
“mystery of our mass”.

Furthermore, gauge theory in Euclidean time can naturally
describe the properties at finite temperature T : just define τ

to be on a circle with a circumference h̄/T (known as Mat-
subara time). Then the instanton solution can easily be made
periodic. Although zero fermionic modes are still there at any
T , the spectrum changes at T > Tχ and the Dirac eigenvalue
spectrum contains a nonzero gap, and chiral symmetry gets
unbroken at high T . For a review on the chiral dynamics
induced by an interacting ensemble of instantons see [1410].

5.11.6 QCD correlation functions: from quarks to mesons
and baryons

Physics of QCD correlation functions using the so called
QCD sum rule method and lattice numerical simulations is
described in other sections. For a general pedagogical review
see e.g. Ref. [1411]. At small distances between the operators
the natural description is provided by perturbative diagrams,
defined in terms of quarks and gluons. At large distances they
are described in terms of the lowest hadrons with appropriate
quantum numbers.

Of great interest however is their behavior at intermediate
distances, at which a transition from one language to another
takes place. As summarized in Ref. [1411], using diagrams
with a single instanton one can explain the scale of this tran-
sition in “problematic” channels. In particular, it is attraction
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in the pion channel and repulsion in η′, attraction for scalar
glueball and repulsion for pseudoscalar one, etc.

Furthermore, experimentally known correlation functions
were quantitatively reproduced by the interacting instanton
liquid model even at large distances, first for many mesonic
channels [1412,1413] and subsequently for baryonic corre-
lators [1414]. As a result, the predictive power of the model
has been explored in substantial depth. Many of the coupling
constants and hadronic masses were calculated, with good
agreement with experiment and lattice. (This was shown to
be the case, in spite of the fact that instanton models did not
explain confinement.)

Subsequent calculations of baryonic correlators [1414]
have revealed further surprising facts. In the instanton vac-
uum the nucleon was shown to be made of a “constituent
quark” plus a deeply bound diquark, with a mass nearly
the same as that of constituent quarks. On the other hand,
decuplet baryons (like Δ++) had shown no such diquarks,
remaining weakly bound set of three constituent quarks. To
my knowledge, this was the first dynamical explanation of
deeply bound scalar diquarks. Deeply bound scalar diquarks
are a direct consequence of the ‘t Hooft Lagrangian, a mech-
anism that is also shared by the Nambu–Jona–Lasinio inter-
action [1415], but ignored for a long time. This subsequently
lead to the realization that diquarks can become Cooper pairs
in dense quark matter; see [1416] for a review on “color
superconductivity”.

5.11.7 Instanton-dyons lead to semiclassical theory of the
deconfinement and chiral transitions

We have described monopoles and instantons, and have
shown how they can help us understand such important non-
perturbative properties as con f inement and chiral symme-
try breaking, respectively. Yet neither of them were able to
describe both of them in a natural way.

This was achieved only during the last decade, using what
are called instanton-dyons (kind of a hybrid of these two topo-
logical animals, also known as instanton-monopoles). Tech-
nically, if they are far from each other, they can be described
as monopoles, which use the A0 component of the gauge field
instead of the adjoint scalar of the Georgi-Glashow model,
involved in ’t Hooft–Polyakov monopole construction. When
they overlap, they can still be followed analytically. When
their centers happen to be at the same spatial point, their
superposition turns out to be nothing else but the well known
instanton [1391,1417]!

A hybrid often inherits good properties of both parents –
but maybe some bad properties as well. In order to sort these
out, we need to start explaining from special role of A0 in the
finite-temperature theory. We have mentioned that finite tem-
perature theory is defined on a circle τ ∈ C1 with the Matsub-
ara period. In such cases there exist a phenomenon known

Fig. 130 Temperature dependence of the mean Polyakov line in pure
SU (3) gauge theory, from lattice and instanton-dyon statistical simu-
lations, displays a clear first order phase transition in which 〈P〉 jumps
from zero below Tc to a finite value in the quark–gluon plasma phase
at high T

in mathematics as “holonomy”: there are non-contractable
contours. The so called Polyakov line

P = P exp

[

i
∫

C
dτ Aa

0T
a
]

(5.150)

(T a is a color generator) is a gauge invariant operator.
(Because A0 must be periodic on (Euclidean time circle)
C1, its gauge factors cancel out.) Therefore, if it has cer-
tain values, it cannot be undone and thus, at finite T , one
cannot use the A0 = 0 gauge. And indeed, the average of
P has some well defined expectation value 〈P(T )〉, exten-
sively studied on the lattice (see Fig. 130). Since it is a uni-
tary SU (3) matrix, it can be defined by three eigenvalues
exp(iμi ), i = 1, 2, 3. The phases μi are called holonomies
μi (T ): they prescribe the magnitude of the fields Aa

0(T ).
Physically 〈P(T )〉 ∼ exp[−FQ/T ] is related to the free
energy of a static quark: in the confining phase the latter is
infinite and 〈P(T )〉 = 0 while in quark–gluon plasma phase
it is finite and 〈P(T )〉 �= 0: so it is the order parameter of
deconfinement.

Recognizing that A0 may have a nonzero constant value
all over the system, which cannot be gauged away and is
thus physical, one has to look for solutions of the YM equa-
tions at finite temperatures which at distance �r → ∞ go to
such values of A0. (Rather complicated) solutions of this type
[1391] for instantons were found, and it was recognized (only
after its actions were plotted) that it describes a continuous
deformation, from one spherical instanton into Nc indepen-
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dent bumps. If Nc = 3, one can follow how the triplet of
instanton-dyons is born!

Now let us summarize their properties. Like instantons,
they are (anti) selfdual �E = ± �B and live in Euclidean space
time. So, they are not really particles, since they do not
exist in the Minkowski world. Like instantons, they have
nonzero topological charges Q ∼ ∫

d4x( �E · �B). Unlike
instantons, however, those charges are not quantized to inte-
gers: Qi , i = 1, 2, 3 can take any values, except that their
sum is still |∑3

1 Qi | = 1. These Qi (equal to their actions Si )
are proportional to differences νi = μi+1 −μi of the eigen-
values of the Polyakov line (the holonomies). So, Si = νi S
where the coefficient is the “instanton action”

S = 8π2

g(T )2 =
(

11

3
Nc − 2

3
N f

)

log

(
T

ΛQCD

)

Non-integer Qi is only possible because they inher-
ited properties of another parent, the magnetic monopoles.
These objects are connected by Dirac strings (this connec-
tion undoes the topological classification theorems which
require that the fields be smooth at infinities.) They are called
“dyons” because a magnetic charge plus a selfduality implies
also presence of an electric charge (although real only in the
Euclidean world and thus not quite physical).

Before we can proceed, we need to clarify one more puz-
zle related to fermionic zero modes of instanton-dyons . An
instanton has one fermionic zero mode, and if it gets split
into three instanton-dyons , one may ask how this zero mode
be shared between them. The answer, also due to van Baal
and collaborators, is that the zero mode is centered near one
of the three: which one depends on the interrelation between
holonomy phases μi and quark periodicity phases called z f
where index f means flavor, u, d, s . . .. Further details on
instanton-dyons, their interaction and fermionic zero modes
can be found in references mentioned.

This information should be sufficient to understand how
one can “hunt” for these objects on the lattice. One method
is “cooling” of vacuum fields, like that used in Fig. 129.
Better still is “constrained minimization” [1418] preserving
the value of 〈P〉: it revealed selfdual clusters of topological
charges which integrate to non-integer values. But the best
is the “fermionic filter”, developed by Gattringer et al. and
Ilgenfritz et al., based on the zero modes of the quark Dirac
operator. In Fig. 131 we show an example from [1419,1420]
in which it was used. QCD simulations with realistic masses,
performed by large collaborations on supercomputers, pro-
vide a set of configurations to these authors. These calcula-
tions are especially expensive since they use the so called
domain wall fermions providing very accurate chiral sym-
metry of lattice fermions. Yet Larsen et al. used even better
ones, called overlap fermions, for which chiral symmetry is
exact even for finite lattices (without the continuum limit

Fig. 131 Space slice of density of an exact zero mode from QCD
simulation at T = Tc. The three colors refer to dyons of three different
types

a → 0 taken). Those possess exact zero modes λ = 0 and
configurations have exactly integer topological charges.

Figure 131 shows a typical landscape of the zero mode
densities |ψ0(x)|2 in two spatial dimensions. Red, blue and
green colors show those for three different fermionic peri-
odicity phases, identifying three instanton – dyon types (for
Nc = 3) that they want to locate. The peaks correspond
to locations and sizes of the individual zero modes in these
field configurations. One can be convinced that the peaks are
instanton-dyons because their shapes are well described by
analytic formulae as derived by van Baal and collaborators,
within a few percent accuracy. Furthermore, this is true not
only for well separated ones, but also for overlapping ones!
The gauge field configurations are for T a little bit above
deconfinement Tc, in a quark–gluon plasma possessing zil-
lions of thermal quarks and gluons: and yet, the instanton-
dyons are apparently undisturbed by them! (For clarity: we
do not mean here the values of the topological charge Q
or number of zero modes, protected by certain mathemati-
cal theorems. The observed space-time shapes of the Dirac
eigenmodes are not protected by any theorems known to us.)

Previous works however have not analyzed the “topologi-
cal clusters”, the situations in which two or three dyons over-
lap strongly. The Kraan–van Baal solution allows to study
these cases, and good agreement was also found in the numer-
ical analysis of instanton-dyon ensembles in [1419,1420].
The semiclassical description of zero and near-zero Dirac
modes on the lattice is quite accurate, at least in terms of the
zero mode shapes. While the very existence of zero modes
was required by topological theorems, good correspondence
of their shapes (in physical thermal vacuum versus pure semi-
classical dyons) was a good unexpected news.

This (and many similar plots) extracted from simula-
tions of the QCD vacuum should convince the reader that
instanton-dyons are well identified objects, in terms of which
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one can try to describe the underlying gauge field configu-
rations. If so, perhaps a dream being alive for half a cen-
tury since 1970s to develop consistent semiclassical theory
of deconfinement and chiral transitions can still be realized.

Following this idea, ensembles of instanton-dyons were
studied by a number of methods, including the mean field
(solving certain “gap equations”) or straightforward statisti-
cal Monte-Carlo simulations. Those were performed first for
the SU(2) gauge theory [1421], then for the SU(3) [391], first
without dynamical fermions, then with them [1422,1423].
In Fig. 130 we have shown one example of a comparison
between a semiclassical instanton-dyon ensemble and lattice
simulations. We cannot present here other results of these
works but just state that they compare well with the loca-
tion and properties of QCD phase transitions which we now
know from lattice simulations. Note that those works were
done on laptops or ordinary PCs, not supercomputers, and
yet the number of topological objects in them are counted by
hundreds, while very expensive lattice simulations have only
few of them (as one can see from the example above).

Furthermore, in such studies people used not just QCD,
but also two types of “QCD deformations”. One of them adds
extra operators with powers of the Polyakov line to the gauge
action. By changing their strength one can affect the location
and strength of the deconfinement phase transition. Another
type of QCD deformation makes quarks obeying modified
periodicity condition on the Matsubara circle, making quark
statistics to be intermediate between fermions and bosons.
This deformation affects the location and strength of the chi-
ral phase transition. What these deformations tell us is that
these two phase transitions should not generically be coinci-
dent, as they are in QCD. Again, one can apply such defor-
mations on the lattice or in the instanton – dyon semiclas-
sical theory, and compare the results. So far, the agreement
between them is quite good, which is encouraging.

5.11.8 Conclusions and discussion

The main thrust of this section is to convince the reader that
topological solitons play an important role in the understand-
ing of such nonperturbative phenomena in QCD as confine-
ment and chiral symmetry breaking in vacuum, as well as
deconfinement and chiral symmetry restoration at high tem-
peratures. A wider view on that should include the deformed
versions of QCD, or even other gauge theories, electroweak
or supersymmetric theories.

It would be nice to have just one type of those: but
in fact the history of the field we followed in this section
included (at least) three: the particle-monopoles, instantons
and instanton-dyons. All of those were found on the lattice,
by different “filters”, and were shown to be strongly cor-
related with certain physical phenomena we would like to
understand.

The particle − monopole behavior convincingly shows
that confinement is a Bose–Einstein condensation, explain-
ing both the confining flux tubes and their disappearance at
high T .

The instantons have fermionic clouds bound to them,
and their “collectivization” into a “conductor” without a gap
explains how a “quark condensate” is formed, the physics
of massless pions, and (unlike earlier theories) why η′ is
so heavy. They explain the value of the “constituent quark
mass” as well as that of the nucleon (and thus ourselves).
While instanton ensembles do not explain confinement, they
do have most of the lowest mesons and baryons (nucleon
included) as bound states.

The instanton-dyons (being a hybrid of the first two) con-
nect topology with holonomy (the Polyakov line, or nonzero
A0 VEV, in Euclidean formulation) in a way, which produces
a nice semiclassical theory of both deconfinement and chiral
transition. It was shown to work quantitatively, not only for
QCD, but for its deformations as well.

Taken together, those facts and observations are impres-
sive. The reader is reminded that they constitute the result
of five decades of work by multiple theorists. But still, the
reader is perhaps a bit confused by the very richness of the
story told. One would probably prefer a simpler and more
uniform picture.

Such feelings are shared by some active participants in
this process, and some light at the end of the tunnel is, in
fact, now showing. At the end of the section, let us briefly
describe these later developments.

It started with Ref. [1424], using the well controlled setting
of the most-supersymmetric gauge theory, withN = 4 super-
symmetries. This theory has adjoint scalars and ’t Hooft–
Polyakov monopoles as classical solutions, and the partition
function in terms of these monopoles can be calculated. The
same theory in a R3C1 setting (preserving supersymmetries)
also has holonomies and instanton-dyons, and the partition
function written in terms of these was calculated as well.
The two expressions are completely different, one better con-
verges at small and another at large radius of the circle C1.
Nevertheless, as Dorey et al. observed, using Poisson summa-
tion formula, both produce the same answer for the statistical
sum! This unexpected result was called “the Poisson dual-
ity”. The importance of this paper was not noticed promptly.
Indeed, such duality is very nontrivial: it is enough to remem-
ber that monopoles are particles moving in Minkowskian
space-times, while instanton-dyons can only be defined in
Euclidean periodic formulation. And yet, they apparently
describe the same dynamics!

In fact this phenomenon has nothing to do with supersym-
metry or gauge theories, and is present in a much broader
domain. In Ref. [1425], the existence of the Poisson duality
was demonstrated for a simple quantum mechanical rota-
tor. The duality means that a partition sum can either be
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written using Hamiltonian and stationary states, or using
Lagrangian and periodic Euclidean paths. Further elucida-
tion of this duality regarding QCD monopoles [1425] shed
light on their density and the long-known absence of classical
solutions for them. All of these hint that the different faces of
“gauge topology” we discussed will “asymptotically” con-
verge into a single semiclassical theory.

6 Effective field theories

Conveners:
Franz Gross and Mike Strickland
In this second section on approximate methods, we discuss
effective field theories (EFTs), a powerful technique that
can be used when there are widely separated energy scales
appearing in a problem. A classic example of this is non-
relativistic QCD (NRQCD), which emerges in the limit of a
large quark mass M (Sect. 6.1). For v = p/M � 1, there is
a large separation between ‘hard’ modes, with energy on the
order of M ; soft modes, with energy on the order of Mv; and
ulrasoft (potential) modes, with energy/momentum on the
order Mv2. Using EFT methods, one can write an effective
NRQCD Lagrangian that includes all terms allowed by QCD
symmetries. The coefficients in this effective Lagrangian can
be computed systematically by a matching procedure, which
ensures that quantities calculated in the EFT are the same
as those computed in QCD itself up to a given order in v.
The NRQCD EFT can be extended by further integrating
out the soft scale to obtain an effective theory called poten-
tial NRQCD (pNRQCD), which is written entirely in terms
of singlet and octet quark–antiquark pairs. As a result, at
leading order in pNRQCD, the physics of heavy quarkonium
reduces to solving a Schrödinger equation for bound state
wave functions.

This is but one example. The use of EFTs applied to QCD
has allowed systematic progress on many fronts in the last
decades. These include a systematically extendable model of
low-energy hadronic physics called chiral perturbation the-
ory (Sect. 6.2), which can be used as a foundation for nuclear
physics (Sect. 6.3) giving both a successful description of
the NN interaction up to 200 MeV, and the properties of
light nuclei up to A ≤ 12. In the realm of jets, soft-collinear
effective theory implements power counting in the transverse
momentum of gluon radiation (Sect. 6.4).

EFT methods have also been used to understand high-
temperature QCD thermodynamics, in which case the hard,
soft, and ultrasoft scales are T , gT , and g2T , respectively
(Sect. 6.5). The resulting EFTs, called electrostatic QCD
(EQCD) and magnetostatic QCD (MQCD) allow one to
systematically calculate the equation of state of a high-
temperature quark–gluon plasma. Together with other finite-
temperature resummation schemes such as hard-thermal-

loop perturbation theory these methods have provided a
way to calculate the QCD equation state that agrees well
with lattice calculations down to temperatures just above the
quark–gluon plasma phase transition temperature. Finally,
Sect. 6.6 describes how EFTs have recently been applied to
non-equilibrium QCD physics such as the quantum transport
of bottomonium through the quark–gluon plasma.

6.1 Nonrelativistic effective theory

Antonio Vairo
In QCD, quarks may be divided into two fundamental sets:
heavy quarks (charm, bottom, top) whose masses mh are
much larger than the typical hadronic scale ΛQCD and light
quarks (up, down, strange) whose masses m! are much
smaller than ΛQCD. Both the hierarchies, mh � ΛQCD and
m! � ΛQCD, allow for an effective field theory (EFT) treat-
ment of hadrons that exploits the symmetries that the hadrons
manifest in the large and small mass limits. Because these
symmetries are not manifest in QCD, the EFT is typically
simpler and more predictive than the full QCD treatment, at
least at the lowest orders in the effective expansion. At higher
orders in the effective expansion the original symmetries of
QCD are restored. We discuss EFTs for heavy quarks in this
section, while EFTs for light quarks, i.e., chiral EFTs, are
reviewed in the following sections.

In general, an effective field theory of QCD is constructed
as an expansion in the ratio Λ!/Λh of a low energy scale Λ!,
e.g. ΛQCD, and a high energy scale Λh , e.g. mh . Each term
in the expansion is made of the fields describing the system
at the low-energy scale; these terms may have any form con-
sistent with the symmetries of QCD. The low-energy fields
are the effective degrees of freedom. The resulting scatter-
ing matrix is the most general one consistent with analyticity,
perturbative unitarity, cluster decomposition and the symme-
try principles [1426].

It is said that the large energy scale “has been integrated
out” from QCD. Analytic terms in the expansion parameter
Λ!/Λh are accounted for by the operators of the EFT. Non-
analytic terms, carrying the contributions of the high-energy
modes in QCD, which are no longer dynamical in the EFT,
are encoded in the parameters multiplying the EFT operators.
These parameters are the Wilson coefficients of the EFT,
also called matching coefficients, or low-energy constants
in the chiral EFT. Hence, EFTs automatically factorize, for
any observable, high-energy from low-energy contributions.
The Wilson coefficients of the EFT Lagrangian are fixed by
matching to the fundamental theory, i.e., by requiring that the
EFT and the fundamental theory describe the same physics
(observables, Green functions, scattering matrices,…) at any
given order in the expansion parameter Λ!/Λh .
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The advantage of dealing with heavy quarks is that the
matching coefficients associated with the heavy quark mass
scale are guaranteed to be computable in perturbative QCD,
i.e., order by order inαs(mh), as a consequence of asymptotic
freedom. This is not the case for matching coefficients associ-
ated with lower energy scales or for the low-energy constants
that need to be computed either numerically in lattice QCD
or fixed on experimental data.

To allow for controlled calculations based on the effective
Lagrangian, operators, as well as the quantum corrections,
are organized according to their expected importance. Oper-
ators in the Lagrangian are counted in powers of the small
expansion parameter Λ!/Λh , whereas quantum corrections
are either computed exactly or counted in powers of the cou-
pling constant. For example, a strict expansion in terms of
the coupling is possible, as remarked above, when integrating
out the heavy quark mass.

EFTs are renormalizable at each order in the expansion
parameter. Hence, the EFT produces finite and controlled
expansions for any observable of the effective degrees of
freedom that may be computed respecting the energy scale
hierarchy upon which the EFT is based. The power counting
of the EFT, i.e., the way to assess the size of the different
terms in the effective expansion, may or may not be obvious.
The power counting turns out to be obvious if the system is
characterized by just one dynamical energy scale. Reducing
the description of a system to that one of an effective one
scale system is the ultimate goal of any effective field theory.

In this section, we restrict ourself to EFTs for heavy
quarks, where the heavy quark mass is the largest scale. These
EFTs are called nonrelativistic EFTs, because requiring the
heavy quark mass to be the largest scale implies that it is also
larger than the momentum p of the heavy quark in the hadron
reference frame: the conditionmh � p qualifies the quark as
nonrelativistic. The presentation of this section follows the
one of Ref. [1427].

For hadrons made of one heavy quark, like heavy-light
mesons and baryons, the proper nonrelativistic EFT is
called Heavy Quark Effective Theory (HQET). Heavy-light
hadrons are systems characterized by just two relevant energy
scales, mh and ΛQCD. HQET follows from QCD by integrat-
ing out modes associated with the heavy quark mass and
exploiting the hierarchy mh � ΛQCD. In the context of
HQET one deals with heavy-light hadrons made of either
a charm or a bottom quark (the top quark has no time to form
a bound state before decaying weakly into a b quark). HQET
is discussed in Sect. 6.1.1.

Systems made of more than one heavy quark, like quarko-
nia (e.g. charmonium and bottomonium) or quarkonium-like
states or doubly-heavy baryons are characterized by more
energy scales. The typical distance between the heavy quarks
is of the order of 1/(mhv), v � 1 being the relative velocity
of the heavy quark, which implies that the typical momen-

tum transfer between the heavy quarks is of order mhv, and
the typical binding and kinetic energy is of order mhv

2. The
inverse of mhv

2 sets the time scale of the bound state. These
systems are to some extent the QCD equivalent of positro-
nium in QED. In a positronium, an electron and a positron
move with a relative velocity v ∼ α, where α is the fine
structure constant, at a typical distance given by the Bohr
radius, which is proportional to 1/(mα), and are bound with
the energy given by the Bohr levels, which are proportional
to mα2.

At each of the energy scales one can construct an
EFT, specifically, nonrelativistic QCD (NRQCD) at the
scale mhv, which is discussed in Sect. 6.1.2, and potential
NRQCD (pNRQCD) at the scale mhv

2, which is discussed
in Sect. 6.1.3.

6.1.1 Heavy quark effective theory

Heavy Quark Effective Theory was the first nonrelativis-
tic EFT of QCD with a fully developed nonrelativistic
expansion, computation of higher-order radiative correc-
tions, renormalization group equations, and a wide range
of physical applications [704,1047,1250,1428] (for an early
review see, for instance, Ref. [1429], for a textbook see Ref.
[711]). This despite the fact that nonrelativistic QCD and
QED, the EFTs for two nonrelativistic particles that we dis-
cuss in Sect. 6.1.2, were suggested before [1430].

In a sense, HQET describes QCD in the opposite limit of
the chiral EFT, however, it is important to realize that HQET
is not the large mass limit of QCD, but the EFT suited to
describe heavy-light hadrons, i.e., hadrons made of one heavy
particle and light degrees of freedom. The heavy particle may
be taken to be a heavy quark, but also a composite particle
made by more than one heavy quark when the internal modes
of the composite heavy particle can be ignored. The light
degrees of freedom are made by light quarks and gluons.
Among the light quarks we may distinguish between valence
quarks and sea quarks, where the first ones are those that
establish, together with the heavy degrees of freedom, the
quantum numbers of the heavy-light hadron.

The HQET Lagrangian is made of low-energy degrees of
freedom living at the low-energy scale ΛQCD. These are the
low-energy modes of the heavy quark (antiquark), described
by a Pauli spinor ψ (χ ) that annihilates (creates) the heavy
quark (antiquark), and low-energy gluons and light quarks.
The HQET is constructed as an expansion in 1/mh : the heavy
quark expansion. Matrix elements of operators of dimension
d are of order Λd

QCD, hence the higher the dimension of the
operator the higher the suppression in ΛQCD/mh . In the rest
frame of the heavy-light hadron, the HQET Lagrangian den-
sity for a heavy quark reads up to order 1/m2

h and including
the 1/m3

h kinetic operator (HQET up to order 1/m4
h can be

found in Refs. [1431,1432])
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LHQET = Lψ + L!, (6.1)

with

Lψ = ψ†
{

i D0 + D2

2mh
+ D4

8m3
h

− cF
σ · gB
2mh

− cD
[D·, gE]

8m2
h

− icS
σ · [D×, gE]

8m2
h

}

ψ, (6.2)

L! =− 1

4
F A
μνF

Aμν + d2

m2
h

F A
μνD

2F Aμν

− d3

m2
h

g fABC F
A
μνF

B
μαF

C
να

+
n!∑

!=1

q̄!
(
i /D − m!

)
q!, (6.3)

where iD = i∇ − gA, i D0 = i∂0 + gA0, [D·, gE] =
D · gE − gE · D and [D×, gE] = D × gE − gE × D,
Ei = Fi0 is the chromoelectric field, Bi = −εi jk F jk/2
the chromomagnetic field, and σ are the Pauli matrices. The
fields q! are n! light-quark fields. The heavy-quark mass,mh ,
has to be understood as the heavy quark pole mass, hence not
the mass that is in the QCD Lagrangian. The coefficients cF ,
cD , cS , d2, and d3 are Wilson coefficients of the EFT. They
encode the contributions of the high-energy modes that have
been integrated out from QCD. Since the high-energy scale,
mh , is larger thanΛQCD, the Wilson coefficients may be com-
puted in perturbation theory and organized as an expansion
in αs at a typical scale of order mh . The coefficients cF , cD ,
and cS are 1 at leading order, while the perturbative series
of the coefficients d2 and d3 starts at order αs . The one-loop
expression of the coefficients may be found in Ref. [1433].
Some of the coefficients are known far beyond one loop. For
instance, the Fermi coefficient cF , which plays a crucial role
in the spin splittings, is known up to three loops [1434]. In
Eq. (6.3) we have not considered 1/m2

h suppressed operators
involving light quarks [1435,1436] since their impact is neg-
ligible in most hadronic observables. The HQET Lagrangian
for a heavy antiquark may be obtained from Eqs. (6.1) and
(6.2) by charge conjugation.

The HQET Lagrangian provides a description of heavy-
light hadrons that is the same as QCD order by order in
ΛQCD/mh . Because QCD is a Lorentz invariant theory, this
symmetry must be somehow maintained in HQET, although
HQET breaks manifest Lorentz invariance by the nonrela-
tivistic expansion. Indeed, Lorentz invariance is realized in
HQET by constraining the Wilson coefficients [1433,1437–
1439]. For instance, Lorentz invariance relates cF and the
spin–orbit coefficient cS : cS = 2cF − 1. This relation is
exact, which means that it holds to any order in αs .

The impact of HQET on the physics involving heavy-
light hadrons and, in particular, their weak decays has

been enormous. The reason is that the leading-order HQET
Lagrangian,

L(0)
HQET = ψ†i D0ψ − 1

4
F A
μνF

Aμν +
n!∑

!=1

q̄!
(
i /D − m!

)
q!,

(6.4)

makes manifest a hidden symmetry of heavy-light hadrons.
This symmetry is the heavy-quark symmetry and stands for
invariance with respect to the heavy-quark flavor and spin.
A consequence of the heavy-quark symmetry is that elec-
troweak transitions in the heavy-light meson sector depend
on only one form factor, the Isgur–Wise function ξ(w), whose
absolute normalization is ξ(0) = 1 [1250,1428]. Moreover,
the leading-order HQET Lagrangian is exactly renormaliz-
able.

Higher-order operators in Eq. (6.1) break the heavy-quark
symmetry (and exact renormalizability), however, they do it
in a perturbative way controlled by powers of ΛQCD/mh .
Hence, observables computed up to some order in the HQET
expansion depend on fewer and more universal nonperturba-
tive matrix elements than they would in a full QCD calcula-
tion. This makes the heavy quark expansion more predictive
than a full QCD calculation.

As an application, let us consider the heavy-light meson
masses. Expressed in the HQET as an expansion up to order
1/mh , they read [1440]

MH (∗) = mh + Λ̄+ μ2
π

2mh
− dH (∗)

μ2
G(mh)

2mh
+O

(
1

m2
h

)

,

(6.5)

where MH (∗) is the spin singlet (triplet) meson mass, mh

the heavy quark pole mass, Λ̄ the binding energy in the
static limit, of order ΛQCD, μ2

π/2mh the kinetic energy of
the heavy quark (μ2

π is the matrix element of ψ†D2ψ),
of order Λ2

QCD/mh , dH (∗) is 1 for H and −1/3 for H∗,
and dH (∗)μ2

G(mh)/2mh is the matrix element of cF ψ†σ ·
gB/(2mh)ψ , of order Λ2

QCD/mh . The heavy quark symme-
try manifests itself through the universality of the leading
term MH (∗) − mh ≈ Λ̄, and of the matrix elements μ2

π

and μ2
G(mh)/cF (mh), which depend neither on the heavy

quark flavor nor on the heavy quark spin. The flavor depen-
dence of μ2

G(mh) comes entirely from the Wilson coefficient
cF , which depends on mh through the running of the strong
coupling. Equation (6.5) can be used to extract the heavy
quark masses from the measured meson masses. One can
also use lattice QCD data to determine meson masses for fic-
titious heavy quarks of any mass mh , so to reconstruct MH (∗)
as a function of mh . One general difficulty in this kind of
study is that the relation between the MS mass, which is the
short distance quantity that appears in the renormalized QCD
Lagrangian, and the pole mass, which is the quantity that
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appears in the HQET Lagrangian, is plagued by a poorly con-
vergent perturbative series (at present, the relation between
the MS mass and the pole mass is known up to four loops
[1441,1442]). The large terms in the perturbative series trace
back to a renormalon singularity in the Borel plane of order
ΛQCD. This singularity may be subtracted from the pole mass
and reabsorbed into a redefinition of the other nonperturba-
tive parameters appearing in Eq. (6.5). There are many pos-
sible subtraction schemes [1443–1448]. For illustration, we
present the heavy quark masses and matrix elements appear-
ing in (6.5) obtained from lattice QCD data set to reproduce
the physical Ds and Bs masses in Ref. [1449]:

mc = 1273(10) MeV,

mb = 4195(14) MeV,

Λ̄ = 555(31) MeV,

μ2
π = 0.05(22) GeV2,

μ2
G(mb) = 0.38(2) GeV2,

where mh is the MS mass of the quark h at the scale of its MS
mass, Λ̄ is in the renormalon subtraction scheme adopted in
Ref. [1448,1449] and the quantity μ2

G has been evaluated for
the b quark. Note the approximate scaling of the nonpertur-
bative parameters according to the power counting of HQET
(with a somewhat smaller μ2

π ).
Equation (6.5) can be immediately extended to heavy-light

baryons. What changes is the explicit value of the nonpertur-
bative matrix elements, as the light degrees of freedom are
different from the mesonic case. Also doubly-heavy baryons
may be described by the same mass formula if the typi-
cal distance between the two heavy quarks is much smaller
than the typical size of a heavy-light meson, which is of
order 1/ΛQCD. In this case, at a distance of order 1/ΛQCD

one cannot resolve the inner structure of the heavy diquark
system, which effectively behaves as a pointlike particle
in an antitriplet color configuration, i.e., as a heavy anti-
quark of mass 2mh ; under some conditions, effects due to
the heavy quark–quark interaction my be added perturba-
tively in the framework of the nonrelativistic EFTs devel-
oped in the following sections [796,1450–1459]. Finally,
the heavy quark symmetry may be also applied to link
doubly-heavy tetraquarks (tetraquarks made of two heavy
and two light quarks) with heavy-light baryons sharing the
same light-quark content [1455,1460,1461]. Many of the
new charmonium- and bottomonium-like states observed at
colliders in the last decades have a doubly-heavy tetraquark
content [1427].

6.1.2 Nonrelativistic QCD

Hadrons made of two or more nonrelativistic particles, like
two heavy quarks or a heavy quark and a heavy antiquark, or

Fig. 132 Hierarchy of energy scales and EFTs for systems made of a
heavy quark and (anti)quark pair near threshold

more generally just heavy quark–antiquark pairs near thresh-
old, are multiscale systems characterized by a hierarchy of
dynamically generated scales:

mh � mhv � mhv
2. (6.6)

We discussed the origin of these energy scales at the begin-
ning of the section. The nonrelativistic energy scales are cor-
related. To reach a situation like in HQET, i.e. an EFT with
just one dynamical low-energy scale, we need to construct at
least two nonrelativistic EFTs: one following from integrat-
ing out from QCD modes associated with the energy scale
mh and one following from integrating out modes associ-
ated with the energy scale mhv, ending up with an ultimate
EFT at the energy scale mhv

2 [1462]. An illustration of the
tower of energy scales and corresponding EFTs is in Fig. 132.
In the last 20 years, the development of such nonrelativistic
EFTs of QCD has been the major theoretical breakthrough
in the description of quarkonium and quarkonium-like sys-
tems [1463–1465]. For a more historical perspective, see Ref.
[1466].

NRQCD is the EFT suited to describe systems made of
a heavy quark and (anti)quark pair near threshold that fol-
lows from QCD by integrating out the energy scale asso-
ciated with the heavy quark mass, mh [1430]. In a heavy
quark–antiquark bound state, the virial theorem constrains
the kinetic energy of the heavy particles to be of the same
order as the binding energy. As a consequence, the power
counting of NRQCD must be such that the leading-order
NRQCD Lagrangian includes the kinetic energy operators,
ψ† ∇2/(2mh) ψ − χ†∇2/(2mh)χ , making the NRQCD
Lagrangian, even at leading order, non renormalizable. This
is different from HQET.

NRQCD posed initially also some difficulties in finding
a computational scheme to integrate consistently over the
different momentum and energy regions in dimensional reg-
ularization. NRQCD or its QED equivalent were therefore
used for a long time either for analytical calculations in QED
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with a hard cut off [1467,1468] or for lattice QCD calcu-
lations involving heavy quarks [289,1469]. The advantage
for lattice NRQCD calculations is that, once the heavy quark
mass has been integrated out, the lattice spacing, a, is not
constrained, as in full lattice QCD calculations, to be smaller
than 1/mh , which would amount to requiring a very fine lat-
tice if the quark is heavy. In lattice NRQCD the constraint
is relaxed to a < 1/(mhv). Since at the same time the lat-
tice size has to be large enough to include distances of the
order of 1/ΛQCD for quenched calculations and 1/Mπ for
full calculations, simulations with heavy quarks in full QCD
are computationally quite demanding. Lattice NRQCD has
been, for a long time, the sole way to compute nonperturba-
tively observables involving bottom quarks in full QCD (see,
for instance, Refs. [281,1470–1473]). Only recently the first
full lattice QCD calculations of bottomonium-like systems
have become available [1474].

After the development of HQET, NRQCD became a
systematic tool for analytical calculations of quarkonium
observables. NRQCD is well suited to the description of
heavy quark–antiquark annihilation, because this happens at
the scale mh , which is the energy scale that has been inte-
grated out from QCD to construct NRQCD. In NRQCD, the
information about annihilation goes into the (imaginary part)
of the Wilson coefficients associated with the four-fermion
operators. These four fermion operators, a novel feature of
NRQCD with respect to HQET, are not only essential to the
description of the annihilation processes, but also to the cor-
rect description of all short-distance interactions between the
heavy particles. In NRQCD, annihilation processes factorize
therefore into a short-distance part, which may be computed
in perturbative QCD and is encoded in the Wilson coeffi-
cients, and into matrix elements of the NRQCD operators
that encode the low-energy dynamics of the heavy quark–
antiquark bound state. Processes involving heavy quark–
antiquark annihilations are quarkonium inclusive and elec-
tromagnetic decay [1475,1476] and quarkonium production
[1476]. The large amount of data on quarkonium production
in hadron and lepton colliders, together with the predictive
power of NRQCD and its success in most of the predic-
tions, has established NRQCD as a standard tool for studying
quarkonium annihilation [1463–1465,1477–1479].

Because four-fermion operators projecting onto color
octet quark–antiquark states are possible, NRQCD naturally
allows for production and decay of quark–antiquark states
in a color octet configuration. These states constitute a sup-
pressed, in v, component of the Fock state describing a phys-
ical quarkonium, but are necessary in the quarkonium phe-
nomenology [1463–1465]. They are also necessary for the
consistency of the theory, as they cancel infrared divergences
in quarkonium decay and production observables and even-
tually provide finite, physical results [1475,1476]. It should
be noted, however, that the NRQCD factorization has been

rigorously proved only for quarkonium decay but not for
quarkonium production [1275,1313,1480–1482].

A last crucial progress in establishing NRQCD as a valu-
able tool for analytical calculations came when it was shown
that the computation of the Wilson coefficients of NRQCD in
dimensional regularization requires expanding in the heavy
quark mass to avoid integrating over the high momentum
region. This means that, even if the power countings of
NRQCD and HQET are different, the matching to QCD pro-
ceeds in the same way, leading to the same operators and Wil-
son coefficients in the two-fermion and gauge sectors [1433].

The NRQCD Lagrangian density for systems made of a
heavy quark and a heavy antiquark of equal masses mh up
to order 1/m2

h , and including the 1/m3
h kinetic operator, is

given by

LNRQCD = Lψ + Lχ + Lψχ + L!, (6.7)

where Lψ and Lχ are the HQET Lagrangian densities for
the quark (see Eq. 6.2) and antiquark, respectively, L! is the
Lagrangian density (6.3) for the light degrees of freedom,
and Lψχ is the four-fermion sector, which up to order 1/m2

h
reads

Lψχ = f1(1S0)

m2
h

ψ†χχ†ψ + f1(3S1)

m2
h

ψ†σχ · χ†σψ

+ f8(1S0)

m2
h

ψ†TAχχ†TAψ + f8(3S1)

m2
h

ψ†TAσχ · χ†TAσψ.

(6.8)

As in the HQET case, mh is the pole mass. The four-fermion
Lagrangian in Eq. (6.8) is made of all possible four-fermion
operators of dimension 6. The corresponding Wilson coef-
ficients are f1(1S0), f1(3S1), f8(1S0), and f8(3S1). The
the first (second) four-fermion operator projects on a heavy
quark–antiquark pair in a color singlet configuration with
quantum numbers 1S0 (3S1), whereas the third (fourth) four-
fermion operator projects on a heavy quark–antiquark pair in
a color octet configuration with quantum numbers 1S0 (3S1).
The matrices TA are the SU(3) generators λA/2. The four-
fermion Wilson coefficients have been computed in Refs.
[1476,1483]. They have a real part that starts at order αs
for f8(3S1) and at order α2

s for the other coefficients, and
they have an imaginary part, coming from one loop or higher
annihilation diagrams, which is of order α2

s for Im f1(1S0),
Im f8(1S0), and Im f8(3S1), and of order α3

s for Im f1(3S1).
A list of imaginary parts of four-fermion Wilson coeffi-
cients in NRQCD and related bibliography can be found in
Ref. [1484].

The four-fermion sector of the NRQCD Lagrangian has
been derived up to order 1/m4

h (complete) and orders
1/m5

h and 1/m6
h (partial) in Refs. [1485–1487]. Like for

the Wilson coefficients in the two-fermion sector, also the

123



Eur. Phys. J. C          (2023) 83:1125 Page 191 of 636  1125 

coefficients in the four-fermion sector are not all inde-
pendent: some are related by Poincaré invariance [1486,
1487].

Sometimes it is useful to isolate the electromagnetic com-
ponent of the four-fermion operator and its corresponding
Wilson coefficient. This is the case when computing electro-
magnetic decay widths and photoproduction cross sections
in NRQCD. The electromagnetic operators are obtained by
projecting on an intermediate QCD vacuum state, |0〉, e.g.,
ψ†χχ†ψ → ψ†χ |0〉〈0|χ†ψ .

Unlike in HQET, the power counting of NRQCD is not
unique. The reason is that, while HQET is a one-scale EFT,
its only dynamical scale being ΛQCD, NRQCD is still a mul-
tiscale EFT. The dynamical scales of NRQCD are, at least,
mhv, mhv

2, and ΛQCD. In more complicated settings even
more scales may be relevant. Hence, one can imagine differ-
ent power countings: some more conservative, like assuming
that the matrix elements all scale according to the largest
dynamical scale, i.e., mhv, [1488], and some less conserva-
tive or closer to a perturbative counting [1476]. All the power
countings have in common that the kinetic energy scales like
the binding energy and that therefore ψ†i∂0ψ is of the same
order as ψ†∇2/(2mh)ψ , and analogously for the antiquark.
As we have mentioned above, this reflects the virial theorem,
an unavoidable consequence of the dynamics of a nonrela-
tivistic bound state.

The leading-order NRQCD Lagrangian reads in Coulomb
gauge [1476]

L(0)
NRQCD = ψ†

(

i D0 + ∇2

2mh

)

ψ + χ†
(

i D0 − ∇2

2mh

)

χ

− 1

4
F A
μνF

Aμν +
n!∑

!=1

q̄!
(
i /D − m!

)
q!. (6.9)

Note that this Lagrangian contains the heavy quark mass, and
therefore violates the heavy-quark flavor symmetry; hence
the bottomonium binding energy is different, even at lead-
ing order, from the charmonium one. In the power count-
ing of Ref. [1476] one further assumes: D0 ∼ mhv

2 (when
acting on ψ or χ ), D ∼ mhv (when acting on ψ or χ ),
gE ∼ m2

hv
3, and gB ∼ m2

hv
4. A consequence is that the

heavy-quark spin symmetry is a symmetry of the leading-
order NRQCD Lagrangian. Another consequence is that the
order 1/m3

h kinetic energy operator ψ†D4/(8m3
h)ψ and its

charge conjugated are of the same order as the 1/mh and
1/m2

h operators in Lψ and Lχ . Matrix elements of octet
operators on quarkonium states are further suppressed by
the fact that they project on subleading components of the
quarkonium Fock state, the ones made of a heavy quark–
antiquark pair in a color octet configuration and gluons. The
amount of suppression depends on the adopted power count-
ing.

6.1.3 Potential nonrelativistic QCD

Nonrelativistic bound states involve energy scales, mhv,
mhv

2, and ΛQCD, that are still dynamical and entangled in
NRQCD. A consequence of this is that, although the equa-
tions of motion that follow from the NRQCD Lagrangian
(6.9) resemble a Schrödinger equation for nonrelativistic
bound states, they are not quite that. They involve gauge fields
and do not supply a field theoretical definition and derivation
of the potential that would appear in a Schrödinger equation.
Nevertheless, we expect that, in some nonrelativistic limit,
a Schrödinger equation describing the quantum mechanics
of the nonrelativistic bound state should emerge from field
theory, since field theory may be understood as an extension
of quantum mechanics that includes relativistic and radiative
corrections. Another consequence already remarked in the
previous section is that the power counting of NRQCD is not
unique.

Since the scalesmhv andmhv
2 are hierarchically ordered,

they may be disentangled by systematically integrating
out modes associated with scales larger than the smallest
scale, mhv

2, and matching to a lower energy EFT, where
only degrees of freedom resolved at distances of order
1/(mhv

2) are left dynamical [1462]. This EFT is pNRQCD
[1489,1490]. Because the scale mhv has been integrated
out, the power counting of pNRQCD is less ambiguous than
the one of NRQCD. In situations where we can neglect the
hadronic scale ΛQCD, the power counting of pNRQCD is
indeed unique, as its only dynamical scale is mhv

2.
Having integrated out the scale mhv associated with the

inverse of the distance r between the heavy quark and anti-
quark, implies that pNRQCD is constructed as an expansion
in r , with Wilson coefficients encoding non-analytic contri-
butions in r . This is analogous to how HQET and NRQCD
are constructed; there the heavy quark mass,mh , is integrated
out and the EFTs are organized as expansions in 1/mh , with
Wilson coefficients encoding the non-analytic contributions
in the form of logarithms of mh . Some of the Wilson coeffi-
cients of pNRQCD may be identified with the potentials in
the Schrödinger equation of quarkonium.

The specific form of pNRQCD depends on the scale
ΛQCD. If ΛQCD � mhv

2, then one deals with weakly-
coupled bound states and the EFT is called weakly-coupled
pNRQCD. At distances of the order of or smaller than
1/(mhv

2), one may still resolve colored degrees of free-
dom (gluons, quarks, and antiquarks), as color confinement
has not yet set in. Hence gluons, quarks, and antiquarks
are the degrees of freedom of weakly-coupled pNRQCD.
Weakly-coupled pNRQCD is well suited to describe tightly
bound quarkonia, like bottomonium and (to a less extent)
charmonium ground states, the Bc ground state, and thresh-
old effects in t t̄ production. If ΛQCD � mhv

2, then one
deals with strongly-coupled bound states and the EFT is
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called strongly-coupled pNRQCD. At distances of the order
of 1/(mhv

2), confinement has set in and the only avail-
able degrees of freedom are color singlets. These are, in
principle, all, ordinary and exotic, heavy, heavy-light and
light hadrons that we might have in the spectrum. Strongly-
coupled pNRQCD is suited to describe higher states in the
bottomonium and charmonium spectra, as well as quarko-
nium exotica. If mhv � ΛQCD � mhv

2, the matching to
pNRQCD may be done in two steps, first integrating out
(perturbatively)mhv then (nonperturbatively)ΛQCD. Contri-
butions coming from these two scales will be automatically
factorized in pNRQCD observables.

Weakly-coupled pNRQCD
The degrees of freedom of weakly-coupled pNRQCD are
heavy quarks and antiquarks of momentum mhv and energy
mhv

2, gluons of momentum and energy mhv
2 (sometimes

called ultrasoft gluons), and light quarks of momentum and
energy mhv

2; these remain after gluons (sometimes called
soft gluons) and light quarks of energy or momentum mhv

have been integrated out from NRQCD. Because a single
heavy quark and antiquark cannot be resolved at the scale
mhv

2, it is useful to cast heavy quark and antiquark fields
into bilocal fields that depend on time, t , the center of mass
coordinate, R, and the relative coordinate, r . We call the color
singlet component of the quark and antiquark field S, and its
color octet component O, normalized to S = 13×3S/

√
3

and O = √
2OAT A. The distance r scales like 1/(mhv),

while the center of mass coordinate, R, and the time, t ,
scale like 1/(mhv

2), because the quark–antiquark pair may
only recoil against ultrasoft gluons. To ensure that gluons are
ultrasoft in the pNRQCD Lagrangian, gauge fields are mul-
tipole expanded in r . Hence gauge fields in the pNRQCD
Lagrangian only depend on time and the center of mass coor-
dinate. The pNRQCD Lagrangian is organized as a double
expansion in 1/mh and r . At order r in the multipole expan-
sion, the weakly-coupled pNRQCD Lagrangian density has
the form [1489,1490]

Lweak
pNRQCD =LS,O + L!, (6.10)

with

LS,O =
∫

d3r Tr
{

S†(i∂0 − hs)S+ O†(i D0 − ho)O
}

− VATr
{

O†r · gE S+ S†r · gE O
}

− VB

2
Tr

{
O†r · gE O+ O†Or · gE

}
, (6.11)

where, up to order 1/m2
h , and including the 1/m3

h terms in
the kinetic energies,

hs = p2

mh
+ P2

4mh
− p4

4m3
h

+ · · · + Vs, (6.12)

ho = p2

mh
+ P2

4mh
− p4

4m3
h

+ · · · + Vo. (6.13)

The covariant derivative acting on the octet field is defined as
i D0O = i∂0O + g[A0(R, t),O], P = −iDR is the (gauge
covariant) center of mass momentum, p = −i∇r is the
relative momentum, and hs and ho may be interpreted as
the Hamiltonians of the color singlet and color octet heavy
quark–antiquark fields. The dots in Eqs. (6.12) and (6.13)
stand for higher-order terms in the nonrelativistic expansion
of the kinetic energy. The trace in Eq. (6.11) is in spin and
in color space. The Lagrangian L! is the Lagrangian of the
light degrees of freedom (6.3) inherited from NRQCD.

The quantities Vs , Vo, VA, and VB are Wilson coeffi-
cients of pNRQCD. They encode contributions from the
soft degrees of freedom that have been integrated out from
NRQCD. Because (under the hierarchy of weakly-coupled
pNRQCD) the soft scale, mhv, is larger than ΛQCD, the
Wilson coefficients may be computed in perturbation the-
ory, order by order in αs . They are, in general, functions of
r , as well as of the spin and momentum. At leading order,
VA and VB are 1; they get possible corrections at order α2

s
[1491]. The coefficients Vs and Vo may be identified with
the color singlet and octet potentials, respectively. To lead-
ing order V (0)

s = −4αs/(3r) and V (0)
o = αs/(6r), which are

the Coulomb potentials in the color SU(3) fundamental and
adjoint representation, respectively. The potentials Vs and Vo
contain, however, also momentum- and spin-dependent cor-
rections. For the singlet case (the octet case is analogous) we
can write, up to order 1/m2

h :

Vs = V (0)
s (r)+ V (1)

s (r)

mh
+ V (2)

SI

m2
h

+ V (2)
SD

m2
h

, (6.14)

where, at order 1/m2
h we have distinguished between spin-

independent (SI) and spin-dependent (SD) terms. In turn,
they can be organized as

V (2)
SI = V (2)

r (r)+ 1

4
V (2)
p2,CM

(r)P2 + 1

4

V (2)
L2,CM

(r)

r2 (r × P)2

+ 1

2

{
V (2)
p2 (r), p2

}
+ V (2)

L2 (r)

r2 L2, (6.15)

V (2)
SD = 1

2
V (2)
LS,CM(r) (r × P) · (S1 − S2)+ V (2)

LS (r) L · S
+ V (2)

S2 (r) S2 + V (2)
S12

(r) S12, (6.16)

where { , } stands for the anticommutator,

S = S1 + S2 = (σ 1 + σ 2)/2

is the total spin (Si = σ i/2 is the spin of the particle i),
L = r × p is the relative orbital angular momentum, and

S12 = 3(r̂ · σ 1)(r̂ · σ 2)− σ 1 · σ 2.
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The potential V (0)
s is the static potential, the potential propor-

tional to V (2)
LS may be identified with the spin–orbit potential,

the potential proportional to V (2)
S2 with the spin–spin poten-

tial and the potential proportional to V (2)
S12

with the spin tensor
potential. The potentials that contribute in the center of mass
reference frame are, at leading (non-vanishing) order in per-
turbation theory (see, e.g., Ref. [1462]):

V (1)
s (r) = −2α2

s

r2 , (6.17)

V (2)
r (r) = 4

3
παsδ

(3)(r), V (2)
p2 (r) = −4αs

3r
, (6.18)

V (2)
L2 (r) = 2αs

3r
, V (2)

LS (r) =
2αs
r3 , (6.19)

V (2)
S2 (r) = 16παs

9
δ(3)(r), V (2)

S12
(r) = αs

3r3 . (6.20)

Potentials that depend on the center of mass momentum are
relevant only if the quarkonium is recoiling, like in hadronic
and electromagnetic transitions.

Beyond leading order, the static potential is known up to
three-loop accuracy [1492–1494], and also subleading loga-
rithms showing up at four loops have been computed [1495];
the 1/mh potential is known up to order α3

s [1496], and 1/m2
h

potentials up to order α2
s (these potentials have a long history,

see Ref. [1497] and references therein). We have assumed
that the heavy quark and antiquark have equal masses; for
the case of a quark and an antiquark of different masses, we
refer, for instance, to Refs. [1438,1462,1498–1500].

The Wilson coefficients of pNRQCD inherit the Wil-
son coefficients of NRQCD. Hence, some of the couplings
appearing in the expansion of the Wilson coefficients are nat-
urally computed at the scale of NRQCD, mh , while others,
encoding the soft contributions, are naturally computed at the
soft scale, mhv. In weakly-coupled pNRQCD, because the
leading potential is the Coulomb potential, the Bohr radius
is proportional to 1/(mhαs) and v ∼ αs . Finally, like in
any non relativistic EFT, also the Wilson coefficients of
pNRQCD are related through constraints imposed by the
Poincaré invariance of QCD, as we have seen at work in
HQET and NRQCD. These constraints set the coefficients
of the kinetic terms appearing in Eqs. (6.12) and (6.13) to
be the ones coming from expanding the relativistic kinetic
energies of a free quark and antiquark. Furthermore they fix
the potentials depending on the center of mass momentum
by expressing them in terms of the static potential,

VLS,CM = − 1

2r

dV (0)
s

dr
, VL2,CM = −

r

2

dV (0)
s

dr
,

Vp2,CM =
r

2

dV (0)
s

dr
− 1

2
V (0)
s .

These and other constraints have been derived in Refs. [1438,
1487,1499,1501,1502]. These relations are exact, i.e., valid

at any order in perturbation theory and, when applicable, also
nonperturbatively.

In the pNRQCD Lagrangian the relative coordinate r plays
the role of a continuous parameter labeling different fields.
The dynamical spacetime coordinates of the Lagrangian den-
sity are the time t and the coordinate R, which, in the case of
the fields S and O, is the center of mass coordinate. Having
written the Lagrangian in terms of singlet and octet fields has
made each term in Eq. (6.11) explicitly gauge invariant.

The power counting of weakly-coupled pNRQCD is
straightforward. We have already found that r ∼ 1/(mhv)

and t , R ∼ 1/(mhv
2). Momenta scale like p ∼ mhv and

P ∼ mhv
2. Gluon fields and light quark fields are ultrasoft

and scale likemhv
2 orΛQCD to their dimension. The leading-

order singlet Hamiltonian, p2/mh + V (0)
s , scales like mhv

2

(and analogously in the octet case), which is the order of
the Bohr levels. The potentials listed in Eqs. (6.17)–(6.20)
contribute to Vs at order mhv

4, as αs ∼ v.
The first correction to a pure potential picture of the

quarkonium interaction comes from the chromoelectric
dipole interaction terms in the second line of Eq. (6.11).
These operators are of order g(mhv

2)2 /(mhv) ∼ gmhv
3.

In order to project on color singlet states, the chromoelectric
dipole interaction may enter only in loop diagrams, which at
leading order is a self-energy diagram with two chromoelec-
tric dipole vertices. Such a self-energy diagram is of order
g2(mhv

2)3/(mhv)
2 ∼ g2mhv

4. The coupling g2 is com-
puted at the ultrasoft scale. Hence, if ΛQCD � mhv

2, the
coupling is perturbative and the self-energy diagram with two
chromoelectric dipole vertices is suppressed with respect to
the contributions coming from the potentials in Eqs. (6.17)–
(6.20). Elsewhere, if ΛQCD ∼ mhv

2, it is of the same order.
At leading order in the multipole expansion, the equation

of motion for the singlet field is

i∂0S = hsS, (6.21)

which is the Schrödinger equation that in quantum mechan-
ics describes the evolution of a nonrelativistic bound state.
Potential NRQCD provides therefore a field theoretical foun-
dation of the Schrödinger equation, a rigorous QCD def-
inition and derivation of its potential, and the range of
validity of the quantum mechanical picture. Ultrasoft glu-
ons start contributing, and therefore correcting the potential
picture, at order mhv

4 (for ΛQCD ∼ mhv
2) or mhv

5 (for
ΛQCD � mhv

2) in the spectrum.
Not only the static potential is derived from first prin-

ciples in pNRQCD, but all higher-order corrections in the
nonrelativistic expansion, including the spin–orbit, spin–spin
and Darwin term as well. In general, the potentials factor-
ize soft contributions from radiative corrections at the scale
mh . These last ones are encoded in the matching coeffi-
cients inherited from NRQCD, e.g., all 1/m2

h spin-dependent

123



 1125 Page 194 of 636 Eur. Phys. J. C          (2023) 83:1125 

potentials contain the Fermi coefficient cF . Since the poten-
tials are Wilson coefficients of an EFT, they are regularized,
undergo renormalization and satisfy renormalization group
equations that allow to resum potentially large logarithms in
their expressions [1491,1492,1503–1509]. The scale depen-
dence of the Wilson coefficients cancels in physical observ-
ables. For instance, the QCD static potential is infrared sen-
sitive at three loops [1510], a sensitivity that stems from the
fact that a static quark–antiquark pair may change its color
status by emitting an ultrasoft gluon. The infrared sensitivity
of the static potential cancels in the computation of the static
energy against the self-energy diagram with two chromoelec-
tric dipole vertices considered above, in a sort of non-Abelian
Lamb shift mechanism [1492].

Weakly-coupled pNRQCD requires the fulfillment of the
condition ΛQCD � mhv

2. The condition ΛQCD � mtv
2 is

certainly fulfilled by top–antitop quark pairs near threshold.
The production of t t̄ pairs near threshold is expected to be
measured with precision at future linear colliders, provid-
ing, among others, a determination of the top mass with an
uncertainty well below 100 MeV, which is a crucial input to
test the Standard Model. This requires a comparable theo-
retical accuracy, which has led in the last decades to several
high-order calculations of the near threshold cross section
in the framework of nonrelativistic EFTs of QCD [1511–
1517]. The condition ΛQCD �mhv

2 is also fulfilled by com-
pact and Coulombic quarkonia. Examples are the bottomo-
nium ground state, the ground state of the Bc system, and,
to a somewhat lesser extent, the charmonium ground state,
and the first bottomonium excited states. We recall that in a
Coulombic system the size is proportional to the inverse of
the mass and to the principal quantum number. A review on
applications of weakly-coupled pNRQCD to several tightly
bound quarkonia can be found in Ref. [1518].

Weak-coupling determinations of the bottomonium gro-
und state masses are typically used to extract the charm
and bottom masses [1446,1519–1527]. Hence, they pro-
vide alternative observables for the extraction of the heavy
quark masses to the heavy-light meson masses discussed in
Sect. 6.1.1. The results are consistent with the ones presented
in Sect. 6.1.1. The present precision is N3LO; the determina-
tion of the bottom mass includes the effects due to the charm
mass at two loops. Once the heavy quark masses have been
established for one set of spectroscopy observables, they can
be used for others like the Bc mass or the Bc spectrum (see
Ref. [1498] for an early work and Ref. [1500] for a state of
the art calculation at N3LO). Fine and hyperfine splittings of
charmonium and bottomonium have been computed pertur-
batively in Refs. [1528,1529] and to NLL accuracy in Ref.
[1530], similarly for the B∗c -Bc hyperfine splitting in Ref.
[1531]. After more than one decade of work the whole per-
turbative heavy quarkonium spectrum has been computed
at N3LO [1504,1532–1537]. Recently, this result has been

further improved reaching N3LL accuracy up to a missing
contribution of the two-loop soft running [1508,1509]. The
N3LL order represents the presently achievable precision of
these calculations. Going beyond this precision will require a
major computational effort, like the four-loop determination
of the static potential. Electromagnetic decays of the bot-
tomonium lowest levels have been computed including N2LL
corrections in Refs. [1513,1538]. A different power count-
ing that includes at leading order the exact static potential has
been used for these quantities in Ref. [1539]. Corrections to
the wave function and leptonic decay width of the Υ (1S) at
N3LO have been computed in Refs. [1540,1541]. Nonper-
turbative corrections in the form of condensates have been
included in Refs. [1542,1543]. Radiative quarkonium decays
have been analyzed in Refs. [1544–1549]. Radiative and
inclusive decays of the Υ (1S) may also serve as a determi-
nation of αs at the bottom mass scale [1550]. Radiative tran-
sitions, M1 and E1, at relative order v2 in the velocity expan-
sion have been computed in Refs. [1551–1554]; noteworthily,
pNRQCD may explain the observed tinyΥ (2S)→ γ ηb(1S)
branching fraction. Finally, the photon line shape in the radia-
tive transition J/ψ → γ ηc(1S) has been studied in Ref.
[1555].

Strongly-coupled pNRQCD
When the hierarchy of scales is ΛQCD � mhv

2, pNRQCD is
a strongly-coupled theory. This condition may be appropriate
to describe higher quarkonium states, and quarkonium exot-
ica. Strongly-coupled pNRQCD is obtained by integrating
out the hadronic scale ΛQCD, which means that all colored
degrees of freedom are absent [1462,1488,1556–1559].

Let us consider the case of strongly-coupled pNRQCD
for ordinary quarkonia. Lattice QCD shows evidence that
the quarkonium static energy is separated by a gap of order
ΛQCD from the energies of the gluonic excitations between
the static quark–antiquark pair [1560]. If, in addition, the
binding energies of the states that can be constructed out of
the quarkonium static energy are also separated by a gap of
order ΛQCD from the binding energies of the states that can
be constructed out of the static energies of the gluonic excita-
tions, and from open-flavor states, then one can integrate out
all these latter states. The resulting EFT is made of a quark–
antiquark color singlet field, whose modes are the quarko-
nium states, and light hadrons. The coupling of quarkonia
with light hadrons has been considered in the framework
of pNRQCD in Ref. [1561]. It impacts very mildly spec-
tral properties (masses, widths) of quarkonia that lie well
below the open-flavor threshold. For such quarkonia we may
neglect their couplings with light hadrons and the pNRQCD
Lagrangian density assumes the particularly simple form:

Lstrong
pNRQCD =

∫
d3r Tr

{
S† (i∂0 − hs)S

}
. (6.22)
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The Hamiltonian, hs , has the same form as in Eqs. (6.12)
and (6.14)–(6.16). The equation of motion is the Schrödinger
equation (6.21).

The nonperturbative dynamics is encoded in the poten-
tials, which at order 1/mh is V (1)

s and at order 1/m2
h are

the spin-independent and spin-dependent terms identified in
Eqs. (6.15) and (6.16). What distinguishes the EFT from phe-
nomenological potential models can be summarized as fol-
lows:

(i) The potentials are products of Wilson coefficients, fac-
torizing contributions from the high-energy scale, mh ,
and low-energy matrix elements, encoding contribu-
tions coming from the scalesmhv andΛQCD. The exact
expressions follow from matching pNRQCD with its
high-energy completion, which is NRQCD.

(ii) The high-energy Wilson coefficients of pNRQCD are
inherited from NRQCD. These are the Wilson coeffi-
cients in the NRQCD Lagrangian (6.7). Because the
NRQCD Wilson coefficients have a real and an imag-
inary part, also the pNRQCD potentials develop a real
part, responsible for the quarkonium binding, and an
imaginary part, responsible for the quarkonium anni-
hilation. At higher orders, also contributions coming
from the scale

√
mhΛQCD may become relevant [1559].

(iii) The low-energy matrix elements are nonperturbative.
Their field-theoretical expressions, relevant for poten-
tials up to order 1/m2

h , are known.

The static potential is equal to limT→∞ i ln W/T , where
W is the expectation value of a rectangular Wilson loop
of spatial extension r and temporal extension T [97,1562–
1564]. Similarly, the low-energy real parts of the other poten-
tials can be expressed in terms of Wilson loops and field inser-
tions on them [803,1556,1557]. These Wilson loops may be
computed in weakly-coupled QCD giving back the weak-
coupling potentials listed at leading order in Eqs. (6.17)–
(6.20) [1565] or nonperturbatively via lattice QCD. Indeed,
the computation of these potentials has a long history that
begins with the inception of lattice QCD. Their most recent
determinations can be found in Refs. [804,1566,1567], see
also Ref. [1568]. Noteworthily the long-distance behaviour
of the potentials agrees with the expectations of the effective
string theory [1565,1569–1571].

The low-energy contributions to the imaginary parts of the
potential are matrix elements of the NRQCD four-fermion
operators. Hence they are local terms proportional to δ3(r) or
derivatives of it. Nonperturbative contributions are encoded
into constants that may be expressed in terms of momenta of
correlators of chromoelectric and/or chromomagnetic fields
[1488,1558], and eventually fixed on data or computed with
lattice QCD.

(iv) Finally, pNRQCD is renormalizable order by order
in the expansion parameters in both its weak-coupling and

strong-coupling versions. In particular, quantum-mechanical
perturbation theory can be implemented at any order without
incurring uncanceled divergences like in purely phenomeno-
logical potential models.

Strongly-coupled pNRQCD has been used to compute
quarkonium inclusive and electromagnetic decay widths
[1463,1488,1558,1559], and hadronic and electromagnetic
production cross sections [1572–1576]. The advantage with
respect to the NRQCD approach is that, while the NRQCD
four-fermion matrix elements depend on the quarkonium
state, their pNRQCD expression factorizes all the quarko-
nium dependence into the wave function at the origin (or its
derivatives) squared. The wave function at the origin squared
gets multiplied by momenta of correlators of field-strength
tensors, F , that are universal, quarkonium independent, con-
stants. Schematically, one obtains for the expression of a
generic NRQCD four-fermion matrix element in pNRQCD,
entering either quarkonium production or decay, that

〈4-fermion〉 ∼|wave-function(0)|2

×
∫
dt · · · 〈F(t) · · · F(0)〉. (6.23)

This leads to a significant reduction in the number of nonper-
turbative parameters and allows to use information gained in
the charmonium sector to make predictions in the bottomo-
nium sector. Finally, pNRQCD combined with the multipole
expansion has been used to compute quarkonium hadronic
transitions in Ref. [1577].

pNRQCD for systems other than quarkonia
Potential NRQCD can be used to describe systems with three
valence quarks, two of them heavy [1451,1452,1458,1459,
1578,1579]. This is because the nonrelativistic hierarchy of
scales given in Eq. (6.6) is preserved, which allows to sys-
tematically integrate out these scales to describe eventually
the baryon with a suitable EFT. If the heavy quark–quark
distance is of the order of 1/ΛQCD, then the valence light-
quark affects the quark–quark potential. Elsewhere, if the
heavy quark–quark distance is smaller than 1/ΛQCD, then
we may disentangle the quark–quark dynamics, described
by a perturbative quark–quark potential, from the coupling
of the heavy-quark pair with the light quark. Since in this last
case, the light quark sees the heavy-quark pair as a pointlike
particle, its interaction with the heavy-quark pair is described
by HQET.

One can devise EFTs for describing low-energy modes of
baryons made of three heavy quarks. These states have not
been discovered yet in experiments, but they offer a unique
tool to study confinement and the transition region from the
Coulombic regime to the confined one in non-trivial geomet-
rical settings [1578], using, for instance the three-quark static
potential computed in lattice QCD [1580–1582].
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Possible bound states made of two quarkonia or of a
quarkonium and a nucleon (hadroquarkonium) may be char-
acterized by even lower energy scales than those characteriz-
ing the binding in quarkonia or baryons made of at least two
heavy quarks. These lower energy scales are those associated
with pion exchanges responsible for the long-range interac-
tion. One can treat these systems in an EFT framework by
starting from the pNRQCD description of the quarkonium
and the heavy-baryon chiral effective theory description of
the nucleon. The long-range pion exchange interaction sets
the scale of the typical size of the system to be of the order of
1/Mπ , i.e., much larger than the size of the quarkonium and
even larger than its typical time scale, which is of the order
of the inverse of the binding energy.

Once modes associated with the quarkonium binding
energy and Mπ have been integrated out, the quarkonium–
quarkonium or the quarkonium–nucleon interaction is
described by a potential that, in this way, has been system-
atically computed from QCD. The coupling of quarkonium
with the pions is encoded in a Wilson coefficient that may
be identified with the quarkonium chromoelectric polariz-
ability [1583]. In the quarkonium–quarkonium system, the
lowest energy EFT describing modes of energy and momen-
tum of order M2

π/(2mh) is called van der Waals EFT (WEFT)
[1561,1584]. The resulting potential is, in fact, the van der
Waals potential. In the quarkonium–nucleon system, the low-
est energy EFT describing modes of energy and momentum
of order M2

π/(2Λχ) has been dubbed potential quarkonium–
nucleon EFT (pQNEFT) [1585]. Such frameworks may be
relevant to describe heavy pentaquarks.

Quarkonium-like multiparticle systems, where the light
degrees of freedom remain adiabatically in a stationary
state with respect to the heavy quark motion, can be stud-
ied within the Born–Oppenheimer approximation that may
be implemented in a suitable version of pNRQCD called
Born–Oppenheimer effective field theory (BOEFT) [414,
1586,1587]. This framework has been applied to quarko-
nium hybrids, quarkonium tetraquarks and to heavy-meson
threshold effects [1461,1588–1591]. Finally, nonrelativistic
EFTs like pNRQCD are also advantageous in describing the
propagation of quarkonium in a thermal medium either in
equilibrium [1592–1597] or out of equilibrium [1598–1602];
see also Sect. 6.6.

6.2 Chiral perturbation theory

Stefan Scherer and Matthias Schindler
Chiral perturbation theory (ChPT) is an effective field theory
that describes the properties of strongly-interacting systems
at energies far below typical hadron masses. The degrees
of freedom are hadrons instead of the underlying quarks and
gluons. ChPT is a systematic and model-independent approx-
imation method based on an expansion of amplitudes in terms

of light-quark masses and momenta. The following is a brief
overview of ChPT that is largely based on Ref. [1603], which
can be referred to for a more detailed introduction.

6.2.1 QCD and chiral symmetry

The QCD Lagrangian, obtained by applying the gauge prin-
ciple with respect to the SU(3) color group to the free
Lagrangians of six quark flavors with masses m f , reads

LQCD =
∑

f=u,...,t
q̄ f

(
i /D− m f

)
q f − 1

2
Trc

(
FμνFμν

)
.

(6.24)

For each quark flavor f , the quark field q f is a color triplet,
transforming in the triplet representation,

q f (x) #→ U (x)q f (x), (6.25)

where U (x) denotes a smooth space-time-dependent SU(3)
matrix. Using the Gell-Mann matrices [1604], the eight gluon
fields AA

μ are collected in a traceless, Hermitian, 3×3 matrix
Aμ = λAAA

μ/2 (summation over repeated indices implied),
transforming inhomogeneously under a gauge transforma-
tion,

Aμ(x) #→ U (x)Aμ(x)U
†(x)+ i

gs
∂μU (x)U †(x), (6.26)

where gs denotes the SU(3) gauge coupling constant. In terms
of Aμ, the covariant derivative of the quark fields is defined
as

Dμq f =
(
∂μ + igsAμ

)
q f . (6.27)

Finally, the field strength tensor is given by

Fμν = ∂μAν − ∂νAμ + igs[Aμ,Aν]. (6.28)

By construction, the Lagrangian of Eq. (6.24) is invari-
ant under the combined transformations of Eqs. (6.25) and
(6.26). From the point of view of gauge invariance, the strong-
interaction Lagrangian could also involve a term of the type
(c.f. Eq. (1.6) from Sect. 1.1)

Lθ = g2
s θ̄

32π2 εμνρσ Trc
(
FμνFρσ

)
, ε0123 = 1, (6.29)

where εμνρσ denotes the totally antisymmetric Levi-Civita
tensor. The so-called θ term of Eq. (6.29) implies an explicit
P and CP violation of the strong interactions. The present
empirical information on the neutron electric dipole moment
[1605] indicates that the θ term is small and, in the following,
we will omit Eq. (6.29) from our discussion.

Since the covariant derivative of the quark fields is flavor
independent, the Lagrangian of Eq. (6.24) has additional,
accidental, and in this case global, symmetries aside from
the gauge symmetry. Both the dynamics of the theory (via
spontaneous symmetry breaking) and the values of the quark
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masses impact how these symmetries are (approximately)
realized in nature. Dynamical chiral symmetry breaking
introduces the scale Λχ = 4πF0 (see below) of the order
of 1 GeV [1606]. In this context it is common to divide
the six quark flavors into the three light quarks u, d, and
s with ml < Λχ and the three heavy flavors c, b, and t
with mh > Λχ (as discussed in the previous subsection).
As a theoretical starting point, one may consider two limits,
namely, sending the light-quark masses to zero (chiral limit)
and the heavy-quark masses to infinity. In Ref. [1607], this
situation is referred to as a “theoretician’s paradise.” In the
following, we exclusively concentrate on the chiral limit for
either two (u, d) or three (u, d, s) light quarks and omit the
heavy quarks from our discussion. Introducing left-handed
and right-handed quark fields (color and flavor indices omit-
ted) as

qL = 1

2
(1− γ5) q, qR = 1

2
(1+ γ5) q, γ5 = iγ 0γ 1γ 2γ 3,

(6.30)

the QCD Lagrangian in the chiral limit decomposes into

L0
QCD =

∑

l=u,d,s

(
q̄L ,l i /DqL ,l + q̄R,l i /DqL ,R

)

−1

2
Trc

(
FμνFμν

)
. (6.31)

In the massless limit, the helicity of a quark is a good quantum
number which is conserved in the interaction with gluons.
Moreover, the classical Lagrangian in the chiral limit has a
global U(3)L × U(3)R symmetry, i.e., it is invariant under
independent unitary flavor transformations of the left-handed
and the right-handed quark fields,

qL #→ ULqL , qR #→ URqR .

At the classical level, this chiral symmetry results in 2×(8+
1) = 18 conserved currents:

Lμ
a = q̄Lγ

μ λa

2
qL , Rμ

a = q̄Rγ
μ λa

2
qR, a = 1, . . . , 8,

Vμ = q̄Rγ
μqR + q̄Lγ

μqL , Aμ = q̄Rγ
μqR − q̄Lγ

μqL .

Here, the Gell-Mann matrices act in flavor space, since qR
and qL are flavor triplets.64 Because of quantum effects the
singlet axial-vector current Aμ = q̄γ μγ5q develops a so-
called anomaly, resulting in the divergence equation

∂μA
μ = 3g2

s

16π2 εμνρσ Trc
(
FμνFρσ

)
. (6.32)

The factor of three originates from the number of flavors.
In the large Nc (number of colors) limit of Ref. [1162] the

64 Lower case Roman letters denote SU(3) flavor indices.

singlet axial-vector current is conserved, because the strong
coupling constant behaves as g2

s ∼ N−1
c .

In the quantized theory, the spatial integrals over the
charge densities of the symmetry currents give rise to the
charge operators QLa , QRa (a = 1, . . . , 8), and QV . They
are generators of the group SU(3)L×SU(3)R×U(1)V , acting
on the Hilbert space of QCD, and satisfy the commutation
relations

[QLa, QLb] = i fabcQLc, (6.33a)

[QRa, QRb] = i fabcQRc, (6.33b)

[QLa, QRb] = 0, (6.33c)

[QLa, QV ] = [QRa, QV ] = 0, (6.33d)

where the fabc are the totally antisymmetric structure con-
stants of the Lie algebra of SU(3) [1604]. In the chiral limit,
these operators are time independent, i.e., they commute with
the Hamiltonian in the chiral limit,

[QLa, H
0
QCD] = [QRa, H

0
QCD] = [QV , H

0
QCD] = 0. (6.34)

It is convenient to consider the linear combinations QAa ≡
QRa − QLa and QVa ≡ QRa + QLa , which transform as
QAa #→ −QAa and QVa #→ QVa under parity. The hadron
spectrum can be organized in multiplets belonging to irre-
ducible representations of SU(3)V with a given baryon num-
ber. If not only the vector subgroup, but the full group were
realized linearly by the spectrum of the hadrons, one would
expect a so-called parity doubling of mass-degenerate states.
The absence of such a doubling in the low-energy spectrum
is an indication that the SU(3)L × SU(3)R chiral symmetry
is dynamically broken in the ground state. One then assumes
that the axial generators QAa do not annihilate the ground
state of QCD,

QAa |0〉 �= 0. (6.35)

As a consequence of the Goldstone theorem [12], each axial
generator QAa not annihilating the ground state corresponds
to a massless Goldstone-boson field φa with spin 0, whose
symmetry properties are tightly connected to the generator
in question. The Goldstone bosons have the same transfor-
mation behavior under parity as the axial generators,

φa(t, �x) P#→ −φa(t,−�x), (6.36)

i.e., they are pseudoscalars. From Eqs. (6.33a) and (6.33b)
one obtains [QVa, QAb] = i fabcQAc and thus the Goldstone
bosons transform under the subgroup SU(3)V , which leaves
the vacuum invariant, as an octet:

[QVa, φb(x)] = i fabcφc(x). (6.37)

The members of the pseudoscalar octet (π, K , η) of the real
world are identified as the Goldstone bosons of QCD and
would be massless for massless quarks.
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After turning on the quark masses in terms of the mass
term

LM = −q̄Mq = −
(
q̄RMqL + q̄LM†qR

)
,

M = diag(mu,md ,ms),

the Goldstone bosons will no longer be massless (see below).
Moreover, the symmetry currents are no longer conserved.
In terms of the vector currents Vμ

a = Rμ
a − Lμ

a and the
axial-vector currents Aμ

a = Rμ
a − Lμ

a , the corresponding
divergences read

∂μV
μ
a = i q̄

[

M,
λa

2

]

q, ∂μA
μ
a = i q̄γ5

{
λa

2
,M

}

q.

(6.38)

The properties of the currents corresponding to the
approximate chiral symmetry of QCD can be summarized
as follows:

1. In the limit of massless quarks, the sixteen currents Lμ
a

and Rμ
a or, alternatively, Vμ

a = Rμ
a +Lμ

a and Aμ
a = Rμ

a −
Lμ
a are conserved. The same is true for the singlet vector

current Vμ, whereas the singlet axial-vector current Aμ

has an anomaly (see Eq. (6.32)).
2. For any values of quark masses, the individual flavor cur-

rents ūγ μu, d̄γ μd, and s̄γ μs are always conserved in the
strong interactions reflecting the flavor independence of
the strong coupling and the diagonal form of the quark–
mass matrix. Of course, the singlet vector current Vμ,
being the sum of the three flavor currents, is always con-
served.

3. In addition to the anomaly, the singlet axial-vector current
has an explicit divergence due to the quark masses:

∂μA
μ = 2i q̄γ5Mq + 3g2

s

16π2 εμνρσ Trc
(
FμνFρσ

)
.

4. For equal quark masses, mu = md = ms , the eight vector
currents Vμ

a are conserved, because [λa,1] = 0. Such a
scenario is the origin of the SU(3) symmetry originally
proposed by Gell-Mann and Ne’eman [1608]. The eight
axial-vector currents Aμ

a are not conserved. The diver-
gences of the octet axial-vector currents of Eq. (6.38) are
proportional to pseudoscalar quadratic forms. This can be
interpreted as the microscopic origin of the PCAC rela-
tion (partially conserved axial-vector current) [19,1609]
which states that the divergences of the axial-vector cur-
rents are proportional to renormalized field operators rep-
resenting the lowest-lying pseudoscalar octet.

5. Taking mu = md �= ms reduces SU(3) flavor symmetry
to SU(2) isospin symmetry.

6. Taking mu �= md leads to isospin-symmetry breaking.

Besides the conservation properties of the currents, one may
also calculate their commutators (current algebra), which
may then be used to derive certain relations among QCD
Green functions analogous to the Ward identities of Quan-
tum Electrodynamics. The set of all QCD Green functions
involving color-neutral quark bilinears is very efficiently col-
lected in a generating functional,

exp
(
i ZQCD[v, a, s, p]

) = 〈0|T exp

[

i
∫

d4x Lext(x)

]

|0〉0,
(6.39)

where [69,1610]:

Lext =
8∑

a=1

vμa q̄γμ
λa

2
q + v

μ

(s)
1

3
q̄γμq +

8∑

a=1

aμa q̄γμγ5
λa

2
q

−
8∑

a=0

sa q̄λaq +
8∑

a=0

pa i q̄γ5λaq

= q̄γμ

(

vμ + 1

3
v
μ

(s) + γ5a
μ

)

q − q̄(s − iγ5 p)q,

(6.40)

where λ0 =
√

2
31. A particular Green function is then

obtained through a partial functional derivative with respect
to the corresponding external fields. Note that both the quark
field operators q in Lext and the ground state |0〉 refer to
the chiral limit, indicated by the subscript 0 in Eq. (6.39).
The quark fields are operators in the Heisenberg picture and
have to satisfy the equation of motion and the canonical anti-
commutation relations. From the generating functional, we
can even obtain Green functions of the “real world,” where
the quark fields and the ground state are those with finite
quark masses. To that end one needs to evaluate the func-
tional derivative of Eq. (6.39) at s = diag(mu,md ,ms). The
chiral Ward identities result from an invariance of the gen-
erating functional of Eq. (6.39) under a local transformation
of the quark fields and a simultaneous transformation of the
external fields [69,1610],

qL #→ exp

(

−iΘ(x)

3

)

VL(x)qL , (6.41a)

qR #→ exp

(

−iΘ(x)

3

)

VR(x)qR, (6.41b)

where VL(x) and VR(x) are independent space-time-depen-
dent SU(3) matrices, provided the external fields are subject
to the transformations

lμ #→ VLlμV
†
L + iVL∂μV

†
L , (6.42a)

rμ #→ VRrμV
†
R + iVR∂μV

†
R, (6.42b)

v(s)μ #→ v(s)μ − ∂μΘ, (6.42c)
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s + i p #→ VR(s + i p)V †
L , (6.42d)

s − i p #→ VL(s − i p)V †
R . (6.42e)

The derivative terms in Eqs. (6.42a)–(6.42c) serve the same
purpose as in the construction of gauge theories, i.e., they
cancel analogous terms originating from the kinetic part of
the quark Lagrangian.

6.2.2 Chiral perturbation theory for mesons

Effective field theory (EFT) is a powerful tool for describing
the strong interactions at low energies. The essential idea
behind EFT was formulated by Weinberg in Ref. [1426] as
follows:

“…if one writes down the most general possible
Lagrangian, including all terms consistent with assu-
med symmetry principles, and then calculates matrix
elements with this Lagrangian to any given order of
perturbation theory, the result will simply be the most
general possible S–matrix consistent with analyticity,
perturbative unitarity, cluster decomposition and the
assumed symmetry principles.”

In the present context, we want to describe the low-energy
dynamics of QCD in terms of its Goldstone bosons as effec-
tive degrees of freedom rather than in terms of quarks and
gluons. The resulting low-energy approximation is called
(mesonic) chiral perturbation theory (ChPT). Its founda-
tions are discussed in Ref. [1611]. Since the interaction
strength of the Goldstone bosons vanishes in the zero-energy
limit and the quark masses are regarded as small pertur-
bations around the chiral limit, the mesonic Lagrangian is
organized in a simultaneous derivative and a quark–mass
expansion. This Lagrangian is expected to have exactly eight
pseudoscalar degrees of freedom transforming as an octet
under flavor SU(3)V . Moreover, taking account of spon-
taneous symmetry breaking, the ground state should only
be invariant under SU(3)V × U(1)V . Finally, in the chiral
limit, we want the effective Lagrangian to be invariant under
SU(3)L × SU(3)R × U(1)V .

Our goal is to approximate the “true” generating func-
tional ZQCD[v, a, s, p] of Eq. (6.39) by a sequence

Z (2)
eff [v, a, s, p] + Z (4)

eff [v, a, s, p] + · · · ,
where the effective generating functionals are obtained using
the effective field theory. The rationale underlying this
approach is the assumption that including all of the infi-
nite number of effective functionals Z (2n)

eff [v, a, s, p] will,
at least in the low-energy region, generate a result which is
equivalent to that obtained from ZQCD[v, a, s, p]. Because of
spontaneous symmetry breaking, the chiral group SU(3)L ×
SU(3)R is realized nonlinearly on the Goldstone-boson fields

[1426,1612]. We define the SU(3) matrix

U (x) = exp

(

i
φ(x)

F0

)

, (6.43)

where the field matrixφ is a Hermitian, traceless 3×3 matrix,

φ(x) =
8∑

a=1

φaλa ≡
⎛

⎜
⎝

π0 + 1√
3
η

√
2π+

√
2K+√

2π− −π0 + 1√
3
η

√
2K 0

√
2K−

√
2K̄ 0 − 2√

3
η

⎞

⎟
⎠ ,

(6.44)

and the parameter F0 is the chiral limit of the pion-decay con-
stant. Under local chiral transformations,U (x) transforms as
[69]

U (x) #→ VR(x)U (x)V †
L (x). (6.45)

In particular, Eq. (6.45) implies for the field matrix φ the
transformation behavior φ(x) #→ Vφ(x)V † under global
flavor SU(3)V , i.e., the Goldstone bosons indeed form an
SU(3) octet [see Eq. (6.37)]. The most general Lagrangian
with the smallest (nonzero) number of external fields is given
by [69]

L2 = F2
0

4
Tr[DμU (DμU )†] + F2

0

4
Tr(χU † +Uχ†), (6.46)

where

DμU ≡ ∂μU − irμU + iUlμ #→ VRDμUV †
L , (6.47a)

χ ≡ 2B0(s + i p) #→ VRχV
†
L . (6.47b)

If we denote a small four momentum as ofO(q), the covariant
derivative counts as O(q) and χ as O(q2) (see below), such
that the lowest-order Lagrangian is of O(q2), indicated by
the subscript 2. Using the cyclic property of the trace, L2

is easily seen to be invariant under the transformations of
Eqs. (6.42a)–(6.42e) and (6.45). Moreover, L2 is invariant
under the simultaneous replacements U ↔ U †, lμ ↔ rμ,
and χ ↔ χ†. It is said to be of even intrinsic parity.

At lowest order, the effective field theory contains two
parameters F0 and B0. In order to pin down the meaning of
F0, we consider the axial-vector current Jμ

Aa associated with
L2:

Jμ
Aa = −i

F2
0

4
Tr

(
λa{U, ∂μU †}

)
. (6.48)

Expanding U in terms of the field matrix φ, and using
Tr(λaλb) = 2δab results in

Jμ
Aa = −F0∂

μφa +O(φ3), (6.49)

from which we conclude that the axial-vector current has a
nonvanishing matrix element when evaluated between the
vacuum and a one-Goldstone-boson state:

〈0|Jμ
Aa(x)|φb(p)〉 = i pμF0 exp(−i p · x)δab. (6.50)
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Equation (6.50) holds at leading order (LO) in ChPT. It is
the current–density analog of Eq. (6.35), i.e., a nonvanishing
value of F0 is a necessary and sufficient criterion for sponta-
neous symmetry breaking in QCD.

The expansion of the first term of Eq. (6.46) in the field
matrix φ yields

1

4
Tr

(
∂μφ∂

μφ
)+ 1

48F2 Tr
([φ, ∂μφ][φ, ∂μφ]

)+ · · · .
(6.51)

The first term of Eq. (6.51) describes the kinetic term of
the eight Goldstone bosons and the second term contributes
to the scattering of Goldstone bosons. The second term of
Eq. (6.46) is an example how the explicit symmetry breaking
by the quark masses is transferred from the QCD level to the
EFT level. Both,L0

QCD+Lext andL2 are invariant under local
chiral transformations. Inserting Lext = LM corresponds to
s = diag(mu,md ,ms) and it is the same s that is to be used in
the effective Lagrangian. The expansion of the χ term gives
rise to

F2
0 B0(mu + md + ms)− B0

2
Tr

(
φ2M

)

+2B0Tr
(
Mφ4

)
+ · · · . (6.52)

Even though the first term of Eq. (6.52) is of no dynamical
significance for the interaction among the Goldstone bosons,
it represents an interesting effect. Its negative is the energy
density of the vacuum, 〈Heff 〉min, which is shifted relative
to the chiral limit because of the nonzero quark masses. We
compare the partial derivative of 〈Heff〉min with respect to
(any of) the light-quark masses ml with the corresponding
quantity in QCD,

∂〈0|HQCD|0〉
∂ml

∣
∣
∣
∣
mu=md=ms=0

= 1

3
〈0|q̄q|0〉0 = 1

3
〈q̄q〉0,

(6.53)

where 〈q̄q〉0 is the scalar singlet quark condensate. Within
the framework of the lowest-order effective Lagrangian, the
constant B0 is thus related to the scalar singlet quark con-
densate by

3F2
0 B0 = −〈q̄q〉0. (6.54)

For an overview of recent lattice QCD determinations of
〈q̄q〉0 see Ref. [1613]. Because of the second term of
Eq. (6.52), the Goldstone bosons are no longer massless. If,
for the sake of simplicity, we consider the isospin-symmetric
limit mu = md = m̂ (so that there is no π0-η mixing), we
obtain for the masses of the Goldstone bosons, to lowest order
in the quark masses (O(q2), denoted by the subscript 2),

M2
π,2 = 2B0m̂, (6.55a)

M2
K ,2 = B0(m̂ + ms), (6.55b)

M2
η,2 =

2

3
B0

(
m̂ + 2ms

)
. (6.55c)

These results, in combination with Eq. (6.54), correspond
to relations obtained in Ref. [1614] and are referred to as
the Gell-Mann, Oakes, and Renner relations. Because of the
on-shell condition p2 = M2, Eqs. (6.55a)–(6.55c) justify
the assignment χ = O(q2). Inserting the empirical values
Mπ = 135 MeV, MK = 496 MeV, and Mη = 548 MeV for
the lowest-order predictions provides a first estimate for the
ratio of the quark masses,

M2
K

M2
π

= m̂ + ms

2m̂
⇒ ms

m̂
= 25.9, (6.56a)

M2
η

M2
π

= 2ms + m̂

3m̂
⇒ ms

m̂
= 24.3. (6.56b)

A remarkable feature of Eq. (6.46) is the fact that, once
F0 is known (from pion decay), chiral symmetry allows us to
make absolute predictions about other processes. For exam-
ple, the lowest-order results for the scattering of Goldstone
bosons can be derived straight-forwardly from the O(φ4)

contributions of Eqs. (6.51) and (6.52). In particular, the s-
wave ππ -scattering lengths for the isospin channels I = 0
and I = 2 are obtained as [1610]

a0
0 =

7M2
π

32πF2
π

= 0.160, a2
0 = −

M2
π

16πF2
π

= −0.0456,

(6.57)

where we replaced F0 by the physical pion-decay constant
and made use of the numerical values Fπ = 92.2 MeV and
Mπ = Mπ+ = 139.57 MeV. These results are identical
with the current–algebra predictions of Ref. [22]. Actually,
they serve as an illustration of the fact that the results of
current algebra can (more easily) be reproduced from lowest-
order perturbation theory in terms of an effective Lagrangian
[1615] – in the present case the lowest-order mesonic ChPT
Lagrangian.

However, ChPT is much more powerful than the effec-
tive Lagrangians of the 1960s, which, by definition, were
meant to be applied only in lowest-order perturbation theory
(see, e.g., the second footnote in Ref. [1616]). In ChPT, a
systematic improvement beyond the tree-level of the lowest-
order Lagrangian of Eq. (6.46) is accomplished by calculat-
ing loop corrections in combination with tree-level contri-
butions from Lagrangians of higher order. For a long time
it was believed that performing loop calculations using the
Lagrangian of Eq. (6.46) would make no sense, because it is
not renormalizable (in the traditional sense [813]). However,
as emphasized by Weinberg [1426,1617], the cancellation of
ultraviolet divergences does not really depend on renormal-
izability; as long as one includes every one of the infinite
number of interactions allowed by symmetries, the so-called
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non-renormalizable theories are actually just as renormaliz-
able as renormalizable theories [1617]. This still leaves open
the question of how to organize a perturbative description of
observables. For that purpose, one needs a power-counting
scheme to assess the importance of various diagrams cal-
culated from the most general effective Lagrangian. Using
Weinberg’s power counting scheme [1426], one may ana-
lyze the behavior of a given diagram of mesonic ChPT under
a linear re-scaling of all external momenta, pi #→ tpi , and a
quadratic re-scaling of the light-quark masses, ml #→ t2ml ,
which, in terms of the Goldstone-boson masses, corresponds
to M2 #→ t2M2. The chiral dimension D of a given diagram
with amplitude M(pi ,ml) is defined by

M(tpi , t
2ml) = t DM(pi ,ml), (6.58)

where, in n dimensions,

D = nNL − 2NI +
∞∑

k=1

2kN2k (6.59)

= 2+ (n − 2)NL +
∞∑

k=1

2(k − 1)N2k (6.60)

≥ 2 in 4 dimensions.

Here, NL is the number of independent loops, NI the num-
ber of internal Goldstone-boson lines, and N2k the number of
vertices originating from L2k . A diagram with chiral dimen-
sion D is said to be of orderO(qD). Clearly, for small enough
momenta and masses, diagrams with small D, such as D = 2
or D = 4, should dominate. Of course, the re-scaling of
Eq. (6.58) must be viewed as a mathematical tool. While
external three-momenta can, to a certain extent, be made
arbitrarily small, the re-scaling of the quark masses is a the-
oretical instrument only. Note that, for n = 4, loop diagrams
are always suppressed due to the term 2NL in Eq. (6.60).
In other words, we have a perturbative scheme in terms of
external momenta and masses which are small compared to
some scale (here 4πF0 ≈ 1 GeV).

The most general Lagrangian atO(q4)was constructed by
Gasser and Leutwyler [69] and contains twelve low-energy
constants (LECs) (L1, . . . , L10, H1H2),

L4 = L1

{
Tr[DμU (DμU )†]

}2 + · · · + H2Tr
(
χχ†

)
.

(6.61)

The numerical values of the low-energy constants Li are not
determined by chiral symmetry. In analogy to F0 and B0 of
L2 they are parameters containing information on the under-
lying dynamics. For an extensive review of the status of these
coupling constants, see Ref. [1618] as well as [1613].

As an example of a one-loop calculation let us consider the
O(q4) corrections to the masses of the Goldstone bosons. For

Fig. 133 Self-energy diagrams at O(q4). Vertices derived from L2n
are denoted by 2n in the interaction blobs

that purpose one needs to evaluate the self-energy diagrams
shown in Fig. 133.

The corresponding expressions for the masses were first
given in Ref. [69], of which we show the squared pion mass
as a representative example:

M2
π,4 = M2

π,2

{

1+ M2
π,2

32π2F2
0

ln

(
M2

π,2

μ2

)

− M2
η,2

96π2F2
0

ln

(
M2

η,2

μ2

)

+ 16

F2
0

[
(2m̂ + ms)B0(2L

r
6 − Lr

4)+ m̂B0(2L
r
8 − Lr

5)
]
}

.

(6.62)

Because of the overall factor M2
π,2, the pion stays massless as

ml → 0. This is, of course, what we expected from QCD in
the chiral limit, but it is comforting to see that the self inter-
action in L2 (in the absence of quark masses) does not gener-
ate Goldstone-boson masses at higher order. The ultraviolet
divergences generated by the loop diagram of Fig. 133 are
cancelled by a suitable adjustment of the parameters of L4.
This is Weinberg’s argument on renormalizability at work;
as long as one works with the most general Lagrangian all
ultraviolet divergences can be absorbed in the parameters of
the theory. At O(q4), the squared Goldstone-boson masses
contain terms which are analytic in the quark masses, namely,
of the form m2

l multiplied by the renormalized low-energy
constants Lr

i . However, there are also nonanalytic terms of
the type m2

l ln(ml) – so-called chiral logarithms – which do
not involve new parameters. Such a behavior is an illustra-
tion of the mechanism found by Li and Pagels [1619], who
noticed that a perturbation theory around a symmetry, which
is realized in the Nambu–Goldstone mode, results in both
analytic as well as nonanalytic expressions in the perturba-
tion. Finally, by construction, the scale dependence of the
renormalized coefficients Lr

i entering Eq. (6.62) is such that
it cancels the scale dependence of the chiral logarithms [69].
Thus, physical observables do not depend on the scale μ.

In terms of Fig. 133 and the result of Eq. (6.62), we can also
comment on the so-called chiral-symmetry-breaking scale
Λχ to be Λχ = 4πF0 [1606]. In a loop correction, every
endpoint of an internal Goldstone-boson line is multiplied by
a factor of 1/F0, since the SU(3) matrix of Eq. (6.43) contains
the Goldstone-boson fields in the combination φ/F0. On the
other hand, external momenta q or Goldstone-boson masses
produce factors of q2 or M2 (see Eqs. (6.51) and (6.52)).
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Together with a factor 1/(16π2) remaining after integration
in four dimensions they combine to corrections of the order
of [q/(4πF0)]2 for each independent loop. Strictly speaking,
this particular integral generates an additional factor of 2, and
the factor of 1/(16π2) should be considered an estimate.

The Lagrangians discussed so far are of even intrinsic
parity. At O(q4), they are incomplete, because they do
not describe processes such as K+K− → π+π−π0 or
π0 → γ γ . The missing piece is the effective Wess–Zumino–
Witten (WZW) action [1620,1621], which accounts for the
chiral anomaly. The chiral anomaly results in the so-called
anomalous Ward identities that give a particular form to the
variation of the generating functional [1610,1620]. At lead-
ing order, O(q4), and in the absence of external fields, the
WZW action reads [1620,1621],

S0
ano = Nc S

0
WZW,

S0
WZW = − i

240π2

∫ 1

0
dα

∫
d4xεi jklmTr(U L

i U L
j U L

k U L
l U L

m ).

(6.63)

For the construction of the WZW action, the domain of def-
inition of U needs to be extended to a (hypothetical) fifth
dimension,

U (y) = exp

(

iα
φ(x)

F0

)

, (6.64)

where yi = (xμ, α), i = 0, . . . , 4, and 0 ≤ α ≤ 1.
Minkowski space is defined as the surface of the five-
dimensional space for α = 1. The indices i, . . . ,m in
Eq. (6.63) run from 0 to 4, y4 = y4 = α, εi jklm is
the completely antisymmetric (five-dimensional) tensor with
ε01234 = −ε01234 = 1, and U L

i = U †∂U/∂yi .
In contrast to L2 and L4, S0

ano is of odd intrinsic parity,
i.e., it changes sign under φ → −φ. Expanding the SU(3)
matrix U (y) in terms of the Goldstone-boson fields, U (y) =
1 + iαφ(x)/F0 + O(φ2), one obtains an infinite series of
terms, each involving an odd number of Goldstone bosons.
For example, after some rearrangements, the term with the
smallest number of Goldstone bosons reads

S5φ
WZW = 1

240π2F5
0

∫
d4x εμνρσ Tr(φ∂μφ∂νφ∂ρφ∂σφ).

(6.65)

In particular, the WZW action without external fields
involves at least five Goldstone bosons [1620]. Again, once
F0 is known, after inserting Nc = 3 one obtains a parameter-
free prediction for, e.g., the process K+K− → π+π−π0.

In the presence of external fields, the anomalous action
receives an additional term [1621–1623]

Sano = Nc(S
0
WZW + Sext

WZW) (6.66)

given by

Sext
WZW = − i

48π2

∫
d4xεμνρσ Tr

[
Zμνρσ (U, l, r)

−Zμνρσ (1, l, r)
]
. (6.67)

where the explicit form of Zμνρσ (U, l, r) can be found in
[1622,1623]. At leading order, the action of Eq. (6.67) is
responsible for the two-photon decays of the π0 or the η.
Quantum corrections to the WZW classical action do not
renormalize the coefficient of the WZW term. The counter
terms needed to renormalize the one-loop singularities at
O(q6) are of a conventional chirally invariant structure.
In the three-flavor sector, the most general odd-intrinsic-
parity Lagrangian at O(q6) contains 23 independent terms
[1624,1625]. For an overview of applications in the odd-
intrinsic-parity sector, we refer to Ref. [1623].

6.2.3 ChPT for baryons

ChPT was first extended to the baryon sector in Ref. [1626],
which considered a variety of matrix elements with single-
nucleon incoming and outgoing states. While the general
approach is analogous to that in the mesonic sector, i.e.,
one considers the most general Lagrangian consistent with
the symmetries of QCD and expands observables in a
quark-mass and low-momentum expansion, the baryon sec-
tor exhibits some new features. In particular, unlike the
Goldstone-boson masses, the baryon masses do not van-
ish in the chiral limit. This has important consequences for
obtaining a proper power counting of diagrams containing
baryon lines and for the regularization and renormalization
of loop diagrams. In the following we restrict the discus-
sion to SU(2)L × SU(2)R chiral symmetry; for the exten-
sion to SU(3)L × SU(3)R see, e.g., the reviews of Refs.
[1627,1628] and references therein. To construct the pion-
nucleon Lagrangian, the proton (p) and neutron (n) fields are
combined into an SU(2) doublet Ψ ,

Ψ =
(
p
n

)

. (6.68)

The nucleon fields are chosen to transform under local
SU(2)L × SU(2)R transformations as

Ψ → K (VL , VR,U )Ψ, (6.69)

where the SU(2) matrix K depends on the left- and right-
handed transformations as well as on the pion fields collected
in U ,

K (VL , VR,U ) =
√
VRUV †

L

−1

VR
√
U . (6.70)
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The baryon Lagrangian also contains the covariant derivative
of the nucleon field given by

DμΨ = (∂μ + Γμ − iv(s)μ )Ψ, (6.71)

with the connection [1626,1629]

Γμ = 1

2

[
u†(∂μ − irμ)u + u(∂μ − ilμ)u

†
]
, (6.72)

where u2 = U , and the isoscalar vector field v
(s)
μ . Further, it

is convenient to define

uμ = i
[
u†(∂μ − irμ)u − u(∂μ − ilμ)u

†
]
. (6.73)

The LO Lagrangian can be written as [1626]

L(1)
πN = Ψ̄

(
i /D − m+ gA

2
γ μγ5uμ

)
Ψ. (6.74)

It contains two LECs: m and gA. These correspond to the
nucleon mass (m) and the nucleon axial-vector coupling con-
stant (gA), both taken in the chiral limit. The corresponding
physical values will be denoted as mN and gA in the fol-
lowing. The superscript (1) in Eq. (6.74) denotes that the
Lagrangian is of first order in the power counting. While nei-
ther the nucleon energy nor the chiral-limit nucleon mass are
small parameters, the combination i /D−m can be assumed to
be a small quantity as long as the nucleon three-momentum
is O(q).

This Lagrangian can be used to calculate the first loop con-
tribution to the nucleon mass. The power counting predicts
this contribution to be of O(q3). However, the application
of dimensional regularization and the minimal subtraction
scheme of ChPT (M̃S) as used in the meson sector results
in terms that are of lower order than predicted by the power
counting. Analogous issues also arise for other observables
and higher-order contributions. The authors of Ref. [1626]
pointed out that the failure of the power counting is related
to the regularization and renormalization schemes and that
the “same phenomenon would occur in the meson sector, if
one did not make use of dimensional regularization.” Sev-
eral methods to address the power counting issue have been
proposed [1630–1635].

One commonly used method is Heavy Baryon ChPT
(HBChPT) [1630], which was inspired by Heavy Quark
Effective Theory [704,1252] (see the discussion in Sect. 6.1).
Because the nucleon mass is large compared to the pion mass,
an additional expansion of the pion-nucleon Lagrangian is
performed in inverse powers of the nucleon mass. In this for-
malism, application of dimensional regularization in com-
bination with M̃S to loop diagrams, as in the meson sector,
leads to a consistent power counting, connecting the chiral
to the loop expansion. The heavy-baryon Lagrangian up to
and including order q4 is given in Ref. [1636]. For an intro-
duction to, and applications of, this method see, e.g., Refs.
[1627,1637].

While the heavy-baryon formalism makes it possible to
use techniques from the meson sector, the additional expan-
sion in powers of the inverse nucleon mass results in a large
number of terms in the higher-order Lagrangians. Some of
the higher-order terms are related to those at lower orders
by Lorentz invariance [1437]. Calculated amplitudes can be
expressed in Lorentz-invariant forms, but Lorentz invariance
is not manifest throughout intermediate steps of the calcula-
tions. Further, issues with analyticity arise in some specific
cases because the heavy-baryon expansion results in a shift
of the poles in the nucleon propagator [1632].

A manifestly Lorentz-invariant approach to baryon ChPT
that addresses these issues was formulated in Ref. [1632],
referred to as infrared regularization. While infrared regular-
ization also uses dimensional regularization, the renormal-
ization procedure is different from minimal subtraction. Loop
integrals are separated into infrared-singular and infrared-
regular parts. The infrared-singular parts contain the same
infrared singularities as the original integral and they sat-
isfy the power counting. The infrared-regular parts are ana-
lytic in small parameters for arbitrary spacetime dimensions
and contain the power-counting-violating terms. Since the
infrared-regular parts are analytic, they can be absorbed in
the LECs of the baryon Lagrangian. Infrared regularization
in its original formulation was applicable to one-loop dia-
grams. It has been widely used in the calculation of baryon
properties, see, e.g., Ref. [1638] for a review.

The expansion of the infrared-regular parts in small
parameters contains not only the terms violating the power
counting, but also an infinite set of terms that satisfy
the power counting. The extended on-mass-shell (EOMS)
scheme [1635] provides a method to isolate the terms that
violate the power counting and to absorb only these terms
in the LECs of the Lagrangian. The EOMS scheme was also
shown to be applicable to multi-loop diagrams [1639] and
diagrams containing particles other than pions and nucleons
[1640]. By reformulating infrared regularization analogously
to the EOMS scheme [1641], it can be applied beyond one-
loop pion-nucleon diagrams [1639]; see also Ref. [1642] for
a different extension of infrared regularization.

The nucleon mass presents an example of the application
of baryon ChPT. It has been determined to one-loop order
in several approaches, including HBChPT [1643], infrared
regularization [1632], and the EOMS scheme [1635]. Up to
and including order q3, the chiral expansion of the nucleon
mass is given by

mN = m− 4c1M
2 − 3g2

A

32πF2 M
3 + · · · , (6.75)

where F denotes the pion-decay constant in the two-flavor
chiral limit, Fπ = F[1 + O(m̂)] = 92.2 MeV and M2 =
2Bm̂ is the lowest-order expression for the squared pion
mass.
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The result of Eq. (6.75) exhibits some general features of
baryon ChPT: The expansion contains not just even powers
in the small parameter q like the meson sector, but also odd
powers. As a result, the convergence of chiral expansions
is expected to be slower in the baryon sector. The second-
order contribution is proportional to the LEC c1 from the
second-order Lagrangian. On the other hand, the coefficient
of the nonanalytic term proportional to M3 is given entirely in
terms of the LO LEC gA and F . Similar features also appear
at higher orders. The general form of the chiral expansion of
the nucleon mass to higher orders is given by

mN = m+ k1M
2 + k2M

3 + k3M
4 ln

(
M

μ

)

+ k4M
4

+ k5M
5 ln

(
M

μ

)

+ k6M
5

+ k7M
6 ln2

(
M

μ

)

+ k8M
6 ln

(
M

μ

)

+ k9M
6 + · · · ,

(6.76)

where μ is the renormalization scale and the ellipsis denotes
higher-order terms. The coefficients ki are linear combina-
tions of various LECs. k1 through k4 can be determined by
considering at most one-loop diagrams, while k5 through k9

receive contributions from two-loop diagrams. Using esti-
mates of the LECs entering the ki , Ref. [1644] estimated the
nucleon mass in the chiral limit from an EOMS calculation
to order q4 to be

m = [938.3− 74.8+ 15.3+ 4.7− 0.7]MeV

= 882.8 MeV.
(6.77)

Two-loop contributions to order q5 were considered in Ref.
[1645], while Refs. [1646,1647] determined mN to order
q6. Because several currently undetermined LECs enter the
expressions for several of the higher-order ki , no reliable
estimate of the complete two-loop contributions is possi-
ble. However, the coefficient k5 of the leading nonanalytic
contribution at order q5 only depends on gA and the pion-
decay constant F and can therefore be compared to lower-
order terms. At the physical pion mass and with μ = mN ,
k5M5 ln(M/mN ) = −4.8 MeV.

Chiral expansions like that of Eq. (6.76) are also impor-
tant at nonphysical pion masses in the extrapolation of lattice
QCD results (for an introduction see, e.g., Ref. [1648]). The
fifth-order term k5M5 ln(M/mN ) becomes as large as the
third-order term k2M3, where k2 also only depends on gA

and F , for a pion mass of about 360 MeV. While this com-
parison includes only one part of the two-loop contributions,
it indicates a limit to the applicability of the power count-
ing. This estimate agrees with others found using different
methods in Refs. [1649,1650].

Even though the nucleon mass is a static quantity, it is not
entirely surprising that a combined chiral and momentum
expansion in the baryon sector does not converge well for

energies beyond about 300 MeV. This roughly corresponds
to the mass gap between the nucleon and the Δ(1232) res-
onance. At the physical point, treating the Δ as an explicit
degree of freedom has limited impact on the nucleon mass
[1651,1652]. However, the Δ(1232) also couples strongly to
the πN channel and has relatively large photon decay ampli-
tudes, resulting in important contributions to processes such
as pion-nucleon scattering, Compton scattering, and electro-
magnetic pion production. These issues were already pointed
out in Ref. [1630], which advocated for treating Δ degrees
of freedom as dynamic. In baryon ChPT with only pions
and nucleons as degrees of freedom, effects of the Δ(1232)
enter implicitly through the values of the LECs. However,
these contributions can be proportional to powers of M/δ,
where δ = (mΔ−m). This ratio is small as the quark masses
approach the chiral limit, but it is a rather large expansion
parameter at the physical values, especially when combined
with the strong coupling of the Δ. By formulating a the-
ory that also includes the Δ as an active degree of freedom,
one hopes to improve the convergence of the perturbative
expansion and potentially to increase the kinematic range of
applicability.

The inclusion of Δ degrees of freedom poses additional
challenges to the construction of the most general Lagrangian
and to the power counting. The covariant description of spin-
3
2 , isospin- 3

2 fields introduces unphysical degrees of freedom
[1653,1654]. For the free Lagrangian, these can be elimi-
nated by subsidiary equations and projection operators. The
correct number of degrees of freedom also has to be preserved
when including interactions with pions, nucleons, and exter-
nal fields. Various approaches addressing this issue have been
considered, see, e.g., Refs. [1655–1660].

The main issue for the power counting is how to count the
Δ-nucleon mass difference δ. In one version of the power
counting [1657], it is a small quantity of the same order as
the pion mass, δ ∼ O(q). In a different approach [1661], it
is argued that (for physical quark masses) Mπ < δ and that
Mπ/δ ∼ δ/Λ, where Λ ∼ 1 GeV is the breakdown scale of
the EFT. Denoting δ̄ ≡ δ/Λ implies that Mπ/Λ ∼ δ̄2, i.e.,
the pion mass is of higher order than the Δ-nucleon mass
difference in this power counting.

6.2.4 Conclusions

Over the last few decades, ChPT has developed into a mature
and comprehensive approach to the low-energy interactions
between Goldstone bosons, nucleons, and external fields,
with numerous successful applications. ChPT has played an
important role in interpreting lattice QCD calculations per-
formed at unphysical pion masses. It has also served as a
prototype for semi-phenomenological approaches in other
systems. The application of ChPT methods to the interac-
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tions between two and more nucleons is discussed in the
contribution by Epelbaum and Pastore.

6.3 Chiral EFT and nuclear physics

Evgeny Epelbaum and Saori Pastore
As explained in the previous section, ChPT allows one to
describe the low-energy interactions between hadrons in the
Goldstone-boson and single-baryon sectors by means of a
perturbative expansion in light-quark masses and particle
momenta in line with the symmetries of QCD. In this section
we briefly review the extension and application of this sys-
tematic and model-independent method to systems with sev-
eral baryons, focusing on the non-strange sector. This exten-
sion goes beyond strict perturbation theory and is commonly
referred to as chiral effective field theory, or ChEFT, in order
to make the distinction with ChPT clear.

6.3.1 The foundations of ChEFT

EFT methods enjoy increasing popularity in nuclear
physics.65 A unified description of few-nucleon systems,
medium mass and heavy nuclei as well as nuclear matter
up to the saturation density calls for an EFT applicable at
nucleon momenta p ∼ Mπ , which must include pions as
dynamical DoF. The corresponding framework, commonly
referred to as chiral EFT (ChEFT), was pioneered by Wein-
berg [1666,1667] and represents the most widely used EFT
approach in nuclear physics applications. The method relies
on the spontaneously broken approximate chiral symme-
try of QCD and makes use of the effective Lagrangian for
pions and nucleons already introduced in the previous sec-
tion. Specifically, theO(q2) andO(q4)mesonic Lagrangians
are given in Eqs. (6.46) and (6.61), respectively, while the
LO pion–nucleon (πN) Lagrangian is written in Eq. (6.74).
Most of the applications to few-nucleon systems are car-
ried out using the heavy-baryon (HB) Lagrangian for the
velocity-dependent nucleon field N (x) = eimv·x P+v Ψ (x),

65 In the past decades, a variety of EFTs utilizing different degrees
of freedom (DoF) have been developed to describe phenomena char-
acterized by specific energy scales. For example, an EFT description
of rotational bands of deformed heavy nuclei with excitation energies
E � 1 MeV can be efficiently achieved in terms of collective coordi-
nates with no need to resolve the internal structure of a nucleus under
consideration [1662]. Low-energy properties of nuclei consisting of a
dense core, surrounded by weakly bound nucleons, have been studied
in halo-EFT [1663]. This framework treats the core nucleus as a point-
like particle and utilizes the expansion in powers of p/pcore, with p
and pcore denoting the binding momenta of the nucleons and of the core
nucleus, respectively. Another EFT approach, the so-called pion-less
EFT, is formulated in terms of nucleons as the only dynamical DoF
and is well suited to describe the dynamics of few-nucleon systems at
momenta p � Mπ . This framework has proven to be particularly effi-
cient for uncovering universal features of few-body systems around the
unitary limit [1664,1665].

with P+v = (1+ v · γ )/2 being the velocity projection oper-
ator [1630]. The LO HB πN Lagrangian obtained from the
covariant expression in Eq. (6.74) takes the form

L(1)
πN = N †(iv · D + gAS · u)N , (6.78)

where Sμ = −γ5[γμ, γν]vν/4 is the covariant spin-operator
that is given by the usual Pauli matrices Sμ = (0, �σ/2)
in the rest-frame system of the nucleon with vμ = (1, �0).
Higher-order terms in the HB πN Lagrangian can be found
in Refs. [1627,1636]. Finally, one also needs to include in
the effective Lagrangian terms with more than two nucleon
fields. The corresponding LO Lagrangian has the form [1666,
1667]

L(0)
NN = −

1

2
CS(N

†N )2 + 2CT N
†SμN N †SμN , (6.79)

with CS , CT being low-energy constants (LECs).
While both ChPT and ChEFT rely on the same effec-

tive Lagrangian, the two frameworks are applied to describe
rather different phenomenological situations. Contrary to the
meson and single-baryon sectors, the scattering amplitudes
for few-nucleon systems exhibit low-lying poles correspond-
ing to bound (and virtual) states, which signal the breakdown
of perturbation theory at very low momenta. For example, in
the 3S1 and 1S0 channels of neutron–proton scattering, the
poles are located at pcms ∼ 45i MeV and pcms ∼ −8i MeV,
respectively, which is well within the validity domain of
chiral (and even pion-less) EFT. This is in strong contrast
to pion–pion scattering, where the lowest-lying resonances
reside at momenta of the order of the breakdown scale of
ChPT, and the scattering amplitude admits a perturbative
expansion in powers of momenta for p ∼ Mπ . It is worth
emphasizing that while the spontaneously broken chiral sym-
metry of QCD leads to a strong suppression of the interactions
between Goldstone bosons (pions) at low energy, which is at
the heart of ChPT, it does not constrain the strength of the
interaction between the nucleons for | �p | → 0, see Eq. (6.79).

So how can ChEFT be reconciled with the nonperturba-
tive nature of the two-nucleon interaction? To answer this
question one needs a power-counting scheme that determines
the importance of renormalized contributions to the scatter-
ing amplitude. The power counting of mesonic ChPT was
already given in Eqs. (6.58)–(6.60). Using the HB framework
to avoid the appearance of positive powers of the nucleon
mass in renormalized expressions as explained in the pre-
vious section, the power counting can be straightforwardly
extended to single- and few-nucleon scattering amplitudes.
A connected contribution to the scattering amplitude for N
nucleons with generic momenta | �p | ∼ Mπ involving NL

independent loop integrals is found to scale as M ∼ qD ,
where q ∈ {| �p |/Λb, Mπ/Λb}with Λb being the breakdown
scale of ChEFT. In four space-time dimensions, the power D
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Fig. 134 Diagrams contributing to the two-, three- and four-nucleon forces up to fifth order O(q5) in ChEFT. Solid and dashed lines denote
nucleons and pions, respectively. Solid dots, filled circles, filled squares, crossed circles and filled diamonds denote vertices with Δ = 0, 1, 2, 3
and 4, respectively

is given by [1666,1667]

D = 2− N + 2NL +
∑

i

ViΔi , (6.80)

where Vi denotes the number of vertices of type i , whose
dimension Δi is given by

Δi = −2+ 1

2
ni + di . (6.81)

Here, ni is the number of nucleon fields while di refers to
the number of derivatives and/or insertions of Mπ . Using
Eq. (6.80), one can draw the relevant Feynman diagrams con-
tributing to the multi-nucleon scattering amplitude at increas-
ing orders in chiral EFT, see Fig. 134. The terms LO, NLO,
N2LO, N3LO and N4LO refer to the ChEFT orders q0, q2,
q3, q4 and q5, respectively. Notice that contributions at order
q1 are forbidden by parity conservation. However, the above
classification of Feynman diagrams implies a perturbative
nature of multi-nucleon scattering amplitudes, which is in
contradiction with the empirical evidence. The key insight
of Weinberg was the observation that certain contributions to
the amplitude are enhanced beyond what is expected based
on Eq. (6.80) [1666,1667]. Consider, for example, the two-
pion exchange planar box diagram (the last diagram in the
second line of Fig. 134):

M = i
∫

d4l1
(2π)4 l

i
1l

j
1 l

k
2l

l
2 Ôi jkl

i

l21 − M2
π + iε

i

l22 − M2
π + iε

× 2im

(p1 − l1)2 − m2 + iε

2im

(p2 + l1)2 − m2 + iε
,

(6.82)

where pμ1 = (
√ �p 2 + m2, �p) and pμ2 = (

√ �p 2 + m2, − �p)
are the initial four-momenta of the nucleons, l1 and l2 =
p′1− p1+l1 are pion momenta and we have used the relativis-
tic rather than the strict HB expressions for the nucleon prop-
agators for reasons to be given below. The spin-isospin oper-
ator Ôi jkl with i, j, k, l = 1, . . . , 3 emerges from four πN
vertices∝ gA with Δ = 0. Assuming | �p |, l1, l2 ∼ Mπ � m
and applying naive dimensional analysis (NDA) to the inte-
grand in Eq. (6.82), the renormalized amplitude for the box
diagram is expected to be of the order of M ∼ M2

π in
agreement with the power counting formula in Eq. (6.80).
On the other hand, performing the integration over l01 using
the residue theorem, one obtains

M =
∫

d3l1
(2π)3 Ôi jkl

[
li1l

j
1

ω2
1

m

�p 2 − ( �p − �l1)2 + iε

lk2l
l
2

ω2
2

+ω2
1 + ω1ω2 + ω2

2

2ω3
1ω

3
2(ω1 + ω2)

li1l
j
1 l

k
2l

l
2 +O

(
1

m

)]

, (6.83)

where ωi =
√
�l 2
i + M2

π are the energies of the exchanged
pions. Remarkably, the first term in the square brackets
is enhanced by the factor m/Mπ compared to the power
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counting estimation. The origin of this enhancement can be
traced back to the pinch singularity in the m → ∞ limit
[1666,1667], which is why we used the relativistic expres-
sions for the nucleon propagators.66 Notice that infrared
divergences of this kind do not appear in the single-baryon
sector of ChPT.

To identify all enhanced types of contributions to the
amplitude it is useful to recall that performing the inte-
gration over l0 leads to a decomposition of Feynman dia-
grams into a sum of diagrams emerging in old-fashioned
time-ordered perturbation theory (TOPT). Indeed, the first
(enhanced) term in the square brackets in Eq. (6.83) stems
from two-nucleon-reducible TOPT diagrams which have an
intermediate state involving two nucleons and no pions.
Energy denominators associated with such purely nucleonic
intermediate states of TOPT diagrams involve only nucleon
kinetic energies ∼ M2

π/m � Mπ and are smaller than what
is expected from NDA. This leads to the enhancement of
reducible-type diagrams beyond the power counting esti-
mation in Eq. (6.80).67 In contrast, the second term in the
square brackets of Eq. (6.83) emerges from irreducible two-
pion exchange diagrams with intermediate states involving
at least one pion and results in the contribution M ∼ M2

π in
agreement with Eq. (6.80).

In his seminal work [1666,1667], Weinberg has argued
that the breakdown of perturbation theory for the scattering
amplitude in the few-nucleon sector of ChEFT can be traced
back to the enhancement of reducible diagrams, which need
to be resummed to all orders. He also noticed that ladder-
type reducible TOPT diagrams automatically get resummed
by solving the Lippmann–Schwinger-type integral equations
for the amplitude

M = V + VG0M = V + VG0V + VG0VG0V + · · · .
Indeed, the terms on the right-hand side of Eq. (6.83) can be
easily identified with the iterated one-pion exchange poten-
tial (OPEP) and the leading two-pion exchange potential
(TPEP), M = V1πG0V1π + V2π + · · · . Thus, low-energy
processes involving several nucleons can be calculated in a
systematically improvable way by applying ChPT to the ker-
nel of the dynamical equation, defined as a sum of all pos-
sible few-nucleon-irreducible time-ordered diagrams, rather
than to the scattering amplitude. The contributions to the
nuclear forces depicted in Fig. 134 are to be understood as
(sums of) the corresponding few-nucleon-irreducible time-
ordered-like graphs rather than Feynman diagrams. Switch-
ing on external classical sources in the effective Lagrangian
as explained in the previous section, the same framework

66 This singularity is the basis of the covariant spectator theory dis-
cussed in Sect. 5.2.
67 Reducible and irreducible diagrams also play a central role in the
derivation of the Bethe–Salpeter equation; see Sect. 5.2.

can be used to derive nuclear current operators and to ana-
lyze low-energy electroweak processes (see the discussion
below).

It is worth emphasizing that the enhancement of reducible
diagrams mentioned above is insufficient to justify the need
for a non-perturbative resummation of the amplitude if one
counts m ∼ Λb as done in ChPT. For example, the iterated
OPEP contributes at order V1πG0V1π ∼ mMπ/Λ

2
b (assum-

ing that all intermediate momenta are ∼ Mπ after renor-
malization) and is thus suppressed relative to the tree-level
term V1π = O(1). To have a self-consistent non-perturbative
approach, Weinberg proposed an alternative counting scheme
for the nucleon mass by assigning m ∼ Λ2

b/Mπ � Λb,
which is supported by the large-Nc arguments given that
Λb ∼ Mρ = O(1)whilem = O(Nc). On the other hand, it is
shown in Ref. [1668] that Weinberg’s power counting can be
realized via a suitable choice of renormalization conditions
with no need to depart from the standard ChPT counting for
the nucleon mass, see also Ref. [1669] for a related discus-
sion.

Weinberg’s power counting suggests that the LO poten-
tial stemming from the derivativeless contact interactions
∝ CS,T , see Eq. (6.79), and the OPEP as shown in Fig. 134
has to be iterated to all orders. For the contact interactions
alone, the scattering amplitude resulting from solving the
Lippmann–Schwinger (LS) equation can be calculated ana-
lytically and is renormalizable in the usual sense.68 In con-
trast, iterations of the OPEP in spin-triplet channels lead to
ultraviolet divergences whose cancellation requires countert-
erms with an increasing power of momenta. This feature,
along with the numerical nature of the calculations in the
presence of the OPEP, make renormalization of chiral EFT a
complicated matter; see Ref. [1670] for a collection of per-
spectives.

Notice that the existence of shallow bound states alone
does not necessarily imply a nonperturbative nature of the
OPEP, but merely indicates a fine tuning of the LECs CS,T

[1667,1671]. An alternative approach based on a perturba-
tive treatment of the OPEP was proposed by Kaplan, Sav-
age and Wise (KSW) in the late nineties of the last century
[1672,1673]. This framework allows one to compute the NN
scattering amplitude analytically and to implement the renor-
malization program in a straightforward way with no need
to introduce a finite cutoff. However, extensive calculations
performed in the KSW approach have revealed poor conver-
gence (at least) in certain spin-triplet channels [1674,1675],
see also [1676–1678] for a related discussion, indicating that
the OPEP should indeed be treated nonperturbatively in low
partial waves.

68 That is, all ultraviolet divergences emerging from the iterations of
the LS equation can be absorbed into a redefinition of CS,T .
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The most advanced applications of chiral EFT to nuclear
systems are carried out utilizing the finite-cutoff formulation
of Ref. [1679]. In essence, it amounts to solving the quantum-
mechanical A-body problem using the nuclear potentials cal-
culated in ChPT and regularized with some finite cutoff Λ

taken of the order of Λ ∼ Λb. The calculated scattering
amplitudes are implicitly renormalized by tuning the bare
LECs CS(Λ), CT (Λ), etc., of multi-nucleon vertices to low-
energy observables. The resulting (renormalized) scattering
amplitudes depend on the physical parameters and the cut-
off Λ. The residual Λ-dependence of the calculated observ-
ables is expected to introduce an uncertainty beyond the order
one is working at and offers a nontrivial a posteriori consis-
tency check. For more details on the foundations and applica-
tions of the finite-cutoff formulation of chiral EFT see Refs.
[1679,1680]. Finally, a first step towards a formal renormal-
izability proof of the finite-cutoff scheme to all orders in
the iterated OPEP using the Bogoliubov–Parasiuk–Hepp–
Zimmermann (BPHZ) subtraction technique can be found
in Ref. [1681].

6.3.2 Nuclear interactions from ChEFT

In ChPT, the S-matrix is usually obtained by applying the
Feynman graph technique to the effective chiral Lagrangian.
To derive nuclear forces, it is more natural and convenient
to employ non-covariant old-fashioned perturbation theory
as already mentioned above. This approach is based on the
Hamiltonian rather than Lagrangian, so the first step amounts
to using the canonical formalism for constructing the Hamil-
tonian H = H0 + HI for interacting pions and nucleons
from the effective chiral Lagrangian [1666,1667]. The NN
scattering amplitude between the initial and final states |i〉
and | f 〉, respectively, can be written as

〈 f |M|i〉 = 〈 f |HI

∞∑

n=0

(
1

Ei − H0 + iε
HI

)n

|i〉, (6.84)

where Ei is the energy of the nucleons in the state |i〉. Notice
that the intermediate states in the above equation include
both pions and nucleons. Let η and λ denote the projection
operators on the purely nucleonic subspace and the rest of
the Fock space, respectively. Eq. (6.84) can be cast into the
form of the LS equation

〈 f |M|i〉 = 〈 f |V
∞∑

n=0

(
η

Ei − H0 + iε
V

)n

|i〉, (6.85)

where the potential V can e.g. be chosen in the energy-
dependent form as done in Refs. [1666,1667,1682,1683]:

V (Ei ) = ηHI

∞∑

n=0

(
λ

Ei − H0 + iε
HI

)n

η. (6.86)

The explicit energy dependence of V is a higher-order effect,
see e.g. Eq. (6.83), and can be eliminated yielding an energy
independent hermitian NN potential. The method can be
applied to many-body forces and has also been used to derive
nuclear currents starting from the effective Lagrangian with
external sources.

It is important to keep in mind that nuclear potentials, in
contrast to the on-shell amplitude 〈 f |M|i〉, are not directly
observable and represent scheme-dependent quantities. This
intrinsic ambiguity reflects the arbitrariness in making off-
shell extensions of the scattering amplitude. Clearly, such off-
shell ambiguities cannot lead to measurable effects. Being a
quantum-field-theory-based method, chiral EFT by construc-
tion maintains consistency between many-body interactions
and current operators and ensures that calculated observables
are independent of the off-shell ambiguities (up to higher-
order corrections).

The method of deriving nuclear forces and currents by
matching to the scattering amplitude as outlined above was
used e.g. in Refs. [1684–1688] and is usually referred to as
TOPT. Another closely related approach amounts to block-
diagonalizing the pion–nucleon Hamiltonian via a suitable
unitary transformation [1689]

H → H ′ = U †HU =
(
ηH ′η 0

0 λH ′λ
)
. (6.87)

Both the unitary operator U and the nuclear potential V =
η(H ′−H0)η are calculated perturbatively using the standard
power counting of ChPT as explained in Ref. [1690]. The
method of unitary transformation (MUT) to derive nuclear
forces and currents was applied e.g. in Refs [1691–1699].
A pedagogical discussion of methods outlined above can be
found in Ref. [1700].

So far, we have left out renormalization of nuclear poten-
tials. In contrast to the scattering amplitude, renormalizabil-
ity of nuclear forces and currents derived in ChPT is not
guaranteed by construction and was shown to impose severe
constraints on their off-shell behavior starting from N3LO
[1690,1695,1697–1699,1701].

Having introduced various methods to derive nuclear
potentials from the effective chiral Lagrangian, we are now
in the position to discuss the ChEFT expansion of the long-
range NN force. The one- and two-pion exchange contribu-
tions up to N2LO depend solely on the momentum transfer
�q and are, therefore, local. The resulting potentials have a
clear and intuitive interpretation in coordinate space. Using
the decomposition

V (�r ) = VC (r)+ VS(r)�σ1 · �σ2 + VT (r)S12

+[
WC (r)+WS(r)�σ1 · �σ2 +WT (r)S12

]�τ1 · �τ2,

(6.88)
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where S12 = 3�σ1 · r̂ �σ2 · r̂ − �σ1 · �σ2 is the tensor operator
while �τi refer to the isospin Pauli matrices of the nucleon i ,
the LO contribution due to the OPEP is given by

W (0)
T, 1π (r) =

g2
A

48πF2
π

e−x

r3 (3+ 3x + x2),

W (0)
S, 1π (r) =

g2
AM

2
π

48πF2
π

e−x

r
, (6.89)

where the superscript of the potentials gives the ChEFT order.
Further, x ≡ Mπr while gA and Fπ denote the physical
values of the nucleon axial-vector coupling and pion decay
constant, respectively. Notice that only the W (0)

T, 1π (r) ∝ r−3

part of the tensor potential survives in the chiral limit of
Mπ → 0. It is precisely this singular interaction that leads to
the already mentioned non-renormalizability of the OPEP in
all spin-triplet channels of NN scattering. The NLO contri-
butions to the long-range NN interaction stem from the TPEP
and are given by [1682,1684,1689,1702]:

W (2)
C, 2π (r) =

Mπ

128π3F4
π

1

r4

{
K1(2x)

×[
1+ 2g2

A(5+ 2x2)− g4
A(23+ 12x2)

]

+xK0(2x)
[
1+ 10g2

A − g4
A(23+ 4x2)

]}
,

V (2)
T, 2π (r) = −

g4
AMπ

128π3F4
π

1

r4

×{
12xK0(2x)+ (15+ 4x2)K1(2x)

}
,

V (2)
S, 2π (r) =

g4
AMπ

32π3F4
π

1

r4

×{
3xK0(2x)+ (3+ 2x2)K1(2x)

}
, (6.90)

where K0,1(x) denote the modified Bessel functions. To
arrive at these expressions, one first needs to evaluate the
three-dimensional loop integrals for the corresponding TOPT
diagrams69 using e.g. dimensional regularization. The result-
ing p-space potentials cannot be Fourier transformed to r -
space directly since the Fourier integrals diverge at high
momenta. Eq. (6.90) is obtained by Fourier transforming the
regularized momentum-space potentials and subsequently
removing the regulator.

Similarly, at N2LO, the TPEP receives contributions given
by [1684,1689]

V (3)
C, 2π (r) =

3g2
A

32π2F4
π

e−2x

r6

{
2c1x

2(1+ x)2

+c3(6+ 12x + 10x2 + 4x3 + x4)
}
,

69 E.g., the second term in the square brackets in Eq. (6.83) gives the
TPEP ∝ g4

A stemming from the last diagram in the second row of
Fig. 134 (planar box diagram).

W (3)
T, 2π (r) = −

g2
Ac4

48π2F4
π

e−2x

r6 (1+ x)(3+ 3x + x2),

W (3)
S, 2π (r) =

g2
Ac4

48π2F4
π

e−2x

r6 (1+ x)(3+ 3x + 2x2), (6.91)

where ci are LECs accompanying the subleading ππNN ver-
tices with Δ = 1.

The expressions for the OPEP and TPEP, Eqs. (6.89) to
(6.91), illustrate the general features of the chiral expansion
of the long-range nuclear interactions:

– The chiral expansion of the N -pion exchange poten-
tial generally corresponds to the expansion in powers
of Mπ/Λχ , where the chiral symmetry breaking scale
Λχ is given by 4πFπ and/or the scale that governs the
πN LECs starting from the subleading ones. The expan-
sion pattern is the same as for ChPT in the meson and
single-baryon sectors. The chiral expansion for V (�r) is
expected to converge at distances r � 1/Mπ and larger.
In contrast, at short distances r � 1/Mπ , the expan-
sion diverges yielding highly singular van der Waals-like
behaviour V (s)

Nπ (�r) ∼ 1/r3+s ; see also Ref. [1703] for
further insights and examples. In the finite-cutoff for-
mulation of chiral EFT, this unphysical short-distance
behavior is removed by the regulator.

– Since all relevant πN LECs can nowadays be reli-
ably determined from the pion–nucleon scattering ampli-
tude in the subthreshold region, obtained from the
dispersive Roy–Steiner-equation analysis [1704–1706],
ChEFT yields parameter-free predictions for the long-
range behavior of the nuclear forces and currents. These
predictions are model-independent and represent non-
trivial manifestations of the spontaneously broken chiral
symmetry of QCD.

– Eqs. (6.89)–(6.91) also point towards some limitations of
ChPT, which relies on NDA and cannot capture possible
enhancements due to large dimensionless prefactors. In
the NN sector, this especially affects the N2LO contribu-
tions to the TPEP. The corresponding triangle diagram,
see Fig. 134, leads to the contribution enhanced by a
factor of 4π relative to what is expected based on the
power counting, so that Λχ is in this case better esti-
mated as Λχ ∼

√
4πFπ than Λχ ∼ 4πFπ . Enhance-

ments of this kind are also not uncommon in the single-
nucleon sector of ChPT. For the subleading central poten-
tial V (3)

C, 2π (r), this enhancement combines with the large
numerical coefficients and a large value of the LEC c3

driven by the intermediate Δ(1232) excitation [1707].
Altogether, this results in V (3)

C, 2π (r) being by far the dom-
inant TPE component, whose strength is comparable to
that of the OPEP even at r ∼ 2 fm. The strongly attrac-
tive nature of the isoscalar central potential at intermedi-
ate distances is supported by phenomenology and often

123



 1125 Page 210 of 636 Eur. Phys. J. C          (2023) 83:1125 

Fig. 135 Diagrams contributing to the single-, two- and three-nucleon
electromagnetic current operators at lowest orders of chiral EFT using
the counting scheme with m ∼ Λ2

b/Mπ . Wiggly lines denote photons.

Blue and red diagrams depict the contributions to the current and charge
densities, respectively. An open circle shows an insertion of the kinetic
energy term with Δ = 2. For remaining notations see Fig. 134

attributed to the σ -meson exchange in traditional nuclear
physics jargon. The chiral expansion of the TPEP has
been extended to N4LO [1708–1710] and even beyond
and was shown to yield converged results [1711,1712].

The current status of the derivation of nuclear potentials
in ChEFT is visualized in Fig. 134,70 see Refs. [1713,1714]
for comprehensive review articles. On the qualitative level,
ChEFT provides a justification of the observed hierarchy of
nuclear forces with V2N � V3N � V4N � . . . [1666,1667].

The leading contributions to the three-nucleon force (3NF)
at N2LO have been known for a long time [1715,1716]. The
expressions for the N3LO and (most of the) N4LO corrections
have been worked out in Refs. [1691–1694,1717–1719]. The
four-nucleon force is further suppressed relative to the 3NF
and appears first at N3LO [1690,1701]. Isospin-breaking as
well as parity- and time-reversal-violating nuclear potentials
have also been worked out, see Refs. [1713,1720] and refer-
ences therein.

The first application of ChEFT to study nuclear current
operators goes back to the pioneering papers by Park et al.
[1721,1722]. In the past decade, the vector [1685–1687,
1695,1696,1698], axial-vector [1688,1697], pseudoscalar
[1697] and scalar [1699,1723] current operators have been

70 In some approaches, NN contact interactions are promoted to orders
different than those derived by NDA.

worked out to the leading one-loop-order accuracy for the
two-body contributions (i.e., to N3LO using the counting
scheme with m ∼ Λ2

b/Mπ ). As an example, the ChEFT
expansion of the electromagnetic nuclear currents is shown in
Fig. 135. Similarly to the case of the nuclear forces, the chiral
power counting leads, in general, to a suppression of many-
body operators. On the other hand, the leading contributions
to the single- and two-nucleon current density both appear at
NLO. In contrast, the exchange charge density contributions
are strongly suppressed relative to the LO term (the charge
operator of the nucleon), with both two- and three-nucleon
contributions appearing at N3LO. A comprehensive review
of nuclear currents in ChEFT, including a detailed compar-
ison of results obtained by different groups and a thorough
discussion of the differences between them, can be found in
Ref. [1724].

All results described above are based on the effective
chiral Lagrangian involving pions and nucleons as the only
explicit DoF. As already emphasized in the previous section,
given the low excitation energy of the Δ-resonance and its
strong coupling to theπN system, it might be advantageous to
also treat the Δ DoF as dynamic. This formulation of ChEFT
was already applied to derive the NN force and most of the
3NF contributions up through N3LO [1683,1725–1728]. The
explicit treatment of the Δ leads to a reshuffling of certain
contributions to lower orders in the EFT expansion. In par-
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ticular, a part of the unnaturally strong N2LO TPEP is shifted
to NLO, and the LECs c3,4 take more natural numerical val-
ues [1706]. These results indeed support the expected better
convergence pattern of ChEFT with explicit Δ DoF.

Last but not least, ChEFT has also been extended to the
SU(3) sector and applied to study the interactions between
nucleons and hyperons, see e.g. Refs. [1729–1731] and Ref.
[1732] for a recent review article.

6.3.3 Applications

As already pointed out, nuclear interactions derived in
ChEFT are singular at short distances and need to be regular-
ized prior to solving the dynamical equation. A broad range
of regulators featuring different functional dependence on
momenta and relative distances have been proposed in the
literature, see Refs. [1712,1733–1737] for some examples
and Ref. [1738] for a related discussion. For the long-range
OPEP and TPEP, it is advantageous to use a local regulariza-
tion in order to preserve the analytic structure of the ampli-
tude [1712,1736]. For short-range terms, angle-independent
nonlocal regulators maintain a one-to-one correspondence
between the plane-wave and partial-wave bases, which sim-
plifies the determination of the corresponding LECs. This
choice is utilized in both available N4LO implementations
of the NN potentials [1712,1739] which, however, differ
in their way of regularizing the long-range terms. In both
cases, the LECs accompanying the NN short-range inter-
actions were determined solely from the neutron–proton
and proton–proton data. Alternative fitting strategies, which
include information about light and medium-mass nuclei and
even nuclear matter, are also being explored [1740].

The very accurate and precise NN potentials of [1712,
1741], derived in chiral EFT with pions and nucleons as the
only active DoF, provide an outstanding description of NN
data up to the pion production threshold.71 In fact, the results
of Ref. [1741] comprise a full-fledged partial wave analysis
of NN scattering data based solely on chiral EFT. For more
details and comparison between different NN potentials see
Ref. [1742].

To give an impression about the convergence pattern of
ChEFT consider the total cross section for neutron–proton
scattering at Elab = 100 MeV as a representative example.
Using the potentials from Ref. [1741] one obtains for the
cutoff Λ = 450 MeV (in mb)

σtot = 84.0[q0] − 10.2[q2] + 0.4[q3]
−0.4[q4] + 0.6[q5] − 0.0[q6],

where the last term gives the contribution of the order-
q6 F-wave contact interactions. Given that the expansion

71 This requires the inclusion of four order-q6 contact interactions that
contribute to F-waves [1712,1739].

parameter is q = pcms/Λb ∼ 1/3, where we have used
Λb = 650 MeV [1736,1743,1744], one observes that the
order-q3 and q4 contributions appear to be smaller, while the
order-q5 correction is somewhat larger than naively expected.
The truncation error of the calculated value can be estimated
using a Bayesian approach by inferring the information about
the convergence pattern of the ChEFT from the results at all
available orders [1743]; see also Ref. [1736] for a related
earlier work. Using the Bayesian model from Ref. [1745],
the N4LO truncation error for the case at hand is estimated
to be δσtot = 0.14 mb at 68% confidence level. The final
result then reads σtot = 74.35(14)(17)(1) mb, where the last
two errors refer to the statistical error and uncertainty in the
πN LECs.

The sub-percent accuracy level of ChEFT has also been
reached for other low-energy observables in the NN sec-
tor [1742]. In particular, the charge and quadrupole form
factors of the deuteron were analyzed to N4LO in Refs.
[1746,1747]. The predicted value for the deuteron struc-
ture radius, rstr = 1.9729+0.0015

−0.0012 fm, was used, in com-
bination with the very precise measurement of the charge
radius difference between 2H and the proton [1748], to
determine the neutron radius. The obtained value of the
quadrupole moment Qd = 0.2854+0.0038

−0.0017 fm2 [1747] is in
a very good agreement with the spectroscopy determination
Qd = 0.285699(15)(18) fm2 [1749].

The spontaneously broken approximate chiral symmetry
of QCD, together with the experimental information about
the πN system, allow one to predict the long-range behav-
ior of the nuclear forces. In the NN sector, these predic-
tions have been verified from experimental data. For exam-
ple, the only order-q3 contribution to the NN force comes
from the TPEP in Eqs. (6.91) (since the contact interac-
tions contribute at orders q2i , i = 0, 1, 2, . . .). Adding these
parameter-free contributions to the potential was demon-
strated to very significantly improve the description of the
data [1736,1750,1751]. A similar improvement is observed
by adding the order-q5 TPEP [1710,1712,1752]. It is also
worth mentioning that the potentials of [1712] achieve a com-
parable precision to that of the available high-precision phe-
nomenological potentials while having a much smaller num-
ber of adjustable parameters72 This is yet another evidence
of the important role played by chiral symmetry. Finally,
the convergence of the chiral EFT expansion can be further
improved by the inclusion of Δ’s as explicit DoF of the the-
ory. This is supported by the recently developed Norfolk chi-
ral many-body interactions [1753]; see also Ref. [1754] for
a related discussion.

72 The N4LO potentials of [1712] depend on 27 LECs fitted to NN
data, while the realistic potentials typically involve 40-50 adjustable
parameters.
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Fig. 136 Predictions for ground state energies of selected p-shell
nuclei at NLO and N2LO using the chiral EFT NN potentials from
Ref. [1712] together with the consistently regularized 3NF for Λ =
450 MeV. Black error bars indicate the uncertainties from the employed
many-body method, while shaded bars refer to the EFT truncation errors
(not shown for incomplete N2LO calculations based on the NN force
only). Figure adapted from Ref. [1755]

Beyond the two-nucleon system, the results are presently
limited to the N2LO accuracy level due to the lack of con-
sistently regularized many-body interactions and exchange
currents starting from N3LO. As discussed in Refs. [1680,
1724,1742], using dimensional regularization in the deriva-
tion of nuclear interactions in combination with a cutoff reg-
ularization of the Schrödinger equation leads, in general, to
violations of chiral symmetry. This issue affects all loop con-
tributions to the 3NF and exchange current operators, which
therefore need to be re-derived using symmetry-preserving
cutoff regularization.

At the N2LO level, the results for three-nucleon scatter-
ing observables [1745,1755–1757] and the spectra of light-
and medium-mass nuclei [1755,1757–1764] are mostly con-
sistent with experimental data within errors; see also Refs.
[1765,1766] for review articles. As a representative example,
we show in Fig. 136 the calculated ground state energies of
p-shell nuclei from Ref. [1755].

ChEFT interactions and associated currents have been vig-
orously utilized in the past 10 years to study both static and
dynamical electroweak properties of nuclei, including elec-
tromagnetic form factors [852,1747,1768], electromagnetic
moments [1768–1770], electroweak decays [1771,1772],
and low-energy reactions such as electroweak captures[1773,
1774]. ChEFT currents were first used in calculations of
nuclei with A > 3 in Ref. [1775] where they are used to
study magnetic moments and electromagnetic transitions in

Fig. 137 Magnetic moments in nuclear magnetons for A ≤ 9 nuclei
from Ref. [1767]. Black stars indicate the experimental values while
blue dots (red diamonds) represent Green’s Function Monte Carlo cal-
culations which include the LO one-body currents (one-body plus two-
body currents at N3LO) from ChEFT. For more details and references
to the experimental data see [1767]

A ≤ 10 systems. Two-body currents were found to improve
the agreement between experimental data and theoretical
calculations. For example, a long standing under-prediction
[1776] of the measured 9C magnetic moment by less sophisti-
cated theoretical calculations is explained by the∼ 40% cor-
rection generated by two-body electromagnetic currents in
Ref. [1775]. This enhancement can be appreciated in Fig. 137
by comparing blue dots (representing calculations based on
the single nucleon paradigm) and red diamonds (representing
calculations with two-body electromagnetic currents).

Axial currents are tested primarily in beta decays and
electron capture processes for which data are readily avail-
able and known for the most part with great accuracy. The
long-standing problem of the systematic over-prediction of
Gamow–Teller beta decay matrix elements [1778] in sim-
plified nuclear calculations, also known as the ‘gA prob-
lem’, has been recently addressed by several groups [1772,
1777,1779]. The authors of Refs. [1772,1777] calculated the
Gamow–Teller matrix elements in A = 6–10 nuclei account-
ing systematically for many-body effects in nuclear inter-
actions and coupling to the axial current, both derived in
ChEFT. The agreement of the calculations with the data is
excellent for A = 3, 6 and 7 systems, with two-body cur-
rents providing a small (∼ 2%) contribution to the matrix
elements. Decays in the A = 8 and 10 systems, instead,
require further developments of the nuclear wave functions
[1777,1779]. The ‘gA-problem’ can be resolved in light
nuclei largely by correlation effects in the nuclear wave func-
tions. A summary of these calculations is reported in Fig. 138.
Similar results for these light nuclei obtained using the No-
core shell model are reported in Ref. [1779].
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Fig. 138 Ratios of Green’s function Monte Carlo calculations to exper-
imental values of the Gamow–Teller reduced matrix elements in the
3H, 6He, 7Be, 8B, 8Be, 8He and 10C weak transitions from Refs.
[1772,1777]. Theory predictions correspond to the ChEFT axial current
at LO (empty symbols) and up to N3LO (filled symbols)

The ChEFT approach is also being implemented in stud-
ies of medium-mass nuclei [1779]. As a representative of
this class of electroweak calculations we show the results
of Ref. [1779] on beta decay matrix elements visualized in
Fig. 139. Here, the authors demonstrate that the quench-
ing in the nuclear matrix elements arises primarily from
ChEFT axial two-body currents and strong correlations in
the nucleus. Nuclei from A = 3 to 100Sn are calculated based
on ChEFT in agreement with experimental data.

To summarize, there has been exceptional progress in
studying nuclear physics using ChEFT. In the last two
decades this framework, rooted in the symmetries of QCD
and their breaking pattern, has allowed for the calculation
of many low-energy nuclear processes, such as electromag-
netic reactions and β decays in both light and medium-mass
nuclei, has reached a remarkable agreement with experiment,
and has contributed to solving long-standing anomalies in
nuclear theory. As chiral interactions and currents are being
refined and pushed to higher orders, we have entered the
precision era of this powerful framework.

6.3.4 Connections to lattice QCD

Lattice QCD (LQCD) offers a first-principles approach
to study hadronic and nuclear systems. Several LQCD
groups have studied baryon-baryon systems as well as light
(hyper-) nuclei at unphysically heavy pion masses using dif-
ferent methods. For non-strange nuclear systems, the cur-
rent status of LQCD remains controversial, see [1780] for a
review. On the EFT side, efforts concentrated on extrapolat-
ing lattice QCD results as follows:

Fig. 139 Comparison of experimental (y-axis) and theoretical (x-axis)
Gamow–Teller matrix elements for medium-mass nuclei. The theoret-
ical results were obtained using (i) a bare Gamow–Teller one-body
operator, (ii) Gamow–Teller one-body operator consistently evolved
with the Hamiltonian [1779], and (iii) a consistently-evolved Gamow–
Teller operator that includes both one- and two-body currents. See Ref.
[1779] for details

– Chiral extrapolations of few-nucleon observables have
been studied using a variety of ChEFT formulations, see
e.g. Refs. [1781–1786]. Currently, the main limiting fac-
tor for constraining the quark mass dependence of the
nuclear interactions is the lack of reliable LQCD results
for not-too-heavy quark masses within the applicability
domain of ChEFT.

– Extrapolations of the NN scattering amplitude in energy
at fixed values of the quark masses were performed [1787,
1788] by exploiting the knowledge of the longest-range
interaction due to the OPEP.

– Infinite-volume extrapolations of LQCD results for heavy
pion masses were carried out in both pion-less [1789–
1791] and chiral [1792] EFT.

– Finally, extrapolations of LQCD results to heavier sys-
temswere considered in Ref. [1793] using the framework
of pion-less EFT and in Ref. [1794] utilizing a discretized
formulation of ChEFT.

These studies demonstrate remarkable synergy between
LQCD and EFT. In the future, LQCD is expected to provide
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valuable input for EFT calculations of systems and processes
where scarce experimental data exist such as e.g. strange
multi-baryon systems and nuclear matrix elements for BSM
searches [1780].

6.3.5 Challenges and outlook

To summarize, ChEFT has revolutionized the field of nuclear
physics over the past three decades by providing a system-
atically improvable and theoretically well founded approach
to low-energy nuclear interactions, which relies on the sym-
metries of QCD (and their breaking pattern). The method
has proven to be phenomenologically successful and has led
to new research directions such as e.g. nuclear lattice simu-
lations [1795–1797]. In the two-nucleon sector, ChEFT has
already reached maturity to become a precision tool.

One of the most pressing remaining challenges is the
development of accurate and precise three-nucleon interac-
tions needed to shed light onto the long-standing discrep-
ancies in the three-nucleon continuum [1765]. Pushing the
ChEFT expansion for many-body forces and exchange cur-
rents to N3LO and beyond calls for a symmetry preserving
regularization [1742], and it will also require new ideas to
overcome computational challenges related to the determi-
nation of LECs; see Refs. [1798–1800] for recent steps along
these lines. Other frontiers include the derivation of consis-
tently regularized electroweak currents, better understanding
of renormalization in ChEFT, precision studies of nuclear
structure, reactions and the equation of state of nuclear mat-
ter as well as applications to searches for BSM physics in
processes involving nuclear systems.

6.4 Soft collinear effective theory

Iain Stewart

6.4.1 Introduction

Effective field theory is a powerful tool which enables
the organization of QCD dynamics at different momentum
scales. The most well known examples of EFTs involve the
dynamics of massive particles, like integrating out the heavy
electroweak W and Z bosons to obtain the Electroweak
Hamiltonian, or systematically treating the mass scale of
heavy quarks like the t , b, and c in HQET or NRQCD. On the
other hand, much of our knowledge about strong interactions
comes from hard scattering interactions of light quarks and
gluons, which are the most important processes in pp, e− p,
or e+e− colliders. Such processes are the way we search for
new particles or fundamental interactions at short distances,
and indeed were key to the discovery of the c, b, and t quarks,
the W and Z bosons, and the Higgs H . In these processes we
must simultaneously deal with perturbative QCD dynamics

at the hard interaction scale Q governing the dynamics of the
high energy collision, as well as nonperturbative physics at
the scale Λ � Q, which is responsible for the confinement
and hadronization of partons. Many processes studied at col-
liders also have additional important intermediate scales Δ,
with Λ � Δ � Q. Examples of Δ include the transverse
momentum of particles inside an energetic jet produced from
the collimated shower of a high energy quark or gluon, or the
measurement of differential distributions of a kinematic vari-
ableΔ, where the largest cross section contributions typically
arise from the Λ� Δ� Q kinematic situation. The appro-
priate effective field theory for these processes is the Soft
Collinear Effective Theory (SCET) [1801–1804]. Traditional
QCD methods, outside the framework of EFT, have a long
tradition for describing the physics of hard processes, includ-
ing the Brodsky–Lepage/Efremov–Radyushkin formalism
[225,226,1805] for exclusive hadronic processes, and the
Collins–Soper–Sterman formalism [242,1280,1347,1806]
for inclusive cross sections. SCET builds naturally on this
foundation.

SCET is an effective theory which systematically descr-
ibes the infrared QCD dynamics in hard collisions, includ-
ing the associated dynamics of soft and collinear degrees of
freedom. Its popularity stems in part from the fact that it
enables the description of a huge variety of collider pro-
cesses [1807]. This includes processes that involve ener-
getic hadrons such as large Q2 form factors γ ∗γ → π0,
γ ∗π+ → π+, or fragmentation to one or more hadrons
hi in processes like e+e− → h1h2X and pp → h1X .
Other examples include energetic hadronic collisions like
at the Large Hadron Collider, including Higgs production
pp → HX and Drell–Yan pp → X!+!−, Deep Inelas-
tic Scattering (DIS) e− p → e−X or e−-ion → e−X , and
Semi-Inclusive DIS e− p → e−hX (for the latter see Ref.
[1808]). SCET also describes processes that produce ener-
getic jets instead of (or in addition to) energetic hadrons,
such as e+e− → 2-jets [302,1809–1812], pp→ H + 1-jet
[1813,1814], or pp→ 2-jets [1815,1816]. In addition it can
be used to describe jet-substructure, the dynamics of particles
and sub-jets inside an identified jet [1817–1830]. Finally, it
can also be used to describe the dynamics of heavy particle
production and decay. Indeed some of the original applica-
tions of SCET were to processes like B → π!ν [1802,1831–
1833], B → Dπ [1834,1835], B → ππ [1832,1836],
and B → Xsγ [1801,1803,1837–1841] (where SCET is
combined with HQET), as well as e+e− → J/Ψ X [1842–
1845] and Υ → Xγ [1545,1546,1846–1849] (where SCET
is combined with NRQCD). Recent applications of SCET
include its extension to forward scattering and Regge phe-
nomena [1850–1853], heavy-ion collisions [1854–1859],
gravitational effects [1860–1865], the resummation of large
electroweak logarithms [1866–1872], large logs in dark mat-
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ter annihilation cross sections [1873–1877], and radiative
corrections in neutrino-nucleon scattering [1878,1879].

Features of SCET that people find useful include: the uni-
versal steps in deriving factorization, whereby observables
split themselves into independent functions governing the
hard, collinear and soft dynamics of a process, the trans-
parency in carrying out higher order resummation of large
logarithms, the ability to generalize factorization to more
complicated processes and multiscale observables, and the
capability to systematically study power corrections.

6.4.2 Degrees of freedom

SCET describes collinear particles that are constituents of
energetic hadrons or jets and have a large momentum along a
particular light-like direction nμi . For each collinear direction
we have two reference vectorsnμi and n̄μi such thatn2

i = n̄2
i =

0 and ni ·n̄i = 2. A common choice is nμi = (1, n̂i ) and n̄μi =
(1,−n̂i ), with n̂i a unit three-vector in the collinear direction.
Any four-momentum p can be decomposed in terms of these
as

pμ = n̄i · p nμi
2
+ ni · p n̄μi

2
+ pμni⊥. (6.92)

Particles with pμ close to nμi are referred to as ni -
collinear and have (ni · p, n̄i · p, pni⊥) = (p+, p−, p⊥)
∼ Q (λ2, 1, λ), where λ � 1 is the small SCET power
counting parameter, determined by scales and kinematics
or by measurements restricting QCD radiation. SCET also
describes particles with soft momenta

pμ ∼ Q(λ, λ, λ)

and with ultrasoft (usoft) pμ ∼ Q(λ2, λ2, λ2).
Examples are shown in Fig. 140. In the B → Dπ process,

Q = {mb,mc,mb − mc} and λ = Λ/Q, with the B and
D composed of a heavy quark, light soft quarks, and soft
gluons. The pion has Eπ = 2.3 GeV = Q � Λ, and has
collinear quark and gluon constituents. In the e+e− → 2-jets
process, we have back-to-back jets with energy Q, where Q2

is the invariant mass of the e+e− pair, and λ = Δ/Q with
Λ � Δ � Q. Here Δ is a scale that characterizes the
transverse size of the jet, and associated to measurements
made on the jets. For example, if a hemisphere jet mass mJ

is measured, then Δ = mJ , while if thrust 1−τ is measured,
Δ2 = Q2τ .

To ensure that collinear directions ni and n j are distinct,
we must have ni ·n j � λ2 for i �= j . Since distinct refer-
ence vectors, ni and n′i , with ni · n′i ∼ λ2 both describe the
same collinear physics, one can label a collinear sector by
any member of an equivalence class of vectors, {ni }. This
freedom manifests as a symmetry of the effective theory
known as reparametrization invariance (RPI) [1880,1881].
Three classes of RPI transformations are

Fig. 140 Example processes B → Dπ and e+e− → 2-jets

RPI-I RPI-II RPI-III
niμ → niμ+Δ⊥μ niμ → niμ niμ → eαniμ
n̄iμ → n̄iμ n̄iμ → n̄iμ+ε⊥μ n̄iμ → e−α n̄iμ,

(6.93)

where α ∼ λ0 and infinitesimal parameters Δ⊥ ∼ λ and
ε⊥ ∼ λ0. These parameters satisfy ni · Δ⊥ = n̄i · Δ⊥ =
ni · ε⊥ = n̄i · ε⊥ = 0.

The effective theory is constructed by separating collinear
momenta into large (label) p̃ and small (residual) pr compo-
nents

pμ = p̃μ + pμr = n̄i · p̃ nμi
2
+ p̃μni⊥ + pμr , (6.94)

with n̄i · p̃ ∼ Q, p̃ni⊥ ∼ λQ. The small pμr ∼ λ2Q describes
fluctuations about the label momentum. To simultaneously
describe different regions of momentum space with operators
that have manifest power counting, it is necessary to have
multiple fields for the same fundamental particle. Namely,
for each collinear direction we have collinear quark fields
ξni ∼ λ and collinear gluon fields Aμ

ni ∼ (λ2, λ0, λ), as well
as soft quark qs ∼ λ3/2 and soft gluon Aμ

s ∼ λ fields, and/or
usoft quark qus ∼ λ3 and usoft gluon Aμ

us ∼ λ2 fields. These
power counting assignments ensure that the corresponding
kinetic terms in the action are O(λ0).

The precise degrees of freedom depend on the process.
Often only usoft or soft fields are present, in which case
the theories are referred to as SCETI and SCETII respec-
tively [1832]. SCETI is relevant for measurements sensi-
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Fig. 141 Degrees of freedom for jet mass in e+e− → 2-jets

tive to the small ni · p ∼ Qλ2 momentum, such as jet
mass in e+e− → 2-jets, see Fig. 141; while SCETII is rel-
evant for measurements that involve transverse momenta or
collinear and soft modes with the same invariant mass. Exam-
ples also exist that require mixed soft-collinear modes with
pμ ∼ Q′(λ2, 1, λ) where Q′ � Q, in which case the the-
ory is referred to as SCET+; see Ref. [1827]. Independent
collinear, soft, and usoft gauge symmetries are also enforced
for each set of fields [1804]. A general SCET λ power count-
ing formula can be used to determine the order of any diagram
entirely from operators inserted at its vertices plus topologi-
cal factors [1850,1882].

To fully expand in λ one must carry out a multipole expan-
sion for the fields in SCET. There are two equivalent ways
that this expansion has been constructed in the literature,
either in a combination with momentum space for large label
momenta and position space for the residuals, with fields
written as ξni , p̃(x) [1803], or with the multipole expansion
carried out entirely in position space [1831]. We will use the
former, and facilitate the expansion by defining two deriva-
tive operators, a label momentum operator Pμ

ni giving large
momentum components, such as Pμ

ni ξni , p̃ = p̃μ ξni , p̃, and
a residual momentum operator giving residual small compo-
nents, such as i∂μξni , p̃(x) ∼ Qλ2ξni , p̃(x). The shorthand
P̄ = n̄i · Pni is used for the largest O(λ0) label momentum.
Useful covariant derivatives include

i n̄ · Dn = P̄ + gn̄ · An, iDμ
n⊥ = Pμ

⊥ + gAμ
n⊥

in · Dn = in · ∂ + gn · An, iDμ
us = i∂μ + gAμ

us

in · D = in · ∂ + gn · Aus + gn · An, (6.95)

where Aμ
n ≡ AAμ

n T A and igF Aμν
n T A = [iDμ

n , iDν
n] =

igFμν
n . This is the standard sign convention for g used in

the SCET literature. It differs from the QCD summary above
(g→−g).

6.4.3 SCET Lagrangian and factorization

The SCET Lagrangian is

LSCET = Lhard+Ldyn =
∑

i≥0

(
L(i)

hard+L(i)
dyn

)
+L(0)

G , (6.96)

where the superscript (i) indicates terms suppressed byO(λi )

relative to the leading power Lagrangian. Here the hard short
distance interactions are encoded in L(i)

hard with only one of
these appearing in each amplitude (unless we study multiple
hard scatterings). They contain multiple types of collinear
(and soft) fields. The dynamic Lagrangians L(i)

dyn describe the
evolution and interactions of collinear and (u)soft particles.
We have singled out the so-called Glauber Lagrangian L(0)

G
for special treatment since it is the only term that violates
factorization of collinear and (u)soft modes [1850].

At leading power the dynamic SCETI and SCETII

Lagrangians are [1804]

LI(0)
dyn =

∑

n

L(0)
n + L(0)

us ,

LII(0)
dyn =

∑

n

L(0)
n + L(0)

s , (6.97)

where the first terms sum over all needed independent
collinear sectors. In SCETII each of L(0)

n and L(0)
s only

involves collinear or soft fields, so the sectors are imme-
diately factorized by the power expansion. In SCETI the
n · Aus fields still interact with collinear fields since they
are O(λ2) just like n · ∂ and n · An , and do not knock the
collinear particles offshell (meaning that initial and final par-
ticles have momenta satisfying the collinear power counting).
These n ·Aus interactions can be decoupled by the BPS field
redefinition [1804]

ξn(x)→ Yn(x)ξn(x), Aμ
n (x)→ Yn(x)Aμ

n (x)Y
†
n (x),

(6.98)

where Yn is an ultrasoft Wilson line

Yn(x;−∞, 0) = P exp
(
ig

∫ 0

−∞
ds n ·Aus(x + ns)

)
, (6.99)

and P is path ordering of color matrices with s. This trans-
formation moves usoft interactions into the hard scattering
operators, and leaves factorized Lagrangians L(0)

n and L(0)
us ,

which only depend on collinear or usoft fields respectively.
For example, for collinear quarks in SCETI we have

LI(0)
nξ = e−i x ·P ξ̄n

(
in ·D+ i /Dn⊥

1

i n̄ ·Dn
i /Dn⊥

) /̄n

2
ξn
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Fig. 142 O(λ0) Feynman rules for collinear quarks (dashed) interact-
ing with a soft gluon (spring) or collinear gluon (spring with a line
through it). Rules with more collinear gluons are not shown

→ e−i x ·P ξ̄n

(
in ·Dn + i /Dn⊥

1

i n̄ ·Dn
i /Dn⊥

) /̄n

2
ξn .

(6.100)

The first few Feynman rules prior to the field redefinition are
shown in Fig. 142, and the one in the second line is removed
from LI(0)

nξ after implementing Eq. (6.98). After the transfor-

mation the L(0)
n Lagrangian has the same form in SCETI and

SCETII.
The construction of SCET hard scattering Lagrangians

L(i)
hard requires integrating out offshell fields, which have

larger p2 than the collinear and (u)soft fields (see Fig. 141
for example). When collinear particles in two different sec-
tors interact, the resulting particles are hard and offshell
with p2 ∼ Q2. Likewise when collinear and soft particles
interact this results in offshell hard-collinear particles with
p2 ∼ Q2λ. Systematically integrating out the correspond-
ing offshell fields results in collinear and soft Wilson lines
appearing in operators [1802–1804]. This involves an infi-
nite number of gluon attachments and can be carried out
analytically with background field techniques [1804,1807].
In label momentum space the resulting collinear Wilson lines
are defined as

Wni (x) =
[ ∑

perms

exp
(
− g

P̄
n̄ ·Ani (x)

) ]

. (6.101)

Note that it is the n̄i · An ∼ λ0 component of the gluon
field that appears in these Wilson lines. In general all O(λ0)

gluon components can be traded for Wilson lines using
i n̄i · Dni = Wni P̄W †

ni . Unlike Yn , the subscript on Wni
refers to the collinear fields it is built out of, not the Wil-
son line direction (which is n̄i ). For zero residual momentum
x = (0, x−, x⊥), the Wn(x) is simply the Fourier transform
(b+ ↔ p−) of a standard position-space Wilson line ending
at b = (b+, x−, x⊥):

Wn(b;−∞, 0) = P exp
(
ig

∫ 0

−∞
ds n̄ ·An(b + n̄s)

)
. (6.102)

Since the construction of hard-collinear interactions in
SCETII can be facilitated by matching QCD→SCETI →
SCETII [1832], it suffices to primarily focus on matching for
SCETI. The definition for the soft Wilson line Sn(x;−∞, 0)
appearing in SCETII is identical to Eq. (6.99) with Aus →
As .

Hard interactions involving collinear fermions provide a
frame of reference that allows us to simplify the Dirac struc-
tures that appear, since so-called good fermion components
dominate over bad components in the λ expansion. In SCET
this is encoded by the projection relations (n/i n̄/i/4)ξni = ξni ,
which also implies n/iξni = 0. The same formulae also hold
for χni . Only the good components are needed to construct
operators in SCET at any order in the power expansion, and
indeed we have already written L(0)

nξ in Eq. (6.100) using
them. Note that on its own, Eq. (6.100) is equivalent to a QCD
Lagrangian for collinear quarks (indeed it has the same form
as the light-cone QCD Lagrangian [1883]), with a distinction
made only by which fermion components are sourced in the
path integral.

Integrating out offshell fluctuations also results in Wil-
son coefficients that depend on the large O(λ0) momenta
of collinear fields. It is straightforward to see why this is the
case, since if we annihilate or produce two collinear particles
with pμn = ω1nμ/2 and pμn̄ = ω2n̄μ/2, then q = pn+ pn̄ has
q2 = ω1ω2 ∼ Q2. Thus offshell fluctuations that depend on
Q2 also depend on the large momenta ωi ∼ λ0 of collinear
fields. Two other constraints on the form of hard operators are
SCET gauge invariance and the ability to use the equations of
motion to reduce the operators basis to a minimal set. This is
summarized by the fact that all operators can be constructed
out of a minimal set of building blocks, formed from com-
binations of fields and Wilson lines [1802,1803,1884]. The
collinearly gauge-invariant quark and gluon building block
fields are defined as

χni ,ω(x) =
[
δ(ω − P̄ni )W

†
ni (x) ξni (x)

]
,

Bμ
ni⊥,ω(x) =

1

g

[
δ(ω + P̄ni )W

†
ni (x) iD

μ
ni⊥Wni (x)

]
.

(6.103)

The Wilson lines Wni (x) are localized with respect to the
position x , and we can therefore treat χni ,ω(x) and Bμ

ni ,ω(x)
as local quark and gluon fields from the perspective of ultra-
soft derivatives ∂μ that act on x . Our conventions for χni ,ω

have ω > 0 for an incoming quark and ω < 0 for an out-
going antiquark at lowest order. For Bni⊥,ω, ω > 0 (ω < 0)
corresponds to outgoing (incoming) gluons at lowest order.

For SCETI the complete set of building blocks and their
power counting is summarized in Table 7.

Both the χn and Bn⊥ building block fields scale as O(λ).
For the majority of jet processes there is a single collinear
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Table 7 Power counting for building block operators in SCETI

Operator Bμ
ni⊥ χni Pμ

⊥ qus Dμ
us

Power counting λ λ λ λ3 λ2

field operator for each collinear sector at leading power. For
exclusive processes that directly produce energetic hadrons
at the hard interaction (rather than by fragmentation) there are
multiple building blocks from the same sector in the leading
power operators, since we must form a color singlet in each
sector in order to directly produce a color singlet hadron. The
P⊥ ∼ λ is not typically present at leading power. At sublead-
ing power, operators for all processes can involve multiple
collinear fields in the same collinear sector, as well as P⊥
operator insertions. The power counting for an operator is
obtained by simply adding up the powers for the building
blocks it contains. To ensure consistency under renormaliza-
tion group evolution the operator basis in SCET must be com-
plete, namely all operators consistent with the symmetries of
the problem must be included. The counting of subleading
power operators is greatly facilitated by spinor-helicity SCET
techniques [1885–1889].

A few examples of hard scattering operators can help
clarify the above points. For SCETI processes like thrust,
jet mass, or other dijet event shapes in e+e− collisions, or
for threshold resummation in Drell–Yan or DIS, the leading
power Lagrangian from the electromagnetic current is

LI(0)
hard(0) =

ie2

Q2 J
μ

!̄!

∫
dω1dω2 C

(0)
f (ω1ω2, μ)

× [
(χ̄

f
n̄,ω2

) (Y †
n̄ Yn)γ

⊥
μ (χ

f
n,ω1)

]
μ
, (6.104)

where C (0)
f is the Wilson coefficient encoding virtual hard

interactions at any order in αs , and renormalization is carried
out in the MS scheme, inducing dependence on the renormal-
ization scale μ. In Eq. (6.104) the usoft Wilson lines Y †

n̄ Yn
appear from the BPS field redefinition in Eq. (6.98). Also, the
leptonic vector current is Jμ

!̄!
= (−1)!̄γ μ!, and we sum over

quark flavors f . At any order in αs the Wilson coefficient
C (0)

f (ω1ω2) encodes virtual corrections from the hard scale

ω1ω2 ∼ Q2. For hard Lagrangians with only a single field
in a given collinear direction, the large collinear momentum
factors ωi are fixed by the overall kinematics of the hard pro-
cess, and thus remain unchanged by perturbative corrections.
For example, ω1 = ω2 = Q for e+e− → 2-jets. At tree level
C (0)

f = Q f + O(αs), where the quarks have charge Q f |e|.
To calculate C (0)

f at higher orders we carry out loop level
matching calculations, comparing hard scattering Feynman
diagrams separately computed and renormalized in full QCD
and in SCETI, while using the same states and infrared (IR)
regulators. Since SCET captures all the IR physics, the dif-

ference between these calculations determines C (0)
f order by

order, and implies it encodes hard effects. For the particular
example in Eq. (6.104), C (0)

f is related to the IR finite part of

the MS massless quark form factor with Q2 � Λ2. (In gen-
eral when carrying out loop calculations in SCET with both
(u)soft and collinear loops, one must include 0-bin subtrac-
tions which ensure there is not double counting of IR regions
[1890]. For some choices of IR regulators these subtractions
are scaleless in dimensional regularization, and hence can be
dropped, up to interpreting the divergence structure.)

For SCETII processes like the broadening event shape for
e+e− → 2-jets, or transverse momentum dependent (TMD)
distributions for Drell–Yan, SIDIS, or e+e− → h1h2X , the
leading hard scattering Lagrangian is

LII(0)
hard (0) =

ie2

Q2 J
μ

!̄!

∫
dω1dω2 C

(0)
f (ω1ω2, μ)

× [
(χ̄

f
n̄,ω2

) (S†
n̄ Sn)γ

⊥
μ (χ

f
n,ω1)

]
μ
, (6.105)

with the same Wilson coefficient C (0)
f as Eq. (6.104). The

only difference is the appearance of soft Wilson lines S
instead of usoft Y . This operator can be obtained immedi-
ately from Eq. (6.104) by matching SCETI →SCETII.

As a final example we consider B̄0 → D+π−mediated by
the weak W -boson flavor changing transition b→ cūd. Here
the matching is from the electroweak Hamiltonian HW =
2
√

2GFV ∗udVcb
∑

i=0,8 C
F
i Oi , with 4-quark operators O0 =

[c̄γ μPLb][d̄γμPLu] and O8 = [c̄γ μT APLb][d̄γμPLT Au],
onto coefficients and operators in SCET. The heavy quark
fields are matched onto HQET fields h(Q)

v for Q = b, c,
while the light quarks become collinear. The leading power
hard scattering Lagrangian in SCET is [1834]

LII(0)
hard =

∫
dω1dω2 C

j (0)
BDπ (ω1, ω2,mb,mc, μ)

× {[
h̄(c)
v′ Γ

j
h h

(b)
v

][
(χ̄ d̄

n,ω2
) Γξ (χ

u
n,ω1

)
]}

μ
, (6.106)

where we sum over j = 1, 5 with Dirac structures Γ 1,5
h = n/

{1, γ5}/2 and Γξ = n̄/(1 − γ5)/4. Here the hard coefficients

C j (0)
BDπ depend on multiple hard scales as in Eq. (6.106). There

are no soft Wilson lines because the n-collinear quark pair is
a color singlet and S†

n Sn = 1. An analogous SCET operator
with color structure T A ⊗ T A exists and does involve soft
Wilson lines. Since it can be factorized into a product of soft
and collinear octet operators, it does not contribute to the
physical process: a factorized octet collinear bilinear operator
can not produce a color singlet pion.

Let us return to the leading power Glauber Lagrangian. It
involves interactions between soft and collinear modes in the
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form of potentials, and has the form [1850]

L(0)
G =

∑

n,n̄

Oi B
n

1

P2⊥
OBC

s
1

P2⊥
O jC

n̄ +
∑

n

Oi B
n

1

P2⊥
O jn B

s ,

(6.107)

in both SCETI and SCETII. Further details and the definitions
for the operators O can be found in Ref. [1850]. Many of
the steps involved in deriving factorization at leading power
are manifest in the construction of SCET; in particular we
arrive at hard scattering Lagrangians L(0)

hard that can be writ-
ten as products of gauge invariant collinear and soft opera-
tors, and we have a direct sum of independent Lagrangians
for soft and collinear fields in L(0)

dyn. With just these terms
the SCET Hilbert space of states factorizes as direct prod-
ucts, and matrix elements of collinear and soft operators with
their Wilson coefficients define independent collinear, soft
and hard functions (examples given below). Since L(0)

G can
be inserted any number of times without power suppression,
and couples different sectors, it breaks factorization.

Thus proving factorization reduces to demonstrating that
contributions from L(0)

G either cancel out, or can be absorbed
into other interactions. Both of these occur. For example, in
e+e− → 2-jets the non-trivial interactions from L(0)

G can be
absorbed into the direction of the (u)soft and collinear Wil-
son lines, which in that case then run from [0,∞) rather than
(−∞, 0], see Ref. [1850]. The same absorption is true for
the exclusive B → Dπ process, with the common feature
being that these processes involve only active partons and
do not involve forward scattering configurations (see also
Refs. [1891,1892]). In a process like Drell–Yan the cancel-
lation of L(0)

G is much more complicated due to interactions
involving spectator partons in the initial protons, but these
still cancel out. Low order demonstrations can be found in
Refs. [1850,1893,1894], while the all order statement was
made in the classic CSS proof of Glauber region cancella-
tions in Ref. [1806]. For cases where factorization is known
to be violated [1892,1895–1899], it is not possible to absorb
or cancel the effects of L(0)

G in this manner. The factorization
of Glauber effects in SCET can also be used to sum so-called
superleading logarithms [1900].

It is worth noting that in SCET the proof of factorization
for cross sections and decay rates at subleading power follows
the same steps as at leading power. Higher power L(i≥1)

hard sim-
ply involve more complicated products of factorized soft and
collinear operators. While terms in L(i≥1)

dyn also involve prod-
ucts of soft and collinear fields, they are always inserted only
a finite number of times at any given order in the power count-
ing, and hence still lead to factorized matrix elements, albeit
with time ordered products of operators. For a gauge invari-
ant description of power suppressed SCETI operators see
Refs. [1901,1902]. Many of these observations go back to the
beginnings of SCET, since the processes that people focused

on at the time involved exclusive B decays that only start at
subleading power [1831–1833,1835–1837,1903–1907], pri-
marily because the soft spectator quark in the B had to be
converted into a collinear quark, a subleading power process.

Finally, we remark that L(0)
G is interesting in its own right,

because for processes involving forward scattering rather
than hard scattering, it does not cancel but instead provides
the dominant contributions, yielding Reggeization, BFKL
evolution, and the shockwave picture. For more work in this
direction see Refs. [1850–1853]. It is also worth noting that
this implies that SCET can potentially provide a framework
to parameterize and describe spectator factorization violat-
ing contributions to certain hard scattering processes from
first principles, though so far very little work has been done
in this direction.

6.4.4 Examples of factorization

To connect theory and experiment, consider a few examples
of factorization formulae that have been derived or studied
with SCET. A key attribute of these formulas is that they
are determined using only the SCET power expansion, and
do not rely on any αs expansion. First consider e+e− → 2-
jets, with a measurement of τ = 1 − T where T is thrust,
working in the dijet limit τ � 1. We can relate τ to the sum
of the two hemisphere jet masses, τ = (m2

Ja + m2
Jb)/Q

2,
where m2

Ja and m2
Jb are each determined by the particles on

one side of the plane perpendicular to the thrust axis. Thus
τ � 1 restricts the invariant mass of the radiation in both
hemispheres and forces us into a dijet configuration. Squar-
ing the SCETI leading power amplitudes obtained fromL(0)

hard
in Eq. (6.104), Fierzing the fields of distinct types into inde-
pendent matrix elements, integrating over phase space with
the measurement function, and renormalizing the resulting
factorized functions, gives [302,1809–1812]

dσ

dτ
= σ0H(Q, μ)Q

∫
d!d!′ JT (Q2τ − Q!, μ)

× ST (!− !′, μ)F(!′,Λ). (6.108)

Here H(Q, μ) = |C (0)(Q, μ)|2 is a hard function encoding
virtual corrections (magenta line in Fig. 141), the thrust jet
function JT = J ⊗ J combines two jet functions J obtained
from the n-collinear or n̄-collinear matrix elements (dots
on the blue line in Fig. 141), and the full soft function is
defined from a vacuum matrix element of usoft Wilson lines.
This soft function can be further factorized into two parts,
ST ⊗ F , where ST is perturbative (green line in Fig. 141) and
F is nonperturbative (brown line in Fig. 141) [1840,1908].
Renormalization group evolution of HT , JT , and ST enables a
summation of large Sudakov double logarithms,αs ln2 τ . The
state-of-the-art for this resummation is next-to-next-to-next-
to-leading logarithmic order (N3LL), and was first achieved
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with SCET [1812]. For Λ � Qτ � Q the nonperturba-
tive effects from F are power corrections, so the spectrum is
dominated by perturbation theory, and is used to obtain high
precision fits for αs(MZ ) [302,303,1909].

DIS, e− p → e−X , provides another useful SCET fac-
torization example [1807]. It is simplest to consider in the
Breit frame where the virtual photon has qμ = (0, 0, 0, Q).
Here the factorization theorem is between hard and collinear
modes with λ = Λ/Q, and soft contributions cancel out.
A feature of this process is that the hard contributions come
from both virtual effects as well as real radiation in X . There-
fore matching onto Wilson coefficients Ci(0)

jDIS(ωi , Q, μ)

takes place at the level of the amplitude squared, and so does
the construction of the appropriate SCET operators. These
operators involve collinear quarks in χ̄

q
n,ω1 n̄/χ

q
n,ω2 with flavor

q, or collinear gluons in Bν
n⊥,ω1

Bn⊥,ω2ν . The proton matrix
elements 〈p| · · · |p〉 of these operators define the well known
quark parton distribution functions (PDFs) fq/p(ξ, μ) and
gluon PDFs fg/p(ξ, μ), respectively. Carrying out the same
steps listed above to arrive at Eq. (6.108) now gives factor-
ization theorems for DIS structure functions. For example

W1(x, Q
2) = −1

x

∫ 1

x
dξ H (i)

1 (ξ/x, Q, μ) fi/p(ξ, μ
2),

(6.109)

where we sum over parton types i , and the hard function
H (i)

1 = (1/π) Im Ci(0)
1DIS. There is a similar formula for

W2(x, Q2). Equation (6.109) factorizes perturbative short
distance contributions in H (i)

1 at the scale Q from the nonper-
turbative PDFs fi/p at the scale Λ. Here the renormalization
group evolution (RGE) sums up single logs αs ln(Q/μ0), for
a hadronic scale μ0 � 1 GeV > Λ. Thus SCET reproduces
classic DIS results in a very simple manner. For example,
the fact that χ̄q

n,ω1 n̄/χ
q
n,ω2 ∼ λ2 is related to the PDFs being

built from twist-2 operators. The operator with Wilson lines
in SCET captures the full tower of twist-2 operators simul-
taneously.

To provide a SCETII example, we consider the Higgs
transverse momentum qT in pp → H + X in the region
where Q = mH � qT � Λ. Due to the measure-
ment of qT ∼ Qλ there is a restriction on the final state
X . It can involve collinear and soft particles which indi-
vidually have pT ∼ Qλ, but can no longer involve hard
particles. Due to this restriction, the hard matching takes
place at the amplitude level in this case, giving L(0)

hard ∝
C (0)
H (ωi , μ)tr[Bν

n⊥,ω1
ST
n Sn̄Bn̄⊥,ω2ν]μ, where S are soft Wil-

son lines in the adjoint representation. Since this only
involves one field of each collinear type, the ωi momenta
are fixed by Q and the Higgs rapidity Y to be ω1 = QeY and
ω2 = Qe−Y . Here the factorization is simplest in Fourier

space

dσ

dQdYd2 �pHT
= 2HggH (Q, μ)

∫
d2 �bT ei

�bT · �pHT SH (bT , μ, ν)

× Bαβ
g/p(xa, �bT , μ, ζa/ν

2)Bg/pαβ(xb, �bT , μ, ζb/ν
2)

= HggH (Q, μ)

∫
d2 �bT ei

�bT · �pHT

× [
f1g/p(xa, bT , μ, ζa) f1g/p(xb, bT , μ, ζb)

+ h⊥1g/p(xa, bT , μ, ζa)h
⊥
1g/p(xb, bT , μ, ζb)

]
, (6.110)

where xa = QeY /
√
s, xb = Qe−Y /

√
s, s is the invariant

mass of the colliding protons, and ζa,b are Collins–Soper
parameters satisfying ζaζb = Q4. Here the hard function is
HggH ∝ |C (0)

H |2 (leaving out simple kinematic prefactors),
the squared 〈p| · · · |p〉 matrix element of n-collinear fields
yields the beam function Bαβ

g/p (and likewise for n̄), and the
squared vacuum matrix element of soft Wilson lines yields
the soft function SH . In the final line of Eq. (6.110) we did
two things in one step: (i) grouped a

√
SH together with

each beam function to absorb the soft function symmetri-
cally, and (ii) decomposed the Lorentz indices αβ into two
possible structures, gαβT f1g/p and (bαT b

β
T + �b2

T g
αβ
T /2)h⊥1g/p.

This yields definitions for the TMD PDFs f1g/p (unpolarized
gluon TMD PDF) and h⊥1g/p (linearly polarized gluon TMD
PDF).

A novel feature of this factorization theorem is the appear-
ance of the rapidity scale ν in the collinear and soft func-
tions, which is associated to the need to regulate rapidity
divergences in many SCETII processes [1890,1910–1913],
and the presence of the associated rapidity renormalization
group equations [1912,1914]. The result in the first line of
Eq. (6.110) is presented with the rapidity regulator defined in
[1912] and may look somewhat different with other choices
of the rapidity regulator, such as in the original Collins con-
struction [1267]. However the result in the final line will be
the same. Evolution in both μ and ν is needed to sum the
large logs, αs ln2(Q/qT ), in this process, and the state of the
art is resummation at N3LL. This resummation may also be
done at the level of the TMD PDFs, where the rapidity RGE
is replaced by the Collins–Soper evolution in ζa,b [1347].

As our final example, we consider the measurement of jet
mass in inclusive jet production, pp→jet+X , where the jet
has radius R and is defined with the anti-kT algorithm. To
make this example more interesting (and more phenomeno-
logically relevant) we also carry out jet grooming to remove
soft contaminating radiation in the jet, using the soft drop
algorithm [1915,1916]. Examples of contaminating radia-
tion in the jet include initial state radiation from the protons,
underlying event effects due to radiation from spectator par-
tons, and pileup effects due to radiation from the interaction
among other protons in the colliding beams. The soft-drop
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grooming is defined by iteratively applying a test on trans-
verse momentum pT and angular separationsΔR of branches
i and j in an angular ordered tree formed from particles in
the jet: min(pT i , pT j )/(pT i+pT j ) > zcut(ΔRi j/R0)

β where
zcut,β, and R0 are soft drop parameters. Branches that fail this
test are removed from the tree, thus grooming soft radiation.
This causes the soft function for this process to split itself
into two parts [1826]: a global soft function sensitive to the
scale Qzcut associated with the groomed soft radiation, and a
collinear-soft function, Sκc , that describes soft radiation that
is collimated enough with the jet axis to have been retained
by the grooming. The groomed jet mass cross section can be
factorized as [1826,1917,1918]

dσ

dm2
JdΦJ

= Nκ(ΦJ , R, zcut, β, μ)Q
1

1+β

cut

∫
d!

× Jκ(m
2
J − Q!, μ)Sκc

[
!Q

1
1+β

cut , β, μ
]
, (6.111)

with a sum on κ = q, g for quark and gluon jets and Qcut =
pT Rzcut(R/R0)

β . Here Jκ is the usual jet function since
the collinear radiation is not affected by the grooming. The
normalization factor Nκ is a short hand for a combination of
terms that include PDFs, a hard-collinear function describing
the production of the parton κ , and the global soft function.
This is an example of a SCET+ factorization formula due to
the presence of soft-collinear modes that make up the Wilson
lines that appear in Sκc . Groomed observables have become
widely used in predictions at hadron colliders due to the fact
that they are much more robust to contamination, and have
reduced hadronization corrections. Other examples of soft
drop groomed calculations with SCET are found in Refs.
[1828,1830,1918–1933].

6.4.5 State-of-the-art and attractive directions

The nature of a short review is that key ideas can be high-
lighted, but it is hard to do credit to the depth of work in the
field. Let me close by giving a brief overview of some of the
interesting centers of activity currently going on with SCET,
with an eye to the future.

SCET continues to have a significant impact on the field
of high precision calculations for collider cross sections,
in particular for the resummation of large logarithms. This
activity is motivated by the clear universality of anoma-
lous dimensions and factorized functions in SCET, giv-
ing results of broad utility. Below I summarize the highest
order results achieved to date for various processes which
exploit these perturbative achievements, referring to ref-
erences therein for further background and details. This
list includes: e+e− thrust to N3 LL′ [302,1812] and mas-
sive thrust to N3LL [1934], e+e− heavy jet mass to N3LL
[1935], e+e− C-parameter to N3 LL′ [1936], e+e− Energy-

Energy-Correlator (EEC) to N3 LL′ [1937], e+e− oriented
event shapes to N3LL [1938], e+e− groomed jet mass to
N3LL [1939], e+e− → t t̄ thrust to N3LL [1940], e− p DIS
thrust to N3LL [1941–1944], the Drell–Yan p!!T spectrum
to N3 LL′ [1945,1946], the pp Higgs pHT spectrum [1947–
1949] and rapidity spectrum [1950] to N3 LL′, and LHC pro-
cesses with a jet-veto [1813,1951–1956]. Recently the first
N4LL resummed calculation has been carried out for the EEC
[1957] (with an approximation for the 5-loop cusp anoma-
lous dimension). Key ingredients are the four-loop hard
(collinear) anomalous dimensions [1958,1959], the four-
loop rapidity anomalous dimension for TMDs [1957,1960],
the four-loop cusp anomalous dimension [1961] and five-
loop approximation [1962], and calculations of three loop
boundary conditions [1963–1966]. Many more processes
have been resummed to NNLL or NNLL′ order with SCET;
for example in Refs. [1514,1814,1815,1818,1918,1931,
1963,1967–1999]. Factorized functions remain important
targets for future perturbative calculations, with the antic-
ipated reward of simultaneously impacting multiple pro-
cesses.

Power corrections are another lively topic in SCET,
from the continued activity around B-decays, to recent
significant results for collider physics. A key strength of
SCET is its systematic nature, ensuring one can target
the desired terms without missing contributions. Recent
collider physics literature on subleading power results in
SCET includes: formalism such as enumerating operator
bases [1886–1888,2000,2001], hard renormalization and
evolution [2000,2002–2004], collinear and soft renormal-
ization and evolution [2005–2008], subleading power fac-
torization [1808,2009–2013], and resummation for collider
observables, including for event shapes [2005,2014,2015],
for threshold resummation [2016–2018], and for the EEC
[2019]. These results provide bright prospects for the future,
with the ultimate goal of building a complete story for the
structure of gauge theories like QCD beyond leading power,
and thus generalizing the leading power picture of collinear
splittings and soft eikonal radiation.

One popular method for carrying out fixed order cal-
culations at higher orders, is that of slicing, whereby a
resolution variable is used to act as a physical regulator
for infrared divergences, enabling analytic and numerical
calculations to be combined in a systematic way. SCET
has contributed to this program with the invention of N-
jettiness subtractions [2020,2021] based on the N-jettiness
event shape variable [1816]. It has also been used to calcu-
late power suppressed large logarithms, enabling order-of-
magnitude improvements to slicing techniques [1889,2006,
2022–2029]. Further improvements to such techniques will
be important as theorists continue to move towards calculat-
ing experimentally accessible fiducial cross sections.
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Other interesting applications of SCET include: the gen-
eralization of threshold factorization formulae to include
collinear limits [2030,2031], the computation of non-global
logarithms and associated effects [1824,2032–2045], the
parametrization of hadronization corrections with field the-
ory matrix elements [2046–2048], studying fragmentation
inside a jet [1921,1925,1997,2049–2061], and to studying
double parton distributions and fragmentation [2062–2065].
A particularly interesting direction with many connections to
other fields is the study of EECs. Results from SCET include
deriving factorization for the back-to-back limit [2066], and
collinear limit [2067,2068], jet analyses with charged tracks
[2069], generalizing factorization to the back-to-back limit
at hadron colliders [2070], and deriving factorization for-
mula for jet substructure applications of the EEC [2071]. The
prospects for new applications of SCET technology remain
bright.

A final hallmark of SCET is the use of the physical pic-
ture it provides to construct novel observables. Past exam-
ples of this type include: beam thrust and functions [1844,
2072,2073], N-jettiness [1816], N-subjettiness [2074], jet
substructure for disentangling color and spin in J/Ψ pro-
duction [2054,2075], D2 and related jet-substructure observ-
ables [1821,2076–2078], the winner-takes-all-axis for jets
[1929,2079–2081], track functions [2082–2085], the XCone
jet algorithm [2086], collinear drop [1927,2087], an EEC
probe of top mass [2088], and measuring initial state tomog-
raphy with a Nuclear EEC [2089]. I look forward to many
more examples of such new observables in the future.

6.5 Hard thermal loop effective theory

Michael Strickland
In this section we review progress in understanding QCD at
finite temperature and density. Unlike QCD in vacuum new
classes of physical infrared divergences appear which cause
naive perturbation theory to break down. Luckily, at least
at leading order in the coupling constant, it is possible to
identify a class of diagrams that must be resummed in order
to cure these divergences.

6.5.1 The breakdown of naive perturbation theory at finite
temperature

There are two fundamental formalisms for computing the
properties of QCD at high temperature: (1) the real-time for-
malism and (2) the imaginary-time formalism [2090–2092].
The former is necessary when considering systems that are
out of equilibrium, while the second is more convenient
for computing bulk thermodynamic quantities. Here we will
focus on the imaginary-time formalism and progress that has
been made in understanding how to reorganize the perturba-
tive expansion of finite temperature QCD in order to deal with

infrared singularities which emerge in this case using self-
consistent inclusion of Debye screening and Landau damp-
ing. This is accomplished through an all-orders resummation
of a class of diagrams referred to as the hard-thermal-loop
(HTL) diagrams. For an introduction to the real-time formal-
ism and applications to real-world calculations we refer the
reader to Sect. 6.6 and Ref. [2091].

In thermal and chemical equilibrium with temperature
T and quark chemical potentials μi with πT � μi , one
finds that the naive loop expansion of physical quantities is
ill-defined and diverges beyond a given loop order, which
depends on the quantity under consideration. In the calcula-
tion of QCD thermodynamics, this stems from uncanceled
infrared (IR) divergences that enter the expansion of the par-
tition function at three-loop order. These IR divergences are
due to long-distance interactions mediated by static gluon
fields and result in contributions that are non-analytic in
αs = g2/4π , e.g., α

3/2
s and log(αs), unlike vacuum per-

turbation expansions which involve only powers of αs .
A simple way to understand at which perturbative orders

terms non-analytic in αs appear is to start from the con-
tribution of non-interacting static gluons to a given quan-
tity. For the pressure of a gas of gluons one has Pgluons ∼∫
d3 p p nB(Ep), where nB denotes a Bose–Einstein distri-

bution function and Ep is the energy of the in-medium glu-
ons. The contributions from the momentum scales πT , gT
and g2T can be expressed as

P p∼πT
gluons ∼ T 4nB(πT ) ∼ T 4 +O(g2), (6.112)

P p∼gT
gluons ∼ (gT )4nB(gT ) ∼ g3T 4 +O(g4), (6.113)

P p∼g2T
gluons ∼ (g2T )4nB(g

2T ) ∼ g6T 4, (6.114)

where we have using the fact that nB(E) ∼ T/E if E � T .
This fact is of fundamental importance since it implies that
when the energy/momentum are soft, corresponding to elec-
trostatic contributions, psoft ∼ gT , one receives an enhance-
ment of 1/g compared to contributions from hard momenta,
phard ∼ T , due to the bosonic nature of the gluon. For ultra-
soft (magnetostatic) momenta, pultrasoft ∼ g2T , the contri-
butions are enhanced by 1/g2 compared to the naive pertur-
bative order. As the Eqs. (6.112)–(6.114) demonstrate, it is
possible to generate contributions of the order g3 ∼ α

3/2
s

from soft momenta and, in the case of the pressure, although
perturbatively enhanced, ultrasoft momenta only start to play
a role at order g6 ∼ α3

s .
Note that the expansion parameters in Eqs. (6.112)–

(6.114) are of order g2nB(πT ) ∼ g2, g2nB(gT ) ∼ g, and
g2nB(g2T ) ∼ 1, implying in particular that the contribu-
tion of magnetostatic gluons to the pressure is fundamentally
non-perturbative in nature at O(α3

s ), which for the pressure
corresponds to four-loop order. This complete breakdown of
the loop expansion at the ultrasoft scale is called the Linde
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problem [2093,2094]. The specific order at which the expan-
sion breaks down depends on the quantity under considera-
tion and is not universal. For example, in Ref. [2095], the
authors demonstrated that a certain second-order transport
coefficient,λ1, receives a leading-order contribution from the
ultrasoft scale. We also note that, in the case of theO(α3

s ) con-
tribution to the pressure it is possible to isolate the purely non-
perturbative contribution and compute this numerically using
a three-dimensional lattice calculation [2096]. Paradoxically,
the difficult part then becomes computing the perturbative
contributions at this order [2097]. Beyond four-loop order,
all contributions are once again perturbatively computable.

As a result of the infrared enhancement of electrostatic
contributions it was shown that a class of diagrams called
hard-thermal-loop (HTL) graphs which have soft external
and hard internal momenta need to be resummed to all orders
in the strong coupling coupling [2098–2100]. In the high
temperature limit, there exist several schemes for carrying
out such resummations, see e.g. [2101–2119]. Here we will
briefly review the method of dimensionally reduced effective
theories (EFTs), which take advantage of the scale hierar-
chies and the manifestly gauge-invariant hard thermal loop
perturbation theory (HTLpt) resummation. This makes use
of the HTL effective action to reorganize the perturbative
expansion of finite temperature and density QCD [2120].

6.5.2 Dimensional reduction and QCD EFT

The method of dimensional reduction is based on the fact
that, at weak-coupling, there is a hierarchy of scales between
the three energy scales (hard, soft, and ultrasoft or, equiva-
lently, hard, electric, and magnetic) which contribute to bulk
thermodynamic observables. Specifically, if g � 1, one has

mmagnetic ∼ g2T � melectric ∼ gT � mhard ∼ πT .

(6.115)

Above we have denoted the magnetostatic and electrostatic
screening scales by mmagnetic and melectric, respectively, and
the hard or thermal one, corresponding to the lowest non-zero
Matsubara frequency, by mhard. To leading order, the electro-
static screening mass can be computed from the IR limit of
the A0 one-loop self energy, however, the magnetic screening
mass cannot be computed perturbatively [2104,2105]. In the
high temperature limit with πT � μi ,mi ,ΛQCD, the above
three scales are the only ones appearing and the two non-
trivial scalesmmagnetic andmelectric are connected to the static
sector corresponding to the zero Matsubara mode (n = 0).
As a result, in the effective field theory language it is natural
to integrate out the hard scale, yielding a three-dimensional
effective field theory which is valid for long-distance static
field modes. Another way to see this is recognize that, in
four-dimensional Euclidean space, a system in thermal equi-

librium has its time direction compactified to a circle of radius
1/T [2090]. In the high-temperature limit, the Euclidean time
direction has zero extent and the parent field theory becomes
effectively three dimensional. Since fermionic modes have
odd Matsubara frequencies, they become super massive and
decouple from the theory in this limit, as do all non-zero
gluonic Matsubara modes.

The construction of dimensionally reduced effective theo-
ries for high-temperature field theory began with the work of
Ginsparg [2121] and was quickly followed by Appelquist and
Pisarski [2122]. In the mid-1990s, Kajantie et al. were the
first to apply this formalism to the study of the electroweak
phase transition [2123]. Around the same time Braaten and
Nieto demonstrated how to apply these ideas to thermal QCD
[2104,2105]. Recently, these methods have been extended to
the computation of the thermodynamics ofN = 4 supersym-
metric Yang–Mills theory to order λ2, where λ = g2Nc is
the t‘Hooft coupling [2124].

In the EFT technique, the Lagrangian densities of the
three- and four-dimensional theories can be obtained by writ-
ing down the most general local Lagrangians respecting all
necessary symmetries. One then orders all operators in terms
of their dimensionality and truncates the Lagrangians at the
desired order. For electrostatic QCD (EQCD), this procedure
results in [2104,2105]

LE = 1

2
TrF2

i j + Tr[Di ,A0]2 + m2
ETrA2

0

+λ
(1)
E (TrA2

0)
2 + λ

(2)
E TrA4

0

+iλ(3)
E TrA3

0 + · · · , (6.116)

where the adjoint fields Ai ≡ AA
i T

A, A0 ≡ AA
0 T

A are three
dimensional, F A

i j = ∂i AA
j − ∂ j AA

i + gE f ABC AB
i AC

j , Fi j ≡
F A
i j T

A, and Di = ∂i − igEAi . Integrating out the temporal
gauge field, one can obtain the magnetostatic effective theory
(MQCD) withLM = 1

2 TrF2
i j+· · · and F A

i j = ∂i AA
j −∂ j AA

i +
gM f ABC AB

i AC
j [2104,2105].

At leading order in g, the degrees of freedom in the above
effective theories are the n = 0 Matsubara modes of the
four-dimensional Ai and A0 fields. The former transforms
as a three-dimensional adjoint gauge field and the latter as a
scalar in the adjoint representation of SU(Nc). By computing
the contributions from the hard scale in the four-dimensional
theory (non-resummed), the massless two-loop self-energy
in the four-dimensional theory, and the massive three-loop
vacuum graphs and matching the two theories, one obtains
the following result for the QCD free energy throughO(α

5/2
s )

FQCD

Fideal
= 1− 15

4

αs

π
+ 30

(αs

π

)3/2
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Fig. 143 Naive weak-coupling expansion of the scaled QCD pressure
for N f = 3. Shaded bands show the result of varying the renormaliza-
tion scale Λ by a factor of 2 around the central renormalization scale
Λ = 2πT

+135

2

(

log
αs

π
− 11

36
log

Λ

2πT
+ 3.51

)(αs

π

)2

+495

2

(

log
Λ

2πT
− 3.23

)(αs

π

)5/2 + O(α3
s logαs),

(6.117)

where Fideal = −(8π2/45)T 4 is the free energy of an ideal
gas of massless gluons and αs = αs(Λ) is the running cou-
pling constant in the MS scheme. Note, importantly, the
appearance of non-analytic terms in αs . Logarithms of αs
appear as ratios of the electric screening scale over the tem-
perature. In order to avoid notational overlap with the chemi-
cal potential μ, here Λ is used to indicate the renormalization
scale. There is also a residual dependence on the renormal-
ization scale Λ at orders α2

s and α
5/2
s . The result obtained

when this expression is truncated at various orders in the
coupling constant is shown in Fig. 143. As can be seen from
this figure, at phenomenologically relevant temperatures the
resulting weak coupling expansion shows poor convergence
and an increasing sensitivity to the renormalization scale as
the perturbative truncation order is increased. The reason for
this poor convergence is that one is expanding around the
T = 0 QCD vacuum, which does not include the effects of
Debye screening and Landau damping. In order to improve
the convergence of this series, HTLpt was introduced to reor-
ganize the calculation instead around the T →∞ limit. We
will discuss this reorganization in the next subsection.

6.5.3 Hard-thermal loop perturbation theory

Hard-thermal-loop perturbation theory is a reorganization of
perturbative QCD. The HTLpt Lagrangian density is written

as [2114,2115]

L = (LQCD + LHTL)
∣
∣
g→√δg +ΔLHTL, (6.118)

where ΔLHTL collects all necessary renormalization coun-
terterms and δ is a formal expansion parameter, which will
be taken to be unity in the end of the calculation. The HTL
improvement term appearing above is

LHTL = (1− δ)im2
q ψ̄γ μ

〈
yμ
y ·D

〉

ŷ
ψ

−1

2
(1− δ)m2

DTr

[

Fμα

〈
yα yβ

(y ·D)2

〉

ŷ
Fμβ

]

. (6.119)

Above yμ = (1, ŷ) is a light-like four-vector with ŷ being a
three-dimensional unit vector and the angular bracket indi-
cates an average over the direction of ŷ. The parameters
mD and mq can be identified with the gluonic screening
mass and the thermal quark mass. In HTLpt one treats δ

as a formal expansion parameter. By including the HTL
improvement term (6.119) HTLpt shifts the perturbative
expansion from being around an ideal gas of massless par-
ticles to being around a gas of massive quasiparticles. This
shift dramatically improves the convergence of the succes-
sive loop approximations to QCD thermodynamics [2107–
2109,2114–2119].

The HTLpt Lagrangian (6.118) reduces to the QCD
Lagrangian when δ = 1. Physical observables are calculated
in HTLpt by expanding in powers of δ, truncating at some
specified order in δ, and then setting δ = 1. This defines a
reorganization of the perturbative series in which the effects
of m2

D and m2
q terms in (6.119) are included to leading order

but then systematically subtracted out at higher orders in
perturbation theory by the δm2

D and δm2
q terms in (6.119).

To obtain leading order (LO), next-to-leading order (NLO),
and next-to-next-leading order (NNLO) results for the QCD
pressure, one expands to orders δ0, δ1, δ2, respectively. Note,
importantly, that HTLpt is gauge invariant order-by-order in
the δ expansion.

In order to obtain analytically tractable sum-integrals, in
addition to the δ expansion, one must also make a Taylor
expansion in the mass parameters scaled by the tempera-
ture, mD/T and mq/T . The final result obtained at NNLO
is completely analytic, however, it is too lengthy to list here,
instead we refer the reader to the most recent works using
HTLpt, which apply this technique at finite temperature and
quark chemical potentials [2118,2119,2131]. In Fig. 144 we
compare the NNLO EQCD and HTLpt results for the scaled
pressure (negative of the free energy). As can be seen from
this figure, for the central choice of the renormalization scale,
namely Λg = 2πT and Λq = πT , there is excellent agree-
ment between HTLpt and the lattice data. The same is true
to a lesser extent for EQCD. Both, however, have a large
uncertainty related to the variation with respect to the renor-
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Fig. 144 The resummed QCD pressure for μB = 0. We compare
the three-loop EQCD and HTLpt results with lattice data from the
Wuppertal–Budapest (WB) collaboration [2125]

Fig. 145 The second-order light quark (and baryon) number sus-
ceptibilities. Lattice data are from the Wuppertal–Budapest (WB)
[2126,2127] and BNLB collaborations [2128]

malization scale. This sensitivity is particularly large for the
free energy; however other quantities show much less renor-
malization scale dependence. From the NNLO results, one
can obtain predictions for various quark and baryon number
susceptibilities.

In Figs. 145, 146, 147 we present the NNLO resummed
perturbative predictions for the second-order baryon number
susceptibility, the fourth-order baryon number susceptibility,
and the fourth-order light quark susceptibility, respectively.
As these figures demonstrate HTLpt and EQCD to a only
slightly lesser extent, have reasonable agreement with lattice
extractions of these susceptibilities down to temperatures on
the order of T ∼ 250 MeV which is only slightly higher
than the QCD phase transition temperature of Tc ∼ 155
MeV. The lone exception isχ B(u)

2 where EQCD seems to per-

Fig. 146 The 4th baryon number susceptibility. Lattice data sources
are the same as Fig. 145

Fig. 147 The 4th light quark number susceptibility. Lattice data
sources are the same as Fig. 145

form better than HTLpt, although the results are consistent
within the scale uncertainties. Finally, in Figs. 148 and 149
we present results recently presented in Ref. [2131] for the
second- and fourth-order curvatures of the QCD phase tran-
sition line obtained from the analytical NNLO HTLpt result
and the world’s compiled lattice QCD data. We display three
different physical cases which correspond to (1) equal quark
chemical potentials, (2) zero strange quark chemical poten-
tial, and (3) the case 〈S〉 = 0 and Q/B = 0.4, which cor-
responds to the case appropriate to heavy-ion collisions. As
can be seen from these figures, NNLO HTLpt agrees quite
well with the existing lattice data in each case. The horizon-
tal error bars (which are sometimes not even visible) indicate
the renormalization scale dependence of these curvatures.

To close this section, we have demonstrated that although
naive perturbative expansions applied to QCD thermody-
namics fail dramatically, it is possible reorganize the cal-
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Fig. 148 Filled circles are lattice calculations of κ2 [485–487,2129,
2130], from top to bottom, respectively. Red filled circles are results
obtained using the imaginary chemical potential method and blue filled
circles are results obtained using Taylor expansions around μB = 0.
Black open circles are the NNLO HTLpt predictions. The error bars
associated with the HTLpt predictions result from variation of the
assumed renormalization scale

Fig. 149 Filled circles are lattice calculations of κ4 from Refs. [487,
2130], from top to bottom, respectively. The color coding etc. for the
symbols is the same as in Fig. 148

culation of the QCD free energy in such a way as to achieve
improved convergence at phenomenologically relevant tem-
peratures. Interestingly, we find excellent agreement between
the resummed approaches and lattice data down to rather low
temperatures and are even able to predict the curvature of the
QCD phase transition line using perturbation theory.

6.6 EFT methods for nonequilibrium systems

Miguel Escobedo

6.6.1 Introduction

There are many situations in which we are interested in
describing non-equilibrium phenomena that involve the
strong interaction. An example is the study of the medium

Fig. 150 Schwinger–Keldysh contour of the real time formalism

created when colliding heavy ions at ultrarelativistic speeds.
This kind of experiment is nowadays performed at facilities
like the Large Hadron Collider (LHC) in Geneva and the
Relativistic Heavy Ion Collider (RHIC) in Brookhaven. The
motivation is to study a new state of matter that appears at
high temperatures and densities, the Quark Gluon Plasma
(QGP). More details are given in Sect. 4.4. The medium cre-
ated in heavy ion collisions can be regarded as an out-of-
equilibrium system. Soft particles in the medium are able to
approximately thermalize [2132,2133]; however, this ther-
malization is only local. Looking at length and time scales
much larger than the inverse of the temperature the bulk prop-
erties of the medium are well described by relativistic hydro-
dynamics [2134–2136].

One important way to obtain information about the QGP
created in heavy ion collisions is by studying its effects on
hard probes, for example, heavy quarkonium suppression and
jet quenching [1601,2137]. We can regard these particles as
out-of-equilibrium probes interacting with a thermal equilib-
rium environment of soft particles. Precisely because they do
not have time to thermalize inside of the medium, they allow
us to characterize the QGP in a way that would not be possible
otherwise. For example, they are sensitive to transport prop-
erties of the medium such as the heavy quark diffusion coeffi-
cient [2138] and the jet broadening parameter q̂ [2137]. Note
also that the problem of a hard probe interacting with a soft
medium is one in which a hierarchy of well-separated energy
scales appear. This is precisely the situation in which EFTs
are useful. In summary, the study of hard probes in heavy ion
collisions provides a clear motivation to study EFTs far from
equilibrium.

The theoretical description of a QFT out of equilibrium
requires the use of the real-time formalism [2139]. When
dealing with T = 0 scattering process, we are used to assum-
ing that the system is in the ground state both at the remote
past and in the distant future. This is what is done to obtain
the LSZ reduction formula [2140]. The consequence of this
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is that, when computing amplitudes, all field insertions are
chronologically ordered. The situation is completely differ-
ent when the initial state of the system is described by a
given density matrix. In this case, the state of the system
in the distant future is unknown, so we have to average
over all the possible outcomes imposing that the system is
described by the initial density matrix in the remote past.
For this reason, the real-time formalism is sometimes called
an in–in formalism while the formalism leading to the LSZ
reduction formula is called an in–out formalism. As a con-
sequence, the path integral needs to go from the remote past
to the distant future and back again around a path called the
Schwinger–Keldysh contour (see Fig. 150) [2139]. Fields in
the upper (lower) branch of the contour are chronologically
(anti-chronologically) ordered and are customary labelled
fields of type 1 (2).73

The doubling of degrees of freedom discussed in the pre-
vious paragraph can affect the construction and use of an EFT
in two different ways depending on whether or not medium
degrees of freedom are integrated out when going from the
full theory to the EFT. If the matching is not affected by the
medium, then we can apply the real time formalism in exactly
the same way as it is done for a normal QFT. However, if the
matching is affected by the medium, we can not assume that
the EFT does not contain terms mixing the two branches
of the Schwinger–Keldysh contour. Recently, this issue has
been discussed in detail in the context of the construction of
an EFT for hydrodynamics [2141–2144]. However, regard-
ing the study of hard probes, the complications arising from
the doubling of degrees of freedom are substantially dimin-
ished when we take into account that only few of them are
created in each heavy ion collision. We will discuss in detail
how the dilute nature of heavy quarks and high-energy par-
tons simplify their study in the real time formalism.

Lastly, there is another aspect of the application of EFTs
to the study of hard probes out of equilibrium that we would
like to highlight. This is the connection that naturally appears
with the formalism of open quantum systems (OQSs) [2145].
The OQS formalism studies the evolution of quantum sys-
tems interacting with an environment, that at the same time
is also a quantum system. The central object of study is the
reduced density matrix, obtained from the density matrix of
the combination of the system plus the environment after per-
forming a trace over the degrees of freedom of the environ-
ment. The evolution of the reduced density matrix is not nec-
essarily of the quantum Liouville type as there might appear
terms that increase its von Neumann entropy. It happens that,
when studying hard probes interacting with a medium using
EFTs, one typically finds equations that are well known in
the context of OQSs. This is not surprising since when we

73 From a complementary point of view, fields of type 1 (2) act on the
left (right) of the density matrix.

compute how thermal propagators influence the evolution of
a hard probe we are actually making a trace over environment
degrees of freedom.

In summary, in this section we are going to discuss the
application of EFTs to study nonequilibrium phenomena. In
particular, we will focus on interesting problems that appear
in the study of heavy ion collisions in which a large separa-
tion of energy scales appear. First, we will review the open
quantum system formalism. This will allow us to discuss the
Lindblad equation, which will play a key role in the later
discussion. Then, we will discuss the application of EFTs
to the study of quarkonium suppression. More specifically,
we will study the evolution of the reduced density matrix of
heavy quarks using pNRQCD. In another subsection, we will
review the description of jet broadening based on the study
of the reduced density matrix using SCET. Finally, we will
review applications of the EFT to study hydrodynamics and
the interesting structure regarding the doubling of degrees of
freedom that have been discovered in this context.

6.6.2 Open quantum systems

Let us consider a universe formed by a system plus an envi-
ronment. Let us assume that at some initial time the density
matrix of the universe ρU (t0) fulfills

ρU (t0) = ρS(t0)⊗ ρE (t0), (6.120)

where S corresponds to the system and E to the environment.
The motivation for this assumption is twofold. On one hand,
when studying a dilute hard probe interacting with a medium,
it is natural to assume that the medium acts as a thermal
reservoir that is not affected by the probe. On the other hand,
even if the assumption is not true, any density matrix for the
universe can be decomposed as a sum of density matrices that
do fulfil this structure. The reduced density matrix at time t0
is also ρS(t0).

ρS(t0) = TrE (ρU (t0)). (6.121)

Let us now look at what happens at t > t0. If U (t, t0) is the
time evolution operator of the universe, then

ρU (t) = U (t, t0)ρU (t0)U
†(t, t0), (6.122)

and it follows that

ρS(t) = TrE (U (t, t0)ρU (t0)U
†(t, t0)). (6.123)

However, in general it is not true that

ρS(t) �= US(t, t0)ρS(t0)U
†
S (t, t0), (6.124)

so in this sense we can say that the evolution is non-unitary.
The equation that describes the time evolution of ρS is

called a master equation. In general, it is not trivial to deter-
mine the form of this equation. However, an important result
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of the OQS formalism is that the master equation of a Marko-
vian evolution that preserves the fundamental properties of
a density matrix (Hermitian positive-definite operator with
trace equal to 1) takes the form of a GKSL or Lindblad equa-
tion [2146,2147]

dρS
dt

= −i[H, ρS] +
∑

i

(

CiρSC
†
i −

1

2
{C†

i Ci , ρS}
)

,

(6.125)

where Ci are the collapse or Lindblad operators. They are
operators that encode the dissipative part of the Lindblad
equation and will depend on the problem we are studying.
Let us note that it is very computationally expensive to solve
the GKSL equation, as it is generally the case for any master
equation. The reason is that the cost scales with N 2, where N
is the dimension of the Hilbert space. This means that, if we
discretize the QCD system in a lattice, doubling the lattice
size multiplies the numerical cost by four. This problem can
be solved by using techniques called unravelling of the mas-
ter equation. Examples of unravellings used to study quarko-
nium suppression are the Quantum State Diffusion [2148]
and the Quantum Trajectories method [1602,2149–2151].

6.6.3 EFTs for quarkonium suppression

Quarkonium suppression was proposed as a probe of the for-
mation of a QGP in the pioneering work of Matsui and Satz
[2152]. The original proposal was based on the phenomenon
of color screening. Chromoelectric fields are screened at large
distances in the presence of a QGP. This modifies the heavy
quarkonium potential and, if the screening length is smaller
than the size of the bound state, inhibits bound state for-
mation. Later on, it was realized that the potential develops
an imaginary part in the presence of a QGP [2153]. This is
related to the appearance of a thermal induced decay width
which can dissociate quarkonium in many cases more effi-
ciently than screening. However, before asking which phe-
nomenon more substantially modifies the heavy quarkonium
potential, we should understand whether quarkonium’s evo-
lution follows a Schrödinger equation at all in the presence
of a medium and what is the definition of the potential. In
Sect. 6.1, we have seen that similar issues can be addressed
using non-relativistic EFTs such as NRQCD and pNRQCD
at T = 0. Therefore, it is reasonable to expect that the finite
temperature versions of these EFTs will allow us to answer
the previous questions.

In order to construct an EFT, we should first discuss the
energy scales and the symmetries of the problem. In addition
to the hard, soft and ultrasoft scales that already appear when
studying quarkonium at T = 0, we should also consider the
energy scales induced by the presence of the medium. One of
the energy scales that obviously appears is the temperature

itself. However, in a weakly-coupled plasma (g � 1), other
dynamically generated energy scales appear. For example,
the Debye mass (of order gT ) and the non-perturbative mag-
netic mass (of order g2T ). More details about these scales can
be found in Sect. 6.5. Depending on the relation between the
medium induce energy scales and those that already appear at
T = 0, we will find different physical situations. For exam-
ple, if the Debye mass is much larger than the inverse of
the Bohr radius, there would be no bound state formation
due to screening. On the other hand, if the temperature is
smaller than the inverse of the Bohr radius, thermal effects
are a perturbation compared with the binding energy because
the medium sees quarkonium as a small color dipole.

Regarding the symmetries of the problem, we will focus
on the scenario in which quarkonium is co-moving with the
medium. Note, however, that there are EFT studies consid-
ering the finite velocity case [2154,2155]. In the co-moving
case, the medium only breaks Lorentz symmetry. Note that
in T = 0 NRQCD and pNRQCD, Lorentz symmetry is not
explicit. It manifests through relations between the Wilson
coefficients of different operators [1437,1438]. These rela-
tions are broken in the presence of a medium [2156].

Now, let us discuss how the doubling of degrees of free-
dom influences the use of non-relativistic EFTs. First, con-
sider the thermal equilibrium case. Since the mass of the
heavy quark M is much larger than the temperature T , it
follows that the thermal modifications of the heavy quark
propagator in NRQCD or the singlet propagator in pNRQCD
are suppressed by the Boltzmann factor e−M/T . This reflects
the fact that physically heavy particles are dilute in a ther-
mal equilibrium medium that has a temperature much lower
than M . We are interested in the more general case in which
the heavy particles are not in thermal equilibrium. However,
we will still consider that heavy particles are dilute. This
is clearly the case for bottom quarks at LHC since only a
few of them are produced in each heavy ion collision.74 A
direct consequence of the dilute limit is that the 12 prop-
agator of a heavy particle is suppressed. This corresponds
to a propagator involving a field of type 1 (upper branch of
the Schwinger–Keldysh contour) and a field of type 2 (lower
branch). Therefore, if we are interested in Green’s functions
involving only heavy quark fields of type 1, we can ignore
the doubling of degrees of freedom and proceed in the same
way as we would do at T = 0 (the doubling of degrees of
freedom still affects the propagators of light particles). The
reason is that, in any Green’s function in which they appear at
the same time heavy fields of type 1 and 2, there will appear
at least one 12 propagator. In conclusion, if we are interested
in spectroscopy at finite temperature, we can ignore the dou-
bling of degrees of freedom. This is what we will do for the

74 The situation could be different for charm quarks. For pNRQCD
studies of the non-dilute limit for charmonium see [2157,2158].
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moment. Later on, we will discuss the evolution of reduced
density matrix of quarkonium that involves discussing the 12
propagator.

The first applications of NRQCD and pNRQCD at finite
temperature can be found in Refs. [1592,1593]. Refer-
ence [1592] considers the infinite mass limit while Ref.
[1593] discusses the Abelian analogue of quarkonium, the
hydrogen atom. In both works the issue of the doubling of
degrees of freedom is discussed in detail. Later on, the results
were generalized to the case of real quarkonium [2159]. Let
us summarize the main results found by studying quarkonium
spectroscopy at finite temperature using EFTs

– The leading thermal effect can only be encoded as a modi-
fication of the potential when the Debye massmD is much
larger than E . In the EFT framework, we only talk about
a potential when we are dealing with an interaction that is
non-local in space but local in time. When the condition
mD � E is not fulfilled, thermal corrections are sensi-
tive to E in a non-polynomial way and this signals that
the interaction is non-local in time. In summary, potential
models are suitable when mD � E .

– We can consider thermal effects a perturbation if 1/r �
T (where r is the radius). In this case, the medium does
not modify the matchings from QCD to NRQCD and
from NRQCD to pNRQCD. The medium sees quarko-
nium as a small color dipole. This manifests in the
pNRQCD Lagrangian in the following way. The coupling
between the singlet fields and the ultrasoft gluons of the
medium is proportional to r. This implies that thermal
effects are always multiplied by a factor of rT .

– In a qualitative way, we can say that quarkonium disso-
ciates at the temperature at which thermal effects are of
the same order of magnitude as the binding energy. The
logic behind this statement is the following. If thermal
effects are smaller than the binding energy, then they are
a perturbation. If thermal effects are much larger than
the binding energy it is impossible for a bound state to
exist. Therefore, the transition between these two regimes
must be found when the thermal effects and E are of the
same size. In the weakly-coupled scenario, the imaginary
part of the potential is larger than the screening correc-
tions to the real part. Therefore, dissociation occurs when
T ∼ Mg4/3. At this temperature, screening is a pertur-
bation as it only becomes important when T ∼ mg. This
is at odds with the original proposal of Matsui and Satz
[2152] in which the mechanism responsible for quarko-
nium suppression was believed to be color screening.

– There are two processes that contribute to the thermal
decay width of quarkonium: gluo-dissociation and inelas-
tic scattering with medium partons. Gluo-dissociation is
the process in which a singlet state absorbs a medium
gluon and becomes an octet state. It was first computed

in Ref. [2160] using the Operator Product Expansions
and the large-Nc limit. Within pNRQCD, this process
was studied in detail in Ref. [1595], where the expres-
sion of Ref. [2160] was generalized to a finite number of
colors. Inelastic scattering with medium partons is a pro-
cess in which a singlet scatters with a medium quark or
gluon through the exchange of an off-shell gluon [1596].
Gluo-dissociation is a leading-order process in the cou-
pling constant expansion but it has a smaller phase space
since the gluon is required to be on-shell. The pNRQCD
power counting correctly predicts that gluo-dissociation
is the dominant process if E � mD . On the contrary, if
mD � E , it is inelastic parton scattering that dominates.

6.6.4 The master equation in pNRQCD

Previously, we have discussed the information that can be
obtained from the time-ordered propagator of quarkonium.
This includes the values of the binding energies and decay
widths. However, since we were using the dilute limit, we did
not obtain any information about how the density of heavy
quarkonium evolves inside of a medium. This is needed in
order to compute the probability that a bound state is detected
in a heavy-ion collision.

The information about the density of heavy quarkonium
is contained in the 12 singlet propagator of pNRQCD. This
is zero at leading order in the dilute limit; therefore, we need
to go to next-to-leading order in this expansion; i.e. we need
to consider all diagrams in which the 12 propagator appears
only once.

Until now, all of the studies concerning the evolution of
the density of heavy quarkonium inside a medium using non-
relativistic EFTs have focused on the 1/r � T regime. In this
case, we can use theT = 0 pNRQCD Lagrangian as a starting
point. It has been demonstrated that computing the evolution
of the 12 singlet and octet propagator gives a system of cou-
pled equations that resembles very closely the master equa-
tions that appear in the OQS framework [1599,1600]. This
is not surprising, because we can regard 〈S1(t, r1)S

†
2(t, r2)〉

as the reduced density matrix of heavy quarks projected into
the sub-space in which there is a singlet state. In general,
the master equation is a complex non-Markovian equation.
However, there are two limits in which simpler Markovian
equations can be obtained. These limits are the ones that have
been studied up to now in phenomenological applications.

In the limit 1/r � T,mD � E , we obtain a Lindblad
equation in which all of the information about the medium is
encoded in two non-perturbative parameters, κ and γ . This
equation has been used to predict the nuclear modification
factor in heavy ion collisions using as additional input the
initial distribution of heavy quarkonium previous to the for-
mation of the QGP and how the temperature evolves with
time. However, early studies were limited due to the high
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computational cost. This problem was solved by the appli-
cation of the Monte Carlo wave function method [2149].
Thanks to this, it was possible to combine the solution of the
master equation with state-of-the-art modelling of the time
evolution of the medium to obtain results compatible with
the observations at LHC [1602,2149].

Another interesting limit is the one in which thermal
effects are much smaller than the binding energy. In this
case, we can use the rotating wave approximation,which
assumes only the diagonal elements of the density matrix
in the basis that diagonalizes the leading order Hamiltonian
need be considered. Using this, the master equation simplifies
into a Boltzmann equation [2157,2158]. Moreover, using the
molecular chaos assumption, it is possible to use the derived
formulas outside of the dilute limit. Thanks to this, the authors
of Refs. [2157,2158] were able to successfully reproduce
experimental data for charmonium suppression at LHC.

The application of pNRQCD to the computation of the
nuclear modification factor has been a very active and suc-
cessful approach in recent years. However, at the moment,
all of the studies have focused on the case 1/r � T for the
reasons discussed in the introduction. This limits the appli-
cability of the approach to excited states that are expected
to be of larger size. In Sect. 6.6.6 we are going to discuss
some recent developments that might be used to improve the
situation.

6.6.5 EFT description of jet broadening

A jet is a collimated ensemble of particles with a large
momentum and a small opening angle. They are useful in the
context of QCD because the definition of a jet is constructed
in such a way that the sensitivity to non-perturbative low-
energy physics is minimized. More details can be found in
Sects. 6.4 and 11. The interest in jets in heavy-ion collisions
is due to a phenomenon called jet quenching [2137]. Jets lose
energy when traversing a QGP. Therefore, by observing how
opaque the medium is to high-energy particles allows us to
infer some of its properties.

Jets might lose energy due to two different mechanisms:
collisional and radiative energy loss. In the first case, the jet
loses energy because it collides with the particles forming the
medium. In the case of radiative energy loss, the collisions
in the medium provide the high energy parton with addi-
tional transverse momentum and virtuality (a process called
jet broadening). Due to this increase, the high energy par-
ton is more likely to radiate energy outside of the jet cone.
The amount of virtuality that a parton gains while travers-
ing a given length in the medium is controlled by the trans-
port coefficient q̂ . At the moment, it is generally believed
that radiative energy loss is the dominant mechanism at high
momentum while at low momentum both processes have to
be taken into account.

The problem of a high-energy parton traversing a medium
is one in which widely separated energy scales appear. First,
we have the energy Q of the high energy particle. This is the
highest energy scale that appears in the problem. Addition-
ally, we have the transverse momentum of the particle p⊥.
If we use light-cone coordinates, with p± = (p0± p3)/

√
2,

and we choose the 3 direction such that p+ ∼ Q, then an on-
shell particle must have p− ∼ p2⊥/Q � p⊥. On top of this,
we have to consider the energy scales induced by the pres-
ence of the medium, which by construction are always much
smaller than Q. The EFT that is suitable to study this problem
is SCET (see Sect. 6.4). Note that Glauber gluons (those with
momentum p = (p+, p−, p⊥) of order (T, T 2/Q, T )) play
a prominent role in the physics of a jet traversing a medium.
Inclusion of Glauber gluons in the SCET formalism was dis-
cussed in Refs. [1855,2161]. A more recent and extended
discussion can be found in Ref. [1850].

There have been many studies of jet quenching using
SCET [2162] and jet broadening [1854,1857]. In contrast
to the case of quarkonium suppression, at the moment all
applications use SCET as a starting point, without construct-
ing an EFT in which medium degrees of freedom have been
integrated out. This may be due to the fact that there is no
information relevant to jet quenching in the time ordered
propagator of a high energy particle. Instead, we need to focus
on the distribution of high-energy particles that requires an
approach similar to the study of the 12 propagator of heavy
quarkonium. Some of the results that have been obtained
from the application of SCET to the study of jet quenching
are the following:

– The non-perturbative expression of q̂ in terms of an
expectation value of gauge fields was re-obtained in Ref.
[1854] for the case of a Feynman or Coulomb gauge and
generalized to a gauge invariant expectation value in Ref.
[1857]. This result is important because it allows one to
compute q̂ using non-perturbative approaches such as
lattice QCD.

– The use of SCET including Glauber gluons made it pos-
sible to derive a medium-modified parton shower in a
model in which the medium is approximated as an ensem-
ble of static scattering centers [1855,2161].

In recent years, SCET has been combined with the OQS
approach to study jet quenching [1858,2163] similarly to
how pNRQCD was combined with OQS to study quarko-
nium suppression. In this case, one considers a high-energy
particle (system) that is interacting with the soft particles
that comprise the medium (environment). The interaction
between the two is mediated by the Glauber part of the SCET
Hamiltonian [1850]. The evolution of the reduced density
matrix of the system (high-energy particle) has been studied
first ignoring all radiation (only considering jet broadening)
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[1858] and, later on, incorporating the leading-order radiative
corrections [2163]. In both cases, a master equation of the
Lindblad type is found. The advantages of proceeding in this
way is that the information about the medium is encoded in
expectation values of gauge invariant operators of soft fields.
This allows separating the physics of jet-medium interaction
from the way in which the medium is modeled. In addition,
it opens the way for future determinations of the influence of
the medium using lattice QCD.

6.6.6 EFTs for hydrodynamics

We have previously discussed the difficulties encountered
when constructing an EFT in which medium degrees of free-
dom are integrated out. In a few words, terms that mix the
two branches of the Schwinger–Keldysh contour appear and
this changes the properties of the EFT in a profound way in
comparison with the EFT at T = 0. Let us summarize how
this challenge has been avoided until now in the study of hard
probes of the QGP:

– In the case of quarkonium we could use the dilute limit
and focus on the time-ordered propagator. In this case,
we know that the terms that mix the two branches of the
SK contour give a small contribution and proceed as it
is done at T = 0. The problem with this is that there
is valuable information that can not be obtained from
the time-ordered propagator in the dilute limit, as for
example, the nuclear modification factor.

– We can choose to integrate out only the energy scales
higher than the temperature. This is what has been done
to study quarkonium suppression in the limit 1/r � T
and jet quenching using SCET. However, this limits the
applicability of the approach. Moreover, many of the sim-
plifications introduced by the EFT framework come from
being able to threat each energy scale separately from the
others. This can not always be done if we are unable to
integrate out medium-induced energy scales.

Recently, this issue has been addressed in the context of
the construction of an EFT for hydrodynamics [2141–2144].
Going from a T = 0 EFT to an EFT living in the SK contour
implies a doubling of degrees of freedom, but this is compen-
sated by the fact that additional symmetries must be fulfilled.
There are two symmetries that have been largely discussed:

– The SK symmetry. This symmetry must be fulfilled by
any system, in or far from thermal equilibrium. It implies
that the largest time equation [2164] must be fulfilled.
This means that the difference of two Green’s functions
that only differ in the SK sub-index of the field evaluated
at the latest time must be zero. It is obvious that this must
be the case because the trace of a commutator is zero. For

example, in the case of a two-point Green’s function

〈φ1(t)φ1(0)〉 − 〈φ2(t)φ1(0)〉 = Tr([φ(t), φ(0)ρ]) = 0.

(6.126)

One consequence of this symmetry is that in the limit of
exactly classical fields (φ1 = φ2) the action of the EFT
must be zero [2141].

– The KMS symmetry. This is a symmetry that must
be fulfilled by system in thermal equilibrium. A well-
known consequence of this symmetry is the fluctuation-
dissipation theorem. It is akin to an earliest time equation
in which, if t is the earliest time, a Green’s function in
which the operator that appears just at the right of the den-
sity matrix is evaluated at time t−i/T is equal to another
Green’s function that is equal except that the operator
appears now just at the right of the density matrix and
evaluated at time t . For the case of a two-point Green’s
function

〈φ1(t2)φ1(t)〉 − 〈φ1(t2)φ2 (t − i/T )〉
= Tr (φ(t2) (φ(t)ρ − ρφ (t − i/T ))) = 0.

(6.127)

Note that the previous equation is only valid if ρ =
e−H/T .

At tree level it is relatively easy to write an EFT that fulfills
these conditions. However, it is more difficult to ensure them
when higher-order quantum loops are involved. A solution
to this is to expand the theory by introducing ghost fields and
using the BRST formalism.

We note that, apart from the theoretical importance as an
example of an EFT in which medium degrees of freedom are
integrated out, hydrodynamics is also very important in the
field of heavy ion collisions. Among other important predic-
tions, it describes the evolution of the soft medium in which
the hard probes discussed in this subsection evolve [2134–
2136].

7 QCD under extreme conditions

Conveners:
Johanna Stachel and Eberhard Klempt
In nucleus–nucleus collisions at ultra-relativistic energies a
new kind of matter is created, the Quark–Gluon Plasma. Peter
Braun-Munzinger, Anar Rustamov and Johanna Stachel
report on the phase diagram of hadronic matter at high tem-
perature and low net baryon density. A connection is made
between the experimentally determined chemical freeze-out
points and the pseudo-critical temperature for the chiral cross
over transition computed in lattice QCD. The role of fluctu-

123



 1125 Page 232 of 636 Eur. Phys. J. C          (2023) 83:1125 

ations giving experimental access to the nature of the chiral
phase transition will be summarized. Azimuthal anisotropies
of hadron distributions show that the Quark–Gluon Plasma
formed in high energy collisions is strongly coupled, allow-
ing to deduce bulk and shear viscosities. In the hot and dense
plasma partons lose a large fraction of their energy and this
observation leads to the determination of another medium
parameter, a jet transport coefficient. Quarkonia and their
role as a probe of deconfinement form the final topic of their
contribution.

The phase structure of strongly interacting matter a
low temperature and high density is discussed by Kenji
Fukushima. In this region of the phase diagram that is probed
e.g. in neutron stars, different phases and phase transitions
are expected on theoretical grounds. Astrophysical obser-
vations and the observation of gravitational waves lead to
important constraints for calculations modeling the transi-
tions into a quarkyonic regime, into quark matter or color-
superconducting states. The theoretical challenges to locate
a conjectured critical end point in the QCD phase diagram
are discussed.

7.1 QGP

Peter Braun-Munzinger, Anar Rustamov and Johanna
Stachel

7.1.1 Introduction

The infrared slavery and asymptotic freedom properties of
QCD, discussed in previous sections, form the theoretical
basis that strongly interacting matter at finite temperature
and/or density exists in different thermodynamic phases. This
was realized [463,464] already shortly after these proper-
ties of QCD were introduced. The term quark–gluon plasma
(QGP) was coined soon after by Shuryak [1392] for the high
temperature/density phase where confinement is lifted and a
global symmetry of QCD, the chiral symmetry, is restored.
The first lattice QCD (lQCD) calculations of the equation of
state were performed soon thereafter [470]. Already in early
lQCD calculations a close link between deconfinement and
restoration of chiral symmetry was found [462].

7.1.2 Lattice QCD

For deconfinement there is an order parameter for the phase
transition, the so-called Polyakov loop, in the limit without
dynamical quarks. For chiral symmetry restoration the chiral
condensate 〈ψ̄ψ〉 forms an order parameter for vanishing but
also for finite quark masses. Indeed, recent numerical lQCD
calculations [478] provide, in the limit of massless u and d
quarks, strong indications for a genuine second-order chi-
ral transition between a hadron gas and a QGP at a critical

Fig. 151 Susceptibility of the chiral u, d- and s-quark condensate as a
function of temperature computed in 2+1 flavor lQCD (Fig. from [484])

Fig. 152 The interaction measure or trace anomaly normalized to the
fourth power of the temperature as a function of temperature, computed
in 2+1 flavor lQCD (Fig. from [502])

temperature of Tc ≈ 132+3
−6 MeV. For realistic u,d,s-quark

masses, chiral symmetry is restored in a crossover transition
at vanishing net-baryon density and a precisely determined
pseudo-critical temperature of Tpc = 156.5±1.5 MeV [484].
Consistent with this result, a transition temperature of 158.0
± 0.6 MeV was recently reported in [487]. This pseudo-
critical temperature is found as a maximum in the suscep-
tibility (derivative with respect to mass) of the chiral con-
densate as displayed in Fig 151. Contrary to early ideas, the
system remains strongly coupled over a rather large tempera-
ture range above Tpc. This is reflected in the interaction mea-
sure computed in lQCD as the difference between the energy
density and three times the pressure, I = ε − 3P , which
by definition vanishes for an ideal gas of massless quarks
and gluons. Figure 152 shows that this interaction measure,
normalized to the fourth power of the temperature, peaks at
about 20% above Tpc and falls off only slowly towards higher
temperature values.

The lQCD calculations have been extended into the region
of finite net baryon density quantified by a baryon chemical
potential μB [484,487]. Current lQCD expansion techniques
are valid in the regime of μB/T ≤ 3. The so obtained line of
pseudo-critical temperatures is shown in the QCD phase dia-
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gram displayed in Fig. 159 below. Because of the sign prob-
lem, the lQCD technique cannot be applied for still larger
values of μB , see e.g. [2165], and one has to resort to mod-
els of QCD for theoretical guidance in the high net baryon
density region.

7.1.3 Hadron production, nuclear stopping and global
observables

Experimentally, this regime of the QCD phase transitions
is accessible by investigating collisions of heavy nuclei at
high energy. It was conjectured already in [467] that, in such
hadronic collisions, after some time local thermal equilib-
rium is established and all properties of the system (fireball)
are determined by a single parameter, the temperature T ,
depending on time and spatial coordinates. This is exactly
the regime probed by collisions of nuclei at the Large Hadron
Collider (LHC), as will be outlined in the following. The
region of finite to large μB is accessed by nuclear collisions
at lower energies.

In the following, we describe the experimental efforts,
principally at the LHC and at RHIC (Relativistic Heavy Ion
Collider), to provide from analysis of relativistic nuclear col-
lision data quantitative information on the QCD phase dia-
gram by studying hadron production as a function of the
nucleon–nucleon center of mass energy

√
sNN. We can only

touch a small fraction of the physics of the quark–gluon
plasma (QGP) in this brief review. Excellent summaries of the
many other interesting topics can be found in recent review
articles [2166–2169].

In the early phase of the collision, the incoming nuclei
lose a large fraction of their energy leading to the creation
of a hot fireball characterized by an energy density ε and a
temperature T . This stopping is characterized by the average
rapidity shift of the incident nucleons, withΔy =− ln(E/E0).
Quantitative information is contained in the experimentally
measured net-proton rapidity distributions (i.e. the difference
between proton and anti-proton rapidity distributions). These
distributions are presented for different collision energies
from the SPS to RHIC energy range in [2170]. There it can
be seen that the rapidity shift saturates at approximately two
units from

√
sNN ≈ 17.3 GeV upwards, implying a frac-

tional energy loss of 1 − exp(−Δy) ≈ 86%. In fact, the
same rapidity shift was already determined for p-nucleus col-
lisions at Fermilab for 200 GeV/c proton momentum [2171].
With increasing collision energy, the target and projectile
rapidity ranges are well separated, leaving at central rapid-
ity a net-baryon depleted or even free high energy density
region. Figure 153 shows the distribution of slowed down
beam nucleons, after subtracting the tail of the target distri-
bution and plotted against rapidity minus beam rapidity. It is
apparent that up to

√
sNN = 62.4 GeV the concept of limit-

ing fragmentation [2172] is well realized. At higher energies,

Fig. 153 Normalized net-baryon rapidity densities for
√
sNN = 17.3

GeV [2173] and 62.4 GeV [2174] after subtracting the correspond-
ing target contributions using the limiting fragmentation concept. Here
ysh = y − yb with yb the beam rapidity

this rapidity region is very hard to reach experimentally for
identified particles.

The rapidity shift of the incident nucleons leads to high
energy densities at central rapidity, i.e., in the center of
the fireball. These initial energy densities can be estimated,
after fixing the kinetic equilibration time scale τ0, using the
Bjorken model [2175]:

εBJ = 1

Aτ0

dη

dy

dET

dη
, (7.1)

where A = πr2 is the overlap area of two nuclei. Eq. (7.1) is
evaluated at a time τ0 = 1 fm and the resulting energy densities
are displayed in Table 8 for central Au–Au and Pb–Pb colli-
sions. For central Pb–Pb collisions (A = 150 fm2) at

√
sNN =

2.76 TeV this yields an energy density of about 14 GeV/fm3

[2176], more than a factor of 30 above the critical energy
density for the chiral phase transition as determined in lQCD
calculations. In fact, for all collision energies shown the ini-
tial energy density significally exceeds the energy density
computed in lQCD at the pseudo-critical temperature, indi-
cating that the matter in the fireball is to be described with
quark and gluon degrees of freedom rather than as hadronic
matter. The corresponding initial temperatures can be com-
puted using the energy density of a gas of quarks and gluons
with two quark flavors, ε = 37π2

30 T
4, yielding T ≈ 307

MeV. Temperature values for lower collision energies are
also quoted in the Table.75 It can be seen that already at AGS

75 The values reported in the table are all for vanishing chemical poten-
tials. We have evaluated the differences if one assumes values for chem-
ical potentials as determined at chemical freeze-out, see below. The
resulting temperature values differ by less than 5% from those reported
in Table 8. Owing to the proportionality of energy density to the fourth
power of temperature, inclusion of a bag pressure only mildly changes
the calculated temperature values.
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Table 8 Collision energy, measured transverse energy pseudo-rapidity
density at mid-rapidity [2176–2179], energy density, and initial temper-
ature estimated as described in the text for central Pb–Pb and Au–Au
collisions at different accelerators

√
sNN [GeV] dEt/dη [GeV] εBJ [GeV/ f m3] T [GeV]

AGS 4.8 200 1.9 0.180

SPS 17.2 400 3.5 0.212

RHIC 200 600 5.5 0.239

LHC 2760 2000 14.5 0.307

energies the estimated values of ε and T are significantly
above the values for the chiral cross over transition.

7.1.4 Hydrodynamic flow and QGP transport parameters

Depending on energy, collisions of heavy ions populate dif-
ferent regimes falling into two categories: (i) the stopping or
high baryon density region reached at

√
sNN ≈ 3–20 GeV

and (ii) the transparency or baryon-free region reached at√
sNN > 100 GeV. The net-baryon-free QGP presumably

existed in the early Universe after the electro-weak phase
transition and up to a few microseconds after the Big Bang.76

On the other hand, a baryon-rich QGP could be populated in
neutron star mergers or could exist, at very low temperatures,
in the center of neutron stars[2180,2181].

For the system considered to come into local thermal equi-
librium and, more importantly, for the development of a phase
transition, the presence of interactions is necessary. In fact,
close to the phase transition, the system has to be strongly
coupled. As mentioned above, quarks and gluons under the
extreme conditions reached in nuclear collisions are indeed
strongly coupled. The large values of the interaction measure
from lQCD calculations (ε − 3P)/T 4, introduced above in
Fig. 152, lend support to the strong coupling scenario. Fur-
ther, the energy and entropy densities ε/T 4 and s/T 3, as
calculated in lQCD, fall significantly short (by about 20 %)
of the Stefan-Boltzmann limit for an ideal gas of quarks and
gluons up to a few times the pseudo-critical temperature. The
conclusion about a strongly coupled QGP close to Tpc also
follows from experimental results at the colliders, and even
at the SPS, on the coefficients of azimuthal anisotropies of
hadron distributions in combination with a viscous hydrody-
namic description.

For non-central nuclear collisions the distributions in
transverse momentum pT of hadrons exhibit modulations
with respect to the azimuthal angle φ in the reaction plane.
These anisotropies can be characterized by pT dependent
Fourier coefficients. The dominant term is the 2nd order

76 In the QGP of the early universe, particles interacting via the strong
and electro-weak force are part of the system, while an accelerator-made
QGP only contains strongly interacting particles.

Fourier coefficient v2, also called the elliptic flow coeffi-
cient. This modulation has been predicted to arise from the
anisotropy of the gradient of the pressure P in the early phase
of the collision due to the geometry of the nuclear overlap
region, leading to correspondingly larger expansion veloci-
ties in the reaction plane and hence large v2 coefficients.

The strength of the coupling can be quantified by intro-
ducing transport parameters for the QGP such as the shear
viscosity η, which is related to the mean free path of quarks
and gluons inside the QGP, and the bulk viscosity ζ , with its
connection to QGP expansion dynamics and speed of sound.
The smaller the transport coefficients the stronger the cou-
pling. Larger values of the shear viscosity, e.g., suppress the
magnitude of the elliptic flow.

For a strongly coupled system with small enough values
of mean free path (comparable to or lower than the corre-
sponding de Broglie wavelength of particles), treatment as
a fluid is more appropriate. One then describes its proper-
ties by solving hydrodynamic equations. The shear viscosity
enters the hydrodynamic equations as η/(ε + P) = η/(T s),
hence the quantity characterizing the medium isη/s. By com-
paring flow observables measured in experiments at RHIC
[2184,2185] and LHC [2186] to the corresponding calcu-
lations in viscous hydrodynamics, accompanied with con-
verting the fluid into thermal distributions of hadrons at the
freeze-out hyper-surface, remarkably low values for η/s are
obtained. Figure 154 shows as an example the elliptic flow
coefficients v2 for different identified hadrons at the LHC. A
mass ordering characteristic for a hydrodynamically expand-
ing medium is observed very clearly. And indeed, the mass
ordering and its pT dependence are described quantitatively
by a relativistic viscous hydrodynamic calculation [2182] as
indicated by the lines in Fig. 154 employing a small ratio of
η/s.

In fact, a lower bound of η/s = 1/(4π) (in units of
h̄ = kB = 1) can be obtained for a large class of strongly cou-
pled field theories from the quantum mechanical uncertainty
principle [2187] and using the AdS/CFT correspondence
[2095,2188,2189]. Recently, the values and the temperature
dependence of the shear and bulk viscosities employed in
hydrodynamic codes were extracted by fitting spectra and
azimuthal anisotropies of hadrons measured at the LHC and
RHIC using Bayesian estimation methods [2183,2190]. An
example is shown in Fig. 155. Inspection of this figure indi-
cates that, at Tpc, the estimated value of η/s is close to the
lower bound of 1/(4π ) , indicating that the observed matter
is a nearly perfect fluid. Above the transition temperature,
the extracted band for η/s is rising, reflecting a weakening
of the coupling, although even at twice Tpc the medium is
still strongly coupled. On the other hand, as presented in
Fig. 152, near the phase transition the lQCD results exhibit a
maximum in the interaction measure, which is an indication
for interactions in the system. In the hydrodynamic calcu-
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lations the breaking of scale invariance is accounted for by
introducing a bulk viscosity ζ along with the shear viscos-
ity. While increasing sheer viscosity reduces the momentum
anisotropy, hence lowering the elliptic flow coefficients, the
bulk viscosity reduces the overall rate of the radial expansion.
The right panel of Fig. 155 shows the temperature depen-
dence of ζ/s, which exhibits a peak just above the transition
temperature [2183]. This location of the maximum is con-
sistent with the temperature dependence of the interaction
measure from lQCD.

We also note here that signatures for collective behavior
such as anisotropic azimuthal distributions have rather sur-
prisingly also been found in small collision systems such
as pp or pPb [2191,2192]. A detailed understanding of this
rather unexpected result is currently debated in the literature,
in particular since another signature of a dense, strongly cou-
pled and colored medium, significant parton energy loss, is
not observed for such small systems, see, e.g., [2193].

7.1.5 Jet quenching and parton energy loss

Important information on the structure of the QGP is also
obtained by studying the interaction of high-momentum par-
tons with the thermalized quarks and gluons in the QGP.
A strongly coupled QGP is opaque to high momentum par-
tons, leading to the phenomenon of ‘jet quenching’ [2169].
In fact, the theoretical foundation for strong jet quenching
by QCD bremsstrahlung was laid by [2194]. There it was
shown that, for sufficiently energetic quarks and gluons, such
that the radiation does not decohere, the radiative energy loss
scales quadratically with the length traversed, leading to very
large values. An important experimental observable linked to
jet quenching is the observed suppression (’quenching’) of
high-momentum hadrons in central nuclear collisions at high
collision energy. This suppression is quantified by the pT
dependence of the ratio RAA of inclusive hadron production
in collisions of nuclei with mass number A to that in proton–
proton collisions, taking into account the collision geometry
by scaling to the number of binary collisions [2169].

In Fig. 156 we present the evolution with cm energy of the
transverse momentum dependence of RAA for leading parti-
cles as obtained from measurements at the SPS, RHIC, and
LHC accelerators. Note that, by construction, RAA = 1 for
hard binary collisions in the absence of nuclear effect such as
jet quenching. At very low pT one observes RAA values less
than unity and increasing with pT since soft particle produc-
tion scales with the number of participating nucleons and not
the number of binary collisions. For RHIC and LHC energies
the jet quenching is born out by a decreasing trend observed
for pT > 2.5 GeV/c reaching a broad minimum near pT = 7
GeV/c of RAA = 0.1−0.2: high momentum hadrons are
quenched by about a factor of 5 or more. At LHC energies
RAA increases again for higher pT values until a plateau is

Fig. 154 Elliptic flow coefficient v2 for identified hadrons as a function
of transverse momentum measured by ALICE and compared to results
from viscous hydrodynamics calculations [2182]

Fig. 155 Temperature dependence of the shear (left panel) and bulk
(right panel) viscosity to entropy density ratios. Figure taken from
[2183]

reached above pT ≈ 100 GeV/c. Measurements for fully
reconstructed jets have been performed by the ATLAS col-
laboration. The results demonstrate [2196] that the quench-
ing by about a factor of 2 persists to the highest available jet
pT values of 1 TeV/c. Recently, also detailed measurements
became available from measurements of heavy flavor jets,
where for the first time in-medium transport coefficients for
charm quarks were determined [2197].

The data on jet quenching have been modeled in terms of
elastic and inelastic collisions of partons in the dense QGP,
taking into account important coherence effects [2198,2199].
For a recent summary see [2200] and Ref. cited there.

To model experimental data with QCD-based jet quench-
ing calculations one has to take into account that the jet is
created as a product of an initial hard parton–parton collision
with large momentum transfer Q. That implies that the par-
ton initiating the jet is highly virtual. The magnitude of its
4-momentum Q as reflected in the total jet energy E can be
hundreds of GeV (or even a few TeV at the LHC) while, for
a real parton, Q2 ≈ 0. The highly virtual parton will evolve
into a parton shower which eventually hadronizes to form
a collimated jet of hadrons. During the entire evolution the
highly virtual initial parton and the parton shower compo-
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Fig. 156 Evolution of the transverse momentum dependence of RAA
for leading particles for central nuclear collisions with collision energy
[2195]

Fig. 157 QGP jet transport parameter q̂/T 3 obtained by the
JETSCAPE collaboration [2200]

nents lose energy by interactions with the QGP constituents,
resulting in a medium-modification of the entire parton frag-
mentation pattern, i.e. the jet [2198]. The most modern jet
quenching analyses take into account the different regimes
of parton virtuality as described in [2200]. The calculations
have as leading input parameter a jet transport coefficient q̂
that is determined by the differential mean squared momen-
tum transfer 〈k2

t 〉between jet parton and the QGP constituents
with respect to the length traversed, i.e. q̂ = d〈k2

t 〉/dL .
The recent analysis by the JETSCAPE collaboration

[2200] uses data on inclusive hadron suppression from cen-
tral Au–Au collisions at RHIC and Pb–Pb collisions at LHC,
applying a Bayesian parameter estimation to determine the
temperature dependence of the dimensionless, renormalized
jet transport parameter q̂/T 3. The calculations are based on
two different models for parton energy loss, called MATTER

and LBT, to effectively cover the large range of parton vir-
tualities. A switch-over between the virtuality-ordered split-
ting dominated regime and the time-ordered transport dom-
inated regime happens at low virtualities of Q0 = 2−2.7
GeV. The results are shown in Fig. 157. Note that the plot
is for a parton momentum of 100 GeV/c, but as demon-
strated in [2200] the momentum dependence is rather mild.
To put the results into context, a value of q̂/T 3 = 4 implies
that, at temperature T = 0.4 GeV, q̂ ≈ 1.3 GeV2/fm. This
value should be compared to what was determined for par-
ton energy loss in cold nuclear matter. Analysis of data for
deep inelastic scattering off large nuclei [2201] yielded a
value of q̂ = 0.024 ± 0.008 GeV2/ f m. A global analysis
of the jet transport coefficient for cold nuclear matter was
performed recently in [2202]. These authors obtain values of
q̂ < 0.03 GeV2/ f m over a wide range of (xB,Q2) values
(here, xB is the Bjorken x parameter). We conclude that, for
high energy partons, the stopping power of a QGP formed at
RHIC or LHC energy is increased by more than a factor of
40 compared to that for cold nuclear matter. The dramatic jet
quenching observed experimentally as displayed in Fig. 156
finds its natural explanation in the large values of the trans-
port coefficient q̂ of the QGP.

7.1.6 The statistical hadronization model and the QGP
phase diagram

Direct experimental access to the QCD phase diagram is
obtained from the measurement of the yields of hadrons pro-
duced in (central) high energy nuclear collisions. Analysis
of these data in terms of the Statistical Hadronization Model
(SHM), see [2203] and Refs. given there, established that,
at hadronization, the fireball formed in the collision is very
close to a state in full (hadro-)chemical equilibrium.

The essential idea in the SHM is to approximate the parti-
tion function of the system by that of an ideal gas composed
of all stable hadrons and resonances, hence also referred to as
the Hadron Resonance Gas (HRG) model, see [2203]. From
this partition function one can calculate the first moments
(mean values) of densities of hadrons as a function of a
pair of thermodynamic parameters, the temperature Tchem
and the baryon chemical potential μB at chemical freeze-
out. To go beyond the ideal gas approximation, attractive
and repulsive interactions between hadrons can be taken into
account in the S-matrix formulation of statistical mechan-
ics [2204] by including the first term in the virial expansion.
Ideally, the relevant coefficients are obtained from measured
phase shifts. For the pion–nucleon interaction this was imple-
mented in [2205] and the proton yield for LHC energy was
corrected accordingly [2206]. The predictions of the SHM
for hadron yields are compared to experimental data at LHC
energy for Tchem = 156.5 MeV in Fig. 158. The agreement
is excellent for the yields of all measured hadrons, nuclei
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Fig. 158 Primordial and total (anti-)particle yields, normalized to the
spin degeneracy, as calculated within the SHMc [2203]

and hyper-nuclei and their anti-particles, with yields vary-
ing over 9 orders of magnitude. Remarkably, the description
works equally well for loosely bound states. This has led
to the conjecture of hadronization into compact multi-quark
bags with the right quantum numbers evolving into the final
nuclear wave functions in accordance with quantum mechan-
ics [2203].

The values of the hadro-chemical freeze-out parameters at
lower collisions energies are similarly obtained by fitting the
SHM results to the measured hadron yields. The extracted
freeze-out parameters Tchem and μB [2203,2207] are pre-
sented as red symbols in the QCD phase diagram shown
in Fig. 159. Also included is a freeze-out point from the
HADES collaboration in Au–Au collisions at

√
sNN ≈ 2.4

GeV [2208]. They can be compared to the crossover chiral
phase transition line as computed in lQCD (blue band). From
LHC energies down to about

√
sNN = 12 GeV, i.e., over the

entire range covered by lQCD, there is a remarkable agree-
ment between Tchem and the pseudo-critical temperature for
the chiral cross over transition Tpc. We note that, along this
phase boundary, the energy density computed (for 2 quark
flavors) from the values of Tchem and μB exhibits a nearly
constant value of εcri t ≈ 0.46 GeV/fm3.

The finding that the hadro-chemical freeze-out temper-
ature is very close to Tpc has a fundamental consequence:
because of the very rapid temperature and density change
across the phase transition and the resulting low hadron den-
sities in the fireball combined with its size, the produced
hadrons cease to interact inelastically within a narrow tem-
perature interval [2209] after hadron formation.

This is very different from particle freeze-out in the early
universe where for temperatures T > 10 MeV even the mean

Fig. 159 Phase diagram of strongly interacting matter. The red sym-
bols correspond to chemical-freezeout parameters, temperature Tchem
and baryon chemical potential μB determined from experimental
hadron yields [2203,2207,2208]. The blue band represents the results
of lQCD computations of the chiral phase boundary [484,487]. Also
shown are a conjectured line of first order phase transition with a criti-
cal end point as well as the nuclear liquid-gas phase boundary

free path for neutrinos is much smaller than its size, see sec-
tion 22.3 of [513].

For large values of baryon chemical potential, experimen-
tal data for hadron-chemical freeze-out exist but the phase
structure of strongly interacting matter remains uncertain;
various model calculations suggest the appearance of a line
of first order phase transition, which in combination with the
crossover transition at smaller values of μB , would imply
the existence of a critical end point (CEP) in the QCD phase
diagram as indicated in Fig. 159. The experimental discovery
of the CEP would mark a major break-through in our under-
standing of the QCD phase structure. The location of the CEP
is most likely in the region μB > 470 MeV, based mostly on
results from lQCD. Searching for the CEP is the subject of a
very active research program, at RHIC and the future FAIR
facility at GSI. The importance of this research is underlined
by the realization that we have currently no experimental evi-
dence for the order of the chiral phase transition at any value
of baryon chemical potential.

7.1.7 Fluctuations and the search for critical behavior

Important further information on the phase structure of QCD
matter is expected by measuring, in addition to the first
moments of hadron production data, also higher moments
as such data can be directly connected to the QCD partition
function via conserved charge number susceptibilities in the
Grand Canonical Ensemble (GCE) [2210,2211]. For a ther-
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mal system of volume V and temperature T the susceptibili-
ties in the GCE are defined as the coefficients in the Maclaurin
series of the reduced pressure P̂ = P(T, V, �μ)/T 4

χ
q
n ≡ ∂n P̂

∂μ̂n
q
= 1

VT 3

∂nlnZ(V, T, �μ)

∂μ̂n
q

= κn(Nq)

VT 3 , (7.2)

where �μ = {μB, μQ, μS} is the chemical potential vec-
tor that is introduced to conserve, on average, baryon num-
ber, electric charge and strangeness. Here, μ̂q = μq/T is
the reduced chemical potential for the conserved charges
q ∈ {B, Q, S}. The partition function Z(V, T, �μ) encodes
the Equation of State (EoS) of the system under consider-
ation. Equation (7.2) establishes a direct link between sus-
ceptibilities and fluctuations of conserved charge numbers.
By measuring the cumulants κn(Nq) of net-charge number
(Nq ) distributions one can, using Eq. (7.2), further probe and
quantify the nature of the QCD phase transition.

Important at this point is to define a non-critical baseline,
which is done by using the ideal gas EoS, extended such as to
account for event-by-event charge conservation and correla-
tions in rapidity space [2170,2212,2213], see also [2214]. In
addition, non-critical contributions arising, e.g., from fluctu-
ations of wounded nucleons [2215,2216] need to be corrected
for. Deviations from this non-critical baseline, for example
leading to negative values of κ6 for net-baryons would arise
due to the closeness of the cross over transition to the O(4)
2nd order critical phase transition for vanishing light quark
masses [2217].

In Fig. 160 the ALICE results on the normalized sec-
ond order cumulants of net-proton distributions are presented
as function of the experimental acceptance. The acceptance
is quantified via the pseudo-rapidity coverage around mid-
rapidity Δη [2218–2220]. The measured cumulant values
approach unity at small values of Δη, essentially driven by
small number Poisson statistics. With increasing acceptance,
the data progressively decrease from unity. For small but
finite acceptance the decrease can be fully accounted for
by overall baryon number conservation in full phase space.
Hence, after correcting for baryon number conservation, the
experimental data would be consistent with unity over the
range of the experimental acceptance.

This observation has three important consequences. (i) It
shows that, up to second order, cumulants of the baryon num-
ber distribution functions follow a poissonian distribution,
a posteriori justifying the assumptions underlying the con-
struction of the partition function used in the SHM. (ii) This
is the first experimental verification of lQCD results which
also predict unity for the second order scaled cumulants of
baryon distributions. (iii) Compared to the different calcu-
lations, the data imply long range correlations in rapidity
space, calling into question the baryon production mecha-
nism implemented in string fragmentation models. Indeed,

Fig. 160 Scaled second order cumulants of the net-proton distribution
as a function of the pseudo-rapidity acceptance measured by the ALICE
experiment (black symbols) [2219]. The colored lines correspond to
calculations accounting for baryon number conservation with different
correlation length in rapidity space [2213]. The results of the HIJING
event generator are presented with the black solid line

the results from the HIJING event generator based on the
Lund String Fragmentation model shown in Fig. 160, due to
the typical correlation over about one unit of rapidity, grossly
overpredict the suppression due to baryon number conserva-
tion [2221].

Contrary to the detailed predictions for signals in the cross-
over region of the transition covered by lQCD, no quanti-
tative signals are available for the existence of a possible
critical end point in the phase diagram. All predicted sig-
nals are of generic nature and mostly based on searching for
non-monotonic behavior in the excitation function of fourth
order cumulants of, e.g., net-protons [2222]. A compilation
of the respective measurements [2223,2224] is presented in
Fig. 161. The search for non-monotonic behavior needs a
starting point. In Fig. 161 two possibilities are presented, one
corresponding to calculations in HRG within GCE (dashed
line at unity) and the other the non-critical baseline intro-
duced above where baryon number conservation is explicitly
accounted for (red solid line or blue symbols). With respect to
unity the data indeed exhibit an indication for non-monotonic
behavior with a significance corresponding to 3.1 standard
deviations [2224]. However, a significant part of this devi-
ation from unity is induced by non-critical effects, such as
baryon number conservation. Therefore, one must search for
non-monotonic behavior with respect to the red solid line.
Analysis of the data shows that there are no significant devi-
ations from a statistical ensemble with event-by-event baryon
number conservation, i.e, within the current precision of the
data there is not yet evidence for the presence of a critical
end point [2170,2212]. The analysis of fourth order cumu-
lants from a much higher statistics data set has just started and
will be essential for a possible discovery of the critical point.
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Fig. 161 Collision energy dependence of the fourth to second order
cumulants of net-proton distributions as measured by experiments. The
STAR data are for |y| < 0.5 and pt = 0.4–2 GeV/c, the HADES data for
|y| < 0.4 and pt = 0.4–1.6 GeV/c. The non-critical baseline induced
by global baryon number conservation is indicated by the blue circles
and the red line

The current status on experimental verification of the
nature of the chiral cross-over transition at vanishing or mod-
erate μB is still rather open. Within QCD inspired model
calculations [2225,2226], based on O(4) scaling functions
the predicted sixth order cumulants for net-baryon distribu-
tions exhibit negative values at Tpc due to a singular term
in the pressure. Similarly, the sixth order susceptibilities of
baryon number resulting from lQCD calculations are also
negative [2217,2227] and this sign change (relative to the
HRG baseline in GCE) has been linked to the critical com-
ponent in the pressure present as a residue of the 2nd order
chiral phase transition for vanishing (u,d) quark masses, due
to the smallness of the physical masses. First experimental
results on sixth order net-proton cumulants were reported by
the STAR collaboration [2228] for Au–Au collisions, albeit
with sizeable statistical uncertainties since the data analy-
sis to determine high order cumulants is extremely statistics
hungry. Qualitatively, the STAR results at

√
sNN = 200 GeV

are indeed consistent with the expectations for the crossover
transition. At the same time, the experimentally measured
energy dependence of κ6 [2228] is at odds with both model
and lQCD calculations. For a quantitative conclusion, in any
case, the effects of baryon number conservation [2170] and
transformation from net-protons (experiment) to net-baryons
(theory) [2229] are still to be performed. So far, experimental
insight into the nature of the chiral cross-over transition and
the development towards low net-baryon densities remains
inconclusive. It can be expected that ongoing and future high
statistics measurement campaigns by the STAR and ALICE
collaborations will elucidate the situation.

7.1.8 Hadrons with heavy quarks

There is now significant experimental information, from rel-
ativistic nuclear collisions, not only on the production of
hadrons composed of light (u,d,s) quarks, but also of open and
hidden charm and beauty hadrons. In particular, there is good
evidence, mainly from results obtained at the CERN Large
Hadron Collider (LHC) [2230–2232], that charm quarks
reach a large degree of thermal equilibrium, although charm
quarks in the system are chemically far out of equilibrium.
This is supported by heavy quark diffusion coefficients from
lQCD [2233]. A strong indication for equilibration is the
fact that J/ψ mesons participate in the collective, anisotropic
hydrodynamic expansion [2234,2235].

To microscopically understand the production mechanism
of charmed hadrons for systems ranging from pp to Pb–Pb,
various forms of quark coalescence models have been devel-
oped [2236–2240]. This provides a natural way to study
the dependence of production yields on hadron size and,
hence, may help to settle the still open question whether
the many exotic hadrons that have been observed recently
are compact multi-quark states or hadronic molecules (see
[2241,2242] and Refs. cited there). Conceptual difficulties
with this approach are that energy is not conserved in the coa-
lescence process and that color neutralization at hadroniza-
tion requires additional assumptions about quark correlations
in the QGP [2243].

Another approach, named SHMc, has been made possi-
ble by the extension of the SHM to also incorporate charm
quarks. This was first proposed in [2244] and developed fur-
ther in [2203,2231,2245–2248] to include all hadrons with
hidden and open charm. The key idea is based on the recog-
nition that, contrary to what happens in the (u,d,s) sector,
the heavy (mass∼ 1.2 GeV) charm quarks are not thermally
produced. Rather, production takes place in initial hard col-
lisions. The produced charm quarks then thermalize in the
hot fireball, but the total number of charm quarks is con-
served during the evolution of the fireball [2248] since charm
quark annihilation is very small. In essence, this implies that
charm quarks can be treated like impurities. Their thermal
description then requires the introduction of a charm fugac-
ity gc [2231,2244]. The value of gc is not a free parameter
but experimentally determined by measurement of the total
charm cross section. For central Pb–Pb collisions at LHC
energy, gc ≈ 30 [2231]. The charmed hadrons are, in the
SHMc, all formed at the phase boundary, i.e. at hadroniza-
tion, in the same way as all (u,d,s) hadrons.

In Fig. 158 it can be seen that, with that choice, the mea-
sured yield for J/ψ mesons is very well reproduced, the uncer-
tainty in the prediction is mainly caused by the uncertainty
in the total charm cross section in Pb–Pb collisions. We note
here that, because of the formation from deconfined charm
quarks at the phase boundary, charmonia are unbound inside
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Fig. 162 D0 to J/ψ yield ratio measured in Pb–Pb collisions at the
LHC and predicted by the Statistical Hadronization Model with charm
SHMc. Figure from [2249]

the QGP but their final yield exhibits enhancement compared
to expectations using collision scaling from pp collisions,
contrary to the original predictions based on [2152]. For a
detailed discussion see [2203].

For the description of yields of charmonia, feeding from
excited charmonia is very small because of their strong Boltz-
mann suppression. For open charm mesons and baryons,
this is not the case and feeding from excited D∗ and Λ∗c
is an essential ingredient for the description of open charm
hadrons [2231]. Even though the experimental delineation
of the mass spectrum of excited open charm mesons and
baryons is currently far from complete, the prediction of
yields for D-mesons andΛc baryons compares very well with
the measurements,77 both concerning transverse momentum
and centrality dependence.

A particularly transparent way to look at the data for Pb–
Pb collisions is obtained by analyzing the centrality depen-
dence of the yield ratio D0/(J/ψ) and comparing the results
to the predictions of the SHMc. Recently, both the D0 and
J/ψ production cross sections have been well measured
down to pt = 0. The yield ratio D0/(J/ψ) is reproduced
with very good precision for both measured centralities, as
demonstrated in Fig. 162. This result lends strong support to
the assumption that open and hidden charm states are both
produced by statistical hadronization at the phase boundary.
A more extensive comparison between SHMc and data for
open charm hadrons is shown in [2231].

Impressive experimental results were also obtained mainly
by the CMS collaboration ([2250] and Refs. there) on the sup-
pression of excited states of Υ mesons in Pb–Pb collisions at
LHC energy. These data have led to intense theoretical work

77 For Λc baryons on has to augment the currently measured charm
baryon spectrum with additional states to achieve complete agreement
with experimental data [2231].

and, indeed, to a break-through of our understanding of the
complex heavy quark potential in a hot medium [2149,2251].

From the successful comparison of measured yields for
the production of (u,d,s) as well as open and hidden charm
hadrons obtained from the SHM or SHMc with essentially
only the temperature as a free parameter at LHC energies,
one may draw a number of important conclusions.

– First, we note that hadron production in relativistic
nuclear collisions is described quantitatively by the
chemical freeze-out parameters (Tchem, μB). Note that
the fireball volume appearing in the partition function is
determined by normalization to the measured number of
charged particles. At least for energies

√
sNN ≥ 10 GeV

these freeze-out parameters agree with good precision
with the results from lQCD for the location of the chiral
cross over transition. Under these conditions, hadroniza-
tion is independent of particle species and only depen-
dent on the values of T and μB at the phase boundary. At
LHC energy, the chemical potential vanishes, and only
T = Tpc is needed to describe hadronization.

– The mechanism implemented in the SHMc for the pro-
duction of charmed hadrons implies that these parti-
cles are produced from uncorrelated, thermalized charm
quarks as is expected for a strongly coupled, deconfined
QGP (see also the discussion in [2231]). At LHC energy,
where chemical freeze-out takes place for central Pb–Pb
collisions in a volume per unit rapidity of V ≈ 4000
fm3, this implies that charm quarks can travel over lin-
ear distances of order 10 fm (see [2203,2231] for more
detail).

One may ask whether there is a possible contribution to the
production of charmed hadrons (in particular of J/ψ) from
the hadronic phase. At the phase boundary, assembly of J/ψ
from deconfined charm quarks or from all possible charmed
hadrons is indistinguishable, as discussed in detail in [2203].
In fact, in [2209] it was demonstrated that multi-hadron colli-
sions lead to very rapid thermal population, while within very
few MeV below the phase boundary, the system falls out of
equilibrium. Both is driven by the rapid drop of entropy and
thereby particle density in the vicinity of Tpc. In the con-
fined hadronic phase, i.e. for temperatures lower than Tpc,
the hadron gas is off-equilibrium, and any calculation via
reactions of the type DD̄∗ ↔ nπJ/ψ has to implement the
back-reaction [2252]. Since predictions with the SHMc agree
very well with the data for J/ψ production at an accuracy of
about 10%, and since any possible hadronic contribution has
to be added to the SHMc value, we estimate any contribution
to J/ψ production from the confined phase to be less than
10%.

Future measurement campaigns at the LHC will yield
detailed information on the production cross sections of
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hadrons with multiple charm quarks as well as excited char-
monia. The predictions from the SHMc for the relevant cross
sections exhibit a rather dramatic hierarchy of enhancements
[2231] for such processes. Experimental tests of these pre-
dictions would lead to a fundamental understanding of con-
finement/deconfinement and hadronization.

7.2 QCD at high density

Kenji Fukushima

7.2.1 QCD phase diagram

The QCD vacuum has rich contents, very different from an
empty “vacuum” but rather close to a medium. The rele-
vant physical degrees of freedom can change according to
the probe resolution to the medium. As long as the typical
momentum scale in physical processes is large compared to
the QCD scale, i.e., ΛQCD ∼ 200 MeV, observed particles –
all hadrons including mesons and baryons – are only color-
singlet composites. The typical scale of hadronic masses and
radii is characterized by ΛQCD or Λ−1

QCD ∼ 1 fm. There-
fore, if hadronic matter is compressed so that the interpar-
ticle distance becomes comparable to Λ−1

QCD, wavefunctions
of hadrons overlap each other. Then, hadrons are no longer
isolated and more elementary particles should take over the
physical degrees of freedom.

High compression of QCD matter is achieved by increas-
ing the particle number density. Actually, if matter is heated
up, the density of massless thermal excitations increases as
∼ T 3 which corresponds to the scaling of interparticle dis-
tance ∝ T−1. If the baryon density, nB, is increased in the
same way, the average distance between baryons should scale
as∝ n−1/3

B . It is hence natural to expect a phase boundary in
the plane of T and nB from hadronic matter to a new state of
matter composed of quarks and gluons, which portrays the
QCD phase diagram.

The idea of the QCD phase diagram was first cast into
a concrete shape by Cabibbo and Parisi [464] based on the
conjecture of Hagedorn’s limiting temperature. Let us briefly
look over the theory foundations according to explanations
in Ref. [2253]. The thermal partition function at finite T but
zero density reads:

ZM =
∫

dm ρM(m) e−m/T , (7.3)

where dmρM(m) represents the number of mesonic states
within the mass window, m ∼ m + dm. The last exponen-
tial factor appears from the thermal Boltzmann weight. The
density of states associated with degeneracy is increasing for
larger eigen-energies, and so ρM(m) is an increasing func-
tion of m. It is empirically known that ρM(m) ∼ em/TH with

a phenomenological parameter TH called the Hagedorn tem-
perature. Because the logarithm of the combinatorial factor
for a given energy is nothing but the entropy, this exponen-
tially increasing ρM(m) means that the entropy grows lin-
early with m. As seen from Eq. (7.3), the m integration in
ZM blows up for T > TH for which the entropy enhance-
ment overwhelms the energy suppression and the free energy
is bottomlessly pushed down with increasing m. Hagedorn
proposed that TH is interpreted as the upper bound of the
physically possible temperature. Later on, a physically sen-
sible interpretation was clarified that the singularity in ZM

should be overridden by a phase transition, possibly the one
to a state with more fundamental degrees of freedom. The
critical temperature from mesonic matter to deconfined mat-
ter with quarks and gluons is thus T (M)

c = TH.
The above mentioned argument can be generalized to the

case at finite baryon density. Then, the partition function is

ZB =
∫

dm ρB(m) e−(m−μB)/T , (7.4)

where the Boltzmann factor depends on the baryon chemi-
cal potential μB. The experimental data imply that the bary-
onic spectrum exhibits ρB(m) ∝ em/T ′H with the baryonic
Hagedorn temperature, T ′H, that is slightly different from TH.
The critical temperature for baryons is deduced from the
singularity as T (B)

c = T ′H − (T ′H/m0)μB, which is derived
from an approximation that the Boltzmann factor is replaced
by e−m(1−μB/m0)/T with a phenomenological parameter, m0

(see Ref. [2253] for detailed discussions).
Now, supposing that T ′H > TH, the critical temperature

for the deconfinement transition is dominantly characterized
by mesonic T (M)

c in the low density region at μB � T . With
increasing μB, the two lines of constant T (M)

c and decreas-
ing T (B)

c cross eventually. This consideration leads us to a
picture of the phase diagram on the plane of the baryon den-
sity (along the horizontal axis) and the temperature (along
the vertical axis) as illustrated in Fig. 163. This QCD phase
diagram handwritten by Gordon Baym (see Ref. [2254] for
more historical backgrounds) has played a role of prototype
of the contemporary QCD phase diagram.

So far, we addressed only the deconfinement phase transi-
tion associated with the liberation of quarks and gluons in hot
and dense media. The theoretical description of deconfine-
ment in the presence of dynamical quarks is subtle, how-
ever. One may think that each phase separated by phase
boundaries should be distinctly defined by a different real-
ization of some global symmetry but for the deconfinement
phenomenon, the symmetry corresponding to quark confine-
ment/deconfinement (known as center symmetry [475] that is
a 1-form symmetry in finite-T quantum field theory [1263])
is not exact but approximate. Still, as long as the approxi-
mate symmetry is barely broken, an approximate value of
critical temperature called the pseudo-critical temperature
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Fig. 163 A prototype of the QCD phase diagram. The handwritten
phase diagram recaptured in Ref. [2254] was adapted and colorized
here

Fig. 164 The QCD string extends between a pair of test quark and
antiquark (upper figure). The string breaking occurs once the fluxtube
energy exceeds the meson mass (lower figure)

can be prescribed. Therefore, the temperature at which the
deconfinement takes place is not uniquely defined but the
pseudo-critical temperature is inevitably scheme dependent.
This is why some theoretical QCD phase diagrams show the
phase boundary with an uncertainty band associated with
non-unique pseudo-critical temperatures.

The deconfined phase of gluons corresponds to the vac-
uum with spontaneous breaking of center symmetry, while
quarks explicitly break this symmetry. Here, we shall avoid
cumbersome mathematics and limit ourselves to pedagogical
explanations about center symmetry. Let us consider a free
energy gain, fq(x), in response to a test quark placed at x,
and then construct a quantity called the Polyakov loop:

L(x) = e− fq(x)/T . (7.5)

If the gluonic medium confines quarks, on the one hand,
fq → ∞ leads to L → 0. Here we note that in a homo-
geneous system the x dependence of the expectation value
can be safely dropped. On the other hand, L remains non-
vanishing in the deconfined phase with fq < ∞. Thus, L
serves as an order parameter for quark confinement, and in
quantum field theory L is expressed by an expectation value
of a 1-form line operator (i.e., Wilson line), see Ref. [1263]
for generalized higher-form symmetries.

In reality with dynamical quarks, fq would never diverge.
The reason is easy to understand. A single test quark is a

source to which a color fluxtube is attached. The color field
energy is proportional to the squeezed fluxtube length. Thus,
in a purely gluonic medium, a test quark cannot be screened
and the fluxtube goes to spatial infinity, yielding fq →∞ and
thus L → 0 if confined. Fluctuations of dynamical quarks
allow for the creation of a quark and an antiquark pair once the
fluxtube energy exceeds the mesonic mass threshold as illus-
trated in Fig. 164. Then, the color field energy stored between
a test quark and a test antiquark cannot become greater than
twice the mesonic mass MV . That is, the clustering decom-
position property indicates L(0)L†(x) ∼ e−2MV /T for suf-
ficiently large |x|, and so L ∼ e−MV /T > 0 even in the
confined hadronic phase.

This argument implies that the QCD string is further
breached by fluctuations of surrounding quarks and holes at
finite density. In other words the explicit breaking of center
symmetry is enlarged in high-density matter and the mathe-
matical concept of quark confinement would be obscure. Not
that we do not yet find a better order parameter. The absence
of the deconfinement order parameter could be attributed to
the profound nature of dense QCD matter; namely, duality
from hadronic to quark matter.

Now, let us shift gear to another aspect of the QCD vacuum
and the QCD phase transition. The QCD Lagrangian contains
quark mass parameters mq. The bare values of up and down
(i.e., u and d) quark masses are only a few MeV, accounting
for an only small fraction of the nucleon mass composed of u
and d quarks. This huge discrepancy in the masses of quarks
and baryons is explained by spontaneous breaking of chiral
symmetry. Its order parameter is the chiral condensate 〈q̄q〉
that gives rise to the dynamical mass, Mq ∼ ΛQCD � mq.

Almost all textbooks on quantum field theory affirm that
the divergent zero-point oscillation energy is harmlessly dis-
carded, but this common assertion is not valid for QCD
because the mass is not a physical constant but is dynam-
ically rooted in the QCD interactions. That is, the zero-point
oscillation of quarks and antiquarks with Nc colors and Nf

flavors gives [59]

Ezero = −2NfNc

∫ Λ d3 p

(2π)3

√
p2 + M2

q

� −NfNc
Λ4

8π2

[
2+ ξ2 +O(ξ4)

]
, (7.6)

where Λ is a ultraviolet (UV) cutoff and the dimensionless
parameter, ξ = Mq/Λ, is assumed to be small. We see that the
UV divergent term∝ Λ4 is irrelevant to the dynamics, but we
cannot drop another UV divergent term ∼ M2

qΛ
2 ∼ Λ4ξ2.

Because Mq is related to the chiral condensate in the QCD
vacuum, 〈q̄q〉, the value of Mq is dynamically determined to
minimize the vacuum energy. The coefficient of the quadratic
term, ξ2, is negative in Eq. (7.6), so that Ezero energetically
favors larger Mq. It is the condensation energy, Econd, that
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competes the zero-point oscillation energy. Let us postulate
that gluon mediation induces a four-fermionic interaction
term∼ λq̄qq̄q in the low-energy Lagrangian where the mass
dimension of the coupling constant, λ, is−2. Thus, a dimen-
sionless coupling, λ̂ = Λ2λ, is useful, and the dimensional
analysis hints at a relation Mq = −2λ〈q̄q〉. (In QCD 〈q̄q〉
is known to take a negative value.) Then, the condensation
energy from the interaction term is parametrically written as

Econd = NfNcλ〈q̄q〉2 = NfNc
M2

q

4λ
= NfNc

Λ4

4λ̂
ξ2. (7.7)

Now, the balance between two energies gives a condition for
the spontaneous generation of Mq �= 0; that is, λ̂ > 2π2, as
first derived by Nambu and Jona-Lasinio [59,2255]. For the
four-fermionic interaction stronger than this threshold, the
QCD vacuum accommodates a nonvanishing chiral conden-
sate.

From the Dirac mass term mqq̄q in the Lagrangian we
see that the mass and the chiral condensate are conjugate to
each other. It is thus evident that a nonzero 〈q̄q〉 is a source
to generate Mq even from a massless theory with mq = 0.
The massless Dirac fermions are split into the right-handed
and the left-handed components and they do not commu-
nicate. Therefore, for the theory with Nf flavors of mass-
less quarks, a unitary rotation in flavor space is a symme-
try in each of the right-handed and the left-handed sectors,
i.e., the system enjoys the symmetry of UR(Nf) × UL(Nf).
Actually, the chiral condensate is decomposed as 〈q̄q〉 =
〈q†

RqL + q†
LqR〉 and it breaks the symmetry down to the vec-

torial one only, UV(Nf). Among these symmetries, conven-
tionally, SUR(Nf)×SUL(Nf) is called chiral symmetry that is
spontaneously broken so as to generate the dynamical mass,
Mq ∼ ΛQCD, out from the bare mass, mq � ΛQCD.

We can expect, as elaborated below, that 〈q̄q〉 should
melt at high density and chiral symmetry should be restored
then, which is commonly referred to as the chiral phase
transition. It is the zero-point oscillation energy (7.6) that
favors the symmetry breaking, and its expression involves the
phase-space integration. At finite quark chemical potential
μq which takes a larger value with increasing quark number
density, the Fermi sphere is excluded from the phase-space
integration due to the Pauli exclusion principle. Accord-
ingly the symmetry breaking effect is diminished at finite
μq. Therefore, it is a reasonable educated guess that the chi-
ral phase transition makes a boundary curve on the density-
temperature plane just like the deconfinement phase transi-
tion, as already depicted in Fig. 163.

The exact relation between the deconfinement phase tran-
sition with an approximate order parameter L and the chiral
phase transition with another approximate order parameter
〈q̄q〉 is a longstanding problem in QCD, and the satisfactory
answer has not been found especially at finite density. As a
function of mq, actually, the deconfinement phase transition

Fig. 165 Two order parameters as functions of the temperature at zero
density as measured in the lattice-QCD simulation. Nt represents the site
number along the temporal direction and the extrapolation to Nt →∞
defines the continuum limit. The figure and the lattice data are adapted
from Ref. [2257]

is exact only in the limit of mq →∞, while the chiral phase
transition is exact only in the opposite limit of mq → 0. The
lattice-QCD data at finite T suggest that these two concep-
tually distinct phase transitions at opposite limits be interpo-
lated by a single line for arbitrary mq [2256].

Figure 165 shows the Polyakov loop and the chiral con-
densate as functions of T , normalized by the T = 0 values.
We clearly notice that chiral symmetry is restored around
Tc ∼ 150 MeV, and at the same time the Polyakov loop
starts increasing from nearly zero, indicating a simultaneous
deconfinement crossover. Thus, the lattice-QCD simulation
at finite T has led us to a conclusion that two phase transitions
of chiral restoration and deconfinement are somehow locked
together. Actually, the prototype phase diagram in Fig. 163
assumes such tight locking of two transitions on the entire
plane. However, as mentioned earlier, the barrier for the QCD
string breaking would be eased by the density effect and the
deconfinement would be more and more blurred at higher
density, which implies a modernized version of the phase
diagram as shown in Fig. 166. Here, as compared to the pro-
totype in Fig. 163, there are three new ingredients added to
Fig. 166; namely, the color superconductivity, the quarky-
onic regime, and the QCD Critical Point (QCP). Moreover,
Fig. 166 shows a new label, “sQGP” at high T and zero den-
sity, that refers to strongly correlated quark–gluon plasma.
We will address only high-density aspects of QCD in this
section, and for the physical interpretation of sQGP and the
experimental characterization, see the previous section.

7.2.2 Quark matter

There is no clear definition that distinguishes nuclear and
quark matter. In one working definition, quark matter is a
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Fig. 166 A modern phase diagram of QCD with blurred deconfine-
ment at higher density represented by the color gradation. Near the QCD
Critical Point inhomogeneous spontaneous chiral-symmetry breaking
(SCB) is predicted in the mean-field calculation, while the quasi-long-
range order should take it over with fluctuation effects. The possible
family of color-superconducting states includes not only the CFL and
the 2SC phases (see the text) but also the uSC (where Δ2 �= 0 and
Δ3 �= 0) and the dSC (where Δ3 �= 0 and Δ1 �= 0); see Refs.
[2258,2259] for details. Unfortunately we are still unable to remove
a big question mark

state of matter whose properties are reasonably approximated
by perturbative QCD (pQCD) calculations. The presence of
quark matter in the neutron star (NS) has been proposed by
Collins and Perry [463] based on the asymptotic freedom at
high baryon density (see also Ref. [2260] for a preceding
hypothesis on quark matter). If the momentum scale associ-
ated with the running strong coupling constant, αs, is char-
acterized by the baryon chemical potential μB or the quark
chemical potential μq = μB/3, asymptotically free quarks
should be liberated from hadrons as the density goes above a
certain threshold. In Ref. [463] the leading order (LO) con-
tributions, i.e., thermodynamic quantities of free massless
quarks, were considered:

P(0) = Nc

12π2

Nf∑

i=1

μ4
i . (7.8)

The next-to-leading order (NLO) diagrams add corrections
of O(αs), i.e.,

P(2) = −
(
αs

π

)
Ng

16π2

Nf∑

i=1

μ4
i , (7.9)

where the adjoint color factor, Ng = N 2
c − 1, was intro-

duced. The next-to-next leading order (N2LO) calculations
produce a logarithmic term with μq dependence in the argu-
ment. All the terms are not listed up here (see Ref. [2261] for
the formulation and Ref. [2262] for the QCD application);
the logarithmic term looks like

P(4) = +
(
αs

π

)2 Ngβ0

64π2

Nf∑

i=1

μ4
i ln

μ2
i

μ2
0

+ (non-log terms),

(7.10)

where β0 = (11Nc − 2Nf)/3. Non-logarithmic terms are
omitted. Even if αs is sufficiently small, αs ln(μ2

i /μ
2
0) may

become large, and then the perturbative expansion breaks
down. A remedy for this problem of the singular logarithm
is the resummation over the leading-log terms. For simplic-
ity let us assume that all the quark chemical potentials are
identical. (More generally one can introduce a flavor aver-
aged value of the chemical potential.) Actually, it is easy to
confirm that, if αs is upgraded to the running one, i.e.,

αs(μq)

π
= αs

π

[

1+
(
αs

π

)
β0

4
ln(μ2

q/μ
2
0)

]−1

, (7.11)

an expansion of Eq. (7.9) can reproduce Eq. (7.10). In other
words, such dangerous logarithmic terms are absorbed into
the density-dependent running coupling, αs(μq) (see Ref.
[2262] for more details). In this way the perturbative calcu-
lation is justified at high enough density.

From this construction of the running coupling constant,
one can easily imagine that the resummation is not free
from an arbitrary choice of irrelevant constants. Instead
of ln(μ2

q/μ
2
0), one could try to make a resummation of

ln(μ2
q/μ

2
0) + C = ln(μ2

q/μ
2
1) with μ2

1 = μ2
0e
−C . In princi-

ple, an optimal choice ofC could exist to reduce higher-order
corrections. If C is close to the optimal point, the results are
expected to be flat against changes of C , and it is custom-
ary to check the stability of the results by changing X of
αs(Xμq). Here, the logarithmic term in αs(Xμq) takes the
form of ln(X2μ2

q/Λ
2
MS

) in the MS scheme [2263]. It is then
found that such variation of X = 1 ∼ 4 leads to huge uncer-
tainty unless μq becomes unphysically large. This is some-
times referred to as the slow-convergence problem. The next
correction, i.e., the N3LO contribution is expected to sta-
bilize the results better, and indeed the soft N3LO part has
been shown to cure the slow-convergence problem partially
[2264,2265].

7.2.3 Color-superconducting phases

The pQCD calculation is not capable of describing dynam-
ical generation of 〈q̄q〉, which is apparently consistent with
melting chiral condensate at high density. However, even at
high density, high enough to validate pQCD, the chiral con-
densate is not simply gone.

Quarks carry a fundamental charge in color SU(3), and so
two charges of a pair of quarks (i.e., a diquark) connected by
one-gluon exchange are coupled via

(ta)i j (t
a)kl

= −Nc + 1

4Nc
(δi jδkl − δilδk j )+ Nc − 1

4Nc
(δi jδkl + δilδk j )

(7.12)
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corresponding to 3 ⊗ 3 = 3̄ ⊕ 6 in the group theoretical
language. Interestingly, as implied from the sign of each term
in the above decomposition, the inter-quark interaction in
the 3̄ channel is attractive, while the 6 channel interaction
is repulsive. This attractive nature is intuitively understood
as follows: Suppose that two quarks are infinitely separate
(in the deconfined phase), then the total field energy is just
twice of the field energy associated with a single quark. If
two quarks approach and make a composite of 3̄, the total
field energy is the same as that of a single quark, that is, a
half of the original total energy. So, the energy decreases as
two quarks touch. Consequently two quarks in the 3̄ channel
should feel an attractive force to minimize the total energy.

The most favored diquark channel is color anti-triplet
(anti-symmetric) and spin singlet (anti-symmetric) and thus
the flavor must be anti-symmetric. The diquarks generally
carry two color indices and two flavor indices, but the diquark
matrix in the most favored color-flavor channel simplifies to

Φiα = εi jkεαβγ qTjβCγ5qkγ . (7.13)

Here, C = iγ 0γ 2 is the charge conjugation matrix neces-
sary to make the diquark a Lorentz scalar. The Latin and the
Greek letters represent the indices in flavor and color space,
respectively.

In the three-flavor symmetric limit with mu = md = ms ,
the flavor rotation as well as the color rotation is a symmetry
of the system. Then, it is possible to choose the flavor and
the color bases to diagonalize Φiα . Without loss of generality
we can parametrize the diquark condensate as

〈Φiα〉 = δiα Δi . (7.14)

Under the identification of i = 1, α = 1 for up (u) and red
(r), i = 2, α = 2 for down (d) and green (g), and i = 3,
α = 3 for strange (s) and blue (b), for example, Δ1 involves
pairings of gd-bs and gs-bd quarks. A state of quark matter
with Δ1 �= 0, Δ2 �= 0, and Δ3 �= 0 is known as the color-
flavor locking (CFL) phase. The CFL phase is considered
to be the ground state as long as the strange quark mass
is ignored. In the opposite limit of infinitely heavy strange
quark mass, we can regard quark matter as composed from
only light flavors. In this case only Δ3 (involving ru-gd and
rd-gu quark pairings) can take a nonzero value, while Δ1 =
Δ2 = 0 due to suppression of strange quarks. Such a state
of Δ1 = Δ2 = 0 and Δ3 �= 0 is called the two-flavor color-
superconducting (2SC) phase.

Which symmetry should spontaneously be broken by the
diquark condensate is a nontrivial question. Let us first con-
sider the 2SC phase. We note that the local gauge symmetry is
never broken. Then, the baryon UV(1) symmetry is not bro-
ken in the 2SC phase since its rotation on Δ3 can be always
canceled by unbroken electromagnetic transformation. The
same argument concludes that flavor (chiral) symmetry is

not broken, either. Therefore, in the 2SC phase, all global
symmetries are unbroken, only modified with a mixture of
local symmetry. One might think that color-superconducting
phases assume deconfined quark matter, but as shown in Ref.
[2266], the low-energy physics in the 2SC phase is gov-
erned by ungapped gluons in the unbroken SU (2) sector and
color confinement persists. Theoretically speaking, there is
no gauge-invariant order parameter to define the 2SC phase.

In reality, however, the 2SC phase is anyway taken over by
the CFL phase at high density where the strange quark mass is
negligible. The Nf = 3 world is drastically different from the
2SC phase. The UV(1) symmetry can no longer be restored
by the electromagnetic symmetry because Δ1 and Δ2,3 are
differently charged. Thus, the CFL phase has a superfluid,
and a vortex configuration is topologically stabilized. Also,
chiral symmetry is spontaneously broken. We note that the
diquark condensate has both the left-handed and the right-
handed components; that is, 〈qq〉 = 〈qRqR〉 + 〈qLqL〉 �= 0,
and 〈qR,LqR,L〉 breaks SUR,L(3). The vectorial rotation in fla-
vor space can still be canceled by unbroken color rotation, so
the symmetry breaking pattern in the CFL phase turns out to
be: SUR(3)× SUL(3)→ SUV(3). Interestingly, this is iden-
tical to the symmetry breaking in the hadronic phase. Actu-
ally the gauge-invariant order parameter of the CFL phase
is, 〈(q̄q̄)(qq)〉 ∼ 〈(q̄q)2〉 that induces 〈q̄q〉 �= 0 unless the
anomalous UA(1) is restored. The observation of exactly the
same symmetry properties has led to a conjecture of conti-
nuity between the hadronic phase (i.e., the confined phase)
with superfluidity and the CFL phase (i.e., the Higgs phase)
[2267].

We can develop an intuitive understanding of the conti-
nuity. In the case of electron superconductivity, there is no
gauge-invariant order parameter, and one might think that the
theoretical characterization is as problematic. In this case,
however, the solution has already been known. Because the
Cooper pairs have twice the elementary charge, they cannot
completely screen a single elementary charge. This would
lead to an emergent Z2 symmetry and the superconducting
state is unambiguously defined by the symmetry.

This argument makes it clear why the CFL phase is so
special. As mentioned earlier, the most favored diquark is
found in the color triplet (and the anti-triplet) channel made
from 3 ⊗ 3 → 3̄. So, the Cooper pairs (i.e, the diquarks)
are charged just like the fundamental (anti-)charge. Thus, a
fundamental charge can be screened by Cooper pairs and the
definition of the CFL phase is obscured, which underlies the
continuity scenario between hypernuclear matter and CFL
quark matter.

The continuity scenario cannot be applied to the 2SC phase
as it is, but it was pointed out in Ref. [2268] that the NS envi-
ronment can realize continuity within the two-flavor sector
only. The idea is that the electric neutrality requires twice
more d-quarks than u-quarks, and free d-quarks (not paired
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Fig. 167 An illustration of the two-flavor continuity scenario between
nuclear matter and 2SC+d quark matter in the NS environment in β

equilibrium. Figure taken from Ref. [2268]

with u-quarks) may form a condensate of 〈dd〉. In this exotic
phase that may be called the 2SC+d phase, the electromag-
netic rotation cannot cancel rotations in Δ3 and 〈dd〉 simul-
taneously, and so it is a superfluid with UV(1) breaking, and
also, it spontaneously breaks chiral symmetry. In this way,
as illustrated in Fig. 167, the continuity can be formulated.

Recently, the quark–hadron continuity scenario is encoun-
tering a fatal challenge. As mentioned, the emergent Z2

symmetry characterizes ordinary electron superconductivity,
and to see it mathematically, a Wilson loop as a symmetry
generator is acted on a magnetic vortex operator. The mag-
netic flux in a superconducting cylinder is quantized in units
not of 2π h̄c/e but of π h̄c/e due to doubly charged Cooper
pairs. The symmetry operation with the Wilson loop, hence,
results in a Z2 phase. The same exercise in the CFL phase
replaces the magnetic vortex with the non-Abelian CFL vor-
tex [2269] that carries both the global phase as well as the
chromo-magnetic flux. From the explicit expression of the
non-Abelian CFL vortex, it has been shown in Ref. [2270]
that a Z3 symmetry emerges (see also Ref. [2271] for more
mathematical discussions). The hadronic phase presumably
confines any color degrees of freedom, and it is a natural
anticipation (but not proven yet) that this Z3 symmetry oper-
ation is merely trivial in the confined phase. If so, the spon-
taneous breaking of emergent Z3 symmetry should result in
a phase transition from nuclear to quark matter. It is not yet
settled theoretically whether a phase transition really sep-
arates nuclear and quark matter. The symmetry arguments
are convincing, but the calculations are feasible only at high
enough density, not at intermediate density where a transi-
tional change may occur. As we will argue later, astrophysical
observations constrain the strength of first-order phase tran-
sition for the neutron-rich NS matter, and for the moment it
disfavors the first-order phase transition.

7.2.4 Quarkyonic regime

In the large-Nc limit the duality between nuclear and quark
matter has been recognized by McLerran and Pisarski [2272]
and they named the dual regime of matter Quarkyonic Matter
after a combination of “quark” and “baryonic”. It should be

Fig. 168 A quark description
of two-body NN interaction

noted that Quarkyonic Matter is not a novel phase of matter
but it refers to a regime in which the duality is manifested.

The conjectured duality is based on the large-Nc counting
of the pressure. Along the temperature axis at zero baryon
density, the pressure jumps from O(1) in the confined phase
to O(N 2

c ) in the deconfined gluonic phase, which defines
a first-order phase transition even with dynamical quarks.
Then, along the axis of the baryon/quark chemical potential
at zero temperature, one might also think of a phase tran-
sition from O(1) in confined nuclear matter to O(Nc) in
deconfined quark matter. This naïve order counting implic-
itly neglects the contribution from interactions that could be
dropped in the dilute/dense limits, but not in the intermedi-
ate density region. Actually, in the large-Nc limit, the ampli-
tude of meson scattering is suppressed so that mesons can be
regarded as non-interacting particles, while baryons interact
strongly. It is immediately understood why the strength of
baryon interaction scales as O(Nc). The one pion exchange
process for the two-body nucleon–nucleon (NN ) interac-
tion can be viewed microscopically as a quark hopping from
one to the other baryon as shown in a schematic picture in
Fig. 168. There are N 2

c combinations of quark exchanges,
among which color singlets are of O(Nc). In contrast, the
n-point interaction vertices of mesons scale as O(N 1−n/2

c )

that goes to zero as Nc →∞ for n ≥ 3. All the multi-body
interactions of nucleons turn out to scale as O(Nc) which
coincides with the scaling property peculiar to quark mat-
ter. In this way, in Quarkyonic Regime, the system is still
in the confined phase and the relevant degrees of freedom
are baryons, but the pressure is sensitive to quark degrees of
freedom through inter-baryonic interactions.

Now, we see that the deconfinement phenomenon induced
by baryons at high density is far more nontrivial than the
high temperature situation dominated by mesons. For weakly
interacting mesons the onset of deconfinement can be approx-
imated as an overlap of wavefunctions, that agrees with a
picture of site percolation. For baryons, however, the onset
of deconfinement would be rather located at the density
where the NN , NNN , and arbitrary multi-body interactions
become comparably strong, building a connected network
of interacting bonds. In the language of percolation, hence,
it would not be the site percolation but the bond percola-
tion that is appropriate for high-density deconfinement. It
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has also been speculated that the deconfinement onset could
be delayed toward higher density by quantum fluctuations as
suggested in a quantum percolation picture [2273].

In Quarkyonic Regime the state of matter is not simply
quark-like nor baryon-like, but something that shares both
features. It is unlikely that there is any sharp deconfinement
boundary in the phase diagram as drawn in the prototype in
Fig. 163. This is why deconfinement is represented by smooth
gradation over Quarkyonic Regime in Fig. 166. It is quite
suggestive that both the CFL phase and Quarkyonic Regime
favor smooth continuity between nuclear and quark matter in
parallel, even though the diquark condensate is suppressed
in the large-Nc limit and color-superconducting matter and
Quarkyonic Matter seem not to coexist.

7.2.5 Critical point vs. inhomogeneous states

So far, we have focused on deconfinement, and we shall now
turn to the chiral phase transition at finite density. It has
been established that the chiral phase transition at physical
quark masses is a smooth crossover if the chiral restoration is
induced by the temperature effect [2274]. Most chiral models
predict that, as the baryon density increases, the behavior of
the chiral condensate as a function of increasing T becomes
steeper. Eventually, in some chiral models, the chiral restora-
tion occurs with a discontinuous jump in the chiral conden-
sate, and the separation point between the smooth crossover
and the first-order phase transition corresponds to the exact
second-order critical point, which is commonly called the
QCD Critical Point (QCP). It is sometimes referred to as the
critical end point (CEP) of QCD matter as well. The presence
of the QCP was first recognized in the Nambu–Jona–Lasinio
model by Asakawa, Yazaki [2275], and in a QCD-like model
by Barducci, Casalbuoni, De Crutis, Gatto, Pettini [2276],
independently. For a comprehensive review on the order of
chiral restoration at the early stage, see Ref. [2277].

In the language of the Ginzburg–Landau theory, the grand
potential has an expansion,

Ω = α2

2
M2 + α4

4
M4 + α6

6
M6 +O(M8), (7.15)

with respect to an order parameter M ∼ 〈q̄q〉 (proportional
to the constituent quark mass). For simplicity the bare quark
mass effect that induces a symmetry-breaking term ∝ M is
dropped. The coefficients, αi , are functions of T and μB. If
α2 changes its sign while α4 > 0 is kept, a second-order
phase transition is derived. If α2 = 0 and α4 changes its sign
for α6 > 0, a tricritical point appears.

Interestingly, the QCP has nothing to do with the original
chiral symmetry of QCD, and the universality class belongs
to the same as the three-dimensional Ising model. Only when
the bare quark mass is vanishing, as mentioned above, the
QCP is located on the chiral phase transition, which exhibits

tricriticality. At finite bare quark mass that explicitly breaks
chiral symmetry, the QCP is identified as the Z2 liquid-gas
transition whose order parameter is the density, i.e., a con-
served quantity coupled with the energy–momentum tensor,
resulting in the dynamical universality class of the model H
[2278].

The QCP can be an unambiguous landmark, if experi-
mentally confirmed, on the QCD phase diagram. It is, how-
ever, quite nontrivial what plays a role of a signature. The
most well-investigated quantity in the search for the QCP
is the fluctuation observable. Because the correlation func-
tions scale with the correlation length ξ , that ideally diverges
near the critical point but does not in reality due to the crit-
ical slowing down, one can make a robust prediction for the
critical behavior characterized by ξ to the power of critical
exponent. Although the time evolution away from the QCP
may wash out the critical signature, the fluctuation of the
conserved quantities such as the baryon number, the elec-
tric charge, and the strangeness (within the time scale of the
strong interaction) could retain a trace of criticality if its value
is frozen inside the critical region. This means that, to probe
the QCP in a heavy-ion collision experiment, the created hot
and dense matter must cool down along the trajectory hitting
the critical region of the QCP, and the chemical freezeout
(that fixes the ratio of the particle species) must be located
sufficiently near the QCP. Such requirements may hold or
may not.

There is no reliable QCD-based prediction for the loca-
tion of the QCP due to the sign problem, but the virtue of the
QCP search is that the critical theory provides us with unique
theoretical prediction once its location on the phase dia-
gram is experimentally constrained. We have already learnt
a lot about fluctuations from nearly zero baryon density (at
high collision energy

√
sNN � 100 GeV) to high density

(at
√
sNN ∼ 3 GeV) from the heavy-ion collision experi-

ments. See discussions in the previous section and the figure
to show the data of κ4/κ2. For a review including related
topics, especially the kurtosis (fourth order fluctuation of the
proton number) and the skewness (third order fluctuation),
see Ref. [2279] and references therein.

It is also mentioned that constructing an effective descrip-
tion of low-energy dynamics near the critical point is an
intriguing theoretical challenge. Typically the time evolution
of locally equilibrated matter is governed by undamped zero
modes associated with conservation laws, which constitutes
the hydrodynamic description based on the derivative expan-
sion. In the vicinity of the critical point, the critical slowing
down breaks the clear scale separation. Then, the correla-
tion of the diffusive mode, that is the slowest one, should be
coupled in the hydrodynamic equations, and such a general-
ized framework – called the “Hydro+” – has been proposed
[2280].

123



 1125 Page 248 of 636 Eur. Phys. J. C          (2023) 83:1125 

Fig. 169 Another phase diagram of QCD matter without the QCD
Critical Point, which may be the case in the neutron star matter in β

equilibrium for which the nuclear liquid-gas critical point is known to
disappear

One subtlety remains. The grand potential, Ω , can be gen-
erally expressed as a functional of the order parameter, which
is denoted by M(x) here. If the spatial variation is smaller
than other scales, the derivative expansion makes sense and
the spatial profile of M(x) is optimized to minimize the
energy locally. It was Nickel [2281] who first recognized that
in a typical chiral model in the mean-field approximation the
local energy takes the following structured form:

Ω = α2
2 M(x)2 + α4

4

[
M(x)4 + (∇M(x))2

]

+α6
6

[
M(x)6 + 5(∇M(x))2M(x)2 + 1

2 (ΔM(x))2
]
.

(7.16)

This is a striking result. At the tricritical point (and near
the QCP also) α4 should change its sign. For α4 < 0, the
coefficient of the first derivative correction turns out to be
negative too, which means that ∇M(x) �= 0 would lower
the local energy. Therefore, the above form of the expanded
energy indicates that the ground state should be spatially
inhomogeneous.

The onset of inhomogeneity is called the Lifshitz point
and Nickel’s calculation was the first clarification for an
explicit relation between the QCP and the Lifshitz point,
though there were preceding works to hint at the possibility
of inhomogeneous ground states [2282]. Whether the QCP
and the Lifshitz point exactly coincide or not depends on
the model choice and the approximation, and in more real-
istic model studies the QCP is overridden by the inhomoge-
neous states (see Ref. [2283] for a comprehensive review).
Interestingly, such an inhomogeneous state is favored also in
Quarkyonic Regime; the large-Nc limit justifies an approxi-
mation of nuclear matter by a Skyrme crystal that inevitably
gives rise to inhomogeneous chiral condensate.

Therefore, another view of the QCD phase diagram may
look like Fig. 169 on which the QCP is taken over by
an approximate triple point where the hadronic phase, the
quark–gluon plasma, and Quarkyonic Regime (or the inho-

mogeneous state) meet [2253]. Once the large-Nc approx-
imation is relaxed, however, the thermal fluctuations of
phonons and pions should be taken into account. It is known
by now that inhomogeneous condensates are unstable and
the quasi-long-range order (i.e., not exponential but alge-
braic decay of the order parameter correlation) could survive
there [2284,2285]. In contrast to the QCP on Fig. 166, it is a
demanding question what can be an experimental signature
to detect Quarkyonic Regime (or the quasi-long-range order)
if the genuine phase diagram is like Fig. 169. Even with-
out inhomogeneous condensates, for example for the theory
proposal, the order parameter modes could be modified non-
trivially to have a damped dispersion relation similar to the
roton, which was discussed as a candidate for the observable
signature [2286].

7.2.6 Astrophysical constraints

Figure 169 looks like one variant of conjectured phase dia-
grams, but a special realization of dense matter in accord
to Fig. 169 is known. That is, the state of dense matter in
deep cores of a neutron star (NS) satisfies the β equilibrium
condition and contains more neutrons than protons due to
the Coulomb interaction. This makes a sharp contrast to the
heavy-ion collision whose time scale is shorter than the weak
interaction, and flavor changing processes are negligible. It
is important to note that the isospin contents would signif-
icantly affect the phase structure of QCD matter. A well-
known example is that the first-order liquid-gas phase tran-
sition of symmetric nuclear matter in Fig. 166 does not exist
any more in the NS matter; that is, pure neutron matter is
not a self-bound fermionic system unlike symmetric nuclear
matter. Then, it would be conceivable that the β equilibrium
condition simplifies the phase diagram from the conventional
one as in Fig. 166 into a smoother shape without any solid
phase boundary as in Fig. 169.

In fact, as we saw already before, the quark–hadron con-
tinuity scenario of the color-superconducting phase and the
large-Nc Quarkyonic Regime supports a picture of smooth
crossover from nuclear to quark matter. Here, we dis-
cuss astrophysical constraints about the phase transition of
QCD matter. The internal structure of the NS follows from
the hydrostatic condition (called the Tolman–Oppenheimer–
Volkoff equation) between the inward gravitational force and
the outward pressure gradient. To this end, the calculation of
the pressure gradient needs the relation of the pressure as a
function of the baryon density, i.e., p = p(ρ), or as a func-
tion of the energy density, p = p(ε), which is referred to as
the equation of state (EOS).

There is no first-principles derivation of the EOS except
for the zero-density and the high-density limits and the EOS
is the most crucial source of uncertainty in NS phenomenol-
ogy. For a given ε, the EOS with larger p (and smaller p) is

123



Eur. Phys. J. C          (2023) 83:1125 Page 249 of 636  1125 

Fig. 170 Conformality indicator deduced from the neutron star data
as a function of the energy density normalized by ε0 = 150 MeV/fm3.
Bands with different colors refer to the results from Refs. [2268,2292–
2294]. Figure adapted from Ref. [2295]

called “stiff” (and “soft”, respectively). Generally speaking,
stiffer EOSs can support heavier NSs, and so the heaviest
NS can give us the information about the EOS stiffness. If an
assumed model cannot predict a stiff EOS enough to explain
the experimentally confirmed largest NS mass, this model is
falsified. In the presence of the first-order phase transition,
p = p(ε) should have a plateau, i.e., a window of ε with
a constant p, in the mixed-phase region, which generally
makes the EOS softer.

In 2010 the mass measurement in a binary system (an NS
and a white dwarf) by means of the Shapiro time delay estab-
lished the existence of a two-solar-mass NS (PSR J1614-
2230 [2287]). Later, similar massive NSs (PSR J0348+0432
[2288] and PSR J0740+6620 [2289]) have been discovered.
These observations are extremely useful to make strict con-
straints and to exclude some of soft EOSs. In particular, the
first-order phase transition is disfavored; it should be weak if
the first-order phase transition takes place at moderate density
reachable in the NS environment, or the first-order phase tran-
sition can occur only at large density beyond the NS region
[2290]. In principle, a very rapid stiffening before/after the
first-order phase transition could also yield an EOS that sup-
ports the massive NSs, but justification of the underlying
mechanism needs further investigations. Actually, the ab ini-
tio estimates based on the chiral effective theory (χEFT)
and the pQCD suggest that the nuclear EOS near the satura-
tion density n0 and quark EOS for high density � 5n0 are
both softer than empirically adopted EOSs, and the stiffening
should occur around 1.5–1.8 times n0 [2291].

It is quite suggestive that such behavior of rapid stiffening
from a low-density soft EOS is inferred from the experi-
mental data, irrespective of any theoretical conjecture. The
distribution of masses and radii of the observed NSs can be
analyzed by probabilistic methods and the preferred EOS can

be constructed from the observational data only. Figure 170
shows a specific combination of the EOS, i.e., 1/3 − p/ε,
as a function of dimensionless energy density ε/ε0 with
ε0 = 150 MeV/fm3, that approaches zero in the conformal
limit at high density. In Fig. 170 the orange, the green, and
the red lines represent the results from the Bayesian anal-
yses of the observational data in Refs. [2292], [2293], and
[2294], respectively. The blue line represents the results from
the neural network analysis in Ref. [2268]. An intriguing
finding is that the system seems to restore the conformal-
ity quite rapidly as first quantified in Ref. [2295]. The pQCD
results at asymptotically high density as indicated in Fig. 170
are nearly conformal because the density scale is sufficiently
larger than ΛQCD and the system is weakly interacting. Thus,
the NS experimental data imply the realization of strongly
correlated conformal matter far earlier at not asymptotically
high but just intermediate density. The microscopic origin of
early conformality is to be identified by future studies.

Finally, let us briefly mention the impact of the gravita-
tional wave signal from the NS merger. So far, the LIGO-
Virgo collaboration reported two events of GW170817 and
GW190425 as candidates of the NS–NS merger. In particu-
lar the former happened at a short distance of only 40 Mpc,
and the electromagnetic counterpart (called the “kilonova”)
was also detected. For the moment only the signal from the
inspiral stage before the merger has led to an EOS constraint
in terms of the tidal deformability coefficient [2296,2297],
which turned out to be consistent with preceding constraints
from the symmetry energy measurement [2298] as well as
the NS mass-radius distributions. In the future the post-
merger stage after the merger might be detected, and if so, an
extremely dense state of matter, even denser than the largest
density in the central core of the NS, could be probed, which
will eventually clarify the nature of Quarkyonic Regime,
quark matter, and hopefully color-superconducting states.

8 Mesons

Conveners:
Eberhard Klempt and Curtis Meyer
The Particle Data Group lists 78 light mesons with u and d
quarks, 50 of them are “established”, with 3* or 4* ratings. 25
mesons carry strangeness, 16 of them are established. Most
mesons show a regular pattern, their masses are mostly com-
patible with a Regge behavior in L and N . Curtis Meyer intro-
duces the meson quantum numbers and their regularities. The
scalar mesons of lowest mass have resisted for a long time
an undisputed acceptance with proper poles in the complex
energy plane. José Pelaez shows how unitarity, analyticity
and dispersion relations are exploited to determine the scalar
partial wave and to extract the poles with high precision. A
driving force in meson spectroscopy is since long the quest
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for hybrids, in particular those with exotic quantum num-
bers, and for glueballs. Boris Grube and Eberhard Klempt
present old and recent evidence for these states. 12 (7) estab-
lished (candidate) charmed mesons are known at present, 7
(5) mesons with a bottom and a light quark, 6 (5) with a
strange and 2 with a charm quark. Charmonium (and bot-
tomonium) played a crucial role for the general acceptance
of the quark model. Nowadays, 39 cc̄ states are known, 25
of them established. The so-called XYZ states, unexpected
states or states with unexpected properties, play an important
role to understand the richness of QCD. Marco Pappagallo
reports on the crime story of X (3872) with its dual nature,
on the unexpected Y (4260) and the discovery of Z+c (4430)
and Tcc(3875), both with minimal four-quark content. Nora
Brambilla outlines the different approaches to identify the
degrees of freedom driving the exotic states.

8.1 The meson mass spectrum, a survey

Curtis Meyer

8.1.1 Introduction

In the quark model, mesons are states containing quarks,
antiquarks and gluons such that the net baryon number of the
state is zero. Conventional mesons are described as bound
states of a quarks and an antiquark (qq̄) and can be viewed
as similar to positronium (e+e−). Exotic mesons can include
hybrids, which are qq̄g states with valence glue, four-quark
states containing two quarks and two antiquarks, and glue-
balls containing only glue. These more exotic forms will be
discussed in later sections, this section will deal with the
ordinary mesons, referred to here as simply mesons. Mesons
containing only u, d and s quarks are known as light-quark
mesons. Given three quarks and three antiquarks, nine possi-
ble qq̄ combinations can be made. These nine mesons form
a so-called nonet where the members have the same well-
defined quantum numbers: total spin J , parity P , and C-
parity C , represented as J PC .

8.1.2 Meson quantum numbers

The J PC quantum numbers of quark–antiquark systems are
functions of the total spin, S, and the relative orbital angular
momentum, L . The spin S and angular momentum L com-
bine to yield the total spin J ,

�J = �L ⊕ �S, (8.1)

where L and S add as two angular momenta.
Parity is the result of a mirror reflection of the wave func-

tion, taking �r into −�r . It can be written as

P
[
ψ(�r)] = ψ(−�r) = ηPψ(�r), (8.2)

Table 9 The allowed J PC

quantum numbers for
light-quark mesons with L up to
4

L S J PC L S J PC

0 0 0−+ 3 0 3+−

0 1 1−− 3 1 2++

1 0 1+− 3 1 3++

1 1 0++ 3 1 4++

1 1 1++ 4 0 4+−

1 1 2++ 4 1 3−−

0 2 2−+ 4 1 4−−

1 2 1−− 4 1 5−−

1 2 2−−

1 2 3−−

where ηP is the eigenvalue of parity. An application of parity
twice must return the original state, ηP = ±1. In spherical
coordinates, the parity operation reduces to the reflection of
a YLM function,

YLM (π − θ, π + φ) = (−1)LYLM (θ, φ). (8.3)

From this, we conclude that ηP = (−1)L . For a qq̄ system,
the intrinsic parity of the antiquark is opposite to that of the
quark, which yields the total parity of a qq̄ system as

P(qq̄) = −(−1)L . (8.4)

Charge conjugation, C , is the result of a transformation
that takes a particle into its antiparticle. For a qq̄ system,
only electrically-neutral states can be eigenstates of C . In
order to determine the eigenvalues of C (ηC ), we need to
consider a wave function that includes both spatial and spin
information

Ψ (�r , �s) = R(r)Ylm(θ, φ)χ(�s). (8.5)

If we consider a uū system, theC operator reverses the mean-
ing of u and ū which has the effect of mapping the vector �r to
the u quark into−�r . Thus, following the arguments for parity,
the spatial part of C yields a factor of (−1)L . The C operator
also reverses the two individual spins. For a symmetric χ ,
we get a factor of 1, while for an antisymmetric χ , we get a
factor of −1. For two spin- 1

2 particles, the S = 0 singlet is
antisymmetric, while the S = 1 triplet is symmetric. Finally,
there is an additional factor of −1 when we interchange two
fermions. Combining all of this, we find that the C-parity of
(a neutral) qq̄ system is

C(qq̄) = (−1)L+S . (8.6)

In Table 9 are shown the J PCs and the possible values of L
and S up to L of 3. From the list, the J PC values of 0−−,
0+−, 1−+, 2+− and 3+− are missing. These missing J PC

are referred to as exotic.
Because C-parity is only defined for neutral meson, we

define G-parity to extend this to all non-strange qq̄ states,
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independent of charge. For isovector states (I = 1),C would
transform a charged member into the oppositely charged state
(e.g. π+ → π−). In order to transform this back to the orig-
inal charge, we would need to perform a rotation in isospin
(π− → π+). For a state of whose neutral partner has C-
parity C , and whose total isospin is I , the G-parity is defined
to be

G = C · (−1)I , (8.7)

which can be generalized to

G(qq̄) = (−1)L+S+I . (8.8)

The latter is valid for all of the I = 0 and I = 1 non-strange
members of a nonet. In the limit of exact SU(3) symmetry,
G is conserved. Mesons with G = +1 decay into an even
number of pions while mesons with G = −1 decay into an
odd number of pions. From this, mesons have the following
well defined quantum numbers: total angular momentum J ,
isospin I , parity P , C-parity C , and G-parity G. These are
represented as (I G)J PC , or simply J PC for short. For the
case of L = 0 and S = 0, we have J PC = 0−+, while for
L = 0 and S = 1, J PC = 1−−.

8.1.3 Light-quark meson names

Prior to 1986, there was no systematic naming scheme for
mesons. Those who discovered new states often proposed
what those states would be called. In 1986, the Particle Data
Group [2299] proposed a naming scheme for mesons that is
still in use today. This scheme is based on the total spin J ,
parity P and charge conjugation C of the nonet, and then the
isospin of the nonet members. The base name is the same for
all mesons of a given I and PC , where there is a subscript
denoting the total spin J . For the kaons, (I = 1

2 ), those with
J P = 0−, 1+, 2−, . . . are named KJ , while those with J P =
0+, 1−, 2+, . . . are named K ∗J . Table 10 lists the names of
the light-quark mesons up to L = 3.

8.1.4 SU(3) flavor and light-quark mesons

Given three flavors of light quarks, there are nine possible
qq̄ combinations. SU(3) flavor groups these mesons into
eight members of an SU(3) octet and one SU(3) singlet. Fig-
ure 171 shows these qq̄ combinations plotted on a graph
where the strangeness S is plotted against the third compo-
nent of isospin, I3. There are four mesons with S = 0, three
with isospin 1 and one with isospin 0. The SU(3) singlet state
also has I = 0. The SU(3) singlet state with I = 0 is

| 1〉 = 1√
3

(
uū + dd̄ + ss̄

)
, (8.9)

Table 10 The naming scheme for light-quark mesons [616]

L S J PC I = 1 G I = 0 G K

0 0 0−+ π −1 η η′ +1 K

0 1 1−− ρ +1 ω φ −1 K ∗

1 0 1+− b1 +1 h1 h′1 −1 K1

1 1 0++ a0 −1 f0 f ′0 +1 K ∗0
1 1 1++ a1 −1 f1 f ′1 +1 K1

1 1 2++ a2 −1 f2 f ′2 +1 K ∗2
2 0 2−+ π2 −1 η2 η′2 +1 K2

2 1 1−− ρ1 +1 ω1 φ1 −1 K ∗1
2 1 2−− ρ2 +1 ω2 φ2 −1 K2

2 1 3−− ρ3 +1 ω3 φ3 −1 K ∗3
3 0 3+− b3 +1 h3 h′3 −1 K3

3 1 2++ a2 −1 f2 f ′2 +1 K ∗2
3 1 3++ a3 −1 f3 f ′3 +1 K3

3 1 4++ a4 −1 f4 f ′4 +1 K ∗4
4 0 4−+ π4 −1 η4 η′4 +1 K4

4 1 3−− ρ3 +1 ω3 φ3 −1 K ∗3
4 1 4−− ρ4 +1 ω4 φ4 −1 K4

4 1 5−− ρ5 +1 ω5 φ5 −1 K ∗5

Fig. 171 The SU(3) quark structure of the light-quark mesons. The
mesons are plotted against strangeness S on the vertical axis and the z
component of isospin, Iz on the horizontal axis The left-hand plot shows
the octet mesons, while the right-hand plot shows the singlet meson

while the SU(3) octet state with I = 0 is

| 8〉 = 1√
6

(
uū + dd̄ − 2 ss̄

)
. (8.10)

The two physical I = 0 states are mixtures of the two SU(3)
states. Following the Particle Data Group [616] notation with
nonet mixing angle θn , the physical isospin-zero states are

(
f
f ′

)

=
(

cos θn sin θn
− sin θn cos θn

) ( | 1〉
| 8〉

)

. (8.11)
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Table 11 The nonet mixing
angles as reported in reference
[616]. The linear formula is
given by Eq. (8.12) while the
quadratic angle is given by
Eq. (8.13)

J PC θlin θquad

0−+ −24.5◦ −11.3◦

1−− 36.5◦ 39.2◦

2++ 28.0◦ 29.6◦

3−− 30.8◦ 31.8◦

Many of the known nonets have physical states that sep-
arate the light-quark states, uū + dd̄ , and the states with
hidden strangeness, ss̄. This is known as ideal mixing and
corresponds to tan θn = 1√

2
, or θn ≈ 35.26◦. Contrary to

this, the ground state mesons are almost pure SU(3) states.
The η′ is nearly pure singlet and the η is the octet state. The
nonet mixing angles can be determined from masses of the
member states. In the following,ma is the mass of the isospin
1 state, mK is the mass of the isospin- 1

2 , and m f and m f ′ are
the masses of the two isospin-0 states. θ in Eq. (8.12) is
known as the linear mixing angle,

tan θ = 4mK − ma − 3m f ′

2
√

2 (ma − mK )
(8.12)

while Eq. (8.13) is known to define the quadratic mixing
angle.

tan2 θ = 4mK − ma − 3m f ′

−4mK + ma + 3m f
(8.13)

The Particle Data Group quotes mixing angles for four nonets
which are listed in Table 11. With exception of the pseu-
doscalar J PC = 0−+ nonet, the others nonets are all fairly
close to being ideally mixed.

The most comprehensive predictions for nonet mixing
angles comes from lattice QCD [521]. Those predictions are
in good agreement with the known values. The mixing angles
can also be determined using relative decay rates for the phys-
ical isospin 0 states to pairs of mesons in the same nonets, to
two pseudoscalar mesons, or to a pseudoscalar and a vector
J PC = 1−− meson. Determinations exploiting decay rates
exist for several nonets [2300]. In Table 12 are listed the lat-
tice QCD predictions as well as several determinations of
mixing angles from decay measurements. The one discrep-
ancy between lattice and decay rate predictions are in the
2−+ nonet; this may be due to incorrect assignments and is
discussed later.

8.1.5 Light-quark mesons

The pseudoscalar mesons
The J PC = 0−+mesons are spin singlets with 0 orbital angu-
lar momentum and are known as the pseudoscalar mesons.
They are listed in Table 13. These are the lightest mesons, and
with the exception of the η′, all their decays are either weak
or electromagnetic. In addition, the mixing of this nonet is

Table 12 The nonet mixing angles for mesons with orbital angular
momentum less than 4. The lattice results are reported in reference
[521], while the references for the decay rate determinations are given
in the table

J PC θn lattice θn decays

0−+ −11◦ −9.3◦ [2301]

1−− 33◦

1+− 35◦

1++ 8◦

2++ 28◦ 32.1◦ [2302]

2−+ 33◦ −6.7◦ [2303]

1−− 30◦

2−− 33◦

3−− 33◦ 31.8◦ [2304]

3−+ 34◦

2++ 26◦

3++ 33◦

4++ 29◦

Table 13 The pseudoscalar mesons

Isospin State(s) Mass [MeV] Width or lifetime

1 π0 134.9768 8.52× 10−17s

1 π± 139.57039 2.6033× 10−8s
1
2 K± 493.677 1.238× 10−8s
1
2 K 0/K̄ 0 497.611

0 η 547.862 0.00131 MeV

0 η′ 957.78 8.49 MeV

quite different from other nonets in that the mixing angle is
small, and the η and η′ are very close to being SU(3) octet
and singlet states respectively.

In addition to the ground state pseudoscalar mesons, there
can also be radially excited states. Both excited πs, the
π(1300) and π(1800), and ηs, the η(1295), the η(1405), the
η(1475), η(1760) and the η(2225) have been observed. The
K (1460) and K (1830) are the observed J P = 0− states. The
lighter is consistent with the first radial excitation. The Parti-
cle Data Group [616] identifies the states listed in Table 14 as
the nonet of radially excited pseudoscalar mesons. One could
also associate theπ(1800), η(1760) and K (1830) together as
a third nonet as listed in Table 15. However in addition to the
second radial excitation, there is a predicted pseudoscalar
glueball (see Sect. 8.4) as well as a nonet of J PC = 0−+
hybrid mesons (see Sect. 8.3).

With regard to the η(1295) state, we believe that its status
deserves some scrutiny and that the η(1405) and η(1475)
should be the two I = 0 members of the radially excited
pseudoscalar mesons. For the η(1295), there is a single report
in radiative J/ψ decays [2305,2306], but there is ambigu-
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Table 14 The radially excited pseudoscalar mesons according to ref-
erence [616]

Isospin State(s) Mass [MeV] Width [MeV]

1 π(1300) 1300 200 to 600

0 η(1295) 1294 55

0 η(1475) 1475 90
1
2 K (1460) 1482 335

Table 15 A possible third nonet of pseudoscalar mesons

Isospin State(s) Mass [MeV] Width [MeV]

1 π(1800) 1810 215

0 η(1760) 1751 240

0
1
2 K (1830) 1874 168

Table 16 The vector mesons

Isospin State(s) Mass [MeV] Width [MeV]

1 ρ(770) 775.26 149.1

0 ω(782) 782.65 8.49

0 φ(1020) 1019.461 4.249
1
2 K ∗±(892) 891.66 50.8
1
2 K ∗0(892) 895.5 47.3

ity about whether the signal is η(1295) or f1(1285). It has
not been reported in other J/ψ measurements since then,
while there has been extensive results of the η′, η(1405) and
η(1475). The majority of the observations have been in pion
production [2307–2311] where there are generally contribu-
tions from both the η(1295) and the f1(1285). In p p̄ annihi-
lation, both the η(1405) [2312] and the η(1475) [2313] have
been observed, but no observation of the η(1295) has been
reported.

The vector mesons
A spin triplet system with L = 0 forms the J PC = 1−−
nonet, its members are known as vector mesons. These
mesons are shown in Table 16. The dominant decay modes
of the vector mesons are through the strong interaction to
two or three pseudoscalar mesons and the states are nearly
ideally mixed with the ω nearly all uū and dd̄ , while the φ is
nearly all ss̄.

In addition to the expected radial excitations of the vec-
tor mesons, the L = 2, S = 1 qq̄ system can also have
J PC = 1−−. Finally, there is a nonet of hybrid mesons
expected with the same J PC . Thus, we expect disentan-
gling of the excited vector meson spectrum to be tricky. The
reported states in I = 1 are ρ(1450), ρ(1570), ρ(1700),
ρ(1900) and ρ(2150). In the I = 0 system, ω(1420),

Table 17 The radially excited vector mesons

Isospin State(s) Mass [MeV] Width [MeV]

1 ρ(1450) 1465 400

0 ω(1420) 1410 290

0 φ(1680) 1680 150
1
2 K ∗(1410) 1414 232

Table 18 A possible fourth nonet of vector mesons

Isospin State(s) Mass [MeV] Width [MeV]

1 ρ(1900)

0

0 φ(2170) 2162 100
1
2

Table 19 The pseudo vector mesons

Isospin State(s) Mass [MeV] Width [MeV]

1 b1(1235) 1229.5 142

0 h1(1170) 1166 375

0 h1(1415) 1416 90
1
2 K1A

ω(1680), φ(1680) and φ(2170) have been reported. Finally,
for I = 1

2 , the K ∗(1410) and K ∗(1680) are known. The
Particle Data Group identifies the radially excited states as
in Table 17. The states identified with the D-wave nonet are
listed in Table 24 and discussed later. Finally, the ρ(1900)
and φ(2170) could be part of another nonet; either the hybrid
nonet or the second radial excitation of the ground-state vec-
tor mesons (Table 18).

The pseudo vector mesons
Spin singlet states with L = 1 form the J PC = 1+− nonet,
and are known as the pseudo vector mesons. These mesons
are listed in Table 19. There is one known state beyond those
listed in the table, the h1(1595) which has been reported in
pion production [2314]. There is also an interesting compli-
cation with the kaonic states where C-parity is not defined.
The states with open strangeness have J P = 1+ which is
the same as those in the J PC = 1++ axial vector mesons.
Because of this, the two states can mix, and it is believed
that the physical states, K1(1270) and K1(1400), are mix-
tures of the SU(3) states, K1A and K1B , with a mixing angle
θK1 = −(33.6± 4.3)◦ [2315] conventionally defined by
( | K1(1270)〉
| K1(1400)〉

)

=
(

sin θK1 cos θK1

cos θK1 − sin θK1

) ( | K1A〉
| K1B〉

)

.

The scalar mesons
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Table 20 The axial vector mesons

Isospin State(s) Mass [MeV] Width [MeV]

1 a1(1260) 1230 250 to 600

0 f1(1285) 1281.9 22.7

0 f1(1420) 1426.3 54.5
1
2 K1B

A spin triplet with L = 1 can form three possible J PCs: 0++,
1++ and 2++. The 0++ states are known as scalar mesons
and are discussed in Sect. 8.2 because there are added com-
plications which make it difficult to discuss them with the
other mesons. There is also significant discussion of the scalar
states and their relation to the scalar glueball, see Sect. 8.4).

The axial vector mesons
The L = 1 J PC = 1++ mesons are known as the axial
vector mesons and are listed in Table 20. As noted earlier in
the discussion of the pseudo vector mesons, the SU(3) K1B

state is a mixture of the physical K1(1270) and K1(1400)
states. In addition to the states listed, two additional states
have been reported. The f1(1510) has been seen in kaon
production [2316,2317] as well as pion production [2318]
decaying to K ∗K . These productions and decay would favor
an ss̄ interpretation of the f1(1510), but it is probably too
light to be the radial excitation. A second state, the a1(1640)
is identified as the radial excitation of the a1(1270). This has
been observed in pion production with the most significant
observation in reference [2319]. It has also been reported in
D decays [2320].

The tensor mesons
The last L = 1 nonet contains the J PC = 2++ ten-
sor mesons, where the states are listed in Table 21. This
well-established nonet is close to ideally mixed as noted in
Table 11. As with the vector mesons, there is a second L , S
combination that can exist for J PC = 2++, L = 3 and S = 1.
In addition, one of the lightest glueballs is also expected to
have these quantum numbers, and of course radial excitations
should be present.

With regard to excited states, there is a second a2 state,
the a2(1700), which the Particle Data Group associates with
the radial excitation of the tensor mesons. This assignment is
based on mass, where we would expect the radiala2 state to be
close in mass to the a1(1640), the radial excitation of the a1.
The L = 3 state is expected to have similar mass to other L =
3 states, where here the a4(1970) anchors these nonet around
2 GeV. The a2(1700) has been observed in many production
mechanisms including pion production [2319,2321–2324],
p p̄ annihilation [2325–2328], two-photon production [2329,
2330] and ψ ′ radiative decays [2331].

For the isospin 0 states, there is an overpopulation of
f2 states, with 10 additional states beyond the two ground

Table 21 The tensor mesons

Isospin State(s) Mass [MeV] Width [MeV]

1 a2(1320) 1316.9 107 to 600

0 f2(1270) 1275.5 186.7

0 f ′2(1525) 1517.4 86
1
2 K ∗2 (1430) 1427 100

Table 22 The radial excitations of the tensor mesons

Isospin State(s) Mass [MeV] Width [MeV]

1 a2(1700) 1698 265 to 600

0 f2(1640) 1639 99

0 f2(1950) 1936 464
1
2 K ∗2 (1980) 1995 349

state tensors reported. These include the f2(1430), f2(1565),
f2(1640), f2(1810), f2(1910), f2(1950), f2(2010), f2(2150),
f2(2300) and f2(2340). For I = 1

2 , there is a single state,
the K ∗2 (1980). The Particle Data Group identifies the radi-
ally excited states as listed in Table 22. With the radial states
accounting for 2 of the 10 extra states, a second pair in the
L = 4 mesons, probably above 2 GeV in mass, and a glue-
ball state, there are still 5 states. Presumably several of the
reported states are all the same state, with low statistics and
differences in production mechanisms accounting for the dif-
ferences. Three of the isoscalar tensor states were observed
in the OZI rule suppressed reaction π− p→ φφn [2332] and
were discussed as one or three glueballs. This interpretation
is supported by a recent analysis of BESIII data on radiative
J/ψ decays (see Sect. 8.4). In any case, a careful exami-
nation of the I = 0 J PC = 2++ data with high statistics
experiments is merited.

The pseudo tensor mesons
Mesons formed with S = 0 and L = 2 have J PC = 2−+ and
are known as the pseudo tensor mesons. The known states are
listed in Table 23. In addition to the radial excitations of these
states, there is also a nonet of hybrid mesons expected. The
latter are likely slightly heavier than the mesons in Table 23.
There are three known states beyond those in the table, the
π2(1880), π2(2005) and the π2(2100). It is also interesting
that the decay patterns of the η2(1645) and the η2(1870)
both look like those for a uū/dd̄ state and not an ss̄ state
[2333]. This suggests that the η2(1870) might be paired with
the π2(1880) in a third nonet. However, studies of the axial
anomaly [2300] favor the assignment in Table 23, but with
an unusual mixing angle that is inconsistent with lattice, as
shown in Table 12.

The D-state vector mesons
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Table 23 The pseudo tensor mesons

Isospin State(s) Mass [MeV] Width [MeV]

1 π2(1670) 1670.6 258

0 η2(1645) 1617 181

0 η2(1870) 1842 225
1
2 K2(1770) 1773 186

Table 24 The L = 2 1−− vector mesons

Isospin State(s) Mass [MeV] Width [MeV]

1 ρ(1700) 1720 250

0 ω(1650) 1670 315

0
1
2 K ∗(1680) 1718 322

Table 25 The L = 2 3−− vector mesons

Isospin State(s) Mass [MeV] Width [MeV]

1 ρ3(1690) 1688.8 161

0 ω3(1670) 1677 168

0 φ3(1850) 1854 87
1
2 K ∗3 (1780) 1776 159

The mesons formed from an S = 1, L = 2 qq̄ system can
have J PC = 1−−, 2−− and 3−− and are referred to as vector
mesons. The Particle Data Group identifies the states listed
in Table 24 with the 1−− states, where there is no candidate
for the φ state which is probably expected with a mass in
the 1.8 to 1.9 GeV mass region. For the J PC = 2−− states,
very little is known with the only assignment made by the
Particle Data Group being the K2(1820). However, similar
to the K1A and K1B of the 1+− and 1++ nonets, the kaonic
states from the 2−+ and 2−− nonets can also mix.

The J PC = 3−− nonet is one of the well established
nonets where a mixing angle is also reported. These states
are listed in Table 25. In addition to the listed states, there are
two additionalρ3 states reported in literature. Theρ3(1990) is
reported in p p̄ annihilation [2334,2335], and the ρ3(2250)
reported in both p̄ p annihilation and in ψ ′ decays [2334,
2336]. The lighter state could be a radial excitation of the
L = 2 ρ3(1690). The higher mass state is of similar mass to
the ρ5(2350) and could be an L = 4 meson.

Higher excitations
Going beyond the L = 2 mesons, less is known, with the most
information tending to be on the nonets with the largest J . For
the case of L = 3, there are candidates for the J PC = 4++
mesons as shown in Table 26. There should also be a 2++
and 3++ nonet as well as a J PC = 3+− nonet. While as
noted in the tensor meson section, there are a large number
of reported f2 states, in particular the f2(2010), f2(2150),

Table 26 The L = 3 4++ mesons

Isospin State(s) Mass [MeV] Width [MeV]

1 a4(1970) 1967 324

0 f4(2050) 2018 237

0 f4(2300) 2320 260
1
2 K ∗4 (2045) 2048 199

Table 27 The L = 4 5−− vector mesons

Isospin State(s) Mass [MeV] Width [MeV]

1 ρ5(2350) 2350 400

0

0
1
2 K ∗5 (2380) 2382 178

f2(2300) and f2(2340), assigning any of these to an L = 3
nonet is not clear. There is also a J P = 3+ kaonic state, the
K3(2320) which could be a member of either of the spin 3
nonets.

For the L = 4 mesons, the highest spin is J PC = 5−−,
and a few states with these quantum numbers are known, as
listed in Table 27. There should also be a 3−−, 4−− and 4−+
nonet for which a few states are reported. For I = 1

2 the
K4(2500) which could be a member of either of the J = 4
nonets. There are also two ρ3 states reported, the ρ3(1990)
and the ρ3(2250). The latter state is of similar mass to the
ρ5(2350) and could be an L = 4 meson. The lighter state
could be a radial excitation of the L = 2 ρ3(1690).

8.1.6 The leading Regge trajectories

The original meson Regge trajectories78 described a lin-
ear relation between the mass squared and the orbital
angular momentum of mesons [1068,2338], where the tra-
jectories include J PC = 0−+, 1+−, 2−+, 3+−, . . . and
1−−, 2++, 3−−, 4++, 5−−, . . .. In reality, the trajectories are
often more complicated than the simple linear form. In a sim-
plified picture when the quarks can be regarded as ultrarel-
ativistic, a linear confining potential leads to linear Regge
trajectories, while in the nonrelativistic regime, the trajecto-
ries would be nonlinear, and the intermediate regime would
lead to a transition in the slope of the Regge trajectories. In
the ultrarelativistic regime, the Regge slope depends on the
string tension, while more generally it depends on both the
quark masses and the tension. See reference [2337] for a more
detailed discussion on this. In addition to the trajectories in
orbital angular momentum l, there are also trajectories in the

78 See paragraph The Regge approach and QCD in Sect. 12.6 for an
introduction to Regge phenomenology
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Fig. 172 The pseudoscalar meson Regge trajectories as a function of
the orbital angular momentum l. The isospin 0 trajectory has been
shifted by 1

2 unit in l to the right. The established states, π , b1(1235),
π2(1670), η, h1(1170) and η2(1645) are shown in blue. The states
shown in green, b3(2030), π4(2250), h3(2025) and η4(2330), need
confirmation. The fitted slopes are consistent with 1.20 GeV2 for I = 1
and 1.37 GeV2 for I = 0 as in reference [2337]

radial excitation quantum number, n. From a simple linear
confining potential with string tension σ , the orbital trajec-
tory is given in Eq. (8.14) and the radial as in Eq. (8.15),
where one would expect universal slopes in both cases, with
the slopes related by a factor of π

2 .

M2 = 8σ l + c1, (8.14)

M2 = 4πσn + c2. (8.15)

For light-quark mesons, the slopes are similar, but not
universal. The orbital trajectories starting with the pseu-
doscalar mesons are shown in Fig. 172. The slopes for the
two are found to be 1.20 GeV2 and 1.37 GeV2 respectively.
The orbital trajectories starting with the vector mesons are
shown in Fig. 173. In these cases, the slopes are found to be
1.10 GeV2 and 1.09 GeV2 respectively.

8.2 The light scalars

José R. Peláez

8.2.1 Introduction

Light scalar mesons are treated in a separate subsection
because, on the one hand, both their existence and nature
have been the subject of a six-decade-long debate that pre-
dates QCD. On the other hand, they are particularly interest-
ing because they play a very relevant role in several aspects,
gathered below in seven items for concreteness, some of them
already present before QCD, some others after.

First of all, in 1955, well before QCD was formulated,
Johnson and Teller [2339] proposed the existence of a light
scalar-isoscalar field to explain the attractive part of the

Fig. 173 The vector meson Regge trajectories as a function of
the orbital angular momentum l. The isospin 0 trajectory has been
shifted by 1

2 unit in l to the right. The established states, ρ(770),
a2(1320), ρ3(1690), a4(1970), ρ5(2350), ω(781), f2(1270), ω3(1670)
and f4(2050) are shown in blue. The states shown in green, a6(2540)
and ω5(2250) need confirmation. The fitted slopes are consistent with
1.10 GeV2 for I = 1 and 1.09 GeV2 for I = 0 as in reference [2337]

nucleon–nucleon interaction. Two years later, Schwinger
suggested that such a field, which he named σ , could be
an isospin singlet, difficult to observe due to its huge width
caused by its most likely very strong coupling to two pions.

Second, in the early sixties, Gell-Mann and Levy [2340]
considered this field as the fourth member of a multiplet
together with the three pions to build the popular “Linear
sigma model” (LσM). Such a state could also be generated
dynamically in the Nambu and Jona-Lasinio (NJL) mod-
els [59,2255]. These relatively simple models were able to
explain the light masses of the pions, kaons and eta, and their
mass gap with respect to the other hadrons, since they are the
Nambu–Goldstone Bosons (NGB) of a spontaneous chiral
symmetry breaking observed in the spectrum. Actually, they
are pseudo-NGB, because they are not strictly massless. The
masses of light-scalar mesons are closely related to the size
of the non-zero vacuum expectation value, particularly those
that share its same quantum numbers. Details of their inter-
actions are also related to the specifics of the spontaneous
breaking mechanism. The consequences of chiral symmetry
were initially worked out with current–algebra methods as
described in Sect. 1. Of particular interest for us will be the
derivative interactions of NGB among themselves and the
requirement of an Adler-zero below threshold in the NGB
scattering amplitudes [20]. The leading order at low energies
of those amplitudes was obtained by Weinberg in [22].

Third, since light scalars are the lightest states in the QCD
spectrum that are not pseudo-NGB, we may expect them to fit
as ordinary quark–antiquark mesons within the Quark Model
that was proposed in the mid 1960s [17,18]. However, they
do not, as we will see repeatedly below. Moreover, within
the Quark Model, another scalar strange state, relatively sim-
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Fig. 174 Light scalar nonet. Note the inverted hierarchy with respect
to the naive qq̄ assignment in Fig. 171, according to which the a0(980)
should be ∼ 200 MeV lighter than the K ∗0 (700)

ilar to the σ and called κ , was proposed by Dalitz in 1965
[2341], with a quark–antiquark assignment in a simple poten-
tial model, or more generally “simply on the basis of SU(3)
symmetry”. The existence of these two states, the σ and κ ,
nowadays known as f0(500) and K ∗0 (700), has been very
controversial until very recently because they are extremely
wide and difficult to observe. Actually, since they were first
proposed, there were many experimental and phenomeno-
logical claims of such states, sometimes narrow, sometimes
wide, sometimes lighter than 1 GeV, sometimes heavier, and
sometimes absent. The list of references is huge and we refer
the reader to the Review of Particle Properties (RPP) [616]
and the evolution of its “Note on Light Scalars” over the
years, as well as the historical accounts in relatively recent
reviews [2342,2343]. An additional pair of scalar mesons,
sitting very close to the K K̄ threshold at 980 MeV, were
soon identified, presently known as f0(980) and a0(980).
These are narrower and their existence has not been contro-
versial, although their mass and width values have changed
slightly over the years. All in all they form the lightest scalar
SU(3) nonet in Fig. 174. Note the largely broken flavor sym-
metry since the difference in the nominal masses is as large
as 480 MeV. In addition, the mass hierarchy is inverted with
respect to the naive expectations for an ordinary nonet of
quark–antiquark states as in Fig. 171. For example, since in
such a scheme the a0(980) would contain no strange valence
quarks or antiquarks it should be about 200 MeV lighter than
the K ∗0 (700), with one valence strange quark or antiquark.
But this is precisely the opposite of what is found for the
lightest scalars.

Fourth, light scalars, and particularly the σ and κ , are dif-
ficult to include in the linear Regge trajectories that the other
ordinary mesons follow [2344–2346] . These linear trajec-
tories are related to the confinement mechanism. This diffi-
culty became clear only around the time when the existence
of the lightest scalars was being settled, and although QCD
had already been formulated, it played no direct role in this
discussion.

With the advent of QCD new interesting perspectives
arose. In particular:

Fifth, one of the most attractive possibilities of a non-
abelian gauge theory like QCD is the existence of glue-
balls, discussed in Sect. 8.4. The lightest one is expected to
have scalar-isoscalar quantum numbers and to appear as an
“extra state” beyond the quark SU(3) multiplets. It is there-
fore important to identify all states within some light-scalar
meson SU(3) nonets. For this, strange states are important,
since they do not mix with glueballs and count how many
quark nonets exist.

Sixth, given the quark constituent masses, tetraquarks
would be naively expected to appear naturally around 1.4
GeV, if they appear at all. However, based on the dominance
of the magnetic contribution of gluon interactions, Jaffe
[2347] was able to build, within the “bag” model, tetraquarks
well below 1 GeV. This suggests the existence of two 0+
nonets, one made of such tetraquarks, below 1 GeV, that on
a first approximation could be identified with the nonet in
Fig. 174 and another one made of ordinary qq̄ above 1 GeV.
This is how light scalars became the first non-ordinary-meson
candidates, in the form of tetraquarks, or meson molecules.
Still, they are not usually considered “exotics”, but “crypto-
exotics”, since their quantum numbers can also be built with
ordinary quark–antiquark configurations, with which they
will necessarily mix, thus complicating this simple picture.

Seventh and final, despite QCD being non-perturbative
at low energies, its symmetries, and particularly the sponta-
neous symmetry breaking of chiral symmetry leading to a
mass gap between NGB and other hadrons, allow for a sys-
tematic low-energy (and low-mass) expansion of amplitudes
involving pions, kaons, and the eta. The mathematical for-
mulation in terms of an Effective Theory [1426] in the meson
sector, has been presented in Sect. 6.2 and is called Chiral
Perturbation Theory (ChPT) [69,1610]. Being the next less
massive states after the NGB, one would naively expect the
lightest scalars to saturate the ChPT parameters at NLO dis-
cussed in Sect. 6.2. Once again, they do not, but the vector
mesons do instead. This suggests once more that the dynam-
ics that govern the formation of light scalars might be differ-
ent from that of ordinary mesons like vectors.

With all those pieces of motivation in mind, the rest of the
section is divided into two parts. First, we will describe the
light scalars present status, paying attention to the dispersive
and analytic methods used to settle the controversy about
their existence, and other dispersive applications that are of
relevance for the next part. Since the purpose of this work is
to celebrate the 50th anniversary of QCD, we apologize for
discussing in the second part only the most direct connections
with it. Namely, their description in terms of (unitarized)
ChPT and their dependence on the number of colors and
quark masses. We will then discuss what can we conclude
from these results.
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Table 28 Scalar light mesons below 1.9 GeV as listed in the RPP[300].
Note that for the first nonet we have taken the “T -matrix pole” param-
eters, not available for the rest. Also, there seems to be one f0 state too
many to form a second nonet

Isospin State(s) Mass [MeV] Width [MeV]

0 f0(500) 400–550 400–700

1/2 K ∗0 (700) 630–730 520–680

0 f0(980) 980–1010 40–70

1 a0(980) 960–1030 40–140

0 f0(1370) 1200–1500 200–500

1/2 K ∗0 (1430) 1425± 50 270± 80

1 a0(1450) 1474± 19 265± 13

0 f0(1500) 1506± 6 112± 9

0 f0(1710) 1704± 12 123± 18

Present status
As it is customary, and given the present precision, we con-
sider the isospin limit. At present, 19 well-established scalar
mesons are identified in the RPP [300] below 1.9 GeV,
which we list in Table 28 with their present names. We have
already classified nine of them in the lightest scalar nonet
in Fig. 174. The other ten are three isoscalars, f0(1370),
f0(1500), f0(1710), the a0 (1450) isovectors with their three
different charges, and the K ∗0 (1430) in four different com-
binations of strangeness and charge. There are more scalar
mesons, but they all lie nominally at or above 1.95 GeV.
Hence, given the number of strange scalars and isovectors,
there must be two nonets below 1.75 GeV. Looking at their
masses, one lies below 1 GeV and the other one around 1.4
GeV. Note, however, that above 1 GeV there seems to be
one scalar state too many. This agrees with the expectation
for the lightest QCD glueball. On the other hand, the newly
proposed a0(1700) [2348–2351] points to an interpretation
of the f0(1710) as isoscalar partner of the a0(1700).

Compared with other mesons made of light quarks dis-
cussed in Sect. 8.1, we see that, for similar masses, they
tend to have larger widths. The exceptions are the f0(980)
and a0(980), which are narrower than the rest because their
decay into K K̄ is suppressed due to their proximity to the
K K̄ threshold. Given the O(100)MeV width of most of these
resonances, there must be some mixing between states with
the same quantum numbers in different nonets. This mix-
ing most likely distorts the mass hierarchies expected if they
were narrow. Many mixing schemes have been proposed, but
they only make sense for the flavor part of the wave func-
tion. We will see below one such treatment. Unfortunately,
they are often used for the spatial or momentum part, which
would only make sense in the narrow width approximation
for almost stable mesons, which is not the case of any pair of
light scalars with the same quantum numbers, and should be
avoided (see Section 4.6.2 in [2342] and references therein).

In general, light-scalar-meson parameters have much big-
ger uncertainties than those of other mesons. This is because
their large widths make them often overlap with one another
as well as with other analytic features like thresholds. As a
consequence, in many analyses they do not show up as clean
resonance peaks and their observed shapes can vary strongly,
depending on specific features of their production, becom-
ing dips or being even completely masked. It is therefore
essential to determine light-scalar-meson parameters from
process-independent quantities. In particular, resonances are
rigorously defined through their associated poles in the com-
plex plane, that we briefly describe next.

8.2.2 Resonance poles and dispersive determinations

Resonance poles
These are poles appearing in the complex s-plane of any T -
matrix element describing a process where a resonance R
is produced as an intermediate state. As a technical remark,
these poles appear in conjugated pairs in the Riemann sheet
that is reached when crossing continuously from above the
square-root cuts associated with the center-of-mass (CM)
momenta of the particles in the physically available inter-
mediate states. This sheet is sometimes called “adjacent”,
“proximal” and in the elastic case “second” sheet. Out of
the conjugate pair, it is the pole in the lower-half plane that
most influences the behavior of the amplitude on the real
axis. Then, its position sR is related to the resonance mass
and width as

√
sR ≡ M − iΓ/2. The familiar peak shape in

the modulus squared of the amplitude is clearly observed for
real-physical values of s only when the resonance is narrow
and well isolated from other singularities. Only in such cases
the simple Breit–Wigner (BW) approximation, or models like
K-matrices or isobar sums, etc. may be justified. However,
this is not the case for most scalars and definitely not for
the f0(500) and K ∗0 (700), which have been the most contro-
versial and latest states to be accepted as well-established in
the RPP. This is the reason why in Table 28 we provide the
“T -matrix pole” mass and widths, avoiding “Breit–Wigner”
parameters.

Let us then briefly comment on how the poles of those
states are determined by means of model-independent dis-
persive and analytic techniques, although we first need to
define partial waves.

Partial waves
Resonances and their quantum numbers are most easily iden-
tified using partial waves of definite isospin and angular
momentum !. For rigorous determinations of the lightest
scalar mesons, the most relevant process is meson–meson
scattering, whose partial waves are defined as follows:

f I! (s) =
1

32πK

∫ 1

−1
dzs P!(zs)F

I (s, t (zs)), (8.16)
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where F I (s, t) are the amplitudes, or elements of the T -
matrix, of definite isospin I ; s, t are the usual Mandelstamm
variables, P! the Legendre polynomials and zs the scattering
angle in the s channel. Note that K = 1, 2 for Kπ and
ππ , respectively, because, for hadron interactions, pions are
identical particles in the isospin limit that we will use.

It is convenient to recast partial waves in terms of the phase
shift δ I! and elasticity ηI

! as follows:

f I! (s) =
ηI
! (s)e

i2δ I! (s) − 1

2iσ(s)
, σ (s) = 2q(s)√

s
, (8.17)

where q is the CM momentum of the scattering particles. In
the elastic regime ηI

! = 1 and we can write:

f I! (s) =
eiδ

I
! (s) sin δ I! (s)

σ (s)
. (8.18)

For later purposes, it is important to recall that we are inter-
ested in poles in the second Riemann sheet. Let us illustrate
the elastic case, where the analytic continuation to the second
sheet through the physical cut is very simple. Moreover, it
is the most relevant for the σ/ f0(500) and κ/K ∗0 (700), since
they appear in elastic ππ and πK scattering, respectively,
well below the next open threshold. For elastic partial waves,
the following relation holds S! = 1 + 2iσ(s) f!. Note that,
in the partial-wave context, the T -matrix is actually called
f . In addition, above threshold, the unitarity of the S-matrix
implies

Im f I! (s) = σ(s)| f I! (s)|2, Im f I! (s)
−1 = −σ(s), (8.19)

which in turn imposes the following unitarity bounds:

| f I! (s)| ≤ 1/σ(s). (8.20)

Knowing the imaginary part of f I! on the cut allows us to
write a very simple relation between the S-matrix in the first
(I) and second (II) sheet:

S(I I )! = 1

S(I )!

, f (I I )(s) = f (I )

1+ 2iσ(s) f (I )
, (8.21)

where the isospin and angular-momentum indices have been
momentarily suppressed for convenience. Note that in the
second sheet σ(s∗) = −σ(s)∗.

Nevertheless, in the σ and κ case, we still need to know
the value of f I! in the first Riemann sheet, but very deep
in the complex plane. Unfortunately, the continuation to the
complex plane is a hard and unstable mathematical problem.
Different parameterizations or models, seemingly equivalent
when describing data in a given region, may lead to different
analytic continuations and different poles. The rigorous way
of extending the amplitudes to the complex plane is through
dispersion relations, if available, and analytic continuation
techniques.
Analyticity and dispersion relations

Relativistic causality implies that the amplitude F(s, t), for
fixed t , must be analytic in the first Riemann sheet of the com-
plex s-plane except for the real axis. In the absence of bound
states in meson–meson scattering, only singularity cuts are
present on the real axis. First of all, a right-hand-cut (RHC)
appears from threshold to +∞. Crossing this RHC continu-
ously leads to the adjacent Riemann sheet, where resonance
poles may exist. In turn, crossing symmetry implies that there
is a left-hand-cut (LHC) from −∞ to s = −t due to cuts in
the u channels. In particular, the LHC extends up to s = 0
for forward scattering (t = 0) and for partial-wave ampli-
tudes. Finally, for scattering of two particles with different
masses, the P!(cos θ) integration in the partial wave defi-
nition yields a circular cut of radius |m2

1 − m2
2| centered at

s = 0. Then, Cauchy’s integral formula relates the ampli-
tude at any s in the first Riemann sheet with integrals over
the amplitude imaginary part along the cuts. These are called
dispersion relations.

Since Cauchy’s Integral formula applies to functions that
depend on one variable, say s, the other variables have to
be fixed or integrated over. Of particular interest are forward
dispersion relations (FDRs), which correspond to the fixed-t
case with t = 0. Also of interest for our discussion below
are hyperbolic dispersion relations, obtained when s, t, u are
fixed to lie on an hyperbola (s−a)(u−a) = b. Any of these
relations can also be integrated in t as in Eq. (8.16) to obtain
a partial-wave dispersion relation. In principle, forward dis-
persion relations are applicable at any s, but for different
fixed-t and hyperbolic cases the applicability is reduced.
These applicability domains affect those of the partial waves,
depending on how they have been obtained (see the appendix
in [2343] for details).

Generically, the most complicated parts of the calcula-
tion are the left and circular cuts. Within the context of light
scalars, partial-wave dispersion relations are the most rele-
vant and we can crudely group their most frequent uses into
two categories: precision dispersive approaches and unita-
rization techniques.

Before discussing these two uses in detail, let us just men-
tion that dispersive approaches also constrain Regge trajecto-
ries and they hence can be used to calculate, not fit, the Regge
parameters of resonances using their poles as input. While
the resulting trajectories for ordinary mesons like the ρ(770),
K ∗(892), f ′2(1525), f ′2(1525) come out [2345,2352] with a
rather small imaginary part and a dominant real part, whose
s dependence is almost a straight line, as expected, those for
the f0(500) and κ come at odds with the ordinary behavior
[2345,2346]. This explains why those two resonances do not
fit well in the usual phenomenological Regge plots.

Precision dispersive approaches:
We aim at mathematical rigor to establish the existence of
the σ and κ poles and at precision to determine their param-

123



 1125 Page 260 of 636 Eur. Phys. J. C          (2023) 83:1125 

eters. Note that these are the poles closest to the left and
circular cuts. Therefore, those cuts must be accurately eval-
uated using the partial-wave expansion of the crossed chan-
nels. This complicates the integrands, and the new relations
then couple different partial waves and channels. These rela-
tions are generically called Roy-like equations [2353]. There
are variations like Roy–Steiner ([2354,2355] for different
masses and hyperbolic relations), GKPY ([2356] with mini-
mal subtractions), etc. Their applicability is reduced in prac-
tice to energies around 1.1 GeV for ππ [2357,2358] and πK
scattering [2359]. The inelastic, higher-energy, and higher-
wave contributions are calculated from phenomenological
fits. They have been used with two approaches:

– Solving the equations for the lowest partial waves ! =
0, 1, in the region of interest, without using any data
in that region. All other contributions come from phe-
nomenological fits. Sometimes these are supplemented
with ChPT constraints, which reduce considerably the
uncertainties. Thus, poles and results in the resonance
region could be considered as predictions from the equa-
tions and the other terms (and ChPT if used). The proof
of the applicability of this approach to determine the
existence of the σ/ f0(500) and κ/K ∗0 and their resulting
parameters were provided in [2360] and [2361], respec-
tively.

– Data driven approach. Here Roy-like equations are
used as constraints on fits to the S and P partial-wave
data [2362]. Data sets that are largely inconsistent with
these constraints are discarded. Additional contributions
from higher energies and partial waves are constrained
with forward dispersion relations and sum rules. Sim-
ple parameterizations are then fitted to the remaining
data, but constrained to satisfy Roy-like equations in dif-
ferent versions and/or number of subtractions, as well
as forward dispersion relations up to 1.42 GeV for ππ

[2356] and up to 1.6 GeV for πK [2363]. The lat-
ter was later coupled to ππ → K K̄ and studied in
[2343] with Roy–Steiner equations. With this approach
the σ/ f0(500) and κ/K ∗0 (700) poles were obtained in
[2362] and [2343,2364], respectively.

Recall that dispersion relations are written in the first Rie-
mann sheet. However, in both approaches above, poles can be
determined within a fully dispersive approach, because the
second sheet can be easily obtained using Eq. (8.21). In con-
trast, accessing the “contiguous” sheet in the inelastic regime
requires additional analytic continuation methods. Detailed
reports on the dispersive determinations of the σ/ f0(500)
and κ/K ∗0 (700) poles can be found in [2342] and [2343],
respectively. For convenience we have gathered their result-
ing poles in Tables 29 and 30. We also provide the mod-
ulus of the coupling to the dominant decay channel. Note

Table 29 σ/ f0(500) pole determinations using Roy–Steiner equations
and the conservative dispersive estimate [2342] which covers them. For
the latter, we have corrected a typo in the error of Im

√
spole which read

±12 MeV instead of ±15 MeV

σ/ f0(500)
√
spole (MeV) |g| (GeV)

Refs. [2360,2365] (441+16
−8 )− i(272+9

−12.5) 3.31+0.35
−0.15

Ref. [2366] (442+5
−8)− i(274+6

−5) -

Ref. [2362] (457+14
−13)− i(279+11

−7 ) 3.59+0.11
−0.13

Conservative Dispersive Estimate

Ref. [2342] (449+22
−16)− i(275± 15) 3.45+0.25

−0.29

Table 30 κ/K ∗0 (700) dispersive pole determinations using Roy–
Steiner equations

κ/K ∗0 (700)
√
spole (MeV) |g| (GeV)

Ref. [2361] (658± 13)− i(279± 12)

Ref. [2343] (648± 7)− i(280± 16) 3.81± 0.09

that the uncertainty and spread of the dispersive results are
much smaller than the RPP estimates in Table 28. This is
because other non-dispersive and model-dependent determi-
nations are included in the RPP estimate. However, the exis-
tence of two independent dispersive approaches was decisive
to consider both resonances as well established in the RPP
2012 and 2020 editions, respectively, changing their nominal
masses in their names to be closer to their pole values.

Note that the f0(980) pole was obtained simultaneously
within the same framework [2356,2360]. However, being a
narrow resonance and further away from left cuts, its pole is
more similar to those obtained with other methods. Finally,
some of these analytic continuation methods – using disper-
sively constrained input – have been applied to determine
the poles of further mesons in the inelastic regime, including
the scalars K0(1430) [2367], f0(1370) and f0(1500) [2368].
In such cases Eqs. (8.18), (8.19) and (8.21) do not hold and
the use of analytic continuation methods is unavoidable to
suppress any model dependence.

8.2.3 Light scalars and QCD

In the previous section, we have discussed how the rigorous
dispersive approach was instrumental in settling the contro-
versy about the existence and parameters of theσ and κ . Once
this is settled, we now concentrate on light scalars within the
context of QCD, which is the subject of this volume.

Unitarized chiral perturbation theory (UChPT)
Being so light, these resonances lie in the non-perturbative
region of QCD, and thus an effective treatment with ChPT
seems appropriate. However, the ChPT series by itself can-
not generate poles and also violates unitarity as the energy
reaches the resonance region. The most successful approach
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is thus a combination of Chiral Perturbation Theory (ChPT)
with dispersion relations. This is generically known as uni-
tarized ChPT.

ChPT, which is the low-energy theory of QCD, and is
formulated as an expansion in momenta or masses of the
NGB, has been introduced for the meson sector in Sect. 6.2.2.
Meson–meson scattering partial waves are then expanded as
f (s) = f2(s)+ f4(s)+ · · · , where f2n(s) = O(p2/F2

π )×
O(p/Λχ)

2n−2, p are the meson CM momenta or masses,
Λχ = 4πF0 and F0 is the NGB decay constant at LO, com-
mon to all mesons at that order. Up to higher orders, F0 can
be approximated by Fπ , FK… Note that we have suppressed
momentarily the isospin and angular momentum indices I, !.
As an example, the O(p2) or LO ππ and πK elastic partial
waves in the scalar channel with lowest isospin are:

f 0
0 (s) =

2s − M2
π

32πF2
π

, (8.22)

f 1/2
0 (s) = 5s2 − 2(M2

K + M2
π )s − 3(M2

K − M2
π )

2

128πF2
π s

.

ChPT amplitudes are an expansion in powers of p and
cannot satisfy the unitarity condition in Eq. (8.19) exactly,
but just perturbatively:

Im f2(s) = 0, Im f4(s) = σ(s) f2(s)
2, . . . (8.23)

When p/Λχ is very small, this is not a problem, but the vio-
lation of unitarity grows with momenta or energy. This vio-
lation then becomes a severe caveat to describe resonances,
since, in typical cases, resonant effects saturate the unitar-
ity bound in Eq. (8.20). Even worse, the ChPT series cannot
generate poles in s and thus, in principle, cannot generate
resonances.

Therefore, if we want to describe resonances, we need
to implement unitarity, but also analyticity if we want to
study their associated poles. Let us now provide a simple,
but formal, derivation of ChPT unitarization methods. The
elastic unitarity condition in Eq. (8.19) fixes the imaginary
part of the inverse partial wave. Hence, naively, we just have
to use ChPT to calculate the real part of the inverse amplitude,
and write: Re(1/ f ) = Re 1/( f2 + f4 + · · · ) � (1/ f2)(1 −
Re f4/ f2 + · · · ), since f2 is real from Eq. (8.22). Then we
write a unitarized elastic partial wave at different orders as:

f ULO(s) =
1

1/ f2(s)− iσ(s)
, (8.24)

f UNLO(s) =
1

1/ f2(s)− Re f4(s)/ f2(s)2 − iσ(s)
, . . . (8.25)

and similar expressions for NNLO, etc. Note that the ChPT
series is recovered if re-expanding again. These expressions
are unitary and can be recast in explicitly analytic forms.
For instance, using Eq. (8.23), the second one is f UNLO =
f 2
2 /( f2 − f4), which is known as the NLO Inverse Ampli-

tude Method (IAM). Similar analytic formulas for higher
orders exist [2369–2371]. Thus these methods can be ana-
lytically continued to the complex plane and the second sheet
using Eq. (8.21). This derivation is formal because, strictly
speaking, we could still not use the expansion of the real
part beyond the applicability realm of ChPT into the reso-
nance region. However, there are derivations [2372–2374]
from partial-wave dispersion relations for the inverse partial
wave and ChPT is only used in the subtraction constants at
s = 0 or in the left and circular cuts. The use of several
subtractions makes those cuts to be dominated by the low
energies, where ChPT is applicable, thus justifying the use
of the Inverse Amplitude Method.

Interestingly, with the simplest possible calculation, i.e.
using just the LO in Eqs. (8.24) and (8.22) in the chiral limit
Mπ ,MK → 0, we find the following poles in the second
Riemann sheets of the partial waves where the σ/ f0(500)
and κ/K ∗0 (700) are seen:

f 0
0 :
√
sσ = (1− i)

√
8πF0 � (463− i463)MeV, (8.26)

f 1/2
0 : √sκ = (1− i)8

√
π/5F0 � (638− i638)MeV,

where for the numerical values of F2
0 we have taken F2

π �
92.3 MeV for ππ and Fπ FK for πK scattering, with FK =
1.19Fπ [300]. Taking into account that this is the most naive
LO unitarized calculation, with no free parameters, the light-
est scalar masses come remarkably close to their actual val-
ues, while their widths are about a factor of 2 too wide. Note
that the only dynamical information is the scale of the spon-
taneous chiral symmetry breaking, given by F0. In contrast,
if the same procedure is followed with the vector ! = 1
channels, the resulting poles for the ρ(770) and K ∗(892)
come almost twice too heavy, and their widths more than
16 times too wide. This is already an indication that the LO
low-energy chiral dynamics plays a predominant role in the
formation of light scalar resonances, and very little for other
ordinary mesons.

The description of meson–meson scattering at NLO in
UChPT is very successful for both scalar and vector par-
tial waves in all isospin combinations (tensor waves start
at NNLO). In particular, now not only the pole width of the
scalars comes right, but also the vector meson poles and their
parameters. Recall that, as explained in Sect. 6.2, the NLO
ChPT calculations contain several Low Energy Constants
Li (μ), which multiply the terms in the NLO Lagrangian
allowed by symmetry. They are scale-dependent because they
absorb, through renormalization, the loop divergences at pre-
vious orders. In addition, they contain information about the
underlying quark and gluon dynamics, namely, QCD. Only
when these Li are taken into account it is possible to describe
the “ordinary” quark–antiquark vector mesons with UChPT.
However, the Li combinations that appear in the scalar chan-
nels are much less relevant numerically and that is why scalar
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poles come out fairly decent with just the LO UChPT and
just information on the chiral breaking scale.

So far we have only discussed elastic unitarization. But
exactly the same naive derivation can be followed in matrix
form to obtain a coupled channel T -matrix formalism [2375–
2377], only slightly more complicated. When this is done,
besides the f0(500) and K ∗0 (700) poles, those associated
with the a0(980) and f0(980) resonances also appear in the
Inverse Amplitude Method [2377], completing the lightest
scalar nonet, as well as those of the ρ(770) and K ∗(892)
vectors.

Many variations of ChPT unitarization techniques exist
in the literature of which, together with the IAM, the sim-
plest and most popular is the Chiral Unitary Approach [2378,
2379] (for other variations, see the reports [2342,2380–
2382]), which usually raises the caveat about some arbitrari-
ness. However, all unitarization methods just correspond to
finer or more crude approximations to Re(1/ f ) and its ChPT
series or to different treatments of the left cut, or even includ-
ing some additional heavier states. But as long as they contain
the basic information about the chiral scale, or are equivalent
to the ChPT LO, they all obtain a similar description of light
scalars, whereas vectors or other resonances can be accom-
modated only when including enough NLO information.

Of course, since unitarization methods involve some trun-
cation of ChPT and approximations, they are not competitive
in precision and rigor with the precise dispersive approaches
discussed before. They have, however, another advantage,
which is that we can study the dependence of the resonances
on QCD parameters, which we will describe next.

Leading QCD 1/Nc behavior
At leading order in the 1/Nc expansion [1162,2383], ordi-
nary qq̄ mesons behave as M ∼ O(1) and Γ ∼ O(1/Nc).
Genuine tetraquark states [2384,2385] have at least that same
Nc behavior, which is even more suppressed for glueballs.

First of all, using meson–meson scattering and the light-
resonance pole parameters it is possible to build observables
whose sub-dominant Nc corrections are highly suppressed
[2386]. When evaluated for the f0(500) and K ∗0 (700) the
resulting values are at odds with the ordinary meson or glue-
ball behavior by several orders of magnitude.

Next, using the effective theory approach, the 1/Nc lead-
ing order of the NLO ChPT parameters is known from a
model-independent analysis: Mπ ,MK ∼ O(1), F0 ∼ √Nc

and the Li behavior is either O(1) or O(Nc) [69,2387]. If,
in the UChPT amplitudes, we then call p a parameter whose
behavior is O(Nk

c ) and change its value to p → p(Nc/3)k ,
we will obtain the leading 1/Nc behavior of resonances
following their associated poles as Nc is increased. Thus,
already with the substitution F0 → F0

√
Nc/3 in the LO

UChPT results in Eqs. (8.26), we obtain a non-ordinary

behavior for both the σ and κ . Namely, their M, Γ ∼
O(
√
Nc).

That was just the naive LO estimate, but the leading
1/Nc dependence within UChPT has been studied to NLO in
[2377,2388] and NNLO in [2389]. It is then possible to study
the light vectors as well, and they come remarkably compat-
ible with the expected ordinary behavior. This is shown for
the ρ(770) in the top panel of Fig. 175. However, the σ and
κ poles, shown in the center and bottom panels of Fig. 175,
respectively, display again a non-ordinary behavior, at least
near the physical value of Nc = 3. This is a robust result
also found in other approaches. Of course, if Nc is made
very large, the dominance of meson loops governed just by
F0, which are suppressed by 1/Nc, fades away. Then, even
the tiniest mixture with an ordinary meson could dominate
at sufficiently large Nc. We should remark that there is some
uncertainty, that grows with Nc due to the scale dependence
of the Li , illustrated for the σ in Fig. 175. Indeed, Fig. 175
shows that the sigma pole could turn back [2390] to the real
axis, well above 1 GeV. This could be a small mixture with
an “ordinary” state around or above 1 GeV. This is also found
in NNLO UChPT [2389]. Similarly, in other phenomenolog-
ical approaches the σ and κ only appear when the unitarized
meson–meson interaction is included, showing up as an addi-
tional pole due to unitarization, in addition to ordinary states
above 1 GeV that are present even if meson–meson inter-
actions are turned off (this was first proposed in [2391], for
additional references see [2342]). Back to UChPT, the ordi-
nary subdominant component restores the semi-local duality
sum-rules [2390] that would be violated if the light scalars
just disappeared from the spectrum by becoming too massive
and wide. However, other analyses [2392,2393], challenged
in [2394], yield a σ behavior closer to the one of the opposite
side of the scale uncertainty in Fig. 175, reaching the third
quadrant at very large Nc, which lacks a clear interpreta-
tion. One should nevertheless recall that the large-Nc regime,
although of mathematical interest, is not the one of relevance
for the observed meson, but the leading 1/Nc behavior near
Nc = 3.

Quark-mass dependence and light-scalar multiplets
The study of quark-mass dependence is of interest to under-
stand the dynamics of their formation, to provide a guideline
for lattice studies, and to check that the light scalar states that
we have grouped in an octet are degenerate when the strange
and non-strange quark masses are equal.

We have seen in Sect. 6.2 the relation between quark
and meson masses. This allows us to study the quark mass
dependence of the σ at NLO [2395] and NNLO [2396] and
κ at NLO [2397]. A slight IAM modification is used to
deal with subthreshold Adler zeros [2398]. Figure 176 thus
shows the resulting σ and κ pion mass dependence. Note
that beyond 300–350 MeV the results are at most qualita-
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Fig. 175 Trajectories of the ρ(770) (top), σ/ f0(500) (center) and
κ/K ∗0 (700) (bottom) poles in the complex plane as Nc is varied away
from 3 within NLO ChPT unitarized with the IAM. The lighter curves
in the center plot indicate the uncertainties when varying the regular-
ization scale μ in the usual range, as recalculated in [2390]. In the case
of the ρ(770) the three lines almost overlap and are not plotted. Top
and center figures taken from [2390] and bottom figure from [2377]

tive. With increasing pion mass, the meson masses grow,
although slower than the two-pion threshold, and their pole
widths decrease. When the pion mass is 2–3 times its physical
value, the 2π threshold is above the pole mass of these res-
onances. Then, their behavior differs dramatically from that
of the ρ(770) and K ∗(892) (the latter shown in Fig. 176).

Fig. 176 Top: Dependence of the sigma mass Mσ on the pion mass,
from the NNLO (two-loops) IAM [2389]. Different curves represent
different fits on [2389]. The thin continuous line shows the 2mπ thresh-
old. Bottom: mπ dependence of the κ (solid line) and K ∗(892) (dashed
line) masses [2397]. All masses and widths are defined from the pole
positions as obtained from NLO IAM fits. Figures taken from [2399]
(top) and [2400] (bottom)

The width of these non-scalar mesons would tend to zero,
and their conjugated pair of poles would meet at threshold
[2395,2401]. Right after that, one of their poles would jump
to the first sheet, whereas the other would remain at a symmet-
ric position in the second sheet, both below threshold. This
is a bound state. In contrast, the σ and κ conjugated poles
meet in the second sheet below threshold. The two branches
observed in Fig. 176 correspond to these two poles in the sec-
ond sheet, where at first one moves towards threshold and the
other away from it. The closest one to threshold, influencing
the most the physical region, is known as a “virtual” or quasi-
bound state. Eventually, it reaches threshold and jumps to the
first sheet, becoming a bound state. However, its second-sheet
counterpart lies in a rather different position. The more asym-
metric their positions, the more predominant their “molec-
ular” or “meson cloud” nature is. Hence, UChPT suggests
that, at high pion masses, both the f0(500) and K ∗0 (700) are
closer to two-meson states than to ordinary mesons.
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Fig. 177 Trajectories of the poles that appear in coupled-channel uni-
tarized amplitudes of different isospin as the pion, kaon, and eta masses
are varied from their physical values to a common value of 350 MeV
[2406]. This shows that the lightest scalars actually belong to a nonet
in the SU(3) limit. The two trajectories with I = 0 correspond to the
singlet and octet states, not directly to the poles of the σ or f0(980)
resonances, which are a mixture of these two. Figure taken from [2406]

Quark masses can be changed on the lattice. Actually,
calculations are not often done at physical masses, which are
expensive numerically. Note also that analytic continuation
to reach poles would be required, although models are often
used to reach poles. There are lattice calculations for the σ

[2402,2403], supporting its molecular picture at very large
pion masses, where it is a bound state. The σ is also found at
moderately large pion masses [558,2404] qualitatively con-
sistent with UChPT. For mπ = 236 MeV [558,559] lattice
results are consistent with a pole now in the second Rie-
mann sheet, also consistent with UChPT. A virtual state was
found for κ in πK scattering on the lattice [551,577], again
in qualitative agreement with UChPT. However, as the pion
mass becomes lighter, the σ and κ poles are plagued again
with instabilities [552,559,560]. In [2405], Adler zeros, i.e.
chiral symmetry, were found to be very relevant in the κ

determination. A dispersive “data-driven” approach of the
kind explained above may be relevant for a robust extraction
of light scalar poles from lattice-QCD. We refer to Sect. 4
for further details.

The strange-quark mass can also be varied [2397], but not
much since it is already quite high, and thus the observed
changes on scalars are very smooth. However, when chang-
ing both quark masses one can reach the degenerate pion–
kaon mass limit. Figure 177 shows that the trajectories of
the κ pole, and a combination of the σ and f0(980) become
degenerate with the a0(980) pole in that limit. This result has
been obtained [2406] within the Unitary Chiral Approach,
where the left cut is neglected and the effect of the Li is
mimicked by a mass-independent cutoff. Still, this provides
strong support for the assignment of these states to the same
lightest scalar octet.

8.2.4 Summary

Despite their relevant role in numerous aspects of hadron
physics and QCD, the controversy about the existence and
the parameters of the lightest scalar nonet, particularly for
the σ/ f0(500) and κ/K ∗0 (700), predated the establishment
of QCD. The settling of this controversy was hindered by the
conflicting available data sets and by the use of models. We
have provided here a brief account of how it has been settled
recently by using rigorous dispersive techniques to constrain
data analyses and to determine the poles associated with the
light-scalar resonances. Many phenomenological approaches
were able to describe to different degrees of accuracy these
states. Here, we have focused on those most directly linked to
QCD through the unitarization of Chiral Perturbation The-
ory, the 1/Nc behavior, and the dependence on the quark
masses. The general picture that arises is that there is one light
scalar nonet below 1 GeV. Their non-ordinary Nc behavior,
quark mass dependence, Regge trajectories, and the fact that
they do not saturate the ChPT constants strongly support
that these mesons are not of the ordinary quark–antiquark
type. Rather their predominant component would be of the
meson–meson type (molecule, meson cloud, etc). Still, they
are most likely mixed with some companion bare or preex-
istent quark–antiquark state above 1 GeV. Indeed, a second
scalar multiplet can be identified between 1.2 and 1.8 GeV.
There is still ample room for refining this picture and a high
expectation of further experiments and developments from
lattice-QCD.

8.3 Exotic mesons

Boris Grube

8.3.1 Introduction

Already when Gell-Mann [17] and Zweig [18] formulated
the constituent quark model they presumed that additional
states beyond the baryonic qqq and the mesonic qq̄ com-
binations exist.79 For a long time, the search for such states
was unsuccessful and hence all hadronic states going beyond
the constituent quark model were labelled exotic. How-
ever, rather recently experiments have found compelling evi-
dence that exotic states indeed exist. Here, we will focus on
exotic mesons, which can be divided into three categories:

79 In Ref. [17], Gell-Mann writes: “Baryons can now be constructed
from quarks by using the combinations (qqq), (qqqqq̄), etc., while
mesons are made out of (qq̄), (qqq̄q̄), etc.” Similarly, Zweig writes
in a footnote in Ref. [18]: “In general, we would expect that baryons
are built not only from the product of three aces, AAA, but also from
ĀAAAA, Ā ĀAAAAA, etc., where Ā denotes an anti-ace. Similarly,
mesons could be formed from ĀA, Ā ĀAA etc.”
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(i) spin-exotic states, which have J PC quantum number com-
binations that are not possible for ordinary qq̄ states (cf.
Table 9),80 (ii) flavor-exotic states, which have flavor quan-
tum numbers, such as isospin and/or strangeness, that are not
possible for qq̄ states, and (iii) crypto-exotic states, which
have quantum numbers of ordinary qq̄ states and are there-
fore able to mix with them.

Possible exotic mesonic configurations beyond qq̄ are
four-quark combinations such as tightly bound qqq̄q̄ tet-
raquark states, where the constituents are bound directly by
the strong force, or more loosely bound (qq̄)(qq̄) molec-
ular states, which consist of a pair of mesons bound by
nuclear forces. Also the gluon fields are expected to man-
ifest themselves in the meson spectrum either in the form of
hybrid states, where, in addition to a qq̄ pair, excited glu-
onic field configurations contribute to the quantum numbers
of the meson, or in the form of glueballs, which are color-
singlet bound states of gluons (see Sect. 8.4). However, in
general, physical mesons are not pure realizations of single
configurations but are instead mixtures of all possible con-
figurations that are allowed for the given quantum numbers.
Disentangling these different contributions is a highly diffi-
cult experimental and theoretical problem.

Crypto-exotic states will manifest themselves as super-
numerary states compared to the spectrum expected from
the quark model. This makes them rather difficult to estab-
lish. And even if experimental data unambiguously show an
overpopulation of states in a certain mass range, the determi-
nation of the internal configuration of these states is an even
harder problem. The prime example for such a situation is
the sector of isoscalar scalar mesons discussed in Sects. 8.2
and 8.4. Therefore, the cleanest way to unambiguously estab-
lish the existence of exotic mesons is to search for spin- and/or
flavor-exotic states. Presently, the clearest evidence for the
existence of such states comes from the heavy-quark sec-
tor (see Sects. 8.5 and 8.6), where experiments have found
several flavor-exotic states with a minimum quark content
of four, for example, the charged charmonium and bottomo-
nium states, Z±c and Z±b [1427,2407], or the doubly-charmed
state, T+cc [1067].

Although mesons from the light-quark sector, i.e. mesons
composed of up, down, or strange quarks, are usually eas-
ier to produce in experiments, the picture is less clear in
this sector. This is mainly because light mesons have rel-
atively large decay widths compared to their masses. As a
consequence, these mesons usually do not appear as isolated
and narrow peaks in the invariant mass spectra of their decay
products. Instead, they often overlap and interfere with neigh-

80 More correctly, these states have forbidden J PG quantum numbers.
However, here we use the common convention that the C-parity of a
charged meson in an isospin triplet is given by theC-parity of its neutral
partner state.

boring states, which makes their extraction from experimen-
tal data challenging. In addition, in most analyses models
are required in order to extract resonances from the data and
the results therefore depend on the employed model assump-
tions and approximations. In the following, we will confine
the discussion to spin-exotic light mesons. More details on
exotic light mesons can be found in the reviews in Refs.
[420,2408–2414].

8.3.2 Predictions

Model predictions
Various models have been employed to study the light-meson
spectrum. Some of these model approaches are discussed in
more detail in Sect. 5. Further discussions can be found, e.g.,
in Refs. [420,2414]. Most of the models that include exotic
mesons predict the lightest spin-exotic state to be a hybrid
meson with J PC = 1−+ quantum numbers.

The first detailed studies of hybrid light mesons were
based on the bag model [785–787,2415,2416]. In this model,
quarks and gluons are described by cavity modes in a con-
fining vacuum bubble (see Sect. 5.1.3). Detailed predic-
tions for the decays of hybrid light mesons were obtained
using, for example, the fluxtube model [2417–2423]. This
model extends the conventional quark model by explic-
itly modeling the gluonic fields in form of an oscillating
flux tube described by single-phonon excitations. Decays of
hybrid mesons were also studied in constituent-glue models
[2424–2427], where one assumes that a massless gluon with
J P = 1− interacts with quarks via potentials that depend lin-
early on the distance of the constituents. Recently, also the
Dyson–Schwinger/Bethe–Salpeter approach (see, e.g., Refs.
[896,2428,2429] and also Sect. 5.2), basis light-front quanti-
zation (see, e.g., Ref. [950] and also Sect. 5.3), as well as the
AdS/QCD correspondence (see, e.g., Ref. [1003] and also
Sect. 5.4) were applied to study hybrid light mesons.

The models predict the mass of the lightest 1−+ state to be
in the range from about 1.3 to 2.2 GeV and most model calcu-
lations find that f1(1285)π and b1(1235)π are the dominant
decay modes for the lightest isovector 1−+ state. However,
for the ηπ , η′π , and ρ(770)π decay modes, discussed in
Sect. 8.3.4 below, the model predictions diverge.
Lattice QCD calculations
In recent years, lattice QCD calculations of the hadron exci-
tation spectrum have made tremendous progress (see Sect. 4,
in particular Sect. 4.5). Currently, calculations that study the
excitation spectrum of light mesons still have to be performed
in an unphysical world, where the up and down quarks are
much heavier in the simulation than in nature.81 The main
reason for this is that decays into multi-body hadronic final
states, which for most excited states are the dominant decay

81 This is often expressed in terms of an unphysically large pion mass.
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modes, cannot yet be calculated on the lattice. By setting the
quark masses to sufficiently high values and neglecting multi-
hadron operators, the excited states become quasi stable and
can be extracted from the simulation. Consequently, such
calculations cannot predict widths and decay modes and also
cannot take into account coupled-channel effects. Despite
these limitations, lattice calculations have already provided
important insights by making predictions for light-meson
spectra and for two-body scattering processes [514,532].

For example, the seminal calculation performed by the
Hadron Spectrum collaboration [521] showed for the first
time a nearly complete spectrum of isoscalar and isovector
mesons covering a wide range of J PC quantum numbers up
to J = 4 (see Fig. 46). The lattice spectrum is qualitatively
similar to the one obtained from quark-model calculations.
However, the lattice calculation in addition revealed a whole
supermultiplet of extra states [527] that lie about 1.3 GeV
above the lightest J PC = 1−− state and that have quan-
tum numbers of 0−+, 1−−, 2−+, and 1−+, where the latter
one is spin-exotic. Studying the overlap of these states with
various operators used in the calculation allowed to probe
their internal structure. All states in the supermultiplet have
large overlaps with operators that correspond to a chromo-
magnetic gluonic excitation coupled to a color-octet qq̄ pair
in an S-wave and were therefore identified as hybrid states.
Intriguingly, the spin-exotic 1−+ state was predicted to be
the lightest hybrid state confirming many model calculations
(see Sect. 8.3.2).

Recently, the Hadron Spectrum collaboration published
results of the first lattice QCD calculation of the hadronic
decays of the lightest 1−+ resonance using a two-body
approximation for the decay [582]. They performed this cal-
culation at the SU(3)flavor symmetric point, where up, down,
and strange-quark masses are chosen to approximately match
the physical strange-quark mass, corresponding to a large
unphysical pion mass of about 700 MeV. Using a coupled-
channel approach, the Hadron Spectrum collaboration stud-
ied the scattering amplitudes of eight meson–meson systems
and extrapolated the extracted 1−+ resonance pole and its
couplings to the physical light-quark masses. Doing so and
assuming a 1−+ resonance mass of 1564 MeV (value taken
from Ref. [2324]), they found a broad π1 resonance with a
total width ranging between 139 and 590 MeV. The dom-
inant decay mode of this resonance is b1(1235)π (partial
width ranging from 139 to 529 MeV), in qualitative agree-
ment with most model calculations (see Sect. 8.3.2). Com-
pared to the b1(1235)π channel, the partial widths for the
decays into f1(1285)π , ρ(770)π , η′π , and ηπ are much
smaller. Although these results still have large uncertainties,
they provide important guidance for experiments.

The next great leap for lattice QCD is the calculation of
three-body systems, which is already looming on the hori-
zon (see Sect. 4.5.8 and Ref. [593]). First proof-of-principle

calculations of three-body systems that do not contain any
resonances (see, e.g., Fig. 53) demonstrate the feasibility of
the approach and are paving the way towards calculations of
more interesting systems that contain two- and/or three-body
resonances.

8.3.3 Experimental methods

Excited light mesons can be studied in many reactions.
They are copiously produced in high-energy scattering reac-
tions of meson beams on nucleon or nuclear targets, such
as diffractive dissociation or charge exchange, as well as
in central-production reactions in hadron–hadron scatter-
ing. Also, antiproton–nucleon annihilations are a source
of light mesons. Complementary to these purely strong-
interaction processes are photoproduction reactions, which
are induced by photon or lepton beams, and e+e− scattering
reactions such as annihilation, initial-state radiation, or two-
photon fusion. Finally, also multi-body decays of heavy par-
ticles, such as τ , J/ψ , or D, are good laboratories to study
light mesons. Conservation laws, couplings, and the avail-
able energy impose constraints that determine which excited
states are allowed to be produced from the various initial
states in these reactions. The study of the light-meson spec-
trum is a world-wide effort with experiments performed at all
major particle-accelerator labs covering all the above reac-
tions.

Excited light mesons decay via the strong interaction and
are hence extremely short-lived. This is why these states are
usually referred to as resonances, which are characterized by
their nominal mass m0, their total width Γ0, and their quan-
tum numbers. In the simplest case of an isolated resonance,
its experimental signature is a peak at m0 in the distribution
of the invariant mass m of the system of daughter particles
that the resonance decays into. This peak is accompanied by
a phase motion, i.e. an increase of the phase of the quan-
tum mechanical amplitude of the studied process by 180◦
with increasing m, reaching 90◦ at m0 (see Fig. 178). If the
resonance is in addition narrow andm0 is far away from kine-
matical thresholds, the resonance amplitude is well approx-
imated by a Breit–Wigner amplitude. However, in general
resonances are described by amplitudes that are analytical
functions of m2 and the resonance parameters are defined
by the position of pole singularities of this amplitude in the
complex m2 plane (see, e.g., Ref. [2430] for more details).

Depending on its mass and quantum numbers, a resonance
may have several decay modes, which for highly excited
states often lead to multi-body hadronic final states consist-
ing mostly of π , K , η, and/or η′. Due to their short-lived
nature, any information about resonances has to be inferred
from the kinematic distribution of their decay products. To
this end, partial-wave analysis (PWA) techniques are often
employed, which take into account possible interferences of
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Fig. 178 Example of a relativistic Breit–Wigner amplitude with con-
stant width for a fictitious resonance with a mass of m0 = 1200 MeV
and a total width of Γ0 = 200 MeV. (Top) intensity, i.e., absolute value
squared of the amplitude, (bottom) phase of the amplitude

all the intermediate resonances produced in the reaction and
exploit the full kinematic information contained in the data.
For an n-body final state with given mass m, a set τ of 3n−4
kinematic variables is needed to completely define the decay
kinematics. In a simplified picture, a PWA model describes
the measured intensity distribution I(m, τ ), i.e. the density
distribution of the events in the (3n − 4)-dimensional phase
space of the final-state particles, in terms of partial-wave
amplitudesTi (m), which describe the strength and phase with
which an intermediate state with given quantum numbers
i = {J PC M} and massm is produced, and decay amplitudes
Ψi (m, τ ), which describe the decay of this intermediate state
into the observed final state. Here, M is the projection of the
spin J along the chosen quantization axis. High-energy scat-
tering reactions, for which examples will be discussed below,
are known to be dominated by natural-parity exchange.82

82 The naturality is defined as ε = P (−1)J , i.e. ε = +1 corre-
sponds to the natural-parity series with J P = 0+, 1−, 2+, . . . and,
correspondingly, ε = −1 corresponds to the unnatural-parity series
with J P = 0−, 1+, 2−, . . ..

When analyzing data from these reactions, it is hence advan-
tageous to perform the PWA in the reflectivity basis [2431],
where the spin state of a resonance is characterized by Mε

with M ≥ 0 and ε = ±1 such that the multiplicity of 2J + 1
of the spin state remains unchanged. Here, ε corresponds
to the naturality of the exchange particle in the scattering
reaction. By performing the PWA in this basis, it is there-
fore possible to separate the contributions from natural- and
unnatural-parity exchange to the scattering reaction.

Since production and decay of a resonance are indepen-
dent of each other, the total amplitude for an intermediate
state i is given by Ti (m) Ψi (m, τ ). In the simplest case, the
amplitudes of the various allowed intermediate states i are
assumed to be fully coherent so that

I(m, τ ) =
∣
∣
∣
∑

i

Ti (m) Ψi (m, τ )

∣
∣
∣
2
, (8.27)

where the sum runs over all allowed states. It is important to
note that in the above equation, the intensity is given by the
sum of the contributing amplitudes, i.e. all intermediate states
may interfere with each other. The decay amplitudes can be
calculated using first principles and models. The analyses that
will be discussed in Sect. 8.3.4 below use a two-stage proce-
dure, where in the first stage the known decay amplitudes Ψi

are used to determine the partial-wave amplitudes Ti in nar-
rowm bins by fitting the PWA model in Eq. (8.27) to the mea-
sured τ distributions. At this stage, no assumptions are made
about the resonance content in the studied n-body system. In
a second stage, a resonance model is fit to the m dependence
of selected partial-wave amplitudes in order to extract the
resonances and their parameters. For high-energy scattering
data, the resonance model also has to take into account con-
tributions from non-resonant processes, i.e. processes where
the measured n-body final state is produced without going
through an intermediate n-body resonance. Unfortunately,
in most cases no detailed theoretical models exist for these
non-resonant contributions and one has to revert to empirical
models. More details on the PWA procedure and the involved
model assumptions can be found, e.g., in Ref. [2432].

8.3.4 Experimental evidence

More than three decades ago the GAMS experiment claimed
the first observation of a spin-exotic resonance with J PC =
1−+ [2433]. Since then, many other experiments reported
such signals. Currently, the Particle Data Group (PDG)
lists three spin-exotic light-meson states: the π1(1400), the
π1(1600), and the π1(2015) [513]. However, despite the
seemingly large body of evidence, which includes data from
pion diffraction, antiproton–nucleon annihilation, photopro-
duction, and charmonium decays covering several decay
channels, the experimental situation is still puzzling and the
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interpretation of many of the observed signals is controver-
sial.

The π1(1400) was observed nearly exclusively in the ηπ

decay channel produced in pion diffraction and antiproton–
nucleon annihilation [2328,2433–2439]. Only the OBELIX
and Crystal Barrel experiments claimed to see the π1(1400)
also in the ρ(770)π decay channel in their antiproton–
nucleon annihilation data [2440,2441]. Surprisingly, the sig-
nal in the ρ(770)π channel arises from antiproton–nucleon
initial states with different quantum numbers than the sig-
nal in the ηπ channel.83 Since production and decay of a
resonance are independent, the ρ(770)π resonance claimed
by OBELIX and Crystal Barrel cannot be the same π1(1400)
state that is observed in ηπ – a puzzling result. The π1(1400)
masses quoted by the various experiments are in fair agree-
ment; the width values, however, scatter over a larger range.
The PDG estimates for the π1(1400) mass and width are
m0 = (1354± 25)MeV and Γ0 = (330± 35)MeV [513].

Compared to the π1(1400), the π1(1600) was seen in
a much wider range of decay channels produced in pion
diffraction, antiproton–nucleon annihilation, andχc1 decays.
Signals were reported in the ρ(770)π [2319,2442–2445],
η′π [2446–2450], f1(1285)π [2449,2451], and b1(1235)π
[2322,2438,2447–2449,2452] decay channels. As for the
π1(1400), the measured π1(1600) mass values are in better
agreement with each other than the measured width values.
The PDG estimates for the π1(1600) mass and width are
m0 = (1661+15

−11) MeV and Γ0 = (240± 50)MeV [513].
The π1(2015) was so far only observed by the BNL

E852 experiment in the decay modes f1(1285)π [2451] and
b1(1235) π [2322]. It hence still needs to be confirmed by
other experiments and is listed as a “further state” by the
PDG.

Although on first sight there seems to be strong experi-
mental evidence for the π1(1400) and the π1(1600), some
analyses have issues and some experimental results are dis-
puted. From a phenomenological standpoint, the properties
of the π1(1400) are problematic. Compared to most of the
predictions (see Sect. 8.3.2), it is too light. Also, theπ1(1600)
is too close in mass to the π1(1400) in order to be an exci-
tation of the latter. Additionally, the fact that the π1(1400)
seems to decay only to ηπ is hard to explain.84

The analyses of some channels also face technical issues.
For example, in order to extract the π1(1400) in the ηπ chan-
nel and theπ1(1600) in the η′π channel, the phase motions of
the P-wave amplitudes need to be measured. Often, this can

83 In the ρ(770)π channel, the π1(1400) is seen predominantly in P-
wave antiproton–nucleon initial states, whereas in the ηπ channel it is
seen mainly in the 3S1 initial state.
84 If one would take the π1(1400) → ρ(770)π claims of OBELIX
and Crystal Barrel [2440,2441] at face value, then even two mass-
degenerate π1(1400) states would exist, one decaying to ηπ the other
to ρ(770)π – an even more puzzling scenario.

Fig. 179 Intensity of the ρ(770)π P-wave with spin-exotic J PC =
1−+ quantum numbers produced in natural-parity exchange (points with
statistical uncertainties) as a function of the π−π−π+ mass obtained by
the BNL E852 collaboration. (Adapted from Fig. 3(b) in Ref. [2442])

be done only relative to the D-wave amplitudes. However,
in the mass region of interest the D-waves contain contribu-
tions from the a2(1700), which is the first radial excitation
of the a2(1320) ground state. Unfortunately, the a2(1700)
is a rather broad state and its resonance parameters are not
well known. For the widely used simple Breit–Wigner based
resonance models, this may lead to systematic uncertainties
that are hard to control.

The analysis of the data of the BNL E852 experiment
yielded inconsistent results on the production properties of
the π1(1600). Whereas in the η′π [2446] and f1(1285)π
[2451] channels the π1(1600) is observed to be produced
only via natural-parity exchange, i.e. with Mε = 1+, it
appeared in the ρ(770)π [2442,2443] and b1(1235)π [2322]
channels also in unnatural-parity exchange, i.e. in waves with
Mε = 0− and 1−, with similar strength as in the Mε = 1+
wave. This is hard to explain as production and decay of a
resonance are independent processes.

One of the deepest puzzles, however, concerns the seem-
ingly contradictory conclusions on the existence of the
π1(1600) in the ρ(770)π decay channel that were drawn
from similar analyses. The BNL E852 experiment was the
first to claim the observation of π1(1600)→ ρ(770)π based
on a sample of about 250 000 π− p → π−π−π+ p events
and using a PWA model with 21 waves [2442,2443]. The
measured intensity distribution of the spin-exotic wave with
J PC = 1−+ quantum numbers is shown in Fig. 179. It
exhibits a pronounced peak at about 1.6 GeV that is accompa-
nied by significant phase motion with respect to other partial
waves (see Fig. 19 in Ref. [2443]).85 Based on a simultane-
ous resonance-model fit of the intensities of the 1−+ wave

85 The second peak at about 1.2 GeV was explained as an analysis
artifact caused by intensity leaking from the dominant 1++ wave into
the spin-exotic wave because of a non-uniform detector acceptance in
combination with the finite experimental resolution. The gray-shaded
histogram in Fig. 179 represents an estimate of this effect from Monte
Carlo simulations.
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and of the f2(1270)π S-wave with J PC = 2−+ and their
relative phase, the authors of Refs. [2442,2443] claimed the
observation of the π1(1600). However, they also observed a
strong dependence of the shape and strength of the π1(1600)
signal on the PWA model.

Surprisingly, an analysis of a more than 20 times larger
data sample (2.6 × 106 π− p → π−π−π+ p events plus
3.0× 106 π− p→ π−π0π0 p events) from the same experi-
ment performed by Dzierba et al. came to a completely differ-
ent conclusion [2453]. They performed the partial-wave anal-
ysis independently in 12 bins of the reduced four-momentum
squared t ′ that is transferred from the beam to the target recoil
particle86 in the range from 0.08 to 0.53 GeV2 using a larger
PWA model of 36 waves. The observed intensity distribution
of the 1−+ wave exhibits a broad and structureless enhance-
ment (see black points in Fig. 180; cf. Fig. 179). The shape of
this enhancement was found to change strongly with t ′ with
intensity moving from the 1.2 GeV region towards higher
masses with increasing t ′. However, the peak at 1.6 GeV,
which in Refs. [2442,2443] was attributed to the π1(1600),
had disappeared. By applying the 21-wave PWA model from
Refs. [2442,2443], Dzierba et al. were able to reproduce the
results from Refs. [2442,2443] (see gray points in Fig. 180;
cf. Fig. 179). They also showed that the omission of important
2−+ waves in the 21-wave PWA model causes leakage from
the π2(1670) producing an artificial peak at 1.6 GeV in the
1−+ wave. Based on these findings, Dzierba et al. concluded
that the BNL E852 data provide no evidence for the exis-
tence of the π1(1600) in the ρ(770)π decay channel and that
the signal reported in Refs. [2442,2443] was an artifact of a
too restricted PWA model. However, this conclusion was not
based on a resonance-model fit and did not take into account
the phase motions of the 1−+ wave that were still present in
the analysis of Dzierba et al.. In addition, Dzierba et al. only
considered the kinematic region t ′ < 0.53 GeV2, which will
become important in the discussion below.

The first results from the COMPASS experiment only
added to the confusion. The authors of Ref. [2444] per-
formed a partial-wave analysis of 420 000 events for the
reaction π−Pb → π−π−π+Pb in the kinematic range
0.1 < t ′ < 1.0 GeV2 using an even larger PWA model than
Dzierba et al. consisting of 42 waves. This model is similar
to the 36-wave PWA model used in Ref. [2453] and includes
in particular the 2−+ waves that were found to cause leakage
from the π2(1670) into the 1−+ wave. However, in contrast
to Dzierba et al., COMPASS observed an enhancement at
1.6 GeV in the intensity distribution of the 1−+ wave (see
data points in Fig. 181; cf. black data points in Fig. 180).
In the performed resonance-model fit, which describes the

86 Here, t ′ ≡ |t |−|t |min with t = (pbeam− pX )2 being the Mandelstam
variable, pbeam the four-momentum of the beam pion, and pX the total
four-momentum of the produced 3π system.

Fig. 180 Intensity distribution of the ρ(770)π P-wave with spin-
exotic J PC = 1−+ quantum numbers produced in natural-parity
exchange as obtained by Dzierba et al. using BNL E852 data on
π− p → π−π−π+ p in the kinematic range 0.18 < t ′ < 0.23 GeV2.
The open gray points (“low wave”) correspond to the 21-wave PWA
model from Refs. [2442,2443] (cf. Fig. 179), the solid black points
(“high wave”) correspond to the 36-wave PWA model from Ref. [2453].
(Taken from Fig. 25(a) in Ref. [2453])

Fig. 181 Intensity distribution of the ρ(770)π P-wave with spin-
exotic J PC = 1−+ quantum numbers produced in natural-parity
exchange as obtained by the COMPASS experiment using data on
π−Pb → π−π−π+Pb (points with statistical uncertainties). The red
curve represents the result of a fit with a resonance model, which is
the coherent sum of a Breit–Wigner amplitude for the π1(1600) (blue)
and a non-resonant amplitude (magenta). (Taken from Fig. 2(d) in Ref.
[2444])

intensities and mutual interference terms of six waves simul-
taneously, the 1−+ amplitude is well described by a coher-
ent sum of a non-resonant and a Breit–Wigner amplitude
for the π1(1600) (see curves in Fig. 181) and the resulting
resonance parameters are compatible with the previous mea-
surements of the π1(1600). Hence, COMPASS claimed the
observation π1(1600)→ ρ(770)π .
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Fig. 182 (Left) and (center) Intensity distribution of the ρ(770)π P-
wave with spin-exotic J PC = 1−+ quantum numbers produced in
natural-parity exchange as obtained by the COMPASS experiment using
data on π− p → π−π−π+ p at low and high t ′. (Right) Phase of the
1−+ wave relative to the ρ(770)π S-wave with J PC = 1++ at high t ′.
In the three diagrams, the points with statistical uncertainties represent

the measured values. The red curves represent the results of fits with
two resonance models. The continuous red curve corresponds to the
coherent sum of a Breit–Wigner amplitude for the π1(1600) (blue) and
a non-resonant amplitude (green). The dashed red curve corresponds
to a model that contains only the non-resonant amplitude. (Taken from
Figs. 48(b), (c), and (d) in Ref. [2319])

These puzzling experimental findings were reconciled
only recently by the results of a comprehensive partial-wave
analysis performed on a highly precise sample of 46 × 106

π− p → π−π−π+ p events obtained by the COMPASS
experiment [2319,2445,2454]. The PWA was performed
independently in 11 t ′ bins in the range 0.1 < t ′ < 1.0 GeV2

using the so far largest PWA model with 88 waves. The
intensity distribution of the 1−+ wave summed over the
11 t ′ bins exhibits a broad enhancement from about 1.0
to 1.8 GeV but no peak at 1.6 GeV. This is consistent with
the distribution observed by the VES experiment in a sim-
ilar t ′ range [2455]. The shape of the intensity distribution
changes strongly with t ′ confirming a similar observation
made by Dzierba et al. in the BNL E852 data [2453]. At
low t ′, COMPASS observes a broad structure in the mass
range from about 1.0 to 1.7 GeV (see Fig. 182(left)).87 As
t ′ increases, this structure becomes narrower and its maxi-
mum moves to about 1.6 GeV so that it becomes similar to
the distribution observed in the first COMPASS data on the
Pb target (see Fig. 182(center); cf. Fig. 181).

Since resonance parameters are independent of t ′, the
observed strong modulation of the intensity distribution
with t ′ hints at large contributions from non-resonant pro-
cesses. This was confirmed by the resonance-model fit, which
simultaneously describes the amplitudes of 14 selected par-
tial waves. The large wave set provides tight constraints for
the 1−+ amplitude via the mutual interference terms between
the amplitudes. In addition, for the first time all 11 t ′ bins

87 The distribution also exhibits a narrow peak at about 1.1 GeV, which,
however, has no associated phase motion and depends on the PWA
model. According to Refs. [2319,2445] this peak is likely an artifact
induced by imperfections of the analysis method.

were fit simultaneously, forcing the resonance parameters
to be the same across the t ′ bins. This t ′-resolved approach
leads to a much better disentanglement of the resonant and
the non-resonant contributions, which have in general differ-
ent dependences on t ′. For t ′ � 0.5 GeV2, the fit finds that
the 1−+ intensity is almost saturated by the non-resonant
component (green curve in Fig. 182(left)) with only a small
π1(1600) contribution (blue curve). With increasing t ′ the
strength of the non-resonant component decreases relative to
that of the π1(1600), so that for t ′ � 0.5 GeV2 the π1(1600)
becomes the dominant component (see Fig. 182(center)).

Applying the 21- and 36-wave PWA models from the
two analyses of BNL E852 data [2445] to the COMPASS
data yields results consistent with those reported in Refs.
[2442,2443,2453] confirming the observations by Dzierba
et al. that the 21-wave model produces an artificial peak at
1.6 GeV in the 1−+ waves for natural as well as unnatural-
parity exchange due to leakage from the π2(1670). This
explains the puzzling observation of aπ1(1600)→ ρ(770)π
signal in unnatural-parity exchange by the BNL E852 exper-
iment [2442,2443] as an artifact caused by leakage. In addi-
tion, the t ′-resolved analysis of the COMPASS data shows
that for t ′ � 0.5 GeV2 the π1(1600) signal is masked
by the dominant non-resonant contribution. This explains
why Dzierba et al., who considered only the range t ′ <

0.53 GeV2, reported a non-observation of the π1(1600).
However, in the kinematic range t ′ � 0.5 GeV2 COM-
PASS observes a clear π1(1600) → ρ(770)π signal and a
π1(1600) resonance is indeed required to explain the COM-
PASS data. This is demonstrated by the dashed red curve
in Fig. 182, which represents the result of a resonance-
model fit, where the 1−+ amplitude was described using
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only the non-resonant component. At low t ′, this model is
able to describe the data fairly well (see Fig. 182(left)), but
clearly fails at high t ′ (see Fig. 182(center) and (right)). The
t ′-resolved COMPASS results in Refs. [2319,2444,2445]
therefore establish unambiguously the ρ(770)π decay mode
of the π1(1600) and in addition resolve a long-standing con-
troversy by showing that the data of previous experiments are
indeed consistent and that the BNL E852 puzzle was caused
by a too restricted PWA model on the one hand [2442,2443]
and a too restricted t ′ range on the other hand [2453].

Another big step towards a better understanding of the
π1 states was the coupled-channel analysis of the ηπ and
η′π P- and D-wave amplitudes measured by the COMPASS
experiment [2457], which was performed by the JPAC col-
laboration [2324]. Using a unitary model based on S-matrix
principles they find in the D-wave amplitudes two reso-
nance poles, the a2(1320) and the a2(1700) and in the P-
wave amplitudes a single resonance pole. The parameters of
the P-wave resonance pole are m0 = (1564+24

−86)MeV and

Γ0 = (492+ 54
−102)MeV, consistent with the π1(1600). Apart

from determining theπ1(1600) pole position for the first time
using an analytic and unitary model, this result is in so far
remarkable as only a single resonance pole is required to
simultaneously describe the ηπ and the η′π P-wave ampli-
tudes despite their rather different intensity distributions (see
green and blue points and curves in Fig. 183). This is in con-
trast to most previous analyses, which considered two dif-
ferent resonance components in their models: a π1(1400) to
describe the broad peak at 1.4 GeV in the ηπ P-wave inten-
sity and a π1(1600) to describe the narrower peak at 1.6 GeV
in the η′π P-wave intensity. It is interesting to note that in
the COMPASS data the latter peak is nearly identical to the
one observed in the 1−+ intensity in the high-t ′ region of
the π−π−π+ data (cf. blue and red points and curves in
Fig. 183). Since the COMPASS partial-wave data are con-
sistent with previous experiments, the JPAC analysis raises
serious doubts about the existence of the π1(1400) as a sepa-
rate resonance. Recently, the JPAC results were confirmed by
Kopf et al., who performed a coupled-channel analysis that in
addition to the COMPASSηπ andη′π P- and D-wave ampli-
tudes also includes Crystal Barrel data on p̄ p → π0π0η,
π0ηη, and K+K−π0 as well as ππ scattering data [2458].

Both coupled-channel analyses favor a much simpler and
more plausible picture with only one π1 state below 2 GeV,
the π1(1600), decaying into (at least) ηπ , η′π , ρ(770)π ,
f1(1285)π , and b1(1235)π . This scenario resolves the long-
standing puzzle of two spin-exotic states having peculiar
decay modes and lying unexpectedly close to each other. If
interpreted in terms of hybrid states, this would also remove
the discrepancy with lattice QCD and most model calcu-
lations, which predict the lightest hybrid state to have a

Fig. 183 Intensity distributions of spin-exotic waves with J PC = 1−+
from COMPASS data. (Green points) ηπ P-wave, (blue points) η′π P-
wave, both for 0.1 < t ′ < 1.0 GeV2. (Red points) ρ(770)π P-wave
for 0.449 < t ′ < 0.724 GeV2. The curves represent the results of the
resonance-model fits from Refs. [2319,2324]. (Taken from Fig. 2 in
Ref. [2456])

mass substantially higher than that of the π1(1400) (see
Sect. 8.3.2).

Up to now only isovector spin-exotic states were observed
in the light-meson sector. However, models and lattice QCD
predict that SU(3)flavor partner states of the π1, i.e. η1 and
η′1 as well as K ∗ states,88 should exist. In order to estab-
lish exotic resonances it is therefore important to find these
states. A first sign that they indeed exist is the very recent first
observation of a spin-exotic isoscalar η1(1855) state in the
ηη′ decay channel produced in J/ψ → γ ηη′89 reported by
the BESIII experiment [2461,2462]. The challenge is now to
confirm this state in other experiments.

8.3.5 Summary and outlook

The dust of more than three decades of research on spin-
exotic light mesons is starting to settle. For a long time, the
experimental data were confusing leading to contradictory
conclusions on the existence and properties of π1 mesons.
Recently, high-precision data and more advanced theory
models helped to resolve many of these puzzles and a more
coherent picture seems to be emerging, where instead of
two low-lying states, π1(1400) and π1(1600), with hard

88 As kaons are neither eigenstates of C nor of G parity, there are no
spin-exotic kaon states. Hence, the exotic K ∗ states can be identified
only as supernumerary states and via their couplings.
89 This is an example for a radiative J/ψ decay. Such decays are
“gluon-rich” processes because in lowest order the cc̄ pair in the J/ψ
annihilates into the measured photon and a pair of gluons that hadronize
into the measured final state, here the ηη′ system. The production of
mesons with explicit gluonic degrees of freedom, i.e. hybrids and glue-
balls, is expected to be enhanced in these decays.
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Fig. 184 Intensity distributions of the ρ(770)π P-wave with spin-
exotic J PC = 1−+ quantum numbers produced in γ + π± →
π±π−π+ reactions. (Left) Result from the CLAS experiment [2459],
where the process is embedded into γ + p → π+π−π+ + (n)miss.

(Right) Result from the COMPASS experiment [2413,2460], where
the process is embedded into π−+Pb → π−π−π++Pb. (Taken from
Fig. 5(d) of Ref. [2459] and Fig. 7(a) of Ref. [2413])

to explain properties only the π1(1600) remains. However,
there are at least two puzzles to be solved. The first is
the unexpected production of the π1(1600) in unnatural-
parity exchange claimed by the BNL E852 experiment in the
b1(1235)π channel [2322]. This can be clarified by the COM-
PASS experiment using data on the same reaction at higher
energy. The second remaining puzzle is the seeming non-
observation of the π1(1600) in photon-induced reactions.
Since the π1(1600) is observed to decay into ρ(770)π , it
should couple to γπ via vector-meson dominance. However,
in the γ + π± → π±π−π+ reaction studied by the CLAS
and the COMPASS experiments90 nearly vanishing inten-
sity was observed in the J PC = 1−+ wave in the mass range
where a π1(1600) signal would be expected (see Fig. 184).
The nearly vanishing intensity could be the result of a destruc-
tive interference of the π1(1600) amplitude with the one of
non-resonant contributions. However, no resonance-model
fits have been performed yet to test this hypothesis. In the
future, much more precise photoproduction data from the
GlueX experiment at JLab will help to clarify the situation.

Having established that spin-exotic 1−+ light-meson
states do exist is, of course, only the starting point. The
next goal is to study their properties in detail, in particu-
lar their couplings, by measuring them in various production
and decay modes. Another goal is to find their excitations.
A first step in this direction would be the confirmation of

90 CLAS measured the photoproduction reaction γ+p→ π+π−π++
(n)miss, where a pion is exchanged between the target and the beam
photon producing the 3π final state. In COMPASS data, the γπ →
3π reaction is embedded into the reaction π− + Pb → π−π−π+ +
Pb, which was measured at very low squared four-momentum transfer,
where the beam pion predominantly scatters off quasi-real photons from
the Coulomb field of the Pb target nucleus.

the π1(2015) signal in the f1(1285)π and b1(1235)π decay
channels. In addition, it is important to search for the exotic
SU(3)flavor partner states of the π1. Here, the result by the
BESIII experiment of a possible observation of an η1(1855)
state could be a breakthrough. Last but not least, the search
for states with other spin-exotic J PC quantum numbers such
as 0+− and 2+− continues. These searches will also yield a
more complete picture of the spectrum of states with ordinary
quantum numbers, which not only helps to identify supernu-
merary states, but is also an important input to theory in order
to improve our understanding of the non-perturbative regime
of QCD.

In turn, the analysis of the extremely high-precision data
from running and upcoming experiments requires more
advanced theoretical models and in particular a more accu-
rate understanding of the dynamics of hadrons. Close col-
laboration of theorists and experimentalists will help us to
formulate, test, and apply detailed models for production
reactions and for the interactions of final-state hadrons in
order to overcome limitations of the currently available anal-
ysis approaches. Together with refined statistical tools and
novel approaches such as Machine Learning, this will enable
us to leverage the full potential of the data.

8.4 Glueballs, a fulfilled promise of QCD?

Eberhard Klempt

8.4.1 Introduction

At the Workshop on QCD: 20 Years Later [78] held in 1992
in Aachen, Heusch [2463] reported on searches for glueballs,
gluonium, or glue states as Fritzsch and Gell-Mann [35,55]
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had called this new form of matter. Glueballs are colorless
bound states of gluons and should exist when their newly pro-
posed quark–gluon field theory yields a correct description of
the strong interaction. The title of Heusch’s talk Gluonium:
An unfulfilled promise of QCD? expressed the disappoint-
ment of a glueball hunter: At that time there was some –
rather weak – evidence for glueball candidates but there was
no convincing case. In 1973, the e+e− storage ring SPEAR at
the Stanford Linear Accelerator Center had come into oper-
ation and one year later, the J/ψ resonance was discovered
[91] – this was the very first SPEAR publication on physics.
The J/ψ resonance and its radiative decay became and still
is the prime reaction for glueball searches.

One of the first glueball candidates was the ι(1440)
[2464,2465]. The name ι stood for the “number one” of all
glueballs to be discovered. It was observed as very strong
signal with pseudoscalar quantum numbers in the reaction
J/ψ → γ K K̄π . Its mass was not too far from the bag-
model prediction (1290 MeV) [782]. Now the ι(1440) is sup-
posed to be split into two states, η(1405) and η(1475), where
the lower-mass meson is still discussed as glueball candidate
even though its mass is incompatible with lattice gauge cal-
culations. They find the mass of the pseudoscalar glueball
above 2 GeV.

A second candidate was a resonance called Θ(1640)
[2466,2467]. It was seen in the reaction J/ψ → γ ηη and
confirmed – as G(1590) – by the GAMS collaboration in
π− p → ηηn [2468]. Later, its quantum numbers shifted
from J PC = 2++ to 0++, and its mass changed to 1710 MeV.
This resonance still plays an important role in the glueball
discussion.

A third candidate, or better three candidates, were obser-
ved in the OZI rule violating process π− p → φφn [2332,
2469]. Three φφ resonances at 2050, 2300 and 2350 MeV
were reported. I remember Armenteros saying: When you
have found one glueball, you have made a discovery. When
you find three, you have a problem. Now I believe that this
was a very early manifestation of the tensor glueball.

The situation was not that easy at that time as described
here. Nearly for each observation, there were contradicting
facts, and Heusch concluded his talk at the QCD workshop
with the statement: there is no smoking-gun candidate for
gluonium · · · . At this workshop, I had the honor to present
the results of the Crystal Barrel experiment at LEAR and to
report the discovery of two new scalar mesons, f0(1370) and
f0(1500), and I was convinced, Heusch was wrong: f0(1500)
was the glueball! And I turned down my internal critical voice
which told me that in my understanding of p̄N annihilation,
this process is not particularly suited to produce glueballs
[2470,2471]. Our glueball f0(1500)was not seen in radiative
J/ψ decays where a glueball should stick out like a tower in
the landscape. The f0(1500) as scalar glueball? That could
not be the full truth!

8.4.2 QCD predictions

Glueball masses
First estimates of the masses of glueballs were based on bag
models. The color-carrying gluon fields were required to van-
ish on the surface of the bag. Transverse electric and trans-
verse magnetic gluons were introduced populating the bag.
The lowest excitation modes were predicted to have quantum
numbers J PC = 0++ and 2++ and to be degenerate in mass
with M = 960 MeV [782,2472]. A very early review can be
found in Ref. [2473].

The bag model is obsolete nowadays. Most reliable are
presumably simulations of QCD an a lattice (see Sect. 4
and Ref. [2474] for an introduction). In lattice gauge the-
ory, the spacetime is rotated into an Euclidean space by the
transformation t → i t and then discretized into a lattice
with sites separated by a distance in space and time. The
gauge fields are defined as links between neighboring lattice
points, closed loops of the link variables (Wilson loops) allow
for the calculation of the action density. Technically, gluons
on a space-time lattice struggle against large vacuum fluc-
tuations of the correlation functions of their operators, the
signal-to-noise ratio falls extremely rapidly as the separation
between the source and sink is increased. These difficulties
can be overcome by anisotropic space-times with coarser
space and narrow time intervals [2475,2476]. Fermion fields
are defined at lattice sites. Different techniques have been
developed to include fermions in lattice calculations [2477].
The effect of see quarks on glueball masses seems to be small
[2478].

Recently, a number of different approaches were chosen
to approximate QCD by a model that is solvable analyti-
cally. Szczepaniak and Swanson [2479] constructed a quasi-
particle gluon basis for a QCD Hamiltonian in Coulomb
gauge that was solved analytically. A full glueball spectrum
was calculated with no free parameter. The authors of Ref.
[2480] constructed relativistic two- and three-gluon glueball
currents and applied them to perform QCD sum rule anal-
yses of the glueball spectrum. The Gießen group calculated
masses of ground and excited glueball states using a Yang–
Mills theory and a functional approach based on a truncation
of Dyson–Schwinger equations and a set of Bethe–Salpeter
equations derived from a three-particle-irreducible effective
action [2481,2482].

AdS/QCD relies on a correspondence between a five
dimensional classical theory with an AdS metric and a super-
symmetric conformal quantum field theory in four dimen-
sions. In the bottom-up approach, models with appropriate
operators are constructed in the classical AdS theory with the
aim of resembling QCD as much as possible. Confinement is
generated by a hard wall cutting off AdS space in the infrared
region, or spacetime is capped off smoothly by a soft wall
to break the conformal invariance. Rinaldi and Vento [1104]

123



 1125 Page 274 of 636 Eur. Phys. J. C          (2023) 83:1125 

Table 31 Masses of low-mass glueballs, in units of MeV. Lattice QCD
results are taken from Refs. [2475,2477] (quenched) and Ref. [2478]
(unquenched). Szczepaniak and Swanson [2479] construct of a quasi-
particle gluon basis for a QCD Hamiltonian. Results from QCD sum

rule results are given in Ref. [2480], from using Dyson–Schwinger
equations in [2481,2482], and from a graviton-soft-wall model in Ref.
[1104]

Glueball Ref. [2475] Ref. [2477] Ref. [2478] Ref. [2479] Ref. [2480] Ref. [2481] Ref. [1104]

|0++〉 1710± 50± 80 1653± 26 1795± 60 1980 1780+140
−170 1850± 130 1920

|2++〉 2390± 30± 120 2376± 32 2620± 50 2420 1860+140
−170 2610± 180 2371

|0−+〉 2560± 40± 120 2561± 40 – 2220 2170± 110 2580± 180

calculated the glueball mass spectrum within AdS/QCD. The
results on glueball masses are summarized in Table 31.

The width of glueballs
Glueballs are often assumed to be narrow. φ decays into ρπ

are suppressed since the primary ss̄ pair needs to annihilate
and a new qq̄ pair needs to be created. In glueball decays,
there is no pair to be annihilated but a qq̄ pair needs to be
created. If the OZI rule suppresses the decay by a factor 10 to
100, we might expect the width of glueballs to be suppressed
by a factor 3 to 10. Assuming a “normal” width of 150 MeV,
a glueball at 1600 MeV could have a width of 15 to 50 MeV.
This argument is supported by arguments based on the 1/Nc

expansion (see, e.g., Ref. [2390]).
Narison applied QCD sum rules [2483]. Assuming a mass

of 1600 MeV, he calculated the 4π width of the scalar glue-
ball to 60 to 138 MeV while the partial decay width of the
tensor glueball at 2 GeV to pseudoscalar mesons should be
less than 155 MeV. Calculations on the lattice gave a partial
decay width for decays into pseudoscalar mesons of 108± 29
MeV for a scalar glueball mass of 1700 MeV [2484]. In a
semi-phenomenological model, Burakovsky and Page find
that the width of the scalar glueball (at 1700 MeV) should
exceed 250 to 390 MeV. A flux tube model predicted the mass
of the glueball of lowest mass to 1680 MeV and its width
to 300 MeV [2485]. In a field theoretical approach with an
effective Coulomb gauge the glueball width was estimated
to 100 MeV [2486].

Radiative yields
The study of radiative decays of the J/ψ meson is the prime
path to search for glueballs with masses of less than ∼2500
MeV.

Gui et al. [2487] calculated the yield of a scalar glueball
having a mass of 1710 MeV on lattice and found

BRJ/ψ→γG0++ (T H) = (3.8± 0.9)× 10−3. (8.28)

For higher glueball masses the yield increases.
Narison gave a mass dependent formula derived from sum

rules. For a mass of 1865 MeV, a yield of about 10−3 is pre-
dicted [2483].

Fig. 185 Reactions most relevant for glueball searches. Left: p̄ p
annihilation; middle: Pomeron-Pomeron fusion; right: radiative J/ψ
decays. The glueball is supposed to decay into K 0 K̄ 0

The tensor glueball is expected [2488] to be observed with
a branching ratio

BRJ/ψ→γG2++ (T H) = (11± 2)× 10−3. (8.29)

Production of the pseudoscalar glueball seems to be consid-
erably smaller. For a mass of 2395 (or 2560) MeV, the authors
of Ref. [2489] find

BRJ/ψ→γG0−+ (T H) = (0.231± 0.080)× 10−3

or = (0.107± 0.037)× 10−3. (8.30)

These are very significant yields, and the glueballs must be
found provided they can be identified convincingly as glue-
balls amidst their qq̄ companions.

8.4.3 How to identify a glueball

Figure 185 shows the prime reactions in which glueballs have
been searched for.

NN̄ annihilation
A decisive step forward in the search for glueballs was the
discovery of two scalar isoscalar states in p̄ p annihilation
at rest. With the large statistics available at the Low Energy
Anitiproton Ring (LEAR) at CERN, f0(1370) and f0(1500)
were identified in several final states. A large fraction of the
data taken at LEAR is still used jointly with data on radiative
J/ψ decays in a coupled-channel analysis. Glueballs decay
via qq̄ pair creation. Hence they can be produced via qq̄ anni-
hilation. Meson production in p̄ p annihilation was studied by
the ASTERIX, OBELIX and Crystal Barrel experiments at
LEAR and is a major objective of the PANDA collaboration
at the GSI.
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Fig. 186 Decay probabilities of mesons for decays into two pseu-
doscalar mesons as a function of the scalar mixing angle [2490]

Central production
In central production, two hadrons (e.g. two protons) scatter
in forward direction via the exchange of Pomerons. Pomerons
are supposed to be glue-rich, hence glueballs can be formed
in Pomeron-Pomeron fusion. This process was studied exten-
sively at CERN by the WA76 and WA102 collaborations and
is now investigated with the STAR detector at BNL. In the
WA102 experiment, f0(1370) and f0(1500) were confirmed
and f0(1710) was added to the number of scalar resonances.

Radiative J/ψ decays
In radiative J/ψ decays, the primary cc̄ pair converts into
two gluons and a photon. The two gluons are mainly pro-
duced in S-wave, the two gluons can form scalar and tensor
glueballs which should be produced abundantly. The large
statistics available from BESIII at Beijing makes this reac-
tion the most favorable one for glueball searches. Radiative
decays of heavy mesons is the only process for which glue-
ball yields have been calculated. The data will be discussed
below in more detail.

Decay analysis
The decay of mesons into two pseudoscalar mesons is gov-
erned by SU(3)F . In a meson nonet, there are two isoscalar
mesons, one lower in mass the other one higher, which both
contain a nn̄ = (uū + dd̄)/

√
2 and a ss̄ component and

are mixed with the mixing angle ϕ. Figure 186 shows the
SU(3)F squared matrix elements for meson decays into two
pseudoscalar mesons as a function of the scalar mixing angle.

(
f H

f L

)

=
(

cosϕs − sin ϕs

sin ϕs cosϕs

)( |nn̄〉
|ss̄〉

)

(6)

Supernumery
The three scalar isoscalar mesons f0(1370), f0(1500) and
f0(1710) played an important role in the glueball discus-
sion. Amsler and Close [2491,2492] suggested to interpret
these three states as the result of mixing of the two expected
isoscalar states with the scalar glueball.
⎛

⎝
f0(1370)
f0(1500)
f0(1710)

⎞

⎠ =
⎛

⎝
x11 x12 x13

x21 x22 x23

x31 x32 x33

⎞

⎠

⎛

⎝
|nn̄〉
|ss̄〉
|gg〉

⎞

⎠ (8.31)

These papers led to a large number of follow-up papers, ref-
erences can be found in Ref. [2490]. In all these papers,
these three mesons contain the full glueball,

∑
j x

2
i j = 1

is imposed. Note that the squared mass difference between
f0(1370) and f0(1710) is slightly above 1 GeV2, the f0(1710)
could also be a radial excitation (and is interpreted as radial
excitation below).

Conclusions
Identifying a glueball is a difficult task. The main argument
in favor of a glueball interpretation is an anomalously large
production rate in J/ψ decays. It turns out that scalar mesons
are organized like pseudoscalar mesons, into mainly singlet
and mainly octet mesons. A large production rate of a mainly-
octet scalar isoscalar meson in radiative J/ψ decays directly
points to a significant glueball content in its wave function.
A second argument relies an meson decays into pseudoscalar
mesons. In presence of a glueball, a pair of mesons assigned
to the same multiplet should have a decay pattern that is
incompatible with a qq̄ interpretation for any mixing angle.
Supernumery is a weak argument. It requires a full under-
standing of the regular excitation spectrum. Further studies
are required to learn if central production is gluon-rich. The
large production rates of f0(1500), f0(1710) and f0(2100)
in p̄ p annihilation at collision energies above 3 GeV encour-
ages glueball searches at the FAIR facility with the PANDA
detector (see Sect. 14.5).

8.4.4 Evidence for glueballs from coupled-channel analysis

We have performed a coupled-channel partial wave analysis
of radiative J/ψ decays into π0π0, K 0

s K
0
s , ηη, and ωφ, con-

strained by the CERN-Munich data on πN scattering, data
from the GAMS collaboration at CERN, data from BNL on
ππ → K 0

s K
0
s , and 15 Dalitz plots on p̄ p annihilation at rest

from LEAR. Data on Ke4 decays constrain the low-energy
region. Fitting details and references to the data can be found
in Ref. [2493]. A similar analysis has been carried out by
Rodas et al. [2494]. This will be discussed in Sect. 8.4.9.

Figure 187 shows the data on radiative J/ψ decays into
π0π0, K 0

s K
0
s and the fit. Ten scalar isoscalar resonances

were included in the fit. Oller [2406] has shown that f0(500)
is singlet-like, the f0(980) octet-like (see also [2495]). The
f0(1500) is seen in Fig. 187 as a dip. This pattern was repro-
duced in Ref. [2493] assuming that f0(1370) is a singlet
state and f0(1500) an octet state. Hence we assumed that the
ten mesons can be divided into two series of states, mainly-
singlet states with lower masses and mainly-octet states with
higher masses.

In a (M2, n) plot, the masses of singlet and octet states
follow two linear trajectories (see Fig. 188). Remarkably,
the slope (1.1 GeV−2) is close to the slope of standard Regge
trajectories. The separation between the two trajectories is
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Fig. 187 The squared S-wave transition amplitudes for J/ψ → π0π0

(a) and J/ψ → K 0
s K

0
s (b). The data points are from an energy-

independent partial-wave analysis [2496,2497], the curve represents
our fit [2493]

Fig. 188 M2, n trajectories for mainly-singlet and mainly-octet scalar
isoscalar resonances. The red dot at high masses represents a scalar state
from J/ψ → γ η′η′ [2498]. Adapted from Ref. [2493]

given by the mass square difference between η′ and η-meson
as suggested by instanton-induced interactions [2499]. The
figure includes a meson reported by the BESIII collaboration
studying J/ψ → γ η′η′ [2498]. As η′η′ resonance, f0(2480)
is very likely a SU(3) singlet state. Indeed, its mass is com-
patible with the “mainly-singlet” trajectory. The figure gives
the pole positions of the eleven resonances as small inserts.

8.4.5 Scalar multiplets

The nonet of scalar mesons

a0(980), K ∗0 (700), f0(980), f0(500)

of lowest mass were discussed by Pelaez (Sect. 8.2). In our
interpretation, this nonet is followed by

a0(1450), K ∗0 (1430), f0(1500), f0(1370).

All known decay modes are compatible with SU(3) predic-
tions except K ∗0 (1430) → Kπ : the SU(3) fit requires this

Fig. 189 Yield of scalar isoscalar mesons in radiative J/ψ decays into
mainly-octet (open circles) and mainly-singlet mesons (full squares) as
a function of their mass [2493]

resonance to have a large inelasticity. The large K ∗0 (1430)→
Kπ is incompatible with the known a0(1450) decay modes,
unrelated of course with the assignment of the isoscalar
mesons to this nonet.

The recently discovered a0(1700) [2348–2351] can be
accommodated in a multiplet

a0(1700), K ∗0 (???), f0(1780), f0(1710),

where the K ∗0 (???), expected at about 1680 MeV, is missing.
The SU(3) fit to the next nonet

a0(1950), K ∗0 (1950), f0(2100), f0(2020)

requires a larger f0(2100) → ηη coupling which is not
observed. Too little is known about the a0(1950), K ∗0 (1950)
decays modes.

It is obvious, that the assignments of the observed scalar
mesons to multiplets is very tempting but tensions between
an SU(3) analysis of the decay mode and experimental values
remain.

8.4.6 The yields of scalar mesons in radiative J/ψ decays

The total yields of scalar mesons in radiative J/ψ decays –
including decay modes not reported by the BESIII collabo-
ration – was determined from the coupled-channel analysis
[2493] that included also other data. The yield of mainly-
octet and mainly-singlet mesons as a function of their mass
is shown in Fig. 189. Mainly-octet mesons should not be
produced (or at most weakly) in radiative J/ψ decays. How-
ever, they are produced abundantly, in a limited mass range
centered at about 1865 MeV. Mainly-singlet mesons are pro-
duced over the full mass range but show a peak structure at
the same mass. This enhancement must be due to the scalar
glueball mixing into the wave functions of scalar mainly-
octet and mainly-singlet mesons. A Breit–Wigner fit to these
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Fig. 190 The glueball content of scalar mesons. Black squares:
sin2 ϕs

n, solid curve: Breit–Wigner resonance with area 1 [2490]

distributions gives mass and width

MG = (1865± 25+10
−30)MeV ΓG = (370± 50+30

−20)MeV,

(8.32)

and the (observed) yield is determined to

YJ/ψ→γG = (5.8± 1.0) 10−3. (8.33)

8.4.7 Meson–glueball mixing

Earlier attempts to identify the glueball have in common
that the full glueball is distributed among the three states
f0(1370), f0(1500) and f0(1710). Inspecting Fig. 187, this
seems not to be the case: Above 1 GeV, four peaks with three
valleys are seen, and there is no reason why one particular
region should be more gluish than the other ones. The yield
of scalar mesons sees the glueball contribution distributed
over several resonances.

We did not impose that the full glueball should be seen
in these three states nor that we must see the full glueball at
all. We fitted the decay modes of pairs of scalar mesons, one
mainly-singlet one mainly-octet, and allowed for a glueball
component [2490].

f nH
0 (xxx) = (

nn̄ cosϕs
n − ss̄ sin ϕs

n

)
cosφG

nH + G sin φG
nH

f nL
0 (xxx) = (

nn̄ sin ϕs
n + ss̄ cosϕs

n

)
cosφG

nL + G sin φG
nL

(8.34)

ϕs
n is the scalar mixing angle, φG

nH and φG
nL are the meson–

glueball mixing angles of the high-mass state H and of the
low-mass state L in the nth nonet. The fractional glueball
content of a meson is given by sin2 φG

nH or sin2 φG
nL.

With this mixing scheme and the SU(3) coupling constant
(see Fig. 186), we have fitted the meson decay modes and
have thus determined the glueball content of the eight high-
mass scalar mesons. Figure 190 shows the glueball fraction
in the scalar mesons.

Fig. 191 In radiative J/ψ decays two gluons, in B̄0
s → J/ψ + ss̄, a

ss̄ pair may convert into a scalar meson

The glueball fractions derived from the decay analysis of
pairs of scalar mesons add up to a sum that is compatible
with 1. The distribution of the glueball fraction in Fig. 190
is identical to the distribution of yields in Fig. 189. This is
a remarkable confirmation that the scalar glueball of lowest
mass has been identified and has mass and width as given in
Eq. (8.32) and a yield as given in Eq. (8.33).

8.4.8 Comparison with LHCb data

Most striking is the mountain landscape above 1500 MeV in
the data on radiative J/ψ decays. In these decays a cc̄ pair
converts into gluons which hadronize (see Fig. 191, left). The
huge peak in the K K̄ mass spectrum at 1750 MeV and the
smaller one at 2100 MeV decay are produced with two gluons
in the initial state. This is to be contrasted with data on B0

s
and B̄0

s decays into J/ψ+π+π− [2500] and K K̄ [2501]. In
this reaction, a primary ss̄ pair – recoiling against the J/ψ
– converts into the final state mesons (see Fig. 191, right).
We have included the spherical harmonic moments in the
coupled channel analysis that describes the radiative J/ψ
decays [2502]. High-mass scalar mesons are only weakly
produced in B0

s decays with ss̄ in the initial state. The strong
peak in the K K̄ invariant mass at 1750 MeV in Fig. 187 is
nearly absent in B0

s → J/ψ K K̄ !
Figure 192 shows the ratio of the decay frequencies of

J/ψ → γ f0 and B0
s → J/ψ f0 with f0 decaying into

ππ or K K̄ . The f0(980) is likely a mainly-octet state, little
produced in radiative J/ψ decays but strongly with ss̄ in the
initial state. On the contrary, f0(1770) is seen as strong peak
in radiative J/ψ but very weakly only in B0

s decays. The
uncertainties are large, but the ratio of the decay frequencies
is fully compatible with the shape of the glueball derived
above.

This is highly remarkable: the two gluons in the initial
state must be responsible for the production of resonances
that decay strongly into K K̄ but are nearly absent when ss̄
pairs are in the initial state. Also, there is a rich structure in
the ππ mass spectrum produced in radiative J/ψ decays but
little activity only when the initial state is an ss̄ pair: The rich
structure stems from gluon–gluon dynamics. Similar conclu-
sions can be drawn [2495] from a comparison of the invariant
mass distributions from radiative J/ψ decays with the pion
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Fig. 192 The ratio Rgg/ss̄ of the frequencies for J/ψ → γ f0 and
B0
s → J/ψ f0 with f0 decaying into ππ or K K̄

Table 32 Comparison of the pole positions of the mainly-octet mesons
from [2493] and the pole positions from [2494]. Masses are given in
MeV

[2493] [2494]

(1483± 15) − i(116± 12)/2 (1450± 10) − i(106± 16)/2

(1765± 15) − i(180± 20)/2 (1769 ± 8) − i(156± 12)/2

(2075± 20) − i(260± 25)/2 (2038 ± 48) − i(312± 82)/2

(2340± 20) − i(250± 20)/2 (2419 ± 64) − i(274 ± 94)/2

and kaon form factors [2503]. Their square is proportional
to the cross sections. The f0(980) resonance dominates both
formfactors but is nearly absent in radiative J/ψ decays: The
f0(980) has large nn̄ and ss̄ components mixed to a dominant
SU(3) octet component. The large intensity above 1500 MeV
in radiative J/ψ decays is absent when not gluons but an ss̄
pair are in the initial state: the mountainous structure in radia-
tive J/ψ decays is produced by gluons and not by qq̄ pairs:
The structure is due to the scalar glueball.

8.4.9 Discussion

The BESIII data were also fitted by Rodas et al. [2494]. They
describe the data above 1 GeV with four scalar and three ten-
sor resonances only, and a “background” due to production
of vector mesons decaying into π0γ and recoiling against
a π0, J/ψ → Vπ0, V → π0γ . The fit suggests vector
meson masses outside of the available phase space leading
to a smooth background. (For the KSKSγ final state, the
vector meson decays via V → KSγ .)

This fit is very interesting. It seems to identify the octet-
like mesons and to dismiss the singlet-like mesons. In
Table 32 we compare these masses. The similarity of the
pattern is obvious!

The existence of the f0(1370) has been disputed since
long, see, e.g. [420,2504,2505] and [2368,2506]. In the
1700–1800 MeV region, only one state is established, and

the high-mass region is not constrained by the CERN-Munich
data. Hence the existence of individual SU(3) singlet scalar
resonances can be questioned. In [420] I had proposed that the
mainly-singlet scalar mesons above the f0(500) merge into
a continuous scalar “background”. In the fits of Ref. [2493],
the interference between a mainly-singlet and a mainly-octet
amplitude is shown to be required to explain the dip in the
scalar K K̄ mass distribution and the rapid intensity change
in the ππ mass distribution. I assume that the J/ψ → Vπ0

amplitude in Ref. [2494] simulates the SU(3)-singlet ampli-
tude. The strong peaks in the ππ and K K̄ mass distributions
in Fig. 187 are still assigned to mainly-octet mesons that
should not be produced in radiative J/ψ decays.

If these considerations are true, the structure in Fig. 187
still originates from an intermediate glueball mixed into the
wave function of scalar mesons. Also the arguments pre-
sented in Sect. 8.4.7 remain valid: the “narrow” octet-like
mesons and the singlet-like “background” contain identified
fractions of the scalar glueball.

8.4.10 A trace of the tensor glueball

The tensor glueball is predicted with an even higher yield
[2488]:

ΓJ/ψ→γ /G2++ /Γtot = (11± 2)10−3. (8.35)

The yield of f2(1270) in radiative J/ψ decays is (1.64 ±
0.12)10−3, about six times weaker than the predicted rate for
the tensor glueball! Bose symmetry implies that the π0π0 or
KsKs pairs are limited to even angular momenta, practically,
only S and D-waves contribute. The scalar intensity origi-
nates from the electric dipole transition E0. Three electro-
magnetic amplitudes E1,M2, and E3 excite tensor mesons.
Figure 193 shows these three amplitudes and the relative
phases.

Two fits were performed [2507]. One fit describes the mass
distribution only. Apart from the well known f2(1270) and
f ′2(1525) the fit needs one high-mass resonance with

M = (2210± 60)MeV; Γ = (360± 120)MeV, (8.36)

where the error includes systematic studies with or with-
out additional low-yield resonances. The enhancement was
called X2(2210). In this fit, the phases are not well described.
Figure 193 shows a fit in which the 2200 MeV region
is described by three tensor resonances with masses and
widths of about (M, Γ ) = (2010, 200), (2300, 150), and
(2340, 320) MeV. These resonances had been observed by
Etkin et al. [2332] in the reaction π− p→ φφn. The unusual
production characteristics were interpreted in Ref. [2332] as
evidence that these states are produced by 1–3 glueballs.

The total observed yield of X2(2210) in ππ and K K̄ is
(0.35±0.15) 10−3, far below the expected glueball yield. We
assume the glueball is – like the scalar glueball – distributed
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Fig. 193 D-wave intensities and phases for radiative J/ψ decays
into π0π0 (top subfigures) and Ks Ks (bottom subfigures) from Ref.
[2496,2497]. The subfigures show the E1 (a), M2 (b) and E3 (c)
squared amplitudes and the phase differences between the E0 and E1
(d) amplitudes, the M2 and E1 (e) amplitudes, and the E3 and E1 (f)
amplitudes as functions of the meson–meson invariant mass. The phase
of the E0 amplitude is set to zero. The curve represents our best fit

over several tensor mesons. Adding up all contributions from
tensor states above 1900 MeV seen in radiative J/ψ decays,
one obtains

M=2.5 GeV∑

M=1.9 GeV

YJ/ψ→γ f2 = (3.1± 0.6) 10−3, (8.37)

which is a large yield even though still below the predicted
yield.

8.4.11 How to find the pseudoscalar glueball

The BESIII collaboration has studied the reaction J/ψ →
π+π−η′ [2508]. The top panel of Fig. 194 shows theπ+π−η′
invariant mass distributions with a series of peaks. Assuming
that these are all pseudoscalar mesons, two trajectories can be
drawn (see bottom panel of Fig. 194). The figure suggests that
the higher-mass structures could house two mesons, possibly
singlet and octet states in SU(3). If this is true, a cut in the
π+π− invariant mass at about 1480 MeV would partly sep-
arate the two isobars, X (2600)→ f0(1370)η′ and X (2600)
→ f0(1500)η′. We may expect a slight mass shift in the

Fig. 194 Top: The π+π−η′ mass distribution from radiative J/ψ
decays [2508]. The quantum numbers are not known. Bottom: M2 ver-
sus n trajectories

Fig. 195 π+π− (left) and K+K− (right) invariant mass distributions
from radiative decays of ψ(2S). The red curves represent the S-wave
contributions. Adapted from [2509]

two π+π−η′ invariant mass distributions. The two mesons
f0(1370) and η′ are both mainly singlet. The f0(1370)η′
isobar as singlet meson in the X (2600) complex should be
slightly higher in mass than the f0(1500)η′ mainly octet
meson.

The total yields of the high-mass structures – including
unseen decay modes – are not known. Nevertheless, their
appearance above a comparatively low background is sur-
prising. Personally, I suppose that the pseudoscalar glueball
is rather wide, and that the structures are seen so clearly
because of a small glueball content. More studies of theses
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Fig. 196 π+π− (left) and K+K− (right) invariant mass distribu-
tions from radiative deacys of Υ (1S). The Υ (1S) is observed in
Υ (2S)/Υ (3S)→ π+π−Υ (1S). The red curves represent the S-wave
contributions, the grey area the ρ(770) contribution. Adapted from
[2510]

data and of different channels are required to substantiate this
conjecture.

8.4.12 Outlook

The data of the BESIII collaboration presented above are
based on 1.3 × 109 events taken at the J/ψ . Presently
available are 1010 events. Based on this large statistics,
rare radiative decays like J/ψ → γ ηη′ [2461,2462] and
J/ψ → γ η′η′ [2498] have been analysed. Data on the dif-
ferent charge modes of J/ψ → γ 4π would be extremely
important. In an ideal world, these data would be publicly
available after publication and would be included in differ-
ent coupled-channel partial-wave analyses.

Radiative decays of ψ(2S) and of Υ (1S) open a wider
range in invariant mass. The authors of Ref. [2509] used the
data of the CLEO collaboration on radiative ψ(2S) decays
into π+π− and K+K−. The data are shown in Fig. 195. The
data are fit with known resonances, no partial-wave analysis
was performed. The BaBar collaboration studied radiative
Υ (1S) decays into π+π− and K+K− [2510]. Figure 196
shows the results. In all four distributions, there is not a sin-
gle prominent peak in the S-wave contribution which would
stick out as glueball candidate. The S-waves rather resem-
bles the distributions observed in radiative J/ψ : three major
enhancement in the 1500, 1750 and 2200 MeV region sep-
arated by dips. (With the larger statistics in J/ψ decays, a
fourth enhancement is seen at about 2350 MeV.) In Fig. 195,
a peak is found at 1447 MeV and assigned to f0(1500). At
1500 MeV, there is the dip. The wrong mass is due to the
neglect of interference: The phase between f0(1500) and the
“background” (due to the wider f0(1370)) is 180◦ [2493].
This phase difference and the significant f0(1500) → ηη′
branching ratio identify f0(1500) as mainly SU(3)F octet
state. The different masses for the high-mass state in the
π+π− and K+K− invariant mass distributions point again
to the neglect of interference between the prominent octet
states and the singlet “background”. Inspecting Figs. 195
and 196 shows: there is no striking isolated peak which could

be interpreted as “the glueball”. The glueball content must
be distributed over a large number of states.

In ψ(2S) radiative decays, the f0(1710) → K K̄ is
observed with a branching fraction of (6.7± 0.9)×10−5, in
Υ (1S) radiative decays, the f0(1710) → K+K− is seen
with a branching ratio of (2.02± 0.51± 0.35)×10−5. The
comparison with the yield observed in Ref. [2493] allows
us to calculated the branching ratio expected for ψ(2S) and
Υ (1S) decays when the full scalar glueball is covered, i.e.
for Υ (1S)→ γG0(1865). The values are given in Table 33.

Clearly, a significant increase in statistics is required when
these reactions should make an independent impact. The
advantage of ψ(2S) and Υ (1S) radiative decays is of course
that phase space limitations play no role any more. This is
particularly important for the search for the tensor and pseu-
doscalar glueball. The scalar glueball seems to be confirmed:
there is not much intensity above 2500 MeV.

At the end I would like to give an answer to the question
posed in the title: yes, I am convinced, the scalar glueball
is identified, and the tensor glueball seems to have left first
traces in the data.

8.5 Heavy quark–antiquark sector: experiment

Marco Pappagallo

8.5.1 Introduction

The term “quarkonium” is a collective name to denote heavy
quark–antiquark bound states QQ̄′ (Q, Q′ = c, b) where the
masses of heavy (anti-)quarks are much larger thanΛQCD, the
scale of non-perturbative physics. Therefore the velocities of
the heavy (anti-)quark in quarkonium systems are small and a
nonrelativistic potential between the heavy quark–antiquark
can be employed to predict the properties of the quarkonium
states. The spectra of the charmonium and bottomonium
states, with quark content cc̄ and bb̄ respectively, have been
extensively studied in the past years. All excited quarkonium
states below the open-flavor DD̄(∗) or B B̄(∗) thresholds were
predicted to be narrow. The observation of the J/ψ meson
in 1974 and the success, to predict the electromagnetic and
hadronic transitions among the narrow quarkonium states,
established the potential models as a tool to unravel the com-
plicated QCD dynamics.

Starting from 2003, new states with masses above the
DD̄(∗) and B B̄(∗) thresholds were observed. A common fea-
ture is the presence of a heavy quark Q and anti-quark Q̄ pair
in the decay products. As a consequence, the constituent-
quark content of the decaying meson has to include a heavy
quark and a heavy anti-quark. However, the properties of
many of these states did not match to those of any conven-
tional quarkonium state. So, what are they?
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Table 33 Radiative yields
expected for ψ(2S) and Υ (1S)
radiative decays into the scalar
glueball

“Exp.” Theory Refs.

ψ(2S)→ γG0(1865) ∼ 5× 10−4 (5.9+3.4
−1.4)× 10−4 [2511]

Υ (1S)→ γG0(1865) ∼ 3× 10−4 (1.3+0.7
−0.3)× 10−4 [2511]

(1− 2)× 10−3 [2512]

In addition to the conventional qq̄ mesons and qqq
baryons, models based on QCD predict hadrons with dif-
ferent combinations of quarks q and gluons g, such as:
pentaquarks (qq̄qqq), tetraquarks (qq̄qq̄), six-quark H-
dibaryons (qq̄qq̄qq̄), hybrids (qq̄g) and glueballs (ggg), see
Sects. 8.3 and 8.4. The existence of such “exotic” hadrons
has been debated for several years without reaching a general
consensus. In the early 2000s new hadrons with unexpected
features were observed, in particular the D∗s0(2317)+ [2513]
and χc1(3872) [2514] mesons and the Θ+ baryon [2515].
While the first two candidates are still consistent with being
conventional cs̄ and cc̄ states, the latter one is manifestly
exotic with a minimal quark content uddus̄ since it was
observed in the nK+ and pK 0

S final states. However, while
the existence of the D∗s0(2317)+ and χc1(3872) mesons has
been extensively confirmed by many experiments, the evi-
dence of the Θ+ baryon has faded away with time [2516].
The discovery of the χc1(3872) drew a lot of attention due
to the narrowness of the signal and the proximity of the
mass to the m(D0) + m(D̄∗0) threshold. Soon after many
other charmonium-like and bottomonium-like states were
observed. While it is still not possible to rule out firmly a con-
ventional nature for the majority of them, the observation of
the Zc(4430)+ meson, an electrically charged charmonium-
like state, and of the T+cc state, a meson containing two charm
quarks, established definitively the existence of QCD exotics.
Many models have been proposed to explain the exotic nature
of such a states: hadronic molecules [2517], whose con-
stituents are color-singlet mesons bound by residual nuclear
forces, tetraquarks [2518], bound states between a diquark
and diantiquark, hadro-quarkonium [2519], a cloud of light
quarks and gluons bound to a heavy QQ̄ core state via van-
der-Waals forces, threshold effects, enhancements caused by
threshold cusps [2520] or rescattering processes [2521].

The spectra of the conventional and exotic charmonium-
like and bottomonium-like states are shown in Fig. 197.
Many of them have been named X , Y and Z in the corre-
sponding discovery papers without a consistent criterion as
a consequence of their uncertain nature. With the number
of X,Y, Z states growing, the need of an adequate naming
scheme emerged. The current naming scheme in Particle Data
Group extends the convention used for ordinary quarkonia
by taking in account the isospin, spin and parity of the state
[513]. The names are not related to the internal structure of
the states given their nature is controversial. However, even

the current scheme presents some limitation for the man-
ifestly exotic states and a new scheme has been proposed
recently [2522].

8.5.2 χc1(3872): the renaissance of the exotic spectroscopy

In 2003, the Belle collaboration, while studying the B+ →
J/ψπ−π+K+ decays, observed two peaking structures in
the J/ψπ−π+ mass projection (Fig. 198): the well known
ψ(2S) meson and a new state, originally dubbed X (3872)
[2514]. The new meson has been confirmed by many exper-
iments [2523–2529] and observed in prompt production in
pp, p p̄, pPb [2530] and PbPb [2531] collisions as well as
in B and Λ0

b hadron decays [2532,2533]. The invariant mass
distribution of the dipion system is consistent with originat-
ing from ρ(770)0 → π+π− decays [2527,2534]. Recently
using a larger dataset the presence of a sizeable contribution
of ω(782) → π+π− decays has been established as well
[2535]. For a pure charmonium state, the decays to J/ψω

[2536,2537] and J/ψρ0 are isospin conserving and violat-
ing, respectively. Therefore the latter should be strongly sup-
pressed, in contrast to the measured branching ratios. Later,
further decay modes have been reported: D0 D̄0π0 [2538],
D̄0D∗0 [2539], χc1π

0 [2540], J/ψγ [2541] and ψ(2S)γ .
The current branching-fraction measurements of theψ(2S)γ
radiative decay [2541–2544] are, however, not fully consis-
tent and further studies are needed to solve the emerging ten-
sion. Solving this puzzle will help to understand the nature
of the X (3872) meson, given that the predicted branching
fractions span over a broad range of values depending if the
X (3872) state is a D∗0 D̄0 molecule [2545,2546] or a pure
charmonium state [2547,2548].

A study of the angular correlations among the final state
particles from X (3872) → J/ψπ+π− decays constrained
the possible J PC assignments for the X (3872) to J PC =
1++ and 2−+ [2549]. The latter, disfavoured by the obser-
vation of the radiative decays, was definitively ruled out by
the LHCb experiment [2550,2551]. Once the quantum num-
bers J PC = 1++ have been firmly established, the name of
X (3872) turned into χc1(3872) according to the PDG nam-
ing scheme [513]. The identification of the X (3872) with
the the 23P1 cc̄ state is disfavoured by the large branching
fraction of X (3872) → J/ψρ0 and the large mass splitting
with respect to the 23P2 state, identified with χc2(3930).
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Fig. 197 The spectrum of charmonium(-like) (left) and
bottomonium(-like) (right) states. States are labeled according to
the PDG naming scheme. Dashed horizontal lines show some relevant

open-charm or open-bottom thresholds. The states shown in the right
columns are manifestly exotic, i.e. the quark content can not be only
cc̄ or bb̄ given their non-zero electrical charge

An intriguing feature of the χc1(3872) meson is the prox-
imity of its mass to the m(D∗0) + m(D0) threshold. This
characteristic has led to speculate that the χc1(3872) is
a molecular state [2552] where the D∗0 and D̄0 mesons
are bound by residual nuclear forces, similarly to a proton
and a neutron in the nucleus of the deuterium. An impor-
tant input for such an interpretation is the binding energy
Eb ≡ mD0+mD∗0−mχc1(3872) which is still consistent with
zero despite being measured with a precision of O(100)keV
[2553,2554]. The analyses also reported a measurement of
the natural width Γ BW

χc1(3872) = (1.39 ± 0.24 ± 0.10)MeV
by using a Breit–Wigner lineshape for the χc1(3872) sig-
nal. However, since the |Eb| < Γ BW

χc1(3872), coupled channel
effects might distort the lineshape. Indeed a Flatté-inspired
model returned a significantly smaller full width at half-
maximum FWHM = (0.22 ±0.07

0.06 ±0.11
0.13) MeV, highlight-

ing the relevance of a physically well-motivated lineshape
parameterization (see Sect. 14.5).

The smallness of the binding energy Eb = (0.07± 0.12)
MeV [2553,2554] implies a size of O(10) fm in a molecu-
lar scenario. The production of a large and weakly bound
molecule is expected to be suppressed due to the inter-
actions with comoving hadrons produced in the underly-
ing event [2555]. The ratio of χc1(3872) to ψ(2S) cross-
sections for promptly produced particles has been measured
at LHC [2556] and has been found to decrease with mul-
tiplicity. However the slope would seem not to agree with
the expectations for a molecular state [2557]. In addition no
enhancement of the χc1(3872) production has been observed
in association to a pion [2558] as expected for a molec-
ular state produced via the formation of a D∗ D̄∗ pair at
short distance followed by the rescattering of the charmed

mesons into χc1(3872)π [2559]. Finally, the relative pro-
duction of χc1(3872) to ψ(2S) mesons as a function of the
transverse momentum and rapidity has shown a mild (or null)
dependence for χc1(3872) (or ψ(2S)) mesons produced in
prompt pp collisions and from b-hadron decays, respectively
[2527,2560]. The CMS collaboration has measured a large
production rate of the χc1(3872) mesons also at large trans-
verse momenta while a suppression is expected for hadronic
molecules [2561], as measured for the deuteron [2562].

In order to reconcile the molecular picture to the pro-
duction measurements, it has been suggested that the physi-
cal χc1(3872) might be a quantum mechanical mixture of a
D∗0 D̄0 molecule and the 23P1 cc̄ charmonium state [2563],
where the production is dominated by the charmonium com-
ponent. Alternatively, an interpretation has been proposed
where the χc1(3872) meson is a tightly bound diquark–
diantiquark system [2518] with a size of a few fermis. In
this scenario, isospin partner states are expected to exist.
A search for charged X− states has been carried out by
studying the decays B0 → X−K+ and B− → X−K 0

S ,
where X− → J/ψπ−π0 [2564,2565]. No charged X− has
been reported. Moreover no X− → D0D∗− signal has been
observed in the D0 D̄0π− mass spectrum [2566]. Another
firm prediction of the compact tetraquark models is that hid-
den charm states must form complete flavor-SU(3) multi-
plets with mass differences determined by the quark mass
difference ms − mu [2567]. The χc1(3872) meson could
belong to the same flavor multiplet of the X(4140) given
both states have J PC = 1++, where the two mesons are
interpreted as [c̄q̄][cq] (q = u or d) and [c̄s̄][cs] bound
states, respectively. As a consequence, a [cs][c̄q̄] state with
mass (mX (4140) + mχc1(3872)/2 = 4009 MeV should exist.
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Fig. 198 Distribution of the mass difference M(π+π−!+!−) −
M(!+!−), where ! = e, μ and the invariant mass of the dilepton system
is within a range around the J/ψ mass. The two signals correspond to
the ψ(2S) and χc1(3872) mesons, respectively [2514]

Two exotic states, Zcs(3985) [2568] and Zcs(4000) [2569]
have been observed in D+s D̄∗0 and J/ψK+ mass spectra,
respectively, with masses close to 4000 MeV, making them
potential candidates to complete the J PC = 1++ tetraquark
nonet, whereC = +1 refers to the sign of charge conjugation
of the neutral-non-strange members.

A C-odd partner of the χc1(3872) state, dubbed X̃(3872),
is expected as well [2518,2570]. Several experiments searc-
hed for a X̃(3872) candidate in the J/ψη and χc1γ mass
spectra in B+ → J/ψη/χc1γ K+ decays but no signal
was reported [2571–2574], even though many other charmo-
nium states were observed. The COMPASS collaboration
searched for muo-production of charmonia in the process
μ+N → μ+X0π±N ′ with X0 → J/ψπ+π− where N
denotes the target nucleon, N ′ the unobserved recoil system
and X0 an intermediate charmonium state [2575]. In addition
to the observation of the ψ(2S) meson, evidence of a nar-
row structure, peaking at about 3872 MeV in the J/ψπ+π−
spectrum, was reported. While the measured mass and width
pointed to an interpretation of the signal asχc1(3872)meson,
the π+π− mass spectrum showed a rather flat distribution
instead of the expected ρ0-like shape thus disagreeing sig-
nificantly with previous experimental results. This surpris-
ing result led the authors to speculate that the observed
state might be the C-odd partner X̃(3872) decaying to the
J/ψ f0(500) final state.

Assuming heavy flavor symmetry, a bottomonium coun-
terpart Xb of the χc1(3872) meson is expected. Searches for
Xb, carried out by the CMS [2576] and ATLAS [2577] col-
laborations by studying theΥ π+π− final state, have not been
successful. This result does not rule out the existence of an
Xb state since, contrary to the χc1(3872) case, the Υ π+π−
decay mode is expected to be suppressed due to the smaller
isospin breaking effect: the mass difference between the neu-
tral and charged B mesons is very small. Most likely, the Xb

state would decay into the Υω and χbπ
+π− final states.

The former decay has been recently studied by the Belle-II
collaboration. No Xb meson has been observed [2578].

8.5.3 Zc(4430)+ and the charmonium-like states

The observation of manifestly exotic candidates was a turn-
ing point in the discussion about the existence of non-
conventional hadrons. Indeed, a peculiar characteristic of
charmonium-like states is the possibility to observe states
with non-zero electrical charge and quark content cc̄ud̄.

The first-ever candidate, the Zc(4430)+ meson, was
observed by the Belle collaboration in the ψ(2S)π+ pro-
jection of B̄0 → ψ(2S)K−π+ and B+ → ψ(2S)K 0

Sπ
+

decays [2579]. The m2(Kπ+) versus m2(ψ(2S)π+) Dalitz-
plot distributions show a continuous band (and a peak in the
m2(ψ(2S)π+) projection) together with two bands in the
m2(Kπ+) mass distributions corresponding to the K ∗(892)
and K ∗0/2(1430) resonances. After applying a veto on the K ∗
regions, a one-dimensional fit to the ψ(2S)π+ projection
returned the mass and width (Table 34) of a signal that was
interpreted as the first charmonium-like state with non-zero
electrical charge (Fig. 199). Given that the decay modes have
four degrees of freedom, the claim of a new exotic state based
on the study of a one-dimensional projection received some
criticism. In addition, excluding regions in the Kπ+ invari-
ant mass does not imply that interference effects are removed
which could lead to peaking structures in other projections.

A model-independent approach was pursued by the BaBar
collaboration which investigated the extent to which the
reflections of mass and angular distribution of structures in
the Kπ+ system might describe the associated ψ(2S)π+
mass distributions in B̄0 → ψ(2S)K−π+ and B+ →
ψ(2S)K 0

Sπ
+ decays [2580]. For this purpose, the Kπ+

angular distribution was represented, at a given m(Kπ+),
in terms of a Legendre polynomial expansion. The combi-
nations of the first N = 2Jmax + 1 = 7 terms reproduces
adequately the ψ(2S)π+ mass distribution where Jmax = 3
is the maximum spin of the excited K ∗ resonances expected
in the Kπ+ spectrum. This result provided a hint that an
exotic contribution may not be needed, but it cannot rule
out the presence of the Zc(4430)+ meson either. Later on,
the Belle collaboration performed a fit to the m2(Kπ+) ver-
sus m2(ψ(2S)π+) Dalitz-plot [2581] and finally a complete
four-dimensional amplitude analysis [2582], both confirming
the observation of an exotic state. The latter analysis quotes
a natural width for the Zc(4430)+ much larger than the one
reported in the discovery paper (Table 34) which highlights
the relevance of performing full amplitude analyses to mea-
sure the physical parameters.

The existence of the Zc(4430)+ exotic state was debated
for many years until the LHCb collaboration also studied the
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Table 34 Measurements of mass and natural width of the Zc(4430)+
meson. The last column reports the number of dimensions considered
in the corresponding amplitude analysis

Zc(4430)+
Mass [MeV/c2] Width [MeV]

Belle [2579] 4433± 4± 2 45+18+30
−13−13 1D

Belle [2581] 4443+15+19
−12−13 107+86+74

−43−56 2D

Belle [2582] 4485+22+28
−22−11 200+41+26

−46−35 4D

LHCb [2583] 4475± 7+15
−25 172± 13+37

−34 4D

Fig. 199 Observation of the Zc(4430)+ meson in the m(ψ(2S)π+)
distribution of the B̄0 → ψ(2S)K−π+ and B+ → ψ(2S)K 0

Sπ
+

decays after applying a veto on the K ∗(892) and K ∗0/2(1430) states

in the Kπ+ systems [2579]

B̄0 → ψ(2S)K−π+ decays [2583]. The ten-fold increase
in signal yield over the previous measurements allowed the
collaboration to confirm the Zc(4430)+ state firmly with an
improved measurement of mass and width (Table 34) and to
establish its spin and parity to J P = 1+.

In addition, the resonant character of a charged four-
quark state is demonstrated for the first time by represent-
ing the Zc(4430)+ amplitude as the combination of inde-
pendent complex amplitudes at six equidistant points in
the m2(ψ(2S)π+) spectrum. The resulting Argand diagram,
shown in Fig. 200, is consistent with a rapid change of the
Zc(4430)+ phase when its magnitude reaches the maximum,
a behavior characteristic of a resonance. Finally, an analysis
of the data, using the model-independent approach devel-
oped by the BaBar collaboration, shows significant incon-
sistencies in the Zc(4430)+ region between the data and a
model introducing K ∗ states with J ≤ 3 [2584]. Evidence of
the Zc(4430)+ → J/ψπ+ is also reported by an amplitude
analysis of the B̄0 → J/ψK−π+ decays [2585].

After the discovery of the Zc(4430)+ meson, many fur-
ther charged charmonium-like states have been reported

Fig. 200 Argand diagram of the Zc(4430)+ meson by a Dalitz analysis
of the B̄0 → ψ(2S)K−π+ decays where the Zc(4430)+ amplitude
is fitted in six independent m2(ψ(2S)π+) bins. The red curve is the
expected shape according to a Breit–Wigner function with a resonance
mass (width) of 4475 (172) MeV. Units are arbitrary [2583]

Table 35 Decay modes and quantum numbers of manifestly exotic
charmonium-like states

State Decay modes I G(J PC )

Zc(3900)+ J/ψπ+ [2588–2590] 1+(1+−)
D̄0D∗+, D̄∗0D+ [2591,2592]

X (4020)+ hcπ+ [2593], D∗+ D̄∗0 [2594] 1+(??−)
X (4050)+ χc1(1P)π+ [2595] 1−(??+)
X (4055)+ ψ(2S)π+ [2596] 1+(??−)
X (4100)+ ηc(1S)π+ [2597] 1−(???)

Zc(4200)+ J/ψπ+ [2585] 1+(1+−)
Rc0(4240)+ ψ(2S)π+ [2583] 1+(0−−)
X (4250)+ χc1(1P)π+ [2595] 1−(??+)
X (3985)+ D+s D̄∗0, D∗+s D̄0 [2568] 1/2(??)

Zcs(4000)+ J/ψK+ [2569] 1/2(1+)
Zcs(4220)+ J/ψK+ [2569] 1/2(1?)

(Table 35), including candidates with strangeness and isospin
partners [2586,2587].

8.5.4 The bottomonium-like Z+b states

Few years after the discovery of the Zc(4430)+ meson,
the Belle collaboration claimed the observation of two
bottomonium-like states Zb(10610)+ and Zb(10650)+ in
the Υ (nS)π+ (n = 1, 2, 3) and hb(mP)π+ (m = 1,
2) spectra by studying the exclusive processes e+e− →
Υ (nS)π+π− (n = 1, 2, 3) and e+e− → hb(mP)π+π−
(m = 1, 2) with data collected at the collision energy√
s = 10.865 GeV [2598], the Υ (5S) mass. Amplitude

analyses of the three-body Υ (nS)π+π− decays were per-
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Fig. 201 The maximum invariant mass of the two Υ (2S)π combina-
tions of the e+e− → Υ (2S)π+π− process at

√
s = 10.865 GeV.

The two peaking structures are interpreted as the Zb(10610)+ and
Zb(10650)+ bottomonium-like states [2598]

formed by means of unbinned maximum likelihood fits
to two-dimensional m2(Υ (nS)π+) versus m2(Υ (nS)π−)
Dalitz distributions. Two narrow structures appear in the
m(Υ (nS)π±) spectrum (e.g. Fig. 201). The analyses of the
hb(mP)π± spectra returned compatible results. Weighted
averages of mass and width measurements over all five chan-
nels yield for the Zb(10610)+

m = (10607.2± 2.0)MeV, Γ = (18.4± 2.4)MeV,

and for the Zb(10650)+

m = (10652.2± 1.5)MeV, Γ = (11.5± 2.2)MeV.

Later on a six-dimensional amplitude analysis of the Υ (nS)
π+π− (n = 1, 2, 3) three-body final states confirmed
the existence of the two Z+b states and strongly favored
I G(J P ) = 1+(1+) quantum-number assignments for both
of them [2599]. Finally, the two mesons Zb(10610)+ and
Zb(10650)+ have been observed in the B+ B̄∗0 and B∗+ B̄∗0

mass spectrum, respectively [2600]. Table 36 summarizes the
branching fractions of Zb(10610)+ and Zb(10650)+ states
by assuming that their sum is equal to one.

The large branching fractions of the B(∗) B̄∗ decay modes
and the measured quantum numbers are consistent with the
interpretation of the two states as B B̄∗ and B∗ B̄∗ loosely
bound molecular hadrons. However the measured mass for
the Zb(10610)+ and Zb(10650)+ are both above the nearby
open-flavor thresholds. This might be the result of using
Breit–Wigner functions to parameterize the amplitudes of
very near-threshold states. Indeed, when amplitudes consis-
tent with unitarity and analyticity are used instead, lower
masses are measured, typically below the thresholds [2601].

Table 36 Branching fractions for the Zb(10610)+ and Zb(10650)+
decays. The first uncertainty is statistical while the second is systematic
[2600]

Channel Fraction (%)

Zb(10610)+ Zb(10650)+

Υ (1S)π+ 0.60± 0.17± 0.07 0.17± 0.06± 0.02

Υ (2S)π+ 4.05± 0.81± 0.58 1.38± 0.45± 0.21

Υ (3S)π+ 2.40± 0.58± 0.36 1.62± 0.50± 0.24

hb(1P)π+ 4.26± 1.28± 1.10 9.23± 2.88± 2.28

hb(2P)π+ 6.08± 2.15± 1.63 17.0± 3.74± 4.1

B+ B̄∗0 + B̄0B∗+ 82.6± 2.9± 2.3 −
B∗+ B̄∗0 − 70.6± 4.9± 4.4

8.5.5 The B+c mesons

Contrary to charmonium and bottomonium states, the B+c
mesons can not annihilate into gluons and thus these states
are more stable. Indeed, apart from the ground state which
decays weakly, all the excited states, with masses below the
lowest strong decay B(∗)D(∗) thresholds, are predicted to
have narrow widths [2602,2603].

Before the start of LHC, only the ground B+c state was
observed [2604] via few decays modes: B+c → J/ψπ+ and
B+c → J/ψ!+ν. The LHCb and CMS experiments have
observed 15 new decays modes and have largely improved
the precision of the B+c mass [2605] and lifetime [2606–
2608]. The production of the B+c meson has been observed
in p p̄, pp as well as in PbPb collisions [2609], where the
measurement of the nuclear modification factor hints that
effects of the hot and dense nuclear matter created in heavy
ion collisions contribute to its production.

Despite the large number of expected excited states, only
a few have been observed so far due to the small production
cross sections of the B+c mesons and the small branching
ratios of the reconstructed decay chains. In 2014 the ATLAS
collaboration reported the first observation of an excited B+c
state decaying to B+c π+π− final state [2610]. Few years
later the same mass spectrum was investigated by other LHC
experiments [2611,2612] and it turned out that the ATLAS
structure was very likely the result of a superimposition of
two narrower signals (Fig. 202), interpreted as the Bc(2S)+
and B∗c (2S)+ states. The latter appears in the mass spectrum
as a partially reconstructed decay B∗c (2S)+ → B∗+c π+π−,
where the photon of the B∗+c → B+c γ reaction is not recon-
structed. Since the B∗+c meson has not been observed yet,
the mass of the B∗c (2S)+ state can not be measured and it is
not listed in the PDG. In the next years the upgraded LHC
experiments will probe the largely unexplored spectrum of
the excited B+c mesons below and above the B(∗)D(∗) thresh-
olds with the intriguing possibility to observe exotic states
as for the other quarkonium systems [2613].
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Fig. 202 Observation of the B∗c (2S)+ (left-most peak) and Bc(2S)+
(right-most peak) states in the M(B+c π+π−) − M(B+c ) + mB+c mass
distribution [2611]

8.5.6 The doubly charmed Tcc(3875)+ state

All the exotic mesons described so far are featured by a heavy
quark–antiquark pair QQ̄ and a light quark–antiquark pair
qq̄ . The observation of several QQ̄qq̄ state has revived the
discussion on the existence of of QQq̄q̄ states with two heavy
quarks and two light antiquarks. In the limit of a large heavy-
quark mass, the two heavy quarks QQ form a heavy point-
like color-antitriplet object, that behaves like an antiquark,
and the corresponding four-quark state should be bound.
The argument that such a state should exist, if the mass of
the charm quark is enough, has been discussed extensively,
but a consensus was not reached. Even lattice QCD calcula-
tions had not provided a definite conclusion [2614]. The ccūd̄
ground state, hereafter denoted as T+cc , is predicted with spin-
parity quantum numbers J P = 1+ and isospin I = 0. The
only known hadron with a similar quark content is the Ξ++

cc
baryon [2615–2617], a bound state of two c quarks and one
u quark. Its measured mass [2618] implies that the mass of
the T+cc is close to the sum of masses of D0 and D∗+ mesons
[1066].

The LHCb experiment reported the observation of a nar-
row state in the D0D0π+ mass spectrum near the D∗+D0

mass threshold compatible with being a T+cc tetraquark state
[1067,2566]. The D0D0π+ final state is reconstructed by
selecting events with two D0 mesons and a positively charged
pion, all produced at the same proton–proton interaction
point. Both D0 mesons are reconstructed in the D0 →
K−π+ decay channel. The mass distribution of the selected
D0D0π+ candidates is shown in Fig. 203. A narrow peak
near the D∗+D0 mass threshold is clearly visible.

An extended unbinned maximum-likelihood fit to the
D0D0π+ mass spectrum is performed by modelling the sig-
nal with a Breit–Wigner function FBW . The measured mass

Fig. 203 Distribution of D0D0π+ mass where the contribution of the
non-D0 background has been statistically subtracted. The D∗+D0 and
D∗0D+ thresholds are indicated with the vertical dashed lines. Inset
shows a zoomed signal region with fine binning scheme [1067,2566]

δm and the full width at half maximum (FWHM) of the T+cc
state are reported in Table 37, where the uncertainties are
statistical. The mass parameter δm is defined relative to the
D∗+D0 mass threshold as δm ≡ m − mD∗+ − mD0 , where
mD∗+ and mD0 denote the known masses of the D∗+ and
D0 mesons. The measured δm value corresponds to a mass
of approximately 3875 MeV. Though the use of a standard
Breit–Wigner function is sufficient to reveal the existence of a
state, it does not take in account the proximity to D∗D thresh-
olds. A more advanced parameterization is needed to probe
the physical properties of the resonance. An unitarized Breit–
Wigner profile FU is considered as an alternative model for
the Tcc(3875)+ signal, where the energy-dependent width
accounts for the T+cc → D0D0π+, T+cc → D0D+π0 and
T+cc → D0D+γ decays. The resulting mass, relative to
D∗+D0 threshold, and the FWHM of the signal are shown in
Table 37 and compared to the results of the FBW model. The
narrowness of the T+cc state varies substantially highlighting
the relevance of accounting for the D∗D thresholds. Despite
the difference in results, both models can describe the data
adequately given the mass resolution of about 400 keV/c2.
The Tcc(3875)+ state is the narrowest exotic state observed
to date.

The D0D0π+ events with a mass below the D∗+D0

threshold (Fig. 203) are selected to study the D0π+ mass
distribution which indicates that the T+cc → D0D0π+ decay
proceeds via an intermediate off-shell D∗+ meson.

The peak in the D0D0π+ could be interpreted as the
I3 = 0 component of an isotriplet (T̂ 0

cc, T̂
+
cc , T̂

+
cc+) with

ccūū, ccūd̄ and ccd̄d̄ quark content, respectively. A search
for a T̂++cc state in the D+D0π+ mass spectrum reports no
signal. All the observed properties strongly support the inter-
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Table 37 Mass difference δm ≡ m−mD∗+ −mD0 and the full width at
half maximum (FWHM) of the Tcc(3875)+ state by fitting the D0D0π+
mass spectrum with the FBW and FU models. The uncertainties are
statistical only. See Refs. [1067,2566] for a complete set of results

Tcc(3875)+

δm [keV/c2] FWHM [keV/c2]

FBW −279± 59 409± 163

FU −359± 40 47.8± 1.9

pretation of the new state as the isoscalar J P = 1+ ccūd̄
tetraquark ground state.

Using the FU model, the scattering length a, the effective
range r [2622], and the compositeness Z [2623] are deter-
mined:

a =
[
− (7.16± 0.51)+ i (1.85± 0.28)

]
fm, (8.38)

−r < 11.9 (16.9) fm at 90 (95)% CL, (8.39)

Z < 0.52 (0.58) at 90 (95)% CL. (8.40)

The real part of the scattering length a can be interpreted as
the characteristic size of the state Ra ≡ −Re[a] = 7.16 ±
0.51 fm which corresponds to a spatial extension as large
as expected for molecular states. Within the FU model the
resonance pole is found to be located on the second Riemann
sheet at ŝ = mpole − i

2Γpole, where

δmpole = −360± 40+ 4
− 0 keV/c2, (8.41)

Γpole = 48± 2+ 0
− 14 keV. (8.42)

All exotic hadrons observed so far predominantly decay
via the strong interaction; their decay widths vary from a
few to a few hundred MeV. The discovery of the Tcc(3875)+
meson implies the existence of abbūd̄ state that should be sta-
ble against strong and electromagnetic interactions: its mass
is expected to fall below the B∗−B0 and B−B0 mass thresh-
olds. The observation of a long-lived exotic state will be an
intriguing goal for future experiments.

8.5.7 The fully charmed tetraquark X(6900)

Many QCD-motivated phenomenological models [2624,
2625] have predicted the existence of states consisting of
four heavy quarks TQQQ̄Q̄ . In 2020 the LHCb collabora-
tion reported the study of the invariant mass spectrum of the
J/ψ pairs where both J/ψ mesons are reconstructed via
the μ+μ− decay [2619]. As a result, the reconstruction effi-
ciency is large due to the presence of muons only in the final
state. A pair of J/ψ mesons can be produced in proton–
proton collisions at LHC via single (SPS) or double (DPS)
parton scattering processes, where the two J/ψ are produced
in a single or two separated interactions of gluons or quarks,
respectively. The SPS process includes both resonant produc-

tion via intermediate states, such as Tcc̄cc̄, and nonresonant
production.

The J/ψ J/ψ mass distribution (Fig. 204) shows a broad
structure just above the kinematic threshold and a narrower
peak at about 6.9 GeV, dubbed X (6900). An unusual dip also
appears between them. The broad structure can be modelled
as a superimposition of two Breit–Wigner structures or as an
interference between a Breit–Wigner function and the back-
ground. The latter model successes to describe also the dip
adequately. The presence of the X (6900) state is established
in both models, though the natural width is twice larger in
the latter.

Recently the CMS [2620] and ATLAS [2621] collabo-
rations have presented preliminary studies of the J/ψ J/ψ
spectrum (Fig. 204). While the X (6900) state is confirmed,
there is no consensus on the fit model. Common features are
the presence of dips in the spectrum and the need of inter-
ference terms to describe it properly. Interestingly the CMS
collaboration also claimed the observation and the evidence
of two new states X (6600) and X (7300), respectively. A
hint of the latter structure was also pointed out by the LHCb
collaboration.

Given no single light hadron can mediate the interaction
between charmonia to generate a loosely bound molecule,
the X (6900) meson seems likely to be a compact tetraquark
[2626]. The LHC experiments will profit of larger datasets
in a near future which will help to investigate further the
resonant nature of the peaks and eventually to measure their
spins and parities [2627] in the J/ψ J/ψ and ψ(2S)J/ψ
spectra.

Tetraquarks states containing only bottom quarks, Tbbb̄b̄,
have been also searched for by the LHCb and CMS collabo-
rations in the Υμ+μ− decay [2628,2629] but no signal have
been observed.

8.5.8 Conclusions

The existence of exotic hadronic states with more than mini-
mal quark content (qq̄ or qqq) was proposed since the birth
of the quark model [17,18]. In the last decades samples of
quarkonia larger and larger have been exploited to study their
transition and production processes. New and fascinating
exotic X,Y, Z states have been observed at a large num-
ber of facilities and in different production processes: at tau-
charm (BES experiment) and B factories (BaBar and Belle
experiments), in hadroproduction at Fermilab Tevatron and
the Large Hadron Collider (LHC) at CERN, in photon-gluon
fusion at DESY, photoproduction at JLab, and in heavy-ion
production and suppression at RHIC, NA60, and LHC. In
the upcoming years an unprecedented amount of data will
be available from the upgraded experiments CMS, ATLAS,
LHCb, ALICE, Belle II and BESIII [1464,2630–2634] and
more data will come in future from Panda at FAIR and
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Fig. 204 Invariant mass spectra of J/ψ pair candidates by using data
recorded bu the LHCb [2619] (top), CMS [2620] (middle) and ATLAS
[2621] (bottom) experiments. The three spectra have been aligned for
an easier comparison

the Electron Ion Collider (EIC) [2635,2636]. The measure-
ments of the quantum numbers and classification of the exotic
hadrons in SU (3) flavor multiplets will be an important step
to understand the nature of the observed exotic states. In
addition it will be important to identify observables which

can discriminate between different models. For instance the
measurement of the effective range has been suggested as a
physical quantity able to determine if theχc1(3872) is a com-
pact tetraquark or a loosely-bound molecular state [2637].

8.6 Heavy quark–antiquark sector: theory

Nora Brambilla

8.6.1 Introduction

Heavy quarks have been instrumental in accessing the strong
interactions as they provide a mass scale mh which is bigger
than LQCD: at such scale perturbation theory is valid and
scale factorization is useful. Among the systems with heavy
quarks, systems with two (or more) heavy quarks are very
special, being endowed with a pattern of separated energy
scales. Quarkonium in particular, a bound state of a heavy
quark and a heavy anti-quark, provides a special tool to study
strong interactions.

The 1974 discovery of the J/ψ [91,92], the charmo-
nium ground state, drastically changed and shaped the Stan-
dard Model (SM) of particle physics: termed the Novem-
ber revolution, it represented the confirmation of the quark
model, the discovery of the charm quark, the confirmation
of the GIM mechanism [80] (the mechanism through which
flavor-changing neutral currents are suppressed in loop dia-
grams), and the first discovery of a quark of large mass
moving nonrelativistically. It was also the confirmation of
QCD in its most peculiar properties of high-energy asymp-
totic freedom and low-energy confinement [97]. The small
width can be explained by the fact that J/ψ is the lowest
cc̄ energy level and can decay only via annihilation, which
makes available in the process a large energy, of order of
twice the mass of the charm quark (about 2 GeV). The anni-
hilation width is then proportional to α2

s (2mc) which is small
due to asymptotic freedom, since mc is bigger than ΛQCD .
Confinement becomes also manifest in the case of quarko-
nium, where the color-singlet static quark–antiquark interac-
tion potential can be written in terms of a Wilson loop (see
e.g. [2638,2639]). Confinement emerges as an area law in
the Wilson loop [97], cf. Fig. 205. Correspondingly a lin-
ear potential grows with the distance between the quarks
[2640] as V0 = limT→∞(i/T ) ln W , where W is given by
W = Tr P exp{igs

∮
Γ0

dzμAμ(z)}, see Fig. 206 and Sect. 6.1.
The energy scales involved in quarkonium span from the

hard region, where an expansion in the coupling constant is
possible and precision studies may be done, to the low-energy
region, dominated by confinement and the many manifesta-
tions of nonperturbative dynamics. This property underlies
its uniqueness and is the reason for which quarkonium plays
a crucial role for a number of problems at the frontier of our
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Fig. 205 The static Wilson loop along the circuit Γ0: it contains the
interaction of a static quark–antiquark pair created at a time t = 0 (respec-
tively at space points y1 and y2) annihilated at a subsequent large time
T (at space points x1 and x2) initial and final states are made gauge
invariant by the presence of the Schwinger line. The Wilson area law
says that the Wilson loop behavior at large distances is exponential in
the area of the loop weighted by the string tension σ

Fig. 206 Results for the static potential in physical units for 2+1+1
dynamical quark flavors. The data are from twelve ensembles of vary-
ing lattice spacing (keyed by β) and three choices of light quark mass
(denoted “M i”, “M ii”, “M iii”). Lattice units are eliminated via the
r0/a scale setting, and an unphysical constant is eliminated by setting
V0(r0) = 0. For details see [2641]. This is the first ever determination
of the potential with 4 dynamical fermions

research, from the investigation of the confinement dynam-
ics in QCD to the study of deconfinement and the phase
diagram of nuclear matter, from the precise determination of
Standard Model parameters up to the emergence of exotics
X,Y, Z states of an unprecedented nature [1464,1465,2630–
2632,2639], as we will summarize in the next sections. It is
also the reason for which quarkonium should be addressed
with effective field-theory methods to take advantage of the
scales separation.

8.6.2 Scales and effective field theories

The multiscale nature of quarkonium has made a description
within Quantum Field Theory particularly difficult until the
advent of non-relativistic effective field theories (NREFTs),
cf. Sect. 6.1. When in the eighties of last century, theorists
set up to investigate the structure of the energy levels of char-
monium and bottomonium, they noticed that it can be repro-
duced by using a Schrödinger equation with a static poten-
tial composed of an attractive Coulomb contribution (with
the appropriate SU (3) color factor for a singlet QQ̄) and a
term linear in the distance: the famous Cornell potential (see
Sect. 2.1 and Refs. [769,2642]:

V0(r) = −κ

r
+ σr + const. (8.43)

This was the quark model description with the potential
inspired by QCD. The parameter κ was identified with 4

3αs ,
corresponding to a one-gluon exchange that should dom-
inate at small distances due to asymptotic freedom. The
string tension σ corresponds to a constant energy density
related to confinement and generates a potential growing
with the interquark distance r at large distances. A fit to
the states gave κ = 0.52 and σ = 0.182 GeV2. In order to
describe the fine and hyperfine characteristics of the spec-
trum, relativistic corrections to the static potential have been
introduced to account for effects of order v2, i.e. 20% to
30% for the charmonium and up to 10% for the bottomo-
nium spectrum. They appear at the order 1/m2

h in the expan-
sion, involving both spin dependent (spin–spin, tensor and
spin–orbit couplings) and purely velocity dependent terms.
They were derived in the eighties, either from the semirel-
ativistic reduction of a Bethe–Salpeter equation [816] for
the quark–antiquark Green functions (or, equivalently at this
level, from the reduction of the quark–antiquark scattering
amplitude with an effective exchange) or in some model
description like the flux-tube model [2418], for a review see
[2638,2639,2643]. The problem of these approaches is the
lack of a precise connection to QCD. Taking advantage of
NREFTs, quarkonium can be described directly in QCD, and
in this way it becomes a probe of strong interactions.

The spectrum of quarkonium, see Fig. 171, clearly states
that it is a nonrelativistic system: the difference in the orbital
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energy levels is much smaller than the quark mass. Defin-
ing v as the heavy quark velocity in the rest frame of the
meson in units of c (with v2 ∼ 0.1 for the bb̄, v2 ∼ 0.3 for
cc̄ systems) the energy levels scales like mhv

2, while fine
and hyperfine separations scale like mhv

4. This is the same
scaling as for the hydrogen atom (identifying v with the fine
structure constant αem). This scaling is the signature of a
nonrelativistic system. Being nonrelativistic, quarkonia are
characterized by a hierarchy of energy scales: the mass mh

of the heavy quark (hard scale), the typical relative momen-
tum p ∼ mhv (in the meson rest frame) corresponding to the
inverse Bohr radius r ∼ 1/(mhv) (soft scale), and the typical
binding energy E ∼ mhv

2 (ultrasoft scale). Of course, for
quarkonium there is another scale that can never be switched
off in QCD, i.e. ΛQCD, the scale at which nonperturbative
effects become dominant. A similar pattern of scales emerge
in the case of baryons composed of two or three heavy quarks
[1451,1452] and for the just discovered state X (6900) made
by two charm and two anticharm quarks. The pattern of non-
relativistic scales makes all the difference between heavy
quarkonia and heavy-light mesons, which are characterized
by just two scales: mh and ΛQCD.

The correct zero-order problem is thus the Schrödinger
equation with potentials. These should, however, be defined
and calculated directly in QCD, and nonpotential correc-
tions that should be accounted for. As explained in Sect.
6.1 using the EFT method to integrate out in QCD (in
the sector with one heavy quark and one heavy anti-
quark) the hard scale mh and the soft scale mhv, give
origin to the NREFT called pNRQCD (potential Nonrela-
tivistic QCD) [1462,1490,1492]. The pNRQCD description
directly addresses the bound state dynamics, implements
the Schrödinger equation as zero-order problem, properly
defines the potentials as matching coefficients, and allows to
systematically calculate relativistic and retardation correc-
tions. Each correction has a size determined by the power
counting in v and in αs . The EFT allows us to make model-
independent predictions and we can use the power counting
to attach an error to the theoretical predictions.

When mv � ΛQCD, we speak about weakly-coupled
pNRQCD because the soft scale is perturbative and the poten-
tials can be calculated in perturbation theory. The lowest
levels of quarkonium, like J/ψ , Υ (1S), Υ (2S) . . . , may be
described by weakly coupled pNRQCD, while the radii of the
excited states are larger and presumably need to be described
by strongly coupled pNRQCD. All this is valid for states
away from the strong-decay threshold, i.e. the threshold for
a decay into two heavy-light hadrons. In the first case the
dynamical degrees of freedom are QQ̄ pairs in color singlet
or color octet configuration and ultrasoft gluons, in the second
case just QQ̄ pairs in color singlet. The details of the two the-
ories have been presented in Sect. 6.1. The nonperturbative
physics in pNRQCD is encoded in a few low-energy correla-

tors that depend only on the gluons and are gauge invariant:
these are objects in principle ideal for lattice calculations.
Strongly coupled pNRQCD allows us to obtain a definition
of the potentials that are given in terms of Wilson loops also
in generalized form (i.e. with the insertion of chromoelec-
tric and chromomagnetic field in the static loop). The static
potential is given by the static Wilson loop described before
that was calculated on the lattice since the inception of QCD
[97,351,1568,2640,2644], up to the present state of the art
that includes four dynamical quarks in the calculation, see
Fig. 206. Some of these potentials have been obtained before
the advent of the EFT in the so-called Wilson-loop approach
[97,803,1501,1502,2645,2646], but they were missing the
contribution of the hard scale. Moreover in the EFT, new
(spin-independent) contributions appear at the order 1/mh

and at the order 1/m2
h [1556,1557]. The results of strongly

coupled pNRQCD – which are valid in the regime in which
mhv is of order ΛQCD and where strong decay thresholds
are far away – justify the success of the quark model from
the QCD perspective. In fact in this regime the only degree
of freedom is the QQ̄ singlet, the dynamics is controlled
by the Schrödinger equation and ultrasoft corrections are
carried only by pions. The potentials, however, are calcu-
lated from QCD and they have a structure that is different
from what one gets in models, especially for terms related
to momentum dependent contributions. This EFT descrip-
tion allows for modifications that could be used to describe
X,Y, Z exotics and (combining with finite temperature QCD
and open quantum system) the nonequilibrium evolution of
quarkonium in medium, as it will summarized later.

8.6.3 The quarkonium potential and confinement

The lattice QCD evaluation of the static Wilson loop clearly
displays an area law which is the sign for confinement. Still, it
is relevant to investigate the nature of the confinement mech-
anism. Quarkonium is a golden tool for this aim. Strongly-
coupled pNRQCD realizes a scale factorization encoding the
low-energy physics in the Wilson loop and its generalized
versions, i.e. Wilson loops with insertions of chromoelectric
and chromomagnetic fields. All the potentials, static ones
and spin and velocity-dependent ones, are given in terms of
these gauge invariant nonperturbative objects that no longer
depend on the heavy quark degrees of freedom and on the
quark flavor. This turns out to be a systematic method to
study the QCD confinement properties and put them directly
in relation to the quarkonium phenomenology.

The area law emerging in the static Wilson loop at large
distance corresponds to the formation of a chromoelectric
flux tube between the quark and the antiquark that sweeps
the area of the loop: this has been directly observed on the
lattice, see Fig. 207. The effects originates from the nonper-
turbative QCD vacuum that can be imagined as a disordered
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medium with whirlpools of color on different scales, thus
densely populated by fluctuating fields whose amplitude is
so large that they cannot be described by perturbation theory
[439]. A QCD vacuum model can be established by making
an assumption on the behavior of the Wilson loop in the low
energy. The relativistic corrections that involve insertions of
gluonic fields in the Wilson loop follow via functional deriva-
tive with respect to the quark path see [2638,2646]. One may
notice that the part proportional to the square of the angu-
lar momentum in the velocity dependent potential at order
1/m2

h takes into account the energy and the angular momen-
tum of the flux tube, which is something that could not be
obtained e.g. in any Bethe Salpeter approach with a confining
interaction represented by a scalar convolution kernel. The
action density or the energy density structure between the
static quark and the static antiquark is currently studied both
in the lowest energy configuration as well as in the hybrid
configurations with excited glue [2647–2649]. The mecha-
nism underlying confinement and flux tube formation has
been investigated since long on the lattice [432] using Wil-
son loops and the‘t Hooft abelian projection, to identify the
roles of magnetic monopoles [2650,2651] and center vortices
[438], see e.g. the review [1465].

In the continuum, several models of low-energy QCD have
been introduced to explain the flux-tube formation. The mod-
els vary from the dual Meissner effect and a dual-abelian
Higgs-model picture, from dual QCD [2652] to the stochas-
tic vacuum [2653], to the flux tube model [2418] and an
effective low energy string description. Each of these mod-
els can be used to obtain analytic estimates of the behavior
of the generalized Wilson loops for large distance, which in
turn give the static potential and the relativistic corrections as
function of r , see e.g. [1571,2654–2657]. Similar nonpertur-
bative configurations leading to confinement can be studied
analyzing the Wilson loop in case of baryons with three or
two heavy quarks [2658,2659].

8.6.4 States below threshold: quarkonium

On the basis of EFTs and lattice calculations we have reached
today a comprehensive understanding of the properties of
quarkonium below the strong decay threshold.

Spectra, transition and decays
The power counting of the EFT allows us to attach an error
to each prediction. For states with a small radius one can use
weakly-coupled pNRQCD with potentials calculated at high
order in perturbation theory (see Sect. 6.1) and retardation
effects carried by local or non-local condensates. For states
with larger radii, the potentials obtained in strongly-coupled
pNRQCD (see Sect. 6.1) have been calculated on the lattice
[804,1566,1568,2661–2663], and the full quarkonium phe-
nomenology may be obtained using such potentials in the

Fig. 207 The origin of the linear potential between the static quark and
antiquark may be traced back to a flux tube: a string of gluon energy
between the quark pair. Here we present the historical picture of the
action density distribution between a static quark antiquark couple in
SU(2) at a physical distance of 1.2 fm, from [2660]

Schrödinger equation. The imaginary parts of the potentials
control the decays.

On the other hand, direct lattice calculations of quarko-
nium properties along the years have reached realistic values
for the dynamical quark flavors, solid continuum limits and
have been extended to the excited states, reaching a com-
prehensive and precise description [1474,2664–2668]. Elec-
tromagnetic M1 and E1 transitions have been calculated in
pNRQCD, see e.g. [1551–1554]. There are so many results
that it is impossible to discuss all of them here and we refer
to some reviews [1462,1464,1465,1518,2630].

Summarizing: today we understand in a precise way, on
the basis of QCD, most of the properties of the quarkonium
states lying below the strong decay threshold. This has a
great impact for the physics of quarkonium, as we explain
with examples in the next paragraph.

Precise determination of SM parameters
In the regime in which the soft scale is perturbative, pNRQCD
enables precise and systematic higher order calculations of
bound states allowing us to extract precisely standard-model
parameters like the quark masses and αs . For example, it
has been possible to extract a precise value of αs at rather
low energy by comparing a short-distance lattice calculation
with 2+1 flavors of the static energy and a next-to-next-to-
next leading order (NNNLO, α4

s ) perturbative pNRQCD cal-
culation of the same quantity, including also ultrasoft logs
resummation. When αs is extrapolated to the mass of the Z,
αs(MZ ) = 0.11660+0.00110

−0.00056 is obtained. This is a competi-
tive extraction made at a pretty high order of the perturbative
expansion [2669,2670]. This method of αs extraction is now
used by several groups, see e.g. [2671,2672]. The QCD static
force, defined in terms of a single chromolectric insertion in
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the Wilson loop could be used as well to the same scope
[2673,2674].

In the same way precise values of the bottom and charm
masses can be extracted from measurements of the masses
of the lowest states and by comparing them to the formula
for the energies in pNRQCD at NNNLO. The renormalon
ambiguity between the mass and the static potential cancels
and a pretty good determination is possible, see e.g. [1518,
1527,1537] and references therein. Similar methods [1517,
1537] can be used to describe the top anti-top S-wave pair-
production cross section near threshold in e+e− annihilation
and to study the possible achievable accuracy of top-quark
mass measurement expected at a future linear collider. A
precise determination of the top quark mass is very important
for precision tests of the SM, and also due to its crucial role
in the vacuum stability of the SM at a very high energy scale.
Hence, progress in our understanding of heavy quarkonia
leads to an access to key aspects of the SM.

8.6.5 Production

Production of heavy quarkonium has been extensively stud-
ied along the years at the Tevatron collider at Fermilab, at
Hera at DESY, at B factories and in particular at the LHC
where quarkonium production with high statistics at unprece-
dented values of pT is measured [1464,1465,1477,1478,
2630–2632]. This is a complex problem encompassing many
physical scales still not fully understood, and it can be used to
test and extend our understanding of factorization theorems,
which are the foundation for all the perturbative calculations
in QCD. New theoretical concepts that have been developed
here, e.g. arising from kinematic enhancements and from
large endpoint logarithms, could have wider applicability in
the calculation of high-energy cross sections. Quarkonium
production is also relevant to BSM, as certain quarkonium
production processes can be used to measure Higgs cou-
plings.

The standard method for calculating quarkonium pro-
duction rates is the NRQCD [1476] (see Sect. 6.1) factor-
ization approach, where production rates are expressed as
perturbatively calculable partonic cross sections multiplied
by nonperturbative constants called NRQCD long-distance
matrix elements (LDMEs) which are universal. The NRQCD
factorization approach is a conjecture that has not been
proven to all orders in αs . Another important theoretical
development is the next-to-leading-power (NLP) fragmenta-
tion approach [1275,2063], in which quarkonium production
rates are expressed as perturbatively calculable partonic cross
sections convolved with fragmentation functions, up to cor-
rections suppressed by a factor m4

h/p
4
T . The NLP fragmenta-

tion approach becomes more predictive if NRQCD factoriza-
tion is used to express the fragmentation functions in terms
of NRQCD matrix elements. This organizes the NRQCD

factorization expression for the cross section according to
powers ofm2

h/p
2
T , which simplifies the calculation of higher-

order corrections and the resummation of large logarithms.
NRQCD factorization predictions have now been computed
at NLO in αs for many production processes.

The NRQCD approach has brought a great progress into
the field even though not all experimental data are under-
stood coherently, and the extraction of the LDMEs remains a
complex enterprise [2675–2681]. Recently, it has been possi-
ble to factorize the quarkonium production-cross sections at
lower energy in pNRQCD [1573–1575], rewriting the octet
NRQCD LDMEs, which are the nonperturbative unknowns,
in terms of products of wave functions and gauge invariant
low energy correlators depending only on the glue and not the
on flavor quantum numbers. This allows to reduce by half the
number of LDMEs, opens up the possibility of their lattice
evaluation and may lead to further progress of the field.

8.6.6 Nonequilibrium evolution in medium

The properties of production and absorption of quarkonium
in a nuclear and hot medium are crucial inputs for the study of
QCD at high density and temperature (see Sect. 7), reaching
out to cosmology.

Heavy ions experiments at the LHC at CERN and at
the RHIC at BNL aim at producing the Quark Gluon
Plasma (QGP): heavy quarks are good probes of this hot QCD
medium. They are produced at the beginning of the collision
and remain up to the end. As we discussed, quarkonia are
special hard probes as they are multi-scale systems. In the
medium besides the energy scales of quarkonium, also the
thermal scales of the QGP have to be considered (cf Sect.
6.5): the scale πT related to the temperature, the Debye
mass mD ∼ gT , with αs = g2/4π , related to the (chromo)
electric screening and the scale g2T related to the (chromo)
magnetic screening. In a weakly-coupled plasma, the scales
are separated and hierarchically ordered, in a strongly cou-
pled plasma, mD ∼ T . To calculate QCD at finite T in real
time, Hard Thermal Loop EFT can be used to integrate out
the temperature scale. Heavy quarkonium dissociation has
been proposed a long time ago as a clear probe of QGP for-
mation through the measurement of the dilepton decay-rate
[2152]. The dissociation was related to the screening of the
quark–antiquark interaction due to the Debye mass and it
was suggested that dissociation would manifest itself in an
exponential screening term exp(−mDr) in the static poten-
tial. One of the key quantities measured in experiments is the
nuclear modification factor RAA, a measure for the difference
of quarkonium production in pp and in nucleus–nucleus col-
lisions. Since higher excited quarkonium states have larger
radii, the expectation was that, as the temperature increases,
quarkonium would dissociate first for the higher-mass and
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then for lower-mass states giving origin to sequential melt-
ing [2152].

In the last decades, using pNRQCD at finite T [1592,
2159], it has been possible to actually define and calculate
the QQ̄ potential in medium. In perturbative calculations it
was found that the thermal part of the static potential has
a real part (roughly described by the free energy) and an
imaginary part. The imaginary part comes from two effects:
the Landau damping [1592,1593,2153], an effect existing
also in QED, and the singlet to octet transition, existing only
in QCD [1592]. Which one dominates depends on the ratio
between mD and E . In the EFT one could show that the
imaginary part of the potential related to the Landau damp-
ing comes from inelastic parton scattering [1596] and the sin-
glet to octet transition from gluon dissociation [1595]. The
existence of the imaginary part, first realized in Ref. [2153],
changed our paradigm for quarkonium suppression: it has
become clear that the state dissociates well before the con-
ventional screening becomes active [1593,2153]. A similar
pattern emerges in lattice nonperturbative calculations of the
potential [2682,2683].

So far, we have discussed an equilibrium description.
However, the evolution of quarkonium in the QGP is an
out-of-equilibrium process in which many effects enter: the
hydrodynamical evolution of the plasma and the production,
dissociation and regeneration of quarkonium in the medium,
to quote the most prominent ones. It is necessary therefore to
introduce an appropriate framework to describe the real-time
nonequilibrium evolution. Recently, using the formalism of
open quantum system (see Sect. 6.6) and pNRQCD, it has
been possible to describe the nonequilibrium evolution of
bottomonium inside a strongly coupled QGP, in a way that
incorporates the quantum effects, conserves the number of
heavy quarks and considers both color singlet and color octet
quarkonium degrees of freedom as well as their recombina-
tion [1599,1600]. The results not only describe well the RAAs
measured at LHC [1602,2150] (see also [2158,2684]), but
they allow also to establish a connection with QCD, since the
quarkonium evolution depends only on two transport coeffi-
cients given in terms of QCD gluonic correlators character-
izing the QGP [1599,1600]. For a review of open quantum
system approaches for quarkonium, see [1601,2685].

8.6.7 States at and above threshold: X,Y, Z exotics: intro

As explained in Sect. 8.5, the spectroscopy of charmonium
and bottomonium states at or above the open-heavy-flavor
thresholds have reserved us several surprises. Experiments at
e+e− and hadron colliders have discovered many new, unex-
pected states in the last decades, cf. Sect. 8.5 and Fig. 197.
Many of these states are surprisingly narrow, and some have
electric charge. The observations of these charged quarko-
nium states are the first definitive discoveries of manifestly

exotic hadrons. These results challenge our understanding of
the QCD spectrum. The X,Y, Z offer us a unique opportunity
to investigate the dynamical properties of strongly correlated
systems in QCD.

As mentioned in Sect. 8.5, These states have been termed
X,Y, Z in the discovery publications, without any special
criterion. Meanwhile, the Particle Data Group (PDG) has
proposed a new naming scheme [2686], that extends the
scheme used for ordinary quarkonia, in which the new names
carry information on the J PC quantum numbers, see [1427]
for more details. Since the situation is still in evolution we
will stick to X,Y, Z names. The field is in enormous and
very fast development both experimentally and theoretically,
with a continuous flux of new papers: we refer to reviews to
account for this development [1427,1464,2630,2687–2692].
The X,Y, Z states offer us unique possibilities for the inves-
tigation of the dynamical properties of strongly correlated
systems: we should develop the tools to gain a solid inter-
pretation from the underlying field theory, QCD. This is a
very significant problem with trade off to other fields featur-
ing strong correlations and pretty interesting connections to
heavy ion physics, as propagation of these states in medium
may help us to scrutinize their structure and composition.

8.6.8 X,Y, Z models and degrees of freedom

Since the X (3872) discovery in 2003, a wealth of theoreti-
cal papers appeared to investigate the characteristics of the
exotics. Most papers are based on models, which involve a
choice of some dominant degrees of freedom and an assump-
tion on their interaction hamiltonian. In the case of states
particularly close to their heavy-light threshold, with a very
small binding energy and a large scattering length, a more
universal picture based on an effective-field-theory molecu-
lar description has been put forward [2692–2696] and along
the years it has been refined arriving at detailed calculations
of the line shapes and the production properties.

A priori the simplest system consisting of only two quarks
and two antiquarks (generically called tetraquarks) is already
a complicated object and it is unclear whether or not any kind
of clustering occurs in it. To simplify the problem, models
focus on certain substructures and investigate their implica-
tions: in hadroquarkonia the heavy quark and antiquark form
a compact core surrounded by a light-quark cloud; in com-
pact tetraquarks the relevant degrees of freedom are compact
diquarks and antidiquarks; in the molecular picture two color
singlet mesons are interacting at some typical distance: we
have no chance here to illustrate all these models and we refer
to some recent reviews [1427,2688,2690,2692]. Discussions
about exotics therefore often concentrate on the “pictures” of
the states, for example the tetraquark interpretation against
the molecular one (of which both several different realiza-
tions exist). However, as a matter of fact, all the light degrees
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of freedom (light quarks, glue, in different configurations)
should be there in QCD close or above the strong decay
threshold: it is a result of the strong dynamics which one
sets in, and when, and which configuration dominates in a
given regime.

Even in an ordinary quarkonium, which has a dominant
QQ̄, subleading contributions of the Fock space may con-
tribute, which have additional quark–antiquark pairs and
active gluons. However, in the most interesting region, close
or above the strong decay threshold, where the X,Y, Z have
been discovered, the situation is more complicated: there is
no mass gap between quarkonium and the creation of a pair
of heavy-light mesons, nor to gluon excitations, therefore
many additional states appear and are dynamical degrees of
freedom to be considered [2687]. Still, mh is a large scale,
and a scale factorization is applicable so that nonrelativis-
tic QCD is still valid. There is still another scale separation
that can be used to introduce a description of the bound state
similar to what is done in pNRQCD, in which the zero order
problem is the Schrödinger equation. Let us consider bound
states of two nonrelativistic particles and some light-quark
degrees of freedom, e.g. molecules in QED or quarkonium
hybrids (QQ̄g states) or tetraquarks (QQ̄qq̄ states) in QCD:
electrons, gluon fields or light quarks fields change adia-
batically in the presence of heavy quarks or nuclei. In this
situation the interaction between the heavy quarks or the one
between nuclei due to the electron cloud may be described
at leading order of a nonrelativistic expansion by an effec-
tive static energy (or potential) Eκ between the static sources
where κ labels different excitations of the light degrees of
freedom. A plethora of states can be built on each of the
static energies Eκ by solving the corresponding Schrödinger
equation, see Figs. 208 and 209. Based on this scale separa-
tion one may describe hybrids and tetraquarks using a Born-
Oppenheimer (BO) description, similarly to what is done
in molecular systems. On the basis of this, the QCD static
energies in presence of a static quark and a static antiquark
can be classified according to representations of the symme-
try group D∞ h , typical of diatomic molecules, and labeled
by Λσ

η (see Fig. 210): Λ is the rotational quantum number

|�̂r · �K | = 0, 1, 2, . . . , with �K the angular momentum of the
gluons (or in general the nonperturbative collective degrees
of freedom), that corresponds to Λ = Σ,Π,Δ, . . . ; η is
the CP eigenvalue (+1 ≡ g (gerade) and −1 ≡ u (unger-
ade)); σ is the eigenvalue of reflection with respect to a plane
passing through the QQ̄ axis. The quantum number σ is rel-
evant only for Σ states. In general there can be more than
one state for each irreducible representation of D∞ h : higher
states are denoted by primes, e.g., Πu , Π ′

u , Π ′′
u , . . . . In pres-

ence of a light quark that takes part in the binding, isospin
quantum numbers should be added. The QCD static ener-
gies, EΓ in Fig. 211, have been calculated on the lattice

Fig. 208 Pictorial view of electronic static energies in QED, labelled
by a collective quantum number κ

Fig. 209 Pictorial view of the QCD static energies, EΓ , in QCD. The
collective quantum number κ has been detailed in Λσ

η as explained in
the text. It corresponds to the actual lattice results in Fig. 211

in NRQCD more than 20 years ago [415], Γ representing a
choice forΛσ

η or in short for the collective quantum numberκ .
These lattice calculations uses Wilson loops with initial and
final states encoding the given quantum numbers, to select a
given symmetry. The Born Oppenheimer approximation idea
has been first exploited in phenomenological applications by
[1586,1588]. This picture may be made precise inside QCD
using NREFTs and has the possibility to subdue many dif-
ferent models and pictures. In the next section the content of
BOEFT and its implications will be presented.

8.6.9 BO effective field theory

Starting from pNRQED/pNRQCD the BO approximation
can be made rigorous and cast into a suitable EFT called
Born-Oppenheimer EFT (BOEFT) [1427,1461,1587,1589,
2697–2699] which exploits the hierarchy of scales ΛQCD �
mhv

2.
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In Ref. [1589] the BOEFT that describes hybrids has been
obtained. In particular, the static potentials and a set of cou-
pled Schrödinger equations were derived and solved to pro-
duce the hybrids multiplets for the two first static energies
Σ−

u andΠu . Such static energies are degenerated at short dis-
tance where the cylindrical symmetry gets subdue to a O(3)
symmetry and are then labelled by the quantum number of
a gluonic operator 1+− called a gluelump. The hybrid static
energies are described by a repulsive octet potential plus the
gluelump mass in the short distance limit. The O(3) sym-
metry is broken at order r2 of the multipole expansion. In
the long distance regime the static energies display a behav-
ior linear in r , cf. Fig. 211. The gluelump correlator can be
calculated on the lattice to determine the gluelump mass. It
depends on the scheme used (the scheme dependence can-
cels against the analogous dependence in the quark mass
and in the octet static potential) but it is of the order of 800
MeV. The hybrid multiplets Hi are constructed from the solu-
tion of the Schrödinger equations in correspondence to their
J PC quantum numbers. The coupling between the different
Schrödinger equations is induced by a non-adiabatic term,
known in the Born-Oppenheimer description of diatomic
molecules, induced by the non-commutation between the
kinetic term and a projector of the cylindrical symmetry in
the BOEFT lagrangian. The degeneracy of the static energies
at small distance induces a phenomenon called Λ doubling,
removing the degeneration between multiplets of opposite
parity. This phenomenon is known in molecular physics but
with smaller size. This and the structure of the multiplets
differ from what is obtained in models for the hybrids, cf.
[1589]. The BOEFT hybrid multiplets can be compared to
neutral exotic states measured in the bottomonium and char-
monium sector [1427]: there are many experimental candi-
dates and to make clear identifications one should study also
the decay and production properties in the same framework.

The picture can be generalized to tetraquarks by consid-
ering static energies classified by the D∞ quantum numbers
and isospin quantum numbers, extracted from lattice evalua-
tion of the static energies of system of a heavy quark, a heavy
antiquark and two light quarks [1461].

Exotic spin structures, decays
In Refs. [2698,2699] the spin-dependent potential of hybrids
has been obtained at order 1/mh and 1/m2

h in the quark mass
expansion. The potential turned out to be rather different from
the spin potential known from standard quarkonium. In fact, a
1/mh contribution appears due to the coupling of the angular
momentum of the gluonic excitation (which is not suppressed
in mh) with the total spin of the heavy-quark–antiquark pair.
Among the 1/m2

h operators are the standard spin–orbit, total
spin squared, and tensor spin operators respectively, which
appear for standard quarkonia. But now three novel opera-
tors appear in addition. So interestingly and differently from

Fig. 210 Symmetries of a system with a static quark and a static anti-
quark and a nonperturbative cloud (gluonic, light quarks) and respective
quantum numbers

Fig. 211 Hybrid static energies labeled by the D∞ group quantum
number, EΓ , in lattice units, from the historical Ref. [415]. For updated
calculations see [2700]

the quarkonium case, the hybrid potential gets a first con-
tribution already at order Λ2

QCD/m. Hence, spin splittings
are remarkably less suppressed in heavy quarkonium hybrids
than in heavy quarkonia: this will have a notable impact on the
phenomenology of exotics. The nonperturbative low-energy
correlators appearing in the factorization can be extracted
by fixing them using lattice data on the masses of charmo-
nium hybrids [2667], Then, all bottomonium-hybrid spin-
multiplets (more difficult to evaluate on the lattice [1474])
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can be predicted. The BOEFT is therefore able to predict all
spin hybrid multiplets, including their decays and transitions
[1427].

Avoided level crossing
In the BOEFT the information is carried by the QCD static
energies and a few purely gluonic low-energy correlators.
The information is relevant, however to describe the static
energies in the region close to the threshold of two heavy-light
mesons. A phenomenological description has been put for-
ward recently [2701,2702] inspired by lattice calculation in
which the avoided-level-crossing-effect is exploited to con-
struct a set of coupled Schrödinger equations and a procedure
for the calculation of open-flavor meson–meson scattering
cross sections from diabatic potentials. In this framework,
the X (3872) naturally emerges [2701]. Such a description
can be carried over to BOEFT.

The BOEFT may be used to describe also tetraquarks,
double heavy baryons and pentaquarks [1461,1587]. In the
case of tetraquarks, a necessary input of the theory is the cal-
culation on the lattice of the generalized Wilson loops with
appropriate symmetry and light quark operators. Note that
besides the quantum number κ also the isospin quantum num-
bers I = 0, 1 have to be considered. It is interesting to note
that the BOEFT approach reconciles the different pictures
of exotics based on tetraquarks, molecules, hadroquarkoni-
um…In fact in the plot of the static energy as a function
of r for a state with QQ̄qq̄ or QQ̄g we will have different
regions: for short distance a hadroquarkonium picture would
emerge, then a tetraquark (or hybrid) one and, when pass-
ing the heavy-light mesons line, avoided-cross-level effects
should be taken into account and a molecular picture would
emerge. QCD would then dictate, through the lattice corre-
lators and the BOEFT characteristics and power counting,
which structure prevails and in which precise way. In addi-
tion production and suppression in medium may be described
in the same approach [1574,2149].

8.6.10 X,Y, Z lattice

Lattice QCD plays a key role for the description of exotics
[2666,2703]. For what concerns BOEFT, nonperturbative
input from the lattice is needed in the form of static energies,
gluelumps correlators, insertions of chromoelectric fields on
hybrids states, for a full list see [2687]. Lattice groups have
started to calculate some of these crucial quantities [2704–
2707].

Direct lattice calculations of the spectrum and properties
of exotic states at and above thresholds are extremely chal-
lenging. These states are resonances in the pertinent multi-
hadron channels and to obtain their properties, scattering
amplitudes in the relevant kinematic range should be cal-
culated on the lattice. The approach is based on Lüscher’s

work. Later generalizations give access to scattering ampli-
tudes of two-hadron elastic channels, of multiple coupled
two-hadron inelastic channels, and of three-hadron channels.
While the Lüscher method for a single two-hadron elastic
channel provides a straightforward mapping between scat-
tering amplitudes and finite-volume energies, this connec-
tion is lost for the multi-channel case, and a parameteriza-
tion of the amplitude is needed. Abundant and precise energy
eigenvalues in a given kinematic range should be obtained to
constrain these multi-parameter forms, with solid systematic
uncertainties. As the calculations move toward physical val-
ues of the light-quark masses, the multi-hadron thresholds
move towards lower energies and the number of kinemati-
cally allowed hadronic channels that need to be included in
the determination of scattering amplitudes increases, mak-
ing everything more challenging. Still interesting informa-
tion about some exotics mesons could be obtained in these
direct lattice calculations, see e.g. [584,2708].

8.6.11 Summary

Quarkonium has been at the origin of QCD. It has been a
long way to arrive at describing quarkonium within QCD. It
has payed off, making quarkonium a special probe of strong
interactions at zero and at finite temperature. We are now
in the process to attack the next frontier, i.e. to develop a
coherent, field-theory-based description of exotic quarko-
nium states. Notice, that if new physics involves nonrelativis-
tic bound states, then the techniques that have been developed
for understanding quarkonia will be directly applicable. This
holds for example for studies of pairs of heavy dark matter in
the evolution in the early universe, that well match the studies
of the nonequilibrium evolution of quarkonium in medium,
or for the production and the spectroscopy of heavy particles
of BSM.

9 Baryons

Conveners:
Volker Burkert and Franz Gross
As we are trying to make progress in the complex world of
physical sciences, we should not lose sight of what physics
is all about: understanding the origin and the history of our
universe, and the laws underlying the observations. In this
section we also address how excited states of the nucleon
fit in to our understanding of the forces and the dynamics
of matter in the history of the universe. On the internet we
find beautiful representations of the phases through which
the universe evolved from the Big Bang (BB) to our times as
shown in Fig. 212.

Existing electron accelerators as CEBAF, ELSA, and
MAMI, and colliders as BES III have sufficient energy reach

123



Eur. Phys. J. C          (2023) 83:1125 Page 297 of 636  1125 

Fig. 212 The evolution of the Universe. The line denoted as Quark–
hadron transition, is where protons and neutrons are formed

to access this region and study processes in isolation that
occurred during this transition in the microsecond old uni-
verse and resulted in the freeze out of baryons. There are
some marked events that have been of particular significance
during the early phases of its history, such as the quark–
gluon plasma of non-interacting colored quarks and gluons,
and the forming of protons and neutrons. During this tran-
sition dramatic events occur – chiral symmetry is broken,
quarks acquire mass dynamically, baryon resonances occur
abundantly, and colored quarks and gluons are confined. This
crossover process is governed by the excited hadrons. Dur-
ing this period strong QCD (sQCD) emerges as the process
describing the interaction of colored quarks and gluons.

These are the phenomena that we are exploring with elec-
tron and hadron accelerators – the full discovery of the baryon
(and meson) spectrum, the role of chiral symmetry breaking
and the generation of dynamical quark mass in confinement.
While we can not recreate the exact condition in the labo-
ratory, with existing accelerators we can explore these pro-
cesses in isolation. With electron machines and high energy
photon beams in the few GeV energy range we search for
undiscovered excitation of nucleons and other baryons.

In this section, Capstick and Crede give an overview over
the spectrum of light-quark baryons, followed by a review
o the present experimental status by Burkert, Klempt and
Thoma. The structure of baryon resonances is explored in
electroproduction experiments (Burkert). The section ends
with a review of baryons with heavy quarks.

9.1 Theoretical overview of the baryon spectrum

Simon Capstick and Volker Crede

9.1.1 Overview

This contribution examines the constraints on the baryon
spectrum imposed by general considerations of flavor, rota-
tional, parity, and particle-exchange symmetries, which lead
to a classification scheme for excited baryons. Theoreti-
cal approaches to a description of the baryon spectrum
based on constituent quark models with various methods for
treating the short-range range interactions between quarks
are described, and are contrasted to investigations of the
spectrum based on lattice and Dyson–Schwinger equation
approaches to QCD. Models predict more excited states than
are present in the spectrum extracted from data; considera-
tions of how these missing states decay point to alternative
ways to produce them, and how to detect their presence once
produced. Finally, hybrid baryons with explicit gluonic exci-
tations and the prospect for their discovery are discussed.
More detail is given in, for example, reviews of the theoret-
ical approach to the baryon spectrum in Refs. [2709–2711],
and reviews of recent experimental developments in Refs.
[2712,2713].

9.1.2 Symmetry, group theory, and constraints on the
baryon spectrum

Exchange symmetry, baryons, and the color degrees of free-
dom
The development of SU (3) f and its isospin subgroup in order
to understand the proliferation of what are now known as
ground-state baryons led to an understanding that there are
states with flavor wave functions that are totally symmetric
under exchange of up and down quarks, which are identical
in the isospin-symmetric limit. An example is the isospin-
3/2 baryon, Δ, with the four charge states Δ++, Δ+, Δ0,
and Δ−, three of which were discovered in early πN elastic
scattering experiments with charged pion beams, and shown
by examining their strong decays to have spin and parity
J P = 3/2+. This led to a paradox: Ground states of few-
body systems made up of identical particles usually have
spatial wave functions with orbital angular momentum and
parity LP = 0+, and are exchange symmetric. This implies
a total quark spin S = 3/2, which is also totally symmetric
under exchange of the spin-1/2 quarks. However, as fermions,
the Pauli principle requires that the wave function of these
baryons in the product flavor, spatial, and spin space is totally
antisymmetric.

The solution is to assign to the quarks an additional degree
of freedom, and a wave function in this degree of freedom
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which is totally antisymmetric under exchange of the quarks.
The simplest way to do this is with a three-valued degree of
freedom, now called color. QCD was developed when it was
realized that this would result from an SU (3)c symmetry,
where the strong interactions are independent of rotations
of the quarks in the color space, with baryons as automati-
cally totally antisymmetric color singlets. This naturally led
to a gauge theory which could be the basis for the strong
interactions between quarks, and by extension, between all
hadrons.

Flavor symmetry in baryons
There is an approximate SU (3) f symmetry of the strong
interactions under exchange of the quarks u, d, and s, which
is broken by the higher mass of the strange quark. Gell-Mann
[1604] and Okubo [15] were able to write a mass formula
for ground-state decuplet (J P = 3/2+), shown in Fig. 213,
and separately for octet (J P = 1/2+) baryons, shown in
Fig. 214, in terms of the eigenvalues of the two generators
of the Lie algebra of SU (3) f that can be simultaneously
diagonalized. These generators are the third component of
isospin I3, and the hypercharge Y = B + S, where B is
baryon number and S is strangeness (S = −1 for a strange
quark, for historical reasons). Hypercharge is represented by
the diagonal matrix (1, 1,−2) in the {u, d, s} flavor space.
The Gell-Mann-Okubo mass formula ascribes the breaking
of symmetry in hadrons to differences in the hypercharge,
now understood to be due to the larger mass of the strange
quark. It is realized in the ground-state octet baryons as

(MN + MΞ)/2 = (3MΛ + MΣ)/4,

which holds to a fraction of a percent accuracy, and in ground-
state decuplet baryons as the equal-spacing rule

MΣ∗ − MΔ = MΞ∗ − MΣ∗ = MΩ − MΞ∗ ,

each approximately 147 MeV, which can be thought of as
the difference in the strange and average light (u, d) quark
masses. The latter led to the prediction by Gell-Mann [2714]
of the existence at around 1680 MeV of the decuplet Ω

baryon, made up of three strange quarks. Although the for-
mula is phenomenological, it is now understood in the context
of chiral perturbation theory.

De Rujula, Georgi and Glashow [763] were able to explain
the above results in the context of a model of hadrons which
confined the quarks with a flavor and spin-independent inter-
action, and used a short-distance interaction between the
quarks that results from asymptotic freedom. This is the
result of one-gluon exchange, and led to a short-distance
potential between two quarks that was Coulomb in nature,
and could be interpreted of as due to interactions between
two colored spin-1/2 quarks. The mass dependence of the
color-magnetic moments of the quarks led naturally to spin-
and flavor-dependent interactions between the quarks, which

Fig. 213 The ground-state baryon decuplet, with strangeness (Y − B)
plotted vs. the third component of isospin I3

Fig. 214 The ground-state baryon octet, with strangeness plotted vs.
the third component of isospin

could also explain the mass differences between octet and
decuplet baryons of the same flavor, and allow a qualitative
understanding of the sign and size of the difference Σ0−Λ0

between the masses of the I = 1 and I = 0 neutral strange
baryons.

One consequence of this simple (additive) quark model
description of baryons is an understanding of the magnetic
moments of the nucleons p, n and other octet and decuplet
ground-state baryons. Using the total quark-spin S = 1/2
wave function and octet flavor wave functions for the three
quarks in nucleons yields

μp = 4

3
μu − 1

3
μd ,
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and, since the proton can be turned into the neutron by the
transformation u ↔ d, we have

μn = 4

3
μd − 1

3
μu .

Fitting this to the measured moments gives quark magnetic
moments in the ratio of the quark charges to a good approx-
imation, if we assume the quark masses are identical, and
that this light quark mass is around one third of the mass
of nucleons. This approach also leads to a qualitative under-
standing of the magnetic moments of other ground-state octet
and decuplet baryons, and the transition moment that affects
the rate of the decay Σ0 → Λ0γ . Isgur and Karl [2715]
added small contributions to baryon magnetic moments, due
to configuration mixing, relativistic corrections, and viola-
tions of isospin symmetry, to refine these non-relativistic
quark model estimates. The result was better agreement with
the moments extracted from experimental data.

Rotational and parity symmetries
Ignoring for now interactions that couple the orbital and spin
angular momenta of the quarks, rotational symmetry and the
conservation of angular momentum also imply that ground
and excited-state baryons should lie in multiplets with a given
orbital angular momentum L and total quark spin S, with
the overall angular momentum of a baryon given by �J =
�L+ �S. The confining and spin-independent part of the short-
range interaction will cause splittings between and within
multiplets of states with different orbital angular momentum
L , and the short distance interactions between the quarks, for
example those in the work of De Rujula, Georgi and Glashow,
will further split those multiplets into groups of states with
the same total quark spin S.

It is always possible to describe the orbital angular
momentum of a basis state used to describe the wave function
of a baryon in terms of the angular momentum of the orbital
wave functions in the two vectors required to describe the
relative positions of the quarks. These can be conveniently
chosen to be the Jacobi coordinates

�ρ = 1√
2
(�r1 − �r2) ,

�λ = 1√
6
(�r1 + �r2 − 2�r3)

(9.1)

shown in Fig. 215, where the �ri are the vector positions
of the three quarks. The total orbital angular momentum
is then �L = �lρ + �lλ, and the parity of the resulting state
is P = (−1)lρ+lλ . It is simple to show that all values of
baryon spin and parity can be attained by various choices
of the eigenvalues for quarks moving in a static potential;
in contrast to the situation in mesons, there are no baryons
with ‘exotic’ quantum numbers. Exotic quantum numbers
in mesons require degrees of freedom like those of the

Fig. 215 The three-body Jacobi coordinate vectors �ρ and �λ

glue binding the hadrons together to be in other than their
J P = 0+ ground state.

This situation is complicated in the presence of spin–orbit
(vector in spin and vector in space coupled to a scalar) and
tensor (S = 2 and L = 2 coupled to a scalar) interactions
between the quarks. These are present in models which have
short-distance interactions between the quarks based on the
exchange of a vector boson, such as those due to one-gluon
exchange. The evidence for the presence of such interactions
in the spectrum of baryons is weaker than that for the pres-
ence of interactions which are simultaneous spin and orbital
angular momentum scalars; this is discussed in what follows.

The dominance in the baryon spectrum of simultaneous
quark spin and orbital angular momentum scalar interactions,
when combined with the observation that states assigned
quark spin S = 3/2 are more massive than those with
S = 1/2, allowed Klempt [2716] to fit the spectrum of
baryons made of {u, d, s} quarks with a mass formula. The
squares of the masses of baryons are proportional to their
orbital angular momenta L , as in Regge theory and, approx-
imately, the spectrum of a linear confining potential. For a
given flavor of baryon, more massive recurrences of the same
J P quantum numbers were assigned the same gap in mass-
squared as orbital excitations.

Symmetry under particle exchange
The requirement of Pauli symmetry implies, in the isospin
symmetric limit, that the wave functions of baryons are
totally symmetric under the exchange of light quarks, since
the color wave function is totally antisymmetric in the
absence of excitation of the gluon fields. For non-strange
baryons made up of three light quarks, this means that each
component of the wave function must be a basis function
for a representation of the exchange group S3. These basis
functions are either totally symmetric (S) under particle
exchange, totally antisymmetric (A), or one of a pair with
mixed symmetry {Mρ,Mλ} that transform into each other
under the elements of the permutations of S3 in a predictable
way. Here Mρ refers to the basis function that is antisym-
metric under the exchange 1 ↔ 2, and Mλ refers to the basis
function that is symmetric under this exchange. The rules for
how the mixed-symmetry pair transform into linear combina-
tions of each other under the elements of S3 can be found, for
example, by examining the result of the various permutations
on the relative position vectors �ρ and �λ. .

The rules of combining the spin angular momentum of
three S = 1/2 particles require that the overall spin wave
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function of the quarks for all values of the total quark spin
projection MS be either totally symmetric, when S = 3/2,
or be one of a pair of states of mixed symmetry when S =
1/2. The same rules apply for the isospin wave functions for
baryons made up of three light quarks, Δ-flavor baryons with
I = 3/2 and N -flavor baryons with I = 1/2.

The lowest lying basis state for the spatial wave functions
of ground-state baryons made up only of light quarks have
LP = 0+, and are totally symmetric under quark exchange.
Overall exchange symmetry then requires that the flavor and
spin wave functions be combined by using the rules for com-
bining two representations of S3. ForΔ baryons this is trivial,
since both the spin and flavor wave functions are totally sym-
metric. For N baryons, the mixed-symmetry spin (χ) and fla-
vor (φ) wave functions are combined to the symmetric linear
combination

1√
2

(
χMρ φMρ + χMλφMλ

)
.

The wave functions of baryons with a given flavor and spin-
parity J P can be expanded in a basis of states that satisfy the
requirements of antisymmetry under exchange of identical
(or nearly identical, for u ↔ d) quarks. A convenient choice
is to use a harmonic oscillator (HO) basis, which has the
useful feature of being form invariant under Fourier transfor-
mation; another is the Sturmian basis, which has improved
large momentum behavior useful for calculating decay form
factors, but is harder to use in both coordinate and momen-
tum space. Configuration mixing due to the confining poten-
tial and the short-range interactions between quarks can be
implemented by diagonalization of the Hamiltonian matrix
calculated in this basis.

The rules for combining representations of the exchange
group S3 are used to construct this basis from states with
given values of radial {nρ, nλ}, orbital {L , lρ , lλ}, and spin
S quantum numbers (magnetic quantum numbers have been
suppressed, and the sums and Clebsch–Gordan coefficients
required to form states of definite {L , S, J } are assumed). It
is often convenient to expand the wave function up to a given
energy, or equivalently polynomial order, which in the HO
basis is

E = (2nρ + lρ + 3/2)h̄ωρ + (2nλ + lλ + 3/2)h̄ωλ, (9.2)

where ωρ and ωλ are oscillator energies related by α2
ρ,λ =

mρ,λωρ,λ to the scaleα at which the radial wave functions fall
with distance and the reduced masses, equal when all three
quark masses are the same. Karl and Obryk [2717] give the
general procedure up to fourth-order polynomials. Examples
of how to construct these bases can be found in [764,2718,
2719]; for a pedagogical overview see, for example, Ref.
[2720].

It is not necessary to antisymmetrize the wave functions
of baryons under the exchanges u ↔ s or d ↔ s. It is

convenient to use the ‘uds’ basis [764] for baryons with S =
−1 or−2, which uses basis states that have either symmetry
or antisymmetry under these exchanges.

Baryon resonance classification scheme
The quantum numbers of the total orbital angular momentum
�L = �lρ + �lλ and spin �S = ∑

i �si are not good quantum
numbers in a relativistic theory. The parity of such states is
given by P = (−1)lρ+lλ . It is always possible to use a basis
of states with specific values of L and S which can couple to
the total angular momentum J of the baryon being described.
These are then mixed in the eigenstates of a Hamiltonian
that includes interactions that are not simultaneous scalars
in both spin and space, but are overall scalars of the form∑

q Ckq Rk,q Sk,−q , where Rk and Sk are tensor operators of
rank k acting on the spatial and spin bases, and the Ckq are
the coefficients required to make the result an overall scalar.
Examples are the tensor (k = 2) interactions which occur
in models of the short-range interactions between quarks,
and spin–orbit (k = 1) interactions. To the extent that these
interactions are small, a classification scheme based on the
{L , S} values of the dominant component of a configuration-
mixed eigenstate is useful.

It may also be useful to further break down sets of states
with the same {L , S} values into those with specific spatial
symmetries. As an example, consider excitations of N and Δ

flavored baryons, which are made up of only {u, d} quarks.
It is useful to enumerate basis states in a harmonic-oscillator
basis. Because of isospin symmetry, this basis has ωρ = ωλ

in Eq. 9.2, so that

E = [
2(nρ + nλ)+ lρ + lλ + 3

]
h̄ω = [N + 3]h̄ω.

Ground states
Baryon states can be classified according to the flavor-spin
SU (6)multiplet in which they predominantly lie. This would
be an exact symmetry of the Hamiltonian if it was simulta-
neously invariant under both rotations of quark flavors in the
SU (3) f space, and independent of the spin projections of
the quarks. Although useful as a classification scheme, this
is clearly only a very approximate symmetry: In addition
to the flavor-symmetry breaking effect of the larger strange
quark mass, the measured mass difference MΔ − MN �
300 MeV shows that interactions between quarks are not
independent of their spin. In this scheme the ground-state
nucleon lies in an SU (3) f octet of ground-state baryons with
J = S = 1/2, which are, in order of increasing strangeness,
{n, p,Λ0,Σ+,0,−, Ξ0,−}, giving (2S + 1) · 8 = 16 states.
The ground-state Δ is a member of an SU (3) f decuplet of
baryons with J = S = 3/2, which are {Δ,Σ∗, Ξ∗,Ω},
giving (2S + 1) · 10 = 40 states. Collectively, these domi-
nantly LP = 0+ states make up the SU (6) multiplet, labeled
[56, 0+].
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Following the notation of Isgur and Karl [2719], we
can label harmonic-oscillator basis states by |X2S+1Lπ J P 〉,
where X is the flavor, L is given in {S, P, D . . .} notation,
and π is the spatial exchange symmetry, either totally sym-
metric (S), mixed symmetry (M), or totally anti-symmetric
(A). In this notation, the dominant N = 0 components of the
ground state non-strange baryons are

|N 2SS1/2+〉, |Δ4SS3/2+〉.

Negative-parity states
The low lying (dominantly N = 1) negative-parity non-
strange excitations are made up of a triplet of S = 3/2 N
states and a doublet of S = 1/2 N states with mixed flavor
symmetry

|N 4PM (1/2−, 3/2−, 5/2−)〉, |N 2PM (1/2−, 3/2−)〉.
Their spatial wave functions necessarily have mixed exch-
ange symmetry, since they are proportional to Y1m(Ωρ) ∝
ρm , where ρm is a spherical component of the vector �ρ, or
Y1m(Ωλ) ∝ λm . There is also a a doublet of S = 1/2 Δ states
with S flavor symmetry,

|Δ2PM (1/2−, 3/2−)〉.
These negative-parity resonances are members of the SU (6)
multiplet [70, 1−], with two flavor octets of S = {1/2, 3/2}
states and a decuplet of S = 1/2 states [symmetric under
SU (3) f ], plus a flavor singlet state Λ, with S = 1/2. Ref-
erences [764,2717,2720] show how the rules for combining
representations of the exchange group S3 can be applied to
yield properly anti-symmetrized basis state wave functions.
Basis states with the same flavor, spin, and parity can and will
undergo configuration mixing when a model Hamiltonian is
diagonalized.

Positive-parity excited states
This scheme can be extended to, for example, positive-parity
non-strange excitations, dominantly described by N = 2
basis states. This is complicated by the presence of both radial
and orbital excitations. There are three radial excitations that
have nρ = 1 or nλ = 1, and, in a three-body system, lρ =
lλ = 1 coupled to L = 0; linear combinations form L = 0
states with definite (S or M) exchange symmetry. There are
also orbital excitations with lρ = 2 or lλ = 2, or lρ = lλ =
1. Since they have positive parity, these baryons must be
described by basis states with even lρ + lλ.

After forming linear combinations of spatial basis states to
form anti-symmetrized basis state wave functions, we have
a total of 21 basis states that contribute at N = 2 to the wave
functions of N and Δ states. These are radial excitations

|N 2SS′1/2+〉, |Δ4SS′3/2+〉

in the SU (6) multiplet [56′, 0+], and

|N 4SM3/2+〉, |Δ2SM1/2+}〉, |N 2SM1/2+〉
in the SU (6) multiplet [70, 0+]; L = 2 orbital excitations
that are admixtures of lρ = 2 and lλ = 2,

|Δ4DS(1/2+, 3/2+, 5/2+, 7/2+)〉, |N 2DS(3/2+, 5/2+)〉
in the SU (6) multiplet [56, 2+], and

|N 4DM (1/2+, 3/2+, 5/2+, 7/2+)〉, |Δ2DM (3/2+, 5/2+)〉,
|N 2DM (3/2+, 5/2+)〉,

in the SU (6)multiplet [70, 2+], and L = 1 orbital excitations
formed from lρ = 1 and lλ = 1

|N 2PA(1/2+, 3/2+)〉 (9.3)

in the SU (6) multiplet [20, 1+].
The J P = 1/2+ nucleon and the J P = 3/2+, isospin

I = 3/2 Δ ground states have dominant components with
N = 0, L = 0 and S = 1/2 and S = 3/2, respec-
tively. Spin-independent and spin-scalar (contact) interac-
tions between the quarks (arising from their short-distance
interactions and confinement) allow mixing between three
basis states: the N = 0 ground state |N 2SS1/2+〉, and the
L = 0, S = 1/2 states |N 2SS′1/2+〉 and |N 2SM1/2+〉.
Tensor (or spin–orbit) interactions cause mixings with the
L = 2, S = 3/2 state |N 4DM1/2+〉, and the L = 1,
S = 1/2 state |N 2PA1/2+〉. The situation is simpler for
the N = 0 ground state |Δ4SS3/2+〉, which mixes with
the L = 0, S = 3/2 radial excitation |Δ4SS′3/2+〉, and
the L = 2, S = 3/2 orbital excitations |Δ4DS3/2+〉 and
|Δ2DM3/2+〉. The resulting D-wave components in both
the N and Δ wave functions can lead to measurable conse-
quences in the photo- and electro-production amplitudes for
the transition γ (∗)N → Δ. For details, see the review on N
and Δ resonance electro-production in the 2022 RPP [616].

Hyperons
If we use a basis of states that imposes SU (6) symme-
try despite the larger strange quark mass, this classification
scheme extends to the hyperons Λ and Σ , Ξ , and Ω . As an
example, the notation of Isgur and Karl [2719] for the ground
state SU (3) f singletΛ is |Λ1

2SM1/2+〉. The SU (3) f singlet
wave function is totally antisymmetric under quark exchange,
and so is included in the wave function of the radial excitation
|Λ1

2PA1/2+〉, with its antisymmetric spatial wave function;
other radial recurrences such as |Λ8

2SS1/2+〉 necessarily
involve the SU (3) f octet flavor wave functions, so the nota-
tion is supplemented by the SU (3) f multiplet (singlet, octet,
or decuplet) in which the state lies. The total number of basis
states at each harmonic oscillator level for Ξ baryons, con-
taining two identical strange quarks, is the sum of the number
of N and Δ states at that same level. There is a one-to-one
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correspondence between basis states forΩ baryons and those
of the Δ states.

Constructing the wave functions is made simpler by use
of the uds basis [764], which requires overall antisymme-
try only under exchange of equal mass quarks. In this basis,
the exchange symmetry of the �ρ and �λ relative coordinate
wave functions are specified separately. It is always possi-
ble to convert from the uds basis back to a basis with defi-
nite SU (3) f symmetry when that is convenient, for example
when calculating strong decays [2721].

9.1.3 Constituent quark models

Constituent quark models treat a baryon as made up of three
‘valence’ quark degrees of freedom, with the gluon fields
providing a static potential in which the quarks move. In flux-
tube models [2418,2722,2723] this is treated as the lowest
energy state of a system of three strings that meet at a junc-
tion, whose energy is proportional to their length. There are
several approaches to the treatment of the short-range inter-
actions between the quarks, which are responsible for split-
ting groups of states which would otherwise be degenerate
or have their flavor dependence explained by violations of
SU (3) f symmetry due to the additional mass of the strange
quark. These approaches are briefly outlined here.

One-gluon exchange models
The earliest constituent quark models had short-distance
interactions based on the exchange of a single gluon [763],
which postulate that asymptotic freedom implies that high
momentum transfer interactions between quarks are domi-
nated by the exchange of a gluon. The result can be written
as the interaction between two color-magnetic dipoles, with
a �λi · �λ j dependence on the colors of quarks i and j , and spa-
tial dependence given by the Fourier transform of the vector
gluon propagator. Here the λi are the generators of SU (3)c
realized in the quark triplet basis. This naturally leads to a
spin-independent Coulomb interaction at short range, and,
with the assumption of point-like constituent quarks, a ‘con-
tact’ interaction proportional to

2αs
3mim j

∑

i< j

�si · �s jδ3(�ri j ), (9.4)

where �ri j = �ri − �r j is the relative coordinate of quarks i and
j . This approach also results in tensor (S = 2 and L = 2
coupled to a scalar) and spin–orbit (vector in spin and vec-
tor in space coupled to a scalar) interactions between the
quarks. There is some evidence for the former in the spec-
trum of J P = 1/2−, 3/2− nucleon resonances, and from
patterns of strong decays of negative-parity excited baryons
[2724], for example the Nη decays of the lightest non-strange
I = 1/2 (N∗) resonances with J P = 1/2−, nominally at
1535 and 1650 MeV. Isgur and Karl [764] noted a partial can-

cellation between spin–orbit interactions resulting from one-
gluon exchange and from Thomas precession of the quarks in
the confining potential, but the agreement with the spectrum
of low-lying negative-parity baryons extracted from data and
their one-gluon exchange model was best when they were left
out altogether.

The Coulomb, contact and tensor interactions resulting
from one gluon exchange were evaluated in low-lying neg-
ative parity excited baryons made up of {u, d, s} quarks by
Isgur and Karl [764]. This was extended to positive-parity
excited baryons [2719], where the effects of the difference
of the confining potential from that defining the harmonic
oscillator basis were also evaluated using perturbation theory.
The resulting parameters were fit to the spectrum extracted
from data without needing to specify the form of the anhar-
monicities. In this work and a treatment of ground state
baryons [2718], the effects of configuration mixing by the
various potentials were taken into account by diagonaliza-
tion of the Hamiltonian matrix, independently for each sector
with N = 2(nρ + nλ) + lρ + lλ = 0 for the ground states,
N = 1 for the low-lying negative-parity excited states, and
N = 2 for the positive-parity excited states.

While diagonalization independently by sector has the
advantage of simply describing the important physics, the
parameters fit to each sector’s spectrum may be inconsistent.
Systems of light quarks are also relativistic, with p/m � 1
when using constituent-quarks, which are effective degrees
of freedom with masses that include the effects of sea quark
and gluons. These theoretical problems can be solved by
simultaneously diagonalizing the Hamiltonian in a large
basis, using a relativistic kinetic energy and allowing for other
relativistic effects, and using a consistent set of parameters
for all baryon excitations [771].

Pseudoscalar-meson exchange models
Glozman and Riska [2725,2726] emphasize the role of chi-
ral symmetry in determining the baryon spectrum by using
a short-range interaction between quarks similar to that of
Eq. 9.4, but with the exchange of the ‘chiral’ octet of pseu-
doscalar mesons between quarks. This leads to a contact
interaction between quarks i and j similar in form to that
of Eq. 9.4, but proportional to the expectation of the product
�λ f
i · �λ f

j of SU (3) f generators. A fit to the spectrum of low-
lying negative and positive-parity baryons made up of u, d,
and s quarks with harmonic confinement allows first radial
recurrence of the nucleon, corresponding to the Roper reso-
nance N (1440), to be lighter than the lightest J P = 1/2−
orbital excitation, corresponding to N (1535), and the same
behavior holds for the Λ baryons, as seen in extractions from
experimental data. There are no spin–orbit interactions that
arise from pseudoscalar meson exchange; those from other
sources are neglected, along with tensor forces that accom-
pany the contact interaction. The calculation of the N and Δ
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spectra was refined by performing three-body Faddeev cal-
culations with a Goldstone-boson-exchange interaction plus
linear confinement between the constituent quarks in Ref
[2727].

Dziembowski, Fabre de la Ripelle, and Miller [2728] put
these two approaches together by including the effects of
pseudoscalar meson exchange and of one gluon exchange
between quarks, neglecting the complexity introduced by
tensor and spin–orbit interactions, in a hyper-spherical
method calculation that goes beyond wave function pertur-
bation theory. They showed that it is possible to describe the
non-strange baryon spectrum using a quark–meson coupling
constant that reproduces the measured pion–nucleon cou-
pling constant, and a reasonably small value of the strong-
coupling constant, which governs the strength of the one-
gluon exchange terms.

Instanton-induced interactions
Instantons are topologically nontrivial gauge-field configura-
tions in 4-dimensional Euclidean space, with field strengths
that vanish at large spatial distances. These configurations
are localized in both space and (Euclidean) time, and so are
instantaneous interactions, which gives rise to their name.
They are crucial to understanding the formation of con-
densates in the QCD vacuum, and how the axial current
anomaly gives mass to the η′ meson; their presence in
QCD also yields short-range interactions between the quarks.
Löring, Kretzschmar, Metsch and Petry [2729,2730] inves-
tigated the spectrum of baryons in a relativistic model by
solving the three-body Bethe–Salpeter equation. This model
uses instantaneous pairwise linear confinement, with the
Dirac structure required to make the confining potential
spin-independent, and an instantaneous two-body interac-
tion based on ′t Hooft’s residual interaction, which arises
from QCD-instanton effects. This model was able to explain
salient features of the non-strange baryon spectrum, such
as the low mass of the Roper resonance |N 2SS′1/2+〉, and
the presence of approximate parity doublets. This study was
extended [2731] to the study of excited Λ and Σ hyper-
ons, where the equivalent features of these spectra were also
explained, and later to charmed baryons in Ref. [2732].

The Dyson–Schwinger Bethe–Salpeter approach
There has been significant recent progress in understand-
ing the physics of baryons [822,2733] by using the Dyson–
Schwinger equations of QCD and Bethe–Salpeter equations
[820,2734]. In this approach baryons are relativistic bound
states of three quarks, and the treatment of their interac-
tions arising from QCD is non-perturbative, incorporating
aspects of confinement and dynamical symmetry breaking.
Two paths to solving the three-body problem are taken; direct
solution of the three-body Faddeev equation, and decompo-
sition of baryons into quark–diquark systems, with all quark
pairs able to constitute the diquark. The latter path requires

the calculation of diquark Bethe–Salpeter amplitudes, and
diquark propagators. These depend on the quark and gluon
propagators and quark–gluon vertex, which are consistent
with those used for the Bethe–Salpeter equation for mesons,
and with chiral symmetry. Due to the complexity of the three-
body system, baryon calculations are performed using the
rainbow-ladder approximation, where the q − q kernel has
the form of a single gluon exchange with a momentum-
dependent vertex strength, summed by the Bethe–Salpeter
equation into Feynman diagrams that take the form of a lad-
der, or rainbow. This construction preserves chiral symmetry.

Using this dynamical quark–diquark approach, the ground
state nucleon, Δ(1232) 3

2
+

, and Roper N (1440) 1
2
+

reso-
nances are described well [899], as their configurations are
dominated by scalar and axial vector diquarks. However,
other baryons are sensitive to other diquark channels, which
are known to be too strongly bound in this approximation,
as are the corresponding scalar and axial-vector mesons. The
result is that the other excited baryon masses come out too
low. Reducing the strength of the attraction in the pseudo-
scalar and vector di-quark kernels simulates effects beyond
the rainbow-ladder approximation, and the result is good
agreement between the calculated spectrum for excited N ,
Δ, Λ, Σ , Ξ and Ω baryons with J P = 1/2±, 3/2±, with
the exception of the Λ(1405)1/2−, Λ(1520)3/2−, and to a
lesser extent the Roper resonance N (1440)1/2+. The authors
of Ref. [899] point out that this is likely due to the lack
of a consistent treatment of baryon-meson coupled channel
effects.

9.1.4 Missing states in the baryon spectrum

Models of strong decays
For ground-state and low-lying negative-parity excited state
baryons made up of {u, d} and a single s quark, the spectrum
of states extracted from experimental data can be matched to
model predictions without ambiguity. (There is little exper-
imental information about the spectrum of the excited Ξ ,
strangeness S = −2, and Ω , strangeness S = −3 states.)
However, for positive-parity excited states, more states are
predicted by models that treat three quarks symmetrically
than are present in analyses of the data. This is called the
‘missing resonance’ problem. One possible explanation is
to postulate that they contain static, tightly-bound ud di-
quarks, which reduces the effective number of degrees of
freedom and so the number of excitations in the spectrum
[791]. However, lattice QCD calculations of nucleon struc-
ture [2735], and of the entire excited baryon spectrum using
a broad spread of operators [529,2736] do not show the
reduced number of states expected if only ‘good’ di-quarks
prevail, and recent experimental evidence for the existence
of states that are ruled out in such models is described below.
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A solution to this problem is that, unlike those states seen
in partial-wave analyses of elastic πN and K̄ N scattering
data, these missing positive-parity excited states have weak
couplings to the corresponding strong-interaction production
channel [2737,2738]. In any case, in order to make a detailed
and exhaustive comparison between predictions of any model
and the experimental spectrum of excited baryons, a model of
the strong decay B∗ → BM of baryons into a ground-state
baryon and meson is required. For a detailed, comparative
review of such models see Ref. [2709].

One approach is to couple point-like pseudoscalar mesons
to the quarks in the decaying baryon, an elementary-meson
emission model [2721,2739,2740]. As an example, Koniuk
and Isgur [2721] modeled such decays, by coupling point-
like pseudoscalar mesons to the quarks in the decaying
baryon, and evaluating the transition amplitudes using the
configuration-mixed wave functions resulting from the one-
gluon exchange model of Isgur and Karl [2719]. They also
examined baryon electromagnetic transition amplitudes that
can be extracted from meson photo-production experiments.
Many states were observed to have small πN or K̄ N ampli-
tudes, which would lead to them decoupling from elastic-
scattering partial-wave analyses, and the masses and decay
amplitudes of those that did not corresponded to those of the
observed states.

The internal structure of mesons can be taken into account
if strong decays of excited baryons proceed via an operator
that creates a qq̄ pair with vacuum, 2S+1L J = 3P0, quan-
tum numbers. The operator is assumed SU (3) f symmetric;
the additional energy required to produce a strange quark
pair is taken into account by the kinematics. Strong decay
amplitudes are formed by evaluating the required spin and
flavor overlaps, forming the expectation value of this oper-
ator between wave functions for the final state baryon and
meson, and that of the initial excited baryon, and integrating
over the relative momentum of the qq̄ pair.

9.1.5 Decay-channel couplings

Models for the baryon spectrum that do not take into account
decay-channel couplings effectively assume that baryons
are infinitely long-lived bound states. In practice, excited
baryons decay strongly, with decay widths that are signifi-
cant fraction of their masses. Excited baryons can have large
couplings to continuum states, which can and will affect the
positions of the poles in scattering amplitudes that describe
these resonances. This can be due to their proximity to decay-
channel thresholds, or unusually large couplings to a decay
channel, or both. Examples include the low-lying negative-
parity resonances Λ(1405)1/2−, which has a nominal mass
below the N K̄ threshold, and N (1535)1/2−, which couples
strongly to the Nη final state, for which it is just above thresh-
old. The authors of Ref. [2741] were among the first to sug-

gest that these states could be dynamically generated reso-
nances. Hyodo and Meißner review the interesting physics
of the Λ(1405) state in the 2022 RPP [616]. There is also
evidence of these effects from lattice QCD [2736] for states
like the Roper resonance; its mass changes rapidly as the pion
mass in the calculation approaches the physical pion mass,
due to strong Nππ channel coupling.

Beyond elastic meson scattering
The observation that baryon resonances could be missing
due to weak couplings for both their strong-interaction pro-
duction and decay in elastic meson-nucleon scattering led to
the idea that γ N photo-production experiments could excite
missing resonances that had appreciable photo-couplings,
which could be discovered via their strong decays to final
states with more than one pseudoscalar meson. For exam-
ple, missing N and Δ-flavored baryons could be searched
for in proton-target photo-production experiments examining
two or three pion final states resulting from the intermedi-
ate vector-mesons ρ(770) and ω(782). In particular, certain
missing, positive-parity resonances can be expected to decay
to two-pion final states by simultaneous de-excitation of both
lρ = 1 and lλ = 1 excitations.

Recent developments from photo-production experiments
The Particle Data Group in its bi-annual updates of the
Review of Particle Physics (RPP) lists the known baryon res-
onances, their properties, and the experimental evidence for
their existence in terms of star assignments ranging from one
star (poor evidence) to four stars (evidence is strong). Since
the 2010 edition of the RPP [2742], much new information
about N and Δ-flavored baryons has been added based on
recent photo-production experiments. In particular, various
polarization observables have played a crucial role in identi-
fying new resonances, or consolidating the existence of those
previously poorly known.

The experimental spectroscopy efforts to address the miss-
ing resonance problem have concentrated, for the most part,
on the N = 2 positive-parity non-strange excitations, and on
the N = 1 negative-parity singly- and doubly-strange states.
While only one negative-parity Λ state has yet to be iden-
tified to complete the first excitation band, with many more
positive-parity candidates unknown for the second excitation
band, overall as many Σ and Ξ states are expected as N∗ and
Δ states combined, and of these, many negative-parity states
are still missing. The situation is worse for Ξ and Ω res-
onances, since their spins and parities have been measured
for very few states; speculative J P assignments based on
quark model predictions are listed by the PDG for the major-
ity of the observed states. The potential for new discoveries
remains high in the hyperon sector.

Of particular interest in the non-strange sector are those
multiplets of the second excitation band where both oscil-
lators have a single orbital excitation, lρ = lλ = 1, which
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combine to either L = 0, 1, or 2. Since both relative coordi-
nate vectors must be excited in order to have the necessary
exchange symmetry, their presence would rule out tightly-
bound, static di-quarks. In fact, a quartet of S = 3/2 states

|N 4DM (1/2+, 3/2+, 5/2+, 7/2+)〉,
has been proposed [2743] for the 70-plet (70, 2+) largely
based on the photo-produced double-pion final state.

These states were expected to be seen in double-meson
reactions since each oscillator can de-excite via the emission
of a meson. There is a new J P = 1/2+ state, N (1880)1/2+,
and the state N (1900)3/2+ has had its likely existence
upgraded from 2 to 4 stars in the Review of Particle Proper-
ties (RPP) by the PDG [616]. Evidence for two other states
in the quartet, N (2000)5/2+ and N (1990)7/2+, is strong in
some partial wave analyses but requires additional confirma-
tion, and so remains listed with weak evidence (two stars)
in the RPP. Such double-meson reactions had been under-
explored until recently, which would explain why these states
escaped detection in the past. Another previously one-star
resonance, N (2100)1/2+, has been upgraded to three stars,
and can be tentatively assigned to the doublet of states with
S = 1/2 forming the SU(6) multiplet [20, 1+] of Eq. 9.3,
where lρ = lλ = 1 combine to L = 1. There remains at best
weak evidence for the second state in this doublet. Although
the assignment of experimental N∗ candidates to these mul-
tiplets is speculative, some optimism persists that the goal
of completely mapping the second excitation band for non-
strange baryons is within reach once all currently available
(polarization) data have been analyzed.

There is also an interesting pattern of parity doublets of N∗
baryons with masses around 2 GeV, which might indicate the
restoration of the chiral symmetry at higher energies [2744,
2745]. A similar pattern was observed for Δ resonances in
the same mass region:

Δ(1910)1/2+ Δ(1900)1/2−
Δ(1920)3/2+ Δ(1940)3/2−
Δ(1905)5/2+ Δ(1930)5/2−
Δ(1950)7/2+

A detailed study has not yet revealed the missing 7/2−
state [2746]. Closest in mass is a previously poorly-known
state, Δ(2200)7/2−, which has since been upgraded from
one to three stars based on photo-production data. Inter-
estingly, the corresponding mass difference is observed in
the nucleon spectrum between N (1990)7/2+ (two stars) and
N (2190)7/2− (four stars).

The result is that, based on photo-production data, six
completely new N∗ resonances have been proposed with
masses around 2 GeV, and three additional states have been
upgraded. No new Δ state has been proposed, but four states
have had their status upgraded by the PDG.

9.1.6 Baryons with excited glue

In a strongly-coupled system, hybrid baryons with excited
gluon degrees of freedom must exist. Unlike in the spec-
trum of mesons, all J P quantum numbers are accessible via
spatial excitation for a given flavor of baryon, as explained
in Sect. 9.1.2. In the absence of exotic quantum numbers,
another approach to the discovery of hybrid baryons might be
to search for an over-population, relative to the expectations
of constituent quark models, of states with a given flavor,
spin, and parity quantum numbers. However, it is expected
that the lowest-lying states with excited gluon degrees of
freedom are positive-parity states that overlap in mass the
region in the spectrum where there are already several miss-
ing conventional states.

Early approaches to the physics of hybrid baryons include
those based on the MIT bag model [2747], large-Nc QCD
[2748], and QCD sum rules [2749]. As an example, the cal-
culation of Ref. [2747] confined a constituent gluon and three
quarks to an MIT bag, and used O(αs) interactions between
the constituents. In these studies, the lightest hybrid baryons
were found to have N flavor and J P = {1/2+, 3/2+}, with
the lightest of these having J P = 1/2+ and a mass of approx-
imately 1500 MeV, between those of the two lightest radial
excitations of the nucleon, the Roper resonance at 1440 MeV,
and the N(1710).

The flux-tube model developed to examine hybrid meson
structure and decays by Isgur and Paton [2418] was applied
to hybrid baryons in Refs. [2723,2750]. An adiabatic approx-
imation is employed, where a Y-shaped flux tube is allowed
to move with the three quark positions fixed, except for cen-
ter of mass corrections. This defines a potential in which the
quarks move, for both conventional (glue in its ground state)
and hybrid (glue in its lowest-lying excited state) baryons.
The flux-tube dynamical problem can be reduced to the inde-
pendent motion of the junction and the strings connecting the
junction to the quarks. The seven low-lying hybrid baryons
are found to be two doublets of N 21/2+ and N 23/2+ states
with quark spin S = 1/2, and three states

4Δ(1/2+, 3/2+, 5/2+)

with quark spin S = 3/2. Baryon masses are found by using
a variational method to solve for the quark energies in these
string potentials. Including the hyperfine contact spin–spin
term in Eq. 9.4 lowers the mass of the quark–spin 1/2 hybrid
states by 110 MeV to 1865 MeV, and raises the mass of
the quark–spin 3/2 hybrid states, which coincide with the
lightest Δ flavored hybrids, by a similar amount.

Lattice QCD approaches to describing the spectrum of
conventional and hybrid baryons assuming isolated bound
states [529,2736,2736] are able to determine the spectrum
of baryon states up to J P = 7/2±. The results show the
same number of states as non-relativistic models based on
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three-quark degrees of freedom [2736], with no signs of the
reduced number of excitations predicted by di-quark models,
or parity doubling. States in this spectrum can be grouped into
SU (6) × O(3) multiplets, with weak mixing. Using many
composite QCD interpolating fields, hybrid baryons of N and
Δ flavor were identified in Ref. [529] by searching for states
with a substantial overlap with operators containing glu-
onic excitations. This led to doublets of N1/2+ and N3/2+
hybrids, and N5/2+, Δ1/2+ and Δ3/2+ states at energies
above the center of the first band of conventional positive-
parity excitations. This suggests that exciting the glue adds
a color-octet effective degree of freedom, with roughly the
same additional energy in mesons and baryons, that has J P =
1+, unlike the vector nature of this excitation in the flux-tube
model. A J P = 1+ excitation is expected in the bag model of
Ref. [2747], as these are the quantum numbers of the lowest
energy, transverse electric mode of a gluon in a spherical bag.

This approach is extended to all baryons made from u,
d, and s quarks in Ref. [2736], using operators that lie in
irreducible representations of SU (3) f symmetry, in addition
to SU (4) symmetry for the Dirac spins and O(3) symmetry
for the orbital state. The spectra that result for non-hybrid
states are again consistent with quark model expectations
based on weakly broken SU (6)⊗O(3) symmetry. States with
strong hybrid content are usually at about 1 GeV above the
corresponding conventional excited states, and the quantum
numbers and multiplicity of the positive-parity hybrid states
can be roughly predicted by combining a J P = 1+ gluonic
excitation with non-relativistic quark spins, although some of
the expected states are not found in the calculation performed
at the lowest pion mass. The use of multi-hadron operators
will allow the exploration of the energy dependence of and
resonances in hadron scattering amplitudes.

A recent proposal prepared by the CLAS12 Collaboration
and presented to the Jefferson Lab Physical Advisory Com-
mittee aims to experimentally search for hybrid baryon states
in electro-produced KY and pπ+π− final states by focus-
ing on measurements for Q2 < 1.0 GeV2. Since the spin
and parity of hybrid baryons are expected to be the same as
those for conventional states, the experimental signature of
hybrid baryons is the distinctively different low-Q2 evolution
of their electro-couplings that originate from the additional
gluonic component of their wave function. More details are
discussed in the contribution by V. Burkert.

9.2 Light-quark baryons

Volker Burkert, Eberhard Klempt, Ulrike Thoma

9.2.1 Why N∗’s?

This was the question with which Nathan Isgur opened his
talk at N∗2000 [2751] held at the Thomas Jefferson National

Accelerator Facility in Newport News, VA, one year before
he passed away, much too early. He gave three answers:

First, nucleons are the stuff of which our world is made.
In the Introduction to this section, two of us have outlined
the importance of N∗’s and Δ∗’s in the development of
the Universe 9, when hadrons materialized from a soup of
quarks and gluons at some 10μs after the big bang. The
full spectrum of excited baryon states including those carry-
ing strangeness must be included in hadron gas models that
simulate the freeze-out behavior observed in hot-QCD cal-
culations. These simulations aim at finding the underlying
processes, to pin-point the “critical point” of the phase tran-
sition that is expected to occur between the QGP phase and
the hadron phase at a temperature near 155 MeV. Experi-
ments are ongoing at CERN, RHIC and planned at FAIR to
study the phase diagram of strongly interacting matter, e.g.
by varying the collision energy.

Second, nucleons are the simplest system in which the
non-abelian character of QCD is manifest. The proton con-
sists of three (constituent) quarks since the number of colors
is three.

Third, baryons are sufficiently complex to reveal physics
to us hidden in the mesons. Gell-Mann and Zweig did
not develop their quark model along mesons, their simple
structure allowed for different interpretations. Three quarks
resulted in a baryon structure that gave – within SU(3) sym-
metry – the octet and the decuplet containing the famous
Ω−.

Isgur made many important contributions to the devel-
opment of the quark model. With Karl he developed the
idea that gluon-mediated interactions between quarks bind
them into hadrons and constructed a quark model of baryons
[2752]. This was a non-relativistic model, hardly justifiable.
With Capstick he relativized the model [771], but surpris-
ingly, the pattern of predicted resonances remained rather
similar. Isgur always defended the basic principles: hadrons
have to be understood in terms of constituent quarks bound
in a confining potential and additionally interacting via the
exchange of “effective” gluons.

Nearly 20 years later, Meißner ended his contribution
[2753] to the N∗2019 conference held in Bonn, Germany, by
stating: “Forget the quark model”. We need to ask: What has
happened in these two decades? What did we know before?
What have we learned?

Mapping the excitation spectrum of the nucleon (protons
and neutrons) and understanding the effective degrees of
freedom are important and most challenging tasks of hadron
physics. A quantitative description of the spectrum and prop-
erties of excited nucleons must eventually involve solving
QCD for a complex strongly interacting multi-particle sys-
tem. The experimental N∗ program currently focuses on the
search for new excited states in the mass range just below
and above 2 GeV using energy-tagged photon beams in the
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few GeV range, and on the study of resonances, their prop-
erties, and their internal structure, e.g. in cascade decays and
in meson electro-production.

9.2.2 N∗’s: how?

In the previous contribution by Capstick and Crede 9.1 we
have seen the complexity of the expected spectrum of nucleon
and Δ excitations. Even in the lowest excitation mode with
lρ = 1 or lλ = 1, we expect five N∗ and two Δ∗ states; they
are all well established. But already in the second excitation
mode, the quark model predicts 13 N∗ and 8 Δ∗ states The
resonances have quantum numbers J P = 1/2+, . . . , 7/2+
and isospin I = 1/2 or 3/2, respectively. All these 21 res-
onances are expected to fall into a mass range of, let’s say,
1600–2100 MeV. This complexity of the light-quark (u and
d quarks) baryon excitation spectrum complicates the exper-
imental search for individual states, especially since, as a
result of the strong interaction, these states are broad, the
typical width being 150–300 MeV. They overlap, interfere,
and often several resonances show up in the same partial
wave. Grube in his contribution 8.3 has convincingly demon-
strated the difficulties of extracting the existence and proper-
ties of mesonic resonances from ππ scattering experiments.
With nucleon resonances, additional complications due to
the nucleon spin emerge: in πN elastic scattering there are
two complex amplitudes to be determined, for spin-flip and
spin-non-flip scattering.

Pion scattering off nucleons was mostly performed in the
pre-QCD era. Nearly all excited nucleon states listed in the
Review of Particle Physics (RPP) prior to 2012 have been
observed in elastic pion scattering πN → πN . However
there are important limitations in the sensitivity to the higher-
mass nucleon states. These may have very small ΓπN decay
widths, and their identification becomes exceedingly diffi-
cult in elastic scattering. Three groups extracted the real and
imaginary parts of the πN partial-wave amplitude from the
data [2754–2756]. Their results are still used as constraints
in all modern analyses of photo-induced reactions.

Figure 216a, b shows the real and imaginary part of the
S11 amplitude for πN scattering. The imaginary part peaks
at 1500 MeV and just below 1700 MeV indicating the pres-
ence of two resonances, N (1535)1/2− and N (1650)1/2−.
These are known since long and established. Above, there is
no clearly visible sign for any additional resonance. Higher-
mass resonances – if they exist – must have very small ΓπN

decay widths.
Estimates for alternative decay channels have been made

in quark model calculations [2762]. This has led to major
experimental efforts at Jefferson Lab, ELSA and MAMI
to determine differential cross sections and (double) polar-
ization observables for a variety of meson photoproduction

channels. Spring-8 at Sayo in Japan and the ESRF in Greno-
ble, France, made further contributions to the field.

Figure 216c, d shows an example. In Fig. 216c, the
total cross section for η photoproduction off protons and
off neutrons is shown [2757,2758]. They are dominated
by N (1535)1/2− → Nη interfering with N (1650)1/2−.
The opening of important channels is indicated by verti-
cal lines. At the η′ threshold, the intensity suddenly drops:
significant intensity goes into the Nη′ channel. This is a
strong argument in favor of a resonance at or close to the
pη′ threshold. It also clearly demonstrates the advantage
of investigating different final states and production mecha-
nisms. In contrast to the πN -S11 scattering amplitude, here,
already in the total η-photoproduction cross section, a struc-
ture relating to N (1895)1/2− becomes visible. Furthermore,
in Fig. 216d, the result of a fit with Legendre moments to
the so-called Σ polarization observable for γ p → η p is
compared to two energy-dependent solutions of the BnGa
coupled-channel analysis. Plotted is the coefficient (a4)

Σ
4

of the Legendre expansion which receives (among others)
a contribution from the interference of the S-wave with the
G-wave. Data from different experiments are given with their
error bars. The curves represent BnGa fits with (solid curve)
and without (dashed curve) inclusion of data on γ p→ η′ p.
The N (2190)7/2− (G-wave) was included in both fits. From
1750 MeV to the pη′-threshold the coefficient is approxi-
mately constant, then at the pη′-threshold, the fit result shows
an almost linear rise towards positive values. This change
of the coefficient at about 1.9 GeV indicates the presence
of a cusp. The strong cusp is an effect of the pη′ threshold
[Eγ = 1447 MeV (W = 1896 MeV)], the Nη′ amplitude must
be strongly rising above threshold. Indeed, the inclusion of
the full data set on γ p → pη′ (cross sections, polarization
observables) into the BnGa data base had already confirmed
the existence of a new N (1895)1/2− resonance with a sig-
nificant coupling to pη and pη′ [2763,2764], first observed
in [2765].

This resonance was not seen in classical analyses of πN
elastic scattering data.91 The example shows the impor-
tance of inelastic channels and of coupled-channel analyses.
Thresholds can be identified by the missing intensity in other
channels, cusp effects can show up, all these effects need to
be considered and finally contribute to find the correct solu-
tion. High-precision and high-statistics data are required as
well as a large body of different polarization data.

9.2.3 Photoproduction of exclusive final states

In the photoproduction of a single pseudoscalar meson like
γ p → η p, not only the proton has two spin states but also

91 Höhler and Manley had claimed a similar state that had been com-
bined with Cutkovsky’s result to N (2090).
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Fig. 216 a, b Real and imaginary part of the S11 πN scattering
amplitude. Resonances in this partial wave have quantum numbers
J P = 1/2−. Clearly seen are N (1535)1/2− and N (1650)1/2−. There
is no convincing evidence for any resonance above 1700 MeV. Data
points are from [2754], errors are estimates, the curve represents a
recent Bonn–Gatchina (BnGa) fit. c Total cross sections for γ p→ η p
and γ n → η n. Important thresholds are marked by lines. The inset

shows the η′ threshold region for η-photoproduction off the proton
(picture adapted from [2757,2758]). d The Legendre coefficient of the
polarization observable Σ (a4)

Σ
4 exhibits a cusp at the η′ threshold

[2759]. The data stems from GRAAL (black), CBELSA/TAPS (blue)
and CLAS (green) Picture taken from [2759]. c, d See publications
[2757,2758,2760] for references to the data

Fig. 217 The double polarization observable E as a function of cos θη
in the cms for selected energy bins, black: CBELSA/TAPS [2760],
blue: CLAS data [2761] (due to different binning, the energies differ by
up to half of the bin size). Colored curves: Predictions from different
PWAs (see publication for references), black: BnGa-fit including the
data shown here and further new polarization data. Figure adapted from
[2760]

the photon has two possible spin orientations. In electropro-
duction, discussed by Burkert in the subsequent Sect. 9.3,
the virtual photon can also be polarized longitudinally. But
even for experiments with real photons, there are four com-
plex amplitudes to be determined. There is a large number of
observables: the target nucleon can be polarized longitudi-
nally, i.e. in beam direction, or transversely, the photon can
carry linear or circular polarization. The final-state nucleon
can carry polarization along its flight direction or perpendic-
ular to the scattering plane. There is an intense discussion in
the literature on how many independent measurements have
to be performed to determine the four complex amplitudes,

see Ref. [2713]. In practice, energy-independent analyses in
bins of the invariant mass were only done for the very low
energy region [2769,2770] or with additional assumptions
(see [2771–2773] and references therein).

In most cases, energy-dependent analyses have been per-
formed to extract the information hidden in the photopro-
duction data. These analyses were pioneered by the Giessen
group who made the first coupled-channel analysis of pion
and photo-induced reactions to extract properties of nucleon
resonances [2774,2775]. Later, the polarization data, in par-
ticular those with polarized photon beam and polarized tar-
get nucleons, proved to be decisive to reduce ambiguities
of the solutions. The double-polarization observable E is
one of the beam-target-observables; it requires a circularly
polarized photon beam and a longitudinally polarized target.
Examples of E for selected W-bins are shown in Fig. 217
for γ p → pη [2760]. The data are compared to the pre-
dictions of different PWA solutions (colored curves). The
curves scatter over a wide range indicating the high sensi-
tivity of the polarization observable on differences in the
contributing amplitudes. A new BnGa fit returned masses
and widths of N∗-resonances and their Nη-branching frac-
tions [2760], several of them unknown before. Interestingly a
N (1650)1/2− → Nη-branching fraction of 0.33±0.04 was
found supporting the large values reported by BnGa [2765]
and the A2 collaborations [2758] while in the RPP’2010, a
value of only 0.023±0.022 was given. Recently, also within
the Jülich–Bonn dynamical coupled channel approach, a Nη-
residue for N (1650)1/2− was found, larger by almost a fac-
tor of two compared to earlier analyses, after inclusion of the
new polarization data [2776]. In contrast, the Gießen group
[2777] and Hunt and Manley [2778] find very small values
for the N (1650)1/2− → Nη branching ratio. Historically,
the large N (1535)1/2− → Nη branching fraction and the
small one for N (1650)1/2− → Nη has played a significant
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role in the development of the quark model [764], of theories
based on coupled-channel chiral effective dynamics [2741]
and led to several interesting interpretations of the low mass
1/2−-resonances (for references see [2760]). The old values
from 2010 were obtained without the constraints provided
by the new high quality (double) polarization data covering
almost the complete solid angle. The impact of polarization
observables on the convergence of different PWA-solutions
was e.g. also very clearly demonstrated in a common study
of pion-photoproduction [2779].

In hyperon decays, the polarization of the Λ or Σ◦
can be determined by analyzing the parity violating decay
Λ→ pπ−. Thus the spin orientation of the final state baryon
(recoil polarization) can be determined. Kaon-hyperon pro-
duction using a spin-polarized photon beam provides access
to the beam-, recoil-, target-92 and to beam-recoil polariza-
tion observables. The data had a significant impact on the
determination of the resonance amplitudes in the mass range
above 1.7 GeV. Precision cross section and polarization data,
examples of which are shown in Fig. 218, span the K+Λ
and K+Σ invariant mass range from threshold to 2.9 GeV,
hence covering the interesting domain where new states could
be discovered. Clear resonance-like structures at 1.7 GeV
and 1.9 GeV are seen in the K+Λ-differential cross section
that are particularly prominent and well-separated from other
structures at backward angles. At more forward angles (not
shown) t-channel processes become prominent and domi-
nate the cross section. The broad enhancement at 2.2 GeV
may also indicate resonant behavior although it is less visi-
ble at more central angles with larger background contribu-
tions. Similar resonance-like structures are observed in the
KΣ channel (Fig. 218b). Examples for different polarization
observables determined for the reaction γ p → K+Λ are
shown in the lower row of Fig. 218 for selected bins in the
K+-scattering angle in the γ p center-of-mass frame. They
are compared to predictions from ANL-Osaka, BnGa-2014
and to a refit from the BnGa-PWA. The large differences
between the curves demonstrate the sensitivity of the data
to the underlying dynamics. The KΛ channel is somewhat
easier to understand than the KΣ channel, as the iso-scalar
nature of the Λ selects isospin-1/2 states to contribute to
the KΛ final state, while both isospin-1/2 and isospin-3/2
states can contribute to the KΣ final state. Of course, here, as
well as for other final states, only a full partial wave analysis
can determine the underlying resonances, their masses and
spin-parity. Polarization data are required to disentangle the
different amplitudes.

Energy-dependent analyses have been performed e.g. at
Gießen [2774,2775,2780], at GWU [2781] as SAID, in

92 The target polarization observable can also be accessed by perform-
ing a double-polarization experiment using a linearly polarized photon
beam and measuring the baryon polarization in the final state.

Mainz as MAID [2758], at Kent [2778], at JLab [2782], by
the BnGa [2765,2783], the Jülich–Bonn (JüBo) [2776], the
ANL-Osaka [2784] and by other groups. A short descrip-
tion of the different methods can be found in Ref. [2713].
Here we emphasize that the energy-dependence of a partial-
wave amplitude for one particular channel is influenced by
other reaction channels due to unitarity constraints. To fully
describe the energy-dependence of a production amplitude,
all (or at least the most significant) reaction channels must be
included in a coupled-channel approach. Many different final
states have been measured with high precision off protons and
partly also off neutrons (bound in a deuteron with a quasi-free
proton in the final state). Polarization data for meson photo-
production off neutrons are, however, still scarce. A fairly
complete list of references can be found in [2713]. Most data
are now included in single- and in multi-channel analyses.93

The photoproduction data had a strong impact on the dis-
covery of several new baryon states or provided new evi-
dence for candidate states that had been observed previously
but lacked confirmation (e.g. [2746,2758,2765]). Many new
decay modes were discovered, in particular in the photopro-
duction of 2π0 and π0η, [2783,2785,2786] and references
therein. At the NSTAR’2000 workshop, 12 N∗ and 8 Δ∗
were considered to be established (4*,3*) by the Particle
Data Group.94 These numbers increased to 19 N∗ and 10 Δ∗
two decades later. Table 38 lists the new resonances below
2300 MeV and those that had not a four-star status in 2010.
Resonances which had four stars in 2010 are well established
and kept their status. These are:

N (1440)1/2+, N (1520)3/2−, N (1535)1/2−, N (1650)1/2−,
N (1675)5/2−, N (1680)5/2+, N (1720)3/2+, N (2190)7/2−,
N (2220)9/2+, N (2250)9/2−,Δ(1620)1/2−,Δ(1700)3/2−,
Δ(1905)5/2+,Δ(1910)1/2+,Δ(1950)7/2+.

A few resonances were removed from the RPP tables. They
often had wide-spread mass values, and the old results were
redistributed according to their masses and the new find-
ings. Even more impressive is the number of reported decay
modes. Our knowledge on N∗ and Δ∗ decays has at least
been doubled.

9.2.4 Regge trajectories

Like mesons, baryons fall onto linear Regge trajecto-
ries when their squared masses are plotted as a func-
tion of their total spin J or their intrinsic orbital angular

93 A list of data on photoproduction reactions including polarization
and double-polarization observables can be found at the BnGa web
page: https://pwa.hiskp.uni-bonn.de/.
94 In PDG notation: 4* Existence certain, 3* almost certain, 2* evidence
fair, 1* poor
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Fig. 218 Invariant mass dependence of the γ p → K+Λ [2766] (a)
and γ p→ K+Σ [2767] (b) differential cross sections for selected bins
in the polar angle. c Examples for polarization observables determined
for γ p → K+Λ (only selected bins shown) [2768]. Curves: PWA-

predictions from ANL-Osaka (red) and BnGa 2014 (green). Blue: BnGa
2014-refit including the data shown. a–c For references to the data and
the PWAs see [2766–2768], Picture adapted from [2766–2768]

momentum L . In the case of Δ∗, the leading trajectory
consists of Δ(1232)3/2+, Δ(1950)7/2+, Δ(2420)11/2+,
Δ(2950)15/2+. In the quark model, these have intrinsic
orbital angular momenta L = 0, 2, 4, 6. Figure 219 shows
the squared Δ∗-masses as a function of L + Nradial, where
Nradial indicates the intrinsic radial excitation. The reso-
nances Δ(1910)1/2+, Δ(1920)3/2+, Δ(1905)5/2+ have
intrinsic L = 2 like Δ(1950)7/2+, and fit onto the tra-
jectory. Also, there are three positive-parity resonances that
likely have L = 4 with the 5/2+ state missing. The two
L = 1 resonances Δ(1620)1/2− and Δ(1700)3/2− also
have masses close to the linear trajectory. Further, there are
resonances in which the ρ or λ oscillator is excited radially
to nρ = 1 or nλ = 1 (Nradial = 1). Quark models with a
harmonic oscillator as confining potential predict that reso-
nances belong to shells. Radial excitations are predicted in
the shell L + 2 Nradial. This is not what we find experimen-
tally: the masses are approximately proportional to L+Nradial

if Nradial = 1 is assigned to Δ(1600)3/2+, the first radial
excitation of Δ(1232)3/2+, as well as to the Δ(1900)1/2−,
Δ(1940)3/2−, Δ(1930)5/2− triplet, to the two members of
a partly unseen quartetΔ(2350)5/2− andΔ(2400)9/2−, and
to Δ(2750)13/2− (with L = 5, S = 3/2 and Nradial = 1).

Clearly, this is a very simplified picture of the Δ∗ spec-
trum. The picture is that of the non-relativistic quark model –
nobody understands why it works.95 Resonances – assumed
to have the same mass if spin orbit-coupling is neglected–

95 In addition, we neglect the possible configuration mixing of states
in our discussion.

Table 38 Baryon resonances above the Δ(1232) and below 2300 MeV
given in the RPP’2022 in comparison to the resonances considered in
the RPP’2010. Resonances with 4∗ in 2010 are not listed here. See text
for further discussion

RPP RPP RPP RPP
2010 2022 2010 2022

N (1700)3/2− *** *** Δ(1600)3/2+ *** ****

N (1710)1/2+ *** **** Δ(1750)1/2+ * *

N (1860)5/2+ – ** Δ(1900)1/2− ** ***

N (1875)3/2− – *** Δ(1920)3/2+ *** ***

N (1880)1/2+ – *** Δ(1930)5/2− *** ***

N (1895)1/2− – **** Δ(1940)3/2− * **

N (1900)3/2+ ** **** Δ(2000)5/2+ ** **

N (1990)7/2+ ** ** Δ(2150)1/2− * *

N (2000)5/2+ ** ** Δ(2200)7/2− * ***

N (2040)3/2+ – *

N (2060)5/2− – *** N(2080)3/2− ** –

N (2100)1/2+ * *** N(2090)1/2− * –

N (2120)3/2− – *** N(2200)5/2− ** –

have indeed somewhat different masses. But the gross fea-
tures of the spectrum of Δ∗ resonances are well reproduced.

The nucleon spectrum is more complicated. First, there
are more resonances, and second, there are two-quark con-
figurations which are antisymmetric in spin and flavor.96 Due
to instanton induced interactions, the relativistic quark model

96 These two-quark configurations are often called good diquarks. They
may carry orbital-angular momenta, these are not frozen diquarks.
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Fig. 219 Regge-like trajectory of Δ∗-resonances. Taken from [2789]

[2730], expects a lowering of states with the respective sym-
metry. Indeed baryons with two-quark configurations which
are antisymmetric in spin and flavor (good diquarks) seem
to have lower masses than those having bad diquarks only.
Attempts to include good-diquark effects were rather suc-
cessful [2716,2787]. The χ2 for the model-data comparison
was twice better for the 2-parameter fit than for quark models
[2788] when the same mass-uncertainties are assumed.

9.2.5 Hyperons

Nearly no new data on K̄ N scattering have become available
for several decades except some new data from BNL at very
low energy (see Ref. [2790] and references therein). The reac-
tion γ p→ K+Σπ was studied at JLab and helped to under-
stand the low-energy region [2791]. However, four groups
have re-analyzed K− p reactions using extensive collections
of the old data. The new analysis progress was pioneered
by the Kent group which performed a comprehensive partial
wave analysis [2792,2793]. Energy-independent amplitudes
were constructed by starting from an energy-dependent fit
and by freezing or releasing sets of amplitudes. The result-
ing amplitudes were then fit in a coupled-channel approach.
The JPAC group performed coupled-channel fits to the par-
tial waves of the Kent group. The fit described the Kent
partial waves well while significant discrepancies showed
up between data and the observables calculated from their
partial-wave amplitudes [2794]. The ANL-Osaka group used
the data set collected by the Kent group and derived energy-
dependent amplitudes based on a phenomenological SU(3)
Lagrangian. Two models were presented which agreed for the
leading contributions but which showed strong deviations for
weaker contributions [2795,2796]. The BnGa group added
further data and tested systematically the inclusion of addi-
tional states with any set of quantum numbers. Only small
improvements in the fit were found [2797,2798].

The new studies of old data did not change the situa-
tion significantly. Some new decay modes were reported,
some new but faint signals were found, some were confirmed
by one group and missed by others. Several bumps were

removed from the RPP Tables (for details see [2799]). As
a result, our picture of hyperons (with strangeness S = −1)
remains unclear. Not even all states expected in the firstΛ and
Σ excitation shell have been seen. In Table 39 all candidates
are included.

Very little is known about excited Cascade baryons. A few
structures in invariant mass spectra were observed, nearly no
spin-parities have been determined. The hope is that at FAIR,
JLab and J-PARC (see Sect. 14) new Ξ ’s and Ω’s will be
observed and their quantum numbers will be determined.

9.2.6 QCD expectations

The spectrum of excited nucleons has been calculated in dif-
ferent approaches. We list a few here: QCD on a lattice has
been used to calculate the spectrum of light-quark baryons
including hybrid states (see Sect. 4.5 and [528]). In the
Dyson–Schwinger/Bethe–Salpeter approach (see Sect. 5.2
and [2733]) the covariant three-body Fadeev-equation is
solved in a rainbow-ladder approximation. The spectra of
baryon resonances have been calculated for J = 1/2± and
J = 3/2±, reaching for the N∗- and Δ∗-resonances to
masses up to about 2000 MeV. AdS/QCD (see Sect. 5.4 and
[1003]) predicts a spectrum of N∗ and Δ∗ that is propor-
tional to L + Nradial. Using chiral unitary approaches for the
meson–baryon interactions, certain baryon resonances can be
generated dynamically (see Sect. 6.2). Various quark models
have been developed that treat baryons as bound states of
three quarks with constituent masses, a confinement poten-
tial and residual quark–quark interactions. The models are
discussed in Sect. 9.1. At present, they are still best suited
to discuss what has been learned from recent results in the
spectroscopy of light baryons.

9.2.7 What did we learn within the quark model?

SU(6)⊗O(3) classification
Table 39 lists the observed N∗-, Δ∗-, Λ∗- and Σ∗-baryons
in a SU(6)⊗O(3) classification. This classification assumes
non-relativistic constituent quarks. It has been a miracle since
the early times of the quark model that this scheme works
so well. But baryon resonances often have a leading compo-
nent in the wave function corresponding to the SU(6)⊗O(3)
classification even in relativistic calculations.

The first excitation shell (N = 1) is fairly complete.
As expected, there are five N∗’s and two Δ∗’s with nega-
tive parity. Of the Λ and Σ octet states with negative par-
ity, only the J P = 3/2− states are missing.97 The two
states Λ(1800)1/2− and Σ(1750)1/2− are interpreted as

97 The N (1700)3/2− is wider than its spin partners and more difficult to
identify. This may also be the reason for the absence of the J P = 3/2−
Λ and Σ states.
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Fig. 220 Left: γ p → pπ0π0-Dalitz plot for a selected Eγ -bin of
1900–2100 MeV (CBELSA/TAPS) [2800], Middle: Cascade decays of
resonances via an immediate state. Right: Classical orbits of nucleon
excitations with L = 2 (upper row) and L = 1 (middle row). Taken

from [2786]. The first two pictures in the upper row show excitations
of the ρ and λ oscillators, in the third picture both, ρ and λ are excited.
When both oscillators are excited, de-excitation leads to an excited
intermediate state (middle row)

states with intrinsic spin 3/2: they seem to be spin part-
ners of Λ(1830)5/2− and Σ(1775)5/2−. The doublet of
negative-parity decuplet Σ states is not uniquely identi-
fied. Expected is this doublet at about 1750 MeV, and in the
(56,1−3 )-configuration a second doublet at about 2050 MeV
and, finally, a triplet at about the same mass. The analysis
found (poor) evidence for two doublets, marked a in Table 39.
The singlet states Λ(1405)1/2− and Λ(1520)3/2− deserve
a more detailed discussion.

At higher masses, some choices are a bit arbitrary:
Because of its mass, N (1900)3/2+ belongs to the second
excitation shell. It may have intrinsic quark spin 1/2 or 3/2,
both with L = 2. Further, there should be a 3/2+ radially
excited state with L = 0. These three states can mix. Only
one of the states is clearly identified. In any case, quark mod-
els predict three resonances with J P = 3/2+ in this mass
range while only one is found. Also missing is a doublet of
states with L = 1 belonging to the 20plet in SU(6)⊗O(3).98

The production of this doublet is expected to be strongly
suppressed for reasons to be discussed below.

Only few hyperons are known that can be assigned to
the second excitation shell. The interpretation of some Λ

resonances as SU(3) singlet configuration is plausible but
not at all compelling.

Missing resonances
In the spectrum of N∗ and Δ∗, the first excitation shell is
complete, in the second shell, 21 states are expected (two
of them likely not observable in πN -elastic scattering or in
single/double meson photoproduction), 16 are seen, three are
missing. To a large extend, the missing-resonance problem is
solved for N∗ and Δ∗: there are no frozen diquarks. Admit-

98 The RPP lists three more N∗/Δ∗-resonances: N (2040)3/2+,
Δ(2150)1/2−, which need confirmation and N (2100)1/2+ which we
assign to the 4th shell.

tedly, five of the resonances are not yet “established”, i.e.
have not (yet?) a 3* or 4* status.

In the third shell, only few resonances are known, but the
number of expected resonances is quite large and the analysis
challenging: 45 N∗ and Δ∗, likely with widths often exceed-
ing 300 MeV, are expected to populate an about 400 MeV
wide mass range.

Three-quark dynamics in cascade decays
The CBELSA/TAPS collaboration studied cascade decays of
high mass resonances via an intermediate resonance down
to the ground state nucleon. The analyses were based on a
large data base of photoproduction data including final states
such as γ p→ pπ0π0 and pπ0η (see [2783,2785] and Refs.
therein). The Dalitz plot of Fig. 220, shows very clearly band-
like structures due to the occurrence of baryon resonances in
the intermediate state. It was observed that the positive parity
N∗- and Δ∗-resonances at a mass of about 1900 MeV show
a very different decay pattern. The four N∗-resonances:

N (1880)1/2+, N (1900)3/2+, N (2000)5/2+, N (1990)7/2+,

decay with an average branching fraction of (34± 6)% into
Nπ and Δπ and with a branching fraction of (21±5)% into
the orbitally excited states N (1520)3/2−π , N (1535)1/2−π ,
and Nσ . The four Δ∗-states:

Δ(1910)1/2+,Δ(1920)3/2+,Δ(1905)5/2+,Δ(1950)7/2+,

have an average decay branching fraction into Nπ/Δπ of
(44 ± 7)% while their branching fraction into the excited
states mentioned above is almost negligible, only (5 ± 2)%
[2783]. At the first sight, this is very surprising.

The difference can be traced to the different wave func-
tions. The spin and the flavor wave functions of the four Δ∗-
states are both symmetric with respect to the exchange of any
two quarks, the spatial wave function needs to be symmet-
ric as well. This means that – having a three-quark-picture
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Table 39 The spectrum of N , Δ, Λ and Σ excitations. The first row
shows the quantum numbers of the SU(6)⊗O(3) symmetry group. D
is the dimensionality of the SU(6) group, L the total internal quark
orbital angular momentum, P the parity, N a shell index, S the total
quark spin, J the total angular momentum. The assignment of particles
to SU(6)⊗O(3) is an educated guess. In the first and second excitation
band, all expected states are listed, missing resonances are indicated
by a − sign. The third band lists only bands for which at least one
candidate exists. The states with an index are special: above 1700 MeV,
one pair of Σ states is expected at about 1750 to 1800 MeV, two pairs at
about 2000 to 2050 MeV. Two pairs markeda are found only. The pairs
are shown with the three possible assignments. Likewise, N (2060) and
N (2190) markedb could form a spin-doublet or be members of a spin-
quartet. Likely, the observed pairs of states are mixtures of these allowed
configurations (Adapted from [2799])

1. shell 2. shell 3. shell
J P 1/2− – 5/2− 1/2+ − 7/2+ 1/2− − 9/2−
Masses 1500–1750 1700–2100 1900–2300

N 5: 2 2 1 13: 4 5 3 1 30: 7 9 8 5 1
Δ 2: 1 1 – 8: 2 3 2 1 15: 3 5 4 2 1

in mind – that either the ρ- or the λ-oscillator is excited to
! = 2, the other one is not excited. (There is a mixture of
the two possibilities !ρ = 2, !λ = 0 or !λ = 2, !ρ = 0).
If this state decays, the orbital angular momentum is carried
away and the decay products are found preferentially in their
ground state.

Fig. 221 N∗- (left) and Δ∗-resonances (right) above Δ(1232) for dif-
ferent spin and parities J p . For each resonance, the real part of the pole
position Re(MR) is given together with a box of length ±Im(MR),
using the PDG estimates. 2 · Im(MR) corresponds to the total width of
the resonance. RPP star ratings are also indicated. If no pole positions
are given in the RPP (above the line), the RPP Breit–Wigner estimates
for masses and widths are used instead. This is indicated by dashed
resonance-mass lines and dashed lines surrounding the boxes. If no
RPP-estimates are given, the values above the line have been averaged
and the states are shown as gray boxes. This may indicate one measure-
ment above the line only. Δ(1750)1/2+ is not included, as there is no
RPP-value given above the line

The four N∗-states have a spatial wave function with
mixed symmetry. Thus the spatial wave function has one
part which is mixed-symmetric and one part which is mixed
anti-symmetric. In the latter one, both oscillators are excited
simultaneously (!ρ = !λ = 1). If this state decays, one of
the excitations remains in the decay product as illustrated in
Fig. 220. A similar argument has been used by Hey and Kelly
[2801] to explain why the 20’plet in the second excitation
shell of Fig. 39 cannot be formed in a πN scattering exper-
iment. For the 20’plet the spacial wave function is entirely
antisymmetric, both oscillators are excited simultaneously,
and there is no other component in the wave function. A
single-step excitation is suppressed.

Parity doublets?
The spontaneous breaking of the chiral symmetry leads to the
large mass gap observed between chiral partners: the masses
of the ρ(770) meson with spin-parity J P = 1− and its chi-
ral partner a1(1260) with J P = 1+ differ by about 500 MeV,
those of the J P = 1/2+ nucleon and N (1535)1/2− by about
600 MeV. In contrast to quark-models expectations and lat-
tice QCD calculations [528] higher-mass baryons are often
observed in parity doublets (see Fig. 221), in pairs of reso-
nances having about the same mass, the same total spin J
and opposite parities.

This observation and similar observations in meson spec-
trum has led to the suggestion that chiral symmetry might be
effectively restored in highly excited hadrons [2744,2802].
Then, all high-mass resonances should have a parity partner.
This is a testable prediction.
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In the mass region of 1900 MeV a quartet of well known
positive parity Δ∗ states exists, consisting of

Δ(1910)1/2+,Δ(1920)3/2+,Δ(1905)5/2+,Δ(1950)7/2+.

Figure 221 shows the parity partners of the first three states:

Δ(1900)1/2−,Δ(1940)3/2−,Δ(1930)5/2−.

However, the four-star Δ(1950)7/2+ has no close-by
Δ(xxx)7/2−-state that could serve as parity partner. Where
is the closest Δ∗ with J P = 7/2− ? Figure 222 shows a reso-
nance scan over the mass region of interest [2746]. There
is clear evidence for Δ(2200)7/2− (which was upgraded
from 1∗ to 3∗ based on this result). But its mass difference
to Δ(1950)7/2+ is too large. These two states are no par-
ity partners! Within the quark model and the SU(6)⊗O(3)-
systematics, the four positive-parity Δ∗’s have L = 2, S =
3/2 that couple to J P = 1/2+,· · · , 7/2+. The natural assign-
ment for the three negative-parity Δ∗’s is that they form a
triplet with L = 1 and S = 3/2. Then, they must have one
unit of radial excitation. The four positive-parity Δ-states
belong to the 2h̄ω shell and the negative-parity states to
the 3h̄ω shell. With masses considered to be proportional
to L + Nradial, these seven states are expected to have about
the same mass. Δ(2200)7/2− has L = 3, S = 1/2 and
its expected mass is higher. We note that Δ(2400)9/2− has
L = 3, S = 3/2, and we assume Nradial = 1 for this state (as
well as for Δ(2750)13/2−, see Fig. 219).

9.2.8 Dynamically generated resonances

N∗’s and Δ∗’s
Apart from Λ(1405)1/2− that will be discussed below,
the first dynamically generated resonance was the negative-
parity N (1535)1/2− [2741]. At the 1995 International Con-
ference on the Structure of Baryons, Santa Fe, New Mexico,
there was a heated discussion between Weise, defending his
new approach, and Isgur who argued that N (1535)1/2− is
well understood within the quark model and no new approach
is needed. For some time, there was even the idea that
there could be two overlapping states but this is excluded
by data. Later, in Refs. [2803,2804], N (1535)1/2− and
N (1650)1/2−, were both shown to be generated dynami-
cally. However,Δ(1620)1/2− was not.99 An important ques-
tion remains: Are (qqq)-resonance poles and dynamically
generated poles different descriptions of the same object or
do they present different (orthogonal) states?

99 It should be mentioned that not only the SU(6)⊗O(3)-systematics in
the spectrum seems to indicate a 3-quark-nature of N (1535)1/2− and
N (1650)1/2− but also the electroproduction results discussed in the
following Sect. 9.3 indicate that N (1535)1/2− is a 3-quark state with
little meson–baryon contribution only (Q2 dependence of the transition
form factor A1/2).

Fig. 222 Left: The new polarization observables T and E shown for
selected mass bins (see [2746] for Refs. to the data). The fit curves
represent the best fits with (solid) and without (dashed) inclusion of
Δ(2200)7/2−. Right: The increase in pseudo-χ2 of the fit to a large body
of pion- and photo-produced reactions when the mass of Δ(1950)7/2+
(solid points) or Δ(2200)7/2− (open circles) is scanned. The scale on
the left (right) abscissa refers to the 7/2+ (7/2−) partial wave. The
curves are to guide the eye. Adapted/taken from [2746]

The Λ(1405)1/2−
The Λ(1405)1/2− mass is very close to the N K̄ threshold.
Kaiser, Waas and Weise [2805] proved that the resonance can
be generated dynamically from N K̄ −Σπ coupled-channel
dynamics. Oller and Meissner [2806] studied the S-wave N K̄
interactions in a relativistic chiral unitary approach based
on a chiral Lagrangian obtained from the interaction of the
octet of pseudoscalar mesons and the ground state baryon
octet and found two isoscalar resonances in theΛ(1405)1/2−
mass region and one isovector state. In a subsequent paper
[2807], Jido et al. studied the the effects of SU(3) breaking
on the results in detail. These two papers had an immense
impact on the further development. It is the only result in
light-baryon spectroscopy that is in clear contradiction to the
quark model. It introduces a new state Λ(1380)1/2−, that
has no role in a quark model, it enforces an interpretation of
Λ(1405)1/2− as mainly SU(3) octet resonance, and it inter-
prets Λ(1670)1/2− as high-mass partner of Λ(1405)1/2−.
The Λ(1405)1/2− and Λ(1670)1/2− would then be the
strange partners of the N (1535)1/2− and the N (1650)1/2−.
In quark models, Λ(1405) is a mainly SU(3) singlet reso-
nance and the octet states Λ(1670)1/2− and Λ(1800)1/2−
are the strange partners of N (1535)1/2− and N (1650)1/2−
(see Table 39). In the quark-model interpretation, the hyperon
states Λ(1405)1/2− and Λ(1670)1/2− have close-by J P =
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3/2− partners (the J P = 3/2−-partner of Λ(1800)1/2− is
missing but there isΛ(1830)5/2−). The masses of the mainly
octet states are about 130 MeV above their non-strange part-
ners.

This conflict initiated an attempt to fit (nearly) all exist-
ing data relevant for Λ(1405)1/2− in the BnGa approach
[2808]. The data could be fit with one single resonance
in the Λ(1405)1/2− region but were also compatible, with
a slightly worsened χ2, with a description using two res-
onances with properties as obtained in the chiral unitary
approach.

9.2.9 Outlook

There is not yet a unified picture of baryons. Regge-like tra-
jectories (M2 ∝ L+Nradial) are best described by AdS/QCD.
Unitary effective field theories describe consistently meson–
baryon interactions, and some resonances can be generated
dynamically from their interaction. The quark model is use-
ful to understand cascade decays of highly excited states
and is indispensable to discuss the full spectrum including
missing resonances. The symmetry of quark pairs, symmet-
ric or anti-symmetric with respect to their exchange, has
a significant impact on baryon masses. This effect could
be due to an effective gluon exchange. More likely seems
an interpretation by quark and gluon condensates, e.g. by
instanton-induced interactions. Based on the new high qual-
ity (polarized) photoproduction data, new baryon resonances
were discovered and our knowledge of properties of exist-
ing resonances has increased considerably. Yet, our under-
standing is still unsatisfactory mirroring the complexity of
QCD in the non-perturbative regime. New results from lat-
tice QCD are eagerly awaited and new experiments are
needed to understand the spectrum and the properties of
baryon resonances in further detail. Those include further
precise photoproduction experiments measuring polarization
observables not only off the proton but also off the neutron.
Multi-meson final states have to be studied further. Strange
baryon resonances need to be addressed. Other production
processes such as electroproduction, p̄ p-annihilation, exper-
iments with π - or K -beams and baryon resonances pro-
duced in J/ψ or ψ ′-decays will also contribute to improve
our understanding of the bound states of the strong interac-
tion.

9.3 Nucleon resonances and transition form factors

Volker D. Burkert
Meson photoproduction has become an essential tool in

the search for new excited light-quark baryon states. As dis-
cussed in the previous section, many new excited states have
been discovered thanks to high precision photoproduction
data in different final states [2771], and are now included

in recent editions of the Review of Particle Physics (RPP)
[616]. The exploration of the internal structure of excited
states and the effective degrees of freedom contributing to
s-channel resonance excitation requires the use of electron
beams, which is the subject of this contribution, where the
virtuality (Q2) of the exchanged photon can be varied to
pierce through the peripheral meson cloud and probe the
quark core and its spatial structure. Electroproduction can
thus say something about if a resonance is generated through
short distance photon interaction with the small quark core,
or through interaction with a more extended hadronic sys-
tem.

The experimental exploration of resonance transition form
factors reaches over 60 years with many review articles
describing this history. Here we refer to a few recent ones
[2809–2812]. A review of recent electroproduction experi-
ments in hadron physics and their interpretation within mod-
ern approaches of strong interaction physics can be found in
Ref. [2813].

Electroproduction of final states with pseudoscalar mesons
(e.g. Nπ , pη, KΛ) have been employed at Jefferson Lab-
oratory mostly with the CEBAF Large Acceptance Spec-
trometer (CLAS) operating at an instantaneous luminosity
of 1034 sec−1 cm−2. In Hall A and Hall C, pairs of indi-
vidual well-shielded focusing magnetic spectrometers are
employed with more specialized aims and limited accep-
tance, but operating at much higher luminosity. This exper-
imental program led to new insights into the scale depen-
dence of effective degrees of freedom, e.g. meson–baryon,
constituent quarks, and dressed quark contributions. Several
excited states, shown in Fig. 223 assigned to their primary
SU (6)⊗ O(3) supermultiplets, have been studied this way,
mostly with CLAS in Hall B. Most of the resonance cou-
plings have been extracted from single pseudoscalar meson
production. In electroproduction, there are 6 complex helic-
ity amplitudes, requiring a minimum of 11 independent mea-
surements for a complete100 model-independent determina-
tion of the amplitudes. In addition, measurements of isospin
amplitudes require additional measurements. Following this,
the complex amplitudes would need to be subjected to analy-
ses of their phase motions to determine resonance masses on
the (real) energy axis, or poles in the (complex) energy plane.
Fortunately, in the lower mass range a variety of constraints
can be applied to limit the number of unknowns when fitting
the cross section data. These include the masses of states quite
well known from hadronic processes or from meson photo-
production. Also, the number of possible angular momenta is
limited to lπ ≤ 2 in the examples discussed in the following.
Additional constraints come from the Watson theorem [2815]
that relates the electromagnetic phases to the hadronic ones,
and the use of dispersion relations, assuming the imaginary

100 With the exception of an overall phase that cannot be determined.
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Fig. 223 Excited states of the proton that have been studied in electro-
production to determine their resonance transition amplitudes or form
factors. States highlighted in red are discussed in this subsection. Graph-
ics from Ref. [2814]

parts of the amplitude are given by the resonance contribu-
tion, and the real parts determined through dispersion inte-
grals and additional pole terms. Other approaches use unitary
isobar models that parameterize all known resonances and
background terms, and unitarize the full amplitudes in a K-
matrix procedure. In the following, we show results based on
both approaches, where additional systematic uncertainties
have been derived from the differences in the two proce-
dures.

The availability of electron accelerators with the possi-
bility of generating high beam currents at CEBAF at Jeffer-
son Lab in the US and MAMI at Mainz in Germany, has
enabled precise studies of the internal structure of excited
states in the N∗ and the Δ∗ sectors employing s-channel res-
onance excitations in large ranges of photon virtuality Q2.
This has enabled probing the degrees of freedom relevant in
the resonance excitation as a function of the distance scale
probed. This is the topic we will elucidate in the follow-
ing sections and the relevance to (approximations to) QCD.
First we briefly discuss the formalism needed for a quanti-
tative analysis of the single pseudoscalar meson electropro-
duction.

9.3.1 Formalism in the analysis of electroproduction of
single pseudoscalar mesons

The simplest process used in the study of resonance tran-
sition amplitudes is single pion or kaon production, e.g.
ep→ eπ+n. Single π+ and π0 production are most suitable
for the study of the lower-mass excited states as they couple
dominantly to the excited states with masses up to≈ 1.7 GeV.
It may then be useful to describe in more detail the analysis
techniques and the formalism used. The unpolarized differ-
ential cross section for single pseudoscalar meson production

Fig. 224 The kinematics of single π+ electro-production off protons
in the laboratory system

can be written in the one-photon exchange approximation as:

dσ

dE f dΩedΩπ

= Γ
dσ

dΩπ

, (9.5)

where Γ is the virtual photon flux,

Γ = αem

2π2Q2

(W 2 − M2)E f

2MEi

1

1− ε
, (9.6)

where M is the proton mass, W the mass of the hadronic
final state, ε is the photon polarization parameter, Q2 the
photon virtuality, Ei and E f represent the initial and the
final electron energies, respectively. Moreover,

ε =
[

1+ 2

(

1+ ν2

Q2

)

tan2 θe

2

]−1

(9.7)

and

dσ

dΩπ

= σT + εσL + εσT T cos 2φπ

+√
2ε(1+ ε)σLT cosφπ .

The kinematics for singleπ+ production is shown in Fig. 224.
The observables of the process γv p→ πN ′ can be expressed
in terms of six parity-conserving helicity amplitudes [2811,
2816,2817] :

Hi =
〈
λπ ; λN |T |λγν ; λp

〉
, (9.8)

where λ denotes the helicity of the respective particle, λπ =
0, λN = ± 1

2 , λγv = ±1, 0, and λp = ± 1
2 , and Hi are

complex functions of Q2, W , and θ∗π .

9.3.2 Multipoles and partial wave decompositions

The response functions in (1) are given by:

σT = �pπW
2KM

(|H1|2 + |H2|2 + |H3|2 + |H4|2), (9.9)

σL = �pπW
2KM

(|H5|2 + |H6|2), (9.10)
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σT T = �pπW
2KM

Re(H2H
∗
3 − H1H

∗
4 ), (9.11)

σLT = �pπW
2KM

Re[H∗5 (H1 − H4)+ H∗6 (H2 + H3)], (9.12)

where �pπ is the pion 3-momentum in the hadronic center-of-
mass system, and K is the equivalent real photon lab energy
needed to generate a state with mass W :

K = W 2 − M2

2M
. (9.13)

The helicity amplitudes Hi , i = 1–6, can be expanded into
Legendre polynomials:

H1 = 1√
2

sin θ cos
θ

2

∞∑

l=1

(Bl+ − B(l+1)−)(P ′′l − P ′′l+1)

H2 =
√

2 cos
θ

2

∞∑

l=1

(Al+ − A(l+1)−)(P ′l − P ′l+1)

H3 = 1√
2

sin θ sin
θ

2

∞∑

l=1

(Bl+ + B(l+1)−)(P ′′l + P ′′l+1)

H4 =
√

2 sin
θ

2

∞∑

l=1

(Al+ + A(l+1)−)(P ′l + P ′l+1)

H5 =
√

2 cos
θ

2

∞∑

l=1

(Cl+ − C(l+1)−)(P ′l − P ′l+1)

H6 =
√

2 sin
θ

2

∞∑

l=1

(Cl+ + C(l+1)−)(P ′l + P ′l+1), (9.14)

where the Al+ and Bl+ etc., are the transverse partial wave
helicity elements for λγ p = 1

2 and λγ p = 3
2 , and C± the

longitudinal partial wave helicity elements. In the subscript,
l+ and (l+1)− define theπ orbital angular momenta, and the
sign± is related to the total angular momentum J = lπ ± 1

2 .
In the analysis of data on the NΔ(1232) transition, linear
combinations of partial wave helicity elements are expressed
in terms of electromagnetic multipoles:

Ml+ = 1

2(l + 1)
[2Al+ − (l + 2)Bl+] (9.15)

El+ = 1

2(l + 1)
(2Al+ + l Bl+) (9.16)

Ml+1,− = 1

2(l + 1)
(2Al+1,− − l Bl+1,−) (9.17)

El+1,− = 1

2(l + 1)
[−2Al+1,− + (l + 2)Bl+1,−] (9.18)

Sl+ = 1

l + 1

√
�Q∗2

Q2 Cl+ (9.19)

Sl+1,− = 1

l + 1

√
�Q∗2

Q2 Cl+1,−, (9.20)

where �Q∗ is the photon 3-momentum in the hadronic rest
frame. The electromagnetic multipoles are often used to
describe the transition from the nucleon ground state to the
Δ(1232), which is dominantly described as a magnetic dipole
transition M1+. The electromagnetic multipoles as well as
the partial wave helicity elements are complex quantities
and contain both non-resonant and resonant contributions. In
order to compare the results to model predictions and LQCD,
an additional analysis must be performed to separate the res-
onant parts Â±, B̂±, etc., from the non-resonant parts of the
amplitudes. In a final step, the known hadronic properties of
a given resonance can be used to determine photocoupling
helicity amplitudes that characterize the electromagnetic ver-
tex:

Âl± = ∓FC I
πN A1/2, (9.21)

B̂l± = ±F

√
16

(2 j − 1)(2 j + 3)
C I

πN A3/2, (9.22)

Ŝl± = −F
2
√

2

2J + 1
C I

πN S1/2, (9.23)

F =
√

1

(2 j + 1)
π

K

pπ

Γπ

Γ 2

where the C I
πN are isospin coefficients. The total transverse

absorption cross section for the transition into a specific res-
onance is given by:

σT = 2M

WRΓ
(A2

1/2 + A2
3/2). (9.24)

Experiments in the region of theΔ(1232) 3
2
+

resonance often
determine the electric quadrupole ratio REM

REM = Im(E1+)
Im(M1+)

(9.25)

and the scalar quadrupole ratio RSM

RSM = Im(S1+)
Im(M1+)

(9.26)

where E1+, S1+, and M1+ are the electromagnetic transition
multipoles at the mass of the Δ(1232) 3

2
+

resonance.

9.3.3 Resonance analysis tools

A model-independent determination of the amplitudes con-
tributing to the electro-excitation of resonances in single
pseudoscalar pion production ep → e′Nπ (see kinemat-
ics of single pion production in Fig. 224) requires a large
number of independent measurements at each value of the
electron kinematics W , Q2, the hadronic cms angle cos θπ ,
and the azimuthal angle φπ describing the angle between the
electron scattering plane and the hadronic decay plane. Such
a measurement requires full exclusivity of the final state and
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Fig. 225 JLab/Hall A data for �ep → e �pπ0 response functions at
W=1.232 GeV and Q2 = 1.0 [2818]. Notations refer to transverse
(t), normal (n) and longitudinal (l) components of the proton recoil
polarization. The curves correspond to results obtained using SAID
(short dashed), MAID (dashed-dotted), and the dynamical models DMT
[2819] (dotted), and SL [2820] (long-dashed/green). The other curves
correspond to Legendre and multipole fits performed by the authors

employing both polarized electron beams and the measure-
ments of the nucleon recoil polarization.

Such measurements would in general require full 4π cov-
erage for the hadronic final state. The only measurement that
could claim to be complete was carried out at Jefferson Lab
in Hall A [2818] employing a limited kinematics centered
at resonance for �ep → e′ �pπ0 at W = 1.232 GeV, and
Q2 ≈ 1 GeV2. Figure 225 shows the 16 response functions
extracted from this measurement. The results of this measure-
ment in terms of the magnetic NΔ transition form factor and
the quadrupole ratios are included in Fig. 226 among other
data. They coincide very well with results of other experi-
ments [2821–2824] using different analysis techniques that
may be also applied to broader kinematic conditions, espe-
cially higher mass resonances. Details of the latter are dis-
cussed in [2811,2825]. We briefly summarize them here:

– Dispersion Relations have been employed in two ways:
One is based on fixed-t dispersion relations for the invari-
ant amplitudes and was successfully used throughout the
nucleon resonance region. Another way is based on DR
for the multipole amplitudes of the Δ(1232) resonance,
and allows getting functional forms of these amplitudes
with one free parameter for each of them. It was employed
for the analysis of the more recent data.

– The Unitary Isobar Model (UIM) was developed in
[2831] from the effective Lagrangian approach for pion
photoproduction [2832]. Background contributions from
t-channel ρ and ω exchanges are introduced and the over-
all amplitude is unitarized in a K-matrix approximation
(Fig. 227).

– Dynamical Models have been developed, as SAID from
pion photoproduction data [2833], the Sato-Lee model

was developed in [2834]. Its essential feature is the con-
sistent description of πN scattering and the pion electro-
production from nucleons. It was utilized in the study of
Δ(1232) excitations in the ep → epπ0 channel [2820].
The Dubna–Mainz–Taipei model [2835] builds unitarity
via direct inclusion of the πN final state in the T-matrix
of photo- and electroproduction.

9.3.4 Models for light-quark resonance electroproduction

In order to learn from the meson electroproduction data about
the internal spin and spatial electromagnetic structure, it is
essential to have advanced models available with links to the
fundamentals of QCD.

While most of the analyses have focused on single pseu-
doscalar meson production, such as

γv p→ Nπ, pη, KΛ, KΣ,

more recent work included the pπ+π− final state both in
real photoproduction [2837] as well as in electroproduction
[2838]. The 2-pion final state has more sensitivity to excited
N∗ and Δ∗ states in the mass range above 1.6 GeV, with sev-
eral states dominantly coupling to Nππ final states, enabling
the study of their electromagnetic transition form factors in
the future.

9.3.5 The NΔ(1232) 3
2
+
transition

The Δ++ isobar was first observed 70 years ago in Enrico
Fermi’s experiment that used a π+ meson beam scattered
off the protons in a hydrogen target [2839]. The cross sec-
tion showed a sharp rise above threshold towards a mass
near 1200 MeV. While the energy of the pion beam was not
high enough to see the maximum and the fall-off following
the peak, a strong indication of the first baryon resonance
was observed. It took 12 more years and the development
of the underlying symmetry in the quark model before a
microscopic explanation of this observation could emerge.
There was, however, a problem; while the existence of the
Δ+,0,− could be explained within the model, the existence
of the Δ(1232)++, which within the quark model would cor-
respond to a state |u↑u↑u↑〉, was forbidden as it would have
an overall symmetric wave function. It took the introduction
of para Fermi statistics [31] what later became “color” (see
Sect. 1.2), to make the overall wave function anti-symmetric.
In this way the Δ++(1232) resonance may be considered a
harbinger of the development of QCD.

The nucleon to Δ(1232) 3
2
+

transition is now well mea-
sured in a large range of Q2 [2822–2824]. At the real photon
point, it is explained by a dominant magnetic transition from
the nucleon ground state to the Δ(1232) excited state. Addi-
tional contributions are related to small D-wave components
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Fig. 226 The NΔ(1232) transition amplitudes. Left: The magnetic
NΔ transition form factor normalized to the dipole form factor and
compared with the Light-Front Relativistic Quark Model (LFRQM)
[2826,2827] with running quark mass, and with results using the
Dyson–Schwinger Equation [2828]. Both predictions are close to

the data at high Q2. At Q2 < 3 GeV2 meson–baryon contribu-
tions are significant. Middle: The electric (top) and scalar (bottom)
quadrupole/magnetic-dipole ratios REM and RSM . Right: REM and
RSM from Lattice QCD [2829,2830] compared to data in the low Q2

domain

Fig. 227 Sample of results of an analysis by the JLab group of the
Legendre moments of �ep → eπ+n structure functions in comparison
with experimental data [2836] at Q2 = 2.44 GeV2. The solid (dashed)
curves correspond to results obtained using the DR (UIM) approach

in both the nucleon and the Δ(1232) wave functions lead-
ing to electric quadrupole and scalar quadrupole transitions.
These remain in the few % ranges at small Q2. The magnetic
transition is to ≈ 65% given by a simple spin flip of one of
the valence quarks as seen in Fig. 226. The remaining 35% of
the magnetic dipole strength is attributed to meson–baryon
contributions.
The electric quadrupole ratio REM was found as:

REM ≈ −0.02. (9.27)

There has been a longstanding prediction of asymptotic
pQCD, that REM → +1 at Q2 → ∞. Results on the

magnetic transition form factor GMn,Ash, defined in the Ash
convention [2840], and on the quadrupole transition ratios
are shown in Fig. 226. GMn,Ash is shown normalized to
the dipole form factor, but shows a much faster Q2 fall-off
compared to that. In comparison to the advanced LF RQM
with momentum-dependent constituent quark mass, and with
the Dyson–Schwinger Equation (DSE-QCD) results, there is
good agreement at the high-Q2 end of the data. The discrep-
ancy at small Q2 = 0 is likely due to the meson–baryon
contributions at small Q2, which are not modeled in either
of the calculations.

The quadrupole ratio REM shows no sign of departing
significantly from its value at Q2 = 0, even at the high-
est Q2 ≈ 6.5 GeV2. Both calculations barely depart from
REM = 0, and remain near zero at all Q2 > 2 GeV2.
This indicates that the negative constant value shown by the
data is likely due to meson–baryon contributions that are not
included in the theoretical models. For the scalar quadrupole
ratio RSM the asymptotic prediction in holographic QCD
(hQCD) [2845] is:

RSM = ImS1+
ImM1+

→ −1, at Q2 →∞, (9.28)

while REM in hQCD is predicted to approach +1 asymp-
totically. The RSM data show indeed a strong trend towards
increasing negative values at larger Q2, semi-quantitatively
described by both calculations at Q2 < 4 GeV2. The Dyson–
Schwinger equation approach predicts a flattening of RSM

at Q2 > 4 GeV2, while the Light Front relativistic Quark
Model predicts a near constant negative slope of RSM (Q2)

also at higher Q2.
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Fig. 228 Helicity transition amplitudes for the proton to Roper
N (1440) 1

2
+

excitation compared to model calculations in LFRQM,
DSE, and EFT; see text. Left: Transverse A1/2 amplitude. Middle:
Scalar S1/2 amplitude. Right: Helicity amplitudes of the Roper res-

onance N (1440) 1
2
+

at low Q2. Data are compared to calculations
within Effective Field Theory [2841], shown in solid black lines. The
other broken lines are parts of the full calculations. The data are from
[2821,2842,2843]. The open red circle at Q2 ≈ 0.1 GeV2 is the result
of an analysis of ep→ epπ0 data from MAMI [2844]

9.3.6 The Roper resonance N (1440) 1
2
+

The Roper resonance, discovered in 1964 [2846] in a phase
shift analysis of elastic πN scattering data, has been dif-
ferently interpreted for half a century. In the non-relativistic
quark model (nrQM), the state is the first radial excitation of
the nucleon ground state with a mass expected around 1750
MeV, much higher than the measured Breit–Wigner mass of
≈ 1440 MeV. This discrepancy is now understood as the con-
sequence of a dynamical coupled channel effect that shifts the
mass below the mass of the N (1535)1/2− state, the negative-
parity partner of the nucleon [2847]. Another problem with
the quark model was the sign of the transition form factor
A1/2(Q2 = 0), predicted in the nrQM as large and positive,
while experimental analyses showed a negative value.

These discrepancies resulted in different interpretations
of the state that could only be resolved with electroproduc-
tion data from CLAS at Jefferson Lab, the development of
continuous QCD approximations in the Dyson–Schwinger
equation approach [2848] and Light Front Relativistic QM
with momentum-dependent quark masses [2826] shown in
Fig. 228, and Lattice data [2849,2850]. A recent review of
the history and current status of the Roper resonance, is pre-
sented in a colloquium-style article published in Review of
Modern Physics [2851].

Descriptions of the baryon resonance transitions form fac-
tors, including the Roper resonance N (1440) 1

2
+

, have also
been carried out within holographic models [2852,2853]. In
the range Q2 < 0.6 GeV2, calculations based on meson–
baryon degrees of freedom and effective field theory [2841]
have been successfully performed, as may be seen in Fig. 228.
Earlier model descriptions, such as the Isgur-Karl model that

describe the nucleon as a system of 3 constituent quarks in
a confining potential and a one-gluon exchange contribution
leading to a magnetic hyperfine splitting of states [764,2752],
and the relativized version of Capstick [771] have popular-
ized the model that became the basis for many further devel-
opments and variations, e.g. the light front relativistic quark
model, and the hypercentral quark model [2854]. Other mod-
els were developed in parallel. The cloudy bag model [777]
describes the nucleon as a bag of 3 constituent quarks sur-
rounded by a cloud of pions. It has been mostly applied
to nucleon resonance excitations in real photoproduction,
Q2 = 0 [777,2855], with some success in the description
of the Δ(1232) 3

2
+

and the Roper resonance transitions.
There is agreement with the data at Q2 > 1.5 GeV2

for these two states, while the meson–baryon contributions
for the Δ(1232) are more extended, and agreement with the
quark based calculations is reached at Q2 > 4 GeV2. The
calculations deviate significantly from the data at lower Q2,
which indicates the presence of non-quark core effects. For
the Roper resonance such contributions have been described
successfully in dynamical meson–baryon models [2856] and
in effective field theory [2841]. Calculations on the Lattice
for the N-Roper transition form factors F pR

1 and F pR
2 , which

are combinations of the transition amplitudes A1/2 and S1/2,
have been carried out with dynamical quarks [2850]. The
results agree well with the data in the range Q2 < 1.0 GeV2,
where data and calculations overlap Fig. 229.

New electroproduction data on the Roper [2844] and on
several higher mass states have been obtained in the 2-pion
channel, specifically in ep→ e′ pπ+π− [2857].

The mass of the Roper state has been computed on the
Lattice and extrapolated to the physical pion mass, show-
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ing good agreement with the physical value measured with
a Breit–Wigner parametrization. It should be noted that the
Roper mass measured at the pole in the complex plane is
significantly different from the value obtained using the BW
ansatz. Supported by an extensive amount of single pion elec-
troproduction data, covering the full phase space in the pion
polar and azimuthal center-of-mass angles, and accompanied
by several theoretical modeling, we can summarize our cur-
rent understanding of the N (1440) 1

2
+

state as follows:

– The Roper resonance is, at heart, the first radial excitation
of the nucleon.

– It consists of a well-defined dressed-quark core, which
plays a role in determining the system’s properties at all
length scales, but exerts a dominant influence on probes
with Q2 > m2

N , where mN is the nucleon mass.
– The core is augmented by a meson cloud, which both

reduces the Roper’s core mass by ≈ 20%, thereby solv-
ing the mass problem that was such a puzzle in con-
stituent quark model treatments, and, at low Q2, con-
tributes an amount to the electroproduction transition
form factors that is comparable in magnitude with that
of the dressed quark core, but vanishes rapidly as Q2 is
increased beyond m2

N .

As stated in the conclusions of [2851]: “The fifty years of
experience with the Roper resonance have delivered lessons
that cannot be emphasized too strongly. Namely, in attempt-
ing to predict and explain the QCD spectrum, one must fully
consider the impact of meson–baryon final state interactions
and the coupling between channels and states that they gen-
erate, and look beyond merely locating the poles in the S-
matrix, which themselves reveal little structural information,
to also consider the Q2 dependencies of the residues, which
serve as a penetrating scale-dependent probe of resonance
composition.”

9.3.7 Transition form factors of N (1535) 1
2
−
– a state with

a hard quark core.

This state is the parity partner state to the ground state
nucleon, with the same spin 1/2 but with opposite parity,
its quark content requires an orbital L=1 excitation in the
transition from the proton. In the SU (6) ⊗ O(3) symmetry
scheme, the state is a member of the [70, 1−] super multiplet.
This state couples equally to Nπ and to Nη final state. It has
therefore be probed using both decay channels ep → epη
and ep→ eNπ+,0. Because of isospin I = 1/2 for nucleon
states, the coupling to the charged π+n channel is preferred
over π0 p owing to the Clebsch–Gordon coefficients.

The A1/2 helicity amplitude for the γ pN (1535) 1
2
−

res-
onance excitation shown in Fig. 229 represents the largest

range in Q2 of all nucleon states for which resonance tran-
sition form factors have been measured as part of the broad
experimental program at JLab.

For this state, as well as for the N (1440) 1
2
+

state,
advanced relativistic quark model calculations [2860], DSE-
QCD calculations [2848] and Light Cone sum rule results
[2861] are available, employing QCD-based modeling of the
excitation of the quark core for the first time.

The transverse transition amplitude A1/2 of N (1535) 1
2
−

is a prime example of the power of meson electroproduction
to unravel the internal structure of the resonance transition. In
the previous Sect. 9.2, the nature of this state is discussed as a
possible example of a dynamically generated resonance. The
electroproduction data shown here reveal structural aspects
of the state and its nature that require a different interpre-
tation. The transition form factor A1/2 of the state, shown
in Fig. 229, is quantitatively reproduced over a large range
in Q2 by two alternative approaches, the LFRQM and the
LCSR. Both calculations are based on the assumptions of
the presence of a 3-quark core. Note that there is a deviation
from the quark calculations at Q2 < 1−2 GeV2, highlighted
as the shaded area in Fig. 229, which may be assigned to the
presence of non-quark contributions. Attempts to compute
the transition form factors within strictly dynamical mod-
els have not succeeded in explaining the data [2862]. The
discrepancy could be resolved if the character of the probe,
meson (pion) in the case of hadron interaction and short range
photon interaction in the case of electroproduction, probe dif-
ferent parts of the resonance’s spatial structure: peripheral in
case of meson scattering and short distance behavior in elec-
troproduction. The peripheral meson scattering and low Q2

meson photoproduction reveal the dynamical features of the
state, whereas high Q2 electroproduction reveals the struc-
ture of the quark core.

9.3.8 The helicity structure of the N (1520) 3
2
−

The N (1520) 3
2
−

state corresponds to the lowest excited

nucleon resonance with J P = 3
2
−

. Its helicity structure is
defined by the Q2 dependence of the two transverse tran-
sition amplitudes A1/2 and A3/2. They are both shown in
Fig. 230. A particularly interesting feature of this state is that
at the real photon point, A3/2 is strongly dominant, while
A1/2 is very small. However, at high Q2, A1/2 is becoming
dominant, while A3/2 drops rapidly. This behavior is quali-
tatively consistent with the expectation of asymptotic QCD,
which predicts the transition helicity amplitudes to behave
like:

A1/2 ∝ a

Q3 , A3/2 ∝ b

Q5
. (9.29)
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Fig. 229 Left and middle: Dirac and Pauli transition form factors F1
and F2 for the proton to N (1440)1/2+ transition compared to Lattice
QCD calculations [2850] with pion masses (in GeV): 0.39 (red squares),
0.45 (orange triangles), and 0.875 (green circles) on the N f = 2 + 1
anisotropic lattices, compared to CLAS results (black circles). The F1

and F2 form factors are linear combinations of the A1/2 and S1/2 ampli-
tudes. Right: The transverse transition helicity amplitude A1/2 versus
Q2. At Q2 > 2 GeV2 the data are well described by the light-cone sum
rules LCSR [2858]. The light front relativistic quark model (LFRQM)
[2859] describes that data at Q2 > 1 GeV2

Fig. 230 The transverse helicity transition amplitudes of N (1520) 3
2
−

versus Q2, compared to the LFRQM, A1/2 (left), A3/2 (middle). The
shaded area indicates the contribution from non-quark contributions as

estimated from the difference of the measured data points and the LF
RQM contribution, likely due to hadronic contributions. Right: Helicity
asymmetry Ahel , as defined in Eq. (9.30). Graphics from Ref. [2811]

The helicity asymmetry

Ahel =
A2

1/2 − A2
3/2

A2
1/2 + A2

3/2

, (9.30)

shown in Fig. 230, illustrates this rapid change in the helic-
ity structure of the γv pN (1520)3/2− transition. At Q2 >

2 GeV2, A1/2 fully dominates the process.

9.3.9 The helicity transition amplitudes to the N (1535) 1
2
−

resonance

The Roper N (1440) 1
2
+

resonance, at the core, is a radial

excitation. Its parity partner, the N (1535) 1
2
−

, in the quark
model, is an orbitally excited quark state of the nucleon. It
is then interesting to compare the transition amplitude to the
N (1535) 1

2
−

with the amplitude to the Roper resonance. The

N (1535) 1
2
−

is, together with the Δ(1232) 3
2
+

, the best mea-
sured state, and both its transverse and longitudinal (scalar)
amplitudes are well measured [2811]. Figure 231 shows the
transverse amplitude A1/2 versus Q2. They reveal a very

different behavior at low Q2, where N (1535) 1
2
−

indicates
only small effects from meson–baryon contributions below
Q2 ≈ 1 GeV2, while the N (1440) 1

2
+

changes sign at small
Q2 and reveals a much more prominent impact of meson–
baryon contributions. The Q2 dependence of the N (1535) 1

2
−

is well reproduced by LC SR in LO and NLO. There have
been attempts to explain the transition form factor of the
N (1535) 1

2
−

as a dynamically generated resonance [2862]
that does not achieve quantitative agreement with experi-
ment and concludes that admixture with a genuine three-
quark state is demanded that could help to better reproduce
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Fig. 231 The transverse amplitudes of the proton to N (1675) 5
2
−

tran-
sition compared to the LF RQM [2863], hypercentral QM [2864], and
contributions from meson–baryon (MB) coupled channel dynamics
[2865]. Left: A1/2, Middle:A3/2. Both quark models predict very small
amplitudes for the proton, while the meson–baryon contributions esti-
mate is large and is close to the data. Right: A1/2 for neutron target (only

photoproduction data available) compared to the LFRQM and hCQM.
Both quark models predict large amplitudes for neutrons, more than
factor 10 compared to protons at Q2 = 0. Assuming similar meson–
baryon contributions as in the proton case with opposite sign could
quantitatively explain the single measured value at the photon point

the magnitude or the Q2 falloff of the A1/2 helicity ampli-
tude.

9.3.10 The N (1675) 5
2
−
state – revealing the

meson–baryon contributions

In previous discussions we have concluded that meson–
baryon degrees of freedom provide significant strength to
the resonance excitation in the low-Q2 domain where quark
based approaches LF RQM, DSE/QCD, and LC SR calcu-
lations fail to reproduce the transition amplitudes quantita-
tively. Our conclusion rests, in part, with this assumption.
But, how can we be certain of the validity of this conclusion?

The N (1675) 5
2
−

resonance allows us to test this assump-
tion, quantitatively. Figure 231 shows our current knowl-
edge of the transverse helicity amplitudes A1/2(Q2) and
A3/2(Q2), for proton target compared to RQM [2859] and
hypercentral CQM [2864] calculations. The specific quark
transition for a J P = 5

2
−

state belonging to the [SU (6) ⊗
O(3)] = [70, 1−] supermultiplet configuration, in non-
relativistic approximation prohibits the transition from the
proton in a single quark transition. This suppression, known
as the Moorhouse selection rule [760], is valid for the trans-
verse transition amplitudes A1/2 and A3/2 at all Q2. It should
be noted that this selection rule does apply to the transition
from a proton target, it does not apply to the transition from
the neutron, which is consistent with the data. Modern quark
models that go beyond single quark transitions, confirm
quantitatively the suppression resulting in very small ampli-
tudes from protons but large ones from neutrons. Further-
more, a direct computation of the hadronic contribution to

the transition from protons confirms this (Fig. 231). The mea-
sured helicity amplitudes off the protons are almost exclu-
sively due to meson–baryon contributions as the dynamical
coupled channel (DCC) calculation indicates (dashed line).
The close correlation of the DCC calculation and the mea-
sured data for the case when quark contributions are nearly
absent, supports the phenomenological description of the
helicity amplitudes in terms of a 3-quark core that dominate
at high Q2 and meson–baryon contributions that can make
important contributions at lower Q2.

9.3.11 Resonance lightfront transition charge densities

Knowledge of the helicity amplitudes in a large Q2 allows
for the determination of the transition charge densities on
the light cone in transverse impact parameter space (bx , by)
[2866]. The relations between the helicity transition ampli-
tudes and the Dirac and Pauli resonance transition form fac-
tors are given by:

A1/2 = e
Q−√

K (4MNM∗)1/2
{FNN∗

1 + FNN∗
2 } (9.31)

S1/2 = e
Q−√

K (4MNM∗)1/2

(
Q+Q−
2M∗

)
(M∗ + MN )

Q2

×
{

FNN∗
1 − Q2

(M∗ + MN )2 F
NN∗

2

}

, (9.32)

where M∗ is the mass of the excited state N∗, K = M∗2−M2
N

2M∗
is the equivalent photon energy, Q+ and Q− are short hands
for Q± ≡

√
M∗ ± MN )2 + Q2. The charge and magnetic

lightfront transition densities ρNN∗
0 and ρNN∗

T , respectively,
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Fig. 232 Left panels: N (1440), top: projection of charge densities on
by , bottom: transition charge densities when the proton is spin polarized
along bx . Right panels: same for N (1535). Note that the densities are
scaled with b2 to emphasize the outer wings. Color code:negative charge
is blue, positive charge is red. Note that all scales are the same for ease
of comparison [2868]. Graphics credit: F.X. Girod

are given as:

ρNN∗
0 (�b) =

∫ ∞

0

dQ

2π
J0(bQ)FNN∗

1 (Q2) (9.33)

ρNN∗
T (�b) = ρNN∗

0 (�b)+ sin(φb − φs)

×
∫ ∞

0

dQ

2π

Q2

(M∗ + MN )
J1(bQ)FNN∗

2 (Q2).

(9.34)

A comparison of N (1440) 1
2
+

and N (1535) 1
2
−

is shown
in Fig. 232. There are clear differences in the charge tran-
sition densities between the two states. The Roper state has
a softer positive core and a wider negative outer cloud than
N (1535) 1

2
−

and develops a larger shift in by when the proton
is polarized along the bx axis.

Similar transverse charge transition densities can be
defined for J P = 3

2
+

states such as the Δ(1232) 3
2
+

. This
has been studied in [2867] and is shown in Fig. 233.

9.3.12 Single quark transition model

Many of the exited states for which there is information about
the transition form factors available have been assigned as
members of the [SU (6), LP ] = [70, 1−] super multiplet of
the [SU (6)⊗O(3)] symmetry group. In a model, where only
single quark transitions to the excited states are considered

[2869–2871], only 3 of the amplitudes need to be known to
determine the remaining 16 transverse helicity amplitudes
for all states in [70, 1−] including on neutrons. However, the
picture is now more complicated due to the strong admixture
of meson–baryon components to the single quark transition
especially in the lower Q2 range. This requires a model to
separate the single quark contributions from the hadronic part
before projections for other states can be made [2872].

9.3.13 Higher mass baryons and hybrid baryons

The existence of baryons containing significant active glu-
onic components in the wave function has been predicted
some decade ago [529] employing Lattice QCD simulations.
The lowest such “hybrid” state is expected to be a J P = 1

2
+

nucleon state. LQCD projects a mass of 1.3 GeV above the
nucleon mass, i.e. approximately 2.2–2.3 GeV, and several
other states should appear close by in J P = 1

2
+

and J P = 3
2
+

,
as seen in Fig. 234.

How do we identify these states? Hybrid baryons have
same spin-parity as other ordinary baryons. In contrast to
hybrid mesons, there are no hybrid baryons with “exotic”
quantum numbers. One possibility is to search for more states
than the quark model predicts in some mass range. The other
possibility is to study the transition form factors of excited
states. Hybrid states may be identified as states with a dif-
ferent Q2 behavior than what is expected from a 3-quark
state. The sensitivity [2873] is demonstrated for the Roper
resonance that projected a very rapid drop of the A1/2(Q2)

with Q2, and S1/2(Q2) ∼ 0 prediction. Both are incompat-
ible with what we know today about the Roper resonance.
Precision electroproduction data in the mass range above 2
GeV will be needed to test high mass states for their potential
hybrid character, e.g. from experiments at CLAS12 [2874].

9.3.14 Conclusions and outlook

In this contribution we have focused on more recent results of
nucleon resonance transition amplitudes and their interpre-
tation within LQCD and within most advanced approaches,
e.g. in light front relativistic quark models and approaches
with traceable links to first principle QCD such as Dyson–
Schwinger Equations [2875] and light cone sum rules [2858].
These calculations describe the transition form factors at
Q2 ≥ 2 GeV2, while at lower Q2 values hadronic degrees
of freedom must be included and could even dominate con-
tributions of the quark core.

For the lowest mass states, Δ(1232) 3
2
+

and the Roper

N (1440) 1
2
+

, LQCD calculations have been carried out that
are consistent with the data within large uncertainties. These
calculations are about one decade old, and new data, with
higher precision in more extended kinematic range have been
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Fig. 233 Quark transverse transition charge density corresponding to
the p→ Δ+ transition. Light color indicates positive charge, dark color
indicates negative charge. Top: p and Δ are unpolarized. Middle: p and
Δ are polarized along bx axis generating an electric dipole along the by
axis. Bottom: Quadrupole contribution to transition density. Graphics
adapted from [2867]

added to the database that warrant new Lattice calculations
at the physical pion mass to be carried out.

Fig. 234 Projections of excited baryons with dominant gluonic com-
ponents (marked in blue shades) in LQCD with 400 MeV pions. The
lowest hybrid baryon is projected with mass 1.3 GeV above the nucleon
mass. The 1/2+ and 3/2+ states are clustered in a narrow mass range
of about 200 MeV

Over the past decade, eight baryon states in the mass
range from 1.85 to 2.15 GeV have been either discovered
or evidence for the existence of states has been significantly
strengthened. Some of these states are in the mass range and
have J PC quantum numbers that could have significant con-
tributions of gluonic components. Such “hybrid” states are
in fact predicted in LQCD [529]. These states appear with
the same quantum numbers as ordinary quark excitations,
and can only be isolated from ordinary states due to the
Q2 dependence of their helicity amplitudes [2873], which
is expected to be quite different from ordinary 3-quark exci-
tation. The study of hybrid baryon excitations then requires
new electroproduction data especially at low Q2 [2874] with
different final states and with masses above 2 GeV. Despite
the very significant progress made in recent years to fur-
ther establish the light-quark baryon spectrum and explore
the internal structure of excited states and the relationship to
QCD [2813,2876], much remains to be done. A vast amount
of precision data already collected needs to be included in the
multi-channel analysis frameworks, and polarization data are
still to be analyzed. There are approved proposals to study
resonance excitation at much higher Q2 and with higher pre-
cision at Jefferson Lab with CLAS12 [2877,2878], which
may begin to reveal the transition to the bare quark core con-
tributions at short distances.

A new avenue of experimental research has recently been
opened up with the first data-based extraction of a gravita-
tional property of the proton, its internal pressure distribution,
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which is represented by the gravitational form factor Dq(t).
It is one of the form factors of the QCD matrix element of
the energy–momentum tensor, its internal pressure and shear
stress distribution in space [2879,2880]. These properties,
as well as the distribution of mass and angular momentum,
are accessible directly in gravitational interaction, which is
highly impractical. However the relevant gravitational form
factor Dq(t) for the ground state nucleon can be accessed
indirectly through the process of deeply virtual Compton
scattering and in time-like Compton scattering [1286,2881].
Both processes, having a J = 1 photon in the initial state as
well as in the final state, contain components of J = 2 that
couple to the proton through a tensor interaction, as gravity
does [2882].

Mechanical properties of resonance transitions have recen-
tly been explored for the N (1535) 1

2
− → N (938) gravita-

tional transition form factors calculations in [2883] and in
[2884]. To access these novel gravitational transition form
factors experimentally, the generalized parton distributions
for nucleon-to-resonance transitions must be studied. The
framework for studying the N → N (1535) transition GPDs,
which would enable experimental access to these mechani-
cal properties, remains to be developed. The required effort
is quite worthwhile as a new avenue of hadron physics has
opened up that remains to be fully explored.

9.4 Heavy-flavor baryons

Eberhard Klempt and Sebastian Neubert

9.4.1 Introduction

Baryons with one heavy quark Q and a light diquark qq
provide an ideal place to study diquark correlations and the
dynamics of the light quarks in the environment of a heavy
quark. The heavy quark is almost static and provides the color
source to the light quarks. Here, we attempt to understand the
dynamics leading to the spectrum of baryons with one heavy
quark.

The Review of Particle Physics [616] lists 28 charmed
baryons (16 with known spin-parity) and 19 bottom baryons
(11 with known spin-parity). One doubly charmed state has
been detected, the ground state Ξ++

cc . (Its isospin partner Ξ+
cc

is known as well, with poor evidence and one star in RPP, but
we do not count isospin partners separately.) In the decays
of the lightest bottom baryon, exotic J/ψp states, incom-
patible with a three-quark configuration, have been have
been reported in studies of the reaction Λb → J/ψpK−
[2885,2886]. The search for further states and attempts to
understand the underlying dynamics of heavy baryons are
active fields in particle physics. New information can be
expected from the upgrades of LHC, BELLE and J-PARC,
and from the new FAIR facility at GSI (see Sect. 14).

Table 40 Masses and lifetimes of baryon ground states with one b-
quark. The second line gives the mass in MeV, the third line the life
time in fs

Λ0
b Ξ−

b Ξ0
b Ω−

b

5619.60± 0.17 5797.0± 0.6 5791.9± 0.5 6045.2± 1.2

1464± 11 1572± 40 1480± 0.030 1640+180
−170

Table 41 Masses and lifetimes of baryon ground states with one c-
quark. The second line gives the mass in MeV, the third line the life
time in fs

Λ0
c Ξ+

c Ξ0
c Ω−

c

2286.46± 0.14 2467.71± 0.23 2470.44± 0.2 2695.2± 1.7

201.5± 2.7 453± 5 151.9± 2.4 268± 26

9.4.2 Ground states of heavy baryons

Masses and lifetimes
Table 40 presents masses and life times of the ground states
of heavy baryons containing a b-quark. Naively, one could
expect all these life times to represent the life time of the b
quark, that they all agree with the life time of the B0 meson.
This life time is τB0 = (1519 ± 4) fs. Indeed, all life times
agree within ∼ 10% percent.

This is not at all the case when the b-quark is replaced
by a c-quark (see Table 41). The D0 has a life time τD0 =
(410.3 ± 1.0) fs, the D+ has τD+ = (1033 ± 5) fs. The life
times of charmed baryons are spread over a wide range and
do not agree with the life times of D mesons. In addition
to the decay of the c-quark, the cd̄ pair in a D0 meson can
annihilate into a W+, a process forbidden for the D+. In
B decays, the corresponding CKM matrix element is small,
and this effect is suppressed. Further significant corrections
are required to arrive at a consistent picture for the decays
of charmed mesons and baryons. The authors of Ref. [1243]
have performed an extensive study of the lifetimes within
the heavy quark expansion, and have included all known cor-
rections. The impact of the charmed-quark mass and of the
wavefunctions of charmed hadrons were carefully studied.
Then, qualitative agreement between their calculations and
the experimental data was achieved. For a more detailed dis-
cussion, see Sect. 5.7.

The first state with two charmed quarks, the Ξ+
cc was

reported by the SELEX collaboration in two decay modes at
a mass of (3518.9± 0.9) MeV and with 5–6σ [2887,2888].
In later searches, this state was never confirmed. The LHCb
collaboration found its doubly charged partner Ξ++

cc [2618].
Its mass is (3621.6± 0.4) MeV, its life time (25.6± 2.7) fs.
Later, the LHCb collaboration reported evidence for a Ξ+

cc
baryon at (3623.0± 1.4) MeV [2889]. It is seen with 3–4σ
only but its mass is better compatible with an interpretation
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Fig. 235 Ground-state heavy baryons in SU(4). Baryons with one
charm quark are represented by colored dots. Left: The symmetric
20-plet. Center: Baryons in the mixed-symmetry 20-plet. The mixed-

symmetry 20-plet contains a sextet with a symmetric light-quark pair
(SUF(3) multiplicity 6) and a triplet with an anti-symmetric light-quark
pair (SUF(3) multiplicity 3̄). Right: The fully antisymmetric 4-plet

of Ξ+
cc and Ξ++

cc as isospin partners. A search for the Ξ+
bc

remained unsuccessful [2890].

The flavor wave function: SU(4)
In this contribution we discuss baryons with one heavy-quark
flavor, with either a charm or a bottom quark. Overall, we
consider five quarks, u, d, s, c, b, but we will not discuss
baryons with one light (q = u, d, s) and two different heavy
quarks like Ξ+

cb = (ucb). Thus we can restrict ourselves to
SU(4). The four quarks have very different masses, and the
SU(4) symmetry is heavily broken, nevertheless it provides a
guide to classify heavy-quark baryons. Three-quark baryons
can classified according to

4⊗ 4⊗ 4 = 20s ⊕ 20m ⊕ 20m ⊕ 4a (9.35)

into a fully symmetric 20-plet, two 20-plets of mixed symme-
try and a fully antisymmetric 4-plet. In states with one heavy
quark only, there is one light quark pair. The light diquark
can be decomposed

3⊗ 3 = 3̄a ⊕ 6s (9.36)

The light diquark in the 6-plet is symmetric, in the 3̄-plet
antisymmetric.

Figure 235a shows the symmetric 20-plet, which contains
the well-known baryon decuplet and a sextet of charmed
baryons. In addition to Ξ+

cc and Ξ++
cc , a Ω+

cc (with two
charmed and one strange quarks) and a Ω++

ccc are expected
but not yet observed. All baryons in the symmetric 20-plet in
the ground state have a total spin J = 3/2. The three quark
pairs are symmetric with respect to (w.r.t.) their exchange,
in particular the pair of light quarks is symmetric w.r.t. their
exchange, they have SUF(3) multiplicity 6. Baryons with
three charmed quarks have not yet been discovered.

Figure 235b shows the mixed symmetry 20-plet of heavy
baryons. In the ground state they have J = 1/2. Baryons
with one heavy quark occupy the second layer. The 6-plet
and the 3̄-plet are indicated. The sextet in the first floor has a

a symmetric light-quark pair, the two light-heavy quark pairs
are then antisymmetric in flavor. The 3-plet in the first floor
has an antisymmetric light-quark pair, the light-heavy quark
pairs are then symmetric in flavor.

Finally, there is a fully anti-symmetric 4-plet. It is shown
in Fig. 235c. Ground-state baryons have a symmetric spa-
tial wave function. The spin of three fermions coupling to
J/1/2 has mixed symmetry. A fully symmetric (space), a
fully antisymmetric (flavor) and a mixed-symmetry (spin)
wave function cannot be coupled to a fully symmetric wave
function. Hence baryons with no orbital excitations cannot
be in the 4-plet. Only excited baryons can have a fully anti-
symmetric flavor wave function. Below, in Sect. 9.4.5, the
wave functions and their symmetries are discussed in more
detail.

9.4.3 Excited baryons: selected experimental results

BaBar, BELLE and LHCb:
Most information on heavy baryons stems from three exper-
iments, BaBar, BELLE and LHCb even though many dis-
coveries had already been made before with the Split-Field-
Magnet, by the SELEX, UA and LEP experiments at CERN,
and by the CDF experiment at FERMILAB. BaBar at SLAC
(US) and BELLE at KEK (Japan) study the decays of B
mesons produced in asymmetric e+e− storage rings with
beam energies of 9 (KEK: 7) GeV for electrons and 3.1 (KEK:
4) GeV for positrons resulting in a center-of-mass energy
equal to theΥ (4S)mass of 10.58 GeV. The LHCb experiment
is placed at the Large Hadron Collider at CERN operating
at
√
s = 13.6 GeV. The experiment is a single-arm forward

spectrometer covering the pseudorapidity range 2 ≤ η ≤ 5.
It is designed for the study of particles containing b or c
quarks. All three detectors have vertex reconstruction capa-
bilities; BaBar and BELLE track charged particles in tracking
chambers placed in the 1.5 T magnetic field of a supercon-
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Fig. 236 Left: The invariant mass distributions of Ω0
c candidates

in their decay to Ω−π+ (a), Ω−π+π0 (b), Ω−π+π−π+ (c),
Ξ−K−π+π+ (d). MΩ0

c
is the reconstructed mass of Ω0

c candidates,
Xh denotes the daughter hyperon. Right: Invariant mass distribution of
Ω∗

c → Ωcγ for the individual Ω0
c decay modes (a–d) and for the sum

(e). (Adapted from [2891])

ducting solenoid. Particle identification is provided by a mea-
surement of the specific ionization and by detection of the
Cherenkov radiation in reflecting ring imaging Cherenkov
detectors. CsI(Tl)-crystal electromagnetic calorimeters allow
for energy measurements of electrons and photons. LHCb
is equipped with silicon-strip detector located upstream and
downstream of a dipole magnet with a bending power of
about 4 Tm. Photons, electrons and hadrons are identified by
a calorimeter system consisting of scintillating counters and
pre-shower detectors, and an electromagnetic and a hadronic
calorimeter. Muons are identified by a system composed of
alternating layers of iron and multiwire proportional cham-
bers.

In the following we discuss three important results from
these experiments that demonstrate the capabilities of the
detectors.

Observation of Ω∗0
c (2770) decaying to Ω0

c γ by BaBar
The Babar experiment studied the inclusive reaction e+e− →
Ω∗0

c X where X denote the recoiling particles [2891]. Ω0
c

baryons are identified via different decay modes and recon-
structed with a mass resolution σRMS = 13 MeV. The
γ is reconstructed in the Ω0

c CsI(Tl) calorimeter. Fig-
ure 236 shows the reconstructed Ω0

c and the Ω∗0
c in its

Ω∗0
c → Ω0

c γ decay. Obviously, the Ω∗0
c (2770) is equiv-

alent to Δ0(1232) with the u, d, d quarks exchanged by
c, s, s, and the transition corresponds to the Δ(1232)→ Nγ

decay.

Fig. 237 Left: The Ξ+
c π−π+ invariant mass distribution for events

in which the Ξ+
c π− invariant mass is compatible with the Ξ0

c (2645)
mass. Right: The helicity angle θc between the direction of the π−
relative to the opposite direction of the Ξ+

c (2970) in the rest frame of
the Ξ0

c (2645). (Adapted from Ref. [2892])

First determination of the spin and parity of the charmed-
strange baryon Ξ+

c (2970) by BELLE
The BELLE collaboration identified Ξ+

c (2970) in the decay
chain Ξ+

c (2970) → Ξ0
c (2645)π+ → Ξ+

c π−π+; Ξ+
c is

reconstructed from its decay into Ξ−π+π+ [2892]. Due
to its mass, Ξ0

c (2645) is likely the spin excitation with
J P = 3/2+ of the J P = 1/2+ ground state Ξ0

c . The helicity
angle in the primary decay, i.e. the angle between the π+ and
the opposite of the boost direction in the c.m. frame both cal-
culated in the Ξ+

c (2970) rest frame, proved to be insensitive
to some likely J P combinations. However, the predictions
for different J P ’s vary significantly for the angular distribu-
tions in the secondary decay (see Fig. 237).

The analysis shows that quantum numbers J P = 1/2+ are
preferred for Ξ+

c (2970). These are the quantum numbers of
the Roper resonance. The BELLE collaboration noted that
its mass difference to the Ξc ground state is about 500 MeV.
The same excitation energy is required to excite the Roper
resonance N (1440), the Λ(1600) and the Σ(1660), all with
J P = 1/2+.

First observation of excited Ωb states by LHCb
The LHCb collaboration searched for narrow resonances in
the Ξ0

b K− invariant mass distribution [2893]. The Ξ0
b has

a lifetime of (1.48± 0.03)10−12 s, cτ ≈ 500μm, which is
sufficiently long to separate the interaction and the decay
vertices. Four peaks can be seen (Fig. 238), which correspond
to excited states of Ωc. With the given statistics, quantum
numbers can not yet be determined.

9.4.4 The mass spectrum of excited heavy baryons

Figure 239 shows the mass spectrum of heavy baryons with
a single charm or bottom quark. Established light baryons
with strangeness are shown for comparison. The quantum
numbers of low-mass heavy baryons are mostly known, for
higher-mass states this information is often missing. The
masses are given as excitation energies above the Λ (Λc,
Λb) mass.
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Fig. 238 Distribution of the mass difference MΞ0
b K− − MΞ0

b
for

Ξ0
b K− candidates. The background is given by the wrong-sign can-

didates Ξ0
b K+. (From Ref. [2893].)

Fig. 239 Heavy baryons with charm or bottomness and a comparison
with light baryons with strangeness. All heavy baryons are shown, light
baryons are shown at the pole mass and are only included with 3* or
4* rating. When two quantum numbers are given, the first one refers
to the lower-mass state, the second one to the state above. The states
with L = lρ = lλ = 0 are shown in green, states with L = 1 in red
(orange for members of 4̄F), states L = 2 in blue, states with unknown
spin-parity in brown

At the first glance, the spectrum looks confusing. The Λ

spectrum is crowded, there is a low-mass negative-parity spin
doublet, a second doublet – at about the same mass as a Σ

spin doublet – a pair with J P = 1/2− and 5/2−where a 3/2−
state seems to be missing, and then a positive-parity doublet
with J P = 3/2+, 5/2+. In the Λc spectrum, the higher-
mass negative-parity states and the positive-parity doublet
are inverted in mass.101 The 3/2+−1/2+ hyperfine splitting
decreases rapidly when going from Σ and Ξ to Σc and Ξc

and fromΣb andΞb. It is interesting to note that a similar pat-
tern is observed in mesons: the hyperfine splitting decreases
when going from ρ−π to D∗−D and to B∗−B. Also, there
is one Ξ 1/2+ ground state but two states for Ξc and Ξb. The
lowest-massΩ has J P = 3/2+, in the charm sector, two low-
mass Ωc states are known with J P = 1/2+ and 3/2+, the
Ωb spectrum has just one low-mass state with J P = 1/2+.

101 This inversion was predicted by Capstick and Isgur long before the
states were discovered [771].

9.4.5 Heavy baryons as three-quark systems

The spatial wave function
The orbital wave functions of excited states are classified into
two kinds of orbital excitations, the λ-mode and the ρ-mode
(see Eq. (9.1)). In heavy baryons with one heavy quark, the
λ-mode is the excitation of the coordinate between the heavy
quark and the light diquark, and the ρ-mode is the excitation
of the diquark cluster. In light-baryon excitations, the λ and ρ

oscillators are mostly both excited, e.g. to lλ = 1, lρ = 0 and
lλ = 0, lρ = 1, the two components of the wave function
having a relative + or − sign. In heavy baryons with one
heavy quark, the mixing between these two configurations is
small.

The two oscillators have different reduced masses,mρ and
mλ:

mρ = mq

2
, mλ = 2mqmQ

2mq + mQ
. (9.37)

The ratio of harmonic oscillator frequencies is then given by

ωλ

ωρ

=
√

1

3
(1+ 2mq/mQ) ≤ 1. (9.38)

In the heavy-quark limit (mQ →∞), the excitation energies
in the λ oscillator are reduced by a factor

√
3.

Diquarks
We first consider the light diquark. The two light quarks can
have either the symmetric flavor structure 6F or the anti-
symmetric flavor structure 3̄F . The spin of the light diquark
can be sqq = sl = 1 or sl = 0 leading to a symmetric
or an antisymmetric spin wave function. The color part of
the wave function is totally antisymmetric. Hence flavor and
spin wave functions are linked. In an S-wave, scalar (“good”
or g) and axial-vector (“bad” or b) diquarks can be formed.
The intrinsic quark spins couple to the internal orbital angu-
lar momentum lρ , leading to excited diquarks with orbital
excitations.

(lρ = 0, S)
{
sl = 0 (A), 3̄F (A), jqq = 0, (g)
sl = 1 (S), 6F (S), jqq = 1, (b)

(lρ = 1, A)

{
sl = 0 (A), 6F (S), jqq = 1, (g)
sl = 1 (S), 3̄F (A), jqq = 0/1/2, (b)

(lρ = 2, S)
{
sl = 0 (A), 3̄F (A), jqq = 2, (g)
sl = 1 (S), 6F (S), jqq = 1/2/3, (b)

· · ·
where we have denoted the total angular momentum of the
light diquark as jqq .

Coupling of angular momenta
Figure 240 shows how the orbital angular momentum and the
diquark spin couple to the total diquark angular momentum
jl . This in turn couples to the heavy-quark spin sQ giving
rise to spin doublets (or just spin-1/2 states for jl = 0). Note
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Fig. 240 Heavy baryons in P-wave. The light diquark couples to the
spin of the heavy quark. The light diquark of Λ and Ξ heavy baryons
are in the antisymmetric flavor 3̄F and in the symmetric 6F in the case
of Σ,Ξ ′ and Ω (Adapted from [2894])

the Λ and Ξ spin doublet with sl = 0 and 3̄F. In this case
the wave function is antisymmetric in spin and flavor, this is
a “good” diquark.

Only a few heavy baryons are known with L = 2: Λc

and Λb with spin-parity 3/2+ and 5/2+. The other expected
states seem to show up only in the higher-mass, less-explored
region. The two observed doublets can be assigned to a con-
figuration in which lρ = 2, Lλ = 0, and the diquark is in 3̄F

and sl = 0.

3̄F : L = 2⊗ sl = 0(A)– jl = 2

The diquark is a “good” diquark. Note that the states
Λc(2860), Λc(2880) with spin-parity 3/2+ and 5/2+ (L =
2) are belowΛc(2940)with 3/2−. The latter state has a “bad”
diquark and is excited to L = 1 in the ρ oscillator. In this
competition, the “good” diquark and λ excitation with L = 2
wins over “bad” diquark and ρ oscillator even though the
orbital angular momentum of Λc(2940) is L = 1!

Table 42 gives a survey of the coupling scheme of Qqq
baryons. The spin and orbital angular momentum of the two
light quarks couple to jq , and when combined with the heavy-
quark spin sQ , the final J P results. There are also states with
mixed excitations like lρ = 1, lλ = 1. These are unlikely to
be produced (see Sect. 9.2) and are not included here. Λ and
Ξ with sq = 0 and lρ = 0 have a “good” light diquark. For
the Λc we denote the light diquark by [u, d]. Note that also
one light and the heavy quark can be antisymmetric in their
spin and flavor wave function. We write Σb = [ub]s.

Heavy quark limit
When mQ → ∞, the heavy quark spin sQ is conserved.
Due to the conservation of the total angular momentum J ,
also the angular momentum carried by the light quarks is
conserved. Hence all interactions which depend on the spin of
the heavy quark disappear. Thus, the mass difference within a
spin doublet with, e.g., J P = 3/2+ and 1/2+, will disappear

Table 42 The λ- and ρ-mode assignments of the P and D-wave exci-
tations of singly-heavy baryons. lρ, lλ are orbital angular momenta of
the two oscillators, L the total orbital angular momentum, sq is the spin,
jq the total angular momentum of the diquark, and J the total spin

lρ lλ L sq jq Λ,Ξ Σ,Ξ ′,Ω J P

0 1 1 0 1 λ ρ 1/2−, 3/2−

0 1 1 1 0 ρ λ 1/2−

1 0 1 1 1 ρ λ 1/2−, 3/2−

1 0 1 1 2 ρ λ 3/2−, 5/2−

0 2 2 0 2 λ – 3/2+, 5/2+

2 0 2 0 2 ρ – 3/2+, 5/2+

0 2 2 1 1 – λ 1/2+, 3/2+

0 2 2 1 2 – λ 3/2+, 5/2+

0 2 2 1 3 – λ 5/2+, 7/2+

2 2 2 1 1 – ρ 1/2+, 3/2+

2 0 2 1 2 – ρ 3/2+, 5/2+

2 0 2 1 3 – ρ 5/2+, 7/2+

in the heavy-quark limit. Indeed, the mass differences

MΣ(1520)3/2+ − MΣ(1190) = 230 MeV

MΣc(2520)3/2+ − MΣc(2455) = 65 MeV

MΣb(5830)3/2− − MΣb(5820) = 20 MeV

decrease as mQ becomes large.

9.4.6 A guide to the literature

The first prediction of the full spectrum of baryons including
charmed and bottom baryons was presented by Capstick and
Isgur [771], 3 years before the first baryon with bottomness
was discovered. The publication remained a guideline for
experimenters for now 36 years! Capstick and Isgur used a
relativized quark model with a confining potential and effec-
tive one-gluon exchange. Based on the quark model, further
studies of the mass spectra of heavy baryons were performed.
They are numerous, and only a selection of papers can be
mentioned here.

Ebert, Faustov and Galkin calculated the mass spectra for
orbital and radial excitations and constructed Regge trajec-
tories [2895]. Yu, Li, Wang, Lu, and Ya [2896] calculated
the mass spectra and decays of heavy baryons excited in the
λ-mode. Li, Yu, Wang, Lu, and Gu [2897] restricted the cal-
culation – again based on the relativized quark model – to
the Ξc and Ξb families. In their model, all excitations are in
the λ-mode.

Migura, Merten, Metsch, and Petry [2898] calculated
excitations of charmed baryons within a relativistically
covariant quark model based on the Bethe–Salpeter-equation
in instantaneous approximation. Interactions are given by a
linearly rising three-body confinement potential and a fla-
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Table 43 Increase of baryon
masses with the number of
strange quarks

3n → 2ns 2ns → n2s n2s → 3s

Δ−(1232)3/2+ Σ−(1385)3/2+ Ξ−(1530)3/2+ Ω−3/2+

+155 MeV +148 MeV + 137 MeV

Σ0
c (2520)3/2+ Ξ0

c (2645)3/2+ Ω0
c (2770)3/2+

+128 MeV + 120 MeV

Σ0
c (2455)1/2+ Ξ ′0

c 1/2+ Ω0
c 1/2+

+121 MeV +116 MeV

Σ−
b (5816)1/2+ Ξ ′0

b 1/2+ Ω−
b 1/2+

+120 MeV +111 MeV

vor dependent two-body force derived from QCD instanton
effects. Valcarce, Garcilazo and Vijande [2899] performed
a comparative Faddeev study of heavy baryons with nonrel-
ativistic and relativistic kinematics and different interacting
potentials that differ in the description of the hyperfine split-
ting. The authors conclude that the mass difference between
members of the same SUF(3) configuration, either 3̄F or 6F ,
is determined by the interaction in the light-heavy quark sub-
system, and the mass difference between members of differ-
ent representations is mainly determined by the dynamics of
the light diquark.

Chen, Wei and Zhang [2900] derive a mass formula
in a relativistic flux tube model to calculate mass spec-
tra for Λ and Ξ heavy baryons and assign quantum num-
bers to states whose quantum numbers were not known.
Faustov and Galkin [2901] assigned flavor- and symme-
try dependent masses and form factors to diquarks and
calculated the masses of heavy baryons within a relativis-
tic quark–diquark picture. Quantum numbers are suggested
for the Ωc excitations [2902,2903] and other states with
unknown spin-parities. A further diquark model, again with
adjusted diquark masses, is presented by Kim, Liu, Oka,
and Suzuki [2904] exploiting a chiral effective theory of
scalar and vector diquarks according to the linear sigma
model.

QCD sum rules have been exploited to study P-wave heavy
baryons and their decays within the heavy quark effective the-
ory (see [2905] and Refs. therein). The low-lying spectrum
of charmed baryons has also been calculated in lattice QCD
with a pion mass of 156 MeV [2906]. The results – compar-
ing favorably with the data – are compared to earlier lattice
studies that are not discussed here.

All calculations reproduce the observed spectrum with
good success, with a large number of parameters. For the
reader, it is often not easily seen what are the main driv-
ing forces that generate the mass spectrum. Clearly, a con-
finement potential is mandatory, spin dependent forces are
necessary. In the following phenomenological part we try
to identify the leading effects driving the resonance spec-
trum.

9.4.7 Phenomenology of heavy baryons

We start with a simple observation: masses of baryons
increase when a u or d quark is replaced by an s quark
(see Table 43). For light baryons, this is known as U -
spin rule. The constituent s-quark mass decreases in heavy
baryons. Note that the difference of current quark masses is
ms − mn ≈ 124 MeV (see Table 43).

In Table 44 we show the mass difference of the lowest-
mass J P = 3/2− states with (u, d, s, c) or (u, d, s, b) quarks
and the J P = 1/2+ ground states: The mass differences are
surprisingly small. The N (1520)− N mass difference is 580
MeV, much larger than the mass differences seen here. In the
table, [ud] represents wave functions with a u, d quark pair
that is anti-symmetric in spin and flavor. These diquarks are
often called good diquarks. The presence of good diquarks
leads to a stronger binding. In the 4-plet, all three quark
pairs have such a component w.r.t. their exchange. We denote
this by [ud,us,ds]. Thus there are three good diquarks in the
wave function. This fact leads to the low masses of the 4-plet
members. The similarity of the mass splittings supports sim-
ilar interpretations of the four resonances from Λ(1520) to
Ξ0

b 3/2− .

In most publications, both resonances,Λc(2595)1/2− and
Λc(2625)3/2−, are discussed as 3-quark baryons. However,
Nieves and Pavao [2907] have studied these two resonances
in an effective field theory that incorporates the interplay
between Σ

(∗)
c π − ND(∗) baryon-meson dynamics and bare

P-wave cud quark-model state and suggest that these two
resonances are not heavy quark symmetry spin partners.
Instead, they see

Λc(2625)3/2−

as a dressed three-quark state while Λc(2595)1/2− is
reported to have a predominant molecular structure. Nev-
ertheless, the two states Λc(2625)3/2− and Λc(2595)1/2−
obviously form a spin doublet.

The mass shift in H atoms between the two ground states
with electron and proton spins parallel or antiparallel is called
hyperfine splitting. We borrow this expression to discuss the
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Table 44 Mass splitting between baryon ground states belonging to
the symmetric 20plet (with J P = 3/2+) and to the mixed-symmetry
20plet (with J P = 1/2+)

Ξ0
b 3/2− [us,ub,sb] Ξ0

b 1/2+ [us] δM = 310 MeV

Λ0
b 3/2− [ud,ub,db] Λ0

b 1/2+ [ud] δM = 300 MeV

Ξ+
c 3/2− [us,uc,sc] Ξ+

c 1/2+ [us] δM = 350 MeV

Λ+c 3/2− [ud,uc,dc] Λ+c 1/2+ [ud] δM = 400 MeV

Λ(1520) [ud,us,ds] Λ1/2+ [ud] δM = 400 MeV

Table 45 Mass splitting between baryons with fully symmetric wave
functions and baryons with antisymmetric quark pairs. The [us] indi-
cates an antisymmetric quark pair

δM [MeV] mq [GeV] δM · mq

Σb 3/2+ Λb [ud]b 0.211 ∼ 0.3 0.063

Σc 3/2+ Λc [ud]c 0.232 ∼ 0.3 0.070

Σ 3/2+ Λ [ud]s 0.268 ∼ 0.3 0.080

Δ 3/2+ N [ud]u 0.292 ∼ 0.3 0.088

Ξb 3/2+ Ξb [us]b 0.163 ∼ 0.45 0.073

Ξc 3/2+ Ξc [us]c 0.177 ∼ 0.45 0.080

Ξ 3/2+ Ξ [us]s 0.217 ∼ 0.45 0.098

Σ 3/2+ Σ [us]u 0.191 ∼ 0.45 0.086

Ξc 3/2+ Ξ
′
c [uc]s 0.067 ∼ 1.4 0.093

Σc 3/2+ Σc [uc]u 0.065 ∼ 1.4 0.090

Ξb 3/2+ Ξ
′
b [ub]s 0.020 ∼ 4.25 0.085

Σb 3/2+ Σb [ub]u 0.021 ∼ 4.25 0.089

difference between the ground states with all three quark
spins adding to J = 3/2 (and belonging to the symmetric
20-plet) and with those having J = 1/2 (that belong to the
mixed-symmetry 20-plet). We thus compare masses of the
fully symmetric 20s-plet with those from the 3̄-plet or 6-plet
within the 20m-plet (see Table 45). The two configurations
differ by the orientation of the heavy-quark spin relative to the
spin of the light diquark. According to the heavy-quark-spin
symmetry, this mass difference has to vanish withmQ →∞.
In the Table we assume constituent quark masses of 0.15 GeV
(u, d), 0.3 GeV (s), 1.25 GeV (c) and 4.1 GeV (b).

The J P = 3/2+ states have a fully symmetric flavor wave
function, the J P = 1/2+ states have an antisymmetric quark
pair (a good diquark) that is indicated in the list. Their effect
scales with 1/mq . The mass shift due to the presence of good
diquarks is expected for instanton-induced interactions.

Heavy baryons at higher mass:
Next we discuss the higher-mass negative-parity states. In
light-baryon spectroscopy, there are seven negative-parity Λ

states expected in the first excitation level: two singlet states
with J P = 1/2−, 3/2−, two octet states with intrinsic total
quark spin s = 1/2 and J P = 1/2−, 3/2−, and a J P =
1/2−, 3/2−, 5/2− triplet with s = 3/2. In light baryons,

bothλ andρ oscillator are coherently excited. In heavy-quark
baryons, the two oscillators decouple, and the λ and ρ modes
are well separated. The low-lying spin-doublet of P-wave
ΛQ states is dominated by a λ-mode excitation, the other
five expected states are excited in the ρ mode.

Unfortunately, only one negative-parity state at a higher
mass has been reported, the Λc(2940)3/2−. Its mass is 653
MeV above the Λ+c . We interpret this state as lρ excita-
tion with a diquark spin s = 1. The Λ(1690) 3/2− is only
570 MeV above the Λ, it is excited in both the λ and the ρ

mode.
The mass of Λc(2940)3/2− (with intrinsic orbital angular

momentum L = 1) is above the masses of the positive-parity
states Λc(2860)3/2+ and Λc(2880)5/2+ (having L = 2).
Yet, the mass of Λ(1690)3/2− falls well below the masses
of Λ(1890)3/2+ and Λ(1820)5/2+ for reasons discussed
above.

9.4.8 Pentaquarks

In 2015, the LHCb collaboration reported the observation of
two exotic structures in the J/ψp system, a broad resonant
structure with a Breit–Wigner width of about 200 MeV called
Pc(4380)+ and a narrow state called Pc(4450)+ [2885].
The exotic structures were observed in the reaction Λ0

b →
J/ψK− p. An excited three-quark nucleon cannot decay into
J/ψ p, this would violate the OZI rule. Hence the minimal
quark content is (cc̄uud). The findings met with great inter-
est; the publication is quoted more than 1600 times (2023,
October). Indeed narrow baryonic resonances with hidden
charm had been predicted several years before as dynami-
cally generated states [2908–2910].

A multitude of different interpretations of the observed
structures is offered in the literature, but none is accepted
anonymously. There are numerous reviews on tetra- and pen-
taquarks and their possible interpretations [1427,2692,2911,
2911–2914].

With increased statistics, Pc(4312)+ was confirmed and
the higher-mass Pc(4450)+ was shown to be split into two
narrow overlapping structures, Pc(4440)+ and Pc(4457)+
[2886]. The existence of the broad resonance was not con-
firmed. The data and a fit are shown in Fig. 241 which also dis-
plays some relevant thresholds. In addition, a further smaller
structure can be seen at 4380 MeV, close to the Σ+∗

c D̄0

threshold. A narrow structure here is expected in molecu-
lar models (see e. g. [2915]), but due to limited statistics
there was no attempt to describe it in the recent LHCb anal-
ysis [2886]. The resonant parameters – including the broad
structure at 4380 MeV – are reproduced in Table 46.

Quantum numbers J P = 3/2− and 5/2+ were pre-
ferred for Pc(4380)+ and Pc(4450)+. In the later publication
[2886], no quantum numbers are determined.
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Fig. 241 The J/ψ p mass distribution fitted with three BW ampli-
tudes and a sixth-order polynomial background. The thresholds for the
Σ+

c D̄0. (Adapted from [2886].)

In the reaction B0
s → J/ψ p̄ p a pentaquark-like struc-

ture, named Pc(4337)+, was observed in the J/ψ p̄ and
J/ψ p mass distributions [2916]. The significance, as deter-
mined from a 3-body amplitude analysis, is between 3.1 and
3.7 σ . Its Breit–Wigner parameters are incompatible with
the structures observed in Λb decays. The lighter state at
4312 MeV was not found in this reaction, highlighting the
importance of the production mechanism for the formation
of these resonances. However, it has been pointed out in
[2917] that in a region with many close-by thresholds, the
Breit–Wigner parameters measured in a particular channel
may differ significantly from the pole location.

Strange counterparts to these pentaquark states, e.g. res-
onances in the J/ψ Λ system, are denoted by Pcs and have
(cc̄uds) as minimal quark content. A peak has been reported
by LHCb in the reaction Ξ−

b → J/ψ ΛK− [2918]. Close to
the Ξ0

c D∗0 threshold a further peak was found, with a mass
and width given in Table 46, too.

The J/ψΛ system was also investigated in 2019 by CMS
[2920], exploiting the small phase space available in the B-
meson decay B− → J/ψ Λ p̄. The analysis showed that
the observed spectrum was incompatible with a pure phase
space distribution. Very recently, the LHCb collaboration
reported a new analysis of this process [2921]. Now, a signal
in the J/ψ Λ subsystem, with preferred quantum numbers
J P = 1/2−, was established at high significance, named
P0
cs(4338). Due to the presence of the second (anti)baryon,

the phase space in the B-meson decay is too small to access
the heavier pentaquark state found in the Ξb decay.

These structures have stimulated an intense discussion of
the nature of these structures. Do they originate from thresh-
old singularities due to rescattering in the final state leading

Table 46 J/ψp and J/ψΛ pentaquarks found by the LHCb collabo-
ration

Pc(4312)+: M = (4311.9 ± 0.7 +6.8
−0.6) MeV

[2886] Γ = (9.8 ± 2.7 +3.7
−4.5) MeV

Pc(4380)+: M = (4380 ± 30) MeV

[2885] Γ = (205 ± 90) MeV

Pc(4440)+: M = (4440.3 ± 1.3 +4.1
−4.7) MeV

[2886] Γ = (20.6 ± 4.9 +8.7
−10.1) MeV

Pc(4457)+: M = (4457.3 ± 0.6 +4.1
−1.7) MeV

[2886] Γ = (6.4 ± 2.0 +5.7
−1.9) MeV

Pc(4337)+: M = (4337 +7
−4
+2
−2) MeV

[2916] Γ = (29 +26
−12

+14
−14) MeV

P0
cs(4459): M = (4458.8 ± 2.9 +4.7

−1.1) MeV

[2918] Γ = (17.3 ± 6.5 +8.0
−5.7) MeV

P0
cs(4338): M = (4338.2 ± 0.7 ± 0.4) MeV

[2919] Γ = (7.0 ± 1.2 ± 1.3) MeV

to a logarithmic branching point in the amplitude? Are they
hadronic molecules like the deuteron? Are they compact or
triple-quark–diquark systems or states where a cc̄ center is
surrounded by light quarks?

The peaks are mostly seen very close to important thresh-
olds. Thus they could originate from threshold singularities.
We refer to a few publications [2689,2922–2924]. The LHCb
collaboration studied this hypothesis and found it incompat-
ible with the data, but the attempts continued [2925–2928].

Very popular are interpretations as bound states composed
of charmed baryons and anti-charmed mesons or of char-
monium states binding light-quark baryons. The pentaquark
states are then seen to be of molecular nature and be bound
by coupled-channel dynamics [2915,2929–2939]. Diquark–
triquark models were studied [2940–2943], and sum rules
are exploited in Refs. [2944,2945].

9.4.9 Concluding remarks

The study of hadrons with heavy quarks has developed into
a fascinating new field of particle physics. Particular excite-
ment is due to the discovery of unconventional structures that
are hotly debated. But also the “regular” heavy hadrons yield
very useful information on the interactions of quarks in the
confinement region.

10 Structure of the nucleon

Conveners:
Volker Burkert and Franz Gross
After discussion of the baryon spectrum in the previous sec-
tion, this section focuses on the nucleon, the most studied of
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all hadrons. Soon after the proton and neutron were estab-
lished as the constituents of atomic nuclei, experiments mea-
suring their magnetic moments μN found that these spin-
1/2 particles are not point-like elementary fermions with
expected μp = 1.0μN for the proton, and μn = 0 for the
neutron. Instead μp ≈ 2.5μN and μn ≈ −1.5μN , showing
that the nucleons have significant structure. The discovery
that the proton and the neutron are not point-like objects gave
birth to the field of hadron structure explorations discussed
in this section. Beginning with the Nobel prize winning mea-
surement of the finite size of the proton in elastic electron–
proton scattering experiments (Hofstadter, 1956) there have
been generations of electron scattering measurements study-
ing the proton and neutron form factors, reviewed by Andrew
Puckett

In 1968 experiments employing high-energy electrons
scattering from proton targets at SLAC found surpris-
ingly large inelastic cross sections, or structure functions,
which rather than falling rapidly with the exchanged four-
momentum squared Q2 (as would elastic cross sections) were
observed to “scale” with Q2. The observation of scaling sug-
gested scattering from point-like quarks in the proton, which
could most naturally be described in terms of parton dis-
tribution functions (PDFs). These PDF measurements have
shed light on the momentum distributions of the different
quark species (Wally Melnitchouk), and with the use of spin-
polarized electrons and polarized nucleon targets the quark
contributions to the nucleon spin have been precisely mea-
sured (Xiangdong Ji), putting significant challenges on the
theory of QCD to reproduce or predict the results of these
measurements.

As these studies continue, both in experiment with
high precision measurements, and in theory, new chal-
lenges have arisen with the discovery of the general-
ized parton distributions that lead to the assembly of 3-
dimensional tomographic images of the quark (and gluon)
transverse spatial and longitudinal momentum distribu-
tions employing deeply virtual exclusive processes (Andreas
Schafer and Feng Yuan). The challenges here will be
on the experiments to access these generalized parton
distributions (GPDs) and transverse momentum distribu-
tions (TMDs) from experiments like deeply virtual Comp-
ton scattering and deeply virtual meson production, and
on the phenomenology aiding the analysis. Some of the
measurements are underway at Jefferson Lab in several
experiment halls. The EIC will vastly extend the kine-
matic reach of the measurements into the gluon dominated
regime.

10.1 Form factors

Andrew Puckett

10.1.1 Introduction

Elastic scattering of nucleons by point-like, leptonic probes
is among the simplest observable processes sensitive to the
nucleon’s internal structure. The study of elastic electron–
nucleon scattering started in the 1950s with the pioneer-
ing measurements by Robert Hofstadter and collaborators
in HEPL (the High Energy Physics Lab) at Stanford [599]
at incident electron energies of up to 550 MeV. Among the
highlights of this work were the first conclusive demonstra-
tion of a deviation of the elastic electron–proton scattering
cross section from point-like behavior, and the first direct
measurement of the proton’s finite size, leading to the award-
ing of the 1961 Nobel Prize in Physics to Hofstadter “for his
pioneering studies of electron scattering in atomic nuclei and
for his thereby achieved discoveries concerning the structure
of the nucleons”.

In the Standard Model, the lepton–nucleon interaction
is purely electroweak. Due to the nucleon’s finite size and
complicated structure, the elastic scattering cross section
falls much more rapidly as a function of the squared four-
momentum transfer Q2 than the point-like scattering cross
section. Given the limitations of past, present, and planned
lepton–hadron scattering facilities, elastic scattering of lep-
tons by nucleons only occurs with sufficient probability to
be practically measurable at energy scales where electro-
magnetic interactions are dominant; i.e., at four-momentum
transfers Q2 � M2

W,Z , where MW (MZ ) ≈ 80(91) GeV
is the W (Z ) boson mass. As such, for most practical pur-
poses this process can be interpreted in the framework of
low-order perturbation theory in quantum electrodynamics
(QED). However, the elastic form factors of the nucleon for
charged- and neutral-current weak interactions are interest-
ing in their own right and accessible even at relatively low
energies in neutrino scattering [2946] and through parity-
violating asymmetries in polarized electron scattering that
are sensitive at leading order to the interference between pho-
ton and Z exchange amplitudes [2947–2949].

The use of elastic lepton–nucleon scattering as a precision
probe of nucleon structure and dynamics remains a highly
active area of investigation at low and high energies. The
improvements in energy reach and precision of these mea-
surements over decades have led to many important discover-
ies and surprises that have dramatically reshaped our under-
standing of the nucleon. This section will present a brief
summary of the status of the nucleon’s elastic scattering form
factors, their definition and physical interpretation, outstand-
ing challenges and problems, and the near-future outlook for
further advancements.
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Fig. 242 Feynman diagram for elastic eN scattering in the one-
photon-exchange approximation. Initial and final nucleons are repre-
sented by three lines each to indicate the nucleon’s three-quark valence
structure, while the circle represents the modification of the photon-
nucleon vertex function by the nucleon’s internal structure. See text for
details

10.1.2 Theoretical formalism

The starting point for the interpretation of elastic electron–
nucleon (eN ) scattering is the one-photon-exchange (OPE)
approximation, which is roughly analogous to the first Born
approximation and/or the plane wave impulse approximation
in non-relativistic quantum scattering theory. In the follow-
ing discussion the terms OPE and Born approximation will
be used interchangeably. The tree-level Feynman diagram for
eN → eN is depicted schematically in Fig. 242. An inci-
dent electron of four-momentum k ≡ (Ee,k) scatters from a
nucleon of mass M , assumed to be initially at rest in the lab
frame, with initial four-momentum P ≡ (EN ,p) = (M, 0).
The electron recoils with four-momentum k′ ≡ (E ′e,k′) and
the nucleon recoils with four-momentum P ′ ≡ (E ′N ,p’)
after absorbing the four-momentum transfer q ≡ k − k′.
Energy and momentum conservation in this two-body scat-
tering process dictate P ′ = P+q = (M+ Ee− E ′e,k−k′).
Together with the requirement that the final-state particles be
“on mass shell”; i.e., that they satisfy the relativistic energy–
momentum relation for a free particle (E2 = p2 + m2), the
kinematics of the elastic eN scattering process are entirely
specified by just two independent variables, commonly cho-
sen to be the incident electron energy Ee and the electron
scattering angle θe that are directly observed experimen-
tally. Another main variable of interest is the squared four-
momentum transfer Q2 ≡ −q2 = −(k − k′)2 > 0. In the
nucleon rest frame (or in the center-of-momentum frame, or
any other frame in which the initial momenta of the colliding
particles are collinear), the scattering process is independent
of the azimuthal scattering angle of the electron.

In most modern electron–nucleon scattering experiments,
it is safe to use the ultrarelativistic approximation for the
electron (|k| = Ee, |k′| = E ′e, k2 = k′2 = 0), as the inci-
dent beam energies required for sensitivity to the non-trivial
details of nucleon structure are generally quite large com-
pared to the electron mass. Moreover, the vast majority of
elastic electron–nucleon scattering data come from fixed-
target experiments, in which the target nucleus is at rest in
the lab frame. Unless otherwise noted, all of the following
expressions apply in the initial nucleon’s rest frame.

To develop intuition for the physical interpretation of elas-
tic eN scattering, it is useful to consider the closely related
process of ultrarelativistic electron scattering from a static
charge distribution ρ(r) with total charge Ze, given in the
OPE approximation by:

(
dσ

dΩe

)

= Zα2

4E2
e

cos2
(
θe
2

)

sin4
(
θe
2

) |F(q)|2 (10.1)

≡
(

dσ

dΩe

)

Mott
|F(q)|2, (10.2)

where Ee is the incident electron energy, θe is the electron
scattering angle, α is the fine structure constant, and F(q)
is the electron scattering form factor given by the Fourier
transform of the charge distribution:

F(q) ≡
∫

ρ(r)eiq·rd3r, (10.3)

with q ≡ k− k′ the three-momentum transfer in the scatter-
ing process. The Mott cross section as defined in Eq. (10.2)
describes the scattering of ultrarelativistic electrons from a
point-like target of charge Ze with zero spin and zero mag-
netic moment, in the limit where target recoil is negligible. In
the electron–nucleon scattering case, this corresponds to the
requirement Q2 � 2MEe. When target recoil is not negli-
gible, the electron loses energy in the collision, and the Mott
cross section is modified by the factor E ′e/Ee:

(
dσ

dΩe

)

Mott
= Zα2

4E2
e

cos2
(
θe
2

)

sin4
(
θe
2

)
E ′e
Ee

. (10.4)

In much of the modern literature, Eq. (10.4) is taken as the
definition of the Mott cross section, whereas in Mott’s orig-
inal paper, the target recoil factor E ′e/Ee is not included.
Hereafter, we will use the definition (10.4) unless otherwise
noted.

The most general form of the single-photon-exchange
amplitude M for elastic eN scattering consistent with
Lorentz invariance, gauge invariance, and parity conserva-
tion as required by QED, and under the assumption that the
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nucleon is a spin-1/2 fermion obeying the Dirac equation,
can be expressed using the Feynman rules of QED (see, e.g.,
[2140]) as follows (in “natural units” h̄ = c = 1):

M = 4παū(k′)γ μu(k)

(
gμν

q2

)

ū(P ′)Γ νu(P). (10.5)

Here M is the Lorentz-invariant single-photon-exchange
amplitude, ū and u represent free-particle Dirac spinors for
the incoming and outgoing particles, evaluated at the relevant
four-momenta, γ μ is a Dirac γ matrix, gμν is the Minkowski
metric tensor, and Γ ν represents the photon-nucleon vertex
function, given by:

Γ μ = F1(q
2)γ μ + iσμνqν

2M
F2(q

2), (10.6)

with σμν ≡ i
2

[
γ μ, γ ν

]
the antisymmetric tensor formed

from γ μ, γ ν . The form factors F1(q2) (Dirac) and F2(q2)

(Pauli) can be regarded as matrix elements of the electromag-
netic current operator between final and initial nucleon states.
They are real-valued functions of q2, which is the only inde-
pendent Lorentz scalar variable on which the photon-nucleon
vertex function Γ μ can depend. The convention (10.6) for
the γ ∗N vertex function is the most commonly used one
in the literature, and is constructed such that the amplitude
is real (assuming real-valued form factors).102 F1 and F2

represent the (electron) helicity-conserving and (electron)
helicity-flip amplitudes, respectively. The nucleon’s charge
and Dirac (“non-anomalous”) magnetic moment distribu-
tions determine the behavior of F1(q2), while F2(q2) mea-
sures the contribution of the “anomalous” magnetic moment
distribution to the scattering.

Experimentally, the following linearly independent com-
binations of F1 and F2, known as the Sachs electric (GE ) and
magnetic (GM ) form factors [2950], are more convenient:

GE = F1 − τ F2 (10.7)

GM = F1 + F2. (10.8)

The differential cross section in OPE is given in terms of the
Sachs form factors by [599,2950–2952]

dσ

dΩe
=

(
dσ

dΩe

)

Mott

εG2
E + τG2

M

ε(1+ τ)
, (10.9)

where τ and ε are kinematic parameters defined as

τ ≡ Q2

4M2 (10.10)

102 Since no other diagrams interfere with the OPE at the same order
in α, we are of course free to choose the phase of the OPE amplitude
arbitrarily without affecting physical observables.

Fig. 243 Q2 dependence of the ratio G2
E/(G

2
E+τG2

M ) for the proton,
representing the maximum fraction of the reduced cross section carried
by the electric term (at ε = 1). The central value and uncertainty band of
the curve are calculated from the global fit of Ref. [1076]. The dashed
line shows the ratio that would be obtained under the assumption of
form factor scaling (Gp

M = μpG
p
E )

ε ≡
[

1+ 2(1+ τ) tan2
(
θe

2

)]−1

. (10.11)

In the OPE approximation, ε can be interpreted as the longitu-
dinal polarization of the virtual photon [2952]. The electric
and magnetic contributions to the scattering can be sepa-
rated by measuring the cross section while varying the beam
energy and the scattering angle in such a way as to hold
Q2 constant while varying ε, a technique known as Longitu-
dinal/Transverse (L/T) separation or Rosenbluth separation.
The “reduced” cross section

σR ≡ ε(1+ τ)
(dσ/dΩe)Measured

(dσ/dΩe)Mott
,

is linear in ε, with slope (intercept) equal to G2
E (τG2

M ).
In the limit of very small Q2, corresponding to long-

wavelength virtual photons, the cross section behaves as if
the nucleon were a point particle of charge ze (z = +1(0)
for proton (neutron)) and magnetic moment μ = (z + κ) (in
units of the nuclear magneton), with κ the anomalous mag-
netic moment. In this limit, the form factors thus become
GE (0) = z and GM (0) = z + κ . For small but finite Q2

such that τ � εG2
E/G

2
M , the electric term dominates the

cross section, and if target recoil is neglected, Eq. (10.9)
takes the same form as Eq. (10.2), with GE ≡ F(q). Thus,
in the low-energy limit, the electric form factor can be identi-
fied with the Fourier transform of the charge density. Similar
reasoning leads to an interpretation of GM as a Fourier trans-
form of the nucleon’s magnetization density.

The Rosenbluth formula (10.9) describes unpolarized
electron–nucleon scattering. At large values of Q2, the mag-
netic term dominates the OPE cross section, and the sensitiv-
ity of the Rosenbluth method to GE vanishes (see Fig. 243).
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Fig. 244 Standard coordinate system for nucleon polarization compo-
nents in elastic eN scattering. The arrow labeled �P indicates the nucleon
polarization direction and illustrates the definitions of the angles θ∗ and
φ∗ between �P and the momentum transfer q. The x or “t” (transverse)
axis is parallel to the reaction plane but perpendicular to the momen-
tum transfer. The y or “n” (normal) axis is perpendicular to the reaction
plane defined by n̂ ≡ q̂ × k̂. The z or “!” (longitudinal) axis is along
the momentum transfer direction, which coincides with the outgoing
nucleon direction in the lab frame. The direction of the x axis is chosen
so that the Cartesian basis (x̂, ŷ, ẑ) is right-handed

As the use of electron scattering to investigate nuclear struc-
ture expanded during the 1960s and 1970s, and as the technol-
ogy to produce spin-polarized electron beams and nuclear tar-
gets was being developed and improved, several authors inde-
pendently developed the theory of spin-polarized elastic eN
scattering in the OPE approximation and examined the impli-
cations for future measurements of polarization observables
[2953–2956]. Nonzero asymmetries arise when the incident
electron beam is longitudinally polarized and either the target
nucleon is also polarized, or the recoil nucleon polarization
is measured, or both. Asymmetries involving transverse elec-
tron beam polarization are generally suppressed by factors of
me/Ee relative to longitudinal asymmetries, and while such
asymmetries have been measured and are interesting in their
own right, they are not ideal observables for measuring elec-
tromagnetic form factors, and they will not be considered
further in this section.

Figure 244 illustrates the “standard” coordinate system
used in most of the literature on polarized elastic eN scat-
tering. In the case where the target nucleon is polarized, the
asymmetry in the scattering cross section between positive
and negative electron beam helicities is given by

AeN ≡ σ+ − σ−
σ+ + σ−

(10.12)

= PbeamPtarg
[
At sin θ∗ cosφ∗ + A! cos θ∗

]
, (10.13)

where Pbeam is the longitudinal electron beam polarization,
Ptarg is the magnitude of the target nucleon polarization, and
the angles θ∗, φ∗ are defined in Fig. 244. The asymmetries
At and A! are given in terms of τ , ε, and the form factor ratio
r ≡ GE/GM by:

At = −
√

2ε(1− ε)

τ

r

1+ ε
τ
r2

A! = −
√

1− ε2

1+ ε
τ
r2 . (10.14)

Equations (10.14) show that the sensitivity of the double-spin
asymmetry AeN to the form factor ratio is generally highest
when the target is polarized perpendicular to the momentum
transfer but parallel to the scattering plane; i.e., along the
x direction in Fig. 244. Note also that the asymmetries are
sensitive to the ratio GE/GM , but not GE or GM separately.
When the target is unpolarized, the longitudinally polarized
electron transfers polarization to the outgoing nucleon. The
nonvanishing components of the transferred polarization in
OPE are

Pt = PbeamAt

P! = −PbeamA!. (10.15)

Here Pt and P! are the in-plane transverse and longitudi-
nal components of the recoil nucleon’s polarization, respec-
tively. The sign change of P! relative to A! reflects the
spin flip required to conserve angular momentum when the
nucleon absorbs a transversely polarized virtual photon. The
ratio Pt/P! is directly proportional to the form factor ratio
GE/GM :

GE

GM
= − Pt

P!

√
τ(1+ ε)

2ε
= − Pt

P!

Ee + E ′e
2M

tan

(
θe

2

)

(10.16)

Measurements of the differential cross sections, Eq. (10.9),
and polarization observables, Eqs. (10.14) and (10.16), in
elastic eN scattering are the main source of knowledge of
the nucleon’s electromagnetic form factors, which are among
the most important precision benchmarks for testing theoret-
ical models of the nucleon. Moreover, precise knowledge of
these form factors is required for the interpretation of many
different experiments in nuclear and particle physics. In the
next section, we summarize the existing data on nucleon form
factors.

10.1.3 Experimental data

Figures 245, 246, 247, 248 summarize the state of empir-
ical knowledge of the nucleon electromagnetic form fac-
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Fig. 245 (Approximate) World data for Gp
E/GD . “Direct L/T separa-

tions” are published point extractions ofGp
E from Rosenbluth plots. The

points labeled “Bernauer 2014” are the direct Rosenbluth extractions
from the Mainz A1 dataset [618,2957]. The data labeled “Xiong 2019”
are from the PRad experiment [2958]. The global fit is from [1076]. See
text for details

tors, as of this writing. The proton form factors Gp
E and

Gp
M extracted from cross section measurements, as well as

the neutron magnetic form factor Gn
M , can be described to

within ≈ 10% over most of the measured Q2 range by
Gp

E ≈ Gp
M/μp ≈ Gn

M/μn ≈ GD , where GD is the “dipole”
form factor defined as

GD =
(

1+ Q2

Λ2

)−2

, (10.17)

with the scale parameter Λ2 = 0.71 (GeV/c)2 defining the
so-called “standard dipole”. The neutron electric form factor
Gn

E has a very different Q2 dependence; since the neutron has
zero net charge, Gn

E (0) = 0. Nevertheless, the neutron rms
charge radius has been determined with good precision via
neutron–electron scattering length measurements (see Ref.
[616] and references therein). Existing measurements of Gn

E
in quasi-elastic electron scattering on bound neutrons in light
nuclear targets, shown in Fig. 247, exhibit a rapid rise with
Q2 to an appreciable fraction of GD (nearly ≈ 50% at the
highest Q2 for which we have reliable Gn

E data). Precise
high-Q2 measurements of Gp

E/G
p
M using the polarization

transfer method revealed that Gp
E starts falling much faster

than GD above 1 (GeV/c)2, while Gp
M/μp falls to about 70%

of GD at the highest measured Q2 values. Reliable neutron
form factor data only reach Q2 ≈ 3.4(4.5) (GeV/c)2 for
Gn

E (G
n
M ), but significant expansions in the Q2 reach of the

neutron data are anticipated in the near future.
The three-dimensional Fourier transform of GD gives an

exponentially decreasing charge density as a function of the
radial distance from the center of the nucleon, assuming a
spherically symmetric density. The mean square radius of the

Fig. 246 (approximate) World data forGp
M/(μpGD). The “Direct L/T

separations” are published point extractions of Gp
M from Rosenbluth

plots. The Kirk 1973 data [2959] and the Sill 1993 data [2960] are
point Gp

M extractions from single cross section measurements, with
updated radiative corrections as detailed in Ref. [2961]. The data labeled
“Christy 2022” are the point Gp

M extractions from the individual cross
section measurements published in Ref. [2961]. The points labeled
“Bernauer 2014” are the direct Rosenbluth extractions from the Mainz
A1 dataset [618,2957]. The global fit curve is that of Ref. [1076]. See
text for details

nucleon charge density is related to the slope of the electric
form factor in the limit Q2 → 0:

〈
r2
E

〉
= −6

dGE

dQ2

∣
∣
∣
∣
Q2=0

. (10.18)

For the standard dipole form factor, the implied charge radius

is
√〈

r2
E

〉
D = 0.81 fm, which is in rough agreement with

modern, precise determinations of the proton charge radius
from electron scattering and the spectroscopy of electronic
and muonic hydrogen. See Ref. [2962] for a very recent, in-
depth review of the experimental and theoretical status of the
proton charge radius.

Proton data and discussion
Figures 245 and 246 show most of the existing data for the
proton electric and magnetic form factors Gp

E and Gp
M/μp,

respectively, normalized to GD , over the entire measured
Q2 range. While not comprehensive, the data shown are suf-
ficiently representative of the Q2 coverage and precision of
the entire world data. The points shown as empty circles in
Figs. 245 and 246 are published point extractions of Gp

E and
Gp

M based on direct L/T separations from Rosenbluth plots,
and are taken from Refs. [2961,2963–2971]. These extrac-
tions are not entirely independent of each other in terms of
cross section input, as several of the analyses combined data
from multiple experiments at similar Q2 values.

The points shown as filled circles in Fig. 245 are based on
direct measurements of the ratio Gp

E/G
p
M using polarization
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Fig. 247 World data for neutron electric form factor Gn
E/GD . See text

for references, details

Fig. 248 World data for neutron magnetic form factor Gn
M/GD . See

text for references, details

observables, converted to Gp
E/GD values using the global fit

toGp
M from Ref. [1076]. The polarization data forGp

E include
measurements based on the polarization transfer technique
of Eq. (10.16) (Refs. [2972–2985]), and the beam-target
double-spin asymmetry method, Eq. (10.14) [2986–2988].
The points labeled “Bernauer 2014” in Figs. 245 and 246 are
the direct Rosenbluth separations from the Mainz A1 dataset
[618,2957]. The points at very low Q2 labeled “Simon 1980”
and “Xiong 2019” in Fig. 245 are direct extractions of Gp

E
from individual cross section measurements based on the
assumption of form factor scaling (Gp

M = μpG
p
E ) in the case

of Ref. [2989], or using the Kelly fit to Gp
M [610] in the case

of Ref. [2958]. In Fig. 246, the Gp
M values extracted from the

cross sections published in Refs. [2959,2960] are based on
the updated analysis in Ref. [2961], which used the “state-of-
the-art” radiative corrections described in Ref. [2990]. It must
also be noted that the global fits shown in Figs. 245 and 246
include phenomenological two-photon-exchange corrections

that havenot been applied to the published form factor extrac-
tions. These corrections tend to increase the value of Gp

M
by roughly 2–3% in the Q2 range where the discrepancy
between Rosenbluth and polarization results is largest.

The extraction of nucleon form factors from cross sec-
tion measurements generally requires corrections to account
for the effects of higher-order QED radiative processes in
order to isolate the OPE term from which G2

E and/or G2
M

can be determined. While each of these higher-order terms is
at least O(α) relative to the Born term, their combined effect
on the observed cross sections can be significant; typically
as much as 10–30% at modest-to-large Q2 [2991]. As a gen-
eral rule, the magnitude of the radiative correction (RC) to
the elastic cross section tends to increase at large Q2 val-
ues and/or large θe/small ε, and also depends on experiment-
specific parameters including detector acceptance and resolu-
tion, electron beam properties, and target geometry, material,
and density. Additionally, the calculation of the RC depends
strongly on whether the experiment detects the scattered elec-
tron only (most common), the recoil proton only (see, e.g.,
Ref. [2970]), or both final-state particles. For many experi-
ments, the RC calculation is an important source of uncer-
tainty in the extraction of the Born cross section, which is not
directly observable, and can dramatically change the slope
of the Rosenbluth plot in converting measured cross sections
to Born cross sections [2991].

At next-to-leading order in α, the “standard”, model-
independent RCs to ep → ep scattering include vacuum
polarization, vertex, and self-energy terms that are purely
virtual and depend only on Q2, Bremsstrahlung (real photon
emission), which depends strongly on both Q2 and ε and
modifies the reaction kinematics, and two-photon-exchange
(TPE), in the limit where one of the two exchanged pho-
tons is “soft”. The contribution of “hard” TPE, in which
both exchanged photons carry a “large” momentum, can-
not presently be calculated model-independently, and is
neglected in the standard radiative correction procedures. It is
thought to be largely responsible for the discrepancy between
cross sections and polarization observables [2992] in high-
Q2 extractions ofGp

E , and is presently the subject of vigorous
worldwide experimental and theoretical investigation. For a
recent review of the subject, see Ref. [2993].

For conventional RC, most of the earlier published extrac-
tions of the proton form factors relied on the work of Tsai
[2994] or Mo and Tsai [2995]. Following the initial dis-
covery of the rapid fall-off of Gp

E/G
p
M at large Q2 using

polarization transfer [2973], and the resulting large discrep-
ancy between two different observables sensitive (in princi-
ple) to the same fundamental property of the proton, Max-
imon and Tjon [2996] refined the mathematical treatment
of these corrections and removed many of the approxima-
tions made in the expressions of Mo and Tsai, including an
exact calculation of the soft Bremsstrahlung contributions.
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Several authors [2961,2990,2997] have recently examined
the quantitative differences between the calculations of Ref.
[2995] and the more accurate approach of Ref. [2996], and
studied the impact of these differences on previously pub-
lished extractions of the form factors. Updating the published
cross sections to use the more modern RC prescriptions is a
non-trivial undertaking, especially for the older experiments,
since the required modifications depend on details of the
experiments and the associated data analyses that in some
cases were not thoroughly documented in the final publica-
tions.

The most recent and comprehensive effort thus far to
update published elastic ep cross sections to use “state-of-
the-art” RC in the high-Q2 region was described in Ref.
[2961]. The reanalysis focused on a subset of high-Q2 exper-
iments from Jefferson Lab and SLAC for which the original
publications provided sufficient details of the experimental
parameters and the RC prescriptions and cutoffs used that
they could be corrected in a self-consistent way [2961]. As
noted by the authors of [2961] and earlier by [2990], the effect
of updating the RC to the older SLAC data is to reduce, but
not eliminate, the magnitude and significance of the discrep-
ancy in the high-Q2 region. The new, precise cross sections
from Jefferson Lab’s Hall A [2961] extend the Q2 range for
which a statistically significant discrepancy between cross
sections and polarization observables is established.

In the polarization transfer method, the simultaneous mea-
surement of the recoil nucleon polarization components Pt
and P! offers many advantages in the control of experimen-
tal uncertainties. In particular, the form factor ratio can be
determined in a single measurement, eliminating uncertain-
ties resulting from changes in experimental parameters such
as the beam energy, detector angles, spectrometer magnetic
field settings, target polarization and spin direction, and oth-
ers. Moreover, the beam polarization and many other sources
of systematic uncertainty associated with recoil nucleon
polarimetry cancel in the ratio Pt/P!, see, e.g., Ref. [2982],
and reversal of the electron beam helicity reverses the direc-
tion of the recoil nucleon polarization while leaving all other
experimental parameters unchanged, providing for robust
cancellation of systematic effects associated with polarimeter
acceptance and/or detection efficiency [2998]. The dramat-
ically different behavior of Gp

E implied by the polarization
data has profound implications for theoretical modeling of
nucleon structure, as discussed below.

While polarization measurements of GE/GM are gener-
ally thought to have small systematic uncertainties, it must be
noted that the published data exhibit significant internal ten-
sion in the region 0.1–1 GeV2 where several high-precision
experiments give somewhat conflicting results [2975,2983–
2985,2987]. Despite this unresolved tension, polarization
observables are generally regarded as giving the most reli-
able determination of Gp

E at large Q2 values, due to their

superior sensitivity to GE as compared to the Rosenbluth
method, and their relative insensitivity to radiative correc-
tions [2999,2999–3001] and higher-order QED corrections
neglected by the standard RC procedures, such as hard Two-
Photon-Exchange (TPE) [2981,2982]. This property derives
from the fact that polarization asymmetries are ratios of polar-
ized and unpolarized cross sections, that tend to be affected
similarly by radiative processes. The Pt/P! ratio in the polar-
ization transfer method is a ratio of such ratios, and the model-
independent RC to this ratio tend to be utterly negligible com-
pared to the uncertainties in the presently measured range of
Q2 [2982]. Moreover, a precise search for evidence of hard
TPE contributions in this observable found no significant
effect [2981] at 2.5 GeV2, with the ratio μpG

p
E/G

p
M show-

ing no variation with ε in the range 0.15–0.8 with≈ 1% total
uncertainties.

Assuming that polarization measurements give the “true”
value of Gp

E , the fractional contribution of the εG2
E term to

the OPE cross section falls rapidly with Q2, as shown in
Fig. 243. Based on the global fit of Ref. [1076], the electric
term contributes at most 10% of σR at 2 (GeV/c)2, 2% at
5 (GeV/c)2, and even less at higher Q2, basically wiping out
any meaningful sensitivity to GE , since its contribution to σR

becomes comparable to the limits of experimental accuracy
and to the expected magnitude of higher-order QED correc-
tions that are theoretically and experimentally uncertain.

In addition to efforts to resolve the difficulties with Gp
E

at large Q2, there has been a renewed effort to improve the
precision of elastic ep scattering data at very low Q2, since
the CREMA collaboration first published an extremely pre-
cise extraction of the proton radius from Lamb shift mea-
surements in muonic hydrogen [3002], yielding a radius of
about 0.84 fm, smaller by roughly seven standard deviations
than the previous consensus value (at the time) of 0.88 fm
from electron–proton scattering and spectroscopy of ordi-
nary hydrogen. The Mainz A1 collaboration [618,2957] car-
ried out a systematic program of over 1,400 precision cross
section measurements spanning the Q2 range 0.003–1 GeV2

using the “traditional” method based on magnetic spectrome-
ters. They published several direct fits of Gp

E and Gp
M to their

cross section data, testing various functional forms to accu-
rately quantify the uncertainties. They also published direct
L/T separations for Q2 � 0.02 GeV2. While the Mainz Gp

E
extraction is in good agreement with the rest of the world
data, their Gp

M results, whether from global fits or direct L/T
separations, are in significant tension with the other world
data,103 as is evident from Fig. 246. The slower fall-off with
Q2 of the Mainz Gp

M implies a smaller magnetic radius;
indeed, the published Mainz extraction of the proton mag-

103 Note, however, that the Mainz dataset implies aGp
E/G

p
M ratio that is

consistent with the high-precision polarization measurements by Zhan
et al., Ref. [2984].
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Fig. 249 Comparison of PRad [2958] and Mainz A1 [618] elastic
ep→ ep cross sections, normalized to the “standard dipole” cross sec-
tion σD , calculated from Eq. (10.9) assuming Gp

E = Gp
M/μp = GD ;

i.e., ε(1+ τ)σD/σMott = G2
D

(
ε + μ2

pτ
)

netic radius r pM is about three standard deviations below the
consensus of extractions based on other world data.

More recently, the PRad collaboration [2958] performed
new ep → ep cross section measurements using a novel,
magnetic-spectrometer-free method involving precision cal-
orimetry, a windowless gas target, and a simultaneous mea-
surement of the pure electroweak process of Möller scat-
tering (e−e− → e−e−) to constrain the absolute cross
section normalization. Their measurements reached a mini-
mum Q2 of 0.0002 GeV2 with small statistical and system-
atic uncertainties, achieving a proton radius measurement of
rp ≈ 0.83 ± 0.01 fm, consistent with the muonic hydrogen
value.

Figure 249 shows the PRad and Mainz cross section data,
normalized to the “standard dipole” cross section, calculated
from Eq. (10.9) under the assumptionGp

E = Gp
M/μp = GD .

The low end of the PRad Q2 range is in a regime where the
cross section is indistinguishable from point-like behavior
within experimental precision; at the lowest Q2 of the PRad
dataset, G2

D ≈ 0.999. This is unsurprising given that the de

Broglie wavelength of the virtual photon λ = h̄c/
√
Q2 ≈

13 fm is large compared to rp at this Q2.

Neutron data and discussion
The neutron electromagnetic form factors are much more
difficult to measure accurately than those of the proton, due
primarily to the absence of free neutron targets of sufficient
density for electron scattering experiments at large Q2. The
small cross sections for high-energy electromagnetic inter-
actions can generally only be measured accurately in high-
luminosity experiments, and the neutron’s instability and
zero charge severely limit the number of free neutrons that
can be collected in a suitably small volume for a suitable

duration for such experiments. As such, essentially all knowl-
edge of neutron electromagnetic form factors at meaning-
fully large Q2 values comes from measurements of electron
scattering on bound neutrons in light nuclear targets such as
deuterium and 3He.

Since Gn
E (0) = 0, the cross section for elastic en scatter-

ing is dominated by the magnetic term over essentially the
entire measured Q2 range, even at relatively low Q2. The
neutron form factors are accessible experimentally through
a number of scattering observables on light nuclear tar-
gets, including cross sections and spin asymmetries. Model-
dependent extractions of neutron elastic form factors from
measurements of elastic electron–deuteron scattering have
also been attempted at relatively low Q2 values (see, e.g.,
[3003–3006]), but are subject to large theoretical and experi-
mental systematic uncertainties, and are generally considered
less reliable than extractions from measurements of quasi-
elastic scattering on bound nucleons in deuterium and/or
Helium-3, although they are qualitatively consistent.

Figures 247 and 248 show most of the existing data for
Gn

E and Gn
M , respectively, excluding extractions based on

elastic ed cross section measurements. For Gn
E , essentially

all reliable data of reasonable precision come from measure-
ments of polarization observables, since the (quasi)-elastic
(e, e′n) cross section has relatively low sensitivity toGn

E over
the entire accessible Q2 range. The data shown in Fig. 247
include extractions from asymmetry measurements on polar-
ized deuterium targets (Refs. [3007–3010]), polarized 3He
targets (Refs. [3011–3015]), and via recoil neutron polariza-
tion on unpolarized deuterium (Refs. [3016–3018]).

The most reliable known method to determine the neu-
tron magnetic form factor Gn

M is the so-called “ratio” or
“Durand” technique [3019], in which “neutron-tagged” and
“proton-tagged” quasi-elastic electron scattering on a deu-
terium target are measured simultaneously, and the ratio of
cross sections

2H(e, e′n)p/2H(e, e′ p)n

is measured. The simultaneous measurement of quasi-free
scattering on bound protons and neutrons in deuterium, com-
bined with the precise knowledge of the free proton cross
section, allows a determination of the free neutron cross sec-
tion with very small uncertainties. In particular, the elec-
tron acceptance and detection efficiency, the data acquisi-
tion deadtime, and the luminosity cancel exactly in the n/p
ratio, and nuclear effects such as Fermi motion and bind-
ing, final-state interactions, meson-exchange currents, and
others, as well as QED radiative corrections, tend to affect
the d(e, e′n)p and d(e, e′ p)n cross sections nearly identi-
cally [3020], for sufficiently tight cuts on the photon-nucleon
invariant mass W 2, and the angle θpq between the detected
nucleon’s momentum and the momentum transfer direc-
tion, determined from the scattered electron’s kinematics, to
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ensure exclusivity of the reaction. The main source of experi-
mental uncertainty with the ratio method is in the knowledge
of the acceptance/detection efficiency for protons and neu-
trons. Of the data shown in Fig. 248, Refs. [3020–3024] used
the ratio method, Refs. [3025–3028] extracted Gn

M from the
beam-target double-spin asymmetry in inclusive quasielastic
electron scattering on polarized Helium-3, and Refs. [3029–
3031] extracted Gn

M from absolute cross section measure-
ments in either inclusive scattering on deuterium or coinci-
dence d(e, e′n)p scattering. The low-Q2 data for Gn

M show
some inconsistencies, suggesting underestimated theoretical
or experimental systematic uncertainties in some of the older
measurements. The Super BigBite Spectrometer (SBS) Col-
laboration in Jefferson Lab’s Hall A recently collected data
using the ratio method to extend the knowledge of Gn

M to
Q2 = 13.5 GeV2 with very small statistical and systematic
uncertainties. The CEBAF Large Acceptance Spectrometer
(CLAS) collaboration in Jefferson Lab’s Hall B has also col-
lected data for Gn

M up to Q2 ≈ 10 GeV2, with qualitatively
different sources of systematic uncertainty. Both datasets are
currently under analysis.

10.1.4 Theoretical interpretation of nucleon form factors

As the spacelike electromagnetic form factors are among the
simplest, most clearly interpretable, and best-known mea-
surable dynamical properties of the nucleon, they consti-
tute important benchmarks for testing theoretical models.
Figure 250 shows the world data for the nucleon’s space-
like EMFFs together with selected theoretical models and
the expected results from the ongoing high-Q2 form factor
program in Hall A at Jefferson Lab by the Super BigBite
Spectrometer (SBS) collaboration. The SBS measurements
of the neutron magnetic form factor were completed dur-
ing the Oct. 2021–Feb. 2022 running period in Hall A, and
the data are currently under analysis. The SBS measurement
of Gn

E/G
n
M using a polarized 3He target is underway as of

October 2022 and will run through March of 2023, and the
polarization transfer measurements ofGn

E/G
n
M andGp

E/G
p
M

are expected to take data in 2023–2024. The expansion of the
Q2 range and precision of the proton and neutron data will
severely test theoretical models of nucleon structure.

The calculation of nucleon structure from first principles
in QCD is presently only possible using the methods of lat-
tice gauge theory. The accuracy of lattice QCD calculations
is rapidly improving with increases in computing power and
improvements in the control of systematic errors, and the
range of measurable quantities lattice QCD can predict con-
tinues to expand. Nevertheless, the prediction of nucleon
form factors and other observables of hard exclusive pro-
cesses from lattice QCD (see Refs. [609,611,3036,3037] and
references therein for recent efforts at low and high Q2) has
not yet reached a level of precision and accuracy commen-

surate with that of the experimental data, particularly at high
energies. As such, its predictions cannot yet be conclusively
“tested” by the form factor data. Instead, the existing data
serve to guide the improvement of the calculations. Mean-
while, the continued use of QCD-inspired phenomenological
models, approximations, effective theories, and continuum
methods provides valuable insight and improved understand-
ing of the relevant degrees of freedom and dynamical effects
at different energy scales when compared to the data.

For asymptotically large Q2 values, pQCD (perturba-
tive QCD) predicts the scaling behavior of the nucleon
form factors based on simple constituent counting rules and
helicity conservation [226]. For the nucleon, its three-quark
valence structure predicts F1 ∝ Q−4 and F2 ∝ Q−6 (see
the discussion in Sect. 5.9). While the proton data at the
highest measured Q2 values are in superficial qualitative
agreement with the pQCD scaling predictions, it has been
argued [3038,3039] that the pQCD mechanism of multi-
ple hard gluon exchange is not applicable to exclusive pro-
cesses in the presently accessible range of Q2. More recently,
Belitsky et al. considered the effects of both leading and
subleading twist contributions to the nucleon’s light-cone
wavefunctions in a pQCD analysis of the Pauli form fac-
tor F2, deriving the modified logarithmic scaling expres-
sion Q2F2/F1 ∝ ln2

(
Q2/Λ2

)
, with a range of values of

Λ ≈ 200−300 MeV describing the proton data rather well
[3040]. However, in an analysis of the quark flavor decom-
position of the spacelike FFs [3041] shortly following the
publication of data for Gn

E/G
n
M up to 3.4 (GeV/c)2 [3011]

and Gn
M up to 4.8 (GeV/c)2 [3020], it was noted that the neu-

tron Fn
2 /F

n
1 data do not follow this logarithmic scaling, at

least not for values of Λ similar to those fitting the proton
data.

Dispersion theoretical analysis, including models based
on the assumption of VMD (Vector Meson Dominance)
[3042], provide a coherent, self-consistent framework for the
joint interpretation of spacelike and timelike nucleon form
factors over the entire physical range of Q2. VMD-based
models were among the earliest to describe the global fea-
tures of the nucleon form factors and predicted the high-Q2

falloff of Gp
E/G

p
M decades before the polarization trans-

fer experiments. A key assumption of VMD and VMD-
based models is that the virtual photon-nucleon interaction
at low to intermediate Q2 is dominated by vector meson pole
terms, which contribute significantly to the dispersion inte-
grals connecting the spacelike and timelike regions through
the requirements of unitarity and analyticity of the form fac-
tors considered as functions of q2 in the complex plane. For a
recent review of the dispersion theoretical analysis of nucleon
EMFFs, see Ref. [3043].

As mentioned above, in the very low-energy limit, when
target recoil can be neglected, the form factors can be inter-
preted as three-dimensional Fourier transforms of the spa-
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Fig. 250 Data for all four nucleon electromagnetic form factors at
spacelike Q2 with selected theoretical models, the global fit from
[1076], and the projected results from the ongoing SBS program at
Jefferson Lab, plotted arbitrarily at the values from the global fit. Theo-
retical curves shown are the BLFQ calculations of Ref. [941] (Xu 2021),
the VMD-based model of Ref. [3032] (Lomon 2002), the GPD-based

model of Ref. [3033] (Diehl 2005), the covariant spectator model of Ref.
[3034] (Gross 2008), the DSE-based calculation of Ref. [2828] (Segovia
2014), and the quark–diquark model of Ref. [3035] (Cloet 2012). Data
references are the same as those given in the text and described in the
captions of Figs. 245, 246, 247, 248. See text for details

tial distributions of charge (GE ) and current (GM ) in the
nucleon. While this naive density interpretation is invali-
dated by relativity for finite momentum transfers, several
authors have extracted three-dimensional rest-frame densi-
ties from the form factors using model-dependent relativistic
prescriptions to relate the Sachs form factors measured at a
four-momentum transfer Q2 to the static rest frame densi-
ties. A common feature of such extractions is the identifi-
cation of the Sachs form factors GE and GM with Fourier
transforms of the Breit frame104 charge and current densi-
ties. The Breit frame densities are then modified by a boost
factor k2 = Q2/(1+ τ) relating Q2 to the wave number k in
the nucleon rest frame, and another model-dependent factor
relating the Sachs FF to the so-called “intrinsic” form factors
ρ̃(k), defined as Fourier–Bessel transforms of the rest frame

104 The Breit or “brick-wall” frame in elastic eN scattering is the frame
in which there is no energy transfer in the collision. It is related to the
nucleon rest frame by a boost along the momentum transfer direction,
with a boost factor γ = √1+ τ .

densities. The latter correction attempts to account for the
Q2-dependent boost of the nucleon wavefunction itself from
the rest frame to the Breit frame. Kelly [3044] used expan-
sions in a complete set of radial basis functions and a rela-
tivistic boost prescription consistent with the pQCD asymp-
totic behavior to minimize model-dependence and estimate
the uncertainties in the radial densities due to the finite Q2

range of the data. Among his key findings were a broader
charge density for the proton compared to its magnetization
density, consistent with the fall-off of the polarization data
for Gp

E/G
p
M , and a neutron charge density described by a

positive core surrounded by a negative exterior, consistent
with pion-cloud models.

While the three-dimensional radial densities extracted
from the form factors are necessarily model-dependent, a
model-independent density interpretation of the form factors
exists through sum rules relating the form factors to moments
of Generalized Parton Distributions (GPDs) [1081]. Miller
[3045,3046] showed that in the infinite momentum frame,
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the impact-parameter-space densities of charge and magne-
tization in the nucleon are two-dimensional Fourier–Bessel
transforms of the Dirac (F1) and Pauli (F2) form factors,
respectively. Examples of empirical extractions of the trans-
verse densities from the form factor data can be found in
Refs. [2867,3047]. In apparent contrast to model-dependent
extractions of 3D rest frame densities such as Kelly’s, the
neutron’s transverse charge density exhibits a negative core
surrounded by a positive exterior, contradicting the qualita-
tive predictions of several models.

The form factors also play an important role in efforts
to extract the GPDs from measurements of Deeply Virtual
Compton Scattering (DVCS) and other hard exclusive pro-
cesses. Through the aforementioned sum rules, the form fac-
tors F1 and F2 impose fairly powerful constraints on, respec-
tively, the vector (H) and tensor (E) GPDs that enter the Ji
sum rule for the nucleon spin decomposition [1081]. If good
measurements and/or models of the GPDs exist, they can be
used to predict the form factors [3048]. Alternatively, when
combined with the forward parton distributions measured in
deep inelastic scattering, the form factors can be used to con-
strain the GPDs [3033,3049], particularly at high Bjorken x
and/or large −t . Apart from the direct constraints, precise
knowledge of the form factors is also required for analy-
sis of experiments attempting to measure GPDs, to separate
the contributions of the DVCS and Bethe–Heitler processes,
which interfere at the same order in α and are experimentally
indistinguishable.

Constituent quark models (CQMs) have a long history in
nuclear physics and predate the emergence of QCD as the
accepted theory of strong interactions within the Standard
Model. For a review and modern perspective on the role of
the quark model in nuclear physics, see [513]. The early
non-relativistic constituent quark model was successful in
explaining the observed spectra of baryons and mesons as
qqq (fermionic) and qq̄ (bosonic) bound states, and mak-
ing qualitative predictions of meson and baryon masses and
magnetic moments. Indeed, one of the original motivations
for the introduction of the color quantum number prior to
the development of QCD was to preserve the Pauli exclu-
sion principle for low-lying baryon states, whose combined
spin/flavor/orbital quantum numbers are symmetric under the
exchange of any two quarks. This issue was particularly acute
for the spin-3/2 baryon decuplet. To explain dynamical prop-
erties of hadrons in terms of constituent quarks, a model for
the confining quark–quark interaction and the resulting quark
wavefunctions is needed. The “bare” u and d valence quark
constituents of nucleons appearing in the QCD Lagrangian
are almost massless compared to the nucleon mass. As such,
the nucleon, considered as the ground state of a bound sys-
tem of three light quarks, is characterized by a large ratio
of binding energy to constituent mass, making a fully rela-
tivistic treatment mandatory to obtain realistic phenomenol-

ogy and accurate descriptions of the data. A common feature
of CQM calculations of nucleon structure is the “dressing”
of the bare, almost-massless valence quarks by gluons and
quark–antiquark pairs, leading to massive constituent quarks
and/or diquarks as effective degrees of freedom, often carry-
ing their own internal structure. While a full review of rela-
tivistic constituent quark model calculations of nucleon form
factors is beyond the scope of this section, a fairly compre-
hensive overview is given in Ref. [3050] (see also Sect. 5).

In recent years, Hamiltonian light-front field theory has
emerged as a useful framework for the nonperturbative solu-
tion of invariant masses and correlated parton amplitudes
of self-bound systems [922]. Xu et al. recently applied this
framework to calculate the structure of the nucleon using the
method of Basis Light Front Quantization (BLFQ) [941];
see also Sect. 5.3. Their calculation used an effective light-
front Hamiltonian with quarks as the only effective degrees
of freedom, a transverse confining potential from light-front
holography supplemented by a longitudinal confinement, and
a one-gluon-exchange interaction with a fixed coupling. The
light-front wave functions resulting from the solution of this
Hamiltonian were then used to calculate the nucleon form
factors, parton distributions, and other dynamical properties.
The first form factor results from BLFQ [941], solved in
the valence space of three quarks, are compared to the data
and a selection of other theoretical models in Fig. 250. Such
comparisons indicate the need for improvements to the mag-
netic form factors within BLFQ, particularly in the low-Q2

region. Augmenting the BLFQ basis with dynamical gluons
may provide such improvements [953].

In recent years, significant progress has occurred in the
explanation and prediction of a wide range of measur-
able dynamical properties of hadrons in continuum non-
perturbative QCD [821], within the framework of Dyson–
Schwinger Equations (DSE). In this framework, the high-
Q2 behavior of proton and neutron form factors is very sen-
sitive to the behavior of the momentum-dependent dressed
quark mass function that governs the transition from mas-
sive, constituent-quark-like behavior at low energies to light,
parton-like behavior at high energies [2875]. Moreover, the
flavor decomposition of the form factors enabled by com-
bined proton and neutron measurements, soon to be extended
to Q2 values up to 10 GeV2, has the potential to elucidate
the importance of diquark correlations in nucleon structure
[793,3035]. Over the longer term, looking past the ongo-
ing SBS program, major efforts are underway to establish
intense polarized and unpolarized positron beams at Jeffer-
son Lab, which will facilitate precise e+ p/e− p comparisons
over a much larger range of Q2 and ε than presently avail-
able, hopefully leading to a decisive resolution of the Rosen-
bluth/polarization discrepancy for the proton, as part of a
larger physics program using positron beams [3051]. The
planned Electron-Ion Collider at Brookhaven National Lab-
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oratory should be capable of measuring the elastic ep cross
sections to a Q2 of up to 40–50 (GeV/c)2 [3052]. A pro-
posed “low-cost” upgrade [3053] of Jefferson Lab’s Contin-
uous Electron Beam Accelerator Facility (CEBAF) to a max-
imum energy of 20+ GeV using fixed-field alternating gra-
dient magnets to achieve 6–7 additional passes through the
CEBAF linear accelerators would enable further expansions
of the Q2 reach for Gp

E , Gn
E , and Gn

M to at least 20 GeV2.

10.2 Parton distributions

Wally Melnitchouk

10.2.1 Theoretical foundations

Parton distribution functions are the prototypical exam-
ples of QCD quantum correlation functions, which allow
high-energy lepton and/or hadron scattering processes to be
described in terms of quarks and gluons (or partons) (for
reviews see Refs. [3054–3058]). The PDF for a quark of fla-
vor i in a nucleon (moving with momentum p) is defined by
the Fourier transform of a forward matrix element of quark
bilinear operators, which in the A+ = 0 gauge can be written
as

fi/N (x, μ
2) = 1

4π

∫
dz− e−i xp+z−

× 〈N (p)|ψ̄i (z
−) γ+ ψi (0)|N (p)〉, (10.19)

where ψi is the quark field operator, x is the light-cone
momentum fraction of the proton carried by the parton, and
μ is the renormalization scale. Analogous expressions can
be written for antiquark and gluon PDFs, the latter in terms
of the gluon field strength tensor, F A

μν .
The utility of PDFs is that they allow one to relate various

high-energy scattering reactions, which would otherwise not
be easily related to one another, and make predictions for
new reactions in terms of the same set of PDFs obtained
from previous experiments. The key to this is the ability to
factorize the scattering process into a process-dependent, per-
turbatively calculable hard scattering cross section and the
process-independent, nonperturbative function parametrized
by the PDF. An important virtue of PDFs is that in the infinite
momentum frame (or on the light-front) they can be sim-
ply interpreted as probability densities describing how the
proton’s momentum is shared amongst the different parton
constituents, as a function of the fraction x of the proton’s
momentum carried by the parton [1341].

Since quarks and gluons have nonzero spin, the funda-
mental distributions are the PDFs for a specific helicity (spin
projection along the direction of motion), f ↑i and f ↓i , corre-
sponding to parton spins aligned and antialigned with the pro-
ton spin, respectively. Unpolarized scattering experiments
are therefore only sensitive to sums of the helicity PDFs,

fi = f ↑i + f ↓i , while measurements involving polarized
beams and/or targets are required to obtain information on
differences, Δ fi = f ↑i − f ↓i .

Traditionally, PDFs have been determined in global QCD
analyses by simultaneously fitting a wide variety of data for
large momentum transfer processes. Typically, the PDFs are
parametrized in terms of some functional form, the parame-
ters of which are determined by fitting the calculated cross
sections to data. Once the PDFs are determined at some
initial momentum transfer scale, the DGLAP Q2 evolution
equations (see Sect. 2.3) are used to compute them at all
other scales needed for the calculations. The standard data
sets used in global analyses include deep-inelastic scatter-
ing (DIS) of charged leptons from proton or nuclear targets
(or neutrinos from heavy nuclei), Drell–Yan (DY) inclusive
lepton-pair production in hadron–hadron scattering, and the
production of photons, W± or Z bosons, or jets at large trans-
verse momentum in hadronic collisions (see Sect. 10.2.2). We
discuss the specific reactions and relevant data sets in more
detail in the following.

10.2.2 Physical processes and experimental observables

Historically, the main source of information on proton PDFs
has been the DIS of leptons from protons or nuclei, starting
from the pioneering experiments at SLAC in the late 1960s.
In the one-boson exchange approximation, the differential
DIS cross section can be written as a product of leptonic and
hadronic tensors,

d2σ

dΩdE ′
∼ α Lμν Wμν,

where α is the fine structure constant, Ω = Ω(θ, φ) is the
laboratory solid angle of the scattered lepton, and E ′ is the
scattered lepton energy. Using constraints from Lorentz and
gauge invariance, the hadronic tensor Wμν can be decom-
posed into several independent terms,

Wμν = −g̃μν F1 + p̃μ p̃ν
p · q F2 + iεμναβ pαqβ F3

+iεμναβ

qα

p · q
[
sβ g1 +

(
sβ − s · q

p · q pβ
)
g2

]
,

(10.20)

where pμ and qμ are the nucleon and exchanged boson four-
momenta, g̃μν = gμν − qμqν/q2, and p̃μ = pμ − (p ·
q/q2)qμ. The nucleon polarization four-vector sβ satisfies
s2 = −1 and p · s = 0. The structure functions F1,2,3 and
g1,2 contain the complete information about the structure
of the nucleon in DIS, and are generally functions of two
variables, conventionally chosen to be the Bjorken scaling
variable x = Q2/2p · q and the exchanged boson virtuality
Q2. In the Bjorken limit, in which both Q2 and p · q →∞
(or invariant final state hadron mass W 2 = (p + q)2 =
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M2 + Q2(1 − x)/x → ∞), but x is fixed, the structure
functions become simple functions of x only.

Unpolarized scattering
For spin-averaged scattering, the nucleon structure is parame-
trized in terms of the vector F1 and F2 structure functions,
and the vector-axial vector interference F3 structure func-
tion, which requires weak currents. According to QCD fac-
torization theorems, the structure functions Fj ( j = 1, 2, 3),
can be written in factorized form as convolutions of hard
coefficient functions and PDFs, weighted by respective elec-
troweak charges,

Fj (x, Q
2) =

∑

i=q,q̄,g
e2
i

[
C j
i ⊗ fi

]
(x, Q2), (10.21)

where the convolution symbol is defined by [A ⊗ B](x) =∫ 1
x (dy/y)A(x)B(x/y). The coefficient functions Cij can be

computed perturbatively in a series in αs . At leading order
(LO) in αs , Cij is a δ function, and the structure functions
reduce to linear combinations of the PDFs,

F1(x) = 1

2

∑

q

e2
q q

+(x), (10.22a)

F2(x) = 2xF1(x), (10.22b)

F3(x) = 2
∑

q

gqV gqA q
−(x), (10.22c)

where q± = q ± q̄ denote the C-even (odd) flavor combina-
tions, and we use the short-hand notation q(x) ≡ fq(x) or
q̄(x) ≡ fq̄(x) for a quark or antiquark PDF of flavor q in the
proton, and g(x) ≡ fg(x) for the gluon PDF. The F3 struc-
ture function vanishes for photon exchange, but is nonzero
for the exchange of weak bosons, with gqV (A) representing
the vector (axial vector) coupling of the boson to the quark
q. Equation (10.22) correspond to the simple parton model
of inclusive DIS, in which the structure functions are inter-
preted as parton densities. At finite energies, the logarithmic
Q2 dependence from the evolution equations described in
Sect. 2.3, as well as residual Q2 dependence associated with
power corrections (see below), give corrections to the simple
parton model expectations. (Note also that at LO the Bjorken
x variable coincides with the parton momentum fraction;
however, at higher orders these are different.)

Many DIS experiments have been performed with charged
lepton beams on proton targets, which for neutral currents in
the one-photon exchange approximation constrain the fla-
vor combination 4u+ + d+ + s+ (Z boson exchange would
involve a different linear combination of PDFs, involving the
weak mixing angle, sin2 θW ). For a neutron, the correspond-
ing linear combination would be 4d+ + u+ + s+. In prac-
tice, free neutron targets do not exist, so deuterium is often
used as a proxy, which then requires nuclear corrections be
made to extract the free neutron structure information (see
Sect. 10.2.3).

Charged current neutrino and antineutrino interactions
constrain different combinations of q+ or q− PDFs for the
F1,2 or F3 structure functions, respectively, depending on the
type of target used, so that by combining data on different
targets and with different beams one can in principle isolate
specific combinations of q or q̄ . A special case is provided
by charm production in ν and ν̄ DIS, which is sensitive to the
s and s̄ PDFs, respectively (although in practice this involves
heavy targets for which model-dependent nuclear corrections
must be made).

The gluon PDF plays a lesser role in inclusive DIS, as it
enters the cross sections at higher order, O(αs). In practice,
it is mainly constrained through the Q2 dependence of the
structure functions, and the longitudinal structure function
FL , which depends on differences at higher order between
the left- and right-hand sides of Eq. (10.22b). The strongest
constraints on g(x) in DIS have come from the HERA ep
collider data at very small x values [3059].

Since the PDFs are universal, the functions appearing in
the DIS structure functions are the same as those that describe
the structure of the incoming hadrons in hadronic collisions.
In analogy with the QCD factorization for DIS, the cross
section for the high energy scattering of hadron A (momen-
tum pA) and hadron B (momentum pB) to an inclusive state
in which a particle C is identified (such as a vector boson,
photon, or jet) can generally be written as

σAB→CX (pA, pB) =
∑

a,b

∫
dxa dxb fa/A(xa) fb/B(xb)

× σ̂ab→CX (xa pA, xb pB), (10.23)

where xa and xb are the corresponding parton momentum
fractions, and σ̂ab→CX is the partonic cross section. For vec-
tor boson production (W±, Z0, or lepton pairs produced from
virtual photons), the process proceeds at LO through qq̄ anni-
hilation. In particular, the Drell–Yan lepton-pair production
cross sections in pp and pn collisions depend on the combi-
nations

σ pp ∼ 4u(xa) ū(xb)+ d(xa) d̄(xb)+ (xa ↔ xb)+ · · ·
σ pn ∼ 4d(xa) d̄(xb)+ u(xa) ū(xb)+ (xa ↔ xb)+ · · ·

where the ellipses indicate contributions from heavier quarks.
(The pn cross section is again obtained from deuterium data.)
As we discuss below, ratios of these cross sections at kine-
matics such that xa � xb, where the hadron A can be approx-
imated by its valence structure, can be used to constrain the
d̄/ū ratio. In contrast, the inclusive production of W± bosons
constrains products of the form q(xa) q̄ ′(xb) with specific
weights given by the appropriate CKM matrix elements.

For p p̄ collisions at the Tevatron, for example, at large
values of rapidity (very asymmetric values of xa and xb) at
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LO one has

σW+ ∼ u(xa) d(xb)+ d̄(xa) ū(xb) + · · ·
σW− ∼ d(xa) u(xb)+ ū(xa) d̄(xb) + · · ·
where the PDFs in the antiproton have been related to those in
the proton. For large and positive rapidity, xa > xb and the
antiquark PDFs can be neglected, so that these cross sec-
tions depend only on the u and d PDFs. Because of the
missing neutrino resulting from the W decays, one cannot
directly reconstruct the rapidity distributions, and typically
the charged lepton rapidity asymmetry for W± production is
presented. The decay process means that the constraints on
the PDFs are less direct, but such measurements still provide
useful constraints on the d/u ratio at moderate values of x .

Recent data from the ATLAS Collaboration at the LHC
[3060,3061] on W± and Z production and decay sug-
gested a rather larger strange quark sea than traditionally
obtained from neutrino scattering, with the ratio Rs =
(s + s̄)/(ū + d̄) ≈ 1.13 at parton momentum fraction
x ≈ 0.02, compared with the traditionally accepted value
of Rs ≈ 0.4 from neutrino scattering analyses. In contrast,
a simultaneous analysis of PDFs and fragmentation func-
tions including semi-inclusive π± and K± production data,
along with single-inclusive e+e− annihilation cross sections
into hadrons [665,3062], favored a strong suppression of the
strange PDF at intermediate x values, correlating with an
enhancement of the s → K− fragmentation function. The
question of the magnitude and shape of the strange (and anti-
strange) PDF remains a topic of considerable phenomeno-
logical interest.

Other observables that can constrain PDFs are inclusive
jet or photon, dijet, and photon + jet production cross sec-
tions. Generally, these have greater sensitivity to the gluon
PDF at large x than DIS reactions. Dijet production triple
differential cross sections yield more information than sin-
gle jet cross sections because the rapidity of the second jet is
also constrained, thereby helping to constrain the momentum
fractions of the PDFs. Direct or isolated photon production
can also constrain the gluon PDF through the subprocess
qg → γ q [3063]. Photon + jet production offers similar
constraints, but now the subprocesses are weighted by the
squared charge of the parton to which the photon couples. A
summary of the kinematic coverage of the existing datasets
used to constraint unpolarized PDFs is shown in Fig. 251.

Polarized scattering
For spin-dependent reactions, the structure functions g1 and
g2 are extracted from DIS measurements with longitudi-
nally polarized leptons scattered from a nucleon or nucleus
that is polarized either longitudinally or transversely relative
to the beam. For longitudinal beam and target polarization,
the difference between the cross sections for spins aligned
and antialigned is dominated by the g1 structure function,

Fig. 251 Kinematic coverage of datasets used in global QCD analy-
ses. The variable x represents Bjorken-x for DIS and Feynman-x for
vector boson and jet production, while the scale Q2 represents the four-
momentum transfer squared for DIS, the mass squared of the interme-
diate boson for vector boson production, and the transverse momentum
squared for jet production. A DIS cut of W 2 = 3 GeV2 is indicated in
the bottom right hand corner (solid back line)

while the g2 structure function requires measurements with
the target polarized transversely to the beam polarization. In
practice one often measures the polarization asymmetry A1,
which is given as a ratio of spin-dependent and spin-averaged
structure functions,

A1 = 1

F1(x)

[
g1(x)− 4M2x2

Q2 g2(x)
]
, (10.24)

where M is the nucleon mass. At small values of x2/Q2, the
asymmetry simplifies to A1 ≈ g1/F1.

In analogy with the unpolarized F1 structure function, the
structure function g1 can be expressed at LO in terms of
differences between quark distributions with spins aligned
and antialigned with that of the nucleon,

g1(x) = 1

2

∑

q

e2
q Δq+(x). (10.25)

The g2 structure function, on the other hand, does not have
a simple partonic interpretation. However, its measurement
provides information on the subleading, higher-twist contri-
butions which parametrize long-range multi-parton correla-
tions in the nucleon. The dependence on both spin-dependent
and spin-averaged structure functions in A1 illustrates the
need to consistently analyze both unpolarized and polarized
PDFs simultaneously, as will be discussed below.

As with unpolarized measurements, historically most con-
straints on spin-dependent PDFs have come from polarized
charged-lepton DIS experiments. For charged lepton scatter-
ing from polarized proton targets, the g1 structure function
depends on the combination 4Δu++Δd++Δs+, while for
the neutron the combination would be 4Δd++Δu++Δs+.
In practice, polarized 3He targets are usually used as effective
sources of polarized neutron, since the neutron carries almost
90% of the 3He spin, while polarized deuterons, which have
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equal proton and neutron spin contributions, are sensitive to
the isoscalar combination 5(Δu+ +Δd+)+ 2Δs+.

At next-to-leading order (NLO), the polarized gluon dis-
tribution Δg also enters in the g1 structure function. The
mixing with the quark flavor singlet contribution to g1 under
Q2 evolution can then be used to provide constraints on Δg.

Semi-inclusive DIS (SIDIS) provides additional inde-
pendent combinations of spin-dependent PDFs that can be
used to separate individual quark and antiquark flavors. At
high energies, production of hadrons h in the current frag-
mentation region, primarily pions or kaons, is proportional
to products of PDFs and quark → hadron fragmentation
functions. Typically, such experiments measure the semi-
inclusive polarization asymmetry, which at LO can be writ-
ten as a ratio of spin-dependent to spin-averaged SIDIS cross
sections,

Ah
1(x, z) =

∑
q e2

q

(
Δq(x) Dh

q (z)+Δq̄(x) Dh
q̄ (z)

)

∑
q e2

q

(
q(x) Dh

q (z)+ q̄(x) Dh
q̄ (z)

) ,

(10.26)

where Dh
q (z) is the fragmentation function for the scattered

quark to produce a hadron h with a fraction z of the quark’s
energy. For large z, the produced hadron has a high proba-
bility of containing the scattered parton, providing a tag on
the initial parton distribution.

The fragmentation functions Dh
q can be determined from

other reactions, such as inclusive single hadron production in
e+e− annihilation or pp collisions. One can then weight par-
ticular quark or antiquark flavors by selecting favored (such
as Dπ+

u or Dπ+
d̄

) or unfavored (Dπ+
d or Dπ+

ū ) fragmentation
functions for specific hadrons. The polarized strange quark
PDF Δs, in particular, can be constrained from SIDIS K pro-
duction data. The polarized gluon distribution Δg can also be
constrained from SIDIS data on charmed or high-pT hadron
production through the photon–gluon fusion process.

Inclusive particle production in polarized proton–proton
collisions provides an additional method of determining spin-
dependent sea quark and gluon PDFs. The cross sections for
the production of W± bosons in scattering longitudinally
polarized protons from unpolarized protons, �p p → W± X ,
depend on products of spin-dependent and spin-averaged
PDFs,

ΔσW+ ∼ Δd̄(xa) u(xb)−Δu(xa) d̄(xb),

ΔσW− ∼ Δū(xa) d(xb)−Δd(xa) ū(xb).

At large positive (negative) rapidities, xa � xb (xa � xb),
the cross sections are dominated by a single flavor, while at
mid-rapidities both u and d flavors contribute.

Inclusive jet (or π0) production in double-polarized
proton–proton scattering, �p �p → jet (or π0) + X , is sen-
sitive to the polarized gluon PDF. The first evidence for a
small, but nonzero Δg was observed by the STAR Collabo-

Fig. 252 As in Fig. 251 but for spin-dependent observables

ration at RHIC in jet data at
√
s = 200 GeV, although recent

Monte Carlo analysis [976] suggests that the sign ofΔg is not
unambiguously determined by these data. A summary of the
kinematic coverage of the existing datasets used to constraint
helicity PDFs is shown in Fig. 252.

10.2.3 Global QCD analysis

With the growing number of high energy scattering exper-
iments in the 1970s and 1980s came the need to system-
atically and uniformly analyze the data with the tools that
were being developed in perturbative QCD. The concept of
fitting datasets from various experiments globally with a sin-
gle set of quark, antiquark and gluon PDFs dates back to the
early analyses of Duke and Owens [3064] and Morfin and
Tung [3065]. Since then, a number of dedicated efforts have
been made worldwide to fit both unpolarized and polarized
scattering experiments in terms of spin-averaged and spin-
dependent PDFs.

The standard paradigm has been to parametrize the PDFs
at some input scale Q0 and then evolve using the appropriate
evolution equations to the scales needed for the calculation of
each experimental observable. The parameters of the PDFs
are estimated by comparing each calculated observable with
the data using χ2 minimization techniques. All of the global
PDF analysis groups use some variation of this approach,
although the details of the implementation differ between
different groups.

PDF parametrizations and constraints
A typical parametrization at the input scale Q0 for a generic
(unpolarized or polarized) PDF f is

x f (x, Q2
0) = a0 x

a1(1− x)a2 P(x), (10.27)

where P(x) represents a smoothly varying function, such as a
polynomial in x or

√
x , or more elaborate forms based on neu-

ral networks [3066] or self-organizing maps [3067]. Some of
the parameters in the input distributions can be determined
from physical constraints. For example, in the unpolarized
case the conservation of valence quark number gives for the
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first moments
∫ 1

0
dx u−(x, Q2

0) = 2,
∫ 1

0
dx d−(x, Q2

0) = 1, (10.28)

and zero for all other flavors, while the momentum sum rule
requires

∫ 1

0
dx x

[ n f∑

q

q+(x, Q2
0)+ g(x, Q2

0)
]
= 1, (10.29)

where the number of flavors at the input scale Q2
0 is usually

taken to be n f = 3.
In the polarized case the first moments of theC-even distri-

butions can be related to octet baryon weak decay constants.
For the isovector combination, corresponding to the Bjorken
sum rule,
∫ 1

0
dx (Δu+ −Δd+)(x, Q2

0) = gA, (10.30)

where gA = 1.270(3) is the nucleon axial charge, while for
the SU(3) octet one has
∫ 1

0
dx (Δu+ +Δd+ − 2Δs+)(x, Q2

0) = a8, (10.31)

where the octet axial charge a8 = 0.58(3) is extracted from
hyperon β-decays assuming SU(3) flavor symmetry [3068].
Note that the sum rules (10.28)–(10.31) are preserved under
Q2 evolution.

Power corrections
We should note that the theoretical results summarized above
have been obtained within the framework of perturbative
QCD in the limit when both Q2 and W are much larger
than all hadron mass scales, Q2,W 2 � M2, where the cross
sections are dominated by their leading twist contributions.
In actual experiments performed at finite beam energy E , the
maximum values of Q2 and W are limited, which restricts
the available coverage in Bjorken x . This is especially rel-
evant at large x in DIS, where for fixed Q2, as x → 1 the
final state hadron mass W decreases as one descends into
the region dominated by nucleon resonances at W � 2 GeV.
The resonance region may be treated using the concept of
quark–hadron duality [3069], although this goes beyond the
scope of the usual perturbative QCD analysis.

In the low-Q2 region, power corrections to the Bjorken
limit results that scale as powers of Λ2

QCD/Q
2 become

increasingly important. In the operator product expan-
sion, these are associated with matrix elements of higher
twist operators, associated with multi-parton correlations
which characterize the long-range nonperturbative interac-
tions between quarks and gluons. While providing glimpses
into the dynamics of quark confinement, the power correc-
tions are viewed as unwelcome backgrounds in efforts aimed

solely at extracting leading twist PDFs. Other subleading cor-
rections are associated with target mass corrections (TMCs),
which are of kinematical origin and arise from nonzero val-
ues of hadron masses [3070–3074].

Regardless of their origin, the various power suppressed
corrections to the leading twist results can be absorbed into
phenomenological functions, such as

Fi (x, Q
2) = FLT

i (x, Q2)+ hi (x)

Q2 + · · · , (10.32)

for an unpolarized structure function Fi , for example, where
FLT
i denotes the leading twist contribution. The higher twist

corrections are sometimes assumed to be multiplicative, with
the functions hi proportional to the leading twist contribu-
tion. Possible additional Q2 dependence of the higher twist
contributions, such as from radiative αs(Q2) corrections, is
usually neglected.

Nuclear corrections
Since nucleons bound in a nucleus are not free, the par-
ton distributions fi/A in a nucleus A deviate from a sim-
ple sum of PDFs in the free proton and neutron, fi/A �=
Z fi/p+(A− Z) fi/n , where Z is the number of protons. This
is especially relevant at small values of x , where nuclear shad-
owing effects suppress the nuclear to free isoscalar nucleon
(N ) ratio, fi/A/(A fi/N ) < 1, and at large x , where the effects
of Fermi motion, nuclear binding, and nucleon off-shellness
give rise to the “nuclear EMC effect” [3075–3077]. For spin-
dependent PDFs, the different polarizations of the bound
nucleons and nuclei also need to be taken into account.

In the nuclear impulse approximation, where scatter-
ing takes place incoherently from partons inside individual
nucleons, the PDF in a nucleus can be expressed as a con-
volution of the PDF in a bound nucleon and a momentum
distribution function fN/A of nucleons in the nucleus [3078–
3080]. The momentum distribution, or “smearing function”,
can be computed from nuclear wave functions, incorporating
nuclear binding and Fermi motion effects. Coherent rescat-
tering effects involving partons in two or more nucleons give
rise to nuclear shadowing corrections to the impulse approx-
imation, and such effects are typically important only in the
small-x region. In general, the relation between PDFs in a
nucleus and in a nucleon can be written as

fi/A =
∑

N=p,n

[
fN/A ⊗ fi/N

]+ δ(off) fi/A + δ(shad) fi/A,

(10.33)

where the term δ(off) fi/A represents nucleon off-shell or rel-
ativistic corrections that account for modification of the par-
ton structure of the nucleon in the nuclear medium. A similar
expression can be written for spin-dependent PDFs.

At large Q2 the smearing function has a probabilistic inter-
pretation in terms of the light-cone momentum fraction y of
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the nucleus carried by the struck nucleon. Typically, the func-
tion fN/A is steeply peaked around y ≈ 1, becoming broader
with increasing mass number A as the effects of binding
and Fermi motion become more important. In the limit of
zero binding, fN/A(y) → δ(1 − y), and one recovers the
free nucleon case. This assumption has often been made in
global PDF analyses. More recently, however, the important
role of nuclear corrections has been more widely appreci-
ated, especially in connection with extractions of the free
neutron structure function data from measurements involv-
ing deuterons and other light nuclei [3080–3086].

For neutrino scattering, to increase the relatively low
rates and obtain sufficient statistics for analyses such as
strange PDF extraction [3087,3088], experiments have usu-
ally resorted to using heavier nuclear targets, such as iron
or lead. Extractions from such data are complicated by the
presence of nuclear corrections in neutrino structure func-
tions [3089,3090], as well as effects of the nuclear medium
on the charm quark propagation in the final state [3091].

For spin-dependent scattering, the scarcity of data and
larger uncertainties at small x and at high x , where nuclear
corrections are most prominent, has meant that most global
analyses have relied exclusively on the effective polariza-
tion ansatz, in which the polarized PDF in the nucleus Δ fi/A
is related to the polarized PDFs in the proton and neutron
as Δ fi/A ≈ 〈σ 〉p Δ fi/p + 〈σ 〉n Δ fi/n , where 〈σ 〉p(n) is the
average polarization of the proton (neutron) in the nucleus.
In practice, along with polarized protons, only polarized deu-
terium and 3He nuclei have been used in DIS experiments.
As experiments at high luminosity facilities such as Jefferson
Lab at 12 GeV push to explore the higher-x region, nuclear
corrections from smearing and off-shell effects will become
more relevant.

Uncertainty quantification
There are several sources of PDF uncertainties that enter in
global QCD analyses. These include uncertainties on the
experimental data, the approximations used in computing
the partonic cross sections, and the parametrizations used to
describe the PDFs. The experimental errors on the data can
be directly propagated to the fitted PDFs. The most com-
mon method for implementing this is the Hessian method,
described in Ref. [3092]. The elements of the Hessian matrix
are given by partial derivatives of the χ2 function,

Hi j = 1

2

∂2χ2

∂ai ∂a j
, (10.34)

where ai denotes the i th PDF parameter. The Hessian matrix
is generated during the minimization procedure and its
inverse gives the error matrix. The eigenvectors of the error
matrix can then be used to define eigenvector parameter sets,
from which the error bands for the PDFs or for specific pro-
cesses are calculated. An important point to note is that the

error bands generally depend on a χ2 tolerance. Mathemat-
ically, the expectation is that the 1σ parameter errors corre-
spond to an increase of χ2 by one unit from the minimum
value, Δχ2 = 1. However, it has been suggested [3093] that
inconsistencies between different data sets should be han-
dled by introducing a larger value to be used, Δχ2 > 1. This
“χ2 tolerance” varies between groups (Δχ2 ∼ 10−100),
and allowance must be made for this when comparing the
resulting error bands.

On the other hand, it has been argued [3094] that the tol-
erance criterion effectively changes the likelihood function,
which is usually defined in terms of the χ2 function. In con-
trast, neural network based approaches suggest that the use
of a tolerance criterion is not necessary [3066,3095–3097].
In practice, the similar size of the uncertainties obtained in
such different approaches may be coincidental and due to
the likelihood deformation and resulting uncertainty infla-
tion, as observed in a recent comparative study using toy
data [3094]. Furthermore, concern has also been expressed
[3098] that a meta-analysis, such as PDF4LHC [3099], that
combines existing PDFs from different groups may obscure
the fundamental connection between experimental data and
theory and hide the true meaning of the uncertainties, if these
ultimately originate from different choices of the likelihood
function.

An alternative to the usual linear propagation of errors
in the Hessian method which avoids ambiguities associated
with tolerance criteria, and which is useful for minima that
are not well behaved or defined, is the Monte Carlo method.
To propagate the experimental errors a number of replica
data sets are randomly generated within the original errors,
and these replica sets are then fitted with the resulting replica
PDF sets treated using standard statistics [3096]. The central
values are computed as the averages over replicas, while the
uncertainties are given by the envelope of predictions.

In practice, the data resampling method has been used by
the NNPDF [975,3100] and JAM [665,976,3086] collabora-
tions, although these groups differ in their approach to PDF
parametrizations. While the JAM collaboration uses a tradi-
tional polynomial functional form for the function P(x) in
Eq. (10.27), the NNPDF group implements a similar basic
parametric form that is supplemented by a series of trained
neural network weights. The dependence on the functional
form for the PDF can be minimized by choosing a flexible
parametrization with parameters that are well-constrained by
data. Outside of kinematic regions covered by data, the PDFs
are not constrained, and care must be taken when using them
in extrapolated regions at small or large x .

The approximations made in computing partonic cross
sections naturally introduce uncertainties in PDFs, although
these can be rather difficult to quantify reliably. One of these
is the uncertainty arising from the truncation of the perturba-
tive series. These can be estimated to some extent by compar-
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ing LO, NLO, NNLO, and recently even approximate N3LO
[3101] fits, although not all processes are known to the same
accuracy. The topic of “missing higher order uncertainties”
and how to estimate them has in fact attracted some attention
recently in global PDF fitting efforts [3057].

Perturbative QCD calculations also depend to some degree
on the choices made for the renormalization and factorization
scales for each physical process. The choices will change the
results for different processes, and the fitted PDFs must com-
pensate these changes. A closely related issue is the choice of
the strong running coupling αs(MZ ), which is fitted together
with the PDF parameters in some analyses, and fixed to the
global average in others. Finally, the choice of data sets and
kinematic cuts can of course affect the extracted PDFs, and
these choices and the reasons for them need to be assessed
when drawing conclusions from PDF comparisons.

10.2.4 Spin-averaged PDFs

Using the technology outlined in the previous sections, a
number of global QCD analyses efforts have produced sets of
unpolarized proton PDFs, with groups in Europe and the the
US at the forefront of the data analyses. The European groups
include the UK-based MSHT [1107] group and the ABM
[3102] group, which use standard global fitting methodol-
ogy; the HERAPDF [3059] analysis, which includes only
data from the H1 and ZEUS experiments at HERA; and pre-
viously the Dortmund [3103] group, which pioneered the
approach of dynamically generating PDFs through Q2 evo-
lution from a low input scale. More recently, the NNPDF
[3100] collaboration introduced an approach based on neu-
ral networks.

US-based efforts have centered around the CTEQ collab-
oration, which involves two derivative analyses of nucleon
PDFs, by the CT (CTEQ-Tung et al.) [663] and CJ (CTEQ-
Jefferson Lab) [3084] groups. The former focuses more
on LHC-related phenomenology, while the latter has devel-
oped methodologies needed for describing data over a broad
energy range including the low-Q2 and W domain. The
Jefferson Lab-based JAM [3086,3104] collaboration uses a
Monte Carlo approach with simultaneous determination of
PDFs and other types of distributions, such as fragmenta-
tion functions and spin-dependent PDFs. In the following we
illustrate the current state of knowledge of the spin-averaged
proton PDFs, including the u and d valence quark distribu-
tions and the flavor structure of the proton sea.

Valence quark distributions
Valence quarks give the global properties of the nucleon, such
as its baryon number and charge. Knowledge of their momen-
tum distributions is important for many reasons, especially
at high values of x , where a single quark carries most of the
nucleon’s momentum. The large-x region is a unique test-

Fig. 253 Valence u and d quark PDFs versus x from several global
QCD analyses: JAM21 [3086], NNPDF [664], ABMP [3102], CJ15
[3084], and CT18 [663] at a scale Q2 = 10 GeV2

Fig. 254 Impact of various data sets on thed/u ratio at Q2 = 10 GeV2,
using the CJ15 PDFs set [3084]

ing ground, for example, for various nonperturbative models
of the nucleon [1088,1341,3081,3105,3106]. Reliable deter-
mination of PDFs at large x is also important for searches for
new physics beyond the Standard Model in collider experi-
ments at the LHC [3098,3107].

The valence u and d PDFs are illustrated in Fig. 253 from
several PDF groups. The u quark PDF is fairly well con-
strained (due to its larger charge) by the relatively abundant
proton DIS data that have been collected over several decades
at SLAC, CERN, DESY and Jefferson Lab. The d quark
distribution, on the other hand, relies in addition on neu-
tron structure functions, whose determination requires both
proton and deuteron DIS data. Studies of nuclear effects in
the deuteron suggest that the uncertainties related to nucleon
interactions increase significantly at large x [3081], leading
to large uncertainties in the d/u PDF ratio for x � 0.6, as
Fig. 254 illustrates. Inclusion of tagged deuteron data from
the BONuS experiment at Jefferson Lab [3108,3109], and in
particular the lepton and W boson asymmetry data from p p̄
collisions at the Tevatron [3110–3112], reduces the uncer-
tainty considerably in the experimentally constrained region
up to x ∼ 0.8.
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Fig. 255 Comparison of x(d̄ − ū) with different combinations of
datasets [3104]: DIS only, excluding NMC (gold band); with NMC
(gray); with W , Z , and jet production from RHIC, Tevatron, and the
LHC (green); with NuSea (blue); and finally with the SeaQuest DY and
STAR W -lepton ratio (red)

Light quark sea
Because inclusive DIS measures only C-even combinations
of PDFs, q+, to disentangle quark from antiquark contribu-
tions requires other types of observables, such as the DY
cross sections, where the q and q̄ PDFs are weighted dif-
ferently. As discussed in Sect. 10.2.2, ratios of pd to pp
cross sections at xa � xb are directly sensitive to the ratio
d̄/ū. The flavor asymmetry d̄ − ū is illustrated in Fig. 255,
which shows the impact of various data sets. Starting with
inclusive DIS data only and excluding data from the NMC
experiment, the asymmetry is consistent with zero within
large uncertainties. Including the NMC data [3113,3114],
the asymmetry gives an indication of deviation from zero
in the range 0.01 < x < 0.2. When W -lepton, recon-
structed W and Z boson, and jet production data from
RHIC, Tevatron, and LHC are further included (but not the
new STAR data [3115]), the asymmetry becomes signif-
icantly larger, and more distinguishable from zero below
x = 0.3.

The new constraints come primarily from the high-
precision W asymmetry measurements from the Tevatron
and LHC, which are sensitive to ū and d̄. The further addition
of the NuSea DY data [3116] greatly decreases the uncer-
tainty, showing that these data provide a strong constraint
on the asymmetry even when compared to the Tevatron and
LHCW -lepton asymmetries. Finally, the inclusion of the new
SeaQuest [3117] and STAR [3115] data reduces the uncer-
tainty on the asymmetry even further, while increasing the
magnitude at x � 0.2. The behavior of the asymmetry seen
in Fig. 255 is consistent with expectations from nonpertur-
bative models of the nucleon in which the excess of d̄ over
ū in the proton sea has been that associated with chiral sym-
metry breaking, and the consequent prevalence of the virtual
p→ nπ+ dissociation [3118–3120].

Strange quarks
The strange quark distribution has generally been more dif-
ficult to determine experimentally than the nonstrange sea.
While the size of the strange to nonstrange ratio Rs has been
controversial, with values ranging from Rs ≈ 0.4 from neu-
trino DIS at x ≈ 0.02 to Rs ≈ 1 from analyses that included
ATLAS data on W/Z production [3060,3061], an indepen-
dent and underutilized source of information at lower ener-
gies is semi-inclusive production of pions or kaons. Analysis
of SIDIS data has often been complicated by the need to
know both the PDFs of the initial state and the fragmenta-
tion functions describing hadronization to the final state, as
assumptions about the latter can lead to significant differ-
ences in the extracted PDFs [3121,3122]. For any definitive
conclusion a combined analysis of PDFs and fragmentation
functions is necessary, which was first performed by the JAM
group [665,3062].

Including data from the standard datasets used for unpo-
larized PDFs, along with SIDIS multiplicities and e+e− anni-
hilation data to constrain the fragmentation functions [3123],
the most striking result of the simultaneous JAM fit was
a significantly reduced strange quark PDF compared with
that reported by ATLAS. In particular, the strange to non-
strange ratio was found in the JAM global QCD analysis to
be Rs ≈ 0.2−0.3 at x ∼ 0.02 [3123], as Fig. 256 illus-
trates, in contrast to values of Rs ∼ 1 inferred from the
ATLAS data [3060,3061]. The most significant source of
the strange suppression is the SIDIS and SIA K produc-
tion data. Without these data, the s+ PDF is poorly con-
strained, in contrast to the light flavor sea, which is not
strongly affected by the SIDIS multiplicities. Consequently,
while the ratio Rs varies over a large range without SIDIS
(and SIA) data, and at low x is compatible with Rs ≈ 1,
once those data are included its spread becomes dramatically
reduced.

Note that while the original ATLAS PDF fit [3060,3061]
was consistent with Rs ∼ 1 for all x � 10−3, the more recent
ATLAS analysis [3124] including newW/Z + jet data gives a
strongly suppressed Rs at x � 0.01 with significantly smaller
uncertainties, and more in line with other determinations. The
ratio at smaller x (x ≈ 0.023) remains unsuppressed, how-
ever, consistent with the earlier ATLAS results and higher
than most PDF parametrizations [3124].

The SIDIS K± production data could also in principle
discriminate between the s and s̄ PDFs, which could have
different x dependence [3125–3130]. As shown in Fig. 256,
however, the current data do not indicate any significant
s− s̄ asymmetry within uncertainties. Future high-precision
SIDIS data from Jefferson Lab or the Electron-Ion Collider
may allow more stringent determinations of the s and s̄ PDFs
[3131], as would inclusion of W + charm production data
from the LHC [3132,3133].

123



Eur. Phys. J. C          (2023) 83:1125 Page 353 of 636  1125 

Fig. 256 Sum and difference of the s and s̄ PDFs from several global
QCD analyses, as in Fig. 253

Fig. 257 Unpolarized gluon PDF xg from various QCD global analy-
ses at a scale of Q2 = 10 GeV2 from several global QCD analyses, as
in Fig. 253

Gluons and heavy quarks
Gluons play an important role in the study of nucleon struc-
ture, contributing some 50% of the nucleon’s overall (linear)
momentum, and indirectly provide some constraints on quark
PDFs through the momentum sum rule, Eq. (10.29). Since
photons do not couple directly to gluons, the constraints on
the gluon PDF g(x) from DIS come via the Q2 evolution
of the F2 structure function at low values of x . In addition,
measurements at HERA of the longitudinal structure func-
tion, which has a leading contribution at O(αs) through the
γ ∗g → qq̄ process, have allowed g(x) to be relatively well
determined at low x . More directly, inclusive jet and pho-
ton production cross sections at hadron colliders have con-
strained g(x) at moderate x values, although there is some-
what more uncertainty in the behavior at high x . A survey of
various determinations of the gluon PDF at Q2 = 10 GeV2

is illustrated in Fig. 257 for the same set of PDF parametriza-
tions as in Fig. 253.

Since that the gluon PDF is accompanied by αs in DIS
structure functions, in practice there is a correlation between
the value ofαs obtained in global PDF analyses and the shape
of gluon distribution, with larger αs leading to a smaller g(x)
at small x and (via the momentum sum rule correlation) a
larger g(x) at large x . An interesting question is whether αs
should be fitted as a parameter in global analyses or, since
it is a parameter of the QCD Lagrangian and should be the
same for all processes, fixed to the world average value for
αs(MZ ). Comparisons of results with αs(MZ ) fitted or fixed
may indicate which processes are responsible for any differ-
ences [3103].

A related question is the shape of heavy quark PDFs,
such as the charm distribution, which is known to contribute
∼ 30% of the total F2 measured at HERA at small x values.
Here the main production mechanism is photon-gluon fusion,
so that data on inclusive charm production could also pro-
vide valuable constraints on the gluon PDF in the nucleon.
The question of whether there is a sizable nonperturbative
charm component at a low energy input scale [3134–3138]
also remains controversial [3139–3141], with recent analyses
claiming both positive [3142] and negative evidence [3143].

10.2.5 Spin-dependent PDFs

Considerable progress has been made in understanding the
spin structure of the nucleon since the first precision polar-
ized DIS experiments at CERN in the late 1980s indi-
cated an anomalously small fraction of the proton spin car-
ried by quarks. A rich program of spin-dependent inclusive
and semi-inclusive DIS, as well as polarized proton–proton
scattering experiments has followed, vastly improving our
knowledge of spin-dependent PDFs of the nucleon over the
last two decades. While the spin-dependent data have not
been as abundant as those available for constraining spin-
averaged PDFs, several dedicated global QCD analyses of
spin-dependent PDFs to be performed. The main current
global efforts include the DSSV group [1294,3144,3145],
the NNPDF collaboration [975,3146], and the JAM col-
laboration [974,3147], extending earlier efforts by the LSS
[3121], BB [3148], KATAO [3149] and AAC [3150] groups.

Polarized valence quarks
As for the unpolarized PDFs, the spin-dependent Δu+ distri-
bution is the most strongly constrained helicity PDF, largely
by the proton g1 structure function data. The corresponding
Δd+ distribution, which has a negative sign, is smaller in
magnitude compared withΔu+ and has larger relative uncer-
tainties, especially at intermediate and large values of x . The
size of the uncertainties depends somewhat on the theoretical
assumptions made for the distributions. For example, if one
assumes only the SU(2) symmetry constraint (10.30) for the
difference Δu+ − Δd+, the uncertainties on the individual
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Fig. 258 Polarized xΔu+ and xΔd+ PDFs from the JAM analysis
[976] for various scenarios: assuming SU(2) symmetry (10.30) (yellow
bands), SU(3) symmetry (10.31) (blue bands), and in addition the PDF
positivity constraint (red bands)

Δu+ and Δd+ PDFs are significantly larger than assuming
in addition the SU(3) symmetry relation (10.31) involving
also the strange polarization Δs+.

This is illustrated in Fig. 258 for the JAM parametriza-
tion [976], which also shows the result of a fit that enforces
in addition positivity constraints on the unpolarized PDFs.
Whether spin-averaged PDFs need to be positive beyond LO
in αs has been debated recently in the literature [3151], and
generally it is understood that the positivity constraint should
hold only at LO [3152]. The general features of the Δu+ and
Δd+ PDFs in Fig. 258 are similar to those found by other
global QCD analysis groups [975,3145], which reflects the
common origin in the constraints on these PDFs from pro-
ton and neutron DIS data. In contrast, without the additional
assumption of SU(3) symmetry [974,3153], the strange
helicity PDF remains largely unconstrained [976,1295].

Polarized sea quarks
Since inclusive polarized DIS experiments measure C-even
combinations of PDFs, Δq+, additional constraints, either
from theory or experiment, are needed to separate the indi-
vidual quark and antiquark distributions. Additional experi-
mental constraints come from the semi-inclusive production
of hadrons, in which spin-dependent PDFs are weighted by
fragmentation functions, as well as particle production in
polarized hadron collisions, which involve products of spin-
dependent (and spin-averaged) PDFs.

The strongest constraints on the polarization of the sea
have come from recent W -lepton production data from polar-
ized protons collisions at RHIC [3154–3156]. The effect of
the polarized W data is a clear nonzero antiquark asymmetry
Δū −Δd̄ for 0.01 � x � 0.3, as Fig. 259 illustrates for the
recent JAM analysis [3147]. Qualitatively similar, although
not as pronounced, behavior was also observed in the earlier
DSSV [3145] and NNPDF [975] fits, although these made
stronger theoretical assumptions about PDF positivity and
SU(3) symmetry. The observed polarized sea asymmetry is

Fig. 259 Polarized sea quark asymmetry x(Δū −Δd̄) from the JAM
[3147], NNPDF [975] and DSSV [3145] analyses

Fig. 260 Monte Carlo replicas for the gluon helicity PDF xΔg fitted
under various theory assumptions according to the SU(2) (yellow lines),
SU(3) (blue lines) and SU(3)+positivity (red lines) scenarios [976]

also similar to expectations from some nonperturbative mod-
els of the nucleon [3157–3160].

Polarized gluons
The sign and magnitude of the gluon polarization is a critical
component to understanding the decomposition of the pro-
ton’s spin amongst its quark and gluon constituents. The first
clear indication of a positiveΔg came from analysis of RHIC
jet production data in polarized proton–proton collisions,
which were used by the DSSV group to extract a nonzero
signal for gluon momentum fractions between x ≈ 0.05
and ≈ 0.2. More recently, the JAM collaboration [976] per-
formed a simultaneous global fit to unpolarized and polar-
ized data, testing in particular the sensitivity to theoretical
assumptions about axial charges and PDF positivity.

The results of the simultaneous analysis, illustrated in Fig.
260, show that indeed the gluon helicity can depend strongly
on the constraints imposed. Interestingly, without restricting
PDFs to be positive and assuming SU(3) flavor symmetry for
the axial vector charges, existing polarized data allow solu-
tions containing negative gluon polarization, in addition to
the standard positive gluon solutions found in earlier anal-
yses, giving equally acceptable descriptions of the data. A
negative gluon polarization would imply rather large quark
or gluon orbital angular momentum contributions, in order
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to satisfy the proton spin sum rule. It will be important to
verify the sign and magnitude of the gluon polarization in
future experiments [3161], as well as explore possible insight
gained from lattice QCD calculations [3162].

10.2.6 Outlook

Our knowledge of the detailed partonic structure of the
nucleon has improved tremendously in recent years, thanks
to high precision experiments and advances in computational
and data analysis methods. With planned measurements at
facilities such as Jefferson Lab, the LHC, and the future
Electron-Ion Collider (EIC) [3163], we can look forward to
further breakthroughs in addressing long-standing questions
about the momentum and spin distributions of quarks and
gluons in the nucleon.

The new experiments will probe hitherto unexplored cor-
ners of kinematics in which PDFs have been difficult to deter-
mine. An example is the behavior of PDFs and PDF ratios
such as Δq+/q+ in the limit as x → 1, which are particu-
larly sensitive to the details of nonperturbative quark–gluon
dynamics [3081,3164]. The new data will allow one to test
basic theoretical assumptions such as SU(2) and SU(3) sym-
metry, PDF positivity, and charge symmetry in PDFs. The
latter, which is expected to be broken by light quark mass
differences, mu �= md , and by electromagnetic corrections,
will need to be taken into account if one hopes for PDF accu-
racy at the few-percent level. Further inroads into solving
the proton spin puzzle, through the determination of the total
spin contributions from quarks, antiquarks and gluons, will
require measurements of spin structure functions down to
smaller values of x [3165,3166], which will be one of the
focuses of the EIC program [3163].

The aim of few-percent precision in PDFs will also require
a more systematic treatment of radiative effects, which in
the past have been treated using approximate prescriptions.
Recently, a combined QED+QCD approach to factorization
has been developed [3167], and while the differences with the
traditional methods are not large for inclusive processes, for
more exclusive reactions, such as semi-inclusive DIS [3168],
the simultaneous paradigm of self-consistently incorporating
QED and QCD effects and determining different types of
distributions within the same analysis will be necessary.

Along with the new measurements, it is likely that com-
plementary information will be needed from lattice QCD
simulations, especially for quantities that will be difficult to
access from experiment. Indeed, the first exploratory simulta-
neous analyses of experimental and lattice data have already
been made recently [1090,3169]. Future success in mapping
out and understanding the quark and gluon structure of the
proton will thus require a coordinated effort on the multi-
ple fronts of experiment, theory, lattice simulation, and data
analysis.

10.3 Spin structure

Xiangdong Ji
The nucleon (proton and neutron) is a spin-1/2 composite
particle made from three valence quarks. Every model of the
nucleon gives an explanation for its spin structure [3170–
3174], from the Skyrme model [3170], to Gell-Mann and
Zweig’s quark model [3171,3172], and to many other models
popular in 1970s and 1980s [3173,3174]. The simplest and
most successful one is the quark model which, among others,
inspired the discovery of QCD [55], predicted that the entire
nucleon spin is carried out by the three valence quarks [31,
2719,3175]. The non-relativistic quark model has indeed a
simple explanation for the nucleon spin and the associate
magnetic moments [31], also for their excited states [2719]:
Three constituent quarks are all in the s-wave orbit in the
nucleon, and their spins couple to 1/2 in a way consistent
with the SU(2spin×3flavor), a combined spin-flavor symmetry
group [3175].

The quark-model picture for the spin was put under a test
through polarized deep-inelastic scattering (DIS) on a polar-
ized proton [3176]. The EMC collaboration made the first
definitive measurement for the fraction of the proton spin
carried by quarks in 1987 [3177,3178], and the result

ΔΣ(Q2=10.7GeV2) = 0.060± 0.047± 0.069, (10.35)

is consistent with zero. The discrepancy has inspired large
amount of experimental and theoretical studies which have
been summarized in a number of excellent reviews [3179–
3183]. Perhaps the most important lesson we have learned
is that the QCD quarks probed in polarized DIS are very
different from those in the constituent quark models, and
that QCD has a much more sophisticated way to build up the
proton spin.

Understanding the nucleon spin in QCD remains an
important challenge in hadron structure physics, particularly,
in experiment. In the following, we will briefly review the
current status and future perspective for this topic, focusing
on the questions such as: does it make sense to talk about the
different parts of the proton spin? What will be an interest-
ing decomposition for the spin? To what extent do we believe
that we can measure these parts experimentally? How can we
calculate these contributions in fundamental theory and put
them to experimental tests?

10.3.1 Spin sum rules in QCD

Angular momentum (AM) or spin structure of a compos-
ite system can be studied through various contributions to
the total. In quantum field theories, the individual parts are
renormalization scale and scheme dependent, although the
total is not. The most popular convention in the literature
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is to use dimensional regularization and modified minimal
subtraction, indicated by the dependence on the scale μ. To
understand the proton spin, we can start from QCD AM oper-
ator expressed in terms of individual sources,

�JQCD =
∑

α

�Jα(μ) . (10.36)

Through the above, one can express the total spin 1/2 as con-
tributions from different parts. This has been one of the main
methods to explore the origins of the proton spin in the liter-
ature. Since the individual contributions are the expectation
values of the AM sources in the entire wave function, they
are neither integers nor half-integers: they are the quantum
mechanical average of probability amplitudes.

There exists more than one way to split the AM and
derive spin sum rules for the proton. However, a physically-
interesting spin sum rule shall have the following properties:

Experimental measurability
The overwhelming interest in the proton spin began with
the EMC data. Much of the followup experiments, includ-
ing polarized RHIC [3184], Jefferson Lab 12 GeV upgrade
[3185] and Electron-Ion Collider (EIC) [1293,3186], have
been partially motivated to search a full understanding of the
proton spin.

Frame Dependence
Since spin is an intrinsic property of a particle, one nat-
urally searches for a description of its structure indepen-
dent of a reference frame. How the individual contributions
depend on the proton momentum or reference frame requires
understanding of the Lorentz transformation properties of �Jα .
Moreover, the longitudinal and transverse spins behave dif-
ferently under frame transformation and therefore have very
different experimental implications. Since the proton struc-
ture probed in high-energy scattering is best described in the
infinite momentum frame (IMF), a partonic picture of the
spin is phenomenologically interesting to explore.

In the rest frame, the proton state | �P = 0, �s〉 can be defined
with the angular momentum quantized along �s,

�s · �J
∣
∣
∣ �P = 0, �s

〉
= 1/2

∣
∣
∣ �P = 0, �s

〉
, (10.37)

where we have dropped the “QCD” subscript on �J . Boosting
the above to an arbitrary Lorentz frame, one has (h̄ = 1)

(−WμSμ)|PS〉 = 1/2|PS〉 , (10.38)

where |PS〉 have definite four-momentum Pμ and spin polar-
ization four-vector Sμ, Sμ = (γ �s · �β, �s + (γ − 1)�s · β̂β̂)
with SμSμ = −1, PμSμ = 0, β̂ the direction of �β = �v/c,
γ = (1−β2)−1/2 the boost factor, and Wμ is the relativistic
spin (or Pauli–Lubanski) four-vector (ε0123 = 1) [3187]

Wμ = −1

2
εμαλσ JαλPσ /M, (10.39)

= γ ( �J · �β, �J + �K × �β) (10.40)

where �K is the Lorentz-boost operator defined in terms of the
0 i components of the Lorentz generator Jαβ . In the second
line of the equation, we have replaced the four-momentum
operator Pσ by its eigenvalue specifying a Lorentz frame �β.
One can use Eq. (10.38) to develop spin sum rules in any
frame,

〈PS|(−WμSμ)|PS〉 = 1/2 , (10.41)

by expressing the left-hand side as the sums of expectation
values. Thus the covariant spin is not only related to the AM
operator but also to the boost �K . However, it is desirable to
develop a spin picture in terms of the AM operator alone in
a general Lorentz frame.

Without loss of generality, one can assume the proton
momentum is along the z-direction �Pz = (0, 0, Pz). In the
case of longitudinal polarization, one has �sz = (0, 0, 1),
−WμSμ = J z , and Eq. (10.41) becomes the total helicity,

〈PSz |J z |PSz〉 = 1/2 , (10.42)

which is boost-invariant along the z-direction. This is a start-
ing point to construct helicity sum rules. Since the helicity is
independent of momentum, the individual contributions are
generally sub-leading order in high-energy scattering.

For transverse polarization along the x-direction, �sx =
(1, 0, 0) , and Eq. (10.41) becomes

〈PSx |γ (J x − βK y)|PSx 〉 = 1/2 , (10.43)

which contains the boost operator K y from the transforma-
tion of J x under the Lorentz boost along z. Since �K and �J
transform under Lorentz transformation as (1, 0)+(0, 1), we
can deduce separate relations:

〈PSx |J x |PSx 〉 = γ /2

〈PSx |K y |PSx 〉 = γβ/2,

true as expectation values. Therefore a transverse polariza-
tion sum rule from the AM operator starts from

〈PSx |J x |PSx 〉 = γ /2. (10.44)

Because the transverse angular momentum J x depends on
the longitudinal momentum of the proton, its expectation
value grows under boost, a fact less appreciated in the liter-
ature.

To obtain a spin sum rule, we need an expression for the
QCD AM operator. It can be derived through Noether’s the-
orem based on space-time symmetry of the QCD lagrangian
density. Straightforward calculation yields the canonicalAM
expression [3188]

�JQCD =
∫
d3�x

[
ψ

†
f

1
2
�Σψ f + ψ

†
f �x × (−i �∂)ψ f

+ �Ea × �Aa + Ei
a(�x × �∂)Ai

a

]
, (10.45)
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where ψ f is a quark field of flavor f , �Σ = diag(�σ , �σ) with
�σ the Pauli matrices, Ai

a vector potentials of gauge fields
with color a = 1, . . . 8, Ei

a color electric fields, and the con-
traction of flavor and color indices is implied. The above
expression contains four different terms, each of which has
clear physical meaning in free-field theory. The first term
corresponds to the quark spin, the second to the quark orbital
angular momentum (OAM), the third to the gluon spin, and
the last one to the gluon OAM. Apart from the first term,
the rest are not manifestly gauge-invariant under the general
gauge transformation Aμ → U (x) (Aμ + (i/g)∂μ)U †(x).
However, the total is invariant under the gauge transforma-
tion up to a surface term at infinity which can be ignored in
physical state matrix elements.

On the other hand, using the Belinfante improvement pro-
cedure (Belinfante, 1939) one can obtain a gauge-invariant
form [1081],

�JQCD =
∫

d3x

[

ψ
†
f

1

2
�Σψ f + ψ

†
f �x × (−i �∇ − g �A)ψ f

+�x × ( �E × �B)
]
. (10.46)

All terms are manifestly gauge invariant, with the second
term as mechanical or kinetic OAM, and the third term gluon
AM.

Helicity sum rule
Using Eq. (10.42) and the gauge-invariant QCD AM in Eq.
(10.46), one can write down a helicity sum rule [1081],

1

2
ΔΣ(μ)+ Lz

q(μ)+ Jg(μ) = 1/2 (10.47)

where ΔΣ/2 is the quark helicity contribution, and Lz
q is

quark OAM contribution. Together, they give the total quark
AM contribution Jq . The last term, Jg , is the gluon contribu-
tion. Both contributions can be obtained from the twist-two
form factors of the energy–momentum tensor Tμν [1081]
(see below). One important feature of the above sum rule
is that it is independent of the proton’s momentum [3189].
This is an important feature because the sources of the proton
spin does not depend on observer’s reference frame so long
as helicity is a good quantum number.

On the other hand, the canonical form of the AM operator
in Eq. (10.45) allows deriving an infinite number of helic-
ity sum rules with choices of gauges and/or frames of ref-
erence [3182,3190]. The usefulness of such sum rules are
questionable as they are not relevant to experiment. How-
ever, the gluon spin contribution in the IMF and light-cone
gauge A+ = 0 is measurable. Jaffe and Manohar proposed
a canonical spin sum rule in a nucleon state with Pz = ∞
[3188],

1

2
ΔΣ +ΔG + !q + !g = 1

2
(10.48)

where ΔG is the gluon helicity and !q,g are quark and gluon
OAM, respectively. Considerable attention has been given to
the above sum rule because of its relevance to high-energy
scattering. For example, the total quark helicity contribution
can be written in terms of parton sum rule,

ΔΣ =
∫ 1

−1
dx(Δu(x)+Δd(x)+ · · · ) , (10.49)

where Δq(x) is the quark helicity distribution function.
Moreover, ΔG has been defined and measured experimen-
tally as the first moment of the gauge-invariant polarized
gluon distribution [3191]

ΔG(Q2) =
∫ 1

0
dx Δg(x, Q2) ,

Δg(x) = i

2x(P+)2

∫
dλ

2π
eiλx

× 〈PS|F+α(0)W (0, λn)F̃ +
α (λn)|PS〉,

(10.50)

where F̃αβ = 1
2ε

αβμνFμν , and the light-cone gauge link
W (λn, 0) is defined in the adjoint representation of SU(3).
In the light-cone gauge A+ = 0, the nonlocal operator
in Eq. (10.50) reduces to the free-field form in the Jaffe-
Manohar sum rule. Additionally, one can write a parton sum
rule for each of the OAM contributions

!q =
∫ 1

−1
dx!q(x) , (10.51)

!g =
∫ 1

−1
dx!g(x) , (10.52)

which give a more detailed picture of AM distributions in par-
tons compared with the frame-independent sum rule above.

It appears that one can define a gauge-variant quantity
which can be measured in experiment! This has inspired
much debate about the gauge symmetry properties of
the gluon spin operator and myriads of experimentally-
unaccessible spin sum rules [3182]. It turns out, however,
that the key is not about generalizing the concept of gauge
invariance, it is about the proton state in the IMF [3192]. In
particular, A+ = 0 is a physical gauge as it leaves the trans-
verse polarizations of the radiation field intact. This justifies
the physical meaning of �E × �A = �E⊥ × �A⊥ as the gluon
spin (helicity) operator in the Jaffe-Manohar sum rule.

Comparing the two helicity sum rules Eqs. (10.47) and
(10.48) above, they must be related in some way in the IMF.
In fact, their relation is [3193,3194]

Jg = ΔG + !g + !int (10.53)

Lq = !q − !int (10.54)
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where !int represents the interaction AM and does not have
a simple parton interpretation.

Transverse spin sum rules
For transverse polarization, a spin sum rule is less straight-
forward and much controversy exists in the literature [3182,
3195]. First of all, the transversely-polarized proton is not an
eigenstate of the transverse AM operator. Second, the expec-
tation value of the transverse AM has a intriguing frame
dependence due to the center-of-mass contribution, which
must be properly subtracted. Finally, there are two contri-
butions to the transverse AM which transform differently
under Lorentz boost and must combine properly to gener-
ate the total result. The delicate balance of two contributions
entails two separate transverse spin sum rules.

The transverse spin has a simple frame-independent sum
rule [3196],

Jq + Jg = 1/2 , (10.55)

which is the same as the helicity sum rule due to Lorentz
symmetry. One can separate the contributions to the quark
into spin and orbit ones, however, such a separation is frame-
dependent and therefore less interesting.

In the IMF, the above sum rule becomes partonic sum rules
[3195,3197],

Jq =
∫ 1

−1
dx Jq(x) , (10.56)

Jg =
∫ 1

−1
dx Jg(x) , (10.57)

where Jq(x) and Jg(x) are twist-2 transverse angular
momentum densities of the quarks and gluons. They are
related to quark and gluon unpolarized densities and gener-
alized parton distributions through Jq(x) = (1/2)x(q(x) +
Eq(x)) and Jg(x) = (1/2)x(g(x)+ Eg(x)).

The second transverse spin sum rule can best be discussed
in the IMF, where there is a sub-leading partonic sum rule for
the transverse spin, corresponding to the twist-three part of
the canonical angular momentum density J⊥ in Eq. (10.45).
In a simple form, one can write [3198]

1

2
ΔΣT +ΔGT + !qT + !gT = 1

2
. (10.58)

The various terms have partonic interpretations in the IMF,

ΔΣT =
∫ 1

−1
dxgT (x) , (10.59)

ΔGT =
∫ 1

−1
dxΔGT (x) , (10.60)

!qT =
∫ 1

−1
dx!qT (x) , (10.61)

!gT =
∫ 1

−1
dx!gT (x) , (10.62)

where gT (x) = g1(x) + g2(x) and GT (x) are transverse
spin densities of quarks and gluons, respectively, and !qT
and !gT are the corresponding twist-three transverse OAM
densities. Because of Lorentz symmetry, the values of these
integrated quantities with T are exactly the same as the ones
without T in Jaffe-Manohar sum rule. However, the parton
densities for the transversely polarized proton are different
from those in the longitudinally polarized one. For instance,
for the quark spin, the difference is the well-known g2(x)
structure function.

10.3.2 Lattice calculations

At present, the only systematic approach to solve the QCD
proton structure is the lattice field theory [97], see, Sect. 4.
There are less systematic approaches such as Schwinger–
Dyson (Bethe–Salpeter) equations [800] and instanton liquid
models [1410] in which a certain truncation is needed to find
a solution, see, Sect. 5. Although much progress has been
made in these other directions, we focus on the lattice QCD
method.

A complete physical calculation on the lattice faces a num-
ber of obstacles. First the angular momentum is flavor-singlet
quantity, and as such, one needs to compute the disconnected
diagrams for the quarks. Since up and down quarks are light,
computational demands at the physical pion mass are very
high. Moreover, one also has to compute gluon observables
to complete the picture, which is known to be very noisy.
At the same time, one needs to keep the lattice space suf-
ficiently small and the physical volume large enough. All
of these add up to an extremely challenging task. However,
a computation with all these issues considered has become
possible recently, see for example Ref. [3204]. An additional
challenge is present in computing light-cone correlations
with a real time variable. The recent development of large-
momentum effective theory (LaMET) has opened the door
for such computations [637,638,646].

The matrix elements of local operators, ΔΣ , Jq and Jg
are relatively simple to calculate using the standard lattice
QCD technology. Much progress has been made in under-
standing the content of manifestly gauge-invariant helicity
sum rule in Eq. (10.47), and also the transverse spin sum rule
in Eq. (10.55).

The first calculations have been about the ΔΣ from dif-
ferent quark flavors. A large amount of work has been sum-
marized in a recent review [3205]. Three most recent calcu-
lations are in Refs. [3199–3201], with some at the physical
quark mass. Table 47 is taken from Ref. [3203] and shows
a summary of the recent lattice results on the quark helic-
ity. The strange quark contribution was also calculated in
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36
] Refs. [3206,3207] through the anomalous Ward identity, and

Δs + Δs̄ = −0.0403(44)(78). The total quark spin contri-
bution to the proton helicity is about 40%.

To calculate the total quark orbital and gluon AM contri-
butions, one can start with the AM density, Mμνλ, of QCD,
from which the AM operator is defined. It is well-known that
the AM density is related to the energy–momentum tensor
(EMT) Tμν through [3188],

Mμνλ(x) = xνTμλ − xλTμν. (10.63)

The individual contributions to the EMT, hence AM density,
can be written as the sum of quark and gluon parts,

Tμν = Tμν
q + Tμν

g , (10.64)

where

Tμν
q = 1

2

[
ψ̄γ (μi

−→
D ν)ψ + ψ̄γ (μi

←−
D ν)ψ

]
, (10.65)

Tμν
g = 1

4
F2gμν − FμαFν

α , (10.66)

where Tq includes quarks of all flavor. The expectation values
of the AM densities can be derived from the off-forward
matrix elements of EMT [1081],

〈P ′S|Tμν
q/g(0)|PS〉 = Ū (P ′S)

[
Aq/g(Δ

2)γ (μ P̄ν)

+ Bq/g(Δ
2)

P̄(μiσν)αΔα

2M

+ Cq/g(Δ
2)

ΔμΔν − gμνΔ2

M

+C̄q/g(Δ
2)Mgμν

]
U (PS) , (10.67)

where P̄ = (P + P ′)/2, Δ = P ′ − P , and A, B, C and C̄
are four independent form factors. It has been shown that

Jq = 1/2(Aq(0)+ Bq(0)) (10.68)

and similarly for the gluon.
The calculation of the total quark and gluon angular

momenta started from Ref. [3208] in which the quark part
including the disconnected diagrams was calculated without
dynamical quarks. The result is the total quark contribution
is Jq = 0.30 ± 0.07, i.e. 60%; therefore about 40% of the
proton spin must be carried by the gluon. Following other
quenched studies [3209,3210], dynamical simulations took
over [3211–3215]. A complete study of the angular momen-
tum decomposition was made in Ref. [3206] in quenched
formalism, and later in Ref. [3199]. It was found that the
quark orbital angular momentum contributes about 47% and
gluon angular momentum contributes 28%.
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Fig. 261 (upper) Proton spin decomposition in terms of different quark
flavors and gluon from Ref. [3204]. (lower) Spin decomposition in terms
of quark helicity, OAM and gluon contributions from Ref. [3216]

A complete dynamical simulation at the physical pion
mass has been finished recently [3204]. It was found that
the total quark spin contribution is about 38.2%, and the
orbital angular momentum contribution of the quarks is about
18.8%, much reduced compared with quenched simulations.
The total gluon contribution is 37.5%. The resulting picture
is shown in Fig. 261. The total spin is 94.6% with an error bar
of 14.2%. The spin decomposition in terms of the total quark
helicity ΔΣ = Δu + Δd + Δs, and quark OAM, and the
gluon Jg for n f = 2+ 1 has been calculated in Ref. [3216].

Calculation of the gluon helicity has not been possible for
many years because it is intrinsically a light-cone quantity.
However, a progress in 2013 was made by studying the frame
dependence of non-local matrix elements. One can match
the large-momentum matrix element of a static “gluon spin”
operator, which is calculable in lattice QCD, to ΔG in the
IMF [3192]. This idea was a prototype of LaMET, which was
soon put forward as a general approach to calculate all parton
physics [637,638]. Using LaMET, one can also calculate the

polarized gluon helicity distribution Δg(x) in a region of
x ∼ 0.2−0.8. However, the approach does not allow one to
calculate the integrated ΔG starting from spatial correlation
functions of gluon field strength.

The computation of parton OAM on lattice has been sug-
gested in terms of lattice phase-space Wigner distribution,
in which a quark bilinear non-local operator form factor is
calculated [3217,3218]. The non-local operator contains a
Wilson line to make it gauge invariant. The canonical OAM
can be constructed with Wilson lines along the main direc-
tion of the proton momentum going to infinity. One can in
principle obtain the local gauge invariant OAM with a Wilson
line connecting the two quark fields with a straight line. The
result seems to be consistent with the calculation discussed
above. The result in Ref. [3218] suggests that the isovector
canonical OAM has a different sign from the mechanical one,
and with a magnitude about 40% larger. One issue with this
type of calculation is the renormalization, which can be done
with LaMET matching.

One can also calculate the total parton OAM using
local operators in a fixed gauge [3219] following the sim-
ilar approach for the gluon helicity. Matching coefficients
between IMF and finite momentum frame have been calcu-
lated. One particular feature of the calculation is fixed-gauge
which is challenging both on lattice and QCD perturbation
theory. On lattice, local gauge condition can lead to the Gri-
bov copies; on the other hand, perturbation theory in a phys-
ical gauge requires better understanding at large orders.

Finally, the spin structure of the nucleon in the IMF
requires calculations of various light-cone distributions,
which include the quark and gluon helicity distributions
Δq(x), and ΔG(x), OAM distributions Jq(x) and Jg(x)
through GPDs, and OAM distributions !q(x), !g(x), g2(x),
ΔGT (x), !qT (x), and !gT (x).

Shown in Fig. 262 are twist-2 angular momentum den-
sities of up and down quarks in a transversely-polarized
nucleon, obtained from phenomenological fit to lattice form
factors and generalized parton distributions (GPDs) [3220].
They can be compared with direct lattice calculations and
experimental data to be discussed below.

10.3.3 Experiments and phenomenology

Since the EMC experiments, there have been extensive exper-
imental efforts around the globe to investigate the quark
and gluon spin contributions to the proton spin, with two
important improvements: higher precision and wider kine-
matic coverage. Majority of these efforts continued in line
of the EMC experiment, measuring the polarized structure
functions in inclusive DIS with polarized lepton on polar-
ized target (proton, neutron, deuteron). Two important new
initiatives have also emerged. First, the DIS experiment facil-
ities extended their capabilities to measure the spin asymme-
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Fig. 262 Angular momentum density distributions of up and down
quarks in a transversely polarized proton, fitted to lattice form factors
and GPDs [3220]

tries in the semi-inclusive hadron production in DIS (SIDIS),
which can help to identify the flavor structure in the polarized
quark distributions. Second, the Relativistic Heavy Ion Col-
lider (RHIC) at the Brookhaven National Laboratory (BNL)
started the polarized proton–proton experiments. This facil-
ity opened new opportunities to explore the proton spin, in
particular, for the helicity contributions from gluon and sea
quarks (see the previous subsection for experimental data and
analysis).

To take into account the constraints from all experiments,
it is important to perform a global analysis of the polarized
parton distributions from the world-wide data. In these anal-
yses, one has to make some generic assumptions about the
functional form (in terms of the unpolarized parton distri-
butions) with a few parameters to fit to data, see, e.g., Refs.
[975,3144,3202], where perturbative corrections have been
included up to next-to-leading order. Very interesting results,
in particular, for the double spin asymmetries in inclusive
jet production from the RHIC experiments have provided
more strong constraint on the gluon spin [3222], see Fig. 263.
This promises great potential for future RHIC experiments
to further reduce the uncertainties due to greater statistics
[1276,3223].

The total quark spin contribution to the proton spin ΔΣ

has been well determined from the DIS measurements. For
this quantity, all of the global fits agree well with each other,
which essentially gives Σq ≈ 0.30 with uncertainties around
0.05. However, for sea quark polarizations including ū, d̄
and s (s̄), there exist great uncertainties, in particular, for the
strange quark polarization [975,1295,3144], which mainly
comes from SIDIS measurements from HERMES and COM-
PASS. Recently, it was also found that the W boson spin
asymmetries at

√
s = 500 GeV RHIC have also improved

the constraints on ū and d̄ polarization [3224].

Fig. 263 (upper) Double spin asymmetry in inclusive jet production
at RHIC and (lower) constraints on the gluon helicity contribution to
the proton spin. Source: Ref. [3144]

The OAM of the quarks may be extracted from measure-
ment of GPD [1081],

Jq = 1

2
Σq + Lq = lim

t→0

1

2

∫
dxx

[
Hq (x, ξ, t)+ Eq (x, ξ, t)

]
,

(10.69)

where Jq is the total quark contribution to the proton spin,
H and E are GPDs. After subtracting the helicity contri-
bution ΔΣ from various experiments, the above equation
will provide the quark OAM contribution to the proton spin.
The GPDs can be measured in many different experiments,
for example, deeply virtual compton scattering (DVCS) and
hard exclusive meson production. Experimental efforts have
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Fig. 264 Model-dependent constraints on the up and down quark total
angular momentum from DVCS measurement at JLab. Source: Ref.
[3221]

been made at various facilities, including HERMES at DESY,
Jefferson Lab, and COMPASS at CERN.

In real photon exclusive production in DIS process, the
DVCS amplitude interferes with the Bethe–Heitler (BH)
amplitude. This will, on one hand, complicate the analysis of
the cross section, on the other hand, provide unique opportu-
nities to direct access the DVCS amplitude through the inter-
ference. To obtain the constraints on the quark OAMs from
these experiments, we need to find the observables which
are sensitive to the GPD Es. Experiments on the DVCS from
JLab 6 GeV Hall A [3221] and HERMES at DESY [3225]
have shown strong sensitivity to the quark OAM in nucleon,
see, e.g., Fig. 264. In these experiments, the single spin asym-
metries associated with beam or target in DVCS processes are
measured, including the beam (lepton) single spin asymmetry
and (target) nucleon single spin (transverse or longitudinal)
asymmetries.

A less model-dependent approach to extract the AM
information from DVCS or similar experiments is to per-
form a global analysis. Several theory groups have been
working on global analyses of the DVCS and DVEM pro-
cesses [3226–3228]. Recently, a framework to make gen-
eral analysis of GPDs similar to CTEQ program [1082],
called GPDs through universal momentum parametrization
(GUMP) [3220], has been proposed based on the previous
work on conformal moments expansion [3229,3230]. The
framework, once including the ξ dependence, can be used to
fit experimental cross sections and asymmetries. In this way,
the quark AM extracted will have less systematic error. In
addition, this approach allows us to get the twist-2 quark AM

densities, Jq(x), with constraints from experimental data.
A number of important AM densities in the spin sum rules
depend on information from twist-3 GPDs, such as canon-
ical OAM densities in both longitudinally and transversely
polarized proton. Extracting the relevant GPDs from exper-
imental data will be very challenging due to the kinematic
suppression.

For the gluon GPDs and AM density Jg(x), one of the
most interesting processes is heavy quarkonium production
in hard exclusive DIS. This is in particular important at the
EIC machine. In early 2020, DOE announced that the next
major facility for nuclear physics in US will be a high-energy
high-luminosity polarized EIC to be built at BNL. The pri-
mary goal of the EIC is to precisely image gluon distributions
in nucleons and nuclei, revealing the origin of the nucleon
spin and exploring the new QCD frontier of cold nuclear
matter [1293,3186].

The EIC will impact our understanding of nucleon spin in
many different ways. In the following, we highlight some of
these impacts. First, the quark and gluon helicity contribu-
tions to the proton spin is the major emphasis of the planned
facility. With the unique coverage in both x and Q2, the EIC
would provide the most powerful constraints onΔΣ andΔG
[1293]. Also shown in Fig. 265 are the projected uncertainty
reductions with the proposed EIC machine. Clearly, the EIC
will make a huge impact on our knowledge of these quanti-
ties, unmatched by any other existing or anticipated facility.

Second, the sea quark polarization will be very precisely
determined through SIDIS. With much large Q2 and x cov-
erage, SIDIS at EIC will provide unprecedented kinematic
reach and improve the systematic uncertainties. In Fig. 265,
we show the example of sea quark polarization constraints
from the EIC pseudo-data simulations.

Third, there will be a comprehensive program on research
of GPDs at the EIC. As discussed above, the GPDs pro-
vide first hand constraints on the total quark/gluon angular
momentum contributions to the proton spin. Moreover, they
also provide important information on the nucleon tomogra-
phy, especially, the 3D imaging of partons inside the proton.
With wide kinematic coverage at the EIC, a particular exam-
ple was shown in Fig. 265 that the transverse imaging of the
gluon can be precisely mapped out from the detailed mea-
surement of hard exclusive J/ψ production in DIS processes.

Finally, we would like to emphasize theoretical efforts
are as important as the experiments to answer the nucleon
spin puzzle. An important question concerns the asymptotic
small-x behavior for the spin sum rule. There have been some
progresses to understand the proton spin structure at small-
x from the associated small-x evolution equations [3231–
3239]. More theoretical efforts are needed to resolve the con-
troversial issues raised in these derivations. The final answer
to these questions will provide important guidance for the
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Fig. 265 The planned electron-ion collider (EIC) at BNL, NY, USA.
Highlights of the EIC impact on our understanding of nucleon spin: total
quark/gluon helicity contributions to the proton spin; sea quark helic-

ity distribution using semi-inclusive deep inelastic scattering; nucleon
tomography of the 3D gluon density in the transverse plane for different
momentum fractions. (This figure from Ref. [1293])

future EIC, where proton spin rum rule is one of the major
focuses.

For additional discussion of these issues, see Sect. 10.2.

10.4 Nucleon tomography: GPDs, TMDs and Wigner
distributions

Andreas Sch“afer and Feng Yuan
Exploring the nucleon is of fundamental importance in sci-
ence, starting from Rutherford’s pioneering experiment one
hundred years ago where he investigated the internal structure
of atomic matter [3240]. Following this effort, the scientific
developments in the last century have revealed the most fun-
damental structure of the matter in our universe: the nucleus
is made of nucleons (protons and neutrons) and the nucleon
is made of partons: quarks and gluons. In particular, inclu-
sive DIS experiments probe the parton distribution functions
which describe the momentum distributions of the partons
inside the nucleon, see, Sect. 10.2.

On the other hand, the inclusive measurements of the
above processes only probe one dimension of the parton dis-
tributions, where the PDF represents the probability distri-
bution of a particular parton (quark or gluon) with a certain
fraction x of the nucleon momentum in the infinite momen-

tum frame. In recent years, the hadron physics community
is pursuing an extension of this picture to include the trans-
verse direction. The goal is to obtain a three-dimensional
tomography of parton densities inside the nucleon. In some
sense, these efforts continue the original Rutherford experi-
ment to map out the internal structure of a nucleon in three
dimensions.

The nucleon is assumed to move in the ẑ-direction.
Its structure in transverse direction can be either analysed
in coordinate space using generalized parton distributions
(GPDs) [1081,1286,3241–3246], or in momentum space
using transverse momentum dependent parton distributions
(TMDs) [1272,1284,3247,3248]. References [964,3249]
introduce the impact parameter dependent parton distribu-
tions, which are Fourier transforms of GPDs in certain kine-
matics and which are the desired parton densities in coordi-
nate space.

The information parametrized by GPDs and TMDs is con-
tained in “mother distributions”, the so-called Wigner distri-
butions [3250,3251]. Wigner distributions were introduced
by Wigner in 1930s as phase space distributions in quantum
mechanics,

W (r, p) =
∫

dηeipηψ∗
(
r − η

2

)
ψ

(
r + η

2

)
, (10.70)
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where r and p represent the coordinate and momentum space
variables, respectively, and ψ is the wave function. When
integrating over r (p), one gets the momentum (probability)
density from the wave function, which is positive definite.
For arbitrary r and p, the Wigner distribution is not posi-
tive definite and does not have a probability interpretation.
This reflects the fact that the Wigner distribution contains
all quantum mechanical information contained in ψ , which
goes beyond probabilities.

Following this concept, we can define the Wigner distribu-
tion for a quark in a nucleon with momentum P [3250,3251],

WΓ (x, k⊥, �r) =
∫

dη−d2η⊥
(2π)3 eik·η

× 〈P|Ψ
(
�r − η

2

)
Γ Ψ

(
�r + η

2

)
|P〉,

(10.71)

where x represents the longitudinal momentum fraction car-
ried by the quark, k⊥ is the transverse momentum, �r the coor-
dinate space variable, and Γ the Dirac matrix to project out
a particular quark distribution. The quark field Ψ contains
the relevant gauge link to guarantee gauge invariance of the
above definition [3250]; see more discussions below. We can
also define the Wigner distribution for gluons accordingly.

If we integrate the Wigner distribution over rz , we obtain
the transverse Wigner distribution,

WT
Γ (x, k⊥, r⊥)

=
∫

drzdη−d2η⊥
(2π)3 eik·η〈P|Ψ

(
�r − η

2

)
Γ Ψ

(
�r + η

2

)
|P〉

=
∫

d2q⊥dη−d2η⊥
(2π)5

eiq⊥·r⊥eik·η

×
〈
P + q⊥

2

∣
∣
∣Ψ

(
−η

2

)
Γ Ψ

(η

2

) ∣
∣
∣P − q⊥

2

〉

where we have introduced a wave package for the nucleon
state to derive the last equation. The Wigner distribution func-
tions are also referred to as generalized TMDs (GTMDs)
[3252,3253]. They can be interpreted as phase space (r⊥,k⊥)
distributions of a parton in the transverse plane perpendicular
to the nucleon momentum direction.

The Wigner distribution functions reduce to the TMDs
and GPDs upon integration over certain kinematic variables.
For example, when integrated over r⊥, the above distribution
leads to the transverse momentum dependent quark distribu-
tions,

f (x, k⊥) =
∫

dη−d2η⊥
(2π)3 eik·η〈P|Ψ

(
−η

2

)
Γ Ψ

(η

2

)
|P〉.
(10.72)

On the other hand, if we integrate out k⊥, we obtain the
impact parameter dependent quark distribution [964], which
is the Fourier transform of the GPDs at ξ = 0,

f (x, b⊥) =
∫

d2Δ⊥
(2π)2 e

iΔ⊥·b⊥
∫

dη−

2π
eik·η

×
〈

P + Δ⊥
2

∣
∣
∣
∣Ψ

(

−η−

2

)

Γ Ψ

(
η−

2

) ∣
∣
∣
∣P −

Δ⊥
2

〉

=
∫

d2Δ⊥
(2π)2 e

iΔ⊥·b⊥H(x, ξ, t)|ξ=0 . (10.73)

Here, t = − �Δ2⊥ and H(x, ξ, t) represents one of the GPDs
(definitions will be given below).

The relations between these different functions are often
illustrated by the cartoon in Fig. 266 which is, however, some-
what symbolic. Just like the Wigner distribution in quantum
mechanics contains the full information of the wave function
ψ , a Wigner function in quantum field theory (QFT) con-
tains the full complexity of QFT, including its dependence
on the chosen renormalization and factorization scheme. For
example TMDs depend on the two scaling variables μ and ζ ,
while PDFs depend only on μ. Consequently equations like

f (x)
?!=

∫
d2k⊥ f (x, k⊥) (10.74)

are only valid up to scheme dependent subtraction/renormali-
zation factors or even matching functions. This has sig-
nificant consequences. For example, usually, the lhs of
Eq. (10.74) fulfills a different evolution equation than the rhs.
Thus, when comparing the results of different phenomeno-
logical TMD fits or lattice calculations one has to convert
them into the same scheme.

For other functions there is no such complication. For
example, the x integral of GPDs is equal to form factors,
e.g., F1(Q2) = ∫

dxH(x, ξ, t = −Q2). This being said,
such complications as well as the μ and ζ dependence are
usually suppressed to simplify notation and we do the same
in this review.

The status and perspective of both the collinear PDFs and
nucleon form factors have been well covered in this review,
see, Sects. 10.1 and 10.2.

The tomographical information inherent to Wigner dis-
tributions is best illustrated by the resulting intuitive and
rigorous method to define the quark/gluon orbital angular
momentum (OAM). This follows the concept of the Wigner
distribution as a phase-space distribution, i.e., to compute the
physical observable, one takes the average over the phase-
space as if it were a classical distribution,

〈Ô(r, p)〉 =
∫

drdpW (r, p)O(r, p) . (10.75)

Since the orbital angular momentum represents the quantity
�r × �p, we obtain the quark/gluon OAM from the integral of
�r × �p multiplied with the Wigner distribution.
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Fig. 266 Transverse momentum dependent parton distributions and the generalized parton distributions are unified in the Wigner distributions.
This plot is adopted from Ref. [1293]

For the parton Wigner distribution, one first realizes that
a gauge invariant parton distribution must include a gauge
link extending from the location of the parton to infinity.
An optimal choice for high-energy collisions is a gauge link
along the relevant light-cone direction nμ,

ΨLC (ξ) = P

[

exp

(

−ig
∫ ±∞

0
dλ n · A(λn + ξ)

)]

ψ(ξ) ,

(10.76)

where P indicates path ordering. The above defined gauge
link can go to +∞ or −∞; see more discussions below.
In practical applications, we can also choose a straight-line
gauge link along the direction of the spacetime position ξμ,

ΨFS(ξ) = P

[

exp

(

−ig
∫ ∞

0
dλ ξ · A(λξ)

)]

ψ(ξ) .

(10.77)

This link reduces to unity when ξ · A(ξ) = 0 (the Fock–
Schwinger gauge). With the above definitions, we can write
down the quark Wigner distribution as,

WP (k+= x P+, �b⊥, �k⊥)
= 1

2

∫
d2 �q⊥
(2π)3

∫
dk−

(2π)3 e
−i �q⊥·�b⊥

〈 �q⊥
2

∣
∣
∣
∣ŴP (0, k)

∣
∣
∣
∣−

�q⊥
2

〉

,

(10.78)

with the Wigner operator,

ŴP (�r , k) =
∫

ΨP (�r − ξ/2)γ+ΨP (�r + ξ/2)eik·ξd4ξ,

(10.79)

where P denotes the path and is either LC or FS, �r is
the quark phase-space position, and k the phase-space four-
momentum.

Fig. 267 Distributions in impact parameter space of the mean trans-
verse momentum of an unpolarized u-quark in a longitudinally polar-
ized nucleon, taken from Ref. [3254]. The nucleon is polarized perpen-
dicular to the plane, while the arrows show the size and direction of
the mean transverse momentum of the quarks. This gives an intuitive
picture of the quark orbital angular motion inside the nucleon

It can be shown that the total OAM is given by the parton’s
Wigner distribution,

Lq = 〈PS| ∫ d3�r ψ(�r)γ+(�r⊥ × i �D⊥)ψ(�r)|PS〉
〈PS|PS〉

=
∫

(�b⊥ × �k⊥)WFS(x, �b⊥, �k⊥)dxd2 �b⊥d2�k⊥ , (10.80)

which provides a gauge-invariant expression for the parton’s
OAM [3196,3255].
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Similarly, the canonical OAM in light-cone gauge fulfills
the simple but gauge-dependent parton sum rule in the quan-
tum phase space [3253,3254,3256],

!q = 〈PS| ∫ d3�r ψ(�r)γ+(�r⊥ × i �∂⊥)ψ(�r)|PS〉
〈PS|PS〉

=
∫

(�b⊥ × �k⊥)WLC (x, �b⊥, �k⊥)dxd2 �b⊥d2�k⊥ . (10.81)

The above two OAMs, Lq and !q , correspond to the quark
OAMs in the Ji and Jaffe-Manohar spin sum rules, respec-
tively, discussed in Sect. 10.3. Similar conclusions hold for
the gluon OAMs as well.

Therefore, the Wigner distribution, to some extend, con-
tains the parton OAMs in two different spin sum rules. This
further illustrates that the difference between them comes
from the gauge link direction. A recent lattice QCD calcula-
tion has shown that the quark OAMs can be obtained from
the quark Wigner distributions and the difference between
Lq and !q has been demonstrated [3217,3218].

In the last years a number of studies have directly probed
the quark/gluon OAM contributions [3257–3261] applying
the Wigner distribution for hard exclusive processes. For
example, the single longitudinal target-spin asymmetries in
hard exclusive dijet production in lepton–nucleon collisions
[3257,3258] and the double spin asymmetries in this pro-
cess [3261] can provide crucial information on the gluon’s
canonical OAM contribution.

The determination of Wigner distributions is thus an
important challenge for future studies; see discussions in the
end of this subsection. The crucial point is that there exists
a well-defined, standardized way to link nucleon tomog-
raphy to Wigner distributions constructed from light-cone
wave functions [3254]. As an example we show in Fig. 267
the average transverse momentum flow in impact parame-
ter space for u-quarks inside the proton. While this result is
model dependent, it has the great advantage of providing an
intuitive image of the quark orbital motion distribution inside
a hadron.

Generalized parton distributions
The GPDs are one of the projections from the Wigner distri-
butions. They are extensions of the usual collinear parton dis-
tributions discussed in Sect. 10.2 and defined as off-forward
matrix elements of the hadron. For example, for the quark
GPDs, we have [1079,1081,1286,3242–3245]
∫

dλ

2π
eiλx 〈P ′S′|Ψ q

(

−λ

2
n

)

�nΨq

(
λ

2
n

)

|PS〉 (10.82)

= U (P ′)
[

Hq (x, ξ, t)�n + Eq (x, ξ, t)
σαβnαΔβ

2Mp

]

U (P) ,

where Δ = P ′ − P with t = Δ2, x is the light-cone momen-
tum fraction of the quark, and the skewness parameter ξ is
defined as ξ = (P−P ′) ·n/(P+P ′) ·n. In the forward limit,

Fig. 268 Transverse profiles for the up quark distribution in transverse
coordinate space as a function of x

we have ξ = 0 and t = 0, and the GPDs reduce to the usual
collinear PDFs. The x-moments of GPDs lead to not only the
electromagnetic form factors but also the gravitational form
factors [1081], one of which produces the spin sum rule as
discussed in the previous subsection.

Depending on the polarization of the quark and the
nucleon states, the leading-twist quark GPDs contain eight
independent distributions. The GPDs can be measured in
many different experiments, for example, DVCS and hard
exclusive meson production. Experimental efforts have been
made at various facilities, including HERMES at DESY, Jef-
ferson Lab, and COMPASS at CERN. It will be a major focus
of the future EIC as well.

Nucleon tomography in terms of the GPDs is best illus-
trated in the impact parameter dependent parton distribution
of Eq. (10.73). From that, we can define the transverse quark
density profile [3249]:

ρq(x, b) =
∫

d2Δ

(2π)2 e
−iΔ·bHq(x,−Δ2) . (10.83)

An important feature of the above distribution is how it
changes with longitudinal momentum fraction x . In Fig. 268,
we show the transverse density profile for the up quark from
the GPD parameterizations of [3226]. The plot shows that
the transverse profile in coordinate space becomes wider at
smaller x . At large x , however, it approaches a point-like
structure, which means there is no t dependence of the GPD
quark distribution, a result consistent with large-x power
counting for GPDs [3262]. One of the primary goals of the
GPD program at the JLab-12GeV and the EIC is to map out
the x-dependence of the GPDs and the tomographic images
for both quarks and gluons.

Most interestingly, when the nucleon is transversely polar-
ized, the parton distribution in the transverse plane will be
asymmetric due to the contribution from the GPD E [3249],

ρX
q (x, b)

=
∫

d2Δ

(2π)2 e
−iΔ·b

(

Hq(x,−Δ2)+ iΔY

2M
Eq(x,−Δ2)

)
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Fig. 269 Plots of the intrinsic quark densities ρX
q,In(x, b) for both u

and d quarks in a transversely polarized proton (in the X direction) at
x = 0.3. Both the u and d quark densities are shifted in the Y direction
and contribute to the angular momentum J X . While the u contributions
are positive (+Y direction) and the d contributions are negative (−Y
direction). These plots are adopted from Ref. [3220]

= Hq(x, b)− 1

2M

∂

∂bY
Eq(x, b) , (10.84)

where Hq(x, b) and Eq(x, b) are the 2-dimensional Fourier
transformations of Hq(x,−Δ2) and Eq(x,−Δ2), respec-
tively, and the nucleon is polarized in the X direction. This
asymmetric distribution has attracted strong interest in the
hadron physics community and it was argued that it might be
related to the single spin asymmetry phenomena in hadronic
processes [3249]. It has also been found in a lattice simula-
tion [3263].

In order to factor out the transverse displacement from
the nucleon’s center of momentum and its contribution to the
transverse polarization, one can introduce an intrinsic quark
density [3198],

ρX
q,In(x, b) =

∫
d2Δ

(2π)2 e
−iΔ·b [

Hq(x,−Δ2)

+ iΔY

2M

(
Hq(x,−Δ2)+ Eq(x,−Δ2)

)]

= Hq(x, b)− 1

2M

∂

∂bY
(
Hq(x, b)+ Eq(x, b)

)
,

(10.85)

from which one can reproduce the transverse polarization
sum rule; see Sect. 10.3. In Fig. 269, we show the intrinsic
transverse density for u and d quarks at x = 0.3 from the
analysis of the GPD quark distribution of [3220]. Clearly, the
quarks have non-zero transverse displacement, which con-
tributes to the transverse angular momentum of the nucleon.

The theoretical framework has been well developed for
the GPD studies with established QCD factorization for the
associated exclusive processes [1288–1290]. Higher order
perturbative QCD corrections have been calculated in a num-
ber of publications [1290,3264–3272]. The first computation
of next-to-next-leading order corrections for DVCS has also
been reported recently [3273]. However, since GPDs depend

on three variables (x ,ξ ,t) in addition to the scale variable μ, it
is much more difficult to extract them from experiment than
PDFs (which only depend on x).

Pioneering phenomenological work has been carried
out in Refs. [1286,3226,3230,3269,3274,3275]. In the last
years, progress has also been made toward a global analysis
of GPDs from a wide range of experiments [3220,3276–
3282]. Especially, the twist-2 and twist-3 results were re-
derived with an optimal light cone coordinate and full kine-
matics adopted [3280–3282]. A dedicated program based on
earlier developments of Ref. [3274] has been proposed in
Ref. [3220]. All these theory advances are crucial for a suc-
cessful campaign to determine GPDs from DVCS and other
hard exclusive processes measured at JLab-12 GeV and the
planned Electron-Ion Collider.

Lattice QCD can be used to study these GPDs as well.
Employing the LaMET formalism, exciting results on the
x-dependence of the GPD quark distributions have already
been obtained [671,3283]. We expect many more such sim-
ulations to emerge in the future, as well as combined fits to
experimental and lattice data.

Transverse Momentum Dependent Parton Distributions
Theoretical studies of TMDs started long ago (see, for exam-
ple, Ref. [1272]). In recent years great progress was made in
the exploration of these distribution functions and the associ-
ated single spin asymmetry phenomena. In particular, TMDs
provide not only an intuitive illustration of nucleon tomog-
raphy, as we discussed above, but also the important oppor-
tunities to investigate the specific nontrivial QCD dynamics
associated with their physics: QCD factorization, universal-
ity of the parton distributions and fragmentation functions,
and their scale evolutions.

Different from the collinear PDFs discussed in Sect. 10.2,
the TMD parton distributions can not be studied in inclu-
sive processes. We have to go beyond that and explore semi-
inclusive hard processes, where a hard momentum scale is
involved in addition to the transverse momentum of the final-
state particle produced. For example, we can study the TMD
quark distributions in semi-inclusive DIS (SIDIS), where the
virtual photon (with virtuality Q) scatters off the hadron
and produces a final state hadron in the current fragmen-
tation region. The hadron’s transverse momentum Ph⊥ has
to be much smaller than the hard momentum Q. Because
of Ph⊥ � Q, this process can be factorized into the TMD
quark distribution convoluted with the TMD fragmentation
function. Similarly, the Drell–Yan lepton pair production (or
W/Z -boson, Higgs boson production) in hadronic collisions
can be described by the convolution of two TMD parton dis-
tributions with transverse momentum q⊥ � Q. A related
process in e+e− annihilation into two back-to-back hadrons
can be factorized as a convolution of two TMD fragmentation
functions.
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Fig. 270 The leading order transverse momentum dependent quark
distributions depend on the polarization of the quark (rows) and the
nucleon (columns)

The TMD quark distributions can be defined by the fol-
lowing matrix [1272,1284,1297,1310,3247,3248],

M̂αβ(x, k⊥) =
∫

dy−d2y⊥
(2π)3 e−i x P+·y−+i �k⊥·�y⊥

×〈PS|Ψ β(y
−, y⊥)Ψα(0)|PS〉 , (10.86)

where x is the longitudinal momentum fraction and k⊥ the
transverse momentum carried by the quark. The quark field
Ψ (y) contains a gauge link as defined in Eq. (10.76). This
definition contains a light-cone singularity from higher order
corrections. The regulation and subtraction procedure defines
the scheme of the TMD distributions. Obviously, in the the-
oretical limit in which contributions from all orders and all
twists are taken into account, physical quantities have to be
scheme independent. (At the most simple level this was actu-
ally shown explicitly in Ref. [3284] but it has to be true also
non-perturbatively.) Often, however (e.g. in event genera-
tors), rather specific models are used for which this is not the
case. In these cases the fitted TMDs and thus the result of
hadron tomography can be strongly scheme/model depen-
dent (see e.g. Ref. [3285]). Calculating the model-specific
matching factors or functions between such a scheme and
the usual TMD factorization scheme is often not possible.
This should flag a warning that one has to be careful when
comparing fitted TMDs from different sources. The leading
order expansion of the above matrix contains eight indepen-
dent quark TMDs, depending on the polarization of the quark
(varying horizontally) and the nucleon (varying vertically) in
Fig. 270. The gauge link direction plays an essential role in
the naive time-reversal-odd TMD quark distributions, includ-
ing the quark Sivers function f ⊥1T (x, k⊥) and Boer-Mulders
function h⊥1 (x, k⊥).

The spin-average quark distributions are symmetric in the
transverse plane. However, if the nucleon (or the quark)
is transversely polarized, the quark distribution shows an
azimuthal asymmetry. In particular, the TMD quark Sivers
functions quantify these asymmetries in the transverse
momentum space. In Fig. 271, we show one of the resulting

Fig. 271 The quark Sivers function represents the asymmetric distri-
bution of a quark in transverse momentum space when the nucleon is
polarized along the ŷ-direction. This plot is adopted from a phenomeno-
logical study [3286]

distributions for the quark (averaged over x) in transverse
momentum space in a transversely polarized nucleon. The
TMD distribution comes from the fit to the associated single
transverse spin asymmetries in semi-inclusive hard processes
[3286].

For the quark Sivers function, because of the initial/final
state interaction (represented by the gauge link pointing to
−∞ or +∞ in the quark distribution definition) difference,
they differ by signs for semi-inclusive hadron production
in DIS (SIDIS) and Drell–Yan processes [1296,1297,1309,
1310,3287,3288]. This leads to a sign change between the
SSAs in SIDIS and Drell–Yan processes,

Sivers SSA|DY = −Sivers SSA|DIS . (10.87)

This nontrivial result still holds when gluon radiation contri-
butions are taken into account [1320,3289–3291]. It is very
important to test this nontrivial QCD prediction by com-
paring the SSAs in these two processes. The Sivers single
spin asymmetries in SIDIS processes have been observed by
the HERMES [3292,3293], COMPASS [3294–3297], and
JLab [3298,3299] collaborations. There have been signifi-
cant efforts to measure the Sivers asymmetries in Drell–Yan
process at COMPASS [3300] and that of W± production at
RHIC [3301]. The analyses of these data provide an indi-
cation for a sign change [3302], but no proof. More precise
measurements are needed to confirm this crucial property.

In TMD factorization for semi-inclusive hard processes
[1267,1272,1280,1283,1911], collinear and soft gluon radi-
ations are factorized into the TMD parton distributions or
fragmentation functions and the associated soft factors. As
for the integrated parton distribution functions, these gluon
radiation contributions can be resummed to all orders by solv-
ing the relevant evolution equations. This resummation is
referred to as TMD or Collins–Soper–Sterman resummation
[1280]. As a result, the factorization simplifies the differential
cross section to a convolution of soft factor-subtracted TMD
distributions and/or fragmentation functions [1267], where
the hard momentum scale is chosen as factorization scale
μF = Q. As an example, in Fig. 272, we show the TMD up
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Fig. 272 TMD up-quark distributions f (sub)
u (x, k⊥) (for x = 0.1) as

functions of the transverse momentum k⊥ (GeV) at three different scales
Q2 = 2.4, 10, 90 (GeV2). This plot is adopted from Ref. [3284]

quark distribution f (sub)(x = 0.1, kT , μF = Q) as a func-
tion of the transverse momentum at different scales. Clearly,
the resummation/scale evolution leads to broadening effects
for TMD distributions at higher scales. Based on these devel-
opments, recent global analyses have achieved high precision
for the unpolarized TMD quark distribution and fragmenta-
tion functions fitted to data from various semi-inclusive hard
processes [3303–3306]. Of course, further theoretical devel-
opments are still needed to answer crucial questions concern-
ing TMD factorization at lower scale SIDIS and the question
how non-perturbative effects affect the matching between
the TMDs and collinear PDFs [3306–3309]. Upcoming data
from the JLab-12 GeV program should significantly improve
our understanding of these issues in the near future.

In addition, progress has been made in studying the scale
evolution for the quark Sivers function and the associated
quark–gluon–quark correlation functions [1317,1318,3310–
3314], and the QCD resummation for the SSA observables
[3314–3318]. These resummation effects have been taken
into account in a recent phenomenological study of all single
spin asymmetries associated with the quark Sivers function
in a global analysis using (N3LO) evolution for the TMDs
[3286,3302].

There have also been significant progresses toward lat-
tice calculations of TMDs [672,675,676,3319–3330] in the
last few years, partially again based on the LaMET formal-
ism. The TMD evolution kernel was calculated from lattice
QCD [672,674,676,3327,3328] for perturbative and non-
perturbative [3305,3306,3331] impact parameters b and the
result agreed with that of a fit to experimental data [3285].
This motivates great hopes for future combined TMD fits to
experimental and lattice data. We also expect lattice simula-
tion of the single spin asymmetries associated with the quark
Sivers function, using the perturbative matching derived in
Ref. [3323].

More recently, important developments have taken place
addressing the connections between the TMD formalism and
small-x saturation physics. Small-x gluon saturation is best

described in the color-glass-condensate (CGC)/color-dipole
formalism [3332–3336], for which the so-called unintegrated
gluon distributions (UGDs) are essential elements. What has
been shown in the recent papers [3337–3343] is that these
UGDs are the same as the TMD gluon distribution functions
at small-x . Meanwhile, considerable progress has also been
made in computing Sudakov double logarithms in the small-x
formalism [3344–3349]. These computations provide a solid
theoretical foundation for further rigorous investigations that
probe the dynamics of the saturation regime with hard pro-
cesses. We anticipate that in the foreseeable future a unified
picture of nucleon structure will emerge that covers the whole
kinematic domain, including small and large x .

Direct access to the Wigner distributions
It was generally believed that the parton Wigner distribu-
tions are not directly measurable in high energy scattering.
However, it was realized recently that the Wigner distribution
could be measured through hard exclusive processes [3350–
3352]. In particular, it was shown in Ref. [3350] that the
small-x gluon Wigner distribution is connected to the color
dipole S-matrix in the CGC formalism [3332–3336], that
diffractive dijet production in ep/eA collisions [3350,3353–
3357] may provide a direct probe of this gluon Wigner
distribution. Additionally, semi-hard gluon radiation in this
process or ‘trijet’ diffractive production has been shown to
probe the color-dipole amplitude in the adjoint representation
[3358,3359]. This demonstrates that a new class of diffrac-
tive processes, including semi-inclusive diffractive DIS [864]
can provide crucial information on the gluon Wigner distri-
butions at small-x . Extension to other processes, in particular,
those at moderate and large x will be interesting to follow
as well. We expect more research along this direction in the
future.

To summarize this subsection: There has been great
progress in both experiment and theory for GPD and TMD
physics. Of course, challenges are still there in both fields. We
would like to emphasize that data from future experiments,
including the 12 GeV upgrade of JLab, COMPASS and the
planed EIC experiments, together with theory developments,
will lead us to a complete 3D tomography of the nucleon.

11 QCD at high energy

Conveners:
Gudrun Heinrich and Eberhard Klempt
The core of high energy collisions consists in a hard scat-
tering of two partons, where the momentum transfer is very
large and therefore the process can be calculated perturba-
tively. The enormous progress in the calculation of QCD
corrections beyond the leading order in perturbation theory
is described by Gudrun Heinrich. The scattered partons can
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emit soft or nearly collinear gluons. In kinematic regions
where the phase space for such emissions is restricted, large
logarithms arise, which can spoil the perturbative conver-
gence. Due to the universal structure of infrared divergent
QCD radiation, such logarithms can be resummed analyti-
cally to all orders to restore the predictive power of the per-
turbative description in these kinematic regions, as described
by Simone Marzani.

At the intermediate stage between the hard interaction and
hadronization, the radiation of gluons from quarks and the
splitting of gluons into secondary quarks and gluons, forming
a cascade of emissions, can be described by parton showers.
The development of these parton showers and our under-
standing of these processes are described by Frank Krauss.

Once these showers of partons have evolved to low ener-
gies, the process of hadron formation sets in. At these ener-
gies, the strong coupling is large, such that bound states are
formed, which cannot be described perturbatively anymore.
The description of hadronization needs to rely on parameters
extracted from data. These parameters are tuned in Monte
Carlo simulations. Torbjörn Sjöstrand gives a detailed view
of different stages of the collision process and of their simu-
lation.

The reconstruction of jets by reliable jet algorithms and
the identification of the primary source, gluons or quarks of a
certain flavor, is very important to extract information about
the underlying particle dynamics from the data. Jet substruc-
ture variables can provide essential information about the
decay of heavy particles leading to boosted jets, as described
by Bogdan Malaescu, Dag Gillberg, Steven Schramm, and
Chris Young.

11.1 Higher-order perturbative calculations

Gudrun Heinrich

11.1.1 Introduction

The property of asymptotic freedom of QCD, together with
the fact that short- and long-distance effects in QCD can be
factorized up to power corrections, allows us to describe pro-
cesses with high momentum transfer as a perturbative series
in the strong coupling αs , as illustrated in Eq. (11.1). For
example, the cross section for a process such as the produc-
tion of a Higgs boson through the collision of two protons
with momenta pa and pb, pa + pb → H + X , has the form

σpp→H+X =
∑

i, j

∫ 1

0
dx1 fi/pa (x1, αs , μF )

×
∫ 1

0
dx2 f j/pb (x2, αs , μF ) σ̂i j→H+X (αs(μR), μR, μF )

+O
(
Λ

Q

)p

, (11.1)

where the partonic cross section σ̂i j→H+X can be expanded
as

σ̂i j→H+X = α2
s σ̂

(0) + α3
s σ̂

NLO + α4
s σ̂

NNLO + · · · (11.2)

The renormalization of ultraviolet singularities appearing in
loop corrections leads to a dependence of both αs and the
partonic cross section on the renormalization scale μR . Sim-
ilarly, the absorption of collinear singularities into the “bare”
parton distribution functions leads to a dependence on the
factorization scale μF . The functions fi/pa (x, αs, μF ) are
the (physical) parton distribution functions (PDFs), which
can be interpreted as probabilities to find a parton of type i
with momentum fraction x of the “parent” momentum pa in a
proton (or, more generally, a hadron). This makes an assump-
tion of collinearity of the parton’s momentum with pa , there-
fore the factorisation described by Eq. (11.1) is also called
collinear factorisation. For more details about parton distri-
bution functions we refer to Sect. 10.2. Factorization holds up
to the so-called power corrections of order (Λ/Q)p, where
the power p is process-dependent and larger than one for
observables that are sufficiently inclusive over the hadronic
final state, see, however, Ref. [180].

In Eq. (11.2), the partonic cross section at leading order
(LO) in an expansion in αs is denoted by σ̂ (0), where for
the sake of clarity the powers of the strong coupling have
been extracted. The next-to-leading order (NLO) cross sec-
tion comes with one more power of αs relative to LO, the
next-to-next-to-leading order (NNLO) cross section with two
more αs powers than LO, etc. Of course such an expansion
also can be performed for the electroweak corrections, how-
ever, as α/αs(MZ ) � 0.1, the QCD corrections are usually
larger, except in kinematic regions where logarithms of the
form α ln(M2

W /ŝ) grow large. The dependence of the cross
section dσpp→H+X onμR andμF is an artifact of the trunca-
tion of the perturbative series. Therefore, the dependence on
these unphysical scales becomes weaker as more perturba-
tive orders are calculated. The variation of the cross section as
these scales are varied around a central scale – which should
be chosen to be close to the energy at which the hard inter-
action takes place – therefore can be used as an estimate of
the theoretical uncertainty due to missing higher orders.

Higgs boson production in gluon fusion is somewhat spe-
cial, as the leading order amplitude is already loop-induced,
and because the NLO QCD corrections are of the order of
100%, which makes the inclusion of QCD corrections beyond
NLO a necessity for a satisfactory description of the data.

The perturbative expansion in powers of αs is particu-
larly reliable for inclusive observables. If the phase space
for QCD radiation is restricted, large logarithms can appear,
which spoil the convergence of the perturbative series in αs .
This requires so-called resummation, as described in detail
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in Sect. 11.2. Here we will focus on calculations at a fixed
order in the strong coupling.

11.1.2 Developments and status

Next-to-leading order QCD corrections
The development of systematic techniques for NLO QCD
corrections started in the 1980s with seminal work on e+e−–
annihilation to jets [3360–3362] and hadron–hadron scat-
tering [197], followed by pioneering developments of tech-
niques for one-loop calculations based on Feynman diagrams
and tensor reduction [3363–3366]. In parallel, subtraction
methods for soft and collinear real radiation were established
[199,3367], leading to the first differential NLO calculations
of 2-jet production in hadronic collisions [3368–3370], while
the first NLO calculation of 3-jet production in hadronic col-
lisions only appeared 10 years later [3371].

The calculation of NLO cross sections for (n−2)-jet pro-
duction in hadronic collisions (or for (n−1)-jet production in
e+e−–annihilation, as well as the calculation of amplitudes
obtained by crossing) involves n-parton one-loop amplitudes
and (n+1)-parton tree-level amplitudes with up to one unre-
solved (soft or collinear) parton, see Fig. 273. The efficient
calculation of one-loop n-point amplitudes for n ≥ 5 repre-
sented a major challenge in the 1990s and led to the develop-
ment of more efficient methods to calculate one-loop n-point
amplitudes, based on the idea to exploit analytic properties
of loop integrals if propagators are put on-shell (so-called
“unitarity cuts”) [200,3372–3374]. The emergence of meth-
ods to perform these cuts numerically [3375–3377], together
with the automation of subtraction methods for unresolved
real radiation at NLO, led to a new level of efficiency, result-
ing in the availability of NLO QCD predictions for multi-
particle scattering which were considered unfeasible some
years before, such as 5-jet production at the LHC [3378], top-
quark pair production with up to 3 jets [3379], Wbb̄ produc-
tion with up to 3 light jets [3380], or the NLO QCD and EW
corrections to off-shell t t̄W production at the LHC, involving
one-loop 10-point integrals [3381]. It also led to the develop-
ment of automated tools providing one-loop amplitudes for
fully differential NLO predictions [3376,3382–3388]. This
remarkable jump in efficiency is often called the “NLO rev-
olution”.

Beyond NLO
The next step, towards fully differential NNLO predic-
tions, required not only major progress in the calculation of
two-loop integrals, but also the development of subtraction
schemes for infrared (IR) divergent real radiation where up
to two particles can be unresolved.

Multi-loop amplitudes
First, the developments regarding loop integrals with two or
more loops will be considered. A very important parame-

Fig. 273 Building blocks of an NxLO calculation for processes where
the leading order is at tree level (in contrast to loop-induced). The higher
order diagrams are only representatives of their class, the number of
diagrams grows rapidly with the perturbative order

ter characterising a Feynman integral besides the number of
loops and legs is the number of kinematic/mass scales. As
an example, it is instructive to consider the development of
the calculation of 2-loop 4-point integrals (2 loops, 4 legs):
the analytic calculation of the planar [3389] and non-planar
[3390] two-loop 7-propagator diagrams with massless propa-
gators and light-like legs has been performed in 1999, numer-
ical checks of these results in the Euclidean region were
performed in Ref. [3391], the calculation of such integrals
with one off-shell leg was completed soon after [3392,3393].
The first results for two-loop 4-point amplitudes with mas-
sive propagators have been achieved by a numerical method
[3394,3395], leading to NNLO predictions for top quark pair
production in hadronic collisions [3396]. The analytic calcu-
lation of two-loop 4-point integrals with two massive legs and
massless propagators, entering for example the production of
Z -boson pairs or a W+W− pair, was completed around the
year 2015 for both the on-shell as well as for the off-shell case
[3397–3402]. However, the step to include massive propaga-
tors leads out of the function class (so-called multiple poly-
logarithms) describing the above-mentioned objects analyti-
cally. Therefore, the calculation of two-loop 4-point integrals
with both massive propagators as well as massive final state
particles was performed numerically before analytic results
appeared, examples are the two-loop QCD corrections to
Higgs boson pair production [3403,3404], Higgs+jet pro-
duction [3405], gg → ZH [3406–3408] and gg → VV
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Table 48 Timeline for the availability of full NNLO cross sections at
hadron colliders (or NLO cross sections for loop induced processes)
based on two-loop four-point or five-point integrals with an increasing
number of mass scales. “HTL” denotes the heavy top limit, “QCD-
EW DY” denotes mixed QCD-electroweak corrections to the Drell–Yan
process

Indep. kinem.
scales

Massive/off-
shell legs

Internal
masses

Process Full σ

2 → 2

2 0 0 γ γ 2011

2 0 0 j j 2017

2 0 0 γ + j 2017

3 2 1 t t̄ 2013

3 2 0 VV 2014

4 2 0 VV ′ 2015

3 1 0 V + j 2015

3 1 0 H + j (HTL) 2015

4 2 1 HH 2016

4 1 1 H + j 2018

3 0 1 gg→ γ γ 2019

4 2 1 gg→ Z Z 2020

4 2 1 gg→ WW 2020

5 2 1 gg→ ZH 2021

4 2 1 QCD-EW DY 2022

2 → 3

4 0 0 3γ 2019

4 0 0 γ γ j 2021

4 0 0 3 j 2021

5 1 0 Wbb̄ 2022

with massive loops [3409–3411], where V denotes a mas-
sive vector boson. Thus, one can roughly say that it took
almost 20 years to increase the number of independent mass
scales entering these diagrams from two (s12, s23), to five
(s12, s23,mt ,mV ,mV ′), where si j = (pi + p j )

2 and V ′
denotes a boson with invariant mass different from V . The
timeline of available predictions for (differential) cross sec-
tions based on these integrals is shown in Table 48, illustrat-
ing how an additional mass scale increases the complexity. It
is noteworthy that all integrals with massive propagators, i.e.
with a non-zero entry in the third column, have been calcu-
lated with numerical methods. For processes with jets in the
final state, the subtraction of IR divergent real radiation was
the bottleneck, not the availability of the two-loop integrals.

More details on the methods employed for these calcula-
tions can be found e.g. in Refs. [215,3412,3413].

Real radiation
For many 1 → 3 or 2 → 2 processes, such as e+e− → 3 jets
or di-jet production in hadronic collisions, the knowledge
of the two-loop amplitudes was not the main bottleneck
on the way to fully differential predictions at NNLO. Effi-

cient schemes to treat the infrared (IR) divergent real radi-
ation needed to be developed, and the emergence of several
schemes led to an explosion in the availability of NNLO
results for LHC processes with up to two particles or jets in
the final state after 2015, a development which is sometimes
referred to as the “NNLO revolution”. The main methods to
treat IR divergent real radiation beyond NLO can roughly be
classified into two categories: (i) methods based on subtrac-
tion, and (ii) methods based on partitions of the phase space
into IR-sensitive regions and hard regions, sometimes also
called “slicing methods”. The latter introduce a dependence
on a resolution variable which cancels once the IR-sensitive
and hard regions are combined. Subtraction methods aim
at a local subtraction of the IR singular structures, i.e. a
cancellation of singularities point-wise in the phase space,
while for slicing methods the compensations are non-local.
This non-locality can lead to large numerical cancellations,
however, power corrections in the resolution variable can
be included to mitigate their impact. Reviews about recent
developments in IR subtraction schemes can be found e.g. in
Refs. [214,3413,3414]. The main methods are summarized
in Table 49.

The extension of methods to isolate IR divergent real radi-
ation to N3LO, i.e. the case of up to three unresolved partons,
in particular in the presence of tagged colored particles or jets,
is one of the current challenges in the field of high precision
perturbative QCD calculations.

While the complete automation of NNLO calculations is
probably not feasible in view of efficiency optimisations that
are process specific, libraries with a large collection of codes
providing NNLO predictions are available, such as matrix
[3452], nnlojet [3419] or mcfm [3459].

Current frontier and recent developments
As shown in Fig. 273, the calculation of NxLO corrections
to processes with (n − 2) identified particles or jets in the
final state in hadronic collisions (where the leading order
is a tree amplitude, as contrasted to loop-induced amplitudes
such as Higgs boson production in gluon fusion), requires the
calculation of amplitudes with x − j loops and n + j legs,
where j = 0, . . . , x . The current frontier is, roughly speak-
ing, x + n ≥ 6, having in mind 2 → 3 processes at NNLO,
2 → 1 processes at N3LO or 4-loop form factors. However,
the type of the involved particles is very important for the
complexity of the calculation: all available complete N3LO
results to date involve only color singlets in the final state,
see e.g. Refs. [3460–3464] for the Drell–Yan process, Refs.
[206,3465–3468] for Higgs boson production in gluon fusion
in the heavy top limit and Ref. [3469] for V H production.
Inclusive N3LO results are also available for Higgs [3442]
and Higgs pair [3470] production in vector boson fusion
(VBF), Higgs pair production in gluon fusion in the heavy
top limit [3471] and Higgs production in bottom quark fusion
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Table 49 Methods for the
isolation of IR divergent real
radiation at NNLO and up to
three examples of their
application

Method NNLO examples

Subtraction

Antenna subtraction e+e− → 3 jets [3415,3416],

[3417,3418] pp→ 2 jets [3419,3420],

pp→ WH j [3421]

Sector-improved residue subtraction [3422–3424] pp→ t t̄ [3396],

pp→ W + c-jet [3425],

pp→ 3 jets [3426]

Nested soft-collinear subtraction [3429–3431] pp→ V H [3427,3428],

VBF H [3432],

mixed QCD-EW to

Drell–Yan [3433–3435]

ColorFul [3436,3437] e+e− → 3 jets [3438],

H → bb̄ [3439]

Projection to Born [3440,3442] VBF H [3440],

VBF HH [3441],

single top [3443,3444]

Local analytic subtraction [3445–3447] e+e− → 2 jets [3445]

4-dimensional schemes [214,3449] γ ∗ → t t̄ [3448] (inclusive)

Slicing

qT [3450,3451] VV ′ [3452], t t̄ [3453],

mixed QCD-EW to

Drell–Yan [3454,3455]

N-jettiness [1816,2020,2021] V + j [2020,3456],

H + j [3457,3458],

di-boson [3459]

[3472,3473]. The extension to colored final states requires
advances in the treatment of IR divergent real radiation, for
example N -jettiness soft and beam functions at this order,
see e.g. Refs. [2027,3474–3478] or triple collinear splitting
functions [3479,3480], see also Ref. [3414] for more details.

Another ingredient which is needed to be consistent at this
order are N3LO parton distribution functions, see Ref. [3101]
for recent progress.

For processes such as Higgs boson decays into heavy
quarks or the production of heavy quarks at e+e− colliders
at three loops, massive 3-loop form factors need to be calcu-
lated, and the presence of the additional mass scale substan-
tially increases the complexity of the calculation. Analytical
and semi-numerical methods have pushed these calculations
quite far [3481–3487].

Only very few results for three-loop amplitudes with more
than three legs exist. Remarkable recent results are the 3-
loop amplitudes for qq̄ → γ γ [3488], gg → γ γ [3489],
qq̄ → q ′q̄ ′ [3490], qq̄ → gg [3491] and gg → gg [3492].
For the case of one massive external leg, results for planar
master integrals exist [3493].

Another highlight on the 3-loop front is the calculation of
the NNLO corrections to Higgs boson production in gluon
fusion with full top quark mass dependence [3494], which
involves the calculation of 3-loop integrals with two mass
scales.

Considering x = 2, n = 5, i.e. processes involving 2-
loop 5-point integrals, again the number of mass scales is the
critical measure of complexity. Results for complete cross
sections have been achieved for processes involving only
massless particles: pp → 3γ [3495,3496], pp → γ γ j
[3497–3500] and pp → 3 jets [3426], as well as for the
process pp→ Wbb̄ [3501,3502].

At four loops, the computation of form factors has seen
enormous progress in the past few years [3503], culminating
in the calculation of the complete analytic expressions for
the photon-quark and the Higgs-gluon form factors at 4-loop
order [1959]. These form factors will serve as building blocks
for a future complete N4LO calculation of the Drell–Yan
process and Higgs boson production in gluon fusion in the
heavy top limit. N4LO results for gg → H in the large-N
soft-virtual approximation already exist [3504]; results for
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soft corrections to deeply inelastic scattering (DIS) at 4-loop
order are also available [3505].

Results at five and more loops mainly involve two-
point functions, entering for example the calculation of β-
functions, such as the 5-loop β-function in QCD [3506–
3509] or in scalar theories [3510]. Five-loop contributions
to the anomalous magnetic moment of the electron have
been calculated in Refs. [3511–3514]. Results for anomalous
dimensions at six [3515,3516] or seven loops and beyond
[3517,3518] are available for scalar theories.

11.1.3 Phenomenology

The progress described above concerning precision calcu-
lations in QCD has led to a plethora of phenomenological
results at unprecedented precision, such as determinations of
the strong coupling described in Sect. 3.2, determinations of
the W -boson mass, precision measurements in Higgs- and
electroweak physics (see Sects. 12.4, 12.3) and top quark
physics (see Sect. 12.5). Advances in jet algorithms and jet
substructure measurements (see Sects. 12.2 and 11.5)) also
play a major role in the LHC precision program. Cross sec-
tions for inclusive jet production can be measured at the LHC
with an uncertainty of about 5% for central rapidities. This
poses challenges on the theory side, in particular it requires
a judicious choice of the central scale, as some choices can
induce infrared-sensitive contributions [3519]. Furthermore,
the transverse momenta of the jets can reach values around
4 TeV, making the combination of NNLO QCD corrections
with NLO electroweak corrections indispensable to describe
the high-pT region correctly. In order to make such precision
calculations usable efficiently for PDF fits or αs determina-
tions, it is also important to have them available in a flexible
format, for example in the form of fast interpolation grids,
see e.g. Ref. [3520] for more details.

Together with ongoing progress in reducing PDF uncer-
tainties, as well as in controlling non-perturbative effects and
parton shower uncertainties (see e.g. Sects. 11.4, 11.3), pre-
cision phenomenology at hadron colliders has reached a level
which was unthinkable 50 years ago when QCD was “born”.

11.1.4 Outlook

The calculation of perturbative higher order corrections in
QCD at high energies is a success story. Inventive new meth-
ods have been developed to deal with the increasing level
of complexity at higher perturbative orders. These techni-
cal advances were accompanied by a better understanding of
important phenomenological concepts, such as infrared-safe
observables and jet algorithms, and of the limitations of fixed-
order perturbation theory. These developments went hand in
hand with increasingly precise measurements of QCD pro-

cesses at high energy colliders, and they are important pillars
of the search for physics beyond the Standard Model.

While the uncertainties due to the truncation of the per-
turbative series were the dominant theory uncertainties for a
long time in the 50-years history of QCD, for processes where
the N3LO level of QCD corrections is reached it became
clear that other uncertainties, such as PDF uncertainties,
parton shower uncertainties, quark mass effects, paramet-
ric uncertainties (e.g. in αs,mt ) or power-suppressed and
non-perturbative contributions need to be considered with
high priority as well. Being able to control them will play an
important role in the next 50 years of QCD and in the search
for physics beyond the Standard Model.

11.2 Analytic resummation

Simone Marzani

11.2.1 Large logarithms

QCD processes that involve high-momentum transfer, usu-
ally referred to as “hard processes”, can be described in per-
turbation theory. In this framework, theoretical precision is
achieved by computing the cross section σ for an observ-
able V , which we assume having the dimension of an energy
scale, including higher- and higher-order corrections in the
strong coupling αs , i.e. the so-called fixed-order expansion:

σ (V) = σ0 + αs σ1 + α2
s σ2 + α3

s σ3 +O(α4
s ), (11.3)

where the leading order (LO) contribution σ0 is the Born-
level cross section for the scattering process of interest. Sub-
sequent contributions in the perturbative expansion σx con-
stitute the (next-to)x -leading (NxLO) corrections. In the lan-
guage of Feynman diagrams, each power of αs corresponds
to the emission of an additional QCD parton, either a quark
or a gluon, in the final state or to a virtual correction. Note
that, with respect to Eq. (11.2), the explicit dependence on
the observable V has been highlighted.

Calculations of Feynman diagrams are plagued by the
appearance of divergences of different nature. Loop-diagrams
can exhibit ultra-violet singularities. Because QCD is a renor-
malizable theory, such infinities can be absorbed into a redef-
inition of the parameters that enter the Lagrangian. Through-
out this discussion, it is understood that such renormalization
has already occurred. Real-emission diagrams exhibit singu-
larities in particular corners of the phase-space. More specif-
ically, these singular contributions have to do with collinear,
i.e. small-angle, splittings of massless partons and emissions
of soft gluons, either off massive or massless particles. Virtual
diagrams also exhibit analogous infra-red and collinear (IRC)
singularities, and rather general theorems [3521–3523] state
that such infinities cancel when real and virtual corrections
are added together, thus leading to observable transition prob-
abilities that are free of IRC singularities. Moreover, in order
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to be able to use the perturbative expansion of Eq. (11.3),
one has to consider observables V that are “IRC safe”, i.e.
measurable quantities that do not spoil the above theorems.

The theoretical community has put a huge effort in com-
puting higher-order corrections, as discussed in detail in
Sect. 11.1. One of the main challenges in this enterprise is
the treatment of the infra-red region and the cancellation of
the singular contributions between real and virtual diagrams.
Furthermore, the emissions of soft and/or collinear partons
are also problematic because they can generate large loga-
rithmic terms in the perturbative coefficients σx , thus invali-
dating the fixed-order approach. The expansion of Eq. (11.3)
works well if the measured value of the observable isV � Q,
where Q is the scale which characterizes the hard process.
However, it loses its predictive power if the measurement of
V � Q confines the real radiation into a small corner of
phase-space, while clearly leaving virtual corrections unre-
stricted. For IRC safe observables, soft and collinear singu-
larities cancel, but logarithmic corrections in the ratio V/Q
are left behind, causing the coefficients σx to become large,
so that αx

s σx ∼ 1. Because these logarithmic corrections are
related to soft and/or collinear emissions, one can expect at
most two powers of L = ln Q

V for each power of the strong
coupling:

σ (V) = σ0 + αs

(
σ12L

2 + σ11L + . . .
)

+ α2
s

(
σ24L

4 + σ23L
3 + . . .

)
+O(αn

s L
2n).

(11.4)

All-order resummation is then a re-organization of the above
perturbative series. For many observables of interest, the
resummed expression exponentiates, leading to

σ (V) = σ0 g0(αs)

× exp [Lg1(αs L)+ g2(αs L)+ αsg3(αs L)+ . . . ] ,
(11.5)

where g0 is a constant contribution which admits an expan-
sion in αs . In analogy to the fixed-order terminology, the
inclusion of the contribution gx+1, i ≥ 0, leads to (next-
to)x -leading logarithmic (NxLL) accuracy.

Fixed-order Eq. (11.3) and resummed Eq. (11.5) expan-
sions are complementary. On the one hand, fixed-order cal-
culations fail in particular limits of phase-space, indicating
the need for an all-order approach. On the other hand, all-
order calculations are only possible if particular assumptions
on the emission kinematics are made. Thus, the most accu-
rate theoretical description for the observable V is achieved
by matching the two approaches

σmatched(V) = σ f.o.(V)+ σ res(V)− σ d.c.(V), (11.6)

where the third contribution corresponds to the expansion of
the resummation to the order we are matching to and it is
subtracted in order to avoid double counting. For instance,
if we were to match the resummed expression Eq. (11.5),
computed to some logarithmic accuracy to a fixed-order cal-
culation, see Eq. (11.4), performed at NNLO, σ d.c. would
correspond to the expansion of the resummed result up to
second order in the strong coupling, relatively to Born term.
Furthermore, we note that, if the resummation is computed at
high-enough accuracy, the dangerous logarithmic corrections
cancel between σ f.o. and σ d.c. and all the large contributions
are resummed in σ res.

All-order resummation is possible because (squared)
matrix element and phase-space factorize in certain kine-
matic limits. Different methods to achieve such factorization
have been developed in the literature. For instance, factor-
ization can be obtained by studying directly QCD ampli-
tudes and cross-sections in the soft and collinear limits.
Then, resummation can be achieved by iteratively identi-
fying factorization and exponentiation properties of QCD
matrix elements and cross-sections [171,3524,3525]. Other
approaches instead introduce non-local correlation oper-
ators, such as Wilson lines, and exploit their renormal-
ization group evolution [3526]. Finally, one can construct
soft-collinear effective field theories (SCET) to describe
the soft and collinear degrees of freedom of QCD [1801–
1804,1831,1901,1903] (see Sect. 6.4, and, for instance, Ref.
[3527] for an extensive review). There is a rich literature
describing similarities and differences of the various resum-
mation approaches, see e.g. [3528–3533]. In this presentation
we will mostly follow the iterative point of view.

11.2.2 Transverse-momentum resummation

The transverse momentum (QT = pZT , p
W
T , pHT ) distribu-

tion of electroweak final states at hadron colliders is one of
the most extensively investigated observables in QCD. Stud-
ies of QT spectra and related angular correlations of lepton
pairs produced via the Drell–Yan (DY) process provide us
with a useful testing ground for an even more interesting
Higgs and new physics program. These processes are char-
acterized by the presence of two distinct scales: the measured
QT and the invariant mass of the final-state Q, which is close
to the mass of the electroweak boson for on-shell production.
Therefore, if we are interested in phase-space regions where
QT � Q, large logarithmic corrections appear. They should
be accounted for to all orders, in order to achieve an accurate
theoretical description of these observable distributions.

Furthermore, one aspect of physics at hadron colliders that
becomes important at small QT is the role of non-perturbative
effects commonly attributed to the intrinsic transverse motion
of partons within the proton. One may therefore view any
opportunity to compare precise perturbative predictions with
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accurate experimental data for DY lepton pairs as a chance
to assess the size of non-perturbative physics; physics which
also affects the Higgs QT spectrum.

The literature on QT resummation is vast and since the
seminal papers, which date back to the late 1970s, early
1980s, e.g. [1280,3534], there has been a continuous effort in
producing accurate theoretical predictions that can describe
the experimental data. For example, high logarithmic accu-
racy [1947,3535–3542] has been achieved and computer
programs that allow one to compute NNLL predictions
matched to next-to-leading order (NLO) for the QT distribu-
tion in case of colorless final states in hadron collision have
been available for a long time, e.g. [3536,3537,3543–3548].
Fixed-order predictions have reached NNLO accuracy and
the resummation can be now performed to N3LL accuracy
[207,1946,3549–3552]. Results with partial N4LL resum-
mation have also been recently obtained [3464].

Moreover, observables such as φ∗ [3553,3554] that
exploit angular correlations to probe similar physics as QT ,
while being measured with even better experimental resolu-
tion, have triggered theoretical studies to extend the formal-
ism of QT resummation to these new variables [3545,3555–
3558].

In this section we review the main ingredients of QT

resummation for an electroweak final state, i.e. Higgs or DY.
For simplicity, we are going to consider distributions which
are fully inclusive in the electroweak boson decay products,
as well as integrated in the boson’s rapidity. The extension to
more differential distributions, including fiducial cuts on the
final-state particles, is possible. For convenience, we work
at NLL and, as further simplification, we explicitly consider
only the flavor-diagonal contributions, while restoring full
flavor-dependence in the end.

We compute the differential distribution for the transverse
momentum of the boson (Higgs or Z/γ ∗). At Born level, we
have gg→ h or qq̄ → Z/γ ∗, so the boson has no transverse
momentum, i.e. the distribution is proportional to δ(2) (QT ),
where QT is the two-dimensional transverse-momentum.
When computing higher perturbative orders, we must include
contributions with additional partons i in the final state. Thus,
the boson can acquire a nonzero transverse momentum, such
that QT = −∑

i kT i . Resummation is relevant when the
transverse momentum is much smaller than the mass (or
virtuality) of the electroweak boson, Q2

T = |QT |2 � Q2.
This can happen in two situations: either all recoiling partons
have small transverse momenta or their transverse momenta,
although not individually small, mostly cancel in their vector
sum. Both these mechanisms must be taken into account and,
as we shall shortly see, this can be achieved if QT resumma-
tion is performed in Fourier space. If we denote with b the
conjugate variable to QT , then the small-QT region corre-
sponds to large b = |b| and logarithms of QT are mapped
into logarithms of 1/b.

Thus, we consider the emission of an arbitrary number
of collinear gluons off the incoming hard legs. The partonic
cross-section can be written as

d2σ

dQT
= σ born

cc̄→F

∞∑

n=0

1

n!
n∏

i=1

∫
[dki ] (2Cc)

αs(kT i )

2π

×
[

zN−1
i P̄ real(zi ) δ

(2)

(

QT +
∑

i

kT i

)

+ P̄virtual(zi ) δ
(2) (QT )

]

Θ (kT i − Q0)

×Θ

(

1− zi + kT i
Q

)

, (11.7)

where we have taken Mellin moments with respect to the lon-
gitudinal momentum fractions zi . The emitted gluon phase

space is [dki ] = dzi
dk2

T i
k2
T i

dφi
2π and Cc = CF ,CA is the

appropriate color factor. The first Θ function expresses the
fact that emissions below the cut-off Q0 belong to the non-
perturbative region of the proton wave-function, while the
second one correctly accounts for the large-angle soft region
of phase-space. In order to achieve NLL accuracy, the strong
coupling αs has to be evaluated at two loops, in the CMW
scheme [171]. The emission probability is described by the
real and virtual matrix elements (see e.g. App. E of Ref.
[3559]):

P̄ real(z) =
{

1+z2

1−z , for a quark,
2z

1−z + 2(1−z)
z + 2z(1− z), for a gluon; (11.8)

P̄virtual(z) = (−1)

⎧
⎪⎨

⎪⎩

1+z2

1−z , for a quark,
2z

1−z + z(1− z)

+n f TR(z2 + (1− z)2), for a gluon.

(11.9)

For later convenience, we also introduce the leading order
regularized splitting functions

Pqq(z) = αs

2π
CF

[
1+ z2

1− z

]

+
,

Pgg(z) = αs

2π
2CA

[(
z

1− z
+ z(1− z)

2

)

+

+ 1− z

z
+ z(1− z)

2
− 2

3
n f TRδ(1− z)

]

,

(11.10)

and the corresponding anomalous dimensions

γcc(N , αs) =
∫ 1

0
zN−1Pcc(z), c = q, g. (11.11)
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We note that virtual corrections in Eq. (11.7) do not change
the transverse momentum QT and trivially exponentiate. The
real-emission contribution is also factorized, with the excep-
tion of the two-dimensional delta-function constraint. This is
where Fourier moments with respect to the two-dimensional
vector QT become helpful. We can exploit the relation

δ(2)

(

QT +
∑

i

kT i

)

= 1

4π2

∫
d2b eib·QT

n∏

i=1

eib·kT i ,

(11.12)

to fully factorize the real-contribution in Eq. (11.7). We
obtain

W real(b, N ) =
∞∑

n=0

1

n!
n∏

i

∫
[dki ] zN−1

i (2Cc)
αs(kT i )

2π

× P̄ real(zi )e
ib·kT iΘ (kT i − Q0)

×Θ

(

1− zi + kT i
Q

)

. (11.13)

The series in Eq. (11.13) sums to an exponential. Thus, the
resummed exponent is obtained by putting together real, vir-
tual and PDF (kT i < Q0) contributions:

R(b, N ) = 2Cc

∫
[dk]αs(kT )

2π
Θ (kT − Q0)Θ

(

1− z + kT
Q

)

×
(
−zN−1 P̄ real(z)eib·kT − P̄virtual(z)

)

+ 2
∫ Q2

Q2
0

dk2
T

k2
T

γcc(N , αs(kT )). (11.14)

By rewriting zN−1 = 1+(zN−1−1) and using the definitions
in Eqs. (11.8), (11.9), and (11.10), we are able to reshuffle
the contributions to the resummed exponent as follows

R(b, N ) = −
∫ Q2

Q2
0

dk2
T

k2
T

∫ 2π

0

dφ

2π

(
1− eib·kT

)

×
[ ∫ 1− kT

Q

0
dz

αs(kT )Cc

π
P̄virtual(z)

− 2γcc(N , αs(kT ))

]

+O
(
kT
Q

)

. (11.15)

The factor
(
1− eib·kT

)
essentially acts as a cut-off on the kT

integral. At NLL we have105

R(b, N ) = −
∫ Q2

b2
0/b

2

dk2
T

k2
T

[ ∫ 1− kT
Q

0
dz

αs(kT )Cc

π
P̄virtual(z)

105 See Ref. [3560] for a generalization of this approximation to higher-
logarithmic accuracy.

− 2γcc(N , αs(kt ))

]

= − ln Sc + 2
∫ Q2

b2
0/b

2

dk2
T

k2
t

γcc(N , αs(kt )), (11.16)

b0 = 2e−γE , where γE is the Euler constant. Thus, we
have successfully separated two distinct contributions: the
Sudakov form factor (Sc), computed here at NLL accuracy
(and systematically improvable) and a DGLAP contribution,
which evolves the PDFs from the hard scale Q down to b0/b.
Note that here we have only considered flavor-diagonal split-
tings. Off-diagonal ones do not alter the Sudakov form factor
and they are fully taken into account by the complete DGLAP
evolution.

Taking into account all the above effects, the all-order
transverse momentum distribution for the production of an
electroweak final state F from initial-state partons c and c̄
can be written

dσ

dQ2
T

= σ born
cc̄→F

∫
dx1

∫
dx1

∫ ∞

0
db

b

2
J0(bQT )Sc(b, Q)

×
∫

dz1

∫
dz2 δ

(

1− z1z2
x1x2s

Q2

)

×
[

HF
cc̄ (αs(Q))Cca1

(
z1, αs

(
b0
b

))
Cc̄a2

(
z2, αs

(
b0
b

))

+ H̃ F
cc̄ (αs(Q))Gca1

(
z1, αs

(
b0
b

))
Gc̄a2

(
z2, αs

(
b0
b

)) ]

× fa1

(
x1,

b0
b

)
fa2

(
x2,

b0
b

)
, (11.17)

where we have introduced the Bessel function J0 and the sum
over a1, a2 is understood. The functions Gab, Cab, HF

ab, H̃ F
ab

can be computed in perturbation theory, while fa denotes the
the parton distribution functions. For Standard Model Higgs
production we have F = h, c = c̄ = g, and H = H̃ , while
for DY production we have F = Z/γ ∗ and c = q, and
Gq,a = Gq̄,a = 0. As already mentioned, different resum-
mation formalisms exist in the literature. They all agree at
the perturbative accuracy they claim, but they may numeri-
cally differ because of subleading effects. As an example, in
Fig. 274 we show a comparison between the resummed and
matched calculation of Ref. [3552] and LHC data, collected
by the ATLAS collaboration [3561].

11.2.3 Jets and their substructure

All-order techniques not only allow us to probe the dynamics
of electroweak bosons that recoil against QCD radiation, as
discussed above, but can be employed to study the properties
of the radiation itself in great detail. If we look at hadronic
final states, we realise that QCD radiation is not uniformly
distributed, but rather concentrated in collimated sprays of
hadrons that are called jets. Jets really live at the boundary
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Fig. 274 The lepton pair transverse momentum distribution measured
by the ATLAS collaboration at the LHC [3561] is compared to a
resummed and matched calculation. QT resummation is performed at
N3LL logarithmic accuracy and it is matched to the N3LO fixed-order
result, with respect to the Born process, which corresponds to NNLO
accuracy for the transverse momentum distribution. The plot is taken
from Ref. [3552]

between experimental and theoretical particle physics and
are abundantly used by both communities. They allow us to
describe complex final states in terms of a few objects rather
than hundreds of particles. Furthermore, from a theoretical
point of view, jets are closely related to quarks and gluons,
i.e. the degrees of freedom of perturbative QCD. Thus, the
algorithms that are used to define jets must have good theoret-
ical and experimental properties. For instance, jet algorithms
should be IRC safe, so that they yield finite cross-sections
when evaluated in perturbation theory [185].

Modern jet algorithms are based on the concept of sequen-
tial recombination. Pairwise distances (di j ) between particles
and so-called distances from the beam (di B) are evaluated
in order to decide whether to recombine two particles. The
metric used to evaluate these distances characterizes the jet
algorithm. Nowadays, the most popular group of jet algo-
rithm is the generalized kT family, for which the metric is
defined by

di j = min
(
p2p
T i , p

2p
T j

) ΔR2
i j

R2 , di B = p2p
T i , (11.18)

where pT i , pT j are the particles’ transverse momenta and
ΔR2

i j is their distance in the azimuth-rapidity plane. R is an
external parameter, which plays the role of the jet radius. Dif-
ferent choices for the parameter p are possible. For instance,
p = 0 corresponds to the so-called Cambridge–Aachen
(C/A) algorithm [189,190], with a purely geometrical dis-
tance. For p = 1 we have the kT -algorithm [191,3562],
which by clustering particles at low pT first, is likely to
faithfully reconstruct a QCD branching history. Finally, with

the choice p = −1 we obtain the anti-kT algorithm [193],
which clusters soft particles around a hard core, producing
fairly round jets in the azimuth-rapidity plane. It is interesting
to note that all algorithms of the generalized kT family act
identically on a configuration with just two particles: they
are recombined if ΔRi j < R. More details about jets can
be found in Sect. 11.5. Although incredibly useful for phe-
nomenology, jet algorithms introduce resolution parameters,
such as the jet radius R, rendering the computation of jet
properties a multi-scale problem.

In the past decade, many observables have been devised to
study the internal properties of high-pT jets, see for instance
[3563]. The simplest example of such observables is the jet
invariant mass, which is defined as

m2
jet =

⎛

⎝
∑

i∈jet

pi

⎞

⎠

2

, ρ = m2
jet

R2 p2
T

, (11.19)

where pi are the jet constituents’ four-momenta and, in order
to emphasise the multi-scale nature of the problem, we have
also introduced the dimensionless ratio ρ. This ratio is small
in the boosted regime mjet � Rpt , which is of particular
interest at the LHC. As previously discussed, when scales
become widely separated, logarithms (of ρ in this case)
become large and in order to obtain reliable predictions for
this observable, we need to perform all-order calculations.

We do not report here the details of the resummed calcu-
lation for the jet mass distribution, which is closely related to
the one of the thrust event shape [3525,3564,3565], but rather
we stress similarities and differences with respect to QT

resummation, described above. Large logarithmic correc-
tions always arise from the emission of soft and/or collinear
partons. However, final-state four-momenta are combined
differently in the two observables and therefore a differ-
ent integral transform is needed to diagonalize the invariant
mass δ-function. Furthermore, because we are interested in
the dynamics of a high-pT isolated jet, emissions collinear
to the incoming legs do not significantly alter the jet prop-
erties, leading to a simplified treatment of the PDF contri-
butions. However, there is a major complication that arises
when performing calculations with jets. Only emissions that
are recombined into the jet contribute to the invariant mass,
making it an example of a non-global observable [3566]. As it
turns out, the presence of phase-space boundaries noticeably
complicates the structure of soft-emissions and essentially
invalidates simple exponentiation. Furthermore, the actual
shape of the boundary depends on the jet algorithm of choice.
For instance, in the presence of many soft emissions together
with a hard parton, the anti-kT algorithm will always clus-
ter all soft gluons to the hard parton, behaving as a rigid
cone algorithm, while the choice of different algorithms, such
as C/A or kT , can give rise to more complicated clustering
sequences, see e.g. [3567] and references therein. The calcu-
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Fig. 275 The Les Houches Angularity (LHA) distribution, which cor-
responds to κ = 1, α = 0.5 in Eq. (11.20) measured by the CMS collab-
oration at the LHC [3576]. The data are compared to the resummed and
matched calculation (NLL+NLO), supplemented by non-perturbative
corrections [3577,3578] and to the prediction obtain with a state-of-
the-art Monte Carlo simulation using Sherpa at NLO QCD accuracy
[3579]. The plot is taken from Ref. [3578]

lation of non-global logarithms constitutes the bottle-neck of
jet calculations but thanks to an extraordinary effort of dif-
ferent groups, they can now be resummed at high accuracy
[1824,2037,3568–3574].

The calculation techniques developed for the jet mass have
been extended to other jet substructure observables. An inter-
esting example is the family of jet angularities [3575]. These
probe both the angular and the transverse momentum distri-
bution of particles within a given jet. They are defined from
the momenta of jet constituents as follows:

λκ
α =

∑

i∈jet

(
pT,i∑

j∈jet pT, j

)κ (
Δi

R

)α

, (11.20)

where

Δi =
√
(yi − yjet)2 + (φi − φjet)2, (11.21)

is the azimuth-rapidity distance of particle i from the jet axis.
Jet angularities are IRC safe for κ = 1 and α > 0. In Fig. 275
we show a comparison between LHC data collected by the
CMS collaboration [3576], for the so-called Les Houches
Angularity (LHA), which corresponds to setting κ = 1 and
α = 0.5, and a resummed calculation performed at NLL
accuracy [3577,3578].

Despite the remarkable perturbative accuracy that can be
achieved for jet observables, non-perturbative corrections
due to the hadronization process or originating from multiple-
parton interactions or pile-up, are rather large. Indeed, the
resummed curve in Fig. 275 has been corrected for non-

perturbative effects, which are important to ensure agreement
with the data at small values of the angularity. The situation
can be greatly improved if one considers “grooming” and
“tagging” algorithms. Broadly speaking, a grooming proce-
dure takes a jet as an input and tries to clean it up by removing
constituents which, being at wide angle and relatively soft,
are likely to come from contamination, such as the under-
lying event or pile-up. A tagging procedure instead focuses
on some kinematic variable that is able to distinguish signal
from background, such as, for instance, the energy sharing
between two subjets within the jet, and cuts on it. Many of the
algorithms on the market usually perform both grooming and
tagging and a clear distinction between the two is difficult.
Regardless of their nature, these algorithms try to resolve jets
on smaller angular and energy scales, thereby introducing
new parameters. This further challenges our ability of com-
puting predictions in perturbative QCD. However, if these
algorithms are properly designed, they can effectively reduce
contamination from non-perturbative physics, while main-
taining calculability. An example of this is SoftDrop [1915].
This procedure steps backward through the C/A clustering
tree of a jet and iteratively checks whether the transverse
momenta of the two branches satisfy the condition

min(pT 1, pT 2)

pT 1 + pT 2
> zcut

(
Δ12

R

)β

. (11.22)

The difficulty posed by substructure algorithms in general,
and SoftDrop in particular, is the presence of new parame-
ters, such as zcut and β, that slice the phase-space for soft
gluon emission in a non-trivial way, resulting in potentially
complicated all-order behavior of the observable at hand. In
the soft limit, the SoftDrop criterion reduces to

z > zcut

(
θ

R

)β

⇒ ln
1

z
< ln

1

zcut
+ β ln

R

θ
, (11.23)

where z is the momentum fraction and θ the opening angle.
For β > 0, collinear splittings always satisfy the SoftDrop
condition, so a SoftDrop jet still contains all of its collinear
radiation. The amount of soft-collinear radiation that sat-
isfies the SoftDrop condition depends on the relative scal-
ing of the energy fraction z to the angle θ . As β → 0,
more of the soft-collinear radiation of the jet is removed,
and in the β = 0 limit, all soft-collinear radiation is removed
[1916,3580]. Therefore, we expect the coefficient of the dou-
ble logarithms in observables like the groomed jet mass, the
origin of which is soft-collinear radiation, to be proportional
to β. In the strict β = 0 limit, collinear radiation is only
maintained if z > zcut. Because soft-collinear radiation is
vetoed, the resulting jet mass distributions will only exhibit
single logarithms, as emphasized in [1916,3580]. Moreover,
non-global logarithms are found to be power-suppressed for
β > 0, and absent for β = 0. Finally, for β < 0, there are
no logarithmic structures for observables like groomed jet
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mass at arbitrarily low values of the observable. For exam-
ple, β = −1 roughly corresponds to a cut on the relative
transverse momentum of the two subjets under scrutiny.

The above understanding can be formalized into actual
calculations and the resummation of a variety of observ-
ables measured on SoftDrop jets has been performed to
N3LL [1826,1939]. This outstanding theoretical accuracy,
together with reduced sensitivity to non-perturbative cor-
rections, make SoftDrop jets a particularly powerful way to
probe QCD dynamics and jet formation.

11.2.4 Outlook

In this brief overview we have introduced resummation as
a powerful tool that we can use to augment the ability of
perturbative calculations to describe the data. We have given
two examples of multi-scale processes, namely the transverse
momentum of an electroweak boson and the Les Houches
(jet) Angularity, for which the inclusion of all-order effects
is mandatory in order to be able to describe the data.

Resummation provides us with the right tools to study
emergent phenomena in QCD, such as jet formation and it
allows us to scrutinise fundamental properties of the the-
ory. The concept of factorization, i.e. the ability of sepa-
rating physical effects happening at different energy scales,
is the foundation of the whole resummation program that
we have discussed. Even more generally, we can say any
QCD calculation, being it done at fixed-order or at the
resummed level, requires some notion of factorization. Of
particular importance is the collinear factorization theorem
[242] that allows us to separate the perturbative, i.e. calcula-
ble, part of a process from the non-perturbative one, which
can be described in terms of parton distribution (or frag-
mentation) functions. Resummation techniques allows us to
uncover limitations and possible breakdowns of factorization
[1897,3581], which typically happen at perturbative orders
that are too high to be reached with fixed-order techniques.
Thus, despite resummation being based on the soft/collinear
approximation of the perturbative approximation of QCD, it
opens up a window to fundamental aspects of the theory:

Resummation just scratches the surface of QCD. But it
makes a mark.106

11.3 Parton showers

Frank Krauss

11.3.1 Motivation

Producing charged particles in a high-energy collision initi-
ates the emission of secondary bremsstrahlung quanta. Due

106 George Sterman, CTEQ school 2006.

to the large strong coupling and because of the gluon self-
coupling, the radiation of gluons is of particular relevance,
and tens or even hundreds of secondary quarks and gluons
can be produced in a cascade of emissions.

Apart from the wish to correctly describe particle produc-
tion at collider experiments in all its facets, and preferably
based on first principles, there is another, more practical rea-
son why this process of multiple parton emission is of great
phenomenological relevance. The confinement property of
QCD prevents quarks and gluons to be directly observed and
instead, they manifest themselves through hadrons, which
constitute the observable final states. Unfortunately, to date,
only phenomenological models for the dynamical transition
from quarks and gluons to hadrons in a process aptly dubbed
hadronization have been developed, which rely on a large
number of parameters which have to be fitted – “tuned”
– to experimental data. Clearly, such a programme is sen-
sible only, if the parameters are sufficiently independent
from the hard process and rather depend on the properties
of the parton ensembles at a common low scale. This is
realized by casting the multiple emission of the secondary
quanta, the parton cascade, into algorithms that systemat-
ically evolve the few original partons in the hard process
at a scale of large momenta Q into resulting many–parton
ensembles resolved at a lower scale Q0, at which hadroniza-
tion sets in. The resulting algorithms are called parton show-
ers, and one might think of them as numerical implemen-
tations of a renormalization–group equation that connects
these two scales, Q and Q0. They form an integral part of
modern event generators Herwig [3582], Pythia [3583],
and Sherpa [3579].

11.3.2 Parton shower realizations

Some first intuition about parton showers can be gained from
the (quasi-classical) spectrum of gluons emitted by a fast
moving color charge,

dng = αS

π

dω

ω

d2 p⊥
p2⊥

, (11.24)

exhibiting its characteristic divergent structure in the limit
where the emitted gluon becomes soft, with it energy ω→ 0,
or collinear with respect to the emitter, with its transverse
momentum p⊥ → 0. These well-known soft and collinear
divergences, typical for quantum field theories with massless
(vector) particles cancel for physically meaningful observ-
ables when both real and virtual emissions are taken into
account [3584,3585]. In parton showers, which aim to sim-
ulate the emission of real quanta, this is implicitly taken into
account, by demanding that the emitted partons are resolv-
able with a minimal energy and transverse momentum; diver-
gences in unresolvable emissions then cancel those from vir-

123



Eur. Phys. J. C          (2023) 83:1125 Page 381 of 636  1125 

tual corrections. Such a constraint is effectively realized for
example by demanding a minimal transverse momentum,
k⊥ > Q0 in emissions. The integrated spectrum depends
logarithmically on the cut-off, and small values of Q0 over-
coming the smallness of αs necessitate the resummation of
the infrared logarithms.

This physical picture is encoded in probabilistic language,
by constructing a Sudakov form factor

ΔN→N+1(Q, Q0)

= exp

⎧
⎪⎪⎨

⎪⎪⎩
−

Q2∫

Q2
0

dΦN→N+1(t, z, φ)KN→N+1(ΦN→N+1)

⎫
⎪⎪⎬

⎪⎪⎭
,

(11.25)

which yields the probability for an N -particle configuration
with momenta { p̃} not to emit another particle (and there-
fore not to turn it into an (N + 1)-particle configuration with
momenta {p}). The phase space element for the emission,
ΦN→N+1(t, z, φ), will depend on (1) the ordering param-
eter t defined below; (2) the splitting parameter z given by
the light-cone momentum fraction or energy fraction of the
emitted particle; and (3) the azimuth angle φ, fixing the
orientation of the emitted particle in the transverse plane
of the mission. The emission kernel KN→N+1(ΦN→N+1)

depends on the phase space of the emission and on the
strong coupling αS(p2⊥), with the transverse momentum as
preferred scale choice. In the collinear limit, t → 0 with
finite z, the kernel for a specific emitter (i j) splits into par-
ticles i and j and reduces to the well-known corresponding
DGLAP splitting kernels. In the soft limit, z → 0 which
also forces t → 0, the kernel should approach the eikonal
form,

lim
z→0

KN→N+1(ΦN→N+1(t, z, φ)) ∝ (pi · pk)
(pi · p j )(p j · pk) ,

(11.26)

where k denotes the color spectator. Owing to the cur-
rent standard of using the leading-color approximation in
the parton shower construction, k can be uniquely cho-
sen.

Individual simulated events are seeded by the hard pro-
cess, evaluated at a fixed perturbative order, and dressed
afterwards with the parton shower. In marked contrast to
the forward evolution of the final-state parton shower, the
parton shower in the initial state is described by a back-
ward evolution, back to the initial beam particles and to a
fixed, pre-defined state. To enforce that the backward evolu-
tion of the parton shower arrives at the correct initial state,
while respecting the evolution of its internal structure, emis-
sions are weighted by a ratio of parton distribution func-

tions [3586],

KN→N+1(ΦN→N+1(t, z, φ)) ∝
fi (x(i j)/z, μ2

i j )

f(i j)(x(i j), μ2
(i j))

.

(11.27)

In this way the particle (i j), resolved at scale μ2
(i j) and with

momentum fraction x(i j), is replaced by the new initial-state
particle i , resolved at a lower scale μ2

i < μ2
(i j) and with a

larger momentum fraction xi = x(i j)/z.
The choice of a parton-shower realization has an impact

on the accuracy with which the radiation pattern is sim-
ulated. In first-generation parton-shower implementations,
the ordering parameter t is either identified with the virtual
mass of the parton before emission, t = p2

(i j) = (pi + p j )
2

[3587,3588] or with the (scaled) opening angle of the emis-
sion, t = E2

(i j)(1 − cos θi j ) [3589,3590]. When the regular
parts of the (massless) DGLAP splitting kernels at O(αS)

are used, suitably limiting the allowed range for z accounts
for the effect of finite masses. Careful analysis of the radia-
tion pattern indicated that angular ordering is an important
ingredient to the correctness of the simulation. The order-
ing accounts for color coherence effects, and introduces an
explicit veto on increasing opening angles of the virtuality-
ordered parton showers. In contrast, the dipole shower for-
mulation [3591] in Ariadne [3592] explicitly fills the Lund
plane [3593] in transverse momentum p2⊥ and rapidity y of
emissions. By setting the ordering parameter t = p2⊥ with
the identification of p2⊥ as the inverse of the eikonal from
Eq. (11.26), it fulfils the color coherence requirements that
give rise to angular ordering [3594]. A similar approach has
been chosen in Vincia [3595], and extended to include ini-
tial state showering and other improvements. The same logic
– using a form of transverse momentum as ordering param-
eter – was usually also chosen in the second-generation par-
ton showers, for example in Refs. [3596–3599]. The explicit
inclusion of mass effects in the splitting kernels forces to
identify the splitting parameter z with a light-cone momen-
tum fraction. To systematically include universal higher-
order effects K from the two-loop cusp anomalous dimen-
sion, the customary CMW scheme [171] replaces

αS(p
2⊥) −→ αS(p

2⊥)
[

1+ K
αS(p2⊥)

2π

]

,

K =
(

67

18
− π2

6

)

CA − 10

9
TRn f , (11.28)

where n f is the number of active flavors and CA and TR =
1/2 are the usual QCD factors. Once an emission, param-
eterized by t , z, and φ, has been found, the emission kine-
matics needs to be constructed, including the compensation
of the transverse momentum of the emitted particle. Choices
range from being local, i.e. contained to the splitter–spectator
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pair, to global, i.e. distributed over the full N -particle ensem-
ble. They often reflect a preference for those schemes that
lend themselves to a direct matching to infrared subtraction
schemes for next-to leading order calculations such as the
Catani–Seymour subtraction [199]. While these considera-
tions sound like a minor technical detail, subtle differences
in fact have an impact on the overall accuracy, as discussed
below.

11.3.3 (N)NLO matching

Despite their success in describing the logarithmically-
enhanced soft and collinear regimes of emission phase space,
parton showers usually lack accuracy in the hard, wide-angle
regions of phase space, the realm of fixed-order perturbative
corrections, and they do not capture potentially large higher-
order corrections to inclusive cross sections. Therefore the
resummation implicit in the parton shower has to be matched
to fixed-order calculations. Defining, respectively, BN (ΦN ),
VN (ΦN ), and RN (ΦN+1) the Born-level, virtual and real
corrections to a given process, and suppressing their phase
space arguments in the following, a calculation – accurate in
next-to leading order (NLO) – can schematically be written
as

dσ (NLO) = dΦN

[
BN + ṼN

]
+ dΦN+1 [RN −DN ] ,

(11.29)

with the infrared subtracted virtual correction ṼN (ΦN ) =
VN (ΦN )+ BN (ΦN )⊗ I(ΦN ) and the real subtraction term
D(ΦN+1) = B(ΦN ) ⊗ S1(ΦN→N+1) both written in fac-
torized form, and where I emerges from S1 by analytically
integrating over the one-particle emission phase space.

This can be matched to a parton shower along two well-
established algorithms. The Mc@Nlo method [3600] makes
use of the fact that the parton shower correctly describes the
soft and collinear divergent regions of phase space and the
emission kernels K can thus be matched to the infrared sub-
traction terms S required in fixed-order calculations. Events
that, at fixed-order, correspond to N -particle final states with
Born-level kinematics, are denoted as “soft” events and the
parton shower is attached to them in a way exactly like it
would be attached to the Born-level leading-order events.
Similarly, the (N + 1)-particle events are dubbed “hard”
events, and, again the parton shower starts like it would from
any similar tree-level configuration. Simple expansion in αS

reveals that the Mc@Nlo scheme recovers the fixed-order
results, and augments them with the resummation of higher-
order terms from the parton shower. Despite its simplicity,
the Mc@Nlo prescription has a practical downside, with the
second term in Eq. (11.29) possibly leading to events with a
negative weight, a typical feature of practically any higher-
order calculation at fixed order.

This is alleviated in the Powheg method [3601,3602],
which defines an NLO-accurate N -particle cross section,
and dresses it, for its first emission, with a Sudakov form
factor where the parton-shower splitting kernel is replaced
with a ratio of real and Born contribution. However, the N -
particle phase-space dependent K -factor implicit in the first
square bracket is applied to the full N +1-particle spectrum,
which may overestimate the hard region of emission phase
space. To correct for this, in practical applications of the
Powheg method, the real-emission phase space is divided,
with a suitable profile function, into a soft and a hard regime,
RN = R(s)

N +R(h)
N . Schematically, then

dσ (NLO) = dΦN

[

BN (ΦN )+ ṼN (ΦN )

+
∫

dΦ1

(

R(s)
N (ΦN ⊗Φ1)−DN (ΦN ⊗Φ1)

)]

× exp

[

−
∫

dΦ1
R(s)

N (ΦN ⊗Φ1)

BN (ΦN )

]

+dΦN+1 R(h)
N (ΦN+1). (11.30)

The regular parton shower is then applied to the (N+1)-
particle configurations. Simple expansion shows, again, the
overall cross section and the fixed-order emission spectrum
at O(αS) are correctly reproduced.

NNLO calculations matched to parton shower so far have
been solely available for the production of color singlets,
S. The first realization was presented in Ref. [3603], based
on the Powheg method above. The underlying idea is to
provide a Powheg matching for S + p final states, with
the additional parton p filling the phase space down to the
infrared cut-off of the parton shower and thereby provid-
ing NLO accuracy for the overall emission of the hardest
particle. This sample is then reweighted to reproduce the
inclusive NNLO cross section for the production of the sin-
glet S – in the case of a single particle usually achieved
by reproducing its rapidity spectrum at NNLO accuracy.
Based on multijet merging introduced in the next section,
the UNnloPsmethod [3604] matches complementary phase
spaces of color-singlet production for the emission 0, 1, and
2 additional particles, described by adequately subtracted
matrix elements at the two-loop, one-loop, and tree-level
respectively. There overall NNLO accuracy is obtained by
defining a zero-emission bin and adjusting its cross sec-
tion accordingly. An alternative approach has been pre-
sented in the Geneva algorithm [1982] which matches the
NNLO cross section for S production with NNLL resum-
mation of 0-jettiness. Using this observable to define dif-
ferent regions of phase space allows to combine the result-
ing parton level configurations with a suitably vetoed parton
shower.
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11.3.4 Multijet merging

Multijet merging provides another way to include exact fixed-
order calculations into the parton shower, which is espe-
cially useful for the description of samples with large jet
multiplicities. The underlying idea is to combine (merge)
calculations with 0, 1, 2, etc. additional final state jets into
one inclusive sample, by decomposing the parton emission
phase space into two regimes, one of hard jet production
and one of soft jet evolution. The algorithm achieving this
at leading order [3605–3607] proceeds in three steps. Once
a parton-level event at fixed order has been produced, the
jets are clustered back until a core process corresponding to
the 0-additional jet configuration has been found. The differ-
ential cross section for this event is reweighted with ratios
αS(μ

(PS))/αS(μ
(FO)) at each emission, withμ(PS) the scale

the parton shower would use andμ(FO)) the fixed-order scale
used in the calculation. The cross section is corrected with
Sudakov form factors for the internal and external lines, either
with analytic expressions or by running the parton shower
from the core process and vetoing those events with a emis-
sions leading to additional jets. These steps transform the
individual inclusive fixed-order calculations into exclusive
calculations for exactly 0, 1, 2 etc. additional jets, and com-
bine them with the resummation in the parton shower. The
algorithm outlined above has been extended to a merging of
towers of NLO calculations, effectively a merging of multi-
ple Mc@Nlo simulations with increasing jet multiplicities
in [3608,3609].

11.3.5 Current developments

Driven by the ever increasing requirements for improved the-
oretical accuracy, parton showers have come under increased
scrutiny in the past few years, for example in Ref. [3610].
Recent studies revealed that currently used parton showers do
not correctly fill the phase space in logarithmically enhanced
regions of multiple emissions [3611], limiting their logarith-
mic accuracy. Criteria to systematically asses the logarith-
mic accuracy of parton showers and a solution to the prob-
lem above was presented in Ref. [202] and led to renewed
activity in creating better, parton showers that are accurate
at next-to leading logarithmic accuracy for critical observ-
ables. Including higher-order terms, i.e. O(α2

S) corrections,
to the parton showers represents an important step to further
increase the accuracy. The treatment of O(α2

S) splitting ker-
nels has been discussed in Refs. [3612,3613], and in Ref.
[3614] the inclusion of differential two-loop soft corrections
has been presented. But higher-order corrections in the strong
coupling are not the only ordering parameter – the parton
shower implicitly also resides on a leading-color approxima-
tion, and the impact of incorporating sub-leading color terms
was studied for example in Refs. [3615,3616]. This led to the

development of a new paradigm, to describe parton splitting
and ultimately to construct a parton shower at the level of
amplitudes [3617].

While it is not certain where these activities will lead us in
the future, they are testament to the importance and impact
of the probabilistic description of the QCD radiation pattern
in parton showers, which is nearly as old as QCD itself.

11.4 Monte Carlo event generators

Torbjörn Sjöstrand
A pp collision at the LHC may lead to the production
of hundreds of particles, via a multitude of processes that
can range from the TeV scale down to below the confine-
ment scale. While perturbative calculations can be used at
high-momentum scales, currently there is no way to address
lower ones directly from the QCD Lagrangian. Instead QCD-
inspired models have been developed.

These models typically attempt to break down the full col-
lision process into a combination of relevant mechanisms,
that require separate descriptions. Each in its turn often can
be formulated as an iterative procedure, where a set of rules
are applied repeatedly. These rules are expected to represent
quantum mechanical calculations that each gives a range of
possible outcomes. The resulting complexity is such that ana-
lytical methods are of limited use. Instead the rules are coded
up and combined within a bookkeeping framework, where
the evolution from a primary perturbative collision to a final
multiparticle state is traced. Such computer codes are called
Monte Carlo Event Generators (MCEGs), where the “Monte
Carlo” part refers to the frequent use of random numbers to
pick outcomes according to the assumed quantum mechani-
cal probabilities.

Such generators can be used in phenomenological studies,
but the main application is within the experimental commu-
nity, at all stages of the experiment. When an experiment is
designed, it is important to check that the proposed detector
has the capability to find key signals. When an experiment
is run, triggers have to be optimized to catch the interesting
event types. When data is analyzed, the impact of detec-
tor imperfections and background processes must be fully
understood. In order to address these issues, the output of an
MCEG is normally fed into a detector simulation program,
that traces the fate of outgoing particles.

11.4.1 Event overview

Events come in many shapes, depending on the collider and
the random nature of the collision process. As a starting point,
consider a typical LHC pp event, and what processes are
involved for it. Below these are enumerated, starting from the
shortest time/distance scales and progressing towards longer
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Fig. 276 Schematic illustration of the structure of a pp → t t event.
Reproduced from [3583]

ones. This gives rise to a schematic picture with an onion-
like structure in some approximate measure of invariant time,
Fig. 276.

– At the center of a collision there is sometimes a hard inter-
action, i.e.one at a high-momentum scale, like in this case
the production of a t t pair. Its cross section is obtained by
a convolution of a matrix-element (ME) expression and
parton distribution functions (PDFs). More common are
events without any discernible hard interaction.

– The hard interaction may involve the decay of resonances
like t → bW,W → qq ′ as shown in Fig. 276.

– The core hard interaction may be dressed up by higher-
order corrections of matrix-elements. This partly over-
laps with the subsequent showers, so a consistent transi-
tion (matching and merging) is required.

– Perturbative radiation from the scale of the (dressed) hard
interaction down to a lower cutoff is usually subdivided
into initial-state radiation (ISR) and final-state radiation
(FSR). While partonic QCD branchings dominate, QED

or even weak branchings may occur. Also some hadron
production may be modelled as part of the perturbative
stage, e.g. of charmonium and bottomonium.

– Since hadrons are composite objects, several of the
incoming partons may undergo (more or less) separate
perturbative subcollisions, so-called multiparton interac-
tions (MPIs).

– Parts of the incoming hadrons pass unaffected through the
hard-interaction region, and emerge as beam remnants.

– Typically colors are traced through the perturbative stage
in the Nc → ∞ limit. Apart from imperfections caused
by this approximation, there may also be dynamical pro-
cesses that lead to color reconnections relative to the naive
assignments.

– The color assignments are used to combine partons into
separate color singlet subsystems – strings or clusters –
that each fragment into a set of primary hadrons.

– To first approximation each subsystem fragments inde-
pendently, but there may be interactions between them.

– The primary hadrons may be unstable and decay further
into secondary particles, in decay chains that span a wide
range of time scales.

– Right after the fragmentation the hadrons may also be
close-packed and rescatter against each other.

In most of the following subsections these aspects will be
described in somewhat more detail. Examples of longer gen-
erator overviews are [3618,3619].

11.4.2 A brief history

The first event generator of the QCD era probably is the
1974 one by Artru and Mennessier [3620]. It is based on the
concept of linear confinement, originally introduced in pre-
QCD string-theory models of hadrons, but later supported by
the linear confinement found in quenched lattice QCD, see
Sect. 4.3. It was not developed beyond a toy-model stage,
however, and was largely forgotten. Instead it was the 1978
article by Field and Feynman [3621] that stimulated an inter-
est in using Monte Carlo methods to simulate jet physics.
Their iterative approach for the fragmentation of a single jet
was extended to e+e− → qqg three-jet events in the Hoyer
et al. [3622] and Ali et al. [3623] codes, which played a key
role in the discovery of gluon jets, see Sect. 2.2. The Lund
string fragmentation model introduced the concept of a color
flow in qqg events [3624], which was given experimental
support by PETRA data [3625]. It helped establish the Jet-

set implementation as a main generator for subsequent e+e−
machines.

The first QCD-based generator for pp/pp physics was
Isajet [3626], originally intended for the ISABELLE col-
lider, but much used at the SppS and Tevatron colliders, and
for SSC and LHC preparations. A few other generators were
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developed in the early eighties, but left little impact, except
for Pythia, which was built on top of Jetset, with the same
initial objective of modelling the color flow and its conse-
quences. Later on the two programs were merged under the
Pythia heading.

The earliest generators used leading-order matrix ele-
ments to describe the perturbative stage. This was insuf-
ficient to describe multijet topologies. The DGLAP equa-
tions and their extension to jet calculus [3627] suggested
that parton showers could be used to generate multipar-
ton topologies. Several early showers were constructed, but
it was only with the Marchesini–Webber angularly-ordered
shower [3589] that coherence phenomena were consistently
handled. This was the starting point for the Herwig gener-
ator. An alternative was offered by transverse-momentum-
ordered dipole showers, proposed by Gustafson [3594] and
first implemented in Ariadne. Today various dipole formu-
lations are the most common shower type.

The combination of hard interactions and parton showers
gradually became more sophisticated as various matching
and merging techniques were developed. The Sherpa pro-
gram grew out of such efforts. It was also the first major
generator written in C++ from scratch, whereas Herwig and
Pythia had to be rewritten from Fortran to C++ to match
LHC requirements.

Today Herwig [3582], Pythia [3583], and Sherpa

[3579] are the three general-purpose generators used at LHC,
or more generally for studies at e+e−/ep/pp/pp colliders.
There also are important dedicated programs, e.g. for matrix
element generation, such asMadGraph_aMC@NLO [3385]
and the Powheg Box [3628].

Adjacent physics areas, such as heavy-ion collisions, cos-
mic ray cascades in the atmosphere, or neutrino interac-
tions, started their generator development somewhat later,
and partly under the influence of the general-purpose ones
above, e.g. for the high-energy hadronization descriptions.
Typically the hard-physics aspects become less relevant,
and soft-physics ones more so. These issues will be briefly
addressed towards the end.

11.4.3 The perturbative interface

A key task is to generate events of a predetermined type or
types. This could be e.g. W + jets, both as a signal and as a
background to t t production. Typically there is a core hard
interaction, that then is complemented by further perturba-
tive QCD activity at varying scales. In such cases the core
interaction provides the natural starting point for the descrip-
tion of the rest of the event. As already suggested above, one
may discern three main stages:

1. the generation of partonic events purely based on matrix
elements and parton distribution functions,

2. the matching and merging stage, where Sudakov form
factors generated by parton showers are used to reject
some of the events above, so as to avoid double counting,
and

3. the subsequent pure parton shower evolution down to a
lower cutoff somewhat above the Λ scale.

The first of these is covered in Sect. 11.1, and in Sect. 10.2
for PDFs, while the second two are described in Sect. 11.3.

Of special interest for the continued story are the core
2 → 2 pure QCD interactions, qq ′ → qq ′, qq → q ′q ′,
qq → gg, qg→ qg, gg→ gg and gg→ qq . These are by
far the dominant perturbative processes at hadron colliders.
The main contribution is t-channel gluon exchange, which
gives rise to a dp2

T /p
4
T divergence in the pT → 0 limit.

11.4.4 Total cross sections and diffraction

Another key task, at the other extreme, is to generate the
inclusive sample of all events at hadron colliders. In prac-
tice rare processes are generated separately, so the emphasis
comes to lie on common QCD processes.

The total QCD cross section σtot is finite, related to a finite
size of hadrons and a finite range of QCD interactions, owing
to confinement. Currently there is no QCD-Lagrangian-
based description ofσtot, but instead phenomenological mod-
els have been proposed based on Regge theory, with free
parameters that have to be tuned to data. At a minimum one
Pomeron and one Reggeon term is required to describe the
energy dependence [1100], where the former can be associ-
ated with a trajectory of exchanged glueball states and the
latter with one of mesonic states, see Sect. 8.1. More terms
are needed in more realistic models. Notably, recent stud-
ies points towards the existence of an Odderon term, see
Sect. 12.6.

The total cross section between two hadrons A and B
can be subdivided into several partial ones, associated with
different event topologies:

σ AB
tot (s) = σ AB

el (s)+ σ AB
inel (s)

= σ AB
el (s)+ σ AB

sd(XB)(s)+ σ AB
sd(AX)(s)

+ σ AB
dd (s)+ σ AB

cd (s)+ σ AB
nd (s), (11.31)

where s is the squared collision energy in the rest frame.
These topologies are illustrated schematically in Fig. 277.
In nondiffractive (nd) events the full rapidity range can be
populated by particle production, whereas in single, double
or central diffraction (sd, dd, or cd, respectively) only parts
of this range are populated, and in elastic (el) events none
of it is. The relative composition changes with energy, e.g.
such that the elastic fraction is increasing. Roughly speaking,
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Fig. 277 Main subclasses of the total cross section in AB hadron col-
lisions. The red bars represent the regions in rapidity between A and B
where hadrons are produced. Reproduced from [3583]

elastic is 25%, diffractive 20% and nondiffractive 55% at
LHC energies.

Many approaches have been proposed to model these
partial cross sections, both integrated and differential ones,
notably again based on Regge theory. Common is that the
mass mX of a diffractive system obeys an approximate
dm2

X/m
2
X = dyX behaviour, where yX is the rapidity range

of the X system. An elastically scattered beam particle is also
associated with a squared momentum transfer t that obeys an
approximate exp(Bt) shape at low t . The slope B depends
on the colliding hadron types, the event topology and the
collision energy, but the order of magnitude is 10 GeV−2,
i.e.〈pT 〉 ∼ 0.3 GeV.

At low energies also other collision types occur, such as
resonant production and baryon annihilation.

The Ingelman–Schlein [3629] ansatz is commonly used
for the description of diffractive systems. In it, a Pomeron is
viewed as a hadronic state, with its own PDFs. Therefore the
Pomeron–hadron subsystem can be described in the same
way as we will introduce for nondiffractive events in the
following, at least for reasonably large mX , while a simpler
description is called for at small mX .

11.4.5 Multiparton interactions

All generators assume that a nondiffractive event can contain
multiple parton–parton interactions, which can be viewed as
the QCD reinterpretation of the cut Pomeron picture of olden
days [3630]. MPIs are necessary to explain many aspects of
hadronic collisions, such as the wide multiplicity distribu-
tions, where most of the multiplicity is related to low-pT
processes. The case of two hard interactions, Double Parton
Scattering, is well studied theoretically and experimentally
[3631]. Different models have been developed starting from
the same basic ideas. This section will begin with the Pythia

approach, which is also used by Sherpa, and later the dif-
ferences in Herwig will be outlined.

It has already been noted that the perturbative QCD 2 → 2
cross section is divergent for pT → 0, on the one hand, and
that the total pp cross section is finite, on the other hand. The
perturbative picture is based on the assumption of asymp-
totically free colored partons, however, while the reality is
that of partons confined inside color singlet hadrons. There-
fore a plausible regularization of the pT → 0 divergence
is provided by color screening, i.e.that partons of opposite
color gives destructive interference of scattering amplitudes.
A parameter pT 0 is introduced in Pythia as the inverse of
the spatial screening distance. This is used to dampen the
conventional 2 → 2 QCD cross section by a factor

(
αs(p2

T 0 + p2
T )

αs(p2
T )

p2
T

p2
T 0 + p2

T

)2

, (11.32)

which gives

dσ

dp2
T

∼ α2
s (p

2
T )

p4
T

→ α2
s (p

2
T 0 + p2

T )

(p2
T 0 + p2

T )
2
. (11.33)

A tune to data gives a pT 0 of the order of 2 GeV, but slowly
increasing with energy, consistent with an increasing screen-
ing, as lower-x partons become accessible at higher energies.

The average number of MPIs in nondiffractive events is
given by 〈nMPI〉 = σpert(pT 0)/σnd, neglecting a small cor-
rection from the part of σpert that should be associated with
diffraction. Here σpert(pT 0) is the integrated damped 2 → 2
QCD cross section. At first glance, the nMPI should be dis-
tributed according to a Poissonian, with nMPI = 0 removed,
since zero MPIs corresponds to the two hadrons passing
through without any interactions.

This assumes that all collisions are equivalent, however.
More plausibly, the impact parameter b of the collision plays
a role, where central collisions generate more activity than
peripheral ones. To model this, an ansatz for the matter dis-
tribution inside a hadron is required. The simplest choice is
a three-dimensional Gaussian, since then the convolution of
two hadrons is easily integrated over the collision process to
give a two-dimensional Gaussian O(b). Fits to data prefer
a somewhat more uneven matter distribution, e.g. with “hot
spots” of enhanced activity around the three valence quarks.

The actual generation of MPIs can conveniently be
arranged in a falling sequence of transverse momenta with√
s/2 > pT 1 > pT 2 > · · · > pTn > 0. Neglecting the

impact-parameter dependence for a moment, the probability
for the i th MPI becomes

dP
dpT i

= 1

σnd

dσpert

dpT i
exp

(

−
∫ pT (i−1)

pT i

1

σnd

dσpert

dp′T
dp′T

)

,

(11.34)
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with a fictitious pT 0 = √
s/2. The exponential expresses

the probability to have no MPIs between pT (i−1) and pT i ,
as comes out of Poissonian statistics and in exact anal-
ogy with the Sudakov form factor of parton showers. With
impact parameter included, the b is selected proportional
to O(b) d2b, and the pT selection procedure acquires an
enhancement/depletion factor ofO(b)/〈O〉. Sequences with-
out any MPIs require a restart with a new b.

So far inclusive nondiffractive events have been consid-
ered. Alternatively one specific hard interaction is studied,
and an underlying event should be added to it. Then again a b
is selected according toO(b), and an enhancement/depletion
factor is defined as before. The upper pT limit for MPIs now
depends on context. If the hard interaction is QCD 2 → 2
above some pTmin then its pT should be equated with a pT 1

of the MPI sequence, and subsequent ones be below that,
or else high pT scales would be double counted. If the hard
interaction is something else, then there is no such double
counting, and MPIs can start from the highest possible scale.

The description of n MPIs requires n-parton PDFs,
f (x1, Q2

1; x2, Q2
2; . . . ; xn, Q2

n), which are not known from
first principles or from data. An approximate approach is
to make use of the pT -ordering of MPIs, such that the first
interaction uses conventional PDFs, while subsequent MPIs
use more and more modified ones. Thereby standard phe-
nomenology is preserved in the hard region. Subsequently
momentum conservation requires a gradually reduced xi
range, within which PDFs are squeezed. Also flavor conser-
vation must be respected. If a valence u quark is taken out of a
proton, say, then only one u quark remains, and the valence u
distribution must be normalized to 1 rather than 2. If instead
a sea u quark is extracted, then the u sea must contain one
parton more than the u sea, which can be implemented by
having one valence-like u in addition to the normal u and u
sea distributions. Finally, when the valence-like distributions
have been properly normalized, the gluon and sea distribu-
tions are uniformly rescaled so as to obey the momentum
sum rule.

With the evolution of ISR and FSR parton showers usually
formulated in terms of a decreasing sequence each of pT
values, the MPIs now add a third sequence. In Pythia they
are fully interleaved into one common sequence. Thus the
key evolution equation is

dP
dpT

=
(

dPMPI

dpT
+ dPISR

dpT
+ dPFSR

dpT

)

× S (11.35)

where S represents the Sudakov factor, obtained by exponen-
tiation of the real-emission rate, integrated from the previous
pT scale to the current one, cf. Eq. (11.34). In this way the
harder part of the event sets the stage for what can occur at
softer scales. Notably MPIs and ISR compete for the dwin-
dling amount of momentum in the beams, as represented by
the modified PDFs. The pT evolution should not be viewed

as one in physical time; actually all MPIs occur at (almost)
the same collision time t = 0, while lower pT scales means
earlier times t < 0 for ISR and later times t > 0 for FSR.

The Herwig description of MPIs [3632] splits them into a
hard and a soft component, separated at a scale pmin

T (s). The
perturbative cross section dσQCD/dpT is recovered above
pmin
T (s), while a simple tuneable shape dσsoft/dpT is used

for 0 < pT < pmin
T (s), with the constraints that it must

vanish at pT = 0 and match dσQCD/dpT at pmin
T (s). The

electromagnetic form factor is used to represent the impact-
parameter profile of protons. This gives an overlap function

A(b, μ) = μ2

96π
(μb)3 K3(μb), (11.36)

where
∫

d2b A(b) = 1, and μ are used as free parameters,
separately set for the hard and soft components, for more
flexibility. Combining, an eikonal is defined as

χtot(b, s) = 1

2
Ahard(b, μhard) σQCD(s, p

min
T ) (11.37)

+ 1

2
Asoft(b, μsoft)σsoft(s, p

min
T ), (11.38)

where σQCD and σsoft are the respective pT -integrated cross
sections. The number of MPIs at a given b is given by a
Poissonian, as in Pythia, with 〈n(b, s)〉 = 2χ(b, s). The
eikonal formalism also predicts other quantities, such as total
and elastic cross sections, and the elastic slope, that can be
used to constrain the free parameters of the model.

When a hard interaction has been selected in Herwig,
and been associated with an impact parameter b, the number
of hard and soft additional MPIs can be selected according
to Poissonians. The hard interactions are generated first, and
thereafter the soft ones. UnlikePythia they are not ordered in
pT within the hard and soft groups, and there is no rescaling
of PDFs. Also the ISR and FSR associated with an interac-
tion are reconstructed before the next is considered. For the
hardest interaction the ISR is forced to reconstruct back to a
valence quark, while for subsequent ones the ISR evolution is
forced back to a gluon. This gluon can then be color-attached
to the hardest interaction itself. The MPIs together may take
more momentum out of the protons than is available, given
the lack of PDF rescaling. When that happens, the latest MPI
is regenerated, but if repeated attempts fail the MPI gen-
eration may be interrupted with a lower MPI number than
intended.

11.4.6 Beam remnants and color reconnection

Since the MPI+ISR machinery in Herwig reconstructs back
the perturbative activity to one single valence quark, having
been taken out of an incoming proton, the other two valence
quarks together form a diquark remnant, with opposite color
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Fig. 278 Average transverse momentum as a function of the charged
multiplicity, as measured by ATLAS [3633]. Qgsjet exemplifies a
model without color reconnection, with a similar flat shape as Pythia
has with its CR switched off. The two Pythia curves are different tunes.
EPOS is based on a two-component model, explained later in the section

to the one quark taken out. Four-momentum conservation
fixes the remnant momentum.

The situation is more complicated in Pythia, since the
MPI+ISR can extract a variable number of “initiator” partons
out of the incoming proton, leaving behind multiple quarks
and antiquarks. Then ad hoc probability distributions are used
to share the remnant longitudinal momentum between them.
The initiator partons also carry a transverse momentum, a
so-called primordial kT , that is to be compensated by the
remnant. When the remnant consists of the several partons,
these may also have a relative kT component. The size of
all these transverse kicks should be at or below the hadronic
mass scale, though empirically they appear to be at the higher
rather than at the lower end of the expected range.

The color lines of the initiator partons naively stretch from
the remnants in through the hard interaction at the core of
each MPI, i.e.usually fill the whole rapidity range. If so,
the average charged multiplicity nch of an event increases
linearly with the number of MPIs, up to corrections from
momentum conservation and the details of the remnant han-
dling. Since all MPIs will be equivalent, a constant aver-
age transverse momentum per hadron should result, i.e.a flat
〈pT 〉(nch) curve. Instead an increasing 〈pT 〉(nch) is observed
at hadron colliders, Fig. 278.

Fig. 279 Schematic illustration of color reconnection. a Simple flip.
The arrows indicate flow from color to anticolor. b Junction reconnec-
tion. Note changed direction of the long line, according to 3 ⊗ 3 =
3 (⊕6)

The natural explanation for this phenomenon is color
reconnection (CR). Specifically, it is assumed that the color
lines stretched between all final-state partons can be rear-
ranged so as to reduce the overall length. The number of
possible rearrangements increases with the number of MPIs,
such that the 〈nch〉 increase is smaller for each further MPI.
The perturbative pT kick of each MPI remains, however, so
when this pT is shared between fewer particle the result is
an increasing 〈pT 〉.

Many CR models have been implemented over the years,
in all three main generators, and it would carry too far to
discuss each in detail. A frequent starting point is that stan-
dard parton showers operate in the Nc →∞ limit, and thus
miss corrections of order 1/N 2

c at each shower branching.
One possible approach is to do the evolution in color space
more carefully, and thereby be able to formulate CR as a con-
sequence of such subleading corrections. More common is
to formulate CR on the nonperturbative level, but then color
algebra should be used to restrict the rate at which it can
occur.

Also common for many nonperturbative approaches is that
a key role is assigned to the string lengthλ between two color-
connected partons i and j

λi j ≈ ln

(

1+ m2
i j

m2
0

)

= ln

(

1+ (pi + p j )
2

m2
0

)

. (11.39)

Herem0 ≈ mρ is a typical hadron mass, and 1 has been added
to ensure that λ ≥ 0. With this definition λ is a reasonable
measure of how many hadrons typically will be produced by
the string. A flip of two color-connected pairs (i, j) and (k, l)
into (i, l) and (k, j), Fig. 279a, corresponds to a net change
Δλ = λil + λk j − λi j − λkl . The assumption is that Δλ < 0
reconnections are favoured.

Further CR variants include ones that change the number
of string pieces, say by taking a central gluon connected to
both remnants and putting it on an already existing central
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Fig. 280 String versus cluster fragmentation. At the end of the pertur-
bative evolution, the vertical dashed line, strings are directly attached,
red regions. Alternatively, a nonperturbative g → qq stage is inserted
before clusters are formed, magenta regions

string piece. Of recent special interest is junction reconnec-
tion [3634]. A junction is the center of a Y shape where three
string pieces come together, and topologically is the carrier
of the baryon number. Two strings can collapse to one in
a central region with the production of a junction and anti-
junction near either end, Fig. 279b. This gives an enhanced
baryon production. In the cluster model a similar effect can
be obtained by letting three aligned qq clusters rearrange into
one qqq and one qqq cluster.

CR ought to be possible only when the strings con-
cerned overlap in space–time. For normal pp collisions this
is almost automatic, since most strings run more-or-less
parallel with the collision axis within a small transverse
region. Space–time should be taken more seriously e.g. in
e+e− → W+W− → q1q2q3q4, where the W± decay angles
will influence the amount of overlap. Models have been
developed to this end, and predictions agree well with the
combined LEP data [3635]. The best description is obtained
with an∼ 50% CR rate, but unfortunately statistics is limited
and a no-CR scenario is only disfavoured at the 2.2σ level.

11.4.7 Hadronization

There are two main fragmentation models in common use:
strings and clusters. Both start out from the color flow topolo-
gies set up according to the previous sections, in the Nc →∞
limit. Specifically, each q → qg and g→ gg leads to a new
uniquely defined color line between the two daughter par-
tons. The string model retains all the gluons produced in the
perturbative stage. A string can therefore be stretched e.g.
like q−g1−g2−g3−q , where each color line between two
adjacent partons is unique. In the cluster model the perturba-
tive shower is followed by a semi-perturbative step where all
gluons branch by g→ qq . The system therefore subdivides
into smaller qq clusters.This key difference is illustrated in
Fig. 280. The string is central in Pythia, while Herwig and

Sherpa implements clusters. In the latter program there is
an interface to Pythia strings to allow comparisons. In the
following key features will be presented in some more detail.

The string approach is based on the assumption of a lin-
ear confinement potential, as supported by quenched lattice
QCD phenomenology. In a simple qq system studied in the
rest frame, e.g. from a Z0 decay, the potential can then be
written as V (r) = κr , where r is the separation and κ is
the string tension. Empirically κ ≈ 1 GeV/fm, determined
mainly from hadron spectroscopy. The mathematical one-
dimensional string stretched straight between the q and the
q can be viewed as defining the center of a physical chromo-
electric flux tube, with transverse dimensions comparable to
hadron sizes, i.e.with a radius of around 0.7 fm. It is not set-
tled whether this tube should be viewed in analogy with a
vortex line in a type II superconductor, or with an elongated
bag in a type I one, or with an intermediate behaviour, but
for the basic considerations this is also not important.

If the string does not break, it will undergo a yo-yo-like
oscillatory motion, where initially the quarks carry the full
energy of the system, but gradually lose it to the string being
stretched out between them. Massless quarks will reach a
maximal separation where all the energy is stored in the
string, and then the string tension will pull them back, so
that they again cross, carrying the full energy. The key rela-
tion is that the massless endpoint quarks, moving out along
the ±z axis, obey
∣
∣
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(with c = 1). If such a system is boosted along the z axis
the q and q start out with different energies, which means
that their turning points occur at different times, which gives
the expected net motion of the system as a whole. The string
tension remains unchanged by the boost, and a string piece
in the new frame still carries no three-momentum. This may
seem counterintuitive, but note that the boost will take an
equal-times string piece to one where the endpoints are at
different times, and if viewed this way the boosted string
piece will pick up the expected momentum.

Now introduce the possibility for a string to break by the
production of a new qiqi pair somewhere along the string. In
lattice QCD this corresponds to going from the quenched to
the unquenched situation. Each break splits the original color
singlet system into two separate smaller ones. A sequence
of breaks thus gives an ordered singlet chain qq1 − q1q2 −
q2q3− . . .−qn−1q , and these singlets can be associated with
the primary (i.e.before any decays) hadrons. Such a sequence
of breaks is illustrated in Fig. 281. Notice that, in this picture,
each produced hadron undergoes a yo-yo motion of its own.

If the qi have m = pT = 0 then a qiqi pair can be pro-
duced on-shell in a single vertex, and afterwards be pulled
apart. The partons are virtual initially when this is not the
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Fig. 281 String fragmentation of a qq system, where yellow regions
represents snapshots in time of the string pieces being stretched out.
Reproduced from [3636]

case, and each has to tunnel a distance mT /κ until it has
absorbed enough energy from the string to come on-shell.
This leads to a suppression factor

exp

(

−π m2
T

κ

)

= exp

(

−π m2

κ

)

exp

(

−π p2
T

κ

)

. (11.41)

The transverse momentum kick can be compensated locally
between the qi and qi , which defines a vector sum for each
qiqi+1 hadron. Empirically the observed 〈pT 〉 is somewhat
higher than predicted this way, which could be related to
the cutoff of soft gluons in the parton shower, so for tuning
purposes the pT width of primary hadrons is considered a
free parameter.

The tunneling also implies that nonperturbative produc-
tion of heavier quarks is suppressed, for charm and bottom
to a negligible level. For the strangeness suppression it is not
clear what quark masses to use – the observed s/u ≈ 0.25
production ratio is in between results for current algebra and
constituent masses – so again it is considered a free param-
eter.

Neglecting orbitally and radially excited states, a produced
meson belongs either to the pseudoscalar or to the vector mul-
tiplet. Naive spin counting would imply a 1 : 3 production
rate, but vectors are suppressed by the heavier mass, to an
extent that is not easily calculated from first principles, so
further parameters are introduced. The many flavor-related
parameters is the biggest weakness of the string model.

For baryon production antidiquark–diquark string breaks
are introduced, in analogy with quark–antiquark ones, with
the diquark in a color antitriplet. Again tunneling, spin and
mass factors are combined in production-rate parameters.
The overall diquark break fraction needed to describe the
observed baryon production rate is around 10%. A modified
scenario is the popcorn one. In it, a qq pair can be produced
with a color that does not screen the endpoint ones, such that
it does not break the string. Inside that pair one or two further

Fig. 282 String motion in a qqg system. Yellow regions represent
snapshots in time of the string pieces. The fragmentation of the strings
is suppressed for clarity. Reproduced from [3636]

breaks may occur, where the latter would allow a meson to
be produced between the baryon and the antibaryon.

String breaks on the average ought to be produced along
a hyperbola of fixed invariant time, which translates into a
flat rapidity plateau of produced hadrons. Then particle pro-
duction would start in the middle of the event and spread
outwards, Fig. 281. But actually all string breaks have a
spacelike separation to each other, so there is no Lorentz-
frame-independent definition of what comes first. It is then
more convenient to begin at an endpoint quark and work
inwards. The final result should be independent of the order
used, which is satisfied for an almost unique fragmentation
function shape

f (z) = 1

z
(1− z)a exp

(

−b m2
T

z

)

. (11.42)

Here a and b are two free parameters and mT the transverse
mass of the hadron considered. The z variable parametrizes
the fraction of remaining lightcone momentum that the
hadron takes. That is, if the quark is moving in the+z direc-
tion, then z is the fraction of E + pz taken, with 1 − z the
fraction remaining to be used in subsequent steps. Note that
heavier hadrons on the average take a larger fraction z than
lighter ones. The f (z) shape may be generalized slightly to
take into account the effect of different quark masses, notably
for massive (c or b) endpoint quarks.

The extension to more complicated string topologies
involves no new principles or parameters. In a qqg event,
Fig. 282, the Nc → ∞ color algebra implies that one color
is shared between q and g, and another between g and q , with
no direct connection between q and q . The strings pulled out
now have a transverse motion and thus a higher energy per
unit length, but less length is pulled out per unit time, and
these two effect exactly compensate to give |dE/dt | = κ

for the quarks and twice that for the gluon. This is to be
compared with the QCD color-charge ratio Nc/CF = 9/4.
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Again the two string pieces will fragment along their length,
with one hadron formed around the gluon kink, obtaining
four-momentum contributions from both pieces. The gener-
alization to multigluon systems is obvious, and also closed
gluon loops can be addressed in this way.

The string motion becomes more complicated when a
gluon is soft or collinear, with new string regions arising.
The punch line, however, is that the total string motion is only
mildly affected by such gluon emissions, although technical
complications arise.

The occasional low-mass string also needs some special
care, and in the extreme case it may become necessary to
force the endpoint flavor content to form a single hadron, with
four-momentum conservation being ensured by exchange
with another parton or hadron.

LHC pp data has revealed several unexpected features,
notably that fragmentation properties change when the mul-
tiplicity is increased, towards more strangeness and baryon
production, and with signs of collective flow, both in the
direction of the heavy-ion behaviour. Possibly a quark–gluon
plasma is being formed, but in a string context it is also worth-
while to consider how the environment, i.e.the close-packing
of strings at high multiplicities, could perturb the standard
fragmentation picture. One such potential effect is color rope
formation, i.e.that several parallel strings combine into an
object in a higher color representation [3637]. Then baryon
and strangeness production is enhanced. Baryons can in addi-
tion be enhanced by the aforementioned junction CR mech-
anism. There can also be a repulsive force between strings,
so-called shove, that can give rise to collective flow [3638]. It
remains to be seen whether these ideas can be combined into
a new coherent framework in agreement with LHC observa-
tions.

The cluster model is based on the concept of preconfine-
ment [3639] during the parton-shower evolution. That is,
each color line (for Nc →∞) tends to correspond to a low-
mass system, with only a small tail towards larger masses.
The model becomes even more suggestive if it is assumed
that all gluons branch into quarks, g → qq , at the end of
the cascade, such that each color line is associated with a
separate color singlet cluster. This would occur naturally if
constituent masses obey mg ≥ 2mu = 2md , as is supported
by lattice QCD. Several cluster studies have been presented
over the years. Here the generic features are outlined.

A gluon decays into any kinematically allowed qq pair
according to its phase-space weight, which implies a depen-
dence on the choice of gluon and quark constituent masses,
notably whether ss can occur at this stage. Thereafter each
q1q2 cluster decays isotropically into a two-body state,
hadrons q1q3 and q3q2, where q3 may also represent a
diquark, resulting in baryon production. The hadrons are
picked at random among all possibilities consistent with the
flavors, according to relative weights. These weights are the

product of the spin factor 2s+1 for each final hadron and the
phase-space factor 2p∗/m, where p∗ is the common magni-
tude of the three-momentum of the hadrons in the rest frame
of the cluster with massm. In some cases, such asπ0−η−η′,
also the mixing of identical-flavor states needs to be included
in the weight. It is also possible to allow an overall extra factor
for a multiplet, notably to enhance baryon production.

A number of improvements have been introduced to this
basic picture, as follows.

When the four-momenta of the cluster constituent q1 and
q2 are combined into the four-momentum of the cluster, the
tail to large cluster masses is suppressed, but it is not com-
pletely absent. It is therefore assumed that such clusters can
fission into two smaller ones, preferentially aligned along
the q1q2 axis. Flavor-dependent parameters are introduced
to provide the mass above which a cluster must break, and
others to describe the mass spectrum of the daughter clus-
ters. The fission procedure can be repeated on the daughters,
if necessary. In e+e− events∼15% of the clusters need to be
split, but these account for ∼50% of the final hadrons.

If baryons only are produced as baryon–antibaryon pairs
inside isotropically decaying clusters then that does not agree
with observed anisotropies in e+e− events. One solution is
to allow g → qq + qq branches in the final stages of the
shower. This has been implemented both for Herwig and
Sherpa, but has now been replaced by the next approach in
Herwig. (The possibility to rearrange three mesonic clusters
into two baryonic ones has already been mentioned, but is
not relevant for e+e−.)

Isotropic cluster decays also give too soft charm and bot-
tom hadron spectra in e+e−. Therefore such cluster decays
are treated anisotropically, such that the heavy hadron is
preferentially near the heavy-quark direction, when viewed
in the cluster rest frame. Some further improvements can
be obtained if also other cluster decays preferentially favor
hadrons closer to the cluster end with the matching flavor.

There may be a small fraction where the cluster mass is not
large enough to produce two hadrons with the required flavor
content. In such cases the cluster can be allowed to collapse
into a single hadron, with excess four-momentum shuffled to
another nearby cluster. For heavy quarks one may also allow
some such collapses above the two-body threshold, to further
harden the heavy-hadron spectrum.

Further procedures exist both in Herwig and Sherpa to
handle other special cases.

11.4.8 Decays, rescattering and Bose–Einstein

Many of the primary produced hadrons are unstable and
decay further. Often the decay channels and their branch-
ing ratios are well-known, but for charm and especially bot-
tom hadrons the picture is incomplete. Higher resonances
are poorly known also in the light-quark sector. Furthermore,
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inclusive measurements of a given final state may need to be
translated into a potential sequence of intermediate states,
e.g. Kππ may receive contributions from ρ and K ∗ reso-
nances. Once the decay sequence has been settled, angular
correlations in the decays should be considered, where fea-
sible. Especially for bottom the Evtgen package provides a
large selection of relevant matrix elements, as does Tauola
for τ lepton decay. The standard event generators also handle
such nonisotropic decays to a varying degree.

The main pp generators assume that particles are free-
streaming once formed. This is not the case in heavy-ion col-
lisions, where the particle density remains high a while after
the hadronization stage, and hadrons therefore can rescatter
against each other. Studies show that also pp collisions are
affected by rescattering, but not to a dramatic degree.

Another issue is Bose–Einstein (or Fermi–Dirac) corre-
lations, present in the production of identical bosons (or
fermions). Empirically this results in an enhancement (or
depletion) of nearby pairs. Typical deduced emission source
sizes range from somewhat below 1 fm in e+e− to some-
what above that for pp. Such scales obviously overlap with
the hadronization ones, but also with the decays of short-
lived resonances such as ρ, and with hadronic rescattering.
The modelling therefore is far from trivial, and no traditional
generator includes Bose–Einstein effects by default.

11.4.9 Other collision types

While the emphasis of the description above has been on the
three main pp generators at LHC, a few words on adjacent
fields and other generators are in place [3619]. Many of these
other programs do not address hard physics, but are intended
to describe inclusive events dominated by low-pT QCD pro-
cesses. Via an MPI machinery they may or may not contain
a tail of harder QCD events.

Fields that can be covered by the e+e−/pp generators
include Deeply Inelastic Scattering and photoproduction in
ep or μp. The latter is largely based on the concept of Vector
Meson Dominance (VMD), i.e.that a real photon can fluctu-
ate into a vector meson state. The transition between the two
regions of photon virtualities remains less easily modelled.
The VMD picture can also be used e.g. for ultraperipheral γ γ
collisions in heavy-ion beams. Work remains to extend the
ep collision framework to eA, as required for the simulation
EIC physics.

Generators for heavy-ion physics span a broad range. In
one extreme models introduce nuclear geometry and mul-
tiple pp/pn/nn collisions, but with each collision similar
to a regular pp one, up to energy–momentum conservation
effects and the like. The earliest such example is Fritiof, the
Angantyr descendant of which is now included in Pythia.
Others are Sibyll, Qgsjet and Dpmjet. Such models can
be run reasonably fast, and the latter three therefore are com-

monly used for the hadronic part of cosmic-ray cascades in
the atmosphere.

In the other extreme the formation and evolution of a
quark–gluon plasma (QGP) is the key feature. This requires
the combination of models for several stages of the evolu-
tion, notably the hydrodynamical evolution of the plasma,
which can be quite time-consuming. Jetscape offers a com-
mon framework where models for the different stages can be
combined at will.

A successful intermediate program is the core–corona
EPOS one [3640]. In it, peripheral pp/pn/nn collisions
(corona) occur more-or-less separated from each other, while
the central higher-density core region may form a QGP,
which then decays to hadrons according to a statistical model.
The core QGP component gains in relative importance when
going from pp to pA to AA, and from peripheral to cen-
tral collisions. This gives a behaviour largely consistent with
data.

Finally, generators for neutrino physics, like Genie, are
largely separate from the ones above, in that an emphasis lies
on interactions with nuclei at low energies. The separation
into a primary physics process followed by a simulation of
detector effects thereby is blurred.

11.4.10 Standardization

The main generators discussed here largely are separate
codes. This allows for cross-checks where results should
agree, and a spread of predictions where the physics is not
well-specified. Comparisons are greatly simplified by com-
mon standards.

The oldest standard is the PDG particle numbering
scheme, whereby observed and postulated particles are
assigned unique integer numbers.

The transfer of information from matrix-element gener-
ators to general-purpose generators is defined in the Les
Houches Accord (LHA), and the associated Les Houches
Event File (LHEF) [3641]. It specifies in particular a listing
of all incoming and outgoing partons of a hard interaction,
with their four-momenta. Extensions include multiple event
weights to represent scale and PDF variations.

The transfer of the much bigger complete events from gen-
erators to detector simulation, or straight to users, is handled
by the HepMC standard [3642]. Again PDG particle codes
and four-momenta provide the basic information. Also the
step-by-step event history is documented, but cannot be made
completely generator-independent since different physics is
involved, e.g. strings versus clusters.

Parton distributions are widely used in generators, for hard
interactions, MPIs and ISR. Today each new PDF set typi-
cally consists in the order of a hundred members, to provide a
representation of the correlated uncertainties. Each member
is stored as a file with the PDF value of all relevant partons
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in a grid in (x, Q) space. LHAPDF [3643] specifies the file
format, such that common interpolation routines can be used
for the PDF evaluation for arbitrary x and Q values.

A major issue in the interpretation of data, not least for
generator development and tuning, is the difficulty to repro-
duce all the methods and cuts used in the analysis, even after
the data has been corrected for detector inefficiencies and
smearing. Here the Rivet framework [3644] allows a stan-
dardized way for experiments to submit a code that takes
generated (HepMC) events and analyzes them in such a way
that the output can be directly compared with published data.

11.4.11 The future

Before the start of the LHC, we believed to have a fair under-
standing of the physics at high-energy e+e−/pp/pp collid-
ers. The hadronization description developed in the light of
PETRA worked surprisingly well also at LEP. By jet univer-
sality – the assumption that the same hadronization mecha-
nisms are at play in different collision types – the same should
hold also for hadron colliders, when extended by aspects such
as multiparton interactions and color reconnection.

The shock of LHC then was that high-multiplicity pp
events were shown to behave surprisingly like heavy-ion col-
lisions, with strangeness and baryon enhancement, both in
the light-quark and in the charm/bottom sectors, and signs of
collective flow such as ridge effects. From what we have been
able to learn so far, it seems that high-pT physics remains
unaffected, such that there perturbation theory still can be
reliably combined with LEP-tuned hadronization models.
This makes sense, in that partons in that region mainly evolve
in a vacuum. But, at low pT , we already knew that the mul-
tiparton interactions lead to a close-packing of fragmenting
systems, whether strings or clusters. We just had not fully
appreciated its consequences, in part lulled by the common
belief in the heavy-ion community that time scales in pp
collisions are too short for a quark–gluon plasma to form.
Now we are in the process of rethinking hadronization. One
approach is the core–corona one, where a core part of the
pp event indeed behaves like a plasma, while the corona part
does not. The alternative is to avoid the plasma and intro-
duce other possible mechanisms, such as junctions, ropes
and shove. While some progress has been made, still no such
coherent alternative exists. Anyway, the bottom line is that
LHC has reinvigorated the study of the soft-physics aspects
of event generators, in addition to obviously driving the hard-
physics evolution, see Sect. 11.3.

While there is still much more to be learned from the
LHC, attention is also turning to other future colliders. The
one that may require most new generator development is the
EIC, since it involves new physics scenarios not addressed
before.

11.5 Jet reconstruction

Bogdan Malaescu, Dag Gillberg, Steven Schramm, and
Chris Young
A QCD interaction at a very high energy, such as the hard pro-
cess of an LHC collision, produces quarks and gluons that are
asymptotically free at very short distances, but often result
in a final state of hundreds of particles at the distance scales
of detectors (> 1 mm). It is highly desirable to reduce the
complexity of the hadronic final state and map it onto a rep-
resentation that mimics the kinematics of the short-distance
hard process. This is the goal of jet algorithms. Jet algorithms
are a set of rules used to group directionally nearby particles
to form jets. A jet can hence be thought of as a collimated
group of particles that might correspond to a high energy par-
ton of the hard process. The particles used as input to form
jets can be of several types: a set of partons, a consistent set
of hadrons, or a set of detector objects such as reconstructed
charged-particle tracks or localized calorimeter energy mea-
surements.

11.5.1 Jet algorithms

There are a number of desirable features for a jet algorithm. It
should be computationally robust and well specified, ideally
with few parameters. It should be theoretically well behaved,
and exhibit both infrared and collinear safety. The former
refers to adding one or several particles with infinitesimal
energy, and the latter to split any input particle into two.
For both these kinds of alterations of the input particles, the
resulting jet four-momenta will be identical if the jet algo-
rithm is safe against said effects. The jet algorithm should
further behave equivalently at different orders of the QCD
evolution: at the parton, hadron and detector levels. Further-
more, it should not be tailored to a specific detector, but be
useful and used both by theorists and by experimental col-
laborations.

One of the early jet algorithms was the Snowmass Cone
Algorithm of 1990 [3645]. This algorithm, which used ET

and operated in (η, φ)-space,107 wrestled with several of the
issues mentioned above. Complication arose due to choice
of seeds and overlapping cones, which were dealt with by a
merging and splitting stage of the jet algorithm, and which
tried to find ‘stable cones’. Similar cone algorithms with var-
ious improvements were employed by the CDF and DØ col-
laborations at Fermilab [3646,3647]. The kt algorithm [191]
was developed in 1993, inspired by QCD splittings scales
(see Sect. 11.2). The advantages of the kt algorithm are that
it has no split/merge stage, and jets are uniquely defined; dis-

107 ET ≡ E sin(θ) and the pseudorapidity η = − ln(tan(θ/2)), where
θ is the angle to the beam pipe.
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Fig. 283 The same simulated pp → W+H → ud̄ bb̄ event, recon-
structed with four different jet algorithms: kt (top left), anti-kt (top
right) and Cambridge–Aachen (bottom left), all with radius parameter
R = 0.4, and anti-kt with R = 1.0 (bottom right). The hard pro-
cess particles are shown as black markers, while the final set of stable
particles are displayed as crosses. Particles from pileup interactions,

generated using a mean of μ = 60 inelastic pp collisions, are shown as
grey open markers. Particles with pT < 1 GeV are not displayed. The
solid colored areas show the extension (catchment area) of each jet with
pT > 25 GeV, and their colors indicate the jet pT . The code needed
to produce this plot is available as the example program main95 in
recent Pythia distributions

advantages include the irregular jet shapes, and the difficulty
to experimentally reconstruct and calibrate the jets.

Today, the most common method to build jets is the anti-kt
algorithm [193], defined very similarly to the kt algorithm.
Both algorithms start from a set of particles, each with asso-
ciated four-momenta, and the following distance measures
are calculated

di j = min(p2p
T,i , p

2p
T, j )

ΔR2
i j

R2 , di B = p2p
T,i , (11.43)

where R is a radius parameter,ΔR2
i j = Δy2

i j+Δφ2
i j is the dis-

tance squared in (y, φ)-space between particles i and j , and
the parameter p is 1 for the kt algorithm, 0 for the Cambridge–
Aachen [189] algorithm and −1 for the anti-kt algorithm.
The distance di j is calculated for all combinations of pairs of
particles, and di B once per particle. The smallest distance is
found; if this is a di B value, then particle i will define a jet. If
it is a di j value, then particles i and j are merged, normally

by four-momentum addition (pk = pi + p j ). In both cases,
the list of particles and the associated distances are updated,
and the algorithm proceeds with one less particle per itera-
tion until all particles have been used. When finished, each
input particle is uniquely part of a jet. An illustration of the
produced jets for these three kt -style jet algorithms is pre-
sented in Fig. 283, where the jets are built for stable particles
produced by a simulated pp → W+H → ud̄ bb̄ event at
the LHC with a pileup contribution corresponding to a mean
number of inelastic pp interactions of μ = 60.

As is clear from Fig. 283, jets do not provide a unique
interpretation of any given event, rather they are a tool that
can be optimized to best address the needs of a given task.
Even if jet algorithms are intended to represent the under-
lying hard process of a given collision, the variety of possi-
ble hard processes necessitates the consideration of different
jet algorithm configurations. In other words, a jet algorithm
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Fig. 284 The fraction of the total jet energy carried by different types of
particles of particle-level jets produced in simulated LHC dijet events.
Particle-level jets are built from particles (c τ > 10 mm). The ratio
of charged-to-neutral pions is 2:1 due to isospin symmetry, while for
baryons it is 1:1; the overall charged-to-neutral fraction of particles in
a jet roughly averages between these two expectations [3648]

defines an event organization concept and it can be adapted
for different physics processes.

The most common usage of jets in the collider context is
to represent the collimated group of final state particles orig-
inating from individual quarks or gluons of the hard scatter.
For this task, the preferred jet radius parameter has slightly
changed during the last decades. Values of R = 0.6 or 0.7
have often been used for studies of events with well separated
jets (e.g. dijet production), while smaller radii (0.4 or 0.5) are
more appropriate to resolve more complex final states, such
as t t̄ or the example shown in Fig. 283. As is further discussed
in Sect. 11.5.2, smaller radii makes jets less susceptible to
pileup, which has become an important consideration at the
LHC. Since the start of LHC Run 2, the anti-kt algorithm with
a radius parameter of R = 0.4 has been the standard choice
largely due to these reasons. The resulting jets are then inter-
preted as a set of quark- and gluon-initiated showers. Such
jets are primarily composed of charged and neutral pions,
but baryons and other types of mesons contribute a moderate
fraction of the total jet energy, as shown in Fig. 284. Small
energy fractions of electrons and muons can also be seen that
originate from semi-leptonic heavy hadron decays.

A natural second-level question relating to such jets is
to determine their underlying production mechanism. Is a
given jet produced by a light-flavor quark (u/d/s), a gluon, a
heavy-flavor quark (c or b), or by some other process? Heavy-
flavor jets are typically easier to define at all levels: they can
be identified by whether or not the list of constituents the jet
is composed of contains b or c quarks at parton-level; B or D
hadrons (or their decay products) at particle-level; or, have

associated charge-particle tracks originating from collision-
point-displaced vertices at the experimental level. The differ-
ence between light-flavor-quark- and gluon-initiated show-
ers is more subtle, and is not rigorously defined for particle-
or experiment-level jets. Instead, the expected properties of
quarks and gluons can be used to differentiate between such
jets on average, noting that quarks have a single color charge
and are thus expected to radiate less, resulting in more nar-
row showers containing fewer constituents than showers pro-
duced by gluons.

Another important concept, and which is of great rel-
evance at the LHC, is to use jets to represent complex
energy flow processes rather than individual showers. The
high energy collisions at the LHC can result in the produc-
tion of massive particles, such as W , Z and H bosons and
top quarks, with high transverse momentum. Therefore they
have a sizable Lorentz boost in the rest frame of the detec-
tor, and their decay products will be collimated. In the case
of hadronic decay products, each daughter particle further
produces showers of hadrons, which can overlap. Rather
than reconstructing this complex structure of overlapping
hadronic showers as separate jets, the entire decay of the
massive particle can be treated as a single jet, and proper-
ties of that jet can be used to infer the nature of the orig-
inating particle [3649]. In such a scenario, it is useful to
increase the distance parameter used to build jets to contain
the entire hadronic decay, as shown for the anti-kt algorithm
with R = 1.0 in the bottom right plot in Fig. 283 where
the W boson decay is within a single jet, while the H boson
decay is split between two jets. The collimation of the decay
particles is related to the mass and momentum of the parent
particle; for a two-body decay, this becomes:

ΔR � 2mparent

pparent
T

, (11.44)

where ΔR is the angular separation between the decay prod-
ucts in (y, φ)-space. From this equation, it is clear that
increased collision energies producing higher-momentum
massive particles will result in increasingly collimated
decays, and thus the importance of using a larger value of
R to represent a complex energy flow is related to the energy
scale of the process under study. Jets built with this context
in mind are typically referred to as large-radius or large-R
jets, where typical modern values are R = 0.8 for CMS or
R = 1.0 for ATLAS; this is in contrast to the previously dis-
cussed R = 0.4 jets, which are referred to as small-radius or
small-R jets.

Using a larger distance parameter comes with several
complications, both experimental and theoretical. From the
purely algorithmic perspective, one challenge is that the
catchment area [3650] of an individual jet grows dramati-
cally, as clearly visible when comparing the top right and
bottom right plots in Fig. 283. Among other effects, this
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increases the amount of energy from the underlying event
included in the jet, which can hide the features of inter-
est: for example, the mass of the jet should peak at the
mass of the parent particle, but this is not the case due to
the presence of the underlying event. This can be mitigated
through the use of a variety of different grooming algo-
rithms [1915,1916,3649,3651,3652]. These algorithms are
typically applied after building the initial jets. The objects
clustered into the jet are then subject to a further selection,
and those which appear to be inconsistent with originating
from a hard-scattering process are removed, thus suppressing
the underlying event and other undesired contributions while
retaining the physics features of interest.

11.5.2 Jet reconstruction

Inputs to jet reconstruction:
Particle-level jets, often referred to as truth jets, are used as a
theoretical reference for experimental measurements. These
are jets built from stable particles, defined as those with life-
time τ such that c τ > 10 mm (τ > 33 ps), which can be
thought of as “what a perfect detector would see”. It should be
noted that neutral pions are not considered stable and hence
their decay products (photons) will be used as input to truth
jets (see Fig. 284). Only particles produced in the proton–
proton interaction of interest are considered. These jets also
form the reference for the calibration of reconstructed jets.

Experimental reconstruction of jets requires the defini-
tion of a given set of inputs, which will ideally represent the
true particles of the jet or the energy flow. As jets consist of
both charged and neutral hadrons, the simplest reconstruc-
tion makes use of the energy flow captured in a calorimeter,
which measures the energy of both charged and neutral inci-
dent particles. However, as we will see in this section, the
accuracy of jet reconstruction can be improved through the
use of additional information from tracks reconstructed from
charged particles.

At a hadron collider such as the LHC, a wide range of ener-
gies of jets need to be accurately reconstructed: from 20 GeV
to above 4 TeV in pT . This represents a significant challenge
for the design of the detectors. Both ATLAS and CMS sur-
round the interaction point with a tracking detector immersed
in a magnetic field, such that the momentum of charged par-
ticles can be measured. Around this are the calorimeters.
The innermost calorimeters are designed to reconstruct elec-
tromagnetically showering particles, such as electrons and
photons, and will also capture some energy from charged
and neutral hadrons. Radially outward of these detectors are
hadronic calorimeters that measure the energy of showers
from remaining charged and neutral hadrons.

An additional complication at the LHC is pileup. Each
time two bunches of protons cross, multiple pairs of pro-
tons can collide. This is referred to as in-time pileup. The

beam-spot, the region of interactions, is typically 30–50 mm
in length along the beam direction. This means that such col-
lisions are typically separated in this dimension and tracks
originating from different collisions can be identified. A sec-
ond effect is out-of-time pileup. The bunches of protons
cross every 25 ns in the LHC, therefore there are still resid-
ual effects in many of the detectors from the previous (and
subsequent for some systems with large integration times)
bunch crossings. These residual signals are referred to as
out-of-time pileup.

Throughout Run 1 of the LHC (2010–2012), ATLAS used
solely calorimeter inputs to build their jets. The ATLAS
calorimeters consist of over 100,000 cells. This fine cell gran-
ularity is used to suppress noise by constructing clusters of
cells, which represent the energy flow. Cells with energy sig-
nificantly greater than the expected background noise are
used to seed such clusters, and adjacent cells are added itera-
tively, forming topologically connected clusters representing
a shower [3653]. This process means that most cells in the
calorimeter are not included in the event reconstruction, and
hence their noise does not contribute to the jet resolution.
As the calorimeters are non-compensating, showers caused
by electromagnetically and hadronically interacting particles
of identical initial energies have different energy responses.
The jet resolution can therefore be improved by identifying
which type of shower each cluster contains and calibrating
it appropriately. In ATLAS the energy density of the cluster
and its position in the calorimeter are used for classification
and subsequent calibration [3653]. These calibrated clusters
were the input signals to jet reconstruction for ATLAS in
Run 1.

CMS has employed a particle-flow approach both in Run 1
and Run 2 [3655], and ATLAS also developed such an
approach for Run 2 [3654]. The principle of particle flow is to
supplement the information from the calorimeter with track-
ing information. Both collaborations match tracks recon-
structed in the inner detector to calorimeter energy deposits
from the same particle. The ability to do this depends on the
granularity of the detector, the small transverse size of the
showers in the calorimeter, and the separation of the parti-
cles. Figure 285 shows how this can be achieved by extrap-
olating tracks through the magnetic field to the calorime-
ter and matching them to calorimeter energy deposits. The
CMS algorithm combines the measurements of tracks and
matched calorimeter-energy deposits to create combined
reconstructed charged hadrons with improved resolution.
Calorimeter deposits without tracks are then identified as
neutral hadrons. Situations where the showers of a charged
hadron and a neutral hadron are overlapping are identified
by the excess of energy in the calorimeter above what would
be expected from the charged hadron. In ATLAS a choice is
made between the calorimeter and track reconstruction. For
low pT tracks, where the track resolution is significantly bet-
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Fig. 285 The simulated signals from a pT = 30 GeV jet in the (η, φ)

plane of the second layer of the ATLAS electromagnetic calorimeter.
The shaded cells are those included in calorimeter topoclusters. Green
deposits are from neutral hadrons within the jet, red deposits are from
charged hadrons within the jet, and blue deposits are from pileup parti-
cles. The purple ∗ represents the tracks of charged hadrons within the jet
after being extrapolated to the calorimeter, and the yellow ∗ represents
tracks from pileup [3654]

ter than that of the calorimeter, the momentum measurement
is taken from the reconstructed track and the corresponding
shower created by that particle is removed from the calorime-
ter. The remaining calorimeter energy deposits then represent
the energy flow from particles without tracks and those where
the track is not selected.

Both collaborations see significant improvements in the
pT and angular resolutions of jets reconstructed using par-
ticle flow. Figure 286 shows the dramatic improvement in
the energy resolution in CMS. In ATLAS the improvement
is smaller, and primarily at lower pT , due to the superior
calorimeter resolution. However, the gains from the use of
particle flow increase at higher pileup motivating its use in
Run 2 and beyond.

Jet algorithms in the experimental context:
Having reconstructed either clusters or a set of particle flow
objects, the jet algorithms featured in Sect. 11.5.1 can be
used to build jets. A key advantage of using particle flow
objects is that prior to building the jets, charged particles that
are from in-time pileup interactions can be excluded. This
is known as Charged Hadron Subtraction, and is performed
by both experiments’ particle flow algorithms [3654,3655].
This removes the majority of the effects of charged pileup
particles but the effects due to neutral pileup particles and out-
of-time pileup remain. This explains why ATLAS observes

Fig. 286 The jet resolution in the central region of the CMS detector
when jets are reconstructed using calorimeter signals (Calo) or particle
flow objects (PF). The simulated QCD events have

√
s = 13 TeV and

there are no pileup effects present [3655]

increasing benefits of the particle flow approach at higher
pileup. Additionally CMS employs PUPPI [3656] which uses
the local information to try to identify neutral pileup energy
deposits and weight these to lower significance prior to jet
finding [3656,3657].

Some small-R jets reconstructed from either calorimeter
or particle flow inputs will consist of only signals from pileup
particles. These are referred to as pileup jets and can be the
result of QCD jets from other in-time collisions, multiple
particles from different in-time collisions, out-of-time pileup
signals, or a combination of several of these effects. These
jets will not have tracks pointing at them from the interaction
vertex of interest, while they will in some cases have tracks
from other vertices. These features are used by both ATLAS
and CMS to reject such jets such that they are not used in
analyses [3657,3658].

Large-radius jets are much more susceptible to pileup, due
to their larger catchment area. Most large-radius jets at the
LHC will therefore contain a mixture of energy originating
from multiple collisions (either in-time or out-of-time), and
thus it is impractical to reject entire jets. Moreover, large-
radius jet are typically used in situations where the internal
structure of the large radius jet is of interest, and thus any
constituents originating from other processes than the hard-
scatter interaction must be suppressed to observe the jet’s
internal structure. Charged hadron subtraction, from particle
flow algorithms, can help to remove charged contributions
for separate collisions, but alternative strategies are needed
to remove overlapping neutral contributions. Grooming algo-
rithms, previously motivated in the context of suppressing
underlying event contributions, are also useful in this con-
text: the same criteria of suppressing soft and wide-angle
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Fig. 287 Distributions of pjet
T /pref

T in Z+jet events, where pref
T is

defined by the reconstructed Z boson pT and is required to be in the
range (60, 80)GeV. The dashed line shows the fitted distribution, from
which the means are taken as the response measurements. The solid
line indicates the fitting ranges. The markers are the data counts with
error bars corresponding to the statistical uncertainties. Figure from Ref.
[3662]

radiation is also useful for mitigating pileup contributions.
These grooming algorithms are applied after the jet is built,
but the inputs to jet algorithms can also be corrected; vari-
ous criteria can be used to suppress neutral jet inputs from
vertices other than the one of interest, such as Constituent
Subtraction (CS) [3659], Soft Killer (SK) [3660], PUPPI,
or combinations thereof such as CS+SK. Currently, ATLAS
makes use of CS+SK to modify the inputs to large-radius
jet reconstruction [3661], while CMS makes use of PUPPI
[3657].

11.5.3 Jet calibration

Energy scale and resolution:
Once jets are reconstructed, they need to be calibrated such
that on average the reconstructed jet four-momenta match
those at the particle level within the assigned uncertainties.
At hadron colliders, the jet energy-scale (JES) calibration-
correction is typically applied in a sequence of steps. Those
account for (the mitigation of) contributions from additional
proton–proton collisions, energy losses in the dead material
of the detector, calorimeter non-compensation (where appli-
cable), angular biases, etc. Several of these calibration steps
rely on a detailed Monte Carlo simulation (MC) of detector
effects. Modern techniques use jet and event properties (e.g.
jet area, jet width, fraction of energy in the various layers
of the calorimeters, average pT density) to improve resolu-
tion and to mitigate the dependence of the JES response on
the jet flavor. The latter are sizable mainly at low jet trans-
verse momentum (pT ) and yield one of the main modeling
uncertainties impacting the JES calibration.

Fig. 288 Fractional jet energy scale systematic uncertainty as a func-
tion of pT for jets reconstructed from particle-flow objects. The total
uncertainty, determined as the quadrature sum of all components, is
shown as a filled region topped by a solid black line. flavor-dependent
uncertainty components shown here assume a dijet flavor composition.
Figure from Ref. [3663]

The calibration chain is completed by in situ corrections
that are most commonly derived by exploiting momentum
balance between jets and well-measured reference objects.
Selection criteria are applied to suppress extra radiation and
obtain a sample of events where a probe jet is back-to-back
with the reference object. A correction is then derived by
comparing the measured balance in data relative to the expec-
tations of MC simulation, and correcting for the residual dif-
ference:

(
pjet
T /pref

T

)data / (
pjet
T /pref

T

)MC
. (11.45)

This principle was developed for the calibration of small-
radius (R ∈ [0.4, 0.7]) jets [3648,3662,3663] and has now
also been used for large-radius jets [3664].

These in situ methods employ, as reference objects, pho-
tons, Z bosons decaying to charged leptons, and one or
several pre-calibrated jets. Fig. 287 presents an example of
pjet
T /pref

T distribution in data, the mean of which is used to
derive the jet calibration. They also provide the main uncer-
tainties impacting the JES calibration(see Fig. 288), reaching
nowadays sub-percent precision across a broad phase-space,
while being larger for relatively low- and large-pT jets, as
well as in the forward region of the detectors. While for
large-pT jets these approaches are limited by the available
statistics, for low-pT and forward jets they are limited by
modeling effects, related to e.g. the emission of extra radia-
tion impacting the pT balance. The use of in situ techniques
have allowed for significant improvements in precision com-
pared to jet calibrations based on test-beam studies. The latter
are still used in phase-space regions with little/no statistics
coverage for the in situ approaches.
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Statistical combinations, with a full propagation of uncer-
tainties and correlations, are generally employed and yield
the necessary inputs for physics analyses. In these studies,
uncertainties on the uncertainties and on the correlations have
also been evaluated (see e.g. Ref. [3665]). This is an exam-
ple where QCD studies trigger developments that set new
standards on a topic of interest in other scientific areas too.

The width of the pjet
T /pref

T distributions, such as the one
exemplified in Fig. 287, provides information about the jet
energy resolution (JER). Indeed, the JER is determined in
various pjet

T ranges and detector regions, after subtracting sta-
tistically the smearing effect induced by the presence of extra
radiation in the events. Afterwards, a statistical combination
of several in situ methods through a fit allows for the extrac-
tion of a parameterization of the JER in data, together with its
uncertainties, readily usable in physics analyses accounting
for detector smearing effects.

Mass scale and resolution:
To first order, calibrations derived to correct the energy of a jet
are also important to use when correcting the mass of a jet, as
these two quantities are related. However, the mass calcula-
tion includes both energy and angular components, and thus
the jet mass must be further corrected after the energy has
been addressed. Similarly to the energy, calibrating the mass
of a jet begins with corrections based on simulated samples,
to correct the average simulated jet mass to the particle-level
scale. In the context of large-radius jets, it is very impor-
tant to apply the same grooming algorithms to the truth jets
and the reconstructed jets, as the grooming algorithm has
a substantial impact on the mass of the jet built from parti-
cles, primarily due to the suppression of the underlying event
contributions.

Following these simulation-based corrections, the result-
ing mass must be compared between data and simulation,
but the strategies to evaluate differences between data and
simulation necessarily differ. The jet energy corrections
exploited the conservation of momentum in the transverse
frame through the balance between probe and reference
objects to obtain a precise calibration. There is no equiva-
lent conservation law for jet mass, so a different approach
is needed. Instead, the mass has a well-defined expectation
value in specific cases, notably if a pure sample of W , Z
or H bosons or top quarks can be obtained. W bosons and
top quarks are the easiest particles to identify in this context:
semi-leptonic t t̄ events provide an ideal means of identifying
a high-purity selection of hadronically decaying top quarks,
and the distinction between a full top decay and a W boson
decay can be made by requiring the b-quark from the top
decay to be either inside or outside of the large-radius jet
of interest. The resulting high-purity selection of W bosons
or top quarks can be compared between data and simulated
events, where differences in the mass peak’s central value

Fig. 289 The mass of large-radius jets in a final state targeting semi-
leptonic decays of t t̄ events, where a b-tagged jet overlaps with the
large-radius jet. This selection primarily identifies large-radius jets con-
taining the decays of boosted top quarks, as is clear from the dominant
peak structure consistent with the t t̄ simulation expectation. Differences
between data and simulation in both the jet mass scale and resolution
can be extracted from such a plot. [3664]

(mass scale) and width (mass resolution) can be evaluated
and corrected for; an example of the top quark selection is
shown in Fig. 289, where it is clear that the selected events
are very pure in the signal of interest.

This approach works well, but is limited to only a few
possible jet mass values where we have a well-defined Stan-
dard Model expectation. Correcting the scale and resolution
for other mass values is a much more complex task, and a
robust, high-precision method to provide a general mass cor-
rection remains an open challenge.

11.5.4 Classifying hadronic decays of massive particles

The use of large-radius jets is overwhelmingly linked to the
desire to represent the entire hadronic decay of a massive
particle, such as (but not limited to) a W /Z /H boson or a top
quark. If the jet does contain all of the daughter particles and
their corresponding showers, then the mass of the jet now has
a well-defined prior, namely the mass of the parent particle.
This prior holds so long as the large-radius jet represents
only the process of interest: underlying event and pile-up
contributions falling within the jet’s catchment area can both
obscure the internal structure of the jet, and must thus be
mitigated, as previously discussed. The mass then becomes
an excellent means of classifying jets based on the parent
particle that they originate from.
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Fig. 290 The N-subjettiness ratio τ32, with the winner takes all (wta)
axis definition [3666], showing the separation of jets containing three-
body decays (top jets) against jets containing either two-body decays
(W jets) or individual quarks/gluons (multijets). This is after a selec-
tion criterion is applied on the jet mass, and thus the separation shown
between the three jet types provides additional classification power.
[3667]

While the jet mass provides a robust means of differentiat-
ing between different possible sources of large-radius jets, in
many cases it is not sufficient, as light quarks and gluons from
QCD multijet processes are produced in extreme abundance
compared to the massive particle decays of interest. The mass
distribution of light quarks and gluons is peaked at low val-
ues, well below the W /Z /H boson or top quark masses, but
the tail of the mass distribution extends to high masses, and
these tails are still more probable than the production of the
target massive particles.

Additional jet properties can be used to further classify the
origin of a given large-radius jet. These properties are referred
to as jet substructure variables and are designed to quantify
the internal angular energy structure of a jet. Substructure
variables are almost always correlated with the jet mass, and
thus it is important to identify variables that are sufficiently
distinct to provide further separation power. One commonly
used example is the N-subjettiness ratios, τxy = τx/τy , where
τn is a projection of the constituents of a jet along n axes,
thereby evaluating the consistency of the jet containing n
or fewer decay particles. As an example, τ32 is commonly
used to identify jets containing top quarks, as it differentiates
3-body decays from 2-or-fewer-body decays, as shown in
Fig. 290. This is only one example out of the many different
types of jet substructure variables that have been used to
complement the jet mass in classifying the origin of large-
radius jets.

Fig. 291 A comparison of many different algorithms designed to iden-
tify jets originating from hadronic decays of top quarks. A simple tag-
ger based on the jet mass combined with the N-subjettiness ratio τ32
(mSD + τ32) is shown alongside many alternative classifiers providing
significantly better performance. This can be seen as they have much
lower quark/gluon (background) misidentification rates for a fixed top
quark (signal) efficiency. The large majority of the alternative classifiers
make use of machine learning techniques [3668]

While the jet mass and substructure variables provide a
solid baseline, modern large-radius jet classifiers make use
of machine learning techniques to maximally discriminate
between different possible jet origin interpretations. There is
a wide variety of machine-learning-based classifiers in use
by both the ATLAS and CMS Collaborations, and they con-
tinue to become more powerful; a comparison of several such
algorithms as used by CMS is provided in Fig. 291.

Similar to the jet energy and mass calibrations, the dif-
ference between data and simulation must also be quantified
when classifying the origins of large-radius jets. The algo-
rithms used are usually optimized using simulated events, and
there is no guarantee that the simulation properly describes
the data, especially for the complex angular energy struc-
ture within a jet, which is what such classifiers rely upon to
differentiate between different jet categories. Similar to the
jet mass scale calibration, semi-leptonic t t̄ events provide a
useful signal-enriched region to evaluate the performance of
both W boson and top quark classifiers in simulation and
data; other signal categories remain more challenging, as
we do not yet have sufficiently signal-pure regions to per-
form similar comparisons. In contrast, comparing the dif-
ferences between data and simulation for the misidentified
background events is straightforward, as the QCD multijet
and γ+jet processes have such large cross sections that they
are highly background enriched by default. Any differences
between data and simulation in the fraction of background
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events passing a given large-radius jet classifier can thus be
evaluated using these two processes.

11.5.5 Summary

Jets are crucial tools for numerous physics analyses per-
formed at hadron colliders. During the last four decades, there
has been significant development in this field and jet defini-
tions that are robust for both experimental measurements and
theoretical predictions have been identified. In addition, the
improved particle detectors, with highly granular calorime-
ters and high resolution reconstruction of charged tracks are
enabling reconstruction of the full jet four momentum, inves-
tigation of the jet internal structure and classification of jets
via tagging. These developments are allowing us to expand
the knowledge about QCD and to look for signatures of BSM
physics, yielding greatly improved searches and measure-
ments.

12 Measurements at colliders

Conveners:
Karl Jakobs and Eberhard Klempt

The development of QCD and of colliders are intimately
linked. The formation of jets, of streams of collimated
hadrons, was first observed at SPEAR; soon after, gluons
were investigated in three-jet events at TASSO (see Sect. 3.2).
The Large-Electron–Positron (LEP) collider, operating from
1989 to 2000, allowed the collaborations to determine the
energy-dependence of the strong-interaction coupling con-
stant αs , to confirm the gauge structure of QCD and to test
QCD systematically (see Sect. 12.1). The identification of
jets with quarks and gluons is of prime importance to under-
stand the dynamics of the first hard reactions (see Sect. 11).

The study of the structure of protons in deep inelas-
tic electron–proton scattering at SLAC and neutrino-proton
scattering with Gargamelle at CERN led to experimental evi-
dence for quarks with electric charge assignments as pre-
dicted by the quark model. Later, these studies were contin-
ued at HERA, the only electron–proton collider, and at other
places. These studies are presented in Sect. 10. Three quarks
(c, b, t) were discovered in collider experiments (the b-quark
at least co-discovered). The physics of the Brookhaven Rel-
ativistic Heavy Ion Collider (RHIC) is discussed in Sect. 7.

Since the 1980s the high-energy frontier of particle
physics was defined by the Sp p̄S collider at CERN and the
Tevatron at Fermilab. As outlined by Daniel Britzger, Klaus
Rabbertz and Markus Wobisch, the production of jets devel-
oped to a QCD testing ground to searches for new phenom-
ena up to the largest accelerator-based energies at the Large
Hadron Collider (LHC). Jets initiated by gluons, quarks –
including the heavy quarks c and b – can be produced jointly

with the vector bosons W± and Z0. The measured cross sec-
tions of all these processes are precisely reproduced by QCD
calculations (Monica Dunford). The discovery of the Higgs
boson in 2012 was a milestone for particle physics. Chiara
Mariotti describes with which surprising precision the prop-
erties of the Higgs boson follow the predictions of the SM.
The top quark, discovered in 1995 at the Tevatron and dis-
cussed here by Marcel Vos, is identified in a large variety
of production processes, from top–anti-top production to t t̄
production associated with a vector boson or the production
of two t t̄ pairs. The cross sections for these processes span a
wide range from nearly 103 pb down to a few 10−2 pb.

12.1 The legacy of LEP

Stefan Kluth

The large electron positron collider LEP was conceived
and designed at CERN in the 1980s to study the then just
discovered massive vector bosons of the Standard Model
(SM), the neutral Z and the charged W± bosons [3669]. The
four LEP experiments ALEPH, DELPHI, L3 and OPAL col-
lected more than four million Z decays and about 10,000
Wpairs each. The LEP 2 runs at centre-of-mass (cms) ener-
gies above the Z resonance up to 209 GeV provided samples
of about 1000 hadronic final states from off-shell (Z/γ )∗
decays at each cms energy. These data, together with the
extremely accurate LEP beam energy determination, estab-
lished “electro-weak precision observables” (EWPO) and the
confirmation of the SM at very high precision [3670]. Pre-
vious studies of QCD in e+e− annihilation at the PEP and
PETRA colliders and in other experiments are summarized
e.g. in [3671–3674].

It was thus clear that hadronic final states at LEP are a great
laboratory to study a large spectrum of QCD predictions. The
missing initial- and final-state interference and the compara-
tively high energy lead to clearly interpretable hadronic final
states and usually small corrections from non-perturbative
effects. All LEP experiments have among their first few pub-
lications papers on properties of hadronic Z decays.

The detectors of the LEP experiments were significant
improvements on their predecessors and offered an almost
complete coverage of the solid angle with efficient and pre-
cise tracking and finely grained calorimeters with layers for
electromagnetic and hadronic showers. All LEP experiments
had silicon micro-vertex detectors and full coverage with
muon detection systems outside of the calorimeters.

The e+e− initial state with well known beam energies pro-
vides a strong constraint to improve energy measurements.
For example the scaled jet energies in Z decays to 3-jets
can be determined from jet angles only [3675]. Even with-
out using the beam energy directly in a constraint the use
of quantities scaled to the cms energy reduces dependence
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on the absolute energy scale of the detector. As explained
below, jet definitions, event shape observables and particle
spectra are normalized to the cms energy Q = √s. Note that
in the measurements the normalization to Q is replaced by
the measured total visible energy Evis which also partially
removes the influence of statistical fluctuations.

Compared to previous experiments, the LEP data have
much larger event samples on the Z peak, low experimental
systematic uncertainties and higher cms energies leading to
smaller and well controlled hadronization corrections.

The data taken on the Z peak (LEP 1) have favorable
experimental conditions. The trigger efficiency for hadronic
final states is essentially 100% and can be measured using
redundant triggers. Backgrounds from hadronic decays of τ -
lepton pairs are suppressed by demanding more than four
charged particles. Requirements on balance of observed
momentum along the beam direction and total visible energy
remove backgrounds from e+e− → 2γ → hadrons interac-
tions. There are corrections for initial state photon radiation
effects, but on the Z peak these are small.

The data taken at
√
s > mZ but below the threshold for

W+W− pair production (LEP 1.5) at
√
s = 130 and 136 GeV

already contain a substantial fraction of so-called “radiative
return” interactions e+e− → γISR + Z → hadrons.108 Sim-
ply speaking, instead of a high-energy interaction near the
nominal

√
s, a Z decay to hadrons recoiling against the ISR

photon γI SR is produced. The LEP collaborations developed
algorithms to reconstruct the effective cms energy

√
s′ of

the observed hadronic system by assuming a 2-body decay
together with one or more high-energy ISR photons.

The data taken at
√
s ≥ 2mW (LEP 2) include an increas-

ing fraction of so-called “4-fermion” final states includ-
ing quarks. These 4-fermion final states are dominated by
W+W− pair production in the all-hadronic or lepton+jets
channel depending on the decays of the W -bosons. After a
hadronic preselection the di-lepton channel is a rather small
background. The LEP collaborations developed sophisti-
cated selections for theW+W− pairs for the precise measure-
ments of W -boson properties designed to reject “2-fermion”
final states with quarks e+e− → (Zγ )∗ → qq̄ → hadrons
[3676]. These results are then the basis for selections of
hadronic final states produced via a (Z/γ )∗ at high energy.
The remaining 4-fermion background in the data increases
with

√
s to about 10% at the highest LEP 2 energies but

contributes mostly in regions dominated by multi-jet topolo-
gies, see e.g. [3677]. Figure 292 shows the distribution of√
s′rec observed for hadronic final states at

√
s = 200 GeV

by DELPHI [3677]. The peak at mZ � 91.2 GeV is due to
hadronic Z decays recoiling against photon ISR. The analy-
sis imposes a cut on

√
s′rec to select the peak near the nominal√

s = 200 GeV. The yellow shaded area shows the simulated

108 ISR stands for initial state radiation.

Fig. 292 The figure shows the distribution of reconstructed effective
cms energies

√
s′rec in hadronic final states in e+e− collisions at

√
s =

200 GeV. The data are compared with simulations of hadronic final
states mediated by a single (Z/γ )∗ (qq̄ Sim.) and W+W− or ZZ pair
production (WW+ZZ Sim.) [3677]

background contribution of W+W− and ZZ final states with
hadrons.

12.1.1 Gluon and quark properties

The gluon was established as one of the elementary particles
of the SM by the PETRA experiments, see Sect. 2.2. QCD
requires for its gauge bosons that they have spin-1, and that
they carry color charge themselves manifesting in three- and
four-gluon vertices of the QCD Lagrangian.

The phenomenological analysis of the jet axes inΥ decays
to three gluons provided evidence for the spin-1 assignment
[3678]. The QCD predictions for spin-0 and spin-1 gluons
were the basis of an analysis by OPAL [3678] using the
energy distribution of the 2nd jet after energy ordering in
hadronic Z decays to three jets [3675]. The 2nd-jet-energy
distribution after correction for experimental and hadroniza-
tion effects was in good agreement with a NLO QCD pre-
diction while a MC based LO calculation with scalar gluons
showed an estimated χ2/dof = 44/14. This is clearly well
above the requirements for a discovery. A similar study is
discussed in [3679].

The search strategy for observable effects of the three-
gluon vertex was discussed in [3680], but convincing results
could only be obtained after NLO calculations became avail-
able for the angular correlations between four jets in hadronic
Z decays [3681]. The QCD predictions at NLO decompose
into contributions proportional to (products of) the color fac-
tors CF , CFCA, CFCF and CF NFTF , and two of them can
be determined together with the strong coupling αS(M2

Z ).
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Fig. 293 The figure shows results for the color factors CA and CF
from various analyses as indicated [3685]

The analyses by OPAL and ALEPH [3682,3683] determine
CA andCF corresponding to the contributions of three-gluon
or quark–gluon vertices to the NLO predictions. The contri-
bution of the three-gluon vertex proportional to CA is clearly
observed. Since the result for the second color factor product
can be recast asCF , the color charge of quarks at the strength
required by QCD is observed as well.

The analysis of the event shape observables Thrust and the
C-parameter (see below for details) at several cms energies
from re-analysed JADE (at PETRA) data and from OPAL
data is based on the same decomposition of the NLO QCD
prediction and also results in a clear observation of the three-
gluon vertex contribution [3684]. A combination of these
and other results for determinations of the color factors is
discussed in [3685]. Figure 293 shows a summary of the
results for CA and CF from 4-jet angular correlations, event
shapes, and other analyses [3685].

The properties of quarks in the SM such as their spin-
1/2 assignment and their electric charges have been studied
at LEP and earlier collider experiments [122,3686,3687].
Another quark property is their mass, which will be discussed
below in Sect. 12.1.4.

12.1.2 Jets and event shapes

Jet and event shape observables have been designed to study
properties of hadronic final states at colliders. The aim gen-
erally is to classify hadronic final states according to their
topology by introducing an additional energy scale. E.g. for
clustering hadronic final states in e+e− annihilation with the
JADE algorithm [3688] m2

i j = 2Ei E j (1 − cos θi j ) is the
distance between two objects i and j with energies Ei and
E j . At each iteration the pair i j with the smallest distance

mi j is merged by adding the pair’s 4-vectors.109 One can
introduce the scaled quantity ycut = m2

cut/s and count how
many events have three jets when the clustering is stopped at
ycut . Alternatively, the value of y23 = m2

23/s can be used to
classify events where in each event the clustering goes from
three to two jets [3689]. In the first case, jet rates are stud-
ied and in the second an event shape observable is used. The
Thrust observable T = max�n

∑
i | �pi · �n|/

∑
i | �pi | quantifies

the coherence or “jettiness” of an event. Here, i runs over
all particles in the hadronic final state, �pi are the particle 3-
momenta, and the thrust axis �n is a unit vector that maximizes
T . The nominator

∑
i | �pi | defines an energy scale.

The value of an event shape observable is the classi-
fier which can distinguish between e.g. collimated 2-jet like
events and broader 3-jet (or multi-jet) like events. Their distri-
butions reflect the proportion of 2-jet like vs. 3-jet or multi-jet
like events in the data in a similar way as the fraction of 3-jet
events at a fixed value of ycut .

As discussed by Dokshitzer in Sect. 2.3, it is the property
of infrared-collinear safety which allows for stable prediction
by perturbative QCD (pQCD) and thus for a meaningful com-
parison between experimental observations and pQCD pre-
dictions. However, before a successful quantitative compari-
son of experiment and theory can be made, the transition from
the partons of pQCD calculations to the observed hadrons
(hadronization) must be accounted for. If there was a major
redistribution of 4-momenta between partons and hadrons
in a given final state due to hadronization, a comparison of
pQCD predictions with data would be highly problematic.
Turning this argument around we must have a hadroniza-
tion process which is local in phase space. This is discussed
as “local parton hadron duality” (LPHD) by Dokshitzer in
Sect. 2.3. Experimental evidence for the LPHD collected by
the LEP experiments and previous studies is discussed below.

Figure 294 (left) shows as an example the measurements
by OPAL of the event shape observable yD23 at cms energies√
s = 91.2, 133, 177 and 197 GeV. The cms energies are

weighted averages of combined LEP runs with similar cms
energies. The observable yD23 is the value of the jet distance
in the Durham algorithm [187] y = 2 min(Ei , EJ )

2(1 −
cos θi j )/s where the number of jets changes from three to
two. Figure 294 (right) shows measurements by ALEPH
[3690] of n jets, n = 1, . . . , 6, or more production frac-
tions using the Durham algorithm. These data show that at
LEP hadronic final states with complex jet topologies can be
measured well.

The reasonably successful comparisons of the data with
simulations by the Monte Carlo event generators PYTHIA,
HERWIG and ARIADNE validate the experimental correc-
tions derived using these simulations after passing them
through the simulations of the detectors. Furthermore, they

109 This is the E-scheme, other merging schemes exist.
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Fig. 294 (left) The figure shows measurements of the event shape
observable yD23 by OPAL at average cms energies as indicated. The
measurements are corrected for experimental effects and are compared
with simulations as indicated [3691]. (right) The figure displays mea-

surements of n-jet production fractions as a function of ycut using the
Durham algorithm by ALEPH at

√
s = 206 GeV. The measurements

are compared with simulations [3690]

pave the way for using these simulations to derive the
hadronization corrections needed to compare pQCD pre-
dictions with the data. The final LEP measurements and
their comparison to the then relevant NLO+NLLA QCD
predictions and determinations of αs(mZ ) are discussed in
[3685]. Improved determinations of αs(mZ ) using NNLO
QCD predictions combined with resummed NLLA calcu-
lation appeared soon after the NNLO predictions became
available [3692–3695]

The QCD analyses of some jet rates and event shape distri-
butions (starting at 3-jet final states) from LEP and previous
e+e− experiments today has reached percent level precision
using pQCD predictions at NNLO combined with resumma-
tion up to N3LL. For example in [302] distributions of Thrust
at
√
s = 35 to 200 GeV are analysed in a global fit based on

NNLO+N3LL QCD predictions.110 The hadronization cor-
rections are applied using an analytic model integrated into
the prediction. The final result is αs(mZ ) = 0.1135±0.0011
and has a relative uncertainty of 1%. A similar measure-
ment using the C-parameter is [303], the energy-energy cor-
relation EEC was analysed in NNLO+NNLL accuracy and
the 2-jet rate with the Durham algorithm was studied with
N3LO+NNLL predictions [3696].

110 The exact power counting is explained in [302].

Limitations for the ultimate accuracy of these studies
are currently the uncertainties connected with hadroniza-
tion corrections, see e.g. [3697] for a recent study. An early
study [3690] based on event shapes at all LEP energies and
NLO+NLL pQCD found differences in αs(mZ ) of about
10% between results using MC simulations or an analytic
model to derive hadronization corrections. These differences
became smaller with more complete QCD predictions such
as NNLO+NNLL or NNLO+ N3LL. They also tend to reduce
when MC simulations with NLO calculations matched to the
parton shower are used. In both cases a larger fraction of the
prediction is contributed by pQCD and thus only a smaller
difference w.r.t. the data is left to be covered by hadronization
corrections. New studies show that the hadronization cor-
rections in an improved analytic model depend on the event
shape value [3698], in contrast with the analytic models used
so far.

The analyses of final states with four or more jets are based
on the accurate measurements of multi-jet rates and corre-
sponding event shape distributions at LEP. Similar to NLO
QCD predictions for angular correlations in 4-jet final states
also NLO predictions for 4-jet rates became possible [3699].
It is important to realize that for 4-jet final states the NLO
QCD prediction is O(α2

s )+O(α3
s )which implies a sensitivity

to αs larger by about a factor of 2 compared with a prediction
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for 3-jet final states. The higher sensitivity can compensate
for the larger experimental uncertainties of the 4-jet measure-
ments w.r.t. 3-jet measurements. The corresponding analyses
with LEP data are [3677,3700] while [3701] is a study based
on re-analysed data from JADE at PETRA.

Automated NLO QCD calculations allowed predictions
for 5-jet observables [3702] and the corresponding determi-
nation of αs(mZ ). By the same argument as above the sen-
sitivity to αs(mZ ) is enhanced w.r.t. 3-jet observables which
compensates for larger measurement uncertainties.

The review of measurements of αs(Q) in Sect. 3 shows
clearly that the strong coupling strength decreases with
increasing energy scale of the process, i.e. asymptotic free-
dom. Here we discuss direct experimental evidence with-
out performing measurements of αs . Figure 294 (left) shows
distributions of yD23 measured at cms energies from 91 to
197 GeV and a change in the distribution is clearly visible. A
more direct way to observe a change of the strong coupling
strength with the energy scale of the process Q = √s is to
use inclusive observables such as jet production rates at a
fixed value of ycut or moments of event shape observables.

In QCD in LO the prediction for the mean value of e.g.
the Thrust 1− T distribution is 〈1− T 〉(Q) = αs(Q2)A1−T
while the running coupling follows αs(Q2) =αs(μ2)/(1 +
αs(μ

2)β0 ln(x2
μ)), β0 = (11CA − 4TF NF )/ (12π), xμ =

Q/μ, μ is the renormalization scale. This implies 1/〈1 −
T 〉 ∼ ln Q at LO with O(α2

s ) corrections. Figure 295 displays
data from DELPHI and lower energy experiments for 1/〈1−
T 〉 as a function of Q on a logarithmic scale confirming the
QCD prediction for the running coupling as measured by
〈1− T 〉. Hadronization corrections to 〈1− T 〉 are predicted
using simulations to only change the logarithmic slope, see
e.g. [3703]. Earlier studies using JADE (at PETRA) data for
3-jet rates using the JADE algorithm as a function of cms
energy had already proven the running strong coupling at the
4-σ level [3704].

12.1.3 Fragmentation

Here, we use the term fragmentation to refer to measuring
and predicting properties of the hadrons produced in hadronic
final states. In studies of fragmentation of hadrons the ener-
gies or momentum components w.r.t. an event orientation or
jet axis, or their multiplicity, are studied.

The scaled momentum fraction of a hadron with momen-
tum p is defined as x = 2p/Q. One expects in the quark–
parton model, i.e. in the absence of strong interactions of
the partons, that the x-spectra of hadrons are independent of√
s. This is analogous to the prediction of scaling for xBj

in lepton–hadron DIS, i.e. that distributions of xBj are inde-
pendent of the 4-momentum transfer Q2 of the DIS process.
Scaling violations are then due to scale-dependent strong
interactions of the partons. Figure 296 shows as an example

Fig. 295 The figure shows measurements of 1/〈1 − T 〉 as a function
of
√
s = Q on a logarithmic scale by DELPHI and lower energy exper-

iments. The lines show a NLO QCD prediction and fit by DELPHI
[3703]

Fig. 296 The figure shows the ratio of the scaled momentum spec-
tra 1/σhdσh/dx of charged particles measured by ALEPH at

√
s �

91.2 GeV to data from TASSO measured at
√
s = 22 GeV [3705]

the ratio of measurements of x-spectra measured by ALEPH
on the Z peak to corresponding measurements by TASSO
(at PETRA) measured at

√
s = 22 GeV [3705]. The scaling

violations are clearly visible.
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The QCD analysis of scaling violations of scaled momen-
tum distributions measured at different cms energies is
the e+e− analog of the analysis of structure functions
F2(Q2, xBj ) in lepton–hadron DIS. The scaled momentum
distribution is described by

1

σh

dσh
dx

=
∫ 1

0

∑

f

C f (z, αs(μ), xμ)D f

(
x

z
, μ

)
dz

z
(12.1)

with the flavor index f = u, d, s, c, b, g. The C f are coeffi-
cient functions known in NNLO QCD, and the D f are non-
perturbative fragmentation functions. The D f correspond to
the probability to obtain a hadron with momentum fraction
x from a parton f analogous to the parton density functions
(PDF) of DIS. The rate of change with changing momentum
scale μ of the D f is described by the DGLAP equations,
see 2.3. A first NNLO framework for the analysis of scaled
momentum distributions in e+e− annihilation to hadrons is
[3706].

It is interesting to focus on low momentum hadrons. To
this end the variable ξ = ln(1/x) is introduced. The majority
of hadrons is produced at low values of x , and by transform-
ing to ξ their properties can be studied in more detail. As
an example Fig. 297 shows measurements of ξ for charged
hadrons at LEP by OPAL and also from previous experi-
ments at lower energies [3707]. The distributions show a
maximum and drop quickly towards small ξ corresponding
to large hadron momenta. At large ξ , i.e. for small momenta,
the distributions fall off faster than expected from the kine-
matic limits from hadron masses.

This can be explained by destructive interference of mul-
tiple soft gluon radiation in the parton shower, often named
soft gluon coherence. Under the assumption of LPHD the
production of soft hadrons is driven by the production of
soft gluons from the parton shower. The “QCD Chudakov
effect” means that soft gluons cannot resolve the individual
parton color charges and instead the smaller color charge
before branchings is relevant. Based on these ideas detailed
pQCD predictions for multiple soft gluon radiation are calcu-
lated. For Fig. 297 such predictions [3708] are shown by the
solid and dashed lines, where the solid lines are fitted to the
data and the dashed lines are extrapolations. The extrapolated
QCD predictions at small ξ (large x) are not expected to be
a good approximation while at large ξ (small x) the data are
well described. The evolution of the peak position with cms
energy extracted from the fits also follows the pQCD pre-
diction, see e.g. [3707]. These measurements provide con-
vincing experimental confirmation of the LPHD and the cor-
responding pQCD calculations. A recent analysis of the ξ

spectra measured in e+e− annihilation and other processes
including higher order corrections is presented in [3709].

The interpretation of [3710], based on simulations with
and without soft gluon interference (coherence) effects, that

Fig. 297 The figure shows the spectra of ξ = ln(1/x) measured by
OPAL, TOPAZ and TASSO [3707]. The data are compared with fitted
QCD predictions, see text for details

the data of scaled momentum spectra do not provide evi-
dence for coherence has been discussed in [3711]. There it
was pointed out that the hadronization models of the simu-
lation programs will compensate for the lack of coherence
effects to still give a reasonable description of the data. The
confirmation of the LPHD lies in the successful comparison
of the corresponding QCD calculations with the data involv-
ing only two free normalization and scale parameters.

The QCD parton shower picture, i.e. the idea of high-
momentum partons radiating many times a gluon, and also
gluons producing a qq̄ pair, is the basis of the simula-
tion programs, because it allows implementations as iter-
ative probabilistic branchings. The implementations of the
parton shower picture are approximations correctly sum-
ming leading logarithmic terms (LLA). In the LLA the soft
gluon interference effects correspond to the angular ordering
phenomenon: a subsequent parton branching must occur at
branching angles smaller than the previous one. There are
limitations to the angular ordering approximation for less
inclusive observables [3712], in particular some which are
used for tuning (optimization of agreement with data) of the
simulation programs.

The legacy of LEP in this area is the wealth of precise
data on event shape observables, jet production, spectra of
inclusive and identified hadrons, and multiplicities which can
in many cases be interpreted with little ambiguities. These
data are to a large part the basis for parameter settings of
the popular simulation programs used in our field and in
particular at the LHC [3618,3636,3713].

The topic of color reconnection (CR) concerns possi-
ble changes to hadronization effects if several color sin-
glet sources are produced in a collision. The question is: do
the final partons in parton showers of different color singlet
sources merge to form hadrons together or not. At LEP 2
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the production of e+e− → W+W− → hadrons final states
was an important contribution to the LEP 2 measurements
of the mass and other properties of the W -boson [3676]. The
modeling uncertainties of CR effects gave rise to significant
systematic errors on the W boson mass and width. Later,
measurements of particle flow between the four jets of the
two hadronic W decays were used to constrain different CR
models. New models for CR were discussed in [3634] and
compared with the LEP 2 measurements. CR also affects
measurements of the top quark mass due to the intermediate
color singlet W -boson in the top quark decay [3714] and due
to interactions of proton remnants (multi parton interactions
MPI) in pp collisions. Recent measurements from LHC take
this into account [513,3715]. The CR model with the biggest
impact on the results of [3715] is also the only one in tension
with LEP 2 data in [3634]. This shows that the LEP data can
still help to constrain CR models.

12.1.4 Heavy quarks

In QCD with massless quarks the coupling constant is the
only free parameter. Asymptotic freedom of the running
strong coupling is one of the defining features of QCD and
is well confirmed by experiments [3716] since LEP results
contributed. Quark masses are also free parameters of the the-
ory and subject to similar phenomena as asymptotic freedom
for the strong coupling. The quark masses are predicted to
depend on the energy scale of the process through so-called
mass anomalous dimensions, the quark mass analogous of
the beta-function.

The two main phenomenological predictions are first, that
effective quark mass values decrease with the energy scale
of the interaction implying asymptotic freedom for quark
masses, see e.g. [3717] for a review. The second prediction
is the suppression of gluon radiation from massive quarks
with angle Θ < Θ0 = m/E , where m is the heavy quark
mass and E the heavy quark energy. This is referred to as the
“dead-cone” effect of QCD [3718].

The first prediction of running quark masses was studied
at LEP using large samples of O(105) hadronic Z decays
with b-tags. Mass effects can be enhanced for observables
like the 3-jet rate R3(ycut ) due to their additional energy
scale ycut [3719]. In order to reduce common experimental
uncertainties a double ratio B3 = Rb

3/R
l
3 is defined, with

Rb(l)
3 the 3-jet rate in Z decays to b (light) quarks. Figure 298

shows data for B3 from ALEPH compared with NLO QCD
predictions for values of the running b-quark mass in the
MS scheme mb(MZ ) = 3 or 5 GeV [3720]. The data are
consistent with the lower value of mb(MZ ).

The analyses by ALEPH, DELPHI, OPAL and SLD
are summarized in [3685,3721] with mb(MZ ) = 2.82 ±
0.28 GeV [3721]. With mb(mb) = 4.18+0.03

−0.02 [513], the s-

Fig. 298 The diagram shows data for B3(ycut ) by ALEPH corrected
for experimental and hadronization effects using the Durham algorithm.
The lines show NLO QCD predictions for mb(MZ ) values as indicated,
as well as predictions from simulations [3720]

dependence of the b-quark mass is observed with a signif-
icance of more than four standard deviations. The analysis
[3721] adds a determination ofmb(MH ) from measurements
of the branching ratio of the Higgs boson to b quarks by the
LHC experiments ATLAS and CMS assuming the Yukawa
coupling of b quarks at its SM value. Figure 299 presents
results for mb(mb), mb(MZ ) and for mb(MH ) together with
the QCD prediction for the running mb(Q) [3721]. There
is good agreement between the measurements and the QCD
prediction.

The dead-cone effect is not straightforward to study at
LEP or other colliders. For example for b-jets from on-
peak Z decays at LEP the dead-cone angle is expected to
be Θ0 � 2mb/mZ � 0.1 which is well inside typical jet
energy profiles in hadronic Z decays [3722]. A recent anal-
ysis by ALICE has found evidence for reduced particle pro-
duction inside angular regions consistent with the dead cone
for charm-tagged jets produced in pp collisions at the LHC
[195]. The key to this observation was reversing a sequential
jet clustering history using an angular distance definition111

which enforces angular ordering by construction.
Predictions for phenomenology of the dead cone effect

at LEP concentrate on multiple soft gluon production and
thus on particle spectra or multiplicities [3718,3723]. The

111 The Cambridge/Aachen (C/A) algorithm.
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Fig. 299 The figure shows determinations of mb(mb), mb(MZ ) and
mb(MH ) together with the QCD prediction for the running mb(Q)

[3721]

so-called “leading particle effect” refers to large and mass
dependent average scaled momenta of heavy hadrons (c or b).
The leading particle effect is derived from pQCD as a direct
consequence of the dead cone and shown to be consistent
with data from LEP and previous e+e− colliders [172].

The particle multiplicity in Z decays to b or light (u, d, s)
quarks is sensitive to the dead cone effect due to its impact on
soft gluon radiation, which is directly related to particle pro-
duction via the LPHD. The pQCD prediction in the MLLA
for the charged particle multiplicity difference in hadronic Z
decays to b or light quarks is δbl = 4.4± 0.4 [3724]. A dif-
ferent model for δbl without dead cone contributions predicts
a fast decrease with cms energy

√
s. The predictions for δbl

and measurements by LEP experiments and previous experi-
ments at different

√
s are shown in Fig. 300 [3724]. The blue

band corresponding to the QCD dead cone prediction is in
agreement with the data within theoretical and experimental
uncertainties. The alternative model is excluded by the high
energy LEP 2 measurements at

√
s ≥ 183 GeV with an esti-

mated χ2/dof � 100/11. The hypothesis that δbl → 0 for
large

√
s leads to an estimated χ2/dof � 43/11 and is thus

also clearly excluded.
Another example of precision measurements in the heavy

flavor sector is the b quark to hadron fragmentation function.
The measurement by DELPHI is shown in Fig. 301 [3725].
The quantity xweak

p refers to the scaled momentum of the
B hadron reconstructed from its weak decay. In this way
possible preceding strong decays of excited B hadrons are
accounted for. In the figure the data are compared with several
models for the fragmentation functions folded with a fixed

Fig. 300 The figure presents measurements of δbl compared with QCD
predictions and an alternative model as indicated [3724]

Fig. 301 The figure shows the b quark to B hadron fragmentation
function for weak b decays. The lines display predictions by simula-
tions with a fixed perturbative component and different models for the
fragmentation functions [3725]

perturbative component. The data can clearly separate the
different models. Recent parameter optimizations of e.g. the
PYTHIA simulation take these results into account [3713].

12.1.5 Zedometry and hadronic τ decays

The EWPOs measured by the LEP experiments and by SLD
at Stanford are the main legacy of the e+e− collider pro-
gram. The EWPOs are also a valuable legacy for the under-
standing and experimental verification of QCD. All EWPOs
connected with quarks will have SM predictions with QCD
corrections reflecting gluon radiation. Corrections to pure
electroweak processes involving quarks scale typically like
1+Cαs(mZ )/π , where C is a process specific constant, and
are thus expected to modify electroweak EWPO predictions
by a few %.
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Fig. 302 The figure displays measurements of the hadronic cross sec-
tion in e+e− annihilation at cms energies Ecm around mZ measured
by the LEP experiments. The lines show the model-independent fit to
extract EWPOs before and after QED corrections [3670]

Figure 302 shows measurements of cross sections for
the process e+e− → hadrons at cms energies around
Ecm = mZ by the LEP experiments [3670]. The measure-
ments map out the Z boson resonance in e+e− annihilation in
the hadronic channel. The lines show the result of a model-
independent fit before and after QED corrections to these
and other measurements to extract the Z boson resonance
parameters such as the mass mZ , the total width ΓZ , the R-
ratio R0

l = ΓZ ,had/ΓZ ,ll and the hadronic pole cross section
σ 0
had .

The extracted parameters are part of the set of EWPOs
which can be compared with predictions by the SM includ-
ing the QCD corrections. The QCD corrections for the
EWPOs connected with the Z lineshape are known to
N3LO, the corrections due to mixed and non-factorising
electroweak and strong interaction diagrams are known
up to ααs terms, and the QCD corrections for massive
quarks are known up to (mq/Q)4αs(Q)3, see [3726] for
details.

Figure 303 shows the χ2 profile of a recent SM global fit
as a function of the strong coupling αs(mZ ) using the LEP
data and other data for the masses of the top quark, the W -
boson and the Higgs boson [3726]. The blue band shows
the χ2 of the global fit around the best value of αs(mZ ).
The grey lines show the contributions to this result of the
most sensitive EWPOs. The width of the band reflects the
theoretical uncertainties of the global SM fit. A comparison
of the grey bands shows the consistency between the QCD
corrections to the different EWPOs. The red data point is
a direct measurement of αs(mZ ) from the hadronic branch-
ing ratio of τ lepton decays measured mostly using LEP
data.

Fig. 303 The figure shows with the blue band the χ2 profile of a global
SM fit as a function of the value of the strong coupling αs(mZ ). The
grey lines are similar profiles for individual EWPOs as indicated. The
red data point shows the value of αs(mZ ) determined from hadronic τ

lepton decays [3726]

In the SM description, weak decays of τ -leptons to
hadrons proceed via a virtual W -boson decaying to quarks.
Similar to hadronic Z -boson decays, QCD corrections to the
final state modify the predictions. At the scale of the τ lepton
mass mτ � 1.78 GeV the strong coupling αs(mτ ) � 0.3
such that large corrections are expected. The QCD correc-
tions are also known to N3LO due to the similarity of the
calculations. In addition, non-perturbative effects are sig-
nificant, while they are strongly suppressed for hadronic Z
decays.

A recent analysis of the important theoretical issues for
the extraction of αs from hadronic τ lepton decays is [3727].
The data point shows the average of αs(mZ ) determinations
by the PDG from 2016 which has since been updated with
only small changes [513]. The good consistency between
these related determinations of αs(mZ ) is a strong test of
the consistent application of QCD corrections in the SM, as
well as of the understanding of the evolution equations for
the running of the strong coupling including the treatment of
quark mass thresholds.

The large collection of measurements from the LEP
experiments, SLD, and also the previous and partially re-
analysed experiments at e+e− colliders are a cornerstone of
the experimental validation of the theory of strong interac-
tions, QCD. Possible future e+e− colliders are designed to
deliver at least 1000 times the integrated luminosity w.r.t.
LEP and with more advanced detectors. In addition large
samples of Higgs and W+W− bosons, and possibly of top–
antitop quark pairs will open the door to many more tests
of the SM including its QCD sector, and its proposed exten-
sions.
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12.2 High-pT jets

Daniel Britzger, Klaus Rabbertz, and Markus Wobisch

12.2.1 Introduction

One of the most fundamental testing grounds for the predic-
tions of perturbative QCD (pQCD) are studies of the produc-
tion rates of collimated sprays of hadrons, so-called hadronic
jets. Even though such jets are neither fundamental entities
of the theory nor single particles measured in experiment,
the notion of jets proved to be an extremely useful con-
cept, because it allows to make the connection between the
objects of pQCD, the quarks and gluons or, generically, par-
tons, and the tracks and energy depositions in a detector. In
a measured collision event, high-energetic jets can roughly
be identified by eye for example when looking at an event
display in the radial or the transverse plane. However, for an
unambiguous attribution of each track and energy deposit to
a jet, a mathematical prescription is required: a jet algorithm.
Equally, to relate experimental measurements of such jets to
production rates predictable in perturbative QCD, a precise
definition of partonic jets is needed. To close the gap, for
good jet algorithms it must also be demonstrated that cor-
rections are under control that on the one hand unfold for
detector effects to the level of stable hadrons as in Monte
Carlo event generators, and on the other hand account for the
non-perturbative transition from partons to the same stable-
hadron level. History has shown that jet algorithms can be
found that are suitable simultaneously for all three levels,
measured tracks and energy clusters, the partons of pertur-
bative calculations, and the hadrons of Monte Carlo event
generators used in detector simulations. Alas, it took time
approximately halfway through “the first 50 years of QCD”
to evolve from first ideas to mature jet definitions used in
today’s precision phenomenology. In the following sections,
the authors describe the essential steps of this evolution from
their perspective of working at the LEP, HERA, Tevatron,
and LHC colliders.

12.2.2 A hint of color: quark- and gluon-initiated jets

Establishing QCD as the theory of the strong interaction
requires us not only to investigate the pattern of colorless
hadronic particles and their properties, but to go beyond con-
finement and search for signs of the underlying dynamics of
this asymptotically free quantum field theory. In other words,
we need to find hints of color even though the confining prop-
erty of QCD does not allow us to directly measure colored
quarks – let alone gluons. Indirect evidence came in 1968
from the observation of Bjorken scaling in Deep-Inelastic
Scattering (DIS) at SLAC [110,167], where inelastic scat-
tering of electrons on nucleons at large momentum-transfer

squared, Q2, is well described by the assumption of a vir-
tual photon interacting with point-like constituents inside a
nucleon. These constituents, named partons by Feynman,
were later identified with the (valence) quarks of Gell-Mann
and Zweig [18,3171].

It is conjectured that the struck parton should manifest
itself in the form of a collimated stream of hadrons moving
along the direction of the primary parton with only a few
hundred MeV of transverse momentum, like defined as jet
in the introduction. This brings us to the second question
implicit in this section’s title “high-pT jets”: How high is
“high”? The center-of-mass energies of a few GeV available
at the time were insufficient to clearly observe well separated
jets simply because the opening angles of the hadron streams
were far too large and the “jets” interleaved with each other
even though the back-to-back orientation of the primary qq̄
pair should guarantee their maximal separation. A way out
was found by focusing on the main interest to differentiate
between a two-jet like structure favored by QCD and the
expectations from other models. Instead of reconstructing
jets or jet quantities explicitly, the strategy rather consists
in searching for a principal event axis along which most of
the momentum of each produced hadron is aligned. In 1975,
the SLAC-LBL Mark I experiment at the e+e− storage ring
SPEAR used sphericity [3728,3729], which defines such an
event axis by minimizing the sum of squares of all momenta
with respect to this axis. The event shape sphericity, S, is
then defined as

S = 3
∑

i

(
p2

T,i

)
/ 2

∑

i

| �pi |2 , (12.2)

where the sum is over all particles i in the event with 3-
momenta �pi and transverse momenta pT,i with respect to the
sphericity axis. Each event is characterized by one number S
ranging from zero, when all particles are fully aligned along
the axis, up to unity for isotropic events. By means of defin-
ing such an event axis for their measurements at 3.0, 3.8, 4.8,
6.2, and 7.4 GeV center-of-mass energy, the Mark I experi-
ment found first evidence for quark-initiated jet production
emerging when going to the higher center-of-mass energies
[122]. Moreover, profiting from transversely polarized beams
at 7.4 GeV center-of-mass energy, by comparing the angular
distribution of the sphericity axis of qq̄ production to the one
of e+e− → μ+μ− they concluded that the potential partons
must have spin 1/2 rather than spin 0.

How about gluons then, the exchange quanta of QCD?
Do they exist and, if yes, how do they manifest them-
selves? In 1976 Ellis, Gaillard, and Ross [121] argued gluon
bremsstrahlung e+e− → qq̄g to be the leading correction
to qq̄ dijet production. As a consequence, with increasing
center-of-mass energy one of the two quark-initiated jets
should exhibit signs of widening up with higher multiplic-
ity until finally a third gluon-initiated jet emerges leading to

123



Eur. Phys. J. C          (2023) 83:1125 Page 411 of 636  1125 

planar 3-jet events. The center-of-mass energies available
at SPEAR and also DORIS at DESY, however, were not
sufficient to provide evidence for 3-jet production, although
valuable results could be achieved by investigating the con-
jectured dominant decay of the upsilon resonance into three
gluons, Υ → ggg, confirming predictions by QCD includ-
ing the vector character of the gluons [3730]. Only the
much higher center-of-mass energy of 27 GeV reached by
the PETRA collider at DESY in spring 1979 could provide
sufficiently high-energetic e+e− collisions such that clearly
identifiable 3-jet events could be produced. The first event
display of the TASSO Collaboration was presented by Wiik at
the “Neutrino 79” conference in Bergen [108] and, of course,
is also reproduced in this commemorative work, see the sec-
tion by S.L. Wu for a more personal recollection of events.
Subsequently, all four experiments at PETRA published clear
evidence for planar 3-jet events affirming the discovery of the
gluon and gluon-induced jets [109,126–128].

The increasing e+e− center-of-mass energies at PETRA,
TRISTAN, SLC, and LEP up to

√
s = 209 GeV allowed

a plethora of (multi-)jet measurements to be performed, all
confirming the conjectures of QCD as theory of the strong
interaction. Notably, the rate of events with three jets as com-
pared to dijet production is to first order proportional to the
strong coupling, which then can be extracted at each energy
point to demonstrate its energy dependence or running as
predicted by QCD.

Finally, angular correlations in 4-jet events are sensitive
already at leading order (LO) to the color factors CA = 3
and CF = 4/3 of the non-Abelian special unitary group
SU(3) of QCD and thus are probing its non-Abelian nature
as described in the previous section. A compilation of con-
straints on these color factors is presented in Ref. [3685],
where world average values are quoted that are in perfect
agreement with the expectations from QCD.

12.2.3 Jets at hadron–hadron colliders

Despite great new insights obtained thanks to high-precision
measurements at e+e− colliders, the term of discovery
machines generally is reserved for hadron–hadron colliders.
Because of the much larger mass of protons as compared to
electrons, the huge loss of energy per turn in circular storage
rings due to synchrotron radiation can be avoided enabling
much higher collision energies of e.g. p p̄ accelerators than
possible with circular e+e− beams. The benchmark observ-
able of jet physics at hadron–hadron colliders is the inclu-
sive jet production cross section and in the early days the
phase space was divided up into intervals of the jet transverse
energy ET and the jet pseudorapidity η defined in terms of
the polar angle θ as η = − ln tan(θ/2). Measured jet yields
are transformed into a double-differential cross section via

d2σ

dET dη
= 1

ε · Lint
· Njets

ΔETΔη
, (12.3)

where Njets is the number of jets counted within a bin, cor-
rected for detector distortions, ε is the experimental effi-
ciency, and ΔET and Δη are the respective bin widths.

The first such measurement of inclusive jet production
was published in 1982 by the UA2 Collaboration with data
recorded in the so-called jet run at the Spp̄S collider operat-
ing at 540 GeV center-of-mass energy [3731]. The observed
steep decrease of the jet ET spectrum proportional to E−nT
with n ≈ 9 was correctly predicted by QCD at LO [3732].
Firm conclusions on the absolute normalization, however,
were not possible because of large experimental and theoret-
ical uncertainties, and lack of a well-defined jet algorithm.
The UA2 Collaboration employed a cell-based clustering of
energy deposits in the calorimeters, where neighboring cells
could be merged into one cluster. A “final” cluster could be
split up again, if it contained multiple, well separated max-
ima. Instead of referring directly to cell geometry, the UA1
experiment used an algorithm based on cones of radius R
equal to unity in (η, φ) space in order to decide whether cells
are merged or not [3733]. Here, φ is the azimuthal angle. To
initiate a jet, cells exceeding a minimal transverse energy are
taken in decreasing order of ET as “seeds”, around which
cells within the defined cone are combined with this seed to
form the jet. This algorithm corresponds already to a cone jet
algorithm; alas, it suffers from a number of shortcomings like
unclustered energy or sensitivity to collinear splittings fur-
ther described in the next section. Nevertheless, at the level
of the limited experimental precision and with only order-of-
magnitude predictions at LO, jet measurements conducted at
the Spp̄S and at the Intersecting Storage Rings ISR [3734]
were in agreement with expectations from QCD.

12.2.4 The evolution of jet algorithms

Until the end of the 1980s, a vast amount of jet data from
hadron colliders were collected, reaching a level of precision
of 10 %. Predictions at LO in pQCD, however, were very lim-
ited in precision by the uncompensated dependence on the
renormalization scale, μr , through the running strong cou-
pling. The calculation of next-to-leading-order (NLO) cor-
rections to jet production advanced the accuracy of perturba-
tive predictions to a comparable level. This progress required
a careful re-evaluation of the concept of jets and resulted
into new classes of jet algorithms, since several shortcom-
ings of previous jet definitions were identified, which lim-
ited their usability in higher-order pQCD predictions or in
hadron-induced processes. Let us have a closer look into the
evolution of jet algorithms over time.

The first jet algorithm was described in 1977 by Sterman
and Weinberg for e+e− collisions [185]. In their algorithm,
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particles with momenta pointing towards the same direction
within some opening angle were clustered together. Most
importantly, their jet definition made the result insensitive to
the emission of either soft or collinear particles. This is called
infrared and collinear safety, which is crucial to produce
finite results at all orders in perturbation theory. Otherwise the
cancellation of soft and collinear singularities associated with
such partonic emissions in calculations of pQCD is spoiled
leading to infinite results. To be useful in comparisons to
pQCD, the outcome of a jet algorithm therefore must neither
depend on the addition of arbitrarily soft clustering objects
to the set of inputs, nor on the merging of two collinear input
objects or the splitting of an input object into two collinear
ones.

The following decade saw the proposal by Sterman and
Weinberg to be generalized in order to analyze hadron–
hadron collisions in terms of a number of cone-shaped jets
of a chosen jet radius, R, pointing into the directions of the
highest energy or momentum densities in an event. In the
same period the JADE Collaboration at the PETRA collider
introduced another type of jet algorithm based on iterative
pairwise clusterings for the analysis of e+e− events [3688].
Hence, two classes of jet algorithms emerged:

1. cone algorithms that assign objects to the leading energy-
flow objects in an event based on geometrical criteria;

2. sequential-recombination algorithms that iteratively com-
bine the closest pairs of objects.

A summary of jet algorithms discussed at the time is pre-
sented in the proceedings of the Snowmass “Summer Study
on High Energy Physics” [3735].

Although introduced only in 2008 in its general form, one
can determine the so-called catchment area of a jet, often
just named jet area, for both classes provided the algorithm
is infrared- and collinear-safe [3650]. For cone algorithms
defined in (η, φ) space as used already by the UA1 Collabo-
ration, this jet area formerly was identified with the circular
area with jet radius R, which simplified considerably the task
of jet energy calibration at hadron–hadron colliders.

In e+e− collisions all final-state particles emerge from the
hard subprocess. Therefore, in e+e−measurements exclusive
jet algorithms were applied, which assign each final-state
particle to one of the high-pT jets. Hence, a collision event is
classified as an exclusive jet final state, e.g. e+e− → n jets
and nothing else.

Although being more costly in terms of computing time,
it was affordable to use successive recombination algorithms
because of the low multiplicity in e+e− annihilations. Ini-
tially, the JADE algorithm was favored, where pairs of par-
ticles are clustered in the order of increasing invariant di-
particle masses, assuming this would result in jets with small
invariant masses. In the phenomenology of e+e− physics, it

Fig. 304 A 3-jet final state in e+e− collisions as defined by the JADE
(upper) and kt (lower) jet algorithms. The particle assignments to the
three jets according to the algorithms are indicated by blue full, black
dash-dotted, and red dashed lines. Figure redrawn from Ref. [3737]

was, however, discovered that the JADE algorithm frequently
clusters soft particles at large angles, cf. also Fig. 304, which
is very disadvantageous for precision calculations [3736].
This problem was addressed in the kt or “Durham algo-
rithm” [187], 112 in which the distance measure was changed
from the invariant di-particle mass to the relative transverse
momentum, kt, of the particle pair. This version, also called
the (exclusive) kt algorithm, was confirmed to have superior
properties than the JADE algorithm in e+e− annihilation.

When HERA, the first and only electron–proton (ep)
collider, started in 1992, “standard” jet algorithms had
been defined already for e+e− annihilation as discussed. In
hadron–hadron collisions cone-type algorithms were favored
over sequential-recombination algorithms to avoid time-
consuming repeated iterations over many final-state particles.
Nothing yet had been developed for physics at an ep collider
such that many physicists coming from LEP experiments
tried to adopt methods as they were used in e+e− physics.
So in the early HERA jet analyses, a modified version of the
JADE algorithm was used (the “mJADE algorithm” [3738]),
in which the proton beam remnant is treated by introducing a
pseudo-particle (carrying the missing longitudinal momen-

112 Originally, k⊥ was used as label instead of kt. For simplicity we use
kt throughout.

123



Eur. Phys. J. C          (2023) 83:1125 Page 413 of 636  1125 

tum in the event), to which particles can be clustered. At the
end, all particles are either assigned to the high-pT jets, or
to the jet including the pseudo-particle. The former are con-
sidered as the n high-pT jets, while the latter is considered
to be the (one) beam remnant. The final states are therefore
classified as exclusive (n + 1)-jet final states.

In reactions with initial state hadrons, i.e.ep and hadron–
hadron collisions, collinear singularities in the matrix ele-
ments of the hard subprocess are factorized into process-
independent parton distribution functions (PDFs), which
depend on the factorization scale, μ f , that defines the limit
between attribution to the perturbative hard process or the
non-perturbative hadron structure in form of the PDFs. This
factorization, however, only works, if it is not spoiled by the
definition of the measured quantity that must not depend on
the beam-remnant(s). For the mJADE algorithm, it was the
inclusion of the kinematics of the beam-remnant that made
the algorithm non-factorizable. This issue was fixed in the
exclusive kt algorithm for ep and hadron–hadron collisions by
treating the beam remnant(s) as particles of infinite momen-
tum and thus independent of their actual kinematics. This
exclusive kt algorithm was in use for some time within the
HERA experiments and later was replaced by its inclusive
counterpart.

Hadron–hadron and ep collisions share the common fea-
ture of having activity in their final states related to the rem-
nant(s) of the beam hadrons. Therefore, the jet definitions
used in hadron–hadron physics were based on the cone-type
proposal by Sterman and Weinberg to define a jet by the
transverse energies through a cone, which is moved so as
to maximize the transverse energy flow through it. In this
approach, only selected final-state particles are included in
jets. Those, which are not assigned to jets are effectively inter-
preted to stem from the so-called Underlying Event that is
related to soft processes involving interactions with the beam
remnants. The jet final-states are thus classified as inclusive
with respect to additional unclustered particles, e.g. pp→ n
jets plus additional activity, which could consist of additional
jets and/or unclustered particles.

Another difference between e+e− and hadron–hadron
physics consists in the choice of variables. In hadron–hadron
collisions, the center-of-mass frame of the hard subprocess
is boosted longitudinally, i.e.along the beam direction with
respect to the detector rest frame. Hence, instead of energies
and angles as used in e+e− collisions, transverse momenta
and/or transverse energies are used, together with azimuthal
angles and either the pseudorapidity η as defined before, or
the rapidity y = 1/2 · ln [

(E + pz)/(E − pz)
]
, which coin-

cides with η for massless objects. As a consequence, cone-
jet algorithms in hadron–hadron collisions are used with
cone radii R defined in the plane of azimuthal angle and
(pseudo)rapidity.

Cone algorithms are, however, not as easy to implement
as one would naïvely think. The basic idea of a cone-jet
algorithm sounds rather simple: Decide on a cone radius, R,
place it in the plane of azimuthal angle and (pseudo)rapidity,
compute the transverse energy/momentum flow through the
cone, and move the cone over the plane so as to maximize
this flow. Before the end of the 1990s, experimental jet mea-
surements used a large number of different implementations.
These early cone algorithms suffered from a number of prob-
lems. Many were not infrared or collinear safe, while others
had undesired features. Some of the problems arise from the
fact that a true, continuous maximization procedure of the
energy flow through the cone required too much computing
resources, and short-cuts were applied. Some versions sim-
ply defined the final jets by building cones around the parti-
cles/detector clusters of highest energy. Other versions used
these clusters as starting points, or “seeds” for an iterative
procedure. All of these algorithms were either not infrared-
or not collinear-safe, or even both. Other undesired features
emerged through the treatment of overlapping cones. Some-
times, it happens that two resulting jet cones share a number
of particles. To have a unique assignment of particles to jets,
an overlap treatment is added to the algorithm, which assigns
the particles in the overlap regions uniquely to one of the two
jets. This overlap treatment depends on additional parameters
(adding to the complexity of the algorithm) and in most cases
it also introduced additional violations of infrared or collinear
safety. These problems were ultimately addressed and solved
with the Seedless Infrared-Safe Cone (SISCone) jet algo-
rithm [3739]. By eliminating seeds, and using a refined over-
lap treatment, SISCone became the first and so far only cone
jet algorithm that is infrared- and collinear safe.

The SISCone algorithm was, however, never widely used
since the rather late time it was introduced. Jet measurements
had moved on to different jet algorithms. Soon after the intro-
duction of the exclusive kt algorithm for e+e− physics and
the above-mentioned modifications for processes with initial-
state hadrons, a similar inclusive algorithm was introduced:
the “Cambridge algorithm” [189]. This algorithm transferred
the basic concepts of the exclusive kt algorithm consistently
to hadron–hadron collider physics. In the same way that the
Cambridge algorithm was a modification of the exclusive kt

algorithm, a corresponding modification of the inclusive kt

algorithm was introduced, called the “Aachen algorithm” or,
later, the “Cambridge–Aachen algorithm” [190]. This algo-
rithm recombines pairs of particles simply in the order of
increasing distances in (y, φ) space. Both algorithms can be
specified in a unified way by defining the pairwise distance
di j between any two objects i and j , and the beam distance
di B of each object i as:
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di j = min
(
p2p

T,i , p
2p
T, j

) ΔR2
i j

R2 , (12.4)

di B = p2p
T,i . (12.5)

Here, the power p is the algorithm-defining parameter, and
ΔRi j is the purely “angular” distance in (y, φ) space between
i and j :
(
ΔRi j

)2 = (
yi − y j

)2 + (
φi − φ j

)2
. (12.6)

Then, each time the minimal distance of all pairwise and
beam distances is a di B , object i is declared a final jet and
removed from the list of clustering objects. If the minimal
distance is a di j instead, the two objects are merged using
four-vector addition into a new object that is added to the
clustering list. This is repeated until no more input objects
are left.

Setting p equal to unity gives the kt algorithm, while p = 0
corresponds to the Cambridge–Aachen one that only consid-
ers ΔRi j in the clustering and is frequently used for studies
of jet substructure. Interestingly, as discovered in Ref. [193],
the choice of p = −1 is also a valid option, where in contrast
to the kt algorithm the clustering starts with the highest-pT

objects and hence this third “family member” was dubbed
the “anti-kt algorithm”, which leads at least for the leading
pT jets to round-shaped jet areas as if from a cone jet algo-
rithm! In comparison to the more fractal-like jet areas of the
kt algorithm the cone-like anti-kt jets were much easier to
calibrate reusing recipes for previous cone jet algorithms. In
particular the subtraction of additional energy within a jet
cone from further proton–proton collisions in the same or
neighboring bunch crossings (pile-up) was much facilitated.
As a consequence the anti-kt algorithm was quickly adopted
as the main jet algorithm for jet physics at the LHC.

12.2.5 New physics with jets: excesses in jet cross sections

The next stage of establishing QCD as the theory of the strong
interaction was triggered by two developments: the arrival of
predictions at NLO in pQCD also for hadron–hadron col-
lisions, and the start of the Tevatron collider at Fermilab
with a p p̄ center-of-mass energy ranging from 540 GeV up
to 1.96 TeV. The by far dominating theoretical uncertainty
caused by the large μr scale dependence of LO predic-
tions was reduced from factors of roughly two to 10–30%
[3740,3741]. Additional uncertainties from non-perturbative
effects and from the proton structure were estimated to lie
between 5 and 20%, respectively. The latter uncertainty was
derived from calculations using different extractions of the
proton PDFs from data of deep-inelastic scattering of lep-
tons on fixed targets [3742–3745]. First comparisons of these
NLO predictions to p p̄ collider data from UA2 and from the
new CDF experiment at Tevatron exhibited a very nice agree-
ment.

This picture changed suddenly in 1996 when the CDF
Collaboration reported an excess in inclusive jet data at high
ET beyond 200 GeV as shown in Fig. 305 [3746]. A possible
explanation could be new phenomena at an energy scaleΛ far
beyond reach to allow e.g. resonant production of new parti-
cles. Similarly to Fermi’s low-energy four-fermion coupling
to approximate weak interactions at scales well below the W
boson mass, such an excess can be described in terms of con-
tact interactions (CI) [3742,3747]. Speculations about such
contact interactions as a possible explanation were, however,
quickly dismissed and the results were scrutinized for effects
not properly covered by uncertainties. With respect to the
proton structure there was no other means than taking the
spread in predictions using different proton PDFs, also shown
in Fig. 305, as a proxy for the uncertainty, which now had
become very relevant. As all the PDFs known at the time were
potentially prone to the same biases, the association of the
spread in the corresponding predictions with a PDF uncer-
tainty could only be considered an educated guess or, in the
words of Soper [3748]: “This is similar to estimating the size
of a French mountain valley by taking the r.m.s. dispersion
in the locations of individuals in a flock of sheep grazing in
the valley.”

The way forward was described in the seminal paper Ref.
[3749], where a systematic approach was presented to derive
parton distributions with reliable uncertainty estimations.
Using the preliminary PDFs including experimental uncer-
tainties derived in Ref. [3750] from DIS data, the authors
demonstrated that the excess reported by the CDF Collabo-
ration can be absorbed in updated parameter values for the
strong coupling constant and the gluon distribution. While
the quark parton distributions are directly determined in DIS,
in particular with data from the new HERA collider as used in
Ref. [3750], the DIS data are insufficient to also fix αS(MZ )

and the gluon content in the proton. For both, jet cross sec-
tions measured at the Tevatron and at HERA are valuable
input to the PDF fits.

12.2.6 The running coupling and the gluon content of the
proton

HERA, which was approved in 1984, became operational
in 1992, coinciding with the 20th anniversary celebration
of QCD in Aachen [3751].113 At that time, QCD was in a
“transition from the stage of early exploratory studies to high
precision analyses in QCD” as noted by Zerwas and Kas-
trup in the introduction to this workshop [78]. A milestone
for testing QCD was achieved by demonstrating experimen-
tally the running of the strong coupling from the τ mass
of around 2 GeV up to the Z boson mass at 91 GeV using

113 This was the very first conference participation of KR triggering his
profound interest in jets and QCD.
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Fig. 305 Percentual difference between the CDF inclusive jet cross
section (points) and a prediction at NLO QCD using MRSD0’ PDFs.
Additional lines show predictions for a selection of alternative PDFs
available at the time. The error bars represent uncorrelated uncertain-
ties, while the quadratic sum of the correlated systematic uncertainties
are shown in the bottom panel. The inset compares the absolute cross
sections. Figure taken from Ref. [3746]

various observables and data from different experiments as
reported in Ref. [3752]. A first summary of determinations
of αS(MZ ) was presented by Altarelli [3753] who concluded
on αS(MZ ) = 0.118± 0.007.

HERA was constructed as the paramount extension to
the series of previous, very successful fixed-target lepton–
nucleon scattering experiments, which have led the way to
conceiving QCD as the theory of strong interactions. The
increase by a factor of ten in the lepton–proton center-of-
mass energy promised rich new data for testing many aspects
of QCD. In particular, with

√
s = 300 GeV, HERA allowed

to elucidate the structure of the proton and the running of
αS(μr ) by means of unique and detailed measurements of
the hadronic final state in addition to the scattered lepton.

The HERA collider at DESY consisted of two indepen-
dent accelerators designed to collide 30 GeV electron and
820 GeV proton beams. Two multi-purpose detectors, H1 and
ZEUS, were conceived to precisely measure the hadronic
final state with almost hermetic coverage. The main dif-
ference between the two experiments with respect to jets
is given by their calorimeters. The H1 collaboration opted
for a liquid argon calorimeter with electromagnetic and
hadronic sections, both inside the solenoïd providing the
magnetic field [3754,3755]. The ZEUS collaboration opti-
mized their calorimetric system for hadronic measurements
and employed a compensating uranium plastic-scintillator
sampling calorimeter [3756]. The overconstrained kinemat-

ics of neutral-current DIS events enabled precise in situ cal-
ibrations for the electromagnetic and hadronic energy scales
such that both collaborations could report a jet energy scale
uncertainty of only 1 % for jets with transverse momenta
exceeding 10 GeV in the laboratory rest frame [3757,3758].

Already the first HERA data brought striking QCD results,
like the confirmation of the logarithmic violation of Bjorken
scaling shown by the F2 structure function in dependence
of the parton fractional momentum x as predicted by QCD
[3759,3760], or support for the presence of a hadronic struc-
ture of quasi-real photons as a result of dijet events observed
in photoproduction [3761,3762]. Hence, jets were an integral
part of the HERA physics program from the very beginning.
The term jet physics quickly extended well beyond the simple
picture of one “DIS jet”, which is initiated by the struck quark
in the Quark–Parton-Model (QPM) picture, or of dijet topolo-
gies in photoproduction. Studies of further properties like
jet charge, substructure, fragmentation, or the heavy flavor
content of jets led to many more interesting results, which,
however, cannot be covered here. In the following we will
limit ourselves to high-pT jets in neutral-current DIS and will
refer the interested reader to other sections in this book or to
review articles [3763–3767].

At HERA, for the first time, it became possible to study
large numbers of dijet events in neutral-current DIS, so-called
(2+1) jet events. In pQCD the cross section for hard processes
in DIS is given up to order n in the perturbative expansion in
αS through the factorization theorem

σ =
order∑

n

q,q̄,g∑

i

(
αS(μr )

2π

)k+n ∫
dx fa/ i (x, μ f )dσ̂

[n]
i (x, μr ),

(12.7)

where i denotes the parton flavors in the proton PDF fa , and k
corresponds to the power inαS at leading order. The universal
proton PDFs are convoluted in x with the hard coefficients at
a selected factorization scale μ f . At LO, pQCD predicts the
(2+1) jet events to be produced proportional to αS (k = 1).
At HERA, this process is mainly initiated by a gluon inside
the proton and thus dijet data provide direct access to the
gluon content of the proton down to x ∼ 10−3. A second
LO contribution arises from gluon radiation off one of the
quark-lines in the QPM diagram and becomes dominant at
large x .

The first measurement of (2+1) jet rates by the H1 Col-
laboration [3768] employed the JADE jet algorithm [3688],
while the ZEUS Collaboration [3769] opted for a cone jet
algorithm following the Snowmass convention [3645]. The
hadronization corrections were found to be reasonably small
and the measured jet profiles could be directly related to the
underlying hard process and the gluonic content of the pro-
ton. These early data strongly supported the QCD picture
of jet-production in DIS and the data were found to be well

123



 1125 Page 416 of 636 Eur. Phys. J. C          (2023) 83:1125 

Fig. 306 Dependence on the energy scale Q of the strong coupling,
αS(μr = Q), from early HERA data in comparison to other processes,
see text for details. The predictions of QCD for three values of the αS-
equivalent ΛMS parameter are superimposed as lines. Figure taken from
Ref. [3770]

described by first order QCD calculations supplemented with
leading-logarithmic parton showers as an approximation of
higher-order QCD corrections. Already at this stage a run-
ning coupling was significantly favored over a constant value
of αS .

The inclusion of NLO QCD corrections in dijet calcula-
tions [3771] and an improved understanding of hadronization
corrections of jet data together with refined and enlarged data
sets, allowed for the first time the study of the running of the
strong coupling constant in a single process using (2+1) jet
rates based on the JADE algorithm [3772,3773]. A summary
of these results from H1 and ZEUS in comparison to mea-
surements in e+e− collisions is displayed in Fig. 306. The
additional points are determined from Υ decays (ΓΥ ), the
ratio R of hadronic over total cross section (σhad/σtot), event
shapes, and the ratio of hadronic over leptonic decay width of
the Z boson (Γhadron/Γlepton) as described in Ref. [3774]. An
insight gained from these data and from subsequent studies
with improved NLO calculations [3775] was that cone or kt

jet algorithms seem to be preferred over the JADE algorithm
for precision QCD analyses due to their improved perturba-
tive stability in hadron-induced processes [191,3776,3777],
as already outlined in the previous section. In addition, it
became apparent that the choice of suitable renormalization
and factorization scales is crucial to achieve reliable results
for multi-scale processes such as jet production in DIS.

Despite these first successes it became rapidly clear that
for jet measurements in the laboratory rest frame theoretical
shortcomings prevent optimal comparisons to theory. Firstly,
it is highly desirable for the jet observables to respect fac-
torization, and secondly it is highly non-trivial to separate

the hadronic final state from the beam remnant. A way for-
ward is found by boosting every event to the Breit frame
of reference [3777] using the reconstructed DIS kinemat-
ics. In the Breit frame the incoming parton collides head-
on with the exchanged electroweak boson along the z axis
of this reference frame. Any significant transverse momen-
tum is generated from QCD effects. High-pT jets primarily
occur in dijet topologies, for which the LO QCD diagram
is of O(α1

S), whereas LO DIS or the beam remnant do not
contribute. First measurements of jet cross sections in the
Breit frame using variants of the longitudinal invariant kt jet
algorithm have been conducted by the H1 and ZEUS collab-
orations with a distance parameter of R = 1.0 [3778–3780].
This choice promises high accuracy of pQCD predictions and
small non-perturbative corrections for hadronization effects.
From data at high Q2 � 150 GeV2, where scale choice ambi-
guities are reduced, since jet transverse momenta are of a
similar size as the virtuality of the exchanged boson

√
Q2,

both collaborations determined αS(MZ ) with NLO pQCD
predictions at a precision of around 4 %. The uncertainty in
αS(MZ ) was comparable to the level of the LEP experiments
[3781] and considerably outperformed the ongoing experi-
ments CDF and D0 at the Tevatron. Moreover, the running of
αS could be successfully tested in the scale range from about
7 to 50 GeV. Together with inclusive neutral- and charged-
current DIS data, even the first combined determination of
the proton PDFs together with αS(MZ ) was performed from
data of a single experiment [3782].

In 1998, the beam energy of the HERA protons was raised
to 920 GeV, corresponding to

√
s � 320 GeV. The large

amount of data recorded from 1998 to 2000, and during the
HERA-II running period from 2003 to 2007, led to a multi-
tude of measurements i.a. investigating the dependence of jet
cross sections on the type of jet algorithm and the jet size R,
or the benefits of normalizing to the DIS cross section. With
respect to the strong coupling constant the development cul-
minated in a determination of αS(MZ ) with only 0.4 % of
experimental uncertainty [3783]. Yet, in all these QCD anal-
yses, the NLO scale uncertainties of roughly 5 % in the jet
predictions remained the dominant uncertainty and, hence,
the limiting factor preventing a higher precision for αS(MZ ).
The next decisive progress, then, should come from theory.
After more than 15 years, the next-to-next-to-leading order
(NNLO) corrections to jet production in DIS were finally cal-
culated in Refs. [3784,3785], which allowed for a reduction
in the scale dependence of the predictions for the interpre-
tation of the HERA jet data. The latest improved HERA-II
measurements were then the first to be confronted with the
new NNLO cross section predictions, which proved the cor-
rections to be sizeable reaching up to 40 % at low scales. Yet,
the NNLO predictions provided a very good description of
the data over the entire accessible kinematic range [3783] and
a significant improvement as compared to the long-standing
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Fig. 307 Tests of the running of the strong coupling from HERA and
CMS inclusive jet cross section data using NNLO or NLO pQCD pre-
dictions, respectively. The data are compared to the expectation from
QCD and measurements of jet-rates in e+e−. The lower panel displays
the respective value of αS(MZ ) for the representative value μr of the
data

NLO predictions. This NNLO revolution for single-jet inclu-
sive predictions was the ultimate step to reduce the theoret-
ical uncertainties to a level comparable to the experimental
uncertainties. A full analysis of all inclusive jet data from H1
[3786], and an analysis of data from H1 and ZEUS [3787]
demonstrated an excellent agreement between the data and
the NNLO pQCD predictions. A comparison of selected
inclusive jet cross section data with NNLO predictions is
displayed in Fig. 308.

From inclusive jet data the value of αS(MZ ) was finally
determined at NNLO to be

αS(MZ ) = 0.1178± 0.0015 (exp)± 0.0021 (theo) (12.8)

with percent level experimental and theoretical uncertainties
of similar size. Surprisingly, although jet data were believed
to have a significant sensitivity to the gluon PDF, a complete
analysis of jet data together with HERA inclusive DIS data at
NLO [3059] or NNLO [3100,3786,3788] showed only little
impact on the gluon density.

Finally, the inclusive jet data from HERA were able to
unfold their full potential to test the running of the strong
coupling from a single process using NNLO pQCD predic-
tions [3786,3787]. The results are found to be in excellent
agreement with expectations from pQCD and are shown in
Fig. 307, where the extracted values of αS(μr ) from these
data are compared additionally with the αS(μr ) determina-
tions from inclusive jet data of the CMS experiment [3789]
and with analyses using jet-rate measurements in e+e− col-
lisions [3692,3790,3791].

Thus, the HERA inclusive jet data improve significantly
over measurements from the JADE experiment in a similar
region of μr , and bridge the gap between low-scale determi-
nations of αS from τ -decays and the precision measurements
at the Z -pole in e+e− collisions.

12.2.7 Highest-pT jets at the LHC

From early exploratory up to the latest results, jet measure-
ments have accumulated numerous successes: the gluon dis-
covery at PETRA, the confirmation of the gauge structure of
QCD at LEP, or the running of the strong coupling constant
at HERA. So what is in store with the next-to-next hadron–
hadron collider, the LHC? After 25 years from first concepts
discussed in 1984, cf. Ref. [3792], up to first collisions at
the LHC in 2009, and a similar timespan between the avail-
ability of NLO calculations for jet production in hadron–
hadron collisions in 1989/1990 [3741,3793] and the arrival
of NNLO predictions in 2017 [3419] we are now in a much
better position for precision comparisons. The dependence
of the NNLO predictions on the choice of the renormaliza-
tion scale is significantly reduced as compared to NLO. The
required proton PDFs have much smaller uncertainties and
were determined from a lot more and more accurate data in a
more systematic way that considers and provides systematic
uncertainties. The modern experiments at the LHC deliver
more precise data than at any other hadron–hadron collider
before and include correlations as well as the full decom-
position of systematic uncertainties. Figure 308 provides an
overview of data-theory comparisons for the inclusive jet
cross section versus jet pT as measured at the LHC and pre-
vious hadron colliders. Overall, the description of the data
at various center-of-mass energies and covering many mag-
nitudes in inclusive jet cross section and jet pT is excellent.
Figure 309 summarises such measurements at the LHC in the
form of a total inclusive jet cross section within a suitably
defined fiducial phase space as a function of

√
s.

Despite the great success of pQCD for the description
of jet data, a few concerns in particular on the theory side
still persist. The scale dependence is just a proxy to esti-
mate the effect of missing higher orders (MHO) and can
be misleading if not combined with other insights into the
process of interest like the relative sizes of the higher-order
corrections or the absence of new process types at a given
perturbative order. A newer approach [3817] makes use of
Bayesian models assuming a specific behaviour of the coeffi-
cients of the perturbative series to estimate MHO uncertain-
ties with the advantage that a proper description in statisti-
cal terms like credibility intervals becomes possible. Newer
work in this direction can be found in Refs. [3818–3820],
while Ref. [3821] follows a different technique to approx-
imately complete the perturbative series. With respect to
PDFs this uncertainty of purely theoretical nature only starts
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Fig. 308 Ratios of cross-section measurements to predictions in per-
turbative QCD for inclusive jet production at central (pseudo-)rapidity
as a function of the jet pT or ET. The data were taken in pp, p p̄,
or ep collisions by the ATLAS, CDF, CMS, D0, H1, STAR, and
ZEUS experiments, at the RHIC, HERA, Tevatron, and LHC collid-
ers [3758,3778,3780,3783,3789,3794–3809]. From data available for
multiple jet algorithms and/or distance parameters one particular choice
has been made as indicated. The vertical error bars indicate the total
experimental uncertainty of the data. The pQCD predictions are derived
using the PDF4LHC21 PDF set [3810] for a value of αS(MZ ) =
0.118 at NNLO in QCD [3419,3520,3784,3785,3787,3811–3813]
unless indicated otherwise. The renormalization and factorization scales
μr and μ f are identified with pT at hadron–hadron colliders, and√
Q2 + p2

T in DIS. The predictions for p p̄ are only in NLO QCD
supplemented with 2-loop threshold corrections (aNNLO) [3371,3814–
3816], since most of the jet algorithms are IRC-unsafe. For STAR, the
predictions are at NLO QCD only. The pQCD predictions are comple-
mented with correction factors for non-perturbative and electroweak
effects where applicable

being considered in fits and the corresponding uncertainties
[3101,3822,3823]. Another point of concern, which limits
the precision of phenomenological analyses, is related to the
uncertainties of non-perturbative effects, which are important
specifically for small transverse momenta. Currently, they
are “guesstimated” in a similar manner as PDF uncertainties
25 years ago, i.e. essentially the predictions by a number of
MC event generators and their model parameter tunes are
compared without systematic account of potential biases or
correlations.

With the data from the LHC, it became possible for the
first time to probe QCD and the running of the strong cou-
pling from 100 GeV up to the TeV scale as shown in Fig. 307
using CMS inclusive jet data at

√
s = 8 TeV from Ref.

[3789]. Notably, beyond 1 TeV of jet pT, electroweak effects
become significant and must be considered. Also, in a search

Fig. 309 The total jet cross section as a function of the pp center-of-
mass energy for anti-kt jets with R = 0.4 and 0.7. The predictions are
compared to data from ATLAS (R = 0.4) and CMS (R = 0.7). The
size of the shaded area indicates the scale uncertainty. Figure taken from
Ref. [3520]

for new phenomena with the so-called dijet angular distribu-
tion χ = exp(|y1 − y2|) it was found that small deviations
at low χ for dijet masses beyond 2 TeV could be accom-
modated by electroweak corrections [3824]. Otherwise such
deviations from a mostly flat behaviour that is expected from
Rutherford-like parton–parton scattering could again be an
indication for contact interactions as an expression of new
phenomena at a scale Λ. Similarly, excesses at large jet pT

like the one by CDF discussed in Sect. 12.2.5 have to be
considered carefully to avoid premature conclusions on new
phenomena, or, much worse, fitting away first signs of new
physics by absorbing them into PDFs! Again Ref. [3749]
provides advice: “Note that once data is used in the PDF fit,
it cannot be used for other purposes: specifically, setting lim-
its on possible physics beyond the standard model. In that
case, one should fit the PDFs and the new physics simultane-
ously.” In the latest publication on inclusive jet production at√
s = 13 TeV [3809] the CMS Collaboration performed such

a fit in the framework of the effective field theory-improved
standard model (SMEFT), where a perturbative coefficient c1

representing potential contact interactions was used as a free
fit parameter. It was found that the data are well described by
the standard model alone and the c1 coefficient was compati-
ble with zero. A modification of the gluon PDF as before was
not required as shown in Fig. 310. Once, it has been assured
that new LHC jet data are consistent with the standard model,
they can be used in combination with HERA data to simul-
taneously extract PDFs and the strong coupling constant at
NNLO to

αS(MZ ) = 0.1166± 0.0014 (exp)± 0.0009 (theo). (12.9)
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Fig. 310 The gluon distribution as a function of the proton fractional
momentum x resulting from fits with and without contact interaction
terms to HERA DIS data combined with data from t t̄ and inclusive
jet production as measured by CMS. The SMEFT fit here is performed
with the left-handed CI model with Λ = 10 TeV. The gluon distribution
is shown at a factorization scale μ f chosen to be the top quark mass
(μ2

f = mt
2). Figure taken from Ref. [3809]

Also data from multiple reactions can be combined in PDF
determinations as recently demonstrated by the ATLAS
experiment [3825]. Yet, the best results of the LHC run 2
are still to come, since the data recorded from 2015–2018
are still in preparation by the collaborations for final calibra-
tion and publication.

12.2.8 Final words

The presented article tries to recount the story of jet mea-
surements and their relevance for QCD. Specifically, we
addressed what has been learned in the course of time from
the interplay between theory and measurement at the highest
jet pT available at each moment in time. We have selected
a few key measurements for this purpose from a plethora of
results achieved at the various colliders. For a more complete
overview other sources may be consulted [3826,3827,3827].

For the future, of course, we expect to see more precise
jet measurements at even higher jet pT with corresponding
studies of their impact on searches for new phenomena, the
running of the strong coupling, or the proton structure. Before
concluding, we would like to point out explicitly three devel-
opments that might change how future analyses will be per-
formed.

First, not only gluons can be radiated in large numbers
by a (color) charge, but also photons by electric charges. So
whenever comparing electrons in the final state to predictions

including radiative corrections, one has to account for the
effect that calorimeter cells add up the energies of e.g. an
electron and all surrounding photons hitting the same cell.
To avoid a potential mismatch between what experimentally
is considered an electron and what is calculated in theory, one
can define a cone around the electron and include all photon-
like objects into the definition of the electron. This is then
called a dressed electron or, more generally, a dressed lepton,
since the same concept can be applied to muons, although the
latter radiate less and are measured predominantly in tracking
detectors. Essentially, this is again a kind of jet algorithm,
but applied to leptons as primary particles [3828], raising the
question “What is not a jet?”.

Secondly, enormous technical progress not only allows us
to produce jets at unprecedented transverse momenta of sev-
eral TeV instead of GeV, we can also measure with much
better precision such high-pT jets of order hundred or more
tracks and clusters. This is especially important, since high-
pT jets may not only be categorized into quark- or gluon-
initiated jets, but also into boosted jets meaning that such
jets may additionally contain the whole decay chain of mas-
sive boosted objects from either standard model W and Z
bosons, and top quarks up to new hypothetical particles. A
whole new field of QCD-focused analyses has been opened
up here looking in detail into the substructure of jets asking
the question “What is in a jet?”.

Finally, progress in computing technology enabled large-
scale application of neural network techniques and machine
learning methods to jet physics and jet substructure. For order
hundred and more jet components with kinematic properties
and other characteristics, deep learning techniques allow us
to study all available information in its high dimensionality.
This development has considerably increased the discrimina-
tion power among different jet types, and has the potential to
genuinely improve our understanding of perturbative QCD,
cf. for example the review in Ref. [1829].

In summary, even after 50 years of QCD, we still have
exciting new developments in front of us.

12.3 Vector boson + jet production

Monica Dunford
Measurements of single vector boson production in asso-
ciation with jets (V+jets production) play a central role in
particle physics as they are sensitive probes to several differ-
ent aspects of the Standard Model. With these measurements
the predictions of perturbative QCD can be tested in new
regions of phase space and with small statistical and system-
atic uncertainties. In many places, the experimental accuracy
is better or comparable to that of the theoretical predictions.
The studies of W and Z boson production with additional jets
are sensitive tests of the dynamics of higher-order diagrams
in the QCD predictions, of models of heavy-flavor produc-
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tion and of parton density functions (PDFs). These measure-
ments are used to test the accuracy of the wide range of the-
oretical models available. This is especially important since
W and Z boson productions are dominant backgrounds to
measurements and to search for New Physics. Accurate sim-
ulations are necessary for everything from the calibration
of the detector to modeling of the signal process of inter-
est. Measurements of jets in V+jets production is one of the
main processes used for simulation, defining event param-
eters (tuning), and the validation of the theoretical model.
Excellent knowledge of QCD-related variables is also crit-
ical for precision measurements at hadron collider, such as
measurements of the W boson mass, which rely upon accu-
rate modeling of the W boson pT spectra.

12.3.1 Results from Sp̄ pS and the Tevatron

The W and Z vector bosons were both discovered in 1983
by the UA1 and UA2 experiments at the Super Proton Syn-
chrotron (S p̄ pS) at CERN. By today’s standards, the num-
ber of vector boson events collected was miniscule; the UA1
detector for example collected 240 W → eν events and 57
W → μν events at a center-of-mass energy of 0.630 TeV
[3829]. The data from these detectors permitted first tests
of QCD in vector boson production. One of the immediate
conclusions drawn from the data was that higher-order QCD
corrections such as gluon radiation from an initial-state quark
or anti-quark are needed to explain events where the vector
boson has large a momentum in the transverse plane (pT ).

Since the dominant production of V+jets at the S p̄ pS col-
lider is due to gluon radiation from an initial-state quark
or anti-quark, these events are an ideal sample of gluon-
initiated jets. Using W+1-jet events, measurements of the
angular distribution of the jet are consistent with the expected
bremsstrahlung-like radiation [3829]. In addition, the spin of
the gluon was measured via the polarization of the W boson.
When a scalar gluon is radiated by an incoming quark or anti-
quark, the helicity of the quark will be changed since the axial
coupling is not conserved. In contrast, in the case of a vec-
tor gluon which conserves helicity, the quark’s helicity will
be preserved. The two cases lead to different polarizations
of the W boson. Although the gluon spin was determined
at PETRA [3830] and using two-jet events at UA1 [3831],
this test was an important confirmation that the gluon has a
spin of one. Finally, the value of the strong coupling (αs) was
determined by measuring the ratio of the number of W+1-jet
events to W+0-jet events [3832]. Although the precision of
these measurements could not compete with contemporary
results from electron–positron colliders [3833], they verified
that the value of αs for events where a gluon is radiated in
the initial state is consistent with other measurements.

The Tevatron collider, which ran at center-of-mass ener-
gies of 1.8 TeV and 1.96 TeV ushered in the era of large data

Fig. 311 CDF [3835]: The top panel shows the ratio of data to the pre-
dictions for the cross section ofW+jets production for different inclusive
jet multiplicities. The bottom panel shows the ratio of the cross section
for n jets to (n − 1) jets. The NLO predictions (MCFM) are shown by
the open triangles and the LO predictions (MLM, SMPR) are shown
by the blue circles and red squares. The uncertainties on the data are
indicted by the error bars, where the inner bars are the statistical uncer-
tainty and the outer bars are the total uncertainties. The uncertainties on
the predictions in the top panel are indicated by the hashed lines

samples of W and Z boson events and of increasing sophis-
tication of the theoretical predictions used to describe that
data. Since V+jets production is a dominant background to
t t̄ measurements and searches for the Higgs boson, the focus
of the measurements shifted away from tests of the properties
of QCD, such asαs measurements, to tests of the dynamics of
V+jets events. The large data samples collected by the CDF
and D0 experiments allowed for measurements of W and
Z boson production with up to four associated jets [3834].
Studies from the CDF and D0 experiments were expanded to
include, for example, measurements of the differential cross
sections as a function of the transverse momenta and rapidi-
ties of the jets, the angular separation of the two highest
energy jets and the transverse momentum of the Z boson.

To describe these data, increasing sophisticated theoreti-
cal predictions were developed. The experimental and the-
oretical status at the time is nicely summarized in Fig. 311,
which compares a next-to-leading-order (NLO) calculation
and two leading-order (LO) calculations to the data. The LO
calculations, which included multiple partons in the matrix-
element calculations, are able to describe the shape of many
kinematic distributions up to an overall normalization factor
for high numbers of associated jets but are plagued by large
uncertainties. In contrast, the theoretical uncertainties for the
NLO calculation are much improved but the predictions do
not extend over the full kinematic range of the data. For many
years this figure represented the state-of-the-art in theoretical
predictions for V+jets production.

The large W and Z boson data samples produced at the
Tevatron also allow detailed studies of vector boson produc-
tion in association with heavy-flavor jets, where heavy-flavor
jets refers to c- or b-quark initiated jets. These measurements

123



Eur. Phys. J. C          (2023) 83:1125 Page 421 of 636  1125 

are extremely important as these events provided the largest
background contribution to measurements of t t̄ production
and searches of the Higgs boson via WH(H → bb) produc-
tion. From the CDF and D0 collaborations, measurements of
W production in association with a charm quark and W and
Z production in association with b quarks were performed
[3834]. One most notable result is the first measurement of
W + b-jets production, which was done by the CDF collab-
oration, the measured cross section is 2.5–3.5 times larger
than the various predictions with significance of 2.8 standard
deviations. While the theoretical predictions used in this com-
parison did not fully account for b quarks in the initial state,
this is not expected to explain the difference. The data sam-
ple itself was too small to allow measurements of kinematic
distributions to resolve the source of the discrepancy.

In summary, the experiments at the S p̄ pS and the Tevatron
colliders provided important tests of QCD theory in V+jets
production. However, the scope of these measurements, with
the exception of Ref. [3836] focused largely on measure-
ments of the cross section for different jet multiplicities and
a handful of differential cross section measurements. These
measurements are important in validating QCD theory for
topologies with multiple low energy jets, where the highest
jet energies are not much greater than the mass of the vec-
tor boson itself. Rare processes such as W+b-jets production
were measured for the first time but the statistical precision
of the data samples is not sufficient to probe the kinematic
distributions of these events.

12.3.2 V+jets at the LHC

In V+jets production at the LHC, measurements of jets with
a transverse momentum greater than 1 TeV, which is much
beyond the mass of the vector boson, are now accessible. At
these high energies, the calculations from perturbative QCD
suffer from large logarithmic corrections and are themselves
potentially unreliable [3837]. With the large data samples
available from the LHC, we have entered an era of high pre-
cision differential measurements with which we can explore
QCD at higher-orders and in extreme corners of the phase
space. For the first time, we also have sufficient data samples
to measure in detail heavy-flavor production in multiple dif-
ferential distributions. These measurements also provide for
better understanding of the PDFs.

In pace with the increase in data samples, a plethora of
new, more precise theoretical predictions, all with slightly
different focuses, exist today for V+jets production. A more
detailed summary of the available predictions can be found
in Refs. [3412,3413]. In addition to LO matrix-element
calculations, NLO calculations matched to parton shower
models are now available; most notable for V+jets produc-
tion are Sherpa, MadGraph5- aMC@NLO, MC@NLO

and MEPS@NLO. NNLO calculations with next-to-next-to-

leading logarithmic resummation and with parton showering
are available using GENEVA. For fixed-order calculations,
NLO predictions to five jets or more are available, such as
Blackhat- Sherpa calculations, approximate NNLO pre-
dictions for jets with up to one jet, such as LoopSim cal-
culations and NNLO predictions, such as N jetti . Another
calculation, HEJ, focuses on large rapidity separation and
uses a resummation method to give an approximation to the
hard-scattering matrix element for jet multiplicities of two
or greater; in the limit of large rapidity separation between
partons, this approximation becomes exact.

12.3.3 Tests of higher-orders

For our theoretical understanding of particle physics to keep
pace with the improved accuracy of the measurements, the-
oretical predictions which include higher-order corrections
are indispensable. Most of the measurements and searches
performed today involve very high momenta jets, leptons or
large amounts of missing transverse energy. In these regions,
the high-order corrections play large and vital roles.

One important variable to test contributions from higher-
order corrections is the observable of HT , which is defined
as the scalar sum of transverse momenta of the leptons, the
missing transverse energy (for W+jets events) and the trans-
verse momenta of all jets passing the selection criteria. At
large values of HT the average number of associated jets in
the event increases. LO matrix-element calculations which
do not provide higher-order terms drastically underestimate
the average jet multiplicity. Here NLO predictions are needed
to fully model these distributions. These distributions, among
others, have been measured for both W+jets and Z+jets pro-
duction [3838–3841]. Compared to the previous colliders the
increase in kinematic reach at the LHC is dramatic; Tevatron
results reach up to HT values of 500 GeV, while the LHC
results extend to 2 TeV.

The necessity of high-order corrections can readily be seen
in measurements of the balance between the Z boson and the
jet transverse momenta. The so-called jet-Z balance (JZB)
is defined as the difference between the sum of the jet pT s
(with pT > 30 GeV and rapidity within 2.4) and the Z
boson pT . When all hadronic activity is contained within
the selected jets, the JZB variable is zero. Figure 312 shows
the measured data for events with pT (Z) < 50 GeV com-
pared to a LO and NLO MadGraph predictions and the
GENEVA predictions [3842]. As seen in the figure, the dis-
tribution is not symmetric, with hadronic activity more dom-
inantly pointing in the direction of the Z boson (i.e. positive
values in this definition). The low pT (Z) region is interest-
ing: While larger Z boson momenta can be described by
fixed-order calculations, small values require resummation
of multiple soft-gluon emissions to all orders in perturba-
tion theory [1280,3843] (see Sects. 11.1 and 11.2). Different
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Fig. 312 CMS [3842]: Measured Z+jets cross section as a function of
the JZB variable for PT (Z) < 50 GeV. The data are compared to LO,
NLO and NNLO predictions. The lower panels show the ratio of the
three predictions to the data. The error bars on the measurement repre-
sent the statistical uncertainty and the grey hatched bands represent the
total uncertainty. The uncertainties included on the theory predictions
are listed in the labels

pT (Z) regions therefore test different theoretical treatments.
The NLO predictions best describe the data and indicate that
the NLO corrections are important to describe all hadronic
activity in the event.

12.3.4 Modeling in extreme phase spaces

Extreme phase space regions, including events with high-pT
jets or high boson momenta or events with small angular sep-
aration between objects in the final state, tend to be governed
by a complex mixture of the number of jets contributing to
the final state and contributions from QCD as well as EW
processes. This makes measurements of this nature an ideal
test bed for studying multiple theory approaches.

The study of V+jet production with small angles between
the boson and jets is one such critical test [3844–3846]. At

LO, V+1-jet production is simply described by a V boson
recoiling, in a back-to-back configuration with a jet. How-
ever, at NLO both real and virtual contributions to V+1-jet
production appear via QCD and EW corrections. For real
emissions of a V boson, either from an initial- or final-state
quark, these contributions lead to an enhancement in pro-
duction that is proportional to αsln2(pT, j/mV ), where αs
is the strong coupling, pT, j is the transverse momentum
of the jet, and mV is the mass of the V boson. This effect
becomes largest with high transverse-momentum jets and
can be isolated by selecting events with small angular sepa-
ration between a jet and the V boson. In this region, the can-
cellation between real and virtual correction is incomplete,
making the region ideal to probe. However, other processes
such as V+2-jet production also play a role in this region and
must be considered.

To study these effects, the ratio (so-called rZ , j ) of the Z
boson pT to the closet-jet pT is defined. For collinear radi-
ation of a Z boson, where the Z boson is expected to have
a lower transverse momentum, this ratio results in smaller
values. Figure 313 shows the rZ , j distribution for events
where the angular separation, ΔR, between the jet and the
Z boson is less than 1.4, corresponding to the region where
the Z boson has a small angular separation from the jet (the
collinear region) [3844]. While regions with back-to-back
topologies (not shown here) are better modeled by predic-
tions, the figure shows that higher order predictions model
the collinear region best.

There are many other examples of tests in extreme regions
including specific tests to isolate matrix element and parton
shower effects [3847], measurements of probability of pro-
ducing an additional jet in a rapidity gap of two jets [3848–
3853], measurements in the forward region [3854,3855] and
tests of QCD with sensitivity to physics beyond the Standard
Model [3856,3857]. All of these measurements are critical
for understanding QCD in these difficult-to-model regions.

12.3.5 Tests of QCD emissions

As demonstrated by the results from the UA1 and UA2 exper-
iments, radiation of additional quarks and gluons is neces-
sary in order to describe the events where the vector boson
has a large transverse momentum. These higher-order QCD
corrections consist of two classes; terms with a virtual loop
which do not directly affect the boson pT and terms with a
real emission which do so but result in a jet which could be
recorded by the detector. Measurements of the V+jet cross
section for each jet multiplicity is therefore a direct test of
QCD radiation. Measurements of the jet multiplicity ratios at
the Tevatron and then at the LHC showed a striking feature:
the ratio of the n-jet cross section to the (n+1)-jet cross sec-
tion is a constant. This implies that the V+jet cross section
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Fig. 313 ATLAS [3844]: Z+jets cross section in the collinear region
as a function of the rZ , j variable. The data are compared to LO and
NLO predictions. The lower panels show the ratio of the predictions
to the data. The uncertainties shown on the data include the statistical
uncertainty, as indicated by the error bar and the total uncertainty, as
indicated by the hatched region. The uncertainties on the predictions
are indicated by the colored bands

follows the form

σ LO
V+n− jet ∼ σ0e

−an (12.10)

with a is an experimentally-determined constant values and
depends on the exact definition of the jets and σ0 is repre-
senting the zero-jet exclusive cross section.

Although the constant scaling is a well established exper-
imental observation, this behavior is not a priori expected
[3858]. Assume, for example, that the probability of radi-
ating a gluon from a quark follows the theory of Quantum
Electrodynamics (QED), such that the gluon cannot radiate
another gluon. In this case, the probability of radiating a gluon
is dictated by a Poisson distribution, which implies that the
cross section for an n-jet exclusive final state is

σ LO
V+n− jet ∼

n̄e−n̄

n! σtot , (12.11)

where σtot is the total cross section and n̄ is the expectation
value of the Poisson distribution, which also depends on the
exact definition and selection of the jets. However, the gluon
follows the non-abelian QCD theory and can radiate an addi-
tional gluon from itself. Therefore, at higher jet multiplicities
the scaling would become constant.

The observation of a constant scaling for all jet multi-
plicities is instead a subtle cancellation of two different and
opposite-sign effects. At low jet multiplicities, the Poisson
scaling is present but cancelled by effects from the PDFs. To

Fig. 314 ATLAS [3859]: Measurement of the ratio of the exclusive
n-jet and (n + 1)-jet cross sections for events where the highest pT
jet must have an energy above 150 GeV. The data are compared to the
predictions fromBlackhat- Sherpa,Alpgen and Sherpa. The lower
panels show the ratio of the three predictions to the data. The error bars
indicate the statistical uncertainty on the data, and the hatched bands
the statistical and systematic uncertainties on data. Uncertainties on the
theory predictions are statistical only except for those of Blackhat- -
Sherpa

understand this effect, consider the case of high jet multiplic-
ities with a cross section ratio of n-jet events to (n + 1)-jet
events, where n is a large number of jets. Here, the parton
momentum fraction, x , for the involved partons is similar
between the two jet multiplicities and therefore any effects
on the cross section due to the PDFs essentially cancel in the
ratio. In contrast, at low jet multiplicities, the relative differ-
ence in x for the involved partons between 2-jet events and
1-jet events is larger. Due to the steeply falling x-distribution
of the gluon PDF, this implies that the production of 2-jet
events compared to 1-jet events is suppressed by the PDFs.
Depending on the exact selection criteria, this suppression
cancels the increase in the production cross sections, which
arises from the Poisson scaling.

Based on the work of Ref. [3858], the Poisson nature can
be seen directly by selecting events with one very energetic
jet. In these events, the effect on the cross sections from the
PDFs is reduced; as seen in Fig. 314, the jet multiplicity cross
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section follows the expected Poisson distribution. This mea-
surement is a nice validation of the nature of QCD emissions
from first principles.

12.3.6 Differential heavy flavor results

The associated production of vector bosons with heavy flavor
jets is an important precision test of perturbative QCD in
the presence of two mass scales – the vector boson mass
and the c- or b-quark masses. Measurements of this nature
also provide critical input to charm and strange distributions
inside the proton, as discussed more in the next section. At
LO, heavy-flavor production stems from either a gluon in
the final state splitting into a heavy-flavor quark–antiquark
pair or a heavy-flavor quark produced in the initial state.
At the Tevatron, corrections to the cross section from the
latter contributions are small, but at the LHC, these processes
can lead to corrections of up to 50% [3860–3863]. Theory
predictions for heavy-flavor production consist of 5-flavor-
scheme models, where the b-quark is included in the PDF
itself or 4-flavor-scheme models, where it is not. The two
schemes, however, are equivalent if the calculations included
all orders of αs .

With the large data samples available from the LHC, these
processes can be studied for a variety of differential observ-
ables [3834,3864–3869] and also in the forward region and in
phase spaces with very energetic, boosted jets [3870–3873].
In general, 5-flavor-scheme predictions are better at describ-
ing the data compared to 4-flavor ones. However, there are
sizable differences even between predictions of a similar
nature. Figure 315 shows the separation between the two b-
quarks, which is a sensitive variable to gluon splitting [3864].
The NLO Sherpa simulation estimates this observable well
but fails to get the overall cross section correct (not seen in
this figure). In contrast, the LO and NLO MadGraph pre-
dictions are less able to model the shapes of the kinematic
observables but estimate well the overall cross section. In
regimes where the vector boson has a large pT , the predic-
tions generally perform worse; for example they underesti-
mate events with high m(bb) by about half [3866]. Work is
on-going to combine massless NNLO with a massive NLO
computation, with promising comparisons to data [3874].

12.3.7 Probes of parton density functions

A major source of uncertainty in all hadron collider measure-
ments stems from knowledge of the PDFs. As our knowledge
of QCD deepens, better knowledge of the PDFs are needed to
continue to be sensitive to deviations from Standard Model
predictions [3057,3058]. Deep inelastic scattering data from
the HERA experiments provided some of the best data for
PDF determination over a wide range of Q2 and x . In addi-
tion to these data, data from various experiments, such as

Fig. 315 CMS [3864]: Normalized differential cross section as func-
tion of the angular separation between two b jets, ΔRbb for Z+ ≥ 2
b-jets events. The uncertainties in the predictions are shown as colored
bands in the bottom panel. The statistical, theoretical, and total uncer-
tainties in data are indicated by the vertical bars and the hatched bands

those from neutrino and hadron collider experiments. The
LHC offers a unique opportunity in that it provides a diverse
set of processes, such as jet, photon, vector boson or top pro-
duction, which can be used to constrain different regions with
the PDFs. Today, PDFs can be determined at up to NNLO
precision in perturbative QCD. The input data span the range
of 10−5 � x � 1 and 1 � Q2 � 106 GeV2.

Measurements ofV+jet production are particularly impor-
tant since these processes can probe u and d quarks and also
contributions from s, c and b quarks. By considering vec-
tor boson processes with additional jets, the measurements
are sensitive to higher values of x , accessing x ≈ 0.1−0.3
[3875], compared to inclusive W and Z measurements. Mea-
surements of this nature constrain the light-quark sea at
higher x as well as the strangeness contributions and help
to better understand the gluon distribution at high x [3825].
The LHCb experiment, with its precision tracking coverage
in the forward region, offers new possibilities here in that
its V+jets measurements are sensitive to PDFs at different
x ranges compared to the ATLAS and CMS experiments
[3854]. These measurements probe PDFs at x as low as 10−4

and at high x > 0.5 [3876].
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Fig. 316 LHCb [3871]: Measured cross section ratio of Z + c/Z+jet
production for three intervals of forward Z rapidity, compared to NLO
predictions with and without IC, and with IC as predicted by BHPS
with a mean momentum fraction of 1%

The contributions to the proton from strange quarks can
be probed through measurements of W boson production in
association with c-quark, as was done at the Tevatron and
the LHC [3132,3834,3865,3872]. In past years, whether or
not strangeness contributions are suppressed in the proton
is a topic of debate, with mainly the ATLAS data preferring
less suppression as compared to neutrino scattering and CMS
data. However, with more data, in particular measurements
of W+jets and W + c production have provided powerful
input on the strangeness contribution. Today, there is general
agreement by modern PDFs that strangeness is not strongly
suppressed at low x but has substantial suppression at high x .

It has been a decade long debate if the proton may con-
tain an ‘intrinsic’ charm component in addition to that from
gluon splitting, which decreases sharply at large values of x
[3877]. Such models, like the BHPS model, predict that pro-
tons would have a valence-like charm content. Global PDF
analyses are generally inconclusive and therefore more direct
probes are needed [3141,3878]. Since intrinsic charm contri-
butions are enhanced in Z+jet production where the Z boson
has large rapidity, the LHCb experiment is perfectly suited
for these measurements [3871]. As seen in Fig. 316, the data
at forward Z rapidities from a recent Z+c measurement, are
consistent with an intrinsic charm contribution as predicted
by BHPS models. Future analysis of the effect of these data
within PDF fits themselves, however, is still needed.

Since their discovery in the early 1980s, the W and Z
bosons are important probes to understanding QCD. The
early measurements at the S p̄ pS and the Tevatron were crit-
ical in establishing the dynamics of these processes, while at
the LHC, V + jets production is now explored at the high-
est available energies. To step up with experimental preci-
sion, a suite of versatile and precise theory predictions have
been developed to compare to the data. Future measurements
of V+jets production are needed to better understand QCD
theory in very energetic regions of phase space, to measure

electroweak corrections, to improve PDFs and for a better
understanding of heavy flavor production.

12.4 Higgs production

Chiara Mariotti
In July 2012, the ATLAS and CMS Collaborations at the
CERN Large Hadron Collider (LHC) announced the discov-
ery of the last missing piece of the Standard Model (SM) of
elementary particles: the Higgs boson [139,140,3880]. The
discovery arrived about 50 years after theorists had postu-
lated its existence to explain the mechanism by which the
elementary particles acquire mass.

The Higgs boson is the excitation of a field, called
Brout–Englert–Higgs (BEH) field. The field name comes
from the theoreticians who first introduced the mechanism
[43,44,3881]. The BEH field filled the entire universe less
than a picoseconds after the Big-Bang. The elementary par-
ticles interacting with it acquire mass. Without this field the
world would not be the same, as an example the electron
would be massless and atoms could not be formed.

The Higgs boson has unique quantum numbers: J PC =
0++, since the field must be the same everywhere in the space
and should not depend on the reference frame.

Since the time of the discovery, the ATLAS and CMS
experiments have accumulated data during the Run 1 (2009–
2012) at 7 and 8 TeV proton–proton center-of-mass energy
and Run 2 (2015–2018) at 13 TeV. The two collaborations
observed the Higgs boson in numerous bosonic (Z Z , WW ,
γ γ ), and fermionic decay channels (τ+τ−, bb̄ quark), mea-
sured its mass and width, determined its spin-parity quantum
numbers, and measured its production cross sections in vari-
ous modes (gluon–gluon fusion, vector boson fusion, associ-
ated production with a W or a Z, associated production with
2 top quarks). Within the uncertainties, all these observations
are compatible with the predictions of the SM.

Finding the Higgs boson has been very demanding. Its
production cross section is 12 orders of magnitude smaller
than the proton–proton inelastic cross section at LHC ener-
gies. Few hundreds of particles are produced at each colli-
sion, and there can be several simultaneous proton–proton
collisions at each proton bunch crossing (pileup). It is thus
fundamental to have a very good understanding of the reso-
nant and non-resonant hadronic background: production of
background processes via QCD interactions has to be well
understood and modeled.

Because of its large mass, the Higgs boson could not
be discovered at LEP [3882] at CERN, and because of its
very low production cross section it was very challenging to
observe it at the Tevatron [3883] at Fermilab. Only at LHC,
thanks to the energy available in the center-of-mass, and to
the exceptionally high luminosity, it was possible to produce
it with a rate sufficient to discover it.
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Fig. 317 (Left) Cross section for a Higgs boson of 125 GeV of mass as a function of the center-of-mass energy at the LHC [3879]. (Right)
Branching ratios as a function of the Higgs boson mass [3879]

Precise theoretical calculations for the Higgs boson pro-
duction modes and decay channels have been performed; the
results are shown in Fig. 317. The dominant production mode
at the proton–proton LHC collider is the gluon–gluon fusion
(ggF, or pp→ H ) as shown in Fig. 317(left), followed by the
vector boson fusion (VBF, or pp→ qqH ), the associated H
production with vector bosons (pp → ZH,WH ), and the
associated production with two b quarks or two top quarks
or just one top quark. Many groups contributed to the com-
putation of these production cross sections over many years
[3879,3884–3886]. The perturbative order of the calculations
in QCD and EW is indicated in the figure. The thickness of
the line represents the uncertainty of the calculation.

The cross section of the ggF process is known at N3LO
with very good precision (5% in total, of which 3% are due to
missing higher order effects). The calculation of the higher
perturbative orders in QCD, as well as the resummation (see
Sects. 11.1 and 11.2), contribute substantially to the preci-
sion as shown in Fig. 318 [3879]. The parton distribution
functions (PDFs) have been determined with very good accu-
racy by several groups at NNLO in QCD and reached a pre-
cision of ∼ 2% for the gluon–gluon luminosity over a wide
range of energy [3879].

The strength of the Standard Model Higgs boson coupling
is proportional to the mass of the fermions, and to the mass
squared of the vector bosons. Thus it will decay predomi-
nantly to the available elementary particle with larger mass:
for a Higgs boson of mH = 125 GeV, the largest branching
ratio (BR) is to bb̄, followed by W ∗W . The various BRs have
been computed at least at NLO precision for both QCD and
EW corrections, and are shown in Fig. 317(right) [3879].

Calculation of the background processes for the various
Higgs boson decay channels have been and are being com-

Fig. 318 Calculated theoretical ggF cross-section values (blue circles)
at various perturbation orders [3879]. The latest ATLAS (green square)
[3887] and CMS (red triangle) [3888] results from Run2 are also shown

puted with increasing precision at higher order in perturba-
tion theory. In parallel, experiments have developed methods
to estimate the various sources of background in a data-driven
way, not to depend on the availability of Monte Carlo (MC)
simulations, or on precise theoretical calculations and mod-
eling.

12.4.1 Higgs boson properties

The ATLAS and CMS experiments, with the data collected
during the Run 1 and Run 2, measured with very good pre-
cision the properties of the Higgs boson: the mass is mea-
sured with a precision better than 0.2% in the H → γ γ and
H → Z Z → 4! final states:
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ATLAS (H → Z Z → 4! final state only) [3889]:

mH = 124.94± 0.17 GeV

CMS [3890]:

mH = 125.38± 0.14 GeV.

As an example, Fig. 319 shows the diphoton invariant mass
distribution targeting the study of the decay channel H →
γ γ in ATLAS [3891], and the invariant mass distribution of
four charged leptons targeting the study of the decay channel
H → Z Z∗ → 4! in CMS [3890].

The spin and parity have been measured and found to be
compatible with the SM prediction, J P = 0+, at > 99.9%
confidence level (CL) [3892,3893]. The width of the Higgs
boson has been measured to be ΓH = 3.2+2.4

−1.7 MeV by using
off-mass-shell and on-mass-shell Higgs boson production, in
final states with four charged leptons or 2!2ν [3894], with
the assumption that on-shell and off-shell effective couplings
are the same.

All the production modes (except t H and bbH ) have been
observed with a significance larger than 5σ , as well as sev-
eral decay channels: WW , Z Z , γ γ , ττ , bb̄. A 3σ evidence
for the μμ final state was found by the CMS experiment
[3888]. ATLAS and CMS have recently presented results on
the search for the !!̄γ final state, reaching about 3σ signifi-
cance [3895,3896].

The experiments test the compatibility of their measure-
ments with the SM, and the results are generally presented in
two ways: by means of signal-strength modifiers μ (defined
as μ = σ × BR/(σ × BR)SM , or coupling-strength modi-
fiers κ (defined as κ2 = σ/σSM , or κ2 = Γ/ΓSM ) [3886].
Fitting the data from all production modes and decay chan-
nels with a common signal strength μ, the experiment found
the following results:
ATLAS [3887]:

μ = 1.05± 0.04(th)± 0.03(exp)± 0.03(stat),

CMS [3888]:

μ = 1.002± 0.036(th)± 0.033(exp)± 0.029(stat),

showing a very good agreement with the SM, within the
uncertainty. The theoretical (th) uncertainty has decreased
by about a factor of 2 with respect to Run1, thanks to the
huge effort of the theoretical community; the huge increase
in statistics (i.e. 30 times more Higgs boson events), a better
understanding of the detector, and more sophisticated meth-
ods (like Boosted Decision Trees, Deep Neural Network and
Advanced Machine Learning) have helped to decrease the
experimental (exp) and statistical (stat) uncertainty by a fac-
tor of more than two.

For a given production and decay, i → H → f , two
parameters μi and μ f are defined as μi = σi/(σi )SM and
μ f = BR f /(BR f )SM . Many initial states i and final states

Fig. 319 (Upper) The diphoton invariant mass distribution in ATLAS
[3891]. The data events (dots) are weighted by ln(1+ |S|/|B|), where
S and B are the expected signal and background. (Lower) The invariant
mass distribution of four charged leptons targeting the study of the decay
channel H → Z Z∗ → 4! in CMS [3890]

f share the same coupling, e.g. VBF H production and H →
VV decay both involve the HVV coupling (V = W, Z ).
Another example is the H → γ γ , that proceeds via a loop
of W bosons or top quarks, thus involving the HWW and
Htt couplings. Each i i H and H f f coupling is multiplied
by a scaling factor κ , thus defined as κ2

j = σ j/σ
j
SM , or

κ2
j = Γ j/Γ J

SM . The experiments have presented results on
the κ j with the full Run2 statistic [3887,3888].

In the presence of new physics, new particles could con-
tribute to the loops, affecting the various couplings and mod-
ifying the SM relations. Thus an alternative fit could be
performed assuming non resolved loop for the coupling of
the Higgs boson with photons or gluons, and thus assum-
ing effective couplings κγ and κg . The results are shown in
Fig. 320 [3887,3888]. Moreover, in the fit the possibility of
the Higgs boson decaying to invisible particles (i.e. neutrinos
or dark matter candidates), Binv , or to undetected particles,
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Fig. 320 (Left) Coupling-strength modifiers and their uncertainties
per particle type with effective photon, Zγ and gluon couplings in the
ATLAS experiment [3887]. The horizontal bars on each point denote
the 68% confidence interval. The scenario where Binv. = Bu. = 0 is
assumed is shown as solid lines with circle markers. The p-value for
compatibility with the SM prediction is 61% in this case. The scenario
where Binv. and Bu. are allowed to contribute to the total Higgs boson
decay width while assuming that κV ≤ 1 and Bu. ≥ 0 is shown as
dashed lines with square markers. The lower panel shows the 95% CL

upper limits on Binv. and Bu.. (Right) Results of a fit to the coupling-
strength modifiers κ allowing both invisible and the undetected decay
modes, with the SM value used as an upper bound on both κW and κZ
in the CMS experiment [3888]. The thick (thin) black lines indicate the
1 (2) standard deviation confidence intervals, with the systematic and
statistical components of the 1 standard deviation interval indicated by
the red and blue bands, respectively. The p-value with respect to the SM
prediction is 33%

Bu or BUndet. (i.e. particles that may or may not leave a trace
in the detector, and the experiments do not have dedicated
searches looking for these) is allowed. The presence of invis-
ible or undetected decays can be inferred indirectly from a
reduction in the branching fraction for SM decays or by an
increase in the total Higgs boson width. In this interpretation,
the total width becomes ΓH =∑

Γ f (κ)/(1− Binv. − Bu).
Figure 321(left) shows that indeed the Higgs boson cou-

ples with the fermion and boson masses as predicted by
the SM. The very good agreement spans over many orders
of magnitude. The results are shown for CMS [3888],
and ATLAS has presented similar results [3887]. Fig-
ure 321(right) shows the observed and projected values
resulting from the fit in the κ-framework in different data
sets: at the time of the Higgs boson discovery, using the full
data from LHC Run 1, in the Run2 data set (“This paper”),
and the expected 1 standard deviation uncertainty at the high-
luminosity run (HL-LHC) for an integrated luminosity of
3000 fb−1 [3888].

12.4.2 Cross section measurements

With the data collected during Run 1 and Run 2, the ATLAS
and CMS experiments measured the Higgs boson ggF pro-
duction cross section with about 6% precision. The total cross
section measurement from ATLAS [3887] at

√
s = 13 TeV

is 50.2 ± 3.0 pb, and CMS measures 48.3 ± 2.7 pb [3888],
both in agreement with the SM prediction of 48.5+1.5

−1.9 pb, as
shown in Fig. 318.

Figure 322 shows the cross sections for different produc-
tion processes and the branching fractions for different decay
modes, as measured by the ATLAS experiment [3887].

12.4.3 The simplified template cross section

The simplified template cross section (STXS) method has
been developed at the Les Houches 2015 workshop, and
within the LHC Higgs Cross Section Working Group [3879]
with the aims to separate more cleanly measurement and
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Fig. 321 (Left) Measured Higgs boson couplings to fermions and
gauge bosons as a function of the fermion or gauge boson mass, where
υ is the vacuum expectation value of the BEH field, and κi are the cou-
pling modifiers as described in the text [3888]. (Right) Observed and
projected values resulting from the fit in the κ-framework in different

data sets: at the time of the Higgs boson discovery, using the full data
from LHC Run 1, in the Run 2 data set (this paper), and the expected 1
standard deviation uncertainty at the HL-LHC for an integrated lumi-
nosity of 3000 fb−1 [3888]. These results assume that no contributions
from BSM is present in loops

Fig. 322 (Left) Observed and predicted cross section for different
Higgs boson production modes, measured assuming SM values for the
decay branching fractions in ATLAS [3887]. (Right) Observed and pre-

dicted branching fractions for different Higgs boson decay channels.
The lower panels show the ratio of the measured values to their SM
predictions [3887]
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Fig. 323 Observed and predicted Higgs boson production cross sec-
tions in different kinematic regions [3887]. The vertical bar on each
point denotes the 68% confidence interval. The p-value for compatibility
of the combined measurement and the SM prediction is 94%. Kinematic
regions are defined separately for each production process, based on the
jet multiplicity, the transverse momentum of the Higgs boson pT (H)

and vector bosons pT (W ) and pT (Z) and the two-jet invariant mass
(m j j ). The V H -enriched and VBF-enriched regions with the respec-
tive requirements of 60 < m j j < 120 GeV and m j j < 60, m j j > 120
GeV are enhanced in signal events from V H and VBF productions,
respectively

interpretation steps in order to reduce the theory dependen-
cies that are folded into the measurements (including the
dependence on theoretical uncertainties and on the underly-
ing physics model). Its primary goals are to maximize the
sensitivity of the measurements and to minimize their the-
ory dependence. The method is designed to measure cross
sections separated into production modes (instead of signal
strengths), in mutually exclusive regions of phase space, and
to be inclusive over Higgs boson decays, allowing to perform
a global combination of all decay channels and to ease inter-
pretation and search for BSM phenomena. Figure 323 shows
the results of ATLAS for the LHC Run2 data [3887].

12.4.4 Differential distributions

The large data set accumulated during the LHC Run 2
allowed the experiments to do the first studies of differen-
tial distributions. A convenient set of kinematic variables to
describe the Higgs boson production in hadronic collisions,
and to test QCD consists of the transverse momentum pT ,
the rapidity y, and the azimuthal angle φ. The first two vari-
ables allow to understand many important QCD effects. The
pT distribution is sensitive to perturbative QCD, and at low
value it is strictly connected with the resummation of the
leading logarithms, while at large values new physics could
manifest. The y distribution is sensitive to the parton distri-
bution functions. At LHC the processes should not depend
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on φ. Two important additional variables, that probe the the-
oretical modeling of high-pT QCD radiations in Higgs boson
production, are the number of jets in the event, N jet , and the

transverse momentum of the leading jet, plead. jetT .
Differential distributions are usually measured unfolding

the detector resolution and efficiency effects and calculat-
ing “fiducial” cross sections. Cross sections are measured
in a fiducial phase space, which is defined to closely match
the experimental acceptance in terms of the physics object
kinematics and topological event selection. This approach is
chosen in order to reduce the systematic uncertainty associ-
ated with the underlying model and with the extrapolation
to non-measured regions. As an example, the fiducial phase
space for H → 4! constitutes approximately 50% of the total
phase space. The fiducial differential cross sections are then
compared with the various MC simulations and analytical
calculations.

Figure 324 shows the differential cross section for the pro-
cesses pp→ H → 4!, pp→ H → γ γ , and their combina-
tion as a function of the Higgs boson transverse momentum,
its rapidity, the number of jets in the event, and the leading jet
pT as measured by the ATLAS experiment [3897]. The data
are compared with various theoretical predictions, all nor-
malized to the total cross section, where the dominant ggF
contribution is calculated at fixed order N3LO.

Figure 325 shows the double differential fiducial cross
section measured in bins of pγ γT and n jets for H → γ γ

events in the CMS experiment [3898]. The data are compared
to the predictions from different setups of the event generator
MadGraph5_aMC@NLO (version 2.6.5) [3385].

12.4.5 The Higgs boson and heavy quarks

The dominant decay of the SM Higgs boson is into pairs of
b quarks, with an expected branching fraction of approxi-
mately 58% for a mass of 125 GeV, but the large background
from multi-jet (QCD) production makes the search in ggF
very challenging. The decay of the Higgs boson to bb̄ was
observed during Run 2 by ATLAS and CMS, in events where
the H is produced in association with a vector boson, i.e. in
the WH and ZH production modes [3899,3901]. In these
events, the leptonic decay of the vector boson allows for
efficient triggering and a significant reduction of the multi-
jet background. In addition, two identified jets coming from
the hadronization of b quarks from the Higgs boson decay
are required. The dominant background processes after the
event selection are V+jets, t t̄ , single-top, diboson process
and multi-jets.

Benefiting from multivariate techniques (MVA) and new
machine learning algorithms, the experiments are now devel-
oping analyses to search for H → bb̄ inclusively in the pro-
duction mode. Highly Lorentz-boosted Higgs bosons decay-

ing to bb̄, recoiling against a hadronic system, are recon-
structed as single large-radius jets, which are identified using
jet substructure algorithms and a dedicated b tagging tech-
nique based on a deep neural network (see Sect. 11.5). The
jet mass is required to be consistent with that of the observed
Higgs boson, and the jet transverse momentum is required
to be pT > 400−450 GeV. The analyses are validated using
Z → bb̄ events. The measured cross section is compatible
with the SM one, but for the moment the uncertainty is still
very large, i.e. around 10% [3902,3903]. Figure 326(left)
shows the reconstructed bb̄ invariant mass for the selected
V H events in the ATLAS experiment [3899].

The decay branching fraction of the SM Higgs boson into
a pair of c quarks is slightly less than 3%. The difficulties
to measure this channel are even larger than for the b quark
final state, because the main background to c jet identifica-
tion is indeed from b jets. Higgs boson candidates, produced
in association with a W or a Z boson, are constructed from
the two jets with the highest pT , with at least one jet identi-
fied as originating from a c quark. [3900,3904]. In CMS the
search is extended to events in which the H boson decays to
a single large-radius jet. Additionally, a b−jet identification
algorithm is used to veto b jets. Novel charm jet identifica-
tion and analysis methods using machine learning techniques
are employed. In Fig. 326(center) the cc̄ tagging efficiency
is shown versus the efficiency of misidentifying quarks and
gluons from V+jet and H → bb̄ in CMS. The analysis is val-
idated by searching for Z → cc̄ decays in the V Z process,
leading to the first observation of this process at a hadron
collider with a significance of 5.7 standard deviations, as
shown in Fig. 326(right) [3900]. The observed upper limit
on σ(V H)BR(H → cc̄) is ranging from 14 to 26 times the
SM prediction, for an expected limit that ranges from 7 to 31
for CMS and ATLAS, respectively.

The t t̄ H and t H production channels probe the coupling
of the Higgs boson to the top quarks. The large mass of
the top quark may indicate that it plays a special role in
the mechanism of electroweak symmetry breaking. Devia-
tions from the SM prediction would indicate the presence
of physics beyond the SM. The measurement of the Higgs
boson production rate in association with a top quark pair
(t t̄ H ) provides a model-independent determination of the
magnitude of the top quark Yukawa coupling yt . The sign of
yt is determined from the associated production of a Higgs
boson with a single top quark (t H ). The t t̄ H and t H produc-
tion channels are studied in the case where the Higgs boson
and the top quarks subsequently decay into final states with
several leptons (including taus, also when they decay hadron-
ically), complementing dedicated studies of the H → γ γ ,
H → Z Z → 4!, and H → bb̄ decay modes. Several
MVA techniques are employed to better separate the t t̄ H
and t H production modes. The t t H production modes has
been observed in Run 2 [3905,3906]. The precision on the
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Fig. 324 Differential pp → H + X cross-sections, in the full phase
space, as a function of variables characterising the Higgs boson kine-
matics in ATLAS [3897]: a Higgs boson transverse momentum pHT , b
Higgs boson rapidity yH , c number of jets and d pT of the leading jet,
compared with the Standard Model prediction. The H → Z Z∗ → 4!
(blue triangles), H → γ γ (magenta inverted triangles), and combined
(black squares) measurements are shown. The error bars on the data
points show the total uncertainties, while the systematic uncertainties
are indicated by the boxes. The measurements are compared with two
predictions, obtained by summing the ggF predictions of NNLOPS or

MG5 FxFx, normalized to the fixed order N3LO total cross-section,
and MC predictions for the other production processes XH . The shaded
bands indicate the relative impact of the PDF and scale systematic uncer-
tainties in the prediction. These include the uncertainties related to the
XH production modes. The dotted red histogram corresponds to the
central value of the prediction that uses NNLOPS for the modelling of
the ggF component. The bottom panels show the ratios between the pre-
dictions and the combined measurement. The grey area represents the
total uncertainty of the measurement. For better visibility, all bins are
shown as having the same size, independent of their numerical width

top Yukawa coupling and on t t̄ H cross section measurement
is presented in Figs. 320 and 322.

12.4.6 Precision Higgs boson physics

The Higgs boson was discovered by the ATLAS and CMS
experiments in 2012 at the LHC. With the data taken dur-
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Fig. 325 Double differential fiducial cross section measured in bins of
pγ γT and n jets [3898]. The observed differential fiducial cross section
values are shown as black points with the vertical error bars showing
the full uncertainty, the horizontal error bars show the width of the
respective bin. The grey shaded areas visualize the systematic com-
ponent of the uncertainty. The colored lines denote the predictions
from different setups of the event generator. All of them have the
HX = V BF+V H + t t H component from MadGraph5_aMC@NLO
in common. The green lines show the sum of HX and the ggF compo-
nent from MadGraph5_aMC@NLO reweighted to match the nnlops
prediction. For the orange lines no nnlops reweighting is done and
the purple lines take the prediction for the ggF production mode from
POWHEG. The hatched areas show the uncertainties on theoretical pre-
dictions. Only effects coming from varying the set of PDF replicas, the
αS value and the QCD renormalization and factorization scales that
impact the shape are taken into account here, the total cross section is
kept constant

ing the Run1 and Run2 the two experiments successfully
tested the SM Higgs boson. The precision on the couplings
is ranging from 3% for the coupling to the Z , to 10% for
the coupling to bb̄ and t t̄ , to 20–30% for the couplings to
muons and Zγ . Run3 and the high-luminosity LHC (HL-
LHC) will deliver approximately 3000 fb−1 of luminosity to
each experiment. By the end of HL-LHC, rare decays chan-
nels such as H → μμ and H → Zγ will be observed and
studied, the SM Higgs boson pair production is estimated to
be observed with a significance of 4 to 5 standard deviations,
when combining the results of the two experiments, as well
as the Higgs boson coupling to charm quarks. As of today,
the experiments have analysed only 3% of the Higgs boson
events that they will have at the end of LHC. By then, most
of the couplings measurements will reach the 2 to 3% preci-
sion, sufficient to start exploring contributions from physics
beyond the SM in the Higgs boson area. A detailed discussion
on the physics reach at HL-LHC is given in Sect. 14.9.

12.5 Top quark physics

Marcel Vos

12.5.1 A brief history of the top quark

The late 1960s and early 1970s established the quark model,
as described in Sect. 1. After the discovery of the charm
quark [91,92] in 1974, and the bottom quark [3907] in 1977,
the hunt for the sixth quark was open. An intensive search
at PETRA for a t t̄-resonance or a jump in cross section was
carried out with the result that the top quark, if it exists,
must be bigger than 23 GeV. Higher order predictions of
electroweak quantities in the Standard Model, being a gauge
theory, depend on all model parameters, in particular on the
masses of the yet unknown top quark and the Higgs boson
[3908]. At the end of the 1980s sufficiently precise measure-
ments existed to predict the top quark mass. It came as a big
surprise that the predictions indicated a value in the range
between 100 and 200 GeV [3909,3910]. The new measure-
ments of the Z-shape parameters at LEP and SLC resulted
in precise predictions of the top quark mass : 125± 40 GeV
[3911], 164+16+18

−17−21 GeV [3912] and 177+11+18
−11−19 GeV [3913].

One year later, 1995, the two collaborations at the Teva-
tron, CDF and D0, discovered the top quark at the predicted
value. Their measured values are CDF : 177+11+18

−11−19 GeV [85]

and D0 199+19
−21 ± 22 GeV [3914]. The present best value is

172.69± 0.30 GeV [616].
The top quark pair production process – leading-order dia-

grams are shown in the top row of Fig. 327 – is the domi-
nant process at hadron collider. The two Tevatron experi-
ments could also demonstrate the existence of the electro-
weak single-top-quark production processes in the t-channel
[3915,3916] and s-channel [3917]. Feynman diagrams are
shown in the bottom row of Fig. 327. Precise measurements
confirmed key SM predictions, such as the forward-backward
asymmetry in t t̄ production [3918] and the W -boson helicity
fractions in top quark decay [3919]. Last but not least, the
Tevatron legacy includes a top quark mass combination with
a sub-GeV precision [3920].

The Large Hadron Collider [3921] at CERN entered oper-
ation in 2010 with pp runs at 7 TeV and 8 TeV. Data tak-
ing resumed at 13 TeV in 2015, and the ATLAS and CMS
experiments had harvested 140 fb−1 by 2018. At the time of
writing, in summer 2022, run 3 has just started with pp colli-
sions at 13.6 TeV. The large center-of-mass energy strongly
enhances the top quark production cross section. Top quark
pair production is primarily from the gluon-initiated dia-
grams of Fig. 327 in pp collisions at LHC energies, while in
the p p̄ collisions at the Tevatron, quark–anti-quark produc-
tion dominated. In combination with the large instantaneous
luminosity, the LHC is a genuine “top factory”. More than
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Fig. 326 (left) The distribution of mbb in data after subtraction of all
backgrounds except for the WZ and Z Z diboson processes. All the
contributions are summed and weighted by their respective S/B ratios,
with S being the total fitted signal and B the total fitted background. The
expected contribution of the associated WH and ZH production of a
SM Higgs boson withmH = 125 GeV is shown scaled by the measured
signal strength (μ = 1.17). The size of the combined statistical and sys-
tematic uncertainty for the fitted background is indicated by the hatched
band [3899]. (center) Performance of CMS algorithm ParticleNet for
identifying a cc̄ pair for large-radius jets with pT > 300 GeV. The solid

(dashed) line shows the efficiency to correctly identify H → cc̄ vs the
efficiency of misidentifying quarks or gluons from the V+jets process
(H → bb̄). The red crosses represent the three working points used
in the large-radius jet analysis [3900]. (right) Invariant mass distribu-
tion of the selected cc̄ events [3900]. The lower panel shows the data
(points) and the fitted V H(H → cc̄) (red) and V Z(Z → cc̄) (grey)
distributions after subtracting all other processes. Error bars represent
pre-subtraction statistical uncertainties in data, while the gray hatching
indicates the total uncertainty in the signal and all background processes

Fig. 327 Leading-order Feynman diagrams for top quark pair production and (top row) and electro-weak single top production (bottom row)

100 million t t̄ pairs have been produced in run 1 and 2 and
more than 1 billion are expected in future runs. The LHC
therefore marks a new era in experimental top-quark physics
and dominates the summary in this chapter.

Its properties make the top quark an ideal laboratory for
studies of the electro-weak and strong interactions. As the top
quark mass of approximately 172 GeV exceeds that of the
W -boson, the decay t → Wb is kinematically allowed and
makes up nearly 100% of the branching ratio (with sub-%
fractions of top quarks decaying to Wd and Ws in the Stan-
dard Model). The subsequent W+ → l+νl and W− → l−ν̄l
decays of the W -boson yield an isolated charged lepton

l± = e±, μ±, τ±. These are a key signature to trigger and
select events with top quarks at hadron colliders. The charge
of the lepton furthermore reveals whether the decay corre-
sponds to that of a top-quark or anti-quark, providing an
efficient “tag” for asymmetry measurements [3922]. Finally,
the charged lepton is an efficient polarimeter that enables
studies of top quark polarization [3923], spin correlations
[3924,3925] and quantum entanglement [3926]. All these
features lead to a rich and varied experimental top quark
physics programme.
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12.5.2 Precise predictions for top quark physics

The calculability of top quark production is one of the keys
to the top quark physics programme at hadron colliders.
The large top quark mass regulates perturbative calculations,
enabling precise predictions of QCD processes with colored
objects in the final state.

The fully differential top quark pair production cross sec-
tion at hadron colliders is known to NNLO accuracy in
the strong coupling [3396,3453,3927]. Electro-weak correc-
tions are available at NLO [3928] and NNLL resummations
are available. Predictions of the inclusive pp → t t̄ produc-
tion rate reach an uncertainty of 4–5%. The uncertainty is
dominated by the scale uncertainties, that estimate the impact
of higher-order QCD corrections, followed closely by the
PDF uncertainties.

While the NNLO calculation of top quark pair production
is a major milestone, it remains a considerable challenge to
meet the experimental precision that can be achieved at the
LHC. The most precise measurements reach an uncertainty
a bit over 2%, half that of the predictions. The NNLO QCD
corrections have a sizable impact on the shape of differential
measurements, in particular on the top PT and related distri-
butions [3453,3927–3929]. Fully differential NNLO fixed-
order calculations and Monte Carlo generators are required
to provide an adequate description of the data collected by
ATLAS [3930–3932] and CMS [3933–3936].

Associated top quark production processes with electro-
weak bosons become accessible at the LHC and provide a
direct probe of the top quark interactions with the Higgs
boson and the neutral electro-weak gauge bosons (see for
instance Ref. [3937] and references therein). The t t̄ X pro-
cesses at the LHC are known to NLO accuracy, and uncer-
tainties on the inclusive production rates are well below 10%.
The experimental results for these rare processes are improv-
ing rapidly and already challenge the precision of the best SM
predictions. Resummation to NNLL and NLO electroweak
corrections are available [1993,3938] and elements of the
NNLO calculations for t t̄ H production are known [3939]. A
complete NNLO description is required for all t t̄ X processes
to take full advantage of the HL-LHC programme [3940].

NLO calculations are available for 2 → N processes that
include top quark decays and off-shell effects [3941]. These
provide sizable corrections for the top quark pair production
process and associated production processes.

Predictions at the particle- and detector-level play an
important role in measurements of top quark cross sections
and properties and in searches for rare processes. State-of-
the-art Monte Carlo generators match NLO matrix elements
to the parton shower and hadronization models implemented
in Pythia8 [3942] or Herwig [3943]. The work horse imple-
mentations for the LHC programme during run 1 and run 2
are provided by the Powheg-box [3601,3602,3628], where

resonance-aware matching is an important recent addition for
top physics [3944], and the MG5_aMCNLO [3385] package,
that can include also NLO electroweak corrections [3387].
SHERPA [3579] offers multi-leg generation for top quark
pair production and other high-jet-multiplicity processes
involving top quarks. The MINNLOps package [3945,3946]
provides a Monte Carlo event generator at NNLO accuracy
for top quark pair production that can be interfaced to Parton
Shower and hadronization programmes.

12.5.3 Precision measurements at hadron colliders

The measurements of top quark production cross sections
in the ATLAS experiment are summarized in Fig. 328. The
measurements cover four different center-of-mass energies
(5, 7, 8 and 13 TeV) and span over five decades in production
rate: from O(1 nb) for top quark pair production to O(10 fb)
for t t̄ t t̄ production. The experimental results indicated by the
colored markers are compared to the best available Standard
Model predictions in grey.

The measurements of the production cross section for the
classical top quark production processes have become pre-
cision measurements, with the measurement of the inclusive
cross section reaching 2.4% precision [3931]. The result is
limited by the knowledge of the integrated luminosity deliv-
ered by the LHC. Progress in the understanding of the lumi-
nosity calibration is expected to reduce this uncertainty to
about 1%, but this is likely to remain the limiting factor for
the most precise inclusive measurements.

Also electro-weak single top production is characterized
precisely in the t-channel and tW associated production
channel. With a precision of less than 7% for the t-channel
[3947], the Cabibbo–Kobayashi–Maskawa matrix element
Vtb is determined as: | fLV Vtb| = 1.02 ± 0.04, where the
uncertainty includes contributions from experiment and pre-
dictions and fLV is a form factor, identical to 1 in the SM,
that parameterizes the possible presence of anomalous left-
handed vector couplings. This result is in good agreement
with the determinations from b-physics [300].

The LHC programme has eclipsed the Tevatron measure-
ments in nearly all processes and measurements. However,
the Tevatron legacy remains very relevant, as the different ini-
tial states (p p̄ instead of pp) and center-of-mass energy lead
to important complementarities and Tevatron data continue
to provide important inputs for global analyses. Several high-
lights of the Tevatron programme remain unrivalled to this
day, as the dominance of qq̄-initiated production provides
an ideal laboratory for certain measurements. Good exam-
ples are the study of s−channel single top quark production
[3917] and the measurement of the forward-backward asym-
metry in t t̄ production, that reached a high significance for
the SM effect at the Tevatron [3918].
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Fig. 328 Measurements of
production cross sections for
processes with top quarks in the
final state by the ATLAS and
CMS experiments. The
experimental results indicated
by the colored markers are
compared to the best available
Standard Model predictions in
grey. Figure courtesy of the
ATLAS experiment

12.5.4 Boosting sensitivity

The enormous sample of top quark pairs collected at the
LHC enables precise differential cross section measure-
ments. Many measurements extend well into the boosted
regime, where the top quark transverse momentum sig-
nificantly exceeds the top quark mass and the collimated
hadronic top quark decays are reconstructed as a single large-
radius jet.

From the first observation of boosted top quark candi-
dates at the start of the LHC, the study of their production
has come a long way. An avalanche of new techniques has
been developed [3948], from pile-up mitigation to top tag-
ging algorithms, and the experiments have carefully char-
acterized jet substructure [3949,3950] and the experimen-
tal response [3664]. With the large samples of boosted top
quarks, these developments have enabled precise measure-
ments of top quark interactions in the most energetic colli-
sions at the LHC. The most recent measurements of top quark
pair production in the boosted regime [3951,3952] yield pre-
cise bounds on the Wilson coefficients of the qq̄t t̄ opera-
tors in the Standard Model Effective Field Theory (see Refs.
[3953,3954] and references therein), as the energy-growth
of their impact boosts the sensitivity of these measurements.

12.5.5 New rare top quark production processes

The right half of Fig. 328 is devoted to the new, rare associ-
ated top quark production processes that were observed by
the LHC experiments in run 2. Many of these measurements

scrutinize aspects of the Standard Model description of the
top quark interactions that were not, or not directly, tested
at previous facilities. The associated production processes
of a top quark pair with a photon [3955,3956] or Z -boson
[3957,3958] offer a new, direct probe to the neutral-current
interactions of the top quark [3937]. These processes are
well-established and differential measurements are available.
More recently, the single top production process in associa-
tion with a Z -boson [3959,3960] and a photon [3961] were
observed as well. The observation of the pp → t t̄ H pro-
duction process [3905,3962] confirms unambiguously that
the heaviest SM particle indeed couples to the Higgs boson.
The combination of rate measurements in different produc-
tion and decay channels yields a robust estimate of the top-
quark Yukawa coupling [3887,3888]. In LHC run 2 the first
evidence was found for four-top-quark-production. Refined
analyses of the run 2 data by ATLAS [3963] and CMS [3964]
could establish the existence of this very rare and spectacu-
lar process with a significance well over 5 σ per experiment
by the time of the Moriond conference in 2023. With more
data from run 3 of the LHC and improved experimental tech-
niques precise measurements of the production cross section
will provide a probe for the four-heavy-quark vertex and an
alternative determination of the top quark Yukawa coupling.

Rare top quark production processes provide qualitatively
new information on previously unprobed interactions and
form a valuable input to fits of the Standard-Model-Effective-
Field-Theory parameters to collider data [3937,3953,3954].
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12.5.6 New physics searches with top quarks

Beyond Standard Model (BSM) searches in final states with
top quarks have pioneered the development of tools for
boosted object tagging. Thus prepared, the experiments have
been able to take advantage of the LHC centre-of-mass
energy to push bounds on new massive states beyond 1 TeV
and in many cases into the multi-TeV range. The t t̄ resonance
searches by ATLAS and CMS indicate that new narrow mas-
sive states that decay to top quark pairs or a top and bottom
quark cannot have a production cross section times branch-
ing ratio greater than 0.1 pb in the mass region from 1.5 to
4–5 TeV. Concrete scenarios such as the bulk RS KK gluon
[3965] and W ′ bosons are excluded for resonance masses
up to 4 TeV[3966]. Searches for vector-like quarks decaying
to a top quark and Higgs or gauge boson yield lower limits
greater than 1 TeV for the mass of the vector-like quarks.

The integrated luminosity is a key for the search for
flavor-changing-neutral-current (FCNC) interactions of the
top quark. The branching fractions t → qX decays (with
X = γ, Z , g, H ) are suppressed well beyond the experimen-
tal sensitivity in the SM, but can be enhanced to O(10−5) in
several extensions [3967]. An even larger branching ratio
BR(t → cH) ∼ 10−3 can be present in certain two-
Higgs-doublet models [3968,3969]. The observation of these
FCNC interactions would be an unambiguous sign of physics
beyond the Standard Model.

Searches have advanced rapidly in sensitivity in run
2 and the exclusion bounds in Fig. 329 are reaching
O(10−4−10−5), scratching the surface of the branching
ratios predicted in viable models. The inclusion of single
top production in association with a Higgs or gauge boson
have been important to improve the bounds, in particular for
the FCNC vertex with an up-quark.

12.5.7 The top quark mass

The top quark mass is a fundamental parameter of the SM
Lagrangian that must be determined experimentally. As any
other quark mass, its definition generally depends on the
renormalization scheme and the value of the renormaliza-
tion scale at which it is evaluated. The pole mass scheme is
used in Monte Carlo generators and many fixed-order cal-
culations. The MS mass is extracted from the top quark pair
production cross section [3970].

Three main classes of measurements of the top quark mass
at hadron colliders are discussed below. A selection of results
obtained with each approach is presented in Fig. 330.

The first class of measurements extracts the top quark mass
from the comparison of top quark pair cross section measure-
ments (corrected to the parton level) to SM predictions at
NNLO+NNLL accuracy. The uncertainty of the mass deter-
mined from the total cross section a 13 TeV is around 2 GeV.

Fig. 329 Leftmost panel: summary of the searches for FCNC inter-
actions of the top quark with the Higgs boson, photon, gluon and Z -
boson. 95% confidence limits are derived on the equivalent branching
ratio t → Xu and t → Xc, and in some cases for left-handed and
right-handed couplings (left-handed couplings are assumed for the lim-
its collected in the summary plot in those cases). Figure courtesy of
the LHC top Working Group. Rightmost panel: selection of top quark
mass measurements at the Tevatron and LHC, by category. ATLAS mea-
surements are indicated with blue markers, CMS measurements in red
and the Tevatron or combined Tevatron-LHC results in black. The 2014
world average is given by the pink bar, and the indirect determination of
the top quark mass from the electroweak fit with the cyan band. Figure
prepared by the author based on data collected by the LHC top Working
Group

This includes a theoretical uncertainty, estimated by varying
the renormalization and factorization scales and propagat-
ing uncertainties from the parton distribution functions of
the proton. Importantly, recent cross section measurements
have a much reduced dependence on the mass assumption
in the correction of detector acceptance and efficiency, such
that in practice the dependence on the MC mass parameter
can be ignored to good precision. There is a broad consensus
that this method yields a solid measurement with a rigorous
interpretation. Future progress is expected from improving
fixed-order calculations and PDFs, and from a reduction of
the luminosity uncertainty on the experimental side.

A more precise determination is possible based on
measurements of differential cross sections [3971]. These
enhance the mass sensitivity in e.g. the threshold region. In
the shape analysis of the differential cross section impor-
tant uncertainties in the absolute cross section and integrated
luminosity cancel, leading to a precision of about 1 GeV for
the most precise measurements [3972]. The theory uncer-
tainty is accounted for in the same way as in the inclusive
measurements and the method retains some flexibility in the
choice of the mass scheme. More work is required, however,
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Fig. 330 Selection of top quark mass measurements at the Tevatron
and LHC, by category. ATLAS measurements are indicated with blue
markers, CMS measurements in red and the Tevatron or combined
Tevatron-LHC results in black. The 2014 world average is given by
the pink bar, and the indirect determination of the top quark mass from
the electroweak fit with the cyan band. Figure prepared by the author
based on data collected by the LHC top Working Group

to account for bound-state effects in the threshold region
[3973].

The third, and experimentally most precise, approach
determines the mass parameter of the Monte Carlo gener-
ator that yields the best fit to the observed distribution of top
quark decay products. The 2014 combination of Tevatron and
LHC run 1 results yieldsmt = 173.3± 0.8 [3974] and is used
as a reference in Fig. 330, indicated by the magenta area. The
most precise single measurements by CDF, D0, ATLAS and
CMS have since reached an uncertainty of approximately
400–600 MeV.

The results of direct mass measurements are interpreted as
the top quark pole mass. An additional uncertainty is assigned
to cover the ambiguity in this interpretation. Analytical inves-
tigations into the relation between top mass parameter of the
Herwig Monte Carlo and the mass in field-theoretical mass
scheme observe that the parton shower cut-off in the Monte
Carlo generator (typically set to 1 GeV) alters the mass defi-
nition in a non-negligible way [3975]. A quantitative relation
of the top mass parameter with the pole mass is obtained by
comparing particle-level observables in the Monte Carlo gen-
erator with first-principle calculations[3976,3977]. Based on
these studies, Ref. [3978] proposes a 500 MeV uncertainty
in the interpretation of direct mass measurements. Important
theory work is ongoing to improve the Monte Carlo tem-

plates [3979,3980], including top quark decay at NLO and
full off-shell effects.

The analysis of run 2 results is in full swing. The last two
points in the rightmost panel of Fig. 330 correspond to two
innovative analyses on partial run 2 data. ATLAS published
an analysis based on a purely leptonic observable, the invari-
ant mass of the system formed by the prompt lepton from
W-decay and the soft muon found in the b-jet, shifting the
systematic uncertainties from jet response to fragmentation
and B-decay modelling. A recent preliminary result by CMS
[3981] based on a profile-likelihood fit reaches an uncer-
tainty below 400 MeV. This result demonstrates the power
of the profile-likelihood-fit approach in top quark mass mea-
surements, but also emphasizes the importance of a robust
uncertainty model for MC-related uncertainties. A combina-
tion of all measurements collected can reach an experimental
precision of 300 MeV.

Projections of future improvements are notoriously hard
in this area, where a detailed understanding of the limitations
of Monte Carlo generators is key. Direct measurements can
potentially be improved to an experimental precision below
200 MeV in the remainder of the LHC programme [3940],
while cross-section-based mass extractions can reach a total
uncertainty below 500 MeV [3982].

12.5.8 Top quark data in global analyses

The top quark and the results in the top quark sector presented
in previous sections are inevitably part of the “global” inter-
pretations of collider data. In this section, three examples are
briefly discussed.

Most recent analyses of the parton density functions
[3810] consider also data on top quark production,114 that
provide an important constraint on the high-x gluon content
of the proton. The ATLAS PDF fit [3825] includes differen-
tial measurements of t t̄ production, using NNLO predictions
with a fixed top quark mass. The CMS experiment has per-
formed a global analysis [3983] with partial run 2 data, where
the top quark pole mass is floated, as well as the PDFs and
the strong coupling. The analysis is based on NLO predic-
tions for the top quark pair production process and threshold
corrections remain to be included.

Radiative effects connect electroweak precision observ-
ables at the Z -pole to precise measurements of αs and the W -
boson, Higgs boson and top quark masses. The electroweak
fit tests the relations among these parameters predicted by
the SM and forms a stringent check of the internal consis-
tency of the theory. In global electro-weak fits [3726,3984]

114 To avoid absorbing potential BSM contributions to top quark pro-
duction in the PDFs, care is taken to select differential measurements
that are less likely affected. PDF results without top data are available
in at least one PDF set and allow for important cross-checks.
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before 2022 there is a very mild tension between direct top
quark mass measurements and the mass inferred from pre-
cision electroweak data (e.g. the magenta and cyan bands in
Fig. 330). Inclusion of the 2022 CDF W -mass measurement
[3985] leads to considerable tension in the fit [3986,3987].
The main avenue towards a tighter test should focus on an
understanding and improvement of the W -boson mass mea-
surements, but eventually also the precision of measurements
of other parameters, among which the top quark mass, must
be improved.

The legacy data from collider experiments are collected in
the framework of the Standard Model Effective Field Theory.
Global fits of the top quark sector have been performed by
several groups [3988,3989]. State-of-the-art fits include a
combined analysis of Higgs, electroweak and top data [3953,
3954], showing an interesting interplay between the top and
Higgs sectors through the effect of operators involving top
quarks in loops, for instance in gg → H and H → γ γ ,
through the box diagram contribution to di-Higgs production
and through the associated production of top quarks and a
Higgs boson.

12.5.9 Outlook

A vibrant top quark physics programme was started at the
Tevatron and has culminated in a broad and rich programme
at the LHC. Direct searches in final states with top quarks
explore the multi-TeV regime looking for signs of new res-
onances and exotic phenomena. Precise measurements of
the classical top quark production processes and many new
rare processes involving top quarks and the Higgs and gauge
bosons form a powerful set of constraints on top quark cou-
plings. The top quark mass is known to a precision of less
than 0.5%.

The upcoming runs of the LHC and its high-luminosity
upgrade are expected to improve considerably on current run
2 results [3940], increasing the precision, pushing differen-
tial measurements further into the high-energy regime, and
probing ever more rare processes. Projections are particu-
larly encouraging for rare associated production processes,
where statistical limitations remain important and theory pre-
dictions are currently only available at NLO accuracy.

Top quark physics is an important consideration also
for a new facility in high energy physics beyond the HL-
LHC. A new electron–positron collider is identified as the
highest-priority installation in the European, American and
Asian road maps for particle physics. All projects for such a
Higgs/EW/top factory envisage operation at and above the t t̄
production threshold. This enables scrutiny of the top quark
in e+e− collisions and provides precision measurements of
the top quark mass, with O(50 MeV) precision [3990], and
electroweak couplings, that improve by an order of magni-
tude compared to the HL-LHC projections [3991].

A new pp collider at the energy frontier can potentially
push the discovery reach for massive particles by a further
order of magnitude. It can also unlock ultra-rare SM pro-
cesses, such as six-top-production and t t̄ H H . Quantitative
projections remain to be made, as well as more detailed
studies of top quark reconstruction in this challenging envi-
ronment. Also the top quark physics of a multi-TeV lepton
collider, be it the CLIC high-energy stage, a muon collider
or a novel installation based on plasma-wakefield acceler-
ation, remains to be explored in detail. High-energy lepton
collisions, well above 1 TeV, offer the possibility to con-
strain four-fermion operators with two light particles and two
top quark to unprecedented precision [3992], and provide an
exquisite precision probe for new physics [3993].

12.6 Soft QCD and elastic scattering

Per Grafstrom

12.6.1 Introduction

Soft QCD has become a term covering many different topics.
Elastic scattering and diffraction are central topics associated
with soft QCD but in addition there is a long list of different
areas associated with the term Soft QCD e.g. particle cor-
relations, multiple parton interactions, particle densities, the
underlying event. The list is not inclusive and could be made
longer. It covers an enormous amount of different processes
and concepts and just the elastic and diffractive part repre-
sents by itself more than 30–40% of the total cross section
(σtot ) at high energy hadron colliders. What basically uni-
fies all those different processes is a large distance scale or
equivalently a relative small momentum transferred in the
reaction.

Another way of expressing the same criteria is to say that
“Soft QCD” deals with processes for which the perturba-
tive approach of QCD is not applicable due to the size of
the strong coupling at small momentum transfer. This is a
direct consequence of the running of the strong coupling αs .
In this low momentum transfer regime more phenomenolog-
ical approaches have to be applied. However, while using
phenomenological methods, the aim is always to try to pro-
vide a smooth transition to harder and thus perturbative QCD
processes.

Soft QCD processes have an interest in their own right
representing a particular challenging part of QCD. However,
there are a number of other reasons that motivate trying to
achieve a better understanding of Soft QCD processes. The
Soft QCD processes represent often the most significant cor-
rection in searches for new physics. The so called underlying
event stands for everything which is produced in a pp colli-
sion except for the hard scatterer. The better one understands
the underlying event the easier it is to extract signals for new
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physics. There is also the phenomena of pile-up at modern
colliders. In order to push the instantaneous luminosity to
such high values that very rare processes can be detected, the
colliders have to be operated with such high bunch popula-
tion that about fifty separate interactions occur during one
and the same bunch crossing. Most of those interactions are
soft and produce what is called “pile-up” background in the
different detectors and this background has to be separated
from the signal.

Understanding of Soft QCD processes are also important
in the context of cosmic rays. Monte-Carlo event generators
used for simulation of the forward cascades in air showers
have to be tuned in order to extract the essential physics
parameters in cosmic ray studies.

Here we will start with a discussion of elastic scattering
and the total cross section in proton–proton collisions, and
in a second part some other typical Soft QCD topics will
be addressed. It will be impossible to cover all the topics
nowadays associated with Soft QCD in this short review and
we have to make a biased selection. A very good and more
extensive summary of Soft QCD is given in the article “High
Energy Soft QCD and Diffraction” written by V.A. Khoze,
M. Ryskin and M. Taševský published in PDG [616].

12.6.2 Elastic proton–proton scattering and the total cross
section

First principles
Elastic scattering is the simplest process possible at a hadron–
hadron collider. Two incoming protons scattering at the Inter-
action Point (IP) giving two outgoing protons and noth-
ing more. It is the most simple process possible involving
strongly interacting particles but still it can not be described
directly by QCD. However there are first principles or funda-
mental concepts which are relevant for elastic scattering and
the total cross section. Those principles have to be fulfilled by
any theory of strong interactions and must obviously also be
fulfilled by QCD. Principles like unitarity, crossing symme-
try and analyticity of the elastic scattering amplitude are of
importance. Those principles connect elastic scattering with
the total cross section in different manners.

The most straight forward is the optical theorem that
connects the total cross section with the imaginary part of
the scattering amplitude in the forward direction. The high
energy form of the optical theorem can be written:

σtot = ImFel(t = 0)

s
, (12.12)

where t is the four momentum squared which at high energies
can be written as −t = (pθ)2 with p being the momentum
and θ the scattering angle. The Mandelstam variable s repre-
sents the centre of mass energy squared. The optical theorem

is based upon probability conservation in the scattering pro-
cess and is easily derived using Quantum Mechanics.

The optical theorem has been used to experimentally
determine the total cross section via measurement of the dif-
ferential elastic cross section from ISR times to LHC today.
From the optical theorem one derives the formula

σ 2
tot =

16π

1+ ρ2

dσel
dt

(t = 0), (12.13)

where dσel
dt (t = 0) is the elastic differential cross section

extrapolated to t = 0 and ρ is the ratio of the real to imag-
inary part of the elastic scattering amplitude in the forward
direction i.e.

ρ = ReFel(t = 0)

ImFel(t = 0)
. (12.14)

However the optical theorem is not the only connection
between σtot and elastic scattering. Using the concepts of
analyticity and crossing symmetry, dispersion relations for
elastic scattering can be derived. Dispersion relations connect
the ρ-parameter at a certain energy to the energy evolution of
σtot both below and above this energy and are a very powerful
tool which play a crucial role in the understanding of elastic
scattering. Dispersion relations thus imply that the ρ-value
at a certain energy is sensitive to the energy evolution of σtot
beyond the energy at which ρ is measured. The ρ-value is
accessible experimentally and can be measured by measuring
elastic scattering as such small angles where the Coulomb
amplitude starts to be significant. The Coulomb amplitude
is proportional to 1/t and dominates in the very forward
direction. The interference between the Coulomb amplitude
and the strong amplitude permits a measurement of ρ. Using
the measurement of ρ and dispersion relations one can make
predictions of σtot to an energy of the order 10 times higher
than the energy at which ρ has been measured. This has been
done several times in the past [3994,3995].

The Froissart–Martin bound [3996,3997] is another exam-
ple of an important consequence derived from first principles.
Based upon axiomatic quantum field theory it was shown that
σtot can not grew faster than

σtot <
π

m2
π

ln2s. (12.15)

As will be discussed in the paragraph “The total cross sec-
tion” below, this bound is not very constraining given the
energy scales available today.
The Regge approach and QCD
The principles discussed above generate bounds and rela-
tions between important entities but do not lead to a con-
crete proposal for the scattering amplitude. For this, one
still has to rely upon phenomenological approaches. The
phenomenology of Regge theory dominated the description
of high energy scattering process in pre-QCD times (see
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for instance [3998,3999] and references therein). With the
advent of QCD as the theory for strong interaction in the 70th,
Regge theory started to loose its role. The obvious wish was
of course to try to derive Regge theory from QCD. Due to
the non-perturbative character of low pT reactions this turned
out to be extremely difficult and still today Regge concepts
are the basis of the phenomenology used to describe soft pro-
cesses. However, whenever possible one tries to connect to
QCD in a smooth way.

The key concept in Regge theory is singularities of the
amplitude in the complex angular moment plane, the so
called j-plane. The most straightforward singularity is a sim-
ple pole. Using this concept for a given scattering process
has as consequence that the scattering amplitude in the t-
channel can be be calculated using an exchange of so called
Regge-trajectories which replaces a single particle exchange.
A Regge trajectory composes of many particles with the same
quantum numbers except for the spin. The particles are orga-
nized in increasing spin with increasing mass on the trajec-
tories. A trajectory is represented by the function α(t) where
α(t) is the pole position in the j-plane and is usually param-
eterized as a linear function of t :

α(t) = α(0)+ α
′
t. (12.16)

The exchange of a Regge trajectory or a Reggeon leads to a
power-like growth of the amplitude with s and an exponent
α(t) i.e.

A(s, t) ∝ sα(t). (12.17)

Using the optical theorem one then gets for the corresponding
cross section

σ ∝ sα(0)−1. (12.18)

The contribution of a given Regge trajectory factorizes in
general, i.e. the amplitude is a product of two factors depend-
ing only on the coupling of the exchanged object to the scat-
tered particles at each vertex.

At energies around 20–50 GeV, corresponding to the ISR
and at energies below, several different leading Regge trajec-
tories contribute to the amplitude. Experimentally it turns out
that the leading trajectories in pp scattering have an intercept
α(0) ≈ 0.5 (see section 51 in [4000]). Thus the correspond-
ing contributions all vanish with increasing energy in an
inverse power law according to Eq. 12.18. At higher energies
only the so called Pomeron trajectory survives. The Pomeron
carries the quantum numbers of vacuum with CP = ++
and was proposed in the 1960s to explain the asymptotic
behaviour of the total cross section as will be discussed in the
following paragraph. The Pomeron is a good example how
Regge theory connects to QCD. The Pomeron has now been
identified as a two gluon state in QCD (see e.g. references in
[4001]) and some of the properties of the Pomeron has been
derived in QCD.This will be discussed in Sect. 12.6.4. QCD

Fig. 331 The total cross section for pp and p̄ p as a function of the
center-of-mass energy. In the figure is also shown the energy dependence
of the elastic and inelastic cross sections. Figure is taken from Ref.
[4003]. More details about the figure can be found in [4003]

also predicts the possible existence of a three gluon state with
CP = −−. Such a state corresponds to a trajectory proposed
in Regge theory in the 1970s [4002], the so called Odderon.
The Pomeron and the Odderon will be discussed more in
detail later.

The total cross section
In Fig. 331 all data are shown of the total pp and p̄ p-cross
section from the ISR to LHC. Low energy proton data from
fixed target experiments are also shown in the figure. The
total cross section starts to rise at ISR. The rise of σtot was
not at all expected. Still today this rise can not be derived from
first principles and is not satisfactory solved within QCD.

At the time of the discovery of the surprising rise of the
total cross section with increasing center-of-mass energy,
Regge theory was the relevant theory for strong interac-
tion. The Pomeron was thought to dominate the high energy
behaviour of σtot and the s-dependence was thus given by (
see Eq. 12.18)

σtot ∝ sαP (0)−1 , (12.19)

where αP (0) is the intercept of the Pomeron trajectory. The
intercept was believed to be exactly 1 thus giving a constant
total cross section asymptotically. Later when it was discov-
ered thatσtot was starting to rise an interceptαP (0) just above
1 was introduced. Taking into account the data from the SPS
collider and the Tevatron, σtot was parameterized in terms
of an “effective” Pomeron trajectory α(t) = 1+Δ+ α

′
t ≈

1+0.08+0.25t where t is given in GeV2 [1100]. However it
was always clear that at some very high energy such a power
growth in s will violate unitarity and the Froissart bound
(see Eq. 12.15). This problem is addressed by also consider-
ing cuts in the j-plane in addition to the simple poles. The
cuts describe multi-pomeron exchanges and it turns out that
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those multi-pomeron exchanges tame the growth of the total
cross section and thus restore unitarity.

Actually the possibility of a rising total cross section had
been outlined already by Heisenberg in 1952 [4004]. He used
a very simple argument based upon the range of the strong
interaction and the pion mass to indicate a possibility of a
ln2(s) rise of σtot . This argument had fallen into oblivion in
the mid’s of the seventies. Now it has turned out at each new
collider energy that σtot essentially rises as ln2(s). The full
line drawn in Fig. 331 represents one of many ln2(s) fit to the
data. In this case it is one of the COMPETE parametrisations
[4005]. In Regge theory such a ln2(s)behaviour can only
appear if the the singularity in the j-plane is a pole of order
3 i.e. a triple pole.

Does the ln2(s) rise mean that the Froissart–Martin bound
mentioned in the previous paragraph is saturated? Actually
we are far away from a saturation today. The coefficient in
front of ln2(s) term in the Froissart–Martin bound is 60 mb
and typically ln2(s) fits to the data give coefficients O(0.1
mb). Thus the bound is far away from being saturated at
LHC energy.

The rise of σtot as ln2(s) cannot be derived from QCD
today. However it is interesting to note that there have been
some attempts in lattice QCD with indications of possible
asymptotic ln2(s) behaviour [4006]. There has also been
attempts to generate a ln2(s) behaviour using gluon satura-
tion in color Glass Saturation models [4007]. This is a good
example of how perturbative and non-perturbative physics
meet giving an interesting result.

Elastic scattering
Figure 332 shows a couple of examples of the differential
elastic cross section and its t-dependence at different ener-
gies at the LHC. The measurements have been done by the
TOTEM collaboration [4008]. As mentioned in the previ-
ous paragraph the Pomeron trajectory dominates at energies
of the LHC. In terms of QCD this means a dominance of
two gluon exchange. The gross features of the t-dependence
of differential elastic cross section at high energies can be
described in terms of the Pomeron or a two gluon exchange.
The cross section falls close to exponential in the forward
direction. This means that the Pomeron–proton coupling has
an exponential fall off. There are small deviations from the
exponential that are not completely understood but might at
least partly be due to multi-pomeron exchanges.

The exponential fall-off parameter, often called the t-slope
B, also has an energy dependence. The energy dependence
of B is plotted in Fig. 333. The straight line corresponds to
a linear dependence in ln(s)

B = B0 + 2α
′
P ln(s). (12.20)

This linear dependence in ln(s) is a direct consequence
of the exchange of a Pomeron in the t-channel. The α

′
P

Fig. 332 The differential elastic cross section as a function of the four
momentum transfer t for different energies at the LHC as measured by
the TOTEM collaboration. Figure is taken from Ref. [4009]

Fig. 333 Measurements of the slope-parameter B as a function of the
center-of-mass energy

√
s for pp and p̄ p scattering . The straight line

represents a linear fit in ln(s) of of the data below
√
s = 3 TeV. Figure

taken from Ref. [4010]

parameter represents the slope of the Pomeron trajectory
αP (t) = αP (0)+ α

′
P t .

As can be seen in the figure this linear relation works well
for energies below LHC. However at the LHC the increase
with s starts to accelerate. Also this can be explained in terms
of multi-pomeron exchanges mentioned above [4011].

In Fig. 332 one can also see that after the exponential
decrease, the differential cross section exhibits a dip that
moves towards smaller t-values when the energy increases.
In the Pomeron language this is interpreted as an interfer-
ence between one pomeron exchange amplitude and multi-
pomeron exchange amplitudes making essentially the imag-
inary part of the total amplitude disappear at the dip. This
mechanism generates a dip which correctly moves towards
smaller t-values with energy.

At high values of t , beyond the dip, the cross section
decreases further in a smooth way. Here one moves away

123



Eur. Phys. J. C          (2023) 83:1125 Page 443 of 636  1125 

from the non-perturbative regime and instead one might see
signs of perturbative QCD. The triple gluon exchange pro-
posed in Ref. [4012] could be a manifestation of this.

The Odderon
As seen in the previous paragraphs the Pomeron plays an
essential role in the description of elastic scattering and the
total cross section. The situation is very different concerning
the Odderon. The Odderon is the CP = −− counter-partner
of the Pomeron and contributes with a different sign to the
amplitude for pp-scattering relative to p̄ p-scattering. The
Odderon is both controversial and non-controversial. It is
non-controversial in the sense that no one really doubts its
existence. It is a firm prediction of QCD and represents a
three gluon state in contrast to the two gluon state of the
Pomeron. What is somewhat controversial is the size of its
coupling and its importance in the elastic amplitude. To what
extent the Odderon really has manifested itself in the avail-
able experimental data is debatable (see e.g. Ref. [4013])
though the authors of Ref. [4014] claim a discovery.

Experimentally there are two different signals that have
been evoked as a sign of an Odderon. The most convincing
is probably the difference between p̄ p-scattering and pp-
scattering observed in the dip region of elastic scattering.
The p̄ p data from the D0 experiment at the Tevatron at 1.96
TeV have been compared to the pp data at 2.76 TeV from the
TOTEM experiment at the LHC [4014]. The dip is supposed
to be filled partly by the real part of the Odderon amplitude
having a different sign for pp and p̄ p-scattering. The two
distributions are shown in Fig. 334. Ideally the comparison
pp and p̄ p should be done at the same energy. However,
the authors have taken great care to compare the D0 mea-
surement with TOTEM data extrapolated to the 1.96 TeV of
the Tevatron. They find a 3.4σ difference between the two
distributions in Fig. 334.

The second possible experimental manifestation of the
Odderon is a measurement of the TOTEM experiment which
has measured theρ parameter at 13 TeV to beρ = 0.09±0.01
[4003]. This result is in contradiction to dispersion relation
calculations assuming that the standard ln2(s) behaviour of
σtot continues beyond LHC and assuming that the elastic
amplitude only contains the Pomeron contribution. Those
calculations give ρ = 0.13−0.14 (see Fig. 335 and Ref.
[4005]) thus significantly higher than the TOTEM result.

The TOTEM result could therefore be an indication that
σtot starts to grow somewhat slower beyond the LHC ener-
gies. However an alternative explanation might well be that
the low ρ value is produced by an Odderon effect. An Odd-
eron contribution to the amplitude can modify the dispersion
relation calculation in a way to give a better agreement with
the data. The effect depends on the size of the Odderon con-
tribution at a certain energy. The so called maximal Odderon

Fig. 334 Comparison between the D0 p̄ p measurement at
√
s =

1.96 TeV and the extrapolated TOTEM pp cross section rescaled to
match the optical point of the D0 measurement. The dashed lines show
the 1σ uncertainty band. Figure is taken from Ref. [4014] where more
details are given

Fig. 335 Dependence of the ρ-parameter on center-of-mass energy.
The pp(blue) and p̄ p(green) curves are taken from Ref. [4005]. Figure
is taken from Ref. [4003]

[4015] is one example that actually produces an effect agree-
ing with the TOTEM data.

To summarise: the measurement of ρ at 13 TeV may be
an indication of the Odderon but the fact that an alternative
explanation exists means that this signal can not be taken as
a hard proof of the Odderon.

12.6.3 Diffraction

In this article we have separated the discussion of elastic
scattering and diffraction but actually elastic scattering is the
dominant diffractive process. There is no unique definition
of diffraction, neither theoretically nor experimentally. A key
concept when talking about diffraction is rapidity gaps. For
elastic scattering the size of the rapidity gap (a rapidity115

region void of particles) between the two outgoing protons is

115 When dealing with a particle whose mass is negligible compared
with its energy, the pseudorapidity = − ln (tan(θ /2)) is a good approxi-
mation to the rapidity. Here θ is the polar angle of the particle. In this
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Fig. 336 Feynman diagrams for different diffractive topologies. IP
stands for Pomeron and p for proton while X represents the diffractive
systems. Below each diagram is also shown the corresponding rapidity
distribution of the outgoing particles. Figure taken from Ref. [4016]

at its kinematical limit. In general a diffractive event is char-
acterized by a rapidity gap which is significant larger than
possible fluctuations in the hadronization process.Typical
this means rapidity gaps bigger than 4–5 units of rapidity
at LHC energies. Depending on the topology of the rapidity
gaps one talks about different types of diffractive events. This
is illustrated in Fig. 336 where the topologies, elastic, single
dissociation and double dissociation are shown. Below the
Feynman diagrams are also illustrated schematically the cor-
responding rapidity distributions of the outgoing particles.

All these topologies are characterized by the exchange of
the Pomeron in the t-channel or in other words an exchange
of a a color singlet state of two gluons.

It is not always possible to map the experimental data
directly to the different topologies seen in Fig. 336. In general
it is difficult to measure diffraction at high energy colliders,
especially diffractive system with a low mass. For low mass
systems a large fraction of the diffractively produced particles
are emitted in the very forward direction and lost in the beam
pipe.

Experimentally there are two ways to select diffractive
events. Either to look for rapidity gaps or use so called pro-
ton tagging. Proton tagging implies that one or both of the
two intact protons actually are detected and measured. This
requires small and sophisticated detectors situated as close
as possible to the beam line. In practice, the detectors have to
be placed at distances of a mm or smaller from the beam and
thus the vessels containing the detectors have to be integrated
in the beampipe. This technique, using so called Roman Pots,
was introduced by the CERN–Rome group at the ISR half a
century ago and is still used as the main technique to approach
the beam [3994].

Here we will limit ourselves to discuss the simplest topol-
ogy in Fig. 336, i.e. single diffraction. As an example we
show in Fig. 337 the distribution of the experimental gap
size Δη f measured by ATLAS at 7 TeV for particles with
pT > 200 MeV[4017]. The true gap size is Δη = Δη f +4 in

article we do not make the distinction between rapidity and pseudora-
pidity.

Fig. 337 Inelastic cross section differential in the experimental gap
size Δη f measured by ATLAS at 7 TeV for particles with pT > 200
MeV. Figure taken from Ref. [4017]. See text in Ref. [4017] for further
details

this example. The size of the rapidity gap is directly related
to the mass Mx of the diffracted system.

Δη � −ln(ξx ) (12.21)

with

ξx = M2
x

s
(12.22)

The larger the rapidity gap is the smaller is the produced
mass.

In Fig. 337 one can clearly see the difference between
non diffractive and diffractive events. At small gap sizes
Δη f < 2, non diffractive events dominate and the expected
exponential decrease of the cross section with increasing
gap size which characterize the fluctuations of the hadro-
nisation is the dominant feature. On the other hand for gap
sizes Δη f > 3 there is a rather flat plateau, which corre-
sponds mainly to single diffractive processes. The largest
rapidity gap size bin at the end of the plateau in Fig. 337
corresponds to diffractive masses larger than about 15 GeV
and thus the plateau corresponds to masses above and equal
15 GeV. The cross section on the plateau is roughly 1 mb
per unit of rapidity gap size. In the Regge theory, such type
of high mass diffraction is characterized by a triple Pomeron
coupling which actually predicts such a plateau. In pertur-
bative QCD a triple Pomeron coupling of the same order of
magnitude is found [4018].

Measurements at masses much lower than this are very
difficult at high center of mass energies. There exist measure-
ments down to masses of 3–4 GeV but they are scarce and
often contradictory. Moreover also theoretically the estimates
of low mass diffraction are notorious difficult and uncertain.
Actually the uncertainties related to low mass diffraction con-
stitute the largest uncertainty of the total cross section mea-
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surements by the TOTEM experiment using the so called
luminosity independent method which requires an estimate
of the total inelastic cross section including low mass diffrac-
tion (see e.g. Ref. [4010]).

12.6.4 “Soft” and “hard” diffraction

This article deals with “soft” diffraction but this is of course a
somewhat arbitrary classification and in this section the con-
cept of “hard” diffraction will also briefly be touched upon.
A part of diffractive events has a hard scale present.The hard
scale is often given by a diffractively produced heavy sys-
tem such as for example dijets, W or Z bosons, or heavy
quarks. With such a hard scale present, perturbative QCD
is applicable. There is actually no sharp distinction between
what is called “soft” diffraction and “hard” diffraction but
rather a smooth transition between the two. Often the pertur-
bative approach is extended into the soft domain in a gradual
manner using a unified framework. This has led to the con-
cept of a “soft” Pomeron and a separate and different “hard”
QCD Pomeron. This distinction between different Pomerons
is very likely an oversimplification of a more complex situ-
ation.
The data seem to indicate a “hard” Pomeron with the inter-
cept α(0) � 1.3−1.5 with a small slope α′ in contrast to the
“effective” Pomeron which is relevant for elastic scattering
and the total cross section with an intercept of α(0) = 1.08
and a slope α′ = 0.25 as mentioned in Sect. 12.6.2. This
means that when a hard scale is involved the energy depen-
dence is steeper relative to soft diffraction (see Eq. 12.18).
Taking diffractive vector meson production at HERA as an
example: the energy dependence of the γ ∗p cross section for
J/ψ production corresponds to an intercept α(0) � 1.4 (see
Refs. [4019,4020]). Such an intercept of the hard Pomeron,
represented by a two gluon state, agrees with what has
been calculated in perturbative QCD by re-summation of
the leading logarithms. The small slope α′ of the “hard”
Pomeron is also reproduced in perturbative QCD calcula-
tions [4021].
Hard diffraction has extensively been studied at HERA in
γ ∗ p processes and the results have been interpreted in terms
of diffractive Parton Distribution Functions of the Pomeron
and a Pomeron flux factor based upon Regge theory [3629].
It was shown within QCD that factorization is valid for
diffractive hard scattering in γ ∗ p processes [4022]. How-
ever, using the same formalism and using the DPDF’s deter-
mined at HERA from γ ∗ p processes applied to p̄ p pro-
cesses at the Tevatron gives about an order of magnitude
too high cross section for QCD jet production (see e.g.
[4023]). At the Tevatron the process is completely hadronic,
and the reduction of the cross section is thought to be due
to the fact that in 90% of the cases the rapidity gap is
filled or partially filled by hadron remnants which are not

Fig. 338 Schematic drawing illustrating a typical Underlying Event.
Figure taken from ATLAS slides ATL-PHYS-SLIDE-2013-330

present in γ ∗ p processes. In this case, the factorisation using
diffractive DPDF’s suggested by the HERA data breaks
down.

12.6.5 The underlying event

The underlying event is not to be confused with Minimum
Bias Events. As the name indicates, minimum bias events are
events collected with as little bias as possible. The concept
of Underlying Event (UE) is different. Here one refers to
events that contain a hard parton–parton interaction and the
term underlying event refers to all the activity that accompa-
nies the hard scatter but is not a part of it. The Underlying
Event has several different components. There are contribu-
tions from initial and final-state radiation but also particles
from the proton break-up so called beam–beam remnants
contribute. An important part of the Underlying Events con-
sists of Multiple Parton Interactions (MPI) i.e. one or more
soft interactions together with a hard interaction within the
same pp interaction. In Fig. 338 a typical UE is shown in
schematized way.

A good description of the UE is needed to extract the
relevant signals from the hard scatter and rely upon MC
generators which are based upon different phenomenolog-
ical approaches. Many input parameters in the MC genera-
tors parameters have to be tuned with data. To get informa-
tion relevant for the UE the event is often divided into dif-
ferent regions of the phase space as indicated in Fig. 339.
Normally a “transverse” region is defined relative to the
azimuthal angle of the leading pT particle. This region is
then taken as the reference region for the underlying event. In
Fig. 340 is shown an example of the mean charged-particle
multiplicity as a function of the leading pT for the differ-
ent regions around the leading particle [4024]. All regions
exhibit a fast rise at low pT up to a pT of about 5 GeV.
Here there are no real “hard” processes present. However at
higher pT , hard processes start to dominate and the trans-
verse region which is decoupled from the hard scatter reach
a plateau.
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Fig. 339 Definition of regions in the azimuthal angle with respect to
the leading (highest-pT ) charged particle, with arrows representing par-
ticles associated with the hard scattering process and the leading charged
particle highlighted in red. Conceptually, the presence of a hard-scatter
particle on the right-hand side of the transverse region, increasing its
ΣpT , typically leads to that side being identified as the “trans-max” and
hence the left-hand side as the “trans-min”, with maximum sensitivity
to the UE. Figure taken from Ref. [4024]

Fig. 340 Mean η − φ densities of charged-particle multiplicities as
a function of the transverse momentum of the leading charged parti-
cle in the transverse, towards, and away azimuthal regions. The error
bars, which are mostly hidden by the data markers, represent combined
statistical and systematic uncertainty. Figure taken from Ref. [4024]

12.6.6 Charged particle density

The charged particle density as a function of rapidity is an
important observable in pp collisions. The measurement cov-
ering the largest rapidity interval has been done by a com-

Fig. 341 Charged particle pseudorapidity distributions obtained in pp
collisions at

√
s = 8 TeV for inelastic events as measured by the CMS

and TOTEM experiments. The colored bands show the combined sys-
tematic and statistical uncertainties and the error bars represent the η

uncorrelated uncertainties. The colored lines represents different model
predictions. Figure taken from Ref. [4025]

bination of CMS and TOTEM at the LHC [4025,4026]. The
result of their measurement is shown in Fig. 341.

To describe the entire rapidity interval models must be
able to combine and connect perturbative QCD with non-
perturbative approaches. The experimental points are com-
pared to a number of different models which are available.
The approaches are different but there are also several com-
mon elements in the models. As can be seen the gross fea-
tures of the distribution are reasonably well described by the
models.

The density at η = 0 as a function of the centre of mass
energy has been plotted in Fig. 342 using data from the Sp p̄S
collider and the Tevatron in addition to the LHC data [4026].
The data points have been fitted with a power law. It is inter-
esting to note that the increase of the density at η = 0 is
faster than the increase of the total cross section with energy.
This can be understood in terms of Pomeron interaction. To
calculate an inclusive cross section like the density at η = 0
it is enough to use a one-pomeron exchange diagram. For
the total cross section on the other hand one has to take into
account multi-pomeron exchanges which tames the rise of
the total cross section.

12.6.7 Conclusion

As mentioned in the introduction “soft” processes cover a
large part of the total cross section. Collider experiments,
at HERA and the Tevatron and now also at LHC, have pro-
duced a large amount of measurements related to low pT
reactions. The large rapidity coverage of the LHC detec-
tors, and dedicated small angle experiments such as TOTEM,
have offered new possibilities and there is still more to
come. Moreover, the high center-of-mass energy of the LHC
means that kinematically a larger rapidity range is avail-
able which opens up a window of studies where a separa-
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Fig. 342 Value of dNch/dη at η ≈ 0 as a function of the center-of-mass
energy for pp and p̄ p collisions. Shown are measurements performed
with different event selections from a number of experiments listed in
the figure. The dashed line is a power-law fit to the data. Figure taken
from Ref. [4026]

tion between diffractive and non-diffractive events is some-
what easier, at least for what concerns high mass diffrac-
tion.

The richness of the data at the LHC also implies that there
are a number of aspects that we have not been able to treat
in this short overview. For instance, the interesting topic of
particle correlations has not been discussed and neither has
multiple parton interactions been considered (For those top-
ics and also for other topics that have not been discussed here,
see e.g. PDG [616]).

In the 1970s and 1980s the interest moved from Regge
theory and low pT physics to high pT reactions and per-
turbative QCD. The “old“ physics lost considerable interest.
However it turns out that the tools of the “old” physics work
remarkably well also today. The current theoretical efforts
try to bridge this gap between “old” physics and “new” and
produce convincing descriptions of soft processes in terms
of QCD. A lot of theoretical efforts have occurred over the
years trying to make the transition from Regge poles and
Regge Field Theory to QCD. Some attempts in this direc-
tion have been mentioned in this overview, but far from
all.

With the abundant data from LHC available today the
study of soft interactions has become a more vigorous field
again. The hope is that “old” and “new” physics will meet
and that a proper calculational framework based upon QCD
will be developed in the close future leading to a better under-
standing of soft processes. A lot of progress have been made
until today but the challenge is still there to incorporate a full
understanding of soft processes in QCD.

13 Weak decays and quark mixing

Conveners:
Andrzej J. Buras and Eberhard Klempt
One of the main frontiers in the elementary particle physics
is the search for new particles and new forces beyond those
present in the Standard Model (SM) of particle physics. As
the direct searches at Large Hadron Collider (LHC) at CERN,
even 10 years after the Higgs discovery, did not provide any
clue what these new particles and forces could be, the indi-
rect searches for new physics (NP) through very rare pro-
cesses caused by virtual exchanges of heavy particles gained
in importance. They allow in fact to see footprints of new par-
ticles and forces acting at much shorter distance scales than
it is possible to explore at the LHC and presently planned
high energy colliders. While the LHC can explore distance
scales as short as 10−19m, the indirect search with the help of
suitably chosen processes can offer us the information about
scales as short as 10−21 m which cannot be probed even by
the planned 100 TeV collider at CERN. Also shorter scales
can be explored in this manner.

In fact rare processes like KL → μ+μ− known since
the early 1970s implied the existence of the charm quark
prior to its discovery in 1974 as only then its branching ratio
could be suppressed in the SM with the help of the Glashow–
Iliopoulos–Maiani (GIM) mechanism [80], to agree with
experiment. Moreover, it was possible to predict successfully
its mass with the help of the KL −KS mass difference ΔMK

in the K 0 − K̄ 0 mixing prior to its discovery [4027]. Simi-
lary the size of the B0

d − B̄0
d mixing,116 discovered in the late

1980s, implied a heavy top quark that has been confirmed
only in 1995. It is then natural to expect that this indirect
search for NP will also be successful at much shorter dis-
tance scales.

In this context, rare weak decays of mesons play a
prominent role besides the transitions between particles and
antiparticles in which flavors of quarks are changed. In
particular K+ → π+νν̄, KL → π0νν̄, KS → μ+μ−,
B0
s → μ+μ−, B0

d → μ+μ− and B0
d → K (K ∗)νν̄ but

also B0
s − B̄0

s , B0
d − B̄0

d , K 0− K̄ 0 mixings and CP-violation
in K → ππ , Bd → πK decays among others provide
important constraints on NP. Most of these transitions are
very strongly loop-suppressed within the SM due to the GIM
mechanism and also due to small elements Vcb, Vub, Vtd and
Vts of the CKM matrix [86,4028]. The predicted branching
ratios for some of them are as low as 10−11. But as the GIM
mechanism is generally violated by NP contributions these
branching ratios could in fact be much larger.

The first step in this indirect strategy is to search for the
departures of the measurements of the branching ratios of the
decays in question from SM predictions and similar for mass

116 The B0
d = (db̄) is listed as B0 in the Review of Particle Physics.
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differences like ΔMK , and analogous mass differences ΔMs

and ΔMd in B0
s − B̄0

s and B0
d− B̄0

d mixings, respectively. But
while these processes are governed by quark interactions at
the fundamental level, the decaying objects are mesons, the
bound states of quarks and antiquarks. In particular in the case
of non-leptonic transitions like B0

s − B̄0
s , B0

d − B̄0
d , K 0− K̄ 0

mixings and CP-violation in K → ππ and B → πK decays,
QCD plays an important role. It enters at short distance scales,
where due to the asymptotic freedom in QCD perturbative
calculations can be performed, and at long distance scales
where non-perturbative methods are required. QCD has also
an impact on semi-leptonic decays like K+ → π+νν̄, KL →
π0νν̄, B → K (K ∗)νν̄ and even on leptonic ones like KS →
μ+μ−, B0

s → μ+μ−, and B0
d− B̄0

d → μ+μ−. In order to be
able to identify the departures of various experimental results
from the SM predictions that would signal NP at work, the
latter predictions must be accurate, and this means the effects
of QCD have to be brought under control. But this is not the
whole story. To make predictions for rare processes in the
SM one has to determine the four parameters of the unitary
CKM matrix

Vus, Vcb, Vub, γ (13.1)

with γ being the sole phase in this matrix.
This section is divided into five parts. We present first the

effective weak Hamiltonians both in the SM and beyond.
We summarize briefly the history of the efforts to construct
them and present their status. Here, renormalization-group
(RG) methods – used to calculate QCD impact on the Wilson
coefficients (WC) of local operators – are essential but also
the non-perturbative evaluation of their hadronic matrix ele-
ments. This will be followed by the discussion of the present
status of the CKM matrix (see Sect. 13.2) which will demon-
strate the role of QCD in the determination of its elements.
Subsequently, in Sect. 13.3, we will first summarize briefly
the impact of QCD effects on rare leptonic and semileptonic
decays. Here, these effects are mostly moderate, with the
exception of radiative B decays like the one into final states
with open strangeness, B → Xsγ , and B → K ∗γ . The
efforts to calculate QCD corrections to B → Xsγ will be
briefly described. Subsequently, two examples will be dis-
cussed where the control over non-perturbative contributions
is mandatory to find out whether the SM is able to describe
the experimental data or not: the ΔI = 1/2 rule in K → ππ

decays and the ratio ε′/ε related to the direct CP violation in
KL → ππ decays. The last two presentations deal with the
role of QCD in the context of the presently most pronounced
anomalies in flavor physics: the violation of lepton flavor
universality in tree-level B-meson decays (Sect. 13.4) and
the departure of data from the SM predictions for (g− 2)e,μ
(Sect. 13.5).

13.1 Effective Hamiltonians in the standard model and
beyond

Andrzej J. Buras
The basis for any serious phenomenology of weak decays
of hadrons is the Operator Product Expansion (OPE) [30,
4029], which allows us to write down the effective weak
Hamiltonian in full generality simply as follows

Heff =
∑

i

CiOSM
i +

∑

j

CNP
j ONP

j ,

Ci = CSM
i +ΔNP

i . (13.2)

Here

– OSM
i are local operators present in the SM and ONP

j are
new local operators having typically new Dirac struc-
tures, in particular scalar-scalar and tensor-tensor ones.

– Ci and CNP
j are the Wilson coefficients (WCs) of these

operators. NP effects modify not only the WCs of the
SM operators but also generate new operators with non-
vanishing CNP

j .

Examples of operators contributing to K 0 − K̄ 0 mixing
observables in the SM and in any of its extensions are given
as follows

OVLL
1 = (s̄γμPLd)(s̄γ

μPLd), (13.3a)

OVRR
1 = (s̄γμPRd)(s̄γ

μPRd), (13.3b)

OLR
1 = (s̄γμPLd)(s̄γ

μPRd), (13.3c)

OLR
2 = (s̄ PLd)(s̄ PRd), (13.3d)

OSLL
1 = (s̄ PLd)(s̄ PLd), (13.4a)

OSRR
1 = (s̄ PRd)(s̄ PRd), (13.4b)

OSLL
2 = (s̄σμν PLd)(s̄σ

μν PLd), (13.4c)

OSRR
2 = (s̄σμν PRd)(s̄σ

μν PRd), (13.4d)

where

PR,L = 1

2
(1± γ5), σμν = i

1

2
[γμ, γν], (13.5)

and we suppressed color indices as they are summed up in
each factor. For instance s̄γμPLd stands for s̄αγμPLdα and
similarly for other factors. Only OVLL

1 is present in the SM.
For meson decays the number of operators in the SM is larger.
This is also the case for the number of NP operators. We will
encounter some of them in Sect. 13.3.

The amplitude for a decay of a given meson M =
K , B, . . . into a final state F = μ+μ−, πνν̄, ππ, DK
is then simply given by

A(M → F) = 〈F |Heff|M〉 =∑
i Ci (μ)〈F |OSM

i (μ)|M〉
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+∑
j C

NP
j (μ)〈F |ONP

j (μ)|M〉 (13.6)

where 〈F |Oi (μ)|M〉 are the matrix elements of Oi between
M and F , evaluated at the renormalization scale μ. The
WCs Ci (μ) describe the strength with which a given opera-
tor enters the Hamiltonian. They can be considered as scale
dependent “couplings” related to “vertices” Oi and can be
calculated using perturbative methods as long as the scaleμ is
not too small. In the case of K 0− K̄ 0 mixing, matrix elements
〈K̄ 0|Oi (μ)|K 0〉 are present. Other particle-antiparticle mix-
ings have similar matrix elements.

The essential virtue of the OPE is this one. It allows us to
separate the problem of calculating the amplitude A(M →
F) into two distinct parts: the short distance (perturbative)
calculation of the coefficients Ci (μ) and the long-distance
(generally non-perturbative) calculation of the matrix ele-
ments 〈Oi (μ)〉. The scale μ separates, roughly speaking, the
physics contributions into short distance contributions con-
tained inCi (μ) and the long distance contributions contained
in 〈Oi (μ)〉.

It should be stressed that this separation of short and long
distance contribution is only useful due to the asymptotic
freedom in QCD [53,54] that allows us to calculate the WCs
by means of ordinary or RG-improved perturbation theory.
On the other hand, the matrix elements 〈Oi (μ)〉 can only
be calculated by non-perturbative methods like numerical
Lattice QCD computations and analytic methods like Dual
QCD (DQCD) [4030,4031] and Chiral Perturbation Theory
(ChPT) [69,1610].

Now, the coefficients Ci include, in addition to tree-level
contributions from the W -exchange, virtual top quark con-
tributions and contributions from other heavy particles such
as W , Z bosons, charged Higgs particles, supersymmetric
particles and other heavy objects in numerous extensions of
this model. Consequently,Ci (μ) generally depend onmt and
also on the masses of new particles if extensions of the SM
are considered. This dependence can be found by evaluating
one-loop diagrams, so-called box and penguin diagrams with
full W, Z, top quark and new particles exchanges and prop-
erly including short distance QCD effects. The latter govern
the μ-dependence of Ci (μ). In models in which the GIM
mechanism [80] is absent, also tree diagrams can contribute
to flavor changing neutral current (FCNC) processes. The
point is that a given Ci generally receives contributions from
all these three classes of diagrams (Fig. 343).

The value of μ can be chosen arbitrarily but the final
result must be μ-independent. Therefore the μ-dependence
of Ci (μ) has to cancel the μ-dependence of 〈Qi (μ)〉. In
other words as far as heavy-mass-independent terms are
concerned, it is a matter of choice what exactly belongs
to Ci (μ) and what to 〈Qi (μ)〉. This cancellation of the μ-
dependence involves generally several terms in the expan-
sion in Eq. (13.6). Ci (μ) depend also on the renormaliza-

Fig. 343 Penguin and Box Diagrams. From [4032]

tion scheme used in the calculation of QCD effects. This
scheme-dependence must also be canceled by the one of
〈Qi (μ)〉 so that the physical amplitudes are renormalization-
scheme independent. Again, as in the case of the μ-
dependence, the cancellation of the renormalization-scheme-
dependence involves generally several terms in the expansion
in Eq. (13.6). One of the types of scheme-dependence is the
manner in which γ5 is defined in D = 4 − 2ε dimensions
implying various renormalization schemes as analyzed first
in the context of weak decays in [4033]. A pedagogical pre-
sentation of these issues can be found in [4034].

13.1.1 Renormalization group improved perturbation
theory

Generally in weak decays several vastly different scales are
involved. These are the hadronic scales of a few GeV, scales
like MW or mt and – in extensions of the SM – not only
of a few TeV but even 100 TeV. Already within the SM,
but in particular in its NP extensions, the ordinary pertur-
bation theory in αs is spoiled by the appearance of large
logarithms of the ratios of two very different scales that mul-
tiply αs . Such logarithms have to be summed to all orders of
perturbation theory which can be efficiently done by means
of renormalization-group methods. Denoting the lower scale
simply by μ and the high scale by Λ the general expression
for Ci (μ) is given by:

�C(μ) = Û (μ,Λ) �C(Λ), (13.7)

where �C is a column vector built out of Ci . �C(Λ) are the
initial conditions for the RG evolution down to low energy
scale μ. They depend on the short distance physics at high
energy scales. In particular they depend onmt and the masses
and couplings of new heavy particles.

The evolution matrix Û (μ,Λ) sums large logarithms
logΛ/μ which appear for μ � Λ. In the so-called lead-
ing logarithmic approximation (LO) terms (g2

s logΛ/μ)n are
summed. The next-to-leading logarithmic correction (NLO)
to this result involves summation of terms (g2

s )
n(logΛ/μ)n−1

and so on. This hierarchical structure gives the RG-improved
perturbation theory.
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As an example let us consider only a single operator so
that Eq. (13.7) reduces to

C(μ) = U (μ,Λ)C(Λ) (13.8)

with C(μ) denoting the coefficient of the operator in ques-
tion.

Keeping the first two terms in the expansions of the anoma-
lous dimension of this operator γ (gs) and in β(gs), that gov-
erns the evolution of αs , in powers of αs and gs ,

γ (gs) = γ (0) αs

4π
+ γ (1)

( αs

4π

)2
, (13.9)

β(gs) = −β0
g3
s

16π2 − β1
g5
s

(16π2)2 (13.10)

gives:

U (μ,Λ) =
[

1+ αs(μ)

4π
J1

][
αs(Λ)

αs(μ)

]P[

1− αs(Λ)

4π
J1

]

(13.11)

where

P = γ (0)

2β0
, J1 = P

β0
β1 − γ (1)

2β0
. (13.12)

General formulae for the evolution matrix Û (μ,Λ) in the
case of operator mixing and valid also for electroweak effects
at the NLO level can be found in [4035]. The corresponding
NNLO formulae are rather complicated and were given for
the first time in [4036].

While by now NLO and NNLO QCD contributions to
almost all weak decays are known within the SM, the
pioneering LO calculations for current–current operators
[1209,1210], penguin operators [4037,4038], ΔS = 2 oper-
ators [4039] and rare K decays [4040] should not be forgot-
ten. The first review of NLO QCD calculations can be found
in [4035] and more recently including NNLO corrections in
[4034,4041].

It should be stressed that at the NLO level not only two-
loop anomalous dimensions of operators have to be known
but also QCD corrections to the WCs at μ = Λ. Only then
renormalization-scheme independent results can be obtained.
They are known for most processes of interest and this tech-
nology is explained in details in [4032,4034]

On the whole, the status of present short distance (SD)
contributions within the SM is satisfactory. Let us then see
what is the status of these calculations beyond the SM.

13.1.2 QCD effects beyond the SM

As already stated at the beginning, NP contributions can
affect the WCs of the SM operators. This modification takes
place at the NP scale Λ so that after the RG evolution, the

Ci (μ) in Eq. (13.6) are modified. But in addition new oper-
ators with different Dirac structure, with examples given in
Eqs. (13.3) and (13.4), can contribute if their coefficients
CNP

j (Λ) are non-vanishing or if they are generated by mixing
of different operators in the process of the RG evolution. The
inclusion of these contributions in the RG analysis requires
at the NLO level the calculations of their one-loop and two-
loop anomalous dimensions. While the one-loop anoma-
lous dimensions of such operators have been calculated in
[717], the first two-loop calculations have been presented in
[4042,4043]. Recently, these NLO calculations have been
generalized for both ΔF = 1 and ΔF = 2 transitions in the
so-called Weak Effective Theory (WET) [4044,4045] and
also for the Standard Model Effective Field Theory (SMEFT)
[4046]. It turns out that the anomalous dimensions of oper-
ators involving both left-handed and right-handed currents,
the so-called left-right operators, are much larger than those
of most operators within the SM except for QCD-penguin
operators. Thus even if their WCs could be small at the scale
Λ they can be enhanced at scales of the order of a few GeV.
The same applies also to scalar operators.

13.1.3 Hadronic matrix elements

The WCs, that include in the SM the CKM factors, are not the
whole story. To obtain the results for the decay amplitudes
and the quark mixing observables, also hadronic matrix ele-
ments of local operators, like the ones in Eqs. (13.3) and
(13.4), have to be calculated. The present status can be sum-
marized as follows.

– For leptonic decays like Bs,d → μ+μ− and KL ,S →
μ+μ− only the weak decay constants fBs , fBd and fK
are required. They are defined e.g. by

〈0|(s̄γ μ(1− γ5)u)|K+〉 = i fK pμK , (13.13)

where pμK is the four-momentum of the decaying K+
mesons. Similar for fBs and fBd .
They are known from LQCD calculations already with
an impressive precision [68,722,4047]

fBs = 230.3(1.3)MeV, fBd = 190.0(1.3)MeV,

fK = 155.7(3)MeV, (13.14)

although in the case of KL ,S → μ+μ− also genuine
long distance QCD contributions enter. They cannot be
described by matrix elements of local operators and one
has to develop some strategies to isolate the contribution
described by the effective Hamiltonian discussed by us.
In Bs,d and B± decays such effects are much smaller.
However, they are significant in charm meson decays.
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– In semileptonic decays like K+ → π+νν̄, KL → π0νν̄,
KL → π0!+!−, B → K (K ∗)!+!−, B → D(D∗) !+!−
and B → K (K ∗)νν̄ the formfactors for the transitions
K → π , B → K (K ∗), B → D(D∗) enter. For K
decays these form factors can even be extracted from
data on leading decays with the help of ChPT and isospin
symmetry [4048–4050]. Those that enter B decays they
are usually calculated using lightcone sum rules for low
momentum transfer squared q2 [4051] and LQCD for
largeq2 [4052,4053]. Significant progress has been made
here by now with most recent analyses in [740,4054–
4056] where more information can be found.

– Moreover Heavy Quark Effective Theory (HQET) and
Heavy Quark Expansions (HQE) play an important roles
here. HQET represents a static approximation for the
heavy quark, covariantly formulated in the language
of an effective field theory. It allows us to extract the
dependence of hadronic matrix elements on the heavy
quark mass and to exploit the simplifications that arise
in QCD in the static limit. The most important appli-
cation of HQET has been to the analysis of exclusive
semileptonic transitions involving heavy quarks, where
this formalism allows us to exploit the consequences of
heavy quark symmetry to relate form factors and pro-
vides a basis for systematic corrections to the m → ∞
limit. There are several excellent reviews on this subject
[711,1429,4057,4058].

– For the calculation of the width differences in B0
s,d− B̄0

s,d
mixing ΔΓs,d , lifetimes and totally inclusive decay rates
of heavy hadrons, the so-called heavy quark expansion
(HQE) has been developed by several authors. It relies on
the smallness of the parameterΛQCD/mb, whereΛQCD is
a hadronic scale. The coefficients in this expansion can be
calculated by LQCD. Nice reviews with some details are
the ones in [711,1223,1237,4059] and a nice summary
of the present situation including historical development
can be found in [4060].

– For ΔMs,d significant progress has been made by LQCD
in the recent years. Here the relevant hadronic matrix

elements are parametrized by fBs

√
B̂s and fBd

√
B̂d with

B̂s and B̂d close to unity. Presently the most accurate
results are those from HPQCD collaboration [722]

fBs

√
B̂s = 256.1(5.7)MeV,

fBd

√
B̂d = 210.6(5.5)MeV (13.15)

that in addition to light quarks includes charm quarks.
Also corresponding matrix elements for BSM operators
are already known but their precision should be still
improved. Similarly, the relevant hadronic matrix ele-
ments for the parameter εK describing the indirect CP-

violation in KL → ππ decay are already known with
respectable precision from LQCD both in the SM and
beyond [721,4061,4062]. Some physics insight into the
numerical LQCD results has also been gained with the
help of the DQCD approach [4063].

– The calculations of hadronic matrix elements for non-
leptonic decays like K → ππ , B → πK etc. are much
more involved. For K → ππ the only approaches pro-
viding matrix elements that can be consistently com-
bined (matched) with the WCs are LQCD, led by the
RBC-UKQCD collaboration and the DQCD approach.
But while from LQCD only the matrix elements of SM
operators are known, all matrix elements of BSM oper-
ators have been calculated using the DQCD approach
[4064]. Yet, the accuracy of the latter calculations have
to be improved, and one should hope that also LQCD
collaborations will calculate these matrix elements one
day. However, based on the time required to compute the
matrix elements of SM operators using LQCD, it could
take even a decade to obtain satisfactory results on these
matrix elements from LQCD. This is important in view of
the present status of the direct CP violation in KL → ππ

decay represented by the ratio ε′/ε. We will return to this
issue in Sect. 13.3.

– For non-leptonic exclusive B decays LQCD cannot pro-
vide the hadronic matrix elements directly but can help in
calculating non-perturbative parameters in the context of
the so-called QCD factorization (QCDF) [4065,4066].
This approach can be applied to B → ππ , but also
to rare and radiative decays, such as B → K ∗γ or
B → K ∗l+l−. In the heavy-quark limit, that is up to rela-
tive corrections of order ΛQCD/mb, the problem of com-
puting exclusive hadronic decay amplitudes simplifies
considerably. A nice review by Buchalla can be found in
Section 7.4 of [4034], and also the one by Beneke [4067]
can be strongly recommended. There, also the so-called
soft-collinear effective theory (SCET) [1802,1804] is
briefly discussed.

– Last but certainly not least one should mention numerous
strategies for the study of the QCD dynamics in non-
leptonic B decays like B → ππ , B → πK and B →
KK that utilize SU (3) flavor symmetry. They play a role
also in the extraction of the angles of the unitarity triangle,
in particular of the angle γ . They are reviewed in Chapter
8 of [4034]. A good example here is the paper [4068] and
numerous papers of Fleischer and collaborators. These
studies are also useful for the search for new physics.

13.2 The quark mixing matrix

Paolo Gambino
The rich flavor structure of the Standard Model (SM) and
its CP violation both follow from the matrices of Yukawa
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couplings between the fermions (down and up quarks and
charged leptons) and the Higgs boson. The diagonalisa-
tion of these matrices determines the fermion masses and
brings us to the flavor basis, where the charged weak current
is no longer diagonal: as first understood in the hadronic
sector by Cabibbo [4028] and extended to three genera-
tions by Kobayashi and Maskawa [86], charged currents mix
the quarks of different generations in a way parameterized
by the Cabibbo–Kobayashi–Maskawa (CKM) quark mixing
matrix. Interestingly, its elements display a remarkable hier-
archy, possibly indicative of the unknown mechanism of fla-
vor breaking [4069]:

V̂CKM =
⎛

⎝
Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

⎞

⎠

=
⎛

⎝
1− λ2/2 λ Aλ3(ρ−iη)
−λ 1−λ2/2 Aλ2

Aλ3(1−ρ−iη) −Aλ2 1

⎞

⎠+ O(λ4)

(13.16)

where λ = sin θc � 0.22 is a small expansion parameter and
A � 0.8, ρ � 0.16, η � 0.36. As a unitary matrix, V̂CKM

has in principle nine free parameters but some of them can
be absorbed by phase redefinitions. In the end, V̂CKM has
only four independent real parameters: three Euler angles
and a phase, or equivalently λ, A, ρ and η. The presence of
a nonvanishing phase, i.e. of an imaginary part, implies CP
violation. Since unitarity is specific to the three generations
of the SM and to the absence of additional flavor violation,
testing V̂ †

CKMV̂CKM = 1 is an important step in the verifica-
tion of the SM and represents the modern equivalent of the
tests of the universality of the charged currents. Any of the
off-diagonal relations can be represented by a triangle in the
complex plane whose area is a measure of CP violation. In
particular, the triangle

1+ VudV
∗
ub

VcdV
∗
cb
+ VtdV

∗
tb

VcdV
∗
cb
= 0 (13.17)

is frequently considered because it has sides of compara-
ble length, see Fig. 344, and its parameters can all be well
determined in B decays. Fixing the unphysical phases as in
the second line of (13.16), the angles β and γ at the basis of
this triangle correspond to the phases of the elements Vub and
Vtd : Vub = |Vub|e−iγ , Vtd = |Vtd |e−iβ . Various observables
constrain the apex of this triangle. The results of a global
fit are shown in Fig. 344, where one can see that different
constraints agree well, verifying unitarity and determining
the apex of the triangle with high accuracy. As we will see
below, there are tests of the unitarity of V̂CKM that cannot be
represented in this plot.

The role of QCD in the determination of the CKM ele-
ments and in testing the CKM mechanism is crucial, with
important perturbative and nonperturbative aspects depend-

Fig. 344 Constraints on the apex of the Unitarity Triangle of (13.17)
and their combination according to the UTFit collaboration. Figure
taken from Ref. [4070]. ρ̄ = ρ(1− λ2/2), η̄ = η(1− λ2/2)

ing on the observable; some of the nonperturbative methods
have already been discussed in Sects. 4.7 and 5.7.

The experimental and theoretical progress made in the
last 30 years is enormous and was mostly driven by lattice
QCD; it allows for very precise tests of the CKM mechanism,
as is apparent from Fig. 344. Further improvements will be
possible with LHCb and Belle II data, but will generally
require an effective synergy of theory and experiment. In this
section I will focus on measurements where QCD effects are
most relevant and where tensions have appeared with the SM.

13.2.1 The Cabibbo angle and the first row unitarity

The parameter λ in Eq. (13.16) corresponds to the sine of
the Cabibbo angle and is determined, up to very small higher
orders in λ, by |Vus | or |Vcd |. The high precision with which
|Vud | is known also allows for a competitive λ determination.
The unitarity of the CKM matrix implies for the first row the
relation

Σ1 = |Vud |2 + |Vus |2 + |Vub|2 = 1, (13.18)

but since |Vub| ≈ 0.004 only the first two terms are relevant.
Precise measurements of |Vus | and |Vud | therefore lead to a
first important check of the CKM mechanism.

The most precise determination of |Vud | comes from
superallowed Fermi transitions (SFT), i.e. 0+ → 0+ nuclear
β decays. At the tree level, these decays are mediated by
the vector current, whose conservation allows for a partic-
ularly clean theoretical description. Among recent refine-
ments, hadronic effects in the radiative corrections, in par-
ticular in the γW box, have been studied with dispersive
methods [4071,4072], and the effect of nuclear polarizability,
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which depends on nuclear structure (NS), has been exposed
[4073]. Considering 15 different superallowed transitions
gives a consistent result and the error of the final value [4074],

|Vud | = 0.97367(32) (0+ → 0+) (13.19)

is dominated by the NS effects. Neutron β decay depends on
the nucleon isovector axial charge gA/gV and has recently
become competitive, |Vud | = 0.97413(43), if one includes
only the current best experiments [4075]. Theoretically the
cleanest channel is π+ → π0eν, which is however limited
by a very small O(10−8) BR. The present uncertainty based
on PIBETA results [4076], δVud ∼ 0.003, is still far from
being competitive, but there are plans to improve drastically
on that [4077].
|Vus | can be directly accessed from kaon, hyperon, and

tau semileptonic decays. The kaon decays, K → π!ν or K!3

are measured in five channels (KL ,S, K+ with electron and
muons) affected by different systematics, with K → π form
factors computed on the lattice, as discussed in Sect. 4.7.
Combining experimental data and the average of several
N f = 2+ 1+ 1 lattice results one obtains [513]

|Vus | = 0.2231(4)exp(4)lat (K!3), (13.20)

see also [4075]. At this level of precision, however, a con-
sistent treatment of QED effects in the lattice calculation
becomes mandatory [68]. Hyperon decays give a consistent
|Vus | but are presently not competitive with the above result.
The ratio of inclusive tau decays into strange and non-strange
hadrons can also be used to extract |Vus |/|Vud |, employ-
ing experimental data and Finite Energy Sum Rules, with-
out lattice input. Recent results tend to be over 2σ lower
than Eq. (13.20) and are subject to debate [4078,4079],
but a combination of experimental and lattice data on
the hadronic vacuum polarization functions gives |Vus | =
0.2245(11)exp(13)th [4080], in agreement with Eq. (13.20).
Exclusive tau decay channels or ratio such as B(τ →
Kν)/B(τ → πν) can also be used together with fK ,π

computed on the lattice, see Sect. 4.7, to obtain |Vus | =
0.2229(19) [4081], again consistent with Eq. (13.20).

A very precise determination of the ratio |Vus |/|Vud | can
be obtained from the ratio of K → μν(γ ) to π → μν(γ )

decays [693]. Here nonperturbative QCD sits almost com-
pletely in the ratio of fK and fπ , which is known with a
0.2% uncertainty in 2+1+1 lattice QCD [68]. It then follows
[4075]
∣
∣
∣
Vus
Vud

∣
∣
∣ = 0.2311(5) (Kμ2) (13.21)

with the uncertainty dominated by lattice QCD. Using uni-
tarity this is equivalent to |Vus | = 0.2245(5) and in some
tension with Eq. (13.20).

The most precise constraints can be combined in the
(|Vud |, |Vus |) plane, see Fig. 345. We observe a clear tension

Fig. 345 1σ constraints in the (|Vud |, |Vus |) plane from superallowed
Fermi transitions (red), from neutron decay (violet), K!3 (green), Kμ2
(blue) and the 68% CL contour of the combined fit (yellow). The black
line marks the unitarity relation between |Vud | and |Vus |. Figure taken
from [4075]

between the best fit and unitarity, mostly driven by the kaon
determinations, which cross far from the unitarity line, and
by the superallowed Fermi transitions, which under unitarity
imply a very high |Vus |. On the other hand, |Vus | from K!2

and the neutron |Vud | are compatible with unitarity. Taking
the average of the determinations from Fermi and n decay,
|Vud | = 0.97384(26), the actual deviation of Σ1 from 1
varies between about 1.5σ using Eq. (13.21) and∼ 3σ using
Eq. (13.20) and it is sometimes referred to as the Cabibbo
anomaly. It could be due to underestimated uncertainties in
the NS correction, in the lattice calculations, in the exper-
imental results, or due to New Physics [4082,4083], and a
renewed campaign of Kμ3 and Kμ2 measurements will be
crucial to clarify the situation [4075].

As mentioned above, λ can also be determined from
D(s) → !ν and D → π(K )!ν. Concerning the for-
mer, as lattice calculations for fD have become very pre-
cise, the uncertainties in |Vcs | = 0.982(10)exp(2)lat and
|Vcd | = 0.2181(49)exp(7)lat [4081] are dominated by exper-
iment. These results are consistent with Eqs. (13.19, 13.20).
FLAG has performed a combined fit to lattice and experi-
mental data for the two D semileptonic decays that yields
|Vcs | = 0.971(7) and |Vcd | = 0.234(7) [68], but |Vcd | is
about 2σ above its D → μν value. Averaging all these
results, one can check the unitarity of the second row of the
CKM matrix [68],

Σ2 = |Vcd |2 + |Vcs |2 + |Vcb|2 = 1+ 0.001(11), (13.22)

where again the last term in the sum is negligible at the present
accuracy. Neutrino Deep Inelastic Scattering is also used to
extract a consistent but less precise value of |Vcd |. The second
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row of V̂CKM appears to be consistent with unitarity, but the
accuracy is much lower than for the first row.

13.2.2 Determination of Vcb and Vub

The magnitudes of two of the elements of the CKM matrix,
|Vub| and |Vcb|, can be directly extracted from semileptonic
b-hadron (mostly B meson) decays. In exclusive decays one
looks at specific hadronic final states, while inclusive decays
sum over all decays channels to a certain flavor (i.e. b→ c).
Inclusive and exclusive semileptonic decays are subject to
very different theoretical and experimental systematics, see
Refs. [4084,4085] for recent reviews.

The results of the B factories, analysed in the light of the
most recent theoretical calculations, are puzzling, because –
especially for |Vcb| – the determinations from exclusive and
inclusive decays are in strong tension, and despite recent new
experimental and theoretical results the situation remains
unclear. While in principle New Physics may explain the
tensions, it is significantly constrained by the measured dif-
ferential distributions in B → D(∗)!ν [4086] and, in the
context of the SM Effective Theory or SMEFT, by LEP data
[4087]. This tension is all the more relevant as measurements
in the semitauonic channels at Belle, BaBar, and LHCb show
discrepancies with the SM predictions, pointing to a possi-
ble violation of lepton-flavor universality. This Vcb puzzle
casts a shadow on our understanding of semitauonic decay
as well. The inability to determine precisely Vcb also ham-
pers significantly NP searches in Flavor Changing Neutral
Currents processes: the uncertainty on the value of Vcb dom-
inates the theoretical uncertainty in the SM predictions for
several observables, from εK to the branching fraction of
Bs → μ+μ−.

Our understanding of inclusive semileptonic B decays,
see also Sect. 5.7, is based on a simple idea: since inclu-
sive decays sum over all possible hadronic final states, the
quark in the final state hadronizes with unit probability and
the transition amplitude is sensitive only to the long-distance
dynamics of the initial B meson. Thanks to the large hierar-
chy between the typical energy release, of O(mb), and the
hadronic scale ΛQCD, and to asymptotic freedom, any resid-
ual sensitivity to non-perturbative effects is suppressed by
powers of ΛQCD/mb. From a phenomenological point of
view, it is remarkable that the linear preasymptotic correc-
tion is actually absent and that the leading nonperturbative
corrections are O(Λ2

QCD/m
2
b). This is due to the Operator

Product Expansion (OPE) that allows us to express the non-
perturbative physics in terms of B meson matrix elements
of local operators of dimension d ≥ 5, while the Wilson
coefficients can be expressed as a perturbative series in αs
[1253–1255,4088,4089]. The OPE disentangles the physics
associated with soft scales of order ΛQCD (parameterized by
the matrix elements of the local operators) from that asso-

ciated with hard scales ∼ mb, which determine the Wilson
coefficients. Inclusive observables such as the total semilep-
tonic width and the moments of the kinematic distributions
are therefore double expansions in αs and ΛQCD/mb, with
a leading term that is given by the free b quark decay. As
already noted, the power corrections start at O(Λ2

QCD/m
2
b)

and are comparatively suppressed. At higher orders in the
OPE, terms suppressed by powers of mc also appear, starting
with O(Λ3

QCD/m
3
b ×Λ2

QCD/m
2
c) [4090]. The expansion for

the total semileptonic width is

Γsl =Γ0

[
1+ a(1)

αs(mb)

π
+ a(2)

(αs

π

)2+ a(3)
(αs

π

)3

+
(

−1

2
+ p(1)

αs

π

)
μ2
π

m2
b

+
(
g(0) + g(1)

αs

π

) μ2
G(mb)

m2
b

+d(0) ρ
3
D

m3
b

− g(0)
ρ3
LS

m3
b

+higher orders

]

, (13.23)

where Γ0 is the tree-level free-quark decay width, and
μ2
π , μ2

G , ρ3
D and ρ3

LS are hadronic parameters that have
to be determined from experimental data, i.e. from the
moments of differential distributions, which can be expanded
in the same way as the total width. The perturbative cor-
rections are known up to O(α3

s ) and O(αs/m3
b) for the

total width [1239,4091] and up to O(α2
s ) and O(αs/m2

b)

for the moments [4092–4095]. In line with the discussion
of Sect. 5.7, it is important that mb and the other Heavy-
Quark Expansion (HQE) parameters are free from renor-
malon ambiguities. The kinetic scheme [4096,4097], for
instance, employs a Wilsonian cutoff μ ∼ 1 GeV. Higher
power corrections have been considered in [4098–4100] and
appear to have a negligible impact on |Vcb|. Although the
moments are rather sensitive to the difference mb − mc, a
more precise determination of |Vcb| can be obtained taking
advantage of the precise lattice determinations of the charm
and bottom masses, see [513] for a review. The most recent
global analysis in the kinetic scheme [4101] gives

|Vcb| = 42.16(51)× 10−3, (B → Xc!ν) (13.24)

where the uncertainty follows from the combination of theo-
retical and experimental uncertainties. A consistent but less
precise result has been recently obtained from an analysis of
the new Belle and Belle II measurements of the q2 moments
[4102]. While the estimate in Eq. (13.24) appears solid, new
measurements at Belle II will provide welcome checks and
may reduce the experimental uncertainty. There are also a few
more higher order effects worth computing, and QED effects
should be understood better. Most importantly, however, lat-
tice calculations of inclusive quantities are now possible and
may soon complement the OPE approach [750,4103].

The inclusive determination of |Vub| from B → Xu!ν

decays differs from that of |Vcb| mostly because of the
experimental cuts necessary to suppress the large b → c!ν
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background: the local OPE does not converge well in the
restricted phase space. The modern description of these
inclusive decays is therefore based on a non-local OPE
[1257,1258], where nonperturbative shape functions (SFs)
play the role of parton distribution functions of the b quark
inside the B meson. While the first few moments of the
SFs are expressed in terms of the same HQE parameters
extracted in B → Xc!ν, direct experimental information
on the SFs is limited to the B → Xsγ photon spectrum, to
which they are only related in the mb →∞ limit. There are
a few frameworks that incorporate the above picture with a
range of additional assumptions: BLNP [4104] and GGOU
[4105] use a large set of models for the SFs, while DGE
[4106] computes the leading SF in resummed perturbative
QCD. Another potential source of theoretical uncertainty in
all approaches is represented by the so called Weak Anni-
hilation contributions, namely nonperturbative contributions
at high q2 arising from bq̄ weak annihilations (WA) in the
B meson, where the q̄ is not necessarily the light valence
quark [4107]. Charm decays, and particularly moments of
the inclusive leptonic spectrum, constrain them effectively,
and one can conclude that the WA correction to the total rate
of B → Xu!ν must be smaller than about 2% [4108,4109].
Its localisation at high q2 and the sensitivity of the q2 tail
to higher power corrections suggest that an upper cut on q2

would be useful in future analyses.
A few experimental analyses extend the measurement into

the phase space region dominated by b → c transitions,
which are then modelled, trading part of the theory uncer-
tainty for a larger systematic experimental uncertainty (in
particular, D∗∗ and multihadron final states are not known
very well): agreement among the various analyses should
then increase our confidence in the result, but one should be
aware that the reconstruction efficiencies depend on the mod-
elling of the signal, i.e. again on the SFs. The latest Heavy
flavor Averaging Group (HFLAV) |Vub| world averages in
the three above frameworks [4081] are based on a number of
different experimental results with different kinematic cuts
and read

|Vub|BLNP= 4.28(13)+20
−21 × 10−3,

|Vub|GGOU= 4.19(12)+11
−12 × 10−3, (13.25)

|Vub|DGE = 3.93(10)+9
−10 × 10−3,

where the first uncertainty is experimental and the second
comes from theory. Unfortunately, they do not agree well
with each other. Moreover, the values obtained from differ-
ent experimental analyses are not always compatible within
their stated theoretical and experimental uncertainties. The
latest electron endpoint analysis by BaBar [4110], in par-
ticular, shows a dependence on the model used to simulate
the signal and leads to sharply different results in BLNP and
GGOU. This is the most precise analysis to date; in GGOU it

favours a lower |Vub| = 3.96(10)(17)×10−3 while in BLNP
the result is |Vub| = 4.41(12)(27) × 10−3. While it is pos-
sible that modelling the signal has biased previous endpoint
results, we stress that analyses involving a larger fraction of
the phase space are generally less sensitive to SFs and other
theoretical systematics, which are inherently difficult to esti-
mate. In this respect, applying a cut on the hadronic invariant
mass MX < 1.7 GeV seems to be the safest approach, as it
depends little on the reconstruction of theb→ c background,
captures almost 60% of the phase space, and strikes a bal-
ance between experimental and theoretical uncertainties. In
the recent Babar analysis [4111], where machine learning
techniques and hadronic tagging were used to reduce back-
grounds, the result in GGOU (very much consistent with
BLNP and DGE) is

|Vub| = 3.97(18)(17)× 10−3, (B → Xu!ν) (13.26)

which in my opinion represents the current state of the art.
Improvements will certainly come from the higher statis-
tics available at Belle II and from the implementation of
higher order calculations such as [4112]. For instance, the
complete O(α2

s ) perturbative contributions to the triple dif-
ferential rate is still missing, despite numerical results for
the moments [4113]. A precise study of the differential spec-
tra, recently measured at Belle for the first time [4114], will
validate the theoretical frameworks and help constrain the
SFs. The SIMBA [1840] and NNVub [4115] methods are
well posed to analyse the Belle II data in a model indepen-
dent and efficient way. In the longer run, lattice studies like
those mentioned for inclusive b→ c transitions should also
become possible.

The exclusive B → D!ν and B → D∗!ν channels are
also used to extract |Vcb|. These decays are described by
nonperturbative form factors which are computed in lattice
QCD (as discussed in Sect. 4.7) as well as with approximate
methods like Light Cone Sum Rules (LCSR), see Sect. 5.7.
Typically, the lattice calculations are better under control at
large or maximal q2, corresponding to small or vanishing
recoil, while LCSR calculations prefer the small q2 range
and are less precise. Moreover, heavy quark symmetry guar-
antees that the form factors at zero recoil are absolutely nor-
malized in the heavy quark limit. As the rates vanish at zero
recoil in both cases, see Eq. (4.188), the experimental data
are much less precise at low recoil and one needs to parame-
terize the form factors in a model independent way in order to
describe the form factors in the whole kinematic range and to
interpolate between the small and large recoil regions. Model
independent parametrizations based on a dispersive approach
have been developed in the 1990s and the two most relevant
ones are known as BGL and BCL [4116,4117]; the form fac-
tors are expressed, up to known prefactors, as series in the
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Fig. 346 Form factors f+,0(z) for the B → D transitions computed by
FNAL/MILC [4126] (red) and HPQCD [4127] (blue) and experimental
data from Belle (brown) and BaBar (green) normalized by the fitted
value of |Vcb|. The bands show the results of the global fit. Figure from
Ref. [4128]

variable

z =
√
w + 1−√2√
w + 1+√2

, (13.27)

where w = (m2
B + MD(∗) − q2)/(2mBmD(∗) ). In the phys-

ical range z is small, < 0.07, and unitarity puts constraints
on the size of the series coefficients. A variant, proposed in
[4118] and known as CLN, additionally employs Next to
Leading Order Heavy Quark Effective Theory relations and
QCD sum rules to reduce the number of relevant parame-
ters to two. These additional inputs imply an uncertainty that
can no longer be neglected, see [4119–4122] for updates and
improvements on the CLN approach. It is then unfortunate
that prior to 2016 the experimental results were generally
given in terms of fits to the CLN parametrization, without
accounting for this uncertainty. More recent measurements
[4123–4125] provide the differential q2 and angular (for
B → D∗!ν) unfolded distributions or the necessary ingredi-
ents (efficiencies and response functions) to fold theoretical
predictions and get the yields in each bin.

In the B → D!ν case precise lattice calculations at small
but non-zero recoil are available since several years [4127,
4129] and have been combined with the experimental results
of Refs. [4123,4130] to get [4128]

|Vcb| = 40.5(1.0)10−3 (B → D!ν). (13.28)

A similar value is found in [68]. Indeed, the lattice and exper-
imental form factor shapes are in good agreement, satisfy the
unitarity constraints, and the overall fit is good and stable, see
Fig. 346. The BGL and BCL parametrizations give identical
results and the fit also provides a SM prediction for the Lepton
Flavor Universality ratio R(D) = Γ (B → Dτν)/Γ (B →
Dμν) = 0.299(3) [4128], in reasonable agreement with the
experimental world average R(D)exp = 0.339(30) [4081].

In the B → D∗!ν channel the situation is more com-
plicated. From the experimental point of view this channel
allows for a more precise determination of |Vcb| than the
B → D channel and angular distributions can be studied in
addition to the q2 distribution. On the other hand, the D∗
meson decays strongly to Dπ (it cannot be considered sta-
ble) and three (four) different form factors contribute for a
massless (massive) lepton. The only lattice calculation of
these form factors away from the zero-recoil point has been
published so far by the Fermilab-MILC Collaboration [745],
although JLQCD and HPQCD calculations are in their final
stage [747,4131]. Restricting to experimental analyses that
provide data in a model independent way, Belle has presented
a tagged [4124] and an untagged analysis [4125]. The dataset
of [4124] showed for the first time that the extraction of |Vcb|
could strongly depend on the parametrization employed:
BGL and CLN both gave reasonable fits with |Vcb| values dif-
fering by about 6% [4132,4133]. It has recently been replaced
by a new untagged analysis [4134] that does not present this
problem, but the point remains valid: parametrizations matter
and the related uncertainties have to be carefully considered.
The more precise dataset of the untagged analysis [4125],
despite a few problems [4135], did not show any parametriza-
tion dependence. A global fit based on [4136] that includes
the Fermilab calculation [745], unitarity constraints, and the
Belle untagged data only, while adjusting for the D’Agostini
bias [4137], leads to

|Vcb| = 39.3(9)10−3 (B → D∗!ν), (13.29)

but the agreement between the Fermilab form factor shape
and the experimental distributions is not good and the totalχ2

is large.117 An additional uncertainty of∼ 0.5% for missing
QED corrections should be added to Eq. (13.29), as well as
to Eqs. (13.24) and (13.28). There is also a troubling tension
between the Fermilab results and the ratio of form factors
computed in NLO HQET. Preliminary results for the B →
D∗ form factors have also been disclosed by the JLQCD col-
laboration [4138] and in this case the agreement with Belle
data is much better, with a final |Vcb| = 40.7(+1.0

−0.9)10−3. One
can also add LCSR constraints on the form factors [4055],
with minimal change in |Vcb|. Despite these latest develop-
ments, HFLAV also quotes an average of experimental results
in the CLN parametrization based on the form factor at zero
recoil only, |Vcb| = 38.46(68) 10−3, but this result is sub-
ject to uncontrolled uncertainties related to the way the CLN
parametrization has been used. The two Belle datasets have
also been analysed in the Dispersive Matrix approach [4139],

117 The result in (13.29) differs from that reported in [745] and adopted
in [513], |Vcb| = 38.4(7)10−3, mostly because of the D’Agostini bias
(not considered in [745]), of the way unitarity constraints are imple-
mented, and of the QED Coulomb factor that is included in [745],
neglecting however other QED corrections.
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where the form factors are constrained by the Fermilab lattice
data and unitarity only; tensions with the experimental data
are observed here as well. The fit that originates Eq. (13.29)
gives also R(D∗) = Γ (B → D∗τν)/Γ (B → D∗μν) =
0.249(1), confirming the tension with the experimental world
average R(D∗)exp = 0.295(14) [4081].

LHCb has recently performed the first determination of
|Vcb| using B0

s decays [4140]. Using both B0
s → D(∗)−

s μ+ν
and the lattice results from Refs. [746,4141], they obtain
|Vcb| = 41.7(0.8)(0.9)(1.1)10−3. On the other hand, BaBar
using a simplified BGL parametrization finds |Vcb| =
38.4(9)10−3 [4142]. In summary, the situation for the exclu-
sive determination of |Vcb| is still unsettled, but a tension with
the inclusive determination of Eq. (13.24) is undisputable.
New lattice calculations performed with relativistic heavy
quarks such as [747] will extend their q2 range, making it
possible to extract |Vcb| at large recoil, where experimental
data are more accurate. New experimental analyses of Belle
and Belle II data are also expected soon. As this is paralleled
by a renewed experimental and theoretical activity on the
inclusive front, we can hope that the Vcb puzzle will find its
resolution.

Moving to the exclusive determination of |Vub|, it pro-
ceeds through the B → π channel. In analogy to the B → D
case, only one form factor is relevant for massless leptons
and it is standard practice to perform a BCL fit to lattice
[741,748,4143] and LCSR calculations and to experimental
data from several experiments, see [4081]. HFLAV employs
the Fermilab and RBC/UKQCD form factors and the LCSR
calculation of [4144] to find |Vub| = 3.67(15)10−3. An
updated LCSR result is presented in [4145] and leads
to

|Vub| = 3.77(15)10−3 (B → π!ν). (13.30)

The recent JLQCD form factor f+(q2) [748] is slightly lower
than the Fermilab and RBC/UKQCD and also implies a
higher |Vub|. The fits in [4081,4145] are both consistent, but
there are two outliers which drive the value of |Vub| down.
Removing the outliers the result increases |Vub| by about one
sigma [4146]. We can conclude that the agreement between
inclusive and exclusive determinations of |Vub| has become
acceptable, but more stringent tests will be possible in the
next few years. With the large statistics that will be avail-
able at Belle II the channel B → τν will become competi-
tive with B → π!ν for the extraction of |Vub|. To this end,
neglecting QED effects, the only QCD input is the decay
constant fB , which is already known to better than 1%, see
Sect. 4.7.

Finally, two recent semileptonic measurements at LHCb
place constraints on |Vub/Vcb|. The first concerns the ratio
of Λb → pμν to Λb → Λcμν decays [752] and makes use
of a pioneering lattice calculation of baryonic form factors

[751]; the result is [4081]

|Vub|
|Vcb| = 0.079(4)(4) (Λb → pμν) (13.31)

where the uncertainties are experimental and from the form
factors. The second is the first measurement of Bs → Kμν;
the decay is normalized to Bs → Dsμν in two bins of q2

[4147]. Using lattice results from the FNAL/MILC Collab-
oration [4148] for the high q2 bin and LCSR [4149] for the
low q2 bin, one obtains values of |Vub/Vcb| in sharp dis-
agreement with each other, which requires further scrutiny.
Averaging Ref. [4148] with older results in the high q2 bin of
Ref. [4147], FLAG finds |Vub/Vcb| = 0.086(5) [68]. We can
compare this and Eq. (13.31) with the ratio of Eqs. (13.26,
13.24) or of Eq. (13.30) and the average of Eqs. (13.28,
13.29): from inclusive decays we get |Vub/Vcb| = 0.094(6),
from exclusive decays |Vub/Vcb| = 0.094(4), and in both
cases the tension with Eq. (13.31) is over 2σ . The agreement
improves for lower |Vub| or higher |Vcb|. This is another puz-
zling issue: hopefully, future measurements and lattice cal-
culations of baryonic and mesonic form factors will clarify
the situation.

As mentioned above, semileptonic b decays are not the
only observables sensitive to |Vcb| and |Vub|. Assuming the
validity of the SM and therefore the unitarity of the CKM
matrix, one can also extract Vcb from loop induced observ-
ables like εK and B(s) − B̄(s) mixing, as well as from rare
kaon and B decays [4070,4150–4154], and the precision
starts to be competitive. For instance, the B(s) meson mass
differences are proportional to |Vcb|2: ΔM(d,s) ∝ |Vtd,ts |2
and |Vts |2 ≈ |Vcb|2, |Vtd |2 = λ2 sin2 γ |Vcb|2. εK is even
more sensitive, εK ∝ |Vcb|3.4, and the branching fraction
for KL → π0νν̄ is proportional to |Vcb|4. Deviations from
the direct (semileptonic) determinations would signal New
Physics. The present situation is illustrated in Fig. 347,
where the constraints from some of these observables in the
(γ, |Vcb|) plane are shown, with a clear preference for a high
|Vcb|. As far as |Vub| is concerned, global fits performed
without its direct determination tend to return values close to
Eq. (13.30).

13.2.3 Meson mixing and CP asymmetries

So far we have discussed the elements of the first two rows
of V̂CKM : their magnitudes determine precisely λ and A in
Eq. (13.16), and the ratio |Vub/Vcb| constrains the apex of the
unitarity triangle, as shown in Fig. 344. In order to determine
completely the remaining parameters ρ and η, however, one
needs additional information. As the elements of the third
row cannot yet be measured precisely, we now turn to loop
mediated B(s) mixing and rare decays, and CP asymmetries,
focussing only on the most constraining observables.
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Fig. 347 Present constraints from εK ,ΔMd , andΔMs in the (γ, |Vcb|)
plane, see Ref. [4152] for details

In the SM the mass difference ΔMd,s between the two
mass eigenstates of the B0 and B0

s systems is proportional to
|Vtd |2 and |Vts |2, respectively, and the relevant nonperturba-
tive QCD physics is all contained in the product f 2

Bq
B̂Bq of

decay constants and bag parameters, see Eq. (4.186). The
ratio ΔMs/ΔMd is particularly interesting because some
uncertainty cancels out: the latest N f = 2 + 1 + 1 value
[722] for ξ = fBs/ fBd

√
BBs/BBd is ξ = 1.216(16), which

together with accurate measurements [4081] allows for the
very strong constraint shown in red in Fig. 344. Individually,
ΔMd,s are slightly less precise but have a very different sen-
sitivity to |Vcb|, see Fig. 347. In the kaon sector one looks at
CP-violation in mixing, quantified by εK , see Sect. 13.3.3,
which is sensitive to a combination of CKM elements. The
bulk of εK is due to its short-distance component, whose
uncertainty is dominated by the bag parameter B̂K , see e.g.
[4034]. The recent average of lattice calculations reported in
Sect. 4.7, B̂K = 0.7625(97), leads to the constraints shown
in Figs. 344 and 347.

Finally, different CP asymmetries allow for a direct extrac-
tion of the phase of some CKM element, with minimal or
no QCD input, see [4155–4158] for good reviews. Limiting
to the most precise results, the measurement of the time-
dependent CP asymmetry in B → J/ψKS gives sin 2β =
0.699(17) (green band in Fig. 344) neglecting small contribu-
tions from penguin amplitudes with a different weak phase,
but data-driven methods based on flavor symmetries have
been devised to account for them [4159–4161], and indi-
cate an additional 0.01 uncertainty; the study of the inter-
ference between the tree-level decays B− → D0K− and
B− → D̄0K− gives γ = 66.1(3.5)◦ [4081] (blue band in
Fig. 344); an isospin analysis [4162] of the time-dependent
asymmetries in B → ππ, ρρ leads to α = 85.4(4.6)◦ (gray
bands in Fig. 344).

The global picture that emerges from all these and addi-
tional less important inputs is summarized by the global
fit that gives the apex of the unitarity triangle in Fig. 344:

ρ̄ = 0.156(12) and η̄ = 0.350(10) [4070]. The consis-
tency between the various constraints is impressive and in
the last 18 years the overall precision has improved by a fac-
tor 4(3) for ρ̄(η̄). One can compare some of the above inputs
with the values obtained from a global fit performed without
them: the results are sin 2β = 0.750(27), γ = 66.1(2.1)◦,
α = 90.5(2.1)◦ [4070]. Very similar results are also obtained
by the CKMFitter Collaboration [4154], which reports ρ̄ =
0.157(+8

−5) and η̄ = 0.348(+12
−5 ).

In summary, the CKM mechanism describes successfully
a host of data, in many cases with crucial QCD input. As dis-
cussed in Sects. 13.2.1 and 13.2.2, there are potential prob-
lems that require further scrutiny, and more serious anomalies
will be discussed in Sect. 13.4, but it is premature to attribute
them to New Physics. On the contrary, present data place
very strong constraints on a variety of New Physics scenar-
ios, in particular on those that modify the CKM mechanism
more radically, see e.g. [4034,4163]. From an effective field
theory point of view, the measurements we have considered
in this section imply that the scale Λ of New Physics with a
generic flavor structure must be well beyond the TeV range.

13.3 The important role of QCD in flavor physics

Andrzej J. Buras
The importance of QCD effects depends on processes consid-
ered. While their inclusion in processes like K+ → π+νν̄,
KL → π0νν̄, B0

s,d → μ+μ− is important in order to
increase the precision of SM predictions, neglecting them
would result in uncertainties in the ballpark of at most 30%,
significant but not crucial if one wants to get a rough idea what
are the SM predictions for such decays. There are extensive
reviews on them and most of these decays are discussed in
[4034]. Here we want to confine our presentation to cases
in which QCD plays an essential role and neglecting QCD
effects one would fail the description of the data not by 30%,
but by factors of at least two and sometimes even by an order
of magnitude.

13.3.1 B → Xsγ decay

The calculations of NLO and NNLO QCD corrections to
B → Xsγ decay are probably the best known to the physics
community among all QCD calculations in the field of weak
decays. One of the reasons is the fact that the b → sγ tran-
sition was the first penguin-mediated transition in B physics
to be discovered in 1993 in the exclusive decay channel
B → K ∗γ measured in the CLEO experiment [4164]. The
inclusive branching ratio B → Xsγ has been measured in
1994 by the same group [4165]. The other reason is the par-
ticular structure of the QCD corrections to this decay that
requires a two-loop calculation in order to obtain the anoma-
lous dimension matrix in the LO approximation. Because of
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this it took 6 years after the first QCD calculations in ordinary
perturbation theory to obtain the correct result for the QCD
corrections to B → Xsγ in the RG-improved perturbation
theory at LO. It involved 5 groups and 16 physicists. It is
not then surprising that the corresponding NLO calculations
took 9 years. In 2022 this decay is known including NNLO
corrections. A detailed historical account of NLO calcula-
tions can be found in [4041] and an introduction to technical
details in [4034]. Most extensive NNLO calculations have
been reported first in [4166], and after a number of updates
the last one has been presented in [4167]

B(B → Xsγ )SM = (3.36± 0.23)× 10−4, (13.32)

for Eγ ≥ 1.6 GeV. It agrees very well with experiment which
reached the accuracy of 4.5% [4168]

B(B → Xsγ )exp = (3.32± 0.15)× 10−4, (13.33)

where again Eγ ≥ 1.6 GeV has been imposed. One expects
that in this decade the Belle II experiment will reach the
accuracy of 3% so that very precise tests of the SM will
be possible. Already now this decay provides an important
constraint on new physics.

In order to appreciate these results let us briefly describe
why these very difficult calculations were crucial. Indeed in
1987 two groups [4169,4170] calculated O(αs) QCD cor-
rections to the B → Xsγ rate finding a huge enhancement
of this rate relative to the partonic result without QCD cor-
rections. In 1987, when mt ≤ MW was still considered, this
enhancement was almost by an order of magnitude. With
the increased value of mt in the 1990s also the partonic rate
increased, and in 2022 the dominant additive QCD correc-
tions, although still very important, amount roughly to a fac-
tor of 2.5.

The additive QCD corrections in question originate in the
mixing of the leading current–current operator Q2 like the
one in Eq. (13.36) with the magnetic-photon penguin opera-
tor Q7γ that is directly responsible for the decayb→ sγ . The
calculation of the relevant anomalous dimensions at LO is a
two-loop affair and consequently it took some time before
the correct result had been obtained. An important role in
resolving these inconsistencies present in the literature was
played by the analyses in [4171,4172]. But the final LO result
has been provided by the Rome group [4173,4174].

Once this issue had been solved it was possible to outline
an NLO calculation in [4175]. Such a calculation was moti-
vated by the finding in [4176] that the LO rate for B → Xsγ

exhibited a very large renormalization-scale dependence.
Changing the scaleμb in the Wilson coefficient frommb/2 to
2mb changed the rate of B → Xsγ by roughly 60% making
a detailed comparison of theory with experiment impossible.

A large number of authors contributed to the calculation
of NLO corrections, with their names and references listed in

Table 5 of the review in [4041]. See also the 2002 summary
of NLO calculation in [4177].

Yet already in 2001 a motivation for a NNLO calculation
was born. While the NLO calculations decreased the μb-
dependence present in the LO expressions significantly, a
new uncertainty had been pointed out by Paolo Gambino and
Mikolaj Misiak in 2001 [4178]. It turns out that the B → Xsγ

rate suffers at the NLO from a significant,±6%, uncertainty
due to the choice of the charm quark mass in the two-loop
matrix elements of the four quark operators, in particular
in 〈sγ |Q2|B〉. In the following years, considerable progress
in the NNLO program of B → Xsγ was made. It was an
effort of 17 theorists [4166] and led eventually to the result
in Eq. (13.32) summarized in [4167].

13.3.2 QCD dynamics and the ΔI = 1/2 rule

One of the puzzles of the 1950s was a large disparity between
the measured values of the real parts of the isospin ampli-
tudes A0 and A2 in K → ππ decays, which on the basis
of usual isospin considerations were expected to be of the
same order. Experimentally, the ππ system in K → ππ

decays was often found to have isospin I = 0 and rarely
I = 2, an effect which is called ΔI = 1/2 rule; ΔI = 1/2
decays are enhanced over the ΔI = 3/2 ones by a factor
of 22.4. Altarelli and Maiani [1210] and Gaillard and Lee
[1209] made a first unsuccessful attempt to explain this huge
enhancement through short distance QCD effects. The pre-
cision of the calculation of the WCs increased considerably
in the last 50 years since this first pioneering calculation.
The basic QCD dynamics behind this rule – contained in the
hadronic matrix elements of current–current operators – has
been identified analytically first in 1986 in the framework of
the Dual QCD in [4030] with some improvements in 2014
[4031]. This has been confirmed more than 30 years later by
the RBC-UKQCD collaboration [729] although the modest
accuracy of both approaches still allows for some NP con-
tributions. See [4179] for the most recent summary. Despite
this summary it is appropriate to describe in this book the
present situation of this important rule that is governed by
QCD in more details.

In 2022 we knew the experimental values of the real parts
of these amplitudes very precisely [4180]

ReA0 = 27.04(1)× 10−8 GeV,

ReA2 = 1.210(2)× 10−8 GeV. (13.34)

As ReA2 is dominated by ΔI = 3/2 transitions but ReA0

receives contributions also from ΔI = 1/2 transitions, the
latter transitions dominate ReA0 which expresses the so-
called ΔI = 1/2 rule [4181,4182]

R = ReA0

ReA2
= 22.35. (13.35)
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In the 1950s QCD and the Operator Product Expansion did
not exist and clearly one did not know that W± bosons exist
in nature, but using the ideas of Fermi [4183], Feynman and
Gell-Mann [4184] and Marshak and Sudarshan [4185] one
could still evaluate the amplitudes ReA0 and ReA2 to find
out that such a high value of R is a real puzzle.

In modern times we can reconstruct this puzzle by eval-
uating the simple W± boson exchange between the relevant
quarks which after integrating out W± generates the current–
current operator Q2:

Q2 = (s̄γμ(1− γ5)u) (ūγ
μ(1− γ5)d). (13.36)

With only Q2 contributing we have

ReA0,2 = GF√
2
VudV

∗
us〈Q2〉0,2. (13.37)

Calculating the matrix elements 〈Q2〉0,2 in the strict large N
limit, which corresponds to factorization of matrix elements
of Q2 into the product of matrix elements of currents, we
find

〈Q2〉0 =
√

2〈Q2〉2 = 2

3
fπ (m

2
K − m2

π ), (13.38)

and consequently

ReA0 = 3.59× 10−8 GeV,

ReA2 = 2.54× 10−8 GeV, R = √2, (13.39)

in plain disagreement with the data in Eqs. (13.34) and
(13.35). It should be emphasized that the explanation of
the missing enhancement factor of 15.8 in R through some
dynamics must simultaneously give the correct values for
ReA0 and ReA2. This means that this dynamics should sup-
press ReA2 by a factor of 2.1, not more, and enhance ReA0

by a factor of 7.5. This tells us that while the suppression of
ReA2 is an important ingredient in the ΔI = 1/2 rule, it is
not the main origin of this rule. It is the enhancement of ReA0

as already emphasized in [1207]. However, in contrast to this
paper, the current–current operators, like Q2, are responsi-
ble dominantly for this rule and not QCD penguins. This
was pointed out first in 1986 [4030] and demonstrated in the
context of the Dual QCD approach. An update and improve-
ments over the 1986 analysis appeared in 2014 [4031] with
the result

R ≈ 16.0± 1.5, DQCD (1986, 2014), (13.40)

that is one order of magnitude enhancement over the result
in Eq. (13.39) without QCD up to confinement of quarks
in mesons. The missing piece could come from final state
interactions as pointed out first by nuclear physicists [4186]
and stressed much later by ChPT experts [4187]. Also 1/N 2

corrections could also change this result but are unknown.
Meanwhile the RBC-UKQCD LQCD collaboration con-

firmed in 2012 the 1986 DQCD finding that current–current

operators dominate the ΔI = 1/2 rule. But the results
from the series of their three papers show how difficult
these calculations on the lattice are: R = 12 ± 1.7 [4188],
R = 31.0± 11.1 [728] and finally [4189]

ReA0

ReA2
= 19.9(2.3)(4.4), RBC− UKQCD (2020)

(13.41)

that is consistent with the DQCD value and in agreement
with the experimental value 22.4.

While the RBC-UKQCD result is closer to the data than
the DQCD one, the dynamics behind this rule, except for
the statement that it is QCD, has not been provided by these
authors. To this end it is necessary to switch off QCD inter-
actions which can be done in the large N limit in DQCD but
it seems to be impossible or very difficult on the lattice.

The anatomy of QCD dynamics as seen within the DQCD
approach has been presented in [4030,4031] and in particular
in Section 7.2.3 of [4034]. Here we just present an express
view of this dynamics.

Starting with the values in Eq. (13.39), the first step is to
include the short-distance RG-evolution of WCs from scales
O(MW ) down to scales in the ballpark of 1 GeV. This is
the step made already in the pioneering 1974 calculations in
[1209,1210] except that they were done at LO in the RG-
improved perturbation theory and now can be done at the
NLO level. These 1974 papers have shown that the short dis-
tance QCD effects enhance ReA0 and suppress ReA2. How-
ever, the inclusion of NLO QCD corrections to WCs of Q2

and Q1 operators [4033,4190] made it clear, as stressed in
particular in [4033], that the K → ππ amplitudes with-
out the proper calculation of hadronic matrix elements of Qi

are both scale and renormalization-scheme dependent. More-
over, further enhancement of ReA0 and further suppression
of ReA2 are needed in order to be able to understand the
ΔI = 1/2 rule.

This brings us to the second step first performed in 1986
in [4030] within the DQCD approach. Namely, the RG-
evolution down to the scales O(1 GeV) is continued as a
short but fastmeson evolutiondown to zero momentum scales
at which the factorization of hadronic matrix elements is at
work and one can in no time calculate the hadronic matrix
elements in terms of meson masses and weak decay con-
stants as seen in (13.38). Equivalently, starting with factoriz-
able hadronic matrix elements of current–current operators
at μ ≈ 0 and evolving them to μ = O(1 GeV) at which
the WCs are evaluated one is able to calculate the matrix
elements of these operators at μ = O(1 GeV) and properly
combine them with their WCs evaluated at this scale. The
final step is the inclusion of QCD penguin operators that
provide an additional enhancement of A0 by roughly 10%
without changing A2.
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In [4030] only the pseudoscalar meson contributions to
meson evolution have been included and the quark evolution,
RG evolution above μ = O(1 GeV), has been performed
at LO. The improvements in 2014 [4031] were the inclu-
sion of vector meson contributions to the meson evolution
and the NLO corrections to quark evolution. These improve-
ments practically removed scale and renormalization-scheme
dependences and brought the theory closer to data.

Based on DQCD and RBC-UKQCD results we conclude
that the QCD dynamics is dominantly responsible for the
ΔI = 1/2 rule. However, in view of large uncertainties in
both DQCD and RBC-UKQCD results, NP contributions at
the level of 15% could still be present. See [4191] to find out
what this NP could be.

Finally other authors suggested different explanations of
the ΔI = 1/2 rule within QCD that were published domi-
nantly in the 1990s and their list can be found in [4034]. But
in my view the DQCD picture of what is going on is more
beautiful and transparent as asymptotic freedom and related
non-factorizable QCD interactions are primarily responsible
for this rule. It is simply the quark evolution from MW down
to scale O(1 GeV) as analysed first by Altarelli and Maiani
[1210] and Gaillard and Lee [1209], followed by the meson
evolution [4030,4031] down to very low scales at which QCD
becomes a theory of weakly interacting mesons and a free
theory of mesons in the strict large N limit, a point made by
’t Hooft and Witten in 1970s.

13.3.3 QCD dynamics and the ratio ε′/ε

While the parameter ε ≡ εK measures the indirect CP-
violation in KL → ππ decays, that is originating in K 0− K̄ 0

mixing, the parameter ε′ describes the direct CP violation,
that is in the decay itself.

Experimentally ε and ε′ can be found by measuring the
ratios

η00 = A(KL → π0π0)

A(KS → π0π0)
, η+− = A(KL → π+π−)

A(KS → π+π−)
.

(13.42)

Assuming ε and ε′ to be small numbers one finds

η00 = ε − 2ε′

1−√2ω
, η+− = ε + ε′

1+ ω/
√

2
, (13.43)

where ω = ReA2/ReA0 = 0.045. In the absence of direct
CP violation η00 = η+−. The ratio ε′/ε can then be measured
through

Re(ε′/ε) = 1

6(1+ ω/
√

2)

(

1−
∣
∣
∣
∣
η00

η+−

∣
∣
∣
∣

2
)

. (13.44)

The story of ε′/ε both in the theory and experiment has
been described in detail in [4192]. On the experimental side

the chapter on ε′/ε seems to be closed for the near future.
After heroic efforts, lasting 15 years, the experimental world
average of ε′/ε from NA48 [4193] and KTeV [4194,4195]
collaborations reads

(ε′/ε)exp = (16.6± 2.3)× 10−4. (13.45)

On the theoretical side the first calculation of ε′/ε that
included RG QCD effects to QCD penguin (QCDP) contri-
butions is due to Gilman and Wise [4196] who – following
Shifman, Vainshtein and Zakharov [1207] – assumed that the
ΔI = 1/2 rule is explained by QCDP. Using the required
values of the QCDP matrix elements for the explanation of
this rule, they predicted ε′/ε to be in the ballpark of 5×10−2.
During the 1980s this value decreased by roughly a factor of
50 dominantly due to three effects:

– The first calculation of hadronic matrix elements of
QCDP operators in QCD – carried out in the frame-
work of the DQCD [4030,4197,4198] in the strict large
N limit of colors – proved that QCDPs are not respon-
sible for the ΔI = 1/2 rule and their hadronic matrix
elements are much smaller.

– The QCDP contribution to ε′/ε through isospin breaking
in the quark masses [4199,4200] is suppressed.

– The suppression of ε′/ε by electroweak penguin (EWP)
contributions is increased by the large top quark mass
[4201,4202].

In the 1990s these calculations have been refined through
NLO QCD calculations to both QCDP and EWP contri-
butions by the Munich and Rome teams [4203–4206] and
[4207,4208], respectively. In [4209] the NNLO QCD effects
on EWP contributions have been calculated. The NNLO
QCD effects on QCDP contributions are expected to be
known in 2024.

These NLO and NNLO QCD contributions decreased
various scale and renormalization-scheme uncertainties and
suppressed ε′/ε within the SM further so that already in
2000 we knew that this ratio should be of the order of
1.0 × 10−3. Unfortunately even today the theorists do not
agree on whether the SM agrees with the experimental value
in (13.45) or not. The reason are different estimates of non-
perturbative hadronic QCD effects. This has been summa-
rized recently in [4179]. We recall only the main points below.

ε′ is governed by the real and imaginary parts of the isospin
amplitudes A0 and A2 so that ε′/ε is given by [4210]

ε′

ε
= − ω+√

2 |ε|
[

ImA0

ReA0
(1− Ω̂eff)− 1

a

ImA2

ReA2

]

, (13.46)

123



 1125 Page 462 of 636 Eur. Phys. J. C          (2023) 83:1125 

with (ω+, a) and Ω̂eff given in 2022 as follows

ω+ = a
ReA2

ReA0
= (4.53± 0.02)× 10−2 (13.47)

with a = 1.017 and

Ω̂eff = (29± 7)× 10−2. (13.48)

Here a and Ω̂eff summarize isospin breaking corrections
and include strong isospin violation (mu �= md), the cor-
rection to the isospin limit coming from ΔI = 5/2 tran-
sitions and electromagnetic corrections [4211–4213]. The
most recent value for Ω̂eff given above includes the nonet
of pseudoscalar mesons and η − η′ mixing [4214]. If only
the octet of pseudoscalar mesons is included so that η − η′
mixing does not enter, as presently done in ChPT, one finds
Ω̂eff = (17± 9) 10−2 [4215], a value called Ω̂

(8)
eff here. The

inclusion of η − η′ mixing yields Ω̂
(9)
eff in (13.48). This

contribution is important, a fact known already for 35 years
[4199,4200].

ImA0 receives dominantly contributions from QCDP but
also from EWP. ImA2 receives contributions exclusively
from EWP. Keeping this in mind it is useful to write [4216]
(
ε′

ε

)

SM
=

(
ε′

ε

)

QCDP
−

(
ε′

ε

)

EWP
(13.49)

with
(
ε′

ε

)

QCDP
= Imλt ·

(
1− Ω̂eff

)[
15.4 B(1/2)

6 (μ∗)− 2.9
]
,

(13.50)
(
ε′

ε

)

EWP
= Imλt ·

[
8.0 B(3/2)

8 (μ∗)− 2.0
]
. (13.51)

This formula includes NLO QCD corrections to the QCDP
contributions and NNLO contributions to EWP ones men-
tioned previously. The coefficients in this formula and the
parameters B(1/2)

6 and B(3/2)
8 , conventionally normalized to

unity at the factorization scale, are scale dependent. Here we
will set μ∗ = 1 GeV because at this scale it is most conve-
nient to compare the values for B(1/2)

6 and B(3/2)
8 obtained

in the three non-perturbative approaches LQCD, ChPT and
DQCD that we already encountered in the context of the
ΔI = 1/2 rule.

The B(1/2)
6 and B(3/2)

8 represent the relevant hadronic
matrix elements of the dominant QCDP and EWP operators,
respectively:

Q6 = (s̄αdβ)V−A

∑

q=u,d,s,c,b
(q̄βqα)V+A, (13.52)

Q8 = 3

2
(s̄αdβ)V−A

∑

q=u,d,s,c,b
eq (q̄βqα)V+A, (13.53)

with V − A = γμ(1− γ5) and V + A = γμ(1+ γ5). They
are then left-right operators with large hadronic matrix ele-

ments which assures their dominance over left-left opera-
tors. The remaining QCDP and EWP operators, represented
here by −2.9 and −2.0, respectively, play subleading roles.
Current–current operators Q1,2 that played crucial role in
the case of the ΔI = 1/2 rule do not contribute to ε′/ε
because their WCs are real. In obtaining the formulae in
Eqs. (13.50) and (13.51) it is common to use the experimen-
tal values for the real parts of A0,2 in Eq. (13.34). Finally,
Imλt = Im(V ∗tsVtd) ≈ 1.4× 10−4.

There are two main reasons why Q8 can compete with Q6

here despite the smallness of the electroweak couplings in the
WC of Q8 relative to the QCD one in the WC of Q6. In the
basic formula (13.46) for ε′/ε its contribution is enhanced
relative to the one of Q6 by the factor ReA0/ReA2 = 22.4.
In addition its WC is enhanced for the large top-quark mass
which is not the case for Q6 [4201,4202].

In the three non-perturbative approaches the values of
B(1/2)

6 and B(3/2)
8 were found at μ = 1 GeV to be:

B(1/2)
6 (1 GeV) = 1.49± 0.25, (RBC-UKQCD− 2020)

B(3/2)
8 (1 GeV) = 0.85± 0.05.

B(1/2)
6 (1 GeV) = 1.35± 0.20, (ChPT− 2019)

B(3/2)
8 (1 GeV) = 0.55± 0.20.

B(1/2)
6 (1 GeV) ≤ 0.6, (DQCD− 2015)

B(3/2)
8 (1 GeV) = 0.80± 0.10. (13.54)

While the large B(1/2)
6 and B(3/2)

8 < 1.0 from LQCD
has until now no physical interpretation, the pattern found in
ChPT results apparently from final state interactions (FSI)
that enhance B(1/2)

6 above unity and suppress B(3/2)
8 below

it [4217–4220]. The suppression of B(1/2)
6 and B(3/2)

8 below
unity in the DQCD approach comes from the meson evolu-
tion [4221] which is required to have a proper matching with
the WCs of QCDP and EWP operators. The meson evolu-
tion is absent in present ChPT calculations and it is argued
in [4222] that including it in ChPT calculations will lower
B(1/2)

6 below unity. On the other hand adding non-leading

FSI in the DQCD approach would raise B(1/2)
6 above 0.6.

Nevertheless B(1/2)
6 ≤ 1.0 is expected to be satisfied even

after the inclusion of FSI in DQCD.
Moreover, while ChPT and DQCD use Ω̂

(8)
eff = (17 ±

9) 10−2 and Ω̂
(9)
eff = (29 ± 7) 10−2, respectively, as already

stated above, RBC-UKQCD still uses Ω̂eff = 0.
These differences in the values of B(1/2)

6 , B(3/2)
8 and Ω̂eff

imply significant differences in ε′/ε presented by these three
groups:

(ε′/ε)SM = (21.7± 8.4)× 10−4 (13.55)
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from the RBC-UKQCD collaboration [729] which uses
Ω̂eff = 0. Here statistical, parametric and systematic uncer-
tainties have been added in quadrature. Next

(ε′/ε)SM = (14± 5)× 10−4 (13.56)

from ChPT [4215]. The large error is related to the problem-
atic matching of LD and SD contributions in this approach
which can be traced back to the absence of meson evolution
in this approach. Finally

(ε′/ε)SM = (5± 2)× 10−4, (13.57)

from DQCD [4192,4221,4222], where B(1/2)
6 ≤ 1.0 has

been used.
While the results in Eqs. (13.55) and (13.56) are fully

consistent with the data shown in Eq. (13.45), the DQCD
result in Eq. (13.57) implies a significant anomaly and NP at
work. Clearly, the confirmation of the DQCD result is highly
important.

Let us end this presentation with good news. There is a
very good agreement between LQCD and DQCD as far as
EWP contribution to ε′/ε is concerned. This implies that this
contribution to ε′/ε, that is unaffected by leading isospin
breaking corrections, is already known within the SM with
acceptable accuracy:

(ε′/ε)EWP
SM = −(7± 1)× 10−4, (LQCD and DQCD).

(13.58)

Because both LQCD and DQCD can perform much better in
the case of EWP than in the case of QCDP I expect that this
result will remain with us for the coming years. On the other
hand, the value from ChPT of B(3/2)

8 ≈ 0.55 [4215] implies
using Eq. (13.51) that the EWP contribution is roughly by a
factor of 2 below the result in Eq. (13.58).

Let us hope that at the 60th birthday of QCD we will know
which prediction is right. Further summaries can be found in
[4034,4179,4192] and details in original references.

13.4 The role of QCD in B physics anomalies

Danny van Dyk and Javier Virto
The so-called b → s!+!− anomalies present one of the
few current tensions between theory predictions within the
SM and experimental measurements. They represent long-
standing tensions that first presented themselves in a 2013
publication by the LHCb collaboration [4223]. Here, we dis-
cuss how QCD plays a central role at every stage of the inter-
pretation of these anomalies.

QCD and hadronic physics enter the theory predictions,
both in the SM and beyond, in one of three ways:

– First, they enter the Weak Effective field Theory (WET)
description of neutral-current processes, such as b →

s!+!−. The effective Hamiltonian at the leading-mass
dimension six reads

HWET = 4GF√
2
VtbV

∗
ts

∑

i

CiQi , (13.59)

with local operators Qi and Wilson coefficients Ci . It
includes semileptonic operators,

Q9(10) = e2

16π2

[
s̄γ μPLb

] [
μ̄γμ(γ5)μ

]
, (13.60)

electromagnetic dipole operators,

Q7 = e

16π2

[
s̄σμν PRb

]
Fμν, (13.61)

and four-quark operators

Q1q(2q) =
[
q̄γ μPLb

] [
s̄γμPLq

]
. (13.62)

QCD has a substantial effect on the matching of the WET
to the SM [4224–4226]. For instance, at the low scale
μb � 5 GeV, about half of the value of C9 is generated
by QCD effects due to operator running and mixing of
the four-quark operators into Q9 [4224].
Here we discuss only the numerically leading operators
needed for a description within the SM. BSM effects
are encoded in the values of the Wilson coefficients or
through additional operators with a different spin struc-
ture.

– Second, they enter the hadronic matrix elements of local
s̄b operators, c.f. Eq. (13.66). These matrix elements are
then expressed in terms of scalar-valued form factors,
which are functions of the momentum transfer (typically:
q2). The s̄b form factors are very similar to the form
factors arising in the description of exclusive charged-
current semileptonic processes such as b→ cμ−ν̄.

– Third, they enter the hadronic form factors of non-local
s̄b operators, c.f. Eq. (13.68). These operators arise in
the time-ordered product of the four-quark operators and
the electromagnetic current. They have no correspon-
dence in charged-current semileptonic decays and cur-
rently present the biggest obstacle to accurate and precise
theoretical predictions of exclusive b→ sμ+μ− decays.

In the following, we do not further discuss the effective field
theory description, which is well established. The matching
coefficients to NNLO in QCD can be found in Refs. [4224–
4226]. Instead, we focus on the second and third type of QCD
effects in exclusive b→ s!+!− processes.

13.4.1 Anatomy of exclusive b→ s!+!− processes

B̄s → μ+μ−
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Amongst the exclusive b → s!+!− decays, the cleanest
ones from a theory perspective are the purely leptonic decays
B̄s → !+!−. Up to QED corrections [4227], all QCD effects
are contained in a single local hadronic matrix element. This
matrix element is commonly parametrized in terms of the
Bq -meson decay constant fBq [301]

〈0|q̄γ μγ5b|B̄q(p)〉 = i fBq p
μ. (13.63)

It has been calculated ab-initio from lattice QCD simula-
tions. Several analyses with N f = 2+ 1+ 1 light quark fla-
vors have become available [692,709,710,1472,4228]. Their
world average [301]

fBs = 230.3± 1.3 MeV, (13.64)

is dominated by a single analysis published by the Fermi-
lab/MILC collaboration [692].

This constant has been computed using a variety of lattice
QCD techniques, which have presently reached a precision
of 0.5%. The current theoretical uncertainty on the muonic
branching ratio is no longer governed by hadronic physics.
Instead, it is dominated by CKM matrix elements. The theory
predictions have reached the level of 5% [4227], which is
much smaller than the uncertainty of the average of the results
by the LHC experiments of ∼ 13% [4229]. While B̄s →
μ+μ− is not sensitive to the Wilson coefficient C9 (to leading
order in QED [4227]), it does constrain very strongly the
scalar and pseudoscalar operators, and indirectly also C10,
which has an impact on the global interpretations of the b→
sμ+μ− anomalies.

B̄ → Mμ+μ−

Amongst the exclusive semileptonic b→ s!+!− decays, B-
meson decays to either a pseudoscalar (P) or a vector (V )

meson are presently the best understood. Compared to the
purely leptonic decay B̄s → μ+μ−, the additional meson
in the final state provides the opportunity to test the SM
through a larger number of observables that arise in the dif-
ferential decay rates. The downside for this is – generally –
an increased sensitivity to QCD effects in their theoretical
description, which leads to larger theoretical uncertainties.

To leading order in QED, the matrix elements of the
semileptonic and radiative operatorsQ7,9,10 factorise. A use-
ful schematic decomposition of the amplitude is given by
[4230]

A(B̄ → M!+!−) ∼ GF VtbV
∗
ts

[

(C9 L
μ
V + C10 L

μ
A) F

μ

− Lμ
V

q2 2imbC7 FT,μ + 16π2Hμ

]

.

(13.65)

Here Lμ

V (A) = [!̄γ μ(γ5)!] are leptonic currents, and a gen-
eralization to operators beyond the SM can be found in Ref.
[4231]. In the above, we use the hadronic matrix elements

Fμ
B→M (k, q) ≡ 〈M(k)|s̄γμPL b|B̄(p)〉, (13.66)

FT,μ
B→M (k, q) ≡ 〈M(k)|s̄σμνq

ν PR b|B̄(p)〉, (13.67)

Hμ
B→M (k, q) ≡ i

∫
d4x eiq·x 〈M(k)|T

{
jem
μ (x),

∑

i

Ci Qi (0)
}
|B̄(p)〉

(13.68)

with i = 1q, 2q, . . . , which arise from the semileptonic,
radiative, and four-quark operators in that order

The first two matrix elements are classified as local matrix
elements, and the last one as a non-local matrix element. Both
types of matrix elements are needed for reliable and accurate
predictions of the amplitudes and therefore of the observ-
ables in semileptonic decays. For phenomenological discus-
sions, one commonly encounters projections of the hadronic
amplitudes onto some basis of scalar form factors, either
the helicity basis [4232] or more commonly the transversity
basis [4233–4235]. The number of independent amplitudes
depends on the angular momentum of the initial and final
state hadrons. The form factors are functions of the momen-
tum transfer from the hadronic system to the leptons. This
functional dependence is commonly expressed in terms of
q2, the squared mass of the lepton pair.

The process B → K!+!− is the most reliably under-
stood one amongst the exclusive semileptonic b → s!+!−
decays. Both the B and K meson are stable in the absence of
weak interactions, which facilitates the determination of their
hadronic form factors. Conservation of angular momentum
limits this process to two amplitudes: the dominant longitu-
dinally polarized amplitude and the lepton-mass suppressed
time-like amplitude [4236]. As a consequence, the process
provides only a few independent observables.

The processes B → K ∗!+!− and Bs → φ!+!− both
feature a vector meson in the final state. Compared to B →
K!+!−, two further transversely-polarized amplitudes can
contribute. This more complex structure leads to numerous
independent observables arising from the differential decay
rate [4233–4235,4237]. However, this enriched phenomeno-
logical reach comes at the expense of somewhat larger uncer-
tainties in the individual hadronic form factors. Since both
the K ∗ and φ are not stable in the absence of weak interac-
tions, their description as a “quasi stable” state incurs addi-
tional theoretical uncertainty [4238]. Here, the K ∗ is sub-
stantially more affected than the φ, due to the hierarchy of
their hadronic decay widths.
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13.4.2 Hadronic matrix elements

Local form factors

Local form factors for B → K , B → K ∗ and Bs → φ

transitions are accessible at low values of q2 � 10 GeV2

[1229] with two different continuum QCD methods.
First, QCD factorisation (QCDF) provides a means to

relate the various form factors to each other. This relation
emerged from a symmetry amongst currents involving one
collinear and one heavy quark field [4239]. The breaking
of this symmetry occurs due to two effects: (a) contribu-
tions beyond leading order in the strong coupling constant,
which involves interactions between the quarks inherent to
the transition with the spectator quark [4240]; and (b) con-
tributions beyond leading power in the double expansion in
the b-quark mass and the energy E of the final-state hadron
within the B-meson rest frame. Early predictions for exclu-
sive b → s!+!− decays relied heavily on the QCDF rela-
tions, to construct so-called “clean” observables; i.e., observ-
ables in which local hadronic form factors cancel approxi-
mately [4241–4243]. Most famously, the P ′i basis of observ-
ables in the B̄ → K ∗!+!− angular distribution [4243] makes
use of this cancellation. The P ′5 observable [4244] is com-
monly used to illustrate the tensions between SM predictions
and measurements.

Second, light-cone QCD sum rules (LCSR) are used to
predict the full set of local form factors in B → K , B → K ∗
and Bs → φ transitions. Two different versions of LCSRs
can be employed [1228,4245], which differ in the choice of
the interpolating current. The LCSRs with B-meson inter-
polation involve hadronic matrix elements for the final-state
hadron, i.e., the K , K ∗ and φ. These sum rules are presently
better understood than their competitors, leading to over-
all smaller parametric uncertainties. However, the sum rules
with vector-meson final states suffer from hard-to-quantify
systematic uncertainties due to the unstable nature of these
states. The competing LCSRs with interpolation of the final-
state hadrons K , K ∗, and φ have not yet reached the same
level of sophistication [4055].

It remains to be emphasized that both types of LCSRs suf-
fer from systematic uncertainties that are difficult to assess.
It is commonly understood that the LCSR results serve as
a stop gap, to be replaced by results from more systematic
approaches to QCD.

Lattice QCD provides such a systematic approach to the
local form factors. Typically, limitations of computational
power require a restriction to the phase space q2 � 12 GeV2

[4052,4246,4247]. Lattice QCD results for the decays B →
K ∗!+!− and Bs → φ!+!−, which are of great phenomeno-
logical interest, are restricted to this range. But this is not
an inherent limitation of the method: A very recent study of
the B → K form factors [4056] for the first time accesses

Fig. 348 Simultaneous fit to lattice QCD and LCSR results for the
local B → K ∗ form factor A1 ∝ F‖, taken from Ref. [4248]

Fig. 349 Fit to the non-local B → K ∗ form factor H‖, produced from
Ref. [4248]

the full q2 range available to the semileptonic decay. Their
results are in good agreement with previous LCSR estimates,
with smaller uncertainties.

Having constraints on the form factors at opposite ends
of the semileptonic phase space it is natural to ask if these
constraints are mutually compatible. This poses an interpo-
lation problem. For B-meson decays, this problem is usually
addressed using the so-called z-expansion [4249]. Using

q2 #→ z(q2; t0, t+) ≡
√
t+ − q2 −√t+ − t0√
t+ − q2 +√t+ − t0

(13.69)

123



 1125 Page 466 of 636 Eur. Phys. J. C          (2023) 83:1125 

the first Riemann sheet of the complex q2 plane is mapped
onto the unit disk in z. A Taylor expansion of the form-factors
in z, after removal of any physical poles, converges quickly
and provides some control of the interpolation error. Studies
of the B → V form factors find reasonable to good agree-
ment between the available LCSR and lattice QCD results
[4055,4245,4248], which is not surprising given the large
uncertainties attached to the former. An example of such a
fit from Ref. [4248] is displayed in Fig. 348, showcasing the
agreement between lattice QCD and LCSR results.

Future prospects on the theoretical precision for local form
factors rely dominantly on the expected improvements from
the Lattice QCD side. These include enlarging the accessible
q2 range (as recently achieved for the B → K form factors)
and accounting for the non-zero width of the vector final
states [543]. The effect due to a non-zero ρ and K ∗ width
on the B → ππ and B → Kπ form factors was recently
critically discussed within the setup of LCSRs with final-
state interpolation, estimating corrections to the zero-width
limit of up to 10% in the case of the K ∗ [4238,4250,4251].

Non-local Hadronic Matrix Elements

Non-local form factors are significantly more difficult to
approach theoretically [4252–4255]. The reason is the large
number of virtual and on-shell intermediate states that con-
tribute to the time-ordered product in Eq. (13.68). This non-
local operator is commonly separated by the electric charge
of the quark flavor to which the electro-magnetic current cou-
ples:

T

{

jem
μ (x),

∑

i=1q,2q,...

Ci Qi (0)

}

≡ K(x)

≡ Qc Kc(x)+ Qbs Kbs(x)+ . . . . (13.70)

In the above, the dots indicate contributions due to up and
down quarks, which are suppressed by CKM matrix element
or the small Wilson coefficients of QCD-penguin four-quark
operators. The terms proportional to bottom and strange-
quark charges are only gauge invariant when considered
in sum, leading to the joint description with label bs. Our
labelling of the non-local form factors follows from the
above, i.e., Hλ,c arises from the hadronic matrix element
of the operator Kc.

The first systematic approach to the non-local form factors
has been provided in Refs. [4252,4256], which is expected
to work for small values of q2 sufficiently far below the open
charm threshold. This approach was subsequently developed
into a light-cone Operator Product Expansion (OPE) of the
non-local operator Eq. (13.70) [4252,4253]. This expansion
is shown to break down as q2 approaches the partonic open
charm threshold from below. The hadronic matrix elements
of the next-to-leading operator in this light-cone OPE have
been calculated within a LCSR approach [4253,4257]. The

most recent calculation indicated that the term at next-to-
leading power is negligible in comparison to the leading-
power term.

At q2 = O(m2
b) � 4m2

c , an OPE in term of local opera-
tors applies [4254,4255]. The simple structure of the OPE
leads to phenomenologically powerful theory predictions
[4242,4258,4259]. However, the fact that this region of phase
space lays on the open-charm branch cut leads to consider-
able complications in the interpretation of experimental mea-
surements. Chiefly, one cannot expect that the OPE result
agrees with nature locally, i.e., in every q2 point [4255].
Instead of such local duality, semi-local quark–hadron dual-
ity is assumed, i.e., the OPE prediction integrated over a suf-
ficiently large q2 range is expected to correspond to the q2

integrated observables [4255]. Nevertheless, this approach
gives rise to large unquantifiable systematic uncertainties in
the theory predictions [4260,4261]. Due to these limitations,
commonly a single bin covering the whole low-q2 region
is used in the BSM analyses. However, the q2 spectrum
can be used to test the level of “duality violation”, i.e., the
disagreement between the perturbative partonic prediction
and the hadronic spectrum. In this way, reliable estimates of
these intrinsically non-perturbative effects are obtained. Ref.
[4261] uses all currently available data on B → K ∗μμ at
low recoil and finds agreement between data and the OPE
prediction within ∼ 20% in all the bins.

The first parametrizations of the q2 dependence of the
non-local form factorsHλ,c are based on a dispersion relation
[4253] or an expansion in powers of q2 [4232]. A subsequent
publication proposes to apply a conformal mapping similar to
Eq. (13.69) [4262], very similar to what is done for the local
form factors. The dispersive and z-expansion approaches are
consistent with analyticity and therefore permit using addi-
tional data, such as measurements of the branching ratios
and angular distributions of B → ψM processes, where
ψ = {J/ψ,ψ(2S)}. In Ref. [4262] it is shown quantita-
tively how this information can be used a priori to produce
data-assisted theory predictions for the non-local effect inde-
pendent of NP, or a posteriori to fit all the B → ψK ∗ and
B → K ∗μ+μ− spectra up toq2 = m2

ψ(2S) simultaneously to
the hadronic parameters and NP. In this last approach, short-
and long-distance effects are disentangled by the experimen-
tal input from B → ψK ∗, the fixed q2 dependence of the NP
contribution, and by the theory constraints at negative q2. A
notable byproduct is the fact that experimental data between
the two narrow charmonia can be used in the analyses. An
application of the z-expansion, including newly derived dis-
persive bounds on the expansion coefficients [4257], has
been used in Ref. [4248] to challenge the experimental mea-
surements of various exclusive semileptonic b → s!+!−
decays. This parametrization yields results that are compat-
ible with analyses based on a perturbative treatment, albeit
with somewhat larger uncertainties. A representative exam-
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Fig. 350 Overview of the tensions between NP parameters and the SM
expectations for three representative processes. Taken from Ref. [4248],
which takes into account a parametrization of the non-local effects in
the fits

ple of the non-local form factors obtained in this way is shown
in Fig. 349. The impact of these improved determinations of
non-local form factors on the global fits to separate exclusive
b → sμμ modes has been studied in Ref. [4248] and it is
shown in Fig. 350. The overall picture of significant tensions
between data and the SM expectations seen in the literature
[4263–4267] are confirmed.

The prospects for this data-driven approach with the future
data from LHCb, including the prospects of doing without
theory input altogether, have been studied in [4268]. The con-
clusion is that unbinned analyses can infer knowledge about
both QCD and potential BSM effects in these decays simul-
taneously. The high statistics studies of b → sμμ exclu-
sive transitions at the LHC, either with fine q2 binning or
unbinned, will therefore not only probe for BSM effects but
also further our understanding of the non-local form factors.
While current global fits to different q2 bins show consis-
tency with the current treatment of non-local effects [4269],
future LHC data will require, and provide, a higher level of
control over them.

Data-driven and joint theoretical and data-driven methods
have been proposed in an effort to control the uncertain-
ties [4257,4262,4270–4272]. Some of these methods will be
possible and improve significantly with the high statistics
collected at LHCb after the upgrade. They are all based on
precise measurements of the q2 spectra, together with a the-
oretically motivated parametrization of the q2 dependence of
the amplitudes and a theory benchmark that allows to sepa-
rate short- from long-distance contributions.

Finally, various hadronic models have been proposed to
analyse parts or the entire q2 phase space. Some of these
analyses are carried out within the “Krüger-Sehgal” (naive
factorization) approach [4273], which allows to use data on
the R(s) ratio in e+e− annihilation [4255,4260,4261]. These
models have recently been refined to account also for light-
meson intermediate states [4274]. Notably, future precision
data from the LHC with the expected fine binning will be
essential in refining these data-driven methods and disen-
tangling potential BSM contributions, with the prospects of
confirming or refuting a BSM origin to the b→ sμμ anoma-
lies.

13.5 QCD and (g − 2) of the muon

Achim Denig and Harvey Meyer
The anomalous magnetic moment of the muon, as one

of the most precisely measured quantities in fundamental
physics, has been at the forefront of testing the Standard
Model (SM) of particle physics for decades [4275]. The pro-
portionality factor g · e/(2m) between the spin and the mag-
netic moment of an elementary particle is predicted in Dirac’s
theory of the electron to satisfy g = 2. Already the devia-
tion of the electron’s g factor from this prediction played
a central role in testing Quantum Electrodynamics at one
loop [4276]. It was understood early on [4277,4278] that
the contribution of virtual particles much heavier than the
lepton l would be suppressed as (ml/mheavy)

2. Hence the
strong interest in the analogous property of the muon, denoted
aμ = (g − 2)μ/2, given that the 207 times larger mass of
the muon strongly enhances the virtual contributions from
particles upward from the mass scale of a few MeV/c2, and
thus provides access to potential new-physics contributions.
Since the very first measurement of 1960 [4279], experiments
have refined their sensitivity to aμ, thereby successively test-
ing contributions from all sectors of the SM, and making this
observable the paradigmatic example of searching for new
physics at the precision frontier.

The experimental measurements of aμ [4280] rely on the
muon spin precessing relative to the direction of the muon
momentum under the influence of a static magnetic field:
the precession frequency is directly proportional to aμ. The
observation that the (undesirable) impact of an electric field
on the muon spin precession is suppressed at a special muon
momentum of 3.1 GeV/c [4281] eventually led to the third
muon storage ring experiment at CERN [4282], which for the
first time probed hadronic effects, among which the hadronic
vacuum polarization (HVP) provides the leading contribu-
tion. Progress in the experimental techniques culminated in
the Brookhaven E821 experiment [4283], which achieved a
precision of 0.54 ppm on aμ.

Meanwhile, the SM prediction for aμ had been worked
out to a very similar degree of precision, as described in the
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Fig. 351 Feynman diagrams representing the two contributions that
currently saturate the uncertainty of the SM prediction for the muon (g−
2): the hadronic vacuum polarization (left), aHVP,LO

μ , and the hadronic

light-by-light contributions (right), aHLbL
μ . Solid lines represent muon

propagators and wavy lines photon propagators. The external photon
line represents the magnetic field of the experiment, which probes the
magnetic moment of the muon

2009 review [4284]. The QED contribution, by far domi-
nant, and the weak contribution having been calculated to
sufficiently high order, the uncertainty of the SM prediction
has been entirely dominated by the hadronic contributions,
specifically by the HVP and by the hadronic light-by-light
(HLbL) contributions, which are both illustrated in Fig. 351.
A tension at the level of 3.2 standard deviations was found
between the experimental and the theoretical value of aμ
[4284].

In the past decade, a new experimental effort was under-
taken in an attempt to clarify the situation. The Fermilab
experiment E989 [4285] was designed with the goal of reach-
ing a precision of 0.14 ppm on aμ. In order to arrive at an
up-to-date prediction before the announcement of the first
results by the Fermilab experiment, the (g − 2) Theory Ini-
tiative was launched in 2017, which led to the 2020 The-
ory White Paper [4286]. The theory precision had by then
improved to the level of 0.37 ppm, and the tension with the
world experimental average (dominated by the Brookhaven
measurement) was found to be at the 3.7 σ level.

The Fermilab (g − 2) experiment announced its first
result on April 7, 2021. Its measurement of aμ [4287] at
the 0.46 ppm level slightly surpassed the precision of the
Brookhaven measurement [4283] and led to the situation
illustrated in Fig. 352. The new measurement agrees well
with the older Brookhaven one, and the tension with the SM
prediction (from the 2020 White Paper [4286]) has increased
to the level of 4.2 σ , or

aμ(Exp)− aμ(WP 2020) = (25.1± 5.9)× 10−10 (13.71)

in absolute size. From here, it might seem like the next exper-
imental update by the Fermilab experiment could finally raise
the tension above the conventional ‘discovery’ level of five
standard deviations.

However, on the same day as the announcement of the
experimental result from Fermilab, a lattice QCD calculation
of the HVP contribution with a competitive precision was

Fig. 352 Status of aμ after the 2021 FNAL measurement. The tension
between the experimental average of the FNAL and the 2001 BNL mea-
surements with the Standard Model prediction provided by the Theory
White Paper amounts to 4.2 standard deviations. Figure from [4287]

published [4288], which, taken at face value, would increase
the SM prediction for aμ and bring it into better agreement (at
the 1.5 σ level) with the experimental world average. The ten-
sion between this lattice QCD calculation and the dispersive,
data-driven evaluation underlying the White Paper prediction
of aμ amounts to 2.1 σ (see Eq. (13.77) below). Thus it is the
intricacies of hadron–photon interactions that are currently
limiting the resolving power of the muon (g−2) to probe new
physics. In Sect. 13.5.1, we describe how the evidence for a
genuine difference between lattice calculations of the HVP
and its dispersive evaluation has strengthened significantly
in the past eighteen months. Obviously, finding the origin of
this difference is of utmost importance in the ongoing saga
of the muon (g − 2).

We begin by reviewing the status of the HVP contribution
to aμ in Sect. 13.5.1, whereafter we describe the progress
made in the HLbL contribution in Sect. 13.5.2. We close
with some concluding remarks and an outlook on the near
future of the subject.

13.5.1 The hadronic vacuum polarization contribution

The leading contribution to aμ is given by Schwinger’s result
α/(2π) � 0.00116 [4276]. In contrast, the HVP contribution
to aμ only amounts to about 700×10−10, but given the preci-
sion expected from the ongoing Fermilab experiment and the
upcoming J-PARC [4289] experiment, the target for the HVP
contribution aHVP,LO

μ is a precision of 1.5× 10−10, or 0.2%.
This represents a major challenge for a strong-interaction
effect, which has been addressed by the long-established
data-driven dispersive method and by ab initio lattice QCD
methods.
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Dispersive determination
The dispersive approach to computing aHVP,LO

μ is based on
the expression

aHVP,LO
μ =

(αmμ

3π

)2
∫ ∞

m2
π0

ds

s2 K̂ (s/m2
μ) R(s), (13.72)

R(s) = σ(e+e− → hadrons)

4πα(s)2/(3s)
. (13.73)

The dimensionless function K̂ is a smooth function that
increases monotonically from the value 0.63 at the 4m2

π

threshold to unity in the limit s → ∞. The determination
of R(s) requires measurements of the hadronic cross sec-
tion in e+e− collisions, σ(e+e− → hadrons). Given the
1/s2 dependence in the dispersion integrand, low-energy
contributions of the hadronic cross section have a very
strong weight and therefore have to be known to high accu-
racy. The most relevant channels are the exclusive reactions
e+e− → π+π−, 3π, 4π , and K K̄ , for all of which the cross
section is peaked at

√
s <2 GeV.

The channel e+e− → π+π− is dominated by the ρ(770)
intermediate state and contributes to more than 70% to the
dispersion integral. Figure 353 shows various recent mea-
surements of the two-pion cross section in the ρ peak region
between 600 and 900 MeV. Two classes of measurements
are shown in Fig. 353. These are energy scan measurements
(CMD-2 [4290–4293], SND [4294]), in which the center-
of-mass energy of the collider (in this case the VEPP-2M
collider in Novosibirsk) is systematically varied to cover the
energy range under study. A second class of measurements
(KLOE [4295], Babar [4296,4297], BESIII [4298]) is car-
ried out with the colliders running at a fixed center-of-mass
energy and by exploiting events in which the initial beam
electrons or positrons have radiated a highly energetic pho-
ton, lowering in such a way the available hadronic mass in the
final state. This method is called initial-state radiation (ISR)
or radiative return and has been applied most successfully
at modern particle factories [4299]. In the past, also spec-
tral functions from hadronic τ decays have been used [4300]
in the phenomenological determination of HVP, since these
can be related to R(s) via the Conserved Vector Current the-
orem. However, since the phenomenological estimates of the
isospin corrections are not well understood, the recent deter-
minations of HVP were obtained without the use of hadronic
τ data.

Figure 353 demonstrates the very high precision of the
data. However, sizeable discrepancies have been observed for
the cross-section integral contributing to Eq. (13.72). This is
demonstrated in Fig. 354, where the two-pion contribution to
HVP, aππ,LO

μ , in theρ peak region between 600 and 900 MeV
is shown for the individual experiments as well as for two
combinations of the data sets (KNT 19 [4303] and DHMZ
19 [4304]). Especially the two most precise determinations of

Fig. 353 Recent experimental data on the cross section σ(e+e− →
π+π−) in the energy range between 600 and 900 MeV. The interference
of the ρ decay with the two-pion decay of the ω(780) is well visible as
a structure around the ω mass. Figure taken from [4295]; a new SND
analysis [4301] from the VEPP-2000 collider and an ISR analysis from
CLEO [4302] are not yet shown

the two-pion cross section from the KLOE [4295] and Babar
[4296,4297] collaborations happen to exhibit a significant
deviation, which currently limits the overall precision of the
dispersive determination of HVP. Furthermore, given the ten-
sions in the experimental data sets, systematic effects have
to be considered in the averaging procedures. In Ref. [4286]
a conservative merging procedure was applied to reflect
the differences between the evaluations in Refs. [4303] and
[4304]. The Theory White Paper [4286] estimate for the LO
HVP contribution is solely based on the dispersive approach
[4303–4308] and reads aHVP,LO

μ = (693.1± 4.0)× 10−10.
Fortunately, new experimental measurements of the two-

pion channel are expected in the near future by CMD-3, SND,
Babar, BESIII, and Belle-II. It remains to be seen whether
the currently existing discrepancy between Babar and KLOE
can be resolved. Provided the upcoming data sets reach the
precision level of 0.5% and agree with each other, the total
uncertainty of the HVP contribution obtained via the disper-
sive approach would decrease from currently 0.6% to 0.3%
or better.
Lattice QCD calculation
Since the HVP contribution to the muon (g − 2) involves
only spacelike photons, it is a natural quantity to be calcu-
lated in lattice QCD [4312], which is formulated in Euclidean
space. Although initially expressed in momentum space, the
master formula now used almost exclusively is in the ‘time-
momentum representation’ [4313],

aHVP,LO
μ =

( α

πmμ

)2
∫ ∞

0
dt G(t) K(mμt), (13.74)

G(t) = 1

3

3∑

k=1

∫
d3x 〈 jem

k (t, �x) jem
k

†(0)〉, (13.75)
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Fig. 354 Comparison of aππ,LO
μ in the energy range between 600 and

900 MeV. The upper part of the plot shows the values of recent exper-
imental measurements in this energy range [4290,4293–4298,4302],
while the lower two values in red and blue are the estimates of the
KNT [4286,4303] and DHMZ [4286,4304] groups, which carry out
a merging procedure of the available data. In the case of DHMZ an
additional systematic uncertainty has been included to account for the
KLOE/Babar tension. Please note that the KLOE value is the combina-
tion of the three analyses published in Refs. [4309–4311]

where jem
k = 2

3 ūγku− 1
3 d̄γkd− 1

3 s̄γks+. . . is a spatial com-
ponent of the electromagnetic current carried by the quarks,
and the dimensionless weight function K(t̂) is known analyt-
ically in terms of Meijer’s function [4314]. It is proportional
to t̂4 for arguments well below unity, and to t̂2 for arguments
well above unity, thus strongly enhancing the long-distance
contribution. The spectral representation [4313]

G(t) =
∫ ∞

0
ds

s R(s)

12π2

e−
√
st

2
√
s

(13.76)

between the Euclidean correlator and the R ratio allows for
detailed comparisons between the dispersive and the lattice
approach.

The recipe for computing aHVP,LO
μ on the lattice thus

appears remarkably simple. However, many effects must be
controlled to reach the subpercent level of precision, includ-
ing discretization and finite-size effects, as well as the leading
effects of the unequal up and down quark masses and of the
electromagnetic interactions among quarks. The state-of-the-
art lattice calculations available at the time of the 2020 White
Paper had uncertainties of two percent and larger [4315–
4323]. While they had a tendency to lie above the dispersive
estimates, they were broadly consistent with them. The BMW
collaboration achieved a reduction of the uncertainty of its
lattice calculation down to the 0.8% level and published its
result in 2021 [4288]. The difference with the White Paper
result amounts to

aHVP,LO
μ (BMW′21)− aHVP,LO

μ (WP′20)

= (14.4± 6.8)× 10−10. (13.77)

Fig. 355 The partial contribution to aHVP,LO
μ called ‘window quan-

tity’, as computed by four lattice collaborations [4288,4317,4324,
4326], compared to its dispersive determination [4327]. Further recent
lattice results, particularly for the (dominant) ‘light-quark connected
contribution’, can be found in [4328–4330] as well as in the update
[4325] of the RBC/UKQCD ’18 result

At this point, an independent lattice calculation at the same
level of precision would be extremely desirable to help clarify
the situation.

Both the very short and the very long distances pose dis-
tinct challenges to a lattice calculation [4313]. Given the diffi-
culties associated with controlling the statistical and system-
atic errors of the tail of the correlatorG(t), the lattice commu-
nity has adopted the strategy of partitioning the Euclidean-
time axis into intervals, whose contributions to aHVP,LO

μ are
individually more tractable. This strategy was first applied in
Ref. [4317]. In particular, an intermediate interval from 0.4
to 1.0 fm (with smooth edges of width 0.15 fm) was chosen,
thus defining the ‘window quantity’, which represents about
one third of the total aHVP,LO

μ . This quantity has received
a lot of attention, especially since the BMW collaboration
found a discrepancy of 3.7 standard deviations with the dis-
persive estimate [4288]. Since then, the Mainz/CLS [4324]
and the ETM collaboration have computed the window quan-
tity on the lattice. The results are summarized in Fig. 355.
The RBC/UKQCD collaboration has recently presented an
update [4325] based on a blinded analysis, indicating an
upward shift in the (dominant) light-quark connected contri-
bution from (202.9± 1.4)× 10−10 to (206.5± 0.7)× 10−10

(where we have added their errors in quadrature) and bring-
ing their result into good agreement with the other lattice
calculations displayed in Fig. 355.

Discussion HVP
Beyond the 2.1 σ tension of Eq. (13.77) between the data-
driven evaluation of aHVP,LO

μ [4286] and the lattice QCD
based BMW calculation [4288], a statistically more signifi-
cant tension between lattice QCD and dispersion theory has
arisen in the partial contribution known as the ‘window quan-
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tity’. The latter has been computed independently by sev-
eral lattice collaborations, whose results are in good mutual
agreement but disagree with the R-ratio based evaluation of
[4327], at the level of 3.1, 3.7 and 3.8 σ respectively for Refs.
[4288,4324,4326].

If one assumes that the tension is due to an erroneous cross
section measurement in a certain interval of

√
s, it is impor-

tant to clarify which interval and which hadronic channel
it might be. In this regard, we note that the window quan-
tity receives a contribution of about 55% from the

√
s inter-

val between 0.6 and 0.9 GeV, while about 40% comes from
higher center-of-mass energies [4324]. Its relative sensitivity
to the (ρ, ω)-meson region is thus similar to the full aHVP,LO

μ .
If one therefore assumes the 2π channel to be responsible for
the tension, this would require shifts of the 2π cross section
which exceed by far the claimed systematic errors of the
experiments as well as the observed discrepancies between
the various experiments.

On the other hand, one might ask what could go wrong
in the lattice calculations of the window quantity. Perhaps
the most critical common source of systematic error among
lattice calculations is the one associated with taking the con-
tinuum limit. After all, the ranges of lattice spacing used
by the different collaborations as well as their fit ansätze in
the lattice spacing are fairly similar. Thus, new cross-section
measurements as well as additional lattice calculations of the
full aHVP,LO

μ will give important indications as to the origin
of the current tension.

In case of an eventual consolidation of the isospin break-
ing corrections, e.g. by means of auxiliary lattice QCD cal-
culations [4331], the use of hadronic τ decays in the HVP
dispersion integral might be reconsidered for the future. New
and high–statistics measurements of spectral functions of
hadronic τ decays are indeed expected from Belle-II in the
upcoming years. It is going to be exciting to see whether such
a τ -based dispersive analysis of HVP will be in agreement
with the current e+e−-based methodology.

13.5.2 Hadronic light-by-light scattering in the muon (g-2)

The HLbL contribution aHLbL
μ is of order α3, and thus of

one order higher than aHVP,LO
μ in the expansion of aμ in

the fine-structure constant. The absolute precision target is
to reach a level under 1 × 10−10, which given the contri-
bution’s approximate size, aHLbL

μ � 10 × 10−10, amounts
to a result with a precision under 10%. While this require-
ment is much less stringent than for aHVP,LO

μ , the physics and
kinematics involved in aHLbL

μ are also much more complex.
We first review the model and dispersive calculations before
describing the status of the lattice QCD approach.

Data-driven determination
The hadronic blob on the right-hand side diagram of Fig. 351
can be decomposed into subgraphs with intermediate pseu-
doscalar meson exchanges (π0,η, η′) as well as exchanges of
heavier scalar, axial-vector, or tensor mesons. Furthermore,
intermediate pion, kaon, and even quark loop exchanges need
to be considered. In the past, many of these individual contri-
butions were estimated using hadronic models [4284,4332–
4335], for which an estimate of the model uncertainty is
notoriously difficult and for which possible double count-
ing issues have been discussed as an additional source of
uncertainty. A consensus exists among all the various esti-
mates that the exchange of pseudoscalar mesons, particu-
larly the π0, is the dominant contribution to HLbL. For
years, the so called Glasgow consensus value [4336] of
aHLbL
μ = (10.5±2.6)·10−10 was considered as a benchmark

estimate and was found to be in good agreement with other
estimates (see e.g. [4337]), although the individual subgraphs
were partly in conflict with each other.

Developing a predictive dispersive representation for the
LbL scattering amplitude with three spacelike photons rep-
resents a much more complex theoretical task than in the
case of the HVP (see Eq. 13.72). The recent developments of
dispersion relations for the pseudoscalar and the pion-loop
subgraphs within the Refs. [4338,4339] can therefore be con-
sidered as a major breakthrough in the analytical treatment
of HLbL (see also Ref. [4340] for an alternative represen-
tation). Indeed, for the first time an unambiguous definition
of individual contributions became possible together with
an exact relation to experimental data to be used as input,
namely a relation to meson transition form factors (TFFs),
which encode the coupling of two virtual photons to mesons.
Besides the TFFs, which depend on the two photon virtuali-
ties, also meson decays, certain e+e− annihilation reactions
and Primakoff measurements have been found to be highly
relevant. As pointed out in Ref. [4341], the most relevant pho-
ton virtualities for aHLbL

μ are on the GeV scale and below, an
observation that calls for a dedicated campaign of experimen-
tal measurements in this energy range. The BESIII collabora-
tion has recently presented a new high-quality measurement
[4342] of the singly-virtual TFF of the π0, which is shown in
Fig. 356, where it is compared with older data [4343,4344]
as well as a calculation of this form factor in lattice QCD
[4345], a phenomenological estimate based on Canterbury
approximants [4346], and with a dispersive treatment of the
TFF [4347]. The agreement between data and theory is very
good. Unfortunately, at low energies experiments have not
been able yet to provide data with two photon virtualities, as
needed for the new dispersive treatment of the pseudoscalar
and pion loop contributions. Dispersive evaluations of the
TFFs [4348] and lattice QCD calculations [4345] have been
used instead. The good agreement shown in Fig. 356 and the
overall consistency found elsewhere indicate the robustness

123



 1125 Page 472 of 636 Eur. Phys. J. C          (2023) 83:1125 

Fig. 356 The single-virtual pion form factor Fπ0γ ∗γ ∗(−Q2,0) as a func-
tion of Q2 measured by the CELLO [4344], CLEO [4343], and BESIII
[4342] experiments as well as phenomenological predictions using a
dispersive analysis [4347] and Canterbury approximants [4346]; shown
is furthermore an ab-initio calculation within Lattice QCD [4345]

of the theoretical descriptions of the TFFs. For the future,
the first double-virtual TFF measurements are expected from
Belle-II and BESIII.

Currently, in the Theory White Paper, the new dispersive
treatments have led to a major reduction of the uncertain-
ties of the pseudoscalar exchanges and pion and kaon loop
subgraphs. For the remaining scalar, axial vector, and tensor
exchange graphs as well as the short-distance contributions,
a conservative error estimate has been applied and future
research in experiment and theory will eventually lead to a
further reduction of the uncertainty of those contributions.
The dispersive result arrived at in Ref. [4286] amounts to
aHLbL
μ = (9.2±1.9)×10−10 [4275,4345–4347,4349–4357]

and is found to be in good agreement with the Glasgow con-
sensus value with a slightly reduced uncertainty, but with a
significant reduction of the model dependence compared to
this older value.

Lattice QCD calculation
The first proposal for computing the hadronic light-by-light
contribution in lattice QCD dates back to 2005 [4358]. The
subject lay dormant for some years until 2013 [4359], the
new effort leading to first results for the quark-connected
contribution at a pion mass of 330 MeV/c2 [4360]. Impor-
tant technical improvements to the original methods were
made in [4361]. The leading disconnected contribution was
calculated for the first time in [4362], along with the con-
nected part, at the physical pion mass. Finally, this multi-
year effort culminated into a full calculation [4363] in the
(u, d, s) quark sector. This result, displayed in Fig. 357 as
RBC/UKQCD ’18, contributed to the White Paper 2020 the-
ory average, together with the dispersive estimate quoted
above.

Fig. 357 Overview of results obtained for the hadronic light-by-
light contribution to the muon (g − 2): the Mainz-CLS [4369,4370]
and RBC/UKQCD lattice results [4363], the Theory White Paper
2020 average [4286], and previous model estimates by Jegerlehner
[4275], Prades–de Rafael–Vainshtein [4336] (the ‘Glasgow consen-
sus’) and Jegerlehner–Nyffeler [4284,4371]. We have supplemented the
RBC/UKQCD result with the charm contribution computed in [4370].
The WP average is based on the dispersive [4275,4345–4347,4349–
4357] and the RBC/UKQCD [4363] lattice result

The treatment of massless internal photons is an important
technical issue in lattice QCD. In the publications cited in the
previous paragraph, the photons were treated on the same
lattice as the QCD degrees of freedom. In [4364–4366], a
position-space method allowing for the photons to be treated
in infinite volume was proposed and worked out. Meanwhile,
similar methods were also developed by members of the
RBC/UKQCD collaboration [4367]. Altogether, the devel-
opment of optimized position-space methods led to the calcu-
lations of [4368–4370] by the Mainz-CLS group. The result,
displayed in Fig. 357, has an uncertainty very similar to the
dispersive result.

Discussion HLbL
Figure 357 illustrates the good consistency among the data-
driven, lattice and earlier hadronic model determinations.
This is a good sign, since the dominant sources of uncer-
tainty are very different in the different determinations: for
instance, the RBC/UKQCD calculation involves a fairly long
extrapolation to infinite volume, while the Mainz-CLS deter-
mination results from an extrapolation over a sizeable inter-
val of pion masses. Updates of the lattice calculations are
planned in the near future.

In the dispersive data-driven approach, further progress
can be achieved by improved TFF measurements and calcu-
lations for the η and η′ mesons. Most important, however,
is a future experimental program of measurements of the
two-photon couplings of mesons in the (1–2) GeV/c2 range,
where especially axial vector mesons play an important role
and for which the current data base is limited. New results
are expected in the future by the BESIII collaboration in
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a range of momentum transfer similar to the one shown in
Fig. 356. Moreover, also Babar and Belle-II will be able to
provide new measurements at a higher momentum transfer.
New TFF data will also be crucial for a matching of indi-
vidual hadronic channels to the short-distance behaviour of
HLbL.

Given the ongoing program of various groups in experi-
ment, hadron phenomenology and lattice QCD, we expect an
improvement of the HLbL error from currently 20% to 10%
or lower. An agreement between an ab-initio lattice QCD
calculation with a data-driven estimate on such a level will
represent a non-trivial cross-check between two completely
independent methods.

13.5.3 Conclusions and outlook

Many theoretical and experimental developments have taken
place in the past 5 years on the anomalous magnetic
moment of the muon aμ. The direct measurement of aμ
[4283] has been confirmed and improved [4287], while
the (g − 2) Theory Initiative has helped coordinate many
activities to improve the Standard Model prediction for aμ
[4286]. Hadronic effects limit the precision of this predic-
tion, especially the hadronic vacuum polarization (HVP) and
the hadronic light-by-light (HLbL) contributions reviewed
above.

In the immediate future, the top priority is to clarify the
tensions that have emerged in partial and full HVP determina-
tions. Additional lattice QCD calculations of the full aHVP,LO

μ

contribution are eagerly awaited, in conjunction with a strat-
egy to identify the origin of the existing strong tension with
the dispersive approach for the ‘intermediate window’ sub-
contribution. On the data-driven side, the accuracy of the
dispersive approach for obtaining aHVP,LO

μ is currently ham-
pered by inconsistencies in the experimental data bases. The
most problematic issues arise from the tension in the determi-
nation of the e+e− → π+π− cross section (KLOE/BABAR
puzzle), but also in other exclusive channels, e.g. in the pro-
cess e+e− → K+K−, inconsistencies have been observed.
The clarification of these issues is one of the most important
challenges for an improved determination of the SM pre-
diction of (g − 2)μ and will be addressed by several exist-
ing and upcoming e+e− experiments in future.118 In that
respect, since the cross section measurements heavily rely

118 Recently the CMD-3 collaboration has announced a new energy
scan measurement of the process e+e− → π+π− with a systematic
uncertainty of 0.7% in the central ρ peak region [4372]. Surprisingly,
the central value of aππ,LO

μ , when using the CMD3 measurement only,
turns out to be significantly higher than all previous experiments and is
found to lead to good agreement with the BMW Lattice QCD determi-
nation of HVP. No reasons have been found so far why the new cross
section measurement turns out to be significantly higher than all previ-
ous experiments. The new CMD-3 measurement is not yet published.

on high-precision Monte-Carlo generators [4373], it is of
utmost importance to maintain and to refine the PHOKHARA
[4374–4391] generator as well as other Monte Carlo pro-
grams [4392–4397] for future applications.

As an alternative to the program of hadronic cross sec-
tion measurements at e+e− colliders, it has been proposed
[4398] to carry out a spacelike measurement of the effective
electromagnetic coupling via a scattering experiment pro-
viding thereby input to a dispersion integral for HVP. The
MUonE collaboration is currently preparing the design of a
detector [4399] at the muon beam of SPS/CERN towards the
final approval of the project. Provided that the differential
cross section of the μe scattering process can be measured
to the desired accuracy, this will allow for an entirely new
determination of HVP.

In summary, controlling hadronic effects in the muon
(g − 2) to match the absolute experimental precision rep-
resents a major challenge. Overcoming this challenge will
demonstrate that strong-interaction contributions to preci-
sion observables can be controlled with the required level
of accuracy and consistency between data-driven and lattice
QCD approaches. This ability will be crucial to maximize
the science output of a future high-energy lepton collider
[4400], since non-perturbative QCD effects also dominate
the uncertainty of α(MZ ).

14 The future

Conveners:
Eberhard Klempt and Franz Gross
Higher energy, higher intensity, higher precision. These are
the frontiers at which experimental tests of new physics
beyond the Standard Model is expected. This last section
of this volume describes the status and the prospects at new
multi-GeV facilities which recently came into operation or
which are presently under construction. The large number of
facilities necessarily requires a selection. A list of past and
present accelerators can be found elsewhere.119 This section
does not attempt to address possible theoretical developments
of the future.

The 12 GeV project at JLab, presented by Patrizia Rossi,
is dedicated to a study of the structure of nucleons and nuclei,
to an intense search for gluonic degrees of freedom in meson
and baryon spectroscopy, to a search for new physics in
parity violating processes, and to a search for dark matter.
The electron-ion collider (EIC) will provide electron–proton
and electron–nuclei collisions at CM energies

√
s = 20–

100 GeV, later possibly up to 140 GeV. Global properties and

119 https://en.wikipedia.org/wiki/List_of_accelerators_in_particle_
physics.
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the partonic structure of hadrons and nuclei will be studied
(Christian Weiss).

The study of in-medium properties of hadrons and the
nuclear matter Equation of State (EoS) and a search for
possible signals of a deconfinement and a chiral-symmetry-
restoration phase transitions are at the heart of the NICA
(Nuclotron-based Ion Collider fAcility) program at the Joint
Institute for Nuclear Research in Dubna and of the J-PARC
hadron facility at Tokai. At J-PARC, strange nuclear mat-
ter, hypernuclei and the study of hyperons are a focus of
research (Shinzo Kumano). NICA provides beams of nuclei
with 4.5 GeV per nucleon and protons up to 12.6 GeV. Using
polarized beams, the internal structure of the proton and
deuteron will also be studied (Alexey Guskov).

The new international Facility for Antiproton and Ion
Research (FAIR), presently under construction at Darmstadt,
is presented by Johan Messchendorp, Frank Nerling and
Joachim Stroth. Its program encompasses hadron physics
using anti-proton annihilation, heavy-ion reactions at rela-
tivistic energies, and nuclear structure physics at the limit of
stability using rare isotope beams.

The e+e− colliders in Beijing and Tsukuba have deliv-
ered a large number of unexpected results. BES III will
increase further the statistics of J/ψ from now 1010 and
ψ(2S) (2.7×109) decays and extend its program to cover the
full range up to 5.6 GeV in mass. Meson and baryon spec-
troscopy form the core of the program with extensions to
mesonic and baryonic form factors and to τ decays (Hai-Bo
Li, Ryan Edward Mitchell and Xiaorong Zhou). The BELLE
II program, presented by Toru Iijima, has a strong part in
spectroscopy as well. The experiment operates at an asym-
metric e+e− collider mostly at the Υ (4S) mass. In addition
to the spectroscopy program, BELLE III will search for non-
SM contributions in hadronic, semileptonic and leptonic b-
quark decays, determine quark mixing parameters, determine
parameters in τ physics to precisions and perform searches
for dark-sector particles.

The High-Luminosity Large Hadron Collider (HL-LHC)
will have a five time larger luminosity than LHC. Major
goals are improved tests of the Standard Model, searches
for beyond the Standard Model (BSM) physics, studies of the
properties of the Higgs boson, flavor physics of heavy quarks
and leptons, and studies of QCD matter at high density and
temperature. Project and prospects of HL-LHC are summa-
rized by Tim Gershon, Massimiliana Grazzini and Gudrun
Heinrich.

These major facilities represent a substantial investment
in the experimental study of QCD, and show that the field
has matured. It will be exciting to see what new results and
deeper understandings emerge in the future.

14.1 JLab: the 12 GeV project and beyond

Patrizia Rossi

14.1.1 Jefferson Lab and CEBAF

Jefferson Lab (JLab), is a US National Lab located in New-
port News – Virginia. It is a world-leading research labora-
tory for exploring the nature of matter in depth, providing
unprecedented insight into the details of the particles and
forces that build our visible universe inside the nucleus of
the atom. Its scientific program spans the study of hadronic
physics, the physics of complex nuclei, the hadronization
of colored constituents, and precision tests of the Standard
Model of particle physics. Figure 358 shows an areal view
of the laboratory with the accelerator complex in the fore-
ground. The core of Jefferson Lab is the Continuous Electron
Beam Accelerator Facility (CEBAF). It operates as a pair of
superconducting radio frequency linear accelerators (linacs)
in a “racetrack” configuration and is designed to circulate
a near continuous-wave electron beam through one to five
passes recirculating arcs (see Fig. 359).

Jefferson Lab started physics operations in 1995, provid-
ing up to 6 GeV electron beams to three experimental halls,
Halls A, B and C, simultaneously. In May 2012, the 6 GeV
beam operations were stopped, with Jefferson Lab upgrad-
ing its facility to expand opportunity for discovery. In addi-
tion to the accelerator scope of doubling the energy, from
6 GeV to 12 GeV, the upgrade included the addition of a
new fourth experimental hall, Hall D, and the construction of
upgraded/new detectors hardware in the other halls. In two
of the existing halls new spectrometers were added, the large
acceptance device CLAS12 in Hall B [4401] and the preci-
sion magnetic spectrometer Super High Momentum Spec-
trometer, or SHMS, in Hall C. The new experimental Hall
D makes use of a tagged bremsstrahlung photon beam and
solenoidal detector to house the GlueX experiment.The ini-
tial energy upgraded program in Hall A made use of both the
existing High Resolution Spectrometers.

The equipment in the four halls is well matched to the
demands of the broad 12 GeV scientific program [3185]
with complementary capabilities of acceptance, precision
and required luminosity: high luminosity in Halls A and
C and large acceptance detectors in Halls B and D. The
upgraded CEBAF accelerator, which can deliver a maximum
energy of 12 GeV to Hall D and 11 GeV to Halls A, B, C,
delivered the first beam to Halls A and D in the spring of
2014. The full project was completed in spring 2017 with
the commissioning of the two remaining halls.

In the meantime, Jefferson Lab has been continuing
actively to invest in facilities that make optimum use of
CEBAF’s capabilities and the existing equipment, to pro-
duce science with high impact in Nuclear Physics as well
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Fig. 358 Areal view of Jefferson Lab with the accelerator complex in
the foreground

Fig. 359 CEBAF accelerator concept

as High Energy Physics and Astrophysics. In Hall A the
Super Big Bite spectrometer (SBS) was installed in 2021,
while the Measurement Of Lepton-Lepton Elastic Reaction
(MOLLER) equipment is under construction with comple-
tion date foreseen for late 2026. On a longer term, Hall
A plans to host the SOLenoidal Large Intensity Device
(SoLID). Future additions include also: new large angle tag-
ging detectors (TDIS in Hall A and ALERT in Hall B); the
neutral particle spectrometer (NPS) and the compact photon
source (CPS) in Hall C; and an intense KL beamline that
would serve new experiments in the GlueX spectrometer in
Hall D.

14.1.2 The 12GeV Physics program

CEBAF has been delivering the world’s highest intensity and
highest precision CW multi-GeV electron beams for more
than 25 years. The capabilities of the upgraded CEBAF rep-
resent a significant leap over previous technology, with an
unmatched combination of beam energy, quality and inten-
sity. At Jefferson Lab experiments can run at luminosity up
to 1038 cm−2 s−1 using a highly polarized electron beam (up

to 90%), high power cryogenic targets, and several polarized
targets using NH3, ND3, and 3He to support a broad range of
polarization measurements. This combination of beam, tar-
gets and large acceptance and high precision detectors, offers
a powerful set of experimental tools that enables unprece-
dented studies of the inner structure of nucleons and nuclei
and allows to push the limits of our understanding of the
Standard Model.

The facility serves an international scientific user com-
munity of ∼ 1700 scientists which, in collaboration with
the laboratory and with the guidance of the Jefferson Lab
Program Advisory Committee (PAC), develops the scientific
program. Following the last PAC meeting in 2022, there are a
total of 90 approved experiments in the 12 GeV program,120

of which more than 1/3 have received the highest scientific
rating of A. There are 61 approved experiments still wait-
ing to run, representing at least a decade of running in the
future. Furthermore, PAC meetings are expected to continue
each summer, with a call for new proposals for beam time.
Clearly, CEBAF is a facility in high demand.

The JLab physics program falls into four main categories:

– the study of the transverse, longitudinal and 3-dimens-
ional structure of the nucleon through the measure-
ments of the elastic and transition form factors (FFs), the
(un)polarized parton distribution functions (PDFs), and
the Transverse Momentum Dependent (TMDs) and Gen-
eralized Parton Distributions functions (GPDs), respec-
tively.

– The study of hadron spectroscopy and the search for
exotic mesons to explore the nature of confinement.

– The study of the QCD structure in nuclei; its connec-
tion with the nucleon–nucleon interactions, including the
modification of the valence quark PDFs in a dense nuclear
medium, and the investigation of the quark hadronization
properties. The neutron distribution radius in medium
heavy nuclei, is also part of the program.

– The search of physics beyond the Standard Model
in high-precision parity-violating processes and in the
search for signals of dark matter.

Due to the limited space, only few selected highlights of
the scientific agenda and present results of the JLab 12 GeV
rich program are presented in this review. Some key results
of the earlier JLab 6 GeV program are also reported for com-
pleteness when needed. The part related to the search of
physics beyond the Standard Model, instead, are not dis-
cussed since it is somewhat beyond the scope of this volume.
A more complete summary of the ongoing scientific program
of the 12 GeV CEBAF and an outlook into future opportuni-
ties can be found in Ref. [4402].

120 A list of approved experiments is available on the JLab website.
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14.1.3 The structure of the nucleon

For the theoretical formalism and a general overview of the
structure of the nucleon, the reader should refer to Sect. 10
of this volume.

Elastic Form Factors at high and ultra low Q2

Since Hofstadter’s pioneering experiment in the 1950s, the
measurements of the electromagnetic space-like nucleon FFs
have been a crucial source of information for our understand-
ing of the internal structure of the nucleons. In 2000 Jefferson
Lab rewrote the textbook of the proton and neutron form fac-
tors when precise data for the proton’s electric to magnetic
form factor ratio, Gp

E/G
p
M from double polarization experi-

ments at Q2 up to 5.6 GeV2 [2973], didn’t show the scaling
behavior observed using the Rosenbluth separation method
and subsequently confirmed by experiments with improved
precision [2971,4403]. According to the pQCD predictions
the ratio Q2 F2p

F1p
, where F1p and F2p are the Dirac and Pauli

form factors, respectively, would reach a constant value at
high enough Q2. The data clearly indicate that this asymp-
totic regime has not been reached yet [2974]. These observa-
tions suggest the presence of orbital angular momentum in
the leading 3-quark component of the nucleon wave function
in QCD Ref. [3040]. Another explanation of this discrep-
ancy has been attributed to “two-photon” exchange (TPE) or
higher order corrections to the cross sections. Jefferson Lab
is tackling these questions and in the coming years will offer
unprecedented opportunities to extend the current proton and
neutron FF’s measurements to higher momentum transfer Q2

and to improve statistical and uncertainties at very low Q2,
where the nucleon size can be accurately investigated. The
measurements at high Q2 will also contribute to constraint
two of the nucleon Generalized Parton Distributions, and
in general will test the validity of quite a few fundamental
nucleon models in a region of transition between perturbative
and non-perturbative regimes.

One of the first completed experiments in Hall A with
the upgraded CEBAF accelerator was a precision mea-
surement of the proton magnetic form factor up to Q2 =
16 GeV2[2961]. This experiment nearly doubled the Q2

range over which direct Rosenbluth separations of GE and
GM can be performed. It confirmed the discrepancy with
polarization measurements to larger Q2 values and attributed
it to hard TPE. These new, high-precision cross section mea-
surement provides also an important baseline for the nucleon
form factors program.

A series of experiments [4404–4409] for the measure-
ments of the proton and neutron magnetic and electric form
factors, has started at the end of 2021 using the Super Bigbite
Spectrometer (SBS) and the upgraded BigBite Spectrometer
in Hall A. This facility provides large acceptance at high
luminosity so that small cross sections can be measured with

high precision allowing a determination of the flavor sepa-
rated form factors to Q2 = 10–12 GeV2. A complementary
measurement of the neutron magnetic form factor will be
performed with CLAS12 in Hall B [4410]. The SBS form
factor experiments will push into a Q2 regions in which the-
ory expects new degrees of freedom to emerge in our under-
standing of QCD non-perturbative phenomena in nucleon
structure as predicted in Ref. [3040].

From the perspective of QCD in exclusive processes,
another important measurement is accessing the structure of
the pion and kaon. The E12-06-101 experiment [4411] in Hall
C will extract the pion form factor through p(e, e′π+)n and
d(e, e′π−)pp with Q2 extending to 6 GeV2 from 2 GeV2 and
−tmin ∼ 0.005 ∼ 0.2 GeV2. The proposed separation of lon-
gitudinal and transverse structure functions is a critical check
of the reaction dynamics. The charged pion electric form fac-
tor is a topic of fundamental importance to our understanding
of hadronic structure. There is a robust pQCD prediction in
the asymptotic limit where Q2 → ∞: Q2Fπ (Q2)→ 16π
αs(Q2) f 2

π . Therefore it is an interesting question at what Q2

this pQCD result will become dominant. The available data
indicate that the form factor at Q2 = 2 GeV is at least a
factor of 3–4 larger. The new data will provide improved
understanding of the non-perturbative contribution to this
important property of the pion as well as mapping out the
transition to the perturbative regime.

A high precision measurement of the elastic cross section
on the proton at ultra low Q2, the PRad experiment, was per-
formed in 2016 with the aim to solve the proton charge radius
puzzle triggered by the muonic hydrogen spectroscopic mea-
surements. To improve the precision of the measurement, the
experiment utilized a new type of windowless target system
flowing the hydrogen gas directly into the stream of CEBAF’s
1.1 and 2.2 GeV electrons, and a calorimeter to detect the
scattered electrons, rather than the traditionally used mag-
netic spectrometer. Moreover, the experiment was able to
measure the scattered electron at very low (Q2), facilitat-
ing a highly accurate extrapolation to Q2 = 0 and extraction
of the proton charge radius. The new value obtained for the
proton radius is 0.831 fm [2958], which is smaller than the
previous electron-scattering values and is, within its experi-
mental uncertainty, in agreement with recent muonic atomic
spectroscopy results.

To reach the ultimate precision offered by this new
method, an enhanced version of PRad , the PRad − I I
experiment [4412] has been approved. It will deliver the most
precise measurement of Gp

E reaching the lowest ever Q2

value (10−5 GeV 2) in lepton scattering experiments, critical
for the model independent extraction of rp. The projected
rp from PRad-II is shown in Fig. 360 along with the PRad
result, recent electron scattering extractions, atomic physics
measurements on ordinary hydrogen and muonic hydrogen,
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Fig. 360 The projected rp result from PRad-II, shown along with the
result from PRad and other measurements (see text)

and the CODATA values (see [2958] for references of these
measurements).

Quark parton distributions at high x
The quark and gluon structure of the proton has been under
intense experimental and theoretical investigation for more
than five decades. Nevertheless, even for the distributions
of the well-studied valence quarks, challenges such as the
value of the down quark to up quark ratio at high fractional
momenta x (x ≥ 0.5), where a single parton carries most of
the nucleon’s momentum, remain. Recently, three JLab unpo-
larized DIS experiments, MARATHON [4413] in Hall A,
BoNUS12 [4414] in Hall B, and F2d/F2p [4415] in Hall-
C completed data taking. These experiments aim to provide
data to constrain PDFs in the high-x region, especially the
d/u PDF ratio.

The experiments in Hall A and Hall B used two differ-
ent approaches to minimizing nuclear effects in extracting
the neutron information: MARATHON measured the ratio
of 3H to 3He structure functions, while BONUS12 tagged
slow recoiling protons in the deuteron. The Hall-C exper-
iment measured H(e, e’) and D(e, e’) inclusive cross sec-
tions in the resonance region and beyond. While there will
be nuclear effects in the deuterium data, the experiment pro-
vides a significant large x range and reduced uncertainty to be
combined with the large global data set of inclusive cross sec-
tions for PDF extraction. Figure 361 shows the MARATHON
Fd

2 /F p
2 results [4413], along with data from the JLab BoNUS

experiment [3109] for W ≥ 1.84 GeV , evolved to the Q2

of MARATHON, and results from early SLAC measure-
ments with W ≥ 1.84 GeV [4416] presented as a band.
The results, which cover the Bjorken scaling variable range
0.19 < x < 0.83, represent a significant improvement com-
pared to previous measurements for the ratio. The results are
expected to improve our knowledge of the nucleon PDFs, and
to be used in algorithms which fit hadronic data to properly
determine the essentially unknown (u + ū)/(d + d̄) ratio at
large x. A planned experiment using Parity Violation in Deep
Inelastic Scattering (PVDIS) [4417] on the proton, with the
proposed SoLID [4418] spectrometer, will provide input on
the d/u ratio at high x without contamination from nuclear

Fig. 361 The Fd
2 /F p

2 ratio versus Bjorken x from the JLab
MARATHON experiment [4413], together with data from BoNUS
[3109] and a band based on the fit of the SLAC data as provided in
Ref. [4416], for the MARATHON kinematics Q2 = 14x (GeV)2 . All
three experimental data-sets include statistical, point to point system-
atic, and normalization uncertainties

corrections by measuring the ratio of γ Z interference to total
structure functions.

An extensive experimental program on spin physics at
low and moderate Q2, has been pursued by JLab during the
6 GeV era. The main focus of the DIS experiments has been
the x−dependence of virtal photon asymmetry A1 = g1/F1,
to determine the contributions of quark spins to the spin of
nucleon. In addition, the high statistical precision data and
kinematic coverage allowed an accurate study of sum rules
in the parton to hadron transition region as well as higher
twist contributions (see Ref. [4419] for a review). A spin
physics program has been approved to run with the upgrade
CEBAF which extends the kinematical coverage to higher
x and can, among other things, answer the key question on
what happens when a single quark carries nearly all (more
than 80%) of the momentum of the nucleon. This region is
well suited to test various theoretical predictions including
those from the relativistic constituent quark model and per-
turbative QCD. The An

1 high-impact experiment in Hall C
[4420] completed data taking in 2020. The experiment ran
at a luminosity of 2x1036cm−2s−1 thanks to the upgraded
polarized 3He target [4421]. The new precision measure-
ment will expand knowledge of the extracted gn1 structure
function to x = 0.75. Combined with the currently running
experiments to measure the proton and deuteron asymmetries
Ap

1 and Ad
1 with CLAS12 [4411], new global analyses will

be able to extract the Δu and Δd quark helicity distributions
in the high-x region with much improved precision.

Nuclear femtography: TMDs and GPDs
Pioneering measurements to access Generalized Parton Dis-
tributions (GPDs) and Transverse Momentum Distributions
(TMDs) were provided by the HERMES, COMPASS, and
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the JLab 6 GeV program, among others. For recent reviews
see Refs. [4422,4423]. The upgraded detectors and CEBAF
beam energy and intensity, promise to provide a more
detailed three-dimensional (3D) mapping of the nucleon over
wider ranges of the relevant kinematic variables. Indeed, this
is a major thrust of the 12 GeV program accounting, so far, for
almost ∼ 1/3 of the whole approved experimental program.

Experimentally GPDs are accessible through deep exclu-
sive processes, the most prominent ones being Deeply Vir-
tual Compton Scattering (DVCS), and Deeply Virtual Meson
Production (DVMP). TMDs, at JLab, are accessed through
Semi-Inclusive Deep Inelastic Scattering (SIDIS), in which
the nucleon is no longer intact and one or two of the outgo-
ing hadrons are detected in coincidence with the scattered
lepton. GPDs and TMDs are not measured directly. They are
extracted through global fits to experimental data of Comp-
ton Form Factors (CFFs) for GPDs and Structure Functions
for TMDs, and model dependent techniques with various
assumptions involved. Therefore, accessing them demands
not only a structured connection between theory, experiment
and phenomenology, but availability of high precision data in
a wide kinematical range and from different targets and sev-
eral target/beam polarization combinations. A 3D descrip-
tion of the nucleon internal structure comes at the price of an
unprecedented complexity. Therefore, for a correct interpre-
tation of the data and a detailed comparison between results
and theoretical models, a full differential analysis, using
multi-dimensional information is crucial. The high-intensity,
high-polarization electron beam provided by CEBAF with
the complementary equipment of halls, A, B, C, makes JLab
an ideal place for these studies.

SIDIS experiments provide access to the nucleon spin–
orbit correlations. Observables are spin azimuthal asymme-
tries, and in particular single spin azimuthal asymmetries
(SSAs), of the detected hadron. SSAs are due to the cor-
relation between the quark transverse momentum and the
spin of the quark/nucleon and early measurements indicated
that they become larger with increasing x , i.e in the region
where valence quarks have visible presence. Measurements
of SSAs at JLab with the 6 GeV beam, performed with longi-
tudinally polarized NH3 [4424], and transversely polarized
3He [3298,3299,4425,4426] indicate that spin orbit correla-
tions may be significant for certain combinations of spins of
quarks and nucleons and transverse momentum of scattered
quarks.

Large spin-azimuthal asymmetries have been observed
at JLab also for a longitudinally polarized beam [4427]
and a transversely polarized 3He target [4428], which have
been interpreted in terms of higher-twist contributions related
to quark–gluon correlations and novel aspects of emergent
hadron mass. At JLab with upgraded energy, three experi-
mental halls, A, B, and C are involved in TMDs studies. The
measurements aim to access leading and higher twists TMDs

Fig. 362 The new CLAS12 results on beam helicity asymmetry in
two-pion semi-inclusive deep inelastic electroproduction [4442] as a
function of the invariant mass of pion pairs. The red points are from
CLAS6 measurements [4444]

and their flavor and spin dependence, in multi-dimensional
binning of x, Q2, z, PT . The joint efforts of the three halls,
where the high-precision, high-statistics measurements in
Hall A and C will be combined with the wide kinematics
ones performed in Hall B, by using different targets and
several target/beam polarization combinations, will allow a
thorough exploration of the 3D structure of the nucleon in
momentum space. The program includes the BigBite spec-
trometer and SBS [4429], as well as, the SoLID detector at
Hall A [4430–4432], CLAS12 at Hall B [4433–4437], and
High Momentum Spectrometer (HMS) and Super HMS at
Hall C [4438–4440].

The first SIDIS publications of the 12 GeV era were
reported by the CLAS12 collaboration on measurements
of beam SSA for single pion [4441], two-pion [4442] and
back-to-back dihadron [4443] productions off an unpolar-
ized proton target using 10.6 and 10.2 GeV longitudinally
spin-polarized electron beams. The singleπ+ production was
measured over a wide range of kinematics in a fully multi-
dimensional study. The comparison with calculations shows
the promise of high-precision data to enable differentiation
between competing reaction models and effects.

The first significant beam spin asymmetries observed in
two-pion production provide the first opportunity to extract
the higher-twist parton distribution function e(x), interpreted
in terms of the average transverse forces acting on a quark
after it absorbs the virtual photon. Moreover, this measure-
ment constitutes the first ever signal sensitive to the helicity-
dependent two-pion fragmentation function G⊥1 . The com-
parison of the 6 GeV and 12 GeV measurements shown
in Fig. 362) demonstrates the impact of the beam energy
on the phase space for production of multiple hadrons in
the final state and the huge reduction in the corresponding
error bars. Finally, the measured beam-spin asymmetries in
back-to-back dihadron electroproduction, ep →′ pπ+X ,
with the first hadron produced in the current-fragmentation
region and the second in the target-fragmentation region, pro-
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vide a first access in dihadron production to a previously
unobserved leading-twist spin- and transverse-momentum-
dependent fracture functions [4445].

A comprehensive program is carried out at JLab in deeply
virtual exclusive scattering processes (DVCS and DVMP)
with the goal to create the transverse spacial images of quarks
and gluons as a function of their longitudinal momentum
fraction in the proton, neutron and nuclei through the study
of the GPDs. The physical content of the GPDs is quite
rich. Among other features, they give access to the con-
tribution of the orbital momentum of the quarks and glu-
ons to the nucleon, and the D-term, a poorly known ele-
ment of GPD parametrizations, which gives valuable insights
to the mechanical properties of the nucleon [2879,4446–
4448]. The study of the deeply exclusive processes and the
GPDs extraction started, at JLab, in the 6 GeV era. After
the first publication by CLAS in 2001 [4449], a series of
high-statistics DVCS-dedicated experiments in Hall A and
B followed at moderate Q2 (1–3) GeV2 and in a xB range
centered around xB ∼ 0.3 (for a recent review see [4450]).

The polarized and unpolarized cross sections measured
at in Hall A at 6 GeV [4451,4452] indicate, via a Q2-
scaling test, that the factorization and the hypothesis of
leading-twist dominance are valid already at relatively low
Q2 (∼ 1−2) GeV2 and thus the applicability of the GPD-
based description. Covering a range in xB from 0.1 to 0.7
and in Q2 from 1 to 10 GeV2, the upgraded JLab is very well
matched to study GPDs in the valence regime. The program
is executed in the three experimental halls, A, B, C, and aims
to measure accurately fully differential beam-polarized cross
section differences and unpolarized cross sections, longitu-
dinally polarized target-spin asymmetries along with double
polarization observables.

The first result of the 12 GeV era was reported by Hall A on
the DVCS cross section measurement at high Bjorken xB off
an unpolarized proton target [4453]. The work presents the
first experimental extraction of the four helicity-conserving
nucleon Compton Form Factors (CFFs) as a function of xB .
A similar experiment, which will complement the kinematic
coverage of the Hall A, is planned to run in Hall C with
the HMS and NPS in 2024 [4454]. In Hall B two experi-
ments measuring DVCS off an unpolarized proton target at
11 GeV [4455] and 6.6 and 8.8 GeV [4456] will allow a larger
kinematical coverage, while the measurement of the beam-
spin asymmetry off a deuteron target, with detected neutron,
will allow to constrain the poorly known GPD E, related
to the quark orbital angular momentum through the Ji’s sum
rule, and to perform the GPDs quark-flavor separation. These
experiments will release their results soon. Finally, an exper-
iment using longitudinally polarized NH3 and ND3 target
[4411] is currently running in Hall B and one has been pro-
posed to use a transversely polarized proton [4457]. The
precision and kinematical coverage of these asymmetries

Fig. 363 Photon polarization asymmetry as a function of −t. The
dashed and dashed-dotted lines are the predictions of GPDs based mod-
els, respectively, the VGG [4464] and the GK [4465] models, evaluated
at the average kinematics. For detailed explanation see [2881]

obtained with different combination of targets and polariza-
tion will bring stringent constraints to GPD parametrizations.

Meson production at JLab at 6 GeV has not yet shown par-
ton dominance of scattering. Experimental data from 11 GeV
beam will provide important test of the deep-exclusive meson
production mechanism. Hall A recently published deep
exclusive electroproduction of π0 at high Q2 [4458] using
the 11 GeV beam off an unpolarized proton target. The results
suggest the amplitude for transversely polarized virtual pho-
tons continues to dominate the cross section throughout this
kinematic range. Experiments have also been approved in
Hall B for π0, η [4459] and φ production [4460], the latter
with the hope to determine the t-slope of the gluon GPDs.
In Hall C, it is important to mention the precise measure-
ment of the L/T separation on kaon and pion electroproduc-
tion [4461,4462] and the neutral pion cross-section measure-
ments [4454].

Finally, DVCS and DVMP will be measured on the 4He
nucleus (with emphasis on φ production) [4463], with the
aim of comparing a) the quark and gluon radii of the helium
nucleus, b) GPDs of the bound proton and neutron with the
free proton and quasi-free neutron.

While the most attention so far is on studies of GPD
using spin (beam/target) observables and cross-sections in
DVCS, also the Time-like Compton Scattering (TCS), the
time-reversal symmetric process of DVCS where the incom-
ing photon is real and the outgoing photon has large time-
like virtuality, has much to offer. The first ever measure-
ment of TCS on the proton γ p → p′γ ∗(γ ∗ → e+e−) has
been obtained with CLAS12 [2881]. Both the photon circular
polarization and forward/backward asymmetries were mea-
sured. The comparison of the measured polarization asym-
metries with model predictions points toward the interpre-
tation of GPDs as universal functions. Figure 363 shows
the photon polarization asymmetry A)U as a function of
−t at the averaged kinematic point Eγ = 7.29± 1.55 GeV;
M = 1.80± 0.26 GeV, compared with GPDs based models.
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14.1.4 Hadron spectroscopy

For the theoretical formalism and a general overview of
hadron spectroscopy, the reader should refer to Sect. 8 of
this volume.

This is an exciting period in hadron spectroscopy. The last
two decades witnessed the discovery of many states that chal-
lenged the basic model of hadron physics according to which
particles are made of 3q (baryons) or a qq̄ (mesons), and
pointed to states with multi-quark content, or with explicit
gluonic components (glueballs and hybrids). Mapping states
with explicit gluonic degrees of freedom in the light sector
is a challenge.

One example is the π1 state which has led to controver-
sies. Experiments have reported two different hybrid candi-
dates with spin-exotic signature, which couple separately to
ηπ and η

′
π , π1(1400) and π1(1600) (for a review see Ref.

[2414]). This picture is not compatible with recent Lattice
QCD estimates for hybrid states, nor with most phenomeno-
logical models. A recent work by the JPAC [4466] provides
a robust extraction of a single exotic π1 resonant pole, but
no evidence for a second exotic state (see Grube’s contri-
bution, Sect. 8.3). The main goal of the GlueX experiment
[4467,4468] in Hall D is to search for exotic mesons, and
together with CLAS12 MesonEx experiment [4469] in Hall
B, to provide a unique contribution to the landscape of exper-
imental meson spectroscopy through the novel photoproduc-
tion mechanism previously relatively unexplored. Utilizing
a real, linearly-polarized photon beam in GlueX and quasi-
real, low-Q2 photons in CLAS12, this program covers a wide
range of beam energies from Eγ = 3-12 GeV.

GlueX has already collected high-statistics, high-quality
photoproduction data and published various results on pho-
toproduction cross sections for several single pseudoscalar
mesons including theπ0,π−, K+, η, η′ over a broad range of
momentum transfer [4470–4473], focused on a quantitative
understanding of the meson photoproduction mechanism.
Polarization observables, such as spin-density matrix ele-
ments, provide also valuable input for the theoretical descrip-
tion of the production mechanism, which is essential for the
interpretation of possible exotic meson signals. Moreover,
these studies require a complete understanding of the detec-
tor acceptance and efficiencies in fits to multi-dimensional
data and therefore are essential for assessing the Partial Wave
Analysis (PWA) machinery.

GlueX published the first measurement of spin density
matrix elements of the Λ(1520) in the energy range Eγ

= 8.2–8.8 GeV [4474] and released preliminary results on
spin-density matrix elements of the vector mesons ρ(770),
φ(1020) and ω(782) [4475]. The statistical precision of the
final analysis with the full data set will surpass previous mea-
surements by orders of magnitude. The search for hybrid
mesons has started in GlueX by studying η(

′)π final-states to

Fig. 364 Preliminary mass spectra and amplitude analysis results from
GlueX for the reactions γ p → η(

′)π0 p, with 0.1 < −t < 0.3 GeV2

and 8.2 < Eγ < 8.8 GeV

eventually confirm the π1 pole position extracted by JPAC.
With a large acceptance to both charged and neutral particles,
GlueX has access to both neutral γ p→ η(

′)π0 p and charged
γ p→ η(

′)π−Δ++ p exchanges. Figure 364) shows prelimi-
nary results for the measured intensity of the dominant waves
in the γ p→ η(

′)π0 p channel.
JLab at 12 GeV will continue the program to study the

spectrum and structure of excited nucleon states, which in
the last 15 years have provided critical input to global anal-
yses to elucidate the N∗ spectrum (see Refs. [2876,4476]
for recent reviews). Detailed electrocouplings measurements
through exclusive electroproduction study of both strange
and non-strange final states, will be extended with the new
CLAS12 detector and the upgraded energy beam which will
significantly extend the kinematic range to Q2 > 5 GeV2

[4477,4478]. The program comprises also the search of
hybrid baryons with constituent gluonic excitations, for
which a rich spectrum is predicted by Lattice QCD. Finally,
many hyperon spectroscopy measurements are expected
from the GlueX and CLAS12 measurements, including the
Ξ and Ω [4479,4480]. This program will be expanded by
proposal to perform hyperon spectroscopy with the KL neu-
tral kaon beam in Hall D, which was recently approved by
the PAC [4481].

Over the past several years there has been a renewed
interest in studying near-threshold J/ψ photoproduction as
a tool to experimentally probe important properties of the
nucleon target related to its mass and gluon content. More-
over, in the beam energy region of Eγ = 9.4-10.1 GeV, the
γ p → J/ψp process can be used to search, directly in a
simple 2 → 2 body kinematics [4482–4485] for the pen-
taquark candidates, P+c (4312), P+c (4440), and P+c (4457),
reported by the LHCb experiment but still under debate
[2885,2886]. JLab has an active J/ψ physics program. There
are either published, ongoing, or planned future J/ψ exper-
iments in each experimental hall. The first measurement was
performed by GlueX [4486] and is shown in Fig. 365 , with
curves depicting the strength of hypothetical Pc signals. No
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Fig. 365 GlueX results for the J/ψ total cross section vs beam energy,
compared to the JPAC model with hypothetical branching ratios pro-
vided in the legend for P+c with J P = 3/2− as described in Ref. [4486]

structures are observed in the measured cross section, how-
ever model-dependent upper limits are set on the branching
ratio of the possible PC → J/ψp decays. Preliminary results
from the Jψ − 007 experiment in Hall C also observe no Pc
signal and will set more restrictive limits on the branching
ratio [4487]. In Hall B analysis of data are ongoing [4488]
and in Hall A an experiment has been approved to run with
SoLID [4489].

14.1.5 QCD and nuclei

Nuclear interactions are described using effective models
that are well constrained at typical internucleon distances
in nuclei but not at shorter distances. The strong component
of the nucleon–nucleon potential associated with hard, inter-
mediate short-distance interactions between pairs of nucle-
ons, called Short-Range Correlated (SRC) pairs, is a poorly
understood parts of nuclear structure and generates a high-
momentum tail to the nucleon momentum distribution. The
existence and characteristics of SRC pairs are related to out-
standing issues in particle, nuclear, and astrophysics, among
which are the modification of the internal structure of nucle-
ons bound in atomic nuclei (the EMC effect) [4490] and the
nuclear symmetry energy governing neutron star properties
[4491].

The studies of SRCs are a sizeable part of the JLab pro-
gram that started already in the 6 GeV era. After the ini-
tial observation of identical structure in the high-momentum
components of nuclei at SLAC [4492], electron-scattering
measurements at JLab have identified the kinematic region
where SRCs dominate [4493,4494] and mapped out the con-
tribution of SRCs in various light and heavy nuclei relative
to the deuteron [1362,4495]. Data demonstrated also that
the contribution is sensitive to details of the nuclear struc-

Fig. 366 Ratio of np-SRCs to pp-SRCs relative to the total number of
np and pp pairs, for the new inclusive data (red circle), compared with
previous measurements [4503].

ture [4496,4497] rather than the previously assumed aver-
age nuclear density [4498]. In addition, they showed a clear
correlation between the contribution of SRCs [1362] and the
size of the EMC effect [4496]. To study the isospin depen-
dence of the SRCs, measurements of two-nucleon knock-out
were carried out. These experiments showed dominance of
np-SRC pairs over pp and nn-SRC pairs by a factor of about
20 [1363,4499,4500]. The result was confirmed in measure-
ments of quasi-elastic knock-out of protons and neutrons
from medium and heavy nuclei [4501], and later through
inclusive measurements of the 48Ca/40Ca cross section ratio
[4502] taking advantage of the target isospin structure.

The first measurement using a novel technique to extract
the np/pp ratio of SRCs taking advantage of the isospin
structure of the mirror nuclei 3H and 3He was carried out
in the 12 GeV era [4503]. The np/pp SRC ratio obtained
is an order of magnitude more precise than previous exper-
iments, and shows a dramatic deviation from the near-total
np dominance observed in heavy nuclei (see Fig. 366). This
result implies an unexpected structure in the high-momentum
wave-function for 3He and 3H . Finally, measurements at
x > 2 carried out with the 6 GeV beam, tried to establish
the presence of three-nucleon SRCs [1362,4504], but didn’t
come to a definitive conclusion. Experiment [4505] with the
11 GeV beam will provide the first significant test by taking
high-statistics A/3He ratio data at x > 2 and Q2 = 3 GeV2.

Determining the origin of the EMC effect, i.e. the modifi-
cation of nuclear PDFs relative to the sum of the individual
nucleon PDFs, is one of the major unsolved problems in the
field of nuclear physics and is still a puzzle after 40 years.
Measurement at Jlab at 6 GeV in light nuclei demonstrated
the correlation between the size of the EMC effect and the
contribution of SRCs [1362]. The JLab12 program addresses
the three open questions of the EMC effect: (i) the isospin
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dependence; (ii) the spin dependence; (iii) the configura-
tion/distance dependence. The isospin dependence has been
investigated with the already mentioned experiment using
mirror nuclei [4503]. Polarization measurements can also
help to understand the origin of the EMC effect [4506,4507].
An 11 GeV experiment will measure the EMC effect in polar-
ized 7Li [4508] with the goal to distinguish between mean-
field models with explanations based on SRCs. Tagging of
recoil nuclei in deep inelastic reactions will be used in [4509]
to address point (iii). This is a powerful technique to provide
unique information about the nature of medium modifica-
tions, through the measurement of the EMC ratio and its
dependence on the nucleon off-shellness.

There are several ways to study QCD in nuclei. One is
through the hadronization process, a mechanism by which
quarks struck in hard processes form the hadrons observed
in the final state. This is a poorly known mechanism
and more insight can be obtained by systematically study-
ing production of different baryon and meson types using
large and small nuclear systems, and observing the multi-
variable dependence of observables, such as multiplicity
ratios and transverse momentum broadening. These studies
started with CLAS at 6 GeV [4510] and will continue with
CLAS12 [4508].

Hadron propagation in the medium can also be studied
by searching for color transparency, where the final (and/or
initial) state interactions of hadrons with the nuclear medium
must vanish for exclusive processes at high momentum trans-
fers. Color transparency for pions [4511] and ρ mesons
[4512] was observed at 6 GeV while the 11 GeV experi-
ment [1331] ruled out color transparency in quasielastic
12C(e, e′ p) up to Q2 of 14.2 GeV2. These results impose
strict constraints on models of color transparency for pro-
tons.

Measurements on nuclei which are directly relevant for
understanding aspects of astrophysics and neutrino physics
are also part of the JLab program. One of the early experi-
ments of the 12 GeV era was the measurements of inclusive
quasi-elastic scattering and single proton knockout on 40Ar
[4513,4514]. These data will allow for tests of ν −40 Ar
scattering simulations needed for the DUNE experiment.
Another experiment [4515] measured electron scattering
from a variety of targets and different beam energies in
CLAS12 in order to test neutrino event selection and energy
reconstruction techniques and to benchmark neutrino event
generators.

Thanks to the intense and highly polarized CEBAF elec-
tron beams, measurements of the parity-violating electron
scattering asymmetry from 208Pb and 48Ca have demon-
strated a new opportunity to measure the weak charge dis-
tribution and hence pin down the neutron radius in nuclei
in a relatively clean and model-independent way. A precise
measurement of the neutron radius, and hence of the neutron

Fig. 367 48Ca neutron minus proton radius (red square) versus that for
208Pb (blue square). The ellipses are joint PREX-II and CREX 67% and
90% probability contours.The gray circles (magenta diamonds) show
a variety of relativistic (non-relativistic) density functionals (see Ref.
[4517])

skin thickness, helps to constrain the density dependence of
the symmetry energy of neutron rich nuclear matter, which
has implications on neutron stars and supernova. The PREX-
II experiment [4516] measured the “neutron skin thickness”
of 208Pb while CREX[4517] measured that of 48Ca. For
CREX, the extracted neutron skin can be directly compared to
microscopic calculations [4518] providing a bridge between
medium nuclei ab initio calculations and heavy nuclei Den-
sity Functional Theory calculations. The extremely precise
CREX measurement indicates a thin neutron skin around
its nucleus, in contrast with the PREX measurement which
revealed a thicker skin (see Fig. 367). This discrepancy is
exciting and presents the opportunity for further exploration
to determine why there’s such a big difference between the
medium-density calcium nucleus and the high-density lead
nucleus.

14.1.6 Future opportunities

With a fixed target program at the “luminosity frontier,” up
to 1039 cm−2 s−1, and large acceptance detection systems,
CEBAF will continue to offer unique opportunities to illu-
minate the nature of QCD and the origin of confinement
for decades to come. In fact, CEBAF operates with several
orders of magnitude higher in luminosity than the Electron-
Ion Collider (EIC) and exciting scientific opportunities using
CEBAF beyond the currently planned decade of experiments
can provide very complementary capabilities, even in the era
of EIC operations. A discovery science program utilizing
CEBAF in the EIC era has been developing jointly between
JLab and its user community towards exploring both the sci-
ence and technical case for moving beyond 12 GeV. A series
of upgrades to increase luminosity, enable positron beams,
and double the energy of CEBAF is envisioned [4402].
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– An increase in luminosity with modest detector upgrades
will facilitate double DVCS (DDVCS) studies in exper-
imental Halls A and B. DDVCS can bring significant
additional information to the three dimensional imaging
of the quark structure. This is a process with interaction
rates a factor of 100 lower than DVCS. Therefore it is not
viable at EIC and must be studied using CEBAF.

– Positron beams, both polarized and unpolarized, are iden-
tified as an essential ingredient for the hadronic physics
program at JLab, and they are important tools for a pre-
cise understanding of the electromagnetic structure of
the nucleon, in both the elastic and the deep-inelastic
regimes. For instance by comparing the e+−p and e−−p
elastic scattering it would be possible to test the validity
of the 1γ exchange approximation of the electromag-
netic interaction. Proof of principle of a new concept for
creating polarized positron beams at CEBAF has been
demonstrated and a scientific program has been devel-
oped [4519].

– Encouraged by recent success of CBETA at Cornell, a
proposal was formulated to increase the CEBAF energy
from the present 12 GeV to 20–24 GeV by replacing the
highest-energy arcs with Fixed Field Alternating Gradi-
ent (FFA) arcs but using the existing CEBAF SRF cavity
system. The new pair of arcs would support simultane-
ous transport of 6 passes with energies spanning a factor
of two. This exciting new technology, implemented with
permanent magnets, would be a cost-effective method
to double the energy of CEBAF, enabling new scientific
opportunities in meson spectroscopy and extending the
kinematic range of nucleon imaging studies. For instance,
with an energy upgrade, JLab will be capable of provid-
ing unique and complementary information that could
be decisive in understanding the nature of a subset of the
XY Z states. Moreover, JLab will be able to do unique
precise measurements of the photoproduction cross sec-
tion of J/ψ and higher mass charmonium states, χc and
ψ(2S), near threshold. Combined with an increase of the
polarization figure-of-merit by an order of magnitude,
GlueX will be the only experiment to be able to measure
the polarization observables that are critical to disentan-
gle the reaction mechanism and draw conclusions about
the mass properties of the proton.Technical studies of
the implementation of FFA technology at CEBAF are in
progress.

14.1.7 Conclusions

Jefferson Lab is a world-leading research laboratory for
exploring the nature of matter in depth. Its powerful exper-
imental program at 12 GeV will advance our understanding
of the quark/gluon structure of hadronic matter, the nature
of Quantum Chromodynamics, and the properties of a new

extended standard model of particle interactions. CEBAF at
Jefferson Lab is a facility in high demand due to its unique
capability to operate with a fixed target program at the “lumi-
nosity frontier” up to 1039 cm −2 s−1, with exciting scientific
opportunities beyond the currently planned decade of experi-
ments. Potential upgrades of CEBAF and their impact on sci-
entific reach are being discussed, such as higher luminosity,
the addition of polarized and unpolarized positron beams, and
doubling the beam energy. They will keep CEBAF uniquely
capable of a large number of important measurements in
nuclear and hadronic physics.

14.2 The EIC program

Christian Weiss
The Electron-Ion Collider (EIC) at Brookhaven National
Lab (BNL) is planned as a next-generation facility for
high-energy ep/eA scattering experiments supporting basic
research in hadronic/nuclear physics and QCD. The design
combines the RHIC superconducting proton/ion accelerator
ring with an electron storage ring in the same tunnel and
an injector for on-energy injection of polarized bunches and
enables collisions at one (possibly two) interaction points
(see Fig. 368) [4520]. It provides ep collisions at CM ener-
gies

√
s = 20–100 GeV, upgradable to 140 GeV, using var-

ious combinations of beam energies; for eA collisions with
the same setup the CM energy per nucleon is lower by a
factor

√
Z/A. It is projected to achieve peak luminosities in

the range ∼ 1033–1034 cm−2 s−1 and deliver an integrated
lifetime luminosity∼10–100 fb−1. It accelerates ion species
including the proton (p), light ions (D, 3He, others), and
heavy ions (Au, U, others). Polarization is available for the
electron and the light ion beams (p and 3He) with an average
ion polarization ∼70%. The EIC will be the first colliding
beam facility delivering electron collisions with ion beams
(A > 1), and with polarized proton/ion beams. Its luminosity
will exceed that of the HERA ep collider by 100–1000. As
such it will provide qualitatively new capabilities for physics
research [3163].

The concept of a polarized electron-ion collider was
inspired by the results of the fixed-target spin physics exper-
iments (CERN, SLAC, DESY), the DESY HERA ep col-
lider, and the BNL RHIC polarized pp and AA collider, and
motivated by advances in theoretical concepts for hadron
structure and high-energy QCD. The developments began
with planning exercises in the 1990s and advanced through
extensive community efforts (science studies, program devel-
opment) [1293,3186] and technical design work (acceler-
ator, facility) at BNL, JLab, and other laboratories in the
2000s and 2010s. Important milestones were the recom-
mendation in 2015 Nuclear Science Advisory Committee
Long-Range Plan [4521] and the endorsement by a study of
the U.S. National Academy of Sciences 2018 [4522]. The
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Fig. 368 Schematic of the EIC accelerator complex [3163,4520]

EIC was granted Critical Decision Zero (CD-0) by the U.S.
Department of Energy in December 2019 and is now an offi-
cial project of the U.S. Government. It is executed accord-
ing to project management principles and passed CD-1 in
2021. Completion of construction and begin of operations
are expected around 2034.

The EIC will enable a comprehensive science program
aimed at understanding hadrons and nuclei as emergent phe-
nomena of QCD. Scattering experiments will be performed
at momentum transfers Q2 ∼ 101–102 GeV2, correspond-
ing resolution scales where the quark and gluon degrees of
freedom are manifest and methods of QCD factorization can
be applied (see Fig. 369). The partonic content will be sam-
pled at momentum fractions down to x ∼ 10−3–10−4, where
gluons and sea quarks are abundant and dominate hadron
structure. The wide kinematic coverage will enable study of
scale dependence and radiation processes building up the
parton densities, which provide essential insight into the
dynamics. The luminosity and detection systems will permit
measurements of the final states of deep-inelastic processes
in unprecedented detail (exclusive processes, semi-inclusive
production, jets, nuclear breakup, diffraction, etc.) and enable
analysis using modern theoretical concepts (GPDs, TMDs,
jets).

The EIC science program is organized in four broad
themes, defined by basic physics questions and concepts that
are explored using various measurements:

Fig. 369 Kinematic coverage in x and Q2 in DIS experiments with
the EIC at CM energies of 20 GeV and 140 GeV [3163]

– Global properties and partonic structure of hadrons
– Multi-dimensional imaging of hadrons and nuclei
– Nuclear high-energy scattering in QCD
– Emergence of hadrons from QCD

The boundaries between them are not strict, as some mea-
surements serve to answer questions in more than one area. In
the following we briefly summarize the objectives and main
measurements in each of the themes; further information can
be found in Refs. [1293,3163,3186].121 The program and
its organization are still evolving; new topics are being dis-
cussed and proposed in response to developments in theory
and detector design.

14.2.1 Global properties and partonic structure

One basic objective is to understand how the global properties
of hadrons such as spin, mass, charges, and other character-
istics emerge from the quark/gluon fields of QCD and their
interactions (see Sect. 10.3). The quantities are expressed
as matrix elements of QCD composite operators between
hadronic states, 〈h|OQCD|h〉, some of which can be measured
in deep-inelastic processes. For some quantities the operators
have a partonic interpretation, and the matrix elements and
can be expressed as integrals of the PDFs/GPDs (sum rules).
For other quantities the operators involve interactions (higher
twist), and the interpretation is more indirect. The EIC will
advance this program through several measurements:

121 The literature supporting the concepts and measurements of the EIC
physics program is very extensive. In this summary we refer to the other
sections of the review article for concepts and previous results whenever
possible; we refer directly to the literature for simulation and impact
studies for the EIC, and for topics not covered elsewhere in the review.
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Fig. 370 Gluon spin PDF extracted from polarized inclusive DIS pseu-
dodata at EIC [3131,3163]. Similar results are obtained in studies using
other PDF parametrizations [3163]

Gluon polarization and nucleon spin
The quark and gluon contributions to the nucleon spin are
expressed as the integrals of the quark and gluon spin PDFs,
which are measured in various polarized scattering experi-
ments (see Sect. 10.3). Despite much effort, the contributions
to the spin sum rule are still poorly known. While fixed-target
DIS measurements have determined the quark spin densities,
and the RHIC spin program has provided evidence of nonzero
gluon spin, the distributions are known with good precision
only at x � 0.01, so that the integrals suffer from large uncer-
tainties (see Sect. 10.2). At EIC, measurements of inclusive
polarized ep DIS will accurately determine the quark and
gluon spin densities down to x � 10−4. The wide kinematic
coverage will make it possible to determine the gluon spin
density indirectly through DGLAP evolution (see Fig. 370)
[3131,3163,3165]. Complementary information will come
from direct measurements of the gluon spin density using
dijets or heavy flavor production [4523]. The gluon and quark
spin PDFs extracted in this way will permit accurate evalu-
ation of quark and gluon spin contributions to the spin sum
rule. The results will also constrain the possible contribution
of quark/gluon orbital angular momentum to the nucleon spin
(see Fig. 371).

Sea quark spin and flavor distributions
Equally important are the spin distributions of the sea quarks
in the nucleon, which exhibit flavor dependence (Δū �=
Δd̄ �= Δs̄,Δs �= Δs̄) and attest to flavor-dependent non-
perturbative interactions with the valence quarks in the
nucleon. Present results on the flavor dependence from fixed-
target semi-inclusive DIS and the RHIC W± production data
show large uncertainties (see Sect. 10.2). EIC will deter-
mine the polarized sea quark distributions and their flavor
dependence through polarized ep semi-inclusive DIS, tak-
ing advantage of large phase space for fragmentation (see

Fig. 371 Room left for potential orbital angular momentum contri-
butions to the proton spin after determining the quark and gluon spin
contributions at EIC [3131,3163]

Fig. 372) [3131,3163]. Complementary information will
come from DIS on the neutron measured with polarized 3He
beams. The determination of the flavor structure of the polar-
ized sea will also indirectly improve the extraction of the
gluon spin distribution and the spin sum rule (separation of
flavor singlet and non-singlet distributions). EIC will also
enable novel studies of the flavor structure of the unpolar-
ized sea using charged-current DIS.

Orbital angular momentum
The total angular momentum of quarks and gluons in the
nucleon can be expressed through integrals of the GPDs (see
Sect. 10.3). This representation provides alternative insight
into the role of orbital angular momentum in the nucleon spin
decomposition. The GPDs appear in the amplitudes of hard
exclusive processes (deeply virtual Compton scattering or
DVCS, meson production) and can be accessed experimen-
tally in this way; see Refs. [3243–3245,4524] for a review.
While the hard exclusive processes sample the GPDs in a
restricted domain of variables that is not sufficient for evalu-
ating the angular momentum sum rule, it is possible to estab-
lish a connection in the context of dynamical models of the
GPDs, or a global analysis recruiting other data. EIC will
advance this program through measurements of DVCS and
meson production over a wide kinematic range; the same data
will be used for the 3D spatial imaging (see below).

Energy–momentum tensor
Other global properties follow from the nucleon matrix ele-
ments of the QCD energy–momentum tensor and can be stud-
ied by using the connection with scattering processes. The
D-term of the energy–momentum tensor, which expresses
certain mechanical properties of the nucleon, appears as a
subtraction constant in the dispersion relations for the DVCS
amplitude and can be extracted from fits to DVCS data with
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Fig. 372 Flavor decomposition of the polarized sea quark distributions in the proton with projected EIC SIDIS data [3131,3163]. Similar results
are obtained in studies using other PDF parametrizations [3163]

minimal model dependence; see Refs. [2882,4525] for a
review. EIC measurements will allow one to precisely deter-
mine the D-term, taking advantage of the wide energy cov-
erage of the data in evaluating the dispersion integral.

The trace of the QCD energy–momentum tensor contains
important information on the emergence of the nucleon mass
from QCD; see Refs. [4526–4528] for recent discussion and
review. The breaking of scale invariance through the UV
divergences of QCD implies that the trace is proportional to
the twist-4 gluonic operator G2

μν (trace anomaly). An inter-
esting question is how much this effect contributes to nucleon
mass. It has been suggested that the twist-4 gluonic opera-
tor could be accessed in exclusive photo/electroproduction
of heavy quarkonia at near-threshold energies [4529–4531];
however, this connection relies on the questionable assump-
tion of vector meson dominance [4532], and the mechanism
of heavy quarkonium production near threshold is a matter of
current research and discussion; see e.g. Refs. [4533–4536].
EIC will contribute to this program by measuring exclusiveΥ
production near threshold (measuring J/ψ production near
threshold is very challenging with the high-energy collider)
[3163,4537]. With a future theoretical framework, these data
will constrain the gluonic structure of the nucleon at the
higher-twist level and contribute to the understanding of the
origin of its mass.

Pion and kaon structure
The spontaneous breaking of chiral symmetry in QCD gen-
erates most of the light hadron masses and governs the effec-
tive dynamics of strong interactions at low energies (see
Sects. 6.2 and 6.3). The pion and kaon are the Goldstone
bosons of chiral symmetry, and their quark/gluon structure
provides insight into the microscopic mechanism of symme-

try breaking. The EIC will pursue a program of pion and kaon
structure studies using exclusive scattering to measure the
pion/kaon form factor, and peripheral deep-inelastic ep scat-
tering to probe the pion/kaon partonic structure [3163,4538].
The extraction of pion/kaon structure from ep/eA scattering
data requires theoretical methods that can be tested with the
EIC data.

14.2.2 Multidimensional imaging of hadrons and nuclei

Another basic objective is to understand and visualize
hadrons as extended systems in space. This can be accom-
plished using the concepts of GPDs (transverse coordinate
space imaging) and TMDs (momentum space imaging),
which provide a spatial representation consistent with the rel-
ativistic and quantum nature of the dynamics (see Sect. 10.4).
Measurements at EIC will allow one to employ these con-
cepts in regions where they are practically applicable and
realize their full potential.

Transverse quark/gluon imaging of the nucleon
The transverse spatial distributions of quarks/gluons and their
dependence on x represent the size and shape of the nucleon
in QCD (see Sect. 10.4 and Refs. [3244,3245] for a review)
and contain rich information about dynamics (parton diffu-
sion, chiral dynamics). Exclusive J/ψ electro- and photo-
production at EIC provides a clean probe of the gluon GPD
and will determine transverse spatial distribution of gluons
from the t-slope of the differential cross section (see Fig. 373)
[1293,3163,3186]. DVCS offers direct access to the quark
GPDs and their spin dependence, and provides indirect infor-
mation on the gluon GPD through NLO effects and Q2 evolu-
tion [3163,4539]. The combination of both will allow for an

123



Eur. Phys. J. C          (2023) 83:1125 Page 487 of 636  1125 

Fig. 373 Transverse spatial distribution of gluons in the nucleon
determined from projected EIC exclusive J/ψ electroproduction data
[1293,3163]

accurate determination of the quark and gluon GPDs, includ-
ing validation of the factorized approximation and tests of
the universality of the extracted structures. Essential capa-
bilities for this program are the kinematic coverage (probing
quarks/gluons down to x ∼ 10−3, Q2 dependence in elec-
troproduction), luminosity (differential measurements, e.g.
t-dependence at fixed x and Q2), far-forward proton detec-
tion (recoil, exclusivity), and beam polarization (polarization
observables). The results can be synthesized in comprehen-
sive transverse images of nucleon structure (see Sect. 10.4).

Transverse quark/gluon imaging of nuclei
The same concepts and measurements can be used to create
images of nuclei (A > 1) in terms of quark/gluon degrees
of freedom. Such studies provide new insight into nuclear
structure (comparison of q− q̄ , q+ q̄ , and g spatial distribu-
tions in the nucleus) and a new avenue for studying nuclear
modifications of partonic structure (comparison of nucleus
with non-interacting ensemble of nucleons) [4540–4546].
EIC measurements of coherent J/ψ [4547] and γ production
on nuclei probe the nuclear GPDs, 〈A′|Opartonic|A〉, and can
be analyzed in the same way as measurements on the pro-
ton. The identification of coherent nuclear scattering events
places strong demands on the far-forward detection system
and is a matter of on-going development (active detection of
recoiling nucleus for light nuclei; veto detection of breakup
for heavy nuclei) [4548]. A new aspect of light nuclei is that
they cover a variety of spins (Spin-1 D, Spin-1/2 3He, Spin-0
4He) and express it in the GPD structure and the transverse
images.

Evolution of TMD distributions
The theoretical formulation of the transverse momentum
dependence of partons has made substantial progress in the
last decade (see Sect. 10.4). Factorization and renormaliza-
tion predict a distinctive scale and rapidity dependence of
the TMD distributions, generated by gluon radiation with
Sudakov suppression, and described by the CSS evolution

Fig. 374 Expected impact of EIC pseudodata on the determination
of the u and d quark Sivers distribution [3163]. Green bands: Present
uncertainties [3302]. Blue: Uncertainties when including EIC pseudo-
data [3163]

equations. The EIC will allow one to test these predic-
tions in measurements of semi-inclusive hadron production
γ ∗ + N → h + X, h = π, K , . . . The wide kinematic range
accessible with EIC is essential for observing the logarithmic
dependencies implied by the evolution equation and separat-
ing perturbative and nonperturbative dynamics (see Fig. 369).
The results will provide crucial insight into the theory of CSS-
type radiation and its applicability to DIS-type processes.

Spin–orbit correlations in TMD distributions
An interesting feature of the transverse momentum depen-
dence of partons is that it is correlated with the nucleon
and parton spin, giving rise to observable spin–orbit effects
that provide insights into nucleon structure and color field
dynamics (see Sect. 10.4). At EIC these effects can be stud-
ied in measurements of hadron production (semi-inclusive
DIS, jets) with polarized electron and proton beams. Mea-
surement of the Sivers and Collins asymmetries are possible
with the transverse proton beam polarization readily avail-
able at collider (see Fig. 374) [3163]. The results will provide
extensive information on orbital angular momentum, final
state interactions, and the quark transversity distributions in
nucleon.

14.2.3 Nuclear high-energy scattering in QCD

High-energy scattering on nuclei (A > 1) provides a wealth
of information on the effective dynamics emerging from
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QCD at various energy and distance scales. Depending on the
kinematic regime, such processes reveal the QCD substruc-
ture of individual nucleon interactions (intermediate/large x)
or coherent QCD phenomena involving the entire nucleus
(small x). The EIC will realize the first electron–nucleus col-
lisions in colliding beam experiments, combining the kine-
matic reach of colliding beams with the precision and control
of electromagnetic scattering, and thus transform this field of
study.

Nuclear quark/gluon densities
The nuclear PDFs describe the basic particle content of the
nucleus in QCD degrees of freedom [4549–4552]. Compar-
ison with the PDFs of an ensemble of non-interacting nucle-
ons provides insight into nucleon interactions and coher-
ent phenomena. Many aspects of the nuclear PDFs are still
poorly known, esp. the nuclear gluons and the charge and
flavor dependence of the nuclear quarks at x � 0.1. The EIC
will determine the nuclear PDFs using inclusive DIS on a
broad range of nuclei [3163,4553]. The nuclear gluon PDF
will be determined indirectly through the Q2 dependence
of the nuclear DIS cross section (DGLAP evolution), using
the wide kinematic coverage available with the collider. It
will also be determined directly through measurements of
heavy flavor production in nuclear DIS, taking advantage of
the high production rates and next-generation reconstruction
capabilities provided by the EIC. The results will establish
whether the nuclear gluons are suppressed at x > 0.3 like the
valence quarks (EMC effect), and whether they are enhanced
at x ∼ 0.1 (antishadowing) as suggested by theoretical argu-
ments; both phenomena reveal aspects of the QCD substruc-
ture of nucleon interactions.

Shadowing and saturation
In high-energy scattering at x � 0.1 the coherence length
of the process becomes larger than the size of the nucleus,
and the high-energy probe interacts with all nucleons along
its path. In this regime the gluons “seen” by the probe can
no longer be attached to individual nucleons but represent
a property of the whole nucleus, giving rise to striking new
phenomena. Shadowing is the reduction of the leading-twist
nuclear gluon density resulting from destructive interference
of amplitudes with gluons attached to different nucleons; see
Ref. [4556] for a review. Saturation is the appearance of a
new dynamical scale in the form of the transverse density of
gluons per area. It emerges from nonlinear QCD evolution
equations including gluon recombination [4557–4562] and
can be used as the basis of an effective field theory descrip-
tion of strong interactions at small x – the Color Glass Con-
densate [3334], leading to many interesting predictions; see
Refs. [4563–4565] for reviews. Both phenomena are con-
nected, as shadowing reduces the gluon density and modifies
the expected Q2

sat ∼ A1/3 scaling of the saturation scale.
Exploring these phenomena will be a prime task of the EIC.

Fig. 375 Differential cross section of coherent and incoherent J/ψ
production on a Au nucleus, as a function of the momentum transfer t
[3163,4554,4555]. The diffraction pattern in coherent scattering is sen-
sitive to the impact parameter dependence of shadowing and saturation
effects in the nuclear gluon density

Basic information will come from the behavior of the
nuclear gluon PDF at x � 0.1 [3163]. More detailed
tests of the small-x gluon dynamics will be possible with
dijet and dihadron production [3339,4566,4567]. Further
insight can be gained from studies of diffractive scattering on
nuclei. Measurements of coherent heavy vector meson pro-
duction on nuclei probe the impact parameter dependence of
the shadowing and/or saturation effects through the diffrac-
tion pattern in the momentum transfer |t | (see Fig. 375)
[3163,4554,4555]. Similar studies can be performed in mea-
surements of coherent inclusive diffraction on nuclei [4568].
The EIC provides the necessary energy for diffractive scat-
tering, and the ability to identify coherent processes through
forward detection.

Nuclear breakup and spectator tagging
In high-energy scattering on light ions, detection of the
nuclear breakup state provides information on the nuclear
configuration present during the high-energy process [4570].
In the case of the deuteron, detection of the “spectator” pro-
ton identifies events with scattering on the neutron and fixes
the relative momentum of the proton–neutron configuration.
This can be used to select scattering in large-size nuclear
configurations, where interactions are absent and the neu-
tron is free [4571,4572], or small-size configurations, where
the pn system strongly interacts and the partonic structure is
modified (short-range nucleon–nucleon correlations) [4573].
The EIC will enable a program of high-energy scattering on
the deuteron with proton or neutron spectator tagging. In the

123



Eur. Phys. J. C          (2023) 83:1125 Page 489 of 636  1125 

Fig. 376 Simulation of free neutron structure extraction through DIS
on the deuteron with proton spectator tagging at EIC [4569]. The neu-
tron reduced cross section is measured as a function of the spectator
proton transverse momentum p2

pT and extrapolated to the “free neutron

point” at p2
pT < 0, corresponding to pn configurations of infinite size

collider kinematics the spectator nucleon appears in the for-
ward ion direction and is detected with far-forward detectors
(magnetic spectrometer for protons, zero-degree calorimeter
for neutrons) [3163]. The setup can be used to extract free
neutron structure functions (see Fig. 376) [4569], study the
configuration dependence of EMC effect, or explore short-
range nucleon–nucleon correlations in deuteron breakup in
diffractive scattering [4574].

14.2.4 Emergence of hadrons from QCD

Understanding hadronization – the emergence of hadrons
from the energetic quarks/gluons produced in deep-inelastic
processes – remains a major challenge of strong interaction
physics. The hadronization process is “reciprocal” to the par-
tonic structure of hadrons but much less understood theo-
retically, because it involves timelike momentum transfers
and propagation over large distances, and methods based
on imaginary-time (Euclidean) quantum field theory such
as Lattice QCD are generally not applicable (see Sect. 4).
Basic open questions are the time/distance scales of par-
ton fragmentation and hadron formation; the role of non-
perturbative dynamics (chiral symmetry breaking, vacuum
fields; see Sect. 5.11), and the effects of the nuclear medium
on the hadronization process. In addition to the scientific
interest, these topics are of eminent practical importance for
the development of event generators describing strong inter-
action dynamics in high-energy collisions (see Sect. 11.4).

Fragmentation functions
Basic information on the hadronization process is summa-
rized in the quark/gluon fragmentation functions, describ-

Fig. 377 Inclusive production cross section of jets in photoproduction
at EIC, as a function of the pseudorapidity η in the laboratory frame
(see Fig. 379) [3163,4583]

ing the probability for single-inclusive hadron production
by an energetic color charge; see Ref. [4575] for a review.
While much information on the fragmentation functions has
been extracted from e+e− annihilation, pp collisions, and
fixed-target semi-inclusive DIS experiments, several features
remain poorly known, such as the quark charge dependence
(so-called unfavored vs. favored fragmentation), strangeness
fragmentation and kaon production, and gluon fragmentation
[3123,4576–4578]. The EIC will determine the fragmenta-
tion functions from semi-inclusive DIS in ep and en scat-
tering over a broad kinematic range [3163]. These measure-
ments will be able to separate the quark charges in the initial
state, extract the gluon through NLO effects, and study the
Q2 evolution of the fragmentation functions. The spin depen-
dence of quark fragmentation will be investigated through
measurements of Λ fragmentation [4579]. Precise knowl-
edge of the fragmentation functions will in turn improve the
extraction of the flavor dependence of the quark/antiquark
spin PDFs from polarized semi-inclusive DIS data.

Dihadron correlations
More detailed information on the fragmentation process
comes from measurements of hadron correlations, described
by the theoretical framework of dihadron fragmentation func-
tions [4580–4582]. The EIC will measure dihadron fragmen-
tation functions in DIS and allow for the new theoretical
concepts to be applied and tested. The kinematic coverage
provided by the EIC will ensure that the picture of indepen-
dent fragmentation remains applicable even in multi-hadron
measurements.
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Jets and heavy flavors
An alternative view of the hadronization process is obtained
by applying the concepts of jet physics, where one defines a
system of collinear partons according to quantitative observ-
able criteria without reference to nonperturbative fragmenta-
tion functions (see Sects. 6.4, 11.5 and 12). These concepts
and methods have been developed for pp/p p̄ scattering at
hadron colliders (LHC, Tevatron) but can be extended to ep
scattering at EIC at lower energies. This extension opens
up several new directions for studying the internal proper-
ties of jets and using them as a probe of partonic structure.
In ep collisions where the scattered electron is detected, it
defines the jet energy and scale, and the concepts for leading
jets can be applied to the DIS current jet with known initial
conditions, providing new possibilities to test the dynam-
ics [4584–4586]. In addition, jet substructure can be investi-
gated [4583]. Jets can also be studied in ep collisions where
the scattered electron is not detected, or in γ p collisions,
where the jet transverse momentum serves as the hard scale
(see Fig. 377 as an example). Particularly interesting are
jets induced by heavy quarks, which remain stable under
strong interactions and create distinct signals in the detec-
tor (D, B meson decays). The EIC will support this pro-
gram through a comprehensive set of measurements of lead-
ing jets, jet substructure, heavy flavor jets, and studies of
partonic structure and TMD distributions using jets [3163].
This is a rapidly evolving field, where new theoretical meth-
ods will become available until the EIC experiments are per-
formed.

Target fragmentation
Equally interesting is the hadronization of the target remnant
in DIS processes (target fragmentation). It can be regarded as
the materialization of a nucleon with a “hole” in its color wave
function (created by the removed parton) and provides infor-
mation on baryon number transport, multiparton correlations
[4587], hadronization dynamics, and spin–orbit effects. A
framework for QCD analysis of target fragmentation is pro-
vided by the generalized factorization theorems [4022,4588].
The EIC will enable a comprehensive program of nucleon
target fragmentation studies, using the detectors in forward
pseudorapidity region [3163]. Spin effects in target fragmen-
tation can be studied using polarized proton beams and/or
fragmentation into Λ baryons [4589]. Important advantages
of the collider compared to fixed-target experiments are that
there is no material surrounding the target, and that the frag-
ments move forward with a finite fraction of the proton beam
momentum.

Hadronization in medium
The hadronization studies described above can be extended
from ep to eA scattering, to investigate the influence of the
nuclear medium on the hadronization process. The medium
effects depend essentially on the energy Eh of the pro-

Fig. 378 Medium modification of the D0 production cross section
expected at EIC, as a function of z, in different regions of pseudorapidity
η [3163,4590]

duced hadron in the nuclear rest frame, usually expressed
as a fraction z = Eh/ν of the virtual photon energy ν.
The wide range of scattering energies available at EIC
will allow one to move the fragmentation process “in”
and “out” of the nucleus, enabling controlled and detailed
studies of the medium effects. This will make it possi-
ble to test various hadronization models and determine
the time/distance scale parameters. The study of nuclear
final-state interactions will also improve the modeling of
nuclear breakup in DIS processes, which in turn will help
with the analysis of coherent nuclear scattering and spec-
tator tagging. Particularly useful for the study of medium
effects are heavy-quark probes (see Fig. 378 for an example)
[4590,4591].

Hadron spectroscopy
Hadron production in high-energy ep/eA scattering at EIC
can also be used for spectroscopy, complementing experi-
ments using pp and e+e− scattering. Exotic heavy quarko-
nium states (XYZ states, see Sects. 8.5 and 8.6) can be pro-
duced in exclusive photo/electroproduction processes γ ∗ +
p → M + N . The production rates and reconstruction
efficiency with the EIC detector are presently under study
[3163,4592,4593]. At EIC, new possibilities arise from mea-
surements of the spin density matrix elements of heavy vec-
tor states, target polarization observables, and the Q2 depen-
dence in electroproduction. These unique capabilities of the
EIC could be used as the focus shifts from spectroscopy to
investigations of the structure of exotic states.

14.2.5 Detectors and collaboration

The EIC science program requires a general-purpose detector
with large acceptance and high resolution to reconstruct the
scattered electron and the multiple different hadronic final
states over a wide range of rapidities and energies/momenta.
The physics requirements and detector concept are described
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Fig. 379 Schematic of the EIC detector concept

in detail in the EIC Yellow Report [3163]. A schematic is
shown in Fig. 379. The pseudorapidity region −1 � η � 1
is covered by the central “barrel” detector with a solenoidal
magnetic field; the regions −4 � η � −1 and 1 � η � 4
are covered by the “lepton endcap” and “hadron endcap”
detectors; the detectors provide capabilities for tracking and
vertex detection, electromagnetic and hadronic calorimetry,
and particle identification. These systems capture the scat-
tered electron and the final state produced by the struck par-
ton in typical DIS events. The far-backward region (outgo-
ing electron beam direction) is instrumented with a low-Q2

electron tagger for photoproduction. The far-forward region
(outgoing proton/ion beam direction) is equipped with an
elaborate detection system for charged and neutral beam frag-
ments, integrated in the interaction region, involving a mag-
netic dipole spectrometer with tracking detector for charged
particles and a zero-degree calorimeter for neutral particles.
This system provides essential capabilities for detecting far-
forward protons and neutrons in exclusive/diffractive pro-
cesses on the proton, spectator nucleons or nuclear frag-
ments in scattering on nuclei, and coherent nuclear recoil.
It presents a major challenge for design, integration, and
engineering, and is critical for large part of the physics
program. Further information on the EIC detector require-
ments and conceptual design can be found in Ref. [3163].
The technical design and formation of a detector collab-
oration are in progress. The addition of a second detec-
tor with complementary capabilities is planned as a future
upgrade.

The EIC User Group is an international affiliation of sci-
entists promoting scientific, technological, and educational
efforts in the development of the EIC facility and science pro-
gram. It presently has more than 1200 members from more
than 250 institutions (laboratories, universities) worldwide.
Resources and information about activities and events can be
found on the webpages [4594].

Fig. 380 QCD phase diagram and J-PARC hadron projects

14.3 J-PARC hadron physics

Shunzo Kumano
Hadron physics is the field to understand our visible uni-

verse, namely hadronic many-body systems from low to high
densities, from low to high temperatures, and from low to
high energies, in terms of fundamental particles of quarks and
gluons and their interactions. With the significant develop-
ments of perturbative QCD during 50 years of QCD, asymp-
totic freedom and scaling violation are now basically under-
stood. On the other hand, the nonperturbative region is still
under investigations by phenomenological models and lat-
tice QCD. One may note that at present lattice QCD cannot
be applied to finite density systems, which makes it difficult
to predict precisely hadronic and nuclear phenomena at low
energies.

Although QCD is known as the correct theory of strong
interactions, there are unexpected experimental discoveries
of new hadronic and nuclear forms which were not predicted
by theorists. Therefore, experimental projects are essential
for a deeper understanding and for further developments of
QCD beyond the 50-years history. The Japan Proton Accel-
erator Research Complex (J-PARC) as one of the flagship
facilities in hadron physics should play a key role in hadron
physics from the low to the medium-energy region, by sup-
plying precise experimental information on new forms of
matters, as illustrated in Fig. 380.

The J-PARC is located at Tokai in Japan. It is operated
by both the High Energy Accelerator Research Organization
(KEK) and the Japan Atomic Energy Agency (JAEA). J-
PARC is responsible to coordinate the efforts of KEK and
JAEA. KEK is in charge of nuclear and particle-physics
projects by using the 30-GeV proton accelerator. J-PARC
is a multi-purpose facility to investigate a wide range of sci-
entific topics from life sciences to condensed-matter, nuclear,
and particle physics [4595].
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Fig. 381 Aerial view of J-PARC [4595]

The J-PARC accelerator consists of a 400-MeV linac as
an injector, a 3-GeV rapid-cycling synchrotron (RCS), and
the 30 GeV main-ring synchrotron. The RCS accelerates the
protons up to 3 GeV as shown in Fig. 381. Its beam pulses
are delivered mostly to the materials and life-science exper-
imental facility, and a small portion is injected to the main
ring. The protons are accelerated to 30 GeV in the main ring,
and they are delivered to the neutrino experimental facility
and the hadron experimental facility. The beam reached an
energy of 30 GeV in 2008, its power was increased towards
the design intensity of 0.75 MW. In the near future, we expect
to have about 1 MW for the neutrino facility and about 100
kW for the hadron one [4595].

The J-PARC is the most intense accelerator above the
multi-GeV energy region. Its aim is to investigate a wide
range of nuclear and particle physics by using secondary
beams of kaons, pions, antiprotons, neutrinos, and muons
as well as the primary proton beam as shown in Fig. 382.
There are particle physics experiments on neutrino oscilla-
tions, lepton-flavor violation, g−2, rare kaon decays, and the
neutron electric-dipole moment to search for physics beyond
the Standard Model. Since the purpose of this report is to dis-
cuss QCD-related topics, only the hadron-physics projects
are explained.

14.3.1 J-PARC hadron facility

The layout of the J-PARC hadron facility is shown in Fig. 383
with the hall size of 60 m width and 56 m length. Nuclear and
particle physics experiments are done by using the primary
proton beam and secondary beams of pions, kaons, antipro-
tons, and muons. Unique points of this proton accelerator
facility are (1) high intensity and (2) intermediate energy. The
first point indicates the decisive advantage when secondary
beams or the primary proton beam are used for precision
experiments. Intermediate energies are important since low-

Fig. 382 Secondary beams at J-PARC [4595]

Fig. 383 J-PARC hadron hall

energy hadron projects can bridge the transition region from
hadrons to quarks and gluons by variation of the momentum
transfer in the QCD phase diagram, as illustrated in Fig. 380.
The facility should be able to contribute to the development
of QCD from the nonperturbative region to the transition
region, then to the perturbative one.

Particle-physics experiments in the hadron hall are lepton-
flavor violation (COMET) and rare kaon decays (KL). The
COMET experiment uses muons from the decays of pions
produced by 8 GeV proton collisions on a production tar-
get. COMET will search for the lepton-flavor violation pro-
cess, the conversion of muons into electrons in the field of a
nucleus, μ− + A → e− + A. The KOTO experiment uses
the neutral-kaon beamline KL for measuring the frequency
of the CP-violating decay K 0

L → π0νν̄. These projects are
intended to find a signature beyond the Standard Model in
particle physics.

Hadron-physics experiments are done at the beamlines
K1.8, K1.8BR, K1.1, and High p, see Fig. 383 [4596]. The
K1.1 beamline is yet to be constructed. The K1.8 beam-
line supplies kaons with the momentum of about 1.8 GeV
and is used to study hypernuclei, e.g. Ξ hypernuclei, by
(K−, K+) reactions. One may note that the cross section
of p(K−, K+)Ξ reaches a maximum at a momentum of
1.8 GeV. The K1.8BR is a branch line of K1.8 to supply
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kaons with low momenta of 0.7–1.1 GeV. The cross section
of the quasi-elastic reaction K−N → K̄ N maximizes at
1 GeV momentum, so that this beamline is intended to study
K̄ N interactions and kaonic nuclei by (K−, N ) reactions
with light nuclei.

The K1.1 beamline supplies kaons with momentum
around 1.1 GeV for measurements ofΛhypernuclei. Because
of the space interference between the K1.1 and high-p beam-
lines, K1.1 experiments will be done after the first stage of the
high-p experiment. These strange nuclear physics projects
are explained in Sect. 14.3.3.

The high-momentum beamline provides 30 GeV protons
and unseparated hadrons up to 20 GeV. The beam of unsep-
arated hadrons, to be prepared in the near future, consists
mainly of pions. The first experiment in this beamline will
measure hadron mass modifications in a nuclear medium to
study chiral-symmetry breaking and hadron-mass generation
(see Sect. 14.3.4).

Then, charmed baryon spectroscopy will be investigated
by (π−, D∗−) reactions. This experiment intends to find di-
quark degrees of freedom, which are not easily found in
hadrons consisting of light quarks only, as explained below
in Sect. 14.3.5. The hadron tomography project will be per-
formed together with this spectroscopy experiment by study-
ing generalized parton distributions (GPDs) as discussed in
Sect. 14.3.6. This experiment is set up to find the origin of
hadron masses and spins by the tomography technique. In
future, separated hadron beams could become possible; an
extension plan of this hadron hall is discussed in the next
subsection 14.3.2.

More details of each hadron project are explained in
the following sections. The first major experiment will
study the role of strangeness in nuclear physics. The next
experiment is devoted to hadron mass modifications in the
nuclear medium, and then the charmed-baryon project will
start. The GPD tomography experiment is expected to join
this baryon-spectroscopy project. The scope of the hadron
physics projects at J-PARC is thus expanding in the near
future.

Furthermore, there is a significant interest to build a new
heavy-ion facility at J-PARC to investigate the phase diagram
in the low-temperature and high-density region in contrast to
the kinematical region of RHIC and LHC. There are interest-
ing topics in cold and dense matters, such as the end point of
the phase transition and color superconductor, as explained
in Sect. 14.3.7.

When the hadron program will be completed, the heavy-
ion facility will be built. This is expected in the 2030s. J-
PARC will then become a leading hadron accelerator facility.
It will investigate QCD in a wide kinematical region and for
a wide range of topics, from strangeness in nuclear physics,
charmed-baryon spectroscopy, nucleon structure at interme-
diate energies, and quark–hadron matter.

Fig. 384 Extension plan of the J-PARC hadron hall [4597]

14.3.2 Hadron-hall extension

The current hadron hall cannot accommodate enough projects
in nuclear and particle physics. The experimental hall size
and beamlines are much smaller than, for example, the BNL-
AGS facility. The efficient way for utilizing the full ability
of the J-PARC is to expand its space and to build additional
beamlines.

This extension project, as shown in Fig. 384, was proposed
together with the current hall [4597]. The area of the hall
becomes twice larger to accommodate new experiments. A
new production target T2 will be prepared. The beamlines
with orange color are new ones in the extended hall. They
are designed for the following topics.

1. HIHR
This HIHR (High Intensity High Resolution) beamline
is intended for precision spectroscopy of Λ hypernuclei
through (π±, K+) reactions by using high-intensity and
high-resolution charged pions up to 2 GeV momentum
with an excellent momentum resolution of 10−4 and a
missing-mass resolution of a few hundred keV.

2. K10
This beamline will be used to investigate S = −3
strangeness physics and charm physics by using separated
secondary hadron beams of high-momentum (2–10 GeV)
charged kaons and anti-protons.

3. K1.1
This beamline will be prepared for physics with strangeness
S = −1 using charged kaons with momenta of less than
1.2 GeV. The branch beamline K1.1BR is for the stopped
kaon experiments.

4. KL2
The frequency of the kaon rare decay K 0

L → π0νν̄ will be
measured. It may provide a hint for New Physics beyond
the Standard Model by using this high-intensity neutral
kaon beamline.
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This extension project was selected as one of top prior-
ity projects of KEK in 2022. After the financial approval,
it will take 6 years for its construction. When it is real-
ized, it will provide excellent opportunities for nuclear and
particle physicists to create innovative fields with unprece-
dented precision. The following major physics purposes are
presently considered for this extension project: (1) precise
spectroscopy of hypernuclei to understand neutron stars, (2)
novel aspects of charmed baryons, and (3) New Physics
beyond the Standard Model. The details of the topics (1) and
(2) are discussed in Sects. 14.3.3 and 14.3.5, respectively,
along with past J-PARC experiments on hypernuclei.

Because the J-PARC is an intermediate-energy facility,
the current scope of physics could be extended in future, for
example, by including projects of high-energy QCD such
as on nucleon structure, exotic hadrons by the constituent
counting rule, and color transparency [4598]. Furthermore, if
the heavy-ion accelerator will be built [4599], the unexplored
cold and dense region of the QCD phase diagram will be
investigated.

Here, we briefly summarize the major purposes related to
the hadron-hall extension including possible future topics.

Establishing the role of strangeness in nuclear physics
The nuclear physics without strangeness has been established
by precise information on the fundamental NN potentials
from abundant experimental measurements on NN scatter-
ings and deuteron properties, whereas the Y N scattering
information is in a poor situation. The J-PARC will supply
precise data on the fundamental Y N interactions and also
properties of hypernuclei. We expect that spectroscopy of
hypernuclei could become a precision field by the J-PARC
experiments.

Applications to neutron stars
The existence of strangeness inside neutron stars would make
their equations of state much softer. This is in conflict with
astrophysical observations of neutron-star masses. By estab-
lishing strangeness nuclear physics, we expect that this issue
will be solved.

Creation of a di-fermion field in hadron physics
The di-fermion physics has been investigated in quantum
many-body systems, especially condensed-matter physics.
In hadron physics, the color superconductor, for example, is
investigated in such a context. The J-PARC intends to create
a new di-fermion field by the spectroscopy of the charmed
baryons.

Emergence of hadron masses and spins
Hadron masses and spins are fundamental physics quantities
to constitute our visible universe. However, their origins are
not understood easily from quark and gluon degrees of free-
dom. They should originate as emergent phenomena of non-
trivial quark–gluon dynamics within hadrons. These should

be clarified by the J-PARC projects on hadron-mass modi-
fications in nuclear medium and by hadron tomography via
GPDs.

Understanding cold and dense QCD matters
From the RHIC and LHC, the high-temparature region of
the QCD phase diagram has been investigated and evidence
for quark–gluon-plasma formation was found. J-PARC will
clarify the cold and dense region, where interesting phase
properties, such as the end point of the phase transition and
color superconductor, are theoretically expected.

14.3.3 Strangeness nuclear physics

Major properties of stable nuclei are now relatively well
understood, whereas unstable nuclei are still under inves-
tigations especially in connection with the nucleosynthesis
in astrophysics. One of the major purposes of the J-PARC
hadron program is to investigate nuclei by including new fla-
vor degrees of freedom, strangeness and charm [4596,4597].

Under the flavor SU(3) symmetry, nucleons and a part
of hyperons constitute a flavor octet. Two-baryon interac-
tions are decomposed into symmetric (under the exchange of
baryons) states 27⊕8⊕1 and antisymmetric ones 10⊕10∗⊕8
as

8⊗ 8 = 27S ⊕ 10A ⊕ 10∗A ⊕ 8S ⊕ 8A ⊕ 1S. (14.1)

Nucleon–nucleon (NN ) interactions provide information
only on the 27S and 10∗A states. Therefore, hyperon inter-
actions need to be investigated to understand the other terms
and to find possible new hadronic many-body systems. These
new interactions are relevant in neutron stars. This nuclear-
physics project with strangeness has the following advan-
tages [4600].

1. SU(3) flavor symmetry and new interactions
The new interaction terms 10A, 8S, 8A, and 1S can be
investigated by the hyperon (Y ) interactions. In general,
Y N interactions are expected to be weaker than the NN
ones, so that new forms of baryonic many-body systems
should be created.

2. Probe of short-range interactions
Since the pion isospin is 1 and the Λ isospin is 0,
the πΛΛ coupling constant vanishes. Because of its
low mass, the pion contributes to the long-range part
of the baryon interactions. Without the pion contribu-
tion, medium- and short-range baryon interactions should
become more apparent when compared to the NN case.

3. Probe of QCD dynamics
The quark masses and the QCD scale parameter Λ are
shown in Fig. 385. We notice that the strange-quark mass
is of the order of the scale parameter. This fact suggests an
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Fig. 385 Strangeness as a probe of QCD dynamics

advantage that the strange quark could be a good probe of
QCD dynamics. However, it may also indicate difficulties
for describing hadrons with strangeness.

4. New forms of hadronic matters
Ordinary nuclei consist mainly of up and down quarks.
The interactions of hyperons or cascade particles with
nucleons are still unexplored. With strangeness, new
forms of nuclei should be created such as K̄ N N , and
so on. Another important topic is the possible existence
of a H dibaryon with isospin 0, spin 0, and strangeness
−2. It corresponds to the term 1S in Eq. (14.1).

5. Probe of deep regions in nuclei
The Pauli exclusion plays an important role in nuclear
physics. Although nuclei are strongly-interacting systems
with nucleons close together, they are often described by
a non-interacting Fermi gas model or an independent par-
ticle model. It is justified by solving the Bethe–Goldstone
equation. Hyperons do not suffer from such an exclu-
sion effect, which indicates the advantage of probing deep
regions of nuclei, as the shell structure should become
obvious as visualized in Fig. 386 [4597,4601].

6. Equation of state for neutron stars
Neutron-star physics has significantly developed recently
due to new astrophysical experiments and observations
of gravitational waves. In the inner high-density region of
the neutron stars, the reactions p + e− → Λ + νe and
n + e− → Σ− + νe could occur because the changes
of the Fermi energies of neutrons, protons, and electrons
exceed the mass gap of the reactions. The equation of
state of neutron stars should be significantly softened by
the possible existence of hyperons, which contradicts the
neutron-star observations. The appearance of hyperons
in the neutron stars is affected by the details of hyperon
interactions, which are investigated at J-PARC.

We introduce some of the major experimental results on
strangeness in nuclear physics from J-PARC.

Charge symmetry breaking
Charge symmetry is taken as granted as a good symme-
try for ordinary nuclei as typically shown in mirror nuclei
with exchange of a proton and a neutron. For example, the
binding energy difference between 3He and 3H is merely
0.07 MeV after removing QED effects. However, a sig-
nificant breaking was found by the E13 experiment at J-

Fig. 386 Simulation for the Λ binding energy spectra of 208
Λ Pb for the

hadron-extension program [4601]

Fig. 387 4
ΛHe and 4

ΛH spectra [4602]. (Used with the copyright per-
mission of American Physical Society)

PARC. The 1+ excited state of 4
ΛHe was produced in the

4He (K−, π−) 4
ΛHe reaction with a 1.5 GeV K− beam. Then,

by a measurement of the γ rays for the 1+ → 0+ transition, a
(1.406±0.002±0.002) MeV energy spacing was found. With
other measurements, the spectra of 4

ΛHe and 4
ΛH are com-

pared in Fig. 387 [4602]. The binding energy difference
between 4

ΛHe and 4
ΛH was (0.35±0.05) MeV, which indi-

cates a significant charge-symmetry breaking in hypernuclei.
It provided a valuable information on the nature of ΛN inter-
actions which are different from the NN ones. Theoretically,
the breaking is considered to come from Λ−Σ0 mixing.

Double Λ hypernuclei
One of the major purposes of J-PARC program on hypernu-
clei is to investigate strangeness −2 systems. The J-PARC-
E07 experiment was done at the K1.8 beamline with the K−
beam of 1.8 GeV. By using nuclear emulsions tagged by the
(K−, K+) reaction, the double-Λ hypernucleus ΛΛBe was
found [4603]. It is produced
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as 10
ΛΛBe by Ξ− +16 O → 10

ΛΛBe+4 He+ t,
as 11

ΛΛBe by Ξ− +16 O → 11
ΛΛBe+4 He+ d, or

as 12
ΛΛBe∗ by Ξ− +16 O → 12

ΛΛBe∗ +4 He+ p,

and the binding energy of two Λ hyperons is (15.05±0.11)
MeV, (19.07±0.11) MeV, or (13.68±0.11) MeV, respec-
tively. This result improves our understanding of the ΛΛ

interaction and double-strange hypernulcei.

Ξ hypernuclei
The J-PARC-E07 collaboration used the 1.81 GeV K− beam
for observing the reactionΞ−+ 14N→10

ΛBe+ 5
ΛHe. From the

measurements, theΞ− binding energy in theΞ−-14N system
was determined to (1.27±0.21) MeV [4604]. From the exper-
imental data and theoretical calculations, the energy level of
the Ξ− is interpreted as 1p state; the ΞN -ΛΛ coupling must
be weak.

Next,Ξ− capture was studied in theΞ−-14N system. Two
events were found by analyzing KEK-E373 and J-PARC-E07
data signaling deep Ξ− bound states [4605]. One event from
the reaction

Ξ− +14 N → 5
Λ He+ 5

Λ He+4 He+ n

yields a binding energy in the 14N nucleus of BΞ− =
(6.27±0.27) MeV. The other event in

Ξ− +14 N → 9
Λ Be+ 5

Λ He+ n

yields BΞ− given by either (8.00±0.77) MeV or by
(4.96±0.77) MeV, depending on the final-state 9

ΛBe nucleus
which can be in the ground or an excited state. These binding
energies are larger than the preceding value 1.27 MeV; likely,
these events come from the 1s state of the Ξ hypernucleus
15
ΞC.

Kaonic nuclei
Kaonic nuclei are new forms of hadronic many-body sys-
tems with strangeness. Since Λ(1405) can be considered as
a K̄ N molecule state, a few nucleon systems with a kaon
should exist as bound states. The J-PARC-E15 collabora-
tion used the K1.8BR beamline for measuring the reaction
K−+ 3He→ Λ+ p+n with a kaon momentum of 1 GeV. In
the Λp invariant mass spectrum, a clear peak was observed.
It indicates a kaonic K̄ N N nucleus with a binding energy
BK = (42 ± 3(stat.)+3

−4(syst.))MeV and the decay width

ΓK = (100 ± 7(stat.)+10
−9 (syst.))MeV [4606]. The current

situation is shown in Fig. 388 for energies and widths of pos-
sible K− pp bound states. The experimental data are shown
with the collaboration names, and the other points are theo-
retical calculations. As it is obvious, the world data do not
agree with each other and they are also different from the
theoretical results, so that further J-PARC experiments are
needed for clarifying the situation.

The J-PARC-E62 collaboration used the K− beam with
900 MeV momentum at the K1.8BR beamline. The negative

kaons were stopped in a liquid-helium target [4607]. They
obtained the energies and widths of the 3d → 2p transition
X-rays of kaonic 3He and 4He atoms with 10 times higher
accuracy than previous data. On the other hand, using the K−
beam with the momentum 1.8 GeV at the K1.8 beamline, the
J-PARC-E05 collaboration measured the missing-mass spec-
trum of 12C(K−, p) and observed a quasi-elastic peak from
K− p→ K− p [4608]. Then, they extracted differential cross
sections of the K− p elastic scattering. These experimental
measurements impose a constraint on theoretical models of
kaonic nuclei.

Σ± p scattering cross sections
Good data were not available for hyperon-nucleon and

hyperon-hyperon scattering. So far, these interactions had
been investigated mainly within hypernuclear models. This
approach makes it difficult to establish hypernuclear physics
as a precision field on the same level as the NN -interaction
and ordinary nuclear physics. Furthermore, hyperon interac-
tions are also essential for applications to neutron stars. Now,
the situation is changing due to new results on Σp scattering
data from J-PARC.

First, Σ− p elastic scattering data were reported for a Σ−
momentum range from 470 to 850 MeV by the J-PARC-
E40 collaboration [4609]. A π− beam in the K.18 beamline
with a momentum of 1.33 GeV impinged on liquid hydrogen
target, where Σ− particles were produced in the reaction
π− p → K+Σ−. 4500 events were identified and differ-
ential cross sections for Σ− p elastic scattering were deter-
mined. Second, this collaboration reported differential cross
sections of Σ− p → Λn in the Σ− momentum range from
470 to 650 MeV [4610]. About 100 events were identified and
angular distributions were obtained for the first time. Third,
differential cross sections were measured for the Σ+ p elas-
tic scattering in the momentum range from 0.44 to 0.80 GeV
[4611]. The π+ beam with the momentum 1.41 GeV was
used to produce Σ+ in the reaction π+ p→ K+Σ+ . About
2400 Σ+ p elastic scattering events were identified, and the
3S1 and 1P1 phase shifts were obtained from the precise data
for the first time.

These data are valuable for building the full baryon-baryon
interactions of the SU(3) multiplets, see Eq. (14.1). With
such experimental information, the Nijmegen-type baryon
models should become much accurate and lead to a better
understanding of hadronic and nuclear many-body systems
and neutron stars.

14.3.4 Hadrons in nuclear medium

Hadron masses in nuclear medium will be measured by using
the primary protons of 30 GeV at the high-momentum beam-
line as the J-PARC-E16 experiment [4612]. This project is
intended to investigate the role of chiral symmetry in hadron
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Fig. 388 Situation for the
K− pp-bound state. [4596].
(Used with the permission of the
Elsevier Science.)

properties. The study is thus related to a clarification of the
origin of hadron masses. The discovery of the Higgs parti-
cle clarified the origin of the masses of quarks and leptons.
However, this does not imply that masses of our nature, for
example, the nucleon mass, are understood. The “god” par-
ticle cannot create the hadron masses.

Since the nucleon mass is defined by the matrix element of∫
d3xT 00(x), where Tμν is the energy–momentum tensor, it

is decomposed into four terms [4613]:

M = quark energy+ gluon energy+ quark mass

+ trace anomaly. (14.2)

Current masses of up- and down-quarks are very small, so
their simple summation is much smaller than the nucleon
mass. To understand the origin of hadron masses, it is neces-
sary to clarify the complicated emergence of mass from con-
fined quarks and gluons. The clarification of this mass emer-
gence is one of top priority projects for building electron-
ion colliders for physics in 2030s [3163,4614]. In the mass
decomposition of Eq. (14.2), the trace anomaly term and the
gluon condensate could play an important role in hadron
masses. These will be investigated by the J/ψ production
process at charged-lepton accelerator facilities, such as the
JLab, CERN-AMBER, and EICs. On the other hand, this
topic has already been investigated by spacelike GPDs at
JLab and CERN-COMPASS and also by timelike GPDs at
KEKB. In fact, gravitational form factors of a hadron were
already extracted from actual experimental data [4615]. This
E16 experiment is intimately related to these world projects.

The original idea for generating the hadron masses is
to use chiral-symmetry breaking. It gives rise to a nonva-
nishing 〈q̄q〉 condensate [4616,4617], which is called scalar

quark condensate. It plays a role of an order parameter for
the chiral phase transition. It cannot be directly measured in
experiments, so that we have to rely on actual observables.
One of such quantities are vector-meson masses in a nuclear
medium, they will be measured by the E16 experiment. There
are theoretical estimates on their mass modifications from
the partial restoration of chiral symmetry inside the nuclear
medium [4616,4617].

As for the experimental side, there were already measure-
ments on the masses of vector mesons. For example, the KES-
PS with the primary 12-GeV proton beam provided data on
the processes p + A → V + X (V = ρ, ω, φ → e+e−)
[4618,4619]. They indicated 9% mass shifts for ω (ρ) and
3% for φ-mesons, respectively. From a comparison of theo-
retical models with the mass-modification data, one can find
that the quark condensate provides an important clue for mass
generation.

Precise measurements are expected for these mass modifi-
cations from the E16 experiment at J-PARC. The first physics
run will be taken with C and Cu targets with limited detec-
tor acceptance, and then more measurements will be done
with the H and Pb targets and full detector acceptance. The
expected outcome for the φ meson spectrum from the reac-
tion p + A → φ + X for the first run with a copper tar-
get and 30 GeV protons was simulated using GEANT4, see
Fig. 389 [4620]. The momentum distribution of the φ meson
was evaluated by using the code JAM (Jet AA Microscopic
transport model) [4621], and the mass-modification param-
eter deduced by KEK-E325 [4619] was used. The figure is
shown for slowly moving φ mesons (βγ < 1.25), the mass
resolution is expected as 5.8 MeV. In this slow-φ case, nuclear
medium effects are large and the spectrum is modified signif-
icantly as shown in Fig. 389. The difference between the sim-
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Fig. 389 Expected φ meson spectrum with the copper target by the
J-PARC-E16 experiment [4620]

Fig. 390 Expected φ-mass data by the J-PARC-E16 and the KEK-
E325 one [4620]

ulated data and the red spectrum should come from nuclear
medium effects. As the φ velocity becomes larger, the spec-
trum modification becomes smaller. From these simulated
data, the mass of φ-meson at rest in a nuclear medium can be
deduced. In Fig. 390, the mass is extracted by using a theo-
retical dispersion relation. The KEK-E325 data is shown for
comparison. The KEK data was taken at only one point and
the errors are large. We notice that the J-PARC data are much
more accurate even at the first stage and that four data points
will enable us to extrapolate the momentum dependence for
determining the φ mass at zero momentum.

To relate the actual experimental data of E16 to the quark
condensate, it is important to understand hadron interactions
in nuclear medium because the φ meson is produced with the
momentum 1–2.5 GeV/c and it decays into e+e− outside or

Fig. 391 Expected excitations of N∗(qqq) and Y ∗c (qqQ) [4623]

inside of the nucleus. Such an effort to describe the momen-
tum dependence is in progress by transport simulations by
using the Hadron-String Dynamics model [4622], where φ-
meson spectral function and their density dependence can be
specified. Therefore, new J-PARC data should provide a clue
in understanding the role of chiral symmetry breaking for the
hadron masses.

14.3.5 Hadron spectroscopy

Hadron spectroscopy entered into the new era in the last
decade in the sense that there have been many reports on
exotic hadron candidates. Exotic hadrons were expected
already when the quark model was proposed in 1964. The
status of exotic mesons with quantum numbers not acces-
sible within the quark model is reported in Sect. 8.3. In
heavy-quark spectroscopy, a large number of states, both
mesons (see Sects. 8.5, 8.6) and baryons (see Sect. 9.4)
have been found with unusual properties. However, it is
often not easy to distinguish so-called cryptoexotic hadrons,
i.e. hadrons with quantum numbers compatible with regular
hadrons, from ordinary ones because they may have similar
masses. Examples are f0(980), a0(980) and Λ(1405) in the
1 GeV mass region. It took rather a long time to accumu-
late signatures from various observables for their tetra- or
penta-quark-like (or hadron molecular) nature .

In these days, exotic-hadron studies tend to focus on the
heavy-quark sector due to KEKB and LHCb discoveries on
exotic hadron candidates with charm and bottom quarks (see
Sect. 9.4). Since charmed baryons will be copiously produced
at J-PARC, it is a good opportunity to investigate details of
charmed baryon spectroscopy including exotic candidates.
At J-PARC, charmed baryons consist of two light quarks and
one heavy quark. These will be investigated by the E50 col-
laboration. Due to the existence of a heavy quark within a
baryon, there are specific interactions and internal configura-
tions, which do not exist in baryons with only light quarks. In
the extended hadron hall, Ξ and Ω excitation spectra will be
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Fig. 392 Schematic picture of π− p→ D∗−Λ∗+c [4623]

also investigated. Physics motivations of this project include
the following.

1. Di-quark correlations in hadrons
The color magnetic interaction between quarks with
indices i and j is given by Vmag ∼ αs(λi · λ j )(�σi ·
�σ j )/(mim j ) where λ is the color SU(3) Gell-Mann
matrix, �σ is the Pauli spin matrix, and m is the quark
mass. Because it is proportional to 1/(mim j ), the inter-
action becomes weak for a heavy quark. Let us denote q
and Q for light and heavy quarks, respectively. For aqqQ-
type baryon, the qq interaction should be much stronger
than theqQ one. It means that a strongqq diquark correla-
tion could appear in such a baryon. Its expected spectrum
for qqQ-type baryon in comparison with the qqq-type
baryon is shown in Fig. 391 [4623], where ρ and λ are
the Jacobi coordinates. The ρ is defined as coordinate
between the two quarks qq, and the λ is between qq and
Q. The spectrum splits into ρ- and λ-mode excitations,
called isotope shift. The ρ mode corresponds to a rotation
of the diquark qq, and the λ mode to an orbital exci-
tation between qq and Q. These levels are further split
by spin–spin interactions. These studies will lead to new
dynamical aspects in hadron physics and, more in general,
to di-fermion physics in quantum-many-body systems.

2. Ξ and Ω baryon spectra and their properties
The details of the Ξ and Ω spectroscopy will be investi-
gated. In addition, the Ω electric quadrupole moment is
highly interesting. Observations of quadrupole moments
provide us information on the nature of interactions
among constituents and on system deformations. A finite
quadrupole moment suggests that a non-central force
should exist. Indeed, the tensor force in the one-gluon-
exchange potential leads to the expectation that hadrons
should be deformed. The Ω quadruple moment could
be measured at J-PARC due to its “stable” nature. The
quadrupole moment has never been measured for any
hadrons including Δ [4624], it is an ambitious project.

The charmed-baryon-spectroscopy experiment will start
in the hadron hall at the high-momentum beamline by
using a beam of unseparated hadrons, essentially pions, with
momenta up to 20 GeV . The reactionπ−+ p→ D∗−+Λ∗+c

Fig. 393 Simulation for theΛ∗+c spectrum by the K10 beamline exper-
iment at the extended hadron hall [4597]

is used, as illustrated in Fig. 392, for measuring the Λ∗+c
spectrum by the p(π−, D∗−) missing mass. The simulation
is shown for the Λ∗+c spectrum in Fig. 393 by considering the
pion momentum of 20 GeV and 100-day beam time. A new
field of di-quark physics should be developed by this project.

14.3.6 Hadron structure functions

The J-PARC proton-beam energy of 30 GeV covers the inter-
mediate region from hadron degrees of freedom (d.o.f.) to
quark d.o.f. described by perturbative QCD. In addition to
hypernuclear and charmed-baryon physics at low energies,
the higher-energy region should therefore also be investi-
gated, as illustrated in Fig. 380. The situation is similar to
JLab projects, and J-PARC is complementary to JLab in the
sense that different observables are available in hadron reac-
tions.

The first experiment on hadron structure functions will
be on the GPDs for the proton [4625]. A proposal is being
prepared [4598] to study exclusive Drell–Yan processes. The
GPDs are observables to probe the three-dimensional struc-
ture, namely the transverse structure, in addition to the lon-
gitudinal parton distribution functions, and the nucleon spin
and mass compositions. This project should be able to con-
tribute to the clarification of the hadron spin and mass in
terms of quarks and gluons.

At the J-PARC high-momentum beamline, the exclusive
Drell–Yan process π− p→ μ+μ−B is considered as shown
in Fig. 394. The “pion” beam momentum is up to about
20 GeV. If the baryon B is a neutron, the nucleonic GPDs
will be measured, and transition GPDs will be investigated if
B is different from the neutron. This process is complemen-
tary to the pion-production experiment γ ∗ + p → π + N
at JLab with spacelike virtual photon, whereas the J-PARC
process is with the timelike one.

At the high-momentum beamline, there is an approved
experiment E50 for investigating charmed baryons [4626].
The GPD experiment will be proposed as a collaboration
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Fig. 394 Exclusive Drell–Yan process for measuring GPDs

Fig. 395 Simulation for the missing-mass spectra [4625]. (Used with
the copyright permission of American Physical Society)

project with this E50 experiment by supplying a dimuon
detector. The dimuons could come from various sources;
however, the exclusive Drell–Yan process should be identi-
fied by the missing-mass (MX ) spectra as shown in Fig. 395.
Here, the Monte-Carlo simulation is given for the pion
momentum pπ = 15 GeV. The exclusive peak is obvious just
below 1 GeV, and it should be separated from other processes
like inclusive Drell–Yan, J/ψ production, or random back-
grounds. In this experiment, the GPDs will be measured for
0.1 < x < 0.3 and timelike photons in contrast to the JLab
experiment on the pion production for larger x and spacelike
photons.

In future, there are further possibilities to extend this
project on GPD-related studies and, more generally, on high-
energy hadron physics [4627–4629]. We explain some exam-
ples.

1. Pion–nucleon transition distribution amplitudes
By backward charmonium production in pion–nucleon
collisions, pion-to-nucleon transition-distribution ampli-
tudes can be investigated.

2. GPDs in the ERBL region
The primary proton beam can be used to measure GPDs
by using the 2 → 3 process p+p→ p+π+B. If the final

pion and proton have nearly opposite and large transverse
momenta with a large invariant energy, the cross section
is sensitive to the GPDs in the special kinematical region
of ERBL (Efremov–Radyushkin–Brodsky–Lepage).

3. Exotic hadrons by constituent counting rule
The determination of exotic hadrons is not easy in low-
energy global observables, and a much clearer determina-
tion could be done by using the constituent counting rule
in perturbative QCD. Actually, the structure of the exotic-
hadron candidate Λ(1405) could be determined by the
exclusive process π− + p→ K 0 +Λ(1405) at J-PARC.

4. Color transparency
The color transparency indicates that a hadron passes
freely through the nuclear medium at large momentum
transfer. It is a unique feature of QCD. There was a myste-
rious BNL-EVA measurement that the transparency drops
at a proton momentum p > 10 GeV. The J-PARC should
be able to clarify this issue.

In future, we expect that a separated high-momentum kaon
beam will become available as the hadron-hall extension pro-
gram in addition to the protons and pions, so that a variety
of these type experiments should become possible.

14.3.7 Heavy-ion physics

The purpose of the J-PARC hadron physics is to contribute to
our understanding of quantum many-body systems in a wide
kinematical range of the phase diagram by precision mea-
surements of new observables as explained in the beginning
of this section. Presently, the physics of dense QCD mat-
ters is an important missing program in the current J-PARC
experiments.

Dense hadronic systems have been investigated by heavy-
ion collisions at RHIC and LHC in the high-temperature and
low-density region as shown in Fig. 396 [2259,4599]. The
creation of a quark–gluon plasma (QGP) was established in
the RHIC project by observables such as the collective flow of
hadrons and medium modifications of jets. It was surprising
to find a small viscosity for the QGP, which initiated interdis-
ciplinary studies with the string theory through the AdS/CFT
correspondence (see Sect. 5.4). Higher-energy collisions are
now under investigations at LHC. In addition, the signature
of the color-glass condensate has been investigated at these
facilities.

At zero baryon density, lattice QCD suggests that the
phase transition is a crossover, whereas theoretical models
indicate that at high densities the phase transition should be
a first-order transition [2275]. This implies that an endpoint
of the first-order transition should exist as shown in Fig. 396.
There are also interesting topics on color superconductivity
in the cold and dense matter region. After the QGP discovery
and studies of its properties, the frontier of heavy-ion physics
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Fig. 396 QCD phase diagram with heavy-ion facilities [4599]

should be this unexplored region. In fact, there are projects at
FAIR and NICA to investigate this region in the near future.

In order to realize such experiments at J-PARC, an addi-
tional facility is needed to accelerate heavy ions. The pos-
sibility of the heavy-ion experiment was studied in a let-
ter of intent in 2016 [4630]; the proposal was submitted to
the J-PARC PAC in 2021 [4599,4631]. For this project, it is
necessary to construct a new linac and a new booster syn-
chrotron. With this injector consisting of the linac and the
synchrotron together with the rapid-cycling and the main-
ring synchrotrons (see Fig. 381), high-intensity heavy-ion
beams with 2–12 A GeV will be obtained. The J-PARC
heavy-ion project has a staging plan for its timeline [4632]. In
the sixth year after the financial approval, the phase-1 exper-
iment is expected to start with the LINAC, the reuse of the
KEK-PS booster, and upgrades of the existing spectrometer.
Therefore, if the project is approved immediately, the phase-1
experiment could start in the end of 2020s. Then, the phase-II
experiment could start in the ninth year with the new booster
and new spectrometer as the final configuration. The energies
of the heavy-ion facilities for the cold and dense experiments
are shown in Fig. 397 The J-PARC-HI (heavy ion) project
is a unique position as the highest-intensity facility in the
several GeV region.

The first purpose of this new facility is to find the phase
transition to deconfined quarks and gluons at high densities,
by measuring di-electrons, which originate from the virtual
photon emission in the hot medium. The advantage of the
di-electron measurement is that the virtual photon does not
suffer from strong final-state interactions in the medium, so
that it directly reflects the information on the QCD matter.

Two simulation studies are shown in Fig. 398 for the di-
electron spectrum [4599]. The left-hand side presents the
case of no phase transition at T = 150 MeV, and the right-
hand side the case for a first-order phase transition at T =
120 MeV. The di-electron invariant mass spectrum was taken
as (MeeT )3/2 exp(−Mee/T ). These results were obtained
for the mid-rapidity region (1 ≤ ylab ≤ 2) with 100-day

Fig. 397 Maximum instantaneous interaction rates recorded by vari-
ous existing (full lines), under construction (dashed) and proposed fixed-
target (black) and collider (blue) experiments addressing the high-μB
region of the QCD phase diagram (from [4633], consistently updated
based on [4634])

Fig. 398 Simulations for the di-electron mass spectra [4599]

beam time. From such measurements, a determination of the
temperature should be possible with the 10% accuracy by the
spectrum slope at the mass range Mee > 1.1 GeV for the left-
side case of Fig. 398. In the right-hand side, 10% accuracy is
possible if Mee > 0.7 GeV data are selected. This ambitious
J-PARC project makes it possible to find new phenomena of
cold and dense matter.

14.4 The NICA program

Alexey Guskov
The Nuclotron-based Ion Collider fAcility (NICA) is a new
research complex for studying the fundamental properties of
the strong interaction under development as a flagship project
at the Joint Institute for Nuclear Research [4635–4637]. The
heart of NICA is the Nuclotron – a superconducting ion syn-
chrotron put in operation in 1993. It will be equipped with
two injection chains: for heavy (including a booster – a small
superconducting synchrotron) and light ions, and a storage
ring where particle collisions are planned. The storage ring
of racetrack shape has a maximum magnetic rigidity of 45
T×m and a circumference of 503 m. The maximum field
of superconducting dipole magnets is 1.8 T. NICA will pro-
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Fig. 399 View of the NICA site

vide a variety of heavy-ion beams up to Au79+ with a kinetic
energy up to 4.5 GeV/u. Collisions of high-intensity proton
beams with a high degree of longitudinal or transverse polar-
ization and with total energy up to 13.5 GeV will also be
available [4638]. Major accelerator challenges include strong
intra-beam scattering and space-charge effects which will
be partially compensated by extensive use of electron and
stochastic cooling systems.

Two experimental setups with different physics programs
will run at two interaction points located in the opposite
straight sections of the racetrack ring. The MultiPurpose
Detector (MPD) placed at the first interaction point will study
hot and dense baryonic matter in heavy-ion collisions with
luminosity up to 1027 cm−2 s−1. The Spin Physics Detector
(SPD) in the second interaction point is dedicated to the study
of the spin structure of the proton and deuteron and other spin-
related phenomena in p-p and d-d collisions with luminosity
up to 1032 cm−2 s−1. In addition, the heavy-ion beams can
be extracted to the fixed-target experimental setup BM@N
(Baryonic Matter at Nuclotron) whose main goals are inves-
tigations of strange/multi-strange hyperons, hypernuclei pro-
duction, and short-range correlations. Extracted beams will
also be used for applied research. A view of the NICA site
is shown in Fig. 399 while Fig. 400 represents the schematic
layout of the accelerator complex.

The implementation of the physic program of the NICA
complex is envisioned in three main stages: (i) heavy-ion
physics with a fixed target (BM@N), (ii) heavy-ion physics
in the colliding mode (MPD), and (iii) spin physics (SPD).
The possibility of using NICA in the electron-ion collider
mode in the future is under discussion.

14.4.1 The study of dense and hot strongly interacting
matter at NICA

Asymptotic freedom has a very deep importance for hadronic
matter under extreme conditions. At sufficiently high nuclear

density or temperature, average inter-parton distances bec-
ome small and their interaction strength weakens. Above a
critical energy density of about 0.3 GeV/fm3, a gas of hadrons
passes through a deconfinement transition and becomes a
system of unbounded quarks and gluons called quark–gluon
plasma (QGP). An evidence of this transition has been
obtained from lattice simulations of QCD, in the form of
a rapid increase of the entropy density around the critical
energy density. The deconfinement of quarks and gluons is
accompanied by a restoration of chiral symmetry, sponta-
neously broken in the QCD vacuum.

The phase diagram (see Fig. 159) translates the properties
of strong interactions and their underlying QCD theory into
a visible pattern. Recent lattice calculations have shown that
for vanishing baryon chemical potential, μB , and at a pseud-
ocritical temperature 156.5±1.5 MeV, a crossover transition
happens from the phase with a broken chiral symmetry to the
restored chiral symmetry phase [484,4639]. Different effec-
tive models conclude that at higher μB , the transition from
the ordinary hadron-matter phase to a phase, where chiral
symmetry is restored, is of first order. The corresponding
critical endpoint is an object of desire of experimenters and
theorists, however, its existence is not established yet.

The major goal of MPD and BM@N experiments at NICA
is to explore the QCD phase diagram by the study of in-
medium properties of hadrons and the nuclear matter Equa-
tion of State (EoS), including a search for possible signals
of deconfinement and/or chiral symmetry restoration phase
transitions, and the QCD critical endpoint. The range of ener-
gies and interaction rates covered in different heavy-ion col-
lision experiments including MPD and BM@N experiments
at NICA is presented in Fig. 397.

The BM@N experiment
BM@N is a fixed-target experimental setup operating with
extracted ion beams from the upgraded Nuclotron. The main
final goal of the BM@N experiment is the comprehensive
study of the early phase of nuclear interaction at high den-
sities of nuclear matter (3–4n0) via registration of strange
and multi-strange particles (kaons, Λ, Ξ and Ω hyperons,
double hypernuclei, etc.) production with enormous statis-
tical precision. Investigation of the reaction dynamics and
nuclear equation of state, as well as the study of the in-
medium properties of hadrons, are also planned. In order to
provide normalization for the measured A+A spectra, a study
of elementary reactions (p+p, p+n(d)) will be performed.

The layout of the expected full configuration of the
BM@N setup is shown in Fig. 401. The tracking system
consists of the silicon strip sensors, and gaseous detec-
tors and is partially placed inside the analyzing magnet
with a field up to 1.2 T. Particle identification is provided
by the multi-gap Resistive Plate Chamber-based Time-of-
Flight system. A Zero Degree Calorimeter is foreseen for the
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Fig. 400 The NICA accelerator
complex at JINR

Fig. 401 Layout of the BM@N detector [4640]

extraction of the collision impact parameter and centrality
determination. The BM@N setup currently operates in test
mode.

The relevant degrees of freedom at the Nuclotron energies
are first of all nucleons and their excited states followed by
light and strange mesons [4641]. The focus of experimental
studies at BM@N will be on hadrons with strangeness, which
are early produced in the collision and not present in the initial
state of two colliding nuclei. The measured production yields
of light and strange mesons, as well as of hyperons and anti-
hyperons are shown in Fig. 402 as a function of the nucleon–
nucleon collision energy. The Nuclotron heavy-ion beam-
energy range corresponds to

√
sNN = 2.3–3.5 GeV. It is well

suited for studies of strange mesons and multi-strange hyper-
ons which are produced in nucleus–nucleus collisions close
to the kinematic threshold. Heavy-ion collisions are a rich
source of strangeness, and capturing Λ-hyperons by nucle-
ons can produce a variety of light hyper-nuclei [4642,4643].
In heavy-ion collisions, light hypernuclei are expected to be
abundantly produced at low energies due to the high baryon
density. However, the production mechanisms of hypernu-
clei in heavy-ion collisions are not well understood, due to
the scarcity of data. The study of hyper-nuclei production
is expected to provide new insights into the properties of

the hyperon-nucleon and hyperon-hyperon interactions. Fig-
ure 403 presents the yields of hyper-nuclei as a function of
the nucleon–nucleon collision energy in the center-of-mass
system in Au+Au collisions, predicted by a thermal model
[4644]. The maximum in the hyper-nuclei production rate is
predicted at

√
sNN = 4-5 GeV, which is close to the Nuclotron

energy range.
Short-range correlations in nuclei (SRC) are an additional

topic for study at BM@N. In an attempt to simplify the
description of the nuclei as complex strongly interacting sys-
tems, we tend to separate their short- and long-range struc-
ture. Effective field theories describe the long-range structure
using a mean-field approximation. The short-range struc-
ture of nuclei can be described in terms of nucleon–nucleon
short-range correlations. SRC are brief fluctuations of two
nucleons with high and opposite momenta, where each of
them is higher than the Fermi momentum for the given
nucleus.

Hard knock-out reactions where the beam probe interacts
with a single nucleon are the standard way to study the prop-
erties of SRC pairs. In the pilot studies at BM@N the new
approach with the inverted kinematics was used [4645]: a
carbon beam with the momentum of 4 GeV/c per nucleon
scatter off a liquid hydrogen target. A proton with momen-
tum from the SRC pair is scattered off a target proton. Two
protons from the (p,2p) reaction were detected by a two-arm
spectrometer while a A − 2 nuclear fragment was identified
via p/Z ratio. The events with 10B and 10Be fragments corre-
sponded to p-n and p-p SRC pairs, respectively. The direct
experimental evidence for the separation of the pair wave-
function from that of the residual many-body nuclear system
was obtained. All measured reactions are well described by
theoretical calculations that include no distortions from the
initial- and final-state interactions (Fig. 404). The obtained
results illustrate the ability to study the short-distance struc-
ture of short-lived radioactive nuclei at the forthcoming FAIR
and FRIB facilities.
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Fig. 402 Yields of mesons and (anti-)hyperons measured in different
experiments as a function of the collision energy

√
sNN for Au+Au and

Pb+Pb collisions [4646]

Fig. 403 Yields of hyper-nuclei predicted by the thermal model in Ref.
[4644] as a function of the

√
sNN for Au+Au collisions. Predictions for

the yields of 3He and 4He nuclei are presented for comparison

The MPD experiment
MPD is a collider experiment designed to perform a compre-
hensive scan of the QCD phase diagram with beam species
from protons to gold by varying the center-of-mass collision

Fig. 404 Opening angle in SRC p–n pair (left) and the angle between
the 10B fragment and pair relative momentum (right). The model cal-
culations are shown in orange [4645]

energy from 4 to 11 GeV per nucleon which is complemen-
tary to the RHIC beam energy scan towards lower energies.
The unique feature of MPD as a collider experiment is the
invariant acceptance at different beam energies as compared
to fixed-target experiments [4647].

To reach this goal, the experimental program includes
the simultaneous measurement of the observables which
are sensitive to high density effects and phase transitions.
The observables measured on event-by-event basis are parti-
cle yields and ratios, correlations and fluctuations. Different
species probe different stages of the nucleus–nucleus inter-
action due to their differences in mass, energy and interaction
cross-sections. The hadrons containing heavy strange quarks
are especially interesting. These strange heavy hadrons are
created in the early high-temperature and high-density stage
but may quickly decouple due to their low interaction cross
section with the surrounding matter. Among various charac-
teristics, the elliptic flow deserves special attention because
this collective motion is formed mainly in the early stage of
the collision. The spatio-temporal information on the particle
freeze-out source, which depends on the preceding evolution
of the system, is provided by the measurement of identi-
cal particles interference. The direct information on hot and
dense transient matter is provided by penetrating probes, pho-
tons and leptons. In this respect, vector mesons which contain
information on chiral symmetry restoration are very attrac-
tive. Measurement of the positive/negative pion asymmetry
with respect to the reaction plane as a function of centrality
of heavy-ion collisions opens a possibility to touch such fun-
damental problem as spontaneous violation of CP parity in
strong interactions.

The physics program of the first stage of the MPD exper-
iment includes the following items [4648]:

– multiplicity and spectral characteristics of the identi-
fied hadrons including strange particles, multi-strange
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Fig. 405 K+/π+, K−/π− and Λ/π+ ratios as a function of
√
sNN

[2203]

baryons and antibaryons characterizing entropy produc-
tion and system temperature at freeze-out;

– event-by-event fluctuations in multiplicity, charges, trans-
verse momenta and K/π ratios as a generic property of
critical phenomena;

– collective flow effects (directed, elliptic and higher ones)
for hadrons including strange particles;

– femtoscopy with identified particles and particle correla-
tions.

In the second stage, the physics with electromagnetic probes
(photons and dileptons) will be accessed.

The behaviour of hadron abundances along the hydrody-
namic trajectories of heavy-ion experiments is closely related
with the properties of the strongly interacting matter near
the phase transition. For example, a promising observable to
study the onset of deconfinement is the pion-to-kaon ratio.
The K+ yield is proportional to the overall strangeness pro-
duction and pions can be associated with the total entropy
produced in the reaction. Thus, the K+/π+ production ratio
can be a good measure of strangeness-to-entropy ratio, which
is different in the confined phase and the QGP. The exper-
imental results for K+/π+, K−/π− and Λ/π+ ratios as a
function of collision energies in the wide energy range are
shown in Fig. 405. The experimental points in the most inter-
esting region around

√
sNN = 10 GeV have large uncertain-

ties that could be significantly reduced by the measurements
at MPD.

Measurements of event-by-event fluctuations have been
performed by the numerous fixed-target and collider exper-
iments. Recent STAR measurements from the RHIC-BES
program [2224] indicate a non-monotonic behaviour of the
excitation function for the net-proton moments in central
Au+Au collisions in the region below

√
sNN = 20 GeV,

which can be a hint for the critical point in the range of finite
baryon number density. At MPD the region below 11 GeV
will be scanned with much higher precision.

The main task of femtoscopy, the technique of two-particle
correlations in momentum space, is to measure the space-

Fig. 406 Freeze-out volume for pions as a function of the collision
energy [4649]

time evolution of the system created in particle collisions.
The two-pion correlation functions are excellent candidates
for first-day physics measurements at MPD. Femtoscopy
measurements for pions have been performed in several pre-
vious experiments. Figure 406 presents the energy depen-
dence of the freeze-out volume, obtained from two-pion
interferometry. A non-monotonic behavior of this volume in
the NICA energy range raises interest in such measurements
at MPD.

The anisotropic collective flow is also one of the promis-
ing observables sensitive to the transport properties of the
strongly interacting matter, in particular, the speed of sound,
and the specific shear and viscosities. It can be quantified by
the Fourier coefficients vn in the expansion of the particles
azimuthal distribution. Relativistic viscous hydrodynamic
models have been successful in describing the observed
anisotropy vn for the produced particles in the collisions of
heavy ions at RHIC and the LHC [2190,4650,4651]. The
directed flow v1 can probe the very early stages of the colli-
sion as it is generated during the passage time of the two col-
liding nuclei. The results of a model-to-data comparison for
the elliptic flow v2 at

√
sNN = 7.7 GeV and 4.5 GeV may indi-

cate that at NICA energies a transition occurs from partonic
to hadronic matter. The high-statistics differential measure-
ments of vn , that are anticipated from the MPD experiment
at NICA, are expected to provide valuable information about
this parton–hadron transient energy domain [4652,4653].

The layout of the MPD setup is shown in Fig. 407 [4653].
The components of the MPD barrel part have an approxi-
mate cylindrical symmetry. The beam line is surrounded by
the large gaseous Time Projection Chamber (TPC) which is
enclosed by the TOF barrel. The TPC is the main tracker,
and in conjunction with the TOF they will provide precise
momentum measurements and particle identification. It is
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Fig. 407 Layout of the MPD experimental setup [4653]

placed in a highly homogeneous magnetic field of up to
0.57 T. The Electromagnetic Calorimeter (ECal) is placed
in between the TOF and the MPD Magnet. It will be used
for detection of electromagnetic showers, and will play the
central role in photon and electron measurements. In the for-
ward direction, the Fast Forward Detector (FFD) is located
still within the TPC barrel. It will play the role of a wake-
up trigger. The Forward Hadronic Calorimeter (FHCal) for
determination of the collision centrality and the orientation
of the reaction plane is located near the Magnet end-caps. At
the moment, this detector configuration is at the assembling
stage.

Additional detectors like the silicon-based Inner Tracker
System for precision secondary vertex reconstruction, the
miniBeBe detector for triggering and start time determina-
tion, and the cosmic ray detector on the outside of the magnet
yoke are proposed for the later stages.

14.4.2 The spin structure of proton and deuteron in the
SPD experiment

While the main goal of the BM@N and MPD experiments
is to study deconfinement, the third experiment, SPD, aims
to study the internal structure of the proton and deuteron
using polarized beams. In the polarized proton–proton col-
lisions, the SPD experiment [4654] will cover the kinematic
gap between the low-energy measurements at ANKE-COSY
and SATURNE and the high-energy measurements at the
Relativistic Heavy Ion Collider, as well as the planned fixed-
target experiments at the LHC (see Fig. 408). The possibility
for NICA to operate with polarized deuteron beams at such
energies is unique. SPD is planned to be operated as a univer-
sal facility for comprehensive tests of the basics of the QCD.
The main efforts, however, will be devoted to the study of the
unpolarized and polarized gluon content of the proton at large
Bjorken-x , using different complementary probes [4655].

Fig. 408 NICA SPD and the other past, present, and future experi-
ments with polarized protons

Quantum chromodynamics has remarkable success in
describing the high-energy and large-momentum transfer
processes, where quarks and gluons that are the fundamental
constituents of hadrons, behave, to some extent, as free par-
ticles and, therefore, the perturbative QCD approach can be
used. The cross-section of a process in QCD is factorized into
two parts: the process-dependent perturbatively-calculable
short-distance partonic cross-section (the hard part) and uni-
versal long-distance functions, PDFs, and FFs (the soft part),
see Sect. 11. The parton distributions could be applied also
to describe the spin structure of the nucleon that is built up
from the intrinsic spin of the valence and sea quarks (spin-
1/2), gluons (spin-1), and their orbital angular momenta.

In recent years, the three-dimensional partonic structure
of the nucleon became a subject of careful studies. Precise
mapping of the three-dimensional structure of the nucleon is
crucial for our understanding of QCD. One of the ways to
go beyond the usual collinear approximation is to describe
the nucleon content in the momentum space by employing
the so-called Transverse-Momentum-Dependent Parton Dis-
tribution Functions (TMD PDFs) [1284,3247,3248,4656–
4658].

Considerable progress has been achieved during the last
decades in the understanding of the quark contribution to the
nucleon spin, yet the gluon sector is much less developed.
One of the difficulties is the lack of direct probes to access
the gluon content in high-energy processes.

The final goal of the SPD experiment is to provide access
to the gluon TMD PDFs (see Table 50) in the proton and
deuteron via the measurement of specific single and dou-
ble spin asymmetries in the production of charmonia, open
charm, and high-pT prompt photons. The kinematic region
to be covered by SPD for these processes (Fig. 409) is
unique and has never been accessed purposefully in polar-
ized hadronic collisions. Quark TMD PDFs, as well as spin-
dependent fragmentation functions, could also be studied.
The results expected to be obtained by SPD will play an
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important role in the general understanding of the nucleon
gluon content and will serve as a complementary input to the
ongoing and planned studies at RHIC, and future measure-
ments at the EIC (BNL) and fixed-target facilities at the LHC
(CERN). Simultaneous measurement of the same quantities
using different processes at the same experimental setup is of
key importance for the minimization of possible systematic
effects.

The naive model describes the deuteron as a weakly-bound
state of a proton and a neutron mainly in S-state with a small
admixture of the D-state. However, such a simplified picture
failed to describe the HERMES experimental results on the
b1 tensor structure function [1386]. A unique possibility to
operate with polarized deuteron beams brings us to the world
of the tensor structure of the deuteron (tensor PDFs). A pos-
sible non-baryonic content in the deuteron could be accessed
via the measurement of the gluon transversity distribution
and the comparison of the unpolarized gluon PDFs in the
nucleon and deuteron at high values of x .

Nevertheless, the largest fraction of hadronic interac-
tions involves low-momentum transfer processes in which
the effective strong coupling constant is large and the
description within a perturbative approach is not ade-
quate. A number of (semi-)phenomenological approaches
have been developed through the years to describe strong
interaction in the non-perturbative domain starting from
the very basic principles. They successfully describe such
crucial phenomena as the nuclear properties and interac-
tions, hadronic spectra, deconfinement, various polarized and
unpolarized effects in hadronic interaction, etc. The tran-
sition between the perturbative and non-perturbative QCD
is also a subject of special attention. In spite of a large
set of experimental data and huge experience in a few-
GeV region with fixed-target experiments worldwide, this
energy range still attracts both experimentalists and theoreti-
cians.

SPD has an extensive physics program for the first stage
of the NICA collider operation with reduced luminosity and
collision energy of the proton and ion beams, devoted to
comprehensive tests of the various phenomenological mod-
els in the non-perturbative and transitional kinematic domain.
It includes such topics as the spin effects in elastic scatter-
ing, in exclusive reactions as well as in hyperons production,
multiquark correlations and dibaryon resonances, charmo-
nia and open charm production, physics of light and inter-
mediate nuclei collision, hypernuclei, etc. [4659]. The pro-
posed program covers up to 5 years of the NICA collider
running.

The SPD experimental setup, shown in Fig. 410, is
designed as a universal 4π detector with advanced track-
ing and particle identification capabilities based on mod-
ern technologies, consisting of the barrel part and two end-
caps. The silicon vertex detector will provide a reconstruc-

Fig. 409 Kinematic coverage of SPD in the charmonia, open charm,
and prompt photon production processes

Fig. 410 Layout of the SPD experimental setup

tion of secondary vertices of D-meson decays. The straw-
tube-based tracking system placed within a solenoidal mag-
netic field of up to 1 T should provide tracking capability.
The time-of-flight system will provide π/K and K/p sep-
aration together with an aerogel-based Cherenkov detector
in the end-caps. Detection of photons will be provided by
the sampling electromagnetic calorimeter. To minimize mul-
tiple scattering and photon conversion effects for photons,
the detector material will be kept to a minimum through-
out the internal part of the detector. The muon (range) sys-
tem is planned for muon identification. It can also act as
a rough hadron calorimeter. The pair of beam-beam coun-
ters and zero-degree calorimeters will be responsible for the
local polarimetry and luminosity control. To minimize pos-
sible systematic effects, SPD will be equipped with a free-
running (triggerless) DAQ system. The SPD experimental
setup is currently in the phase of the technical project prepa-
ration.
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Table 50 Gluon TMD PDFs at twist-2. The columns represent gluon polarization, while the rows represent hadron polarization

Unpolarized Circular Linear

Unpolarized g(x) density h⊥g1 (x, kT ) Boer–Mulders function

Longitudinal Δg(x) helicity Kotzinian–Mulders function

Transverse Δ
g
N (x, kT ) Sivers function Worm-gear function ΔT g(x) transversity, pretzelosity

Fig. 411 Layout of the FAIR accelerator complex. See text for the
meaning of the various acronyms

14.5 QCD at FAIR

Johan Messchendorp, Frank Nerling, and Joachim Stroth

14.5.1 The FAIR facility

The international Facility for Antiproton and Ion Research
FAIR (Fig. 411) is an accelerator complex currently con-
structed at the site of the national GSI Helmholtz Center
for Heavy-ion Research, Germany. It is composed of a rapid
cycling synchrotron with maximum rigidity 100 Tm provid-
ing beams directly to experimental halls and to production
targets for secondary ion and anti-proton beams [4660]. A
high-energy storage ring (HESR) enables experiments with
antiproton and rare radioactive isotope beams. The latter are
selected out of either nuclear fragments or fission products,
emerging from reactions of e.g. relativistic uranium beams,
by the Super Fragment Separator (S-FRS), providing high
transmission for reaction products and high selectivity and
purity for selected rare isotopes [4661].

The scientific goals encompass many open questions con-
nected with the formation of matter and the role of the
strong force herein. The respective activities are organized
in three pillars, hadron physics using anti-proton annihila-
tion (PANDA), heavy-ion reactions at relativistic energies
(CBM), and nuclear structure physics at the limit of stability
using relativistic, stored or decelerated rare isotope beams

(NUSTAR). For the latter, not discussed in the remainder of
this section, FAIR will pursue a unique approach enabling
nuclear structure studies of e.g. the r-process isotopes rele-
vant for the third r-process abundance peak. Acceleration of
28+ uranium ions in the SIS100 will push the space charge
limit and yet provide beam energies around 1 AGeV [4662].
SIS100 is particularly designed to accelerate medium charge
state ions with a fast cycling rate of 1 Hz. This is achieved
ramping the superconducting dipole magnets with 4 T/s to
a maximum field of 1.9 T [4663]. Combined with the large
acceptance and transmission of the Super-FRS, separated fis-
sion fragments will provide fully stripped isotope beams up
to the neutron drip line. Such beams can be transferred to
a storage ring for precision mass measurements (ILIMA),
directed to a secondary target in the high-energy experiment
hall for reaction experiments (R3B), or to experiments uti-
lizing γ -spectroscopy in flight (HISPEC) or with stopped
beams (DISPEC). Complementary experiments can also be
performed at the Super-FRS operating the second half of
the separator as high-resolution forward spectrometer and
using a secondary target in the middle section of the separa-
tor (Super-FRS EC). Last not least isotope beams can also be
decelerated and trapped (MATS) or investigated using laser
spectroscopy (LaSpec). FAIR will also give home to many
other experimental collaborations working in fields of atomic
physics, radio biology, plasma physics and material science
(APPA).

Civil construction of the accelerator complex has been
started in 2017 focusing on the north area of the complex. As
of 2022, the shell construction of the ring tunnel, the trans-
fer buildings, the reaction experiment cave and the Super-
FRS is mostly finished and the technical building installa-
tion has been started. The facility will be completed in a
staged approach aligned with the funding profile and first
beam from SIS100 to the CBM cave is anticipated for 2028.
A FAIR early science program will be started as soon as the
Super-FRS is installed providing uranium beam from SIS18
directly to the separator. Already now, a rich research pro-
gram is ongoing at GSI and various other international facil-
ities employing instrumentation developed for FAIR (FAIR
Phase-0).
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Fig. 412 Computer rendering of the two experiments CBM and
HADES installed in the FAIR fixed-target experimental hall. In case
CBM is operated, the beam pipe is continuing through the center of the
HADES experiment up to the CBM dipole (target vacuum chamber and
beam pipe are not drawn). In case HADES is taking beam, a beam stop
is placed between the two experiments (half transparent cube shown on
a stand). The HADES setup is shown with blue support structure

14.5.2 CBM – QCD studies at high baryon densities

The research pillar Compressed Baryonic Matter (CBM) is
addressing the physics of QCD matter under extreme con-
ditions of baryon density and temperature. In a dedicated
experiment hall, ion beams extracted from SIS100 will be
directed onto stationary targets to form transients states of
QCD matter in central collisions. The formation process is
expected to reach maximum baryon densities of around five
times the nuclear ground-state density at temperatures of up
to 100 MeV. Model calculations suggest that e.g. in a Au+Au
collision at a few AGev, the incoming nucleons are stopped
to a large extent in the collision zone and that the nuclear
matter is compressed to densities of ρmax � 1 fm−3 [4664].
It is expected that the formed hadronic system is approaching
local equilibrium before it freezes out chemically at densities
around ρch � 0.05 fm−3 (see Sect. 7.1). At such initial den-
sities, the system can no longer be understood as resonance
gas, but rather as an entangled meson cloud surrounding the
baryonic cores (see Sect. 7.2).

Figure 397 demonstrates the world-wide efforts that
explore the high-μB-region (high net-baryon density) obta-
ined at lower beam energy (c.f. Sect. 7.1) of the QCD phase
diagram by means of heavy-ion collisions. Please note that
by today no experiment has crossed the 50 kHz line.

The CBM collaboration has designed an experiment to
investigate heavy-ion collisions with emphasis on the detec-
tion of rare and penetrating probes. Figure 412 shows the
configuration of the Compressed Baryonic Matter experi-
ment, together with the already existing HADES experiment
placed at the same beam line delivering slow-extracted beam
from the heavy-ion synchrotron SIS-100. The unique fea-
tures of this fixed-target experiment are the rate capability
reaching 10 MHz of inspected reactions and a modular com-

position of detectors for particle identification. The high-rate
capability is achieved by performing tracking of charged
particles in a compact configuration of 12 planes of sili-
con detectors placed in a 1 Tm dipole field. The planes are
arranged over 1 m downstream the target. The first four planes
are composed of monolithic pixel sensors, manufactured in
a 180 nm CMOS process, and provide a total of 140 M-
Pixels right behind the target and placed inside the beam vac-
uum (MVD). Behind, and outside the vacuum region, eight
planes of silicon strip sensors constitute the core tracking sys-
tem (STS). This tracking system is contained in a magnetic
dipole field providing a maximum bending power of 1 Tm.
Behind the tracking station different detector systems can be
placed, depending on the observables to be addressed. In the
standard configuration, a ring-imaging Cherenkov detector
(RICH) provides superb electron/positron identification up
to momenta of around 4 GeV. Behind, four stations of transi-
tion radiation detector enable intermediate tracking, energy
loss measurement and additional electron/positron identifi-
cation for high momentum tracks (TRD). The last detec-
tor is a wall of multichannel resistive-plate counters (TOF)
covering about 20 m2 in the transverse plane. It provides
a high-precision time signal to enable particle identification
by velocity vs momentum of charged particles. The CBM
detector uses a trigger-less data acquisition system where
every individual detector cell is digitized and where signals
passing their thresholds receive a timestamp. Data streams
of up to a TeraByte per second are transferred to the online
compute cluster where real-time event building and feature
extraction is performed. By selecting events with signatures
of interest, the data stream is reduced to a level that allows
storage on disks. Up to 40,000 compute nodes will be needed
to accomplish this task in the case of operating at the high-
est interaction rate. The compute cluster will be installed in
the FAIR Green Cube. The online event selection and rejec-
tion requires a high level of understanding and monitoring
of the detector performance at the time of the data taking. To
gain experiences and to prepare all software and firmware for
fast calibration and event reconstruction, the CBM collabo-
ration has installed a small version of the CBM detector at
SIS18 beam line of GSI. This mini-CBM setup is composed
out of prototypes or first-of-a-series modules of each detec-
tor system of CBM. The detectors are arranged as a single
arm telescope and are operated without magnetic field. The
performance of the online event selection is benchmarked
by investigating the production of hyperons. Their particular
decay topology is used as identification.

The prime goal of the CBM program at FAIR is to search
for signatures of a first-order phase transition, separating the
hadron resonance gas region from a likely novel state of
matter (cf. Sect. 7.2). The established strategy for this is to
search for non-monotonic behavior of the excitation function
of various observables, or more general for trends signaling
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Fig. 413 The QCD phase diagram as function of temperature and
baryo-chemical potential. Freeze-out configurations extracted from par-
ticle yields assuming sudden freeze-out of a hadron resonance gas are
shown as green circles (cf 159). Expectation values of the chiral conden-
sate deduced from lattice calculations as sky-blue lines. Measurements
of the mean fireball temperature based on the dilepton continuum radi-
ation are shown as red squares together with the expected trajectory of
the expanding and radiating system

a change in the number of degrees of freedom of the transient
system like the (dis)appearance of a certain scaling behav-
ior. An example is the excitation function of the multiplicity
of multi-strange hyperons. The high-rate capability of CBM
will enable such measurements well below the proton–proton
production threshold.122

Indeed, the region in the QCD phase diagram at high
baryo-chemical potential is predominantly terra incognita.
Figure 413 depicts the QCD phase diagram with experimen-
tal landmarks and predictions by lattice QCD. The landmarks
include, first, chemical-freezeout points that characterize the
temperature and the baryochemical potential below which
the system can be understood as an expanding hadron gas
in which inelastic collisions no longer occur. Two additional
points are shown which depict an average temperature of the
dense and hot system prior to freeze out. This very promising
observable, so far not addressed in excitation functions with
the needed precision, is the spectral distribution and yield of
dileptons emitted from the dense and hot stage of the colli-
sion. Such dileptons couple via virtual intermediary photons
directly to the in-medium hadronic current–current correlator
and thus probe the microscopic structure of the medium they
are expelled from [4665,4666]. In the so-called low-mass
region (LMR), i.e. for dilepton invariant masses around the
vector-meson pole masses ρ, ω and φ and below, the spec-
tral distribution encodes the “melting” of the vector mesons
embedded in a hot and dense hadronic environment, while the
dilepton spectrum from a purely partonic medium would not
feature any particular structure. Moreover, the integral yield

122 The threshold is here defined as the energy needed to produce a
given hyperon in an elementary proton–proton collision and the beam
energy is referred to as

√
sNN.

of continuum dileptons in the LMR dominantly depends on
the size, the lifetime and the temperatures of the emitting
source. It has been demonstrated using a hydro model that
the fireball ball evolution can significantly change if during
the evolution the system experiences a phase transition from a
QGP-like to a hadronic equation-of-state. The study observed
an increase of the yield by roughly a factor of two in the
case of a first-order phase transition [4667]. Dilepton contin-
uum radiation also provides a model independent measure-
ment of the average temperature of the emitting source. This
is possible if the imaginary part of the in-medium current–
current correlator is sufficiently featureless and approaching
a dependence ∝ T 2/M2. In that case, the spectral distribu-
tion is defined essentially by the thermal Bose factor and the
invariant-mass distribution takes the form of black-body radi-
ation, i.e.∝ (MT )3/2 exp (−M/T ) [4668]. A fit of a Planck
distribution function to the spectral distribution in the respec-
tive invariant mass reveals an invariant measurement of that
average temperature, unaffected by any blue shift due to rapid
expansion of the emitting source. The two measurements of
the average temperature shown in Fig. 413 were obtained by
the NA60 collaboration in the dimuon channel [4669] and by
the HADES collaboration in the dielectron channel [4670].
The “trajectories” indicated as dashed-dotted lines depict the
evolution of the fireball used to integrate the emissivity over
the four-volume characterizing the evolution of the collision
zone. For details see [4670].

In order to obtain the continuum radiation, contributions
to the dilepton invariant-mass distribution from the early
pre-equilibrium stage and from late decays of long-lived
hadronic states have to be determined and subtracted [4671].
An important part of the CBM program are therefore refer-
ence measurements of elementary collision systems or the
production of dileptons in collisions of protons on nuclei.
For this, the HADES detector will be moved to the SIS100
experimental hall where it will be installed in front of the
CBM detector. HADES, with its large polar acceptance, is
well suited to study in particular the production and prop-
agation of vector mesons in cold nuclear matter. The fea-
sibility of reconstructing the dilepton continuum radiation
in heavy-ion collisions at energies SIS18 energies has been
demonstrated for the system Au+Au at

√
sNN = 2.42 GeV.

Figure 414 depicts the respective invariant-mass distribution
together with various model calculations. It is important to
note that at this collision energy, the ρ meson is substantially
broadened due to the high baryon density, thus satisfying the
criteria for temperature measurement outlined above also in
the LMR.
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Fig. 414 Di-electron excess radiation measured by HADES for the
collision system Au+Au at

√
sNN = 2.42 GeV (black squares). System-

atic uncertainties are depicted as open boxes while the statistical errors
are shown as vertical lines. Various model calculations are shown as col-
ored lines (see inserts for explanation). Lines labeled CG refer to calcu-
lations using coarse grained microscopic transport calculations for the
fireball evolution folded with thermal emissivities derived from many-
body theory. The line labeled HSD is the result of a full microscopic
transport simulation treating the dilepton emission perturbatively, i.e.
after the full hadron cascade has been processed. Also shown as dashed
lines are the descriptions of dilepton emission from ρ-meson decay
used in the full microscopic (shining) approach. The spectrum has been
obtained by subtracting from the total yield in the centrality class 0–40%
the contributions from late hadron neutron meson decays (cocktail) and
from first-chance collisions

14.5.3 PANDA – hadron structure and spectroscopy studies
using antiprotons

Physics with antiprotons and PANDA
The ambition of PANDA is to exploit the annihilation of
antiprotons with protons and nuclei to study the properties
of hadrons and their interactions with unprecedented preci-
sion and coverage in parity, spin, and gluon and quark fla-
vor contents. Partly as the successor of the successful LEAR
facility at CERN, PANDA will combine a high-resolution and
intense antiproton beam with a state-of-art detector system.
The experiment is designed to produce hadrons with masses
of up to about 5.5 GeV and to unambiguously detect a large
variety of final-state particles with excellent momentum res-
olution, particle identification capabilities, and exclusivity.

PANDA will be an internal-target experiment installed at
the High Energy Storage Ring (HESR). The antiproton beam
from HESR has several key advantages, namely (i) the pro-
duction cross sections of hadrons are generally large, result-
ing in large data samples; (ii) meson-like states of any quark–
antiquark spin-parity combination can be produced in forma-
tion with a superb mass resolution; (iii) baryon-antibaryon
pairs, including multi-strange and charm, can be produced

in two-body reactions, which provide clean conditions for
baryon studies; (iv) proton–antiproton annihilations consti-
tute a gluon-rich environment.

In the initial phase, HESR will be able to store 1010

antiprotons with momenta p from 1.5 GeV up to 15 GeV.
By making use of the stochastic cooling technique, the rel-
ative beam-momentum spread (Δp/p) will be < 5×10−5.
The antiprotons will interact with a cluster jet target or pellet
target, which results in a luminosity during the first phase
(Phase One) of data taking of about 1031 s−1 cm−2. The final
goal is a luminosity of up to 2×1032 s−1 cm−2, referred to
as Phase Three.

The PANDA detector is designed to measure momenta of
charged and neutral final-state particles with 1–2% resolu-
tion and with excellent particle identification, vertex recon-
struction, and count-rate capabilities. The nearly 4π accep-
tance allows to study exclusive reactions covering a large part
of their phase spaces, thereby enabling a conclusive partial-
wave analysis. The detector consists of a Target Spectrometer
(TS) and a Forward Spectrometer (FS). The TS provides pre-
cise vertex tracking by the micro vertex detector, surrounded
by straw tube trackers and gas electron multiplier detectors
in the forward direction. The trajectories of charged particles
in the TS are bent by the field of a solenoid magnet provid-
ing a field of 2 T, with muon detectors within the segmented
yoke. For particle identification, the TS will consist of time-
of-flight and Cherenkov detectors and an electromagnetic
calorimeter composed of PbWO2 crystals. With the electro-
magnetic calorimeter, nearly covering the full phase space
using a barrel and two endcaps, the measurement of energies
and scattering angles of photons, electrons, and positrons will
become possible.

The FS consists of straw tube stations for tracking, a dipole
magnet, a ring imaging Cherenkov detector, a forward time-
of-flight system and a Shashlyk electromagnetic calorimeter,
followed by a muon range system. The luminosity at PANDA
will be determined by using elastic antiproton–proton scatter-
ing as the reference channel registered by a dedicated lumi-
nosity detector.

The combination of the intense, high resolution antiproton
beam with the nearly 4π PANDA detector, opens up unprece-
dented possibilities with a very rich physics program, partic-
ularly suited to provide a deeper understanding of QCD in
the non-perturbative regime. In the following, we discuss
some of the QCD-driven highlights from the various pillars
of the physics program of PANDA. We note that PANDA
has a more extensive physics program that includes various
nuclear physics aspects as well, such as the foreseen hyper-
nuclei and hyperatom topics. We limit ourselves here to those
topics in which the quarks, gluon, and their interactions are
expected to be the most important degrees of freedom. For a
more detailed description of the complete physics program
at the first phase of the experiment, we refer to [2635].
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Fig. 415 Illustration and summary of a comprehensive Monte Carlo
simulated scan experiment study for PANDA [4672]. Schematic of the
resonance energy scan principle (left). Summary of the sensitivity study
for an absolute (Breit–Wigner) decay width measurement in terms of
the minimum decay width Γmin that can be measured with an relative

precision of 33% as a function of the assumed input σS (center). Sum-
mary of the sensitivity study for line-shape measurements via the Ef
parameter (Molecule case) to distinguish between a bound and a virtual
state scenario in terms of the probability to mis-identify a virtual as a
bound state (right)

Hidden charm and exotics
PANDA will be devoted to provide precision data for hadron
spectroscopy with light to charm constituent quarks, and glu-
ons. Given the anti-proton beam momentum range of up to
15 GeV, the accessible invariant-mass range in direct for-
mation is about 2–5.5 GeV, and the PANDA experiment is
thus designed and optimized to cover the charmonium mass
region. In addition, the light quark sector can be explored via
the production with recoil particles.

The cross sections associated with antiproton–proton
annihilations are generally several orders of magnitude larger
than those of experiments using electromagnetic probes,
allowing for excellent statistical precision already at mod-
erate luminosities available in the initial Phase One (∼ 1031

cm−2s−1).
In the charmonium mass region, different unexpected

charmonium-like states have been discovered since the
beginning of the millenium. Some of these so-called XYZ
states are electrically charged and in combination with the
mass those are manifestly exotic states. They have unam-
biguously a minimum quark content of four quarks (e.g.
cc̄dū) and are, among others, discussed to be tetraquark or
molecular states in form of a loosely bound di-meson system.
PANDA will contribute to solve the puzzle of the nature of
these unexpected charmonium-like XYZ states. Moreover,
there is a number of pentaquark states and other exotic can-
didates reported by LHCb recently that will be accessible
with PANDA.

In order to understand the nature of the XYZ states, e.g.
which of the different four-quark configurations are real-
ized by nature, and to confirm further candidates reported,
PANDA will play an unique role. The different multiplets
need to be completed, especially the corresponding high-spin

states. Those can uniquely be addressed by PANDA, since
there is no restriction in produced J PC quantum numbers in
p̄ p annihilation and thanks to the mostly 4π acceptance of
the detector. Given the excellent electromagnetic calorime-
try in the barrel as well as in the forward part of the detector,
PANDA will have full acceptance not only for charged but
also for neutral final-state particles.

Another crucial and unique tool are precision line-
shape measurements. The energy-dependent resonance cross
sections of these states are strongly connected with the
inner structure of such states – theoretical interpretations
come along with predictions for absolute decay widths and
line shapes. The narrow and famous X (3872), meanwhile
renamed by the PDG to χc1(3872), was the first of these
XYZ states discovered in 2003 [2514]. Its nature is still not
understood.

As shown by a comprehensive Monte Carlo based feasi-
bility study [4672], the line shape of narrow states, partic-
ularly the X (3872), can be measured precisely and directly
by PANDA with sub-MeV resolution, Fig. 415, allowing for
sorting out models, Fig. 415, right. Thanks to the unprece-
dented beam momentum and energy resolution of the HESR
of up to Δp/p = 2 × 10−5 and ΔEcms/Ecms = 34 keV,
even very similar line-shape models can be discriminated by
employing the technique of a resonance energy scan [4672].

At LHCb, it was not possible to distinguish between a
Breit–Wigner and a Flatté-like line-shape for the X (3872)
even though huge statistics has been accumulated [2554].
This state cannot be produced in direct formation at LHCb,
and the energy-scan technique cannot be employed. Conse-
quently, the resolution of the measurement is dominated by
the detector resolution (order of a few MeV) and the LHCb

123



Eur. Phys. J. C          (2023) 83:1125 Page 513 of 636  1125 

Fig. 416 Comparison of the Breit–Wigner and Flatté-like line shapes
without and with the LHCb and PANDA resolutions convolved. Left:
The two line shapes (Breit–Wigner vs. Flatté-like) obtained from the
fit to the LHCb data [2554]. Center: The same two line shapes when
including backgrounds and resolution, i.e. convolved with the detector
resolution. Due to the resolution, the two line shapes are just indis-

tinguishable based on the LHCb data [2554]. Right: The same two
line shapes (Breit–Wigner vs. Flatté-like) convolved with the foreseen
beam-energy resolution expected for the initial phase of the experiment.
Thanks to the excellent beam energy resolution, they are well distin-
guishable with PANDA at HESR [4673]

Fig. 417 Performances to distinguish between a Breit–Wigner and a
Flatté-like line shape with PANDA/HESR at FAIR. Left: Sensitivity in
terms of the mis-identification probability Pmis to wrongly assign the
Breit–Wigner line shape instead of the correct Flatté-like line shape as
a function of the Flatté energy parameter Ef , whereas Pmis = 50 % cor-

responds to “indistinguishable”. Right: The correspondingly computed
so-called “odds”, i.e. the number of correct assignments per wrong one,
defined as odds:=(1 − Pmis)/Pmis. Using this measure, the expected
performance is at least ten times better than “indistinguishable”, i.e. as
it is achieved based on the LHCb data [2554], see also [4673]

data are equally well described using both line-shape models
(Fig. 416).

As an addendum to the published sensitivity study [4672],
the expected PANDA performance in distinguishing these
two different line-shape models has been investigated and
quantified [4673]. The achievable performance has been eval-
uated in terms of the mis-identification probability Pmis to
assign the wrong line-shape model, namely the Breit–Wigner
line shape for Monte Carlo data generated using a Flatté

line shape, and vice versa. The outcome is summarized in
Fig. 417, where the resultant sensitivities in assigning the
correct line shape (shown here for the Flatté-like line shape)
are better than 90% and 98%, depending on the given accel-
erator operation mode (Fig. 417, left). For this figure of merit,
a mis-identification probability of Pmis = 50% corresponds
to “indistinguishable”. To answer the question, how much
better the expected PANDA performance is as compared to
“indistinguishable”, one may consider the so-called “odds”
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defined as the number of correct assignments per wrong
one: odds := (1− Pmis)/Pmis. The corresponding results are
shown in Fig. 417 (right). Using this measure, PANDA is
expected to be at least a factor of 10 better than “indistin-
guishable”, a feature that is only possible due to the excel-
lent beam-momentum resolution expected for PANDA and
the direct formation of the X(3872) state in antiproton-proton
annihilations.

Energy-dependent line shape measurements for J PC =
1−− states are also possible at BESIII. The beam energy
resolution of about 1–2 MeV is due to initial state radiation,
however, significantly worse as compared to PANDA (∼50
keV). For non-vector states, such energy scans are possible
in e+e− annihilation via two-photon fusion. The production
cross section is, however, highly suppressed due to the two
virtual photons to be produced.

Concerning the light-quark and gluon sector, PANDA will
search for exotic forms of matter such as hybrid mesons and
glueballs. In the mass range accessible at FAIR, a large num-
ber of glueballs is expected and some of them might be nar-
row. Their SU(3) structure can be determined from an anal-
ysis of their decay modes.

For light hybrid mesons, such as the π1(1400) and
π1(1600), the most conclusive results so far have been pro-
vided by the COMPASS experiment at CERN/SPS, employ-
ing a 190 GeV pion beam, see e.g. [2324,2457,4674]. The
GlueX photoproduction experiment has been under construc-
tion and is dedicated to map the full spectrum of hybrid
mesons with masses of up to about 2.5 GeV. The findings by
both of these experiments and others on hybrids as well as on
non-exotic new light meson states, such as the [4675], will
complementary be addressed in p̄ p annihilation processes
at PANDA. These kind of investigations will moreover be
extended to the charmonium region, for which several glue-
ball and hybrid states are predicted, e.g. a spin-exotic state
at about 4.2 GeV [4676].

Presently, there is no experiment dedicated to glueballs.
In comparison to glueball searches in J/ψ decays e.g. at
BESIII, they are expected to be produced with orders of
magnitude higher production rate in p̄ p annihilation [4677].
In particular in the charm region, glueball candidates with
masses above 4 GeV are predicted, some of which might be
narrow and could thus be found. An analysis of their decay
fraction could be used to decide if the state has a large glue-
ball component.

Strangeness physics
With antiproton–proton annihilations and baryon number
conservation, the final state has zero total baryon number.
This feature has the advantage that relatively clean two-body
final-state topologies may emerge involving exclusively a
baryon together with its antibaryon. The maximum center-
of-mass foreseen with PANDA amounts to 5.5 GeV which

provides access to produce pairs of various hadrons includ-
ing strange and charm quarks such as p̄ p → ΛΛ̄, ΣΣ̄ ,
ΞΞ̄ , ΩΩ̄ , ΛcΛ̄c, ΣcΣ̄c, ΞcΞ̄c, ΩcΩ̄c, together with vari-
ous excited states of these hadrons. The production of these
pairs has various benefits, namely (i) close to the appropri-
ate production threshold, the identification and analysis of
these reactions are fairly simple, since one may apply tag-
ging methods, deal with limited number of partial waves, and
with a good signal-to-background level; (ii) combined with
the excellent momentum resolution of the initial antiproton
beam, a near-threshold scan allows to determine basic prop-
erties, such as mass and width, of these states, and their exci-
tations very accurately [4678]; (iii) the self-analyzing feature
of the weak decays of these (anti)baryons can be exploited
to study spin degrees-of-freedom of their production pro-
cess. The latter feature is a powerful tool that can be used for
various physics aspects ranging from particle physics (test
CP conservation in the hyperon sector), spectroscopy stud-
ies (baryon resonances with strangeness), and spin physics
(detailed study of hyperon production and interactions). In
the following, we highlight two aspects that will be fore-
seen with PANDA, namely the spin-physics and hyperon-
spectroscopy programs.

The spin-physics program of PANDA aims to measure
accurately differential cross sections and spin observables
such as polarization and spin correlations. These observ-
ables provide a deeper understanding of the spin produc-
tion mechanisms or, more generally, of the dynamics that
lead to the production of hyperons in antiproton proton col-
lisions. Which effective degrees of freedom are adequate to
describe the hadronic reaction dynamics: quarks and glu-
ons or mesons and baryons? And how does this picture
change with center-of-mass energy? The high production
rates of hyperon and antihyperon pairs in combination with
the excellent signal to background yield give perfect condi-
tions to perform these measurements. Already with mod-
erate initial luminosities, a spectacular production rate of
hyperon and antihyperon pairs are to be expected. The reac-
tion p̄ p → ΛΛ̄, with Λ → pπ− and Λ̄ → p̄π+, was
studied in detailed Monte Carlo simulations. At a luminos-
ity of 1031 cm−2 s−1 and at an antiproton beam momen-
tum of 1.64 GeV we expect 3.8×106 of fully reconstructed
ΛΛ̄ pairs per day. For strangeness |S| = 2 baryon pairs
via p̄ p → Ξ̄+Ξ− at a beam momentum of 4.6 GeV, the
expected rate is about 2.6×104/day exclusively reconstructed
pairs in the Ξ− → Λπ− and Ξ̄+ → Λ̄π+ decay modes.
Moreover, the signal-to-background ratio is estimated to be
better than 100 (250) for the Λ̄Λ (Ξ̄+Ξ−) channel. With the
perspectives of PANDA to reach the high luminosity condi-
tions at HESR at Phase Three, precision studies of hyperons
with charm contents will become feasible and CP violation
tests will become competitive [4679].
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Fig. 418 The various processes that are used to extract information
about the EMFF in the space-like (q2 < 0) and time-like (q2 > 0)
regions. The time-like region 0 < q2 < (MB1 − MB2)

2) is stud-

ied by Dalitz decays. The so-called unphysical region (4m2
e < q2 <

(MB1 + MB2)
2) by p̄ p → !+!−π0 and the high-q2 region (q2 >

(MB1 + MB2)
2) by B B̄ ↔ e+e−. Figure is taken from [2635]

PANDA’s environment to produce abundantly pairs of
hyperons and antihyperon is also the ideal setting to carry out
detailed spectroscopy studies of these baryons. The underly-
ing physics motivation is to understand the internal struc-
ture of baryons. For this purposes, baryon spectroscopy
has demonstrated to be a very powerful tool. In the case
of PANDA, the conceptual idea is to replace light valence
quarks of the (anti)proton with heavier strange and charm
ones via the processes sketches above, measure the exci-
tation spectrum of excited hyperon states, determine their
properties such as mass, width, spin, parity, and decay modes,
and compare such observations between the various baryonic
systems including those of the light-quark sector, i.e. N∗ and
Δ resonance levels. With these measurements some of the
open questions will be addressed, such as (i) Which bary-
onic excitations are efficiently and well described in a three-
quark picture and which are generated by coupled-channel
effects of hadronic interactions? (ii) To which extent do the
excitation spectra of baryons consisting of u, d, s obey SU(3)
flavor symmetry? (iii) Are there exotic baryon states, e.g. pen-
taquarks or dibaryons? (iv) What is the role of diquark cor-
relations inside baryons? (v) Can we understand the missing
resonance phenomena and the observed level ordering in the
light-quark baryon sector? PANDA has the potential to be the
key player in providing conclusive data for the strangeness
|S| = 2, 3 (anti)baryons thereby complementary to the future
activities planned at J-PARC [4597] and the wealth of baryon
spectroscopy data that have been obtained with photo- and
pion-induced reactions at JLab, ELSA, MAMI, GRAAL,
Spring-8, HADES, etc. As an illustration of the capabilities
of PANDA to determine spin-parity assignment of excited
Ξ∗ states, we refer to the results of a preliminary feasible
study described in [4680].

Nucleon structure
In the past 60 years, the structure of the proton has been exten-
sively studied with great success exploiting lepton–hadron
scattering (see Sect. 10). With the annihilation of antipro-
ton with protons, it will be possible to extract electromag-
netic form factors (EMFF) and structure functions of the
(anti)proton in a region of phase space not accessible using
electromagnetic probes.

EMFFs quantify the hadron structure as a function of the
four-momentum transfer squared q2 and are defined on the
complex q2 plane. Space-like EMFFs (q2 < 0) are real func-
tions of q2 and have been studied extensively using elas-
tic electron–hadron scattering. Time-like EMFFs are com-
plex and will be studied at PANDA using different processes
in various q2 regions. Figure 418 sketches the various pro-
cesses that can be exploited to study EMFFs for various q2

regions. Here, B, B1 and B2 denote various baryons. With
antiproton–proton annihilations, EMFFs of the (anti)proton
will be probed for the q2 range starting from the unphysi-
cal region, using the reaction p̄ p → e+e−π0, to high-q2

via p̄ p → !+!− whereby ! refers to both electrons and
muons. Detailed Monte Carlo simulations demonstrated that
both GE and GM can be measured with a precision of about
3% in the e+e− final state at q2 around 5 GeV and with a
total integrated luminosity of 0.1 fb−1, which is well suit-
able for the first years of data taking. Figure 419 depicts
the present state-of-the-art of the R = |GE |/|GM | mea-
surements as a function of q2 together with the precision
perspectives of PANDA for the early phases of the experi-
ment (green band) and for the high luminosity mode (purple
band). PANDA will be able to harvest more precise form
factor data compared to today’s measurement and extend the
measurements towards higher values of q2 including, for the
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first time, both the di-electron and di-muon as probes. Being
analytic functions of q2, space-like and time-like form fac-
tors are related by dispersion theory. With the future data
taken at PANDA and the various other complementary facil-
ities, it will become feasibly to rigorously test the analyticity
and universality of the measured EMFFs. Besides measuring
the EMFFs of the (anti)proton, also transition form factors
(B1 �= B2) are accessible. With the copious production of
hyperons and antihyperons in antiproton–proton collisions,
PANDA will provide unique data to extract transition form
factors of various hyperons and their corresponding antihy-
perons.

With PANDA operating at the highest beam energies, the
partonic degrees of freedom at distances much smaller than
the size of the proton can be studied via measurements of var-
ious structure functions. A key in such studies is the factoriza-
tion theorem stating that the interaction can be factorized into
a hard, reaction-specific but perturbative and hence calcula-
ble part and a soft, reaction-universal and measurable part.
In the space-like region, probed by deep inelastic lepton–
hadron scattering, the structure is described by parton dis-
tribution functions (PDFs), generalized parton distributions
(GPDs), transverse-momentum-dependent parton distribu-
tion functions (TMDs), and transition distribution amplitudes
(TDAs). These observables extend the information provided
by EMFFs and give further insight in the spatial and momen-
tum distributions of the constituent partons and the spin
structure. With PANDA, the time-like counterpart becomes
experimentally accessible via hard proton–antiproton annihi-
lations. Detailed studies to accessπN TDAs at PANDA in the
reactions p̄ p → γπ0 → e+e−π0 and p̄ p → J/Ψπ0 →
e+e−π0 can be found in [4681,4682]. For these measure-
ments, as well as for the TMD studies, the designed high
luminosity of PANDA is needed to accumulate reasonable
statistics. The counterparts of the GPDs in the annihila-
tion processes are the generalized distribution amplitudes
(GDAs). They can be measured in the hard exclusive pro-
cesses p̄ p → γ γ [4683] and p̄ p → γM [4684,4685],
where M could be a pseudo-scalar or vector meson (e.g.
π0, η, ρ0, φ). Differential cross section measurements
become already feasible to study with the Phase One lumi-
nosity of PANDA during the first years of data taking.

14.6 BESIII

Hai-Bo Li, Ryan Edward Mitchell, and Xiaorong Zhou

14.6.1 Introduction to the BESIII experiment

The BESIII collaboration, which operates the BESIII spec-
trometer (Fig. 420) at the Beijing Electron Positron Col-
lider (BEPCII), uses e+e− collisions with center-of-mass
(CM) energies ranging from 2.0 to 5.0 GeV to study the

Fig. 419 The form factor ratio R = |GE |/|GM | of the proton as func-
tion of the square of the four momentum, q2. The data are from PS170
[4686], BaBar [4687,4688], BESIII [4689–4692], CMD-3 [4693]. The
expected precisions of PANDA for the e+e− final state are indicated as
shaded areas for Phase One corresponding to an integrated luminosity
of 0.1 fb−1 (green band) and for Phase Three with an integrated lumi-
nosity of 2 fb−1 (purple band and red filled circles). Also shown are the
expected performances for the di-muon channel for Phase Three (dark
blue crosses)

broad spectrum of physics accessible in the tau-charm energy
region. Since the start of operations in 2009, BESIII has col-
lected more than 40 fb−1 of data, comprising several world-
leading data samples, including:

– 10 billion J/ψ decays, giving unprecedented access to
the light hadron spectrum;

– 2.7 billion ψ(2S) decays, allowing precision studies of
charmonium and its transitions;

– targeted data samples above 4 GeV, providing unique
access to exotic XY Z hadrons;

– 8.6 fb−1 of data at the ψ(3770) mass, providing a large
sample of D decays and quantum-correlated D0 D̄0 pairs,
crucial for global flavor physics efforts;

– 3 fb−1 at 4.18 GeV, near the peak of the D±s D∗∓s cross
section, for Ds studies;

– more than 3 fb−1 above ΛcΛ̄c threshold for precision Λc

studies; and
– fine-scan samples for measurements of R, the mass of

the τ , and electromagnetic form factors.

The program will continue for at least the next 5–10 years,
building on the data sets already collected, and ensuring the
BESIII collaboration will remain a key player in future global
efforts in hadron spectroscopy, flavor physics, and searches
for new physics. The maximum energy of BEPCII will soon
be upgraded to 5.6 GeV, and there are plans to more than dou-
ble the BEPCII luminosity at high CM energies by increasing
the maximum achievable beam currents. Below we briefly
outline a few highlights from BESIII, how these achieve-

123



Eur. Phys. J. C          (2023) 83:1125 Page 517 of 636  1125 

Fig. 420 Schematic view of the BESIII detector, covering 93% of the
4π solid angle. It consists of a Helium-gas based drift chamber, a Time-
of-Flight system, a CsI(Tl) crystal calorimeter and a 9-layer RPC-based
muon chamber. Figure taken from the official BESIII website

ments have contributed to global physics efforts, and how
the next era at BESIII will build on this momentum. More
details and references can be found in a recent white paper
describing the future physics program at BESIII [2634] and in
a recent contribution to the 2021 Snowmass process [4694].

14.6.2 The BEPCII-U upgrade

BEPCII delivered its first physics data in 2009 on the
ψ(2S) resonance. Since then, BESIII has collected more than
40 fb−1 of integrated luminosity at different CM energies
from 2.0 to 4.95 GeV. In order to extend the physics potential
of BESIII, two upgrade plans for BEPCII were proposed
and approved in 2020. The first upgrade will increase the
maximum beam energy to 2.8 GeV (corresponding to a CM
energy of 5.6 GeV), which will expand the energy reach of the
collider into new territory. The second upgrade will increase
the peak luminosity by a factor of 3 for beam energies from
2.0 to 2.8 GeV (CM energies from 4.0 to 5.6 GeV).

To perform these upgrades, BEPCII will increase the beam
current and suppress bunch lengthening, which will require
higher RF voltage. The RF, cryogenic, and feedback sys-
tems will be upgraded accordingly. Nearly all of the photon
absorbers along the ring and some vacuum chambers will
also be replaced in order to protect the machine from the
heat of synchrotron radiation. The budget is estimated to be
about 200 million CNY and it will take about 3 years to
prepare the upgraded components and half a year for instal-
lation and commissioning, which will start in June 2024 and
finish in December 2024. With these upgrades, BESIII will
enhance its capabilities to explore XY Z physics and will
have the unique ability to perform precision measurements
of the production and decays of charmed mesons and baryons
at threshold.

Fig. 421 Comparison of R values in the CM energy from 2.2 to
3.7 GeV. Figure taken from Ref. [4695]

14.6.3 Hadronic production: via direct e+e− annihilation

Precision measurements of hadron production help make
QCD-related models more reliable and help test SM parame-
ters with an unprecedented sensitivity. BESIII has advanced
our knowledge of hadron production using both inclusive and
exclusive approaches, mainly via direct production in e+e−
collisions.

R value measurement
The R ratio, defined as the lowest-order cross section for
inclusive hadron production, e+e− → hadrons, normal-
ized by the lowest-order cross section for the QED process
e+e− → μ+μ−, is a central quantity in particle physics. Pre-
cision measurements of the R ratio below 5 GeV contribute to
the SM prediction of the muon anomalous magnetic moment.
The R ratio also contributes in the determination of the QED
running coupling constant evaluated at the Z pole. In a first
measurement at BESIII [4695], 14 data points with CM ener-
gies from 2.2324 to 3.6710 GeV are used for the inclusive R
value measurement. An accuracy of better than 2.6% below
3.1 GeV and 3.0% above is achieved in the R ratios, as shown
in Fig. 421. Previous results had uncertainties at the level of
3–6%. The average R value in the CM range from 3.4 to
3.6 GeV obtained by BESIII is larger than the corresponding
KEDR result and the theoretical expectation by 1.9 and 2.7
standard deviations, respectively.

The complete data set for the R value measurement at
BESIII consists in a total of 130 energy points with an inte-
grated luminosity of about 1300 pb−1, corresponding to more
than 105 hadronic events at each of the points between 2 and
4.6 GeV. Thus, the final result is expected to be dominated
by a systematic uncertainty of less than 3%.

Fragmentation functions
Fragmentation functions describe the probability of finding a
given hadron within the fragmentation of a quark, and carry-
ing a given fraction of the quark momentum. Precise knowl-
edge of fragmentation functions are essential ingredients for
studies of the internal structure of the nucleon as carried out
by semi-inclusive deep inelastic scattering (SIDIS) exper-
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iments (e.g. at a future Electron-Ion Collider). At BESIII,
using data collected in the continuum energy region, unpo-
larized fragmentation functions are extracted from inclusive
hadron production processes e+e− → h + X , where h
denotes π0, η, KS , or charged hadrons. Polarized fragmen-
tation functions, i.e. the Collins effects, have been obtained
by BESIII using pairs of pions produced at

√
s = 3.65 GeV

[4696]. In the future, the Collins effect for strange quarks
could be studied in e+e− → πK+X and e+e− → KK+X .
It is also interesting to study the Collins effect in neutral
hadrons like e+e− → PP

′ + X with P/P
′ = π0/η.

Exclusive cross sectionmeasurements using initial state radi-
ation
The dispersive integral formalism used to determine the HVP
contribution to aμ relies heavily on the hadronic e+e− cross
sections at CM energies

√
s ≤ 2 GeV. At BESIII, these ener-

gies are only accessible by exploiting the initial state radi-
ation (ISR) method. With an initial data set of 2.83 fb−1 at√
s = 3.773 GeV, this technique already produces results

competitive with the B-factories for hadronic masses above
approximately 1.3 GeV.

In a first measurement by BESIII, the largest hadronic
cross section, for e+e− → π+π−, was measured in the
mass region from 600 to 900 MeV by reconstructing the ISR
photon at large angles only [4298]. With 20 fb−1 of data at√
s = 3.773 GeV expected soon, a new measurement of the

π+π− cross section will use the improved statistical accu-
racy to implement an alternative normalization scheme rela-
tive to the muon yield. With this approach, the largest uncer-
tainties will cancel, bringing the expected final uncertainty
down to 0.5%, as illustrated in Fig. 422. Additionally, the
multi-meson cross sections for e+e− → π+π−π0 as well as
e+e− → π+π−π0π0 have been measured using the same
analysis strategy. Uncertainties of approximately 3% were
achieved. These cross sections can be used to study reso-
nances in the final state as well as in the intermediate states.
Further improvements are expected with additional data at√
s = 3.773 GeV.

Meson transition form factors
Transition form factors (TFF) of mesons M describe the
effects of the strong interaction on the γ ∗γ ∗M vertex. At
BESIII, TFFs are studied in the region of time-like virtualities
through meson Dalitz decays and radiative meson production
in e+e− annihilations. Space-like virtualities are studied in
two-photon fusion reactions, which in principle give access
to TFFs over a wide range of virtualities by measuring the
momentum transfer of the scattered electrons. Due to the
rapid drop of the cross section with Q2

i = −q2
i , BESIII cur-

rently uses single-tagged measurements, where the TFF is
only studied depending on one of the virtualities.

A first measurement of the π0 TFF based on 2.83 fb−1 of
data at

√
s = 3.773 GeV covers virtualities from 0.3 GeV2

Fig. 422 Comparison of the leading-order hadronic vacuum polariza-
tion contribution to (g − 2)μ due to π+π− in the energy range 600–
900 MeV from various experiments and the prospect result with 20 fb−1

of data at
√
s = 3.773 GeV at BESIII. Figure modified according to Ref.

[4298]

to 3.1 Gev2. The results confirm the recent calculations in
dispersion theory and on the lattice. Analogous studies are
performed for η and η′ mesons, and also for multi-meson
systems. The production of charged and neutral two-pion
systems in two-photon fusion gives access to pion masses
from threshold to 2 GeV and virtualities from 0.2 GeV2 to
3 GeV2 at a full coverage of the pion helicity angle. The
results will be complementary to all previous measurements,
which have mostly been performed with quasi-real photons.
The production of higher meson multiplicities in two-photon
fusion allows access to scalar, tensor and axial resonances.
The single-tagged strategy allows for the production of axial
mesons due to the presence of a highly virtual photon. A
first measurement of the f1(1285) will be performed using
the π+π−η final state for reconstruction. With the upcoming
data set of 20 fb−1 at

√
s = 3.773 GeV all two-photon fusion

analysis will benefit from higher statistics, which will be
sensitive to higher virtualities.

Time-like baryon electromagnetic form factors
At BESIII, the |GE/GM | of the proton in the time-like region
is determined over a large q2 from threshold to 9.5 GeV2

with the best precision reaching 3.7% [4690]. With more
data samples collected, the form factor ratio of proton will
be obtained in a wide q2 region from 10 to 20 GeV2, simi-
lar to the q2 region from the PANDA expectation. The cross
section of e+e− → nn̄ [4697] is found to be smaller than
that of e+e− → p p̄. The effective FFs of the neutron show
a periodic behavior, similar to earlier observations of proton
FFs reported by BaBar. The energy region of BESIII cov-
ers the production threshold of all SU(3) octet hyperons and
several charmed baryons. At BESIII, the Born cross sections
of electron–positron annihilation to various baryon pairs are
measured from threshold [4698], including ΛΛ̄, ΣΣ̄ , ΞΞ̄

and ΛcΛ̄
+
c . Obvious threshold effects are observed. The

|GE/GM | of the Λ, Σ+, and Λc are obtained from angular
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analyses while effective FFs are extracted for other baryons.
More precise data or finer scans are necessary for deeper
insight into these results. The hyperon EMFFs and the cross
section line shapes can also be studied with improved preci-
sion via ISR approaches with a 20 fb−1 data set collected at√
s = 3.773 GeV.
The EMFFs in the time-like region are complex and the

relative phase betweenGE andGM will lead to the transverse
polarization of the final baryons. At BESIII, the relative phase
of the Λ is determined at

√
s = 2.396 GeV with a joint

angular distribution analysis, to be ΔΦ = 37◦ ± 12◦ ± 6◦
[4699]. Combining with the obtained |GE/GM | at the same
CM energy, the complete EMFFs are determined for the first
time. Similarly, the relative phase of the Λc is determined at√
s = 4.60 GeV [4700]. The currently available data set from√
s = 4.6 to 4.95 GeV will help complete determinations of

Λc EMFFs in a wide q2 range. As the energy dependence
of the relative phase is essential for distinguishing various
theoretical predictions, a complete determination of EMFFs
for SU(3) octet hyperons are necessary in the future.

Precision measurement of the τ mass
The τ lepton is one of three charged elementary leptons in
nature, and its mass is an important parameter of the Standard
Model. The τ mass can and should be provided by experi-
ment precisely. Precision τ mass measurements probe lep-
ton universality, which is a basic ingredient in the Standard
Model.

To aid in the τ mass measurement, a high-accuracy beam
energy measurement system (BEMS), located at the north
crossing point of BEPCII, was designed, constructed, and
finally commissioned at the end of 2010. By comparing a
ψ(2S) scan result with the PDG value of the ψ(2S) mass,
the relative accuracy of the BEMS was determined to be at the
level of 2×10−5 [4701]. The BESIII collaboration performed
a fine mass scan experiment in the spring of 2018. The τ mass
scan data were collected at five scan points near the τ pair
production threshold with total luminosity of 137 pb−1. The
analysis is in progress. The uncertainty, including statistical
and systematic error, will be less than 0.1 MeV.

14.6.4 Hadron spectroscopy: from light to heavy

Light hadron physics
QCD allows for a richer meson spectrum than the con-
ventional quark model predicts, including tetraquark states,
mesonic molecules, hybrid mesons and glueballs.

Lattice QCD predicts the lightest glueballs to be scalar,
tensor and pseudo-scalar, allowing mixing with the conven-
tional mesons of the same quantum numbers. Generally, glue-
balls are expected to be produced in gluon-rich processes
such as radiative J/ψ decays, so that the high-statistics J/ψ
sample puts BESIII in a unique position to study glueball can-

Fig. 423 The invariant mass spectrum of the final state π+π−η′ for
J/ψ → γπ+π−η′ candidates. A series of new particles are observed
including X (1835), X (2100), X (2370) and X (2600). Figure taken from
Ref. [4704]

didates. Partial wave analyses (PWA) of the radiative decays
J/ψ → γπ0π0,γ K 0

SK
0
S andγ ηη reveal a strong production

of the f0(1710) and f0(2100) [4702]. One might speculate
that these resonances have a large gluonic component. Simi-
larly, the tensor meson f2(2340) is strongly produced in the
radiative decays J/ψ → γ ηη and γφφ [4702], rendering it
a good candidate for a tensor glueball. Two recent coupled
channel analyses [2493,2494] of BESIII data on radiative
J/ψ decays came to different conclusions concerning the
number of contributing resonances and the identification of
a glueball candidate, so that additional studies using the full
10 billion J/ψ data sample will be of high importance in the
future.

Based on 10 billion J/ψ events, the decay J/ψ →
γ f0(1500) → γ ηη′ has been observed with a significance
over 30σ while J/ψ → γ f0(1710) → γ ηη′ is found to
be insignificant [2461,2462]. The suppressed decay rate of
the f0(1710) into ηη′ lends further support to the hypothesis
that f0(1710) has a large overlap with the ground state scalar
glueball [4703].

In the search for the pseudo-scalar glueball, the decay
J/ψ → γ η′π+π− has proven to be particularly interesting
[4702]. Here, the X (1835) can be observed with a lineshape
that appears to be distorted at the proton anti-proton thresh-
old, indicating a potential p p̄ bound-state or resonance. In
addition, the higher mass structures X (2120), X (2370) and
X (2600) are observed, as shown in Fig. 423, although their
spin-parity remains to be determined, a task that will be pos-
sible using the new, high precision J/ψ data.

Motivated by multiple studies of the hybrid meson candi-
date π1(1600), a recent search for the isoscalar partner states
η1 and η′1 in the radiative decays J/ψ → γ ηη′ revealed a
significant contribution from a new structure η1(1855) with
exotic quantum numbers J PC = 1−+ [2461,2462]. While it
is too early to say whether the η1(1855) is indeed an isoscalar
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hybrid meson, future studies of alternative decay modes will
help reveal its nature.

The light scalar mesons f0(980) and a0(980) are fre-
quently discussed as potential multiquark candidates, either
as K K̄ molecules or as compact tetraquark states. One
possible way to probe their structure is the study of
f0(980)–a0(980) mixing first observed by BESIII in the
isospin-violating processes J/ψ → φa0

0(980) and χc1 →
π0 f0(980) [4702]. These results provide constraints in the
development of theoretical models concerning the f0(980)
and a0(980).

With 10 billion J/ψ decays and the newly acquired 2.7 bil-
lion ψ(2S), precision studies of conventional and exotic
mesons, including multiquark states, glueballs and hybrid
mesons, in radiative and hadronic J/ψ , ψ(2S) and χcJ
decays will be key tasks in the coming years.

Light baryon spectroscopy
The high production rate of baryons in charmonium decays,
combined with the large data samples of J/ψ and ψ(2S)
decays produced from e+e− annihilations, provides excel-
lent opportunities for studying excited baryons. Therefore,
the BES experiment launched a program to study the excited
baryon spectrum. At present, the search for hyperon reso-
nances remains an important challenge. Some of the low-
est excitation resonances have not yet been experimentally
resolved, which are necessary to establish the spectral pattern
of hyperon resonances. The large data samples of J/ψ and
ψ(2S) decays accumulated by the BESIII experiment enable
us to complete the hyperon (e.g., Λ∗, Σ∗ and Ξ∗) spectrum
and examine various pictures for their internal structures.
Such pictures include a simple 3q quark structure or a more
complicated structure with pentaquark components dominat-
ing. In particular, ψ(2S) decays, because of the larger mass
of the ψ(2S), have great potential to uncover new higher
excitations of hyperons.

At BESIII, 1010 J/ψ and 2.7 × 109 ψ(2S) decays are
now available, which offer great additional opportunities for
investigating baryon spectroscopy. Together with other high-
precision experiments, such as GlueX and JPARC, these very
abundant and clean event samples will bring the study of
baryon spectroscopy into a new era, and will make significant
contributions to our understanding of hadron physics in the
non-perturbative regime.

Charmonium physics
Below the open-charm threshold, the spin-triplet charmo-
nium states are produced copiously in e+e− annihilation and
in B decays so they are understood much better than the
spin-singlet charmonium states, including the lowest lying
S-wave state ηc, its radial excited partner ηc(2S), and the
P-wave spin-singlet state hc. The 2.7 billion ψ(2S) decays
at BESIII make it possible to study the properties of these
states with improved precision. In addition, the unexpectedly

large production cross section for e+e− → π+π−hc in the
BESIII high-energy region provides a new mechanism for
studying the hc and ηc (from hc → γ ηc).

The coupling of vector charmonium states to the open-
charm meson pairs will provide crucial information in iden-
tifying the states in this region. The hadronic and radia-
tive transitions between the (excited) charmonium states
can be investigated to study the transition rates and decay
dynamics. The cross section of e+e− → ηJ/ψ [4705]
shows an enhancement around the ψ(4040) mass, while
the cross sections of e+e− → π+π−ψ(3770) [4706] and
e+e− → π+π−ψ2(3823) [4707] show an enhancement
around the ψ(4415) mass. The process e+e− → γχcJ is
studied to search for radiative transitions between the excited
vector charmonium states and the χcJ [4708]. Whether they
are produced via hadronic transitions from the excited vec-
tor charmonium states or via vector charmonium-like states
is not yet clear and can be addressed using improved lumi-
nosity and more decay channels.

Using the e+e− → π+π−ψ2(3823) process, the most
precise mass of the ψ2(3823) has been determined [4707]
and new decay modes of theψ2(3823) have been searched for
[4709]. These recent measurements at BESIII are examples
that the transitions between charmonium states can also serve
as production sources of non-vector charmonium states, and
can be used to study the properties (mass, width and decay
modes) of non-vector charmonium states. They will also be
important study topics in the future at BESIII.

With a dedicated data sample taken in theχc1 mass region,
the direct production of the C-even resonance, χc1, in e+e−
annihilation is observed for the first time with a statistical sig-
nificance larger than 5σ [4710]. A typical interference pat-
tern around the χc1 mass is observed as shown in Fig. 424.
The electronic width of the χc1 has been determined for the
first time from a common fit to the four scan samples to be
Γee = (0.12+0.13

−0.08) eV, in contrast of a few keV for vector
states, which is 4 orders of magnitude smaller. This observa-
tion proves that the direct production of C-even resonances
through two virtual photons is accessible and measurable at
the current generation of electron–positron colliders.

XYZ physics
The discovery of the XYZ states has revolutionized tradi-
tional studies of the charmonium spectrum [4711]. These
exotic states cannot be embedded in the conventional charm-
anticharm potential model framework, but instead point
towards novel quark configurations, such as tetraquarks,
hybrids, or hadronic molecules. Studying them opens a new
window into nonperturbative QCD, which underlies the for-
mation of hadrons via the strong interaction. The existence of
the XYZ states poses several problems, which are addressed
as the “Y problem”, “Z problem”, and “X problem” below.
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Fig. 424 The energy-dependent cross sections of e+e− → γ J/ψ →
γμ+μ− including (blue and green curves) and not including (red curve)
the signal process e+e− → χc1(1P). The gray curve denotes the signal
strength in the hypothetical case of no interference. The black dots with
error bars are measured results from data. Figure taken from Ref. [4710]

The Y problem
BESIII has systematically measured the cross sections of
various exclusive e+e− annihilations with hidden charm,
open charm, and light hadronic final states [4711], and has
shown that the lineshapes are complicated as a function of
CM energy. The masses and widths of various structures
appearing in these cross sections are shown in Fig. 425. How-
ever, the extracted parameters of these Y states are not con-
sistent with each other in different channels. Furthermore,
they deviate from the resonances observed in inclusive chan-
nels, such as the ψ(4040), ψ(4160), and ψ(4415), that are
believed to be conventional charmonia. This leads to the Y
problem. What are the exact lineshapes of these cross sec-
tions? Are these observed structures new resonances or just
results of some subtle kinematic effects? To address these
issues, a detailed scan between 4.0 and 4.6 GeV is proposed
[2634], with 500 pb−1 per point, for points spaced at 10 MeV
intervals. This target has been partially achieved with about
22 fb−1 integrated luminosity, and will be updated with larger
maximum energy (5.6 GeV) after the upgrade of the BEPCII.

The Z problem
The Zc(3900) [4711] was discovered at BESIII in the pro-
cess e+e− → π∓Z±c with Z±c → π± J/ψ , and the
Zc(4020) was discovered in the process e+e− → π∓Z±c
with Z±c → π±hc. The Zc(3900) has also been observed
in the open-charm channel (DD̄∗ + c.c.)±, similarly the
Zc(4020) was seen via the open-charm channel (D∗ D̄∗)±.
Furthermore, neutral partners of these charged Zc states have
been observed at BESIII via processes e+e− → π0π0 J/ψ
and e+e− → π0π0hc. BESIII has also determined the quan-
tum numbers of the Zc(3900) to be J P = 1+. Recently,
BESIII has observed a new near-threshold structure in the
K+ recoil-mass spectra in e+e− → K+(D−s D∗0+D∗−s D0)

[2568]. This structure, named Zcs(3985), is a good candi-

Fig. 425 Masses versus widths of the Y states obtained from different
processes at BESIII. Figure modified according to Ref. [4712]

date for a charged hidden-charm tetraquark with strangeness.
Besides, the evidence for its neutral partner, Zcs(3985)0 is
observed via e+e− → KS(D+s D∗− + D∗+s D−) [4713].

However, at the energy region higher than 4.3 GeV the
data have revealed more complex structure in the Daliz plots
of e+e− → π+π− J/ψ . A similar situation is found in the
e+e− → π+π−ψ(2S) [4714]. This is the Z problem. Are
the properties of these Zc states constant (corresponding to
real resonant states) or energy dependent (corresponding to
kinematic effects such as cusps or singularities)? What are the
exact lineshapes of them? Can we find more decay patterns
for them, especially for the newly discovered Zcs states? Are
there spin multiplets of these Zc states? To answer these
questions, BESIII may take advantage of the fine scan data
mentioned before, but at a few points, a set of samples with
very high statistics will be very helpful. BESIII currently has
1 fb−1 of data for e+e− cms energy at 4.23 and 4.42 GeV.
Additional data including three or four points with an order
of 5 fb−1 or more per point is proposed to guarantee adequate
statistics for amplitude analyses [2634]. After the upgrade of
BEPCII with triple the luminosity, this goal will be achieved
more easily.

The X problem
For the X (3872), BESIII has discovered the process e+e− →
γ X (3872), studied the open-charm decay and radiative tran-
sitions of the X (3872), and has observed the hadronic tran-
sitions X (3872) → π0χc1(1P) and X (3872) → ωJ/ψ
[4711]. The X (3872), with its quantum numbers J PC =
1++, has a mass very close to the predicted χc1(2P) state
with a very narrow width. Then the X problem is finding
a way to separate the X (3872) from the χc1(2P). Is the
X (3872) really exotic or conventional, or even a mixture
state? Can we measure the line shape of the X (3872)? Are
there other X states (for example close to the D∗ D̄∗ thresh-
old) that have not been observed yet? The related studies will
benefit from the large scan and other data samples mentioned
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before. The measurement of X (3872) lineshape could be
improved by performing the simultaneous fit of the available
observed channels at BESIII, i.e. X (3872) → π+π− J/ψ
and X (3872)→ D0 D̄0π0, taking into account the coupled-
channel effect. Furthermore, at Ecm > 4.7 GeV with highly
excited ψ or Y states produced, the hadronic transitions, that
take larger production rates than the radiative transitions, are
accessible. After the upgrade of BEPCII to its maximum
CM energy, BESIII will have the ability to search for the
J++ states via hadronic transitions such as the processes
e+e− → ωX and e+e− → φX .

Relationships
There are two kinds of relationships that deserve discussion.
One is the relationship between XYZ states and conventional
charmonia. For example, the χc1(2P) has a similar mass and
the same J PC as the X (3872). So a detailed understanding
of the spectrum of the conventional 2P charmonium states,
that include the spin triplet χcJ (2P) and singlet hc(2P), is
crucial for understanding the nature of the X (3872). This
is also true for the other conventional charmonia and XYZ
states under similar conditions. The studies of the conven-
tional charmonia and exotic XYZ are complementary to each
other. Understanding the relations between the two kinds of
states, even the possible mixing between them, will be help-
ful for understanding the properties of the XYZ states. The
other relationship is among the XYZ states. The analyses
of processes e+e− → γ X (3872) and e+e− → π0π0 J/ψ
have already shown that there is evidence for the radiative
transition Y (4230) → γ X (3872) and the hadronic transi-
tion [4711]

Y (4230)→ π0Z0
c (3900).

Searching for new transition modes and confirming these
relations may be a unique chance for BESIII to reveal the
nature of the internal structure of the XYZ states [4715].

Pentaquark states
The LHCb experiment reported the observation of three
pentaquark states with a cc̄ component in the J/ψp sys-
tem via Λ0

b → J/ψK− p. To confirm these states, fur-
ther experimental research should be pursued with the cur-
rent available and the forthcoming experimental data [4716].
BESIII may search for such and similar states with data to
be collected at CM energies above 5 GeV in the processes
e+e− → J/ψp + X , χcJ p + X , J/ψΛ + X , D̄(∗) p + X ,
D(∗) p+ X , and so on. It is clear that a systematic search for
baryon-meson resonances should be pursed in various pro-
cesses, where the baryon could be p, Λ, Σ , Σc, …, and the
meson could be ηc, J/ψ , χcJ , D(∗), etc. It is worth point-
ing out that the tetraquark and pentaquark candidates men-
tioned above have a pair of charm-anticharm quarks which
may annihilate. Observations of states like T+cc (ccud) or Θ0

c
(uuddc̄) or P0

cc (ccddū) or similar serve as more direct evi-

dence for multiquark states. The BES experiment pioneered
a search for the pentaquark candidate Θ(1540) in ψ(2S)
and J/ψ decays to KS pK−n̄ and KS pK+n [4717]. More
attempts will be performed with 10 billion J/ψ and 3 billion
ψ(2S) at BESIII.

14.6.5 Hadron decay: from light to heavy

Light meson decays
The η and η′ mesons, the neutral members of the ground
state pseudoscalar nonet, are important for understanding low
energy quantum QCD [4718]. The 10 billion J/ψ events
collected at BESIII offer an unique opportunity to investi-
gate all these aspects, as well as the search for rare η and
η′ decays needed to test fundamental QCD symmetries and
probe physics beyond the SM. The decays J/ψ → γ η(η′)
and J/ψ → φη(η′) provide clean and efficient sources of
η/η′ mesons for the decay studies.

The observation of new η′ decay modes [4719], including
η′ → ρ∓π±,η′ → γ e+e−, andη′ → 4π have been reported
for the first time using about 109 J/ψ decays. Using the same
data set, the branching fractions of the five dominant decay
channels of the η′ were measured for the first time using
events in which the radiative photon converts to e+e−.

The double Dalitz decay η′ → e+e+e−e− is of great
interest for understanding the pseudoscalar transition form
factor and the interaction between pseudoscalar and virtual
photons. This process has not been observed to date, while
the predicted branching fraction is of the order of 2 × 10−6

[4720,4721]. Another interesting study is the hadronic decay
η′ → π0π0η which is sensitive to the elastic ππ S-wave
scattering lengths, and causes a prominent cusp effect in the
π0π0 invariant mass spectrum at the π+π− mass threshold
[4722]. The full J/ψ data set collected by BESIII offers
unique opportunities to investigate the cusp effect in this
decay for which no evidence has yet been found.

The absolute branching fraction of the decay J/ψ → γ η

has been measured with high precision using radiative pho-
ton conversions [4719], and the four dominant η decays have
been measured for the first time. The η/η′ → γπ+π− decay
results are related to details of chiral dynamics; η/η′ →
3π decays provide information on the up and down quark
masses; and the decay widths of η/η′ → γ γ are related to
the quark content of the two mesons. Despite the impres-
sive progress in the last years, many η and η′ decays are
still to be observed and explored. The full J/ψ data set
now available at BESIII makes possible more detailed stud-
ies with unprecedented precision. It allows, in addition, an
intensive investigation of the properties of the pseudoscalar
states η(1405)/η(1475) [4719]; a thorough study of all states
observed in the 1.4−1.5 GeV/c2 mass region; a deep inves-
tigation of the ω → π+π−π0 Dalitz plot; and searches for
rare ω decays.
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Hyperon decays
Observation of a significant polarization of the Λ and Λ̄

from J/ψ → ΛΛ̄ led to the revision of the decay asym-
metry parameter αΛ [4723,4724], and has shown BESIII
has the potential to study properties of the ground-state
(anti)hyperons. Moreover, the cascade decays of J/ψ →
Ξ−Ξ+ made it possible to measure the strong and weak
phases of the Ξ− decay [4679]. The branching fractions for
J/ψ decays into a hyperon–antihyperon pair are relatively
large,O(10−3), and thus the collected 10 billion J/ψ decays
can be used for precision studies of hyperon decays and tests
ofCP symmetry. The hyperon–antihyperon pair is produced
in a well-defined spin-entangled state based on the two possi-
ble partial waves (parity symmetry in this strong decay allows
for an S- and a D-wave). The charge-conjugated decay modes
of the hyperon and antihyperon can be measured simulta-
neously and their properties compared directly. In the first
round of analyses both the hyperon and antihyperon decay
via the common pionic modes. The full data set will be used
to improve the precision of theCP-violation searches within
these decays. The next stage will be to use a common decay of
one of the (anti)hyperons to study rare decays of the produced
partner. For example, the kinematical constraints make it pos-
sible to perform complete reconstruction of the semileptonic
decays and radiative decays of polarized hyperons.

Leptonic decays of charm mesons
In the SM, the partial widths of the leptonic decay D+(s) →
!+ν! can be expressed in terms of the D+(s) decay constant
fD+

(s)
and the CKM matrix element |Vcd(s)|. Using the mea-

sured branching fractions of the leptonic D+(s) decays, the
product fD+

(s)
|Vcs(d)| can be determined. By taking the fD+

(s)

calculated by LQCD with a precision of 0.2% [692,695] one
can precisely determine the CKM matrix elements |Vcs | and
|Vcd |. Conversely, taking the |Vcs | and |Vcd | from the standard
model global fit, one can precisely measure the D+(s) decay
constants, which are crucial to calibrate LQCD for heavy-
quark studies. Comparing the obtained branching fractions
of D+(s) → τ+ντ and D+(s) → μ+νμ gives an important
comprehensive test of τ − μ lepton-flavor universality.

In recent years, BESIII reported the most precise exper-
imental studies of D+(s) → !+ν! by using 2.93, 0.48, and

6.32 fb−1 of data taken at
√
s = 3.773, 4.009, and 4.178–

4.226 GeV [4725]. However, the statistical uncertainty still
dominates studies of D+ → !+ν! decays, whereas the statis-
tical and systematic uncertainties are comparable in measure-
ments of D+s → !+ν! decays. The full BESIII data samples
to be collected in the coming years allow improvements in
the precision of these important constants. The current results
of fD+ and |Vcd | and their expected precision are shown in
Fig. 426. Furthermore, the accuracy of the lepton-flavor uni-
versality tests in D+ → !+ν! and D+s → !+ν! decays are

Fig. 426 Comparison of extracted D+ decay constant and |Vcd | from
various experiments and the expected precision with 20 fb−1 ψ(3770)
data at BESIII

Fig. 427 Comparison of f π+ (0) and f K+ (0) from various experiments
and the expected precision with 20 fb−1 ψ(3770) data at BESIII

expected to be reduced from 24.0% and 4.0% to about 10.0%
and 3.0%, respectively.

Semileptonic decays of charm mesons
Over the years, BESIII reported experimental studies of the
semi-leptonic D0(+)

(s) decays into P , V , S, and A [4725],
where P denotes pseudoscalar mesons of K , π , η, η′; V
denotes vector mesons of K ∗, ρ, ω, and φ; S denotes scalar
mesons of f0 and a0; and A denotes axial vector mesons of
K1 and b1. These measurements were carried out by using
2.93, 0.48, and 6.32 fb−1 of data taken at

√
s = 3.773, 4.009,

and 4.178–4.226 GeV, respectively.
Except for the D0(+) → K and D0(+) → K ∗ form fac-

tors, the precision of all other measurements of the D0(+)
(s) →

P and D0(+)
(s) → V form factors are restricted due to the lim-

ited size of the data sets. Therefore, with the full BESIII data
samples, all the form-factor measurement uncertainties that
are limited by the size of the data sample will improve by
factors of up to 2.6 for semi-leptonic D0(+) and 1.4 for semi-
leptonic D+s decays. Complementary studies of the semi-
muonic charmed meson decays further improve the form fac-
tor knowledge. In addition, we plan to extract the D → S
and D→ A form factors for the first time.

The best precision in the c → s and c → d semi-
leptonic D0(+) decay form factors will be from the stud-
ies of D0(+) → K̄!+ν! and D0(+) → π!+ν!. Combining
analysis of semi-electronic and semi-muonic D0, as well as
D+ decays will give more precise results. The experimental
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uncertainties are expected to be reduced from 0.6% to 0.4%
on c→ s decays and from 1.5% to 0.7% on c→ d decays,
as indicated in Fig. 427.

For semi-leptonic D0(+)
(s) decays, the best test of μ − e

lepton-flavor universality is expected to be from D →
K̄!+ν! decays, where the test precision can be reduced from
1.3% to the level of 0.8% in the near future. At present, it is
not conclusive whether the μ − e lepton-flavor universality
always holds in semi-leptonic D0(+)

(s) decays, because there
are still many unobserved semi-muonic decays such as

D+ → η′μ+νμ, D0(+) → a0(980)μ+νμ,
D0(+) → K1(1270)μ+νμ, D+ → f0(500)μ+νμ,
D+s → K 0μ+νμ, D+s → K ∗0μ+νμ,
D+s → f0(980)μ+νμ, D+s → η′μ+νμ.

Larger data samples provide improved opportunities to
search for these decays, whose observation will help clar-
ify if there is violation of μ− e lepton-flavor universality in
the charm sector.

Moreover, the studies on the intermediate resonances in
hadronic final states, e.g., K1(1270) and a0(980), in the
semi-leptonic D0(+)

(s) decays provide a clean environment
to explore meson spectroscopy, as no other particles inter-
fere. This corresponds to a much simpler treatment than
those studies in charmonium decays or hadronic D0(+)

(s)
decays.

Hadronic decays of charm mesons
Some experiments, for example LHCb, have the ability to
measure a large number of charm and beauty hadron relative
branching-fraction ratios due to the high yields given by the
large charm and beauty production cross section. The conver-
sion from the branching-fraction ratio to the absolute branch-
ing fraction incurs the uncertainty of the branching fraction
of the reference mode, such as, D0 → K−π+, D0 →
K−π+π+π−, D+ → K−π+π+, D+s → K−K+π+, and
Λ+c → pK−π+. Improved measurements of these abso-
lute branching fractions at BESIII will be highly beneficial
to some key measurements at LHCb. With 20 fb−1 data
taken around

√
s = 3.773 and 4.18 GeV at BESIII, these

decays are expected to be measured with an uncertainty of
about 1%.

At present, the sum of the branching fractions for the
known exclusive decays of D0, D+ and D+s are more than
80%. However, there is still significant room to explore more
hadronic decays to increase the known branching fractions
for D0, D+ and D+s . A 20 fb−1 dataset will allow the deter-
mination of the absolute branching fractions of those miss-
ing decays Kπππ , KKππ , and KKπππ and exploring
the sub-structures in these decays using amplitude analyses
is also interesting. In addition, precise measurements of the
branching fractions for D0, D+s and D+ inclusive decays to
three charged pions and other neutral particles, and exclu-

sive decays to final states with neutral kaons and pions (e.g.
D+s → η′π+π0, D+ → K̄ 0π+π+π−π0 and decay modes
contributing to D0(+) → ηX ) are also highly desirable to
better understand backgrounds in several measurements, par-
ticularly B → D∗τ+ντ .

Studies of such multi-body decays benefit from amplitude
analyses to understand the intermediate resonances. Even
though it is possible to accumulate large samples of singly
tagged D mesons, they have very high backgrounds making
them unsuitable to perform amplitude analyses. In contrast
to this, the doubly tagged DD̄ mesons can provide clean D
samples with low backgrounds. However, the sample size
limits the precision with the current data. Therefore, such
measurements will be significantly improved with the full
BESIII data sets.

Decays of charmed baryons
The lightest charmed baryon, Λ+c , which was observed in
1979, is the cornerstone of the charmed baryon spectra. The
improved knowledge of Λ+c decays, especially for the nor-
malization modeΛ+c → pK−π+, is key for the studies of the
charmed baryon family. Moreover, the Λ+c decays can also
open a window upon a deeper understanding of strong and
weak interactions in the charm sector. In addition, these will
provide important inputs for the studies of beauty baryons
that decay into final states involving Λ+c .

Compared to the significant progress in the study of
charmed mesons, the advancements in the knowledge of the
charmed baryons are relatively slow in the past 40 years.
Before 2014, almost all the decays of Λ+c were measured
relative to the normalization mode Λ+c → pK−π+, whose
branching fraction suffered a large uncertainty of 25%. More-
over, no data sample taken around theΛ+c Λ̄−c pair production
threshold had been used to study the Λ+c decays.

BESIII have already collected 4.4 fb−1 of data above
ΛcΛ̄c threshold, which will provide the most precise val-
ues of many absolute branching fractions and polarization
parameters [2634]. Future running with the upgraded BEPC-
II will allow large samples of Σc and Ξc pairs to be col-
lected, which will lead to many absolute branching fractions
of charm baryon decays to be determined for the first time
[2634].

The “post-BEPCII era”
The super τ -Charm facility (STCF) [4726] is one of the major
options for future accelerator-based high energy projects
in China. The proposed STCF is a symmetric double ring
electron–positron collider that would operate in the CM
region

√
s = 2 ∼ 7 GeV with a peaking luminosity of

0.5×1035 cm−2 s−1 or higher. It is expected to deliver more
than 1 ab−1 of integrated luminosity per year. Huge samples
of exotic charmonium-like states (XY Z ), J/ψ , D, Ds andΛc

decays could be used to make precision measurements of the
properties of XY Z particles, and map out the spectroscopies
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of QCD hybrids and glueballs. High statistics data samples
could also be used to search for new sources of CP violation
in the hyperon and τ -lepton sectors with unprecedented sen-
sitivity and search for anomalous decays of various hadrons
with sensitivities extending down to the level of SM-model
expectations.

Since 2012, when the STCF was proposed, the Chinese
STCF working group, together with international teams, have
carried out a series of feasibility studies, completed the pre-
liminary Conceptual Design Report (CDR) and made sig-
nificant progress. Compared to the BEPCII/BESIII experi-
ments, the substantial improvement in the performance of
the STCF will lay the foundation for breakthroughs in the
relevant frontiers of research. Meanwhile, it will pose major
technical challenges in accelerator and detector development.
At present, the STCF project for the research and develop-
ment of key technologies is actively performed with the sup-
port of Anhui Province of China. More efforts are being made
to promote the implementation and construction of the STCF
project.

14.7 BELLE II

Toru Iijima
The Belle II experiment is a particle-physics experiment
operating at the SuperKEKB collider built in the KEK labo-
ratory in Japan (Fig. 428). It is a successor of the Belle experi-
ment at the KEKB collider, which experimentally established
the Kobayashi-Maskawa theory of theCP violation, together
with the BaBar experiment at the SLAC PEP II collider. Over
the next decades, Belle II will record the decay of billions
of bottom mesons, charm hadrons, and τ leptons produced
in electron–positron collisions at and near the Υ (4S) energy.
The ultimate goal is to accumulate 50 ab−1 data of e+e−
collisions, which is about 50 times larger than the data set
of the Belle experiment. These data, collected in the low
background and kinematically known conditions, will pro-
vide a complementary approach to experiments at hadron
machines. It will allow us to critically test the standard model
(SM) and search for new particles through processes sensitive
to virtual heavy particles at mass scale orders of magnitudes
higher than direct searches at the energy frontier experiment.

The Belle II physics program includes variety of subjects
in the areas of;

– Precision CKM measurements to critically test SM and
find or constrain non-SM physics contribution in a model-
independent way.

– Search for non-SM CP violation in rare B processes,
such as b→ qq̄s.

– Search for non-SM physics in semileptonic, radiative
and other rare B decays, including precision tests of the

Fig. 428 Layout of the SuperKEKB accelerator

lepton-universality in b → c!ν and b → s!+!−, where
! stands for either of e, μ and τ .

– Measurements of many parameters in decays of charm
hadrons and the τ leptons with world-leading precisions,
including their masses, lifetimes, CP violation parame-
ters, and branching fractions for charged-lepton-flavor-
violating decays.

– Unique searches for dark-sector particles with masses in
the MeV-GeV range, where some of them are possible
dark matter candidates.

– Broad spectroscopy program for both conventional and
multi-quark cc̄ and bb̄ states using different production
processes; through B decays, through initial state radi-
ation processes, two-photon collisions and double char-
monia productions.

– Provide essential inputs to sharpen the interpretation of
results for the anomalous magnetic moment of the muon
(g − 2)μ, which indicates 4.2σ deviation from the SM.

In these physics studies at Belle II, the importance of QCD
is two-fold. First, better understandings of non-perturbative
QCD properties associated with particle decays are essen-
tial ingredients for sharpening the SM predictions as ref-
erences for non-SM physics searches. Second, a variety of
low-energy QCD phenomena, such as the cc̄ and bb̄ spec-
troscopy as mentioned above, are the subjects that could be
uniquely studied at the Belle II experiment. Also, the e+e−
collisions to hadron final states offer unique opportunities
to study hadronization processes like the Collins effect. The
variety of physics studies that can be carried out at Belle II
is discussed in detail in Ref. [4158]. In the subsections fol-
lowing Sect. 14.7.2, we describe only a brief summary for
subjects that are of primary relevance to QCD, where Belle
II will be unique and will be world-leading.
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14.7.1 SuperKEKB/Belle II experiment

The SuperKEKB accelerator is an asymmetric energy col-
lider of 4.0 GeV e+ and 7.0 GeV e−. The target instanta-
neous luminosity is ∼ 6 × 1035 cm−2 s−1, enabling accu-
mulation of 50 ab −1 over the next decade. It is the world’s
leading luminosity machine with an innovative “nano-beam
scheme”, where the two beams collide with a large horizontal
crossing angle and the vertical beam size is squeezed down
to a level of 50–60 nm at the interaction point (IP).

The Belle II detector, as shown in Fig. 429, is located at
the single collision point (IP) of the SuperKEKB. It is nearly
a 4π magnetic spectrometer surrounded by a calorimeter and
muon detectors and comprises several subdetectors arranged
cylindrically around IP and with a polar structure reflective
of the asymmetric distribution of final-state particles result-
ing from the asymmetric energy collision. From the inner-
most out, these subdetectors are the vertex detector (VXD),
central drift chamber (CDC), electromagnetic calorimeter
(ECL), and K-long and muon detector (KLM). In between
CDC and ECL, are charged-particle-identification subde-
tectors: a time-of-propagation Cherenkov counter (TOP) in
the barrel, and an aerogel ring-imaging Cherenkov detector
(ARICH) in the forward region. Between ECL and KLM,
is a solenoid coil that provides a 1.5 T axial magnetic
field for measurements of the momenta and electric charge
of charged particles. The vertex detector consists of two
layers of pixel sensors (PXD) surrounded by four layers
of microstrip sensors (SVD) to determine the positions of
decaying particles with the typical impact-parameter res-
olution of 10−15µm, resulting in 20−30μm typical ver-
tex resolution.123 The small-cell helium-ethane central drift
chamber measures the positions of charged particles at large
radii and their energy losses due to ionization. The rela-
tive charged-particle transverse momentum resolution is typ-
ically 0.4%/pT [GeV]. The observed hadron identification
efficiencies are typically 90% at 10% contamination. Typical
uncertainties in hadron-identification performance are 1%.
The CsI(Tl)-crystal electromagnetic calorimeter measures
the energies of electrons and photons with energy-dependent
resolutions in the 1.6–4% range. Layers of plastic scintillators
and resistive-plate chambers interspersed between the mag-
netic flux-return yoke’s iron plates allow us to identify KL

and muons. Our observed lepton-identification performance
shows 0.5% pion contamination at 90% electron efficiency,
and 7% kaon contamination at 90% muon efficiency. Typ-
ical uncertainties in lepton-identification performance are
1%− 2%.

123 The second pixel layer is currently incomplete, covering approxi-
mately 15% of the azimuthal acceptance. Installation of the pixel detec-
tor will be completed in 2023.

Fig. 429 The Belle II detector which consists of seven subsystems

The Belle II experiment has unique advantages over
hadron-collider experiments, such as the LHCb experiment.
Despite having comparatively less data and fewer accessible
initial states;

– It produces heavy flavor particles in a less background
environment, which enables efficient detection of neutral
particles, such as γ , π0, K 0

S , K 0
L .

– It produces quantum correlated B0-B̄0 pairs, by which
we can tag the B meson flavor with high effective effi-
ciency. We can also measure precisely B decay modes
with neutrinos in the final state, by fully reconstructing
one of the B mesons, referred to as “full reconstruction
tagging”.

– It provides a large sample of τ leptons obtained, which
allows us to study in detail the property of the τ lepton,
including Lepton-Flavor-Violating (LFV) decays.

As for the full reconstruction tagging, a new “Full Event
Interpretation (FEI)” tool has been developed [4727]. The
basic idea of FEI is to reconstruct, in a hierarchical manner,
individual particle decay channels that occur in the decay
chain of the B meson. For each unique decay channel of
a particle, a multivariate classifier (MVC) is trained using
simulated events. Both hadronic and semileptonic B decays
are used. The typical tag-side efficiency, defined as the num-
ber of correctly reconstructed tag-side B mesons divided by
the total number of Υ (4S) events, is 0.61% (0.34%) for
hadronic B+ (B0) decays and 1.45%(1.25%) for semilep-
tonic B+ (B0) decays. The full reconstruction tagging pro-
vides unique methods to measure B decays with neutrinos
in the final states, such as B → π!ν, B → D(∗)τν and
B → Kνν̄.

14.7.2 Precision CKM measurements

In the Standard Model (SM),CP violation in the K/B meson
decays can occur as the complex phase in the Cabibbo–
Kobayashi–Maskawa (CKM) quark mixing matrix [86,
4028]. The high luminosity data at Belle II enable precision
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Fig. 430 The unitarity triangle

measurements of the three internal angles, (φ1, φ2, φ3) ≡
(α, β, γ ), and the three sides of the unitarity triangle, which
represents the unitarity condition of the CKM matrix ele-
ments, V ∗udVub+V ∗cdVcb+V ∗tdVtb = 0, in the complex plane
with the three terms divided by VcdV ∗cb, as shown in Fig. 430.

Measurement of φ1

The internal angleφ1 ≡ arg(−VcdV ∗cb/VtdV ∗tb) is determined
from measurements of time-dependent CP asymmetries,
which occurs via interference between Bd − B̄d oscillation
and b→ cc̄s decay amplitudes. Most of the hadronic uncer-
tainties cancel out in the CP asymmetry, therefore, these
measurements provide very clean and precise determinations
of φ1. In the experiment, after the B0 − B̄0 system is coher-
ently produced from an Υ (4S) decay, one of the B mesons,
BCP , decays to a CP eigenstate fC P at t = tC P whereas the
other, Btag, may decay to favor specific final state at t = ttag.
The distribution of the proper-time differenceΔt ≡ tC P−ttag

is expressed by

P fC P (Δt, q) = e−|Δt |/τB0

4τB0
{1+ q[A fC P cos(ΔmdΔt)

+ S fC P sin(ΔmdΔt)]},
(14.3)

where τB0 and Δmd are the average lifetime and mass
difference between neutral B physical states, respectively,
and A fC P and S fC P are the direct and mixing-induced CP-
violating asymmetries, respectively. The B meson flavor q
takes values +1(−1) when Btag is B0(B̄0) and it is statis-
tically determined from the favor tagging algorithm based
on final-state information [4728]. The time-difference Δt
is approximated by the distance between the two B-meson
decay vertices divided by the speed of the Υ (4S) projected
onto the boost axis.

The previous experiments Belle, BaBar, and LHCb
achieved determination of φ1 at 2.4% precision [4729],
using tree dominated (cc̄)K 0 decays, such as J/ψK 0

S,

ψ(2S)K 0
S, χc1K 0

S and J/ψK 0
L . The error is still dominated

by systematic uncertainties, associated with imperfections
in vertex reconstruction and flavor tagging. The precision is
expected to further improve to below 1% in the next decade,

and it will provide a firm basis to search for non-SM contri-
butions.

Measurement of φ2

Studies of b → u charmless B decays give access to
φ2 ≡ arg[−V ∗tbVtd/V ∗ubVud ], the least known angle of the
CKM unitarity triangle, and probe non-SM contributions
in processes mediated by loop decay-amplitudes. However,
clean extraction of φ2 is not trivial due to hadronic uncer-
tainties, which are hardly tractable in perturbative calcu-
lations. Appropriate combinations of measurements from
decays related by flavor (isospin) symmetries reduce the
impact of such uncertainties [4730]. The most promising
determination of φ2 relies on the combined analysis of the
decays B+ → ρ+ρ0, B0 → ρ+ρ−, B0 → ρ0ρ0, and cor-
responding decay into pions. The current global precision of
4 degrees is dominated by B → ρρ data [4729]. Leveraging
efficient reconstruction of low-energy π0, improved mea-
surements in B+ → ρ+ρ0 and B0 → ρ+ρ− decays will be
unique to Belle II. The expected experimental accuracy for
the φ2 determination is less than 1◦ at 50ab−1.

Measurement of φ3

The third internal angle φ3 ≡ arg[−VudV ∗ub/VcdV ∗cb] is
accessible via tree-level decays, such as B → DK , where

D represents a generic superposition of D0 and D
0
. Assum-

ing that non-SM amplitudes do not affect appreciably tree-
level processes, precise measurements of φ3 and |Vub/Vcb|
set strong constraints on the SM description of CP viola-
tion, to be compared with measurements from higher-order
processes potentially sensitive to non-SM amplitudes, such
as mixing-induced CP violation through sin 2φ1. Extrac-

tion of φ3 involves measurement of B− → D
0
K− and

B− → D0K− amplitudes, which are expressed as

A(B− → D
0
K−)

A(B− → D0K−)
= rBe

i(δB−φ3), (14.4)

where rB ≈ 0.1 is the ratio of amplitude magnitudes and δB
is the strong-phase difference. Since the hadronic param-
eters, rB and δB can be determined from data together
with φ3, these measurements are essentially free of theo-
retical uncertainties [4731]. The precision of φ3 is mostly
limited by the small branching fractions of the decays
involved (around 10−7). The current world average is φ3 =
(66.2+3.4

−3.6)
◦ [4729], whereas the indirect determination is

(63.4±0.9)◦ [4150]. Various methods with different choices
of final states accessible to both D0 and D

0
have been pro-

posed to extract φ3. They include CP-eigenstates (GLW
method) [4732,4733], Cabibbo-favoured (CF) and doubly-
Cabibbo-suppressed (DCS) decays (ADS method) [4734],
self-conjugate modes (BPGGSZ method) [4735–4737], and
singly Cabibbo-suppressed (SCS) decays (GLS method)
[4738].
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Currently, precision is dominated by measurements based
on B− → D(K 0

Sπ
+π−)K− as well as B− → D(K 0

Lπ
+π−)

K− decays [4735–4737]. Belle II will be competitive in this
mode and others involving final-state K 0

S , π0, and γ such
as K 0

Sπ
0, K 0

Sπ
+π−π0 or B− → D∗(D(γ, π0))h−. Preci-

sion will further improve following the expected three-fold
improvements on the external charm-strong-phase inputs
from BESIII [4158]. In addition, B− → D(K 0

Sπ
+π−π0)K−

is promising at Belle II due to its sizable branching fraction
and rich resonance substructures, as shown by Belle [4739].
Improved charm-strong-phase inputs, availability of a suit-
able amplitude model of D → K 0

Sπ
+π−π0 and a larger

B decay sample will render B− → D(K 0
Sπ
+π−π0)K− a

strong contributor for determination of φ3. The precision of
φ3 is expected to be O(1◦) with the full 50 −1 data set.

Determination of |Vcb| and |Vub|
The magnitudes of the CKM matrix elements |Vcb| and |Vub|
can be deduced from tree b → c and b → u processes and
provide reliable SM references to test non-SM contributions.
The most precise determinations of |Vcb| and |Vub| come
from measurements of semileptonic transitions b → clν
and b → ulν, either in inclusive or exclusive final states,
combined with theoretical inputs to characterize the QCD
effects associated with B decays. There has been signifi-
cant disagreement in the results obtained from exclusive and
inclusive measurements [4729]. The reason for this discrep-
ancy is unknown and has been a long-standing issue. It can
be possibly inconsistent experimental or theory inputs, but
also interpretations in terms of non-SM physics cannot be
excluded [4084]. The large data set at Belle II will offer more
precise and richer experimental information to test theoreti-
cal investigations and to clarify the issue.

Exclusive |Vub|
Belle-II will provide a variety of ways for exclusive |Vub|
determinations. While B

0 → π+!−ν̄! is currently the most
effective in terms of availability of experimental data and
theoretical calculations of the form factor, Belle II will also
measure other exclusive b → u!ν! modes with good preci-
sion, in particular those involving neutral final-state particles
such as

B− → (π0, ρ0, ω, η, η′)!−ν!

and B
0 → ρ+!−ν!. The excellent resolution in q2 ≡

(p! + pν)2 also gives access to the decay form factors
equally important for determining |Vub|. Typically, experi-
mental uncertainties are smallest for low q2 whereas uncer-
tainties in the form factors from lattice QCD are smallest at
high q2. Improvements in the experimental constraints will
be driven mainly by data set sizes. Belle II can also measure
the variety of exclusive decays with high purities in analy-
ses, where the (non-signal) partner B-meson is reconstructed
[4740]. Belle II will double the global precision in exclusive

Fig. 431 Current unitarity triangle fit (top) and extrapolated to 50 ab−1

(bottom) [4158]

|Vub| results below 3%. Expected progress in lattice QCD
[4158] will offer further significant improvement.

Inclusive |Vub|:
Belle II will provide a unique opportunity to measure inclu-
sive B → Xu!ν decays, where Xu is a charmless hadronic
system. Taking advantage of the BB threshold experiment,
after reconstructing a signal lepton and the partner B meson,
all remaining tracks and energy clusters can be associated
with the Xu candidate. Measurements require accurate mod-
eling of the b → u signal and the b → c background as
demonstrated in the latest Belle measurement of B → Xu!ν,
which indeed reports results closer to exclusive [4111]. With
larger sample sizes and continuing developments in recon-
struction algorithms (e.g., improved partner B reconstruc-
tion), Belle II will accomplish measurements of inclusive
|Vub| to O(1)% precision. Belle II can also explore novel
ideas of measurements, such as the measurement of differ-
ential branching fractions of B → Xu!ν which enables
shape-function model-independent determinations of |Vub|
as demonstrated by Refs. [4114,4115,4741].

Determination of |Vcb|
Belle II will be able to improve also determinations of
|Vcb| from exclusive B → D(∗)!ν decays and inclusive
B → Xc!ν decays. For exclusive analyses, the key exper-
imental challenges will be to understand better the compo-
sition and form factors of B → D∗∗!ν decays and reduce
relevant systematic uncertainties as those associated with lep-
ton identification and low-momentum-pion reconstruction
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for B → D∗!ν decays. Belle II will tackle this with a detailed
program based on dedicated auxiliary studies of B → D∗∗!ν
decays. The precision of inclusive determinations, which is
limited by theory, will benefit from measurements of the kine-
matic moments of B → Xc!ν decays that will constrain
hadronic matrix elements in the operator-product-expansion
based theory. Ultimately Belle II will accomplish measure-
ments of |Vcb| to O(1)% precision.

Summary of CKM measurements
Figure 431 presents the improvements of the CKM mea-
surements, currently achieved and expected at Belle II. The
CKMFitter group has performed analyses of non-SM
physics in mixing, assuming that tree decays are not affected
by non-SM effects. Within this framework, non-SM contri-
butions to the Bd mixing amplitudes can be parametrized
as

Md
12 = (Md

12)SM × (1+ hde
2iσd ) (14.5)

Here hd and σd stand for the amplitude and phase of the non-
SM physics, which are related to the mass-scale parameter
Λ via

h � |Ci j |2
|λti j |2

(
4.5 TeV

Λ

)

(14.6)

σ = arg(Ci jλ
t∗
i j ), (14.7)

where λti j = V ∗ti Vt j and V is the CKM matrix. The scales Λ

probed in Bd mixing by the end of the Belle II data-taking
will be 17 TeV and 1.4 TeV for CKMI-like couplings in a tree
and one-loop-level non-SM interactions respectively. For a
scenario with no hierarchy, i.e. |Ci j | = 1, the corresponding
scale of operators probed will be 2×103 TeV and 2×102 TeV
in a tree- and one-loop-level non-SM interactions respec-
tively.

14.7.3 Search for non-SM CP violation in rare B processes

In order to search for the non-SM contribution, the most
promising channel is B0 → η

′
K 0

S ; it has a sizable decay
rate dominated by the b→ s loop amplitude, where non-SM
physics can contribute, and its associated hadronic uncertain-
ties is relatively small. The quantity of interest is ΔS

η
′K 0

S
≡

S
η
′K 0

S
− sin φ1. The SM predictions that include a systematic

treatment of low-energy QCD amplitudes assuming factor-
ization yield 0.00 < ΔS

η
′K 0

S
< 0.03 [4742]. The current

world average of ΔS
η
′K 0

S
is−0.07±0.06 [4729]. Low back-

grounds and a high-resolution electromagnetic calorimeter
offer Belle II unique access to this measurement. Similarly
promising is the channel B0 → φK 0

S , whose final state
makes Belle II strongly competitive despite challenges asso-
ciated with model-related systematic uncertainties from the
Dalitz plot analysis. The expected experimental accuracy at
50ab−1 is ∼ 0.01(∼ 0.02)% for S

η
′K 0

S
(SφK 0

S
). Figure 432

Fig. 432 Time-dependentCP asymmetry for the final stateη
′
K 0

S com-
pared to J/ψK 0

S , using S
η
′ K 0

S
= 0.55 and SJ/ψK 0

S
= 0.70 in a Monte

Carlo simulation with the integrated luminosity of 50 ab−1 [4158]

demonstrates the time-dependentCP asymmetry for the final
state η

′
K 0

S compared to J/ψK 0
S , using S

η
′K S0 = 0.55 and

SJ/ψK 0
S
= 0.70 in a Monte Carlo simulation with the inte-

grated luminosity of 50 ab−1, where the two values would
be unambiguously distinguishable, signifying the existence
of new physics. In addition, the processes B0 → K 0

Sπ
0γ ,

B0 → K 0
Sπ
+π−γ , and B0 → ρ0γ are greatly sensitive to

non-SM physics through b→ s and b→ d loops and offer
Belle II further exclusive opportunities.

14.7.4 Search for non-SM physics in semileptonic and
radiative B decays

A number of persistent anomalies have been observed in
semileptonic B meson decays; deviation from lepton-flavor
universality in the decays B → D(∗)τντ consistently stayed
at the 3σ level since these decays were first measured [4729].
Another case of lepton-flavor universality violation has been
seen in B → K (∗)!+!−. The unique capability of Belle II
to reconstruct final states with missing energy and identify
efficiently all species of leptons will considerably improve
the understanding of these anomalies.

Semitauonic B decays
Decays B → D(∗)τντ offer precious opportunities for test-
ing lepton-flavor universality at high precision opening a win-
dow onto lower-mass (TeV range) non-SM particles. Sensi-
tive observables are the ratio R(D) and R(D∗) of branching
fractions of B → D(∗)τντ to those of B → D(∗)!ν! decays,
where ! = e or μ. There have been numerous SM calcu-
lations of R(D(∗)) and experimentally, the ratio allows for
numerous systematic uncertainties to cancel. The SM pre-
dictions for the ratios R(D) and R(D∗) are:

R(D) = 0.299± 0.011 (14.8)
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R(D∗) = 0.252± 0.003 (14.9)

Current best results on R(D(∗)) are reported by the Belle
experiment [4743] and are consistent with previous measure-
ments [4744–4748] in showing a (combined) 3.1σ excess
with respect to the SM expectation [4729].

R(D) = 0.349± 0.027(stat) ± 0.015(syst) (14.10)

R(D∗) = 0.298± 0.011(stat) ± 0.007(syst) (14.11)

This deviation has attracted significant interest in the commu-
nity as it could be a potential indication of non-SM dynamics.

The main experimental challenge is achieving a detailed
understanding of poorly known B → D∗∗!ν backgrounds,
whose feed-down may bias the results. The anticipated data
set size will allow for accurate tagged measurements of
B → D∗∗!ν decays for several D∗∗ states using samples
reconstructing on the signal-side a lepton, a D(∗) meson
and n pions. If a non-SM source of the anomaly would be
established, angle-dependent asymmetries and differences
between forward-backward asymmetries observed in muons
and electrons, which are ideally suited for Belle II, may offer
insight into the properties of the non-SM couplings involved.

Measurements of polarization of the τ lepton ((Γ + −
Γ −)/(Γ + + Γ −)) and D∗ mesons (ΓL/(ΓT + ΓL )) pro-
vide supplementary sensitivity to non-SM physics. Here,
Γ +(Γ −) is the semitauonic decay rate where the τ has
+ 1

2 (− 1
2 ) helicity and ΓL(ΓT ) is the rate where the D∗ has

longitudinal (transverse) polarization. Figure 433 shows the
expected Belle II constraints on the R(D) − R(D∗) plane
(top) and the R(D∗)− Pτ (D∗) plane (bottom). Furthermore,
differential angular distributions in B → D(∗)τν, usually
studied as functions of q2, may also be important to decipher
the dynamics and are distinctive to Belle II.

B → K ∗!+!− decays
The transitions b → sμμ and b → see are under extensive
experimental investigation due to several observed anomalies
[4749,4749–4753] that prompted interpretations in terms of
O(10) TeV non-SM particles. The unique feature of Belle
II is its high efficiency and similar performance for muons
and electrons, along with access to absolute branching frac-
tions. Based on a recent Belle II analysis [4754], we expect to
provide distinctive information to assess independently the
existence of the anomalies (at current central values) with
samples of 5 ab−1 to 10 ab−1 of data. Belle II can provide
also results based on inclusive B → XS!

+!− decays, which
do not specify the final strange hadronic states XS and has
fewer theoretical ambiguities.

Belle II can reach also b→ sττ transitions. These can be
enhanced, by up to three orders of magnitude, in several SM
extensions that allow for lepton-flavor universality violation
in the third generation [4755,4756]. The SM branching frac-
tion for the B → K ∗ττ decay is around 10−7 [4757], much
smaller than current experimental upper limits, which are at

Fig. 433 Expected Belle II constraints on the R(D) − R(D∗) plane
(top) and the R(D∗) − Pτ (D∗) plane (bottom) compared to existing
experimental constraints from Belle. The SM predictions are indicated
by the black points with theoretical error bars [4158]

around 2.0× 10−3 at 90% CL [4755,4758]. The presence of
two τ leptons in the final state makes access to these decays
ideally suited to Belle II.

Radiative B decays
Radiative b → sγ transitions are dominated by a one-loop
amplitude involving a t quark and W boson. Extensions of
the SM predict particles that can contribute to the loop, poten-
tially altering various observables from their SM predictions
[4759,4760]. Belle II has a unique capability to study these
transitions both inclusively and using specific channels.

The availability of precise and reliable SM predictions of
inclusive B → XSγ rates, where Xs identifies a particle with
strangeness, make these rates sensitive probes for non-SM
physics. In addition, these analyses enable the determination
of observables like the b-quark mass and can provide input
to inclusive determinations of |Vub| [4158]. Ability to mea-
sure precisely the decay properties of the partner B recoiling
against the signal B is key for inclusive analyses[4727]. Cur-
rent best results show 10% fractional precision mostly limited
by systematic uncertainties associated with understanding
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the large backgrounds. The expected relative uncertainties
on the branching fractions are ∼ 6% at 5 ab−1 and ∼ 2% at
50 ab−1 slightly depending on the lower Eγ threshold. The
construction of relative quantities like asymmetries will offer
a further reduction of systematic uncertainties and enhanced
reach. Inclusive analyses of radiative B decays will offer
unique windows over non-SM physics throughout the next
decade.

14.7.5 Hadron spectroscopy

While many hadron states are categorized into mesons and
baryons containing constituent quark–antiquark (qq̄) and
three quarks (qqq), respectively, there is no proof in QCD to
exclude the hadrons having other structures than the ordinary
mesons and baryons. The situation has largely changed by
the series of discoveries of charmonium-like states, X (3872)
[2514], Yc(4260) [4761], Z±c (3900) [2588], and several oth-
ers that do not fit the well-established quark model. Anal-
ogous discoveries containing bottom quarks (e.g., Υ (5S)
decays to Z±b (10610/50) [2598]) indicate a similar unex-
plored family of particles in the bottomonium sector. The
Belle II experiment offers several unique opportunities in this
domain. It will exploit 40 times more data than the previous
generation B-factories and, compared with hadron-collisions
experiments, leverages a greater variety of quarkonium pro-
duction mechanisms including B meson decays, initial state
radiation (ISR), double cc processes, two-photon processes,
and direct production by changing collider center-of-mass
energy [4158]. Belle II is the only experiment with the ability
to operate at tuneable center-of-mass energy near the Υ (4S)
resonance, providing direct access to multi-quark states con-
taining bottom quarks. In addition, Belle II’s good efficiency
for reconstructing neutral final-state particles opens the path-
way for first observations of the predicted neutral partners of
charged tetraquark states.

Belle II has the unique opportunity to explore
bottomonium(-like) states by operating at center-of-mass
energies around 10 GeV, where only small samples exist
worldwide: O(10) fb−1 at Υ (1S, 2S, 3S, 6S), O(100) fb−1

at Υ (5S), and typically less than 1 fb−1 at intermediate
points. This opens a fruitful program, as demonstrated by pre-
vious discoveries at e+e− colliders that yielded first obser-
vations of predicted bottomonia (ηb(1S, 2S), hb(1P, 2P),
and Υ (1D2)) and unexpected four-quark states (Z±b (10610,
10650), Yb(10753)) [4762,4763]. Collisions at energies
below the Υ (4S) allow for testing non-SM predictions in
Υ decays to invisible or lepton-flavor-violating final states
[4764,4765].

14.7.6 Constraining hadronic vacuum-polarization in
muon g-2

The anomalous magnetic moment of the muon often
parametrized as aμ = (g − 2)μ/2, is one of the observ-
ables which indicate significant deviation from the SM and
has attracted much attention from the community. The cur-
rent experimental value (combining the BNL E821 result
with the first result from the Fermilab g − 2 experiment)
differs from SM predictions based on dispersion relations
by 4.2σ , aμ(exp) − aμ(theory) = (26.0 ± 7.9) × 10−10

[4286,4287]. In order to clarify the deviation, it is impor-
tant to improve the precision of both experiments and the
SM predictions. On the experimental side, the experiment
at Fermilab will provide results by further accumulated data
and also an experiment with different methods and thus have
different systematic errors has been proposed and is being
prepared at J-PARC [4766]. The uncertainty in the SM pre-
diction is dominated by the leading-order hadronic contribu-
tion (HVP), which can be calculated from the cross-section
σ(e+e− → hadrons) measured in e+e− experiments. The
result, HVP=(693.1± 4.0)× 10−10, is dominated by BaBar
and KLOE measurements of σ(e+e− → π+π−). However,
the BaBar and KLOE measurements notably differ. This dif-
ference introduces a systematic uncertainty of 2.8 × 10−10

[4304].
Belle II will perform these measurements with larger

data sets, and at least comparable systematic uncertainty, to
resolve this discrepancy. Furthermore, large statistics data
at Belle II will allow us to use new approaches to suppress
systematic uncertainties, particularly from particle identifi-
cation. Although the specific systematic studies still need to
be refined, the goal for the final accuracy including both sta-
tistical and systematic uncertainties is to be 0.5% or lower
[4158]. This will match the expected experimental precision
on g − 2[4158,4286]. Belle II’s operation at the highest
luminosity e+e− collider, as well as its excellent particle-
identification capabilities, places it in a unique position to
further the studies of the HVP contribution to (g − 2)μ in
the next decade. HVP can be estimated also by τ hadronic
spectral functions and CVC, together with isospin-breaking
corrections.

14.7.7 Status and outlook

The physics data taking with all the Belle II subdetector com-
ponents started in March 2019, following the SuperKEKB
main ring commissioning run in 2016, and the collision test
runs in 2018. At the time when this article is written, the
SuperKEKB accelerator has achieved the peak luminosity
of 4.7 × 1034 cm−2 s−1, more than two times higher than
the record of the previous KEKB accelerator. The Belle II
experiment has accumulated 428 fb−1, almost similar to the
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BaBar and about half of the Belle experiments. Some results
are already world-leading thanks to the efficiency and resolu-
tion improved significantly compared to the previous exper-
iments. The operation is suspended since June 2022 for the
upgrade work on the SuperKEKB and Belle II instrumenta-
tions. The operation is planned to resume in autumn 2023.
Many world-leading results in heavy flavor decays will be
obtained with O(1) ab−1 data in the near future, and then
with O(10) ab−1 toward the next decade.

14.8 Heavy flavors at the HL-LHC

Tim Gershon
Proton–proton collisions at energies of the LHC collider
result in production of vast quantities of beauty and charm
quarks. The production cross-sections at centre-of-mass col-
lision energies of 7−14 TeV are around 100μb for beauty
hadrons and an order of magnitude larger for charm hadrons
[4767,4768]. Thus, for each fb−1 of integrated luminosity,
there are around 1011 beauty hadrons and around 1012 charm
hadrons produced. As there are no constraints on the quan-
tum numbers of the particles that emerge from the primary
interaction followed by hadronization, essentially all physi-
cally possible hadrons are produced in LHC collisions. Since
effects of double parton scattering, where multiple heavy
quark–antiquark pairs are produced in the same proton–
proton interaction, are significant, this includes states with
more than one heavy-flavor quark.

The LHC and its high luminosity upgrade therefore pro-
vide a unique and unprecedented opportunity to learn about
QCD from the production and decays of these hadrons. How-
ever, in order for this experimental program to be realized, it
is necessary to have dedicated and state-of-the-art detection
capability. In particular, focusing on charged particle detec-
tion, one needs:

– acceptance, with good reconstruction efficiency, in the
kinematic region that the majority of the decay prod-
ucts will travel through (production of beauty and charm
hadrons at the LHC predominantly occurs at small angles
to the beam axis);

– good momentum resolution, so that narrow signal peaks
in invariant mass distributions originating from states
close to each other in mass can be resolved

– capability to discriminate between different final-state
charged particles, in particular electrons, pions, muons,
kaons and protons;

– ability to reject background from random combinations
of particles, which must be achieved in real-time (online)
in order to avoid the data rate overwhelming the available
computing resources.

As regards the last point, the presence of one or more well-
identified muons in the decay, above a pT threshold of typi-
cally a few GeV, is a signature which has traditionally been
used in triggers for heavy-flavor physics in hadron collider
experiments. This signature continues to be exploited at the
LHC, and will be throughout the HL-LHC era. However, the
fact that the ground-state hadrons with heavy-flavor quan-
tum numbers can only decay by the weak interaction pro-
vides an extremely valuable handle, as their non-negligible
lifetimes cause a significant – and potentially measurable
– displacement between the production and decay vertices.
Consider for example a state of mass 5 GeV and lifetime
τ = 1 ps. If produced with 50 GeV momentum, correspond-
ing to a Lorentz boost factor of βγ = 10, it will travel a
mean distance of βγ cτ ≈ 3 mm before decaying. Therefore
if the vertex position can be reconstructed with resolution sig-
nificantly better than this, the potentially huge background
from combinations of the large numbers of tracks produced at
the primary proton–proton interaction point can be removed.
Indeed, while proton–proton collisions are generally con-
sidered a difficult (or “dirty”) environment due to the large
numbers of particles produced, if one only needs to consider
particles originating from displaced secondary vertices the
signatures can be extremely clean.

The LHCb detector is designed in order to provide this
detection capability. It is the only dedicated heavy-flavor
experiment at the LHC, although ALICE, ATLAS and CMS
all have some ability to reconstruct heavy-flavor hadrons.
The original LHCb detector operated during Runs 1 and 2
of the LHC, 2011–12 and 2015–2018 respectively, enabling
the collection of a data sample corresponding to 9 fb−1 of
proton–proton collisions. This has led to a wealth of publica-
tions on a diverse range of topics. An upgraded detector has
been installed during the LHC long shutdown 2 (2019–2021)
and is designed for the collection of a sample of 50 fb−1 dur-
ing Runs 3 and 4, with significantly improved efficiencies for
many channels of interest. In order to exploit fully the flavor-
physics potential of the HL-LHC, a second major upgrade
of the LHCb detector is now being planned [4769]; this will
allow 300 fb−1 to be collected in the final operational peri-
ods of the HL-LHC. Together with the 3 ab−1 anticipated
to be collected by ATLAS and CMS, this provides exciting
potential in heavy-flavor physics (Fig. 434).

The above discussion focussed on charged particles. For
neutral particles it is much harder both to obtain good
momentum resolution and to associate them correctly to the
vertex they originated from, particularly bearing in mind
that they will be reconstructed in the forward kinematic
region. Nonetheless, information from calorimeters can be
used to broaden the flavor-physics program to include decays
with photons in the final state, including those from neutral
pion decays and from bremstrahlung emission from elec-
trons. Moreover, timing information can be used to provide
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Fig. 434 The proposed LHCb Upgrade II detector [4769]

some capability to associate calorimeter clusters with recon-
structed vertices; indeed the addition of timing capability is
central to the plans for LHCb Upgrade II, not only for the
calorimeter but also for the vertex and charged hadron iden-
tification detectors [4769].

The opportunities in flavor physics at the HL-LHC are dis-
cussed in Ref. [4770], while the LHCb Upgrade II physics
program is described in Ref. [2633]. Here only a brief sum-
mary of some aspects that are most interesting with regard
to QCD are discussed. The focus is primarily on LHCb, but
areas where other LHC experiments can contribute are also
mentioned.

CP violation
Violation of symmetry under the combined charge conjuga-
tion and parity (CP) operation can occur in the Standard
Model as the complex phase in the Cabibbo–Kobayashi–
Maskawa (CKM) quark mixing matrix [86,4028] results
in the charged-current weak-interaction coupling constants
being different for quarks and antiquarks. The uniqueness of
the origin of all CP violating effects in the SM – and the
knowledge that additional sources must be present in nature
in order to explain the baryon asymmetry of the Universe
– make experimental probes of CP-violating phenomena a
well-motivated way to search for physics beyond the SM.

There are a number of theoretically clean probes of CP
violation, where QCD effects that may otherwise render the
interpretation of results difficult are either minimal or can be
determined directly from data. In particular, the determina-
tion of the phase

γ ≡ arg

(

−VudV
∗
ub

VcdV
∗
cb

)

from B → DK and similar processes is essentially unaf-
fected by theoretical uncertainties in the SM [4731]. How-
ever, there are many more measurements where uncertainties
related to QCD need to be reduced in order to obtain the best

sensitivity to physics beyond the SM. An interesting class of
such measurements are those where decays can be related by
flavor symmetries, as the breaking of this symmetry by QCD
can often be calculated theoretically. The fact that both B0

and B0
s mesons can be studied at the LHC opens a number

of possibilities involving U-spin symmetry, related to inter-
change of d and s quarks. For example, the determination of
the phase

2β ≡ 2 arg

(

−VcdV
∗
cb

VtdV
∗
tb

)

from B0 → J/ψK 0
S decays has a small but hard-to-

quantify uncertainty due to subleading amplitudes; the size
of this effect can be constrained using the U-spin partner
B0
s → J/ψK 0

S decays [4771,4772]. In a similar way, the
B0
s → K ∗0K ∗0 decay is considered a golden channel to

probe for CP-violation effects beyond the SM, as theoreti-
cal uncertainties can be constrained from the U-spin partner
B0 → K ∗0K ∗0 decay [4773–4775].

The above examples are special cases where the final
state is left unchanged by U-spin. Similar ideas can be also
exploited for U-spin pairs where this is not the case, such
as B0 → D+D− ↔ B0

s → D+s D−s , B0 → π+π− ↔
B0
s → K+K− and B0 → K+π− ↔ B0

s → K−π+
[4776–4781]. In these cases however the U-spin breaking
effects can be larger, making it harder to use them for pre-
cise tests of the SM. However, with the data samples avail-
able at the HL-LHC it will be possible to reverse the argu-
ment: assuming the SM, the extent of U-spin breaking in
these decays can be precisely measured and compared to
theoretical calculations. Moreover, the samples will be large
enough that similar exercises can also be done for suppressed
partner decays (e.g. B0 → D+s D−s ↔ B0

s → D+D− and
B0 → K+K− ↔ B0

s → π+π−) where effects of sub-
leading amplitudes are enhanced. Studies of U-spin break-
ing and its influence on CP violation in the charm meson
decays D0 → K+K−, π+π−, K−π+ and K+π− provide
a complementary probe [4782–4785]. These measurements
will provide a unique handle on our understanding of flavor
symmetry breaking effects in QCD.

A number of null tests of the SM can be made by test-
ing the prediction of small or vanishing CP-violating effects
in specific processes. In such cases it is necessary to ensure
that theoretical uncertainties in the prediction are well under
control. One example is the determination of the phase φs
through B0

s → J/ψφ and similar processes, where LHCb,
ATLAS and CMS all have potential to reach sufficient preci-
sion to observe a non-zero effect at the SM rate [4786–4788].
Another example is the corresponding phase in the neutral
charm system,φD , where recent progress measuring the mix-
ing parameters has set the stage for precise determinations
when more data are available [4789,4790]. It remains an open
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question to what extent QCD effects can enhance SM CP
violation in the charm sector [4791], and further progress on
this front will be essential.

Data on two-body decays are in general easier to interpret
than those in three- or multi-body decays (including quasi-
two-body resonant contributions). Nevertheless, the latter
remain of great interest as interference effects can provide
sensitivity to additional CP-violating observables: the range
of effects observed in three-body B meson decays illustrate
this clearly [4792–4796]. Overcoming hadronic uncertainties
is challenging, but with HL-LHC data ambitious coupled-
channel analyses will allow additional constraints. In partic-
ular, effects related to ππ ↔ KK scattering can be fitted
for directly in coupled-channel analyses of B0 and (sepa-
rately or simultaneously) B0

s decays to the J/ψπ+π− and
J/ψK+K− final states [4797]. Similar analyses can also be
carried out in B0

(s) → D0π+π− and D0K+K− decays, and
in B+ → K+π+π− and K+K+K− decays. The latter, and
also the more suppressed B+ → π+π+π− and π+K+K−
decays, are known to feature regions of phase space with
large CP violation, which could be used to test the SM if
theoretical uncertainties can be controlled sufficiently.

As mentioned above, the CKM angle γ can be determined
with negligible uncertainty using B → DK and related
decays. The reason for this is that by combining results with
multiple different D decay modes, all hadronic parameters
can be determined from data. Recent examples of such com-
binations can be found in Refs. [4798,4799]. From the point
of view of understanding QCD, this provides an opportunity
to compare the values of the hadronic parameters obtained
from the combinations to those from theoretical calculations.
In the case of multibody decays such as B → DKπ , the
parameters that can be obtained include those related to vari-
ation of hadronic phases across the phase-space of the decay
[4800,4801]. These can be determined model-independently
as a by-product of the measurement of γ , thus providing
insight into a poorly understand aspect of QCD.

Semileptonic decays and form factors
As discussed in Sect. 13.2.2, the rates of semileptonic b-
hadron decays, Xb → Xc!

−ν! depend on the square of the
magnitude of the CKM matrix element Vcb. Here, Xb repre-
sents a hadron containing a b quark, Xc the corresponding
hadron with b replaced by c, !− a negatively charged lepton
and ν! the corresponding antineutrino. Thus, measurements
of the rates can allow |Vcb|2 to be determined if the form
factors, which encode the probability for the Xc hadron to be
produced in the final state as a function of the !−ν! invariant
mass squared (q2), are known from theoretical calculations.
Likewise, studies of Xb → Xu!

−ν! transitions, with obvious
definition of Xu , provide sensitivity to |Vub|2.

The reconstruction of decays involving neutrinos in the
final state is challenging in the environment of a hadron col-

lider, as one cannot exploit the kinematic constraints that are
available in the e+e− → Υ (4S) → BB system. Nonethe-
less, exploiting LHCb’s capability in reconstruction of ver-
tices and charged hadron identification, it has been possible
to study semileptonic Λ0

b (to pμ−νμ and Λ+c μ−νμ) and B0
s

(to K+μ−νμ and D+s μ−νμ) decays [752,4147]. In each case
measuring the ratio allows the cancellation of some poten-
tial sources of systematic uncertainty, leading to competitive
measurements of |Vub/Vcb|2.

With the full HL-LHC statistics it will be possible to
extend this program to the full range of b hadrons. This
will provide complementary information to the determina-
tions using B mesons alone, and will test QCD by compar-
ison of the form factors in heavy-to-light transitions (such
as B → π ) with those in heavy-to-heavy transitions. A par-
ticularly interesting example occurs in B−c decays, where
study of B−c → D0μ−νμ could potentially allow a the-
oretically clean determination of |Vub|2. In fact, the large
samples of B−c mesons that will be available at HL-LHC
present a further opportunity, since these particles prefer-
entially decay through transitions of the charm quark. Thus,
B−c → B0

sμ
−νμ and B0μ−νμ decays could be used to make

novel measurements of the squared magnitudes of Vcs and
Vcd , respectively, thereby allowing a quantitative compari-
son of the form factors observed in data with those calculated
from first principles QCD.

Understanding QCD effects encoded in form factors and,
more generally, the effects of hadronization in semileptonic
b-hadron decays, will also be crucial for tests of lepton uni-
versality at HL-LHC. Within the Standard Model the W and
Z couplings to all lepton flavors are identical; any devia-
tion from this prediction would provide a clear signature of
non-SM physics contributing to the decay amplitude. Due
to the heavier τ mass, compared to the electron and muon,
contributions from different form factors have to be under-
stood in order to predict the SM value of the ratio of branch-
ing fractions [4120–4122]. Given the indications of potential
violation on lepton universality in previous measurements of
these processes at the BaBar, Belle and LHCb experiments
[4743–4748] there is intense interest in the significantly more
precise results that the HL-LHC can potentially provide. The
challenge will be to control experimental systematic uncer-
tainties to the required level; this is even harder for ATLAS
and CMS than for LHCb, but if the background composition
can be understood then all three experiments may be able to
test the SM in this sector.

Rare decays
Decays which proceed by flavor-changing neutral currents
are highly suppressed in the Standard Model as they involve
loop diagrams, typically with additional CKM suppression
factors. As physics beyond the SM does not have to have
the same structure, the rates and phase space distributions of
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these channels allow detailed tests for new contributions to
the amplitudes.

In order to obtain the best sensitivity from these mea-
surements, it is necessary to have QCD uncertainties, related
to the hadrons in initial, intermediate and final states of the
decay, under excellent control. Thus, typically the theoreti-
cally cleanest probes are decays involving leptons or pho-
tons. However, even in these cases there can be residual
QCD effects that must be well understood. Recent progress
is therefore focussed mainly on theoretically clean channels
and data-driven approaches to constrain hadronic parameters.

The purely leptonic B0
(s) meson decays are a good example

of channels where theoretically clean predictions are possi-
ble. Moreover, the helicity-suppression of these processes
that occurs in the SM – resulting in small branching frac-
tions for the dimuon and, especially, dielectron, processes
– need not be replicated in beyond SM contributions to the
amplitudes, so that large deviations from the SM predictions
are possible in principle. The decay rates for these processes
depend on the B0

(s) decay constants, which can be (and have
been) calculated in lattice QCD to good precision [301]. The
experimentally most amenable channel is the dimuon final
state; the B0

s → μ+μ− decay has been observed by LHCb,
CMS and ATLAS, and the sensitivity to the B0 decay branch-
ing fraction approaches the level required to observe it at the
SM expectation [4802–4804]. The limits on decays to dielec-
tron and ditau final states remain considerably above the SM
expectations [4805,4806].

Further improvement in the knowledge of the B0
(s) →

μ+μ− branching fractions and their ratio is well motivated,
as the experimental uncertainties remain larger than those
for theory. These measurements can be expected as a key
component of the HL-LHC era heavy-flavor physics pro-
grams of all of the LHCb, CMS and ATLAS experiments: it
is anticipated that relative uncertainties onB

(
B0
s → μ+μ−

)

of 4%, 7% and 12–15% can be achieved by each of the three
experiments, respectively [4769,4807,4808]. In addition, the
increasingly large sample sizes will make additional probes
possible. In particular, the B0

s → μ+μ− effective lifetime
can be used as an independent probe for physics beyond the
SM [4809], with first measurements already available, albeit
with large uncertainties. With the full HL-LHC statistics it
will also be possible to measure CP violation parameters in
this decay, providing one more independent probe, also with
negligible theoretical uncertainty.

The b → s!+!− and b → d!+!− processes can also be
studied through decays in which the s or d quark is found in
the final state. These do not have the helicity suppression of
the purely leptonic decays, but as a corollary have sensitivity
to additional effective field theory operators. A large range of
final states and a large number of observables can be studied.
Those related to angular distributions in B → V !+!− pro-

cesses are particularly interesting (whereV is a vector meson,
i.e. decays such as B0 → K ∗0!+!−). In these measure-
ments, all relevant operators can be constrained from data.
Indeed, as discussed in Sect. 13.4, existing measurements of
the rates and of angular observables in B0 → K ∗0μ+μ−
and B0

s → φμ+μ− decays constrain possible contributions
from physics beyond the SM and, excitingly, hint at these
contributions being non-zero [4753,4810–4813]. However,
the possibility of these effects being caused by larger than
expected non-perturbative QCD corrections is not yet ruled
out [4270,4272].

Progress in this area, with the larger data samples avail-
able at the HL-LHC, can be expected in two complementary
approaches. Firstly, model-dependent fits to the data can be
used to attempt to constrain the non-perturbative QCD effects
within specific parameterizations [4262,4268,4274,4814].
Secondly, the SM property of lepton universality in these
processes can be tested – comparison of equivalent param-
eters for decays involving μ+μ− and e+e− pairs provide
theoretically clean tests of the SM. While the second case
can provide an unambiguous signal of physics beyond the
SM, this is only possible if the new physics violates lepton
universality. Progress on both fronts is therefore essential
in order to be able to constrain the full range of potential
operators. Early measurements from LHCb of the ratios of
decay rates for B+ → K+!+!− and B0 → K ∗0!+!− (with
! = e, μ) give tantalizing hints of disagreement with SM pre-
dictions, but do not reach a level of significance for which
strong claims would be justified [4750,4815]. In addition to
larger data samples, improved electron reconstruction can
help to reduce the uncertainties in future measurements. The
range of lepton universality tests can also be expected to be
increased in future beyond the rates alone to include also
angular observables.

A further way to test the SM is through its prediction
that the photon emitted in b → sγ flavor-changing neutral-
current transitions should be predominantly left-handed, as
a consequence of the V−A structure of the SM weak inter-
action. This can be tested in a number of ways, including
through studies of the decay-time dependence of B0 →
K ∗0γ and B0

s → φγ decays, and of the angular distribu-
tions in Λ0

b → Λγ decays [4816–4819]. The angular distri-
bution of B0 → K ∗0e+e− decays at very low e+e− invari-
ant mass also probes the same physics [4820]. However, the
statistically most powerful approach involves analysis of the
phase-space distribution of B+ → K+π+π−γ decays, com-
plemented by measurement of the decay-time dependence of
the B0 → K 0

Sπ
+π−γ process [4821–4825]. To realise the

full potential of this method will require improved under-
standing of hadronic effects in the Kππ system. The large
data samples available at the HL-LHC will provide a number
of ways to acquire such knowledge, including measurement
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Fig. 435 Discoveries of hadrons at the LHC, by year of arXiv submission [4826]. Only states observed with significance larger than 5σ are included

of the corresponding processes where the final-state photon
is replaced by a J/ψ meson.

Hadron spectroscopy
As mentioned previously, the copious production of beauty
and charm quarks in LHC collisions provides opportuni-
ties for detailed studies of hadron spectroscopy, including
discoveries of previously unmeasured states. Various pro-
duction mechanisms are available, including central exclu-
sive production. However, the two mechanisms for which
studies have proved most productive to date are so-called
prompt production, where a hadron is produced directly in
a proton–proton collision (including via strongly decaying
resonances), and production in weak decays of a heavier
hadron. Prompt decays tend to have large backgrounds, and
are limited to cases with a distinctive signature – but they
provide the only possible approach for hadrons too heavy to
be produced in weak decays. Weak decays of heavy hadrons
can provide an extremely clean environment; moreover this
approach makes possible determination of the quantum num-
bers of intermediate resonances produced in multibody final
states.

At the time of writing, 67 hadrons have been observed for
the first time at the LHC as illustrated in Fig. 435. As dis-
cussed in Sects. 8.5 and 9.4, these include a number of states
that do not fit into the conventional scheme of qq mesons
and qq ′q ′′ baryons. One of the most exciting topics, related
to furthering knowledge of QCD, is what new hadrons may

be discovered at the HL-LHC. This is, of course, impossi-
ble to predict with confidence; nonetheless there are certain
areas where progress appears likely. In what follows states
with four and five quarks are referred to as tetraquarks and
pentaquarks respectively, with no prejudice as to their inter-
nal binding mechanisms – indeed, addressing the question of
how such states are bound is one of the main goals for the
HL-LHC in this area – and the naming convention of Ref.
[2522] is used.

Perhaps the most striking discovery of exotic hadrons to
date is that of the Pψ states, observed as resonances decay-
ing to J/ψp, and hence with minimal quark content ccuud
in Λ0

b → J/ψpK− decays [2885,2886]. The proximity of
the Pψ masses to ΣcD thresholds has led to much specula-
tion on their nature. Further progress requires the determi-
nation of the Pψ spin-parity quantum numbers. Discoveries
of other production modes and decays to other final states
will also provide insight. The data samples of the HL-LHC
should allow LHCb to perform such studies, and also to make
detailed studies of lineshapes.

The Pψ pentaquarks contain a cc pair, as do all tetraquarks
that had been observed prior to 2020. This fueled theoretical
speculation that a cc component, or at least the presence of
two heavy quarks or antiquarks, was necessary for the for-
mation of exotic hadrons. Such models were, however, ruled
out by the observation of Tcs tetraquarks decaying to D+K−,
produced in B− → D−D+K− decays [4827,4828]. This
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observation implies the existence of many more tetraquarks,
containing different sets of quark flavors, which may be dis-
coverable with the HL-LHC. As such states are observed and
can be arranged in families, it will allow for a new understand-
ing of strong interactions in much the same way as occurred
for the “particle zoo” in the 1960s and 70s.

Even if a cc component is not required for the formation of
exotic hadrons, a J/ψ meson in the final state facilitates the
observation of new particles due to the clean signature pro-
vided by the J/ψ dimuon decay. This has been exploited
in the observations of Tψψ states decaying to J/ψ J/ψ
[2619,4829,4830]. The discovery of states with minimal
quark content of ccc̄c̄ motivates searches for partner states,
including decays to final states such as J/ψχc1, which may
cause feed-down into the J/ψ J/ψ spectrum, as well as for
tetraquarks with other fully heavy-quark content (e.g. bbcc).
Knowledge of bottomonia decays to double charmonia final
states will also be necessary for a full understanding in this
area.

The first doubly charmed hadron, the Ξ++
cc state, was

observed by LHCb in 2017 [2615], and precise measure-
ments of its mass and lifetime have followed [2617,2618].
Its flavor partners, the Ξ+

cc and Ω+
cc baryons have also been

searched for, but not yet discovered [2889,4831,4832]. The
reason for this may be the shorter lifetimes that are expected
for these states, since a short lifetime makes it harder to sep-
arate signal from background. The improved vertex resolu-
tion of the upgraded LHCb detector, together with larger data
samples, will hence provide excellent prospects for discov-
ery. Doubly heavy states containing beauty and charm quarks
also appear within reach, while double beauty states appear
more challenging.

The discovery of the T+cc tetraquark, seen in prompt
production as a narrow structure decaying to D0D0π+
[1067,2566], complements both the previous observations
of the Ξ++

cc baryon and of tetraquarks with cc content. Its
mass is only just above threshold for D0D∗+ decays, sup-
porting the hypothesis that ground-state tetraquarks contain-
ing beauty and charm or double beauty (Tbc or Tbb), which
are expected to be more tightly bound, may be stable to strong
decays. If so, they would decay only via the weak interac-
tion and hence have lifetimes comparable to those of ground
state beauty and charm hadrons. As such, they may have dis-
placed vertex signatures that could be exploited in the LHCb
experiment to enhance their observability [4833]. It is also
possible that Pcc, Pbc and Pbb pentaquarks could be detected,
with the appropriate analysis strategy depending on whether
or not they are stable against strong decay. Furthermore, it is
plausible (albeit speculative) that six quark, dibaryon states
containing at least two beauty or charm quarks may be mea-
surable. Studies of hadron spectroscopy with the HL-LHC
data sample may therefore provide dramatic breakthroughs

in the knowledge of the possible range of states that can be
bound together within QCD.

14.9 High-pT physics at HL-LHC

Massimiliano Grazzini and Gudrun Heinrich

14.9.1 Introduction

The High-Luminosity LHC (HL-LHC) is scheduled to start
operation in 2029. By colliding protons with an instantaneous
luminosity that is five times higher than what is achieved
at the LHC, the HL-LHC is expected to deliver data cor-
responding to an integrated luminosity of 3000 fb−1 by the
end of the 2030s, which is a factor of 20 more than what has
been collected so far. Despite the highly challenging exper-
imental environment, such an increased dataset – collected
with upgraded detectors – has an immense physics poten-
tial: it will give access to the rarest phenomena, and will
be critical to reduce systematic uncertainties or bypass their
limitations with new analyses, leading to measurements of
unprecedented precision. It will allow us to achieve a sensi-
tivity to sectors of Beyond-the-Standard-Model (BSM) phe-
nomena that are beyond the reach of current analyses, and
will ultimately help us to get closer to answering fundamental
questions of particle physics.

14.9.2 Higgs properties

The study of Higgs boson (H ) properties is central in the HL-
LHC physics programme. Since its discovery in 2012, anal-
yses related to the Higgs boson have significantly expanded,
and have now turned into a vast campaign of precision mea-
surements, with fundamental opportunities to indirectly con-
strain the Higgs boson width and to access its trilinear cou-
pling. Small deviations from the SM can be described in a
consistent framework by using effective field theory (EFT).

The main measurements of Higgs boson properties are
based on five production modes (gluon fusion ggF , vector
boson fusion VBF, associated production with a W or Z vec-
tor boson or with a top-quark pair) and five decay modes:
H → γ γ , Z Z , WW , ττ , bb̄. The H → μμ and Zγ chan-
nels should become visible in the future. The rate measure-
ments in the production and decay channels mentioned above
yield measurements of the Higgs boson couplings in the so-
called “κ-framework” [4834]. The latter introduces a set of
scaling factors κi that linearly modify the couplings of the
Higgs boson to the corresponding SM elementary particles,
including the effective couplings to gluons and photons. The
projected uncertainties, combining ATLAS and CMS, are
summarized in Fig. 436. Note that theory uncertainties are
assumed to be halved with respect to their current values.
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Fig. 436 Projected uncertainties for the scaling parametersκi , combin-
ing ATLAS and CMS: total (grey box), statistical (blue), experimental
(green) and theory (red) uncertainties. From Ref. [4835]

Except for rare decays, the overall uncertainties will be dom-
inated by the theoretical systematics, with a precision close
to the percent level. These coupling measurements assume
the absence of sizable additional contributions to ΓH . As
observed in Ref. [4836], the signal-background interference
in the production of Z -boson pairs is sensitive to ΓH . Mea-
suring the off-shell four-lepton final states and assuming that
the Higgs boson couplings can be extrapolated in the off-
shell region from their SM values, the HL-LHC will extract
ΓH using this indirect measurement with a 20% precision at
68% CL [4835].

The production of Higgs boson pairs is a central process
to access the Higgs trilinear coupling. The Run 2 experience
in searches for Higgs boson pair production led to a reassess-
ment of the HL-LHC sensitivity, including additional chan-
nels that were not considered in previous projections. ATLAS
and CMS anticipate a sensitivity to the HH signal of approx-
imately 3σ per experiment, leading to a combined observa-
tion sensitivity of 4σ . These analyses lead to the combined
likelihood profile as a function of κλ shown in Fig. 437.

It should be noted that the upper limit on the signal strength
for HH production can reach the SM expectation already for
Run 3 by combining ATLAS and CMS results if the improve-
ments in the reconstruction and analysis techniques continue
at the same pace (see e.g. Elisabeth Brost, talk at Higgs10
meeting, CERN, July 2022).

Fig. 437 Projected combined HL-LHC sensitivity to the Higgs boson
trilinear coupling expressed in terms of κλ, from direct search channels.
From Ref. [4835]

14.9.3 Multiple gauge bosons

The study of multiple gauge boson production is of crucial
importance to test the EW gauge symmetry, since it can sig-
nal the presence of anomalous gauge couplings [4837]. At
HL-LHC, evidence for the production of three gauge bosons
can be obtained at the 3σ level in the WWZ and WZZ chan-
nels and at the 5σ level in the WWW channel considering
the fully leptonic decay modes [3940]. Following the first
observation of vector-boson scattering (VBS) at the LHC,
the HL-LHC is expected to provide a more complete picture
of these processes, including the option to measure polar-
ized components, thanks to the higher statistics and improved
detectors.

14.9.4 New-physics searches

The HL-LHC will allow us to test BSM phenomena that are
beyond the reach of current analyses [1279]. Many BSM
models predict the existence of new particles, which can be
searched for at HL-LHC, exploiting the much larger statistics
and detector upgrades.

In the case of supersymmetry (SUSY), the extension of
the kinematic reach is reflected in improved sensitivity to
sleptons, gluinos and squarks. In the strong SUSY sector,
HL-LHC will probe gluino masses up to 3.2 TeV, in R-parity
conserving scenarios and under several possible assumptions
on the gluino prompt decay mode. This significantly extends
the reach of LHC Run 2. In the context of R-parity conserving
models, scenarios in which the mass difference between the
produced superpartners and the lightest superpartner (LSP)
they decay into is small (usually called compressed SUSY)
are the most difficult to study experimentally, and have been
barely covered at the LHC till now. At the HL-LHC, these
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scenarios will be studied by using mono-jet and mono-photon
signatures as well as VBF production.

An interesting scenario in the search for dark matter is the
one containing a dark photon that couples very weakly to
charged particles. Prospects for an inclusive search for dark
photons decaying into muon or electron pairs indicate that
the HL-LHC could cover a large fraction of the theoretically
favored parameter space.

The flavor anomalies in B-decays suggest the possible
presence of new states, such as Z ′ or leptoquarks (LQ), cou-
pling to second and/or third generation SM fermions. The
HL-LHC will be able to cover a significant portion of the
parameter space of these models, with an exclusion reach up
to 4 TeV for the Z ′. Pair produced scalar LQs coupling to μ

(τ ) and b-quarks, on the other hand, can be excluded up to
masses of 2.5 (1.5) TeV, depending on the assumptions on
the couplings.

14.9.5 QCD challenges

Already now the LHC experiments have reached a very
high level of sophistication in the reconstruction of colli-
sion events, thereby making precise measurements possible
despite the complex environment and substantial pileup.

Even though significant progress has been made in QCD
and electro-weak (EW) calculations for hard processes in the
last few years (see Sect. 11.1), further progress will be needed
to avoid theory uncertainties to become the limiting factor in
interpreting a wide range of HL-LHC data. For example, in
the case of Higgs boson couplings, the projections of Fig. 436
show that theory uncertainties will be a limiting factor even
if reduced by a factor of two with respect to their current
values. Progress on the theory side is therefore needed and it
is indeed expected in the following areas:

1. Parton distribution functions: All hard scattering reac-
tions at the LHC are eventually initiated by a partonic col-
lision. The parton scattering rate, which is computed per-
turbatively, is weighted by the PDFs, whose knowledge is
therefore required to extract fundamental couplings from
cross section measurements or from kinematic distribu-
tions. PDFs are also a fundamental input to predict the
tails of the distributions of SM processes at high Q2 or
high pT , which in turn allow us to probe possible new
physics effects. The current knowledge of PDFs will be
improved at HL-LHC by accurate measurements of SM
processes with jets, vector bosons and top quarks. LHCb
data also have the potential to further constrain the PDFs.
At scales Q > 100 GeV the HL-LHC data can reduce
PDF uncertainties by a factor between 2 and 4, depend-
ing on the process and on the assumptions on systematic
uncertainties [3940].

2. Benchmark processes at high accuracy: The experi-
mental precision for many benchmark 2 → 1 and 2 → 2
processes (the most significant example being Drell–
Yan lepton pair production) is likely to approach the
1% level, over a substantial range of phase space. Per-
turbative QCD predictions at next-to-next-leading order
(NNLO) normally do not reach 1% precision, and N3LO
accuracy might be needed for a range of 2 → 1 and
2 → 2 processes. For example, N3LO predictions for
Higgs and vector boson production are already available
[1949,3461,3462,3468,3469,3552,4838] and are crucial
to control perturbative uncertainties. The improved the-
oretical control of simple processes will in turn improve
our knowledge of PDFs, allowing N3LO PDF fits, with
impact on the whole range of LHC processes, and will also
increase the sensitivity to BSM effects manifesting them-
selves as small deviations from SM predictions. A first
approximate N3LO PDF fit has been recently presented
in Ref. [3101].

3. 2 → 3 processes at few-percent accuracy: There are a
number of crucially important signal and background pro-
cesses that involve a 2 → 3 scattering structure at parton
level; these are at the current frontier of NNLO calcula-
tions.
While calculations of 3-jet production rates became
recently available [3426], processes like t t̄ H , t t̄V , H +
2 jets are only known up to NLO and would benefit from
the extension to NNLO.124 The t t̄ H cross section, e.g.,
is now measured with roughly 15% statistical precision
and is expected to be known with a statistical precision of
∼ 2% at the end of the HL-LHC. Without NNLO QCD
and NLO EW accurate calculations for signal and back-
grounds, this experimental precision cannot be matched
on the theory side, thereby limiting the exploitation of the
results for physics studies.
A significant amount of work is currently being devoted to
break the 2 → 3 barrier for two-loop amplitudes involv-
ing massive particles. At the same time, an effort is ongo-
ing to improve available methods to isolate and cancel
infrared singularities (see Sect. 11.1 for more details). In
the HL-LHC era the complete availability of combined
NNLO precision in the strong coupling and NLO preci-
sion in the EW coupling would be desirable.

4. Accuracy at high pT : Current measurements have only
explored a limited range of the available phase space.
NNLO accurate differential cross sections pave the way to
more detailed data/theory comparisons in less populated
phase-space regions where new physics effects could be
hidden.
An important example is provided by high-pT Higgs pro-

124 First NNLO results for inclusive t t̄ H production have been recently
presented in Ref. [4839].

123



 1125 Page 540 of 636 Eur. Phys. J. C          (2023) 83:1125 

duction. The ATLAS and CMS collaborations anticipate
an O(10%) precision in the Higgs boson production rate
for pT ≥ 350 GeV at the end of the HL phase of the LHC
[4835].
The recent computations of 2 → 2 amplitudes mediated
by massive quarks [3405,4840], combined with NNLO
calculations in the heavy-top limit [3457,3458,4841–
4843] offer a comparable precision in the SM prediction,
and will therefore allow us to disentangle possible new
physics effects in this region.

5. Bottlenecks in NLO multi-particle simulations: The
full deployment of NLO precision through automated MC
frameworks in the huge range of HL-LHC analyses raises
important technical challenges. Establishing the predic-
tivity of MC tools at precision levels of order 10% – as well
as their correct usage within the experiments – will require
quantitatively and qualitatively unprecedented validation
work. Already now, the accuracy at which event samples
for 2 → 4 processes can be calculated at NLO is lim-
ited by dramatic efficiency bottlenecks related to the poor
convergence of the phase-space integration and by vari-
ous other technical aspects. The HL-LHC era will require
efficiency improvements by an order of magnitude. This
can only be achieved through a significant step forward in
the optimization of event generators and new techniques
in the calculation of amplitudes.

6. Theory systematics: The appropriate estimate of theory
uncertainties in the presence of experimental cuts or in
the context of sophisticated multi-variate analyses is a
challenging problem. A typical example is provided by
t t̄ H analyses in the H → bb̄ decay mode. The sensi-
tivity is presently limited by theory uncertainties in the
t t̄bb̄ QCD background. In this kind of analyses, MC pre-
dictions for the large QCD background are constrained
by data through a profile likelihood fit of several kine-
matic distributions in different event categories. In this
context, theoretical predictions for the correlations across
different categories and kinematic regions play a key role.
All related uncertainties, e.g. at the level of NLO matrix
elements, parton showers and NLO matching, need to be
properly identified and modelled. This task is further com-
plicated by the presence of multiple scales, which may
require resummations. This type of problem is character-
istic for a broad range of LHC analyses; its solution will
require a joint effort between theorists and experimental-
ists.

7. Non-perturbative effects: While the perturbative com-
putations follow a systematic approach based on pertur-
bation theory and factorization, our understanding of non-
perturbative effects is still quite rough. With the increasing
accuracy of perturbative calculations, which in some cases
now reach the N3LO level, non-perturbative effects might
become relevant, also in inclusive observables. Moreover,

in the case of measurements dealing with hadronic final
states, the poor control of the hadronization stage lim-
its the precision that can be attained, thereby potentially
affecting the extraction of important parameters, such as
the top quark mass.

8. Resummation and parton showers: For key observ-
ables depending on disparate scales, advances in the all-
order resummation of large logarithmic corrections will
be crucial. Such advances require to increase the loga-
rithmic accuracy of the resummed calculations, but also
the extension to multiple-differential resummations, the
inclusion of power suppressed effects, as well as the
understanding of sub-leading and super-leading structures
(see Sect. 11.2). In parallel, work towards the extension of
the logarithmic accuracy of parton showers will be essen-
tial (see Sect. 11.3).

9. BSM effects:
The great success of the SM in describing all phenomena
observed at the LHC suggests that the key to a potential
discovery of new physics is precision. Precision measure-
ments indeed provide an important tool to search for BSM
physics associated to mass scales beyond direct reach of
the LHC. EFT frameworks, where the SM Lagrangian
is supplemented with additional operators built from SM
fields, consistent with gauge symmetries and based on a
well-defined counting scheme, allow us to systematically
parameterize BSM effects and their modifications to SM
processes. These operators can either modify existing SM
couplings, or generate new couplings. In the case of BSM
operators that mix with the SM ones, if r is the relative
precision on a given physical observable, the new physics
mass scale Λ that can be probed with this observable will
scale as 1/

√
r in the generic case.

14.9.6 Outlook

While the HL-LHC offers great opportunities due to the enor-
mous reduction of statistical uncertainties compared to pre-
vious LHC runs, some measurements remain difficult and
will leave questions that could be addressed more straight-
forwardly with the great precision that future lepton collid-
ers, such as the ILC [4844], CEPC [4845], FCC-ee [4846]
or CLIC [4847] could achieve, or with the impressive energy
reach and statistics a future hadron collider (FCC-hh [4848])
could provide. For example, the trilinear Higgs boson self-
coupling – a parameter which is crucial to probe the mech-
anism of EW symmetry breaking – is expected to be con-
strained with an uncertainty of 50% after the HL-LHC runs,
as shown in Fig. 437, while a combination of FCC-ee and
HL-LHC results could reach a precision of about 30%, and a
future hadron collider operating at a center-of-mass energy of
100 TeV could achieve a clear measurement with a precision
of about 5% [4849]. Similar arguments hold for other quan-
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tities that are important to probe the SM at an unprecedented
level of precision, such as the W -boson mass, the couplings
of the Higgs boson to light fermions, or the line-shape and
therefore the total width of the Higgs boson [4850].

Apart from the potential of future lepton colliders to find
hints for new phenomena through a scrutiny of the Higgs sec-
tor and other SM particles and interactions, they offer new
possibilities to search for physics beyond the SM, includ-
ing the production of dark matter particles at colliders, tak-
ing advantage from the fact that the final state can be fully
reconstructed. Direct searches for additional gauge bosons,
such as Z ′, or for heavy neutral leptons, could also shed light
on the flavor anomalies, thereby providing complementary
information to experiments at lower energies, to give just
some examples. Finally, FCC-hh energies would give access
to a huge, so far uncharted energy range and parton kinematic
region, offering the possibility of a direct production of so
far unknown particles.

This review shows how multi-faceted QCD is, as well as its
embedding in the SM. The quest to answer fundamental ques-
tions about matter, its interactions and, on a large scale, the
origin and evolution of the Universe, needs to be addressed
by a diverse experimental program, and high-energy collid-
ers are just one part of it. However, they offer the unique
possibility to produce particles that are simply inaccessible
by other means in a controlled way. Therefore, high energy
colliders form an important building block in a coordinated
global effort towards a more complete theory of fundamental
interactions, where the Standard Model might be embedded
as a sub-part, as much as QCD today is embedded in the
Standard Model.

Postscript

This volume tries to give a comprehensive and balanced view
of the progress in the development of QCD since its inception.
To do so presented many challenges: are all important topics
adequately covered, are all opposing views represented, and
is all important work included? As the volume was being
developed, we often added new material that our conveners
suggested (see the title page for the names of the conveners).
This process was greatly aided by the use of Overleaf, which
allowed all of the contributors to follow developments. In a
real sense, this volume is the work of many people who often
worked together to shape the final result even though they
were under the intense pressures of their very busy profes-
sional schedules. We thank all of them; this volume is truly
a collective effort. Still, we leave it to you to judge if we
succeeded.

Another goal was to produce a coherent discussion useful
for new Ph.D’s and postdocs. Here we know our efforts were
only partially successful. There was never enough time to

fully coordinate all of the contributions, and we are sure you
will find many places where more cross references would
have been helpful. Again, it is up to our intended audience
to judge the extent to which we were successful.

Finally, as we reflect back on this effort, we realize that
the timing of this volume was more urgent that we realized
at the start. Fifty years is a long time, and many who have
made important contributions to the subject are no longer
alive. This was never more apparent than when we learned
of Harald Fritzsch’s untimely death on August 16, 2022. We
were delighted when he accepted our invitation to write his
contribution, guided by his early and helpful suggestions,
and surprised at how quickly he completed his work. His
contribution was among those that were completed very early
and could serve as examples for other contributors.

Both of us learned a lot about QCD as we edited the contri-
butions and participated in the discussions. This was a great
pleasure, for which we thank all of the contributors.
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