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Abstract
We consider continuous-time Markov chains that describe the stochastic evolution 
of a dynamical system by a transition-rate matrix Q which depends on a parameter � . 
Computing the probability distribution over states at time t requires the matrix expo-
nential exp (tQ) , and inferring � from data requires its derivative � exp (tQ) ∕�� . 
Both are challenging to compute when the state space and hence the size of Q is 
huge. This can happen when the state space consists of all combinations of the val-
ues of several interacting discrete variables. Often it is even impossible to store Q. 
However, when Q can be written as a sum of tensor products, computing exp (tQ) 
becomes feasible by the uniformization method, which does not require explicit stor-
age of Q. Here we provide an analogous algorithm for computing � exp (tQ) ∕�� , 
the differentiated uniformization method. We demonstrate our algorithm for the sto-
chastic SIR model of epidemic spread, for which we show that Q can be written as a 
sum of tensor products. We estimate monthly infection and recovery rates during the 
first wave of the COVID-19 pandemic in Austria and quantify their uncertainty in a 
full Bayesian analysis. Implementation and data are available at https:// github. com/ 
spang- lab/ TenSIR.

Keywords Continuous-time Markov chains · Bayesian inference · Uniformization · 
Matrix exponential · Tensors · Epidemic spread

1 Introduction

Predicting the time evolution of complex dynamical systems has a wide range of 
applications in medicine and public health. One of them is the SIR model of epi-
demic spread, which describes how the numbers of susceptible (S), infected (I) and 
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recovered (R) people in a population change over the course of an epidemic by a 
system of differential equations. In this simple model the total population size stays 
constant, i.e., there are no births or deaths, there is no migration, and people get 
infected and recover at most once. The population has no demographic structure and 
no geographic structure, i.e., all individuals meet each other randomly. More com-
plex models extend the SIR model in order to account for these limitations (Tang 
et al. 2020).

Until recently even the basic SIR model has been approximated deterministi-
cally (Kermack and McKendrick 1927) and was considered computationally intrac-
table in its stochastic formulation (McKendrick 1925). The stochastic SIR model 
is a continuous-time Markov chain (CTMC) in which infections happen randomly 
with a rate proportional to S and proportional to I (Allen 2017). The state of the 
system at a given time is the tuple (S,  I,  R) which for a constant population size 
N is already specified by the tuple (S,  I) since R = N − S − I . The state space is 
therefore {0,… ,N} × {0,… ,N} with size (N + 1) × (N + 1) . Since infections hap-
pen randomly one must keep track of a huge number of probabilities, one for every 
possible state.1

More generally, we consider a CTMC which describes probability distributions 
p(t) ∈ ℝ

|X| over a discrete state space X, where an entry p(t)x denotes the probability 
that the CTMC is in state x ∈ X at time t ∈ [0,∞) . Its change over time is governed 
by the Kolmogorov forward equation

with transition rate matrix Q ∈ ℝ
|X|×|X| , where an off-diagonal entry Qy,x is the 

instantaneous transition rate from state x ∈ X to state y ∈ X and diagonal entries are 
set such that columns sum to zero. The solution to the Kolmogorov equation is given 
by the action of the matrix exponential,

whose complexity is quadratic in |X| when the sum is truncated after an appropriate 
number of terms. For example, an SIR model of the Austrian population with 9 mil-
lion people has a state space X of size 9 million × 9 million = 81 trillion . The matrix 
Q has 81 trillion × 81 trillion entries and naively applying the matrix exponential on 
a vector is practically impossible, as well as numerically unstable.

Even more dauntingly, when Q depends on an unknown parameter � , such as the 
infection or recovery rate in the SIR model, we must first infer � from data. This can 
be done, for example, by maximizing its likelihood, which is an optimization prob-
lem that can be solved more efficiently if the derivative

(1)
dp(t)

dt
= Qp(t)

(2)p(t) = exp (tQ) p(0) =

∞∑
n=0

tn

n!
Qn

p(0)

1 Technically half of these states (those with S + I > N ) always have a probability of 0 which need not 
be tracked. We track them anyway for the mathematical convenience of writing the state space as a Car-
tesian product.
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is available. Alternatively, � can by inferred by sampling from its posterior in a full 
Bayesian analysis, which is also more efficient if the derivative of the likelihood is 
available.

However, Ho et  al. (2018) have recently provided an algorithm that solves the 
Kolmogorov equation in the Laplace domain and evaluates the inverse Laplace 
transform numerically, thus avoiding the matrix exponential. Their algorithm is 
applicable to systems where each discrete variable increases monotonically. This 
includes the SIR model,2 for which their algorithm scales quadratically in the popu-
lation size.

In this paper, we provide an algorithm that directly computes exp (tQ) and, cru-
cially, � exp (tQ) ∕�� at the same time. For the SIR model it scales cubically in the 
population size but is still practical. Importantly, our approach is applicable to a 
broader class of CTMCs with large state spaces that arise from interacting discrete 
variables, without requiring monotonicity. For example, in tumor progression mod-
els the states are combinations of possible mutations (Beerenwinkel and Sullivant 
(2009), Schill et al. (2019)), in stochastic neural networks the states are activation 
patterns of neurons (Yamanaka et  al. 1997), in predator–prey dynamics they are 
joint population sizes of interacting species (Owen et al. 2014), or in chemical reac-
tion networks they are joint counts of chemical species (Wolf 2007).

For many of these models Q can be written as a sum of tensor products (Buchholz 
1999). We provide such a representation for the stochastic SIR model. To the best of 
our knowledge, this representation is novel. We use it for matrix–vector products 
that do not require explicit storage of Q (Buis and Dyksen 1996) and make computa-
tion of the matrix exponential tractable via the uniformization method (Grassmann 
1977). A similar approach by Sherlock (2021) exploits the sparsity of Q. We extend 
the uniformization method and provide an analogous algorithm that also computes 
the derivative of the matrix exponential. Finally, we use Hamiltonian Monte Carlo 
sampling to provide a full Bayesian analysis of the first wave of the COVID-19 pan-
demic for the Austrian population, shedding new light on the uncertainties associ-
ated with the estimation of infection and recovery rates.

2  Differentiated uniformization for parameter estimation

The action of the matrix exponential

could be approximated in principle by terminating after a finite number of terms. 
However, catastrophic cancellations occur (Moler and Van Loan 2003) due to the 

�p(t)

��
=

� exp (tQ)

��
p(0)

(3)p(t) = exp (tQ) p(0) =

∞∑
n=0

tn

n!
Qn

p(0)

2 By changing variables from susceptibles and infected to infections and recoveries.
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fact that Q has negative entries and negative eigenvalues.3 The uniformization 
method (Grassmann 1977) addresses this problem by introducing a strictly nonnega-
tive matrix

such that

does not suffer from cancellations. P can be viewed as the transition probability 
matrix of a discrete-time Markov chain where the number of transitions is a Pois-
son-distributed random variable with mean �t.

Using the recursions

p(t) can be computed according to Eq. (5) by algorithm 1 (Grassmann 1977). Note 
that Pn

p(0) sums to 1 and hence Eq. (5) sums to less than 1 when terminated after a 
finite number of terms. The algorithm stops once this probability mass defect

is smaller than a preset tolerance 𝜀 > 0 . The required number m of iterations is in 
O(�) (Reibman and Trivedi 1988) and can be determined, e.g., using the numeri-
cally robust method by Sherlock (2021).

In this paper we are interested in statistical models where Q depends on a param-
eter � that we want to estimate from data by maximizing its likelihood or by sam-
pling from its posterior. Both inference approaches benefit from utilizing gradient 
information. Al-Mohy and Higham (2009) proposed an efficient method to calcu-
late derivatives of the matrix exponential for general matrices. Here, we propose a 
conceptually similiar algorithm specifically tailored towards transition rate matrices 
based on the uniformization method:

(4)P ∶=
1

�
Q + I for some � ≥ max

x
|Qx,x|

(5)

p(t) = exp (tQ) p(0) = exp (�t(− I + P))p(0)

= exp (−�t I ) exp (�tP)p(0)

=

∞∑
n=0

e−�t
(�t)n

n!
Pn

p(0)

(6)Pn = PPn−1,

(7)
(�t)n

n!
=

�t

n

(�t)n−1

(n − 1)!
,

(8)1 −

m∑
n=0

e−�t
(�t)n

n!

3 Negative entries directly lead to cancellations in Eq. (3). If Eq. (3) is transformed to the eigenbasis of 
Q, negative eigenvalues of Q lead to cancellations as well.
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We use the recursions (6), (7) and additionally

to compute p(t)� ∶= �p(t)∕�� according to Eq. (9) by algorithm 2.

Algorithm 1  Uniformization

(9)

�p(t)

��
=

�exp (tQ)

��
p(0)

=
�

��

(
∞∑
n=0

e−�t
(�t)n

n!
Pn

p(0)

)

=

∞∑
n=0

e−�t
(t�)n

n!

�Pn

��
p(0) + e−�t

��

��

(
−
tn+1�n

n!
+

tn�n−1

(n − 1)!

)
Pn

p(0)

=

∞∑
n=0

e−�t
(t�)n

n!

(
�Pn

��
p(0) +

��

��

(
n

�
− t

)
Pn

p(0)

)

(10)

�Pn

��
=

�P

��
Pn−1 + P

�P

��
Pn−2 +…+ Pn−2 �P

��
P + Pn−1 �P

��

=
�P

��
Pn−1 + P

(
�P

��
Pn−2 +…+ Pn−3 �P

��
P + Pn−2 �P

��

)

=
�P

��
Pn−1 + P

(
�Pn−1

��

)
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Algorithm 2  Differentiated Uniformization

Applying the differentiated uniformization for a particular statistical model 
requires the scalar

A generic choice for � can be the 2-norm of the diagonal of Q or any p-norm with 
even p. It also requires the operators

Crucially, these operators are only needed for matrix–vector products in lines 11 and 
12 of algorithm 2 and do not need to be stored explicitly. This makes our method 
especially useful for models where Q is large but has a compact representation as a 
sum of tensor products, which allows one to cheaply compute matrix–vector prod-
ucts (Buis and Dyksen 1996).

Differentiated uniformization thus opens the door to parameter inference 
for CTMCs on huge discrete state spaces. Let {x1,… , xK} be observations of the 
Markov chain at corresponding time points {t1,… , tK} . We represent each data 
point by an empirical probability distribution �(tk) ∈ ℝ

|X| , where �(tk)xk = 1 and 
all other entries are zero. The likelihood of � for a single observation of state xk at 
time tk with k > 1 is

The log-likelihood for the whole data set,

(11)� ≥ max
x

|Qx,x| and its derivative �
� ∶=

��

��
.

(12)P =
1

�
Q + I and P� ∶=

�P

��
= −

1

�2

��

��
Q +

1

�

�Q

��
.

(13)p(tk)xk , where p(tk) = exp
(
(tk − tk−1)Q

)
�(tk−1).
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can be maximized using its derivative

for example by gradient ascent. This derivative can also be used for sampling a pos-
terior distribution of � in a full Bayesian model using a Hamiltonian Monte Carlo 
method (Gelman et al. 2013).

3  Modeling epidemic spread

The most basic models of epidemic spread are SIR models, which describe the 
numbers of susceptible (S), infected/infectious (I) and recovered (R) people dur-
ing an epidemic in a closed population of constant size N.

The deterministic SIR model (Kermack and McKendrick 1927) assumes 
that S(t), I(t),R(t) ∈ [0,N] are continuous and describes their evolution over time 
t ∈ [0,∞) by the following system of nonlinear ordinary differential equations:

where �, � ∈ ℝ
+ are parameters. Note that once S(t) and I(t) are given, 

R(t) = N − S(t) − I(t) is already determined and can be omitted in further analysis.
In words, an infection occurs when a susceptible person comes in sufficiently 

close contact with an infected person, which happens proportionally to the num-
ber of susceptible and to the density of infected people in the population and pro-
portionally to an infection rate � . This rate � encompasses, for example, disease 
characteristics, people’s behavior, public policy and weather. An infected person 
recovers with rate � and can then no longer become susceptible or infected again. 
The basic reproduction number R0 ∶= �∕� is the number of people (in a fully 
susceptible population) that one infected person infects before recovering.

There is no analytical solution to system (16), but it can be solved numerically, 
for example by Euler’s method:

(14)�(�) =

K∑
k=2

log(p(tk)xk ),

(15)
��(�)

��
=

K∑
k=2

p(tk)
�
xk

p(tk)xk
,

dS(t)
dt

=

infections
︷ ︸︸ ︷

−β
I(t)S(t)

N

recoveries
︷ ︸︸ ︷

,

dI(t)
dt

= +β
I(t)S(t)

N
− αI(t),

dR(t)
dt

= + αI(t),

(16)
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The black curve in Fig. 1a illustrates this solution for given parameters � = 1w−1 , 
� = 2.5w−1 and initial conditions N = 500 , I(0) = 3 , S(0) = 497.

This deterministic model has several limitations. First, an epidemic is in fact not 
a deterministic dynamical system but a stochastic process that depends on the ran-
dom behavior of people and random duration of each infection. A person does not 
recover after exactly one week, but only after one week on average. Especially if 
the very first infected people recover by chance before they come in contact with 
other people, the epidemic may not even take off (flat blue curves in Fig. 1a). Also, a 
person does not infect exactly 2.5 people per week, but only 2.5 people per week on 
average. Whether a person infected early on happens to come in close contact with 
someone else after one week or two weeks may shift the whole course of the epi-
demic (red curve in Fig. 1a). Hence stochastic fluctuations especially at the begin-
ning of the epidemic can drastically alter the shape of the curve compared to its 
deterministic counterpart. Only by considering the uncertainty in the course of the 
epidemic can policy makers make informed decisions, e.g., for allocating limited 
hospital capacities over time.

Another limitation of the deterministic model is that without modeling the sto-
chastics explicitly it is not possible to quantify the uncertainties of inferred param-
eters, which contributes to the uncertainties in the course of the epidemic.

These limitations are alleviated by the stochastic SIR model (McKendrick 1925; 
Allen 2017) which is a continuous-time Markov chain over all possible states of the 
population. A state is a pair of integers (S, I) ∈ {0,… ,N} × {0,… ,N} denoting 
the number of susceptible and infected people. Because of the very large number of 

(17)
S(t + Δt) = S(t) − �

S(t)I(t)

N
Δt,

I(t + Δt) = I(t) + �
S(t)I(t)

N
Δt − �I(t)Δt.

Fig. 1  Illustration of SIR models with N = 500 , � = 1w−1 , � = 2.5w−1 , I(0) = 3 , S(0) = 497
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possible states the stochastic SIR model is more challenging and less widely adopted 
than the deterministic model.

Let p(t) ∈ ℝ
(N+1)2 denote the probability distribution at time t over all states (S, I). 

That is, p(t)(S,I) is the probability that at time t there are S susceptible and I infected 
people. Its time evolution is governed by the Kolmogorov forward equation

where the matrix Q ∈ ℝ
(N+1)2×(N+1)2 contains the transition rates from a state (S, I) to 

a state (S + ΔS, I + ΔI):

The blue and red curves in Fig. 1a depict 10 randomly sampled trajectories where 
transitions happen according to the rates in Eq. (19), generated by the Gillespie 
(1976) algorithm. Figure 1b shows the analytic solution to Eq. (18) and further illus-
trates that the stochasticity is not merely additive noise around the deterministic 
solution.

The parameters �, � ∈ ℝ
+ can be inferred from data using differentiated uni-

formization. This requires multiple matrix–vector products with Q which is, how-
ever, too large to be stored explicitly, even for populations of only thousands of peo-
ple. Hence, we propose a novel representation of Q that does not require explicit 
storage. To this end, we introduce band matrices of size (N + 1) × (N + 1):

This yields a representation of the transition-rate matrix

as a sum of tensor products4 (see Fig.  2 for an illustrated explanation). Note that 
Eq. (21) is not an approximation but an exact reformulation of Eq. (19). The benefit 
of this representation is that its storage complexity is O(N) rather than O(N4) and 
that performing matrix–vector products has a complexity in only O(N2) (Buis and 
Dyksen 1996) rather than O(N4).

(18)
dp(t)

dt
= Qp(t),

(19)Q(S+ΔS,I+ΔI),(S,I) =

⎧
⎪⎪⎨⎪⎪⎩

�
SI

N
if ΔS = −1,ΔI = +1,

�I if ΔS = 0,ΔI = −1,

−�
SI

N
− �I if ΔS = 0,ΔI = 0, S ≠ 0, I ≠ N,

−�I if ΔS = 0,ΔI = 0, S = 0 or I = N,

0 otherwise .

(20)

S
+
inf

= superdiag(1,… ,N),

S
−
inf

= diag(0,… ,N),

S
+
rec

= diag(1, 1,… , 1) = I ,

S
−
rec

= diag(1, 1,… , 1) = I ,

I+
inf

= subdiag(0,… ,N − 1),

I
−
inf

= diag(0,… ,N − 1, 0),

I
+
rec

= superdiag(1,… ,N),

I
−
rec

= diag(0,… ,N).

(21)Q =
𝛽

N
(S+

inf
⊗ I

+
inf
) + 𝛼(S+

rec
⊗ I

+
rec
) −

𝛽

N
(S−

inf
⊗ I

−
inf
) − 𝛼(S−

rec
⊗ I

−
rec
)

4 For clarity, we did not factor out S+
rec

= S
−
rec

= I , which would allow for a representation with only 
three terms.
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Additionally, differentiated uniformization requires the derivative �Q∕�� . Here 
we perform inference with respect to logarithmic parameters � = (log �, log �) in 
order to ensure the positivity constraint on � and �:

(22)
𝜕Q

𝜕 log 𝛼
= 𝛼(S+

rec
⊗ I

+
rec
) − 𝛼(S−

rec
⊗ I

−
rec
),

Fig. 2  Illustration of Q for a population of size N = 3 given by its entry-wise representation in Eq. (19) 
(top) and its tensor representation in Eq. (21) (bottom). Blue numbers indicate susceptibles, red numbers 
indicate infected and blank entries in the matrices are zero. Transitions should be read from columns to 
rows. S+

inf
 : An infection decreases the number of susceptibles by one and happens proportionally to the 

current number of susceptibles. I+
inf

 : At the same time, an infection increases the number of infected by 
one and happens proportionally to the current number of infected. The tensor product ⊗ combines both 
these transitions for a single infection. Moreover, an infection happens inversely proportional to the total 
population size N and proportionally to the parameter � . S+

rec
 : A recovery does not change the number 

of susceptibles. I+
rec

 : At the same time, a recovery decreases the number of infected by one and happens 
proportionally to the current number of infected. The tensor product ⊗ combines both these transitions 
for a single recovery. Moreover, a recovery happens proportionally to the parameter � . The matrices S−

inf
 , 

I
−
inf

 , S−
rec

 , I−
rec

 generate corresponding negative entries for the diagonal of Q 
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Finally, differentiated uniformization requires a differentiable upper bound � on the 
absolute diagonal entries of Q. For the SIR model we choose the exact maximum

It is differentiable5 for � ≠ (N − 1)� with

Overall, differentiated uniformization performs O(�) matrix–vector products 
and thus has a total runtime complexity in O(�N2) = O(N3) for the SIR model. It 
requires storage of the result p(t) , which has complexity O(N2).

For parameter inference we are typically only interested in the likelihood that an 
earlier data point (S, I) is followed by a later data point (S + ΔS, I + ΔI) after time 
t. Since the number of susceptibles cannot increase ( ΔS ≤ 0 ) and the number of 
recovered cannot decrease ( ΔR = −ΔS − ΔI ≥ 0 ) along a trajectory, it is sufficient 
to compute p(t) and p(t)� on the restricted state space

as explained in Appendix A. Following Ho et  al. (2018) we use this 
state-space restriction to reduce the time complexity of our algorithm to 
O
(
(I + |ΔS|)(ΔS2 + |ΔS|ΔR)) and its storage complexity to O(ΔS2 + |ΔS|ΔR).

4  COVID‑19 pandemic

Here we model the first wave of the COVID-19 pandemic in Austria as a stochas-
tic SIR model. We employ differentiated uniformization to estimate the param-
eters � and � and quantify their uncertainty. We use daily numbers on S, I and R 
between 2020-03-01 and 2020-09-01 from public health data provided by the Aus-
trian Bundesministerium für Soziales (2021) (Fig. 4). I and R are given directly, and 
we set S = N − I − R assuming that the initial population size N = 8,932,664 stays 

(23)
𝜕Q

𝜕 log 𝛽
=

𝛽

N
(S+

inf
⊗ I

+
inf
) −

𝛽

N
(S−

inf
⊗ I

−
inf
).

(24)

� = max
x

|Qx,x| = max
{|Q(N−1,N−1),(N−1,N−1)|, |Q(N,N),(N,N)|

}

= max

{
N(N − 1)

�

N
+ (N − 1)�,N�

}

= max {(N − 1)� + (N − 1)�, � + (N − 1)�}

= (N − 1)� +max{(N − 1)�, �}.

(25)
𝜕𝛾

𝜕 log 𝛼
=

{
N𝛼 if 𝛼 > (N − 1)𝛽,

(N − 1)𝛼 if 𝛼 < (N − 1)𝛽,

(26)
𝜕𝛾

𝜕 log 𝛽
=

{
0 if 𝛼 > (N − 1)𝛽,

(N − 1)𝛽 if 𝛼 < (N − 1)𝛽.

{S + ΔS,… , S} × {I − ΔR,… , I − ΔS},

5 For � = (N − 1)� a differentiable upper bound for max{(N − 1)�, �} is log(e(N−1)� + e�).
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constant. People who have died from COVID-19 are counted under “recovered” in a 
technical sense as they are no longer infectious. We do not correct for undiscovered 
cases and biases in testing and reporting. We also assume that parameters are piece-
wise constant for each month.

We do a full Bayesian analysis for parameter pairs (log �, log �) with a uniform 
prior for each parameter in the interval between log(0.01∕day) and log(1∕day) . This 
highlights the shape of the likelihood of the model but can be substituted by any 
other prior informed by expert knowledge. Following Ho et  al. (2018) we sample 
from the joint posterior using a Hamiltonian Monte Carlo (HMC) scheme (Duane 
et al. 1987; Neal 2011) as implemented in the software package PyMC (Oriol et al. 
2023). Unlike a standard Metropolis-Hastings scheme, HMC makes use of the gra-
dient of the likelihood, which we compute using differentiated uniformization. This 
makes sampling more efficient with less samples needed to cover the posterior dis-
tribution (Gelman et al. 2013).

We estimated the joint posterior of (log �, log �) for every month between March 
2020 and August 2020 separately. For each month we performed 10 parallel Monte 
Carlo chains with length 1000, where we discarded the first 100 points each, result-
ing in 9000 points per month. These calculations were done on the QPACE 3 cluster 
(Georg et al. 2018). For each posterior we recorded the runtime (averaged over the 
10 chains) and measured the marginal folded effective sample sizes (ESS) (Vehtari 
et al. 2021) for � and � , see Table 1.

Figure 5 shows the results of this analysis. The estimated posterior is plotted (�, �) 
on logarithmic scales. The gray shaded areas were generated using Gaussian-kernel 
density estimation applied to the posterior samples. The crosses mark the least-squares 
estimators of the corresponding deterministic SIR models. The dashed lines represent 
parameter constellations where � = � and thus R0 = 1 . Here the epidemic switches 
between growing and decreasing numbers of infected. From April-August 2020 the 
posterior of the recovery rate � varies around a value of 0.07 per day, corresponding to 
the realistic mean time to recovery of about 2 weeks (Faes et al. 2020). In contrast, the 
posterior of � in March 2020 appears to be off, with a mean of about 0.03 per day cor-
responding to a mean time to recovery of one month. Inspecting the original numbers, 
we observed that the numbers of recovered are unexpectedly low (less than 100 people 
until 2020-03-23) possibly due to lagging declaration of recoveries because of cautious 
hospital policies in the beginning of the pandemic.

Table 1  Diagnostics of HMC 
sampling

Month Runtime ESS � ESS �

March 3.30 × 106s 3096 5068
April 8.50 × 105s 5019 4830
May 3.00 × 104s 4988 5005
June 2.70 × 104s 4755 4956
July 1.00 × 105s 4862 4574
August 6.30 × 105s 4716 4972
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Table 2  Diagnostics of MH 
sampling

Month Runtime ESS � ESS �

March 0.79 × 106s 159 31
April 2.30 × 105s 31 38
May 0.98 × 104s 55 73
June 0.88 × 104s 140 84
July 0.27 × 105s 114 75
August 1.40 × 105s 60 34

Fig. 3  Marginal trace plots of � and � for May in a single chain for the HMC sampling and MH sam-
pling. The first 100 sample points are discarded as burn-in and shown in grey

Fig. 4  Daily reported numbers of people infected by and recovered from SARS-CoV-2 in Austria
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Finally, we compared the HMC sampling to a random walk Metropolis Hastings 
(MH) sampling, see Table 2. We evaluated both methods on the same hardware and 
used their respective implementations in PyMC with 100 tuning iterations for their 
hyperparameters. As expected, MH required a much lower runtime for a fixed total 
sample size. However, the effective sample sizes were substantially larger for HMC, 
such that HMC outperformed MH in terms of ESS per runtime. Figure  3 shows 
the marginal trace plots of � and � for May in a single chain for each of both sam-
plings. Trace plots for the other months and autocorrelation plots are available in the 
supplement.

5  Discussion

We provide a novel method for computing the transient distribution and its 
derivative for continuous-time Markov Chains on huge discrete state spaces. 
This makes parameter inference tractable for a large family of statistical models, 
including the stochastic SIR model of epidemic spread.

Our key observation is that the transition-rate matrix of an SIR model can 
be written as a sum of tensor products, which allows us to cheaply compute 

Fig. 5  Posterior probability densities over parameter pairs (�, �) for separate stochastic SIR models of 
the first six months of the COVID-19 pandemic in Austria. The dashed lines indicate parameters where 
the basic reproduction number R

0
= �∕� = 1 . The crosses mark the least-squares estimators of the cor-

responding deterministic SIR models
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matrix–vector products without storing the matrix itself. This operation alone 
is sufficient to compute the transient distribution by the uniformization method 
(Grassmann 1977), a numerically stable power-series expansion of the matrix 
exponential. We propose the differentiated uniformization method, an analo-
gous power series for computing the derivative of the transient distribution with 
respect to parameters of a CTMC.

For the SIR model our algorithm scales cubically in the size of the popula-
tion, which is one order slower than the state-of-the-art method for multivar-
iate birth processes (Ho et  al. 2018). On the other hand, our general-purpose 
algorithm also applies to birth-death processes such as predator–prey dynam-
ics (Owen et al. 2014), which have been considered intractable so far (Ho et al. 
2017). We illustrate this in Appendix B. In general our algorithm is applica-
ble to any CTMC of interacting discrete variables. It scales exponentially in the 
number of variables but polynomially in the size of each variable’s state space. 
These variables could be additional compartments in an epidemic model, such 
as the number of exposed but not yet infected people, asymptomatic carriers or 
deceased people.

Beyond epidemiology we are interested in tumor progression modeling using 
mutual hazard networks (Schill et al. 2019). Similar to an epidemiological model 
that scales exponentially in the number of compartments, a tumor progression 
model is a CTMC that scales exponentially in the number of possible mutations. 
While both differentiated uniformization and the algorithm of Ho et al. (2018) 
have the potential to advance this field, large scale inference remains an open 
problem for tumor progression models with up to hundreds of mutations. The 
tensor representation of the transition-rate matrix could serve as a starting point 
for representing the transient distribution itself in a low-rank tensor format. 
These formats reduce the exponential cost (e.g., in the number of mutations or 
compartments) to linear cost provided certain low-rank structures exist (Hack-
busch 2012). For large-scale CTMCs, low-rank tensor formats were already suc-
cessfully used, e.g., for the computation of transient (Johnson et  al. 2010) and 
stationary distributions (Benson et al. 2017; Buchholz et al. 2016; Kressner and 
Macedo 2014) and also for a variant of the uniformization method (Georg et al. 
2020). Therefore, the combination of low-rank tensor formats and differentiated 
uniformization could be a promising new avenue for large-scale inference prob-
lems in computational oncology and epidemiology.

From this perspective our work can also be seen as an attempt to connect 
these two communities.

Appendix A: State‑space restriction

In order to compute the likelihood that an earlier data point (S, I) is followed by a 
later data point (S + ΔS, I + ΔI) after time t, it is sufficient to compute p(t) on a small 
subset of the entire state space. Since the number of susceptibles cannot increase 
( ΔS ≤ 0 ) and the number of recovered cannot decrease ( ΔR = −ΔS − ΔI ≥ 0 ), all 
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possible trajectories from (S, I) to (S + ΔS, I + ΔI) must necessarily stay within the 
restricted state space

where

All probability mass that leaves this space must be accounted for, but we do not need 
to keep track of its destination. To this end, we introduce the modified band matrices

and define a smaller transition-rate matrix on the restricted state space as

with derivatives

Note that the columns of Q̃ sum to less than zero and that p(t) therefore sums to less 
than 1 on the restricted state space. Computing matrix–vector products using these 
operators has a time complexity in O(|ΔS|2 + |ΔS|ΔR).

The largest absolute diagonal entry of Q̃ is

with derivatives

{Smin,… , Smax} × {Imin,… , Imax},

(27)
Smin = S + ΔS, Smax = S,

Imin = I − ΔR, Imax = I − ΔS.

(28)

S̃
+

inf
= superdiag(Smin + 1,… , Smax)

S̃
−

inf
= diag(Smin,… , Smax)

S̃
+

rec
= diag(1, 1,… , 1) = I

S̃
−

rec
= diag(1, 1,… , 1) = I

�����������������������������������������������������

(|ΔS| + 1) × (|ΔS| + 1)

Ĩ
+

inf
= subdiag(Imin,… , Imax − 1)

Ĩ
−

inf
= diag(Imin,… , Imax)

Ĩ
+

rec
= superdiag(Imin + 1,… , Imax)

Ĩ
−

rec
= diag(Imin,… , Imax).

���������������������������������������������������������

(|ΔS| + ΔR + 1) × (|ΔS| + ΔR + 1)

(29)Q̃ =
𝛽

N
(S̃

+

inf
⊗ Ĩ

+

inf
) + 𝛼(S̃

+

rec
⊗ Ĩ

+

rec
) −

𝛽

N
(S̃

−

inf
⊗ Ĩ

−

inf
) − 𝛼(S̃

−

rec
⊗ Ĩ

−

rec
)

(30)
𝜕Q̃

𝜕 log 𝛼
= 𝛼(S̃

+

rec
⊗ Ĩ

+

rec
) − 𝛼(S̃

−

rec
⊗ Ĩ

−

rec
),

(31)
𝜕Q̃

𝜕 log 𝛽
=

𝛽

N
(S̃

+

inf
⊗ Ĩ

+

inf
) −

𝛽

N
(S̃

−

inf
⊗ Ĩ

−

inf
).

(32)𝛾 = max
x

|Q̃x,x| = 𝛽

N
SmaxImax + 𝛼Imax

(33)
��

� log �
= �Imax,
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We perform m iterations of algorithm 2 such that the entire probability mass (includ-
ing that which left the restricted state space) according to Eq. (8) reaches the 
required tolerance. Hence, the overall time complexity of the algorithm is

Storing the result p(t) has complexity O(|ΔS|2 + |ΔS|ΔR).

Appendix B: Predator–prey dynamics

We consider the following deterministic predator–prey equations, based on (Lotka 
1925; Volterra 1926),

(34)
��

� log �
=

�

N
SmaxImax.

(35)
O
(
�(|ΔS|2 + |ΔS|ΔR)) = O

(
Imax(|ΔS|2 + |ΔS|ΔR)) = O

(
(I + |ΔS|)(|ΔS|2 + |ΔS|ΔR)).

(36)dX(t)

dt
= −�X(t)Y(t)

prey birth

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

+�X(t) − �
X(t)2

Xmax

(37)

dY(t)

dt
= +�X(t)Y(t)

⏟⏞⏞⏞⏟⏞⏞⏞⏟

prey consumption

&predator birth

−�Y(t)
⏟⏟⏟

predator death

Fig. 6  Illustration of predator–prey models with � = 1 , � = 0.004 , � = 0.8 , X(0) = 100 , Y(0) = 40 , 
X
max

= Y
max

= 1200
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which describe how the population size X(t) ∈ ℝ
+ of a prey species and the popula-

tion size Y(t) ∈ ℝ
+ of a predator species change continuously over time as the spe-

cies interact (black curve in Fig.  6a). The parameter � is the birth rate of prey, � 
is the death rate of predators and � is the contact rate between predators and prey. 
Upon contact a prey is consumed and, we assume for simplicity, exactly one preda-
tor is born. Xmax is a finite carry capacity representing the available plant resources 
for the prey species, which would result in logistic growth in the absence of preda-
tors. This is neither necessary nor commonly assumed in the literature on the deter-
ministic model, since the prey population is always limited by a nonzero number of 
predators in ℝ+.

Here we are interested in a corresponding stochastic model (Owen et al. 2014) 
(blue curves in Fig.  6a) in which the number of predators is an integer and may 
drop to zero, which would lead to exponential growth of the prey population without 
finite carry capacity. We define a stochastic predator–prey model as a CTMC over 
the state space

with transition-rate matrix

whose columns sum to less than zero. This is because the upper limit Ymax of the 
predator population is a computational cutoff and not enforced by the model. Tran-
sitions that leave the state space result in missing probability mass, which must be 
mitigated by choosing a sufficiently high Ymax.

We introduce the band matrices

in order to represent the transition-rate matrix

{0,… ,Xmax} × {0,… , Ymax}

(38)

Q(X+ΔX,Y+ΔY),(X,Y) =

⎧
⎪⎪⎨⎪⎪⎩

�XY if ΔX = −1,ΔY = +1,

�Y if ΔX = 0,ΔY = −1,

�X − �X2∕Xmax if ΔX = +1,ΔY = 0,

−�XY − �Y − �X + �X2∕Xmax if ΔX = 0,ΔY = 0,

0 otherwise

(39)

X
+
cons

= superdiag(1,… ,Xmax),

X
−
cons

= diag(0,… ,Xmax),

X
+
birth

= subdiag(0,… ,Xmax − 1),

X
−
birth

= diag(0,… ,Xmax − 1, 0),

X
+
cap

= subdiag(02, 12, 22,… , (Xmax − 1)2),

X
−
cap

= diag(02, 12, 22,… , (Xmax − 1)2, 0),

X
+
death

= diag(1, 1,… , 1) = I ,

X
−
death

= diag(1, 1,… , 1) = I ,
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

(Xmax + 1) × (Xmax + 1)

Y
+
cons

= subdiag(0,… , Ymax − 1),

Y
−
cons

= diag(0,… , Ymax),

Y
+
birth

= diag(1, 1,… , 1) = I ,

Y
−
birth

= diag(1, 1,… , 1) = I ,

Y
+
cap

= diag(1, 1,… , 1) = I ,

Y
−
cap

= diag(1, 1,… , 1) = I ,

Y
+
death

= superdiag(1,… , Ymax),

Y
−
death

= diag(0,… , Ymax),
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

(Ymax + 1) × (Ymax + 1)
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as a sum of tensor products. This allows us to efficiently compute solutions p(t) of 
the Kolmogorov equation for the stochastic predator–prey model (see Fig. 6b).

Supplementary Information The online version contains supplementary material available at https:// doi. 
org/ 10. 1007/ s00180- 024- 01454-9.
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