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1 Introduction

The leading power transverse momentum-dependent factorization theorem introduces eight
quark transverse momentum-dependent distributions (TMDs) [1–3], which are listed in ta-
ble 1. Altogether, these eight TMDs provide a comprehensive description of the nucleon’s
three-dimensional spin-orbital structure in momentum space. Some of these TMDs (pri-
marily the unpolarized ones) are studied very well theoretically and experimentally (for re-
cent developments, see [4, 5]). However, several of these TMDs are still almost unexplored.
This paper is devoted to study the Sivers, Boer-Mulders, worm-gear-T, and worm-gear-L
(also known as Kotzinian-Mulders) functions in the limit of small-b (or, equivalently, large
transverse momentum) within QCD perturbation theory.
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U H T
U f1 (tw2) h⊥1 (tw3)
L g1 (tw2) h⊥1L (tw2 & tw3)

T
f⊥1T (tw3) g1T (tw2 & tw3) h1 (tw2)

h⊥1T (tw3 & tw4)

Table 1. Quark TMDs sorted with respect to polarization properties of both the operator (columns)
and the hadron (rows). The labels U, H, L, and T are for the unpolarized, helicity, longitudinal,
and transverse polarizations. In brackets, we indicate the twist of collinear distributions to which
TMDs match at small-b. The blue color highlights TMDs that are investigated in this work.

TMDs are nonperturbative functions of two kinematic variables x and kT , being x

the collinear momentum fraction and kT the transverse momentum. Equivalently, one can
use Fourier transformed TMDs from kT -space to position space, labelling the transverse
coordinate vector with b. In many aspects, the position space definition is advantageous.
We use it throughout the work, referring to the distributions depending on x and b as
TMDs. Different ranges of x and b correspond to different physical pictures, relevant for
different processes. In particular, in the limit of small b, TMDs turn into ordinary one-
dimensional collinear parton distributions. Schematically, this relation has the form

F (x, b) = C(x, ln(µb))⊗ f(x, µ) +O(b2), (1.1)

where F is a TMD, f is a collinear distribution, C is a perturbative coefficient function,
and ⊗ is an integral convolution. The expansion (1.1) (also known as the “matching
relation” [6]) follows from the operator product expansion (OPE) and can be derived sys-
tematically order-by-order in the coupling constant and powers of b2 [7].

Small-b expansions for TMDs have been intensively studied during the last decade.
Naturally, the main efforts were devoted to the unpolarized distribution f1, for which the
coefficient function is known at next-to-next-to-next-to-leading order (N3LO) in the QCD
coupling constant [8, 9]. For the other distributions, the analysis is less developed. So,
the transversity h1 and linearly-polarized gluon TMD hg1 are known up to NNLO [10, 11].
The helicity g1 is known at NLO [12–14]. All these TMDs are special because their small-b
asymptotic contains only collinear distributions of twist-two. Therefore, their computation
is relatively straightforward and can be done with standard techniques. However, the
majority of TMDs match collinear distributions of higher twists, making their study more
cumbersome. Thus, for Boer-Mulders h⊥1 , worm-gear-T g1T , and worm-gear-L h⊥1L the
small-b expansion is known only at LO [15–18] with some partial results known at NLO [19–
21], and for the Sivers function f⊥1T at NLO [22]. The pretzelosity distribution h⊥1T differs
from other TMDs. Its leading term is given by a twist-four operator, while matching is only
known for the twist-three part [7]. In table 1 we indicate the twists of collinear distributions
that appear as the leading-power term in eq. (1.1).

The usage of matching relations is essential for practical applications. It allows incor-
porating the already-known parton distribution functions into TMDs, essentially increasing
the predictive power of the formalism. In fact, all modern phenomenological extractions
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of TMDs are based on these relations (see f.i. [4, 5, 23–27]). The twist-two part of the
matching relation (the so-called Wandzura-Wilczek-like (WW-like) approximation) is sup-
posed to work fairly well for many cases [25, 28]. Also, matching relations can be inverted
and used to determine collinear distributions from TMDs. For example, the knowledge of
Sivers function provides an essential constraint on the Qiu-Sterman twist-three distribu-
tion [29, 30]. Finally, the relation (1.1) links TMD factorization theorem to resummation
approach [31], which is vital for the description of the high-energy data. In all of these cases,
it is critical to employ at least NLO expressions to fix the scaling properties of distributions.

This contribution aims to close the remaining gap in the theoretical description of
polarized TMDs and compute the small-b expansion for TMDs with leading twist-three
contributions at NLO. This includes the Sivers, Boer-Mulders, worm-gear-T, and worm-
gear-L functions, highlighted in table 1.

There are several approaches to compute higher-twist contributions to the small-b
asymptotics of TMDs [7, 15, 16, 21, 22, 32]. Among them, the most practical for the
present case is the method used in ref. [22], i.e. the background-field method with collinear
counting. This method is a generalization of the classical approach to deep-inelastic scat-
tering (DIS) [33]. It has been used recently for many higher-twist computations including
quasi- and pseudo-distributions [34, 35], leading and sub-leading power TMDs [22, 36, 37].
In many aspects, the work presented here is the straightforward generalization of the com-
putation performed in ref. [22] for different polarizations (we also recompute the Sivers
function as a cross-check). Therefore, we do not provide a detailed description of the
method, which can be found in the refs. [22, 34] together with computational examples.
Instead, we provide a general discussion, emphasizing the present case’s particularities, and
present the final expression.

The paper is structured as follows. In section 2, we collect the definitions of TMDs and
collinear distributions — the main subjects of the present work. In section 3, we provide
the essential details on the computation method (referring, for an extended discussion,
to [22, 34]). The generalization of γ5 in d dimensions and the definition of gluon correlator
are described in more detail in sections 3.3 and 3.4, respectively. In section 4, we present
NLO expressions for Sivers, Boer-Mulders, and worm-gear functions in momentum-fraction
space. The position space expressions (split into contributions from the different diagrams)
are given in appendix B. In appendix A are collected the expressions for the twist-three
evolution kernels used as cross-check of our computation.

2 Definition of distributions

In this work, we deal with many parton distributions. For clarity, we collect their definition
and important properties in this section.

2.1 TMD distributions

The quark TMDs are defined for the Drell-Yan process, taken as an example, by the
following matrix element

Φ[Γ](x, b) = 1
2

∫
dz

2πe
−ixzp+〈p, S|q̄(zn+ b)[zn+ b,−∞n+ b]Γ[−∞n, 0]q(0)|p, S〉, (2.1)
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where n is the light-like vector (n2 = 0) associated with the large component of the hadron
momentum p, b is the vector tranverse to the (p, n) plane, and Γ is a Dirac matrix. [x, y]
is the straight Wilson lines from x to y,

[a1n+ b, a2n+ b] = P exp
(
ig

∫ a1

a2
dσnµAµ(σn+ b)

)
. (2.2)

The standard parameterization of the matrix element (2.1) can be found in ref. [1]. It
reads

Φ[γ+](x, b) = f1(x, b) + iεµνT bµsTνMf⊥1T (x, b), (2.3)
Φ[γ+γ5](x, b) = λg1(x, b) + i(b · sT )Mg1T (x, b), (2.4)

Φ[iσα+γ5](x, b) = sαTh1(x, b)− iλbαMh⊥1L(x, b) (2.5)

+iεαµbµMh⊥1 (x, b)− M2b2

2

(
gαµT
2 − bαbµ

b2

)
sTµh

⊥
1T (x, b),

where b2 < 0. Here,

gµνT = gµν − nµn̄ν − n̄µnν , εµνT = n̄αnβε
αβµν = ε−+µν , (2.6)

where n̄µ is light-cone vector (n̄2 = 0) associated with the small-component of the hadron
momentum, i.e. pµ = p+n̄µ +M2nµ/(2p+) with p+ = (n · p). The relative normalization is
(n · n̄) = 1. The Levi-Civita tensor and γ5-matrix are defined in 4 dimensions as

ε0123 = +1, γ5 = − i

4!ε
µναβγµγνγαγβ . (2.7)

Consequently, ε12
T = εT,12 = +1.

The variables λ and sT are longitudinal and transverse components of the spin vector

sµ = λ
p+n̄µ

M
− λn

µM

2p+ + sµT , (2.8)

where M is the mass of the hadron. This implies λ = Ms+/p+.
All TMDs are dimensionless real functions that depend on b2 (the argument b is used

for shortness). In this work, we consider only Sivers (f⊥1T ), Boer-Mulders (h⊥1 ), worm-gear-
T (g1T ) and worm-gear-L (h⊥1L) functions.

The definition (2.1) in a SIDIS-like process has the Wilson line pointing to +∞n [18]
instead to −∞n. The T-even TMDs (in the present context, these are the worm-gear
functions, g1T and h⊥1L) are independent of the direction of the staple contour due to
the T-invariance of QCD. They are the same for Drell-Yan-like and SIDIS-like cases. In
contrast, the T-odd TMDs (Sivers f⊥1T and Boer-Mulders h⊥1 functions) dependent on the
direction of the staple contour. One has [38]

f⊥1T (x, b)
∣∣∣
DY

= −f⊥1T (x, b)
∣∣∣
SIDIS

, h⊥1 (x, b)
∣∣∣
DY

= −h⊥1 (x, b)
∣∣∣
SIDIS

. (2.9)

Apart of the sign-change the TMDs are identical for both cases. In the following, we assume
the DY-like definition, if not specified.

– 4 –



J
H
E
P
0
1
(
2
0
2
3
)
1
1
6

The bare TMDs contain two types of divergences — ultraviolet and rapidity diver-
gences. Both types of divergences are multiplicatively renormalizable [39]. As a conse-
quence, the renormalized TMD depends on two scales µ and ζ. These dependencies are
described by the evolution equations

µ2dF (x, b;µ, ζ)
dµ2 = γF (µ, ζ)

2 F (x, b;µ, ζ), ζ
dF (x, b;µ, ζ)

dζ
= −D(b, µ)F (x, b;µ, ζ), (2.10)

where F is any TMD, γF is the TMD anomalous dimension, and D is the Collins-Soper
kernel [31]. At LO, these kernels are [40]

γF (µ, ζ) = as(µ) (4CF lζ + 6CF ) +O(a2
s), D(b, µ) = as(µ)2CFLb +O(a2

s, b
2), (2.11)

where

as(µ) = g2

(4π)2 , lζ = ln
(
µ2

ζ

)
, Lb = ln

(
(−b2)µ2

4e−2γE

)
, (2.12)

with g being the QCD coupling constant, and γE is the Euler-Mascheroni constant. In the
following text, we often omit the scales (µ, ζ) to simplify notation. These scales can be
reconstructed from the context.

The relation between momentum and position space TMDs is

Φ[Γ](x, kT ) =
∫

d2b

(2π)e
−i(b·kT )Φ[Γ](x, b), (2.13)

where kT is the transverse momentum (k2
T < 0). The transformations for individual TMDs

can be found in refs. [16, 41]. The momentum-space definition is less convenient for theo-
retical computations. Therefore, in the following, we use only position space TMDs.

2.2 Collinear distributions of twist-two

The collinear distributions of twist-two are defined as follows (see e.g. [42])

〈p, S|q̄(zn)[zn, 0]γ+q(0)|p, S〉 = 2p+
∫ 1

−1
dxeixzp

+
f1(x), (2.14)

〈p, S|q̄(zn)[zn, 0]γ+γ5q(0)|p, S〉 = 2λp+
∫ 1

−1
dxeixzp

+
g1(x), (2.15)

〈p, S|q̄(zn)[zn, 0]iσα+γ5q(0)|p, S〉 = 2sαT p+
∫ 1

−1
dxeixzp

+
h1(x), (2.16)

where α is a transverse index. These distributions are known as unpolarized (f1), helicity
(g1) and tranversity distributions (h1). They are defined for x ∈ [−1, 1] and are zero
for |x| > 1. The distributions with negative x are usually interpreted as distributions of
antiquarks,

f1(x) = θ(x)f1,q(x)− θ(−x)f1,q̄(−x),
g1(x) = θ(x)g1,q(x) + θ(−x)g1,q̄(−x), (2.17)
h1(x) = θ(x)h1,q(x)− θ(−x)h1,q̄(−x).
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In the present work, the unpolarized distribution does not appear, and is presented here
only for comparison.

Note that the notation f1, g1 and h1 is the same for TMD distributions and collinear
distributions. We distinguish these functions by their arguments, which are (x, b) for TMDs
and (x) for collinear distributions.

The gluon collinear distributions are defined as

〈p,S|Fµ+(zn)[zn,0]F ν+(0)|p,S〉= (p+)2
∫ 1

−1
dxeixzp

+ x

2 (−gµνT fg(x)− iεµνT ∆fg(x)) , (2.18)

where fg and ∆fg are unpolarized and helicity gluon distributions. Gluon distributions
satisfy the ralation

fg(−x) = −fg(x), ∆fg(−x) = +∆fg(x). (2.19)

In dimensional regularization (with d = 4− 2ε) the definition of gluon distributions (2.18)
is modified and takes the form

〈p, S|Fµ+(zn)[zn, 0]F ν+(0)|p, S〉 = (p+)2
∫ 1

−1
dxeixzp

+ x

2

(
−g

µν
T fg(x)
1− ε − iεµνT ∆fg(x)

(1− ε)(1− 2ε)

)
,

(2.20)
where εµνT is the d-dimensional generalized Levi-Civita tensor (see section 3.3). The ε-
dependent factors are chosen such that the contraction of the correlator’s matrix element
with gµνT or εµνT yields the same result in any dimension.

The scale-dependence of a twist-two distribution F is given by the DGLAP-type equa-
tion

µ2dFf (x, µ)
dµ2 =

∑
f ′

∫ 1

x

dy

y
Pf←f ′(y)Ff ′

(
x

y
, µ

)
, (2.21)

where f labels the partons flavor, and P is the evolution kernel. In this work we need only
LO expressions for P , which can be found, e.g., in [42].

2.3 Collinear distributions of twist-three

The twist-three distributions parametrize the three-point light-cone operators. The quark-
gluon-quark distributions are defined as

〈p, S|gq̄(z1n)Fµ+(z2n)γ+q(z3n)|p, S〉 (2.22)

= 2εµνT sν(p+)2M

∫
[dx]e−ip+(x1z1+x2z2+x3z3)T (x1, x2, x3),

〈p, S|gq̄(z1n)Fµ+(z2n)γ+γ5q(z3n)|p, S〉 (2.23)

= 2isµT (p+)2M

∫
[dx]e−ip+(x1z1+x2z2+x3z3)∆T (x1, x2, x3),

〈p, S|gq̄(z1n)Fµ+(z2n)iσν+γ5q(z3n)|p, S〉 (2.24)

= 2(p+)2M

∫
[dx]e−ip+(x1z1+x2z2+x3z3) (εµνT E(x1, x2, x3) + iλgµνT H(x1, x2, x3)) ,

– 6 –
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where Fµν is the gluon field-strength tensor, and we have omitted the Wilson links [z1n, z2n]
and [z2n, z3n] for brevity. The integral measure∫

[dx] =
∫ 1

−1
dx1dx2dx3δ(x1 + x2 + x3), (2.25)

reflects momentum conservation. Note that in the above definitions, by convention, the
phase of the exponential has the opposite sign compare to the twist-2 distributions.

The quark-gluon-quark distributions are real-valued functions that satisfy the symme-
try relations

T (x1, x2, x3) = T (−x3,−x2,−x1), ∆T (x1, x2, x3) = −∆T (−x3,−x2,−x1), (2.26)
E(x1, x2, x3) = E(−x3,−x2,−x1), H(x1, x2, x3) = −H(−x3,−x2,−x1).

Often it is convenient to use the following combination

S±(x1, x2, x3) = −T (x1, x2, x3)±∆T (x1, x2, x3)
2 . (2.27)

In the literature one can find different notations for these distributions [18, 43–46]. For
example, ref. [43] defines T̃q,F (x3,−x1) = MT (x1,−x1 − x3, x3), and T̃∆q,F (x3,−x1) =
M∆T (x1,−x1 − x3, x3), and ref. [16] defines δTε = E and δTg = H. A dictionary between
the different notations is provided by ref. [16].

For the three-gluon distributions, a standard definition has not yet been established.
In the literature, one can find several notation for the parametrization of the same three-
gluon correlators [22, 43, 47, 48]. Here we follow the convention of ref. [22], in which the
three-gluon correlators are parametrized as

〈p, S|igfABCFµ+
A (z1n)F ν+

B (z2n)F ρ+
C (z3n)|p, S〉 (2.28)

= (p+)3M

∫
[dx]e−ip+(x1z1+x2z2+x3z3)∑

i

tµνρi F+
i (x1, x2, x3),

〈p, S|gdABCFµ+
A (z1n)F ν+

B (z2n)F ρ+
C (z3n)|p, S〉 (2.29)

= (p+)3M

∫
[dx]e−ip+(x1z1+x2z2+x3z3)∑

i

tµνρi F−i (x1, x2, x3),

where fABC and dABC are the anti-symmetric and symmetric structure constants of
SU(Nc). There are six tensor structures ti. Their complete derivation and classification
is given in appendix A of ref. [22]. Only three structures are non-vanishing for d = 4.
These are

tµνρ2 = sαT ε
µα
T gνρT + sαT ε

να
T gρµT + sαT ε

ρα
T gµνT ,

tµνρ4 = −sαT ε
µα
T gνρT + 2sαT εναT gρµT − s

α
T ε
ρα
T gµνT , (2.30)

tµνρ6 = sαT ε
µα
T gνρT − s

α
T ε
ρα
T gµνT .

The other structures (i.e. tµνρ3,5,7) parametrize evanescent operators. In general, these con-
tributions are non-zero in the dimension regularization and should be taken into account
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during the renormalization procedure [49]. However, in the present calculation they do not
contribute to the pole part, and thus decouple. For that reason these functions can be set
to zero in d = 4.

The three-gluon gluon functions are defined as [22]

F±2 (x1, x2, x3) = −G±(x1, x2, x3)
2(2− ε) , F±4 (x1, x2, x3) = −Y±(x1, x2, x3)

2(1− 2ε) . (2.31)

The distribution F6 can be expressed via Y±

F±6 (x1, x2, x3) = ±Y±(x1, x3, x2)− Y±(x2, x1, x3)
2(1− 2ε) . (2.32)

Like in the twist-two case (2.20), the ε-dependent factors are chosen such that most of the
ε-dependence at NLO cancels.

The distributions G± and Y± satisfy the following symmetry relations

G±(x1, x2, x3) = G±(−x3,−x2,−x1) = ∓G±(x2, x1, x3) = ∓G±(x1, x3, x2),
Y±(x1, x2, x3) = Y±(−x3,−x2,−x1) = ∓Y±(x3, x2, x1), (2.33)

Y±(x1, x2, x3) + Y±(x2, x3, x1) + Y±(x3, x1, x2) = 0.

These relations constrain the internal structure of three-gluon distributions [22]. For a
comparison of our convention with others see ref. [22].

All twist-three distributions are functions of two variables, since the third variable
is fixed by the momentum conservation condition x1 + x2 + x3 = 0. Nevertheless, we
use the three-variable notation for its convenience since in this notation the symmetry
transformations (2.26), (2.33) are more transparent. Also, each sector (xi ≶ 0) has a special
interpretation in the parton picture [50], which is harder to see in the two-variable notation.

The set of parton distributions {T,∆T,E,H,G±, Y±} evolves autonomously under a
change of renormalization scale µ [33, 51],

µ2dF1(x1, x2, x3;µ)
dµ2 =

∑
F2

∫
[dy]KF1←F2(x1, x2, x3; y1, y2, y3; as)F2(y1, y2, y3;µ), (2.34)

where F1,2 ∈ {T,∆T,E,H,G±, Y±}. Moreover, the chiral-odd distributions E and H do
not mix with other distributions. The expressions for the evolution kernels KF1←F2 are
rather long, and not explicitly needed in the present work. For the reader’s convenience
we present them in position space in appendix A. The momentum space expressions are
much more cumbersome [52].

The set of parton distributions {T,∆T,E,H,G±, Y±} is complete in the sense that
all other twist-three distributions can be expressed in this basis (and possibly twist-two
distributions). For example, the twist-three distributions gT , hL and e [42] can be express
in terms of {T,∆T}, H and E (see e.g. [16, 34, 35]).

– 8 –



J
H
E
P
0
1
(
2
0
2
3
)
1
1
6

3 Evaluation of small-b expansion

The NLO computation presented in this work has been done using the background-field
method. It is a very well developed method for the computation of perturbative corrections
involving higher-twist operators. A detailed explanation of the method can be found in
refs. [22, 33–36]. We skip the detailed description of the computation process, which can
be found in refs. [22, 34]. In this section, we present a general discussion, and focus on
particularities of the current case.

3.1 General structure of small-b expansion

In the regime of small-b the TMD operator can be expressed as a series of light-cone
operators with increasing dimensions,

Φ[Γ](x, b) = φ[Γ](x) + bµφ[Γ]
µ (x) + bµbνφ[Γ]

µν(x) + . . . . (3.1)

Here, the leading terms are

φ[Γ](x) = 1
2

∫
dz

2πe
−ixzp+〈p, S|q̄(z, n)[zn, 0]Γq(0)|p, S〉, (3.2)

φ[Γ]
µ (x) = 1

2

∫
dz

2πe
−ixzp+〈p, S|q̄(z, n)[zn,−∞n]←−Dµ[−∞n, 0]Γq(0)|p, S〉, (3.3)

where Dµ is the QCD covariant derivative. The series (3.1) is a particular application
of light-cone OPE and can be written also as series of local operators [7]. The matrix
element (3.2) can be expresses by collinear parton distributions of twist-two, while for the
matrix element (3.3) they are of twist-two and twist-three. The higher dimension matrix
elements involve higher-twist distributions.

There is no simple correspondence between the twist of TMDs and the twist of the lead-
ing contribution of its small-b series. The factors bµ in the parametrization of TMDs (2.3)–
(2.5) spoils the counting and thus the series for individual TMDs start with terms of
different twist.1 So, the small-b series for the TMDs f1, g1 and h1 start with (3.2) and
have leading contributions of twist-two [12, 14, 53]. The small-b series for the TMDs
f⊥1T , g1T , h⊥1L and h⊥1 start with operators of type (3.3) and involve twist-three distribu-
tions [15, 16, 18, 54]. Finally, the pretzelosity distribution h⊥1T starts with φµν(x) and the
leading term contains already twist-four terms [7].

The expression (3.1) is a tree-level expression. Accounting of quantum corrections
modifies (3.1) by terms ∼ as = αs/4π. These terms can be absorbed into the coefficient
functions, which enter in convolution with collinear distributions. For example, the twist-
two term turns into

φ
[Γ]
f (x)→

∑
f ′

∫ 1

x

dy

y
Cf←f ′(y, ln b2;µ, ζ;µOPE)φ[Γ]

f ′

(
x

y
, µOPE

)
, (3.4)

1The coefficients in the parametrization of TMDs are not the only cause of the spoiled counting. There
can be also singular contributions ∼ b−2 that appear for loop diagrams [37]. However, this happens only
for TMDs of higher twist.
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where indices f label contributions of different parton content. The coefficient function
explicitly contains the dependence on (µ, ζ). It also contains the µOPE-scale, which is
the scale of OPE. The whole expression (3.4) is independent on µOPE. Using the TMD
evolution equations (2.10) and the evolution equation for collinear distributions (2.21), one
can deduce the part of the coefficient function proportional to logarithms (see e.g. [55]).
In what follows, we set µOPE = µ for simplicity, such that the coefficient function depends
only on (as(µ),Lb, lζ). Therefore, the small-b expansion for the TMDs F ∈ {f1, g1, h1}
takes the form

Ff (x, b;µ, ζ) =
∑
f ′

∫ 1

x

dy

y
CFf←f ′(y; Lb, lζ)ff ′

(
x

y
, µ

)
+O(b2), (3.5)

with f being collinear distributions of twist-two.
The expressions for twist-three have a similar general structure, but a more involved

form. Generally, for F ∈ {f⊥1T , g1T , h
⊥
1L, h

⊥
1 } one has

Ff (x, b;µ, ζ) =
∑
f ′

∫ 1

x

dy

y
CF,tw2
f←f ′ (y; Lb, lζ)ff ′

(
x

y
, µ

)
(3.6)

+
∑
f ′

∫
[dx]CF,tw3

f←f ′ (x, x1, x2, x3; Lb, lζ)tf ′(x1, x2, x3;µ),

where f and t are distributions of twist-two and three, correspondingly. Note, that in
the case of the Sivers and Boer-Mulders function Ctw2 = 0. The coefficient functions for
the Sivers function are known at NLO [22]. For the other functions they are known at
LO [15, 16, 18, 54], and computed here at NLO.

3.2 Computation

In a nutshell, the computation within the background-field method consists in following
steps.

1. The matrix element for a TMD is presented in a functional-integral form. Then the
QCD fields are split into the quantum and background modes (q(x) = qquan.(x) +
qback.(x)), with corresponding momentum counting.

2. The quantum modes are (functionally) integrated using both the perturbative ex-
pansion and the expansion in the number of background fields. The Lagrangian of
the quantum-to-background fields interaction can be found in ref. [56]. As result of
the integration, one obtains the effective operator.

3. The effective operator is decomposed in the basis of definite-twist operators using
equations of motion and algebraic manipulations.

During this procedure one expects that the hadron is composed of the low-energy fields
only, and thus the highly-energetic quantum modes do not contribute to its wave function.
Therefore, the computation is done on the level of the operator itself without any reference
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(B)(A) (C) (D)

(E) (F) (G) (H)

Figure 1. Diagrams contributing to the NLO effective operator at twist-two and twist-three level.
The dashed lines show the half-infinite Wilson lines. The mirror diagrams to (A, C, D, E) should
be added.

to the hadron state. For a detailed discussion of each step in the concrete application to
TMD operators (Sivers function) we refer to [22].

At the twist-three level one has to compute all diagrams of mass-dimension four. They
are shown in figure 1. The diagrams with two external fields (A, B, G) have to be computed
up to a single transverse-derivative contribution. These diagrams contain twist-two and
twist-three parts, which can be identified using the QCD equations of motion. The diagrams
with three external fields (C, D, E, F, H) contain only twist-three terms.

The diagrams have been evaluated in position space. It is the preferred representation
for dealing with higher-twist operators, because the resulting expressions are much shorter
in comparison to momentum space. Examples of diagram computations in this technique
can be found in appendices of refs. [22, 34, 36]. The final expressions in position space are
presented in appendix B. The subsequent Fourier transformation to momentum space is
laborious but straightforward.

As a by-product of the computations for diagrams A and B, we obtained the NLO
matching coefficients for the TMDs f1, g1 and h1. Our expressions coincides with well-
known results [12–14, 53]. This served as an intermediate check of our computation.

The computation is done for the bare operators and requires renormalization. Schemat-
ically the renormalization factor has the form

Φrenor.(µ, ζ) = Z−1
UV (µ, ζ)R−1(ζ)Φbare = Z−1

UV (µ, ζ)R−1(ζ) (Cbare ⊗ φbare + . . .) , (3.7)

where in the last equality we inserted the bare small-b expansion. Here, ZUV is the ul-
traviolet renormalization factor, and R is the rapidity renormalization factor. We also
renormalize the collinear distribution and obtain

Φrenor.(µ, ζ) = Crenor.(µ, ζ, µOPE)⊗ φrenor.(µOPE), (3.8)

where
Crenor.(µ, ζ, µOPE) = Z−1

UV (µ, ζ)R−1(ζ)Cbare ⊗ Zφ(µOPE), (3.9)
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where Zφ is the renormalization factor for the collinear distribution φ. The function Crenor.
is finite.

To regularize divergences we use the combination of dimensional regularization and
δ-regularization (for rapidity divergences), which has been used in many TMD-related
computations (see e.g. refs. [13, 55, 57]). Collecting expressions for the LO renormalization
factors [40, 58], we derive the following pocket formula for the renormalization of the NLO
coefficient functions

CNLO
renorm = µ2εeεγECNLO

bare +
[
µ2εeεγE2

(
−b2

4

)ε
CFΓ(−ε)

(
Lb− lζ +2ln

(
δ+

p+

)
−ψ(−ε)−γE

)

−CF
( 2
ε2

+ 3+2lζ
ε

)
− as
ε
H⊗

]
CLO, (3.10)

where the factors µ2εeεγE are the usual factors of the MS-scheme, δ+ is the parameter of
the δ-regularization, ε is the parameter of the dimensional regularization (d = 4− 2ε), and
H is the LO evolution kernel for the corresponding collinear distribution. The cancellation
of divergences in this combination is a very sensitive check of the computation.

3.3 Treatment of γ5

The γ5 matrix requires an additional treatment in dimensional regularization. In our
computation we use the “Larin+”-scheme introduced in ref. [12]. This is based on the
four-dimensional identity

γ+γ5 = i

2!ε
µν
T γ+γµγν . (3.11)

The anti-symmetric tensor εµνT is generalized to an arbitrary number of dimensions by
means of the identity

εµ1µ2
T εν1ν2

T = gµ1ν1
T gµ2ν2

T − gµ1ν2
T gµ2ν1

T . (3.12)

This generalization is different from the ordinary Larin-scheme2 [59]. The “Larin+”-scheme
is preferable to the Larin-scheme, because it preserves the TMD-twist of an operator [12,
37], and consequently, the structure of its divergences.

The generalization of the γ5 matrix to d-dimensions could also involve a multiplication
by scheme-dependent factor Z5. However, there is no necessity to introduce such factor
for the TMD operators, because their renormalization is independent on the Γ-structure
(as long as it preserves the TMD-twist). The factor Z5 in the “Larin+”-scheme has been
computed in ref. [12] demanding the equality between helicity and unpolarized coefficient
functions,

Z5 ⊗ C [Γ=γ+γ5]
q←q = C [Γ=γ+]

q←q . (3.13)

Unfortunately, up to now, no accurate generalization of this scheme to the twist-three case
exists.

2In the Larin scheme, one uses the identity γ+γ5 = iε+µνργµγνγρ/3!, and defines the 4-indices εµνρλ

using the identity εµ1µ2µ3µ4εν1ν2ν3ν4 = −gµ1ν1gµ2ν2gµ3ν3gµ4ν4 + . . . . Therefore, the Larin-scheme treats
all directions of the space-time on equal foot, whereas “Larin+”-scheme (3.11) specifically identifies two
light-cone directions.
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In this work, we use the following procedure, which allows us to (partially) by-pass the
problems associated with the definition of γ5. First of all, we note that the problem exists
only for the worm-gear-T function g1T . For the chiral-odd operators with Γ = iσα+γ5,
the γ5-factor is illusory since iσα+γ5 = −εαβT σβ+. The twist-two part of the function
g1T can be computed using the standard definition. For the twist-three part of g1T , we
distinguish quark and gluon contributions. For the pure quark contributions we use an
anti-commuting γ5 (which is equivalent to implementing condition (3.13)). For the gluon
contributions (diagrams G and H) we compute the trace using (3.11) and (3.12).

The result of this procedure (at NLO for the coefficient function) is equivalent to
an MS twist-two computation. The deviations arrears at term suppressed by ε and at
NNLO. It is straightforward to proof that the current scheme is equivalent at NLO to the
’t Hooft-Veltman-Breitenlohner-Maison [60, 61] scheme.

3.4 Twist-decomposition of the Fµ+DαFν+ operator

The diagrams A, B, and G result in two-point operators of generic twist-three. Such
operators must be rewritten in terms of definite-twist-2 and -3 operators, which can be
accomplished by using Dirac algebra and equations of motion.

For the diagrams A and B, these operators have the form q̄(zn)[zn, 0]ΓT q(0) where
Γ ∈ {γµ, γµγ5, σµν} (with µ and ν being transverse indices), and q̄(zn)[zn, 0]Γ+Dµq(0).
The decomposition of such operators can be found in the literature, e.g. in refs. [7, 16, 33].
A typical relation has the form

〈p, S|q̄(zn)[zn, 0]γµγ5q(0)|p, S〉 = 2sµTM
∫ 1

−1
dxeixζgT (x) (3.14)

= 2sµTM
(∫ 1

0
dαĝ1(ζ) + 2ζ2

∫ 1

0
dα

∫ ᾱ

0
dββŜ+(ᾱζ, βζ, 0)

)
,

where ζ = zp+, ᾱ = 1− α, and ĝ1 and Ŝ+ are Fourier transformations of the correspond-
ing collinear distributions (B.1), (B.2). The first term in eq. (3.14) gives the celebrated
Wandzura-Wilczek relation [62].

For the diagram G the operator is Oµαν(z) which comes from the expansion in b of the
leading-twist gluon TMD operator

Oµαν(z) = Fµ+(zn+ b)[zn,±∞n]
←
D α[±∞n, 0]F ν+(0) (3.15)

where all indices are transverse and the sign ± depends on the process. We have not found
the decomposition of this operator in the literature and, therefore, perform it here.

To derive the decomposition, we have used the technique based on the spinor-helicity
formalism developed in ref. [7]. This formalism yields in a natural way the result written
as Fourier transformation of the momentum space representation. The operator Oµαν has
twist-two and twist-three parts

Oµαν(z) = [Oµαν(z)]tw2 + [Oµαν(z)]tw3. (3.16)
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For the twist-two part we found

〈p,S| [Oµαν(z)]tw2 |p,S〉 = εµνT sαTM

2(1−ε)(1−2ε)FDFtw2(z) (3.17)

= εµνT sαTM

2(1−ε)(1−2ε)

∫ 1

0
dα

∫ ∞
−∞

dyeiyαp
+z(αp+y)2∆fg(y), (3.18)

where ∆fg is the gluon-helicity distribution (2.20). The twist-three term contains three
tensor structures,

〈p, S| [Oµαν(z)]tw3 |p, S〉 = tµαν2 M FDFtw3
2 (z) + tµαν4 M FDFtw3

4 (z) + tµαν6 M FDFtw3
6 (z),

(3.19)
where

FDFtw3
2 (z) = ∓ip2

+π

∫ 1

−1
dyF+

2 (−y, 0, y)eiyp+z,

FDFtw3
4 (z) = ∓ip2

+π

∫ 1

−1
dyF+

4 (−y, 0, y)eiyp+z,

FDFtw3
6 (z) = p2

+

∫
[dx]g+(x1, x2, x3)

∫ 1

0
du

(3x1 + 2x3
x2

2
u2e−iux1p+z + x3

x2
2
u2eiux3p+z

)
+ p2

+
∑
q

∫
[dx]2Tq(x1, x2, x3)

∫ 1

0
duu2e−ip+zux2 ,

with g+ = (2F+
2 + F+

4 + F+
6 ). The tensors tµνρi and functions F2,4,6 are defined in

eqs. (2.30), (2.31), (2.32). The last term in FDFtw3
6 is a consequence of the QCD equations

of motion, and gives the singlet-quark contribution. (Note the sum over all active flavors.)
The signs ∓ depend on the defining process, and are “-”(“+”) for SIDIS (Drell-Yan).

4 Results

In this section, we present the results for Sivers, Boer-Mulders and worm-gear TMDs in
the small-b regime at NLO. The expression for the Sivers function has been computed
in ref. [22]. In this paper, we have re-evaluated it as cross-check and present it here for
completeness. The intermediate results of our computation, which could be interesting for
theoretical investigations, are presented in appendix B.

In the formulas presented below we employ the notation for the logarithms defined
in eq. (2.12). The bar-variables are ᾱ = 1 − α, ȳ = 1 − y, etc. The color factors are
CF = (N2

c − 1)/2Nc, CA = Nc. For simplicity of presentation, we use the delta-function
form of the Mellin convolution∫ 1

−1
dy

∫ 1

0
dαδ(x− αy)f(α, y) =


∫ 1
x
dy
y f

(
x
y , y

)
, x > 0,∫ 1

−x
dy
y f

(
−x
y ,−y

)
, x < 0.

(4.1)

The “plus”-distribution is defined as usual

(f(α))+ = f(α)− δ(ᾱ)
∫ 1

0
dβf(β). (4.2)
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For all distributions the NLO expression has the following general form

F (x, b;µ, ζ) = F (0)(x) + as

{
CF

(
−L2

b + 2Lblζ + 3Lb −
π2

6

)
F (0)(x) (4.3)

−2LbH⊗ F (0)(x) + F (1)(x)
}

+O(a2
s, b

2),

where F (0) is the tree-level expression, F (1)(x) is the finite part of the coefficient function,
and H⊗ F (0) contains the evolution kernel for the corresponding distribution,

µ2dF
(0)(x)
dµ2 = 2asH⊗ F (0)(x). (4.4)

The parts proportional to the logarithms follow from the evolution equa-
tions (2.10), (2.21), (2.34). In each case, we found agreement between our results
and the known evolution equations, see appendix A.

For practical applications, it is convenient to use the so-called optimal TMDs [24, 63].
They are defined at ζ = ζ(b, µ), where ζ(b, µ) is a null-evolution curve that passes through
the saddle point of (γF ,D)-field [63]. To receive the coefficient function for optimal TMDs
at NLO, it is enough to set lζ according to

− L2
b + 2Lblζ + 3Lb = 0. (4.5)

Note, that the remaining dependence on µ is compensated by the evolution of collinear
PDF, and thus the remaining µ is the scale of OPE µOPE.

4.1 Sivers function f⊥1T

The NLO expression for the Sivers function reads

f⊥1T,q(x,b;µ,ζ) = ±πTq(−x,0,x)±πas

{
CF

(
−L2

b +2Lblζ +3Lb−
π2

6

)
Tq(−x,0,x) (4.6)

−2LbH⊗Tq(−x,0,x)+δf⊥1T (x)
}

+O(a2
s, b

2).

The finite part is

δf⊥1T (x) =
∫ 1

−1
dy

∫ 1

0
dαδ(x− αy) (4.7)

×
[(

CF −
CA
2

)
2ᾱTq(−y, 0, y) + 3αᾱ

2
G+(−y, 0, y) +G−(−y, 0, y)

y

]
.
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The action of the evolution kernel on the function T (−x, 0, x) is

H⊗Tq(−x,0,x) =
∫ 1

−1
dy

∫ 1

0
dαδ(x−αy) (4.8)

×
{(

CF −
CA
2

)[(1+α2

1−α

)
+
Tq(−y,0,y)+(2α−1)+Tq(−x,y,x−y)−∆Tq(−x,y,x−y)

]

+ CA
2

[(1+α

1−α

)
+
Tq(−x,x−y,y)+∆Tq(−x,x−y,y)

]

+ 1−2αᾱ
4

G+(−y,0,y)+Y+(−y,0,y)+G−(−y,0,y)+Y−(−y,0,y)
y

}
,

The choice of the sign ± is related to the process. For the case of Drell-Yan definition the
“+” sign should be taken. For the case of SIDIS definition “−” sign should be taken.

In the present form, the NLO matching for the Sivers function (4.6) has been first
computed in ref. [22]. The logarithmic part (4.8) has been derived in ref. [64]. The quark
and gluon contributions to the finite part (4.7) were derived earlier in [32] and [21], re-
spectively, performing fixed-order computations for the SSA cross-sections. The detailed
comparison of (4.6) with earlier work is given in ref. [22]. In this contribution we have
reproduced the results of [22] which served us as a check of our computation.

4.2 Worm-gear-T function g1T

The expression for the worm-gear-T function is the most cumbersome in this work. It is
convenient to split it into twist-two and twist-three contributions

g1T,q(x, b;µ, ζ) = gtw2
1T,q(x, b;µ, ζ) + gtw3

1T,q(x, b;µ, ζ). (4.9)

The twist-two part is convenient to present in the form

gtw2
1T,q(x, b;µ, ζ) = x

∫ 1

x

dy

y

[
Ctw2

1T,q←q

(
x

y

)
g1q(y) + Ctw2

1T,q←g

(
x

y

)
∆fg(y)

]
, (4.10)

where

Ctw2
1T,q←q(x) = 1+asCF

[
−L2

b +2Lblζ−2Lb (−x̄+2ln x̄− lnx)−2x̄−2lnx− π
2

6

]
+O(a2

s),

Ctw2
1T,q←g(x) = as

2 [−2Lb(2x̄+lnx)+2x̄+lnx]+O(a2
s). (4.11)

These expressions can be used as the Wandzura-Wilczek approximation for the worm-gear-
T function. The logarithmic part of eq. (4.10) coincides with the one predicted by evolution
equations for helicity distributions (see e.g. [65]).

The twist-three part is complicated. We split it into a number of terms

gtw3
1T,q(x, b;µ, ζ) = g

(0),tw3
1T,q (x) + as

CF
(
−L2

b + 2Lblζ + 3Lb −
π2

6

)
g

(0),tw3
1T,q (x) (4.12)

−2Lb

HNS + HG +
∑
q′

Hq′

S

⊗ g⊥,(0),tw3
1T,q (x) + δgNS(x) + δgG(x)

+O(a2
s, b

2).
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We emphasize that the singlet-quark contribution to the finite part vanishes.
At the tree-level

g
(0),tw3
1T,q (x) = 2x

∫
[dy]

∫ 1

0
dαδ(x− αy3)

(∆Tq(y1,2,3)
y2

2
+ Tq(y1,2,3)−∆Tq(y1,2,3)

2y2y3

)
, (4.13)

where (yi,j,k) is a shorthand notation for (yi, yj , yk). In this form the expression (4.13) has
been derived in ref. [16]. The same result (but in a different basis) has been also derived
in ref. [15].

The finite parts for eq. (4.12) are

δgNS(x) = 2
∫

[dy]
∫ 1

0
dα

{(
CF −

CA
2

)(
− ᾱ
y3
T + ᾱ(1−2α)

y3
∆T

)
δ(x−αy2)

+δ(x−αy3)
[(
−CF

α lnα
y2

+
(
CF −

CA
2

)
ᾱy3
y1y2

)
T (4.14)

+
(
CF

α lnα(y2−2y3)−2ᾱy3
y2

2
+
(
CF −

CA
2

)(
ᾱ(1−2α)y3

y1y2
+ 2ᾱ2y3

y2
2

))
∆T

]}
,

δgG(x) =
∫

[dy]
∫ 1

0
dαδ(x−αy3) (4.15)

×
{
α(lnα−2ᾱ)

(
G+(y1,2,3)−4Y+(y2,3,1)

y2y3
+2Y+(y2,3,1)−Y+(y3,1,2)

y2
2

)

+αᾱ

(
8Y+(y2,3,1)−Y+(y3,1,2)

y2
2

−18Y+(y2,3,1)
y2y3

)

+ ᾱ

(
1− 3

8α
)−G+(y1,2,3)+G−(y1,2,3)+2Y+(y1,2,3)+2Y−(y1,2,3)

y1y2

}
,

where we use the shortened notation T = Tq(y1, y2, y3), ∆T = ∆Tq(y1, y2, y3) for the
quark-gluon-quark distributions. Notice that the singlet quark contribution (summed over
flavors) does not appear in the finite part. The logarithmic parts are

HNS⊗g(0),tw3
1T,q (x) =

∫
[dy]

∫ 1

0
dα

{
δ(x−αy3) (4.16)

×
[
2xCF

{(1
2 +α− lnα+2ln ᾱ

)(
T −∆T
2y2y3

+ ∆T
y2

2

)
−∆T
y2

2

}

+
(
CF −

CA
2

)(
α

(2−α)T −(4−3α)∆T
y2

− ᾱT −(1−2α)∆T
y1

)

+CA
2

{(
αᾱ−2
y2

− 1
x+y1

)(
T −∆T −2y3

∆T
y2

)
−2(1−2α)y3

∆T
y2

2

}]

+δ(x−αy2)
(
CF −

CA
2

)(
−α+ ᾱ2 y2

y3

)
T +(1−2α)∆T

x+y1

+δ(x−y2−αy3)
(
CF −

CA
2

) 1
y2

[
T +

(
1+2αy3

y2

)
∆T

]}
,
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HG⊗g(0),tw3
1T,q (x) = −

∫
[dy]

∫ 1

0
dαδ(x−αy3)

{
αᾱ

2
Y+(y2,3,1)−Y+(y3,1,2)

y2y3
(4.17)

+α(2ᾱ+lnα)
(
G+(y1,2,3)−2Y+(y2,3,1)

y2y3
+ Y+(y2,3,1)−Y+(y3,1,2)

y2
2

)
+ ᾱ

4
G+(y1,2,3)−G−(y1,2,3)

y1y2
− ᾱ(1−3α)

2
Y+(y3,1,2)−Y−(y3,1,2)

y1y2

+ ᾱ(1−2α)
2

Y+(y2,3,1)−Y+(y3,1,2)−Y−(y2,3,1)+Y−(y3,1,2)
y2

2

}
,

Hq′

S ⊗g
⊥,(0),tw3
1T,q (x) = 2

∫
[dy]

∫ 1

0
dαδ(x−αy2)(αᾱ+α lnα)Tq

′(y1,y2,y3)
y2

, (4.18)

where we use the shortened notation T = Tq(y1, y2, y3), ∆T = ∆Tq(y1, y2, y3) for the
quark-gluon-quark distributions, and (yi,j,k) = (yi, yj , yk) for three-gluon distributions. To
simplify these expressions we have used the symmetry relations (2.26) and (2.33).

The logarithmic part coincides with the prediction given by the renormalization group
equation [51, 64] (see appendix A). It provides a strong check of our computation. The com-
parison has been made in position space (see appendix B). The integrands of eqs. (4.14)–
(4.18) are finite for yi → 0. Also, we observed the cancelation of various undesirable
terms such as ln2 α and ln ᾱ/α that appear in the individual diagrams. Altogether, these
observations provide extra confidence in the result.

4.3 Boer-Mulders function h⊥1
The Boer-Mulders function is in many aspects similar to the Sivers function, which is a
consequence of their T-oddness. We have

h⊥1,q(x, b;µ, ζ) = ∓πEq(−x, 0, x)∓ πas

{
CF

(
−L2

b + 2Lblζ + 3Lb −
π2

6

)
Eq(−x, 0, x)

−2LbH⊗ Eq(−x, 0, x)
}

+O(a2
s, b

2). (4.19)

where the ∓ identifies the process under consideration. For DY (SIDIS) the upper (lower)
sign should be taken. For the Boer-Mulders function, we have found that the finite part
(besides the π2/6 contribution), exactly vanishes, i.e.:

δh⊥1,f (x) = 0 (4.20)

For the evolution kernel, we have

H⊗ Eq(−x, 0, x) = −CF2 Eq(−x, 0, x) +
∫ 1

0
dα

∫
dyδ(x− αy) (4.21)

×
{

2
(
CF −

CA
2

)[(
α

1− α

)
+
Eq(−y, 0, y)− ᾱEq(−x, y, x− y)

]
+ CA

Eq(−x, x− y, y)
(1− α)+

}
.

In general the expression for the Boer-Mulders function has the simplest form among all
TMD distributions that match twist-three operators. The expression for the evolution ker-
nel agrees with the general kernel for the twist-three functions [35, 51], see also appendix A.

– 18 –



J
H
E
P
0
1
(
2
0
2
3
)
1
1
6

4.4 Worm-gear-L function h⊥1L
It is convenient to split the expression for the worm-gear-L function into twist-two and
twist-three contributions

h⊥1L,q(x, b;µ, ζ) = h⊥,tw2
1L,q (x, b;µ, ζ) + h⊥,tw3

1L,q (x, b;µ, ζ). (4.22)

The twist-two part can be written in the form

h⊥,tw2
1L,q (x, b;µ, ζ) = −x2

∫ 1

x

dy

y
C⊥,tw2

1L,q←q

(
x

y

)
h1(y), (4.23)

where

C⊥,tw2
1L,q←q(x) = 1 + asCF

[
−L2

b + 2Lblζ − 4Lb (ln x− ln x̄)− π2

6

]
+O(a2

s),

These expressions can be used as the Wandzura-Wilczek-like approximation for the worm-
gear-L function. The logarithmic part of eq. (4.23) coincides with the one predicted by
evolution equations for transversity distributions (see e.g. [66]). The finite part contains
only the trivial contribution π2/6. The non-trivial part vanishes (see the diagram B in
section B.3).

The twist-three part is

h⊥,tw3
1L,q (x, b;µ, ζ) = h

⊥,(0),tw3
1L,q (x) + as

{
CF

(
−L2

b + 2Lblζ + 3Lb −
π2

6

)
h
⊥,(0),tw3
1L,q (x)

−2LbH⊗ h
⊥,(0),tw3
1L,q (x) + δh(x)

}
+O(a2

s, b
2). (4.24)

At tree-level it is

h
⊥,(0),tw3
1L,q (x) = −2x

∫ 1

0
dα

∫
[dy]αδ(x− αy3)Hq(y1, y2, y3)y3 − y2

y2
2y3

. (4.25)

This expression has been derived in refs. [15, 16]. Note that the integral is finite for y2 → 0,
since H(−y, 0, y) = 0.

The finite and logarithmic parts of the twist-three expression are

δh(x) =−4
∫

[dy]Hq(y1,y2,y3) (4.26)

×
{∫ 1

0
dα

[(
CF −

CA
2

)
αᾱ

(
δ(x−αy2)

y3
− δ(x−αy3)

y1

)
+ CA

2 ᾱ(αy2 + ᾱy3)δ(x−αy3)
y2

2

]

+
∫ 1

0
dα

∫ 1

0
dβ

α

x+y1

(
CA
2 δ(x+αy1 +αβy2)−

(
CF −

CA
2

)
δ(x+αy1 +αβy3)

)}
.

H⊗h⊥,(0),tw3
1L,q (x) =−2

∫
[dy]Hq(y1,y2,y3) (4.27)

×
{∫ 1

0
dαCFαx

(3
2 +2ln ᾱ−2lnα

)
y3−y2
y2

2y3
δ(x−αy3)

+
∫ 1

0
dα

∫ 1

0
dβ

α(y2−x)
y2(x+y1)

(
CA
2 δ(x+αy1 +αβy2)−

(
CF −

CA
2

)
δ(x+αy1 +αβy3)

)}
.
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The double-integrals in the last lines of these equations can be integrated over one of the
variables, but the resulting expressions have a complicated form.

5 Conclusion

We have computed the leading small-b asymptotics for Sivers (f⊥1T ), Boer-Mulders (h⊥1 )
and worm-gear functions (g1T and h⊥1L) at NLO in perturbation theory. These functions
are expressed in terms of twist-two and twist-three collinear distributions. The computa-
tion is performed using the well-established background-field method, which was also used
for similar computations in refs. [22, 34, 35]. The result is presented both in position (ap-
pendix B) and momentum-fraction (section 4) space. The logarithmic parts of the obtained
expressions agree with the predictions of the renormalization group equations. The result
for the Sivers function coincides with the one computed in ref. [22].

With the results of this work the knowledge of small-b expressions for TMDs of leading
twist is complete at NLO (or even higher, see refs. [9, 10]). The only distribution for which
this is still missing is pretzelosity that has leading twist-four contributions at small-b [7].
In the transverse momentum space the computed expressions corresponds to the large
momentum asymptotic of TMDs.

The perturbative expansions for the Sivers and Boer-Mulders functions on one side and
the worm-gear functions on the other side are drastically different, which is a consequence
of the T-parity properties of these functions. So, the Sivers and Boer-Mulders at LO
have the Qiu-Sterman form of quark-anti-quark correlators with a null-momentum gluon
field [67] T (−x, 0, x) and E(−x, 0, x). The NLO expressions for these distributions contain
only twist-three distributions and are relatively simple (in particular, the finite part of the
Boer-Mulders function is trivial (4.20)). The global sign of the small-b expression depends
on the orientation of the gauge link.

In contrast, the worm-gear functions have involved forms. Already at LO, they are
expressed by convolution integrals of twist-two and twist-three distributions, which lead
to bulky NLO expressions. The expression for the worm-gear-T distribution is especially
cumbersome, since it contains mixtures with a three-gluon correlator and a singlet-quark
contribution. Unfortunately, we have not found any significant simplifications for these dis-
tributions. At the moment, the most practically important result for worm-gear functions
is the part proportional to twist-two distributions, because it can be used as an approxi-
mation for these functions (Wandzura-Wilczek-like approximation). The goodness of such
an approximation is difficult to establish at the moment. It remains, however, a useful one
given the currently available data.

The derived NLO expressions are important for the phenomenology of TMDs and twist-
three distributions. They provide the leading logarithmic terms, and thus allow to properly
include QCD evolution effects in the data analysis. This will be definitely important for
the next-generation of high-precision polarized experiments such as EIC [68].
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A Evolution equations for twist-three collinear distributions

In this appendix, we collect the expressions for the LO evolution kernels of twist-three
distributions F̂ . The expressions are given in position space where they are more compact
and which we used for the checks of our computations.

The evolution equations in position space have the form

µ2 d

dµ2 F̂ (ζ1, ζ2, ζ3) = 2as[H⊗ F̂ ](ζ1, ζ2, ζ3), (A.1)

where H is an integral operator. The derivation and original expressions for the kernels
can be found in refs. [33, 51]. The momentum space expressions are much longer. They
can be found (in parts) in refs. [36, 52, 64].

The evolution kernel for the quark-gluon-quark chiral-even operators has three flavor
contributions

[H⊗ F̂q] = [HNS ⊗ F̂q] + [HG ⊗ F̂q] +
∑
q′

[Hq′

S ⊗ F̂q], (A.2)

where q labels the flavor of the quark field, and we omit the arguments (z1, z2, z3) in each
term. The non-singlet part for the function Ŝ+ reads

[HNS⊗ Ŝ+](ζ1, ζ2, ζ3) (A.3)

= CA
2

∫ 1

0
dα

[
ᾱŜ+(ζα12, ζ2, ζ3)+ ᾱŜ+(ζ1, ζ2, ζ

α
32)+ ᾱ2Ŝ+(ζ1, ζ

α
21, ζ3)+ ᾱ2Ŝ+(ζ1, ζ

α
23, ζ3)

(α)+

+2
∫ ᾱ

0
dββ̄Ŝ+(ζα12, ζ

β
21, ζ3)

]
+
(
CF −

CA
2

)∫ 1

0
dα

[
ᾱŜ+(ζα13, ζ2, ζ3)+ ᾱŜ+(ζ1, ζ2, ζ

α
31)

(α)+
− ᾱŜ+(ζ1, ζ

α
32, ζ3)

+
∫ ᾱ

0
dβŜ+(ζα13, ζ2, ζ

β
31)−2

∫ 1

ᾱ
dββ̄Ŝ+(ζα12, ζ

β
21, ζ3)

]
+ 3

2CF Ŝ
+(ζ1, ζ2, ζ3),

where
ᾱ = 1− α, ζij = ζiᾱ+ ζjα.

The gluon mixing (also for the Ŝ+ function) is

[HG⊗ Ŝ+](z1,z2,z3) (A.4)

=−i(ζ1−ζ3)
[∫ 1

0
dα

∫ ᾱ

0
dβ(1−α−β+2αβ)(g+ +g−)+

∫ 1

0
dα

∫ 1

ᾱ
dβᾱβ̄(−g+ +g−)

]
,
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where
g± = 2F̂±2 (ζα13, ζ2, ζ

β
31) + F̂±4 (ζα13, ζ2, ζ

β
31) + F̂±6 (ζα13, ζ2, ζ

β
31), (A.5)

with F̂1,2,3 being defined in eq. (2.31), (2.32). Finally, the mixture with the quark-gluon-
quark operators (of all active flavors including the original one) is

[Hq
S ⊗ Ŝ

+](ζ1, ζ2, ζ3) =
∫ 1

0
dααᾱŜ+(ζα13, ζ2, ζ

α
13). (A.6)

This contribution appears via the QCD equation of motion in the diagrams with external
“bad” components of gluon fields (see e.g. [69]).

The evolution kernel of the chiral-odd functions is

[H⊗ F̂ ](ζ1, ζ2, ζ3) (A.7)

= CA
2

∫ 1

0
dα

[
ᾱF̂ (ζα12, ζ2, ζ3) + ᾱF̂ (ζ1, ζ2, ζ

α
32) + ᾱ2F̂ (ζ1, ζ

α
21, ζ3) + ᾱ2F̂ (ζ1, ζ

α
23, ζ3)

(α)+

+2
∫ ᾱ

0
dββ̄

(
F̂ (ζα12, ζ

β
21, ζ3) + F̂ (ζ1, ζ

β
23, ζ

α
32)
) ]

+
(
CF −

CA
2

)∫ 1

0
dα

[
ᾱF̂ (ζα13, ζ2, ζ3) + ᾱF̂ (ζ1, ζ2, ζ

α
31)

(α)+

−2
∫ 1

ᾱ
dββ̄

(
F̂ (ζα12, ζ

β
21, ζ3) + F̂ (ζ1, ζ

β
23, ζ

α
31)
) ]

+ 3
2CF F̂ (ζ1, ζ2, ζ3),

where F̂ stands for Ĥ or Ê. Note, that the equation can be simplified for each case using
(anti)symmetry of the functions Ê(Ĥ).

B Intermediate expressions in position space

In this appendix we provide the full set of expressions in position space obtained by eval-
uating the diagrams with the background field method. For the twist-two distributions,
F ∈ {f1, g1, h1, fg,∆fg} we define

F̂ (ζ) =
∫ 1

−1
dxeixζF (x). (B.1)

For the twist-three distributions F ∈ {S±, T,∆T,H,E,G, Y } we define

F̂ (ζ1, ζ2, ζ3) =
∫

[dx]e−i(ζ1x1+ζ2x2+ζ3x3)F (x1, x2, x3), (B.2)

being [dx] = dx1dx2dx3δ(x1 +x2 +x3). In position space the collinear distributions satisfy
translation invariance

F̂ (ζ1 + τ, ζ2 + τ, ζ3 + τ) = F̂ (ζ1, ζ2, ζ3). (B.3)

In the following formulas, we have used this relation together with the symmetry relations
to simplify expressions.
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In the following we use the notation [dαdβdγ] to denote the integral over the simplex
of Feynman variables, i.e.

∫
[dαdβdγ] =

∫ 1

0
dα

∫ 1

0
dβ

∫ 1

0
dγδ(1− α− β − γ) (B.4)

We present the results for both SIDIS- and DY-like TMDs. For this reason, it is convenient
to introduce L as

L =

+∞ SIDIS-like process,
−∞ DY-like process.

(B.5)

For all diagrams we show the contribution to a particular TMD. For example, for g1T we
extract the coefficient of (b · sT ), and divide it by iM .

B.1 Worm-gear-T function g1T

Diagrams A and B are most conveniently written in terms of the tree level expressions for
the matching of the worm-gear function g1T and for the function gT . In position space
they are:

ĝtree
1T (ζ) = 1

iζ

(
ĝ1(ζ) +

∫ 1

0
dβĝ1(βζ)

)
+ i

(∫ 0

L
dτ −

∫ −L
0

dτ

)
Ŝ+(ζ, τ, 0)

+ iζ

∫
[dαdβdγ]

(
2βŜ+(ᾱζ, βζ) + 2Ŝ+(ζ, βζ, 0)

)
,

ĝT (ζ) =
∫ 1

0
dαĝ1(αζ) + 2ζ2

∫
[dαdβdγ]βŜ+(ᾱζ, βζ, 0).

(B.6)

We use the distributions S+, T,∆T to present the results. These satisfy the following
relations

T̂ (ζ1,ζ2,ζ3) = T̂ (−ζ3,−ζ2,−ζ1), ∆̂T (ζ1,ζ2,ζ3)=−∆̂T (−ζ3,−ζ2,−ζ1), (B.7)
2Ŝ±(ζ1,ζ2,ζ3) = −T̂ (ζ1,ζ2,ζ3)±∆̂T (ζ1,ζ2,ζ3), Ŝ+(ζ1,ζ2,ζ3)= Ŝ−(−ζ3,−ζ2,−ζ1) (B.8)
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On a diagram by diagram basis, we have for g1T :

A+A∗ = 2asCFBεΓ(−ε)
∫ 1

0
dα

(2α
ᾱ

)
+
αĝtree

1T (αζ)−2δ(ᾱ)(1+λδ)ĝtree
1T (αζ), (B.9)

B = 2as(1−ε)Γ(−ε)CFBε
∫ 1

0
dα 2αᾱĝtree

1T (αζ)+(1−2α) ĝT (αζ)
iζ

, (B.10)

C+C∗ = ias

(
CF−

CA
2

)
Γ(−ε)Bε

∫
[dαdβdγ]

[∫ 0

L
dτ−

∫ −L
0

dτ

]
(B.11)

×
{

2β
β̄

∆̂T (βζ;τ−αζ;0)

−
(

2α
β̄
−1
)

∆̂T
(
ζβτζ ;α(τ−ζ);0

)
+T̂

(
ζβτζ ;α(τ−ζ);0

)}
,

D+D∗ = −ias
CA
2 Γ(−ε)Bε

(∫ 0

L
dτ−

∫ −L
0

dτ

)∫
[dαdβdγ] (B.12)

×
[(

1+2α
β

)
∆̂T (ζβζτ ,α(ζ−τ),0)+T̂ (ζβζτ ,α(ζ−τ),0)

+2 β̄
β

∆̂T (β̄ζ,τ+αζ,0)
]
,

E+E∗ = −iasΓ(−ε)Bε
(
CF−

CA
2

)∫
[dαdβdγ]

(∫ 0

L
dτ−

∫ −L
0

dτ

)
(B.13)

×
[
(1−ε)(1−4γ)∆̂T (αζ;τ−βζ;0)−(1+ε)T̂ (αζ;τ−βζ;0)

]
,

F = −2ias
CA
2 Γ(−ε)(1−ε)Bε

∫
[dαdβdγ]β

(∫ 0

L
dτ−

∫ −L
0

dτ

)
∆̂T (β̄ζ,τ+αζ,0), (B.14)

G = iasΓ(−ε)Bε
∫ 1

0
dα

[
α

2

(
2α−1−2ᾱ ε

1−ε

)(∫ 0

L
dτ−

∫ −L
0

dτ

)
FDFtw2(τ+αζ)

+(1−2ε)α(2α−1−2εᾱ)
(∫ 0

L
dτ−

∫ −L
0

dτ

)
FDFtw3

6 (τ+αζ) (B.15)

−i(1−2ε)2 ᾱα

2

(∫ 0

L
dτ−

∫ −L
0

dτ

)(∫ 0

L
dσ−

∫ −L
0

dσ

)
F6(σ+αζ,τ,0)

−2(1−2ε)
(∫ 0

L
dτ−

∫ −L
0

dτ

)
αᾱT̂ (0,τ+αζ,0)

]
.

For diagram H, we present the result using light-cone gauge for the background fields,
which allows us to write

Aµ(z) = −
∫ 0

L
dτFµ+(τ + z). (B.16)

For more details on this relation, we refer to ref. [36]. Also, to present the result in a
compact form, we define ∂1,2,3 as derivatives acting only on Aµ, Aν and Aσ, respectively.
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We obtain:

H= gasΓ(−ε)Bε

4i(b·sT )M

∫
[dαdβdγdρ](dABC+ifABC)〈P |AµA(βζ)AνB((β+γ)ζ)AσC(ᾱζ)|P 〉 (B.17)

+ibσ(∂+
1 −∂

+
3 )εµνT (γζ∂+

1 −ρζ∂
+
3 −1)

+ibνεµσT
(
γ(2γ−1)ζ(∂+

1 )2+ρ(2ρ−1)ζ(∂+
3 )2−8γ∂+

1 +8ρ∂+
3 −∂

+
1 ∂

+
3 ζ(4γρ−γ−ρ)+4∂+

1 +∂+
2

)
−ibµενσT

(
γ(2γ−1)ζ(∂+

1 )2+ρ(2ρ−1)ζ(∂+
3 )2−8γ∂+

1 +8ρ∂+
3 −∂

+
1 ∂

+
3 ζ(4γρ−γ−ρ)−4∂+

3 −∂
+
2

)
+iεµρT bρ

(
gνσ

(
ρζ∂+

2 ∂
+
3 −γζ∂

+
1 ∂

+
2 +∂+

2 −2∂+
3

)
+4ε∂+

1
bνbσ

b2

)
+iενρT bρ

(
gµσ

(
ρζ∂+

2 ∂
+
3 −γζ∂

+
1 ∂

+
2 +∂+

2 −2∂+
1

)
+4ε∂+

3
bµbσ

b2

)
+iεσρT bρ

(
gµν

(
γζ∂+

1 ∂
+
2 −ρζ∂

+
2 ∂

+
3 −∂

+
2

)
+4ε∂+

2
bµbν

b2

)
. (B.18)

The factor i(b · sT )M comes from the definition of g1T (ζ, b). Expanding the result for
diagramH and writing it in terms of distributions is most conveniently done using directly
the momentum space representation.

B.2 Boer-Mulders function h⊥1
The Boer-Mulders function is similar to the Sivers function. It has only a twist-3 contri-
bution. Specifically we have

ĥ⊥,tree
1 (ζ) = −1

2

∫ −L
L

dτÊ(ζ, τ, 0). (B.19)

The function E(ζ1, ζ2, ζ3) obeys the symmetry relation

Ê(ζ1, ζ2, ζ3) = Ê(−ζ3,−ζ2,−ζ1) (B.20)

In this expression, it is trivial to see that, passing from SIDIS-like processes to DY-like
processes, the function changes sign.

For the individual diagrams, we have

A+A∗ = 2asCFBεΓ(−ε)
∫ 1

0
dα

(2α
ᾱ

)
+
αĥ⊥,tree

1 (αζ)− 2δ(ᾱ)(1 + λδ)ĥ⊥,tree
1 (αζ),

B = 4asCFΓ(1− ε)Bε
∫
dααᾱĥ⊥1 (αζ),

C +C∗ = 2asΓ(−ε)
(
CF −

CA
2

)
Bε
∫ 1

0
dα

∫ −L
L

dτ
(
αÊ(τ, ζαζτ , 0)− αÊ(αζ, τ, 0)

)
,

D+D∗ = 2asΓ(−ε)BεCA
2

∫
[dαdβdγ]

∫ −L
L

dτ

×
[
−β̄Ê(ζαζτ , ζ

β
τζ , 0)− ᾱβ̄

α
Ê(ζαζτ , ζ

β
τζ , 0)− Ê(ᾱζ, ζβτζ , 0)

]
,

E +E∗ = 2as
(
CF −

CA
2

)
Γ(1− ε)Bε

∫ 1

0
dα αᾱ

∫ −L
L

dτÊ(αζ; τ ; 0),

F = 2as
CA
2 Γ(1− ε)Bε

∫ 1

0
dα αᾱ

∫ −L
L

dτÊ(αζ, τ, 0). (B.21)
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It is straightforward to convince oneself that the sum B+E+E∗+F vanishes identically.
Therefore, the only non-zero contribution is to the pole part.

B.3 Worm-gear-L function h⊥1L

The worm-gear function h⊥1L behaves similar to the worm-gear function g1T , but has no
gluon contributions. Specifically, one has both twist-two and twist-three tree-level match-
ing:

ĥ⊥,tree
1L (ζ) = 1

iζ

(
2
∫ 1

0
dααĥ1(αζ)− ĥ1(ζ)

)
+ iζ

∫ 1

0
dββĤ(ζ, βζ, 0)

− iζ
∫

[dαdβdγ]2β2Ĥ(ᾱζ, βζ, 0)− i

2

(∫ 0

L
dτ −

∫ −L
0

dτ

)
Ĥ(ζ, τ, 0),

ĥL(ζ) = 2
∫ 1

0
dααĥ1(αζ) + 2ζ2

∫
[dαdβdγ]β2Ĥ(ᾱζ, βζ, 0), (B.22)

where the function Ĥ obeys the symmetry relation

Ĥ(ζ1, ζ2, ζ3) = −Ĥ(−ζ3,−ζ2,−ζ1). (B.23)

For individual diagrams, we find:

A+A∗ = 2asCFBεΓ(−ε)
∫ 1

0
dα

(2α
ᾱ

)
+
αĥ⊥,tree

1L (αζ)−2δ(ᾱ)(1+λδ)ĥ⊥,tree
1L (αζ),

B = −2asCFΓ(1−ε)Bε
∫
dα 2αᾱĥ⊥,tree

1L (αζ)−(1−2α) ĥL(αζ)
iζ

,

C+C∗ = −iasΓ(−ε)
(
CF −

CA
2

)
Bεp+

∫
[dαdβdγ]

[∫ 0

L
dτ−

∫ −L
0

dτ

]

×
[
2β
β̄
Ĥ(βζ,τ−αζ,0)+2γ

β̄
Ĥ(ζβτζ ,α(τ−ζ),0)−2εĤ(ζβτζ ,α(τ−ζ),0)

]
,

D+D∗ = ias
CA
2 BεΓ(−ε)

∫
[dαdβdγ]

(∫ 0

L
dτ−

∫ −L
0

dτ

)

×
{(2ᾱ

β
−2ε

)
Ĥ(ζβζτ ,γ(ζ−τ),0)+ 2β̄

β
Ĥ(β̄ζ,τ+αζ,0)

}
,

E+E∗ = 2ias
(
CF −

CA
2

)
Γ(1−ε)Bε (B.24)

×
∫

[dαdβdγ]
(∫ 0

L
dτ−

∫ −L
0

dτ

)
(2γ−1+ε)Ĥ(αζ,τ−βζ,0),

F = −2iΓ(1−ε)as
CA
2 Bε

∫
[dαdβdγ] β

(∫ 0

L
dτ−

∫ −L
0

dτ

)
Ĥ(β̄ζ,τ+αζ,0). (B.25)

It is interesting to observe that after substitution of (B.22) the twist-two part of the diagram
B vanishes. It leads to a trivial finite part for the twist-two contribution.
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