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1 Introduction

A three-dimensional “tomographic” imaging of the proton and light nuclei is an active
research topic and a major science goal for the planned Electron-Ion Collider (EIC) [1, 2].
Studies of the deeply-virtual Compton scattering (DVCS) play an important role in this
undertaking. This reaction gives access to the generalized parton distributions (GPDs) [3–5]
that encode the information on the transverse position of quarks and gluons in the proton
in dependence on their longitudinal momentum. This process will be measured with very
high precision and in a broad kinematic range. The QCD description of the DVCS is based
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on collinear factorization with GPDs as nonperturbative inputs and coefficient functions
(CFs) which can be calculated order by order in perturbation theory. At leading power, the
complete next-to-leading-order (NLO) results are available since many years [6–9], and the
work is ongoing to extend this description to NNLO [10–18].

Beyond the leading twist, power-suppressed contributions ∼ (
√
−t/Q)k and ∼ (m/Q)k

where t is the invariant momentum transfer and m is the target mass, have to be taken into
account. The spatial position of partons is Fourier conjugate to the momentum transfer to
the nucleon in the scattering process. Hence the resolving power of DVCS is directly limited
by the range of the invariant moment transfer t available in the analysis. For the stated
goal of the three-dimensional imaging, theoretical control over power corrections (

√
−t/Q)k

is therefore of paramount importance. Another pressing issue is to clarify whether target
mass corrections do not invalidate QCD factorization for coherent DVCS on nuclei [19, 20].

An intuitive way to understand the meaning and importance of kinematic power
corrections is the following [21]. The leading-twist approximation in DVCS is intrinsically
ambiguous since the four-momenta of the initial and final photons and protons do not lie in
one plane. Hence the distinction of longitudinal and transverse directions is convention-
dependent. In the Bjorken high-energy limit this is the 1/Q effect. The freedom to redefine
large “plus” parton momenta by adding smaller transverse components has two consequences.
First, the relation of the skewness parameter ξ with the Bjorken variable xB may involve
power suppressed contributions. Second, such a redefinition generally leads to excitation
of the subleading photon helicity-flip amplitudes [21, 22]. This convention-dependence
should be viewed as a theoretical uncertainty and is numerically rather large, see [23] for a
detailed study.

At the present time, the kinematic power corrections to DVCS are known to the twist-
four accuracy, i.e. up to terms ∼ t/Q2 and ∼ m2/Q2 [22]. A typical size of these corrections
is of order 10% for asymmetries, but they can be as large as 100% for the cross section in
certain kinematics. These corrections can significantly impact the extraction of GPDs from
data and have to be taken into account [24, 25]. The formalism of refs. [22, 26] was used in
the most recent study by the JLAB Hall A collaboration [27]. This publication presents the
first experimental extraction of all four helicity-conserving Compton Form Factors (CFFs)
of the nucleon as a function of xB, while systematically including higher-twist helicity
flip amplitudes in the kinematic approximation. It is argued that helicity-flip amplitudes
contribute to producing a good fit of the cross section and most importantly to providing
realistic uncertainties on the helicity-conserving CFFs. The helicity-conserving contribution
alone overshoots the data at 180 degrees scattering angle, which is then compensated by
helicity-flip contributions.1

Our aim is to develop an approach that would allow one to calculate and possibly resum
the corrections ∼ (

√
−t/Q)k and ∼ (m/Q)k to all powers. On a more formal level, the

task can be formulated as follows. Let Oµ1...µN be local twist-two operators. The matrix
elements of these operators define the GPD moments. The kinematic contributions we are
considering here receive contributions of higher-twist descendants of the twist-two operators,

1C. Munoz Camacho, private communication.
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of the type

∂µ1Oµ1µ2...µN , ∂µ1∂µ2Oµ1µ2µ3...µN , ∂2Oµ1...µN , etc., (1.1)

where ∂µ is a total derivative. The problem is that matrix elements of the first two operators
in (1.1) (and similar ones with more derivatives) vanish for on-mass-shell partons. Hence the
usual method to calculate the OPE coefficients functions for these operators — evaluate both
sides of the OPE on free quarks — is not applicable. The technique developed in [26, 28–
30] is based on considering instead quark-antiquark-gluon matrix elements and using
symmetry properties of the corresponding renormalization group equations. Unfortunately
this approach becomes too unwieldy beyond twist four.

In ref. [31] we suggested a different technique based on the conformal field theory
(CFT) methods. In a conformal theory, the coefficients with which the descendant operators
enter the OPE are completely determined by the leading-twist contributions that can
be obtained by considering forward matrix elements [32–34]. For QCD, this means that
kinematic corrections to DVCS amplitudes are unambiguously determined by DIS coefficient
functions. Of course, QCD is not a conformal theory. However, one can consider a modified
theory, QCD in non-integer d = 4 − 2ε space-time dimensions and fine-tune the strong
coupling αs to nullify the β-function (Wilson-Fisher fixed point [35]). This restores the
scale and conformal invariance of the correlation functions of gauge-invariant operators [36].
Observables calculated in the four-dimensional and critical QCD differ beyond leading order
by terms proportional to the QCD β function. Such terms can be calculated and added, at
least in principle [13], while there are no corrections at the tree level.

The OPE for the product of two conserved vector currents in a generic CFT was
constructed in ref. [31]. The expansion for the product of two scalar currents was originally
obtained in ref. [32] in a different form. A simple representation for the coefficient functions
obtained in [31] is well-suited for studies of high-energy scattering in QCD (possible
applications beyond DVCS include the studies of t-channel processes like γ∗γ → ππ, see [37]).

In this work we use this result to calculate the finite-t and target mass corrections to
the helicity amplitudes in DVCS on a scalar target to the next-to-leading power accuracy
and the leading order in the strong coupling. Schematically,

A++ ∼ 1 + 1
Q2 + 1

Q4 ,

A0+ ∼ 1
Q

+ 1
Q3 ,

A−+ ∼ 1
Q2 + 1

Q4 , (1.2)

where A++, A0+ and A−+ are the helicity-conserving, helicity-flip and double-helicity-flip
amplitudes, respectively, in a particular reference frame [26]. Precise definitions are given
in the text. An extension to higher powers is straightforward but unlikely to be relevant for
phenomenology, so that we do not work out explicit expressions.

In section 2 we carry out the first part of this program. Namely, we rewrite the OPE
obtained in ref. [31] in terms of the nonlocal light-ray operators. To this end we develop a
certain technique which relies heavily on the representation theory of SU(1, 1) group. The
light-ray OPE in eq. (2.45) presents the final result for this part.
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Matrix elements of light-ray operators are defined in terms of the GPDs. Thus the
Fourier transformation of the expression obtained in section 2 yields helicity amplitudes for
the DVCS on a chosen target. This calculation is described in section 3. It is straightforward
but proves to be very cumbersome. We find that individual contributions contain infrared
(IR) singularities that cancel in the sum to all orders in the power expansion. We also
find that the singularities of the coefficient functions at the kinematic point x = ξ do not
become stronger to all powers, so that the collinear factorization is not endangered. We
work our explicit expressions for the kinematic power corrections to the accuracy indicated
in eq. (1.2) and show that target mass corrections are not enhanced for nuclear targets.
Taking into account these corrections removes the frame dependence of the leading-twist
approximation and restores the electromagnetic gauge invariance of the Compton amplitude
up to 1/Q5 effects. The final section 4 contains a short numerical study, our conclusions
and outlook. Some more technical details are given in the appendices.

2 Light-ray operator product expansion

Our starting expression in this paper is the result of ref. [31] for the OPE of two electro-
magnetic currents taking into account contributions of leading-twist operators and their
higher-twist descendants, cf. eq. (1.1)2

T{jµ(x1)jν(x2)}= 1
iπ2

∑
N>0,even

ρN
N+1

∫ 1

0
du(uū)N

{
1

(−x2
12+i0)2

[
(N+1)gµν

(
1− 1

4
uū

N+1x
2
12∂

2
)

+ 1
2N x

2
12
(
∂µ1 ∂

ν
2−∂ν1∂

µ
2
)
+
(

1− uū

N

x2
12∂

2

4

)(
ū

u
xµ21∂

ν
1 + u

ū
xν12∂

µ
2

)
− uū

N(N+1)
x2

12∂
2

4

(
xν21∂

µ
1 +xµ12∂

ν
2

)
− xµ12x

ν
12

N+1 uū∂
2
(

1− uū

N+2
x2

12∂
2

4

)]
O(0)
N (xu21)

− 1
(−x2

12+i0)

[
−1

4N(ū−u)gµν− ū−u
4(N+1)

(
xν21∂

µ
1 +xµ12∂

ν
2
)

+ 1
2

(
ūxµ21∂

ν
1−uxν12∂

µ
2

)
+ N

2(N+2)(N−1)

(
xν21∂

µ
1 −x

µ
12∂

ν
2

)
+ 1

4
N(N2+N+2)

(N+1)(N+2)(N−1)

(
u

ū
xν12∂

µ
2 −

ū

u
xµ21∂

ν
1

)
+ xµ12x

ν
12

(−x2
12+i0)(ū−u) N

N+1

(
1− 1

2
uū

N+2x
2
12∂

2
)]
O(1)
N (xu21) (2.1)

− xµ12x
ν
12

(−x2
12+i0)

[
N2+N+2

4(N+1)(N+2)−
uūN(N−1)

(N+1)(N+2)

]
O(2)
N (xu21)

}
+ . . . ,

where

ρN = iN−1 (2N + 1)!
(N − 1)!N !N ! , (2.2)

ū = 1− u , x12 = x1 − x2 , xu21 = ūx2 + ux1 , ∂µ1 = ∂

∂xµ1
, ∂µ2 = ∂

∂xµ2
(2.3)

2We omit axial-vector contributions as they do not contribute to DVCS on scalar targets.
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and a derivative without a subscript 1, 2 stands for

∂µO(k)
N (y) = ∂

∂yµ
O(k)
N (y) . (2.4)

For a generic hadronic matrix element between states with different momenta

〈p′|∂µO(k)
N (y)|p〉 = i∆µ〈p′|O(k)

N (y)|p〉 , ∆µ = (p′ − p)µ , (2.5)

so that in what follows we will often replace ∂µ 7→ i∆µ, ∂2 7→ −∆2 already on the
operator level.

The operators O(k)
N are defined as

O(0)
N (y) = x12,µ1 · · ·x12,µNO

µ1...µN
N (y) ,

O(1)
N (y) = x12,µ2 · · ·x12,µN

∂

∂yµ1
Oµ1...µN
N (y) ,

O(2)
N (y) = x12,µ3 · · ·x12,µN

∂

∂yµ1

∂

∂yµ2
Oµ1...µN
N (y) , (2.6)

where Oµ1...µN
N are multiplicatively renormalizable leading-twist operators with spin N

normalized as

Oµ1...µN
N (0) = iN−1q̄(0)γ{µ1Dµ2 . . . DµN}q(0) + total derivatives . (2.7)

Here {. . .} denotes symmetrization and trace subtraction for all enclosed Lorentz indices.
In what follows we will use the notation [. . .]lt for the leading-twist part of an operator, e.g.,[

q̄(0)γµ1Dµ2 . . . DµN q(0)
]
lt

= q̄(0)γ{µ1Dµ2 . . . DµN}q(0) . (2.8)

In the accepted normalization

nµ1 . . . nµNO
µ1...µN
N (y) = Γ(3/2)Γ(N)

Γ(N + 1/2)

(
i∂+
4

)N−1
q̄(y)γ+C

3/2
N−1

(→
D+−

←
D+

→
D++

←
D+

)
q(y) , (2.9)

where nµ is an arbitrary light-like vector, n2 = 0, D+ = Dµnµ, etc. The expression in
eq. (2.1) satisfies exact electromagnetic Ward identities

∂µ1 T{jµ(x1)jν(x2)} = ∂ν2 T{jµ(x1)jν(x2)} = 0 (2.10)

up to, possibly, polynomials in x2
12 which give rise to delta-function terms after Fourier

transform to the momentum space. The OPE in this form is term-by term translation
invariant (cf. a discussion in [28, 29])

〈p′|T{jµ(x1 + y)jν(x2 + y)}|p〉 = ei(∆·y)〈p′|T{jµ(x1)jν(x2)}|p〉 , (2.11)

so that without loss of generality one can make a specific choice, e.g., consider T{jµ(x)jν(0)}
or T{jµ(0)jν(−x)} to simplify the algebra.
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2.1 Twist expansion

The conformal OPE in (2.1) involves leading-twist operators integrated with a certain weight
function over their position on the straight line connecting the electromagnetic currents.
Since the separation x12 is not light-like, x2

12 /=0, this integration upsets the twist expansion.
Indeed, expanding O(0)

N (xu21), e.g., around the middle point xu=1/2
21 = x+ = 1

2(x1 + x2) one
obtains local operators of the form

xν1
12 . . . x

νk
12 x

µ1
12 . . . x

µN
12 ∂ν1 . . . ∂νk q̄(x

+)γ{µ1Dµ2 . . . DµN}q(x
+) , (2.12)

where not all traces are subtracted. As the first step, we need to rewrite (2.1) in terms of
the leading twist operators[

∂ν1 . . . ∂νk q̄γµ1Dµ2 . . . DµN q
]
lt

= ∂{ν1 . . . ∂νk q̄γµ1Dµ2 . . . DµN}q . (2.13)

This can be done retaining the structure of the conformal OPE using the technique of
refs. [38, 39].

For simplicity, take x1 = x, x2 = 0 so that xu21 = ux. The leading twist projection of a
function f(x) satisfies the Laplace equation, ∂2

x[f(x)]lt = 0, with the boundary condition
[f(x)]lt = f(x) at x2 = 0. The solution can be written as an expansion in powers of the
deviation from the light cone [38]

[f(x)]lt = f(x)− 1
4x

2
∫ 1

0

dt

t
∂2
xf(tx) + 1

32x
4
∫ 1

0

dt

t

t̄

t
∂4
xf(tx) +O(x6) . (2.14)

The inverse relation reads

f(x) = [f(x)]lt + 1
4x

2
∫ 1

0

dt

t
[∂2
xf(tx)]lt + 1

32x
4
∫ 1

0
dt

t̄

t3
[∂4
x f(tx)]lt +O(x6) . (2.15)

Replacing f(x) by O(0)
N (ux) one obtains

O(0)
N (ux)

=
[
O(0)
N (ux)

]
lt

+x2

4

∫ 1

0

dt

t

[
∂2
xe
iut∆xtNO(0)

N (0)
]
lt

+x4

32

∫ 1

0

t̄ dt

t3
∂4
x

[
eiut∆xtNO(0)

N (0)
]
+O

(
x6
)

=
[
O(0)
N (ux)

]
lt
−x

2

4

∫ 1

0

dt

t
tN
[
u2t2∆2

[
O(0)
N

]
lt

(utx)−2utN
[
O(1)
N

]
lt

(utx)
]

+x4

32

∫ 1

0
dt

t̄

t3
tN
{
u4t4∆4

[
O(0)
N (utx)

]
lt
−4Nu3t3∆2

[
O(1)
N (utx)

]
lt

+4N (N−1)u2t2
[
O(2)
N (utx)

]
lt

}
+O(x6) , (2.16)

where taking the matrix element 〈p′| . . . |p〉 is tacitly assumed hence (p′−p)µ = ∆µ ⇔ −i∂µ,
and we used that ∂2

xO
(0)
N (0) = 0 because Oµ1···µN

N (y) is a traceless operator, see (2.6).
Substituting this expansion in (2.1) one finds that the t-integration can in most cases be
taken easily so that, e.g.,∫ 1

0
du (uū)NO(0)

N (ux) =
∫ 1

0
du (uū)N

[
O(0)
N (ux)

]
lt
−x

2∆2

4
1

N+1

∫ 1

0
du (uū)N+1

[
O(0)
N (ux)

]
lt

+x2

2
N

(N+1)

∫ 1

0
duuN ūN+1

[
O(1)
N (ux)

]
lt

+. . . . (2.17)

– 6 –



J
H
E
P
0
1
(
2
0
2
3
)
0
7
8

In the similar manner one obtains

O(1)
N (ux) =

[
O(1)
N (ux)

]
lt
−x

2

4

∫ 1

0

dt

t
tN−1

[
u2t2∆2

[
O(1)
N

]
lt

(utx)−2ut(N−1)
[
O(2)
N

]
lt

(utx)
]

+O(x4),

O(2)
N (ux) =

[
O(2)
N (ux)

]
lt

+O(x2). (2.18)

This accuracy is sufficient since the omitted terms only give rise to polynomials in x2 in the
OPE and can all be neglected.

2.2 Light-ray operator representation

2.2.1 Methods

The next step is to rewrite the answer in terms of nonlocal light-ray operators

O(z1, z2) = 1
2
[
q̄(z1x)/x[z1x, z2x]q(z2x)− q̄(z2x)/x[z2x, z1x]q(z1x)

]
lt
, (2.19)

where z1, z2 are real numbers, [z1n, z2n] is the Wilson line, and the nonlocal quark-antiquark
operators on the r.h.s. are understood as generating functions for renormalized leading-twist
local operators. This representation is advantageous since the matrix elements of light-ray
operators are expressed directly in terms of GPDs. It will allow us to calculate power
corrections to the DVCS helicity amplitudes (Compton form factors) directly, bypassing
the nontrivial problem of analytic continuation from the set of moments (matrix elements
of local operators). In this section we derive the light-ray operator representation for
T{jµ(x)jν(0)}, i.e. we set x1 = x, x2 = 0 that results in some simplifications.

The expansion of the light-ray operator (2.19) over the local operators (2.6), (2.9)
reads [28]

O(z1, z2) =
∑
N>0,
even

ρNz
N−1
12

∫ 1

0
du (uū)N

[
O(0)
N (zu21x)

]
lt
, (2.20)

where the coefficients ρN are defined in (2.2). The leading contribution ∼ gµν/x4
12 in the

first line in eq. (2.1) has exactly this form, so that it can be readily written in terms of
O(1, 0) (for x1 = x, x2 = 0). A generic contribution to the OPE has the form

∑
N>0,
even

ρNf (N)
∫ 1

0
du (uū)N g (u)

[
O(k)
N (ux)

]
lt
, (2.21)

and the task is to rewrite such expressions as certain integrals of light-lay operators.
For example,

∑
N>0,
even

ρN
1

N + 1

∫ 1

0
du (uū)N u

ū

[
O(0)
N (ux)

]
lt

=
∫ 1

0
dvO(1, v) . (2.22)

This relation can be easily verified using (2.20) and performing one integration.

– 7 –
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For a certain class of functions, the necessary expressions can be worked out using
conformal symmetry. The expression in eq. (2.20) can equivalently be rewritten as [29]3

O (z1, z2) =
∞∑

N>0,
even

∞∑
k=0

ωNk
(
S

(1,1)
+

)k
zN−1

12

[
(x∂)kO(0)

N (0)
]
lt
, (2.23)

where

ωNk = ρN
k!

Γ(N + 1)Γ(N + 1)
Γ(2N + 2 + k) (2.24)

and S(j1,j2)
+ is one of the generators of the SL(2,R) group (a collinear subgroup of conformal

transformations [40])

S
(j1,j2)
− = −∂z1 − ∂z2 ,

S
(j1,j2)
0 = z1∂z1 + z2∂z2 + j1 + j2,

S
(j1,j2)
+ = z2

1∂z1 + z2
2∂z2 + 2j1z1 + 2j2z2. (2.25)

Here jk (conformal spins) specify the irreducible representation of the SL(2,R) group
T (jk) [41]. The operators in (2.25) act on the tensor product T (j1) ⊗ T (j2).

Let H be an SL(2,R)-invariant operator acting on field coordinates (i.e., it commutes
with the symmetry generators). It can be written in the form4

Hφ(z1, z2) =
∫ 1

0
dα

∫ ᾱ

0
dβ h(τ)φ

(
zα12, z

β
21

)
, τ = αβ

ᾱβ̄
. (2.26)

Translation-invariant polynomials zk12 are eigenfunctions of any invariant operator, and the
weight function (kernel) h(τ) is uniquely determined by its spectrum

HzN−1
12 = hNz

N−1
12 = zN−1

12

∫ 1

0
dα

∫ ᾱ

0
dβ h(τ)(1− α− β)N−1 . (2.27)

If hN satisfies the so-called reciprocity relation [43–46], hN = h−N−1, finding the corre-
sponding kernel h(τ) is usually not difficult, e.g.,

hN = 1
N(N + 1) =⇒ h(τ) = 1 ,

hN = 1
N2(N + 1)2 =⇒ h(τ) = − ln τ̄ . (2.28)

Applying the invariant operator (2.26) to eq. (2.23) one obtains

HO (z1, z2) =
∞∑

N>0,
even

∞∑
k=0

ωNk
(
S

(1,1)
+

)k
hNz

N−1
12

[
(x∂)kO(0)

N (0)
]
lt
, (2.29)

3Notice the difference in the definition of N .
4See appendix B in [42] and references therein.
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or, going back to the representation in (2.20)

∑
N>0,
even

ρNhNz
N−1
12

∫ 1

0
du (uū)N

[
O(0)
N (zu21x)

]
lt

=
∫ 1

0
dα

∫ ᾱ

0
dβ h (τ) O

(
zα12, z

β
21

)
. (2.30)

This relation allows one to derive a light-ray operator representation for the sum in eq. (2.21)
if g(u) = 1 in (2.21) and f(N) satisfies the reciprocity relation f(N) = f(−N − 1).

Other cases can be treated similarly, but the derivation becomes more involved. One
new element is that instead of invariant operators H : T (1) ⊗ T (1) 7→ T (1) ⊗ T (1) which
commute with the S(1,1)

k generators, HS
(1,1)
k = S

(1,1)
k H, one needs to consider intertwining

operators between different representations, e.g. H̃ : T (1) ⊗ T (1) 7→ T ( 3
2 ) ⊗ T ( 1

2 ), such that
H̃S

(1,1)
k = S

( 3
2 ,

1
2 )

k H̃. Another issue is that known light-ray operator representations involving
O(1)
N and O(2)

N are more complicated as compared to (2.20):

∑
N>0
even

ρNN
2zN−1

12

∫ 1

0
du(uū)N

[
O(1)

N (zu
21x)

]
lt

=
(
S

(1,1)
0 −1

)
(i∆∂x)O(z1,z2)+ 1

2S
(1,1)
+ ∆2O(z1,z2) ,

(2.31)

and

∑
N>0
even

ρNN
2
∫ 1

0
du (uū)N

{
(N−1)2

[
O(2)

N (zu
21x)

]
lt

+∆2S
(1,1)
+

∫ 1

0
dtt2N+1

[
O(1)

N (tzu
21x)

]
lt

}
zN−1

12

=
{(
S

(1,1)
0 −2

)
(i∆∂x)+ 1

2∆2S
(1,1)
+

}{(
S

(1,1)
0 −1

)
(i∆∂x)+ 1

2∆2S
(1,1)
+

}
O(z1,z2). (2.32)

These relations can be obtained following the technique of ref. [29], see appendix A.

2.2.2 Example

To demonstrate how it works, consider terms ∼ gµν in the OPE (2.1)

T{jµ(x)jν(0)} = gµν/iπ2

(−x2 + i0)2

∑
N>0
even

ρN
N+1

∫ 1

0
du (uū)N

{
(N + 1)

(
1 + 1

4
uū

N + 1x
2∆2

)
O(0)
N (ux)

− 1
4x

2N(ū− u)O(1)
N (ux)

}
+ . . . , (2.33)

where we replaced ∂2 7→ −∆2. The ellipses stand for the other existing Lorentz structures.
At the first step we use eq. (2.17) to rewrite the most singular 1/x4 contributions in

terms of the leading-twist operators,∫ 1

0
du(uū)NO(0)

N (ux) =
∫ 1

0
du (uū)N

[
O(0)
N (ux)

]
lt
−x

2∆2

4
1

N+1

∫ 1

0
du (uū)N+1

[
O(0)
N (ux)

]
lt

+x2

2
N

(N+1)

∫ 1

0
duuN ūN+1

[
O(1)
N (ux)

]
lt

+. . . (2.34)
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In all other contributions one can simply replace O(k)
N by [O(k)

N ]lt to the required accuracy.
The second term on the r.h.s. of eq. (2.34) (the term ∼ ∆2) cancels against the corresponding
contribution in (2.33). Adding together the two terms ∼ O(1)

N one gets

T{jµ(x)jν(0)} = gµν/
(
iπ2)

(−x2 + i0)2

O(1, 0) + x2

4
∑
N>0
even

ρN
N

N + 1

∫ 1

0
du (uū)NO(1)

N (ux)

+ . . . ,

(2.35)
where we used (2.20) to rewrite the leading contribution in terms of the light-ray operator.

The next step is to make use of the identity (2.31). The sum in (2.35) differs from
that in (2.31) by the factor 1/(N(N + 1)) which can be emulated by the application of the
SL(2,R)-invariant operator H+ : T (1) ⊗ T (1) 7→ T (1) ⊗ T (1), cf. eqs. (2.26), (2.28):

H+f(z1, z2) =
∫ 1

0
dα

∫ ᾱ

0
dβ f

(
zα12, z

β
21

)
. (2.36)

Thus we get

∑
N>0
even

ρN
N

N + 1z
N−1
12

∫
du(uū)N

[
O(1)
N (zu21x)

]
lt

= (2.37)

=
(
S

(1,1)
0 − 1

)
H+(i∆∂x)O+(z1, z2) + 1

2S
(1,1)
+ H+∆2O+(z1, z2) , (2.38)

where we used that [S(1,1)
α ,H+] = 0.

We need the r.h.s. of eq. (2.38) for z1 = 1, z2 = 0. In this case one can replace,

S
(1,1)
+ 7→ S = z−1

12 ∂1z
2
12, S

(1,1)
0 7→ S = z−1

12 ∂1z
2
12. (2.39)

The operator S is an invariant operator with eigenvalues N + 1,5 which intertwines the
representations of the SL(2,R) group: S : T (1) ⊗ T (1) 7→ T (3/2) ⊗ T (1/2). Thus the product
SH+ is also an invariant operator T (1) ⊗ T (1) 7→ T (3/2) ⊗ T (1/2) with the eigenvalues
(N + 1)× 1/(N(N + 1)) = 1/N using (2.27). Any such operator can be written in the form
(cf. (2.26))

SH+f(z1, z2) =
∫ 1

0
dα

∫ ᾱ

0
dβ

β

β̄
w(τ)φ

(
zα12, z

β
21

)
, τ = αβ

ᾱβ̄
, (2.40)

where the kernel w(τ) is uniquely determined by the spectrum. In the case under consider-
ation ∫ 1

0
dα

∫ ᾱ

0
dβ

β

β̄
w(τ)(1− α− β)N−1 = 1

N
⇒ w(τ) = δ(τ) . (2.41)

Thus

SH+f(z1, z2) =
∫ 1

0
dβ f

(
z1, z

β
21

)
. (2.42)

5Indeed, SzN−1
12 = (N + 1) zN−1

12 .
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Collecting everything, we obtain the desired representation

T{jµ(x)jν(0)} = gµν/(iπ2)
(−x2 + i0)2

{
O(1, 0)− x2

4

∫ 1

0
dα

∫ ᾱ

0
dβ (i∆∂x)O(ᾱ, β)

+ x2

4

(
(i∆∂x) + 1

2∆2
)∫ 1

0
dβO(1, β)

}
+ . . . . (2.43)

2.2.3 Result

The other terms in (2.1) can be treated along the similar lines. Introducing the notations

O1 (z1, z2) = (i∆∂x) O (z1, z2) , O2 (z1, z2) =
(

(i∆∂x) + 1
2∆2

)
O (z1, z2) , (2.44)

we obtain the final result as follows:

T{jµ(x)jν(0)}=

= 1
iπ2

{
1
x4

[
gµνO(1,0)−xµ∂ν

∫ 1

0
duO(ū,0)−xν(∂µ−i∆µ)

∫ 1

0
dvO(1,v)

]

+ 1
x2

[
i

2
(
∆ν∂µ−∆µ∂ν

)∫ 1

0
du

∫ ū

0
dvO(ū,v)−∆2

4 xµ∂ν
∫ 1

0
duu

∫ ū

0
dvO(ū,v)

]

+ ∆2

2
xµxν

x4

∫ 1

0
duū

∫ ū

0
dvO(ū,v)+ 1

4x2 g
µν
[
−
∫ 1

0
du

∫ ū

0
dvO1(ū,v)+

∫ 1

0
dvO2(1,v)

]
− 1

4x2 (xν∂µ+xµ∂ν−ixµ∆ν)
∫ 1

0
du

∫ ū

0
dv

(
ln τ̄ O1(ū,v)+ v

v̄
O2(ū,v)

)
− 1

2x2 (xν∂µ−xµ∂ν+ixµ∆ν)
∫ 1

0
du

∫ ū

0
dv
τ

τ̄

(
−O1(ū,v)+ ū

u
O2(ū,v)

)
− 1

4x2x
ν(∂µ−i∆µ)

[∫ 1

0
du

∫ ū

0
dv
v

v̄

[
−2
(

1+ 2τ
τ̄

)
O1(ū,v)+ v

v̄
O2(ū,v)

]
+
∫ 1

0
dv
v

v̄
O2(1,v)

]
− 1

2x2x
µ∂ν

∫ 1

0
du

∫ ū

0
dv

[
(ln ū+u)O1(ū,v)+ūO2(ū,v)− 1

2

(
1+ 4τ

τ̄

)
O2(ū,v)

]
−x

µxν

x4

∫ 1

0
du

∫ ū

0
dv

[
(ln τ̄+ln ū+u)O1(ū,v)+

(
v

v̄
+ū
)

O2(ū,v)
]

−x
µxν

4x2

[
(i∆∂)+ 1

2∆2
]∫ 1

0
du

∫ ū

0
dv
v

v̄

(2
τ̄
−1
)

O1(ū,v)

+xµxν

2x2

[
(i∆∂)+ 1

4∆2
]∫ 1

0
du

∫ ū

0
dv

(
ln τ̄+ 2τ

τ̄

)
O1(ū,v)

}
, (2.45)

where ∂µ = ∂/∂xµ.
This expression is derived from (2.1) without any approximations so that it satisfies

the Ward identity (2.10) and the translation invariance relation (2.11). The latter becomes
hidden, however: it is only valid in the sum of all terms and not easy to check explicitly.
We did not find a simple way to obtain a light-ray operator representation for the general
case T{jµ(x1)jν(x2)}. This restriction, however, poses no issues for the application which
we pursue next.
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3 Helicity amplitudes

3.1 Kinematics and notations

3.1.1 Helicity decomposition of the Compton tensor

The hadronic part of the DVCS amplitude is given by the matrix element of the time-ordered
product of two electromagnetic currents

jem
µ (x) = q̄(x)γµQ q(x) , (3.1)

where q = {u, d, . . .} is the quark field and Q is the diagonal matrix of quark charges

Q = e


eu 0 0
0 ed 0
...

... . . .

 , e =
√

4πα. (3.2)

Using translation invariance (2.11) one can write the DVCS amplitude as

Aµν = i

∫
d4x e−iqx〈p′|T{jem

µ (x)jem
ν (0)}|p〉 , (3.3)

or, equivalently,

Aµν = i

∫
d4x eiq

′x〈p′|T{jem
ν (x)jem

µ (0)}|p〉 , (3.4)

where q and q′ are the ingoing (virtual) and outgoing (real) photon momenta, respectively:

q2 = −Q2, q′2 = 0 . (3.5)

The representation in (3.4) proves to be more convenient for our purposes as it leads to
much simpler Fourier integrals in the q′2 → 0 limit.

The DVCS amplitude Aµν can be written in terms of several scalar functions. We will
use the decomposition suggested in ref. [26]:

Aµν = −gµν⊥ A
(0) + 1√

−q2

(
qµ − q′µ q2

(qq′)

)
P ν⊥A(1) + 1

2
(
Pµ⊥P

ν
⊥ − P̃

µ
⊥P̃

ν
⊥

)
A(2) + q′νA(3)

µ ,

(3.6)

where
g⊥µν = gµν −

qµq
′
ν + q′µqν

(qq′) + q′µq
′
ν

q2

(qq′)2 , ε⊥µν = 1
(qq′)εµναβq

αq′β , (3.7)

and
Pµ = 1

2(p+ p′)µ , Pµ⊥ = gµν⊥ Pν , P̃µ⊥ = εµν⊥ Pν . (3.8)

In the frame of reference where the two photon momenta are used to define the longitudinal
plane (in four dimensions), one can define the longitudinal ε0

µ and transverse ε±µ photon
polarization vectors

ε0
µ = −

(
qµ − q′µq2/(q · q′)

)
/
√
−q2 , ε±µ =

(
P⊥µ ± iP̃⊥µ

)
/
(√

2|P⊥|
)
, (3.9)
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where |P⊥| =
√
−P 2
⊥, and rewrite (3.6) as

Aµν = ε+
µ ε
−
ν A++ + ε−µ ε

+
ν A−− + ε0

µε
−
ν A0+ + ε0

νε
+
ν A0− + ε+

µ ε
+
ν A+− + ε−µ ε

−
ν A−+, (3.10)

where

A±± = A(0), A0± = −|P⊥|√
2
A(1), A±∓ = |P⊥|

2

2 A(2). (3.11)

One sees that the invariant functions A(0) and A(2) have the physical meaning of helicity-
conserving and helicity-flip scattering amplitudes of transversely polarized photons re-
spectively, in this frame. The amplitude A(1) corresponds to the contribution of the
longitudinally polarized virtual photon in the initial state. The amplitude A(3)

µ does not
contribute to physical observables. The invariant functions A(k) alias the helicity amplitudes
A±±, A0±, A±∓ can easily be related to, e.g., the Belitsky-Müller-Ji (BMJ) Compton form
factors [47] as described in detail in ref. [22].

The momentum transfer to the target in this frame is, by construction, purely
longitudinal

∆ = p′ − p = q − q′, t = ∆2, g⊥µν∆ν = 0 (3.12)

and the (space-like) vector Pµ⊥ has a meaning of the transverse momentum of the target,
which is the same before and after the collision,

P 2
⊥ = −|P 2

⊥| = m2 tmin − t
tmin

. (3.13)

Here m is the target mass and tmin < 0 is the smallest kinematically allowed invariant
momentum transfer

tmin = −4ξ2m2

1− ξ2 , or ξ ≤ ξmax = 1√
1− 4m2/t

, (3.14)

where ξ is the asymmetry (skewness) parameter that we define with respect to the projection
on the photon momentum in the final state, p+ = pµq′µ,

ξ =
p+ − p′+
p+ + p′+

= xB(1 + t/Q2)
2− xB(1− t/Q2) , xB = Q2

2pq . (3.15)

Different helicity amplitudes can be separated using projection operators:

Π(0)
µν = P⊥µ P

⊥
ν + P̃⊥µ P̃

⊥
ν , Π(1)

µν = q′µP
⊥
ν , Π(2)

µν = P⊥µ P
⊥
ν − P̃⊥µ P̃⊥ν , (3.16)

so that

Π(0)
µνAµν = −2P 2

⊥A0 , Π(1)
µνAµν = (qq′)√

−q2P
2
⊥A1 , Π(2)

µνAµν = P 4
⊥A2 . (3.17)
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Neglecting “genuine” higher-twist contributions due to quark-gluon correlations, the ampli-
tudes A(k) can be written as a convolution of the generalized parton distributions Hq(x, ξ, t)
and the coefficient functions T (k)(u,Q2, t)

A(k) = T (k) ⊗H def=
∑
q

e2
q

∫ 1

−1

dx

2ξ T
(k)
(
ξ + x− iε
2(ξ − iε) , Q

2, t

)
Hq(x, ξ, t) . (3.18)

Note that within our conventions Pµ⊥ (3.8) is the only existing transverse four-vector
so that it can only be dotted onto itself. As a consequence, the power expansion of
the coefficient functions T (k) (z,Q2, t

)
can conveniently be organized in terms of the two

expansion parameters

t

(qq′) and |ξP⊥|2

(qq′) , (3.19)

where (qq′) = −(Q2 + t)/2. In this way the dependence of power corrections on the mass of
the target enters only through the dependence on tmin:

|ξP⊥|2 = 1− ξ2

4 (tmin − t) = −ξ2m2 − 1− ξ2

4 t . (3.20)

In what follows we will discuss the general structure of this expansion and derive explicit
expressions for the first few terms.

3.1.2 Generalized parton distributions

The GPD Hq(x, ξ, t) is defined as a matrix element of the leading-twist light-ray operator

〈p′|Oq(z1n, z2n)|p〉 = 2P+

∫ 1

−1
dx e−iP+[z1(ξ−x)+z2(x+ξ)]Hq(x, ξ, t) , (3.21)

where

Oq(z1n, z2n) = 1
2
(
q̄(z1n)γ+q(z2n)− q̄(z2n)γ+q(z1n)

)
. (3.22)

Wilson lines between the quarks are implied, and the “plus” projection is defined with
respect to an arbitrary light-like vector P+ = Pµn

µ, n2 = 0. In what follows we omit the
flavor index, Oq → O.

On intermediate steps of the calculation, a particular version of the so-called double
distribution (DD) representation [5, 48] for this matrix element proves to be more convenient,
see ref. [26]:

〈p′|O(z1n, z2n)|p〉 = 2i
z12

∫ 1

−1
dβ

∫ 1−|β|

−1+|β|
dα e−i(`z1z2n)Φ(β, α, t) , (3.23)

where

`µz1z2 = −z1∆µ + (z2 − z1)
[
βPµ − 1

2(α+ 1)∆µ
]
. (3.24)
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The DD Φ(β, α, t) is symmetric under reflection (β, α) 7→ (−β,−α),

Φ(β, α, t) = Φ(−β,−α, t) (3.25)

and can be represented as a total derivative [49]

Φ(β, α, t) = ∂βf(β, α, t) + ∂αg(β, α, t) . (3.26)

As a consequence, the first moments of Φ(β, α, t) vanish:∫∫
dβ dαΦ(β, α, t) =

∫∫
dβ dααΦ(β, α, t) =

∫∫
dβ dαβ Φ(β, α, t) = 0 , (3.27)

where the integration regions are the same as in (3.23). This, in turn, guarantees that the
r.h.s. of eq. (3.23) vanishes at z1 → z2.

The DD Φ(β, α, t) and the GPD H(x, ξ, t) are related as [26]

∂xH(x, ξ, t) =
∫∫

dβ dα δ(x− β − ξα) Φ(β, α, t) . (3.28)

Staying with the DD representation, our results for power corrections to helicity amplitudes
are given by a sum of terms of the following type

I−1(Y ) =
∫∫

dβ dαΦ(β, α)Y (F ),

Ik(Y ) =
∫∫

dβ dαΦ(β, α)β (β∂F )kY (F ), k = 0, 1, . . . (3.29)

where Y (F ) are certain functions of the variable

F = 1
2

(
β

ξ
+ α+ 1

)
, F δ(x− β − ξα) = x+ ξ

2ξ δ(x− β − ξα) . (3.30)

These integrals can be rewritten in terms of the GPD H(x, ξ, t):

I−1(Y ) = −
∫ 1

−1

dx

2ξ Y
′
(
x+ ξ

2ξ

)
H(x, ξ) = −Y ′ ⊗H , Y ′(z) = d

dz
Y (z) ,

Ik(Y ) = −(−2Dξ)k+1
∫ 1

−1

dx

2ξ Y
(
x+ ξ

2ξ

)
H(x, ξ) = −(−2Dξ)k+1(Y ⊗H) , (3.31)

where

Dξ ≡ ξ2∂ξ . (3.32)

In this way all our results can be rewritten in the GPD representation which appears to be
more suitable in applications.

Last but not least, the OPE for the product of two electromagnetic currents in eq. (2.45)
is written in terms of the leading-twist projection of the nonlocal quark-antiquark operator
at a non-light-like separation x2 6= 0 (2.19) implying

〈p′|O(z1, z2)|p〉 = 2i
z12

∫ 1

−1
dβ

∫ 1−|β|

−1+|β|
dα

[
e−i(`z1z2x)

]
lt

Φ(β, α, t) , (3.33)
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which involves the leading-twist projection of the exponential function [38, 39]. The
definition of this function and some useful representations are presented in appendix C.

The following scalar products are useful in the calculation:

q′ · `z1z2 = −(qq′)
[
z1 − z12F

]
, (∆ · `z1z2) = −∆2

(
z1 − z12F + z12

β

ξ

)
,

`2z1z2 = −z2
12β

2|P⊥|2 + ∆2 (z1 − z12F )
(
z1 − z12F + z12

β

ξ

)
, (3.34)

where F is the variable defined in (3.30).

3.2 Helicity-flip amplitude A(2)

The remaining calculation is in principle straightforward but rather cumbersome because
for q′2 = 0 several individual contributions to the OPE (2.45) suffer from infrared (IR)
singularities. When necessary, we use finite |q′2| � Q2 as the regulator. We will find that
all IR-divergent terms cancel in the sum so that the real photon limit can be taken at the
end. The helicity-flip amplitude A(2) proves to be the simplest. We choose this case for
illustration.

Application of the projection operator (3.16) A2 = Π(2)
µνAµν/P 4

⊥ eliminates all contribu-
tions ∼ gµν ,∆µ,∆ν and antisymmetric terms µ↔ ν. In addition, terms with xµ∂ν or xν∂µ
can be rewritten using integration by parts, e.g.,∫

d4x e−iqx
1

[−x2 + i0]xµ∂νf(x) 7→ −
∫
d4x e−iqx

2xµxν
[−x2 + i0]2 f(x) , (3.35)

with the gµν and ∼ qν contributions dropped thanks to the projector. The general expression
in (2.45) thus simplifies to

A(2) = Π(2)
µν

π2P 4
⊥

∫
d4xe+iq′x

{
−4x

µxν

x6

[∫ 1

0
du〈p′|O(ūx,0)|p〉+

∫ 1

0
dv 〈p′|O(x,vx)|p〉

]

−x
µxν

x4 (i∆∂x)
∫ 1

0
du

∫ ū

0
dv

(
2ln τ̄+2ln ū+ 3

2 + 1
2
v2

v̄2 + v

v̄
− 2τ
τ̄

1
v̄

+ 1
2
v

v̄
δ(u)

)
〈p′|O(ū,v)|p〉

−∆2

2
xµxν

x4

∫ 1

0
du

∫ ū

0
dv

(
2v
v̄

+ 1
2−

2τ
τ̄

+ 1
2
v2

v̄2 + 1
2
v

v̄
δ(u)

)
〈p′|O(ū,v)|p〉

− 1
4
xµxν

x2

(
(i∆∂x)+ 1

2∆2
)
(i∆∂x)

∫ 1

0
du

∫ ū

0
dv
v

v̄

(2
τ̄
−1
)
〈p′|O(ū,v)|p〉

+ 1
2
xµxν

x2

(
(i∆∂x)+ 1

4∆2
)
(i∆∂x)

∫ 1

0
du

∫ ū

0
dv
(

ln τ̄+ 2τ
τ̄

)
〈p′|O(ū,v)|p〉

}
. (3.36)

In the general case the matrix elements (3.33) will involve

`µū,v = −ū∆µ − (ū− v)[βPµ − 1
2(α+ 1)∆µ] , (3.37)

and the projection will produce factors

Π(2)
µν `

µ
ū,v`

ν
ū,v = (ū− v)2β2P 4

⊥ . (3.38)
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3.2.1 Leading-power contribution 1/Q2

This contribution arises from the most singular terms 1/x6 in eq. (3.36) and is already 1/Q2

suppressed in comparison to the helicity-conserving amplitude A(0). Using

Π(2)
µν i

∫
d4x eiq

′x xµxν

(−x2 + i0)3 [e−i`x]lt = 1
2π

2Π(2)
``

1
[−2(q′`)] , (3.39)

one obtains

A1/Q2

2 = −2
∫∫

dβ dαΦ(β, α)β2
[∫ 1

0
du ū

1
(q′`ū,0) +

∫ 1

0
dv v̄

1
(q′`1,v)

]
= 2

(qq′)

∫∫
dβ dαΦ(β, α)β2

[∫ 1

0
du ū

1
ū(1− F ) +

∫ 1

0
dv v̄

1
1− v̄F

]
= 2

(qq′)

∫∫
dβ dαΦ(β, α)β2∂F

[1− 2F
1− F lnF

]
, (3.40)

where we used that F 7→ 1 − F under reflection (α, β) 7→ (−α,−β). Since Φ(β, α) =
Φ(−β,−α), only the symmetric terms in F ↔ 1− F have to be kept under the integral.

As the final step, using eq. (3.31) the result can be rewritten in terms of the GPD

A1/Q2

2 = − 8
(qq′)D

2
ξ

∫ 1

−1

dx

2ξ
2x
x− ξ

ln
(
x+ ξ

2ξ

)
H(x, ξ, t)

= 16
Q2 + t

ξ3∂2
ξ

∫ 1

−1
dx

x

x− ξ
ln
(
x+ ξ

2ξ

)
H(x, ξ, t) . (3.41)

This expression agrees with [26, eq. (120)] up to a factor two.6 Note that the expansion
naturally goes in powers of (qq′) = −(Q2 + t)/2, hence we leave it in this form.

3.2.2 Next-to-leading-power contribution 1/Q4

The 1/Q4 contribution is due to the terms 1/x4 in the second and the third line in eq. (3.36).
This calculation is equally simple. Consider the term ∼ (i∆∂) first. To this end we need a
Fourier integral

Π(2)
µν i

∫
d4xeiq

′x xµxν

(−x2+i0)2 (i∆·∂x)[e−i`x]lt = 8π2(q′ ·∆) `2Π(2)
``

[−2(q′`)]3−4π2(`·∆) Π(2)
``

[−2(q′`)]2 .

(3.42)

Changing variables

v = ūw , `ū,v = ū`1,w ,

∫ 1

0
du

∫ ū

0
dv =

∫ 1

0
dw

∫ 1

0
du ū , (3.43)

makes the u-integration trivial, so that we get

A1/Q4

2 3 − 1
(qq′)2

∫∫
dβ dαΦ(β, α)β2

∫ 1

0
dw

w̄

w

(
1 + ln w̄

w

)[ (`1,w ·∆)
(1− w̄F )2 −

`21,w
(1− w̄F )3

]
.

(3.44)
6The result in [26, eq. (85)] is correct, but a factor two was lost when going over to the GPD representation.
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A higher power of (1 − w̄F ) in the denominator of the second term is not a reason for
worrying, because

`21,w = w̄2β2P 2
⊥ + t(1− w̄F )(1− w̄F + w̄β/ξ) (3.45)

so that in this term either 1/(1− w̄F )3 7→ 1/(1− w̄F )2, or an extra w̄2 factor arises, which
softens the behavior of the integral at F → 1 equivalent to x→ ξ seen from (3.30). As the
result, this contribution does not have a stronger singularity at x→ ξ as compared to the
leading 1/Q2 term. One obtains after a little algebra,

A1/Q4

2 3 −1
(qq′)2

∫∫
dβ dαΦ(β,α) β

(
P 2
⊥
2 (β∂F )3+ 3

2
t

ξ
(β∂F )2+2t(β∂F )

)[
Li2(F )−Li2(1)

1−F +lnF
]
.

(3.46)

The term ∼ ∆2 in the third line in eq. (3.36) is treated similarly, using

Π(2)
µν i

∫
d4x eiq

′x xµxν

(−x2 + i0)2

[
e−i`x

]
lt

= −4π2Π(2)
``

1
[−2(q′`)]2 . (3.47)

One obtains

A1/Q4

2 3 − ∆2

(qq′)2

∫∫
dβ dαΦ(β, α)β2∂F

[Li2(F )− Li2(1)
1− F + 1

2
lnF

1− F

]
. (3.48)

Adding (3.46) and (3.48), and using the integrals in (3.31) we get

A1/Q4

2 = 8
(qq′)2

(
P 2
⊥D

4
ξ−

3
2

∆2

ξ
D3
ξ+ 3

2∆2D2
ξ

)∫ 1

−1

dx

2ξ

{ 2ξ
ξ−x

[
Li2

(
x+ξ
2ξ

)
−ζ2

]
+ln

(
x+ξ
2ξ

)}

×H (x,ξ, t)+ 2∆2

(qq′)2D
2
ξ

∫ 1

−1

dx

2ξ

[ 2x
ξ−x

ln
(
x+ξ
2ξ

)]
H(x,ξ, t) . (3.49)

3.2.3 Next-to-next-to-leading-power contribution 1/Q6 and beyond

These contributions arise from terms 1/x2 in the last two lines in eq. (3.36) and are beyond
our target accuracy (1.2). In what follows we sketch their calculation, nevertheless, in order
to reveal what appears to be a general pattern of the complications that arise beyond the
next-to-leading power.

Start with the terms ∼ ∆2(i∆∂x) that are somewhat simpler. The relevant Fourier
integral reads

i2∆ξ
∫
d4x eiq

′x xµxν

(−x2+i0)∂ξ[e
−i`x]lt

= 32π2(∆ · `)Π(2)
``

A3 − 96π2(∆ · q′)Π(2)
``

{
`2

A4

(
ln A

A+ `2
+ ln A

q′2

)
− `2

(A+ `2)3

[11
6

1
A

+ 17
2
`2

A2 + 10 `
4

A3 + 11
3
`6

A4

]}
+O(q′2),

(3.50)

where we use a shorthand notation A = −2(q′`). There are two major differences with
what we had before. First, this integral is IR divergent in the q′2 → 0 limit so that we
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keep finite q′2 in the last term in the first line as a regulator. Second, there is a factor
1/(A+ `2)3 = 1/(q′− `)6 and also a logarithmic term ln A

A+`2 that did not appear previously.
Since A = O(Q2) and `2 = O(∆2, ξ2P 2

⊥), the expansion 1/(A+ `2)3 = 1/A3 − 3`3/A4 + . . .

generates a series of power corrections to all powers. This is in contrast to Fourier integrals
that we have seen above in xµxν

x6 and xµxν
x4 contributions, which only produce terms with

a given power suppression 1/Q2 and 1/Q4, respectively. Note that the IR divergent
contribution ∼ ln A

q′2 multiplies (∆q′)/A4 = O(1/Q6) and does not appear in higher powers.
Using (3.50) and changing variables (3.43) it is possible to do the u-integration explicitly.

One finds that the IR-divergent terms ∼ ln q′2 cancel thanks to∫ 1

0
du

{[
v

v̄

(2
τ̄
− 1

)]
−
[
ln τ̄ + 2τ

τ̄

]}
v=ūw

= 0 , (3.51)

and one obtains

A1/Q6

2 3− 3∆2

2(qq′)3

∫∫
dβ dαΦ(β,α)β2

∫ 1

0
dw

w̄`21,w
(1−w̄F )4

{( 1
w̄

+ 1
w

ln w̄
)

+O
(

`21,w
(qq′)(1−w̄F )

)}
.

(3.52)

The terms ∼ (i∆∂x)2 can be treated in the same manner. The relevant Fourier integral
has similar structure as in (3.50), but is somewhat more cumbersome. The IR-divergent
contributions ∼ ln q′2 cancel also in this case, thanks to another identity∫ 1

0
du ū

{[
v

v̄

(2
τ̄
− 1

)]
− 2

[
ln τ̄ + 2τ

τ̄

]}
v=ūw

= 0 . (3.53)

We obtain

A1/Q6

2 3 12
(qq′)3

∫∫
dβ dαΦ(β, α)β2

∫ 1

0
dw

w̄`41,w
(1− w̄F )5

{( 1
w2 ln w̄ + 1

w
+ 2

3w̄ −
1
6

)
+O

(
`21,w

(qq′)(1− w̄F )

)}
. (3.54)

One can show that each term in the expansion of the integrands in (3.52) and (3.54) in
powers of `2/(qq′) is O(w1) at w → 0, so that the remaining integrals are convergent order
by order in the power expansion. Closed expressions for the integrands (to all powers) can
be obtained, but are rather unwieldy.7

The remaining calculation is straightforward. As already mentioned above, terms with
increasing powers of `21,w/(1−w̄F ) do not give rise to stronger singularities at x→ ξ because
either the additional factors of 1/(1− w̄F ) is cancelled in the ratio, or a w̄2-factor appears
which smoothens the behavior of the integral at F → 1, see eq. (3.45). Thus collinear
factorization is not endangered.

7On can show that all further power corrections in these expressions (beyond 1/Q6) originate from large
separations between the currents, of the order of |x2| ∼ 1/|q′2|. These corrections are finite, but it is not
obvious whether they should or could be included in the coefficient function of the GPD. This issue requires
further study.
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3.3 Results

The calculation of A(1) proves to be of similar complexity, whereas A(0) is more involved.
The general scheme of the calculation remains the same, but the cancellation of ln q′2

contributions in 1/Q4 corrections in the latter case is more tricky as the expansion of
Fourier integrals at q′2 → 0 sometimes leads to logarithmic divergences at u → 1 (in
notation of the previous sections). This divergent contribution has to be isolated and
treated separately. In addition, power divergences ∼ 1/q′2 appear in the contributions of
the last two lines in eq. (2.45), but cancel in the sum. The final expressions for all helicity
amplitudes in the DVCS limit q′2 = 0 are finite.

We obtain

A0 = 2
(

1 + t

4(qq′)

)
(T0 ⊗H)

− t

(qq′) (T1 ⊗H) + 2
(qq′)

(
t

ξ
+ 2|P⊥|2Dξ

)
Dξ (T3 ⊗H)

+ 1
2

t2

(qq′)2 (T̃1 ⊗H) + 4t
(qq′)2

(
t

ξ
+ 2|P⊥|2Dξ

)
Dξ(T2 ⊗H)

+ 2
(qq′)2

((
t

ξ
+ 2|P⊥|2Dξ

)2
− 2|P⊥|4D2

ξ

)
D2
ξ (T5 ⊗H) , (3.55a)

A1 = − 4Q
(qq′)Dξ(T1 ⊗H)

+ 8Q
(q′q)2

(
t

ξ
+ |P⊥|2Dξ

)
D2
ξ (T2 ⊗H)− 4Qt

(q′q)2Dξ(T3 ⊗H) , (3.55b)

A2 = − 8
(qq′)

(
1 + t

4(qq′)

)
D2
ξ (T̃1 ⊗H)

+ 4
(qq′)2

(
3t− 3 t

ξ
Dξ − 2|P⊥|2D2

ξ

)
D2
ξ (T2 ⊗H) . (3.55c)

Here Dξ = ξ2∂ξ (3.32) and the convolution ⊗ is defined in eq. (3.18). The same expressions
are valid for a pseudoscalar target (pion) as well, up to an overall isospin factor, cf. [26].

The CFs that we encounter to NNLO power accuracy are

T0(u) = 1
1− u ,

T1(u) = −1
u

ln(1− u) ,

T̃1(u) = 1− 2u
u

ln(1− u) ,

T2(u) = Li2(u)− Li2(1)
1− u − ln(1− u) ,

T3(u) = Li2(u)− Li2(1)
1− u − ln(1− u)

2u = T2(u)− 1
2 T̃1(u) ,

T5(u) =
(7

2 −
1

2u

)
ln(1− u)−

( 3
1− u − 2

)(
Li2(u)− Li2(1)

)
. (3.56)

They are analytic functions of u with a cut from 1 to∞. Functions of higher transcendentality
appear on intermediate steps of the calculation but cancel in the final expressions. The
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convolution integral (3.18) contains the CFs on the upper side of the cut: T (u) 7→ T (u+ iε)
for x > ξ. One finds

ImT0(u+ iε) = πδ(1− u) ,

ImT1(u+ iε) = π

u
θ(u− 1) ,

ImT̃1(u+ iε) = π
2u− 1
u

θ(u− 1) ,

ImT2(u+ iε) = π

( ln u
1− u + 1

)
θ(u− 1) ,

ImT3(u+ iε) = π

( ln u
1− u + 1

2u

)
θ(u− 1) ,

ImT5(u+ iε) = π

[(
2− 3

1− u
)

ln u+ 1
2u −

7
2

]
θ(u− 1) . (3.57)

In certain applications, e.g. [37], the expressions for the helicity amplitudes in the DD
representation can be more useful, see appendix D.

Note that factors of |P⊥|2 in (3.55) always enter in combination with the second
power of the derivative, D2

ξ , which can be traced to the β2 factor in the expression for
`2z1z2 = −z2

12β
2|P⊥|2 + . . . (3.34). Since Dξ = O(ξ), the expansion is organized in powers of

ξ2|P⊥|2/(qq′) ∝ ξ2m2/Q2 +O(t/Q2) as indicated in eqs. (3.19), (3.20). For nuclear targets
effectively m 7→ Am and ξ 7→ ξ/A so that the target mass corrections are not enhanced as
compared to the nucleon.

Note also that the convolutions T̃1 ⊗ H, T2 ⊗ H and T5 ⊗ H contain contributions
O(1/ξ) in the small-ξ limit. These contributions, however, either cancel in the sum of all
terms or are annihilated by applications of Dξ, so that the power corrections have the same
small-ξ behavior as the leading terms.

4 Numerical estimates and discussion

A detailed study of the numerical impact of kinematic power corrections goes beyond the
tasks of this paper. This calculation has to be done at the level of cross sections, taking
into account finite-t and target mass effects to kinematic (e.g. phase space) factors [47, 50]
and including the interference with the Bethe-Heitler process. Besides, such a complete
analysis is probably not warranted for the study case of a scalar target.

In this section we follow ref. [26] and present numerical estimates for the kinematic
power corrections to the imaginary parts of the helicity amplitudes (3.55). To this end we
use a model for the GPD H(x, ξ, t) corresponding to the N = 1 ansatz from ref. [51]. It is
based on the so-called single-DD description which is defined by the “gauge-fixing” condition

αf(β, α, t) = βg(β, α, t) ,

imposed on the DDs f and g in (3.26), see ref. [51] for more details. It is assumed that the
DD f takes a factorized form

f(β, α, t) = q(β, t)h(β, α) . (4.1)
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Here q(x, t = 0) is a (quark) parton distribution which we take as

q(x, t) = θ(x)x−a(t)(1− x)3eBt (4.2)

and

h(β, α) = 3
4

(1− |β|)2 − α2

(1− |β|)3 . (4.3)

The function h(β, α) satisfies the normalization condition
∫ 1−|β|
−1+|β| dαh(β, α) = 1. Note

that we use q(x) ∼ (1 − x)3 which is characteristic for the proton target, because this is
the case that is most interesting phenomenologically. For the pion one usually assumes
q(x) ∼ (1− x)1÷2.

In realistic models, see e.g. ref. [52], the t-dependence of the DD is often included through
the corresponding dependence of the valence quark Regge trajectory a(t) = 0.48+0.9GeV−2t.
This dependence interferes with the finite-t power corrections that are subject of this work,
so that we do not take it into account in what follows and, for simplicity, set a = 1/2. The
overall multiplicative eBt factor cancels out in the ratios that will be considered.

The imaginary parts of the helicity amplitudes involve H(x, ξ, t) in the region x ≥ ξ

only. In this region one obtains a compact expression [51]

H(x, ξ, t)
∣∣∣
x≥ξ

= 3x
4ξ

∫ β2

β1

dβ

β1+a(t)

[
β̄2 −

(
x− β
ξ

)2]
eBt, (4.4)

where β1 = (x− ξ)/(1− ξ) and β2 = (x+ ξ)/(1 + ξ).
Kinematic power corrections modify the helicity-conserving amplitude A++ = A0 and

simultaneously give rise to helicity-flip contributions. In order to quantify both effects we
write the invariant functions Ak as power series in 1/(qq′) with A(p)

k ∼ 1/(qq′)p

A0 = A(0)
0 +A(1)

0 +A(2)
0 + . . . ,

A1 = A(1)
1 +A(2)

1 + . . . ,

A2 = A(1)
2 +A(2)

2 + . . . , (4.5)

and plot in figure 1 the ratios of the imaginary parts of the helicity amplitudes, see eq. (3.11):

R0 = ImA0

ImA(0)
0
− 1 ∼ r

(1)
0

(qq′) + r
(2)
0

(qq′)2 + . . . ,

R1 = −|P⊥|√
2

ImA1

ImA(0)
0

∼ Qr
(1)
1

(qq′) + Qr
(2)
1

(qq′)2 + . . . ,

R2 = 1
2 |P⊥|

2 ImA2

ImA(0)
0

∼ r
(1)
2

(qq′) + r
(2)
2

(qq′)2 + . . . , (4.6)

normalized to the leading-twist contribution ImA(0)
0 = πH(ξ, ξ).

The calculation is done for Q2 = 5GeV2, t = −1GeV2 and two values of the target
mass: m = 0.14GeV (pion) with m = 1GeV (nucleon), see appendix E for details. The
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Figure 1. The ratios Rk (4.6) of the imaginary parts of the helicity amplitudes taking into account
leading kinematic power corrections (black solid curves) and the complete results (3.55) to 1/(qq′)2

accuracy (red dashed curves) as functions of the skewedness parameter for Q2 = 5GeV2 and
t = −1GeV2. The left panel: m = 0.14GeV; the right panel: m = 1GeV.

results are presented on the left and the right panel in figure 1, respectively. The leading
power contributions to the ratios Rk(ξ) are shown by solid black curves and the complete
results to the 1/(qq′)2 accuracy by red dashes.

One sees that the contribution of subleading power corrections is small for all amplitudes.
This is especially so for R0 and R2 where the difference between solid and dashed curves is
within the line thickness. The smallness of the 1/(qq′)2 corrections in these two cases is
due to strong cancellations between the several relevant contributions in the corresponding
expressions in (3.55). This cancellation apparently persists for a rather large class of the
GPD models. Note, however, that the smallness of corrections only holds if the expansion
is organized in powers of the scalar product 1/|(qq′)| ∼ 1/(Q2 + t) instead of 1/Q2. For the
chosen values Q2 = 5GeV2 and t = −1GeV this is a 25% effect.

The power correction to the leading, helicity-conserving amplitude R0 depends very
weakly on ξ whereas R1 and R2 vanish at the kinematically maximum allowed value of the
skewedness parameter ξ = ξmax (3.14) owing to the |P⊥| factors in their definition. The
value of ξmax depends strongly on the target mass, which explains the difference of the
plots on the left (small mass) and right (large mass) panels. At small values of ξ there is
practically no difference, since, as already mentioned earlier, the target mass corrections
enter through the combination ξ2m2 and become irrelevant at large energies.

5 Conclusions

Using the recent results [31] on the contributions of descendants of the leading twist
operators to the operator product expansion of two electromagnetic currents in conformal
QCD, we have presented a calculation of finite-t and target mass corrections to DVCS on
scalar targets to the next-to-leading power accuracy. Our main result of phenomenological
relevance is that the next-to-leading corrections are small if the expansion is reorganized in
powers of 1/(Q2 + t) instead of 1/Q2. The calculation can be extended to higher powers.
In particular we find that IR divergences in kinematic corrections cancel to all powers to
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our present accuracy, in the leading order of perturbation theory. We also argue that target
mass corrections in the coherent DVCS from nuclei at large energies are small and do not
invalidate the factorization theorem.

A generalization of these results to DVCS on spin-1/2 targets (nucleon) should be
straightforward, but more tedious. Also kinematic corrections to double-DVCS (with two
virtual photons) can be obtained. A more ambitious project would be to calculate kinematic
corrections to the contribution of gluon GPD, that requires going over to next-to-leading
order in the strong coupling.
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A Derivation of eqs. (2.31), (2.32)

We start from the identities[
iPαα̇, ∂α∂̄α̇∂

k
+O

(0)
N

]
= N2∂k+O

(1)
N + 1

4k(2N + k + 1)
[
iPαα̇,

[
iPαα̇, ∂

k−1
+ O(0)

N

]]
,

(A.1a)[
iPαα̇, ∂α∂̄α̇∂

k
+O

(1)
N

]
= (N − 1)2∂k+O

(2)
N + 1

4k(2N + k − 1)
[
iPαα̇,

[
iPαα̇, ∂

k−1
+ O(1)

N

]]
,

(A.1b)

where P is the momentum operator and we use the two-component spinor notations as
defined in ref. [29], e.g. Pαα̇ = Pµ(σµ)αα̇, nαα̇ = λαλ̄α̇, ∂α ≡ ∂

∂λα , etc. In the matrix elements
one can replace P 7→ ∆ in (A.1).

Multiplying both sides of (A.1a) by ωNk(S(1,1)
+ )kzN−1

12 and summing over N and k one
obtains∑

N,k

ρNN
2zN−1

12

∫ 1

0
du(uū)NO(1)

N (nzu21) =
(
i
(
∆αα̇∂α∂α̇

)
+ 1

2∆2S
(1,1)
+

)
O+(z1, z2),

(A.2)

where ρN and ωNk are defined in (2.2) and (2.24), respectively, and O+(z1, z2) is the light-ray
operator for light-like separations,

O+(z1, z2) = O(z1, z2)|x→n, O(z1, z2) = Π(x, λ)O+(z1, z2) . (A.3)

Here Π(x, λ) is the leading-twist projector, see ref. [29, eq. (5.26)]. Deriving (A.2) we take
into account that k(2N + k + 1)ωNk = ωNk−1 and

ωNk
(
S

(1,1)
+

)k
zN−1

12 = ρN

∫ 1

0
du (uū)N (zu21)k . (A.4)
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Finally, applying the leading-twist projector to the both sides of (A.2) and taking into
account that

Π(x, λ) ∂

∂λα
∂

∂λ̄α̇
O+(z1, z2) = 1

2∂αα̇
(
S

(1,1)
0 − 1

)
Π(x, λ)O+(z1, z2) (A.5)

one ends up with the relation in eq. (2.31).
To derive (2.32) we start with (A.1b), multiply both sides by N2ωNk(S(1,1)

+ )kzN−1
12 , and

sum over N and k. After some algebra one obtains∑
N

ρNN
2
∫ 1

0
du (uū)N

{
(N − 1)2O(2)

N (nzu21) + ∆2S
(1,1)
+

∫ 1

0
dt t2N+1O(1)

N (ntzu21)
}
zN12

=
(
i
(
∆αα̇∂α∂α̇

)
+ 1

2∆2S
(1,1)
+

)∑
N

ρNN
2zN−1

12

∫ 1

0
du (uū)NO(1)

N (nzu21) . (A.6)

Applying the projector Π(x, λ) to both sides one gets

∑
N

ρNN
2
∫ 1

0
du (uū)N

{
(N−1)2

[
O(2)
N (xzu21)

]
lt

+∆2S
(1,1)
+

∫ 1

0
dtt2N+1

[
O(1)
N (ntzu21)

]
lt

}
zN12

=
{(
S

(1,1)
0 −2

)
(i∆∂x)+ 1

2∆2S
(1,1)
+

}
Π(x,λ)

∑
N

ρNN
2zN−1

12

∫ 1

0
du (uū)NO(1)

N (nzu21) .

(A.7)

Note the change from S
(1,1)
0 − 1 in (A.5) to S(1,1)

0 − 2 in the above equation. It happens
because the spin of the operator O(1)

N is N − 1, see definitions in (2.6). Finally, replacing
the last sum in (A.7) by (2.31) one arrives at eq. (2.32).

B Light-ray OPE: terms xµxν

x4 [O(1)
N ]lt

Here we illustrate our techniques on another example, the contributions ∼ xµxν

x4 [O(1)
N ]lt.

There are two such terms: one is explicit in line seven (second to the last) of eq. (2.1)
and another one arises from the second term in the second line of eq. (2.1) when O

(0)
N is

rewritten using (2.16) in terms of the leading-twist operators. In the sum one obtains

−x
µxν

x4

∑
N>0,even

[
ρNN

(N+1)

]∫ 1

0
du (uū)N

{[ 1
N
− ū

N+1 +B (N,ū)
]
+ ū−u
N+1

}[
O

(1)
N (ux)

]
lt

=−x
µxν

x4

∑
N>0,even

[
ρNN

(N+1)

]∫ 1

0
du (uū)N

{ 1
N
− u

N+1 +B (N,ū)
}[

O
(1)
N (ux)

]
lt
, (B.1)

where

B(N, ū) = ū−N
∫ ū

0

dv

v̄
vN+1. (B.2)

In this case it is convenient to write O
(1)
N (ux) as a formal Taylor series,

O
(1)
N (ux) 7→

∑
k

dN
k! u

k(i∆x)k, (B.3)

– 25 –



J
H
E
P
0
1
(
2
0
2
3
)
0
7
8

which allows one to get rid on an unpleasant integral in B(N, ū). One obtains∫ 1

0
du(uū)N

{ 1
N
− u

N+1 +B(N,ū)
}
uk = Γ(N+1)Γ(N+k+1)

Γ(2N+k+2)

{ 1
N(N+1) + 1

N+k+1

}
,

(B.4)
so that we get

−x
µxν

x4

∑
N,k

dN
k! (i∆x)kρNN2 Γ(N+1)Γ(N+k+1)

Γ(2N+k+2)

{ 1
N2(N+1)2 + 1

N(N+1)
1

N+k+1

}
.

(B.5)

Now we can employ the operator identity (2.31) where we set z1 = z, z2 = 0. Using (B.3)
it becomes ∑

N,k

dN
k! (i∆x)kρNN2zN+k−1 Γ(N + 1)Γ(N + k + 1)

Γ(2N + k + 2)

=
(
z∂z + 1

)
(i∆∂x)O(z, 0) + 1

2
(
z2∂z + 2z

)
∆2O(z, 0) . (B.6)

As explained in the text, extra factors 1/(N(N + 1))k can be emulated by application of
the invariant operator H+ : T (1) ⊗ T (1) 7→ T (1) ⊗ T (1):

[H+f ](z1, z2) =
∫ 1

0
dα

∫ ᾱ

0
dβ f

(
zα12, z

β
21

)
,

[H2
+f ](z1, z2) = −

∫ 1

0
dα

∫ ᾱ

0
dβ ln(τ̄) f

(
zα12, z

β
21

)
, τ = αβ

ᾱβ̄
. (B.7)

The remaining factor 1/(N + k + 1) can be eliminated by rescaling of the quark-antiquark
separation. To see this, replace z → tz in eq. (B.6) and integrate∫ 1

0
dt t

{(
z∂z + 1

)
(i∆∂x)O(tz, 0) + 1

2 t
(
z2∂z + 2z

)
∆2O(tz, 0)

}
=

=
∫ 1

0
dt t

{∑
N,k

dN
k! (i∆x)kρNN2(tz)N+k−1 Γ(N + 1)Γ(N + k + 1)

Γ(2N + k + 2)

}

=
∑
N,k

dN
k! (i∆x)kρNN2zN+k−1 Γ(N + 1)Γ(N + k + 1)

Γ(2N + k + 2)
1

N + k + 1 . (B.8)

Thus we get the contribution of the structure xµxν

x4 [O(1)
N ]lt,

. . . = −x
µxν

x4

{(
S − 1

)
H2

+(i∆∂x)O(z, 0) + 1
2∆2SH2

+O(z, 0)
}∣∣∣∣
z=1

− xµxν

x4

∫ 1

0
dt t

{
(i∆∂x)[

(
S − 1

)
H+O](tz, 0) + 1

2∆2t[SH+O](tz, 0)
}∣∣∣∣
z=1

, (B.9)

where S : T (1) ⊗ T (1) 7→ T ( 3
2 ) ⊗ T ( 1

2 ) is the invariant operator introduced in eq. (2.39).
Following the argumentation in section 2.2.2, we obtain

[SH+f ](z1, z2) =
∫ 1

0
dβ f

(
z1, z

β
21

)
,

[SH2
+f ](z1, z2) =

∫ 1

0
dα

∫ ᾱ

0
dβ

β

β̄
f
(
zα12, z

β
21

)
, (B.10)
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where from ∫ 1

0
dt t

[
S H+f

]
(tz, 0) =

∫ 1

0
dα

∫ ᾱ

0
dβf(ᾱz, βz) ,∫ 1

0
dt t2

[
S H+f

]
(tz, 0) =

∫ 1

0
dα ᾱ

∫ ᾱ

0
dβf(ᾱz, βz) ,∫ 1

0
dt t

[
H+f

]
(tz, 0) = −

∫ 1

0
dα

∫ ᾱ

0
dβ ln ᾱ f(ᾱz, βz) . (B.11)

Collecting everything, we end up with the desired expression

−x
µxν

x4

∫ 1

0
dα

∫ ᾱ

0
dβ

{(
β

β̄
+ ln τ̄ + 1 + ln ᾱ

)
(i∆∂x)O(ᾱ, β) +

(
β

β̄
+ ᾱ

) 1
2∆2O(ᾱ, β)

}
.

(B.12)

C Leading-twist exponential function

The leading-twist projection of the nonlocal quark-antiquark operator (2.19) satisfies Laplace
equation ∂2

xO(z1, z2) = 0 [38], see section 2.2, so that the expression on the r.h.s. of (3.33)
must satisfy the same equation. Hence

∂2
x

[
e−i`x

]
lt

= ∂2
`

[
e−i`x

]
lt

= 0 (C.1)

with the boundary condition that a usual exponential function is recovered if x2 = 0 or
`2 = 0. The solution can be written as a power series [38]

[e−i`x]lt = e−i`x +
∞∑
n=1

∫ 1

0
dt
(

1
4x

2`2
)n tn t̄n−1

(n− 1)!n!e
−it`x, (C.2)

where in most applications only the first few terms are needed, cf. (2.14). Nevertheless, a
closed expression summing all powers can be derived [39]

[e−i(`x)]lt = e−
i
2 (`x)

[
cos

(1
2r(`x)

)
− i

r
sin
(1

2r(`x)
)]

, (C.3)

where

r =
√

1− `2x2

(x · `)2 . (C.4)

Note that the expansion of (C.3) only involves even powers of r, so that there is no cut
at r = 0.

The Fourier transform of [e−i(`x)]lt can be written in closed form as well,

i

∫
d4x

π2
eiq
′x[e−i`x]lt

[−x2 + i0]p = Γ(2− p)
22p−3Γ(p)

[(
1− (q′`)

s2

)
(s1 − s2)p−2 +

(
1 + (q′`)

s2

)
(s1 + s2)p−2

]
,

(C.5)

with
s1 = (q′`)− q′2 , s2 =

√
(q′`)2 − `2q′2 (C.6)
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D Helicity amplitudes in the DD representation

In this appendix we present the expressions for the helicity amplitudes in the DD represen-
tation:

A0 =
∫∫

dαdβΦ(β,α,t)
{(

2+ t

2(qq′)

)
ln(1−F )+ 1

(qq′)

(
tLi2(F )+β

(
t

ξ
−|P⊥|2(β∂F )

)
T3(F )

)

+ t2

(qq′)2

(1
2 Li2(F )−(1−F ) ln(1−F )

)
+ 2t

(qq′)2β

(
t

ξ
−|P⊥|2(β∂F )

)
T2(F )

+ β

(qq′)2

(
− t2

2ξ2 +t|P⊥|2
(

1+ 1
ξ
(β∂F )

)
− |P⊥|

4

4 (β∂F )2
)

(β∂F )T5(F )
}
,

A1 =− 2Q
(qq′)

∫∫
dαdβΦ(β,α,t)β

{
T1(F )+ 1

(qq′)

(
tT3(F )+

(
t

ξ
− |P⊥|

2

2 (β∂F )
)

(β∂F )T2(F )
)}

,

A2 = 1
(qq′)

∫∫
dαdβΦ(β,α,t)β(β∂F )

{
2
(

1+ t

4(qq′)

)
T̃1(F )

− 1
(qq′)

(
3t+ 3t

2ξ (β∂F )− |P
2
⊥|
2 (β∂F )2

)
T2(F )

}
, (D.1)

where F = 1
2(βξ + α+ 1) (3.30) and the functions Ti(F ), T̃1(F ) are defined in (3.56).

E Numerics

The expressions (3.55) for the amplitudes Ak, k = 0, 1, 2 contain derivatives with respect to
ξ up to the fourth order. There are strong cancellations between the terms with different
powers of Dξ in (3.55). This leads to a loss of accuracy in numerical calculations. In order to
avoid this problem it is preferably to bring the expressions for the amplitudes into the form

ImA =
∫
dxF (x, ξ, t), (E.1)

where the integrand F receive contributions from terms with different powers of Dξ. In
order to do it we rescale x → xξ in (3.18) and write the convolution of the coefficient
function and the GPD (4.4) in the form:

J(η) =
∫ η

1
dxV (x)

∫ x+1
η+1

x−1
η−1

dβ

β1+a(t)

[
β̄2 − (x− βη)2

]
, (E.2)

where η = 1/ξ and

V (x) = 3
8x ImT

(1 + x

2

)
. (E.3)

Since Dξ = −∂η we need to evaluate derivatives of J(η) with respect to η. Taking the
derivative of (E.2) one find that all boundary terms vanish and the final expression takes
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the form:

∂ηJ(η) = 2
∫ η

1
dxV (x)

∫ x+1
η+1

x−1
η−1

dβ

βa(t) (x− βη) = 2
∫ η

1
dxV (x) (xTa(x, η)− ηTa−1(x, η)) ,

(E.4)

where

Ta(x, η) =
∫ x+1

η+1

x−1
η−1

dβ

βa(t) = 1
1− a

((
x+ 1
η + 1

)1−a
−
(
x− 1
η − 1

)1−a
)
. (E.5)

Similarly, one finds

∂kηJ(η) = 2
∫ η

1
dxV (x)∂k−1

η (xTa(x, η)− ηTa−1(x, η)) + δk4
8V (η)

(η2 − 1)2 , (E.6)

for k = 1, 2, 3, 4. It allows one to write the amplitudes in the form (E.1) and avoid the
problem with accuracy.
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