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Abstract
How does genetic sequence give rise to biological function?
Answering this question is key to our understanding of life and
the construction of synthetic biosystems that fight disease,
resource scarcity and climate change. Unfortunately, the
virtually infinite number of possible sequences and limitations
in their functional characterization limit our current under-
standing of sequence-function relationships. To overcome this
dilemma, several high-throughput methods to experimentally
link sequences to corresponding functional properties have
been developed recently. While all of these share the goal to
collect sequence-function data at large scale, they differ
significantly in their technical approach, functional readout and
application scope. Herein, we highlight recent developments in
the aspiring field of high-throughput sequence-function map-
ping providing a critical assessment of their potential in syn-
thetic biology.
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Introduction – High-throughput (HTP)
sequence-function mapping
Synthetic biology targets the design of biological sys-
tems following user-defined functional specifications,
which has far-reaching socioeconomic implications and

the potential to address critical global challenges of our
time [1]. Recent advancements in DNA synthesis and
assembly allow us to rewire the genetic make-up of
entire organisms [2,3], which opens up tremendous
opportunities in this context. However, we are only
beginning to understand which genetic sequences we
need to “write” to build biosystems with desired func-
tions, which can, at least to a certain extent, be
compensated for by trial-and-error experimentation.
Crucially, to advance towards truly rational biosystems
design and thus unlock a much wider potential of syn-

thetic biology, it is imperative to develop a substantiated
understanding of sequence-function relationships on all
levels of the central dogma of molecular biology
(Figure 1). Unfortunately, such knowledge is extremely
difficult to obtain due to the enormous complexity of
even the simplest biosystems as most vividly embodied
by the extremely large number of possible sequences,
which cannot be exhaustively tested in experiments (i.e.
combinatorial explosion) [4].

This complexity can only be addressed by experimen-

tally linking large numbers of sequence variants to their
corresponding function (i.e. HTP sequence-function
mapping) to at least cover a representative subsample
of the vast sequence space. Furthermore, the resulting
data must be capitalized on to model the underlying
sequence-function relationship and thus enable the in
silico prediction and forward design of untested
sequence variants with high accuracy (Figure 1). For the
latter, machine learning (ML) provides an extremely
powerful toolbox to model highly non-linear sequence-
function interdependencies in a data-driven fashion

even in the absence of a priorimechanistic knowledge as
reviewed elsewhere [5,6]. However, these data-intense
modelling approaches critically rely on access to high
volumes of sequence-function data thus shifting the
bottleneck of the development pipeline to the
Current Opinion in Systems Biology 2024, 37:100499
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2 Synthetic biology (2023)
functional testing of sequence variants through experi-
ments [7,8]. In conventional approaches, variants are
individually cultivated or produced (e.g. in deep-well
plates) and subsequently subjected to a functional
assay. Crucially, sequence information about the variants
is obtained via separate experimental procedures and
devices imposing a need to retroactively link each vari-
ant’s sequence back to the corresponding function,

which becomes prohibitively challenging for variant
numbers beyond 104 [4,8e10].
Approaches for HTP sequence-function
mapping
In the past decade, different methods have been
developed to overcome this bottleneck in HTP
sequence-function data generation. This development
has been largely fueled by the rapid advancement and
cost reduction of next-generation sequencing (NGS)
techniques [11], which all of these methods capitalize
on. While nowadays it is rather straightforward to collect
sequence information via NGS, methods for HTP
sequence-function mapping manage to also convert the
functional trait(s) of interest into an NGS-readable and
ideally quantitative output (Figure 2). Consequently,

both sequence and function can be read in NGS for
extremely large numbers of variants (up to several
hundred million per NGS run). To this end, methods for
HTP sequence-function mapping can be grouped ac-
cording to the strategy of how the functional information
is converted into an NGS-readable output, which rep-
resents the key distinctive feature of each method. For
the purpose of this review, we distinguish methods
based on i: cell sorting, ii: RNA sequencing, iii: DNA
Figure 1

HTP sequence-function mapping enables data-driven modelling of biosys
the relationship between genetic sequence and corresponding function is limit
numbers of sequence variants to the corresponding quantitative functional tra
sequence-function relationships in silico, e.g. by machine learning, which enab
straightforward fashion.
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recorders, and iv: competitive enrichment. Crucially, the
groups differ significantly in terms of several practical
features and application scope, which shall be high-
lighted in this review in a comparative fashion as a user-
oriented guideline for method selection. Specifically, we
focus herein on methods that can obtain more than 104

sequence-function data pairs per experiment and their
use in the context of synthetic biology and large libraries

of parts or genetic elements. This is discussed herein
providing recent examples without raising the claim of
comprehensiveness. For instance, we omit general omics
methods (e.g., transcriptome- or proteome-wide ap-
proaches), which exceed the scope of this short review
but are likewise of high importance as reviewed else-
where [12,13].

Cell sorting-based methods
These methods rely on a combination of flow-cytometric
cell sorting and NGS, and are thus commonly referred to
as Sort-Seq or Flow-Seq [14]. Here, the functional trait
of interest is coupled to a fluorescent reporter system
such as the expression of a fluorescent protein

(Figure 3a). Consequently, a library of functionally
diverse sequence variants can be constructed and sub-
sequently sorted into bins depending on each variant’s
fluorescence, for instance by fluorescence-activated cell
sorting (FACS, Figure 3b). After, DNA is extracted from
each bin, and target DNA fragments are amplified and
ligated with NGS adapters containing bin-specific
indices. Samples are pooled and collectively subjected
to NGS to obtain the number of reads for each library
member and fluorescence bin. Finally, a quantitative
functional readout is statistically inferred for each library
Current Opinion in Systems Biology

tems. While of high importance for synthetic biology, our understanding of
ed. In order to overcome this dilemma, experimental datasets linking large
it(s) of interest are required. Such datasets can then be used to model
les to predict and design functional properties of untested sequences in a
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Figure 2
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Schematic overview of HTP sequence-function mapping approaches. The distinctive feature of the approaches is the principle of how functional
information is converted into an NGS-readable, quantitative output. To this end, methods relying on cell sorting (i), RNA sequencing (ii), DNA recorders (iii)
and competitive enrichment (iv) can be distinguished.
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member based on the relative per-bin read counts of
each variant. More precisely, the relative read frequency
of each variant in a given bin is multiplied by the mean

fluorescence of this bin and subsequently averaged
across all bins. The resulting statistically inferred,
weighted fluorescence represents a quantitative readout
for each variant’s function. First described by Kinney
and coworkers in 2010 [15], cell sorting-based ap-
proaches for HTP sequence-function mapping have
been used for a large variety of different applications.
Examples to that end include genetic elements
governing DNA replication [16], transcription
[15,17e22], translation [19,20,23e26], RNA/protein
stability [27e29] and protein function [30,31] in both

pro- and eukaryotes. In a noteworthy recent study in
that context, Regev and coworkers reported on the
characterization of transcription from over 100 million
randomly generated sequences in yeast [18]. Here, the
authors show that even at an extremely low sequencing
coverage (most variants were represented by a single
sequencing read only), the resulting big sequence-
function datasets can be used to reliably predict tran-
scriptional behavior by ML.

RNA sequencing
A second group of methods for HTP sequence-function
mapping relies on RNA sequencing (RNA-Seq) [32] in

order to capture how genetic elements of interest affect
RNA (mostly mRNA) levels. RNA-Seq was originally
developed for whole-cell or whole-organism tran-
scriptomic analyses [33], which has recently advanced to
www.sciencedirect.com
the readout of RNA profiles down to single-cell resolu-
tion [34]. Furthermore, it has been adapted for
numerous applications in synthetic biology to study the

effect of synthetic libraries of genetic elements on
transcription. Briefly, a library of the investigated
element is introduced into the host organism of choice
leading to a variant-dependent, differential RNA
expression (Figure 4). The latter can be quantified via
RNA extraction followed by reverse transcription into
cDNA and subsequent NGS. The relative frequency of
NGS reads obtained for each RNA is used as a functional
readout, which directly correlates with the cellular RNA
level. To this end, the number of sequencing reads per
RNA variant can differ up to several orders of magnitude

[35]. Furthermore, barcoding (so-called unique molec-
ular identifiers, UMIs) can be used to enable HTP
testing of genetic elements not encoded on the RNA
itself (e.g. promoters, etc.) or population phenomena
such as cell-to-cell variability [36,37]. RNA-Seq has
been exploited to assess libraries of promoters in pro-
and eukaryotes as well as in vitro [36,38e41] and
different genetic elements affecting RNA stability or
degradation [42,43]. In a recent study, Hossain et al.
used RNA-Seq to characterize 4350 bacterial and 1722
yeast promoters designed to be non-repetitive, which

reduced recombination and enhanced genetic stabil-
ity [39].

DNA recorders
A third approach to HTP sequence-function mapping
uses DNA-modifying enzymes (DMEs) as reporters.
Current Opinion in Systems Biology 2024, 37:100499
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Figure 4
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Principle of RNA sequencing-based methods for HTP sequence-
function mapping. a: The function of a genetic element of interest is
coupled to the level of a reporter transcript linked to a variant-specific
barcode (BC). b: The stronger a given variant of the genetic element, the
higher the resulting transcript levels will be. The latter can be quantified
through RNA isolation followed by reverse transcription (RT) and NGS,
where the relative frequency of each variant’s BC is determined as proxy
for the quantitative function of each candidate. Note that barcoding is
required in cases where the genetic element is not encoded on the re-
porter transcript itself (e.g. for promoters, trans-regulatory elements, etc.).

Figure 3
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Principle of cell sorting-based methods for HTP sequence-function
mapping. a: The function of a genetic element of interest is coupled to a
fluorescent signal such as the expression of a fluorescent reporter. b: This
allows for functional sorting of genetic element variants into bins of
different mean fluorescence, e.g. by FACS. NGS of DNA extracted from
the different fluorescence bins is then used to obtain the relative per-bin
frequency of each variant, from which a fluorescence distribution for each
candidate can be reconstructed through statistical inference.

4 Synthetic biology (2023)
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Once activated, DMEs alter their DNA substrate either
in a sequence-specific fashion or at random (Figure 5a)
[44]. If coupled to DME expression, the function of a

genetic element of interest can be recorded in DNA
with the frequency of DNA modifications being pro-
portional to the quantitative function of this element
(Figure 5b). This allows to determine both sequence
www.sciencedirect.com
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Figure 5
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Principle of HTP sequence-function mapping by DNA recorders. a:
The function of a genetic element of interest is coupled to the expression
of a DNA-modifying enzyme (DME), which can convert its cognate DNA
substrate from an initial into a modified state (highlighted by green star). b:
The stronger a given variant of the genetic element invokes expression,
the more DNA modification will occur, which can be quantified by NGS
determining the fraction of modified DNA substrates amongst all reads for
each tested variant.
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and quantitative function of genetic elements at high
throughput solely using NGS, rendering additional
functional assays obsolete. Congenially, it was shown

that e.g. integrases and CRISPR-Cas systems can be
used to record intra- and extracellular stimuli in DNA
resolved across time and space [45e47], which is not
discussed herein but nicely reviewed elsewhere [44].
www.sciencedirect.com
Anderson and coworkers developed an enzyme-coupled
assay to record methylation activity in DNA in vitro [48].
The method relies on depletion of the methyl donor S-
adenosyl methionine (SAM) by candidate methyl-
transferases. If a candidate is active for a tested sub-
strate, SAM is depleted in the reaction mixture which
translates to a reduced DNA-methylation activity upon
subsequent addition of a DNAmethylase reporter. DNA

methylation is finally assessed by digestion with a
methylation-sensitive restriction enzyme leading to
differential fragmentation depending on the candidate’s
methyltransferase activity, which can be assessed by
NGS. Combined with compartmentalized in vitro tran-
scription and translation, this DNA recorder could in
principle be used to perform HTP sequence-function
mapping for methyltransferases, which, however, re-
mains to be demonstrated. A DNA-methylation recorder
amenable for in vivo application was later described by
Yus et al. [49]. The corresponding approach termed

“Expression Level Monitoring by DNA methylation”
(ELM-Seq) uses the Escherichia coli DNA adenine
methyltransferase (Dam), which methylates GATC
sites yielding GAmTC. In the study, approximately
250000 promoters and 50-untranslated regions (50-
UTRs) were employed to control expression of Dam in
Mycoplasma pneumoniae. The function of these gene-
regulatory elements was recorded in an array of four
GATC sites placed upstream of the diversified region.
To enable readout of Dam activity via NGS, genomic
DNA is extracted and separately treated with two

methylation-sensitive enzymes, MboI and DpnI, which
digest only GATC and GAmTC sites, respectively. After,
only uncut DNA fragments from both reactions are
PCR-amplified and subjected to NGS to obtain the ratio
of methylated versus unmethylated arrays for each li-
brary member as a metric directly correlating with
function (here gene expression). Notably, ELM-Seq was
later also used to study the impact of C-terminal amino
acid composition on protein expression in M. pneumoniae
[50], while application in other hosts remains to
be demonstrated.

Besides DNA methylases, site-specific recombinases
(so-called “integrases”) have been employed as DMEs
for HTP sequence-function mapping. In particular the
large serine recombinase Bxb1 from the homonymous
mycobacteriophage has proven to be a versatile and
efficient recombination tool for diverse applications
across the life sciences and different species [51,52].
Capitalizing on these features, we have recently devel-
oped a DNA-recording technique for HTP sequence-
function mapping termed “ultradeep Acquisition of
Sequence-Phenotype Interrelations (uASPIre) [53]. In

uASPIre, the function of a genetic element of interest is
coupled to the expression of Bxb1, which converts its
cognate DNA substrate flanked by attachment sites attB
and attP from an initial to a recombined state. If placed
on the same DNA molecule as Bxb1’s substrate, both
Current Opinion in Systems Biology 2024, 37:100499
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the sequence of the genetic element and its function
(imprinted in Bxb1’s substrate) can be read via NGS at
extremely high throughput. Further, reading of multiple
copies of the DNA substrate for each candidate genetic
element allows to determine the fraction of both states
(initial vs. modified) for each variant as a quantitative,
internally normalized readout of function. In a proof-of-
concept study, we demonstrated feasibility of uASPIre

measuring kinetic translation from over 300000 ribo-
some binding sites (RBSs) across nine time points in
E. coli in a single experiment [53], which was later
expanded to more than 1.2 million combinations of 50-
UTRs and coding sequences (CDSs) [54]. Moreover,
the resulting big sequence-function data enabled us to
Figure 6

Principle of HTP sequence-function mapping by competitive enrichment
upon competing with all other variants in the library. This can be mediated thr
amplification of stronger over weaker sequences. The latter can be tracked b
abundance of reads is determined for each variant as a readout correlating w
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train a deep learning model that accurately predicts
translational strength directly from RBS sequence and
unveiled a quadruplet base-pairing between initiator
tRNA and mRNA through statistical analyses [53,54].

Competitive enrichment
A fourth group of approaches to obtain sequence-
function data at large scale is based on the competi-
tive enrichment (or depletion) of variants (Figure 6).
Here, the target function of the genetic element of in-
terest leads to differential growth, toxicity, proliferation

or binding of variants and, in consequence, to a selective
amplification of stronger over weaker sequences (or vice
versa). The latter is tracked by NGS comparing the
Current Opinion in Systems Biology

. The function of a genetic element of interest is coupled to its proliferation
ough differential growth, toxicity or binding of variants leading to selective
y NGS before and after the different enrichment steps, where the relative
ith function.
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relative abundance of variants in pre- and post-
enrichment samples. While these methods share the
concept of a direct competition amongst variants, they
are very diverse in terms of the underlying molecular
principles and experimental procedures. Therefore, the
examples highlighted hereafter are to be understood
merely as a representative yet non-
comprehensive selection.

A widely used strategy to that end is the coupling of the
functional trait of interest to growth or proliferation of
the respective variant. To this end, both positive (e.g.
antibiotic resistance gene, enzyme producing an essen-
tial metabolite) and negative (e.g. inhibitory/toxic gene
product) markers can be employed to invoke differential
growth under selective conditions. For instance, Seelig
et al. have used an essential gene for histidine biosyn-
thesis (HIS3) as a marker to characterize translation
efficiency from approximately 490000 50-UTRs in

Saccharomyces cerevisiae through competitive growth in
histidine-free media [55]. This led to the identification
of several sequence features and motifs critical for
translation as well as to a neural network model
predicting the behavior of untested sequences with
good confidence. Toxic gene products can likewise be
expressed to apply selective pressure on variants in the
library. This was for example used to assess the growth
inhibitory effect of antimicrobial peptides in a highly
parallelized manner using cell surface display or cyto-
solic expression inE. coli [56,57]. Lastly, functional traits
of interest may also be coupled to the highly efficient
proliferation of phages within continuous cultures of
host bacteria, a strategy known as phage-assisted
continuous evolution (PACE). However, obtaining
large-scale sequence-function data from such “deep
evolutionary” approaches remains challenging due to
limitations in either maximum read length (Illumina) or
read number and error rates (long-read techniques) of
current NGS platforms. Notably, Liu and coworkers
have recently used ML to reconstruct full-length ge-
notypes from short-read NGS data of continuous evo-
lution campaigns [58]. This allows to link sequence to

function (or fitness) with high confidence and thus
enables access to evolutionary trajectories for large
variant numbers.

As an alternative to growth selection, competitive
binding or coupling of RNA or DNA sequences to a
desired target is used to enrich or deplete variants based
on their function. Examples include polysome/ribosome
profiling, chromatin immunoprecipitation (ChIP) and
systematic evolution of ligands by exponential enrich-
ment (SELEX), which can be combined with NGS for

HTP sequence-function mapping. For instance, poly-
some profiling has been used to study the effects of
mutations in the 50-UTR and CDS on polysome loading
in E. coli and human cells [20,59]. Further, the Seelig
group has shown that the resulting sequence-function
www.sciencedirect.com
data enables the prediction and forward design of
polysome loading through data-driven modelling [59].
Lastly, SELEX, a cyclic procedure to iteratively select
for DNA or RNA aptamers with high-affinity for a
desired target molecule, can be combined with NGS to
obtain sequence-function data at large scale. While not
strictly required to obtain superior binders, NGS pro-
vides insight into enrichment trajectories for millions of

sequences during SELEX [60]. This can help to
streamline and optimize the process of aptamer selec-
tion, for example by avoiding the loss of promising se-
quences in intermediate cycles or by guiding sequence
design in a data-driven manner [61,62].
Considerations for method selection
While the presented methods share the same purpose,
there is no “universal” approach to HTP sequence-
function mapping. The available approaches differ in
several technical aspects as well as their application
scope, which has critical implications for method se-
lection by the user. This shall be elaborated on in more
detail hereafter and major aspects are summarized
in Table 1.

Accessibility
While all methods use NGS including sample prepara-
tion at comparable degrees of complexity, protocols and
instrumentation required for the generation of the
functional readout differ significantly. Cell-sorting ap-
proaches based on fluorescence are well established and
enable a high throughput, but they rely on sophisticated
instruments and dedicated personnel, which is not
available to many research teams and institutions. By
contrast, the other methods largely rely only on
comparably simple cultivation schemes from which

samples can be directly drawn rendering them acces-
sible to a wider user range. An exception to that end are
long-term competitive selection schemes, which are
technically challenging due to the risk of escape mu-
tants (e.g. in biofilms) or contamination [63]. Further-
more, the effort and required expertise for the final
sample preparation varies strongly. To this end, some of
the approaches rely only on DNA extraction and
amplification (e.g. cell sorting, recombination recorders,
enrichment approaches) whereas for others more elab-
orate manipulation techniques are required (e.g. RNA

extraction and cDNA generation, polysome/ribosome
isolation, immunoprecipitation).

Kinetic measurements
Crucially, these aspects of “experimental simplicity” are
not only important in terms of convenience and costs,
but they also directly affect the possibility to measure
function at high kinetic resolution. Dynamics are key to
our understanding of biological processes, many of
which occur within minutes such as transcription or
translation. More intricate, multi-step sample
Current Opinion in Systems Biology 2024, 37:100499
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Table 1

Comparison of methods for HTP sequence-function mapping.

Method group Variant
distinction by

Application
level

Kinetic
resolution

Sources of error/bias Functional readout
characteristics

Exemplary
references

Cell sorting
(Sort-/Flow-
Seq etc.)

fluorescence
(mostly)

� DNA
� RNA
� protein

Low � PCR/growth amplification
� statistical inference

� quantitative
� linear
� distribution
� high fold-change
� transient

[15–31]

RNA sequencing
(RNA-Seq)

RNA abundance � RNA High � RNA extraction
� RT
� PCR amplification
� barcoding

� semi-quantitative
� linear
� distribution (single-cell)
� high fold-change
� transient

[36,38–43,73,74]

DNA recording DNA modification
(e.g. methylation,
recombination)

� DNA
� RNA
� protein

High � PCR amplification
� reporter-borne biases

� quantitative
� non-linear
� point estimate
� medium fold-change
� stable

[48–50,53,54]

Competitive
enrichment

selectable
phenotypes (e.g.
growth, binding)

� DNA
� RNA
� protein

High � PCR/growth amplification
� pulldown biases

� qualitative
� non-linear
� point estimate
� stable

[20,55–62,73]

RT: reverse transcription.
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processing generally reduces the number of timepoints
that can effectively be interrogated in a biologically
meaningful way. As an example, even state-of-the-art
cell-sorting devices need several hours of sorting to
process large libraries at sufficient oversampling, which
is further prolonged due to the need to sort into several
bins of different fluorescence. This sequential analysis
of variants effectively prohibits measurements in in-
tervals down to few minutes. Further, it can introduce

experimental error due to different processing times for
each variant as fluorescence is likely to change over a few
hours of incubation times even at low temperatures
[64]. Therefore, fully parallelized methods with short
post-processing procedures (e.g. where samples can be
directly snap-frozen or quenched after withdrawal) can
be viewed as superior in cases where kinetic measure-
ments are essential. Here, DNA-recording can be ad-
vantageous since both sequence and functional
information are stably recorded in DNA, which allows to
defer post-processing by any required time without
affecting the results.

Characteristics of the functional readout
Critical implications arise from the type of output that is
generated by each method, which should be carefully
considered by the user. For instance, RNA-Seq or
enrichment-based methods allow for reliable in situ
comparison of variants contained in a given library.
However, the performance of each variant strongly
Current Opinion in Systems Biology 2024, 37:100499
depends on the performance of all other variants in the
library. For instance, a promotor of intermediate strength
will result in a high fraction of sequencing reads for its
cognate mRNA/cDNA when tested against a library of
weaker candidates whereas it will be strongly under-
represented in a library of strong promoters. Similar ar-
guments may be made for enrichment-based approaches
where variants directly compete for a limiting resource
(e.g. growth-limiting nutrients or binding sites). This

renders quantitative measurements of function difficult
in these approaches, which can be compensated for to a
certain degree by the deliberate introduction (or
“spiking”) of standard sequences with known quanti-
tative function [65]. By contrast, Sort-Seq and DNA-
recording approaches allow for a robust quantitative
determination of each variants function and similarly
standard sequences can be included to allow for cross-
experiment normalization as we have previously shown
[53]. Furthermore, they allow to assess also weakly
active variants, which are commonly depleted in alter-
native approaches. In cases where population phenom-

ena such as cell-to-cell variability are of interest, Sort-
Seq offers another critical advantage since it delivers a
distribution of the functional readout for each variant.
By contrast, the other methods commonly deliver point
estimates corresponding to the average readout for each
variant. However, UMIs can be used to also measure
variability in the functional readout, which has for
instance been demonstrated for RNA-Seq down to the
www.sciencedirect.com
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level of single cells [36,37]. Lastly, the accessible reso-
lution and fold-change of the functional readout are an
important consideration. Enrichment-based methods
deliver hardly any information to that end, whereas
RNA-Seq and sorting-based approaches are capable to
span multiple orders of magnitude in fold-changes at
high resolution [35]. DNA-recording approaches are
currently inferior to that end since the number of

modifiable DNA-substrate molecules is limited, even
when using multi-copy plasmid systems. This can be
compensated for by kinetic measurements with high
temporal resolution (see above) [53,54]. Furthermore,
DME-substrates with multiple modification sites can be
envisioned, which would further increase the
throughput and dynamic range of these methods.

Sources of error and bias
While none of the presented methods can be
considered as bias- or error-free, substantial differ-
ences in the sources and types of these undesired
effects exist. A critical step in this context is the
amplification of DNA, which is in most cases required

to obtain sufficient material for NGS. This is
commonly done by PCR, which is a well-known (yet
often underappreciated) source of biases since
different sequence variants are amplified with
different efficiency [66,67]. Therefore, unnecessary
PCR steps and cycles should be avoided and UMIs
can be used in primers to correct for such biases [68].
As an alternative, clonal expansion by growth after the
actual experiment can be used, which, however, bears
a similar risk due to variant-specific differences in
growth rates (e.g. due to metabolic burden). This can

lead to the underrepresentation or loss of promising
variants. Thus, if possible, any amplification steps
should be avoided. To this end, we have recently
shown that an entirely PCR-free protocol completely
removed bias compared to PCR-based sample prepa-
ration in a recombinase-based DNA recording
approach [53]. However, such sample preparation
approaches are not possible in many cases due to a
very low amount of starting material (e.g. for RNA- or
Flow-Seq). Secondly, in cases where in situ barcoding
(UMIs) is required, potential effects introduced by

the barcodes themselves must be considered. As an
example, RNA-Seq requires barcoding of the tran-
script itself in many cases (e.g. for testing of synthetic
promoter libraries), which can affect transcript abun-
dance and also subsequent amplification (see above).
In these cases, the use of multiple different barcodes
for each variant can be used to average out barcode-
specific errors as previously suggested [36]. Last,
statistical errors must be considered during data
analysis. Here, the number of NGS reads obtained per
variant (i.e. coverage) as well as the occurrence of

sequencing errors are critical parameters for all of the
introduced approaches to HTP sequence-function
www.sciencedirect.com
mapping. In our own experience, read errors can
occur quite frequently even in Illumina NGS. To this
end, we have observed the same “false” (i.e. physi-
cally inexistent) sequence appearing in several dozens
of reads. The latter can happen if a single variant is
strongly overrepresented (e.g. the library parent),
which increases the likelihood that the same read
error occurs for this variant many times. Applying

stringent minimal read coverage thresholds, ideally at
least 100 reads per variant, can help to minimize these
artifacts. Furthermore, clustering based on sequence
similarity can be used to map such errors back to the
actual variants only in highly diverse libraries.
Crucially, claims made on the basis of few or even
single sequencing reads must be carefully put into
perspective. Unfortunately, there are currently no
commonly applied “good practices” for read-count
thresholds, which are hard to establish. While a vari-
ety of bioinformatic tools for processing of NGS data

exists (see Ref. [69] for a recent overview), post-
sequencing steps often rely on customized algo-
rithms and are thus hard to fully standardize. Lastly,
method-specific biases must be considered. Examples
to that end include biases in RNA-extraction and
reverse transcription [67], errors in gating and statis-
tical inference in cell sorting-based methods [14],
reporter-borne global biases such as toxicity and non-
linear relationships between readout and function of
interest in DNA recording approaches [53,70], and
biases introduced through pulldown procedures [71].

To mitigate such effects, various tools for normaliza-
tion and statistical analysis of HTP sequencing data
exist, which exceeds the scope of this review but is
reviewed elsewhere (e.g. Ref. [72]).

Application scope
Lastly, the presented methods for HTP sequence-
function mapping differ in terms of the genetic ele-
ments and corresponding biological processes that can
be interrogated. Approaches based on cell sorting, DNA
recording or competitive enrichment can, in principle,
be applied to questions on all levels of the central
dogma. However, they rely on coupling of the trait of
interest to the expression of fluorescent or DNA-

modifying reporter, or to phenotypes that can be
selected for by growth or binding, which is difficult to
achieve in many cases. Furthermore, in these approaches
it is not always possible to unambiguously attribute
observed changes to the underlying mechanistic causes.
As an example, mRNA mutations may affect function
through transcription, translation, transcript/poly-
peptide stability, or specific activity of the protein,
which cannot be disentangled assaying only reporter
protein activity. This can be compensated for to a
certain extent through smart, systematic library design

[20] and deep statistical analyses enabled through suf-
ficiently large and diverse datasets [54]. By contrast,
Current Opinion in Systems Biology 2024, 37:100499
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other methods allow to interrogate cellular processes
more specifically, which, however restricts their appli-
cation scope to, for instance, processes affecting RNA
levels (RNA-Seq) or translation (ribosome/poly-
some profiling).

Conclusion and outlook
In this review, we described and compared methods for
HTP sequence-function mapping and grouped them
according to the strategy with which function is
converted into an NGS-readable output. This criterion
was selected since it allows to highlight and distinguish
the available methods in a practical, user-oriented
fashion, but arguably other criteria could be applied.
Importantly, the differences in technical aspects and
application scope described herein are an opportunity for
mutual complementation between methods. Not coin-

cidentally, several studies have combined different ap-
proaches in order to reduce biases and shed more light
into the mechanistic reasons for observed changes in
function [20,42,43,73,74]. For example, Gorochowski
et al. combined RNA-Seq and ribosome profiling to
quantitatively determine the effect of different genetic
elements on transcription and translation in E. coli [73].
In another noteworthy recent study, Hwa and coworkers
combined RNA-Seq with genome-scale transcriptomics
and proteomics to quantitatively assess bacterial gene
regulation on both transcriptional and translational level

to a previously unattainable degree [74]. Irrespective of
the method, efficient exploitation of acquired sequence-
function data is key to improve our ability to predict and
design biological function from sequence, which was only
briefly touched upon here. In principle, this can be
either achieved by hypothesis-driven, mechanistic
modelling or in a data-driven fashion relying on ML. In
particular data-driven approaches have recently gained
substantial momentum in biology owed to their ability to
precisely model non-linear dependencies in complex
datasets even in the absence of any prior mechanistic

knowledge [5]. However, ML models are intrinsically
difficult to interpret, which currently hinders gaining of a
deeper mechanistic understanding upon using strictly
data-driven approaches. Therefore, means to interpret
successfully developedMLmodels are urgently required
[75]. Nonetheless, in view of the current rapid devel-
opment of NGS and HTP sequence-function mapping
technology one can expect transformative new possibil-
ities for the smart design of biosystems with new-to-
nature properties in the upcoming years. This will be a
major pillar for the urgently required transformation to a

circular economy and a powerful toolbox to fight the
socioeconomic challenges of our time.
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