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Introduction
I shall do my best to
modernize my language and
notations, but I am well
aware of my shortcomings in
that respect; I can assure you,
at any rate, that my intentions
are honourable and my
results invariant, probably
canonical, perhaps even
functorial. But please allow
me to assume that the
characteristic is not 2.

(AndréWeil)
In algebraic geometry, specifically in intersection theory, it is often necessary
to work with varieties which are proper. For example one compactifies the
affine line 𝐀1𝑘 over a field by adding a point at infinity to obtain the proper curve
𝐏1𝑘 = 𝐀1𝑘 ∪ {∞ }. The scheme Spec(𝐙) behaves very much like the affine line over
a field, so the fundamental idea of Arakelov geometry is that in order to develop
an intersection theory for varieties over Spec(𝐙) one should compactify Spec(𝐙)
to a space ˆSpec(𝐙) = Spec(𝐙) ∪ {∞ } and develop a geometry over this base space.
To make this idea precise one has to mix algebraic geometry over Spec(𝐙) with
differential geometry over the completion of the algebraic closure of the fraction
field of 𝐙, namely the metrically complete field 𝐂 of complex numbers. This was
first carried out by Arakelov for the case of arithmetic surfaces [Ara74] and later
applied with great success by Faltings, leading for example to his celebrated proof
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Introduction

of the Mordell conjecture [Fal83]. The theory has been further advanced and
extended to arbitrary dimensions by Gillet and Soulé as well as many others.
Another important technique in arithmetic geometry is to work locally at the

primes of 𝐙, i.e. to work over the rings 𝐙𝑝 of 𝑝-adic integers. Even though much
simpler, the schemes Spec(𝐙𝑝) are still 1-dimensional affine schemes so they
still do not behave like proper schemes over a field and it is desirable to have a
non-archimedean Arakelov geometry for rings like 𝐙𝑝 (complete valuation rings
of rank 1). One such theory has been proposed by Bloch, Gillet and Soulé which
makes however strong assumptions about resolution of singularities in mixed
characteristics and is furthermore purely algebraic so that it does not allow the
use of the tools of analysis [BGS95]. It would be desirable to have a differential
geometry over 𝐂𝑝, the completion of the algebraic closure of the fraction field of
𝐙𝑝 (in contrast to the archimedean situation, the algebraic closure of 𝐐𝑝 is not
metrically complete).
In the following we fix a complete valuation ring 𝐾∘ of rank 1 with fraction

field 𝐾, which is then a so-called non-archimedean field. A more analytic ap-
proach to non-archimedean Arakelov geometry is made possible by two new
developments: First the introduction of Berkovich𝐾-analytic spaces by Berkovich
[Ber90; Ber93]. These serve as a non-archimedean analogue of the complex an-
alytic spaces to which techniques from differential geometry are applied in the
archimedean setting. In particular, every proper algebraic 𝐾-variety 𝑋 gives rise to
a non-archimedean Berkovich analytification 𝑋an which is a compact, Hausdorff,
path-connected topological space together with a structure sheaf 𝒪𝑋an of analytic
functions.
The second recent development is the introduction of smooth real-valued dif-

ferential forms and currents on Berkovich analytic spaces due to Chambert-Loir–
Ducros andGubler. In [CD12] Chambert-Loir andDucros developed a differential
calculus on Berkovich analytic spaces by associating to every Berkovich analytic
space 𝑉 a sheaf of bigraded differential 𝐑-algebras {𝒜𝑝,𝑞

𝑉 }0≤𝑝,𝑞≤dim(𝑉) with dif-
ferentials 𝑑′, 𝑑″ resembling the sheaves of (𝑝, 𝑞)-forms with holomorphic and
anti-holomorphic derivatives 𝜕, 𝜕 in complex differential geometry. Their theory
is based on super-forms and super-currents introduced by Lagerberg [Lag12] as
well as ideas and techniques from the young field of tropical geometry. For ana-
lytifications of algebraic varieties, Gubler gave a more concrete description of the
sheaves 𝒜•,•

𝑋an [Gub16]. One of the main results of [CD12] is a non-archimedean
analogue of the Poincaré–Lelong formula which is a basic ingredient for the
study of first Chern currents [𝑐1(𝐿)] for continuously metrized line bundles 𝐿
on Berkovich spaces as well as first Chern forms 𝑐1(𝐿) in the case of a smooth
metric.
The purpose of this thesis is to contribute to the study of differential geometry
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of Berkovich spaces with a view towards non-archimedean Arakelov geometry
and more explicitly to extend the theory of Chern forms and currents to metrized
vector bundles of higher rank. After some preliminary chapters, we pursue in
Chapter 4 a detailed study of the notion of a vector bundle 𝐸 on a Berkovich
𝐾-analytic space 𝑉. As is customary in algebraic flavors of geometry we define a
vector bundle to be a locally free sheaf of modules. However we show that just
as in differential geometry we can speak about the fiber vector space 𝐸(𝑥) over a
point 𝑥 ∈ 𝑉 and about the total space Tot(𝐸) → 𝑉 which is a fiber bundle in the
analytic category with typical fiber 𝐀𝑟,an where 𝑟 is the rank of 𝐸. Both of these
notions appear in our definition of a continuous metric on 𝐸. In addition to the
total space we also construct the projective bundle 𝑃(𝐸) → 𝑉 parametrizing lines
in 𝐸 as well as the tautological line bundle 𝒪𝐸(−1) on 𝑃(𝐸) and its dual 𝒪𝐸(1).
In Chapter 5 we study continuous metrics on vector bundles on a Berkovich

𝐾-analytic space 𝑉. Ametric on a vector bundle 𝐸 is a family {‖−‖𝑥}𝑥∈𝑉 of vector
space norms ‖−‖𝑥 on the fiber vector spaces 𝐸(𝑥) as 𝑥 varies in 𝑉. Such a metric
extends canonically to a map Tot(𝐸) → 𝐑≥0 and we call the metric continuous if
this induced map is continuous with respect to the Berkovich topology of Tot(𝐸).
We show that the metric also defines an induced Fubini-Studymetric ‖−‖FS on the
line bundle 𝒪𝐸(1). In Proposition 5.13 we show that the metric ‖−‖ is continuous
if and only if the metric ‖−‖FS is continuous. In general our philosophy is to
reduce as many constructions and properties of (metrized) vector bundles as
possible to constructions and properties of the associated line bundle𝒪𝐸(1). Note
that while the study of metrized line bundles on Berkovich spaces goes back to
[Gub98], metrics on vector bundles have been defined in two different ways in
[CD12] and [CM20]. We explain in Paragraph 5.31 how our definition relates to
the other definitions in the literature. For line bundles all notions agree with the
classical one. In view of the philosophy alluded to above, it makes sense to define
a pseudo-metric on 𝐸 to be a metric on 𝒪𝐸(1) (Paragraph 5.32) and to work with
pseudo-metrics rather than metrics as appropriate.
As for line bundles, a formal 𝐾∘-model (𝔛, 𝔈) for a vector bundle 𝐸 induces

a formal metric ‖−‖𝔈 on 𝐸 which is continuous. We investigate the construc-
tion 𝔈 ↦ ‖−‖𝔈 in Chapter 6 and show that it is compatible with all natural
constructions of vector bundles.
In Chapter 7 we review the sheaves𝒜•,• and𝒟•,• of smooth forms and currents

in the sense of [CD12]. Based on these we introduce the Bott–Chern cohomology
groups �̂�𝑝

𝒟(𝑉) of a 𝐾-analytic space 𝑉 as the group of 𝑑′- and 𝑑″-closed currents
of degree (𝑝, 𝑝)modulo the subgroup of currents of the form 𝑑′𝑑″𝑇 for a current
𝑇 ∈ 𝒟𝑝−1,𝑝−1(𝑉). The Poincaré-Lelong equation

[𝑐1(𝐿)] = 𝛿[div(𝑠)] + 𝑑′𝑑″[− log‖𝑠(−)‖]

for a continuously metrized line bundle 𝐿 and a regular meromorphic section
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𝑠 ∈ Γ(𝑉, 𝐿) shows that the class of [𝑐1(𝐿)] in the Bott–Chern cohomology group
does not depend on the metric.
If 𝐿 is a smoothly metrized line bundle, then Chambert-Loir and Ducros con-

struct 𝑐1(𝐿) as a smooth (1, 1)-form while if the metric is merely continuous, one
only gets a current [𝑐1(𝐿)]. Even though currents can usually not be multiplied,
Chambert-Loir and Ducros developed a non-archimedean analogue of Bedford–
Taylor theory which allowed them to construct for continuously metrized line
bundles 𝐿1,… , 𝐿𝑟 which are locally approachable a current [𝑐1(𝐿1) ∧⋯ ∧ 𝑐1(𝐿𝑟)].
Here 𝐿𝑘 is called locally approachable if every point of 𝑉 has an open neighbor-
hood 𝑈 over which 𝐿𝑘 admits a nowhere-vanishing section 𝑠 ∈ Γ(𝑈, 𝐿) such
that the function − log‖𝑠(−)‖ is a difference of two functions which are uniform
limits of smooth plurisubharmonic functions on 𝑈. We show in Proposition 8.11
that the class of the current [𝑐1(𝐿1) ∧ ⋯ ∧ 𝑐1(𝐿𝑟)] in Bott–Chern cohomology is
independent of the metrics.
In Chapter 9 we make the following construction: Let 𝐸 be a locally approach-

ably pseudo-metrized vector bundle, i.e. suppose that the metrized line bundle
𝒪𝐸(1) ≔ (𝒪𝐸(1), ‖−‖FS) is locally approachable in the sense of [CD12] and let
𝑖 ∈ 𝐍. On the projective bundle 𝑝∶ 𝑃(𝐸) → 𝑉 we can use non-archimedean
Bedford–Taylor theory to form the current [𝑐1(𝒪𝐸(1))

𝑒+𝑖] where 𝑒 + 1 is the rank
of 𝐸. Then the push-forward [𝑠𝑖(𝐸)] ≔ 𝑝∗[𝑐1(𝒪𝐸(1))

𝑒+𝑖] ∈ 𝒟𝑖,𝑖
𝑉 (𝑉) is our def-

inition of the 𝑖-th Segre current of 𝐸. More generally, if 𝐸1,… , 𝐸𝑟 are locally
approachably pseudo-metrized vector bundles, we can define the product

[𝑠𝑖1(𝐸1) ∧ ⋯ ∧ 𝑠𝑖𝑟(𝐸𝑟)]

by first pulling all the line bundles 𝒪𝐸𝑘
(1) back to the fibered product 𝑃 ≔

𝑃(𝐸1) ×𝑉 ⋯ ×𝑉 𝑃(𝐸𝑟) and pushing down to 𝑉 only after forming the product
of all the involved first Chern currents of line bundles on 𝑃. This allows us to
define polynomial expressions in the Segre currents and in particular to define
Chern currents [𝑐𝑖(𝐸)] of locally approachably pseudo-metrized vector bundles.
Forgetting about the metrics, we get well-defined classes in the Bott–Chern
cohomology of 𝑉.
Besides the Bott–Chern cohomology groups which seem to be the natural home

for our characteristic classes there exist also the Dolbeault cohomology groups
𝐻𝑝,𝑞
𝒜 (𝑉) of 𝑑″-closed (𝑝, 𝑞)-forms modulo 𝑑″-exact forms and similarly there

are Dolbeault cohomology groups 𝐻𝑝,𝑞
𝒟 (𝑉) of currents. These groups have been

studied extensively by Jell [Jel16]. For a smooth 𝐾-variety 𝑋, Liu constructed in
[Liu20] a tropical cycle class map cltrop∶ CH𝑝(𝑋) → 𝐻𝑝,𝑝

𝒜 (𝑋an). In Appendix A
we review the construction of Liu and show how to use his arguments to get a
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commutative diagram

CH𝑝(𝑋) �̂�𝑝
𝒟(𝑋an)

𝐻𝑝,𝑝
𝒜 (𝑋an) 𝐻𝑝,𝑝

𝒟 (𝑋an).

← →𝛿

←→cltrop ←→

←→
[−]

Here the map 𝛿∶ CH𝑝(𝑋) → �̂�𝑝
𝒟(𝑋an)maps the class of a cycle 𝑍 to the class of

the current of integration 𝛿𝑍. The lower map is induced by the canonical map
[−]∶ 𝒜•,• →𝒟•,• associating to a smooth form 𝛼 the current 𝛼 ∧ 𝛿𝑋 and the map
on the right sends the class in �̂�𝑝

𝒟(𝑋an) represented by a current 𝑇 to the class in
𝐻𝑝,𝑝
𝒟 (𝑋an) which is represented by the same current 𝑇. The commutativity of the

diagram implies in particular that for smooth varieties our characteristic classes
in �̂�𝑝

𝒟(𝑋an) and the characteristic classes in 𝐻𝑝,𝑝
𝒜 (𝑋an) constructed by means of

Liu’s tropical cycle class map have the same image in the Dolbeault cohomology
of currents 𝐻𝑝,𝑝

𝒟 (𝑋an).
It would be very desirable if the Segre current

[𝑠𝑖(𝐸)] = 𝑝∗[𝑐1(𝒪𝐸(1))
𝑒+𝑖]

associated to a pseudo-metrized vector bundle 𝐸 was represented by a smooth
form 𝑠𝑖(𝐸) ∈ 𝒜𝑖,𝑖(𝑉) (under appropriate smoothness conditions for the pseudo-
metric). Philosophically, thismeans that 𝑠𝑖(𝐸) should be given by the fiber integral
of the form 𝑐1(𝒪𝐸(1))

𝑒+𝑖 along the fiber bundle 𝑝∶ 𝑃(𝐸) → 𝑉. Unfortunately,
we are still lacking a theory of fiber integrals in non-archimedean versions of
differential geometry. In Chapter 10 we say that the 𝑖-th Segre form exists for 𝐸
if there exists a smooth form 𝛽 such that [𝑠𝑖(𝑓∗𝐸)] = [𝑓∗𝛽] for every morphism
𝑓∶ 𝑉 ′ → 𝑉 of analytic spaces.
A basic ingredient in classical Arakelov theory is the existence of Green currents

for subvarieties of an algebraic variety 𝑋. While Gubler and Künnemann have
shown the existence of Green (𝛿-)currents for complete intersections in [GK17],
the existence of Green currents for arbitrary subvarieties is still open in the non-
archimedean setting. In Proposition 10.7 we show that if 𝑋 is a smooth algebraic
𝐾-variety and if Segre forms exist for all vector bundles on𝑋, then every subvariety
of 𝑋 admits a Green current.
If 𝐸1,… , 𝐸𝑟 are formally metrized vector bundles on 𝑉 and 𝐹(𝑋1,… , 𝑋𝑟) is a

polynomial such that the current [𝐹(𝑐𝑖1(𝐸1),… , 𝑐𝑖𝑟(𝐸𝑟))] has bi-degree (𝑛, 𝑛) then
it is in fact a discrete signed Radon measure. In the case where 𝑉 = 𝑋an is the
analytification of a projective algebraic 𝐾-variety and 𝐾 is algebraically closed, we
can give a concrete description in terms of intersection numbers on the special
fiber of a formal model of 𝑋 (Corollary 11.10). These results both generalize and
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follow from results of [CD12] about Monge–Ampère measures introduced first in
[Cha06]. If 𝐹(𝑋1,… , 𝑋𝑟) is a numerically non-negative polynomial for nef vector
bundles and 𝐸 is a semi-positive formally metrized vector bundle of rank 𝑟 then
[𝐹(𝑐1(𝐸),… , 𝑐𝑟(𝐸))] is a positive measure by Corollary 11.13.
Over the last decade a number of variations on the theme of differential forms

and currents on Berkovich spaces have been developed. Among those are for
example the 𝛿-forms of [GK17], the weakly smooth forms based on harmonic
tropicalization maps of [GJR21] and the 𝛿-forms of [Mih23a]. All of these satisfy
similar formal properties as the smooth forms and currents of [CD12]. Since our
theory of characteristic forms and currents relies only on these formal properties,
one can replace smooth forms and currents by any of these other theories. We
outline how to obtain a theory of characteristic 𝛿-current and 𝛿-forms in the sense
of [Mih23a] in Chapter 12.
Let us briefly comment on why the complex analytic approach using Chern–

Weil theory to define Chern (or, equivalently, Segre) forms of metrized vector
bundles seems to fail in non-archimedean geometry. Let 𝑋 be a complex manifold
and let 𝐸 = (𝐸, ℎ) be a holomorphic vector bundle 𝐸 on 𝑋 together with a smooth
Hermitianmetric ℎ. We can consider the spaces𝒜𝑝(𝑋, 𝐸) = Γ(𝑋,⋀𝑝 𝑇∗𝑋⊗𝐸) of
smooth differential 𝑝-forms with values in 𝐸; in particular for 𝑝 = 0we obtain the
space 𝒜0(𝑋, 𝐸) = Γ(𝑋,𝒞∞

𝑋 ⊗ 𝐸) of smooth sections of 𝐸. There exists a unique
unitary connection

∇∶ 𝒜0(𝑋, 𝐸) → 𝒜1(𝑋, 𝐸)

whose (0, 1)-part ∇0,1 agrees with the Dolbeault operator 𝜕𝐸. Its curvature ∇2

can be regarded as an element of 𝒜1,1(𝑋,End(𝐸)). This curvature form induces
by setting

ch(𝐸) ≔ tr𝐸 exp(
−1
2𝜋𝑖∇

2) ∈⨁
𝑝≥0

𝒜𝑝,𝑝(𝑋)

the Chern character form associated to 𝐸. The Chern forms 𝑐𝑖(𝐸) are then ob-
tained as certain polynomial expressions in the components of ch(𝐸). We refer to
[Sou+92, Sec. IV.2] for details on this approach.
In non-archimedean geometry on the other hand it is already unclear what

the space 𝒜0(𝑉, 𝐸) of smooth sections of a vector bundle 𝐸 on a 𝐾-analytic
space 𝑉 should be. In the case of a complex manifold the definition 𝒜0(𝑋, 𝐸) ≔
Γ(𝑋,𝒞∞

𝑋 ⊗𝐸)makes sense because via the embedding 𝒪𝑋 ↪ 𝒞∞
𝑋 we can regard

𝒞∞
𝑋 as a sheaf of algebras over the sheaf of holomorphic functions 𝒪𝑋 and form

the tensor product with the sheaf of 𝒪𝑋-modules 𝐸. For a non-archimedean
analytic space 𝑉 we also have a sheaf 𝒞∞

𝑉 of smooth functions, defined as real-
valued functions which are locally smooth combinations of functions of the form
− log|𝑓| for 𝑓 a nowhere-vanishing analytic function, but there is no natural
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ring homomorphism 𝒪𝑉 → 𝒞∞
𝑉 . The only map we have is the map given by

tropicalization
𝒪×
𝑉 → 𝒞∞

𝑉 , 𝑓 ↦ − log|𝑓|

which is not at all similar to a ring homomorphism because of the involved
absolute value. For similar reasons it is unclear how to make sense of smooth
vector bundles, like the tangent bundle, on a non-archimedean 𝐾-analytic space.
An approach to characteristic forms via connections seems therefore difficult to
realize in the non-archimedean setting.
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Notation and Conventions
0.1Number Sets. Wedenote by𝐍,𝐙,𝐐,𝐑,𝐂 the familiar sets of natural numbers
(including 0), integers, rational numbers, real numbers and complex numbers. We
write 𝐑≥0, resp. 𝐑>0 for the set of non-negative, resp. positive real numbers. If 𝑝
is a prime number, we denote by 𝐙𝑝 the ring of 𝑝-adic integers and by𝐐𝑝 the field
of 𝑝-adic rational numbers.

0.2 Tuples. If 𝑆 is some set, then we sometimes denote tuples (𝑠1,… , 𝑠𝑟) ∈ 𝑆𝑟 of
elements of 𝑆 by 𝑠 = (𝑠1,… , 𝑠𝑟). This applies in particular if 𝑒 = (𝑒1,… , 𝑒𝑟) is a
basis of a vector space over some field or if 𝑠 = (𝑠1,… , 𝑠𝑟) is a frame (a trivializing
family of sections) of a vector bundle over some scheme or analytic space.
Another common situation where we use this notation is when 𝑖1,… , 𝑖𝑟 ∈ 𝐍

are natural numbers, usually serving as indices, so that 𝑖 = (𝑖1,… , 𝑖𝑟). In this case
we denote by

|𝑖| ≔ 𝑖1 +⋯+ 𝑖𝑟 ∈ 𝐍

the sum of the indices.

0.3 Point-Set Topology. In general we follow the conventions of [Bou98] for
point-set topology. In particular, the definitions of compactness, local compactness
and paracompactness for a topological space all include the Hausdorff property.
A map 𝑓∶ 𝑇 ′ → 𝑇 of topological spaces is called proper if for every topological
space 𝑍 the induced map 𝑇 ′ × 𝑍 → 𝑇 × 𝑍 is closed [Bou98, Chap. 1, § 10.1,
Def. 1]. Equivalently, by [Bou98, Chap. 1, § 10.2, Thm. 1], it is closed and has
quasi-compact fibers.

0.4 Non-archimedean Fields. A non-archimedean field is a field 𝐾 equipped
with a non-trivial complete non-archimedean absolute value |−|∶ 𝐾 → 𝐑≥0. We

13



Notation and Conventions

denote by 𝐾∘ ≔ {𝑎 ∈ 𝐾 | |𝑎| ≤ 1 } the valuation ring of the non-archimedean
field 𝐾, equipped with the induced topology (which agrees with the 𝐾∘∘-adic
topology, where 𝐾∘∘ denotes the maximal ideal of 𝐾∘). Furthermore we denote
by 𝐾 ≔ 𝐾∘/𝐾∘∘ the residue field of 𝐾.
We usually denote non-archimedean fields with capital letters𝐾, 𝐿,…, whereas

we reserve lowercase letters 𝑘, 𝑙,… for fields without additional metric structure.
An extension of non-archimedean fields is a field homomorphism 𝑖∶ 𝐾 ↪ 𝐿,

where 𝐾 and 𝐿 are non-archimedean fields, such that pull-back of the absolute
value of 𝐿 along 𝑖 coincides with the absolute value of 𝐾. We often suppress the
homomorphism 𝑖 from the notation and write simply 𝐿/𝐾 for an extension of
non-archimedean fields.

0.5 Varieties. If 𝑘 is a field, a variety over 𝑘 is a separated, integral, finite type
𝑘-scheme. We do not assume that 𝑘 is geometrically integral, proper or smooth,
unless we explicitly state it. Sometimes we say algebraic variety instead of variety
in order to emphasize the contrast to a situation where also Berkovich analytic
spaces play a role.
Over any field 𝑘 and for any integer 𝑛 we have 𝑛-dimensional affine space

𝐀𝑛𝑘 ≔ Spec(𝑘[𝑇1,… , 𝑇𝑛]) as well as the 𝑛-dimensional projective space 𝐏𝑛𝑘 ≔
Proj(𝑘[𝑇0,… , 𝑇𝑛]).

0.6 Chow Groups. If 𝑋 is a scheme of finite type over a field 𝑘, we denote
by CH𝑑(𝑋) = 𝑍𝑑(𝑋)/𝑅𝑑(𝑋) the Chow group generated by prime cycles (closed
subvarieties) of dimension 𝑑. In our main reference for intersection theory
[Ful98], this group is denoted by 𝐴𝑑(𝑋).
If 𝑋 is equidimensional of dimension 𝑛 (e.g. a variety), we write CH𝑝(𝑋) ≔

CH𝑛−𝑝(𝑋) where 𝑛 is the dimension of 𝑋.

0.7 𝐾-Analytic Spaces. By a 𝐾-analytic space we always mean a 𝐾-analytic space
in the sense of [Ber93]. When dealing with smooth forms and currents on an
analytic space, we usually assume all 𝐾-analytic spaces to be good, topologically
Hausdorff, boundaryless and equidimensional (Chapters 7 to 12 and Appendix A).
When dealing with formal models, we assume 𝐾-analytic spaces to be strict and
paracompact (Chapters 3, 6 and 11). Note that the analytification of an algebraic
variety possesses all of the above properties. We state our assumptions explicitly
at the beginning of each chapter.
If 𝑉 is a 𝐾-analytic space, we denote the underlying topological space with its

Berkovich topology again by𝑉. The G-topological space with the same underlying
set, equipped with the G-topology of all analytic domains is denoted by 𝑉𝐺. The
respective structure sheaves are denoted by𝒪𝑉 and𝒪𝑉𝐺 respectively. In Chapter 2
we give a recollection of the theory of Berkovich analytic spaces.
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0.8 Admissible Formal Schemes. We review the notion of admissible formal
schemes over the valuation ring 𝐾∘ in Chapter 3. Note that we always assume
admissible formal schemes to be quasi-paracompact, i.e. to admit a locally finite
covering by affine admissible formal schemes. With this convention we are
following e.g. [Gub07]. It allows us to consider the generic fiber𝔙𝜂 as a Berkovich
𝐾-analytic space (Paragraph 3.2).

0.9 Projective Bundles. Let 𝐸 be a vector bundle on a scheme 𝑋. We follow the
convention of [Ful98] and denote by

𝑃(𝐸) ≔ Proj(Sym(𝐸∨))

the projective bundle parametrizing lines in 𝐸, in contrast to Grothendieck’s
bundle

𝐏(𝐸) ≔ Proj(Sym(𝐸))

parametrizing line quotients of 𝐸. We denote by 𝒪𝐸(1) the canonical relatively
ample line bundle on 𝑃(𝐸) (not on 𝐏(𝐸)) and by 𝒪𝐸(−1) its dual. If 𝑝∶ 𝑃(𝐸) → 𝑋
denotes the canonical projection morphism, then we have the universal embed-
ding

𝒪𝐸(−1) ↪ 𝑝∗𝐸.

Given a vector bundle 𝐸 on a 𝐾-analytic space 𝑉, we construct in Proposi-
tion 4.34 similarly a 𝐾-analytic space 𝑃(𝐸) with a canonical projection map
𝑝∶ 𝑃(𝐸) → 𝑉, a canonical line bundle 𝒪𝐸(−1) on 𝑃(𝐸) and a canonical em-
bedding 𝒪𝐸(−1) ↪ 𝑝∗𝐸.
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1. Norms
In this chapter we review the notion of a norm on a 𝐾-vector space where
𝐾 is a non-archimedean field which will be fixed throughout the chap-
ter. In particular we discuss constructions with norms such as duals
(Paragraph 1.8), direct sums (Paragraph 1.10) and tensor products (Para-
graph 1.11). More details on the constructions and their properties can
be found in [CM20] and [BE21]. It should be remarked that we assume
norms to satisfy the non-archimedean triangle property, so that some
care has to be taken when comparing our treatment with that of [CM20].

1.1 Norms. Let 𝐸 be a 𝐾-vector space. A norm on 𝐸 is a map ‖−‖∶ 𝐸 → 𝐑≥0
satisfying:

(i) ‖𝑣‖ = 0 ⟺ 𝑣 = 0 for 𝑣 ∈ 𝐸.

(ii) ‖𝑣 + 𝑤‖ ≤ max(‖𝑣‖, ‖𝑤‖) for 𝑣, 𝑤 ∈ 𝐸.

(iii) ‖𝑎𝑣‖ = |𝑎|‖𝑣‖ for 𝑎 ∈ 𝐾, 𝑣 ∈ 𝐸.

The pair (𝐸, ‖−‖) is called a normed 𝐾-vector space. We often use the notation
𝐸 = (𝐸, ‖−‖) to denote a normed 𝐾-vector space. If 𝐹 is another normed 𝐾-vector
space, we often do not distinguish the norms of 𝐸 and 𝐹 notationally.
We regard 𝐾 itself as a normed 𝐾-vector space with the absolute value |−| as

the norm.

1.2 Bounded Operators. Let 𝐸, 𝐹 be two normed 𝐾-vector spaces. A bounded
operator 𝛼∶ 𝐸 → 𝐹 is a 𝐾-linear map 𝛼∶ 𝐸 → 𝐹 such that there exists a constant
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1. Norms

𝐶 ∈ 𝐑≥0 satisfying
‖𝛼(𝑣)‖ ≤ 𝐶‖𝑣‖

for all 𝑣 ∈ 𝐸. The smallest such constant is denoted by

‖𝛼‖ ≔ inf { 𝐶 ∈ 𝐑≥0 | ‖𝛼(𝑣)‖ ≤ 𝐶‖𝑣‖ for all 𝑣 ∈ 𝐸 }
= sup{ ‖𝛼(𝑣)‖ | 𝑣 ∈ 𝐸 with ‖𝑣‖ ≤ 1 }

and is called the (operator) norm of 𝛼. The operator 𝛼 is called contractive if
‖𝛼‖ ≤ 1.
Note that if 𝛼∶ 𝐸 → 𝐹 and 𝛽∶ 𝐹 → 𝐺 are bounded operators, then their

composition is bounded with

‖𝛽 ∘ 𝛼‖ ≤ ‖𝛽‖ ⋅ ‖𝛼‖.

There is a category of normed 𝐾-vector spaces with bounded operators as mor-
phisms and also a category of normed 𝐾-vector spaces with contractive operators
as morphisms. We will refer to these as the bounded, resp. the contractive category
of normed 𝐾-vector spaces.

1.3 Equivalent Norms. Let 𝐸 be a 𝐾-vector space and let ‖−‖1, ‖−‖2 be two
norms on 𝐸. The norms ‖−‖1 and ‖−‖2 are called equivalent if the operators
id∶ (𝐸, ‖−‖1) → (𝐸, ‖−‖2) and id∶ (𝐸, ‖−‖2) → (𝐸, ‖−‖1) are bounded. In other
words, ‖−‖1 and ‖−‖2 are equivalent if there exists some 𝐶 ∈ 𝐑>0 such that

𝐶−1‖𝑣‖2 ≤ ‖𝑣‖1 ≤ 𝐶‖𝑣‖2

for all 𝑣 ∈ 𝐸.

1.4 Proposition. Let 𝐸, 𝐹 be two normed𝐾-vector spaces. If 𝐸 is finite-dimensional,
then every linear operator 𝛼∶ 𝐸 → 𝐹 is bounded.
In particular, any two norms on a finite-dimensional 𝐾-vector space are equiva-

lent.

Proof. The second statement is [BE21, Prop. 1.6]. By the second statement, we
may assume that 𝐸 = 𝐾𝑟 with themaximumnorm in the first statement, in which
case the claim is easy to check. ∎

1.5 Corollary. If 𝐸 is a finite-dimensional normed𝐾-vector space, then it is complete
with respect to the induced metric and every 𝐾-linear subspace is closed. ∎

1.6 InternalHoms. Let𝐸, 𝐹 be two normed𝐾-vector spaces. WewriteHom(𝐸, 𝐹)
for the normed 𝐾-vector space of all bounded operators with the operator norm as
the norm. Note that if 𝐸 is finite-dimensional, then the underlying vector space of
Hom(𝐸, 𝐹) is just the space Hom(𝐸, 𝐹) of all linear operators by Proposition 1.4.
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1.7 Isomorphisms. Let 𝐸, 𝐹 be two normed 𝐾-vector spaces. By an isomorphism
𝛼∶ 𝐸 ⥲ 𝐹wemean an isomorphism in the bounded category of normed 𝐾-vector
spaces. By an isometric isomorphism we mean an isomorphism in the contractive
category. An isometric isomorphism satisfies automatically

‖𝛼(𝑣)‖ = ‖𝑣‖

for all 𝑣 ∈ 𝐸.
If there are natural (functorial in 𝐺) isomorphisms (of normed 𝐾-vector spaces

or just of the underlying sets)

Hom(𝐸, 𝐺) ⥲ Hom(𝐹, 𝐺), (1.7.1)

then by the Yoneda lemma, these are induced by a unique isomorphism 𝛼∶ 𝐹 ⥲
𝐸. If the isomorphisms in Eq. (1.7.1) are isometric, then the corresponding
isomorphism 𝐹 ⥲ 𝐺 is isometric. Indeed, we obtain 𝛼 by setting 𝐺 ≔ 𝐸 and
applying the isomorphism (1.7.1) to id𝐸. But as we have ‖id𝐸‖ ≤ 1 and the
isomorphism (1.7.1) is contractive, we get also ‖𝛼‖ ≤ 1. By a symmetric argument
we get also ‖𝛼−1‖ ≤ 1.
There is of course a similar principle regarding natural isomorphisms

Hom(𝐺, 𝐸) ⥲ Hom(𝐺, 𝐹),

which is however even more trivial, because one can simply plug in 𝐺 ≔ 𝐾.

1.8 Duals. Let 𝐸 be a normed 𝐾-vector space. Then we denote by

𝐸
∨
≔ Hom(𝐸, 𝐾)

the dual normed 𝐾-vector space. If the norm on 𝐸 is denoted by ‖−‖, then we
often write ‖−‖∨ for the operator norm on 𝐸

∨
. Note that if 𝐸 is finite-dimensional,

then the underlying vector space of 𝐸
∨
agrees with the dual vector space 𝐸∨ of 𝐸

by Proposition 1.4.

1.9 Proposition. Let 𝐸 be a finite-dimensional normed 𝐾-vector space. Then there
is a natural isometric isomorphism

𝐸 ⥲ (𝐸
∨
)∨.

Proof. This is shown in [CM20, Cor. 1.2.12]. ∎
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1. Norms

1.10 Direct Sums. Let 𝐸, 𝐹 be two normed 𝐾-vector spaces. We denote by
𝐸⊕ 𝐹 the normed 𝐾-vector space which is given by the direct sum 𝐸 ⊕ 𝐹 of the
underlying vector spaces together with the direct sum norm

‖(𝑣, 𝑤)‖ ≔ max(‖𝑣‖, ‖𝑤‖).

If the norm of 𝐸 is denoted ‖−‖1 and the norm of 𝐹 is denoted ‖−‖2, then we
often write ‖−‖1 ⊕ ‖−‖2 for the direct sum norm on 𝐸 ⊕ 𝐹.
Given a third normed 𝐾-vector space 𝐺, it is easy to see that there are natural

isometric isomorphisms

Hom(𝐸 ⊕ 𝐹,𝐺) ≅ Hom(𝐸, 𝐺) ⊕Hom(𝐹, 𝐺) (1.10.1)

and
Hom(𝐺, 𝐸 ⊕ 𝐹) ≅ Hom(𝐺, 𝐸) ⊕Hom(𝐺, 𝐹). (1.10.2)

1.11 Tensor Products. Let 𝐸, 𝐹 be two normed 𝐾-vector spaces. We denote by
𝐸⊗ 𝐹 the normed 𝐾-vector space which is given by the tensor product 𝐸 ⊗ 𝐹 of
the underlying vector spaces together with the norm

‖𝑡‖ = inf { max
𝑖=1,…,𝑛

‖𝑣𝑖‖‖𝑤𝑖‖ || 𝑣𝑖 ∈ 𝐸,𝑤𝑖 ∈ 𝐹, 𝑡 =
𝑛
∑
𝑖=1

𝑣𝑖 ⊗𝑤𝑖 }.

It follows from [Gru66, Sect. 3.2, Thm. 1] that this semi-norm is indeed a norm.
If 𝐸,𝐹,𝐺 are normed𝐾-vector spaces, thenwedenote byBil(𝐸, 𝐹; 𝐺) the normed

𝐾-vector space of bounded bilinear maps 𝐸 × 𝐹 → 𝐺. Here a bilinear map
𝛽∶ 𝐸 × 𝐹 → 𝐺 is called bounded if there exists a constant 𝐶 ∈ 𝐑≥0 such that
‖𝛽(𝑣, 𝑤)‖ ≤ 𝐶‖𝑣‖‖𝑤‖ for all 𝑣 ∈ 𝐸 and 𝑤 ∈ 𝐹. The smallest such constant is the
norm ‖𝛽‖ of 𝛽. It is easy to check that there are natural isometric isomorphisms

Hom(𝐸 ⊗ 𝐹,𝐺) ≅ Bil(𝐸, 𝐹; 𝐺) ≅ Hom(𝐸,Hom(𝐹, 𝐺)). (1.11.1)

Note that our tensor product norm does not agree with the 𝜋-tensor product
norm defined in [CM20, Def. 1.1.52] (which is not even a norm in our sense,
because it does not satisfy the non-archimedean triangle inequality).
If the norm of 𝐸 is denoted ‖−‖1 and the norm of 𝐹 is denoted ‖−‖2, then we

often write ‖−‖1 ⊗ ‖−‖2 for the tensor product norm on 𝐸 ⊗ 𝐹.

1.12 Proposition. Let 𝐸, 𝐹, 𝐺 be normed 𝐾-vector spaces. There are natural iso-
metric isomorphisms as follows:

(i) 𝐸 ⊗ 𝐾 ≅ 𝐸.

(ii) 𝐸 ⊗ 𝐹 ≅ 𝐹⊗ 𝐸.

20



(iii) (𝐸 ⊗ 𝐹) ⊗ 𝐺 ≅ 𝐸⊗ (𝐹 ⊗ 𝐺).

(iv) (𝐸 ⊕ 𝐹) ⊗ 𝐺 ≅ 𝐸⊗ 𝐺⊕ 𝐹⊗ 𝐺.

Proof. These follow easily from using the universal properties Eq. (1.11.1) and
Eq. (1.10.1) as well as the Yoneda principle from Paragraph 1.7. ∎

1.13 Subspaces. Let𝐸 be a normed𝐾-vector space and 𝑖∶ 𝑈 ↪ 𝐸 be the inclusion
of a 𝐾-linear subspace 𝑈 ⊂ 𝐸, or more generally just any injective 𝐾-linear map
of vector spaces. Then there is an induced norm on 𝑈 given by

‖𝑣‖ = ‖𝑖(𝑣)‖

for 𝑣 ∈ 𝑈. We call it the subspace norm induced by 𝑖.

1.14 Scalar Extension. Let 𝐸 be a normed 𝐾-vector space and suppose that 𝐿/𝐾
is an extension of non-archimedean fields. We can view 𝐿 as a normed 𝐾-vector
space by viewing the absolute value as the norm. The tensor product norm from
Paragraph 1.11 on 𝐸⊗𝐾 𝐿 is then in fact a norm on the 𝐿-vector space 𝐸⊗𝐾 𝐿. We
denote the resulting normed 𝐿-vector space by (𝐸)𝐿 and call it the scalar extension
of 𝐸 along 𝐿/𝐾. If the norm on 𝐸 is denoted by ‖−‖, then we sometimes denoted
the scalar extension norm on (𝐸)𝐿 by ‖−‖𝐿.
Given a normed 𝐿-vector space 𝐹, it is easy to show that there is a natural

isometric isomorphism

Hom𝐿(𝐸𝐿, 𝐹) ≅ Hom𝐾(𝐸, 𝐹).

1.15 Proposition. Let 𝐿/𝐾 be an extension of non-archimedean fields. Let 𝐸, 𝐹 be
two normed 𝐾-vector spaces. There are natural isometric isomorphisms as follows:

(i) (𝐾)𝐿 ≅ 𝐿 (here 𝐾 and 𝐿 are considered as normed vector spaces with respect
to their absolute values).

(ii) (𝐸 ⊕ 𝐹)𝐿 ≅ (𝐸)𝐿 ⊕ (𝐹)𝐿.

(iii) (𝐸 ⊗𝐾 𝐹)𝐿 ≅ (𝐸)𝐿 ⊗𝐿 (𝐹)𝐿.

If 𝐿′/𝐿 is a further extension of non-archimedean fields, then there is a natural
isomorphism

(iv) (𝐸 ⊗𝐾 𝐿) ⊗𝐿 𝐿′ ≅ 𝐸 ⊗𝐾 𝐿′.

Proof. These isomorphisms follow easily from the various universal properties
discussed above. ∎
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1. Norms

1.16 Proposition. Let 𝐸 be a normed 𝐾-vector space and let 𝐿/𝐾 be an extension
of non-archimedean fields. Then ‖−‖𝐿 restricts to the original norm ‖−‖ under the
canonical injective map 𝐸 ↪ 𝐸𝐿, 𝑣 ↦ 𝑣 ⊗ 1, i.e. the diagram

𝐸 𝐸𝐿

𝐑≥0

↩→

←

→‖−‖

←→ ‖−‖𝐿

commutes.

Proof. This is shown in [BE21, Prop. 1.25 (i)]. ∎

1.17 Lemma. Let 𝐹 = (𝐹, ‖−‖′) and 𝐸 = (𝐸, ‖−‖) be two normed 𝐾-vector spaces
and let 𝑖∶ 𝐹 ↪ 𝐸 be an isometric embedding. In other words, we can think of 𝐹 as
being equipped with the subspace norm induced from 𝐸.

(i) If 𝐹 is one-dimensional and 𝐿/𝐾 is an extension of non-archimedean fields
then the embedding 𝑖𝐿∶ 𝐹𝐿 → 𝐸𝐿 is again isometric.

(ii) If 𝐺 is a one-dimensional normed 𝐾-vector space then the induced embedding
𝐹 ⊗ 𝐺 → 𝐸⊗𝐺 is again isometric.

Proof. For the first statement we note that we have a canonical commutative
diagram

𝐹 𝐹𝐿

𝐸 𝐸𝐿

↩→
↩→ ↩→

↩→

where the horizontal maps are isometric by Proposition 1.16 and the left vertical
map is isometric by assumption. The claim is that the right vertical map is also
isometric, or equivalently that the restriction of the norm of 𝐸𝐿 to 𝐹𝐿 agrees with
the norm of 𝐹𝐿. Since 𝐹𝐿 is a one-dimensional 𝐿-vector space, both of these norms
are determined by their value on an arbitrary non-zero element, in particular it
suffices to compare them on 𝐹 ⊂ 𝐹𝐿. But the fact that their restrictions to 𝐹 agree
follows from the fact that 𝐹 → 𝐸 → 𝐸𝐿 is isometric.
Let us treat the second statement. We write ‖−‖″ for the norm of 𝐺. We fix

a non-zero element 𝑔 ∈ 𝐺 with norm 𝑟 ≔ ‖𝑔‖″ ∈ 𝐑>0. On 𝐹 we introduce a
norm ‖−‖′𝑟 by setting ‖𝑓‖′𝑟 ≔ 𝑟 ⋅ ‖𝑓‖′ for 𝑓 ∈ 𝐹. We claim that the isomorphism
of 𝐾-vector spaces

𝛼𝐹∶ (𝐹, ‖−‖′𝑟) → 𝐹 ⊗ 𝐺, 𝑓 ↦ 𝑓 ⊗ 𝑔
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is isometric. It is clearly contractive. To see that the inverse isomorphism given
by 𝑓⊗𝑎𝑔 ↦ 𝑎𝑓 for 𝑓 ∈ 𝐹 and 𝑎 ∈ 𝐾 is also contractive it suffices by the universal
property of the normed tensor product to note that the bilinear map (𝑓, 𝑎𝑔) ↦ 𝑎𝑓
is bounded with norm ≤ 1 which is easy to verify.
Similarly we introduce a norm ‖−‖𝑟 on 𝐸 and a map

𝛼𝐸∶ (𝐸, ‖−‖𝑟) → 𝐸⊗ 𝐺, 𝑒 ↦ 𝑒 ⊗ 𝑔

which is isometric for the same reason. The maps fit into a commutative diagram

(𝐹, ‖−‖′𝑟) 𝐹 ⊗ 𝐺

(𝐸, ‖−‖𝑟) 𝐸 ⊗ 𝐺.

←→
𝛼𝐹
≅

↩→ ↩→

←→𝛼𝐸
≅

Since the horizontal isomorphisms are isometric and the map on the left is
obviously isometric, the same is true for the map on the right. ∎

1.18 Orthonormal Bases. Let 𝐸 be a finite-dimensional normed 𝐾-vector space
and let 𝑒1,… , 𝑒𝑟 be a basis for 𝐸. It is called an orthonormal basis if the isomor-
phism

𝐾𝑟 → 𝐸, (𝑎1,… , 𝑎𝑟) ↦
𝑟
∑
𝑖=1

𝑎𝑖𝑒𝑖

is isometric. Here 𝐾𝑟 is equipped with the direct sum metric.

1.19 Proposition. Let 𝐸, 𝐹 be finite-dimensional normed 𝐾-vector spaces and let
𝐿/𝐾 be an extension of non-archimedean fields.

(i) If 𝑒1,… , 𝑒𝑟 is an orthonormal basis of 𝐸, then the dual basis 𝑒∨1 ,… , 𝑒∨𝑟 is an
orthonormal basis of 𝐸

∨
.

(ii) If 𝑒1,… , 𝑒𝑟 is an orthonormal basis of 𝐸 and 𝑒′1,… , 𝑒′𝑟′ is an orthonormal
basis of 𝐹, then (𝑒1, 0),… , (𝑒𝑟, 0), (0, 𝑒′1),… , (0, 𝑒′𝑟′) is an orthonormal basis
of 𝐸 ⊕ 𝐹.

(iii) If 𝑒1,… , 𝑒𝑟 is an orthonormal basis of 𝐸 and 𝑒′1,… , 𝑒′𝑟′ is an orthonormal
basis of 𝐹, then 𝑒1 ⊗ 𝑒′1,… , 𝑒𝑟 ⊗ 𝑒′𝑟′ is an orthonormal basis of 𝐸 ⊗ 𝐹.

(iv) If 𝑒1,… , 𝑒𝑟 is an orthonormal basis of 𝐸, then 𝑒1⊗1,… , 𝑒𝑟⊗1 is an orthonor-
mal basis for (𝐸)𝐿.
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Proof. These statements all follow easily from the various natural isomorphisms
discussed above. Let us prove the first statement as an example. Using the
isometric isomorphism 𝐸 ≅ 𝐾𝑟 induced from the orthonormal basis, we get an
isometric isomorphism

𝐸
∨
≅ (𝐾𝑟)∨ ≅ (𝐾∨)𝑟 ≅ 𝐾𝑟.

Under this isomorphism, the standard basis on the right hand side corresponds
to the dual basis 𝑒∨1 ,… , 𝑒∨𝑟 on the left hand side, which is thus an orthonormal
basis. ∎
1.20 Diagonalizable Norms. Let 𝐸 be a finite-dimensional 𝐾-vector space, let
𝑒1,… , 𝑒𝑟 be a basis for 𝐸 and let 𝜙1,… , 𝜙𝑟 ∈ 𝐑>0 be positive real numbers. Then
we call the norm ‖−‖𝑒,𝜙 satisfying

‖𝑎1𝑒1 +⋯+ 𝑎𝑟𝑒𝑟‖𝑒,𝜙 = max
𝑖=1,…,𝑟

|𝑎𝑖|𝜙𝑖

for 𝑎1,… , 𝑎𝑟 ∈ 𝐾 the diagonalizable norm associated to 𝑒 and 𝜙.
A norm ‖−‖ on 𝐸 is called diagonalizable if there exists a basis 𝑒1,… , 𝑒𝑟 and a

family of positive real numbers 𝜙1,… , 𝜙𝑟 ∈ 𝐑>0 such that ‖−‖ = ‖−‖𝑒,𝜙. If ‖−‖
is a diagonalizable norm and 𝑒1,… , 𝑒𝑟 is a basis of 𝐸, then 𝑒1,… , 𝑒𝑟 is called an
orthogonal basis for ‖−‖ if there exist 𝜙1,… , 𝜙𝑟 ∈ 𝐑>0 such that ‖−‖ = ‖−‖𝑒,𝜙.
For properties of diagonalizable norms see [BE21, Sec. 1].
1.21 The Space of Norms. Let 𝐸 be a finite-dimensional 𝐾-vector space and let
‖−‖, ‖−‖′ be two norms on 𝐸. By Proposition 1.4, ‖−‖ and ‖−‖′ are equivalent
and hence the quantity

𝑑(‖−‖, ‖−‖′) ≔ sup
0≠𝑣∈𝐸

|log‖𝑣‖ − log‖𝑣‖′|

is finite. This equips the set of all norms on 𝐸 with the structure of a complete
metric space [BE21, Prop. 1.8].
1.22 Lemma. Let 𝐸 be a finite-dimensional 𝐾-vector space and let ‖−‖, ‖−‖′ be
two norms on 𝐸. Let 𝐿/𝐾 be an extension of non-archimedean fields. Denote by
‖−‖𝐿, ‖−‖′𝐿 the respective scalar extension norms on 𝐸𝐿 = 𝐸 ⊗𝐾 𝐿 as defined in
Paragraph 1.14. Then we have

𝑑(‖−‖𝐿, ‖−‖′𝐿) = 𝑑(‖−‖, ‖−‖′).

Proof. This is proved in [BE21, Prop. 1.25. (ii)]. ∎
1.23 Lemma. Let 𝐸 be a finite-dimensional 𝐾-vector space and let ‖−‖, ‖−‖′ be two
norms on 𝐸. Then we have

𝑑(‖−‖∨, ‖−‖′∨) = 𝑑(‖−‖, ‖−‖′).

Proof. This is proved in [CM20, Prop. 1.1.43]. ∎
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2. Berkovich Analytic Spaces
Throughout this chapter we fix a non-archimedean field 𝐾. We review
some basic notions related to 𝐾-analytic spaces in the sense of [Ber93]
for the convenience of the reader and to fix terminology and notation.
All results proved here are probably well-known, but since we could not
track down proofs in the literature, we provide them here.

2.1 Berkovich Analytic Spaces. In [Ber93, Sec. 1.2, p. 22] Berkovich introduces
the category of Φ𝐾-analytic spaces where Φ is a class of affinoid spaces satisfying
some stability properties [Ber93, Sec. 1.2, p. 16]. If Φ is the class of all affinoid
spaces, then a Φ𝐾-analytic space is simply called a 𝐾-analytic space. If Φ is the
class of all strictly affinoid spaces, then a Φ𝐾-analytic space is called a strictly
𝐾-analytic space. The category of strictly 𝐾-analytic spaces is a full subcategory
of the category of all 𝐾-analytic spaces by [Tem04, Cor. 4.10].
By [Ber93, Prop. 1.4.1], the category of (strictly) 𝐾-analytic spaces admits all

fiber products.

2.2 G-topological Spaces. Let 𝑋 be a set. A G-topology on 𝑋 is given by a collec-
tion of distinguished subsets of 𝑋, called admissible open subsets, as well as, for
each admissible open subset𝑈 ⊂ 𝑋, a collection of distinguished set-theoretic cov-
erings 𝑈 = ⋃{𝑈𝑖}𝑖∈𝐼 by other admissible open subsets 𝑈𝑖 ⊂ 𝑋, called admissible
coverings, in such a way that the following axioms are satisfied:

(i) The intersection 𝑈 ∩ 𝑉 of two admissible open subsets 𝑈,𝑉 ⊂ 𝑋 is again
admissible open.
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2. Berkovich Analytic Spaces

(ii) For each admissible open subset 𝑈 ⊂ 𝑋, the trivial covering { 𝑈 } of 𝑈 is
admissible.

(iii) If 𝑈 is an admissible open subset of 𝑋, {𝑈𝑖}𝑖∈𝐼 is an admissible covering of
𝑈, and if for each 𝑖 ∈ 𝐼, the family {𝑉𝑖𝑗}𝑗∈𝐽𝑖 is an admissible covering of 𝑈𝑖,
then the family {𝑉𝑖𝑗}𝑖∈𝐼,𝑗∈𝐽𝑖 is an admissible covering of 𝑈.

(iv) If 𝑈,𝑉 ⊂ 𝑋 are two admissible open subsets of 𝑋 and 𝑉 ⊂ 𝑈, and if {𝑈𝑖}𝑖∈𝐼
is an admissible covering of 𝑈, then the family {𝑉 ∩ 𝑈𝑖}𝑖∈𝐼 is an admissible
covering of 𝑉.

We call the G-topology saturated if the following additional properties are satis-
fied:

(v) The subsets ∅ and 𝑋 of 𝑋 are admissible.

(vi) Let 𝑈 ⊂ 𝑋 be an admissible open subset, {𝑈𝑖}𝑖∈𝐼 an admissible covering
of 𝑈 and let 𝑉 ⊂ 𝑈 be any subset. If every intersection 𝑉 ∩ 𝑈𝑖, 𝑖 ∈ 𝐼 is
admissible open, then 𝑉 is admissible open.

(vii) Let {𝑈𝑖}𝑖∈𝐼 be a set-theoretic covering of an admissible open subset 𝑈 ⊂ 𝑋.
If {𝑈𝑖}𝑖∈𝐼 admits a refinement which is admissible, then {𝑈𝑖}𝑖∈𝐼 itself is an
admissible covering.

The set 𝑋 together with the G-topology is called a G-topological space. The theory
of G-topological spaces can be found in [BGR84, Sec. 9.1]. Conditions (v) to (vii)
are called (G0) to (G2) in [BGR84, Sec. 9.1.2].

2.3 Sheaves. There is a notion of presheaves and sheaves on a G-topological
space, generalizing the theory of sheaves on a topological space. Also for G-
topological spaces, there exists a sheafification functor left adjoint to the forgetful
functor from sheaves to presheaves [BGR84, Prop. 9.2.2/4]. A pair (𝑋, 𝒪𝑋) where
𝑋 is a G-topological space and 𝒪𝑋 is a sheaf of rings on 𝑋 is called a ringed G-
topological space. There is a category of sheaves of 𝒪𝑋-modules on a ringed
G-topological space (𝑋, 𝒪𝑋) admitting direct sums, kernels, cokernels and tensor
products as usual. If 𝑓∶ (𝑋, 𝒪𝑋) → (𝑌, 𝒪𝑌) is amorphism of ringed G-topological
spaces (i.e. a G-continuous map 𝑓∶ 𝑋 → 𝑌 together with a morphism of sheaves
𝒪𝑌 → 𝑓∗𝒪𝑋), then the functorℱ ↦ 𝑓∗ℱ from sheaves of 𝒪𝑋-modules to sheaves of
𝒪𝑌-modules admits a left adjoint 𝑓∗ which commutes with direct sums, cokernels
and tensor products. The theory of sheaves on G-topological spaces is generalized
by the theory of sheaves on sites [Sta23, Chap. 00UZ, Chap. 03A4].

2.4 Quasi-nets. Let 𝑋 be a topological space, 𝑈 ⊂ 𝑋 a subset and {𝑈𝑖}𝑖∈𝐼 a family
of subsets 𝑈𝑖 ⊂ 𝑈. The family {𝑈𝑖}𝑖∈𝐼 is called a quasi-net on 𝑈 if the following
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holds: For every 𝑥 ∈ 𝑈, there exists a finite subset 𝐽𝑥 ⊂ 𝐼 such that 𝑥 ∈ ⋂𝑖∈𝐽𝑥
𝑈𝑖

and such that⋃𝑖∈𝐽𝑥
𝑈𝑖 is a neighborhood of 𝑥 in 𝑈. Note that a quasi-net is, in

particular, a set-theoretic covering of 𝑈.

2.5 The Topology and the G-Topology of an Analytic Space. Let 𝑉 be a
𝐾-analytic space. By definition [Ber93, Sec. 1.2, p. 17], 𝑉 has an underlying
topological space (which we often denote by 𝑉 as well). Any morphism of 𝐾-
analytic spaces induces a continuous map of the underlying topological spaces.
In addition, the underlying set of 𝑉 also carries a canonical G-topology which

we will simply call the G-topology of 𝑉. We write 𝑉𝐺 for the G-topological space
obtained in thisway. The admissible open subsets of theG-topology of a Berkovich
analytic space are given by the analytic domains. Here, a subset 𝑈 ⊂ 𝑉 is called
an analytic domain if there exists a quasi-net {𝑈𝑖}𝑖∈𝐼 on 𝑈 consisting of affinoid
domains in 𝑉. If 𝑈 ⊂ 𝑉 is an analytic domain, then a set-theoretic covering
𝑈 = ⋃𝑖∈𝐼𝑈𝑖 by analytic domains 𝑈𝑖 ⊂ 𝑉 is admissible for the G-topology of 𝑉 if
and only if it is a quasi-net. See [Ber93, Sec. 1.3] for details.
If 𝑈 ⊂ 𝑉 is an analytic domain and 𝑈 = ⋃𝑖∈𝐼𝑈𝑖 is an admissible covering

by analytic domains in the G-topology of 𝑉, then we also say that the family
{𝑈𝑖}𝑖∈𝐼 forms a G-covering of 𝑈. By construction, every 𝐾-analytic space 𝑉 admits
a G-covering 𝑉 = ⋃𝑖∈𝐼 𝑉𝑖 by affinoid domains.
Note that if ℳ(𝐴) is a 𝐾-affinoid space, then each point of ℳ(𝐴) has a fun-

damental neighborhood of affinoid (Weierstraß) domains. In the language of
[Ber93, Sec. 1.2, p.16] this means that the class Φ of all 𝐾-affinoid spaces is dense.
It follows that every open subset of a 𝐾-analytic space 𝑉 is an analytic domain
and every covering of an open subset by open subsets is a G-covering or in other
words that the identity map is a morphism of G-topological spaces 𝜋𝑉∶ 𝑉𝐺 → 𝑉
[Ber93, Sec. 1.3, p. 25].
There is a canonical sheaf of rings on 𝑉𝐺 denoted by 𝒪𝑉𝐺 called the structure

sheaf of 𝑉 [Ber93, Sec. 1.3, p. 25]. It is given by

𝒪𝑉𝐺(𝑈) = Hom(𝑈,𝐀1,an𝐾 )

for an analytic domain 𝑈 ⊂ 𝑉. Here 𝐀1,an𝐾 denotes the analytification of the
algebraic 𝐾-variety 𝐀1𝐾 in the sense of Paragraph 2.16. By [Ber93, Sec. 1.3, p. 27],
a morphism 𝑓∶ 𝑉 ′ → 𝑉 of 𝐾-analytic spaces induces a morphism of ringed
G-topological spaces, again denoted by 𝑓∶ (𝑉 ′, 𝒪𝑉 ′

𝐺
) → (𝑉, 𝒪𝑉𝐺).

Sometimes we consider also the sheaf 𝒪𝑉 ≔ (𝜋𝑉)∗𝒪𝑉𝐺 on the topological
space 𝑉. By construction, there is a canonical morphism of ringed G-topological
spaces 𝜋𝑉∶ (𝑉𝐺, 𝒪𝑉𝐺) → (𝑉, 𝒪𝑉) given by the identity map id∶ 𝒪𝑉 → (𝜋𝑉)∗𝒪𝑉𝐺.
We remark that the sheaf 𝒪𝑉 is usually only interesting if 𝑉 is good (see Para-
graph 2.15 for this notion).
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2. Berkovich Analytic Spaces

2.6 Scalar Extension. Let 𝐿/𝐾 be an extension of non-archimedean fields. Then
there is a functor 𝑉 ↦ 𝑉 ⨶𝐾 𝐿 from the category of 𝐾-analytic spaces to the
category of 𝐿-analytic spaces given byℳ(𝐴) ⨶𝐾 𝐿 ≔ ℳ(𝐴⨶𝐾 𝐿) for 𝐾-affinoid
algebras 𝐴 and extended to the general case by gluing using [Ber93, Prop. 1.3.3],
see [Ber93, Sec. 1.4, p. 30]. From the construction of fibered products in [Ber93,
Prop. 1.4.1] one sees that the scalar extension functor preservers fibered products.

2.7 Analytic Spaces over 𝐾. An analytic space over 𝐾 is a pair (𝑉, 𝐿), where
𝐿/𝐾 is a non-archimedean extension field and 𝑉 is an 𝐿-analytic space. We call
𝐿 the field of definition of (𝑉, 𝐿). A morphism 𝑓∶ (𝑉 ′, 𝐿′) → (𝑉, 𝐿) of analytic
spaces over 𝐾 is a pair consisting of a morphism 𝐿 ↪ 𝐿′ of non-archimedean
extension fields of 𝐾 and a morphism 𝑓∶ 𝑉 ′ → 𝑉 ⨶𝐿 𝐿′ of 𝐿′-analytic spaces.
If 𝑓∶ (𝑉 ′, 𝐿′) → (𝑉, 𝐿) and 𝑓′∶ (𝑉″, 𝐿″) → (𝑉 ′, 𝐿′) are morphisms of analytic
spaces over 𝐾 then their composition is given by the composition 𝐿 ↪ 𝐿′ ↪ 𝐿″ of
field extensions and the composition

𝑉″ 𝑉 ′ ⨶𝐿′ 𝐿″ (𝑉 ⨶𝐿 𝐿′) ⨶𝐿′ 𝐿″ ⥲ 𝑉 ⨶𝐿 𝐿″.

←→
𝑓′ ←→

𝑓⨶𝐿′𝐿″

Be cautious that 𝐾-analytic spaces and analytic spaces over 𝐾 are not the same
thing. The former form a full subcategory of the latter via the embedding 𝑉 ↦
(𝑉, 𝐾). For details, see [Ber93, Sec. 1.4, p. 30].
Let (𝑉, 𝐿) be an analytic space over 𝐾 and let 𝑖∶ 𝐿 ↪ 𝐿′ be an extension of

non-archimedean extension fields of 𝐾. We can regard (𝑉 ⨶𝐿 𝐿′, 𝐿′) as an analytic
space over 𝐾. There is a canonical morphism of analytic spaces over 𝐾

𝜋𝐿′/𝐿∶ (𝑉 ⨶𝐿 𝐿′, 𝐿′) → (𝑉, 𝐿)

given by the field extension 𝑖∶ 𝐿 ↪ 𝐿′ and the identity morphism id∶ 𝑉 ⨶𝐿 𝐿′ →
𝑉 ⨶𝐿 𝐿′ of 𝐿′-analytic spaces.
If 𝑓∶ (𝑉 ′, 𝐿′) → (𝑉, 𝐿) is any morphism of analytic spaces over 𝐾, given by the

embedding 𝑖∶ 𝐿 ↪ 𝐿′ and the morphism 𝑓∶ 𝑉 ′ → 𝑉 ⨶𝐿 𝐿′ of 𝐿′-analytic spaces,
then it factors canonically as

(𝑉 ′, 𝐿′) (𝑉 ′ ⨶𝐿 𝐿′, 𝐿′) (𝑉, 𝐿).←→
𝑓 ←→

𝜋𝐿′/𝐿

2.8 The Functor from Analytic Spaces over 𝐾 to G-topological Spaces. Next
we describe a functor from the category of analytic spaces over 𝐾 to ringed G-
topological spaces given on objects by sending a pair (𝑉, 𝐿) to the underlying
G-topological space of the 𝐿-analytic space 𝑉 in the sense of Paragraph 2.5. We
start by sketching how the morphism 𝜋𝐿′/𝐿∶ (𝑉 ⨶𝐿 𝐿′, 𝐿′) → (𝑉, 𝐿) induces a
morphism of the underlying G-topological spaces, again denoted by

𝜋𝐿′/𝐿∶ 𝑉 ⨶𝐿 𝐿′ → 𝑉. (2.8.1)
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If 𝑉 = ℳ(𝐴) is an 𝐿-affinoid space, then we define 𝜋𝐿′/𝐿∶ ℳ(𝐴 ⨶𝐿 𝐿′) → ℳ(𝐴)
to be the map induced by the canonical morphism 𝐴 → 𝐴⨶𝐿 𝐿′ of Banach rings.
We omit here the verification that it is G-continuous and induces a morphism of
the structure sheaves. In the general case the map (2.8.1) is obtained by gluing.
If 𝑓∶ (𝑉 ′, 𝐿′) → (𝑉, 𝐿) is an arbitrary morphism of analytic spaces over 𝐿, then

by Paragraph 2.7 it factors as

(𝑉 ′, 𝐿′) (𝑉 ′ ⨶𝐿 𝐿′, 𝐿′) (𝑉, 𝐿).←→
𝑓 ←→

𝜋𝐿′/𝐿

By Paragraph 2.5 the morphism 𝑓∶ 𝑉 ′ → 𝑉 ′ ⨶𝐿 𝐿′ of 𝐿′-analytic spaces induces
a morphism of the underlying ringed G-topological spaces and we define the
underlying morphism 𝑓∶ 𝑉 ′ → 𝑉 of ringed G-topological spaces to be the com-
position

𝑉 ′ 𝑉 ′ ⨶𝐿 𝐿′ 𝑉.←→
𝑓 ←→

𝜋𝐿′/𝐿

It is easy to verify that this assignment is functorial. Note that the induced map
of sets 𝑓∶ 𝑉 ′ → 𝑉 is also continuous with respect to the Berkovich topology.

2.9 Remark. From now on we usually write simply 𝑉 instead of (𝑉, 𝐿) for an
analytic space over 𝐾 since the field of definition can usually be inferred from
the context. Similarly, we do not distinguish notationally between a morphism
𝑓∶ 𝑉 ′ → 𝑉 of analytic spaces over 𝐾 and the underlying morphism of ringed
G-topological spaces.

2.10 Characters Corresponding to Points. Let 𝑉 be a 𝐾-analytic space and let
𝑥 ∈ 𝑉 be a point. By [Ber93, Sec. 1.4, p. 30] there is a canonical associated exten-
sion of non-archimedean fieldsℋ(𝑥)/𝐾 together with a morphism of analytic
spaces over 𝐾

𝑖𝑥∶ ℳ(ℋ(𝑥)) → 𝑉

(or more precisely (ℳ(ℋ(𝑥)),ℋ(𝑥)) → (𝑉, 𝐾)) such that the underlying mor-
phism of G-topological spaces maps the unique point ofℳ(ℋ(𝑥)) to 𝑥.
We see in particular that any point 𝑥 ∈ 𝑉 arises as the image of a morphism

ℳ(𝐿) → 𝑉 for some non-archimedean extension field 𝐿/𝐾. Note that if the
image ofℳ(𝐿) → 𝑉 is 𝑥 ∈ 𝑉 then there is an induced embeddingℋ(𝑥) ↪ 𝐿 of
non-archimedean extension fields of 𝐾 such that the diagram

ℳ(𝐿) ℳ(ℋ(𝑥))

𝑉

←

→

←→

←→ 𝑖𝑥
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2. Berkovich Analytic Spaces

commutes. Ifℳ(𝐿′) → 𝑉 is another such morphism mapping to the same point
𝑥 ∈ 𝑉, then there exists a third non-archimedean extension field 𝐿″ extending
both 𝐿 and 𝐿′ such that the diagram

ℳ(𝐿″) ℳ(𝐿)

ℳ(𝐿′) 𝑉

←→

←→ ←→

← →

commutes. (To see this, note that by [Gru66, § 3, Thm. 1], 𝐿⊗ℋ(𝑥) 𝐿′ injects into
𝐿 ⨶ℋ(𝑥) 𝐿′ so that in particular the latter Banach ring is non-zero and hence has
non-empty Berkovich spectrum. Choose 𝐿″ to be the completed residue field of
some point ofℳ(𝐿 ⨶ℋ(𝑥) 𝐿′).)
This shows that there is a canonical bijection of sets

colim
𝐿/𝐾

Hom(ℳ(𝐿), 𝑉) ⥲ 𝑉 (2.10.1)

where 𝐿/𝐾 runs over the non-archimedean extension fields of 𝐾. Note here that
the index category is not small, so a priori the colimit need not exist, but our
argument shows that in this case it does indeed exist and is given by the set on
the right hand side.

2.11 Fibers. Let 𝑓∶ 𝑉 ′ → 𝑉 be a morphism of 𝐾-analytic spaces and let 𝑥 ∈ 𝑉
be a point. Suppose that 𝑥′ ∈ 𝑉 ′ is given as the image of a morphismℳ(𝐿) → 𝑉 ′

where 𝐿/𝐾 is a non-archimedean extension field of 𝐾. If 𝑓(𝑥′) = 𝑥 then by
Paragraph 2.10 there is an induced embeddingℋ(𝑥) ↪ 𝐿 of non-archimedean
extension fields of 𝐾 such that the diagram

ℳ(𝐿) ℳ(ℋ(𝑥))

𝑉 ′ 𝑉

←→

←→

←→ 𝑖𝑥

← →
𝑓

(2.11.1)

commutes. This shows that every point 𝑥′ ∈ 𝑓−1(𝑥) arises as the image of a
morphism ℳ(𝐿) → 𝑉 ′ where 𝐿/ℋ(𝑥) is a non-archimedean extension field
and the resulting diagram Eq. (2.11.1) commutes. By the same argument as in
Paragraph 2.10 we see that there is a canonical bijection of sets

colim
𝐿/ℋ(𝑥)

Hom𝑉(ℳ(𝐿), 𝑉 ′) ⥲ 𝑓−1(𝑥) (2.11.2)

where the colimit runs over all non-archimedean extension fields of ℋ(𝑥) and
Hom𝑉(ℳ(𝐿), 𝑉 ′) denotes the set of morphisms over V, i.e. making (2.11.1) com-
mutative.
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The preimage 𝑓−1(𝑥) carries the structure of aℋ(𝑥)-analytic space which can
be described as follows: Recall from Paragraph 2.10 that we have the morphism
of analytic spaces over 𝐾

𝑖𝑥∶ (ℳ(ℋ(𝑥)),ℋ(𝑥)) → (𝑉, 𝐾)

which is given by the field extensionℋ(𝑥)/𝐾 and a morphism of ℋ(𝑥)-analytic
spacesℳ(ℋ(𝑥)) → 𝑉 ⊗𝐾 ℳ(ℋ(𝑥)). Furthermore, the morphism 𝑓∶ 𝑉 ′ → 𝑉
induces a morphism 𝑉 ′⨶𝐾ℋ(𝑥) → 𝑉 ⨶𝐾ℋ(𝑥) ofℋ(𝑥)-analytic spaces and by
Paragraph 2.1 we can form the fibered product of ℋ(𝑥)-analytic spaces

𝑉 ′
𝑥 ≔ (𝑉 ′ ⨶𝐾 ℋ(𝑥)) ×𝑉⨶𝐾ℋ(𝑥) ℳ(ℋ(𝑥))

to obtain aℋ(𝑥)-analytic space called the fiber of 𝑓 over 𝑥. There is a canonical
identification of topological spaces 𝑉 ′

𝑥 ≅ 𝑓−1(𝑥), where 𝑓−1(𝑥) is equipped with
the subspace topology [Ber93, Sec. 1.4, p. 30].

2.12 Lemma. Let 𝑉 be a 𝐾-analytic space, let 𝑉 = ⋃𝑖∈𝐼 𝑉𝑖 be a G-covering by
analytic domains and let 𝑌 be a topological space. If 𝑓∶ 𝑉 → 𝑌 is a map of the
underlying sets such that the restriction to each of the 𝑉𝑖 is continuous with respect
to the Berkovich topology, then 𝑓 is continuous.

Proof. Let 𝑥 ∈ 𝑉 and let 𝑓(𝑥) ∈ 𝑊 ⊂ 𝑌 be an open neighborhood of 𝑓(𝑥).
There exists a finite subset 𝐽 ⊂ 𝐼 such that 𝑥 ∈ ⋂𝑖∈𝐽 𝑉𝑖 and such that⋃𝑖∈𝐽 𝑉𝑖 is
a neighborhood of 𝑥 in 𝑉. Hence there exists an open subset 𝑈 of 𝑉 such that
𝑥 ∈ 𝑈 ⊂ ⋃𝑖∈𝐽 𝑉𝑖.
As 𝑓|𝑉𝑖 is continuous for each 𝑖, there exist open neighborhoods 𝑈𝑖 of 𝑥 in 𝑉

such that 𝑓(𝑈𝑖 ∩ 𝑉𝑖) ⊂ 𝑊. It follows that 𝑈 ∩⋂𝑖∈𝐽𝑈𝑖 is an open neighborhood of
𝑥 in 𝑉 which is mapped into𝑊 by 𝑓. ∎

2.13 Compact and Paracompact 𝐾-analytic Spaces. Let 𝑉 be a 𝐾-analytic
space. It is called compact if its underlying topological space is compact (in
particular Hausdorff) and paracompact if its underlying topological space is
paracompact. Recall that “paracompact” means that 𝑉 is Hausdorff and every
open covering of 𝑉 admits a locally finite open refinement.

2.14 Lemma. Let 𝑉 be a 𝐾-analytic space.

(i) Any locally finite covering 𝑉 = ⋃𝑖∈𝐼 𝑉𝑖 by closed analytic domains is a G-
covering.

(ii) If 𝑉 is compact, then any G-covering 𝑉 = ⋃𝑖∈𝐼 𝑉𝑖 of 𝑉 by analytic domains
admits a finite sub-covering (which is a G-covering if the 𝑉𝑖 are closed). In
particular, any compact analytic space admits a finite G-covering by affinoid
domains.
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(iii) Let𝑉 be a paracompact𝐾-analytic space. Then anyG-covering𝑉 = ⋃𝑖∈𝐼 𝑉𝑖 of
𝑉 by analytic domains admits a locally finite G-covering by affinoid domains
as a refinement. In particular, any paracompact 𝐾-analytic space admits a
locally finite G-covering by affinoid domains.

Proof. In order to prove the first statement, we consider an arbitrary point 𝑥 ∈ 𝑉.
By local finiteness, there exists an open neighborhood 𝑈 of 𝑥 ∈ 𝑉 such that the
set 𝐽 ≔ { 𝑖 ∈ 𝐼 | 𝑈 ∩ 𝑉𝑖 ≠ ∅ } is finite. Let 𝐽1 ≔ { 𝑖 ∈ 𝐽 | 𝑥 ∈ 𝑉𝑖 } and 𝐽2 ≔ { 𝑖 ∈ 𝐽 |
𝑥 ∉ 𝑉𝑖 }. Then 𝑥 ∈ ⋂𝑖∈𝐽1

𝑉𝑖 and 𝑥 ∈ 𝑈 ⧵ (⋃𝑖∈𝐽2
𝑉𝑖) ⊂ ⋃𝑖∈𝐽1

𝑉𝑖 proves that the
latter set is a neighborhood of 𝑥 ∈ 𝑉. This proves (i).
Next we assume that 𝑉 is compact and that 𝑉 = ⋃𝑖∈𝐼 𝑉𝑖 is a G-covering by

analytic domains. By the definition of a G-covering, any point 𝑥 ∈ 𝑉 has a
neighborhood of the form𝑉𝑖1∪⋯∪𝑉𝑖𝑛 with 𝑖1,… , 𝑖𝑛 ∈ 𝐼. Therefore the topological
interiors of these finite unions form an open covering of 𝑉. As 𝑉 is compact, there
exists a finite sub-covering of this open covering, and in particular 𝑉 is covered
by finitely many of the 𝑉𝑖.
If we start with a G-covering 𝑉 = ⋃𝑖∈𝐼 𝑉𝑖 by affinoid domains and pick a finite

sub-covering, we see that 𝑉 can be covered by finitely many affinoid domains.
Since 𝑉 is compact and in particular Hausdorff, and affinoid spaces are compact,
the 𝑉𝑖 are closed in 𝑉, so the finite covering is indeed a G-covering. This proves (ii).
Now let us assume that 𝑉 is paracompact and that 𝑉 = ⋃𝑖∈𝐼 𝑉𝑖 is a G-covering

by analytic domains. By the first part of this lemma it is enough to find a locally
finite refinement consisting of affinoid domains because it will automatically be a
G-covering. In fact, by the second part of this lemma, it is enough to find a locally
finite refinement consisting of compact analytic domains. Recall that 𝐾-analytic
spaces are always locally compact by [Tem15, Rem. 4.1.2.3]. Hence, by [Bou98,
Chap. 1, § 9.10, Thm. 5], 𝑉 can be written as a disjoint union𝑉 = ⋃𝑗∈𝐼𝑈𝑗 of open
𝜎-compact subspaces. (Recall that a space is 𝜎-compact if it is locally compact
and can be written as a countable union of compact subsets.) It is enough to
show for each of the 𝜎-compact spaces 𝑈𝑗 that the G-covering 𝑈𝑗 = ⋃𝑖∈𝐼(𝑈𝑗 ∩ 𝑉𝑖)
can be refined to a locally finite covering consisting of compact analytic domains.
Hence, we may assume that 𝑉 is 𝜎-compact. Furthermore, writing each 𝑉𝑖 as a
G-union of compact analytic domains, we may assume from the start that all the
𝑉𝑖 are already compact.
By [Bou98, Chap. 1, §9.9, Prop. 15], there is a sequence {𝑈𝑛}𝑛∈𝐍 of relatively

compact open subsets of 𝑉which cover𝑉 and such that𝑈𝑛 ⊂ 𝑈𝑛+1 for each 𝑛. For
each𝑛 ∈ 𝐍, we denote by𝐾𝑛 the compact set𝑈𝑛⧵𝑈𝑛−1 (we set𝑈0 ≔ ∅). The open
set𝑈𝑛+1 ⧵𝑈𝑛−2 is a neighborhood of 𝐾𝑛 by construction. By [Tem15, Fact 4.3.1.1],
any point in a 𝐾-analytic space has a fundamental system of neighborhoods
consisting of compact analytic domains. Hence, using that the 𝑉𝑖 form a G-
covering, given any point 𝑥 ∈ 𝐾𝑛, there exists a compact analytic domains𝑊

(𝑛)
𝑥
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which is a neighborhood of 𝑥 ∈ 𝑉 and such that𝑊 (𝑛)
𝑥 ⊂ (⋃𝑖∈𝐽𝑥

𝑉𝑖)∩(𝑈𝑛+1⧵𝑈𝑛−2)
where 𝐽𝑥 ⊂ 𝐼 is some finite subset. Since 𝐾𝑛 is compact, a finite number of the
𝑊 (𝑛)
𝑥 cover 𝐾𝑛, i.e. we have 𝐾𝑛 ⊂ ⋃𝑥∈𝐴𝑛

𝑊 (𝑛)
𝑥 where 𝐴𝑛 ⊂ 𝐾𝑛 is a finite set of

points. Now let Λ be the set of all triples (𝑛, 𝑥, 𝑖) where 𝑛 ∈ 𝐍, 𝑥 ∈ 𝐴𝑛 and 𝑖 ∈ 𝐽𝑥.
Then we claim that 𝑉 = ⋃(𝑛,𝑥,𝑖)∈Λ(𝑊

(𝑛)
𝑥 ∩ 𝑉𝑖) and that this is a locally finite

covering of 𝑉.
Now we consider an arbitrary point 𝑧 ∈ 𝑉 and consider the minimal 𝑛 ∈ 𝐍

such that 𝑧 ∈ 𝑈𝑛. By minimality, 𝑧 ∉ 𝑈𝑛−1 and hence 𝑧 ∈ 𝐾𝑛. It follows
from 𝐾𝑛 ⊂ ⋃𝑥∈𝐴𝑛

𝑊 (𝑛)
𝑥 that 𝑧 ∈ 𝑊 (𝑛)

𝑥 for some 𝑥 ∈ 𝐴𝑛. Finally it follows

from𝑊 (𝑛)
𝑥 ⊂ ⋃𝑖∈𝐽𝑥

𝑉𝑖 that 𝑧 ∈ 𝑊 (𝑛)
𝑥 ∩ 𝑉𝑖 for some 𝑖 ∈ 𝐽𝑥. This proves that we

have indeed a covering. To prove local finiteness, we consider the neighborhood
𝑇 ≔ 𝑈𝑛 ⧵ 𝑈𝑛−2 of 𝑧 and note that it only meets the finitely many sets𝑊

(𝑚)
𝑥 ∩ 𝑉𝑖

with (𝑚, 𝑥, 𝑖) ∈ Λ and 𝑛 − 2 ≤ 𝑚 ≤ 𝑛 + 1. ∎

2.15 Good 𝐾-Analytic Spaces. We already remarked in the proof of Lemma 2.14
that any point 𝑥 ∈ 𝑉 of a 𝐾-analytic space has a fundamental system of neigh-
borhoods consisting of compact analytic domains. If any point 𝑥 ∈ 𝑉 has a
fundamental system of neighborhoods consisting of affinoid domains, then 𝑉 is
called good. In [Ber90] a notion of 𝐾-analytic spaces different from the one in
[Ber93] was introduced. The category of good 𝐾-analytic spaces in the sense of
[Ber93] is equivalent to the category of 𝐾-analytic spaces from [Ber90] by [Ber93,
Sec. 1.5].

2.16 Analytification. If 𝑋 is a locally finite type 𝐾-scheme, then there is an
associated 𝐾-analytic space 𝑋an called the analytification of 𝑋. The analytification
of a finite type 𝐾-scheme is always good. There is a canonical morphism

(𝑋an, 𝒪𝑋an) → (𝑋, 𝒪𝑋)

of locally ringed spaces. Composing with the morphism 𝜋𝑋an ∶ (𝑋an
𝐺 , 𝒪𝑋an

𝐺
) →

(𝑋an, 𝒪𝑋an) from Paragraph 2.5, we obtain a morphism of G-topological spaces

𝜋𝑋∶ (𝑋an
𝐺 , 𝒪𝑋an

𝐺
) → (𝑋, 𝒪𝑋).

The analytification functor is compatible with fibered products and change of
base field. Details can be found in [Ber90, Sec. 3.4].

2.17 Lemma. (i) If 𝑉 is a 𝐾-analytic space and 𝐿/𝐾 is an extension of non-
archimedean fields, then the canonical base-change morphism

𝜋𝐿/𝐾∶ 𝑉 ⨶𝐾 𝐿 → 𝑉

of Paragraph 2.8 is topologically proper and surjective.
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(ii) If 𝑉, 𝑉 ′ are two 𝐾-analytic spaces and if we denote by |−| the underlying
topological space of a 𝐾-analytic space, then the canonical map

|𝑉 × 𝑉 ′| → |𝑉| × |𝑉 ′|

is proper.

Proof. Let us start with the first statement. Since properness can be checked
locally with respect to an open covering of the base space and a 𝐾-analytic space
admits a basis of open paracompact subsets by [Ber93, Rem. 1.2.4], we may
assume that 𝑉 is paracompact. In that case, by Lemma 2.14, 𝑉 admits a locally
finite G-covering by affinoid domains. By [Bou98, Chp. 1, § 10.1, Prop. 3], we
can now assume that 𝑉 = ℳ(𝐴) is affinoid. In that case, 𝑉 ⨶𝐾 𝐿 = ℳ(𝐴⨶𝐾 𝐿)
is a compact Hausdorff space, so the map 𝑉 ⨶𝐾 𝐿 → 𝑉 is proper.
As for the surjectivity, if 𝑥 ∈ 𝑉, then the fiber of 𝜋𝐿/𝐾 over 𝑥 is given by

the Berkovich spectrumℳ(ℋ(𝑥) ⨶𝐾 𝐿) which is non-empty as by [Gru66, § 3,
Thm. 1],ℋ(𝑥) ⊗𝐾 𝐿 injects intoℋ(𝑥) ⨶𝐾 𝐿 so that, in particular, the latter ring
is non-zero.
To prove properness of the map |𝑉 × 𝑉 ′| → |𝑉| × |𝑉 ′|, we can similarly reduce

to the case where both 𝑉 and 𝑉 ′ are 𝐾-affinoid, in which case the statement is
trivial. ∎

2.18 Flat Morphisms. We recall from [Duc18, Sec. 4.1] the notion of flatness.
Let 𝑓∶ 𝑉 ′ → 𝑉 be a morphism of 𝐾-analytic spaces,ℱ a coherent sheaf on 𝑉 and
𝑦 ∈ 𝑉 a point with 𝑥 ≔ 𝑓(𝑦) ∈ 𝑉. First assume that 𝑉, 𝑉 ′ are good. Then we say
thatℱ is naively 𝑉-flat at 𝑦 if the stalkℱ𝑦 is a flat 𝒪𝑉,𝑥-module [Duc18, § 4.1.1].
We say thatℱ is 𝑉-flat at 𝑦 if for every cartesian commutative diagram

𝑊 ′ 𝑊

𝑉 ′ 𝑉

←→𝑝1

←→
𝑝2

←→

←→
𝑓

of good 𝐾-analytic spaces and every 𝑧 ∈ 𝑊 ′ lying over 𝑦 ∈ 𝑉 ′ the sheaf 𝑝∗1ℱ on
𝑊 ′ is naively𝑊-flat at 𝑧 [Duc18, Def. 4.1.2].
Finally, if 𝑉, 𝑉 ′ are not assumed to be good, we say that ℱ is 𝑉-flat at 𝑦 if

there exists an affinoid domain 𝑈 ′ of 𝑉 ′ containing 𝑦 and an affinoid domain 𝑈
of 𝑉 containing 𝑓(𝑈 ′) such that the coherent sheaf ℱ|𝑈′ is 𝑈-flat at 𝑦 [Duc18,
Def. 4.1.8].
We say that the coherent sheaf ℱ is 𝑉-flat if it is 𝑉-flat at every point 𝑦 ∈ 𝑉 ′.

We say that the morphism 𝑓∶ 𝑉 ′ → 𝑉 is flat if the coherent sheaf 𝒪𝑉 ′
𝐺
is 𝑉-flat.
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2.19 Interior and Boundary. Recall from [Ber90, Def. 2.5.7] the notion of
relative interior Int(𝑉 ′/𝑉) ⊂ 𝑉 ′ of a morphism of 𝐾-affinoid spaces 𝑓∶ 𝑉 ′ → 𝑉.
If 𝑓∶ 𝑉 ′ → 𝑉 is more generally a morphism of 𝐾-analytic spaces, then a point
𝑦 ∈ 𝑉 ′ with 𝑥 ≔ 𝑓(𝑦) ∈ 𝑉 is called interior with respect to 𝑓 if for any affinoid
domain 𝑈 ⊂ 𝑉 containing 𝑥, there exists an affinoid domain 𝑈 ′ ⊂ 𝑓−1(𝑈) such
that𝑈 ′ is a neighborhood of 𝑦 in 𝑓−1(𝑈) and 𝑦 ∈ Int(𝑈 ′/𝑈) [Tem15, Def. 4.2.4.1].
We write Int(𝑉 ′/𝑉) for the set of interior points of 𝑉 ′ with respect to 𝑉. The
morphism 𝑓∶ 𝑉 ′ → 𝑉 is called boundaryless if Int(𝑉 ′/𝑉) = 𝑉 ′.

2.20 Proposition (Berkovich, Ducros). If 𝑓∶ 𝑉 ′ → 𝑉 is a flat and boundaryless
morphism of 𝐾-analytic spaces then it is topologically open.

Proof. By [Ber93, Lem. 1.1.1 (i)] a subset of 𝑉 is open if and only if its intersection
with every affinoid domain𝑊 is open in𝑊. It follows that it is enough to show that
for every affinoid domain𝑊 ⊂ 𝑉 the morphism 𝑓∶ 𝑓−1(𝑊) → 𝑊 is topologically
open. By [Duc18, § 4.1.12] if 𝑊 ⊂ 𝑉 ′ is an affinoid domain then 𝑓∶ 𝑓−1(𝑊) →
𝑊 is flat. By [Tem15, Fact 4.2.4.3 (ii)] if 𝑊 ⊂ 𝑉 ′ is an affinoid domain then
𝑓∶ 𝑓−1(𝑊) → 𝑊 is boundaryless. It follows that we may assume that 𝑉 is a
𝐾-affinoid space and in particular good.
Now let 𝑈 ′ ⊂ 𝑉 ′ be an open subset; we want to show that 𝑓(𝑈 ′) ⊂ 𝑉 is open.

Let 𝑥 ∈ 𝑓(𝑈 ′) be a point. We will show that 𝑓(𝑈 ′) is a neighborhood of 𝑥 in 𝑉.
Choose 𝑦 ∈ 𝑉 ′ such that 𝑥 = 𝑓(𝑦). Let𝑊 ⊂ 𝑉 be an affinoid neighborhood of
𝑥 in 𝑉. Since 𝑓 is boundaryless, there exists an affinoid domain𝑊 ′ ⊂ 𝑓−1(𝑊)
such that𝑊 ′ is a neighborhood of 𝑦 in 𝑓−1(𝑊) and 𝑦 ∈ Int(𝑊 ′/𝑊). Again by
[Duc18, § 4.1.12] the coherent sheaf 𝒪𝑊′

𝐺
on 𝑊 ′ is 𝑊-flat. Furthermore, the

support of 𝒪𝑊′
𝐺
is all of 𝑊 ′, so by [Duc18, Thm. 9.2.3] applied to the morphism

𝑓∶ 𝑊 ′ ⊂ 𝑓−1(𝑊) → 𝑊, the image 𝑓(𝑊 ′) is a neighborhood of 𝑥 in𝑊. Since𝑊
is a neighborhood of 𝑥 in 𝑉 it follows that 𝑓(𝑊 ′) and in particular also 𝑓(𝑈 ′) is a
neighborhood of 𝑥 in 𝑉. ∎

2.21 ProperMorphisms. Amorphism 𝑓∶ 𝑉 ′ → 𝑉 of 𝐾-analytic spaces is called
proper if it is boundaryless and the preimage of every compact analytic domain
of 𝑉 is compact in 𝑉 ′ [Tem15, Def. 4.2.4.1 (ii)].

2.22 Remark. Note that a map between general topological spaces such that
preimages of compact sets are compact need not be proper in the sense of [Bou98,
Chap. 1, § 10.1, Def. 1], even though this is true if the source is Hausdorff and the
target is locally compact. However in the context of 𝐾-analytic spaces, properness
in the sense of Paragraph 2.21 is enough to imply topological properness by
Lemma 2.23 below.

2.23 Lemma. A proper morphism 𝑓∶ 𝑉 ′ → 𝑉 of 𝐾-analytic spaces is topologically
proper.
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Proof. Note that by [Ber93, Rem. 1.2.4], 𝑉 admits an open covering by paracom-
pact open subsets and by Lemma 2.14 (iii) every paracompact 𝐾-analytic space
admits a locally finite G-covering by affinoid domains. By [Bou98, Chap. 1, § 10.1,
Prop. 3] topological properness of a map can be checked after restricting to the
covering sets of an open covering of the base or of a locally finite closed covering
of the base. Since properness of a morphism of 𝐾-analytic spaces is stable under
pull-back by [Tem15, Fact 4.2.4.3 (iii)] we may assume that 𝑉 is a 𝐾-affinoid space
and in particular Hausdorff. By the definition of properness, 𝑉 ′ = 𝑓−1(𝑉) is a
compact𝐾-analytic space and by [Bou98, Chap. 1, § 10.1, Cor. 2] it is topologically
proper over 𝑉. ∎
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3. Formal Geometry
Throughout this chapter, 𝐾 denotes a non-archimedean field. We recall
some facts and constructions related to admissible formal schemes over
the valuation ring𝐾∘. Vector bundles on admissible formal schemes serve
asmodels of vector bundles on Berkovich spaces. We will focus on vector
bundles on admissible formal schemes and their associated metrics in
Chapter 6.

3.1 Admissible Formal Schemes. A topological 𝐾∘-algebra 𝒜 is called admis-
sible if it is topologically finitely generated (i.e. topologically isomorphic to a
quotient of the Tate algebra

𝐾∘{𝑇1,… , 𝑇𝑛} = { ∑
𝑖∈𝐍𝑛

𝑎𝑖𝑇 𝑖 || 𝑎𝑖 ∈ 𝐾∘, lim
|𝑖|→∞

|𝑎𝑖| = 0 }

over 𝐾∘) and flat over 𝐾∘.
An admissible formal 𝐾∘-scheme is a formal scheme over 𝐾∘ which admits

a locally finite covering by open subsets isomorphic to Spf(𝒜) for admissible
𝐾∘-algebras 𝒜. Note that these are called quasi-paracompact admissible formal
schemes in [Bos14, p. 204]. We include the quasi-paracompactness in the defini-
tion so that we can speak about the generic fiber as a Berkovich 𝐾-analytic space.
With this convention we are following e.g. [Gub07, § 2.6].

3.2 Generic Fiber. There is a functor 𝔙 ↦ 𝔙𝜂 from admissible formal schemes
over𝐾∘ to strictly𝐾-analytic spaces given on affine admissible formal𝐾∘-schemes
by

Spf(𝒜)𝜂 ≔ ℳ(𝐴⊗𝐾∘ 𝐾)
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and extended to arbitrary admissible formal 𝐾∘-schemes by gluing. Note that
𝔙𝜂 is always paracompact, so by [Ber93, Thm. 1.6.1], we can equivalently view
it as a quasi-paracompact, quasi-separated rigid 𝐾-analytic space. By [Bos14,
Thm. 8.4/3], the generic fiber functor induces an equivalence between the cate-
gory of admissible formal schemes, localized at the class of admissible blow-ups
and the category of paracompact strictly 𝐾-analytic spaces.

3.3 Remark. Let 𝔙 be an admissible formal 𝐾∘-scheme. The generic fiber 𝔙𝜂 is
not a subspace of 𝔙 in a precise sense (e.g. the sense of G-topological spaces).
However, if we denote by𝒞(𝔙) the site associated to 𝔙 (with objects given by

the open subsets of 𝔙), and by𝒞((𝔙𝜂)𝐺) the site associated to (𝔙𝜂)𝐺 (with objects
given by the analytic domains of 𝔙𝜂), then we do have a canonical morphism of
sites ([Sta23, Def. 00X1])

𝑖∶ 𝒞((𝔙𝜂)𝐺) → 𝒞(𝔙).

It is given by mapping an open subset 𝔘 ⊂ 𝔙 to the analytic domain 𝔘𝜂 ↪ 𝔙𝜂.
Viewing𝒞((𝔙𝜂)𝐺) and𝒞(𝔙) as ringed sites, with structure sheaves given by the
structure sheaf of 𝔙𝜂, resp. the structure sheaf of 𝔙, we can even view 𝑖 as a
morphism of ringed sites. The morphism between the structure sheaves is locally
given by the ring homomorphisms

𝒜 → 𝒜⊗𝐾∘ 𝐾, 𝑓 ↦ 𝑓 ⊗ 1.

3.4 Lemma. Let𝒜 be an admissible 𝐾∘-algebra. Then the canonical ring homo-
morphism𝒜 → 𝒜⊗𝐾∘ 𝐾maps𝒜 into the subring (𝒜 ⊗𝐾∘ 𝐾)∘ of power-bounded
elements.

Proof. Choosing a surjective homomorphism 𝐾∘{𝑇1,… , 𝑇𝑟} ↠ 𝒜, we get a surjec-
tive homomorphism 𝐾{𝑇1,… , 𝑇𝑟} ↠ 𝒜⊗𝐾∘ 𝐾 fitting into a commutative diagram

𝐾∘{𝑇1,… , 𝑇𝑟} 𝐾{𝑇1,… , 𝑇𝑟}

𝒜 𝒜 ⊗𝐾∘ 𝐾.

←→

←↠ ←↠

← →

Since 𝐾∘{𝑇1,… , 𝑇𝑛}maps onto the power-bounded elements of 𝐾{𝑇1,… , 𝑇𝑟} and
homomorphisms of 𝐾-affinoid algebras map power-bounded elements to power-
bounded elements, we see that𝒜 is mapped into the power-bounded elements of
𝒜⊗𝐾∘ 𝐾. ∎
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3.5 Special Fiber and Reduction Map. There is a functor 𝔙 ↦ �̃� from ad-
missible formal 𝐾∘-schemes to 𝐾-schemes of locally finite type given for affine
admissible formal 𝐾∘-schemes by

S̃pf(𝒜) ≔ Spec(𝒜 ⊗𝐾∘ 𝐾) = Spec(𝒜/𝐾∘∘𝒜)

and extended to arbitrary admissible formal𝐾∘-schemes by gluing. The𝐾-scheme
�̃� is called the special fiber of the admissible formal 𝐾∘-scheme 𝔙.
For every admissible formal scheme 𝔙, there is a canonical map of sets

red∶ 𝔙𝜂 → �̃�.

It is given locally by

ℳ(𝒜 ⊗𝐾∘ 𝐾) → Spec(𝒜/𝐾∘∘𝒜), 𝑥 ↦ { 𝑓 ∈ 𝒜 | |(𝑓 ⊗ 1)(𝑥)| < 1 }/𝐾∘∘𝒜.

The reduction map is functorial in 𝔙, i.e. if 𝔣∶ 𝔙′ → 𝔙 is a morphism of
admissible formal 𝐾∘-schemes, then the induced diagram

𝔙′
𝜂 𝔙𝜂

𝔙′ �̃�

←→

←→red ←→ red

←→

commutes.

3.6 Formal Models. If 𝑉 is a paracompact strictly 𝐾-analytic space, then an
admissible formal 𝐾∘-scheme 𝔙 together with a fixed isomorphism 𝔙𝜂 ⥲ 𝑉
is called a formal model for 𝑉. It follows from [Bos14, Thm. 8.4/3] that any
paracompact strictly 𝐾-analytic space admits a formal model. If 𝔙, 𝔙′ are two
formal models for 𝑉, then a morphism of models from 𝔙′ to 𝔙 is a morphism
𝔣∶ 𝔙′ → 𝔙 of formal 𝐾∘-schemes whose restriction to the generic fiber is the
identity id𝑉∶ 𝑉 → 𝑉. The category of formal models for 𝑉 is directed [GM19,
§ 2.2].
If 𝑋 is a 𝐾-scheme of finite type, then a formal model for 𝑋 is by definition a

formal model for 𝑋an.
If 𝔙 is a formal model for the paracompact strictly 𝐾-analytic space 𝑉 and

𝔘 ↪ 𝔙 is the embedding of an open subset of 𝔙, then 𝔘𝜂 ↪ 𝔙𝜂 is an analytic
domain embedding. We denote the corresponding analytic domain of 𝑉 under
the isomorphism 𝔙𝜂 ⥲ 𝑉 by 𝔘 ∩ 𝑉. By construction 𝔘 is a formal model for
𝔘 ∩ 𝑉. In particular, we have 𝔙 ∩ 𝑉 = 𝑉.
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By Remark 3.3 above, the assignment 𝔘 ↦ 𝔘 ∩ 𝑉 defines a morphism of sites
𝑖∶ 𝒞(𝑉𝐺) → 𝒞(𝔙) which is part of a canonical morphism of ringed sites

𝑖∶ (𝒞(𝑉𝐺), 𝒪𝑉𝐺) → (𝒞(𝔙), 𝒪𝔙).

If 𝔘 ⊂ 𝔙 is an open subset, we use the notation

Γ(𝔘, 𝒪𝔙) → Γ(𝔘 ∩ 𝑉,𝒪𝑉𝐺), 𝑓 ↦ 𝑓|𝔘∩𝑉,

for the canonical ring homomorphism.
If 𝑥 ∈ 𝔘∩𝑉, then we write 𝑓(𝑥) ≔ 𝑓|𝑉∩𝔘(𝑥) ∈ ℋ(𝑥). Note that by Lemma 3.4

we have |𝑓(𝑥)| ≤ 1 for all 𝑥 ∈ 𝔘 ∩ 𝑉 and 𝑓 ∈ Γ(𝔘, 𝒪𝔙).

3.7 Lemma. Assume that𝐾 is algebraically closed. Let𝑉 be a reduced paracompact
strictly 𝐾-analytic space and 𝔙 a formal model for 𝑉. Then there exists a formal
model 𝔙′ and a morphism of formal models 𝔣∶ 𝔙′ → 𝔙 such that the special fiber
𝔙′ of 𝔙′ is a reduced scheme.

Proof. The proof is essentially an application of [BL86, Lem. 1.1]. If 𝔙 = Spf(𝒜)
is affine, then we define the formal scheme 𝔙′ by 𝔙′ = Spf((𝒜 ⊗𝐾∘ 𝐾)∘). By
Lemma 3.4, we have a canonical morphism 𝔣∶ 𝔙′ → 𝔙. In general, we construct
the formal scheme 𝔙′ and the morphism 𝔣∶ 𝔙′ → 𝔙 by gluing from the affine
case. In the notation of [BL86, Sec. 1], we have 𝔙′ = (𝔙f-an)f-sch.
We want to argue that 𝔙′ is an admissible formal scheme with reduced special

fiber and that the canonical morphism 𝔣∶ 𝔙′ → 𝔙 induces an isomorphism on
the generic fibers. For this we can assume that 𝔙 = Spf(𝒜) is affine.
By definition, 𝔙f-an is the formal analytic variety associated to the strictly 𝐾-

affinoid algebra𝒜⊗𝐾∘𝐾. Since 𝑉 = ℳ(𝒜⊗𝐾∘𝐾) is reduced, the algebra𝒜⊗𝐾∘𝐾
is reduced and since 𝐾 is algebraically closed, it is distinguished by [BGR84,
Thm. 6.4.3/1]. By [BL86, Lem. 1.1], (𝔙f-an)f-sch is an admissible formal 𝐾∘-scheme
with reduced special fiber. The morphism on generic fibers induced by 𝔣 is given
by the canonical map

𝒜⊗𝐾∘ 𝐾 → (𝒜 ⊗𝐾∘ 𝐾)∘ ⊗𝐾∘ 𝐾,

which is obviously an isomorphism. ∎

3.8 Algebraic Models. Let 𝑋 be a proper 𝐾-scheme. An algebraic 𝐾∘-model
for 𝑋 is a proper flat 𝐾∘-scheme𝒳 together with a fixed isomorphism𝒳𝜂 ⥲ 𝑋.
Here 𝒳𝜂 ≔ 𝑋 ×𝐾∘ Spec(𝐾) denotes the generic fiber of 𝒳. In that case the
formal completion𝒳 of 𝒳 along the special fiber is a formal model for 𝑋 [Bos14,
Exmp. 7.2/4].
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4. Vector Bundles on
Berkovich Spaces

Throughout this section, 𝑉 will denote a 𝐾-analytic space. We define
vector bundles on 𝑉 as locally free sheaves in the G-topology. We discuss
operations of pull-back, change of base field, tensor product, dual bundle
etc. for vector bundles. Particularly important will be the construction of
the total space of a vector bundle as defined in Paragraph 4.6 because of
its use in our definition of continuous metrics as well as the construction
of the projective bundle and the tautological line bundle as defined in
Paragraph 4.28 because of their relation with the Fubini-Study metric.

4.1 Vector Bundles. A vector bundle of rank 𝑟 on 𝑉 is a G-locally free sheaf of
𝒪𝑉𝐺-modules on 𝑉𝐺 of rank 𝑟. In other words, it is an 𝒪𝑉𝐺-module 𝐸 such that
there exists a G-covering 𝑉 = ⋃𝑖∈𝐼 𝑉𝑖 by analytic domains such that 𝐸|𝑉𝑖 ≅ 𝒪𝑟

(𝑉𝑖)𝐺
for all 𝑖 ∈ 𝐼 where 𝐸|𝑉𝑖 denotes the restriction of the sheaf 𝐸 to (𝑉𝑖)𝐺. We do not
consider vector bundles of non-constant rank. If 𝑈 ⊂ 𝑉 is an analytic domain
and 𝑠1,… , 𝑠𝑟 ∈ Γ(𝑈, 𝐸) are sections inducing an isomorphism 𝐸|𝑈 ≅ 𝒪𝑟

𝑈𝐺
, then

we call (𝑠1,… , 𝑠𝑟) a frame for 𝐸 over 𝑈.
A morphism of vector bundles 𝛼∶ 𝐸 → 𝐹 on 𝑉 is a morphism of sheaves of

𝒪𝑉𝐺-modules.
Recall from Paragraph 2.3 that there is a canonical morphism 𝜋𝑉∶ (𝑉𝐺, 𝒪𝑉𝐺) →

(𝑉, 𝒪𝑉) of ringed G-topological spaces. It follows from [Ber93, Prop. 1.3.4 (iii)]
that if 𝑉 is good, then this morphism induces an equivalence from the category
of locally free 𝒪𝑉-modules to the category of locally free 𝒪𝑉𝐺-modules, i.e. the
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Berkovich topology can be used instead of the G-topology in the definition of a
vector bundle. In particular, if 𝑉 is good and 𝐸 is a vector bundle on 𝑉, then there
exists a covering 𝑉 = ⋃𝑖∈𝐼𝑈𝑖 by open subsets 𝑈𝑖 such that 𝐸|𝑈𝑖 admits a frame
for each 𝑖 ∈ 𝐼.

4.2 Pull-backs. Let 𝑓∶ 𝑉 ′ → 𝑉 be a morphism of 𝐾-analytic spaces (or more
generally of analytic spaces over 𝐾) and let 𝐸 be a vector bundle on 𝑉. By Para-
graph 2.5 (resp. Paragraph 2.8), 𝑓 induces a morphism 𝑓∶ (𝑉 ′

𝐺, 𝒪𝑉 ′
𝐺
) → (𝑉𝐺, 𝒪𝑉𝐺)

of ringed G-topological spaces. The sheaf 𝑓∗𝐸 defined in Paragraph 2.3 is then a
vector bundle on 𝑉 ′ which we call the pull-back of 𝐸 along 𝑓.
The unit morphism 𝐸 → 𝑓∗𝑓∗𝐸 of the adjunction between 𝑓∗ and 𝑓∗ gives us

for every analytic domain 𝑈 ⊂ 𝑉 a map

𝑓∗∶ Γ(𝑈, 𝐸) → Γ(𝑓−1(𝑈), 𝑓∗𝐸), 𝑠 ↦ 𝑓∗𝑠.

It is clear that if 𝑠1,… , 𝑠𝑟 ∈ Γ(𝑈, 𝐸) form a frame of 𝐸 over 𝑈, then 𝑓∗𝑠1,… , 𝑓∗𝑠𝑟
form a frame for 𝑓∗𝐸 over 𝑓−1𝑈.
If 𝑔∶ 𝑉″ → 𝑉 ′ is another morphism of analytic spaces over 𝐾, then by [Sta23,

Lem. 03D8] there is a canonical isomorphism

(𝑓𝑔)∗𝐸 ⥲ 𝑔∗𝑓∗𝐸 (4.2.1)

which we often use to identify (𝑓𝑔)∗𝐸 and 𝑔∗𝑓∗𝐸.

4.3 Vector Bundles over a Point. Let 𝑉 = ℳ(𝐾) be a point. Then a vector
bundle on 𝑉 is simply a finite-dimensional 𝐾-vector space. More precisely, the
assignment 𝐸 ↦ Γ(𝑉, 𝐸) is an equivalence of categories from the category of
vector bundles on 𝑉 to the category of finite-dimensional 𝐾-vector spaces.
If 𝐿/𝐾 is an extension of non-archimedean fields, then the pull-back functor

for vector bundles along the morphism 𝑓∶ ℳ(𝐿) → ℳ(𝐾) of analytic spaces over
𝐾 corresponds to the scalar extension 𝐸 ↦ 𝐸 ⊗𝐾 𝐿 of finite dimensional 𝐾-vector
spaces. Under this identification the unit map 𝐸 → 𝑓∗𝑓∗𝐸 of Paragraph 4.2
corresponds to the embedding 𝐸 → 𝐸 ⊗𝐾 𝐿, 𝑣 ↦ 𝑣 ⊗ 1.
Indeed, by construction the push-forward functor 𝑓∗ corresponds to restriction

of scalars and the scalar extension functor for vector spaces with the specified
unit map is left adjoint to this functor.

4.4 Fiber Vector Spaces. If 𝑥 ∈ 𝑉 is a point, then we have by Paragraph 2.10 a
canonical morphism of analytic spaces over 𝐾 which we denote by

𝑖𝑥∶ ℳ(ℋ(𝑥)) → 𝑉.

If 𝐸 is a vector bundle on𝑉, then it pulls back to the vector bundle 𝑖∗𝑥𝐸 onℳ(ℋ(𝑥))
which can be identified with the finite-dimensionalℋ(𝑥)-vector space

𝐸(𝑥) ≔ Γ(ℳ(ℋ(𝑥)), 𝑖∗𝑥𝐸)
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by Paragraph 4.3. The finite-dimensionalℋ(𝑥)-vector space 𝐸(𝑥) is called the
fiber of 𝐸 over 𝑥.
Obviously, a morphism 𝛼∶ 𝐸 → 𝐹 of vector bundles induces for each 𝑥 ∈ 𝑉 an

ℋ(𝑥)-linear map 𝛼(𝑥)∶ 𝐸(𝑥) → 𝐹(𝑥).
If 𝑠 ∈ Γ(𝑉, 𝐸) is a section, then we write 𝑠(𝑥) ≔ 𝑖∗𝑥𝑠 ∈ 𝐸(𝑥).

4.5 Lemma. Let 𝑓∶ 𝑉 ′ → 𝑉 be a morphism of analytic spaces over 𝐾, 𝑥′ ∈ 𝑉 ′

and let 𝐸 be a vector bundle on 𝑉. Then there is a canonical morphism of completed
residue fieldsℋ(𝑓(𝑥′)) → ℋ(𝑥′) and a canonical isomorphism

(𝑓∗𝐸)(𝑥′) ≅ 𝐸(𝑓(𝑥′)) ⊗ℋ(𝑓(𝑥′)) ℋ(𝑥′).

If 𝑠 ∈ Γ(𝑉, 𝐸) is a section, then under this isomorphism the element (𝑓∗𝑠)(𝑥′) ∈
(𝑓∗𝐸)(𝑥′) corresponds to the element 𝑠(𝑓′(𝑥)) ⊗ 1 ∈ 𝐸(𝑓(𝑥′)) ⊗ℋ(𝑓(𝑥′)) ℋ(𝑥′).

Proof. The morphismℳ(ℋ(𝑥′)) → 𝑉 ′ → 𝑉maps the unique point ofℳ(ℋ(𝑥′))
to 𝑓(𝑥′) so according to Paragraph 2.10 we have a commutative diagram

ℳ(ℋ(𝑥′)) ℳ(ℋ(𝑓(𝑥′)))

𝑉 ′ 𝑉.

←→

←→𝑖𝑥′ ←→ 𝑖𝑓(𝑥′)

← →
𝑓

The vector bundle onℳ(ℋ(𝑥′)) corresponding to 𝐸(𝑓(𝑥′)) is obtained by pulling
back 𝐸 along the composition in this commutative diagram.
Pulling back toℳ(ℋ(𝑓(𝑥′))) yields 𝐸(𝑓(𝑥′)) so the claim follows from Para-

graph 4.3. ∎

4.6 Total Spaces. Let 𝐸 be a vector bundle on 𝑉. A total space of 𝐸 is a triple
(Tot(𝐸), 𝜋𝐸, Φ)whereTot(𝐸) is a𝐾-analytic space,𝜋𝐸∶ Tot(𝐸) → 𝑉 is amorphism
of 𝐾-analytic spaces and Φ = {Φℎ}ℎ is a family of natural bijections

Φℎ∶ Hom𝑉(𝑊,Tot(𝐸)) ⥲ Γ(𝑊, ℎ∗𝐸) (4.6.1)

for every𝐾-analytic space𝑊 and everymorphism of 𝐾-analytic spaces ℎ∶ 𝑊 → 𝑉.
Here the left hand side denotes the set of morphisms 𝑙∶ 𝑊 → Tot(𝐸) over 𝑉,
i.e. satisfying 𝜋𝐸 ∘ 𝑙 = ℎ. We require that the family Φ is functorial in ℎ, i.e. given
ℎ′∶ 𝑊 ′ → 𝑉 and a morphism 𝑔∶ 𝑊 ′ →𝑊 satisfying ℎ ∘ 𝑔 = ℎ′, the diagram

Hom𝑉(𝑊,Tot(𝐸)) Γ(𝑊, ℎ∗𝐸)

Hom𝑉(𝑊 ′,Tot(𝐸)) Γ(𝑊 ′, (ℎ′)∗𝐸)

← →
Φℎ

←→𝑔∗ ←→ 𝑔∗

←→
Φℎ′
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is commutative. Here the map 𝑔∗ on the left hand side is given by 𝑙 ↦ 𝑙 ∘ 𝑔
while the map 𝑔∗ on the right maps a section 𝑠 ∈ Γ(𝑊, ℎ∗𝐸) to the section
𝑔∗𝑠 ∈ Γ(𝑊 ′, 𝑔∗ℎ∗𝐸) = Γ(𝑊 ′, (ℎ′)∗𝐸).
Note that by Yoneda’s Lemma a total space (Tot(𝐸), 𝜋𝐸, Φ) is unique up to

unique isomorphism. We prove in Proposition 4.12 below that every vector
bundle on a 𝐾-analytic space admits a total space. Furthermore we show in
Proposition 4.14 that the universal property (4.6.1) holds more generally for a
morphism ℎ∶ 𝑊 → 𝑉 of analytic spaces over 𝐾.

4.7 Total Space over a Point. Let 𝐸 be an 𝑟-dimensional 𝐾-vector space with
basis 𝑒1,… , 𝑒𝑟 regarded as a vector bundle over ℳ(𝐾). Consider the analytic
affine space 𝐀𝑟,an𝐾 with its structural morphism 𝜋∶ 𝐀𝑟,an𝐾 →ℳ(𝐾). We construct
a family Φ𝑒 of bijections Φ𝑒,ℎ∶ Hom(𝑊,𝐀𝑟,an𝐾 ) ⥲ Γ(𝑊, ℎ∗𝐸) for every morphism
of 𝐾-analytic spaces ℎ∶ 𝑊 → ℳ(𝐾) such that the triple (𝐀𝑟,an𝐾 , 𝜋, Φ𝑒) is a total
space for 𝐸.
For any such ℎ, the pull-back ℎ∗𝐸 admits a frame ℎ∗𝑒1,… , ℎ∗𝑒𝑟 ∈ Γ(𝑊, ℎ∗𝐸)

which in turn induces an isomorphism 𝒪𝑊𝐺(𝑊)𝑟 ⥲ Γ(𝑊, ℎ∗𝐸). We let Φ𝑒,ℎ be
the composition of the chain of bijections

Hom(𝑊,𝐀𝑟,an𝐾 ) ⥲ Hom(𝑊,𝐀1,an𝐾 )𝑟 = 𝒪𝑊𝐺(𝑊)𝑟 ⥲ Γ(𝑊, ℎ∗𝐸).

For the first bijection we have used that 𝐀𝑟,an𝐾 is a product of 𝑟 copies of 𝐀1,an𝐾 in
the category of 𝐾-analytic spaces (because the analytification functor commutes
with fibered products). It is easy to verify that the family Φ𝑒 is functorial.

4.8 Total Space of a Pull-Back. Let 𝑓∶ 𝑉 ′ → 𝑉 be a morphism of 𝐾-analytic
spaces and let 𝐸 be a vector bundle on 𝑉 with a total space (Tot(𝐸), 𝜋𝐸, Φ). Form
the fibered product

Tot(𝐸) ×𝑉 𝑉 ′ Tot(𝐸)

𝑉 ′ 𝑉.

←→
𝑓′

←→𝜋′ ←→ 𝜋𝐸

← →
𝑓

We construct a family Φ𝑉 ′ of bijections Φ𝑉 ′,ℎ′ ∶ Hom𝑉 ′(𝑊,Tot(𝐸) ×𝑉 𝑉 ′) ⥲
Γ(𝑊, (ℎ′)∗𝑓∗𝐸) for every morphism ℎ′∶ 𝑊 → 𝑉 ′ such that the triple (Tot(𝐸) ×𝑉
𝑉 ′, 𝜋′, Φ𝑉 ′) is a total space for 𝐸.
For any such ℎ′ we can view𝑊 as a 𝐾-analytic space over 𝑉 via the composition

ℎ ≔ 𝑓 ∘ ℎ′. Then the universal property of the fibered product provides us with a
bijection

Hom𝑉 ′(𝑊,Tot(𝐸) ×𝑉 𝑉 ′) ⥲ Hom𝑉(𝑊,Tot(𝐸))
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(given by composition with 𝑓′). We let Φ𝑉 ′,ℎ′ be the composition

Hom𝑉 ′(𝑊,Tot(𝐸)×𝑉𝑉 ′) ⥲ Hom𝑉(𝑊,Tot(𝐸)) ⥲ Γ(𝑊, ℎ∗𝐸) = Γ(𝑊, (ℎ′)∗𝑓∗𝐸).

It is easy to verify that the family Φ𝑉 ′ is functorial in ℎ′.

4.9 Total Space of a Trivial Vector Bundle. Let 𝐸 be a trivial vector bundle on
𝑉 with a frame 𝑠1,… , 𝑠𝑟. The frame 𝑠 corresponds to an identification of 𝐸 with a
pull-back of a 𝐾-vector space with basis 𝑒1,… , 𝑒𝑟, regarded as a vector bundle on
ℳ(𝐾), along the structural morphism 𝑉 → ℳ(𝐾). By Paragraphs 4.7 and 4.8 the
projection 𝜋∶ 𝑉 × 𝐀𝑟,an𝐾 → 𝑉 carries canonically the structure Φ𝑠 of a total space
for 𝐸.

4.10 Lemma. Let 𝑓∶ 𝑉 ′ → 𝑉 be a morphism of 𝐾-analytic spaces, let 𝐸 be a vector
bundle on 𝑉 with pull-back 𝑓∗𝐸 to 𝑉 ′. Let (Tot(𝐸), 𝜋𝐸, Φ) and (Tot(𝑓∗𝐸), 𝜋𝑓∗𝐸, Φ′)
be total spaces for 𝐸 and 𝑓∗𝐸 respectively. Denote by 𝑓′∶ Tot(𝑓∗𝐸) → Tot(𝐸) the
morphism corresponding to id∶ Tot(𝑓∗𝐸) → Tot(𝑓∗𝐸) under the chain of bijections

(Φ′)−1 ∘ Φ∶ Hom𝑉(Tot(𝑓∗𝐸),Tot(𝐸)) ⥲ Γ(Tot(𝑓∗𝐸), 𝜋∗𝑓∗𝐸(𝑓
∗𝐸))

⥲ Hom𝑉 ′(Tot(𝑓∗𝐸),Tot(𝑓∗𝐸)).

Here we regard Tot(𝑓∗𝐸) as a space over 𝑉 via the map 𝑓 ∘ 𝜋𝑓∗𝐸∶ Tot(𝑓∗𝐸) → 𝑉
in the first line. Then the diagram

Tot(𝑓∗𝐸) Tot(𝐸)

𝑉 ′ 𝑉

←→
𝑓′

←→𝜋𝑓∗𝐸 ←→ 𝜋𝐸

← →
𝑓

(4.10.1)

is a cartesian commutative diagram of 𝐾-analytic spaces.

Proof. The fact that the diagram commutes is just a translation of the fact that 𝑓′
is a morphism of 𝐾-analytic spaces over 𝑉. To show that the diagram is cartesian,
suppose that we are given ℎ∶ 𝑊 → 𝑉 ′ and 𝑙∶ 𝑊 → Tot(𝐸) such that 𝑓∘ℎ = 𝜋𝐸∘𝑙.
By the universal property of Tot(𝐸), 𝑙 corresponds to a section 𝑠 ∈ Γ(𝑊, ℎ∗𝑓∗𝐸).
By the universal property of Tot(𝑓∗𝐸), the section 𝑠 corresponds to a morphism
𝑙′∶ 𝑊 → Tot(𝑓∗𝐸) satisfying 𝜋𝑓∗𝐸 ∘ 𝑙′ = ℎ. In fact, also 𝑓′ ∘ 𝑙′ = 𝑙 holds. This
follows from sending id ∈ Hom𝑉 ′(Tot(𝑓∗𝐸),Tot(𝑓∗𝐸)) around the commutative
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diagram

Hom𝑉 ′(Tot(𝑓∗𝐸),Tot(𝑓∗𝐸)) Hom𝑉 ′(𝑊,Tot(𝑓∗𝐸))

Γ(Tot(𝑓∗𝐸), 𝜋∗𝑓∗𝐸(𝑓
∗𝐸)) Γ(𝑊, ℎ∗𝑓∗𝐸)

Hom𝑉(Tot(𝑓∗𝐸),Tot(𝐸)) Hom𝑉(𝑊,Tot(𝐸)).

←→

←→ ←→

←→ ←→

← →

The lower and the upper vertical maps are given by composition with 𝑙′∶ 𝑊 →
Tot(𝑓∗𝐸). The commutativity of the diagram follows from the functoriality con-
dition in Paragraph 4.6.
We have shown how to construct from a pair (ℎ, 𝑙) satisfying 𝑓 ∘ ℎ = 𝜋𝐸 ∘ 𝑙 a

morphism 𝑙′ satisfying 𝜋𝑓∗𝐸 ∘ 𝑙′ = ℎ and 𝑓′ ∘ 𝑙′ = 𝑙. It is easy to verify that our
construction is inverse to the operation 𝑙′ ↦ (𝜋𝑓∗𝐸 ∘ 𝑙′, 𝑓′ ∘ 𝑙′) which proves that
the diagram (4.10.1) is cartesian. ∎

4.11 Gluing Total Space Structures. Let 𝐸 be a vector bundle on 𝐸, 𝜋∶ 𝑇 → 𝑉
a morphism of 𝐾-analytic spaces and let 𝑈 ⊂ 𝑉 be an analytic domain in 𝑉.
Applying Paragraph 4.8 to the embedding 𝑈 ↪ 𝑉 we see that if Φ is a family
of bijections such that (𝑇, 𝜋, Φ) is a total space for 𝐸 then there is an induced
family Φ|𝑈 such that the triple (𝜋−1(𝑈), 𝜋|𝑈, Φ|𝑈) is a total space for 𝐸|𝑈 (here
𝜋|𝑈 denotes the induced morphism 𝜋−1(𝑈) → 𝑈). In this way, the assignment

𝑈 ↦ {Φ | (𝜋−1(𝑈), 𝜋|𝑈, Φ) is a total space for 𝐸|𝑈 }

is a G-presheaf of sets on 𝑉. We claim that it is in fact a sheaf. So let 𝑉 = ⋃𝑖∈𝐼 𝑉𝑖
be a G-covering of 𝑉 by analytic domains and for each 𝑖 ∈ 𝐼 let Φ𝑖 be a family of
bijections such that each (𝜋−1(𝑈𝑖), 𝜋|𝑈𝑖, Φ𝑖) is a total space for 𝐸|𝑉𝑖 and such that
Φ𝑖|𝑉𝑖𝑗 = Φ𝑗|𝑉𝑖𝑗 for 𝑖, 𝑗 ∈ 𝐼. We sketch here how to construct the unique total space
structure Φ such that (𝑇, 𝜋, Φ) is a total space for 𝐸 and such that Φ|𝑉𝑖 = Φ𝑖.
In the following we write 𝑇𝑖 ≔ 𝜋−1(𝑉𝑖) and 𝜋𝑖∶ 𝑇𝑖 → 𝑉𝑖 for the restriction

of 𝜋. Suppose that ℎ∶ 𝑊 → 𝑉 is a morphism of 𝐾-analytic spaces and let
𝑠 ∈ Γ(𝑊, ℎ∗𝐸) be a section. For each 𝑖 ∈ 𝐼 we denote 𝑊𝑖 ≔ ℎ−1(𝑉𝑖) and we
denote by ℎ𝑖∶ 𝑊𝑖 → ℎ𝑖 the restriction of ℎ. By restriction we obtain for each 𝑖 ∈ 𝐼
a section 𝑠𝑖 ∈ Γ(𝑊𝑖, ℎ∗𝑖 (𝐸|𝑉𝑖)). This induces a morphism 𝑙𝑖 ≔ Φ−1

𝑖,ℎ𝑖(𝑠𝑖)∶ 𝑊𝑖 → 𝑇𝑖.
Using that the Φ𝑖 agree on the overlaps one checks that the morphisms

𝑊𝑖 𝑇𝑖 𝑇←→
𝑙𝑖 ↩→
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agree on the overlaps, so by [Ber93, Prop. 1.3.2] they glue to a morphism of
𝐾-analytic spaces Φ−1(𝑠)∶ 𝑊 → 𝑇. The construction gives a map

Φ−1∶ Γ(𝑊, ℎ∗𝐸) → Hom𝑉(𝑊, 𝑇)

and by a similar argument one constructs the inverse map. Functoriality in ℎ is
easy to verify as is the fact that restriction to 𝑉𝑖 gives back the Φ𝑖.

4.12 Proposition. Every vector bundle𝐸 on the𝐾-analytic space𝑉 admits a (unique
up to unique isomorphism) total space (Tot(𝐸), 𝜋𝐸, Φ).

Proof. For trivial 𝐸 we constructed the total space in Paragraph 4.9. In the fol-
lowing we choose for every trivial vector bundle on every 𝐾-analytic space a fixed
total space. Next we treat the case where 𝑉 is paracompact and 𝐸 is arbitrary.
By Lemma 2.14 (iii) there exists a locally finite G-covering by affinoid domains
𝑉 = ⋃𝑖∈𝐼 𝑉𝑖 such that the restrictions 𝐸|𝑉𝑖 are trivial. We denote 𝑉𝑖𝑗 ≔ 𝑉𝑖 ∩ 𝑉𝑗
for 𝑖, 𝑗 ∈ 𝐼. Note that since a paracompact space is in particular Hausdorff, the
compact set 𝑉𝑗 is closed in 𝑉, so 𝑉𝑖𝑗 is closed in 𝑉𝑖. By the case treated above,
Tot(𝐸|𝑉𝑖) exists, we denote the structural map by 𝜋𝑖∶ Tot(𝐸|𝑉𝑖) → 𝑉𝑖. Similarly,
Tot(𝐸|𝑉𝑖𝑗) exists, we denote the structural map by 𝜋𝑖𝑗∶ Tot(𝐸|𝑉𝑖𝑗) → 𝑉𝑖𝑗. Note
that 𝐸|𝑉𝑖𝑗 is just the pull-back of 𝐸|𝑉𝑖 along the embedding 𝜄𝑖𝑗∶ 𝑉𝑖𝑗 ↪ 𝑉𝑖. Hence,
by Lemma 4.10 we have a canonical cartesian commutative diagram

Tot(𝐸|𝑉𝑖𝑗) Tot(𝐸|𝑉𝑖)

𝑉𝑖𝑗 𝑉𝑖.

↩→
𝜄′𝑖𝑗

←→𝜋𝑖𝑗 ←→ 𝜋𝑖

↩ →𝜄𝑖𝑗

The fact that the diagram is cartesian means that 𝜄′𝑖𝑗 induces an isomorphism
𝜎𝑖𝑗∶ Tot(𝐸|𝑉𝑖𝑗) ⥲ 𝑇𝑖𝑗 ≔ 𝜋−1𝑖 (𝑉𝑖𝑗) ⊂ Tot(𝐸|𝑉𝑖). As the preimage of the closed
analytic domain 𝑉𝑖𝑗 ⊂ 𝑉𝑖 under 𝜋𝑖, the subset 𝑇𝑖𝑗 ⊂ Tot(𝐸|𝑉𝑖) is a closed analytic
domain. Since the covering {𝑉𝑖}𝑖∈𝐼 is locally finite, for each 𝑖 ∈ 𝐼 the set of 𝑗 ∈ 𝐼
with 𝑇𝑖𝑗 ≠ ∅ is finite. Furthermore the isomorphisms

𝜈𝑖𝑗∶ 𝑇𝑖𝑗 Tot(𝐸|𝑉𝑖𝑗) 𝑇𝑗𝑖

←→
𝜍𝑖𝑗−1 ←→

𝜍𝑗𝑖

satisfy the cocycle condition, which allows by [Ber93, Prop. 1.3.3 (b)] to glue the
spaces Tot(𝐸|𝑉𝑖) to a space Tot(𝐸) which is covered by the spaces Tot(𝐸|𝑉𝑖) for
𝑖 ∈ 𝐼.
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By construction, the maps

Tot(𝐸|𝑉𝑖) 𝑉𝑖 𝑉←→
𝜋𝑖 ↩→

are compatible with the gluing data, so by [Ber93, Prop. 1.3.2] they induce a map
𝜋∶ Tot(𝐸) → 𝑉 which restricts on each 𝑉𝑖 to the map 𝜋𝑖∶ Tot(𝐸|𝑉𝑖) → 𝑉𝑖. The
total space structures Φ𝑖 making (Tot(𝐸|𝑉𝑖), 𝜋𝑖, Φ𝑖) a total space for 𝐸|𝑉𝑖 agree on
the overlaps so by Paragraph 4.11 they glue to a total space structure Φmaking
(Tot(𝐸), 𝜋𝐸, Φ) a total space for 𝐸.
It remains to treat the case where 𝑉 is not necessarily paracompact. In the

following we fix for every vector bundle on any 𝐾-analytic space and any re-
striction of such a vector bundle to an analytic domain a total space. By [Ber93,
Rem. 1.2.4] we can find a covering 𝑉 = ⋃𝑖∈𝐼 𝑉𝑖 by open paracompact subsets. We
already know that the vector bundles 𝐸|𝑉𝑖 and 𝐸|𝑉𝑖𝑗 admit total spaces, so we can
repeat the argument from the paracompact case. The only difference is that in
the gluing process we have to invoke [Ber93, Prop. 1.3.3 (a)] rather than [Ber93,
Prop. 1.3.3 (b)] in order to glue along open subsets. ∎

4.13 Change of Base Field. Let 𝐸 be a vector bundle on 𝑉 with total space
(Tot(𝐸), 𝜋𝐸, Φ) and let 𝐿/𝐾 be an extension of non-archimedean fields. Recall
from Paragraph 2.7 that it induces a morphism 𝜋𝐿/𝐾∶ 𝑉 ⨶𝐾 𝐿 → 𝑉 of analytic
spaces over𝐾 and in particular amorphismof the underlying ringedG-topological
spaces. We call the pull-back

𝐸 ⊗𝐾 𝐿 ≔ 𝜋∗𝐿/𝐾𝐸

the scalar extension of 𝐸 along 𝐿/𝐾. It is a vector bundle on 𝑉 ⨶𝐾 𝐿.
We consider now the scalar extension of the morphism 𝜋𝐸∶ Tot(𝐸) → 𝑉 along

𝐿/𝐾, namely
𝜋𝐸 ⨶𝐾 𝐿∶ Tot(𝐸) ⨶𝐾 𝐿 → 𝑉 ⨶𝐾 𝐿

and sketch how to construct a family Φ𝐿 of bijections

Φ𝐿,ℎ∶ Hom𝑉⨶𝐾𝐿(𝑊,Tot(𝐸) ⨶𝐾 𝐿) ⥲ Γ(𝑊, ℎ∗(𝐸 ⊗𝐾 𝐿))

for every morphism of 𝐿-analytic spaces ℎ∶ 𝑊 → 𝑉 ⨶𝐾 𝐿 such that the triple

(Tot(𝐸) ⨶𝐾 𝐿, 𝜋𝐸 ⨶𝐾 𝐿,Φ𝐿)

is a total space for 𝐸 ⊗𝐾 𝐿.
First, assume that 𝐸 is trivial with a frame 𝑠1,… , 𝑠𝑟. By Paragraph 4.9 the

projection 𝜋∶ 𝐀𝑟,an𝐾 ×𝐾 𝑉 → 𝑉 is a total space with the family of bijections Φ𝑠.
By the uniqueness of total spaces there is a unique isomorphism 𝜎𝑠∶ Tot(𝐸) →
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𝐀𝑟,an𝐾 × 𝑉 compatible with the projection maps and total space structures. By
scalar extension we obtain an isomorphism

Tot(𝐸) ⨶𝐾 𝐿 ⥲ (𝐀𝑟,an𝐾 ×𝐾 𝑉) ⨶𝐾 𝐿 ⥲ 𝐀𝑟,an𝐿 ×𝐿 (𝑉 ⨶𝐾 𝐿). (4.13.1)

The frame 𝜋∗𝐿/𝐾𝑠 for 𝐸 ⊗𝐾 𝐿 provides the projection 𝐀
𝑟,an
𝐿 × (𝑉 ⨶𝐾 𝐿) → 𝑉 ⨶𝐾 𝐿

with the structure of a total for 𝐸 ⊗𝐾 𝐿. Pulling it back along the isomorphism
(4.13.1) we obtain a total space structure Φ𝐿 on Tot(𝐸) ⨶𝐾 𝐿. We omit here the
straight-forward verification that Φ𝐿 is independent of the chosen frame and
compatible with restriction to analytic domains of 𝑉.
If 𝐸 is not necessarily trivial, we can pick a G-covering 𝑉 = ⋃𝑖∈𝐼 𝑉𝑖 of 𝑉 by

analytic domains such that each 𝐸|𝑉𝑖 is trivial. For each 𝑖 ∈ 𝐼 the restriction
(𝜋−1𝐸 (𝑉𝑖), 𝜋𝐸|𝑉𝑖, Φ|𝑉𝑖) is a total space for 𝐸|𝑉𝑖 so by the case above it induces a
total space structure Φ𝑖,𝐿 for the scalar extension 𝜋−1𝐸 (𝑉𝑖) ⨶𝐾 𝐿 which identifies
canonically with (𝜋𝐸⨶𝐾𝐿)−1(𝑉𝑖⨶𝐾𝐿). It is easy to check that these structures are
compatible with restriction so by Paragraph 4.11 we obtain a total space structure
Φ𝐿 for the morphism Tot(𝐸) ⨶𝐾 𝐿 → 𝑉 ⨶𝐾 𝐿.

4.14 Proposition. Let 𝐸 be a vector bundle on 𝑉 and let (Tot(𝐸), 𝜋𝐸, Φ) be a total
space for 𝑉. Then the functorial family of bijections

Φℎ∶ Hom𝑉(𝑊,Tot(𝐸)) ⥲ Γ(𝑊, ℎ∗𝐸)

for ℎ∶ 𝑊 → 𝑉 a morphism of 𝐾-analytic spaces, extends uniquely to a functorial
family of bijections

Φℎ∶ Hom𝑉(𝑊,Tot(𝐸)) ⥲ Γ(𝑊, ℎ∗𝐸) (4.14.1)

where ℎ∶ 𝑊 → 𝑉 is a allowed to be morphism of analytic spaces over 𝐾.

Proof. Indeed, uniqueness follows from Yoneda’s Lemma, because the family
(4.14.1) is completely determined by its component at ℎ = 𝜋𝐸 which is a mor-
phism of 𝐾-analytic spaces. We describe how to construct a natural bijection
(4.14.1) where ℎ∶ 𝑊 → 𝑉 ormore precisely ℎ∶ (𝑊, 𝐿) → (𝑉, 𝐾) is amorphism of
analytic spaces over𝐾 given by amorphism of 𝐿-analytic spaces ̃ℎ∶ 𝑊 → 𝑉⨶𝐾𝐿.
Here 𝐿/𝐾 is a non-archimedean field extension of 𝐾.
Let 𝑙 ∈ Hom𝑉(𝑊,Tot(𝐸)) be a morphism of analytic spaces over 𝐾 such that

𝜋𝐸 ∘ 𝑙 = ℎ. By definition (Paragraph 2.7), 𝑙 is given by a morphism ̃𝑙 ∶ 𝑊 →
Tot(𝐸) ⨶𝐾 𝐿 of 𝐿-analytic spaces such that (𝜋𝐸 ⨶𝐾 𝐿) ∘ ̃𝑙 = ̃ℎ. Recall from
Paragraph 4.13 that the triple (Tot(𝐸) ⨶𝐾 𝐿, 𝜋𝐸 ⨶𝐾 𝐿,Φ𝐿) is a total space for
𝐸 ⊗𝐾 𝐿 = 𝜋∗𝐿/𝐾𝐸, so we obtain a section Φ𝐿( ̃𝑙) ∈ Γ(𝑊, ̃ℎ∗(𝜋∗𝐿/𝐾𝐸)). Recall from
Paragraph 2.7 that 𝜋𝐿/𝐾 ∘ ̃ℎ = ℎ so in fact ̃ℎ∗𝜋∗𝐿/𝐾𝐸 = ℎ∗𝐸. We have thus described
a map

Φℎ∶ Hom𝑉(𝑊,Tot(𝐸)) → Γ(𝑊, ℎ∗𝐸), 𝑙 ↦ Φ𝐿( ̃𝑙)
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and it is straight-forward to verify that it is bijective, functorial with respect to ℎ
and agrees with Φℎ in the original sense if 𝐿 = 𝐾. ∎

4.15 Remark. From now on we fix for every vector bundle 𝐸 on 𝑉 a total space
(Tot(𝐸), 𝜋𝐸, Φ). We often keep the family Φ implicit and suppress it from the
notation.

4.16 Proposition. Let 𝐸 be a vector bundle on 𝑉 and let 𝑥 ∈ 𝑉 be a point. There is
a canonical bijection of sets

Ψ𝑥∶ colim
𝐿/ℋ(𝑥)

𝐸(𝑥) ⊗ℋ(𝑥) 𝐿 ⥲ 𝜋−1𝐸 (𝑥).

Proof. By Paragraph 2.11 we have a canonical bijection

colim
𝐿/ℋ(𝑥)

Hom𝑉(ℳ(𝐿),Tot(𝐸)) ⥲ 𝜋−1𝐸 (𝑥)

so it only remains to establish for a non-archimedean field extension 𝐿/ℋ(𝑥) a
natural bijection of sets

Hom𝑉(ℳ(𝐿),Tot(𝐸)) ⥲ 𝐸(𝑥) ⊗ℋ(𝑥) 𝐿.

This follows from the fact that by Proposition 4.14 we have a canonical bijection

Φℎ∶ Hom𝑉(ℳ(𝐿),Tot(𝐸)) ⥲ Γ(ℳ(𝐿), ℎ∗𝐸)

where ℎ denotes the composition ℎ∶ ℳ(𝐿) → ℳ(ℋ(𝑥)) → 𝑉. But the pull-back
of 𝐸 toℳ(ℋ(𝑥)) has global sections 𝐸(𝑥) by Paragraph 4.4 whereas the further
pull-back toℳ(𝐿) has global sections 𝐸(𝑥) ⊗ℋ(𝑥) 𝐿 by Paragraph 4.3. ∎

4.17 Remark. From the proof of Proposition 4.16 we see that the bijection

Ψ𝑥∶ colim
𝐿/ℋ(𝑥)

𝐸(𝑥) ⊗ℋ(𝑥) 𝐿 ⥲ 𝜋−1𝐸 (𝑥)

is given explicitly as follows: An element in the colimit is given by a non-archime-
dean field extension 𝐿/ℋ(𝑥) and a vector 𝑣 ∈ 𝐸(𝑥)⊗ℋ(𝑥)𝐿. We can interpret 𝑣 as
a global section of the vector bundle 𝐸 pulled back alongℳ(𝐿) → ℳ(ℋ(𝑥)) → 𝑉,
so it induces a morphismℳ(𝐿) → Tot(𝐸) by Proposition 4.14. The image of this
morphism is the desired point in 𝜋−1𝐸 (𝑥) ⊂ Tot(𝐸).

4.18 Sections. Let 𝐸 be a vector bundle on 𝑉 and let 𝑠 ∈ Γ(𝑉, 𝐸) be a section of
the sheaf 𝐸. Under the bijection

Φid𝑉 ∶ Hom𝑉(𝑉,Tot(𝐸)) ⥲ Γ(𝑉, 𝐸),

it corresponds to amorphism ̃𝑠 ∶ 𝑉 → Tot(𝐸) over𝑉. The fact that ̃𝑠 is amorphism
over 𝑉means that 𝜋𝐸 ∘ ̃𝑠 = id𝑉, i.e. ̃𝑠 ∶ 𝑉 → Tot(𝐸) is a section of the projection
𝜋𝐸∶ Tot(𝐸) → 𝑉.
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4.19 Lemma. Let 𝑓∶ 𝑉 ′ → 𝑉 be a morphism of 𝐾-analytic spaces, 𝐸 a vector
bundle on 𝑉 and consider the cartesian commutative diagram

Tot(𝑓∗𝐸) Tot(𝐸)

𝑉 ′ 𝑉

←→
𝑓′

←→𝜋𝑓∗𝐸 ←→ 𝜋𝐸

← →
𝑓

of Lemma 4.10. Let 𝑠 ∈ Γ(𝑉, 𝐸) be a section. We can consider the section 𝑓∗𝑠 ∈
Γ(𝑉 ′, 𝑓∗𝐸) and the induced morphism 𝑓∗𝑠∶ 𝑉 ′ → Tot(𝑓∗𝐸). Then the diagram

Tot(𝑓∗𝐸) Tot(𝐸)

𝑉 ′ 𝑉

←→
𝑓′

← →𝑓∗𝑠

← →
𝑓

← → ̃𝑠

commutes, i.e. we have ̃𝑠 ∘ 𝑓 = 𝑓′ ∘ 𝑓∗𝑠.

Proof. First consider the commutative diagram

Γ(𝑉, 𝐸) Hom𝑉(𝑉,Tot(𝐸))

Γ(𝑉 ′, 𝑓∗𝐸) Hom𝑉(𝑉 ′,Tot(𝐸))

← →
Φ−1
id

←→𝑓∗ ←→ 𝑓∗
←→

Φ−1
𝑓

obtained from the functoriality condition in Paragraph 4.6 applied to the mor-
phism 𝑓∶ 𝑉 ′ → 𝑉. Sending 𝑠 ∈ Γ(𝑉, 𝐸) around the diagram we see that the
isomorphism

Φ−1
𝑓 ∶ Γ(𝑉 ′, 𝑓∗𝐸) ⥲ Hom𝑉(𝑉 ′,Tot(𝐸))

maps 𝑓∗𝑠 ∈ Γ(𝑉 ′, 𝑓∗𝐸) to the morphism ̃𝑠 ∘ 𝑓∶ 𝑉 → Tot(𝐸).
Let us view 𝜋𝑓∗𝐸∶ Tot(𝑓∗𝐸) → 𝑉 ′ and id𝑉 ′ ∶ 𝑉 ′ → 𝑉 ′ as 𝐾-analytic spaces

over 𝑉 ′. The morphism 𝑓∗𝑠∶ 𝑉 ′ → Tot(𝑓∗𝐸) satisfies 𝜋𝑓∗𝐸 ∘ 𝑓∗𝑠 = id𝑉 ′ so we
can apply the functoriality condition of the total space (Tot(𝑓∗𝐸), 𝜋𝑓∗𝐸, Φ′) to
obtain a commutative diagram

Hom𝑉 ′(Tot(𝑓∗𝐸),Tot(𝑓∗𝐸)) Hom𝑉 ′(𝑉 ′,Tot(𝑓∗𝐸))

Γ(Tot(𝑓∗𝐸), 𝜋∗𝑓∗𝐸(𝑓
∗𝐸)) Γ(𝑉 ′, 𝑓∗𝐸).

←→Φ′
𝜋𝑓∗𝐸 ≅

←→
(𝑓∗𝑠)∗

←→≅ Φ′
id𝑉′

← →
(𝑓∗𝑠)∗
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Similarly, if we view 𝑓 ∘ 𝜋𝑓∗𝐸∶ Tot(𝑓∗𝐸) → 𝑉 and 𝑓∶ 𝑉 ′ → 𝑉 as 𝐾-analytic
spaces over 𝑉 then we have 𝑓∘𝜋𝑓∗𝐸 ∘𝑓∗𝑠 = 𝑓 and hence we obtain a commutative
diagram

Γ(Tot(𝑓∗𝐸), 𝜋∗𝑓∗𝐸(𝑓
∗𝐸)) Γ(𝑉 ′, 𝑓∗𝐸)

Hom𝑉(Tot(𝑓∗𝐸),Tot(𝐸)) Hom𝑉(𝑉 ′,Tot(𝐸)).

←→ ≅Φ−1
𝑓∘𝜋𝑓∗𝐸

← →
(𝑓∗𝑠)∗

←→≅ Φ−1
𝑓

←→
(𝑓∗𝑠)∗

Pasting the diagrams together we obtain

Hom𝑉 ′(Tot(𝑓∗𝐸),Tot(𝑓∗𝐸)) Hom𝑉 ′(𝑉 ′,Tot(𝑓∗𝐸))

Γ(Tot(𝑓∗𝐸), 𝜋∗𝑓∗𝐸(𝑓
∗𝐸)) Γ(𝑉 ′, 𝑓∗𝐸)

Hom𝑉(Tot(𝑓∗𝐸),Tot(𝐸)) Hom𝑉(𝑉 ′,Tot(𝐸))

←→Φ′
𝜋𝑓∗𝐸 ≅

←→
(𝑓∗𝑠)∗

←→≅ Φ′
id𝑉′

←→ ≅(Φ′
𝑓∘𝜋𝑓∗𝐸

)−1

← →

←→≅ Φ−1
𝑓

← →
(𝑓∗𝑠)∗

We claim that sending id ∈ Hom𝑉(Tot(𝑓∗𝐸),Tot(𝑓∗𝐸)) around the lower left
corner we obtain 𝑓′ ∘ 𝑓∗𝑠 ∈ Hom𝑉(𝑉 ′,Tot(𝐸)) while sending it around the upper
right corner we obtain ̃𝑠 ∘ 𝑓 ∈ Hom𝑉(𝑉 ′,Tot(𝐸)) so that both morphisms must
be equal.
Sending id ∈ Hom𝑉(Tot(𝑓∗𝐸),Tot(𝑓∗𝐸)) to the lower left corner we obtain the

morphism 𝑓′∶ Tot(𝑓∗𝐸) → Tot(𝐸) by its construction in Lemma 4.10. Sending it
further to the lower right corner we obtain 𝑓′ ∘ 𝑓∗𝑠.
Sending id ∈ Hom𝑉(Tot(𝑓∗𝐸),Tot(𝑓∗𝐸)) to the upper right corner instead we

obtain 𝑓∗𝑠 ∈ Hom𝑉 ′(𝑉 ′,Tot(𝑓∗𝐸)); by definition this is the morphism corre-
sponding to the section 𝑓∗𝑠 ∈ Γ(𝑉 ′, 𝑓∗𝐸). We have argued above that under the
map Γ(𝑉 ′, 𝑓∗𝐸) → Hom𝑉(𝑉 ′,Tot(𝐸)), the section 𝑓∗𝑠 is indeed mapped to ̃𝑠 ∘ 𝑓
which finishes the proof. ∎

4.20 Lemma. Let 𝐸 be a vector bundle on 𝐸 and let 𝑥 ∈ 𝑉 be a point. Consider a
section 𝑠 ∈ Γ(𝑉, 𝐸) and the induced element in the fiber vector space 𝑠(𝑥) ∈ 𝐸(𝑥)
according to Paragraph 4.4. Under the map

𝐸(𝑥) ↪ colim
𝐿/ℋ(𝑥)

𝐸(𝑥) ⊗ℋ(𝑥) 𝐿 ⥲ 𝜋−1𝐸 (𝑥),

given by Proposition 4.16 the element 𝑠(𝑥) ∈ 𝐸(𝑥) is mapped to the point in the fiber
̃𝑠(𝑥) ∈ 𝜋−1𝐸 (𝑥) ⊂ Tot(𝐸).
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Proof. Recall that by definition, 𝐸(𝑥) = Γ(ℳ(ℋ(𝑥)), 𝑖∗𝑥𝐸) and 𝑠(𝑥) = 𝑖∗𝑥𝑠 ∈ 𝐸(𝑥).
By the concrete description of Remark 4.17 we see how to map 𝑠(𝑥) to a point in
𝜋−1𝐸 (𝑥): The section 𝑠(𝑥) ∈ Γ(ℳ(ℋ(𝑥)), 𝑖∗𝑥𝐸) induces a morphismℳ(ℋ(𝑥)) →
Tot(𝐸) whose image is the desired point in the fiber. On the other hand, ̃𝑠(𝑥) is
the unique point in the image of the composition

ℳ(ℋ(𝑥)) 𝑉 Tot(𝐸).←→
𝑖𝑥 ←→̃𝑠

So the claim follows by sending the section 𝑠 ∈ Γ(𝑉, 𝐸) around the commutative
diagram

Γ(𝑉, 𝐸) Γ(ℳ(ℋ(𝑥)), 𝑖∗𝑥𝐸)

Hom𝑉(𝑉,Tot(𝐸)) Hom𝑉(ℳ(ℋ(𝑥)),Tot(𝐸)).

← →
𝑖∗𝑥

←→≅ ←→ ≅

←→
𝑖∗𝑥

∎

4.21 Functoriality. Let 𝛼∶ 𝐸 → 𝐹 be a morphism of vector bundles on 𝑉. For
every 𝐾-analytic spaces ℎ∶ 𝑊 → 𝑉 over 𝑉 the morphism 𝛼 induces a map

Γ(𝑊, ℎ∗𝐸) → Γ(𝑊, ℎ∗𝐸)

and hence by the universal property of total spaces a map

Hom𝑉(𝑊,Tot(𝐸)) → Hom𝑉(𝑊,Tot(𝐹)) (4.21.1)

which is functorial in𝑊. By Yoneda’s Lemma this map is induced by a unique
morphism Tot(𝛼)∶ Tot(𝐸) → Tot(𝐹) of 𝐾-analytic spaces over 𝑉. Concretely,
Tot(𝛼) is obtained as the image of idTot(𝐸) in Eq. (4.21.1) when 𝑊 = Tot(𝐸) is
plugged in.

4.22Tensor Products. Let𝐸, 𝐹 be two vector bundles on𝑉. Then the tensor prod-
uct of 𝒪𝑉𝐺-modules 𝐸⊗𝐹 is again a vector bundle on 𝑉 by [Sta23, Lem. 03L6 (2)].
If 𝑠 ∈ Γ(𝑉, 𝐸) and 𝑠′ ∈ Γ(𝑉, 𝐹) are sections, then there is an induced section
𝑠 ⊗ 𝑠′ ∈ Γ(𝑉, 𝐸 ⊗ 𝐸′).
If 𝑓∶ 𝑉 ′ → 𝑉 is a morphism of analytic spaces over𝐾, then according to [Sta23,

Lem. 03EL] there is a canonical identification

𝑓∗(𝐸 ⊗ 𝐹) = 𝑓∗𝐸 ⊗ 𝑓∗𝐹

of vector bundles on 𝑉 ′.
In particular, if 𝑥 ∈ 𝑉 is a point then there is a canonical identification

(𝐸 ⊗ 𝐹)(𝑥) ≅ 𝐸(𝑥) ⊗ℋ(𝑥) 𝐹(𝑥). (4.22.1)
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Under this identification we have

(𝑠 ⊗ 𝑠′)(𝑥) = 𝑠(𝑥) ⊗ 𝑠′(𝑥) ∈ (𝐸 ⊗ 𝐹)(𝑥) ≅ 𝐸(𝑥) ⊗ℋ(𝑥) 𝐹(𝑥). (4.22.2)

If 𝑈 ⊂ 𝑉 is an analytic domain such that 𝐸 admits a frame 𝑠1,… , 𝑠𝑟 ∈ Γ(𝑈, 𝐸)
over 𝑈 and 𝐹 admits a frame 𝑠′1,… , 𝑠′𝑟′ ∈ Γ(𝑈, 𝐹) over 𝑈, then the sections

𝑠𝑖 ⊗ 𝑠′𝑗 ∈ Γ(𝑈, 𝐸 ⊗ 𝐹), 1 ≤ 𝑖 ≤ 𝑟, 1 ≤ 𝑗 ≤ 𝑟′

form a frame for 𝐸 ⊗ 𝐹 over 𝑈.

4.23 Direct Sums. Let 𝐸, 𝐹 be two vector bundles on 𝑉. Then the direct sum
𝐸⊕𝐹 of 𝒪𝑉𝐺-modules is again a vector bundle. The projections pr1∶ 𝐸⊕𝐹 → 𝐸
and pr2∶ 𝐸 ⊕ 𝐹 → 𝐹 induce morphisms Tot(pr1)∶ Tot(𝐸 ⊕ 𝐹) → Tot(𝐸) and
Tot(pr2)∶ Tot(𝐸 ⊕ 𝐹) → Tot(𝐹) over 𝑉 which induce an identification

Tot(𝐸 ⊕ 𝐹) ≅ Tot(𝐸) ×𝑉 Tot(𝐹).

If 𝑠 ∈ Γ(𝑉, 𝐸) and 𝑠′ ∈ Γ(𝑉, 𝐹) are sections, then there is an induced section
(𝑠, 𝑠′) ∈ Γ(𝑉, 𝐸 ⊕ 𝐹). If 𝑥 ∈ 𝑉 is a point, then there is a canonical identification
(𝐸 ⊕ 𝐹)(𝑥) ≅ 𝐸(𝑥) ⊕ 𝐹(𝑥). Under this identification, we have

(𝑠, 𝑠′)(𝑥) = (𝑠(𝑥), 𝑠′(𝑥)) ∈ (𝐸 ⊕ 𝐹)(𝑥) ≅ 𝐸(𝑥) ⊕ 𝐹(𝑥). (4.23.1)

Indeed, this follows from pull-back along ℳ(ℋ(𝑥)) → 𝑉 being a left adjoint
functor.
If 𝑈 ⊂ 𝑉 is an analytic domain where 𝐸 admits a frame 𝑠1,… , 𝑠𝑟 ∈ Γ(𝑈, 𝐸) and

𝐹 admits a frame 𝑠′1,… , 𝑠′𝑟′ ∈ Γ(𝑈, 𝐹), then the sections

(𝑠1, 0),… , (𝑠𝑟, 0), (0, 𝑠′1),… , (0, 𝑠′𝑟′) ∈ Γ(𝑈, 𝐸 ⊕ 𝐹)

form a frame for 𝐸 ⊕ 𝐹.

4.24 Duals. Let 𝐸 be a vector bundle on 𝑉. Then the dual sheaf 𝐸∨ given by

Γ(𝑈, 𝐸∨) = Hom𝒪𝑉𝐺-mod
(𝐸|𝑈, 𝒪𝑉𝐺|𝑈)

is again a vector bundle. If 𝑠1,… , 𝑠𝑟 ∈ Γ(𝑈, 𝐸) is a trivialization, then there is an
induced trivialization

𝑠∨1 ,… , 𝑠∨𝑟 ∈ Γ(𝑈, 𝐸∨)

determined uniquely by

𝑠∨𝑖 (𝑠𝑗) = 𝛿𝑖𝑗 ∈ 𝒪𝑉𝐺(𝑈).
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4.25 Analytification of Algebraic Vector Bundles. Let 𝑋 be a locally finite
type 𝐾-scheme and let 𝐸 be a vector bundle on 𝑋. We define the analytification
of 𝐸 to be the pull-back of 𝐸 along the morphism of ringed G-topological spaces
𝜋𝑋∶ (𝑋an

𝐺 , 𝒪𝑋an
𝐺
) → (𝑋, 𝒪𝑋) of Paragraph 2.16,

𝐸an ≔ 𝜋∗𝑋𝐸.

This is a line bundle on the 𝐾-analytic space 𝑋an.
We define the total space of 𝐸

Tot(𝐸) ≔ Spec(Sym(𝐸∨))

to be the relative spectrum of the quasi-coherent algebra Sym(𝐸∨). It is a 𝐾-
scheme of locally finite type and comes with a canonical structure morphism
𝜋𝐸∶ Tot(𝐸) → 𝑋 of 𝐾-schemes. Note that in the notation of [GW20, Def. 11.2] we
have Tot(𝐸) = 𝐕(𝐸∨). Hence by [GW20, Prop. 11.4] there is for every morphism
ℎ∶ 𝑇 → 𝑋 of 𝐾-schemes a natural bijection

Φℎ∶ Hom𝑋(𝑇,Tot(𝐸)) ⥲ Γ(𝑇, ℎ∗𝐸).

The family Φ = {Φℎ}ℎ induces naturally a family Φan such that the triple

(Tot(𝐸)an, 𝜋an𝐸 , Φan)

is a total space for 𝐸an, i.e. analytification is compatible with total spaces. The
construction is completely analogous to Paragraph 4.13.
The analytification operation 𝐸 ↦ 𝐸an is also compatible with pull-backs,

tensor products, direct sums and duals.

4.26 Remark. In the case of a line bundle 𝐿 on an algebraic 𝐾-variety 𝑋, the total
space Tot((𝐿an)∨) = Tot(𝐿∨)an has also been considered by Yanbo Fang in [Fan23]
in the context of metrized line bundles.

4.27 Vector Sub-Bundles. Let 𝐸 be a vector bundle on 𝑉. A vector sub-bundle
of 𝐸 is a sub-sheaf of 𝒪𝑉𝐺-modules 𝐹 ⊂ 𝐸 such that 𝐹 is a vector bundle (i.e. G-
locally free of constant rank) and the quotient 𝐸/𝐹 is also G-locally free. There
exists then a G-covering of 𝑉 by affinoid domains 𝑉𝑖 such that on 𝑉𝑖 = ℳ(𝐴), the
exact sequence

0 → 𝐹 → 𝐸 → 𝐸/𝐹 → 0

corresponds to an exact sequence 0 → 𝑀′ → 𝑀 → 𝑀″ → 0 of free 𝐴-modules.
This sequence is then necessarily split and the rank of 𝑀″ is the rank of 𝐸minus
the rank of 𝐹. This shows that the embedding 𝐹 ↪ 𝐸 is G-locally split and that
the quotient 𝐸/𝐹 is G-locally free of constant rank.
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Note that if 𝐹 ⊂ 𝐸 is a vector sub-bundle and ℎ∶ 𝑊 → 𝑉 is a morphism
of analytic spaces over 𝐾, then since the embedding 𝐹 ↪ 𝐸 is G-locally split,
the induced morphism of G-sheaves ℎ∗𝐹 → ℎ∗𝐸 is again G-locally split and
in particular it is injective. Since pull-back is compatible with quotients, the
quotient ℎ∗𝐸/ℎ∗𝐹 = ℎ∗(𝐸/𝐹) is again G-locally free so ℎ∗𝐹 ⊂ ℎ∗𝐸 is again a
vector sub-bundle.
In particular, if 𝑊 = ℳ(ℋ(𝑥)) for a point 𝑥 ∈ 𝑉 and ℎ = 𝑖𝑥∶ ℳ(ℋ(𝑥)) → 𝑉,

we see that 𝐹(𝑥) is a vector sub-space of 𝐸(𝑥).
If 𝐿 ⊂ 𝐸 is a vector sub-bundle of rank 1, we say that 𝐹 is a line sub-bundle.

4.28 Projective Bundles. Let 𝐸 be a vector bundle on 𝑉. A projective bundle for
𝐸 is given by a morphism of 𝐾-analytic spaces

𝑝𝐸∶ 𝑃(𝐸) → 𝑉

together with a line sub-bundle 𝒪𝐸(−1) ⊂ 𝑝∗𝐸𝐸 such that for every morphism
of 𝐾-analytic spaces ℎ∶ 𝑊 → 𝑉 and every line sub-bundle 𝐿 ⊂ ℎ∗𝐸 there exists
a unique morphism 𝑙∶ 𝑉 → 𝑃(𝐸) such that 𝑝𝐸 ∘ 𝑙 = ℎ and 𝐿 = 𝑙∗𝒪𝐸(−1) as
sub-sheaves of ℎ∗𝐸. In other words, for every morphism ℎ∶ 𝑊 → 𝑉 of 𝐾-analytic
spaces, the natural map

Hom𝑉(𝑊, 𝑃(𝐸)) → {Line sub-bundles of ℎ∗𝐸 }, 𝑙 ↦ 𝑙∗𝒪𝐸(−1)

is a bijection.
We call 𝒪𝐸(−1) the tautological line bundle on 𝑃(𝐸) and often denote by

𝑖∶ 𝒪𝐸(−1) → 𝑝∗𝐸𝐸

the canonical embedding. Furthermore we denote by 𝒪𝐸(1) ≔ 𝒪𝐸(−1)∨ its dual
line bundle on 𝑃(𝐸).

4.29 Projective Bundle over a Point. Consider the analytification

𝑝∶ 𝐏𝑒,an𝐾 →ℳ(𝐾)

of the morphism of algebraic 𝐾-varieties 𝐏𝑒𝐾 → Spec(𝐾) and the analytification
𝒪𝐏𝑒𝐾(−1)

an ⊂ 𝒪𝑒+1
𝐏𝑒,an𝐾

of the line bundle 𝒪𝐏𝑒𝐾(−1) ⊂ 𝒪𝑒+1
𝐏𝑒𝐾

on 𝐏𝑒𝐾. Here we denote
by 𝒪𝐏𝑒,an𝐾

the structure G-sheaf on 𝐏𝑒,an𝐾 and skip the index “G”. We claim that
the data thus specified provide a projective bundle of the vector bundle onℳ(𝐾)
given by the (𝑒 + 1)-dimensional vector space 𝐾𝑒+1. So let𝑊 be any 𝐾-analytic
space and let 𝐿 ⊂ 𝒪𝑒+1

𝑊𝐺
be a line sub-bundle. We sketch how to construct from

this a morphism𝑊 → 𝐏𝑒,an𝐾 of 𝐾-analytic spaces.
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Denote by 𝑇0,… , 𝑇𝑒 the homogeneous coordinates of 𝐏𝑒+1𝐾 , so that 𝐏𝑒+1𝐾 is
covered by the open affine subsets

𝑈𝑖 = Spec(𝐾[𝑇0/𝑇𝑖,… , 𝑇𝑖/𝑇𝑖,… , 𝑇𝑒/𝑇𝑖]) ⥲ 𝐀𝑒𝐾

as 𝑖 ∈ { 0,… , 𝑒 } with affine coordinate functions 𝑇0/𝑇𝑖,… , 𝑇𝑖/𝑇𝑖,… , 𝑇𝑒/𝑇𝑖.
G-locally on𝑊 we can find a nowhere-vanishing section 𝑠 ∈ Γ(𝑊, 𝐿). Denote

by (𝑓0,… , 𝑓𝑒) = 𝑠 ∈ Γ(𝑊, 𝐿) ⊂ 𝒪𝑊𝐺(𝑊)𝑒+1 its components. We remarked in
Paragraph 4.27 that for any point 𝑦 ∈ 𝑊, the fiber vector space 𝐿(𝑦) lies injective
inℋ(𝑦)𝑒+1. This shows that by shrinking𝑊 further, we may assume that one
of the functions 𝑓𝑖, where 𝑖 ∈ { 0,… , 𝑒 }, is nowhere-vanishing. The functions
𝑓0/𝑓𝑖,… , 𝑓𝑖/𝑓𝑖,… , 𝑓𝑒/𝑓𝑖 define a map

(𝑓0/𝑓𝑖,… , 𝑓𝑖/𝑓𝑖,… , 𝑓𝑒/𝑓𝑖)∶ 𝑊 → 𝐀𝑒,an𝐾 ⥲ 𝑈an
𝑖 ⊂ 𝐏𝑒,an𝐾 .

One checks that this map is independent of the choices made and thus glues to a
map𝑊 → 𝐏𝑒,an𝐾 .

4.30 Lemma. Let 𝑓∶ 𝑉 ′ → 𝑉 be a morphism of 𝐾-analytic spaces and let 𝐸 be
a vector bundle on 𝑉 which admits a projective bundle 𝑝𝐸∶ 𝑃(𝐸) → 𝑉. Form the
fibered product

𝑃(𝐸) ×𝑉 𝑉 ′ 𝑃(𝐸)

𝑉 ′ 𝑉.
←→
𝑓

←→𝑝′𝐸 ←→ 𝑝𝐸

← →
𝑓

Then the projection 𝑝′𝐸∶ 𝑃(𝐸) ×𝑉 𝑉 ′ → 𝑉 ′ together with the line sub-bundle
𝑓∗𝒪𝐸(−1) ⊂ 𝑓∗𝑝∗𝐸𝐸 = (𝑝′𝐸)∗𝑓∗𝐸 is a projective bundle for 𝑓∗𝐸.

Proof. We sketch how to construct for a morphism of 𝐾-analytic spaces𝑊 → 𝑉 ′

an inverse to the natural map

Hom𝑉 ′(𝑊, 𝑃(𝐸) ×𝑉 𝑉 ′) → {Line sub-bundles of ℎ∗𝑓∗𝐸 }. (4.30.1)

Let 𝐿 ⊂ ℎ∗𝑓∗𝐸 be a line sub-bundle of ℎ∗𝑓∗𝐸. Regarding𝑊 as a 𝐾-analytic
space over 𝑉 via the map 𝑓 ∘ℎ, we get a morphism 𝑙∶ 𝑊 → 𝑃(𝐸) over 𝑉 such that
𝐿 = 𝑙∗𝒪𝐸(−1) as a line sub-bundle of ℎ∗𝑓∗𝐸. The fact that 𝑙 is a morphism over
𝑉means that 𝑝𝐸 ∘ 𝑙 = 𝑓 ∘ ℎ so it induces a map 𝑙′∶ 𝑊 → 𝑃(𝐸) ×𝑉 𝑉 ′ satisfying
𝑝′𝐸 ∘ 𝑙′ = ℎ and 𝑓 ∘ 𝑙′ = 𝑙.
It is straight-forward to verify that this construction provides an inverse to the

map (4.30.1). ∎
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4.31 Projective Bundle of a Trivial Vector Bundle. Similarly to Paragraph 4.9
it follows from Paragraph 4.29 and Lemma 4.30 that a trivial vector bundle 𝐸 on
𝑉 with frame 𝑠0,… , 𝑠𝑒 admits the projection 𝑝∶ 𝑉 × 𝐏𝑒,an𝐾 → 𝑉 as a projective
bundle with 𝒪𝐸(−1) ⊂ 𝑝∗𝐸 given as follows: If 𝑞∶ 𝑉 × 𝐏𝑒,an𝐾 → 𝐏𝑒,an𝐾 denotes the
second projection, then we set

𝒪𝐸(−1) ≔ 𝑞∗𝒪𝐏𝑒𝐾(−1)
an ⊂ 𝑞∗𝒪𝑒+1

𝐏𝑒,an𝐾
⥲ 𝑝∗𝐸.

4.32 Lemma. Let 𝑓∶ 𝑉 ′ → 𝑉 be a morphism of 𝐾-analytic spaces, let 𝐸 be a
vector bundle on 𝑉 with pull-back 𝑓∗𝐸 to 𝑉 ′. Let (𝑃(𝐸), 𝑝𝐸, 𝒪𝐸(−1)) as well as
(𝑃(𝑓∗𝐸), 𝑝𝑓∗𝐸, 𝒪𝑓∗𝐸(−1)) be projective bundles for 𝐸 and for 𝑓∗𝐸 respectively. The
line sub-bundle

𝒪𝑓∗𝐸(−1) ⊂ 𝑝∗𝑓∗𝐸(𝑓
∗𝐸) = (𝑓 ∘ 𝑝𝑓∗𝐸)∗𝐸

induces then a unique morphism 𝑓∶ 𝑃(𝑓∗𝐸) → 𝑃(𝐸) over 𝑉 such that as line
sub-bundles of 𝑝𝑓∗𝐸𝑓∗𝐸 = 𝑓∗𝑝∗𝐸𝐸 we have

𝑓∗𝒪𝐸(−1) = 𝒪𝑓∗𝐸(−1).

We claim that the commutative diagram

𝑃(𝑓∗𝐸) 𝑃(𝐸)

𝑉 ′ 𝑉
←→

𝑓

←→𝑝𝑓∗𝐸 ←→ 𝑝𝐸
← →

𝑓

is a cartesian diagram of 𝐾-analytic spaces.

Proof. The proof is similar to Lemma 4.10 so we omit it here. ∎

4.33GluingProjectiveBundles. Let𝐸 be a vector bundle on𝑉 and let𝑝∶ 𝑃 → 𝑉
be a morphism of 𝐾-analytic spaces. If 𝑂 ⊂ 𝑝∗𝐸 is a line sub-bundle such that the
triple (𝑃, 𝑝, 𝑂) is a projective bundle for 𝐸 then it follows from Lemma 4.30 that
for an analytic domain 𝑈 ⊂ 𝑉 the triple (𝑝−1(𝑈), 𝑝|𝑈, 𝑂|𝑝−1(𝑈)) is a projective
bundle for 𝐸|𝑈 where 𝑝|𝑈 denotes the map 𝑝−1(𝑈) → 𝑈 induced by 𝑝. In this
way the assignment

𝑈 ↦ {𝑂 | (𝑝−1(𝑈), 𝑝|𝑈, 𝑂) is a projective bundle for 𝐸|𝑈 }

is a G-presheaf of sets on 𝑉. Similarly to Paragraph 4.11 one sees that it forms
in fact a sheaf. (Note that by [Sta23, Lem. 04TR] sheaves can be glued on an
arbitrary site, in particular on a G-topological space.)
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4.34 Proposition. Every vector bundle𝐸 on the𝐾-analytic space𝑉 admits a (unique
up to unique isomorphism) projective bundle (𝑃(𝐸), 𝑝𝐸, 𝒪𝐸(−1)).

Proof. Using the results of 4.30, 4.31, 4.32 and 4.33 this can be shown mutatis
mutandis like the analogous result for total spaces in Proposition 4.12. ∎

4.35 Remark. From now on we fix for every vector bundle 𝐸 on a 𝐾-analytic
space a projective bundle (𝑃(𝐸), 𝑝𝐸, 𝒪𝐸(−1)).

4.36 ProjectiveBundleUnderBaseChange. Let𝐸 be a vector bundle on𝑉with
projective bundle 𝑝𝐸∶ 𝑃(𝐸) → 𝑉 and tautological line bundle𝒪𝐸(−1) ⊂ 𝑝∗𝐸𝐸 and
let 𝐿/𝐾 be an extension of non-archimedean fields. The commutative diagram

𝑃(𝐸) ⨶𝐾 𝐿 𝑃(𝐸)

𝑉 ⨶𝐾 𝐿 𝑉

←→
𝜋𝐿/𝐾

←→𝑝𝐸⨶𝐾𝐿 ←→ 𝑝𝐸

← →𝜋𝐿/𝐾

implies together with Eq. (4.2.1) that we have a canonical identification

𝑝∗𝐸𝐸 ⊗𝐾 𝐿 = (𝑝𝐸 ⨶𝐾 𝐿)∗(𝐸 ⊗𝐾 𝐿).

The scalar extension 𝑝𝐸 ⨶𝐾 𝐿∶ 𝑃(𝐸) ⨶𝐾 𝐿 → 𝑉 ⨶𝐾 𝐿 of 𝑝𝐸 together with the
line sub-bundle

𝒪𝐸(−1) ⊗𝐾 𝐿 ⊂ 𝑝∗𝐸𝐸 ⊗𝐾 𝐿 = (𝑝𝐸 ⨶𝐾 𝐿)∗(𝐸 ⊗𝐾 𝐿)

is a projective bundle for 𝐸 ⊗𝐾 𝐿.
Indeed, by Paragraph 4.33 we may assume that 𝐸 is trivial. Then 𝐸⊗𝐾 𝐿 is also

trivial and we may use Paragraph 4.31 to compare 𝑃(𝐸 ⊗𝐾 𝐿) and 𝑃(𝐸) ⨶𝐾 𝐿.

4.37 Lemma. Let 𝐸 be a vector bundle on 𝑉 with projective bundle 𝑝∶ 𝑃(𝐸) → 𝑉.
We denote by 𝑖∶ 𝒪𝐸(−1) → 𝑝∗𝐸 the embedding of the tautological line sub-bundle of
𝑝∗𝐸. Recall from Lemma 4.10 that there is an induced morphism 𝑝′∶ Tot(𝑝∗𝐸) →
Tot(𝐸). The composition

𝜎𝐸∶ Tot(𝒪𝐸(−1)) Tot(𝑝∗𝐸) Tot(𝐸)←→
Tot(𝑖) ←→

𝑝′

satisfies 𝜎−1𝐸 ({ 0 }) = { 0 }, where { 0 } denotes the zero section of a vector bundle, and
restricts to an isomorphism

𝜎𝐸∶ Tot(𝒪𝐸(−1)) ⧵ { 0 } ⥲ Tot(𝐸) ⧵ { 0 }.
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Furthermore, the morphism 𝜎𝐸 fits into the commutative diagram

Tot(𝒪𝐸(−1)) Tot(𝐸)

𝑃(𝐸) 𝑉.

←→
𝜍𝐸

←→𝜋𝒪𝐸(−1) ←→ 𝜋𝐸

← →𝑝

Proof. This can be checked locally on 𝑉 so we can assume that 𝐸 is trivial. In that
case, 𝐸 arises as the pull-back of the trivial vector bundle𝐾𝑒+1 along the structural
morphism 𝑉 → ℳ(𝐾). It is easy to check that the statement of the lemma is
stable under pull-back, so we may reduce to the case 𝑉 = ℳ(𝐾) and 𝐸 = 𝐾𝑒+1.
Then the composition in question is the analytification of the morphism

Tot(𝒪𝐏𝑒𝐾(−1)) → 𝐏𝑒𝐾 × 𝐀𝑒+1𝐾 → 𝐀𝑒+1𝐾

of algebraic varieties which is well-known from algebraic geometry to realize the
total space of the line bundle 𝒪𝐏𝑒𝐾(−1) as the blow-up of 𝐀

𝑒+1
𝐾 in the origin. ∎

4.38 Twisting. Let 𝐸 be a vector bundle on 𝑉 and let 𝐿 be a line bundle on 𝑉. On
𝑃(𝐸) we have the tautological line bundle 𝒪𝐸(−1) ⊂ 𝑝∗𝐸𝐸. We obtain an induced
line sub-bundle 𝒪𝐸(−1) ⊗ 𝑝∗𝐸𝐿 ⊂ 𝑝∗𝐸𝐸 ⊗ 𝑝∗𝐸𝐿 = 𝑝∗𝐸(𝐸 ⊗ 𝐿). Hence we obtain a
unique morphism of 𝐾-analytic spaces 𝜏𝐸,𝐿∶ 𝑃(𝐸) → 𝑃(𝐸 ⊗ 𝐿) over 𝑉 such that
𝑝𝐸⊗𝐿 ∘ 𝜏𝐸,𝐿 = 𝑝𝐸 and

𝜏∗𝐸,𝐿𝒪𝐸⊗𝐿(−1) = 𝒪𝐸(−1) ⊗ 𝑝∗𝐸𝐿

as line sub-bundles of

𝜏∗𝐸,𝐿𝑝∗𝐸⊗𝐿(𝐸 ⊗ 𝐿) = 𝑝∗𝐸(𝐸 ⊗ 𝐿) = 𝑝∗𝐸𝐸 ⊗ 𝑝∗𝐸𝐿.

4.39 Lemma. Let 𝐸 be a vector bundle on 𝑉 and let 𝐿 be a line bundle on 𝑉. The
canonical morphism 𝜏 = 𝜏𝐸,𝐿∶ 𝑃(𝐸) → 𝑃(𝐸 ⊗ 𝐿) of 𝐾-analytic spaces over 𝑉 is an
isomorphism.

Proof. It follows from the definitions that for any morphism ℎ∶ 𝑊 → 𝑉 of 𝐾-
analytic spaces the diagram

Hom𝑉(𝑊, 𝑃(𝐸)) {Line sub-bundles of ℎ∗𝐸 }

Hom𝑉(𝑊, 𝑃(𝐸 ⊗ 𝐿)) {Line sub-bundles of ℎ∗(𝐸 ⊗ 𝐿) }

← →≅

←→𝜏∗ ←→
←→≅
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commutes. Here the horizontal morphisms are the bijections from the defi-
nition of a projective bundle in Paragraph 4.28 given by 𝑙 ↦ 𝑙∗𝒪𝐸(−1) and
𝑙 ↦ 𝑙∗𝒪𝐸⊗𝐿(−1) respectively. The map on the left is given by 𝑙 ↦ 𝜏 ∘ 𝑙 while the
map on the right is given by𝑀 ↦ 𝑀 ⊗ ℎ∗𝐿.
Since the map on the right is obviously a bijection, the same must be true for

the map on the left. By Yoneda’s lemma, the map 𝜏must be an isomorphism. ∎

4.40 Analytification of Projective Bundles. Let 𝑋 be a 𝐾-scheme of locally
finite type and let 𝐸 be a vector bundle on 𝐸. We define the projective bundle of
lines of 𝐸 to be the relative Proj-construction

𝑃(𝐸) ≔ Proj(Sym(𝐸∨))

of the graded quasi-coherent algebra Sym(𝐸∨). It comes with a canonical struc-
ture morphism 𝑝𝐸∶ 𝑃(𝐸) → 𝑋. In the notation of [GW20, Sec. 8.8, Sec. 13.8] we
have 𝑃(𝐸) = 𝐏(𝐸∨). There is a canonical quotient line bundle of 𝑝∗𝐸𝐸∨ or equiv-
alently a canonical line sub-bundle 𝒪𝐸(−1) ⊂ 𝑝∗𝐸𝐸 which satisfies a universal
property which is similar to the one of Paragraph 4.28.
The analytification 𝑝an𝐸 ∶ 𝑃(𝐸)an → 𝑋an together with the line sub-bundle

𝒪𝐸(−1)an ⊂ (𝑝∗𝐸𝐸)an = (𝑝an𝐸 )∗𝐸an is a projective bundle for 𝐸an. The proof is
completely analogous to Paragraph 4.36.

4.41 Proposition. Let 𝐸 be a vector bundle on 𝑉. The projection from the projective
bundle 𝑝𝐸∶ 𝑃(𝐸) → 𝑉 is a flat and proper morphism of 𝐾-analytic spaces and in
particular topologically proper and open.

Proof. By [Tem15, Fact 4.2.4.3 (i)], the class of proper morphisms of 𝐾-analytic
spaces is G-local on the base and the same holds for flat morphisms by [Duc18,
§ 4.1.12]. We may therefore assume that 𝐸 is trivial so that 𝑝𝐸∶ 𝑃(𝐸) → 𝑉 is
given by the projection to the first factor 𝑉 × 𝐏𝑒,an𝐾 → 𝑉, i.e. the pull-back of the
structural morphism 𝐏𝑒,an𝐾 →ℳ(𝐾) along the structural morphism 𝑉 → ℳ(𝐾).
By [Tem15, Fact 4.2.4.3 (i)], the class of proper morphisms of 𝐾-analytic spaces is
stable under pull-back and the same holds for flat morphisms by [Duc18, § 4.1.9].
It is therefore enough to show that 𝐏𝑒,an𝐾 →ℳ(𝐾) is proper and flat. Properness
is due to the gaga statement [Ber90, Prop. 3.4.7] whereas flatness follows from
[Duc18, Lem. 4.1.13] which shows that every morphism toℳ(𝐾) is flat.
Now topological properness follows fromLemma2.23. Since propermorphisms

are in particular boundaryless, the openness follows from Proposition 2.20. ∎
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5. Continuous Metrics
Throughout this chapter, 𝐾will be a non-archimedean field and 𝑉will de-
note a 𝐾-analytic space. In Paragraph 5.1 we introducemetrics on vector
bundles over𝑉. We study constructions withmetrics like pull-backs (Para-
graph 5.5), duals (Paragraph 5.11), Fubini-Study metrics (Paragraph 5.12),
direct sums (Paragraph 5.14) and tensor products (Paragraph 5.15). Fiber-
wise, these constructions are given by the constructions with norms
discussed in Chapter 1. We have a notion of continuity of metrics (Para-
graph 5.1) for which we prove several permanence properties. In partic-
ular we show in Proposition 5.13 that a metric on a vector bundle 𝐸 is
continuous if and only if the induced Fubini-Study metric on 𝒪𝐸(1) is
continuous. In Paragraph 5.31 we compare our notion of metrized vector
bundles with alternatives introduced in [CD12; CM20]. In Paragraph 5.32
we define pseudo-metrics, a weakening of the notion of a metric which is
sufficient for our construction of characteristic currents in Chapter 9.

5.1 Metrics. Let 𝐸 be a vector bundle on 𝑉. Ametric on 𝐸 is a family {‖−‖𝑥}𝑥∈𝑉,
where each ‖−‖𝑥∶ 𝐸(𝑥) → 𝐑≥0 is a norm on the finite-dimensionalℋ(𝑥)-vector
space 𝐸(𝑥).
Recall from Proposition 4.16 that for every point 𝑥 ∈ 𝑉 we have a canonical

bijection of sets
colim
𝐿/ℋ(𝑥)

𝐸(𝑥) ⊗ℋ(𝑥) 𝐿 ⥲ 𝜋−1𝐸 (𝑥).

If 𝑥 ∈ 𝑉 is a point and 𝐿/ℋ(𝑥) is a non-archimedean field extension, then by
Paragraph 1.14, we have the scalar extension norm ‖−‖𝑥,𝐿∶ 𝐸(𝑥)⊗ℋ(𝑥) 𝐿 → 𝐑≥0.
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Using Proposition 1.16, these maps glue to a map of sets

‖−‖Tot,𝑥∶ 𝜋−1𝐸 (𝑥) ≅ colim
𝐿/ℋ(𝑥)

𝐸(𝑥) ⊗ℋ(𝑥) 𝐿 → 𝐑≥0

Letting 𝑥 vary, we get a map of sets

‖−‖Tot∶ Tot(𝐸) ≅ ∐
𝑥∈𝑉

𝜋−1𝐸 (𝑥) → 𝐑≥0

induced from the metric ‖−‖.
We call the metric ‖−‖ continuous if the map ‖−‖Tot∶ Tot(𝐸) → 𝐑≥0 is con-

tinuous with respect to the Berkovich topology on Tot(𝐸). Since continuity of
functions is a G-local condition by Lemma 2.12, continuous metrics on 𝐸 form a
sheaf of sets for the G-topology of 𝑉 and in particular for the Berkovich topology
of 𝑉.
We call the pair 𝐸 = (𝐸, ‖−‖) a metrized vector bundle on 𝑉. We denote by

𝐸(𝑥) ≔ (𝐸(𝑥), ‖−‖𝑥) the fiber vector space 𝐸(𝑥) together with its norm ‖−‖𝑥
given by the metric ‖−‖.
If 𝑋 is a finite type scheme over 𝐾 and 𝐸 is a vector bundle on 𝑋, then by a

metric on 𝐸, we mean a metric on 𝐸an.

5.2 Continuously Diagonalizable Metrics. Let 𝐸 be a trivial vector bundle
on 𝑉 with frame 𝑠1,… , 𝑠𝑟 ∈ Γ(𝑉, 𝐸). Let 𝜙1,… , 𝜙𝑟∶ 𝑉 → 𝐑>0 be continuous
positive functions on 𝑉. Then there is a metric ‖−‖𝑠,𝜙 on 𝐸 such that for 𝑥 ∈ 𝑉
the norm ‖−‖𝑠,𝜙,𝑥 on 𝐸(𝑥) is diagonalizable in the sense of Paragraph 1.20 with
𝑠1(𝑥),… , 𝑠𝑟(𝑥) as an orthogonal basis and such that ‖𝑠𝑖(𝑥)‖𝑠,𝜙,𝑥 = 𝜙𝑖(𝑥). This
means that for 𝑎1,… , 𝑎𝑟 ∈ ℋ(𝑥) we have

‖𝑎1𝑠1(𝑥) +⋯ + 𝑎𝑟𝑠𝑟(𝑥)‖𝑠,𝜙,𝑥 = max
𝑖=1,…,𝑟

|𝑎𝑖|𝜙𝑖(𝑥).

We can describe the map ‖−‖𝑠,𝜙,Tot as follows: By Paragraph 4.9 the frame
𝑠1,… , 𝑠𝑟 induces an identification Tot(𝐸) = 𝑉 × 𝐀𝑟,an𝐾 such that the projec-
tion 𝜋𝐸∶ Tot(𝐸) → 𝑉 is given by the projection to the first factor. Denote by
𝑇1,… , 𝑇𝑟∶ Tot(𝐸) = 𝑉 ×𝐀𝑟,an𝐾 → 𝐀𝑟,an𝐾 → 𝐀1,an𝐾 the coordinate functions. We can
also view 𝑇𝑖 ∈ 𝒪(Tot(𝐸)). It follows from [BE21, Prop. 1.25 (iv)] that under this
identification, the map ‖−‖𝑠,𝜙,Tot∶ Tot(𝐸) → 𝐑≥0 is given by

‖−‖𝑠,𝜙,Tot∶ Tot(𝐸) → 𝐑≥0, 𝑣 ↦ max
𝑖=1,…,𝑟

𝜙𝑖(𝜋𝐸(𝑣))|𝑇𝑖(𝑣)|,

which is continuous by the definition of the Berkovich topology.
In the case where 𝜙1,… , 𝜙𝑟 ≡ 1 on 𝑉 we simply write ‖−‖𝑠 instead of ‖−‖𝑠,𝜙

and call it the orthonormalmetric associated to the frame 𝑠.
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5.3 Sections. Let 𝐸 be a metrized vector bundle on 𝑉 and let 𝑠 ∈ Γ(𝑉, 𝐸) be a
section. Then there is an induced function

‖𝑠(−)‖∶ 𝑉 → 𝐑≥0, 𝑥 ↦ ‖𝑠(𝑥)‖𝑥,

where 𝑠(𝑥) ∈ 𝐸(𝑥) is defined as in Paragraph 4.4.
It follows from Lemma 4.20 that in the notation of Paragraph 4.18 we have

‖𝑠(𝑥)‖ = ‖ ̃𝑠(𝑥)‖Tot. In particular, we see that if the metric ‖−‖ is continuous, then
the function ‖𝑠(−)‖ is continuous for every section 𝑠 ∈ Γ(𝑉, 𝐸).

5.4Metrics onLineBundles. Let𝐿 be ametrized line bundle on𝑉. Suppose that
𝑈 ⊂ 𝑉 is an analytic domain and that 𝑠 ∈ Γ(𝑈, 𝐿) is a G-local nowhere-vanishing
section of 𝐿. Then for each 𝑥 ∈ 𝑈, theℋ(𝑥)-vector space 𝐿(𝑥) is one-dimensional
with basis 𝑠(𝑥). It follows that the norm ‖−‖𝑥 is diagonalizable with orthogonal
basis 𝑠(𝑥). In particular, we see that the restriction of the metric ‖−‖ to 𝑈 is
completely determined by the function ‖𝑠(−)‖∶ 𝑈 → 𝐑>0. If the function ‖𝑠(−)‖
is continuous, then the metric ‖−‖ is continuous on 𝑈 by Paragraph 5.2.
We see that for line bundles, continuous metrics can be equivalently described

by associating to a trivialization {(𝑉𝑖, 𝑠𝑖)}𝑖∈𝐼 of 𝐿 a family of continuous positive
functions ‖𝑠𝑖(−)‖∶ 𝑉𝑖 → 𝐑>0 satisfying

‖𝑠𝑖(−)‖ = |(𝑠𝑖/𝑠𝑗)(−)|‖𝑠𝑗(−)‖

on the overlaps 𝑉𝑖 ∩ 𝑉𝑗.

5.5 Pull-backs. Let 𝐸 be a metrized vector bundle on 𝑉 and let 𝑓∶ 𝑉 ′ → 𝑉
be a morphism of 𝐾-analytic spaces. Given 𝑥′ ∈ 𝑉 ′, we have an identification
(𝑓∗𝐸)(𝑥′) ≅ 𝐸(𝑓(𝑥′)) ⊗ℋ(𝑓(𝑥′)) ℋ(𝑥′) by Lemma 4.5. Denoting by 𝑓∗‖−‖𝑥′ the
scalar extension norm induced by ‖−‖𝑓(𝑥′) on (𝑓∗𝐸)(𝑥′), we get a metric 𝑓∗‖−‖
on 𝑓∗𝐸. It is easy to see using Proposition 1.15 (iv) that the diagram

𝐑≥0

Tot(𝑓∗𝐸) Tot(𝐸)

←

→𝑓∗‖−‖Tot

←→
𝑓′

← →
‖−‖Tot

commutes. In particular we see that if ‖−‖ is continuous, then 𝑓∗‖−‖ is continu-
ous.
We write 𝑓∗𝐸 ≔ (𝑓∗𝐸, 𝑓∗‖−‖).

5.6 Lemma. Let 𝐸 = (𝐸, ‖−‖) be a metrized vector bundle on 𝑉 and let 𝑓∶ 𝑉 ′ → 𝑉
be a morphism of 𝐾-analytic spaces. Let 𝑠 ∈ Γ(𝑉, 𝐸) be a section. Then we have a
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5. Continuous Metrics

commutative diagram

𝑉 ′ 𝑉

𝐑≥0.

← →
𝑓

←

→𝑓∗‖𝑓∗𝑠(−)‖

←→ ‖𝑠(−)‖

Proof. Recall from Paragraph 5.3 that the function ‖𝑠(−)‖ agrees with the compo-
sition

𝑉 Tot(𝐸) 𝐑≥0

←→̃𝑠 ←→
‖−‖Tot

and similarly for the function 𝑓∗‖𝑓∗𝑠(−)‖. Hence it suffices to note that the
diagram

𝑉 ′ 𝑉

Tot(𝑓∗𝐸) Tot(𝐸)

𝐑≥0

← →
𝑓

←→𝑓∗𝑠 ←→ ̃𝑠

←→
𝑓′←

→𝑓∗‖−‖Tot
←→ ‖−‖Tot

commutes by the commutative diagrams in Lemma 4.19 and Paragraph 5.5. ∎

5.7 Change of Fields. Let 𝐸 be a metrized vector bundle on 𝑉 and assume
that 𝐿/𝐾 is an extension of non-archimedean fields. Recall from Paragraph 4.13
that we write 𝐸 ⊗𝐾 𝐿 ≔ 𝜋∗𝐿/𝐾𝐸 where 𝜋𝐿/𝐾∶ 𝑉 ⨶𝐾 𝐿 → 𝑉 denotes the canoni-
cal base-change morphism. By Lemma 4.5, we have a canonical identification
(𝐸 ⊗𝐾 𝐿)(𝑥′) ≅ 𝐸(𝜋𝐿/𝐾(𝑥′)) ⊗ℋ(𝜋𝐿/𝐾(𝑥′)) ℋ(𝑥′) for 𝑥′ ∈ 𝑉 ⨶𝐾 𝐿. Similarly to
Paragraph 5.5 above, we get a metric ‖−‖ ⊗𝐾 𝐿 on 𝐸 ⊗𝐾 𝐿. By Paragraph 4.13
we have an identification Tot(𝐸 ⊗𝐾 𝐿) = Tot(𝐸) ⨶𝐾 𝐿. In particular, we have a
canonical map

𝜋𝐿/𝐾∶ Tot(𝐸 ⊗𝐾 𝐿) = Tot(𝐸) ⨶𝐾 𝐿 → Tot(𝐸).

One checks easily that the diagram

𝐑≥0

Tot(𝐸 ⊗𝐾 𝐿) Tot(𝐸)

←

→(‖−‖⊗𝐾𝐿)Tot

←→

← →
‖−‖Tot

commutes.
We write 𝐸 ⊗𝐾 𝐿 ≔ (𝐸 ⊗𝐾 𝐿, ‖−‖ ⊗𝐾 𝐿).
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5.8 Lemma. Let the situation be as in Paragraph 5.7. Then the metric ‖−‖ is
continuous if and only if the metric ‖−‖ ⊗𝐾 𝐿 is continuous.

Proof. It follows from Lemma 2.17 (i) that the canonical map 𝜋𝐿/𝐾∶ Tot(𝐸 ⨶𝐾
𝐿) → Tot(𝐸) is topologically proper and surjective so that Tot(𝐸) is equipped with
the quotient topology with respect to this map. The claim now follows from the
commutative diagram in Paragraph 5.7. ∎

5.9 Sub-Bundles. If 𝐸 = (𝐸, ‖−‖) is a metrized vector bundle on 𝑉 and 𝐹 ⊂ 𝐸
is a vector sub-bundle in the sense of Paragraph 4.27, then there is an induced
metric ‖−‖|𝐹 on 𝐹 given as follows: For each 𝑥 ∈ 𝑉, we have by Paragraph 4.27 an
induced embedding 𝐹(𝑥) ⊂ 𝐸(𝑥) and we take as a norm on 𝐹(𝑥) the restriction
of ‖−‖𝑥 with respect to this embedding, as in Paragraph 1.13. It follows from
Lemma 5.10 below that if 𝐹 is of rank 1, i.e. a line sub-bundle, and the norm ‖−‖
on 𝐸 is continuous then the restricted norm ‖−‖|𝐹 is continuous on 𝐹.

5.10 Lemma. Let 𝐸 = (𝐸, ‖−‖) be a metrized vector bundle on 𝑉 and let 𝐹 ⊂ 𝐸
be a line sub-bundle. If we denote by 𝑖∶ Tot(𝐹) ↪ Tot(𝐸) the canonical inclusion
morphism and by Tot(𝑖)∶ Tot(𝐹) → Tot(𝐸) the induced morphism according to
Paragraph 4.21 then the diagram

𝐑≥0

Tot(𝐹) Tot(𝐸)
←

→(‖−‖|𝐹)Tot

↩→
Tot(𝑖)

← →
‖−‖Tot

is commutative.

Proof. We write ‖−‖′ ≔ ‖−‖|𝐹 for the restricted norm. By definition of the
restricted norm, for every point 𝑥 ∈ 𝑉 the induced embedding 𝑖(𝑥)∶ 𝐹(𝑥) ↪
𝐸(𝑥) is isometric. Let 𝑣 ∈ Tot(𝐹) be a point over 𝑥 ≔ 𝜋𝐹(𝑣) ∈ 𝑉. Under the
identification 𝜋−1𝐹 (𝑥) = colim𝐿/𝐾 𝐹(𝑥) ⊗ℋ(𝑥) 𝐿 it is given by a non-archimedean
field extension 𝐿/ℋ(𝑥) and a vector 𝑣 ∈ 𝐹(𝑥)⊗ℋ(𝑥)𝐿 andwe have ‖𝑣‖′Tot = ‖𝑣‖′𝑥,𝐿
where ‖−‖′𝑥,𝐿 denotes the scalar extension norm of ‖−‖′𝑥 to 𝐹(𝑥) ⊗ℋ(𝑥) 𝐿. The
point Tot(𝑖)(𝑣) ∈ 𝜋−1𝐸 (𝑥) ⊂ Tot(𝐸) is given by the same field extension 𝐿/ℋ(𝑥)
and the image (𝑖(𝑥) ⊗ 𝐿)(𝑣) ∈ 𝐸(𝑥) ⊗ℋ(𝑥) 𝐿. Since by Lemma 1.17 (i) the
embedding 𝑖(𝑥) ⊗ 𝐿∶ 𝐹(𝑥) ⊗ℋ(𝑥) 𝐿 → 𝐸(𝑥) ⊗ℋ(𝑥) 𝐿 is isometric, we have

‖Tot(𝑖)(𝑣)‖Tot = ‖(𝑖(𝑥) ⊗ 𝐿)(𝑣)‖𝑥,𝐿 = ‖𝑣‖′𝑥,𝐿 = ‖𝑣‖′Tot. ∎

5.11 DualMetrics. Let 𝐸 = (𝐸, ‖−‖) be ametrized vector bundle on 𝑉. There is a
metric ‖−‖∨ on 𝐸∨ given as follows: For 𝑥 ∈ 𝑉, there is a canonical identification
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5. Continuous Metrics

𝐸∨(𝑥) ≅ 𝐸(𝑥)∨ of ℋ(𝑥)-vector spaces and we take on 𝐸∨(𝑥) the dual norm
induced by ‖−‖𝑥 as in Paragraph 1.8. We write 𝐸

∨
≔ (𝐸∨, ‖−‖∨).

If 𝐸 = 𝐿 is a metrized line bundle and the metric is continuous, then the dual
metric on 𝐿∨ is again continuous. Indeed, if 𝑠 is a local nowhere-vanishing section
of 𝐿, then there is an induced nowhere-vanishing section 𝑠−1 of 𝐿∨ and we have

‖𝑠−1(𝑥)‖∨ = ‖𝑠(𝑥)‖−1

for 𝑥 ∈ 𝑉.

5.12 Fubini-Study Metrics. Let 𝐸 = (𝐸, ‖−‖) be a metrized vector bundle on 𝑉.
Denote by 𝑝∶ 𝑃(𝐸) → 𝑉 its projective bundle with the tautological line sub-
bundle 𝒪𝐸(−1) ⊂ 𝑝∗𝐸. Using Paragraphs 5.5 and 5.9, we get a canonical metric
on 𝒪𝐸(−1) by restricting the pull-back metric 𝑝∗‖−‖ to 𝒪𝐸(−1), which we call
the dual Fubini-Study metric associated to ‖−‖ and which we denote by ‖−‖∨FS.
We write 𝒪𝐸(−1) ≔ (𝒪𝐸(−1), ‖−‖∨FS).
The dual metric of ‖−‖∨FS on 𝒪𝐸(1) is called the Fubini-Study metric associated

to ‖−‖ and is denoted by ‖−‖FS. We write 𝒪𝐸(1) ≔ (𝒪𝐸(1), ‖−‖FS) = 𝒪𝐸(−1)
∨. It

follows from Paragraphs 5.5, 5.9 and 5.11 that if ‖−‖ is continuous, then so are
‖−‖∨FS and ‖−‖FS. In fact, the converse also holds by Proposition 5.13 below.

5.13 Proposition. Let 𝐸 = (𝐸, ‖−‖) be a metrized vector bundle on 𝑉. Then the
following are equivalent:

(i) The metric ‖−‖ is continuous.

(ii) The induced dual Fubini-Study metric ‖−‖∨FS on 𝒪𝐸(−1) is continuous.

(iii) The induced Fubini-Study metric ‖−‖FS on 𝒪𝐸(1) is continuous.

Proof. The equivalence of (ii) and (iii) follows from Paragraph 5.11. We have
already noted in Paragraph 5.12 that (i) implies (ii), so it remains to prove that if
‖−‖∨FS is continuous, then ‖−‖ is continuous. It follows from the commutative
diagrams in Paragraph 5.5 and Lemma 5.10 that the diagram

𝐑≥0

Tot(𝒪𝐸(−1)) Tot(𝑝∗𝐸) Tot(𝐸)←→
Tot(𝑖)

←

→(‖−‖∨FS)Tot

←→
𝑝′

←

→
𝑝∗‖−‖Tot ← →

‖−‖Tot

commutes. By Lemma 4.37, the lower composition restricts to an isomorphism
Tot(𝒪𝐸(−1)) ⧵ { 0 } ⥲ Tot(𝐸) ⧵ { 0 }. We can therefore conclude that the map
‖−‖Tot∶ Tot(𝐸) → 𝐑≥0 is continuous in all points of Tot(𝐸) ⧵ { 0 }. It remains to
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show that it is also continuous in the points of the zero section. To do so, we
may work G-locally on 𝑉 by Lemma 2.12 and hence we may assume that 𝑉 is
compact and that 𝐸 is trivialized by sections 𝑠1,… , 𝑠𝑟 ∈ Γ(𝑉, 𝐸). Since 𝑠1,… , 𝑠𝑟
are nowhere-vanishing, we can conclude from the continuity on Tot(𝐸) ⧵ { 0 }
that the functions ‖𝑠𝑖(−)‖∶ 𝑉 → 𝐑>0 are continuous as in Paragraph 5.3. Let
𝑆𝑖 ≔ sup𝑥∈𝑉‖𝑠𝑖(𝑥)‖. We denote by 𝑇𝑖 ∈ 𝒪(Tot(𝐸)) the coordinate functions
induced by the frame 𝑠1,… , 𝑠𝑟 (as in Paragraph 5.2).
Now let 𝜖 > 0 and consider the domain

𝑈 = { 𝑣 ∈ Tot(𝐸) | |𝑇𝑖(𝑣)| ≤ 𝜖/𝑆𝑖 }.

Since 𝑈 is a neighborhood of all points in the zero section, it is enough to show
that 𝑈 is mapped into the interval [0, 𝜖] by ‖−‖Tot. Suppose that 𝑣 ∈ 𝑈 ∩ 𝜋−1𝐸 (𝑥)
is given as 𝑣 ∈ 𝐸(𝑥) ⊗ℋ(𝑥) 𝐿 in the colimit description of Paragraph 5.1. Write
𝑣 = 𝑎1𝑠1(𝑥)+⋯+𝑎𝑟𝑠𝑟(𝑥)with 𝑎𝑖 ∈ 𝐿. Then |𝑎𝑖| = |𝑇𝑖(𝑣)| ≤ 𝜖/𝑆𝑖 and we see that

‖𝑣‖Tot ≤ max
𝑖=1,…,𝑟

|𝑎𝑖|‖𝑠𝑖(𝑥)‖ ≤ max
𝑖=1,…,𝑟

(𝜖/𝑆𝑖) ⋅ 𝑆𝑖 = 𝜖.

This finishes the proof. ∎

5.14 Direct Sums. Let 𝐸 = (𝐸, ‖−‖), 𝐹 = (𝐹, ‖−‖′) be metrized vector bundles
on 𝑉. Given 𝑥 ∈ 𝑉, we have by Paragraph 4.23 an identification (𝐸 ⊕ 𝐹)(𝑥) ≅
𝐸(𝑥) ⊕ 𝐹(𝑥). Equipping the fiber (𝐸 ⊕ 𝐹)(𝑥) with the direct sum norm in-
duced from ‖−‖𝑥 and ‖−‖′𝑥, we get a metric ‖−‖ ⊕ ‖−‖′ on 𝐸 ⊕ 𝐹. Denoting
by pr1∶ 𝐸 ⊕ 𝐹 → 𝐸 and pr2∶ 𝐸 ⊕ 𝐹 → 𝐹 the two natural projections, it follows
from Proposition 1.15 (ii) that the map (‖−‖ ⊕ ‖−‖′)Tot∶ Tot(𝐸 ⊕ 𝐹) → 𝐑≥0 is
given by

𝑣 ↦ max{ ‖Tot(pr1)(𝑣)‖Tot, ‖Tot(pr2)(𝑣)‖
′
Tot }.

In particular, we see that if ‖−‖ and ‖−‖′ are continuous, then ‖−‖⊕‖−‖′ is again
continuous.
We write 𝐸 ⊕ 𝐹 ≔ (𝐸 ⊕ 𝐹, ‖−‖ ⊕ ‖−‖′).

5.15 Tensor Products. Let 𝐸 = (𝐸, ‖−‖), 𝐹 = (𝐹, ‖−‖′) be metrized vector
bundles on 𝑉. Given 𝑥 ∈ 𝑉, we have by Paragraph 4.22 an identification (𝐸 ⊗
𝐹)(𝑥) ≅ 𝐸(𝑥)⊗ℋ(𝑥) 𝐹(𝑥). Equipping the fiber (𝐸⊗𝐹)(𝑥)with the tensor product
norm induced from ‖−‖𝑥 and ‖−‖′𝑥, we get a metric ‖−‖ ⊗ ‖−‖′ on 𝐸 ⊗ 𝐹. We
write 𝐸 ⊗ 𝐹 ≔ (𝐸 ⊗ 𝐹, ‖−‖ ⊗ ‖−‖′).
If the metrics ‖−‖ and ‖−‖′ are continuous and either 𝐸 or 𝐹 is a line bundle,

then ‖−‖ ⊗ ‖−‖′ is again continuous, we show this in Corollary 5.20 below.
For vector bundles of arbitrary rank it seems difficult to prove that the tensor

product of continuous norms remains continuous.
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5.16 Lemma. Let 𝑓∶ 𝑉 ′ → 𝑉 be a morphism of 𝐾-analytic spaces and let 𝐸 =
(𝐸, ‖−‖) and 𝐹 = (𝐹, ‖−‖′) be two metrized vector bundles on 𝑉. On the vector
bundle

𝑓∗(𝐸 ⊗ 𝐹) = 𝑓∗𝐸 ⊗ 𝑓∗𝐹

we have an equality of metrics

𝑓∗(‖−‖ ⊗ ‖−‖′) = 𝑓∗‖−‖ ⊗ 𝑓∗‖−‖′

and hence we have an identification of metrized vector bundles

𝑓∗(𝐸 ⊗ 𝐹) = 𝑓∗𝐸 ⊗ 𝑓∗𝐹.

Proof. Let 𝑥′ ∈ 𝑉 ′ be a point with image 𝑥 ≔ 𝑓(𝑥′) ∈ 𝑉. Viewing the fiber vector
spaces at 𝑥′ as normedℋ(𝑥′)-vector spaces, we have

𝑓∗(𝐸 ⊗ 𝐹)(𝑥′) = (𝐸(𝑥) ⊗ 𝐹(𝑥)) ⊗ℋ(𝑥) ℋ(𝑥′)

and

(𝑓∗𝐸 ⊗ 𝑓∗𝐹)(𝑥′) = (𝐸(𝑥) ⊗ℋ(𝑥) ℋ(𝑥′)) ⊗ℋ(𝑥′) (𝐹(𝑥) ⊗ℋ(𝑥) ℋ(𝑥′))

By Proposition 1.15 (iii) the respective metrics agree under the canonical identifi-
cation of the underlying vector spaces. ∎

5.17 Lemma. Let 𝑔∶ 𝑉″ → 𝑉 ′ and 𝑓∶ 𝑉 ′ → 𝑉 bemorphisms of 𝐾-analytic spaces
and let 𝐸 be a metrized vector bundle on 𝑉. Then the canonical identification

(𝑓 ∘ 𝑔)∗𝐸 = 𝑔∗𝑓∗𝐸

of vector bundles on 𝑉″ is an identity of metrized vector bundles

(𝑓 ∘ 𝑔)∗𝐸 = 𝑔∗𝑓∗𝐸.

Proof. This follows similarly to Lemma 5.16 from Proposition 1.15 (iv). ∎

5.18 Lemma. Let 𝐸 = (𝐸, ‖−‖) be a metrized vector bundle on 𝑉 and let 𝐹 ⊂ 𝐸
be a vector sub-bundle equipped with the induced norm ‖−‖|𝐹 according to Para-
graph 5.9.

(i) Assume that 𝐹 has rank 1. If 𝑓∶ 𝑉 ′ → 𝑉 is a morphism of 𝐾-analytic spaces,
then we have an equality

𝑓∗(‖−‖|𝐹) = (𝑓∗‖−‖)|𝑓∗𝐹

of metrics on the line sub-bundle 𝑓∗𝐹 ⊂ 𝑓∗𝐸.
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(ii) If 𝐺 = (𝐺, ‖−‖′) is a metrized line bundle on 𝑉, then we have an equality

‖−‖|𝐹 ⊗ ‖−‖′ = (‖−‖ ⊗ ‖−‖′)|𝐹⊗𝐺

of metrics on the vector sub-bundle 𝐹 ⊗ 𝐺 ⊂ 𝐸 ⊗ 𝐺.

Proof. By considering the fiber vector spaces these statements follow from the
two statements of Lemma 1.17. ∎

5.19 Proposition. Let 𝐸 = (𝐸, ‖−‖) be a metrized vector bundle and 𝐿 = (𝐿, ‖−‖′)
a metrized line bundle on 𝑉. Denote by 𝑝𝐸∶ 𝑃(𝐸) → 𝑉 the projective bundle of 𝐸
and by 𝜏 = 𝜏𝐸,𝐿∶ 𝑃(𝐸) ⥲ 𝑃(𝐸 ⊗ 𝐿) the canonical isomorphism of Paragraph 4.38.
We write ‖−‖∨FS both for the dual Fubini-Study metric on 𝒪𝐸(−1) and on 𝒪𝐸⊗𝐿(−1)
induced from 𝐸 and 𝐸 ⊗ 𝐿 respectively. Then on the line bundle

𝜏∗𝒪𝐸⊗𝐿(−1) = 𝒪𝐸(−1) ⊗ 𝑝∗𝐸𝐿

on 𝑃(𝐸) we have an equality of metrics

𝜏∗‖−‖∨FS = ‖−‖∨FS ⊗ 𝑝∗𝐸‖−‖′

and hence we have an identity of metrized line bundles

𝜏∗𝒪𝐸⊗𝐿(−1) = 𝒪𝐸(−1) ⊗ 𝑝∗𝐸𝐿.

Proof. By Lemmas 5.16 and 5.17 we have an equality of metrized vector bundles

𝜏∗𝑝∗𝐸⊗𝐿(𝐸 ⊗ 𝐿) = 𝑝∗𝐸(𝐸 ⊗ 𝐿) = 𝑝∗𝐸𝐸 ⊗ 𝑝∗𝐸𝐿

on 𝑃(𝐸). By definition, 𝒪𝐸⊗𝐿(−1) carries the sub-bundle metric induced from
the embedding 𝒪𝐸⊗𝐿(−1) ⊂ 𝑝∗𝐸⊗𝐿(𝐸 ⊗ 𝐿). By Lemma 5.18 (i) the pull-back
𝜏∗𝒪𝐸⊗𝐿(−1) carries the sub-bundle metric induced from the embedding

𝜏∗𝒪𝐸⊗𝐿(−1) ⊂ 𝜏∗𝑝∗𝐸⊗𝐿(𝐸 ⊗ 𝐿) = 𝑝∗𝐸(𝐸 ⊗ 𝐿).

Similarly, by definition,𝒪𝐸(−1) carries the sub-bundlemetric induced from the
embedding 𝒪𝐸(−1) ⊂ 𝑝∗𝐸𝐸. So by Lemma 5.18 (ii) the tensor product 𝒪𝐸(−1) ⊗
𝑝∗𝐸𝐿 carries the sub-bundle metric induced from the embedding

𝒪𝐸(−1) ⊗ 𝑝∗𝐸𝐿 ⊂ 𝑝∗𝐸𝐸 ⊗ 𝑝∗𝐸𝐿 = 𝑝∗𝐸(𝐸 ⊗ 𝐿).

It follows that as metrized line sub-bundles of 𝑝∗𝐸(𝐸 ⊗ 𝐿) both line bundles
agree. ∎
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5.20 Corollary. Let 𝐸 be a continuously metrized vector bundle and 𝐿 a continu-
ously metrized line bundle on 𝑉. Then the twisted metrized vector bundle 𝐸⊗ 𝐿 is
continuously metrized.

Proof. If 𝐸 is a line bundle, this is well-known and easy to show using the de-
scription of continuously metrized line bundles in Paragraph 5.4. The general
case is reduced to this case by Proposition 5.13 and Proposition 5.19. ∎

5.21 Lemma. Let 𝑓∶ 𝑉 ′ → 𝑉 be a morphism of 𝐾-analytic spaces and let 𝐸 be
a vector bundle on 𝑉. Denote by 𝑓∶ 𝑃(𝑓∗𝐸) → 𝑃(𝐸) the induced morphism of
Lemma 4.32 determined by the equality

𝑓∗𝒪𝐸(−1) = 𝒪𝑓∗𝐸(−1)

of line sub-bundles of 𝑓∗𝑝∗𝐸𝐸 = 𝑝∗𝑓∗𝐸𝑓
∗𝐸. If we equip 𝑓∗𝒪𝐸(−1) with the pull-back

metric of the Fubini-Study metric on 𝒪𝐸(−1) along 𝑓 and if we equip 𝒪𝑓∗𝐸(−1)
with the Fubini-Study metric induced from 𝑓∗𝐸 then the above equality is in fact an
equality of metrized line bundles

𝑓∗𝒪𝐸(−1) = 𝒪𝑓∗𝐸(−1).

Proof. Since the embedding𝒪𝐸(−1) ⊂ 𝑝∗𝐸𝐸 is by construction isometric, it follows
from Lemma 5.18 (i) that the embedding 𝑓∗𝒪𝐸(−1) ⊂ 𝑓∗𝑝∗𝐸𝐸 = 𝑝∗𝑓∗𝐸𝑓

∗𝐸 is
isometric. The second identity of metrized vector bundles follows from the
commutative diagram in Lemma 4.32 and Lemma 5.17.
Since the metric of 𝒪𝑓∗𝐸(−1) is by definition the sub-bundle metric induced

from the inclusion 𝒪𝑓∗𝐸(−1) ⊂ 𝑝∗𝐸𝑓∗𝐸 this proves the claim. ∎

5.22 Convergence of Metrics. Let 𝐸 be a vector bundle and let ‖−‖, ‖−‖′ be
two metrics on 𝐸. For each 𝑥 ∈ 𝑉, we have the distance 𝑑(‖−‖𝑥, ‖−‖′𝑥) ∈ 𝐑≥0 as
defined in Paragraph 1.21. This defines a function

𝑑(‖−‖, ‖−‖′)∶ 𝑉 → 𝐑≥0, 𝑥 ↦ 𝑑(‖−‖, ‖−‖′)(𝑥) ≔ 𝑑(‖−‖𝑥, ‖−‖′𝑥).

By Proposition 5.26 below, the function 𝑑(‖−‖, ‖−‖′) is continuous if the metrics
‖−‖ and ‖−‖′ are continuous.
If {‖−‖𝑛}𝑛∈𝐍 is a sequence of metrics on 𝐸, then we say that it converges (locally

uniformly) to a metric ‖−‖ if the functions 𝑑(‖−‖𝑛, ‖−‖)∶ 𝑉 → 𝐑≥0 converge
locally uniformly to 0 as 𝑛 → ∞. This defines a topology on the set of all metrics
by stipulating that a set 𝑍 of metrics is closed if and only if for every sequence
{‖−‖𝑛}𝑛∈𝐍 of metrics in 𝑍 converging to a metric ‖−‖ it follows that ‖−‖ ∈ 𝑍. If
𝑉 is compact, then the subspace of all continuous metrics is metrizable by the
absolute distance

𝑑abs(‖−‖, ‖−‖′) ≔ sup
𝑥∈𝑉

𝑑(‖−‖, ‖−‖′)(𝑥).

72



5.23 Lemma. Let 𝐸 be a vector bundle on 𝑉 and let ‖−‖, ‖−‖′ be two metrics on 𝐸.
Denote by 𝑝∶ 𝑃(𝐸) → 𝑉 the associated projective bundle and by 𝜋∶ Tot(𝐸) → 𝑉
its total space. Then for all 𝑥 ∈ 𝑉 we have

𝑑(‖−‖, ‖−‖′)(𝑥) = sup
𝑣∈𝜋−1(𝑥)⧵{ 0 }

|log‖𝑣‖Tot − log‖𝑣‖′Tot|

= sup
𝑦∈𝑝−1(𝑥)

𝑑(‖−‖∨FS, ‖−‖′∨FS)(𝑦)

= sup
𝑦∈𝑝−1(𝑥)

𝑑(‖−‖FS, ‖−‖′FS)(𝑦).

Proof. Let us start by proving the first equality. Recall the colimit description of
𝜋−1(𝑥) from Proposition 4.16. If 𝑣 ∈ 𝜋−1(𝑥)⧵{ 0 } is given as 𝑣 ∈ 𝐸(𝑥)⊗ℋ(𝑥)𝐿 for
some field extension 𝐿/ℋ(𝑥), then ‖𝑣‖Tot is by definition ‖𝑣‖𝑥,𝐿 where ‖−‖𝑥,𝐿 is
the scalar extension norm of ‖−‖𝑥 along 𝐿/ℋ(𝑥). Hence the first equality follows
from Lemma 1.22.
To prove the second equality, we recall that we have a commutative diagram

𝐑≥0

Tot(𝒪𝐸(−1)) Tot(𝑝∗𝐸) Tot(𝐸)

𝑃(𝐸) 𝑉

←

→𝜋𝒪𝐸(−1)

←→
Tot(𝑖)

←

→(‖−‖∨FS)Tot

←→𝜋𝑝∗𝐸

←→
𝑝′

←

→
𝑝∗‖−‖Tot ← →

‖−‖Tot

←→ 𝜋

← →𝑝

and that the composition 𝑝′ ∘ Tot(𝑖) restricts to an isomorphism Tot(𝒪𝐸(−1)) ⧵
{ 0 } ⥲ Tot(𝐸) ⧵ { 0 }. It follows that

sup
𝑣∈𝜋−1(𝑥)⧵{ 0 }

|log‖𝑣‖Tot − log‖𝑣‖′Tot|

= sup
𝑦∈𝑝−1(𝑥)

sup
𝑤∈𝜋−1𝒪𝐸(−1)

(𝑦)⧵{ 0 }
|log‖𝑤‖∨FS,Tot − log‖𝑤‖′∨FS,Tot|.

(5.23.1)

Applying the first equality of this lemma to ‖−‖∨FS and ‖−‖′∨FS, we see that

sup
𝑤∈𝜋−1𝒪𝐸(−1)

(𝑦)⧵{ 0 }
|log‖𝑤‖∨FS,Tot − log‖𝑤‖′∨FS,Tot| = 𝑑(‖−‖∨FS, ‖−‖′∨FS)(𝑦).

Plugging this into Eq. (5.23.1), we get the second equality.
The third equality follows from Lemma 1.23. ∎

5.24 Corollary. Let 𝐸 be a vector bundle on 𝑉 and let {‖−‖𝑛}𝑛∈𝐍 be a sequence
of metrics on 𝐸 and let ‖−‖ also be a metric on 𝐸. Then the sequence {‖−‖𝑛}𝑛∈𝐍
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5. Continuous Metrics

converges locally uniformly to ‖−‖ if and only if the sequence {‖−‖𝑛,FS}𝑛∈𝐍 of metrics
on 𝒪𝐸(1) converges locally uniformly to ‖−‖FS.
If 𝑉 is compact, then the assignment ‖−‖ ↦ ‖−‖FS provides an isometric em-

bedding of metric spaces from the space of continuous metrics on 𝐸 to the space of
continuous metrics on 𝒪𝐸(1). ∎

In order to prove Proposition 5.26 below, we need the following point-set
topological lemma. Recall from [Bou98, Chap. 1, § 10.2, Thm. 1] that a map
𝑝∶ 𝑃 → 𝑋 of topological spaces is proper if and only if it is closed and has
quasi-compact fibers.

5.25 Lemma. Let 𝑝∶ 𝑃 → 𝑋 be a surjective, proper and open map of topological
spaces and let 𝜙∶ 𝑃 → 𝐑 be a continuous function. Then the induced function

𝜙∶ 𝑋 → 𝐑, 𝑥 ↦ sup
𝑦∈𝑝−1(𝑥)

𝜙(𝑦)

is well-defined and continuous.

Proof. Since the fibers 𝑝−1(𝑥) are quasi-compact, the function 𝜙 attains a supre-
mum (in fact, a maximum) on 𝑝−1(𝑥), so the map 𝜙 is well-defined.
Let 𝑥0 ∈ 𝑋 with 𝑠0 ≔ 𝜙(𝑥0) = sup𝑦∈𝑝−1(𝑥) 𝜙(𝑦) ∈ 𝐑. Let 𝜖 > 0 and consider

the standard neighborhood𝑈𝜖 = { 𝑡 ∈ 𝐑||𝑠0−𝑡| < 𝜖 } of 𝑠0 ∈ 𝐑. Wewill construct
a neighborhood 𝑈0 of 𝑥0 ∈ 𝑋 such that 𝜙(𝑥) ∈ 𝑈𝜖 for all 𝑥 ∈ 𝑈0.
Consider an arbitrary 𝑎 ∈ 𝑝−1(𝑥0) ⊂ 𝑃 and the open neighborhood

𝑉(𝑎) = { 𝑦 ∈ 𝑃 | |𝜙(𝑦) − 𝜙(𝑎)| < 𝜖/2 }

of 𝑎 in 𝑃. We have 𝑝−1(𝑥0) ⊂ ⋃𝑎∈𝑝−1(𝑥0)
𝑉(𝑎), so by compactness, there exists a

finite subset 𝐴 ⊂ 𝑝−1(𝑥0) such that 𝑝−1(𝑥0) ⊂ ⋃𝑎∈𝐴 𝑉(𝑎). Now let 𝑈0 ⊂ 𝑋 be an
open neighborhood of 𝑥0 such that

(i) 𝑝−1(𝑈0) ⊂ ⋃𝑎∈𝐴 𝑉(𝑎).

(ii) for 𝑥 ∈ 𝑈0 and 𝑎 ∈ 𝐴, we have 𝑝−1(𝑥) ∩ 𝑉(𝑎) ≠ ∅.

For example, we can take

𝑈0 ≔ 𝑋 ⧵ 𝑝(𝑃 ⧵ ⋃
𝑎∈𝐴

𝑉(𝑎)) ∩ ⋂
𝑎∈𝐴

𝑝(𝑉(𝑎)).

This set is open since 𝑝 is both open and closed.
We claim that this 𝑈0 works. Indeed, given 𝑥1 ∈ 𝑈0 let 𝑠1 ≔ 𝜙(𝑥1) ∈ 𝐑. We

write 𝑠0 = 𝜙(𝑦0), 𝑠1 = 𝜙(𝑦1) for some 𝑦0 ∈ 𝑝−1(𝑥0), 𝑦1 ∈ 𝑝−1(𝑥1). We have
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to show that |𝑠0 − 𝑠1| < 𝜖. By (i), we have 𝑦0 ∈ 𝑉(𝑎0), 𝑦1 ∈ 𝑉(𝑎1) for some
𝑎0, 𝑎1 ∈ 𝐴. We know that 𝑝−1(𝑥0) ∩ 𝑉(𝑎1) ≠ ∅ (because 𝑎1 is contained in this
set) and𝑝−1(𝑥1)∩𝑉(𝑎0) ≠ ∅ by (ii). Hencewe can pick some 𝑏0 ∈ 𝑝−1(𝑥1)∩𝑉(𝑎0)
and 𝑏1 ∈ 𝑝−1(𝑥0) ∩ 𝑉(𝑎1). Then we have

𝑠0 − 𝑠1 = 𝜙(𝑦0) − 𝑠1
= 𝜙(𝑦0) − 𝜙(𝑏0) + 𝜙(𝑏0) − 𝑠1⏟⎵⎵⏟⎵⎵⏟

≤0 by def. of 𝑠1
≤ |𝜙(𝑦0) − 𝜙(𝑏0)|
≤ |𝜙(𝑦0) − 𝜙(𝑎0)|⏟⎵⎵⎵⏟⎵⎵⎵⏟

≤𝜖/2 since 𝑦0∈𝑉(𝑎0)

+ |𝜙(𝑎0) − 𝜙(𝑏0)|⏟⎵⎵⎵⏟⎵⎵⎵⏟
≤𝜖/2 since 𝑏0∈𝑉(𝑎0)

≤ 𝜖.

By a symmetric argument, we also get 𝑠1 − 𝑠0 ≤ 𝜖. ∎

5.26 Proposition. Let𝐸 be a vector bundle on𝑉 and let ‖−‖, ‖−‖′ be two continuous
metrics on 𝐸. Then the function

𝑑(‖−‖, ‖−‖′)∶ 𝑉 → 𝐑≥0

is continuous.

Proof. First we note that the claim is true when 𝐸 = 𝐿 is a line bundle. In that
case, we may work G-locally on 𝑉 and assume that 𝐿 is trivialized by a section
𝑠 ∈ Γ(𝑉, 𝐿). Then one checks easily that

𝑑(‖−‖, ‖−‖′)(𝑥) = |log‖𝑠(𝑥)‖ − log‖𝑠(𝑥)‖′|

which is continuous.
For the general case, we note that if 𝑝∶ 𝑃(𝐸) → 𝑉 denotes the projective bundle

associated to 𝐸, then by Lemma 5.23 we have

𝑑(‖−‖, ‖−‖′)(𝑥) = sup
𝑦∈𝑝−1(𝑥)

𝜙(𝑦)

where 𝜙∶ 𝑃(𝐸) → 𝐑 is the function 𝜙 = 𝑑(‖−‖FS, ‖−‖′FS) which is continuous by
the line bundle case above.
Hence the result follows from Lemma 5.25 because the projective bundle

𝑝∶ 𝑃(𝐸) → 𝑉 is topologically proper and open by Proposition 4.41. ∎

5.27 Proposition. Let 𝐸 be a vector bundle on 𝑉, let {‖−‖𝑛}𝑛∈𝐍 be a family of
metrics on 𝐸 converging locally uniformly to a metric ‖−‖. If each of the metrics
‖−‖𝑛 is continuous, then ‖−‖ is continuous.
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5. Continuous Metrics

Proof. For line bundles, this is easy. Indeed, the claim may be checked locally so
we may assume that our line bundle is trivial. In that case, the metrics can be
identified with functions on 𝑉 and the claim is reduced to the fact that uniform
limits of continuous functions are continuous. The general case now follows
from Proposition 5.13 and Corollary 5.24. ∎

5.28 Metrized Vector Bundles over a Point. Let 𝑉 = ℳ(𝐾) = { ∗ } be a point.
A vector bundle on 𝑉 can be identified with the 𝐾-vector space 𝐸(∗) and a metric
on 𝐸 is simply a norm on the 𝐾-vector space 𝐸(∗). More precisely, the assignment
‖−‖ ↦ ‖−‖∗ is an isometric bijection from the space of metrics on 𝐸 to the space
of norms on 𝐸(∗).

5.29 Proposition. Let 𝐸 be a vector bundle overℳ(𝐾). Then any metric on 𝐸 is
continuous.

Proof. It follows from [BE21, Thm. 1.19] that any norm on 𝐸(∗) can be approx-
imated by diagonalizable norms. By Proposition 5.27 it suffices to prove that
metrics on 𝐸 corresponding to diagonalizable norms on 𝐸(∗) are continuous. This
is a special case of Paragraph 5.2. ∎

5.30 Constant Metrics. Let 𝐸 be a finite-dimensional 𝐾-vector space. By Para-
graph 4.3 we can regard it as a vector bundle onℳ(𝐾). We denote by 𝐸 ⊗𝐾 𝒪𝑉
the pull-back of 𝐸 under the structural morphism 𝑉 → ℳ(𝐾). If ‖−‖ is a metric
on 𝐸, then we denote by ‖−‖const the pull-back metric of ‖−‖ on 𝐸⊗𝐾𝒪𝑉. Metrics
of this form are called constant. By Paragraph 5.5 and Proposition 5.29, constant
metrics are continuous.
Concretely, if 𝑥 ∈ 𝑉, then the fiber vector space (𝐸 ⊗𝐾 𝒪𝑉)(𝑥) is isomorphic

to 𝐸 ⊗𝐾 ℋ(𝑥) by Lemma 4.5 and the norm ‖−‖const,𝑥 on 𝐸(𝑥) corresponds to the
scalar extension norm ‖−‖ℋ(𝑥) on 𝐸 ⊗𝐾 ℋ(𝑥).
Note that the property of being a constant metric is not preserved under auto-

morphisms of 𝐸 ⊗𝐾 𝒪𝑉 but only under automorphisms coming from automor-
phisms of 𝐸.

5.31 Comparison with [CD12] and [CM20]. In [CM20], Chen and Moriwaki
consider metrics on the Berkovich analytification of algebraic vector bundles. Let
𝑋 be a locally finite type 𝐾-scheme and 𝐸 a vector bundle on 𝑋. A metric on 𝐸
in the sense of Paragraph 5.1 is precisely a metric on 𝐸 in the sense of [CM20,
Def. 2.1.8] which has the additional property that all norms ‖−‖𝑥 satisfy the non-
archimedean triangle inequality. Let us refer to the latter as non-archimedean
metrics in the sense of [CM20]. The metric is continuous in the sense of [CM20,
Def. 2.1.8] if for each (Zariski-)local algebraic section 𝑠 of 𝐸 the function ‖𝑠an(−)‖
is continuous with respect to the Berkovich topology. Hence by Paragraph 5.3
a continuous metric in our sense is a continuous non-archimedean metric in
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the sense of [CM20]. If 𝐿 is a line bundle, then every metric in the sense of
[CM20] is non-archimedean and every continuous metric in the sense of [CM20]
is continuous in our sense by Paragraph 5.4. I do not know if all non-archimedean
continuous metrics in the sense of [CM20] are continuous in our sense for higher
rank vector bundles.
Chambert-Loir and Ducros consider metrics on vector bundles over arbitrary

𝐾-analytic spaces in [CD12, Def. 6.2.2], defined as certain continuous maps
Tot(𝐸) → 𝐑≥0. If ‖−‖ is a continuous metric in the sense of Paragraph 5.1, then
the associated map ‖−‖Tot∶ Tot(𝐸) → 𝐑≥0 is a metric in the sense of [CD12].
Conversely, if ‖−‖∶ Tot(𝐸) → 𝐑≥0 is a metric in the sense of [CD12], then we
get an associated metric ‖−‖′ in the sense of Paragraph 5.1 which is given by the
norms

‖−‖′𝑥∶ 𝐸(𝑥) ⊂ 𝜋−1(𝑥) ⊂ Tot(𝐸) 𝐑≥0

←→
‖−‖

Themetric ‖−‖′will have the property that for local sections 𝑠 the functions ‖𝑠(−)‖
are continuous (in particular it will be continuous in the sense of [CM20] in the
algebraic case) but I do not know if it is continuous in the sense of Paragraph 5.1
and if the associated map ‖−‖′Tot is equal to the original metric ‖−‖ in the sense
of [CD12].
We can summarize the situation in the following commutative diagram:

{Metrics } {N.a. [CM20]-metrics }

{Cont. Metrics } {Cont. n.a. [CM20]-metrics }

{ [CD12]-metrics }.

⇐ ⇐

↩ →

↩→

↩
→

↩→
←

→

For line bundles all arrows in the lower triangle become bijections.

5.32Pseudo-Metrics. If 𝐸 is a vector bundle on𝑉 then by a pseudo-metric on𝐸we
mean a metric on the corresponding line bundle 𝒪𝐸(1) on 𝑃(𝐸). Note that via the
injective mapping ‖−‖ ↦ ‖−‖FS the set of metrics on 𝐸 forms a subset of the set of
all pseudo-metrics. We use the notation𝐸 = (𝐸, ‖−‖) to denote a pseudo-metrized
vector bundle. Here ‖−‖ is ametric on𝒪𝐸(1). If 𝐸 = (𝐸, ‖−‖) is a pseudo-metrized
line bundle then we write 𝒪𝐸(1) ≔ (𝒪𝐸(1), ‖−‖) and 𝒪𝐸(−1) ≔ 𝒪𝐸(1)

∨. To keep
a uniform notation for metrics and pseudo-metrics we also write ‖−‖FS for the
metric on 𝒪𝐸(1) given by a pseudo-metric on 𝐸.
We call a pseudo-metrized vector bundle 𝐸 = (𝐸, ‖−‖) continuous if 𝒪𝐸(1) is

continuously metrized, i.e. if ‖−‖ is a continuous metric on 𝒪𝐸(1). By Proposi-
tion 5.13 a metric is continuous if and only if it is continuous as a pseudo-metric.
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5. Continuous Metrics

Let 𝑓∶ 𝑉 ′ → 𝑉 be a morphism of 𝐾-analytic spaces and let 𝐸 be a pseudo-
metrized vector bundle on 𝑉. We denote by 𝑓∗𝐸 the unique pseudo-metrized
vector bundle with underlying vector bundle 𝑓∗𝐸 such that the equality of line
sub-bundles of 𝑝𝑓∗𝐸𝑓∗𝐸

𝒪𝑓∗𝐸(−1) = 𝑓∗𝒪𝐸(−1)

of Lemma 4.32 is in fact an equality of metrized line bundles

𝒪𝑓∗𝐸(−1) = 𝑓∗𝒪𝐸(−1).

By Lemma 5.21 this is compatible with the pull-back of metrized vector bundles
as defined above.
Similarly if 𝐸 is a pseudo-metrized vector bundle on 𝑉 and 𝐿 is a line bundle

on 𝐸 then we denote by 𝐸⊗ 𝐿 the unique pseudo-metrized vector bundle with
underlying vector bundle 𝐸 ⊗ 𝐿 such that the equality of line sub-bundles of
𝑝∗𝐸(𝐸 ⊗ 𝐿)

𝜏∗𝒪𝐸⊗𝐿(−1) = 𝒪𝐸(−1) ⊗ 𝑝∗𝐸𝐿

of Paragraph 4.38 is an equality of metrized line bundles

𝜏∗𝒪𝐸⊗𝐿(−1) = 𝒪𝐸(−1) ⊗ 𝑝∗𝐸𝐿.

By Proposition 5.19 this is compatible with the twisting of metrized vector bundles
with metrized line bundles as defined above.
Finally let 𝐸 be a pseudo-metrized vector bundle on 𝑉 and let 𝐿/𝐾 be an exten-

sion of non-archimedean fields. It follows from Paragraph 4.36 that we can make
the identifications 𝑃(𝐸 ⊗𝐾 𝐿) = 𝑃(𝐸) ⨶𝐾 𝐿 and 𝒪𝐸⊗𝐾𝐿(−1) = 𝒪𝐸(−1) ⊗𝐾 𝐿. We
define 𝐸 ⊗𝐾 𝐿 to be the unique pseudo-metrized vector bundle on 𝑉 ⨶𝐾 𝐿 with
underlying vector bundle 𝐸 ⊗𝐾 𝐿 such that we have

𝒪𝐸⊗𝐾𝐿(−1) = 𝒪𝐸(−1) ⊗𝐾 𝐿

as metrized line bundles on 𝑃(𝐸 ⊗𝐾 𝐿) = 𝑃(𝐸) ⨶𝐾 𝐿. It is easy to show that this
is compatible with the scalar extension of metrized vector bundles as defined in
Paragraph 5.7.
Note that direct sums, duals and general tensor products do not have an obvious

analogue for pseudo-metrized vector bundles because the projective bundles
of direct sums, duals and tensor products cannot be expressed in terms of the
projective bundles of the original vector bundles.

5.33 Smooth Functions. A function 𝑓∶ 𝑉 → 𝐑 is called smooth if for every
point 𝑥 ∈ 𝑉 there exists an open neighborhood 𝑈 ⊂ 𝑉 of 𝑥, nowhere-vanishing
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analytic functions 𝑔1,… , 𝑔𝑟 ∈ 𝒪×
𝑉(𝑈) and a smooth function 𝜑∶ 𝐑𝑛 → 𝐑 such

that
𝑓 ≡ 𝜑(− log|𝑔1|,… ,− log|𝑔𝑟|)

identically on 𝑈. This definition is due to [CD12, § 3.1.3].
Smooth functions form a sheaf of 𝐑-algebras in the Berkovich topology of 𝑉

which we denote by𝒞∞
𝑉 .

5.34 Smoothly Metrized Line Bundles. Let 𝐿 = (𝐿, ‖−‖) be a metrized line
bundle on 𝑉. We call 𝐿 and the metric ‖−‖ smooth if for every analytic domain
𝑈 ⊂ 𝑉 and every G-local section 𝑠 ∈ Γ(𝑈, 𝐿) the function

− log‖𝑠(−)‖∶ 𝑈 → 𝐑

is smooth in the sense of Paragraph 5.33. In [CD12, Def. 6.2.4], Chamber-Loir
and Ducros gave a definition of smooth metrics on vector bundles; by [CD12,
Rem. 6.2.5] it specializes to the definition above in the case of line bundles. Every
smooth metric is continuous.
It is easy to see that tensor products and duals of smoothly metrized line

bundles are again smoothly metrized.

5.35 Smooth (Pseudo-)Metrics on Vector Bundles. Let 𝐸 = (𝐸, ‖−‖) be a
(pseudo-)metrized vector bundle on 𝑉. We call it smoothly (pseudo-)metrized if
the metrized line bundle 𝒪𝐸(1) is smooth.
Note that the argument contained in the proof of Proposition 5.13 shows that a

metrized vector bundle 𝐸 = (𝐸, ‖−‖) is smoothly metrized if and only if the map

‖−‖Tot∶ Tot(𝐸) ⧵ { 0 } → 𝐑>0

is smooth, i.e. if and only if 𝐸 is smoothly metrized in the sense of [CD12,
Def. 6.2.4].

5.36 Existence of Continuous and Smooth Metrics. If 𝑉 is paracompact,
then by [CD12, Prop. 6.2.13] every vector bundle 𝐸 on 𝑉 admits a formal model
and hence a formal metric, which is in particular continuous in the sense of
Paragraph 5.1. (We introduce formal models and the associated metrics in Para-
graph 6.1.)
Smooth metrics behave best for good 𝐾-analytic spaces so let us assume that 𝑉

is good. If 𝑉 is additionally paracompact then by [CD12, Prop. 6.2.6] every line
bundle on 𝑉 admits a smooth metric.
Applying this to 𝒪𝐸(1) we see that every vector bundle on a good paracompact

𝐾-analytic space admits a smooth pseudo-metric. It is unknown whether vector
bundles of higher rank admit smooth metrics (as opposed to smooth pseudo-
metrics), cf. the remark after [CD12, Prop. 6.2.6].
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6. Models andModel Metrics
Throughout this chapter 𝐾will be a non-archimedean field, 𝑉will denote
a paracompact strictly 𝐾-analytic space and 𝑋 will be a proper 𝐾-scheme.
We introduce formal models of vector bundles on 𝑉 in Paragraph 6.1 as
well as their associated formal metrics in Paragraph 6.4. We show that
model metrics are compatible with all the common operations on vector
bundles. In Paragraph 6.13 we introduce a notion of semipositive metrics
on vector bundles.

6.1 Formal Models. Let 𝔙 be a formal model for 𝑉. A vector bundle on 𝔙 is a
locally free sheaf 𝔈 of 𝒪𝔙-modules of constant rank. Recall from Paragraph 3.6
that there is a canonical morphism of ringed sites (𝒞(𝑉𝐺), 𝒪𝑉𝐺) → (𝒞(𝔙), 𝒪𝔙).
We denote the pull-back of 𝔈 along this morphism of ringed sites by 𝔈|𝑉 and call
it the generic fiber of 𝔈. It is a vector bundle on 𝑉.
Now let 𝐸 be a vector bundle on 𝑉. A formal𝐾∘-model (𝔙, 𝔈) for (𝑉, 𝐸) consists

of a formal 𝐾∘-model 𝔙 for 𝑉 and a vector bundle 𝔈 on 𝔙 together with a fixed
isomorphism 𝔈|𝑉 ⥲ 𝐸.
In that case we have for every open 𝔘 ⊂ 𝔙 a canonical Γ(𝔘, 𝒪𝔙)-linear map

Γ(𝔘, 𝔈) → Γ(𝑉 ∩ 𝔘, 𝔈|𝑉), 𝑠 ↦ 𝑠|𝑉∩𝔘.

If 𝑥 ∈ 𝑉 ∩ 𝔘 is a point, then we write 𝑠(𝑥) ≔ 𝑠|𝑉∩𝔘(𝑥) ∈ 𝐸(𝑥). If 𝑠1,… , 𝑠𝑟 ∈
Γ(𝔘, 𝔈) is a local frame for 𝔈, then 𝑠1|𝑉∩𝔘,… , 𝑠𝑟|𝑉∩𝔘 is a frame for 𝐸 over 𝑉 ∩ 𝔘.
By [CD12, Prop. 6.2.13], a formal 𝐾∘-model for (𝑉, 𝐸) always exists.
If 𝐸 is a vector bundle on the proper 𝐾-scheme 𝑋, then by a formal 𝐾∘-model

(𝔛, 𝔈) for (𝑋, 𝐸), we mean a formal 𝐾∘-model for (𝑋an, 𝐸an).
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6. Models and Model Metrics

6.2 Remark. Just as for vector bundles on Berkovich spaces, there are operations
of pull-backs, duals, directs sums, tensor products, projective bundles, etc. for vec-
tor bundles on formal schemes. The operation (𝔙, 𝔈) ↦ (𝔙𝜂, 𝔈|𝔙𝜂) is compatible
with all of these constructions.

6.3 Algebraic Models. Let 𝐸 be a vector bundle on 𝑋. An algebraic 𝐾∘-model
for (𝑋, 𝐸) consists of an algebraic 𝐾∘-model𝒳 for 𝑋 and a vector bundle ℰ on𝒳
together with a fixed isomorphism ℰ|𝑋 ⥲ 𝐸. In that case the formal completion
along the special fiber (𝒳, ℰ̂) is a formal model for (𝑋, 𝐸).

6.4 Formal Metrics. Let 𝐸 be a vector bundle on 𝑉 and let (𝔙, 𝔈) be a formal
model for (𝑉, 𝐸). Then there is an associated metric ‖−‖𝔈 on 𝐸 which we all
the formal metric associated to (𝔙, 𝔈) and which is constructed as follows: Let
𝔘 ⊂ 𝔙 be a formal open subscheme such that𝔈 admits a frame 𝑠1,… , 𝑠𝑟 ∈ Γ(𝔘, 𝔈)
over 𝔘. We write 𝑈 ≔ 𝑉 ∩ 𝔘 ⊂ 𝑉. We equip 𝐸|𝑈 with the orthonormal metric
induced by this frame: ‖−‖𝔈|𝑈 ≔ ‖−‖𝑠|𝑈 (see Paragraph 5.2 for this notation). By
Lemma 6.5 below, the metrics ‖−‖𝔈|𝑈 do not depend on the choice of the frame
and glue to a well-defined continuous metric ‖−‖𝔈 on 𝐸.

6.5 Lemma. Let (𝔙, 𝔈) be a formal 𝐾∘-model for (𝑉, 𝐸) and assume that the
vector bundle 𝔈 is trivial. Let 𝑠1,… , 𝑠𝑟 ∈ Γ(𝔙, 𝔈) and 𝑡1,… , 𝑡𝑟 ∈ Γ(𝔙, 𝔈) be two
different frames for 𝔈. We get associated frames 𝑠|𝑉 and 𝑡|𝑉 for 𝐸 over 𝑉. Then the
orthonormal metrics ‖−‖𝑠|𝑉 and ‖−‖𝑡|𝑉 coincide.

Proof. Write 𝑠𝑖 = 𝑓𝑖1𝑡1+⋯+𝑓𝑖𝑟𝑡𝑟 for some functions𝑓𝑖𝑗 ∈ Γ(𝔙, 𝒪𝔙). Note that𝐸(𝑥)
admits 𝑠1(𝑥),… , 𝑠𝑟(𝑥) ∈ 𝐸(𝑥) as a basis. Given 𝑣 = 𝑎1𝑠1(𝑥)+⋯+𝑎𝑟𝑠𝑟(𝑥) ∈ 𝐸(𝑥)
with 𝑎𝑖 ∈ ℋ(𝑥), we have

‖𝑣‖𝑠|𝑉,𝑥 = max(|𝑎1|,… , |𝑎𝑟|).

On the other hand, we have

‖𝑣‖𝑡|𝑉,𝑥 ≤ max(|𝑎1|‖𝑠1(𝑥)‖𝑡|𝑉,𝑥,… , |𝑎𝑟|‖𝑠𝑟(𝑥)‖𝑡|𝑉,𝑥).

For each 𝑖, we have

‖𝑠𝑖(𝑥)‖𝑡|𝑉,𝑥 = ‖𝑓𝑖1(𝑥)𝑡1(𝑥) +⋯ + 𝑓𝑖𝑟(𝑥)𝑡𝑟(𝑥)‖𝑡|𝑉,𝑥
= max(|𝑓𝑖1(𝑥)|,… , |𝑓𝑖𝑟(𝑥)|)
3.6
≤ 1.

Putting things together, we get ‖𝑣‖𝑡|𝑉,𝑥 ≤ ‖𝑣‖𝑠|𝑉,𝑥. By symmetry we get equality.
∎
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6.6 Lemma. Let 𝑓∶ 𝑉 ′ → 𝑉 be a morphism of paracompact strictly 𝐾-analytic
spaces and let 𝔙 be a formal 𝐾∘-model for 𝑉. Then there exists a formal 𝐾∘-model
𝔙′ for 𝑉 ′ and a morphism of admissible formal 𝐾∘-schemes 𝔣∶ 𝔙′ → 𝔙 whose
restriction to the generic fiber is 𝑓.
Now assume that 𝐸 is a vector bundle on 𝑉 and that 𝔈 is a formal model for 𝐸

defined on 𝔙. Then 𝔣∗𝔈 is a formal model for 𝑓∗𝐸 and we have

𝑓∗‖−‖𝔈 = ‖−‖𝔣∗𝔈.

In particular, the pull-back of a formal metric is again a formal metric.

Proof. The first claim follows from [Bos14, Lem. 8.4/4 (c)]. By Remark 6.2, the
generic fiber of 𝔣∗𝔈 is 𝑓∗𝐸.
To compare the metrics, we choose a formal open subset 𝔘 ⊂ 𝔙 where 𝔈

admits a frame 𝑠1,… , 𝑠𝑟 ∈ Γ(𝔘, 𝔈). There is an induced frame 𝔣∗𝑠1,… , 𝔣∗𝑠𝑟 ∈
Γ(𝔣−1(𝔘), 𝔣∗𝔈). Let𝑈 ≔ 𝑉 ∩𝔘 ⊂ 𝑉 and𝑈 ′ ≔ 𝑉 ′∩𝔣−1(𝔘) ⊂ 𝑉 ′. It is easy to check
that we have

(𝔣∗𝑠𝑖)|𝑈′ = 𝑓∗(𝑠𝑖|𝑈) ∈ Γ(𝑈 ′, 𝑓∗𝐸). (6.6.1)

For 𝑥′ ∈ 𝑈 ′, we have an identification (𝑓∗𝐸)(𝑥′) = 𝐸(𝑓(𝑥′)) ⊗ℋ(𝑓(𝑥′)) ℋ(𝑥′)
by Lemma 4.5. The norm 𝑓∗‖−‖𝔈,𝑥 is the scalar-extension norm of the metric
‖−‖𝔈,𝑓(𝑥′) on 𝐸(𝑓(𝑥′)). Since the norm ‖−‖𝔈,𝑓(𝑥′) on 𝐸(𝑓(𝑥′)) admits

𝑠1(𝑓(𝑥′)),… , 𝑠𝑟(𝑓(𝑥′))

as an orthonormal basis, it follows from Proposition 1.19 (iv) that the norm
𝑓∗‖−‖𝔈,𝑥′ has

𝑠𝑖(𝑓(𝑥′)) ⊗ 1
4.5
= (𝑓∗(𝑠𝑖|𝑈))(𝑥′), 𝑖 = 1,… , 𝑟

as an orthonormal basis. On the other hand, the norm ‖−‖𝔣∗𝔈 has by definition
the vectors (𝔣∗𝑠𝑖)(𝑥′) as an orthonormal basis. Hence, by Eq. (6.6.1), both metrics
agree.
To prove the last claim, let ‖−‖ = ‖−‖𝔈 be any formal metric. Choosing a

model for the morphism 𝑓 as in the first claim of this lemma and using that
𝑓∗‖−‖ = ‖−‖𝔣∗𝔈, we see that 𝑓∗‖−‖ is again a formal metric. ∎

6.7 Corollary. Let 𝐸 be a vector bundle on 𝑉 and let (𝔙, 𝔈) be a formal model for
(𝑉, 𝐸). Let 𝔣∶ 𝔙′ → 𝔙 be a morphism of models for 𝑉. Then 𝔣∗𝔈 is again a model
for 𝐸 and we have

‖−‖𝔈 = ‖−‖𝔣∗𝔈. ∎
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6. Models and Model Metrics

6.8 Lemma. Let 𝐸, 𝐸′ be two vector bundles on 𝑉 and let (𝔙, 𝔈), (𝔙, 𝔈′) be two
formal 𝐾∘-models for (𝑉, 𝐸) and (𝑉, 𝐸′) defined over the same model𝔙 for 𝑉. Then
𝔈⊗ 𝔈′ is a formal model for 𝐸 ⊗ 𝐸′ and we have

‖−‖𝔈 ⊗ ‖−‖𝔈′ = ‖−‖𝔈⊗𝔈′. (6.8.1)

In particular, the metrized tensor product of two formally metrized vector bundles
is again formally metrized.

Proof. The generic fiber of 𝔈⊗𝔈′ is 𝐸⊗𝐸′ by Remark 6.2. Let𝔘 ⊂ 𝔙 be a formal
open subscheme such that𝔈|𝔘 admits a frame 𝑠1,… , 𝑠𝑟 ∈ Γ(𝔘, 𝔈) and𝔈′|𝔘 admits
a frame 𝑠′1,… , 𝑠′𝑟′ ∈ Γ(𝔘, 𝔈′). There is an induced frame 𝑠1 ⊗ 𝑠′1,… , 𝑠𝑟 ⊗ 𝑠′𝑟′ ∈
Γ(𝔘, 𝔈 ⊗ 𝔈′). Write 𝑈 ≔ 𝑉 ∩ 𝔘 ⊂ 𝑉. It is easy to check that we have

(𝑠𝑖 ⊗ 𝑠′𝑗 )|𝑈 = 𝑠𝑖|𝑈 ⊗ 𝑠′𝑗 |𝑈 ∈ Γ(𝑈, 𝐸 ⊗ 𝐸′).

For 𝑥 ∈ 𝑈, one checks using Proposition 1.19 (iii) that an orthonormal basis in
(𝐸 ⊗ 𝐸′)(𝑥) ≅ 𝐸(𝑥) ⊗ℋ(𝑥) 𝐸′(𝑥) for both ‖−‖𝔈 ⊗ ‖−‖𝔈′ and for ‖−‖𝔈⊗𝔈′ is given
by

(𝑠𝑖 ⊗ 𝑠′𝑗 )(𝑥)
(4.22.2)
= 𝑠𝑖(𝑥) ⊗ 𝑠′𝑗 (𝑥), 𝑖 ∈ { 1,… , 𝑟 }, 𝑗 ∈ { 1,… , 𝑟′ }.

To prove the last claim, let ‖−‖ = ‖−‖𝔈 and ‖−‖′ = ‖−‖𝔈′ be two formal metrics
on 𝐸 resp. 𝐸′, where𝔈 and𝔈′ are formal models for 𝐸 and 𝐸′ which are defined on
two a priori different formal models 𝔙 and 𝔙′ for 𝑉. By Paragraph 3.6, formal 𝐾∘-
models for 𝑉 form a directed category, so we find a formal 𝐾∘ model dominating
both 𝔙 and 𝔙′. Pulling back 𝔈 and 𝔈′ to this model and using Corollary 6.7, we
may assume that 𝔙 = 𝔙′. In that case Eq. (6.8.1) shows that ‖−‖ ⊗ ‖−‖′ is again
a formal metric. ∎

6.9 Lemma. Let 𝐸, 𝐸′ be two vector bundles on 𝑉 and let (𝔙, 𝔈), (𝔙, 𝔈′) be models
for (𝑉, 𝐸) and (𝑉, 𝐸′) defined over the same model𝔙 for 𝑉. Then 𝔈⊕𝔈′ is a formal
model for 𝐸 ⊕ 𝐸′ and we have

‖−‖𝔈 ⊕ ‖−‖𝔈′ = ‖−‖𝔈 ⊕ ‖−‖𝔈′.

In particular, the metrized direct sum of two formally metrized vector bundles is
again formally metrized.

Proof. The proof is completely analogous to the proof of Lemma 6.8. ∎

6.10 Lemma. Let 𝐸 be a vector bundle on 𝑉 and let (𝔙, 𝔈) be a model for (𝑉, 𝐸).
Then 𝔈∨ is a formal model for 𝐸∨ and we have

‖−‖∨𝔈 = ‖−‖𝔈∨.

In particular, the metrized dual of a formally metrized vector bundle is again
formally metrized.
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Proof. The proof is also similar to the proofs of Lemmas 6.8 and 6.9. ∎

6.11 Lemma. Let 𝐸 be a vector bundle on 𝑉 and let (𝔙, 𝔈) be a formal model for
(𝑉, 𝐸). Then (𝑃(𝔈), 𝒪𝔈(1)) is a formal model for (𝑃(𝐸), 𝒪𝐸(1)) and we have an
equality

‖−‖𝔈,FS = ‖−‖𝒪𝔈(1)
of metrics on the line bundle 𝒪𝐸(1).
In particular, the Fubini-Study metric associated to a formal metric is again a

formal metric.

Proof. Denote the projective bundle of 𝔈 by 𝔭∶ 𝑃(𝔈) → 𝔙. It is easy to check
that the generic fiber of 𝑃(𝔈) equals 𝑃(𝐸) and that 𝔭 restricts to the projective
bundle projection 𝑝∶ 𝑃(𝐸) → 𝑉.
We compare the respective dual metrics on 𝒪𝐸(−1). By Lemma 6.10, the dual

metric of ‖−‖𝒪𝔈(1) is the formal metric ‖−‖𝒪𝔈(−1). We may argue locally on 𝔙
and assume that there is a frame 𝑠0,… , 𝑠𝑒 ∈ Γ(𝔙, 𝔈). Let 𝑇0,… , 𝑇𝑒 be the dual
frame for 𝔈∨. Let 𝔘𝑖 ≔ 𝐷+(𝑇𝑖) = 𝔙 × Spf(𝐾∘{𝑇0/𝑇𝑖,… , 𝑇𝑒/𝑇𝑖}) ⊂ 𝑃(𝔈) and let
us write 𝑈𝑖 ≔ 𝑃(𝐸) ∩ 𝔘𝑖. Over 𝔘𝑖, the line bundle 𝒪𝔈(−1) admits the frame
1/𝑇𝑖 ∈ Γ(𝔘𝑖, 𝒪𝔈(−1)). Hence, (1/𝑇𝑖)|𝑈𝑖 ∈ Γ(𝑈𝑖, 𝒪𝐸(−1)) is a frame and we have
by definition of formal metrics

‖(1/𝑇𝑖)(𝑦)‖𝒪𝔈(−1) = 1

for all 𝑦 ∈ 𝑈𝑖.
The embedding 𝑖∶ 𝒪𝐸(−1) ↪ 𝑝∗𝐸 is given in local coordinates by (1/𝑇𝑖)|𝑈𝑖 ↦

(𝔭∗𝑠𝑖)|𝑈𝑖 = 𝑝∗(𝑠𝑖|𝑈𝑖). Hence we also have

‖(1/𝑇𝑖)(𝑦)‖∨𝔈,FS = 𝑝∗‖𝑝∗(𝑠𝑖|𝑈𝑖)(𝑦)‖𝔈
5.6
= ‖𝑠𝑖(𝑦)‖𝔈 = 1

for 𝑦 ∈ 𝑈𝑖. Since the 𝑈𝑖 cover 𝑃(𝐸), this finishes the proof. ∎

6.12 Change of Base Field. Let 𝐿/𝐾 be an extension of non-archimedean fields.
Then there is an induced extension 𝐿∘/𝐾∘ of valuation rings, a scalar extension
functor for admissible formal 𝐾∘-schemes 𝔙 ↦ 𝔙⨶𝐾∘ 𝐿∘ and a corresponding
scalar extension functor 𝔈 ↦ 𝔈⊗𝐾∘ 𝐿∘ for vector bundles on an admissible formal
𝐾∘-scheme 𝔙. It is not hard to verify that if the generic fiber of 𝔙 is 𝑉, then the
generic fiber of 𝔙 ⨶𝐾∘ 𝐿∘ is 𝑉 ⨶𝐾 𝐿 and if the generic fiber of 𝔈 is 𝐸, then the
generic fiber of 𝔈⊗𝐾∘ 𝐿∘ is 𝐸 ⊗𝐾 𝐿. Furthermore for the induced model metrics
we have ‖−‖𝔈 ⊗𝐾 𝐿 = ‖−‖𝔈⊗𝐾∘𝐿∘ where the left hand side denotes the scalar
extension metric in the sense of Paragraph 5.7. In particular, the base change of
a model metric is again a model metric.
See also [GM19, Prop. 2.18] for the case of line bundles.
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6.13 Semipositive Metrics. Let 𝐸 be a formally metrized vector bundle on 𝑉.
We call 𝐸 semipositive if the formally metrized line bundle 𝒪

𝐸
∨(1) on 𝑃(𝐸∨) is

semipositive in the sense of [GM19, § 3.2], i.e. if there exists a formal model
(𝔓, 𝔏) for (𝑃(𝐸∨), 𝒪𝐸∨(1)) inducing the Fubini-Study-metric on 𝒪𝐸∨(1) which
is numerically effective. Here the pair (𝔓, 𝔏) is called numerically effective if
deg𝔏(𝐶) ≥ 0 for any closed curve 𝐶 in the special fiber �̃� which is proper over
the residue field 𝐾.
If (𝔙, 𝔈) is a formal model for (𝑉, 𝐸), then we call 𝔈 numerically effective if the

line bundle 𝒪𝔈∨(1) is a numerically effective line bundle on 𝑃(𝔈∨). It follows
immediately that in this case the metric ‖−‖𝔈 is semipositive.

6.14 Proposition. Let 𝐸 = (𝐸, ‖−‖) be a formally metrized vector bundle on 𝑉.
Then the following are equivalent:

(i) The metric ‖−‖ is a semipositive formal metric.

(ii) There exists a numerically effective formal model (𝔙, 𝔈) for the pair (𝑉, 𝐸)
such that ‖−‖ = ‖−‖𝔈.

(iii) Every formal model (𝔙, 𝔈) for (𝑉, 𝐸) such that ‖−‖ = ‖−‖𝔈 is numerically
effective.

Proof. This follows immediately from Lemma 6.11 and [GM19, Prop. 3.5]. ∎
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7. Smooth Forms and Currents on
Berkovich Spaces

Throughout this chapter, 𝐾 will be a non-archimedean field. We assume
that all 𝐾-analytic spaces are good, topologically Hausdorff, boundaryless
and equidimensional. These assumptions are for example satisfied by
the analytification of an algebraic 𝐾-variety. We fix a 𝐾-analytic space 𝑉
of dimension 𝑛 and an algebraic 𝐾-variety 𝑋 of dimension 𝑛.
We recall here the most important properties of smooth forms and

currents in the sense of [CD12]. In Paragraph 7.10 we introduce the Bott–
Chern cohomology groups of the 𝐾-analytic space 𝑉. By Paragraph 8.12
a family of line bundles on 𝑉 gives rise to a well-defined class in this
cohomology group.

7.1 Smooth Forms. In [CD12], Chambert-Loir andDucros introduced a bigraded
sheaf of differential 𝐑-algebras 𝒜•,•

𝑉 , called the sheaf of smooth differential (su-
per-)forms on 𝑉. By [CD12, § 3.1.3], we have 𝒜0,0

𝑉 = 𝒞∞
𝑉 where𝒞∞

𝑉 denotes the
sheaf of smooth functions in the sense of Paragraph 5.33. The wedge product is
denoted by ∧∶ 𝒜𝑝,𝑞

𝑉 × 𝒜𝑝′,𝑞′
𝑉 → 𝒜𝑝+𝑝′,𝑞+𝑞′

𝑉 and the differentials are denoted by
𝑑′∶ 𝒜𝑝,𝑞

𝑉 → 𝒜𝑝+1,𝑞
𝑉 and 𝑑″∶ 𝒜𝑝,𝑞

𝑉 → 𝒜𝑝,𝑞+1
𝑉 .

If there is no danger of confusion, we simply write 𝒜𝑝,𝑞(𝑈) for the space of
differential forms of bi-degree (𝑝, 𝑞) on an open subset 𝑈 ⊂ 𝑉.
If 𝑓∶ 𝑉 ′ → 𝑉 is a morphism of 𝐾-analytic spaces, then there is a functorial

pull-back map 𝑓∗∶ 𝒜•,•
𝑉 → 𝑓∗𝒜

•,•
𝑉 ′ of sheaves of differential 𝐑-algebras on 𝑉. In

the case of an open immersion 𝑖∶ 𝑈 ↪ 𝑉 of an open subset of 𝑉, the pull-back 𝑖∗
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7. Smooth Forms and Currents on Berkovich Spaces

coincides with the restriction operation to an open subset.
If 𝑋 is an algebraic 𝐾-variety, we write𝒜•,•

𝑋 rather than𝒜•,•
𝑋an. If 𝑓∶ 𝑋 ′ → 𝑋 is a

morphism of algebraic 𝐾-varieties, we write 𝑓∗∶ 𝒜•,•
𝑋 → (𝑓an)∗𝒜

•,•
𝑋′ for the pull-

back of forms along the analytification of 𝑓. See [Gub16] for a more elementary
construction of the sheaves 𝒜•,•

𝑋 .

7.2 Compact Support. If 𝛼 ∈ 𝒜𝑝,𝑞(𝑉), then the support Supp(𝛼) consists of all
points 𝑥 ∈ 𝑉 such that there exists no neighborhood of 𝑥 in𝑉 onwhich 𝛼 vanishes
identically. We say that 𝛼 has compact support if Supp(𝛼) is a compact subset in
the Berkovich topology. We write 𝒜𝑝,𝑞

𝑐 (𝑉) for the subspace of (𝑝, 𝑞)-forms with
compact support.
If 𝑈 ⊂ 𝑈 ′ ⊂ 𝑉 are open subsets and 𝛼 ∈ 𝒜𝑝,𝑞(𝑈) has compact support,

then there is a unique form 𝛼|𝑈′ ∈ 𝒜𝑝,𝑞(𝑈 ′) which satisfies (𝛼|𝑈′)|𝑈 = 𝛼 and
(𝛼|𝑈′)|𝑈′⧵Supp(𝛼) = 0. From Supp(𝛼|𝑈′) = Supp(𝛼) it follows that 𝛼|𝑈′ has com-
pact support.

7.3 Currents. A current of bi-degree (𝑝, 𝑞) is an 𝐑-linear form 𝑇 on the space
𝒜𝑛−𝑝,𝑛−𝑞
𝑐 (𝑉) which is continuous with respect to a certain topology, similar to

the Schwartz topology from the theory of distributions [CD12, § 4.1.1]. We write
𝒟𝑝,𝑞(𝑉) for the space of currents of bi-degree (𝑝, 𝑞). The extension by zero map
of Paragraph 7.2 gives rise to a restriction operation on currents, turning currents
of bi-degree (𝑝, 𝑞) into a sheaf 𝒟𝑝,𝑞

𝑉 [CD12, § 4.2.5].
Similarly, the differential operators on forms give rise, by duality and an

appropriate choice of signs, to differential operators 𝑑′∶ 𝒟𝑝,𝑞
𝑉 → 𝒟𝑝+1,𝑞

𝑉 and
𝑑″∶ 𝒟𝑝,𝑞

𝑉 →𝒟𝑝,𝑞+1
𝑉 . Finally, every form 𝛼 ∈ 𝒜𝑝,𝑞(𝑈) for an open subset 𝑈 ⊂ 𝑉

gives rise to an operation 𝛼 ∧ −∶ 𝒟𝑟,𝑠(𝑈) → 𝒟𝑝+𝑟,𝑞+𝑠(𝑈) defined by

⟨𝛼 ∧ 𝑇, 𝛽⟩ = (−1)(𝑝+𝑞)(𝑟+𝑠)⟨𝑇, 𝛼 ∧ 𝛽⟩

for 𝛽 ∈ 𝒜𝑛−𝑝−𝑟,𝑛−𝑞−𝑠
𝑐 (𝑈).

The above operations provide𝒟•,•
𝑉 with the structure of a sheaf of bigraded

differential 𝒜•,•
𝑉 -modules.

If 𝑋 is an algebraic 𝐾-variety, we write𝒟•,•
𝑋 rather than𝒟•,•

𝑋an.

7.4 Proper Push-Forward of Currents. If 𝑓∶ 𝑉 ′ → 𝑉 is a proper morphism of
𝐾-analytic spaces of dimensions 𝑛′, resp. 𝑛 and 𝑇 ∈ 𝒟𝑝,𝑞(𝑉 ′) is a current, then
the current 𝑓∗𝑇 ∈ 𝒟𝑝+𝑛−𝑛′,𝑞+𝑛−𝑛′(𝑉) is defined by the formula

⟨𝑓∗𝑇, 𝛼⟩ = ⟨𝑇, 𝑓∗𝛼⟩

for 𝛼 ∈ 𝒜𝑛′−𝑝,𝑛′−𝑞
𝑐 (𝑉). The push-forward operation defines a morphism

𝑓∗∶ 𝑓∗𝒟
•,•
𝑉 ′ →𝒟•,•

𝑉
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of bigraded differential 𝒜•,•
𝑉 -modules (where the left hand is a 𝒜•,•

𝑉 -module via
the map 𝒜•,•

𝑉 → 𝑓∗𝒜
•,•
𝑉 ). In particular, the projection formula

𝑓∗(𝑓∗𝛼 ∧ 𝑇) = 𝛼 ∧ 𝑓∗(𝑇)

holds. This follows immediately by evaluating both sides on an arbitrary test
form 𝛽 ∈ 𝒜𝑐(𝑉).

7.5 Integration. There is a distinguished current∫𝑉 ∈ 𝒟0,0(𝑉) called the current
of integration over 𝑉 [CD12, § 4.3.2]. We also write 𝛿𝑉 instead of ∫𝑉. By Stokes’
Theorem [CD12, Thm. 3.12.1] (and our assumption that all 𝐾-analytic spaces are
boundaryless) it follows that 𝛿𝑉 is 𝑑′- and 𝑑″-closed.
If 𝑉 = 𝑋an is the analytification of an algebraic variety, we also write 𝛿𝑋 ≔

𝛿𝑋an ∈ 𝒟0,0(𝑋an). If 𝑍 = ∑𝑖 𝑛𝑖𝑍𝑖 is a cycle on 𝑋, i.e. a formal 𝐙-linear combina-
tion of closed subvarieties 𝑍𝑖 ⊂ 𝑋, then we write

𝛿𝑍 ≔∑
𝑖
𝑛𝑖𝜄𝑖∗𝛿𝑍𝑖,

where 𝜄𝑖∶ 𝑍𝑖 ↪ 𝑋 is the closed embedding of 𝑍𝑖 into 𝑋.

7.6 Proposition. Let 𝑓∶ 𝑋 ′ → 𝑋 be a proper morphism of 𝐾-varieties and let 𝑍′
be a cycle on 𝑋 ′. Then there is an equality

𝑓∗(𝛿𝑍′) = 𝛿𝑓∗(𝑍′)

of currents on 𝑋an.

Proof. This is shown in [GK17, Prop. 6.12] even in the sense of 𝛿-currents. ∎

7.7 Lemma. Let 𝑉,𝑊 be 𝐾-analytic spaces of dimensions 𝑛, resp.𝑚. Denote by
𝜋0∶ 𝑉 × 𝑊 → 𝑉 and by 𝜋1∶ 𝑉 × 𝑊 → 𝑊 the canonical projection maps. Let
𝛼 ∈ 𝒜•,•

𝑐 (𝑉) and 𝛽 ∈ 𝒜•,•
𝑐 (𝑊). Then 𝜋∗0𝛼∧𝜋∗1𝛽 ∈ 𝒜(𝑉 ×𝑊) has compact support.

If furthermore 𝛼 ∈ 𝒜𝑛,𝑛
𝑐 (𝑉) and 𝛽 ∈ 𝒜𝑚,𝑚

𝑐 (𝑊) then

∫
𝑉×𝑊

𝜋∗0𝛼 ∧ 𝜋∗1𝛽 = ∫
𝑉
𝛼 ⋅ ∫

𝑊
𝛽. (7.7.1)

Proof. Denoting by |𝑉|, |𝑊| the underlying topological spaces of 𝑉 and𝑊 it is easy
to see that Supp(𝜋∗0𝛼 ∧ 𝜋∗1𝛽) is contained in the preimage of Supp(𝛼) × Supp(𝛽)
under the canonical map |𝑉 × 𝑊| → |𝑉| × |𝑊|. Since this map is proper by
Lemma 2.17 (ii) it follows that Supp(𝜋∗0𝛼 ∧ 𝜋∗1𝛽) is compact.
If 𝛼 has bi-degree (𝑛, 𝑛) and 𝛽 has bi-degree (𝑚,𝑚), then Eq. (7.7.1) follows

from unpacking the definition and using that tropicalizations are compatible
with products; a proof in the algebraic case can be found in [Sto21, Prop. 3.4.21].
A proof of a stronger statement regarding 𝛿-forms is given in [Pre23, Thm. 4.2.86].

∎
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7. Smooth Forms and Currents on Berkovich Spaces

7.8Currents Induced fromForms. There exists a uniquemorphismof bigraded
differential 𝒜•,•

𝑉 -modules [−]∶ 𝒜•,•
𝑉 →𝒟•,•

𝑉 satisfying [1] = 𝛿𝑉. Concretely, it is
given by

⟨[𝛼], 𝛽⟩ = ⟨𝛼 ∧ 𝛿𝑉, 𝛽⟩ = ∫
𝑉
𝛼 ∧ 𝛽

for 𝛼 ∈ 𝒜𝑝,𝑞(𝑉) and 𝛽 ∈ 𝒜𝑛−𝑝,𝑛−𝑞
𝑐 (𝑉).

7.9 The Poincaré-Lelong Formula. Let 𝑓 be an invertible meromorphic func-
tion on 𝑉. Let 𝑈 ⊂ 𝑉 be the locus where 𝑓 has no zeros or poles. Then the
function

log|𝑓(−)|∶ 𝑈 → 𝐑

is smooth and hence there is an induced current 𝑑′𝑑″[log|𝑓|] ∈ 𝒟1,1(𝑈). By
[CD12, Lem. 4.6.1], this current extends uniquely to a current on 𝑉, which we
denote again by 𝑑′𝑑″[log|𝑓|].
If 𝑓 is a regular function which is not a zero-divisor in 𝒪(𝑉), then we denote

the current of integration over the vanishing locus of 𝑓 by 𝛿div(𝑓). By additivity
and locality of this operation, it extends to all invertible meromorphic functions.
The Poincaré-Lelong equation [CD12, Thm. 4.6.5] states that

𝛿div(𝑓) = 𝑑′𝑑″[log|𝑓|]

as currents on 𝑉.
In the case where 𝑋 is an algebraic variety and 𝑓 is a non-zero rational function,

the above current is also equal to the current of integration over the Weil divisor
[div(𝑓)] associated to 𝑓, namely

𝛿[div(𝑓)] = 𝑑′𝑑″[log|𝑓|]

as currents on 𝑋an [Gub16, Prop. 6.10].

7.10 Bott–Chern Cohomology of Currents. For 𝑝 ∈ 𝐍 we denote by �̂�𝑝
𝒟(𝑉)

the group

�̂�𝑝
𝒟(𝑉) ≔

Ker(𝑑′∶ 𝒟𝑝,𝑝(𝑉) → 𝒟𝑝+1,𝑝(𝑉)) ∩ Ker(𝑑″∶ 𝒟𝑝,𝑝(𝑉) → 𝒟𝑝,𝑝+1(𝑉))
Im(𝑑′𝑑″∶ 𝒟𝑝−1,𝑝−1(𝑉) → 𝒟𝑝,𝑝(𝑉))

.

Note that the denominator is indeed contained in the numerator because 𝑑′ and
𝑑″ are anti-commuting differentials.
Let 𝑋 be an algebraic variety. Let𝑊 ⊂ 𝑋 be a closed sub-variety and 𝑓 a non-

zero rational function on𝑊. Denote by 𝑖∶ 𝑊 ↪ 𝑋 the closed embedding. By
Proposition 7.6 and the Poincaré-Lelong formula 7.9 we have

𝛿𝑖∗[div(𝑓)] = 𝑖∗𝛿[div(𝑓)] = 𝑖∗𝑑′𝑑″[log|𝑓|] = 𝑑′𝑑″𝑖∗[log|𝑓|],
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so in particular the class of 𝛿𝑖∗[div(𝑓)] in �̂�
𝑝
𝒟(𝑋an) vanishes.

It follows that the map 𝑍 ↦ 𝛿𝑍 from cycles on 𝑋 to currents on 𝑋an induces a
well-defined cycle class map

𝛿∶ CH𝑝(𝑋) → �̂�𝑝
𝒟(𝑋an).

If 𝑓∶ 𝑋 ′ → 𝑋 is a proper morphism of 𝐾-varieties of dimensions 𝑛 + 𝑒, resp. 𝑛,
then the diagram

CH𝑝+𝑒(𝑋 ′) �̂�𝑝+𝑒
𝒟 ((𝑋 ′)an)

CH𝑝(𝑋) �̂�𝑝
𝒟(𝑋an)

←→𝑓∗

←→𝛿

←→ 𝑓∗

← →
𝛿

(7.10.1)

is commutative by Proposition 7.6.

7.11 Dolbeault Cohomology. For 𝑝, 𝑞 ∈ 𝐍 we denote by

𝐻𝑝,𝑞
𝒜 (𝑉) ≔ Ker(𝑑″∶ 𝒜𝑝,𝑞(𝑉) → 𝒜𝑝,𝑞+1(𝑉))

Im(𝑑″∶ 𝒜𝑝,𝑞−1(𝑉) → 𝒜𝑝,𝑞(𝑉))

and by

𝐻𝑝,𝑞
𝒟 (𝑉) ≔ Ker(𝑑″∶ 𝒟𝑝,𝑞(𝑉) → 𝒟𝑝,𝑞+1(𝑉))

Im(𝑑″∶ 𝒟𝑝,𝑞−1(𝑉) → 𝒟𝑝,𝑞(𝑉))
the Dolbeault cohomology groups of forms, resp. of currents associated to 𝑉. Note
that the map [−]∶ 𝒜 → 𝒟 of sheaves induces a natural map

[−]∶ 𝐻𝑝,𝑞
𝒜 (𝑉) → 𝐻𝑝,𝑞

𝒟 (𝑉).

Furthermore, there is a canonical map

�̂�𝑝
𝒟(𝑉) → 𝐻𝑝,𝑝

𝒟 (𝑉)

mapping the class of a current 𝑇 in the Bott–Chern cohomology to the class of 𝑇
in the Dolbeault cohomology of currents.

7.12Liu’sTropical CycleClassMap. For smooth a smooth algebraic𝐾-variety𝑋,
Liu defined in [Liu20] a tropical cycle class map

cltrop∶ CH𝑝(𝑋) → 𝐻𝑝,𝑝
𝒜 (𝑋an)

which is compatible with the graded ring structures induced from the intersection
product resp. the wedge product and which is natural with respect to pull-back.
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7. Smooth Forms and Currents on Berkovich Spaces

We review the construction of cltrop in Appendix A. Liu also showed that if 𝑍 is a
cycle on 𝑋, then for every 𝑑″-closed form 𝛼 ∈ 𝒜𝑛−𝑝,𝑛−𝑝

𝑐 (𝑋an), one has

∫
𝑋an

cltrop(𝑍) ∧ 𝛼 = ∫
𝑍an

𝛼.

In fact his proof gives the slightly stronger statement that the image of cltrop(𝑍) in
𝐻𝑝,𝑝
𝒟 (𝑋an) is represented by the current 𝛿𝑍 (see Corollary A.22). In other words,

the diagram
CH𝑝(𝑋) �̂�𝑝

𝒟(𝑋an)

𝐻𝑝,𝑝
𝒜 (𝑋an) 𝐻𝑝,𝑝

𝒟 (𝑋an)
←→cltrop

←→𝛿

←→

←→
[−]

(7.12.1)

is commutative.

7.13 Change of Base Field. Let 𝐿/𝐾 be an extension of non-archimedean fields.
Recall that we assume the 𝐾-analytic space 𝑉 to be boundaryless; in particular
it is also strict by [Tem15, Exmp. 4.2.4.2 (ii)]. Let 𝜑∶ 𝑉 → 𝑇 be a moment map
to an analytic torus. The base change 𝑇 ⨶𝐾 𝐿 is an 𝐿-analytic torus. There is a
canonical identification of real affine spaces (𝑇 ⨶𝐾 𝐿)trop = 𝑇trop such that the
diagram

𝑉 ⨶𝐾 𝐿 𝑇 ⨶𝐾 𝐿 (𝑇 ⨶𝐾 𝐿)trop

𝑉 𝑇 𝑇trop

←→ 𝜋𝐿/𝐾
←→

𝜑⨶𝐾𝐿

←→ 𝜋𝐿/𝐾
←→

trop

⇐⇐

← →𝜑

← →trop

commutes. Let 𝑃 be a compact polytope in 𝑇trop containing 𝜑trop(𝑉) and let 𝜔 ∈
𝒜𝑝,𝑞
𝑃 (𝑃) be a Lagerberg form on 𝑃. This gives rise to a form 𝛼 = 𝜑∗trop(𝜔) ∈ 𝒜𝑝,𝑞(𝑉)

and locally on 𝑉 every (𝑝, 𝑞)-form is of this type by definition of the sheaf 𝒜𝑝,𝑞
𝑉

[CD12, §3.1.2, § 3.1.9]. If 𝛼 = 𝜑∗trop(𝜔) for 𝜔 ∈ 𝒜𝑝,𝑞
𝑃 (𝑃) then we define

𝜋∗𝐿/𝐾𝛼 ≔ (𝜑 ⨶𝐾 𝐿)∗trop(𝜔)

where on the right hand side, we regard 𝜔 as a form on 𝑃 ⊂ (𝑇 ⨶𝐾 𝐿)trop. It is
easy to see that this extends to a well-defined morphism of sheaves of bigraded
differential 𝐑-algebras

𝜋∗𝐿/𝐾∶ 𝒜
•,•
𝑉 → (𝜋𝐿/𝐾)∗𝒜

•,•
𝑉⨶𝐾𝐿

,

similarly to the pull-back along a morphism of 𝐾-analytic spaces.
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Since the map 𝜋𝐿/𝐾∶ 𝑉 ⨶𝐾 𝐿 → 𝑉 is topologically proper, the pull-back of a
compactly supported form is again compactly supported and we obtain a push-
forward morphism

(𝜋𝐿/𝐾)∗∶ (𝜋𝐿/𝐾)∗𝒟
•,•
𝑉⨶𝐾𝐿

→𝒟•,•
𝑉

defined by
⟨(𝜋𝐿/𝐾)∗𝑇, 𝛼⟩ = ⟨𝑇, 𝜋∗𝐿/𝐾𝛼⟩

for 𝑇 ∈ 𝒟𝑛−𝑝,𝑛−𝑞(𝑉 ⨶𝐾 𝐿) and 𝛼 ∈ 𝒜𝑝,𝑞
𝑐 (𝑉). For 𝑇 ∈ 𝒟•,•(𝑉 ⨶𝐾 𝐿) and

𝛼 ∈ 𝒜•,•(𝑉) we have the projection formula

(𝜋𝐿/𝐾)∗(𝜋∗𝐿/𝐾𝛼 ∧ 𝑇) = 𝛼 ∧ (𝜋𝐿/𝐾)∗𝑇 (7.13.1)

which is easy to verify.
If 𝛼 ∈ 𝒜𝑛,𝑛

𝑐 (𝑉) has compact support, then we have

∫
𝑉⨶𝐾𝐿

𝜋∗𝐿/𝐾𝛼 = ∫
𝑉
𝛼.

This is stated in [GJR21, Prop. 14.5] for a finite Galois extension 𝐿/𝐾 but the
proof works for arbitrary extensions of non-archimedean fields. It follows that
for 𝛼 ∈ 𝒜𝑝,𝑞(𝑉) we have

(𝜋𝐿/𝐾)∗[𝜋∗𝐿/𝐾𝛼] = [𝛼] (7.13.2)

as currents on 𝑉.
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8. First Chern Forms and Currents
for Metrized Line Bundles

Throughout this chapter, 𝐾 will be a non-archimedean field. As in Chap-
ter 7, all 𝐾-analytic spaces are assumed to be good, topologically Haus-
dorff, boundaryless and equidimensional. We fix a 𝐾-analytic space 𝑉 of
dimension 𝑛 and an algebraic 𝐾-variety 𝑋 of dimension 𝑛.
We review the constructions of first Chern forms and currents of

metrized line bundles from [CD12]. Using the Bedford–Taylor theory
developed in [CD12] one can also define products of first Chern forms
of locally approachably metrized line bundles (Paragraph 8.9). The class
of [𝑐1(𝐿1) ∧ ⋯ ∧ 𝑐1(𝐿𝑟)] in the Bott–Chern cohomology group does not
depend on the given metrics (Proposition 8.11). In Proposition 8.14 we
see that for an algebraic variety, this class is compatible with the Chern
classes of algebraic intersection theory.

8.1 First Chern Forms of Smoothly Metrized Line Bundles. Let 𝐿 be a
smoothly metrized line bundle on 𝑉 in the sense of Paragraph 5.34. Note that
since 𝑉 is assumed to be good, by Paragraph 4.1 every point of 𝑉 admits an open
neighborhood over which 𝐿 is trivial. Let 𝑈 ⊂ 𝑉 be an open subset over which 𝐿
is trivial, i.e. over which it admits a nowhere-vanishing section. If 𝑠, 𝑠′ ∈ Γ(𝑈, 𝐿)
are two nowhere-vanishing sections, then the (1, 1)-forms 𝑑′𝑑″(− log‖𝑠(−)‖) and
𝑑′𝑑″(− log‖𝑠′(−)‖) differ by the form 𝑑′𝑑″(− log|𝑓(−)|) = 0 with 𝑓 = 𝑠/𝑠′ a
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8. First Chern Forms and Currents for Metrized Line Bundles

nowhere-vanishing regular function. Hence the form (1, 1)-form

𝑐1(𝐿|𝑈) ≔ 𝑑′𝑑″(− log‖𝑠(−)‖) ∈ 𝒜1,1(𝑈)

is independent of the choice of the section 𝑠. Since it is also local with respect to
restriction to a smaller open subset 𝑈, there exists a unique form 𝑐1(𝐿) ∈ 𝒜1,1(𝑉)
satisfying 𝑐1(𝐿)|𝑈 = 𝑐1(𝐿|𝑈) for every open subset 𝑈 ⊂ 𝑉 admitting a nowhere-
vanishing section of 𝐿.
This construction is due to [CD12, § 6.4.1].

8.2 First Chern Currents of Continuously Metrized Line Bundles. Let 𝐿
be a continuously metrized line bundle on 𝑉. Similarly to Paragraph 8.1, there
exists a unique current

[𝑐1(𝐿)] ∈ 𝒟1,1(𝑉)

such that for every open subset 𝑈 ⊂ 𝑉 and every nowhere-vanishing section
𝑠 ∈ Γ(𝑈, 𝐿) one has

[𝑐1(𝐿)]|𝑈 = 𝑑′𝑑″[− log‖𝑠‖].

If 𝐿 is smoothly metrized, the symbol [𝑐1(𝐿)] can be interpreted both as the
first Chern current associated to the continuously metrized line bundle 𝐿 or as
the current associated to the smooth form 𝑐1(𝐿) constructed in Paragraph 8.1. It
is easy to see that both interpretations give the same result.
This construction is due to [CD12, § 6.4.1].

8.3 The Poincaré-Lelong Equation. Let 𝐿 be a line bundle on 𝑋 and let 𝑠 be a
non-zero rational section of 𝐿. Denote by [div(𝑠)] theWeil divisor on 𝑋 associated
to 𝑠. Then by [CD12, § 6.4.2] there is an equality of currents

[𝑐1(𝐿)] = 𝛿[div(𝑠)] + 𝑑′𝑑″[− log‖𝑠(−)‖].

8.4 Plurisubharmonicity. Let 𝑢 be a continuous function on 𝑉. It is called
plurisubharmonic (or psh) if the current 𝑑′𝑑″[𝑢] is positive in the sense of [CD12,
§ 5.4.1]. The function is called locally psh-approachable if every point of 𝑉 admits
an open neighborhood onwhich 𝑢 is a uniform limit of smooth plurisubharmonic
functions. It is called locally approachable if every point of 𝑉 admits an open
neighborhood on which 𝑢 is the difference of two locally psh-approachable func-
tions. Lemma 8.6 below shows in particular that smooth functions are locally
approachable.
In [CD12, Lem. 5.5.3] it is shown that if 𝑉 is compact and 𝑢 = 𝜑∗𝑣 for amoment

map 𝜑∶ 𝑉 → 𝑇 to an analytic torus 𝑇 and 𝑣 a smooth function on 𝜑trop(𝑉), then
𝑢 is plurisubharmonic if and only if the restriction of 𝑣 to every maximal face of
the polyhedral subset 𝜑trop(𝑉) of the tropicalization of 𝑇 is convex.
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8.5 Lemma. Let 𝑓∶ 𝑉 ′ → 𝑉 be a morphism of 𝐾-analytic spaces and let 𝑢 be a
continuous function on 𝑉.

(i) If 𝑢 is smooth and plurisubharmonic, then the same is true for 𝑓∗𝑢.

(ii) If 𝑢 is locally psh-approachable, then the same is true for 𝑓∗𝑢.

(iii) If 𝑢 is locally approachable, then the same is true for 𝑓∗𝑢.

Proof. Assume that 𝑢 is smooth and plurisubharmonic. Let 𝑦 ∈ 𝑉 ′ be a point
with 𝑥 ≔ 𝑓(𝑦) ∈ 𝑉. By the definition of smooth functions, there exists a compact
analytic neighborhood𝑊 of 𝑥 in 𝑉 and a moment map 𝜑∶ 𝑊 → 𝑇 to an analytic
torus such that 𝑢 ≡ 𝜑∗𝑣 for some smooth function 𝑣 on 𝜑trop(𝑊). By [CD12,
Lem. 5.5.3] the function 𝑣 is convex on every maximal face of 𝜑trop(𝑉). Let𝑊 ′ be
a compact analytic neighborhood of 𝑦 contained in 𝑓−1(𝑊). Then 𝑓∗𝑢 ≡ (𝜑∘𝑓)∗𝑣
on𝑊 ′. Since (𝜑 ∘ 𝑓)trop(𝑊 ′) ⊂ 𝜑trop(𝑊), the restriction of 𝑣 to every maximal
face of (𝜑 ∘ 𝑓)trop(𝑊 ′) is convex. This shows that 𝑓∗𝑢 is plurisubharmonic in a
neighborhood of 𝑦. Since plurisubharmonic functions form a sheaf by [CD12,
Lem. 5.5.2], 𝑓∗𝑢 is plurisubharmonic which proves the first statement.
The remaining statements follow immediately from the first one. ∎

8.6 Lemma. If 𝑢 is a smooth function on 𝑉, then every point of 𝑉 admits an
open neighborhood on which 𝑢 is the difference of two smooth plurisubharmonic
functions.

Proof. Let 𝑥 be an arbitrary point of 𝑉. There exists a compact analytic neigh-
borhood𝑊 of 𝑥 and a moment map 𝜑∶ 𝑊 → 𝑇 to some analytic torus such that
𝑢 ≡ 𝜑∗𝑣 for some smooth function 𝑣 on the polyhedral subset 𝜑trop(𝑊) of the trop-
icalization of 𝑇. For big enough 𝑎 > 0 the function 𝑣2 ≔ 𝑣+𝑣1 with 𝑣1 = 𝑎 ⋅∑𝑥2𝑖
(for some choice of affine coordinates on 𝑇trop), will be convex on every maxi-
mal face of the compact polyhedral set 𝜑trop(𝑊). Then writing 𝑢 = 𝜑∗𝑣2 − 𝜑∗𝑣1
shows that on a neighborhood of 𝑥, the function 𝑢 is the difference of two smooth
plurisubharmonic functions. ∎

8.7 Bedford–Taylor Theory. Denote by LPSHA(𝑉) the space of locally psh-
approachable functions on 𝑉. The operation 𝑈 ↦ LPSHA(𝑈) is a sheaf of real
cones (𝐑≥0-modules) on 𝑉. By [CD12, Cor. 5.6.5] there exists a unique symmetric
multilinear morphism of sheaves

LPSHA𝑉 ×⋯× LPSHA𝑉⏟⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⏟
𝑟 times

→𝒟𝑟,𝑟
𝑉 , (𝑢1,… , 𝑢𝑟) ↦ [𝑑′𝑑″𝑢1 ∧⋯ ∧ 𝑑′𝑑″𝑢𝑟]

such that for every open subset 𝑈 ⊂ 𝑉, every form 𝛼 ∈ 𝒜𝑛−𝑟,𝑛−𝑟
𝑐 (𝑈) and every

family {𝑢𝑗𝑛}𝑛∈𝐍, 𝑗 = 1,… , 𝑟 of sequences of smooth plurisubharmonic functions
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8. First Chern Forms and Currents for Metrized Line Bundles

on 𝑈 converging uniformly to 𝑢𝑗|𝑈, one has

⟨[𝑑′𝑑″𝑢1 ∧⋯ ∧ 𝑑′𝑑″𝑢𝑟]|𝑈, 𝛼⟩ = lim
𝑛
∫
𝑈
𝑑′𝑑″𝑢1𝑛 ∧⋯ ∧ 𝑑′𝑑″𝑢𝑟𝑛 ∧ 𝛼.

We denote by LA𝑉 the sheaf of locally approachable function on 𝑉 (functions
that are locally a difference of locally psh-approachable functions). It follows
that the morphism above extends uniquely to a symmetric multilinear morphism
of sheaves of real vector spaces

LA𝑉 ×⋯× LA𝑉⏟⎵⎵⎵⎵⏟⎵⎵⎵⎵⏟
𝑟 times

→𝒟𝑟,𝑟
𝑉 , (𝑢1,… , 𝑢𝑟) ↦ [𝑑′𝑑″𝑢1 ∧⋯ ∧ 𝑑′𝑑″𝑢𝑟].

If 𝑢1,… , 𝑢𝑟′ are smooth functions and 𝑢𝑟′+1,… , 𝑢𝑟 are locally approachable,
then

𝑑′𝑑″𝑢1∧⋯∧𝑑′𝑑″𝑢𝑟′∧[𝑑′𝑑″𝑢𝑟′+1∧⋯∧𝑑′𝑑″𝑢𝑟] = [𝑑′𝑑″𝑢1∧⋯∧𝑑′𝑑″𝑢𝑟]. (8.7.1)

Using Lemma 8.6 this follows immediately from the definition. In particular in
the case 𝑟′ = 𝑟 we see that the symbol [𝑑′𝑑″𝑢1 ∧⋯ ∧ 𝑑′𝑑″𝑢𝑟] as defined in this
paragraph agrees with the old meaning of the current associated to the smooth
form defined as the product of the forms 𝑑′𝑑″𝑢𝑗.
Note that if 𝑓 is a nowhere-vanishing analytic function on 𝑉, then 𝑢 = log|𝑓|

is a smooth function satisfying 𝑑′𝑑″𝑢 = 0 and it follows from Eq. (8.7.1) that
for locally approachable functions 𝑢1,… , 𝑢𝑝, the current [𝑑′𝑑″𝑢1 ∧⋯ ∧ 𝑑′𝑑″𝑢𝑟]
vanishes as soon as one of the functions 𝑢𝑗 has the form log|𝑓| for an invertible
analytic function 𝑓.

8.8 Locally Approachable Metrics. A continuously metrized line bundle 𝐿
on 𝑉 is called locally approachable if for every local nowhere-vanishing section
𝑠 ∈ Γ(𝑈, 𝐿) over an open subset 𝑈 ⊂ 𝑉, the function − log‖𝑠(−)‖ is locally ap-
proachable on 𝑈 [CD12, § 6.3.1]. Tensor products and duals of locally approach-
ably metrized line bundles are locally approachably metrized. By Lemma 8.5
pull-backs of locally approachably metrized line bundles are locally approachably
metrized.
It follows from the proof of [CD12, Prop. 6.9.2] that formal metrics are always

locally approachable.

8.9 Products of First Chern Currents. Let 𝐿1, …, 𝐿𝑟 be locally approachably
metrized line bundles on 𝑉. Let 𝑈 ⊂ 𝑉 be an open subset on which 𝐿1,… , 𝐿𝑟
admit nowhere-vanishing sections 𝑠1,… , 𝑠𝑟. If 𝑠′1,… , 𝑠′𝑟 is another such family
of nowhere-vanishing sections, then the functions − log‖𝑠𝑖(−)‖ and − log‖𝑠′𝑖(−)‖

98



differ by the smooth function − log|𝑓(−)|, with 𝑓 = 𝑠𝑖/𝑠′𝑖, so it follows from
Paragraph 8.7 that the current

[𝑐1(𝐿1|𝑈) ∧ ⋯ ∧ 𝑐1(𝐿𝑟|𝑈)] ≔ [𝑑′𝑑″(− log‖𝑠1(−)‖) ∧ ⋯ ∧ 𝑑′𝑑″(− log‖𝑠𝑟(−)‖)]

is independent of the choice of the sections 𝑠𝑖. The construction is obviously
compatible with restriction. Since every point of 𝑉 admits an open neighborhood
𝑈 trivializing 𝐿1,… , 𝐿𝑟 by Paragraph 4.1, it follows that there exists a unique
current

[𝑐1(𝐿1) ∧ ⋯ ∧ 𝑐1(𝐿𝑟)] ∈ 𝒟𝑟,𝑟(𝑉)

such that
[𝑐1(𝐿1) ∧ ⋯ ∧ 𝑐1(𝐿𝑟)]𝑈 = [𝑐1(𝐿1|𝑈) ∧ ⋯ ∧ 𝑐1(𝐿𝑟|𝑈)]

for every open subset 𝑈 trivializing 𝐿1,… , 𝐿𝑟.
The expression [𝑐1(𝐿1) ∧ ⋯ ∧ 𝑐1(𝐿𝑟)] is additive in every factor and local with

respect to restriction to open subsets. It is easy to see that [𝑐1(𝐿1) ∧⋯ ∧ 𝑐1(𝐿𝑟)] is
a 𝑑′- and 𝑑″-closed current.

8.10 Lemma. Let 𝑉,𝑊 be 𝐾-analytic spaces of dimensions 𝑛, resp.𝑚 let 𝐿1,… , 𝐿𝑟
be locally approachably metrized line bundles on 𝑉 and let𝑀1,… ,𝑀𝑠 be locally
approachably metrized line bundles on 𝑊. Denote by 𝜋0∶ 𝑉 × 𝑊 → 𝑉 and by
𝜋1∶ 𝑉 ×𝑊 → 𝑊 the canonical projections. Let 𝛼 ∈ 𝒜𝑐(𝑉) and 𝛽 ∈ 𝒜𝑐(𝑊) such
that 𝜋∗0𝛼 ∧ 𝜋∗1𝛽 has bi-degree (𝑛 + 𝑚 − 𝑟 − 𝑠, 𝑛 + 𝑚 − 𝑟 − 𝑠). If 𝛼 has bi-degree
(𝑛 − 𝑟, 𝑛 − 𝑟) and 𝛽 has bi-degree (𝑚 − 𝑠,𝑚 − 𝑠) then

⟨[𝑐1(𝜋∗0𝐿1) ∧ ⋯ ∧ 𝑐1(𝜋∗0𝐿𝑟) ∧ 𝑐1(𝜋∗1𝑀1) ∧ ⋯ ∧ 𝑐1(𝜋∗1𝑀𝑠)], 𝜋∗0𝛼 ∧ 𝜋∗1𝛽⟩

= ⟨[𝑐1(𝐿1) ∧ ⋯ ∧ 𝑐1(𝐿𝑟)], 𝛼⟩ ⋅ ⟨[𝑐1(𝑀1) ∧ ⋯ ∧ 𝑐1(𝑀𝑠)], 𝛽⟩

while

⟨[𝑐1(𝜋∗0𝐿1) ∧ ⋯ ∧ 𝑐1(𝜋∗0𝐿𝑟) ∧ 𝑐1(𝜋∗1𝑀1) ∧ ⋯ ∧ 𝑐1(𝜋∗1𝑀𝑠)], 𝜋∗0𝛼 ∧ 𝜋∗1𝛽⟩ = 0

otherwise.

Proof. Let us first assume that 𝛼 has bi-degree (𝑛 − 𝑟, 𝑛 − 𝑟) and 𝛽 has bi-degree
(𝑚 − 𝑠,𝑚 − 𝑠). If 𝑢1,… , 𝑢𝑟 are smooth functions on 𝑉 and 𝑣1,… , 𝑣𝑠 are smooth
functions on𝑊 then

∫
𝑉×𝑊

𝑑′𝑑″𝜋∗0𝑢1 ∧⋯ ∧ 𝑑′𝑑″𝜋∗0𝑢𝑟 ∧ 𝑑′𝑑″𝜋∗1 𝑣1 ∧⋯ ∧ 𝑑′𝑑″𝜋∗1 𝑣𝑠 ∧ 𝜋∗0𝛼 ∧ 𝜋∗1𝛽

= ∫
𝑉
𝑑′𝑑″𝑢1 ∧⋯ ∧ 𝑑′𝑑″𝑢𝑟 ∧ 𝛼 ⋅∫

𝑊
𝑑′𝑑″𝑣1 ∧⋯ ∧ 𝑑′𝑑″𝑣𝑠 ∧ 𝛽
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by Lemma 7.7. By an approximation argument we find that

⟨[𝑑′𝑑″𝜋∗0𝑢1 ∧⋯ ∧ 𝑑′𝑑″𝜋∗0𝑢𝑟 ∧ 𝑑′𝑑″𝜋∗1 𝑣1 ∧⋯ ∧ 𝑑′𝑑″𝜋∗1 𝑣𝑠], 𝜋∗0𝛼 ∧ 𝜋∗1𝛽⟩
= ⟨[𝑑′𝑑″𝑢1 ∧⋯ ∧ 𝑑′𝑑″𝑢𝑟], 𝛼⟩ ⋅ ⟨[𝑑′𝑑″𝑣1 ∧⋯ ∧ 𝑑′𝑑″𝑣𝑠], 𝛽⟩

for locally approachable functions 𝑢1,… , 𝑢𝑟 and 𝑣1,… 𝑣𝑠. This implies the result
for line bundles with trivializing sections and the general result can be checked
locally.
In the case where 𝛼 and 𝛽 do not have the appropriate bi-degree, we can assume

without loss of generality that 𝛼 has bi-degree (𝑝, 𝑞) with 𝑝 > 𝑛 − 𝑟. Then for
smooth functions 𝑢1,… , 𝑢𝑟, the form 𝑑′𝑑″𝑢1 ∧⋯∧ 𝑑′𝑑″𝑢𝑟 ∧ 𝛼 on 𝑉 vanishes for
dimension reasons. Then its pull-back to 𝑉 ×𝑊 vanishes as well and hence

⟨[𝑑′𝑑″𝜋∗0𝑢1 ∧⋯ ∧ 𝑑′𝑑″𝜋∗0𝑢𝑟 ∧ 𝑑′𝑑″𝜋∗1 𝑣1 ∧⋯ ∧ 𝑑′𝑑″𝜋∗1 𝑣𝑠], 𝜋∗0𝛼 ∧ 𝜋∗1𝛽⟩

vanishes. The same argument as above now yields the result also in the case
where 𝛼 is not of degree (𝑛 − 𝑟, 𝑛 − 𝑟). ∎

8.11 Proposition. Let𝐿1,… , 𝐿𝑟 be locally approachablymetrized line bundles on𝑉.
Then the class of the current [𝑐1(𝐿1) ∧ ⋯ ∧ 𝑐1(𝐿𝑟)] in the Bott–Chern cohomology
group �̂�𝑟

𝒟(𝑉) does not depend on the metrics of the line bundles.

Proof. By symmetric multilinearity it is enough to show that if the underlying
line bundle of 𝐿1 is trivial, then [𝑐1(𝐿1) ∧ ⋯ ∧ 𝑐1(𝐿𝑟)] lies in the image of 𝑑′𝑑″.
Let 𝑠 ∈ Γ(𝑉, 𝐿1) be a nowhere-vanishing section and denote 𝑢 ≔ − log‖𝑠(−)‖.
By [CD12, Cor. 5.4.7], there is for every positive current 𝑇 defined on an open

subset 𝑈 ⊂ 𝑉, a current 𝑢𝑇 ≔ 𝑢|𝑈𝑇 ∈ 𝒟𝑉(𝑈) such that for every 𝛼 ∈ 𝒜𝑐(𝑈)
and every sequence 𝑢𝑛 of smooth functions converging uniformly to 𝑢|𝑈 on a
neighborhood of supp(𝛼), one has ⟨𝑢𝑇, 𝛼⟩ = lim𝑛⟨𝑢𝑛𝑇, 𝛼⟩. It is easy to verify that
the operation 𝑇 ↦ 𝑢𝑇 defines a morphism of sheaves of real cones. Since for
locally psh-approachable functions 𝑢2,… , 𝑢𝑟, the current [𝑑′𝑑″𝑢2 ∧⋯∧ 𝑑′𝑑″𝑢𝑟]
constructed by Bedford–Taylor theory is positive, we get a symmetric multilinear
morphism of sheaves of real cones

LPSHA𝑉×⋯×LPSHA𝑉 →𝒟𝑟−1,𝑟−1
𝑉 , (𝑢2,… , 𝑢𝑟) ↦ 𝑢[𝑑′𝑑″𝑢2∧⋯∧𝑑′𝑑″𝑢𝑟].

Repeating the arguments of Paragraph 8.7 and Paragraph 8.9, we see that we get
a well-defined current

𝑢[𝑐1(𝐿2) ∧ ⋯ ∧ 𝑐1(𝐿𝑟)] ∈ 𝒟𝑟−1,𝑟−1
𝑉 (𝑉)

such that for every open subset 𝑈 ⊂ 𝑉 where 𝐿2,… , 𝐿𝑟 admit nowhere-vanishing
sections 𝑠2,… , 𝑠𝑟 we have

(𝑢[𝑐1(𝐿2) ∧ ⋯ ∧ 𝑐1(𝐿𝑟)])|𝑈 = 𝑢[𝑑′𝑑″𝑢2 ∧⋯ ∧ 𝑑′𝑑″𝑢𝑟]
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where we write 𝑢𝑗 ≔ − log‖𝑠𝑗(−)‖. Unpacking the gluing and limit operations
one verifies that

𝑑′𝑑″(𝑢[𝑐1(𝐿2) ∧ ⋯ ∧ 𝑐1(𝐿𝑟)]) = [𝑐1(𝐿1) ∧ ⋯ ∧ 𝑐1(𝐿𝑟)]

which proves the claim. ∎

8.12 The Class in Bott–Chern Cohomology. Let 𝐿1,… , 𝐿𝑟 be line bundles on 𝑉.
We define

[𝑐1(𝐿1) ∧ ⋯ ∧ 𝑐1(𝐿𝑟)]BC ∈ �̂�𝑟
𝒟(𝑉)

to be the class of the current [𝑐1(𝐿1) ∧ ⋯ ∧ 𝑐1(𝐿𝑟)] for any choice of locally
approachable metrics on the 𝐿𝑘. This is well-defined by Proposition 8.11.

8.13 First Chern Classes in Intersection Theory. Let 𝑋 be an algebraic 𝐾-
variety. Recall from [Ful98, Sec. 2.5] the definition of the homomorphism

𝑐1(𝐿) ∩ −∶ CH𝑝(𝑋) → CH𝑝+1(𝑋)

for a line bundle 𝐿 in terms of divisor intersection. If 𝐿1,… , 𝐿𝑟 are line bundles
on 𝑋, then we set

𝑐1(𝐿1)⋯ 𝑐1(𝐿𝑟) ≔ 𝑐1(𝐿1) ∩ (𝑐1(𝐿2) ∩ (⋯ ∩ [𝑋])) ∈ CH𝑟(𝑋).

The expression 𝑐1(𝐿1)⋯ 𝑐1(𝐿𝑟) is multilinear and symmetric in the 𝐿𝑘.

8.14 Proposition. Let 𝐿1,… , 𝐿𝑟 be line bundles on the algebraic 𝐾-variety 𝑋. Then
we have

𝛿(𝑐1(𝐿1)⋯ 𝑐1(𝐿𝑟)) = [𝑐1(𝐿1) ∧ ⋯ ∧ 𝑐1(𝐿𝑟)]BC ∈ �̂�𝑟
𝒟(𝑋an),

where 𝛿∶ CH𝑟(𝑋) → �̂�𝑟
𝒟(𝑋an) denotes cycle class map of Paragraph 7.10.

Proof. It is enough to show that for smoothly metrized line bundles 𝐿1,… , 𝐿𝑟
with underlying line bundles 𝐿1,… , 𝐿𝑟 the class 𝛿(𝑐1(𝐿1)⋯ 𝑐1(𝐿𝑟)) ∈ �̂�𝑟

𝒟(𝑋an) is
represented by the current [𝑐1(𝐿1) ∧ ⋯ ∧ 𝑐1(𝐿𝑟)].
By an inductive argument it is enough to show that if [𝑍] ∈ CH𝑝(𝑋) is a

cycle class represented by a cycle 𝑍 and 𝐿 = (𝐿, ‖−‖) is a smoothly metrized
line bundle on 𝑋, then the class 𝛿(𝑐1(𝐿) ∩ [𝑍]) is represented by the current
𝑐1(𝐿) ∧ 𝛿𝑍. By linearity we may assume that 𝑍 is a subvariety of 𝑋. Applying the
commutative diagram Eq. (7.10.1) to the embedding 𝑖∶ 𝑍 ↪ 𝑋 we may assume
that 𝑍 = 𝑋. Then choosing a non-zero rational section 𝑠 ∈ Γ(𝑋, 𝐿), the class
𝑐1(𝐿) = 𝑐1(𝐿) ∩ [𝑋] ∈ CH1(𝑋) is by definition represented by the Weil divisor
[div(𝑠)]. Hence 𝛿(𝑐1(𝐿) ∩ [𝑋]) is by definition represented by the current of
integration 𝛿[div(𝑠)].
On the other hand, we have by the Poincaré-Lelong equation that 𝑐1(𝐿) ∩ 𝛿𝑋 =

[𝑐1(𝐿)] = 𝛿[div(𝑠)] + 𝑑′𝑑″[− log‖𝑠(−)‖]. ∎
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8. First Chern Forms and Currents for Metrized Line Bundles

8.15 Lemma. Let 𝐿1,… , 𝐿𝑟 be locally approachably metrized line bundles on 𝑉
and let 𝐿/𝐾 be an extension of non-archimedean fields. Then the metrized scalar
extensions 𝜋∗𝐿/𝐾𝐿𝑖 are again locally approachably metrized and we have

(𝜋𝐿/𝐾)∗[𝑐1(𝜋∗𝐿/𝐾𝐿1) ∧ ⋯ ∧ 𝑐1(𝜋∗𝐿/𝐾𝐿𝑟)] = [𝑐1(𝐿1) ∧ ⋯ ∧ 𝑐1(𝐿𝑟)] (8.15.1)

as currents on 𝑉.

Proof. Let us abbreviate 𝜋 ≔ 𝜋𝐿/𝐾. Let 𝑈 ⊂ 𝑉 be an open subset. If 𝑠𝑖 ∈ Γ(𝑈, 𝐿𝑖)
is a local frame for 𝐿𝑖 with 𝑢𝑖 ≔ − log‖𝑠𝑖(−)‖ then 𝜋∗𝑠𝑖 is a local frame for 𝜋∗𝐿𝑖
and for the function 𝑢′𝑖 ≔ − log‖𝜋∗𝑠𝑖(−)‖ we have

𝑢′𝑖 = 𝜋∗𝑢𝑖

by the definition of the scalar extension metric. An argument as in Lemma 8.5
shows that if 𝑢𝑖 is smooth and plurisubharmonic, resp. locally psh-approachable,
resp. locally approachable then the same is true for 𝑢′𝑖. This shows in particular
that the 𝜋∗𝐿𝑖 are locally approachably metrized.
If the metrics and hence the 𝑢𝑖 are smooth, a repeated application of the

projection formula Eq. (7.13.1) and Eq. (7.13.2) shows that

𝜋∗[𝑑′𝑑″𝑢′1 ∧⋯ ∧ 𝑑′𝑑″𝑢′𝑟] = [𝑑′𝑑″𝑢1 ∧⋯ ∧ 𝑑′𝑑″𝑢𝑟].

By an approximation argument we get the above formula also if the 𝑢𝑖 are merely
locally approachable. This shows that Eq. (8.15.1) holds locally on 𝑉 and hence it
holds globally. ∎

102



9. Characteristic Currents of
Metrized Vector Bundles

Throughout this chapter we let 𝐾 be a non-archimedean field. All 𝐾-
analytic spaces are assumed to be good, topologically Hausdorff, bound-
aryless and equidimensional. We fix a 𝐾-analytic space 𝑉 of dimension 𝑛
and an algebraic variety 𝑋 of dimension 𝑛.
Inspired by the construction of Segre classes of a vector bundle 𝐸

in [Ful98] in terms of first Chern class of 𝒪𝐸(1), we define (products
of) Segre currents of (pseudo-)metrized vector bundles in Paragraph 9.4.
We prove some basic relations among the Segre and Chern currents
(Propositions 9.5 to 9.8 and 9.10). In Paragraph 9.11 we define polynomial
expressions in the Segre currents, allowing us in particular to consider
Chern currents (Paragraph 9.12). In the algebraic case, Segre and Chern
currents refine in a certain sense the Segre and Chern classes of algebraic
intersection theory (Paragraph 9.14).

9.1 Locally Approachable Metrics. Recall our notion of pseudo-metrics from
Paragraph 5.32. Let 𝐸 = (𝐸, ‖−‖) be a continuously (pseudo-)metrized vector bun-
dle on 𝑉. It is called locally approachably (pseudo-)metrized and the (pseudo-)met-
ric ‖−‖ is called locally approachable if the induced Fubini-Study metric ‖−‖FS on
𝒪𝐸(1) is locally approachable in the sense of Paragraph 8.8. From the definition
of pull-backs and twisting of pseudo-metrized vector bundles in Paragraph 5.32 it
follows that if 𝐸 is locally approachable and 𝐿 is a locally approachably metrized
line bundle, then𝐸⊗𝐿 is locally approachable. Similarly it follows that pull-backs
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9. Characteristic Currents of Metrized Vector Bundles

of locally approachable (pseudo-)metrics are locally approachable.
Every formal metric on 𝐸 is locally approachable by Lemma 6.11 and Para-

graph 8.8.

9.2 Segre andChernClasses inAlgebraic IntersectionTheory. If 𝐸 is a vector
bundle of rank 𝑟 = 𝑒 + 1 on an algebraic variety 𝑋, then the homomorphisms

𝑠𝑖(𝐸) ∩ −∶ CH𝑝+𝑖(𝑋) → CH𝑝(𝑋)

are defined by the formula

𝑠𝑖(𝐸) ∩ [𝑍] = 𝑝∗(𝑐1(𝒪𝐸(1))𝑒+𝑖 ∩ 𝑝∗[𝑍]),

where𝑝∶ 𝑃(𝐸) → 𝑋 denotes the projective bundle associated to𝐸 [Ful98, Sec. 3.1].
If 𝐸1,… , 𝐸𝑟 are vector bundles on 𝑋 and 𝑖1,… , 𝑖𝑟 ∈ 𝐍 are natural numbers,

then we write

𝑠𝑖1(𝐸1)⋯ 𝑠𝑖𝑟(𝐸𝑟) ≔ 𝑠𝑖1(𝐸1) ∩ (⋯ ∩ (𝑠𝑖𝑟(𝐸𝑟) ∩ [𝑋])) ∈ CH|𝑖|(𝑋).

Finally, one defines

𝑐𝑖(𝐸) ∩ [𝑍] = 𝐶𝑖(𝑠0(𝐸), 𝑠1(𝐸),… , 𝑠𝑖(𝐸)) ∩ [𝑍],

where 𝐶𝑖 ∈ 𝐙[𝑋0,… , 𝑋𝑖] is a certain universal polynomial [Ful98, Sec. 3.2].
Namely, the 𝐶𝑖 are the unique polynomials verifying the equality

(𝐶0 + 𝐶1𝑇 + 𝐶2𝑇2 +⋯)(1 + 𝑋1𝑇 + 𝑋2𝑇2 +⋯) = 1

in the ring of formal power series 𝐙[𝑋0, 𝑋1, 𝑋2,… ]⟦𝑇⟧.

9.3 Lemma. Let 𝐸1,… , 𝐸𝑟 be vector bundles on 𝑋 and 𝑖1,… , 𝑖𝑟 ∈ 𝐍 be natural
numbers. For each 𝑘 ∈ { 1,… , 𝑟 }, we denote by 𝑝𝑘∶ 𝑃(𝐸𝑘) → 𝑋 the projection from
the respective projective bundle. We let

𝑝∶ 𝑃 ≔ 𝑃(𝐸1) ×𝑋 ⋯×𝑋 𝑃(𝐸𝑟) → 𝑋

be their fibered product over 𝑋 and denote by 𝑞𝑘∶ 𝑃 → 𝑃(𝐸𝑘) the projections from
the fibered product. Then we have

𝑠𝑖1(𝐸1)⋯ 𝑠𝑖𝑟(𝐸𝑟) = 𝑝∗(𝑐1(𝑞∗1𝒪𝐸1(1))
𝑒1+𝑖1 ⋯𝑐1(𝑞∗𝑟𝒪𝐸𝑟(1))

𝑒𝑟+𝑖𝑟).

Proof. This follows from an iterated application of the base change formula
[Ful98, Prop. 1.7]. See the proof of [Ful98, Prop. 3.1 (b)] for a similar computation.

∎
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9.4 Segre Currents. Let 𝐸1,… , 𝐸𝑟 be locally approachably pseudo-metrized
vector bundles of ranks 𝑒1 + 1,… , 𝑒𝑟 + 1 on 𝑉 and let 𝑖1,… , 𝑖𝑟 ∈ 𝐍 be natural
numbers. For each 𝑘 ∈ { 1,… , 𝑟 }, we denote by 𝑝𝑘∶ 𝑃(𝐸𝑘) → 𝑉 the projection
from the respective projective bundle. We let

𝑝∶ 𝑃 ≔ 𝑃(𝐸1) ×𝑉 ⋯×𝑉 𝑃(𝐸𝑟) → 𝑉

be their fibered product over 𝑉 and denote by 𝑞𝑘∶ 𝑃 → 𝑃(𝐸𝑘) the projections
from the fibered product. We define

[𝑠𝑖1(𝐸1) ∧ ⋯ ∧ 𝑠𝑖𝑟(𝐸𝑟)] ∈ 𝒟|𝑖|,|𝑖|(𝑉)

to be the current

𝑝∗[𝑐1(𝑞∗1𝒪𝐸1(1))
𝑒1+𝑖1 ∧⋯ ∧ 𝑐1(𝑞∗𝑟𝒪𝐸𝑟(1))

𝑒𝑟+𝑖𝑟].

Here 𝒪𝐸𝑘
(1) denotes the locally approachably metrized line bundle on 𝑃(𝐸𝑘)

given by the line bundle 𝒪𝐸𝑘(1) together with the induced Fubini-Study metric.
The current [𝑠𝑖1(𝐸1)∧⋯∧𝑠𝑖𝑟(𝐸𝑟)] is 𝑑

′- and 𝑑″-closed since the same is true for
products of first Chern currents by Paragraph 8.9. It follows from Paragraph 8.12
that the class of [𝑠𝑖1(𝐸1) ∧⋯ ∧ 𝑠𝑖𝑟(𝐸𝑟)] in �̂�

|𝑖|
𝒟 (𝑉) does not depend on the metrics.

We denote it by
[𝑠𝑖1(𝐸1) ∧ ⋯ ∧ 𝑠𝑖𝑟(𝐸𝑟)]BC ∈ �̂�|𝑖|

𝒟 (𝑉).

9.5 Proposition. Let 𝐸1,… , 𝐸𝑟 be locally approachably pseudo-metrized vector
bundles on 𝑉 and let 𝑖1,… , 𝑖𝑟 ∈ 𝐍 be natural numbers. Let 𝜎∶ { 1,… , 𝑟 } →
{ 1,… , 𝑟 } be a permutation. Then we have

[𝑠𝑖1(𝐸1) ∧ ⋯ ∧ 𝑠𝑖𝑟(𝐸𝑟)] = [𝑠𝑖𝜍(1)(𝐸𝜍(1)) ∧ ⋯ ∧ 𝑠𝑖𝜍(𝑟)(𝐸𝜍(𝑟))].

Proof. This follows from the commutativity of fibered products and of products
of first Chern currents of line bundles. ∎

9.6 Proposition. Let 𝐸1,… , 𝐸𝑟 be locally approachably pseudo-metrized vector
bundles on 𝑉 and let 𝑖1,… , 𝑖𝑟 ∈ 𝐍 be natural numbers. Let 𝑈 ⊂ 𝑉 be an open
subset. Then we have

[𝑠𝑖1(𝐸1|𝑈) ∧ ⋯ ∧ 𝑠𝑖𝑟(𝐸𝑟|𝑈)] = [𝑠𝑖1(𝐸1) ∧ ⋯ ∧ 𝑠𝑖𝑟(𝐸𝑟)]|𝑈.

Proof. There is a canonical commutative diagram

𝑃′ = 𝑃(𝐸1|𝑈) ×𝑈 ⋯×𝑈 𝑃(𝐸𝑟|𝑈) 𝑈

𝑃 = 𝑃(𝐸1) ×𝑉 ⋯×𝑉 𝑃(𝐸𝑟) 𝑉

←→
𝑝′

↩→ ↩→

← →𝑝

105



9. Characteristic Currents of Metrized Vector Bundles

which is cartesian and hence identifies 𝑃′ with the open subset 𝑝−1(𝑈) ⊂ 𝑃.
Denoting by 𝑞𝑘∶ 𝑃 → 𝑃(𝐸𝑘) and by 𝑞′𝑘∶ 𝑃′ → 𝑃(𝐸𝑘|𝑈) the canonical projections
and writing

𝑇 ≔ [𝑐1(𝑞∗1𝒪𝐸1(1))
𝑒1+𝑖1 ∧⋯ ∧ 𝑐1(𝑞∗𝑟𝒪𝐸𝑟(1))

𝑒𝑟+𝑖𝑟]

and
𝑇 ′ ≔ [𝑐1(𝑞′∗1 𝒪𝐸1|𝑈(1))

𝑒1+𝑖1 ∧⋯ ∧ 𝑐1(𝑞′∗𝑟 𝒪𝐸𝑟|𝑈(1))
𝑒𝑟+𝑖𝑟]

on verifies that under the identification 𝑃′ = 𝑝−1(𝑈) we have 𝑇 ′ = 𝑇|𝑃′. Hence
the result follows from the fact that 𝑝∗∶ 𝑝∗𝒟𝑃 →𝒟𝑉 is a morphism of sheaves.

∎

9.7 Proposition. Let 𝐸1,… , 𝐸𝑟 be locally approachably pseudo-metrized vector
bundles on𝑉 and let 𝑖1,… , 𝑖𝑟 ∈ 𝐍 be natural numbers. We consider𝒪𝑉 as the trivial
line bundle on 𝑉 carrying the trivial metric. Let 𝑒0, 𝑖0 ∈ 𝐍 be natural numbers.
Then we have

[𝑠𝑖0(𝒪
𝑒0+1
𝑉 ) ∧ 𝑠𝑖1(𝐸1) ∧ ⋯ ∧ 𝑠𝑖𝑟(𝐸𝑟)] = {

[𝑠𝑖1(𝐸1) ∧ ⋯ ∧ 𝑠𝑖𝑟(𝐸𝑟)] if 𝑖0 = 0
0 if 𝑖0 > 0.

Proof. For each 𝑘 ∈ { 1,… , 𝑟 } let 𝑒𝑘 + 1 be the rank of 𝐸𝑘. We write 𝐸0 ≔ 𝒪
𝑒0+1
𝑉 .

We denote by𝐏𝑒0 the 𝑒0-dimensional projective space and by𝒪𝐏𝑒0(1) the canonical
line bundle on 𝐏𝑒0 carrying the standard Fubini-Study metric. We write

𝑝∶ 𝑃 ≔ 𝑃(𝐸1) ×𝑉 ⋯×𝑉 𝑃(𝐸𝑟) → 𝑉

and denote by 𝑞𝑘∶ 𝑃 → 𝑃(𝐸𝑘) the canonical projections. Let 𝐏𝑒0 × 𝑃 be the
product over 𝐾 and denote by

𝜋0∶ 𝐏𝑒0 × 𝑃 → 𝐏𝑒0

as well as
𝜋1∶ 𝐏𝑒0 × 𝑃 → 𝑃

the canonical projection maps onto the factors.
There is a canonical identification

𝑃′ ≔ 𝑃(𝐸0) ×𝑉 𝑃(𝐸1) ×𝑉 ⋯×𝑉 𝑃(𝐸𝑟) ≅ 𝐏𝑒0 × 𝑃.

Under this identification, the structural map 𝑝′∶ 𝑃′ → 𝑉 is given by 𝑝∘𝜋1∶ 𝐏𝑒0×
𝑃 → 𝑉. For 𝑘 ∈ { 1,… , 𝑟 }, the canonical projection map 𝑞′𝑘∶ 𝑃′ → 𝑃(𝐸𝑘) corre-
sponds to 𝑞𝑘 ∘ 𝜋1∶ 𝐏𝑒0 × 𝑃 → 𝑃(𝐸𝑘). Denoting by 𝑞′0∶ 𝑃′ → 𝑃(𝐸0) the canonical
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projection onto the first factor, we note that the metrized line bundle 𝑞′∗0 𝒪𝐸0(1)
on 𝑃′ corresponds to the metrized line bundle 𝜋∗0𝒪𝐏𝑒0(1) on 𝐏𝑒0 × 𝑃.
By definition we have

[𝑠𝑖0(𝒪
𝑒0+1
𝑉 ) ∧ 𝑠𝑖1(𝐸1) ∧ ⋯ ∧ 𝑠𝑖𝑟(𝐸𝑟)]

= 𝑝∗𝜋1∗[𝑐1(𝜋∗0𝒪𝐏𝑒0(1))𝑒0+𝑖0 ∧ 𝑐1(𝜋∗1 𝑞∗1𝒪𝐸1(1))
𝑒1+𝑖1 ∧⋯ ∧ 𝑐1(𝜋∗1 𝑞∗𝑟𝒪𝐸𝑟(1))

𝑒𝑟+𝑖𝑟].

Evaluating this current on a test form 𝛼 ∈ 𝒜𝑐(𝑉) we get

⟨[𝑐1(𝜋∗0𝒪𝐏𝑒0(1))𝑒0+𝑖0 ∧ 𝑐1(𝜋∗1 𝑞∗1𝒪𝐸1(1))
𝑒1+𝑖1 ∧⋯ ∧ 𝑐1(𝜋∗1 𝑞∗𝑟𝒪𝐸𝑟(1))

𝑒𝑟+𝑖𝑟], 𝜋∗1𝑝∗𝛼⟩.

Writing 𝜋∗1𝑝∗𝛼 as 𝜋∗01 ∧ 𝜋1𝑝∗𝛼 and taking into account Lemma 8.10 we are left
to show the equality

⟨[𝑐1(𝒪𝐏𝑒0(1))𝑒0], 1⟩ = 1.

This follows from the fact that the total mass of the Monge–Ampère measure
[𝑐1(𝒪𝐏𝑒0(1))𝑒0] can be computed as an intersection number by [CD12, Cor. 6.4.4].

∎

9.8 Proposition. Let 𝐸0,… , 𝐸𝑟 be locally approachably pseudo-metrized vector
bundles on 𝑉 and let 𝑖1,… , 𝑖𝑟 ∈ 𝐍 be natural numbers. Then we have

[𝑠0(𝐸0) ∧ 𝑠𝑖1(𝐸1) ∧ ⋯ ∧ 𝑠𝑖𝑟(𝐸𝑟)] = [𝑠𝑖1(𝐸1) ∧ ⋯ ∧ 𝑠𝑖𝑟(𝐸𝑟)].

Proof. We first prove the special case [𝑠0(𝐸0)] = [1] ∈ 𝒟0,0
𝑉 (𝑉). This identity

can be checked locally on 𝑉 so we may assume that 𝐸0 is trivial. Since in bi-
degree (0, 0) there are no boundaries it is enough to show [𝑠0(𝐸0)] = [1] in the
cohomology group �̂�0

𝒟(𝑉). Since the class of [𝑠0(𝐸0)] in �̂�0
𝒟(𝑉) does not depend

on the metric, we may assume that 𝐸0 carries the trivial metric with respect to
some trivialization, so the result follows from Proposition 9.7.
To show the general case, we consider the bundle

𝑝∶ 𝑃 = 𝑃(𝐸1) ×𝑉 ⋯×𝑉 𝑃(𝐸𝑟) → 𝑉

with the projection maps 𝑞𝑘∶ 𝑃 → 𝑃(𝐸𝑘). Let 𝑒0 + 1,… , 𝑒𝑟 + 1 be the ranks of
𝐸0,… , 𝐸𝑟.
The bundle 𝑃′ ≔ 𝑃(𝐸0) ×𝑉 𝑃(𝐸1) ×𝑉 ⋯ ×𝑉 𝑃(𝐸𝑟) identifies with the bundle

𝑃(𝑝∗𝐸0). We denote by 𝑝′∶ 𝑃(𝑝∗𝐸0) → 𝑃 the canonical projection map. Then
the canonical map 𝑃′ → 𝑉 corresponds to the composition 𝑝 ∘ 𝑝′∶ 𝑃(𝑝∗𝐸0) → 𝑉.
The projection maps 𝑃′ → 𝑃(𝐸𝑘) for 1 ≤ 𝑘 ≤ 𝑟 correspond to the compositions
𝑞𝑘 ∘ 𝑝′∶ 𝑃′ → 𝑃(𝐸𝑘).
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9. Characteristic Currents of Metrized Vector Bundles

By the special case above we know that

𝑝′∗[𝑐1(𝒪𝑝∗𝐸0(1))
𝑒0] = [1]

on 𝑃. We claim that this implies

𝑝′∗[𝑐1(𝒪𝑝∗𝐸0(1))
𝑒0 ∧ 𝑐1(𝑝′∗𝑞∗1𝒪𝐸1(1))

𝑒1+𝑖1 ∧⋯ ∧ 𝑐1(𝑝′∗𝑞∗𝑟𝒪𝐸𝑟(1))
𝑒𝑟+𝑖𝑟]

= [𝑐1(𝑞∗1𝒪𝐸1(1))
𝑒1+𝑖1 ∧⋯ ∧ 𝑐1(𝑞∗𝑟𝒪𝐸𝑟(1))

𝑒𝑟+𝑖𝑟]
(9.8.1)

Applying 𝑝∗ to Eq. (9.8.1) gives the result.
To prove Eq. (9.8.1) we note that by an approximation argument we may

assume that all pseudo-metrics involved are smooth. In that case we have
𝑐1(𝑝′∗𝑞∗𝑘𝒪𝐸𝑘

(1))𝑒𝑘+𝑖𝑘 = 𝑝′∗𝑐1(𝑞∗𝑘𝒪𝐸𝑟(1))
𝑒𝑘+𝑖𝑘 and Eq. (9.8.1) follows easily by

integrating against a test form. ∎

9.9 Line Bundles. Let 𝐸1,… , 𝐸𝑟 be locally approachably pseudo-metrized vector
bundles and let 𝐿1,… , 𝐿𝑠 be locally approachably metrized line bundles. Let

𝑝∶ 𝑃 = 𝑃(𝐸1) ×𝑉 ⋯×𝑉 𝑃(𝐸𝑟) → 𝑉

with projection maps 𝑞𝑘∶ 𝑃 → 𝑃(𝐸𝑘). We introduce the notation

𝑐1(𝐿1) ∧ ⋯ ∧ 𝑐1(𝐿𝑠) ∧ [𝑠𝑖1(𝐸1) ∧ ⋯ ∧ 𝑠𝑖𝑟(𝐸𝑟)]

≔ 𝑝∗[𝑐1(𝑝∗𝐿1) ∧ ⋯ ∧ 𝑐1(𝑝∗𝐿𝑠) ∧ 𝑐1(𝑞∗1𝒪𝐸1(1))
𝑒1+𝑖1 ∧⋯ ∧ 𝑐1(𝑞∗𝑟𝒪𝐸𝑟(1))

𝑒𝑟+𝑖𝑟].

If 𝐿1,… , 𝐿𝑠 are smoothlymetrized, then 𝑐1(𝐿1)∧⋯∧𝑐1(𝐿𝑠)∧[𝑠𝑖1(𝐸1)∧⋯∧𝑠𝑖𝑟(𝐸𝑟)]
actually agrees with the wedge product of the smooth form 𝑐1(𝐿1) ∧ ⋯ ∧ 𝑐1(𝐿𝑠)
with the current [𝑠𝑖1(𝐸1) ∧ ⋯ ∧ 𝑠𝑖𝑟(𝐸𝑟)]. Indeed, by an approximation argument
one can assume that the pseudo-metrics on the 𝐸𝑘 are smooth in which case the
claim is easy to verify.
Note that we have

𝑐1(𝐿) ∧ [𝑠𝑖1(𝐸1) ∧ ⋯ ∧ 𝑠𝑖𝑟(𝐸𝑟)] = −[𝑠1(𝐿) ∧ 𝑠𝑖1(𝐸1) ∧ ⋯ ∧ 𝑠𝑖𝑟(𝐸𝑟)].

Indeed, this follows from the fact that the projective bundle 𝑃(𝐿) can be identi-
fied with 𝑉 and under this identification the metrized line bundle 𝒪𝐿(1) agrees
with 𝐿

∨
.

Together with Proposition 9.8 this describes the Segre currents of metrized line
bundles.
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9.10 Proposition. Let 𝐸0, 𝐸1,… , 𝐸𝑟 be locally approachably pseudo-metrized vec-
tor bundles on 𝑉 and let 𝐿 be a locally approachably metrized line bundle on 𝑉. Let
𝑒0 + 1 be the rank of 𝐸0. Let 𝑖0, 𝑖1,… , 𝑖𝑟 be natural numbers. Then we have

[𝑠𝑖0(𝐸0 ⊗ 𝐿) ∧ 𝑠𝑖1(𝐸1) ∧ ⋯ ∧ 𝑠𝑖𝑟(𝐸𝑟)]

=
𝑖0
∑
𝑘=0

(−1)𝑖0−𝑘(
𝑒0 + 𝑖0
𝑒0 + 𝑘

)𝑐1(𝐿)𝑖0−𝑘 ∧ [𝑠𝑘(𝐸0) ∧ 𝑠𝑖1(𝐸1) ∧ ⋯ ∧ 𝑠𝑖𝑟(𝐸𝑟)]

Proof. Similarly to the proof of Proposition 9.8 it is enough to show the special
case

[𝑠𝑖(𝐸 ⊗ 𝐿)] =
𝑖
∑
𝑘=0

(−1)𝑖−𝑘(
𝑒 + 𝑖
𝑒 + 𝑘

)𝑐1(𝐿)𝑖−𝑘 ∧ [𝑠𝑘(𝐸)] (9.10.1)

for a pseudo-metrized vector bundle 𝐸 of rank 𝑒 + 1 and 𝑖 ∈ 𝐍.
In order to prove Eq. (9.10.1) we denote by 𝑝∶ 𝑃(𝐸) → 𝑉 the projective bundle

associated to 𝐸. Recall that we have an identification 𝑃(𝐸 ⊗ 𝐿) = 𝑃(𝐸) with
𝒪𝐸⊗𝐿(1) = 𝒪𝐸(1) ⊗ 𝑝∗𝐿

∨
by Paragraph 5.32. By definition, we have

[𝑠𝑖(𝐸 ⊗ 𝐿)] = 𝑝∗[𝑐1(𝒪𝐸⊗𝐿(1))
𝑒+𝑖].

Rewriting 𝒪𝐸⊗𝐿(1) as above and using symmetric multilinearity of the product
of first Chern currents of line bundles we get

[𝑠𝑖(𝐸 ⊗ 𝐿)] =
𝑒+𝑖
∑
𝑘=0

(−1)𝑒+𝑖−𝑘(
𝑒 + 𝑖
𝑘
)𝑝∗[𝑐1(𝑝∗𝐿)𝑒+𝑖−𝑘 ∧ 𝑐1(𝒪𝐸(1))

𝑘].

For 𝑘 < 𝑒 we have 𝑝∗[𝑐1(𝑝∗𝐿)𝑒+𝑖−𝑘 ∧ 𝑐1(𝒪𝐸(1))
𝑘] = 0. Indeed, if 𝐿 is smooth, we

have
𝑝∗[𝑐1(𝑝∗𝐿)𝑒+𝑖−𝑘 ∧ 𝑐1(𝒪𝐸(1))

𝑘] = 𝑐1(𝐿)𝑒+𝑖−𝑘 ∧ 𝑝∗[𝑐1(𝒪𝐸(1))
𝑘]

and 𝑝∗[𝑐1(𝒪𝐸(1))
𝑘] = 0 for dimension reasons. If 𝐿 is not smooth, the claim can

be reduced to the smooth case by an approximation argument.
Forgetting about the unnecessary summands and substituting the summation

index we get

[𝑠𝑖(𝐸 ⊗ 𝐿)] =
𝑖
∑
𝑘=0

(−1)𝑖−𝑘(
𝑒 + 𝑖
𝑒 + 𝑘

)𝑝∗[𝑐1(𝑝∗𝐿)𝑖−𝑘 ∧ 𝑐1(𝒪𝐸(1))
𝑒+𝑘].

We have
𝑝∗[𝑐1(𝑝∗𝐿)𝑖−𝑘 ∧ 𝑐1(𝒪𝐸(1))

𝑒+𝑘] = 𝑐1(𝐿)𝑖−𝑘 ∧ [𝑠𝑘(𝐸)]

by the notation introduced in Paragraph 9.9. This finishes the proof. ∎
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9. Characteristic Currents of Metrized Vector Bundles

9.11 Polynomial Expressions. Let 𝑖1,… , 𝑖𝑟 ∈ 𝐍 be natural numbers. Let
𝐹(𝑋1,… , 𝑋𝑟) ∈ 𝐑[𝑋1,… , 𝑋𝑟] be a polynomial, homogeneous of degree 𝑖 with
respect to the grading determined by deg(𝑋𝑘) = 𝑖𝑘 for 𝑘 = 1,… , 𝑟. Let 𝐸1,… , 𝐸𝑟
be formally metrized vector bundles on 𝑉. We define the current

[𝐹(𝑠𝑖1(𝐸1),… , 𝑠𝑖𝑟(𝐸𝑟))] ∈ 𝒟𝑖,𝑖(𝑉).

It suffices to do this when 𝐹 is a monomial and then to extend 𝐑-linearly. For
monomials, we use the products of Segre currents as defined in Paragraph 9.4.
We denote by

[𝐹(𝑠𝑖1(𝐸1),… , 𝑠𝑖𝑟(𝐸𝑟))]BC ∈ �̂�𝑖
𝒟(𝑉)

the class in the Bott–Chern cohomology.

9.12 Chern Currents. Let 𝐶𝑖 ∈ 𝐙[𝑋0,… , 𝑋𝑖] ⊂ 𝐑[𝑋0,… , 𝑋𝑖] be the polynomials
satisfying

(𝐶0 + 𝐶1𝑇 + 𝐶2𝑇2 +⋯)(1 + 𝑋1𝑇 + 𝑋2𝑇2 +⋯) = 1

as in Paragraph 9.2. The polynomial 𝐶𝑖 is homogeneous of degree 𝑖 if we let
deg(𝑋𝑘) = 𝑘 for 𝑘 = 0,… , 𝑖. Hence we can define the Chern currents of a locally
approachably pseudo-metrized vector bundle 𝐸 on 𝑉 by

[𝑐𝑖(𝐸)] ≔ [𝐶𝑖(𝑠0(𝐸),… , 𝑠𝑖(𝐸))] ∈ 𝒟𝑖,𝑖(𝑉).

We denote by
[𝑐𝑖(𝐸)]BC ∈ �̂�𝑖

𝒟(𝑉)

the class of [𝑐𝑖(𝐸)] in �̂�𝑖
𝒟(𝑉).

For example, we have 𝐶2 = 𝑋2
1 − 𝑋2 and hence

[𝑐2(𝐸)] = [𝑠1(𝐸) ∧ 𝑠1(𝐸)] − [𝑠2(𝐸)].

We can also define polynomial expressions in the Chern classes. Let 𝐸1,… , 𝐸𝑟
be locally approachably pseudo-metrized vector bundles on 𝑉, let 𝑖1,… , 𝑖𝑟 ∈ 𝐍
and let 𝐹 ∈ 𝐑[𝑋1,… , 𝑋𝑟] be a polynomial, homogeneous of degree 𝑖 if we let
deg(𝑋𝑘) = 𝑖𝑘. For each 𝑘 ∈ { 1,… , 𝑟 } we denote by

𝐶(𝑘)
𝑖𝑘 ≔ 𝐶𝑖𝑘(𝑋

(𝑘)
0 ,… , 𝑋(𝑘)

𝑖𝑘 )

the 𝑖𝑘-th Chern polynomial as above (but with disjoint sets of variables for varying
𝑘). We can plug these polynomials into 𝐹 and obtain a polynomial

𝐺 ≔ 𝐹(𝑐(1)𝑖1 ,… , 𝐶(𝑟)
𝑖𝑟 ) ∈ 𝐑[𝑋(1)

0 ,… , 𝑋(1)
𝑖1 ,… , 𝑋(𝑟)

0 ,… , 𝑋(𝑟)
𝑖𝑟 ].
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Then we define

[𝐹(𝑐𝑖1(𝐸1),… , 𝑐𝑖𝑟(𝐸𝑟))] ≔ [𝐺(𝑠0(𝐸𝑟),… , 𝑠𝑖1(𝐸1),… , 𝑠0(𝐸𝑟),… , 𝑠𝑖𝑟(𝐸𝑟))].

For example we can make the formal computation

[𝑐1(𝐸)2 − 𝑐2(𝐸)] = [(−𝑠1(𝐸))2 − (𝑠1(𝐸)2 − 𝑠2(𝐸))] = [𝑠2(𝐸)].

We denote by [𝐹(𝑐𝑖1(𝐸1),… , 𝑐𝑖𝑟(𝐸𝑟))]BC the class in the Bott–Chern cohomology
group.

9.13 Remark. In Propositions 9.5, 9.7, 9.8 and 9.10 we worked out some basic
relations among Segre currents, which lead immediately to similar relations
for the Chern currents. We conjecture that similar analogues to well-known
formulas from intersection theory for Chern classes of dual bundles, direct sums
and tensor products hold also for Chern currents of dual bundles, directs sums
and tensor products with the respective induced metrics, but we cannot prove
them currently.
In general, only constructions which can be performed for general pseudo-

metrics (cf. Paragraph 5.32) are easy to handle. We do however have formulas for
the classes in the Bott–Chern cohomology, see Paragraph 9.14.

9.14 Comparison with Intersection Theory. Let 𝐸1,… , 𝐸𝑟 be vector bundles
on an algebraic𝐾-variety𝑋. It follows immediately from the compatibility (7.10.1)
of the map 𝛿∶ CH•(𝑋) → �̂�•

𝒟(𝑋an)with push-forward as well as Proposition 8.14
and Lemma 9.3 that

𝛿(𝑠𝑖1(𝐸1)⋯ 𝑠𝑖𝑟(𝐸𝑟)) = [𝑠𝑖1(𝐸1) ∧ ⋯ ∧ 𝑠𝑖𝑟(𝐸𝑟)]BC ∈ �̂�|𝑖|
𝒟 (𝑋an).

By linearity we get

𝛿(𝐹(𝑠𝑖1(𝐸1),… , 𝑠𝑖𝑟(𝐸𝑟))) = [𝐹(𝑠𝑖1(𝐸1),… , 𝑠𝑖𝑟(𝐸𝑟))]BC
for polynomials in the Segre classes. In particular, we have

𝛿(𝑐𝑖(𝐸)) = [𝑐𝑖(𝐸)]BC
and a similar formula holds for polynomials in the Chern classes.
In particular, all relations among Segre and Chern classes in the Chow group

carry over to relations in the Bott–Chern cohomology group. For example, if
ℰ∶ 0 → 𝐸′ → 𝐸 → 𝐸″ → 0 is a short exact sequence of vector bundles on 𝑋 then
the Whitney sum formula [Ful98, Thm. 3.2 (e)]

𝑐𝑖(𝐸) = ∑
𝑗+𝑘=𝑖

𝑐𝑗(𝐸′)𝑐𝑘(𝐸″) ∈ CH𝑖(𝑋)

implies the relation

[𝑐𝑖(𝐸)]BC = ∑
𝑗+𝑘=𝑖

[𝑐𝑗(𝐸′) ∧ 𝑐𝑘(𝐸″)]BC ∈ �̂�𝑖
𝒟(𝑋an).
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9. Characteristic Currents of Metrized Vector Bundles

9.15 Lemma. Let 𝐿/𝐾 be an extension of non-archimedean fields and denote by
𝜋 ≔ 𝜋𝐿/𝐾∶ 𝑉 ⨶𝐾 𝐿 → 𝑉 the canonical base-change morphism. Let 𝐸1,… , 𝐸𝑟 be
locally approachably pseudo-metrized vector bundles on𝑉 and let𝐹 ∈ 𝐑[𝑋1,… , 𝑋𝑟]
be a polynomial, homogeneous of degree 𝑖 if we let deg(𝑋𝑘) = 𝑖𝑘. Then the pull-backs
𝜋∗𝐸𝑘 are locally approachably pseudo-metrized and we have

𝜋∗[𝐹(𝑠𝑖1(𝜋
∗𝐸1),… , 𝑠𝑖𝑟(𝜋

∗𝐸𝑟))] = [𝐹(𝑠𝑖1(𝐸1),… , 𝑠𝑖𝑟(𝐸𝑟))] (9.15.1)

as well as

𝜋∗[𝐹(𝑐𝑖1(𝜋
∗𝐸1),… , 𝑐𝑖𝑟(𝜋

∗𝐸𝑟))] = [𝐹(𝑐𝑖1(𝐸1),… , 𝑐𝑖𝑟(𝐸𝑟))]. (9.15.2)

Proof. By Paragraph 4.36 the formation of projective bundles and the tautological
line bundles is compatible with base change. By definition of the base-change
of pseudo-metrized vector bundles in Paragraph 5.32 the same is true for the
formation of the metrized tautological line bundle equipped with the dual Fubini-
Study metric. Since by Lemma 8.15 the base-change of locally approachably
metrized line bundles remains locally approachable, we see that the 𝜋∗𝐸𝑘 are
locally approachably metrized.
The formation of fibered products is compatible with base change by Para-

graph 2.6 and the formation of products of first Chern currents of line bundles is
compatible with base change by Lemma 8.15. This shows that all ingredients of
the construction in Paragraph 9.4 are compatible with base change. By linearity
we obtain Eq. (9.15.1). Since polynomials in the Chern currents are defined as
certain polynomial expressions in the Segre currents (Paragraph 9.12) we obtain
also Eq. (8.15.1). ∎
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10. Characteristic Forms of
Metrized Vector Bundles

Throughout this chapter, 𝐾 is a non-archimedean field. All 𝐾-analytic
spaces are assumed to be good, topologically Hausdorff, boundaryless
and equidimensional. We fix a 𝐾-analytic space 𝑉 dimension 𝑛 and an
algebraic 𝐾-variety 𝑋 of dimension 𝑛. In Paragraph 10.1 we define what it
means for a pseudo-metrized vector bundle 𝐸 on 𝑉 to admit Segre forms.
Unfortunately we cannot prove existence of Segre-forms except in trivial
cases (the 0-th Segre form for general vector bundles and the 1-st Segre
form for line bundles). For this reason the results of this chapter are
conditional in that they depend on the existence of Segre forms for the
occurring vector bundles.
In Proposition 10.7 we show that existence of Segre forms implies

existence of Green currents for cycles on smooth algebraic varieties and
inRemark 10.11we give a concrete construction for theseGreen currents.

10.1 Segre Forms. Let 𝐸 be a smoothly pseudo-metrized vector bundle of rank
𝑒 + 1 and denote by 𝑝∶ 𝑃(𝐸) → 𝑉 the projective bundle. (Recall the notion of
smooth pseudo-metrics from Paragraph 5.35.) Let us say that the 𝑖-th Segre form
of 𝐸 exists if there exists a (necessarily uniquely determined) smooth form 𝛽 ∈
𝒜𝑖,𝑖(𝑉) such that for every 𝐾-analytic space 𝑉 ′ and every morphism 𝑓∶ 𝑉 ′ → 𝑉
we have

[𝑠𝑖(𝑓∗𝐸)] = [𝑓∗𝛽].
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10. Characteristic Forms of Metrized Vector Bundles

In this case we denote 𝑠𝑖(𝐸) ≔ 𝛽. In particular, the current associated to the
smooth form 𝑠𝑖(𝐸) agrees with the current [𝑠𝑖(𝐸)] as defined in Paragraph 9.4 so
the notation is consistent. We say that all Segre forms of 𝐸 exist if the 𝑖-th Segre
form of 𝐸 exists for all 𝑖 ∈ 𝐍.
Note that if the 𝑖-th Segre form of 𝐸 exists and 𝑓∶ 𝑉 ′ → 𝑉 is a morphism of

𝐾-analytic spaces then the 𝑖-th Segre form of 𝑓∗𝐸 exists and 𝑠𝑖(𝑓∗𝐸) = 𝑓∗𝑠𝑖(𝐸).

10.2 Remark. The formula [𝑠𝑖(𝐸)] = 𝑝∗[𝑐1(𝒪𝐸(1))
𝑒+𝑖] shows that, philosoph-

ically, 𝑠𝑖(𝐸) should be given by integration along the fiber of the smooth form
𝑐1(𝒪𝐸(1))

𝑒+𝑖 along the fiber bundle 𝑝∶ 𝑃(𝐸) → 𝑉. It is however non-trivial to
imitate the construction of fiber integrals from differential geometry in the non-
archimedean situation, because for a trivial fiber bundle 𝑃 × 𝑉 → 𝑉 there is no
reason in non-archimedean geometry that a differential form on 𝑃 × 𝑉 can be
written as a sum of differential forms of the form 𝑝∗0𝛼∧𝑝∗1𝛽where 𝑝0∶ 𝑃×𝑉 → 𝑉,
𝑝1∶ 𝑃 × 𝑉 → 𝑃 denote the projections.
For this reason, the existence of Segre forms of smoothly pseudo-metrized

vector bundles remains conjectural.

10.3 Remark. FromProposition 9.8 it follows that any smoothly pseudo-metrized
vector bundle 𝐸 admits the 0-th Segre form and that it is given by the unit function

𝑠0(𝐸) = 1 ∈ 𝒜0,0(𝑉).

Since the first Chern current [𝑐1(𝐿)] of a smoothly metrized line bundle 𝐿 is
represented by the first Chern form 𝑐1(𝐿) and because Chern forms are compatible
with pull-back of smoothly metrized line bundles, it follows from Paragraph 9.9
that the first Segre form of 𝐿 exists and is given by

𝑠1(𝐿) = −𝑐1(𝐿).

10.4 Lemma. Let 𝐸1,… , 𝐸𝑟 be smoothly pseudo-metrized vector bundles over 𝑉
and let 𝑖1,… , 𝑖𝑟 ∈ 𝐍 be natural numbers. Assume that for every 𝑘 ∈ { 1,… , 𝑟 }, the
𝑖𝑘-th Segre form of 𝐸𝑘 exists and let 𝑓∶ 𝑉 ′ → 𝑉 be a morphism of 𝐾-analytic spaces.
Then the current associated to the smooth form 𝑓∗(𝑠𝑖1(𝐸1) ∧ ⋯ ∧ 𝑠𝑖𝑟(𝐸𝑟)) agrees
with the Segre current

[𝑠𝑖1(𝑓
∗𝐸1) ∧ ⋯ ∧ 𝑠𝑖𝑟(𝑓

∗𝐸𝑟)].

Proof. For simplicity, we only show the claim in the case 𝑓 = id𝑉, the general
statement can be shown similarly. Furthermore, we assume 𝑟 = 2, the gen-
eral case follows by induction. So let 𝐸, 𝐹 be two smoothly pseudo-metrized
vector bundles of ranks 𝑒, resp. 𝑓 and let 𝑖, 𝑗 ∈ 𝐍. We want to show that the
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current associated to the form 𝑠𝑖(𝐸) ∧ 𝑠𝑗(𝐹) agrees with [𝑠𝑖(𝐸) ∧ 𝑠𝑗(𝐹)] as defined
in Paragraph 9.4.
For this we consider the cartesian commutative diagram

𝑃(𝑝∗0𝐹) 𝑃(𝐹)

𝑃(𝐸) 𝑉

←→
𝑝0

←→𝑝′1 ←→ 𝑝1

← →𝑝0

of Lemma 4.32 which shows that we can identify the space 𝑃(𝐸) ×𝑉 𝑃(𝐹) with
𝑃(𝑝∗0𝐹). Here, 𝑝0, 𝑝1, 𝑝′1 are projections from the respective projective bundles
onto the respective base space. By Paragraph 5.32 we have an equality

𝒪𝑝∗0𝐹
(1) = 𝑝∗0𝒪𝐹(1) (10.4.1)

of metrized line bundles on 𝑃(𝑝∗0𝐹).
Given 𝛼 ∈ 𝒜•,•

𝑐 (𝑉) we want to prove

⟨[𝑠𝑖(𝐸) ∧ 𝑠𝑗(𝐹)], 𝛼⟩ = ∫
𝑉
𝑠𝑖(𝐸) ∧ 𝑠𝑗(𝐹) ∧ 𝛼

where the symbol [𝑠𝑖(𝐸) ∧ 𝑠𝑗(𝐹)] on the left denotes the Segre current in the sense
of Paragraph 9.4 and 𝑠𝑖(𝐸), 𝑠𝑗(𝐹) on the right denote Segre forms in the sense of
Paragraph 10.1.
By definition we have

[𝑠𝑖(𝐸) ∧ 𝑠𝑗(𝐹)] = 𝑝0∗𝑝′1∗[𝑐1(𝑝′∗1 𝒪𝐸(1))
𝑒+𝑖 ∧ 𝑐1(𝑝∗0𝒪𝐹(1))

𝑓+𝑗].

Using that first Chern forms of smoothly metrized line bundles are compatible
with pull-back and using Eq. (10.4.1) we get

⟨[𝑠𝑖(𝐸) ∧ 𝑠𝑗(𝐹)], 𝛼⟩ = ∫
𝑃(𝑝∗0𝐹)

𝑐1(𝒪𝑝∗0𝐹
(1))𝑓+𝑗 ∧ 𝑝′∗1 (𝑐1(𝒪𝐸(1))

𝑒+𝑖 ∧ 𝑝∗0𝛼).

By definition of the Segre current [𝑠𝑗(𝑝∗0𝐹)] in the sense of Paragraph 9.4 we see

⟨[𝑠𝑖(𝐸) ∧ 𝑠𝑗(𝐹)], 𝛼⟩ = ⟨[𝑠𝑗(𝑝∗0𝐹)], 𝑐1(𝒪𝐸(1))
𝑒+𝑖 ∧ 𝑝∗0𝛼⟩.

By the defining property of the Segre form 𝑠𝑗(𝐹) applied to the morphism 𝑝0, the
current [𝑠𝑗(𝑝∗0𝐹)] is associated to the form 𝑝∗0𝑠𝑗(𝐹). It follows that

⟨[𝑠𝑖(𝐸) ∧ 𝑠𝑗(𝐹)], 𝛼⟩ = ∫
𝑃(𝐸)

𝑝∗0𝑠𝑗(𝐹) ∧ 𝑐1(𝒪𝐸(1))
𝑒+𝑖 ∧ 𝑝∗0𝛼

= ∫
𝑃(𝐸)

𝑐1(𝒪𝐸(1))
𝑒+𝑖 ∧ 𝑝∗0(𝑠𝑗(𝐹) ∧ 𝛼)

= ⟨[𝑠𝑖(𝐸)], 𝑠𝑗(𝐹) ∧ 𝛼⟩.
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10. Characteristic Forms of Metrized Vector Bundles

In the last line, [𝑠𝑖(𝐸)] denotes the Segre current in the sense of Paragraph 9.4.
By the defining property of the Segre form it is the current associated to the form
𝑠𝑖(𝐸) and we get

⟨[𝑠𝑖(𝐸) ∧ 𝑠𝑗(𝐹)], 𝛼⟩ = ∫
𝑉
𝑠𝑖(𝐸) ∧ 𝑠𝑗(𝐹) ∧ 𝛼

which we wanted to show. ∎

10.5 Chern Forms. Let 𝐸 be a smoothly pseudo-metrized vector bundle on 𝑉
and assume that all Segre forms of 𝐸 exist. For 𝑖 ∈ 𝐍 we define the 𝑖-th Chern
form of 𝐸 by

𝑐𝑖(𝐸) ≔ 𝐶𝑖(𝑠0(𝐸),… , 𝑠𝑖(𝐸)) ∈ 𝒜𝑖,𝑖(𝑉)

where 𝐶𝑖 ∈ 𝐙[𝑋0,… , 𝑋𝑖] denotes the Chern polynomial as in Paragraph 9.12.
Note that it follows from Lemma 10.4 that if 𝐸1,… , 𝐸𝑟 are smoothly pseudo-

metrized vector bundles all of whose Segre forms exist, 𝑓∶ 𝑉 ′ → 𝑉 is a morphism
of 𝐾-analytic spaces and 𝑖1,… , 𝑖𝑟 are natural numbers, then the current associated
to the form

𝑓∗(𝑐𝑖1(𝐸1) ∧ ⋯ ∧ 𝑐𝑖1(𝐸𝑟))

agrees with the current

[𝑐𝑖1(𝑓
∗𝐸1) ∧ ⋯ ∧ 𝑐𝑖𝑟(𝑓

∗𝐸𝑟)]

interpreted as a polynomial expression in the Chern currents of 𝑓∗𝐸1,… , 𝑓∗𝐸𝑟
in the sense of Paragraph 9.12.

10.6 Green Currents. Let 𝑋 be an 𝑛-dimensional algebraic variety on 𝑋 and let 𝑍
be a 𝑝-codimensional cycle on 𝑋. A current 𝑔 ∈ 𝒟𝑝−1,𝑝−1(𝑋an) is called a Green
current for 𝑍 if there exists a smooth form 𝜔 ∈ 𝒜𝑝,𝑝(𝑋an) satisfying

[𝜔] = 𝑑′𝑑″𝑔 + 𝛿𝑍.

One sees that there exists a Green current for 𝑍 if and only if there exists a
smooth form 𝜔 ∈ 𝒜𝑝,𝑝(𝑋an) such that the class of [𝜔] in �̂�𝑝

𝒟(𝑋an) equals 𝛿([𝑍])
where 𝛿∶ CH𝑝(𝑋) → �̂�𝑝

𝒟(𝑋an) denotes the cycle class map of Paragraph 7.10.
In particular the existence of a Green current for 𝑍 depends only on the class
[𝑍] ∈ CH𝑝(𝑋). The question whether or not every cycle on 𝑋 has a Green current
is open in the non-archimedean setting.
Note that if 𝐿 is a smoothly metrized line bundle on 𝑋 and 𝑠 is a meromorphic

section of 𝐿 with Cartier divisor 𝐷 then by the Poincaré-Lelong formula of Para-
graph 8.3 the current 𝑔𝑌 ≔ [− log‖𝑠‖] is a Green current for the Weil divisor 𝑌
associated to 𝐷 with smooth form 𝜔𝑌 = 𝑐1(𝐿).
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Now assume in addition that 𝑍 is a 𝑝-codimensional prime cycle such that
𝐷 intersects 𝑍 properly and that 𝑔𝑍 ∈ 𝒟𝑝−1,𝑝−1(𝑋an) is a Green current for 𝑍.
Following [GK17, § 11.2] we define 𝑔𝑌 ∧ 𝛿𝑍 ∈ 𝒟𝑝,𝑝(𝑋an) as the push-forward of
[− log‖𝑠‖|𝑍] with respect to the inclusion 𝑖𝑍∶ 𝑍 ↪ 𝑋. If 𝑍 is not prime, we define
𝑔𝑌∧𝛿𝑍 ∈ 𝒟𝑝,𝑝(𝑋an) by extending linearly from the prime case. Finally we define
the ∗-product

𝑔𝑌 ∗ 𝑔𝑍 ≔ 𝑔𝑌 ∧ 𝛿𝑍 + 𝜔𝑌 ∧ 𝑔𝑍 ∈ 𝒟𝑝,𝑝(𝑋an).

Then as in [GK17, Prop. 11.4] it follows that 𝑔𝑌 ∗ 𝑔𝑍 is a Green current for the
cycle 𝐷 ⋅ 𝑍.

10.7 Proposition. Let 𝑋 be a smooth algebraic 𝐾-variety and assume that for every
vector bundle 𝐸 on 𝑋 there exists a smooth pseudo-metric ‖−‖ on 𝐸 such that all
Segre forms for the pseudo-metrized vector bundle 𝐸 ≔ (𝐸, ‖−‖) exist. Under this
hypothesis, every cycle 𝑍 on 𝑋 admits a Green current.

Proof. By [Ful98, Exmp. 15.2.16] the Chern character induces an isomorphism
from the Grothendieck group of vector bundles on 𝑋 with rational coefficients
onto the Chow group with rational coefficients. In particular, every Chow class
is equal to a polynomial expression in the Chern classes of a family of vector
bundles, or equivalently a polynomial expression in the Segre classes of a family of
vector bundles. By linearity, it is enough to show that for vector bundles 𝐸1,… , 𝐸𝑟
on 𝑋 and 𝑖1,… , 𝑖𝑟 ∈ 𝐍 the class 𝑠𝑖1(𝐸1)⋯ 𝑠𝑖𝑟(𝐸𝑟) admits a Green current. By
Paragraph 9.14 the class 𝛿(𝑠𝑖1(𝐸1)⋯ 𝑠𝑖𝑟(𝐸𝑟)) is represented by the current [𝑠𝑖1(𝐸1)∧
⋯ ∧ 𝑠𝑖𝑟(𝐸𝑟)] for any choice of locally approachable pseudo-metrics on 𝐸1,… , 𝐸𝑟.
By hypothesis we can choose the pseudo-metrics smooth and such that all Segre
forms exist for 𝐸1,… , 𝐸𝑟. By Paragraph 10.5 the current [𝑠𝑖1(𝐸1) ∧ ⋯ ∧ 𝑠𝑖𝑟(𝐸𝑟)] is
represented by the smooth form 𝑠𝑖1(𝐸1) ∧ ⋯ ∧ 𝑠𝑖𝑟(𝐸𝑟), so by the characterization
of Paragraph 10.6 the class 𝑠𝑖1(𝐸1)⋯ 𝑠𝑖𝑟(𝐸𝑟) admits a Green current as was to be
shown. ∎

10.8 Proper Intersection of Divisors. Let 𝑋 be an 𝑛-dimensional algebraic
𝐾-variety and let 𝐷1,… , 𝐷𝑟 be Cartier divisors on 𝑋. Following [CM21, Def. 1.3.2]
we say that 𝐷1,… , 𝐷𝑟 intersect properly if for any 𝑘-element subset 𝐽 of { 1,… , 𝑟 },

dim(⋂
𝑗∈𝐽

Supp(𝐷𝑗)) ≤ 𝑛 − 𝑘.

10.9 Lemma. Let 𝑋 be a quasi-projective variety and let 𝐿1,… , 𝐿𝑟 be line bundles
on 𝑋. Then there exists a projective variety 𝑋 together with an open immersion
𝑋 ↪ 𝑋 and line bundles �̃�1,… , �̃�𝑟 on 𝑋 such that the restriction of each �̃�𝑘 to 𝑋 is
isomorphic to 𝐿𝑘.
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Proof. By a diagonal argument one reduces to the case 𝑟 = 1, so let 𝐿 be a line
bundle on 𝑋. Let 𝑋 be a projective closure of 𝑋. By [EGA1, Cor. 6.9.5], 𝐿 extends
to a coherent sheaf ℱ on 𝑋. By [RG71, Thm. 5.2.2] there exists an 𝑋-admissible
blowing-up 𝑋 → 𝑋 (in particular it restricts to an isomorphism over the open
subset 𝑋 ⊂ 𝑋) such that the strict transform �̃� of ℱ is a flat 𝒪𝑋-module and
restricts to the line bundle 𝐿 on 𝑋. By [Har77, Prop. III.9.2 (e)], �̃� is locally free
and since the rank function is locally constant, it must have constant rank 1
on 𝑋. ∎

10.10Lemma. Let𝑋 be a quasi-projective𝐾-variety and let𝐿1,… , 𝐿𝑟 be line bundles
on 𝑋. Then there exist non-zero rational sections 𝑠𝑘 of 𝐿𝑘 for 𝑘 = 1,… , 𝑟 such that
the divisors 𝐷1,… , 𝐷𝑟 with 𝐷𝑘 = div(𝑠𝑘) intersect properly.

Proof. By Lemma 10.9 we can extend the line bundles to a projective closure of 𝑋
and we may assume that 𝑋 is projective. In this case the result is shown in [CM21,
Lem. 1.3.7]. ∎

10.11 Remark. Let the setting be as in Proposition 10.7 and assume additionally
that 𝑋 is quasi-projective. Then the Green current of Proposition 10.7 can be
constructed explicitly as follows: As in the proof of Proposition 10.7 it is enough
to find a Green current for the Chow class 𝑠𝑖1(𝐸1)⋯ 𝑠𝑖𝑟(𝐸𝑟). Denoting by

𝑝∶ 𝑃(𝐸1) ×𝑋 ⋯×𝑋 𝑃(𝐸𝑟) → 𝑋

the fibered product of the projective bundles with projections 𝑞𝑘∶ 𝑃 → 𝑃(𝐸𝑘),
the class 𝑠𝑖1(𝐸1)⋯ 𝑠𝑖𝑟(𝐸𝑟) is by Lemma 9.3 equal to

𝑝∗(𝑐1(𝑞∗1𝒪𝐸1(1))
𝑒1+𝑖1 ⋯𝑐1(𝑞∗𝑟𝒪𝐸𝑟(1))

𝑒𝑟+𝑖𝑟).

Let us choose a smooth pseudo-metric on each of the 𝐸𝑘 such that all Segre forms
exist for each 𝐸𝑘. For each of the line bundles

𝐿1,… , 𝐿𝑚 = 𝑞∗1𝒪𝐸1(1),… , 𝑞∗1𝒪𝐸1(1)⏟⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⏟
𝑒1+𝑖1 times

,… , 𝑞∗𝑟𝒪𝐸𝑟(1),… , 𝑞∗𝑟𝒪𝐸𝑟(1)⏟⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⏟
𝑒𝑟+𝑖𝑟 times

(where𝑚 = |𝑒|+ |𝑖|) choose meromorphic sections 𝑠1,… , 𝑠𝑚 with Cartier divisors
𝐷1,… ,𝐷𝑚 and associated Weil divisors 𝑌1,… , 𝑌𝑚 such that the divisors 𝐷𝑘 inter-
sect properly. Let 𝑔𝑌𝑘 ≔ [− log‖𝑠𝑘‖] be theGreen current for𝑌𝑘with𝜔𝑌𝑘 = 𝑐1(𝐿𝑘).
Then 𝑔 ≔ 𝑔1 ∗ (𝑔2 ∗⋯ (⋯∗𝑔𝑚)) is a Green current for 𝑌 ≔ 𝐷1 ⋅ (𝐷2 ⋅⋯ (⋯ ⋅𝐷𝑚))
satisfying

[𝑐1(𝐿1) ∧ ⋯ ∧ 𝑐1(𝐿𝑚)] = 𝑑′𝑑″𝑔 + 𝛿𝑌.

Applying 𝑝∗ we get

[𝑠𝑖1(𝐸1) ∧ ⋯ ∧ 𝑠𝑖𝑟(𝐸𝑟)] = 𝑑′𝑑″𝑝∗𝑔 + 𝛿𝑝∗𝑌
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This shows that 𝑝∗𝑔 is a Green current for 𝑝∗𝑌 with associated form 𝑠𝑖1(𝐸1) ∧
⋯ ∧ 𝑠𝑖𝑟(𝐸𝑟). So we have an explicit Green current for the explicit cycle 𝑝∗𝑌
representing the class 𝑠𝑖1(𝐸1)⋯ 𝑠𝑖𝑟(𝐸𝑟).

10.12Remark. Sincewe cannot currently prove existence of Segre forms, Proposi-
tion 10.7 does not give an unconditional proof for the existence of Green currents.
However, even if it turns out that Segre forms as defined in Paragraph 10.1 do
not exist in general, they might still exist in analogous theories of characteristic
currents and forms based on a different class of differential forms and currents,
for example the 𝛿-forms of [GK17] or of [Mih23a; Mih23b]. In this case the
arguments given above should imply the existence of Green 𝛿-currents in the
context of 𝛿-forms. See Chapter 12 for an outline of a theory of characteristic
currents and forms based on 𝛿-forms.
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11. Measures

Throughout this chapter, 𝐾 will be a non-archimedean field. All 𝐾-
analytic spaces are assumed to be good, topologically Hausdorff, bound-
aryless and equidimensional (and hence in particular strict by [Tem15,
Exmp. 4.2.4.2 (ii)]). If a polynomial expression in the Segre or Chern
currents of a family of locally approachably (pseudo-)metrized vector
bundles on a 𝐾-analytic space 𝑉 has top homogeneous degree 𝑛, then it is
given by a measure. If 𝑉 = 𝑋an is the analytification of a proper algebraic
variety over an algebraically closed field and all the metrics are formal
metrics, one gets a more concrete description which is analogous to the
definition of Monge–Ampère measures in [Cha06].
From this description (referring to intersection numbers on the special

fiber) we deduce a positivity result for semipositive formally metrized
vector bundles.

11.1 Measures. Let 𝑉 be a 𝐾-analytic space. Observe that our assumptions for
𝐾-analytic spaces imply that the underlying topological space of 𝑉 is a locally
compact Hausdorff topological space. We denote by 𝒞0

𝑐 (𝑉) the topological 𝐑-
vector space of compactly supported continuous functions on 𝑉 equipped with
the locally convex topology of uniform convergence on compacta. By a mea-
sure on 𝑉 we mean a Radon measure on the underlying topological space of 𝑉,
i.e. a continuous 𝐑-linear functional 𝜇∶ 𝒞0

𝑐 (𝑉) → 𝐑. Note that a functional
𝜇∶ 𝒞0

𝑐 (𝑉) → 𝐑 is continuous if and only if for every compact subset 𝐾 of 𝑉 there
exists a constant𝑀𝐾 such that, for every 𝑓 ∈ 𝒞0

𝑐 (𝑉)with Supp(𝑓) ⊂ 𝐾 the bound
|𝜇(𝑓)| ≤ 𝑀𝐾‖𝑓‖𝐾 holds, where ‖𝑓‖𝐾 = sup𝑥∈𝐾|𝑓(𝑥)|. We denote byMea(𝑉) the
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11. Measures

space of measures on 𝑉.
Note that if 𝑈 ⊂ 𝑉 is an open subset, then the map𝒞0

𝑐 (𝑈) → 𝒞0
𝑐 (𝑉) given by

extension by 0 is continuous and hence there is a dual map

Mea(𝑉) → Mea(𝑈), 𝜇 ↦ 𝜇|𝑈.

This shows that the assignment 𝑈 ↦ Mea(𝑈) defines a presheaf of real vector
spaces on 𝑉.

11.2 Lemma. Let 𝑉 be a paracompact 𝐾-analytic space and let 𝑉 = ⋃𝑖∈𝐼𝑈𝑖 be
a locally finite covering of 𝑉 by open subsets. For each 𝑖 ∈ 𝐼 let 𝜇𝑖 ∈ Mea(𝑈𝑖) be
a measure such that 𝜇𝑖|𝑈𝑖∩𝑈𝑗 = 𝜇𝑗|𝑈𝑖∩𝑈𝑗 for all 𝑖, 𝑗 ∈ 𝐼. Then there is a unique
measure 𝜇 ∈ Mea(𝑉) such that 𝜇|𝑈𝑖 = 𝜇𝑖 for all 𝑖 ∈ 𝐼.

Proof. By paracompactness we can pick a partition of unity subordinate to the
covering, i.e. a family {𝜙𝑖}𝑖∈𝐼 of non-negative continuous functions 𝜙𝑖 ∈ 𝒞0(𝑉)
such that Supp(𝜙𝑖) ⊂ 𝑈𝑖 and such that∑𝑖∈𝐼 𝜙𝑖 ≡ 1 on𝑉. Note that if 𝑓 ∈ 𝒞0

𝑐 (𝑉) is
a compactly supported function then the compact set Supp(𝑓)meets only finitely
many sets𝑈𝑖 and hence (𝜙𝑖𝑓)|𝑈𝑖 = 0 for almost all 𝑖 ∈ 𝐼. Furthermore one checks
that Supp((𝜙𝑖𝑓)|𝑈𝑖) = Supp(𝜙𝑖𝑓) is compact so the sum

𝜇(𝑓) ≔ ∑
𝑖∈𝐼

𝜇𝑖((𝜙𝑖𝑓)|𝑈𝑖)

has well-defined summands almost all of which vanish.
We claim that 𝜇∶ 𝒞0

𝑐 (𝑉) → 𝐑 defined in this way is continuous, so let 𝐾 ⊂ 𝑉
be compact. Then the set 𝐼′ = { 𝑖 ∈ 𝐼 | 𝐾 ∩ 𝑈𝑖 ≠ ∅ } is finite. For each 𝑖 ∈ 𝐼′
the set 𝐾𝑖 ≔ 𝐾 ∩ Supp(𝜙𝑖) ⊂ 𝑈𝑖 is compact, so there exists a constant 𝑀𝑖 such
that |𝜇𝑖(𝑔)| ≤ 𝑀𝑖‖𝑔‖𝐾𝑖 for all 𝑔 ∈ 𝒞0

𝑐 (𝑈𝑖) with Supp(𝑔) ⊂ 𝐾𝑖, in particular for
𝑔 = (𝜙𝑖𝑓)|𝑈𝑖 with 𝑓 ∈ 𝒞0

𝑐 (𝑉) with Supp(𝑓) ⊂ 𝐾. Then we see that

|𝜇(𝑓)| = ||∑
𝑖∈𝐼′

𝜇𝑖((𝜙𝑖𝑓)|𝑈𝑖)||

≤ ∑
𝑖∈𝐼′

|𝜇𝑖((𝜙𝑖𝑓)|𝑈𝑖)|

≤ ∑
𝑖∈𝐼′

𝑀𝑖 ⋅ ‖(𝜙𝑖𝑓)|𝑈𝑖‖𝐾𝑖

≤ (∑
𝑖∈𝐼′

𝑀𝑖)‖𝑓‖𝐾.

This shows that 𝜇 is a measure.
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To show that 𝜇|𝑈𝑗 = 𝜇𝑗, for 𝑗 ∈ 𝐼, let 𝑔 ∈ 𝒞0
𝑐 (𝑈𝑗). The set 𝐼′ = { 𝑖 ∈ 𝐼 |

Supp(𝑔) ∩ 𝑈𝑖 ≠ ∅ } is finite and by definition we have

𝜇|𝑈𝑗(𝑔) = ∑
𝑖∈𝐼′

𝜇𝑖(𝜙𝑖𝑔)

= ∑
𝑖∈𝐼′

𝜇𝑗(𝜙𝑖𝑔)

= 𝜇𝑗(∑
𝑖∈𝐼′

𝜙𝑖𝑔).

To make sense of the calculation, observe that Supp(𝜙𝑖𝑔) ⊂ 𝑈𝑖 ∩ 𝑈𝑗 for all 𝑖 ∈ 𝐼′.
We have used the hypothesis that the 𝜇𝑖 agree on overlaps. Finally observe that
all 𝑖 ∈ 𝐼 such that 𝜙𝑖𝑔 does not vanish identically on𝑈𝑗 are already contained in 𝐼′,
so we have∑𝑖∈𝐼′ 𝜙𝑖𝑔 ≡ ∑𝑖∈𝐼 𝜙𝑖𝑔 ≡ 𝑔 on 𝑈𝑗. This finishes the proof. ∎

11.3 Measures and Currents. Let 𝑉 be a 𝐾-analytic space and let 𝜇∶ 𝒞0
𝑐 (𝑉) →

𝐑 be a measure on 𝑉. By restricting 𝜇 to the subspace 𝒞∞
𝑐 (𝑉) = 𝒜0,0

𝑐 (𝑉) of
compactly supported smooth functions on 𝑉 we obtain a current [𝜇] ∈ 𝒟0,0(𝑉).
The operation

Mea(𝑉) ↪ 𝒟0,0(𝑉), 𝜇 ↦ [𝜇]

is injective since by the Stone–Weierstraß theorem for Berkovich spaces [CD12,
Prop. 3.3.5], smooth functions lie dense in the space of continuous functions. By
definition of the presheaf structures forMea as well as for𝒟0,0 this is defines
morphism of presheaves.
Denoting by Mea+(𝑉), resp. 𝒟+

0,0(𝑉) the real cones of positive measures,
resp. currents, the embedding restricts to a bijection

Mea+(𝑉) ⥲ 𝒟+
0,0(𝑉), 𝜇 ↦ [𝜇]

by [CD12, Prop. 5.4.6].
In general, the injection Mea(𝑉) ↪ 𝒟0,0(𝑉) allows us to view Mea(𝑉) as a

subset of 𝒟0,0(𝑉), so we say a current 𝑇 ∈ 𝒟0,0(𝑉) is a measure if it lies in the
image of Mea(𝑉) ↪ 𝒟0,0(𝑉).

11.4 Proposition. Let 𝑉 be a paracompact 𝐾-analytic space of dimension 𝑛 and
let 𝐿1,… , 𝐿𝑛 be locally approachably metrized line bundles on 𝑉. Then the current

[𝑐1(𝐿1) ∧ ⋯ ∧ 𝑐1(𝐿𝑛)] ∈ 𝒟𝑛,𝑛(𝑉) = 𝒟0,0(𝑉)

is a measure on 𝑉.

Proof. Let {𝑈𝑖}𝑖∈𝐼 be an open covering of 𝑉 such that on each 𝑈𝑖, all of the line
bundles 𝐿1,… , 𝐿𝑛 are trivial and admit trivializing sections 𝑠

(𝑖)
𝑘 ∈ Γ(𝑈𝑖, 𝐿𝑘) for
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11. Measures

𝑘 ∈ { 1,… , 𝑛 } such that− log‖𝑠(𝑖)𝑘 (−)‖ ≡ 𝑢(𝑖)𝑘 −𝑣(𝑖)𝑘 on𝑈𝑖where 𝑢
(𝑖)
𝑘 , 𝑣(𝑖)𝑘 are locally

psh-approachable functions on 𝑈𝑖. This is possible by the definition of locally
approachablemetrics. By paracompactness, there exists a locally finite refinement
of the covering {𝑈𝑖}𝑖∈𝐼, so we may assume {𝑈𝑖}𝑖∈𝐼 to be locally finite. Recall
from Paragraph 11.3 that Mea ⊂ 𝒟0,0 is a sub-presheaf. Then it follows from
Lemma 11.2 that it is enough to show that the restriction of [𝑐1(𝐿1) ∧⋯∧ 𝑐1(𝐿𝑛)]
to each 𝑈𝑖 is a measure. We have

[𝑐1(𝐿1) ∧ ⋯ ∧ 𝑐1(𝐿𝑛)]|𝑈𝑖 = [𝑑′𝑑″(𝑢(𝑖)1 − 𝑣(𝑖)1 ) ∧ ⋯ ∧ 𝑑′𝑑″(𝑢(𝑖)𝑛 − 𝑣(𝑖)𝑛 )],

so by symmetricmultilinearity it is enough to see that for locally psh-approachable
functions 𝑤(𝑖)

1 ,… ,𝑤(𝑖)
𝑛 on 𝑈𝑖 the current

[𝑑′𝑑″𝑤(𝑖)
1 ∧⋯ ∧ 𝑑′𝑑″𝑤(𝑖)

𝑛 ] (11.4.1)

is a measure. But the current (11.4.1) is positive by [CD12, Cor. 5.6.5] and so it is
a measure by [CD12, Prop. 5.4.6]. ∎

11.5 Monge–Ampère Measures. Let 𝑉 be a paracompact 𝐾-analytic space of
dimension 𝑛 and let 𝐿1,… , 𝐿𝑛 be locally approachably metrized line bundles on
𝑉. We call the measure

MA(𝐿1,… , 𝐿𝑛) ≔ [𝑐1(𝐿1) ∧ ⋯ ∧ 𝑐1(𝐿𝑛)] ∈ Mea(𝑉) ⊂ 𝒟0,0(𝑉) (11.5.1)

theMonge–Ampère measure associated to the family 𝐿1,… , 𝐿𝑛. The construction
of such measures in non-archimedean geometry goes back to [Cha06]; see also
[Gub07] for a construction in slightly greater generality. The definition (11.5.1) is
due to [CD12] (even though it is not explicitly formulated in the cited work).

11.6 Monge–Ampère Measures of Formally Metrized Line Bundles. Let 𝑉
be a paracompact 𝐾-analytic space of dimension 𝑛 and let 𝐿1,… , 𝐿𝑛 be formally
metrized line bundles on 𝑉. Recall from Paragraph 8.8 that formal metrics are
locally approachable. In this case, the measureMA(𝐿1,… , 𝐿𝑛) is discrete in the
following sense: There exists a closed discrete subset 𝑆 ⊂ 𝑉 and a family {𝜆𝑥}𝑥∈𝑆
of real numbers such that

MA(𝐿1,… , 𝐿𝑟) = ∑
𝑥∈𝑆

𝜆𝑥𝛿𝑥.

Amore refined statement is contained in [CD12, Prop. 6.9.2, Thm. 6.9.3].
We focus here on the case where 𝐾 is algebraically closed and 𝑉 = 𝑋an is

the analytification of an 𝑛-dimensional proper algebraic 𝐾-variety. In that case
we can choose formal models (𝔛𝑘, 𝔏𝑘) for (𝑋, 𝐿𝑘) defining the metrics of the 𝐿𝑘.
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Since formal models for 𝑋 form a directed category by Paragraph 3.6 and using
Corollary 6.7, we can assume that all the 𝔛𝑘 are given by a single formal model 𝔛
for 𝑋. By Lemma 3.7 we can even assume that 𝔛 has reduced special fiber.
Then the Monge–Ampère measure is given by

MA(𝐿1,… , 𝐿𝑛) = ∑
𝑌∈�̃�(0)

(∫
𝑌
𝑐1(𝔏1)⋯ 𝑐1(𝔏𝑛))𝛿𝜉𝑌,

where the sum runs over all irreducible components of the special fiber �̃� and 𝛿𝜉𝑌
denotes the Dirac measure supported in the Shilov point 𝜉𝑌 ∈ 𝑋an reducing to the
generic point of 𝑌. By [CD12, Prop. 6.4.3] the total mass of the Monge–Ampère
measure is equal to the algebraic intersection number

⟨[𝑐1(𝐿1) ∧ ⋯ ∧ 𝑐1(𝐿𝑛)], 1⟩ = ∫
𝑋
𝑐1(𝐿1)⋯ 𝑐1(𝐿𝑛).

11.7 Theorem. Let 𝑉 be a paracompact 𝐾-analytic space of dimension 𝑛 and
let 𝐸1,… , 𝐸𝑟 be formally metrized vector bundles on 𝑉. Let 𝐹 ∈ 𝐑[𝑋1,… , 𝑋𝑟]
be a polynomial, homogeneous of degree 𝑛 with respect to the grading given by
deg(𝑋𝑘) = 𝑖𝑘.
Then the current [𝐹(𝑠𝑖1(𝐸1),… , 𝑠𝑖𝑟(𝐸𝑟))] ∈ 𝒟𝑛,𝑛(𝑉) = 𝒟0,0(𝑉) is a discrete

measure. More precisely, there exists a closed discrete subset 𝑆 ⊂ 𝑉 and a family of
real numbers {𝜆𝑥}𝑥∈𝑆 such that

[𝐹(𝑠𝑖1(𝐸1),… , 𝑠𝑖𝑟(𝐸𝑟))] = ∑
𝑥∈𝑆

𝜆𝑥𝛿𝑥.

Proof. We may assume that 𝐹 is a monomial, so we consider the current

[𝑠𝑖1(𝐸1) ∧ ⋯ ∧ 𝑠𝑖𝑟(𝐸𝑟)]

with |𝑖| = 𝑛. Let 𝑒1 + 1,… , 𝑒𝑟 + 1 be the ranks of 𝐸1,… , 𝐸𝑟. Let 𝑝∶ 𝑃 ≔ 𝑃(𝐸1) ×𝑉
⋯×𝑉𝑃(𝐸𝑟) → 𝑉 be the fibered product of the projective bundles and let 𝑞𝑘∶ 𝑃 →
𝑃(𝐸𝑘) denote the canonical projection maps. By definition we have

[𝑠𝑖1(𝐸1) ∧ ⋯ ∧ 𝑠𝑖𝑟(𝐸𝑟)] = 𝑝∗[𝑐1(𝑞∗1𝒪𝐸1(1))
𝑒1+𝑖1 ∧⋯ ∧ 𝑐1(𝑞∗𝑟𝒪𝐸𝑟(1))

𝑒𝑟+𝑖𝑟].

By Paragraph 11.6 there exists a closed discrete subset Σ ⊂ 𝑃 and a family {𝜇𝑦}𝑦∈Σ
of real numbers such that

[𝑐1(𝑞∗1𝒪𝐸1(1))
𝑒1+𝑖1 ∧⋯ ∧ 𝑐1(𝑞∗𝑟𝒪𝐸𝑟(1))

𝑒𝑟+𝑖𝑟] = ∑
𝑦∈Σ

𝜇𝑦𝛿𝑦.

Since 𝑝∶ 𝑃 → 𝑉 is topologically proper and open it follows that 𝑆 ≔ 𝑝(Σ) is
closed and discrete. Furthermore the proper map 𝑝∶ Σ → 𝑆 is finite-to-one
because the fibers are both compact and discrete.
It follows that [𝑠𝑖1(𝐸1)∧⋯∧𝑠𝑖𝑟(𝐸𝑟)] = 𝑝∗(∑𝑦∈Σ 𝜇𝑦𝛿𝑦) has the desired form. ∎
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11.8 Theorem. Assume that 𝐾 is algebraically closed, that 𝑋 is a proper algebraic
𝐾-variety of dimension 𝑛 and let 𝐸1,… , 𝐸𝑟 be formally metrized vector bundles on 𝑋.
Let 𝐹 ∈ 𝐑[𝑋1,… , 𝑋𝑟] be a polynomial, homogeneous of degree 𝑛 with respect to the
grading given by deg(𝑋𝑘) = 𝑖𝑘.
There exists a formal 𝐾∘-model 𝔛 of 𝑋 with reduced special fiber �̃� and formal

𝐾∘-models𝔈1,… , 𝔈𝑟 for𝐸1,… , 𝐸𝑟 defined on𝔛 such that themetric of 𝐸𝑘 is induced
by 𝔈𝑘 for 𝑘 = 1,… , 𝑟 and we have

[𝐹(𝑠𝑖1(𝐸1),… , 𝑠𝑖𝑟(𝐸𝑟))] = ∑
𝑌∈�̃�(0)

(∫
𝑌
𝐹(𝑠𝑖1(𝔈1),… , 𝑠𝑖𝑟(𝔈𝑟))) ⋅ 𝛿𝜉𝑌

where 𝑌 ranges over the irreducible components of �̃� and 𝛿𝜉𝑌 is the Dirac measure
supported in the Shilov point 𝜉𝑌 ∈ 𝑋an with reduction the generic point of 𝑌.
The total mass is equal to the algebraic intersection number

⟨[𝐹(𝑠𝑖1(𝐸1),… , 𝑠𝑖𝑟(𝐸𝑟))], 1⟩ = ∫
𝑋
𝐹(𝑠𝑖1(𝐸1),… , 𝑠𝑖1(𝐸𝑟)).

Proof. Again, we may assume that 𝐹 is a monomial, so we want to prove

[𝑠𝑖1(𝐸1) ∧ ⋯ ∧ 𝑠𝑖𝑟(𝐸𝑟)] = ∑
𝑌
(𝑠𝑖1(𝔈1)⋯ 𝑠𝑖𝑟(𝔈𝑟)) ⋅ 𝛿𝜉𝑌.

The existence of the models (𝔛, 𝔈𝑘) follows as in Paragraph 11.6. For each
𝑘 ∈ { 1,… , 𝑟 } we denote by 𝔭𝑘∶ 𝑃(𝔈𝑘) → 𝔛 the projective bundle in the for-
mal category. We let𝔓 ≔ 𝑃(𝔈1)×𝔛⋯×𝔛𝑃(𝔈𝑟) → 𝔛 be their fibered product over
𝔛 and denote by 𝔮𝑘∶ 𝔓 → 𝑃(𝔈𝑘) the projections. We note that 𝔓 is a formal 𝐾∘-
model of 𝑃 ≔ 𝑃(𝐸1) ×𝑋⋯×𝑋 𝑃(𝐸𝑟) with special fiber �̃� = 𝑃(𝔈1) ×�̃�⋯×�̃� 𝑃(𝔈𝑟).
Since this fiber product can also be obtained by taking iterative projective bundles,
we see that the special fiber is reduced and furthermore that the assignment

𝑌 ↦ �̃�𝑌 ≔ 𝑃(𝔈1|𝑌) ×𝑌 ⋯×𝑌 𝑃(𝔈𝑟|𝑌)

is a bijection from the set of irreducible components of �̃� to the set of irreducible
components of �̃�.
Note that for each 𝑘 ∈ { 1,… , 𝑟 } the line bundle 𝔮∗𝑘𝒪𝔈𝑘(1) on 𝔓 is a formal

𝐾∘-model of the line bundle 𝑞∗𝑘𝒪𝐸𝑘(1) on 𝑃 and that by Lemmas 6.6 and 6.11
it induces the metric of the metrized line bundle 𝑞∗𝑘𝒪𝐸𝑘

(1). Furthermore, its
restriction to the special fiber �̃� is given by �̃�∗𝑘𝒪�̃�𝑘

(1).
It follows from Paragraph 11.6 that the zero-dimensional current

[𝑐1(𝑞∗1𝒪𝐸1(1))
𝑒1+𝑖1 ∧⋯ ∧ 𝑐1(𝑞∗𝑟𝒪𝐸𝑟(1))

𝑒𝑟+𝑖𝑟]
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on 𝑃an is a measure and in fact equal to

∑
𝑌
(∫

�̃�𝑌

𝑐1(�̃�∗1𝒪�̃�1
(1))𝑒1+𝑖1 ⋯𝑐1(�̃�∗𝑟𝒪�̃�𝑟

(1))𝑒𝑟+𝑖𝑟) ⋅ 𝛿𝜉�̃�𝑌
.

It is therefore only left to show that

𝑝∗(𝛿𝜉�̃�𝑌
) = 𝛿𝜉𝑌 (11.8.1)

and that

∫
�̃�𝑌

𝑐1(�̃�∗1𝒪�̃�1
(1))𝑒1+𝑖1 ⋯𝑐1(�̃�∗𝑟𝒪�̃�𝑟

(1))𝑒𝑟+𝑖𝑟 = ∫
𝑌
𝑠𝑖1(𝔈1)⋯ 𝑠𝑖𝑟(𝔈𝑟). (11.8.2)

For Eq. (11.8.1) it suffices to show that 𝑝an(𝜉�̃�𝑌
) = 𝜉𝑌. This follows from the

commutative diagram of Paragraph 3.5.
Equation (11.8.2) follows from the fact that [�̃�𝑌] = �̃�∗[𝑌] as cycles on �̃� and

Lemma 9.3 (applied to the base field 𝐾).
Since the total mass is compatible with push-forward of measures, the total

mass of [𝑠𝑖1(𝐸1) ∧ ⋯ ∧ 𝑠𝑖𝑟(𝐸𝑟)] equals the total mass of

[𝑐1(𝑞∗1𝒪𝐸1(1))
𝑒1+𝑖1 ∧⋯ ∧ 𝑐1(𝑞∗𝑟𝒪𝐸𝑟(1))

𝑒𝑟+𝑖𝑟].

By Paragraph 11.6 this measure has total mass

∫
𝑃
𝑐1(𝑞∗1𝒪𝐸1(1))

𝑒1+𝑖1 ⋯𝑐1(𝑞∗𝑟𝒪𝐸𝑟(1))
𝑒𝑟+𝑖𝑟,

which by Lemma 9.3 equals ∫𝑋 𝑠𝑖1(𝐸1)⋯ 𝑠𝑖𝑟(𝐸𝑟) as claimed. ∎

11.9 Corollary. Let 𝐸1,… , 𝐸𝑟 be formally metrized vector bundles on 𝑉. Let 𝐹 ∈
𝐑[𝑋1,… , 𝑋𝑟] be a polynomial, homogeneous of degree 𝑛 with respect to the grading
given by deg(𝑋𝑘) = 𝑖𝑘.
There exists a closed discrete subset 𝑆 ⊂ 𝑉 and a family of real numbers {𝜆𝑥}𝑥∈𝑆

such that
[𝐹(𝑐𝑖1(𝐸1),… , 𝑐𝑖𝑟(𝐸𝑟))] = ∑

𝑥∈𝑆
𝜆𝑥𝛿𝑥.

Proof. This follows from Theorem 11.7 because a polynomial in the Chern cur-
rents is by definition a polynomial in the Segre currents of 𝐸1,… , 𝐸𝑟. ∎

11.10 Corollary. Assume that 𝐾 is algebraically closed, that 𝑋 is a proper algebraic
𝐾-variety of dimension 𝑛 and let 𝐸1,… , 𝐸𝑟 be formally metrized vector bundles on 𝑋.
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Let 𝐹 ∈ 𝐑[𝑋1,… , 𝑋𝑟] be a polynomial, homogeneous of degree 𝑛 with respect to the
grading given by deg(𝑋𝑘) = 𝑖𝑘.
There exists a formal 𝐾∘-model 𝔛 of 𝑋 with reduced special fiber �̃� and formal

𝐾∘-models𝔈1,… , 𝔈𝑟 for𝐸1,… , 𝐸𝑟 defined on𝔛 such that themetric of 𝐸𝑘 is induced
by 𝔈𝑘 for 𝑘 = 1,… , 𝑟 and we have

[𝐹(𝑐𝑖1(𝐸1),… , 𝑐𝑖𝑟(𝐸𝑟))] = ∑
𝑌∈�̃�(0)

(∫
𝑌
𝐹(𝑐𝑖1(𝔈1),… , 𝑐𝑖𝑟(𝔈𝑟))) ⋅ 𝛿𝜉𝑌 (11.10.1)

where 𝑌 ranges over the irreducible components of �̃� and 𝛿𝜉𝑌 is the Dirac measure
supported in the Shilov point 𝜉𝑌 ∈ 𝑋an with reduction the generic point of 𝑌.
The total mass is equal to the algebraic intersection number

⟨[𝐹(𝑐𝑖1(𝐸1),… , 𝑐𝑖𝑟(𝐸𝑟))], 1⟩ = ∫
𝑋
𝐹(𝑐𝑖1(𝐸1),… , 𝑐𝑖1(𝐸𝑟)).

Proof. This follows from Theorem 11.8. ∎

11.11 Schur Polynomials. Let 𝑛, 𝑟 ∈ 𝐍 and denote by Λ(𝑛, 𝑟) the set of all
partitions of 𝑛 by non-negative integers ≤ 𝑟. Thus an element 𝜆 ∈ Λ(𝑛, 𝑟) is
specified by a sequence

𝑟 ≥ 𝜆1 ≥ 𝜆2 ≥ … ≥ 𝜆𝑛 ≥ 0

with∑𝜆𝑖 = 𝑛. For 𝜆 ∈ Λ(𝑛, 𝑟) the Schur polynomial 𝑃𝜆 ∈ 𝐐[𝑋1,… , 𝑋𝑟] is defined
as

𝑃𝜆 ≔ det
⎛
⎜
⎜
⎝

𝑋𝜆1 𝑋𝜆1+1 ⋯ 𝑋𝜆1+𝑛−1
𝑋𝜆2−1 𝑋𝜆2 ⋯ 𝑋𝜆2+𝑛−2
⋮ ⋮ ⋱ ⋱

𝑋𝜆𝑛−𝑛+1 𝑋𝜆𝑛−𝑛+2 ⋱ 𝑋𝜆𝑛

⎞
⎟
⎟
⎠

,

where by convention 𝑋0 = 1 and 𝑋𝑖 = 0 if 𝑖 ∉ { 0,… , 𝑟 }. The first Schur polyno-
mials are

𝑃(1) = 𝑋1
𝑃(2,0) = 𝑋2, 𝑃(1,1) = 𝑋2

1 − 𝑋2
𝑃(3,0,0) = 𝑋3, 𝑃(2,1,0) = 𝑋1𝑋2 − 𝑋3 𝑃(1,1,1) = 𝑋3

1 − 2𝑋1𝑋2 + 𝑋3.

The family {𝑃𝜆}𝜆∈Λ(𝑛,𝑟) forms a basis for the 𝐐-vector space of polynomials 𝐹 ∈
𝐐[𝑋1,… , 𝑋𝑟] which are homogeneous with respect to the grading deg(𝑋𝑙) = 𝑙. In
other words, every such polynomial 𝐹 can be written uniquely in the form

𝐹 = ∑
𝜆∈Λ(𝑛,𝑟)

𝑎𝜆(𝐹) ⋅ 𝑃𝜆 (11.11.1)

with 𝑎𝜆(𝐹) ∈ 𝐐.
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11.12 Numerically Non-Negative and Positive Polynomials. Let 𝑘 be a field.
Let 𝐹 ∈ 𝐐[𝑋1,… , 𝑋𝑟] be a polynomial, homogeneous of degree 𝑛 with respect to
the grading deg(𝑋𝑙) = 𝑙. The polynomial 𝐹 is called numerically positive for ample
vector bundles (with respect to 𝑘) if for every projective algebraic 𝑘-variety 𝑋 of
dimension 𝑛 and every ample vector bundle 𝐸 of rank 𝑟 on 𝑋 the Chern number

∫
𝑋
𝐹(𝑐1(𝐸),… , 𝑐𝑟(𝐸))

is strictly positive. By [FL83, Thm. 1], the polynomial 𝐹 is numerically positive
for ample vector bundles if and only if 𝐹 ≠ 0 and the coefficients 𝑎𝜆(𝐹) in
Eq. (11.11.1) satisfy 𝑎𝜆(𝐹) ≥ 0 for all 𝜆 ∈ Λ(𝑛, 𝑟). In particular, the notion of
numerical positivity is independent of the ground field 𝑘.
We call 𝐹 numerically non-negative for nef vector bundles (with respect 𝑘) if

for every projective algebraic 𝑘-variety 𝑋 of dimension 𝑛 and every nef vector
bundle 𝐸 of rank 𝑟 on 𝑋 the Chern number ∫𝑋 𝐹(𝑐1(𝐸),… 𝑐𝑟(𝐸)) is non-negative.
In the case of the complex ground field 𝑘 = 𝐂, the polynomial 𝐹 is numerically
non-negative if and only if 𝑎𝜆(𝐹) ≥ 0 for all 𝜆 ∈ Λ(𝑛, 𝑟) [Laz04, Exmp. 8.3.10].
The proof (of a more general fact regarding filtered vector bundles) can be found
in [Ful95, Thm.’]. In particular, every positive polynomial is non-negative and
the only non-negative polynomial which is not positive is the zero polynomial.
For general ground fields this result is likely also true and the proof in [Ful95],
even though it is concerned with compact Kähler manifolds, should go through,
but there does not seem to be a reference in the literature.

11.13 Corollary. Assume that 𝐾 is algebraically closed. Let 𝑋 be an 𝑛-dimensional
projective 𝐾-variety, let 𝐸 formally metrized vector bundle of rank 𝑟 on 𝐸 and let
𝐹 ∈ 𝐐[𝑋1,… , 𝑋𝑟] be a polynomial which is homogeneous with respect to the weights
deg(𝑋𝑘) = 𝑘. Suppose that either of the following conditions is satisfied:

(i) The polynomial 𝐹 is numerically non-negative for nef vector bundles with
respect to the residue field 𝐾 and 𝐸 is semipositive.

(ii) The polynomial 𝐹 is numerically positive for ample vector bundles and 𝐸
admits a formal 𝐾∘-model (𝔛, 𝔈) inducing the metric such that𝔛 has reduced
special fiber �̃� and the special fiber 𝔈 is ample on all irreducible components
of �̃�.

Then [𝐹(𝑐1(𝐸),… , 𝑐𝑟(𝐸))] is a positive Radon measure.

Proof. Assume that (i) is satisfied. By Corollary 11.10 we can choose a model
(𝔛, 𝔈) defining the metric of 𝐸 and with reduced special fiber �̃�. By Proposi-
tion 6.14, 𝔈 is numerically effective which means that its special fiber 𝔈 is nu-
merically effective. The definition of numerically non-negative polynomials
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11. Measures

for nef vector bundles shows exactly that the coefficients in Eq. (11.10.1) are
non-negative.
If (ii) is true, we have by assumption a formal model (𝔛, 𝔈) defining the metric

of 𝐸, with reduced special fiber and such that 𝔈 is ample on all irreducible com-
ponents of �̃�. Then the definition of positive polynomials and Eq. (11.10.1) yield
the claim. ∎

11.14 Remark. If it is true that the notion of numerical non-negativity for nef
vector bundles is independent of the base field then condition (i) is implied by
(ii) in Corollary 11.13.
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12. Characteristic Currents Based
on 𝛿-Forms

Throughout this chapter 𝐾 will be a non-archimedean field. We recall
the definition of 𝛿-forms and 𝛿-currents from [Mih23a] and sketch how
to develop a theory of characteristic 𝛿-currents by replacing the smooth
forms of [CD12] by 𝛿-forms. All 𝐾-analytic spaces are assumed to be
good, topologically Hausdorff, boundaryless, equidimensional and para-
compact. We fix an algebraic 𝐾-variety 𝑋 of dimension 𝑛 and a 𝐾-analytic
space 𝑉 of dimension 𝑛.

12.1 𝛿-Forms. In [Mih23a], Mihatsch developed an extension of the theory
of smooth forms introduced in [CD12] (based on earlier work by Gubler and
Künnemann [GK17]).
By [Mih23a, Def. 4.2] there is a bigraded sheaf of differential 𝐑-algebrasℬ•,•

𝑉
on𝑉 the sections of which sections are called 𝛿-forms on𝑉. By [Mih23a, Thm. 4.5]
pull-backs of 𝛿-forms along morphisms of 𝐾-analytic spaces are defined.
By [Mih23a, Sec. 4.2] the sheaf PS•,•𝑉 of piecewise smooth forms is contained

inℬ•,•
𝑉 with equalityℬ0,0

𝑉 = PS0,0𝑉 in degree (0, 0). In particular,ℬ•,•
𝑉 contains

the sheaf 𝒜•,•
𝑉 of smooth forms in the sense of Chambert-Loir and Ducros.

12.2 𝛿-Currents. A 𝛿-current of degree (𝑝, 𝑞) on an open subset 𝑉 is an 𝐑-linear
functional 𝑇∶ ℬ𝑛−𝑝,𝑛−𝑞

𝑐 (𝑉) → 𝐑which is continuous with respect to a Schwartz-
style topology on the spaceℬ𝑛,𝑛

𝑐 (𝑉) of compactly supported 𝛿-forms on 𝑉. By
a partition of unity argument, 𝛿-currents form a sheaf on 𝑋an which we denote
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12. Characteristic Currents Based on 𝛿-Forms

by ℰ•,•
𝑉 . Similarly to Paragraph 7.3, the sheaf ℰ•,•

𝑉 carries the structure of a
bigraded differentialℬ•,•

𝑉 -module. Similarly to Paragraph 7.4, a proper morphism
𝑓∶ 𝑉 ′ → 𝑉 of 𝐾-analytic spaces of dimensions 𝑛′, resp. 𝑛 induces a morphism of
sheaves

𝑓∗∶ 𝑓∗ℰ
•,•
𝑉 ′ → ℰ•,•

𝑉 .

12.3 Integration. By [Mih23a, Def. 4.10] there is a well-defined integration
operator ∫𝑉∶ ℬ𝑛,𝑛

𝑐 (𝑉) → 𝐑. By [Mih23a, Prop. 4.11] it defines a 𝛿-current
𝛿𝑉 ≔ ∫𝑉 ∈ ℰ0,0(𝑉). If 𝑉 = 𝑋an is the analytification of an algebraic variety, then
by linear extension a 𝛿-current 𝛿𝑍 of degree (𝑝, 𝑝) is defined for every algebraic
cycle 𝑍 of codimension 𝑝 on 𝑋.
If 𝑓∶ 𝑋 ′ → 𝑋 is a proper morphism of 𝐾-varieties and 𝑍′ is a cycle on 𝑋 ′ then

one can show that
𝑓∗(𝛿𝑍′) = 𝛿𝑓∗(𝑍′).

This follows similarly to [GK17, Prop. 6.12], using a version of the Sturmfels–
Tevelev formula for skeletons [GJR21, Prop. 8.27].
There exists a unique morphism of bigraded differentialℬ•,•

𝑉 -modules

[−]∶ ℬ•,•
𝑉 → ℰ•,•

𝑉

satisfying [1] = 𝛿𝑉.

12.4 The Poincaré-Lelong Formula. Let 𝑓 be an invertible meromorphic func-
tion on 𝑉. We interpret the terms in the Poincaré-Lelong equation

𝛿div(𝑓) = 𝑑′𝑑″[log|𝑓|] (12.4.1)

as 𝛿-currents on 𝑉 similarly to Paragraph 7.9. Then the formula (12.4.1) is a
special case of [Mih23a, Thm. 5.5].

12.5 Bott–Chern Cohomology of 𝛿-Currents. For 𝑝 ∈ 𝐍 we denote by �̂�𝑝
ℰ(𝑉)

the group

Ker(𝑑′∶ ℰ𝑝,𝑝(𝑉) → ℰ𝑝+1,𝑝(𝑉)) ∩ Ker(𝑑″∶ ℰ𝑝,𝑝(𝑉) → ℰ𝑝,𝑝+1(𝑉))
Im(𝑑′𝑑″∶ ℰ𝑝−1,𝑝−1(𝑉) → ℰ𝑝,𝑝(𝑉))

.

If 𝑋 is an algebraic variety then as in Paragraph 7.10 there is a natural map

𝛿∶ CH𝑝(𝑋) → �̂�𝑝
ℰ(𝑋an)

given by integration which is compatible with proper push-forward.
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12.6 Piecewise Smooth Metrics. Let 𝐿 = (𝐿, ‖−‖) be a metrized line bundle
on 𝑉. The metric ‖−‖ is called piecewise smooth if for every section 𝑠 ∈ Γ(𝑈, 𝐿)
over an open subset 𝑈 ⊂ 𝑉 the function − log‖𝑠(−)‖∶ 𝑈 → 𝐑 is piecewise
smooth. By [GM19, Prop. 2.10] every formal metric is piecewise linear and in
particular piecewise smooth.

12.7 First Chern 𝛿-Forms. Let 𝐿 be a piecewise smoothly metrized line bundle
on 𝑉. Similarly to Paragraph 8.1 there exists a unique 𝛿-form 𝑐1(𝐿) ∈ ℬ1,1(𝑉)
such that for every open subset𝑈 ⊂ 𝑉 and nowhere-vanishing section 𝑠 ∈ Γ(𝑈, 𝐿)
we have

𝑐1(𝐿)|𝑈 = 𝑑′𝑑″(− log‖𝑠(−)‖).

It is easy to see that if 𝐿
′
is another piecewise smooth metrized line bundle

then
𝑐1(𝐿 ⊗ 𝐿

′
) = 𝑐1(𝐿) + 𝑐1(𝐿

′
).

If 𝑓∶ 𝑉 ′ → 𝑉 is a morphism of 𝐾-analytic spaces then

𝑐1(𝑓∗𝐿) = 𝑓∗𝑐1(𝐿).

If 𝐿 is a piecewise smooth metrized line bundle and 𝑠 is a regular meromorphic
section then we have the Poincaré-Lelong formula

[𝑐1(𝐿)] = 𝛿div(𝑠) + 𝑑′𝑑″[− log‖𝑠(−)‖]. (12.7.1)

After localizing this follows from Paragraph 12.4 above.

12.8 Products of First Chern 𝛿-Currents. If 𝐿1,… , 𝐿𝑟 are piecewise smoothly
metrized line bundles on 𝑉 then we can form the wedge product of 𝛿-forms
𝑐1(𝐿1) ∧ ⋯ ∧ 𝑐1(𝐿𝑟) ∈ ℬ𝑟,𝑟(𝑉) and the associated 𝛿-current

[𝑐1(𝐿1) ∧ ⋯ ∧ 𝑐1(𝐿𝑟)] ∈ ℰ𝑟,𝑟(𝑉). (12.8.1)

It satisfies similar formal properties as the product of first Chern currents of locally
approachably metrized line bundles defined in Paragraph 8.9. For example, an
analogue of Lemma 8.10 holds also for piecewise smoothly metrized line bundles
and 𝛿-forms. In Proposition 12.10 below we give a proof of an analogue of
Proposition 8.11 (which is simpler, because no approximation procedures are
performed in the definition of the current (12.8.1)).

12.9 Lemma. Let 𝛼, 𝛼′ ∈ ℬ𝑝,𝑞(𝑉), 𝛽, 𝛽′ ∈ ℬ𝑝′,𝑞′(𝑉) be 𝑑′- and 𝑑″-closed 𝛿-
forms and suppose that [𝛼′] = [𝛼] + 𝑑′𝑑″𝑆, [𝛽′] = [𝛽] + 𝑑′𝑑″𝑇 for 𝛿-currents
𝑆 ∈ ℰ𝑝−1,𝑞−1(𝑉) and 𝑇 ∈ ℰ𝑝′−1,𝑞′−1(𝑉). Then

[𝛼 ∧ 𝛽] = [𝛼′ ∧ 𝛽′] + 𝑑′𝑑″𝑈

for some 𝑈 ∈ ℰ𝑝+𝑝′−1,𝑞+𝑞′−1(𝑉).
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12. Characteristic Currents Based on 𝛿-Forms

Proof. It follows from the Leibniz rule that

𝑑′𝑑″(𝛼 ∧ 𝑇) = 𝛼 ∧ 𝑑′𝑑″𝑇.

Hence we get
[𝛼 ∧ 𝛽′] = [𝛼 ∧ 𝛽] + 𝑑′𝑑″(𝛼 ∧ 𝑇).

Similarly we get [𝛼 ∧ 𝛽′] ≡ [𝛼′ ∧ 𝛽′]modulo 𝑑′𝑑″ℰ𝑝+𝑞−1,𝑝′+𝑞′−1(𝑉). ∎

12.10 Proposition. Let 𝐿1,… , 𝐿𝑟 be piecewise smoothly metrized line bundles on
𝑉. Then the class of the current [𝑐1(𝐿1) ∧⋯∧𝑐1(𝐿𝑟)] in the Bott–Chern cohomology
group �̂�𝑟

ℰ(𝑉) does not depend on the metrics of the line bundles.

Proof. By the Poincaré-Lelong formula (12.7.1) the result is true if 𝑟 = 1. In
general it follows by induction from Lemma 12.9. ∎

12.11 Characteristic 𝛿-Currents and 𝛿-Forms. Now all results and construc-
tions of Chapters 9 to 11 have analogues in the context of 𝛿-currents if we replace
locally approachably metrized line bundles with piecewise smoothly metrized
line bundles. Some of the proofs in Chapter 9 become simpler; notably in Proposi-
tions 9.8 and 9.10 and Paragraph 9.9 we can replace the approximation arguments
by direct algebraic manipulation.
Explicitly, assume that 𝐸1,… , 𝐸𝑟 are piecewise smoothly pseudo-metrized vec-

tor bundles on 𝑋. This means that 𝐸𝑘 = (𝐸𝑘, ‖−‖𝑘)where 𝐸𝑘 is a vector bundle on
𝑉 and ‖−‖𝑘 is a piecewise smooth metric on 𝒪𝐸𝑘(1). Consider the fibered product

𝑝∶ 𝑃 ≔ 𝑃(𝐸1) ×𝑉 ⋯×𝑉 𝑃(𝐸𝑟) → 𝑉

with projection maps 𝑞𝑘∶ 𝑃 → 𝑃(𝐸𝑘). Given 𝑖1,… , 𝑖𝑟 ∈ 𝐍 we get 𝑑′- and 𝑑″-
closed 𝛿-currents

[𝑠𝑖1(𝐸1) ∧ ⋯ ∧ 𝑠𝑖𝑟(𝐸𝑟)] ≔ 𝑝∗([𝑐1(𝑞∗1𝒪𝐸1(1))
𝑒1+𝑖1 ∧⋯ ∧ 𝑐1(𝑞∗𝑟𝒪𝐸𝑟(1))

𝑒𝑟+𝑖𝑟])

as elements of ℰ|𝑖|,|𝑖|(𝑉) if we interpret

[𝑐1(𝑞∗1𝒪𝐸1(1))
𝑒1+𝑖1 ∧⋯ ∧ 𝑐1(𝑞∗𝑟𝒪𝐸𝑟(1))

𝑒𝑟+𝑖𝑟]

in the sense of Paragraph 12.8.
Then we also get

[𝑐𝑖1(𝐸1) ∧ ⋯ ∧ 𝑐𝑖𝑟(𝐸𝑟)] ∈ ℰ|𝑖|,|𝑖|(𝑉)

by mimicking the definition in Paragraph 9.12.
We can define Segre 𝛿-forms of piecewise smoothly pseudo-metrized vector

bundles similarly to Paragraph 10.1 and prove existence in degree 0 and for line
bundles as in Remark 10.3.
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12.12 Remark. It is probably possible to develop a Bedford–Taylor theory for
𝛿-currents analogous to [CD12, Chap. 5] which would allow to define character-
istic 𝛿-currents for more general (pseudo-)metrics than just piecewise smooth
(pseudo-)metrics by an approximation process. In an algebraic context, positivity
notions of piecewise smoothly metrized line bundles have been investigated in
[GK16, Sec. 8].
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A. Liu’s Tropical Cycle Class Map
The purpose of this appendix is to review the construction of Liu’s cycle
class map from [Liu20] and to give a proof of the commutativity of the
diagram (7.12.1). Before turning to the constructions of Liu, we recall the
definitions of cohomology presheaves in Paragraph A.1 and cohomology
with support in Paragraph A.3.
We make explicit some of the constructions and arguments which

are only implicitly present in [Liu20] in order to extract the stronger
statement of Theorem A.21 from the proof of [Liu20, Thm. 3.9].
Throughout the appendix, 𝐾 denotes a non-archimedean field (al-

though the metric structure is not always used). All 𝐾-analytic spaces
are assumed to be good, paracompact, Hausdorff, equidimensional and
boundaryless. Note that boundaryless 𝐾-analytic spaces are strict by
[Tem15, Exmp. 4.2.4.2 (ii)] so the results and constructions of [Liu20]
apply. We fix a 𝐾-analytic space 𝑉 and a smooth separated finite type
𝐾-scheme 𝑋.

A.1 Cohomology Presheaves. Let 𝑇 be a topological space. We write Sh(𝑇)
for the category of abelian sheaves on 𝑇 and D(𝑇) ≔ D(Sh(𝑇)) for its derived
category. We write

𝑖∶ Sh(𝑇) → PSh(𝑇)

for the inclusion functor from the category of sheaves on 𝑇 to the category of
presheaves on 𝑇. This functor is left exact and we denote its derived functors by

𝐻𝑝(−) ≔ 𝑅𝑝𝑖∶ D(𝑇) → PSh(𝑇).
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Concretely, if ℱ is a sheaf on 𝑇, then the presheaf 𝐻𝑝(ℱ)maps an open subset
𝑈 ⊂ 𝑇 to the sheaf cohomology group 𝐻𝑝(𝑈,ℱ) by [Sta23, Lem. 01ER].

A.2 Lemma. Let 𝑇 be a topological space, ℱ ∈ D(𝑇) and 𝑝 ∈ 𝐍. Assume that
there exists a basis 𝔅 for the topology of 𝑇 such that for every open subset 𝑈 ∈ 𝔅
and every 𝑞 < 𝑝, we have

𝐻𝑞(𝑈,ℱ) = 0.

Then the presheaf 𝐻𝑝(ℱ) given by

𝑈 ↦ 𝐻𝑝(𝑈,ℱ)

is a sheaf.

Proof. Since the sheaf property can be checked for open subsets of 𝔅, we can
restrict our attention to the site (giving rise to the same sheaf category) defined
by the open subsets of 𝔅, so that we may actually assume that 𝐻𝑞(ℱ) = 0 for
𝑞 < 𝑝. We denote by �̌�𝑝(𝒰,−) the Čech cohomology functor for presheaves with
respect to a covering𝒰 of an open subset 𝑈 ⊂ 𝑉. Then the sheaf condition for
𝐻𝑝(ℱ) can be expressed as the natural isomorphism

�̌�0(𝒰,𝐻𝑝(ℱ)) ≅ 𝐻𝑝(𝑈,ℱ).

Using the given vanishing conditions, this follows from the Čech-to-cohomology
spectral sequence

�̌�𝑖(𝒰,𝐻𝑗(ℱ)) ⇒ 𝐻𝑖+𝑗(𝑈,ℱ)

[Sta23, Lem. 015N]. ∎

A.3 Cohomology with Support. Let 𝑇 be a topological space and let 𝑍 ⊂ 𝑇 be a
closed subset. Given a sheaf ℱ on 𝑇, we denote by

Γ𝑍(ℱ) ≔ { 𝑠 ∈ Γ(𝑇,ℱ) | Supp(𝑠) ⊂ 𝑍 }

the group of sections with support in 𝑍. The functor Γ𝑍 is left exact and its derived
functors are denoted by

𝐻𝑝
𝑍(𝑇, −) ≔ 𝑅𝑖Γ𝑍∶ D(𝑇) → Ab.

The inclusion Γ𝑍 ↪ Γ induces a natural (functorial inℱ) morphism

𝐻𝑝
𝑍(𝑇,ℱ) → 𝐻𝑝(𝑇,ℱ).

Note that if we denote by 𝑖 = 𝑖𝑍∶ 𝑍 ↪ 𝑇 the inclusion map, then Γ𝑍 can be
expressed as the composition

Sh(𝑇) Sh(𝑍) Sh(𝑇) Ab←→𝑖
! ←→

𝑖! ←→Γ
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where 𝑖! and 𝑖! denote the exceptional direct and inverse image functors [Ive86,
Def. II.6.1, Prop. II.6.6]. For a closed embedding, the functor 𝑖! coincides with
the push-forward functor 𝑖∗ by [Ive86, Prop. II.6.9 (i)] and hence maps injective
sheaves to injective sheaves by [Ive86, Cor. II.4.13]. Also the exceptional inverse
image functor 𝑖!maps injective sheaves to injective sheaves by [Ive86, Prop. II.6.8].
It follows from [GM03, Thm. III.7.1] that 𝑅Γ𝑍 factors as

D(𝑇) D(𝑍) D(𝑇) D(Ab),←→𝑖
! ←→

𝑖! ←→𝑅Γ

where by abuse of notation, we denote the right derived functors of 𝑖! and 𝑖! by 𝑖!,
resp. 𝑖! again. It follows that we have

𝐻𝑝
𝑍(𝑇,ℱ) = 𝐻𝑝(𝑇, 𝑖𝑍!𝑖!𝑍ℱ)

forℱ ∈ D(𝑇). In particular, the association

𝑈 ↦ 𝐻𝑝
𝑍(𝑈,ℱ) ≔ 𝐻𝑝(𝑈, 𝑖𝑍!𝑖!𝑍ℱ)

defines a presheaf on 𝑇.

A.4 Remark. In [Liu20] Liu does not use the notation 𝐻𝑝
𝑍(𝑇,ℱ) and only writes

𝐻𝑝(𝑇, 𝑖𝑍!𝑖!𝑍ℱ). We write 𝐻
𝑝
𝑍(𝑇,ℱ) in order to get simpler formulas.

A.5 The Gysin Exact Sequence. Let 𝑇 be a topological space, 𝑍 ⊂ 𝑇 a closed
subset andℱ a sheaf on 𝑇. Then there is a canonical long exact sequence

⋯ 𝐻𝑝
𝑍(𝑇,ℱ) 𝐻𝑝(𝑇,ℱ) 𝐻𝑝(𝑇 ⧵ 𝑍,ℱ) 𝐻𝑝+1

𝑍 (𝑇,ℱ) ⋯ ,←→ ←→ ←→ ←→𝛿 ←→

functorial in (𝑇, 𝑍) andℱ by [Ive86, Prop. II.9.2, Prop. II.9.7].

A.6 Milnor K-Theory. Let 𝑅 be a commutative ring. Then the 𝑝-th Milnor 𝐾-
theory 𝐾𝑝,𝑀(𝑅) of 𝑅 is the group generated by the formal symbols {𝑓1,… , 𝑓𝑝} with
𝑓1,… , 𝑓𝑝 ∈ 𝑅×, modulo the Steinberg relations

(i) {𝑓1,… , 𝑓𝑖𝑓′𝑖 ,… , 𝑓′𝑝} = {𝑓1,… , 𝑓𝑖,… , 𝑓𝑝} + {𝑓1,… , 𝑓′𝑖 ,… , 𝑓𝑝}

(ii) {𝑓1,… , 𝑓,… , 1 − 𝑓,… , 𝑓𝑝} = 0.

If (𝑇, 𝒪𝑇) is a ringed G-topological space, then we define the 𝑝-th sheaf of
rational Milnor 𝐾-theory𝒦𝑝

𝑇 to be the sheaf associated to the presheaf which
maps an admissible open 𝑈 ⊂ 𝑇 to 𝐾𝑝,𝑀(𝒪𝑋(𝑈)) ⊗𝐙 𝐐.
Here we follow [Liu20, Def. 2.1] with the notation.
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A.7 The Gersten Complex. Recall that we fixed the smooth separated finite
type 𝐾-scheme 𝑋. For each non-negative integer 𝑝 there is a canonical flasque
resolution

0 𝒦𝑝
𝑋 𝒦𝑝,0

𝑋 𝒦𝑝,1
𝑋 ⋯ 𝒦𝑝,𝑝

𝑋 0,←→ ←→ ←→𝑑 ←→𝑑 ←→𝑑 ←→

where
𝒦𝑝,𝑞

𝑋 = ⨁
𝑥∈𝑋(𝑞)

𝑖𝑥∗𝐾𝑝−𝑞,𝑀(𝑘(𝑥)) ⊗𝐙 𝐐.

In particular, we have canonical isomorphisms

𝐻𝑞(𝑋,𝒦𝑝
𝑋) ≅

Ker(𝑑∶ 𝒦𝑝,𝑞
𝑋 (𝑋) → 𝒦𝑝,𝑞+1

𝑋 (𝑋))
Im(𝑑∶ 𝒦𝑝,𝑞−1

𝑋 (𝑋) → 𝒦𝑝,𝑞
𝑋 (𝑋))

,

see also [Liu20, Eq. (2.2)].

A.8 The Universal Cycle Class Map. By [Liu20, Lem. 2.2 (i)] we have

𝐻𝑝(𝑋,𝒦𝑝
𝑋) ≅ Coker(𝑑∶ 𝒦𝑝,𝑝−1

𝑋 (𝑋) → 𝒦𝑝,𝑝
𝑋 (𝑋)) ≅ CH𝑝(𝑋) ⊗𝐙 𝐐.

The inverse isomorphism is denoted by

cluniv∶ CH𝑝(𝑋)𝐐 ⥲ 𝐻𝑝(𝑋,𝒦𝑝
𝑋)

and is called the universal cycle class map.

A.9 Lemma. Let 𝑍 ⊂ 𝑋 be an integral closed subscheme of codimension 𝑝. Then
the presheaf 𝐻𝑝(𝑖𝑍!𝑖!𝑍𝒦

𝑝
𝑋) given by

𝑈 ↦ 𝐻𝑝
𝑍(𝑈,𝒦

𝑝
𝑋)

is a sheaf.

Proof. This follows from [Liu20, Lem. 2.2 (iii)] and Lemma A.2. ∎

A.10 Lifting cluniv(𝑍). Let 𝑍 ⊂ 𝑋 be a smooth, integral closed subscheme of
codimension 𝑝. We want to construct a preimage 𝑐(𝑍) ∈ 𝐻𝑝

𝑍(𝑋,𝒦
𝑝
𝑋) of cluniv(𝑍)

under the canonical map 𝐻𝑝
𝑍(𝑋,𝒦

𝑝
𝑋) → 𝐻𝑝(𝑋,𝒦𝑝

𝑋).
We choose a finite affine open covering {𝑈𝛼} of 𝑋 and for each 𝛼 a regular se-

quence 𝑓𝛼1,… , 𝑓𝛼𝑝 ∈ 𝒪𝑋(𝑈𝛼) such that 𝑍∩𝑈𝛼 is defined by the ideal ⟨𝑓𝛼1,… , 𝑓𝛼𝑝⟩.
Let𝑈𝛼𝑖 be the non-vanishing locus of 𝑓𝛼𝑖. Then {𝑈𝛼𝑖}𝑖=1,…,𝑝 is an open covering of
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𝑈𝛼⧵𝑍 and the element {𝑓𝛼1,… , 𝑓𝛼𝑝} ∈ 𝒦𝑝
𝑋(⋂

𝑝
𝑖=1𝑈𝛼𝑖) defines a (𝑝−1)-Čech cocy-

cle with respect to this covering and hence gives an element in𝐻𝑝−1(𝑈𝛼 ⧵𝑍,𝒦
𝑝
𝑋).

We denote its image under the connecting homomorphism

𝛿∶ 𝐻𝑝−1(𝑈𝛼 ⧵ 𝑍,𝒦
𝑝
𝑋) → 𝐻𝑝−1

𝑍 (𝑈𝛼,𝒦
𝑝
𝑋)

by 𝑐(𝑍)𝛼 ∈ 𝐻𝑝
𝑍(𝑈𝛼,𝒦

𝑝
𝑋).

Recall from Lemma A.9 that the assignment 𝑈 ↦ 𝐻𝑝
𝑍(𝑈,𝒦

𝑝
𝑋) is a sheaf

on 𝑋. It follows from [Liu20, Lem. 2.3] that the 𝑐(𝑍)𝛼 glue to an element 𝑐(𝑍) ∈
𝐻𝑝
𝑍(𝑋,𝒦

𝑝
𝑋). By [Liu20, Lem. 2.4] it is indeed a preimage of cluniv(𝑍).

A.11 Dolbeault Cohomology. Recall that we fixed the 𝐾-analytic space 𝑉. Since
we assumed 𝑉 to be in particular paracompact, by partition of unity the complex

0 𝒜𝑝,0
𝑉 𝒜𝑝,1

𝑉 ⋯←→ ←→𝑑
″ ←→𝑑

″
(A.11.1)

consists of flasque sheaves, so that we have

𝐻𝑞(𝑉,𝒜𝑝,•
𝑉 ) = 𝐻𝑝,𝑞

𝒜 (𝑉).

in the notation of Paragraph 7.11.
Similarly we have the complex𝒟𝑝,•

𝑉 and we have

𝐻𝑞(𝑉,𝒟𝑝,•
𝑉 ) = 𝐻𝑝,𝑞

𝒟 (𝑉).

A.12 Remark. By [Jel16, Cor. 4.6], the complex Eq. (A.11.1) is also acyclic except
for degree 0. In other words, it is a flasque resolution of Ker(𝑑″∶ 𝒜𝑝,0

𝑉 → 𝒜𝑝,1
𝑉 ),

so we can identify

𝐻𝑞(𝑉,𝒜𝑝,•
𝑉 ) = 𝐻𝑞(𝑉,Ker(𝑑″∶ 𝒜𝑝,0

𝑉 → 𝒜𝑝,1
𝑉 )).

A.13 The Map 𝜏𝑝𝑉. By [Liu20, Def. 3.3] there is a canonical 𝐐-linear map of
complexes of sheaves

𝜏𝑝𝑉 ∶ 𝒦
𝑝
𝑉 → 𝒜𝑝,•

𝑉

(in other words, a map of sheaves𝒦𝑝
𝑉 → Ker(𝑑″∶ 𝒜𝑝,0

𝑉 → 𝒜𝑝,1
𝑉 )), given by

𝜏𝑝𝑉({𝑓1,… , 𝑓𝑝}) = 𝑑′(− log|𝑓1|) ∧ ⋯ ∧ 𝑑′(− log|𝑓𝑝|)

for 𝑓1,… , 𝑓𝑝 ∈ 𝒪×
𝑉(𝑊) for some open subset𝑊 ⊂ 𝑉.

It follows that there is an induced map

𝜏𝑝𝑉 ∶ 𝐻𝑞(𝑉,𝒦𝑝
𝑉) → 𝐻𝑞(𝑉,𝒜𝑝,•

𝑉 ) = 𝐻𝑝,𝑞
𝒜 (𝑉).
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A. Liu’s Tropical Cycle Class Map

A.14 Remark. It follows from [Liu20, Cor. 3.6] that the map 𝜏𝑝𝑉 factors through a
canonical rational subspace 𝐻𝑞(𝑉, ℐ𝑝

𝑉) ⊂ 𝐻𝑝,𝑞
𝒜 (𝑉) which provides 𝐻𝑝,𝑞

𝒜 (𝑉) with
a canonical rational structure. We will not use this.

A.15 Lemma. Let 𝑍 ⊂ 𝑉 be a Zariski closed subset of codimension at least 𝑝 for
some 𝑝 ≥ 0. Then the presheaf

𝑊 ↦ 𝐻𝑝
𝑍(𝑊,𝒟𝑝,•

𝑉 )

is a sheaf on 𝑉.

Proof. It follows from [Liu20, Lem. 3.10] that 𝐻𝑞
𝑍(𝑊,𝒟𝑝,•

𝑉 ) = 0 for every para-
compact open𝑊 ⊂ 𝑉 and 𝑞 < 𝑝. Hence the result follows from Lemma A.2. ∎

A.16. Let 𝑖𝑍∶ 𝑍 ↪ 𝑉 be a Zariski closed subset of codimension at least 𝑝 for
some 𝑝 ≥ 0. Following the notation introduced in the proof of [Liu20, Thm. 3.9]
we write𝒟𝑝,𝑝,cl

𝑉 to denote the space of (𝑝, 𝑝)-currents which are 𝑑″-closed. In
the proof of [Liu20, Lem. 3.10], Liu constructs a map

𝐻𝑝
𝑍(𝑉,𝒟

𝑝,•
𝑉 ) → 𝒟𝑝,𝑝,cl

𝑉 (𝑉) (A.16.1)

satisfying the following properties:

(i) The map is injective and induces an isomorphism

𝐻𝑝
𝑍(𝑉,𝒟

𝑝,•
𝑉 ) ⥲ Ker(𝒟𝑝,𝑝,cl

𝑉 (𝑉) → 𝒟𝑝,𝑝,cl
𝑉 (𝑉 ⧵ 𝑍)),

where the map in the kernel is given by restriction.

(ii) It is a morphism of sheaves, i.e. if 𝑊 ⊂ 𝑉 is an open subset, then the
diagram

𝐻𝑝
𝑍(𝑉,𝒟

𝑝,•
𝑉 ) 𝒟𝑝,𝑝,cl

𝑉 (𝑉)

𝐻𝑝
𝑍(𝑊,𝒟𝑝,•

𝑉 ) 𝒟𝑝,𝑝,cl
𝑉 (𝑊)

←→

←→ ←→

←→

commutes.

(iii) The diagram

𝐻𝑝
𝑍(𝑉,𝒟

𝑝,•
𝑉 ) 𝒟𝑝,𝑝,cl

𝑉 (𝑉)

𝐻𝑝(𝑉,𝒟𝑝,•
𝑉 )

←→

←→ ←→

commutes.
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Indeed, the first property is the statement of [Liu20, Lem. 3.10], while the remain-
ing two statements can be derived directly from the construction.

A.17. We denote by 𝜋∶ 𝑋an → 𝑋 the natural projection map. The maps

𝒦𝑝
𝑋 𝜋∗𝒦

𝑝
𝑋an 𝜋∗𝒜

𝑝,•
𝑋 𝜋∗𝒟

𝑝,•
𝑋

←→ ←→
𝜏𝑝𝑋an ←→

[]

induce natural maps

𝐻𝑝(𝑋,𝒦𝑝
𝑋) 𝐻𝑝(𝑋an,𝒦𝑝

𝑋an) 𝐻𝑝(𝑋an, 𝒜𝑝,•
𝑋 ) 𝐻𝑝(𝑋an,𝒟𝑝,•

𝑋 ).←→ ←→
𝜏𝑝𝑋an ←→

[]

If 𝑍 ⊂ 𝑋 is an integral closed subscheme of codimension 𝑝, then there are
similarly maps

𝐻𝑝
𝑍(𝑋,𝒦

𝑝
𝑋) 𝐻𝑝

𝑍an(𝑋an,𝒦𝑝
𝑋an) 𝐻𝑝

𝑍an(𝑋an, 𝒜𝑝,•
𝑋 ) 𝐻𝑝

𝑍an(𝑋an,𝒟𝑝,•
𝑋 ).←→ ←→

𝜏𝑝𝑋an ←→
[]

(A.17.1)
These maps are compatible in the sense that the diagram

𝐻𝑝(𝑋,𝒦𝑝
𝑋) 𝐻𝑝(𝑋an,𝒦𝑝

𝑋an) 𝐻𝑝(𝑋an, 𝒜𝑝,•
𝑋 ) 𝐻𝑝(𝑋an,𝒟𝑝,•

𝑋 )

𝐻𝑝
𝑍(𝑋,𝒦

𝑝
𝑋) 𝐻𝑝

𝑍an(𝑋an,𝒦𝑝
𝑋an) 𝐻𝑝

𝑍an(𝑋an, 𝒜𝑝,•
𝑋 ) 𝐻𝑝

𝑍an(𝑋an,𝒟𝑝,•
𝑋 )

←→
←→

←→

←→
𝜏𝑝𝑋an

←→

←→
[]

←→

←→ ←→
𝜏𝑝𝑋an ←→

[]

commutes.
Moreover all maps defined here are morphisms of presheaves on 𝑋. For exam-

ple, if 𝑈 ⊂ 𝑋 is an open subset, then the diagram

𝐻𝑝
𝑍(𝑋,𝒦

𝑝
𝑋) 𝐻𝑝

𝑍an(𝑋an,𝒟𝑝,•
𝑋 )

𝐻𝑝
𝑍(𝑈,𝒦

𝑝
𝑋) 𝐻𝑝

𝑍an(𝑈an,𝒟𝑝,•
𝑋 )

←→

←→ ←→
←→

commutes.

A.18 The Tropical Cycle Class Map. In [Liu20, Def. 3.8] the tropical cycle class
map cltrop is defined to be the composition

cltrop∶ CH𝑝(𝑋)𝐐 𝐻𝑝(𝑋,𝒦𝑝
𝑋) 𝐻𝑝(𝑋an,𝒦𝑝

𝑋an) 𝐻𝑝(𝑋an, 𝒜𝑝,•
𝑋 ).←→

cluniv ←→ ←→
𝜏𝑝𝑋an
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Note that cltrop is functorial in both 𝐾 and 𝑋.
We denote the composition

CH𝑝(𝑋)𝐐 𝐻𝑝,𝑝
𝒜 (𝑋an) 𝐻𝑝,𝑝

𝒟 (𝑋an)←→
cltrop ←→

[]

by cl′trop. This notation is also introduced ad hoc in the proof of [Liu20, Thm. 3.9].

A.19 Lifting cl′trop(𝑍). We follow here Step 1 of the proof of [Liu20, Thm. 3.9].
Let 𝑋 be a smooth separated scheme of finite type over 𝐾 of dimension 𝑛. Let
𝑍 ⊂ 𝑋 be a smooth integral closed subscheme of 𝑋 of codimension 𝑝. We choose
a finite affine open covering {𝑈𝛼} of 𝑋 and 𝑓𝛼1,… , 𝑓𝛼𝑝 ∈ 𝒪𝑋(𝑈𝛼) such that 𝑍 ∩
𝑈𝛼 is defined by the ideal ⟨𝑓𝛼1,… , 𝑓𝛼𝑝⟩ and such that the induced morphism
(𝑓𝛼1,…𝑓𝛼𝑝)∶ 𝑈𝛼 → 𝐀𝑝𝐾 is smooth. Recall that in this situation, we constructed
in Paragraph A.10 a class 𝑐(𝑍) ∈ 𝐻𝑝

𝑍(𝑋,𝒦
𝑝
𝑋)mapping to cluniv(𝑍).

We denote by 𝑐 ∈ 𝒟𝑝,𝑝,cl
𝑋 (𝑋an) the image of 𝑐(𝑍) under the composite

𝐻𝑝
𝑍(𝑋,𝒦

𝑝
𝑋) 𝐻𝑝

𝑍an(𝑋an,𝒟𝑝,•
𝑋 ) 𝒟𝑝,𝑝,cl

𝑋 (𝑋an),←→ ←→ (A.19.1)

where the first map is given as in Paragraph A.17 and the second map is given as
in Paragraph A.16. Then the cohomology class of 𝑐 in 𝐻𝑝(𝑋an,𝒟𝑝,•

𝑋 ) agrees with
cl′trop(𝑍). Indeed, this follows from the commutative diagram

𝐻𝑝
𝑍(𝑋,𝒦

𝑝
𝑋) 𝐻𝑝

𝑍an(𝑋an,𝒟𝑝,•
𝑋 ) 𝒟𝑝,𝑝,cl

𝑋 (𝑋an)

CH𝑝(𝑋)𝐐 𝐻𝑝(𝑋,𝒦𝑝
𝑋) 𝐻𝑝(𝑋an,𝒟𝑝,•

𝑋 )

←→

←→ ←→

←→
←→

← →
cl′trop

←→
cluniv ←→

and Paragraph A.10.
For each 𝛼, we denote 𝑐𝛼 ≔ 𝑐|𝑈an

𝛼 ∈ 𝒟𝑝,𝑝,cl
𝑋 (𝑈an

𝛼 ). Note that as the maps in
Eq. (A.19.1) are morphisms of sheaves by Paragraphs A.16 and A.17, 𝑐𝛼 arises as
the image of 𝑐(𝑍)𝛼 under the map

𝐻𝑝
𝑍(𝑈𝛼,𝒦

𝑝
𝑋) 𝐻𝑝

𝑍an(𝑈an
𝛼 ,𝒟𝑝,•

𝑋 ) 𝒟𝑝,𝑝,cl
𝑋 (𝑈an

𝛼 ).←→ ←→

A.20 Lemma. In the situation of Paragraph A.19, the current 𝑐 ∈ 𝒟𝑝,𝑝,cl agrees
with the current of integration 𝛿𝑍.
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Proof. Since currents form a sheaf, we may restrict to 𝑈𝛼 so that it suffices to
prove that 𝑐𝛼 = 𝛿𝑍∩𝑈𝛼. In other words, we want to show that for each 𝜔 ∈
𝒜𝑛−𝑝,𝑛−𝑝
𝑐 (𝑈an

𝛼 ) (where 𝑛 is the dimension of 𝑋), we have

⟨𝑐𝛼, 𝜔⟩ = ∫
𝑍∩𝑈𝛼

𝜔.

By construction, 𝑐𝛼 arises as the image of {𝑓𝛼1,… , 𝑓𝛼𝑝} under the composite map

𝐻𝑝−1(𝑈𝛼 ⧵ 𝑍,𝒦
𝑝
𝑋) 𝐻𝑝

𝑍(𝑈𝛼,𝒦
𝑝
𝑋) 𝐻𝑍an(𝑈an

𝛼 ,𝒟𝑝,•
𝑋 ) 𝒟𝑝,𝑝,cl

𝑋 (𝑈an
𝛼 ).←→𝛿 ←→ ←→

If we pick a form 𝜃𝛼 ∈ 𝒜𝑝,𝑝−1,cl(𝑈an
𝛼 ⧵ 𝑍an) representing the class

𝜏𝑝𝑋an({𝑓𝛼1,… , 𝑓𝛼𝑝}) ∈ 𝐻𝑝−1(𝑈an
𝛼 ⧵ 𝑍an, 𝒜𝑝,•

𝑋 )

then we see from the commutative diagram

𝐻𝑝−1(𝑈𝛼 ⧵ 𝑍,𝒦
𝑝
𝑋) 𝐻𝑝

𝑍(𝑈𝛼,𝒦
𝑝
𝑋) 𝐻𝑍an(𝑈an

𝛼 ,𝒟𝑝,•
𝑋 ) 𝒟𝑝,𝑝,cl

𝑋 (𝑈an
𝛼 )

𝐻𝑝−1(𝑈an
𝛼 ⧵ 𝑍an, 𝒜𝑝,•

𝑋 ) 𝐻𝑝
𝑍an(𝑈an

𝛼 , 𝒜𝑝,•
𝑋 )

𝐻𝑝−1(𝑈an
𝛼 ⧵ 𝑍an,𝒟𝑝,•

𝑋 ) 𝐻𝑝
𝑍an(𝑈an

𝛼 ,𝒟𝑝,•
𝑋 )

←→𝜏𝑝𝑋an

←→𝛿

←→ 𝜏𝑝𝑋an

←→ ←→

←→
𝛿

←→[]

← →
[]

←→ []

←→
𝛿

⇐

⇐

that 𝑐𝛼 is obtained as the image of

𝛿([𝜃𝛼]) ∈ 𝐻𝑝
𝑍an(𝑈an

𝛼 ,𝒟𝑝,•
𝑋 ).

Denoting its image in𝒟𝑝,𝑝,cl
𝑋 (𝑈an

𝛼 ) by 𝛿([𝜃𝛼]) again, what we want to show is the
equality

⟨𝛿([𝜃𝛼]), 𝜔⟩ = ∫
𝑍∩𝑈𝛼

𝜔

for 𝜔 ∈ 𝒜𝑛−𝑝,𝑛−𝑝
𝑐 (𝑈an

𝛼 ). This is precisely the content of Step 3 in the proof of
[Liu20, Thm. 3.9]. ∎

A.21 Theorem. Let 𝑍 ⊂ 𝑋 be an integral closed subscheme of codimension 𝑝. Then
the class cl′trop(𝑍) ∈ 𝐻𝑝(𝑋an,𝒟𝑝,•

𝑋 ) is represented by the current 𝛿𝑍 ∈ 𝒟𝑝,𝑝,cl(𝑋an)
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A. Liu’s Tropical Cycle Class Map

Proof. After base change to a finite extension of 𝐾, we may assume that 𝑍 is
generically smooth over 𝐾. Let 𝑍sing ⊂ 𝑍 be the singular locus, which is a proper
closed subscheme of 𝑍 and hence a closed subscheme of 𝑋 of codimension > 𝑝.
Put 𝑈 ≔ 𝑋 ⧵ 𝑍sing and denote by 𝑗∶ 𝑈 ↪ 𝑋 the inclusion.
By the functoriality of the tropical cycle class map, we have a commutative

diagram

CH𝑝(𝑋)𝐐 𝐻𝑝(𝑋an, 𝒜𝑝,•
𝑋 )

CH𝑝(𝑈)𝐐 𝐻𝑝(𝑈an, 𝒜𝑝,•
𝑈 ).

←→
cltrop

←→𝑗∗ ←→ 𝑗∗

←→
cltrop

Note also that restriction of currents induces a map

𝑗∗∶ 𝐻𝑝(𝑋an,𝒟𝑝,•
𝑋 ) → 𝐻𝑝(𝑈an,𝒟𝑝,•

𝑈 )

which is an isomorphism by [CD12, Lem. 3.2.5] (compare the proof of [GK17,
Prop. 6.5]) and which fits into a commutative diagram

𝐻𝑝(𝑋an, 𝒜𝑝,•
𝑋 ) 𝐻𝑝(𝑋an,𝒟𝑝,•

𝑋 )

𝐻𝑝(𝑈an, 𝒜𝑝,•
𝑈 ) 𝐻𝑝(𝑈an,𝒟𝑝,•

𝑈 ).

←→
[]

←→𝑗∗ ←→ 𝑗∗

←→
[]

It follows that it is enough to show that cltrop(𝑍 ∩𝑈) is represented by the current
𝛿𝑍∩𝑈 in 𝐻𝑝(𝑈an,𝒟𝑝,•

𝑈 ). Replacing 𝑋 by 𝑈 and 𝑍 by 𝑍 ∩ 𝑈, we may therefore
assume that 𝑍 is smooth. In this case, the result follows from Paragraph A.19
and Lemma A.20. ∎

A.22 Corollary. Let 𝑋 be a smooth algebraic 𝐾-variety. Then the diagram

CH𝑝(𝑋) �̂�𝑝
𝒟(𝑋an)

𝐻𝑝,𝑝
𝒜 (𝑋an) 𝐻𝑝,𝑝

𝒟 (𝑋an)

←→𝛿

←→cltrop ←→

←→
[−]

is commutative.

Proof. By linearity, it suffices to consider prime cycles in CH𝑝(𝑋) represented by
a closed subvariety 𝑍 of codimension 𝑝. The composition

CH𝑝(𝑋) 𝐻𝑝,𝑝
𝒜 (𝑋an) 𝐻𝑝,𝑝

𝒟 (𝑋an)←→
cltrop ←→

[−]

146



is exactly the map cl′trop of Paragraph A.18. The composition

CH𝑝(𝑋) �̂�𝑝
𝒟(𝑋an) 𝐻𝑝,𝑝

𝒟 (𝑋an)←→𝛿 ←→

maps 𝑍 to the class represented by the current of integration 𝛿𝑍. Hence the result
follows from Theorem A.21. ∎
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