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Preliminary Note

Parts of this thesis have already been published in the works [13] and [15] (sometimes
in a slightly modified version) and are mostly joint work with the respective co-authors.
Similarly, some parts of this thesis will likely soon be published in the work [14]

(sometimes in a slightly modified version) and are mostly joint work with the respective
co-authors. Here the references are with respect to the unpublished version of January
29, 2024.

Abstract

In this thesis we define and study the fermionic entanglement entropy for spatial
subregions in Schwarzschild and Minkowski spacetime. Our starting point is always
the Dirac propagator corresponding to the vacuum state (for an observer at infinity).
We then introduce an ultraviolet regularization and rewrite the respective propagator
as pseudo-differential operator.
In Schwarzschild spacetime we consider the entanglement entropy of a black hole

horizon. We use separation of variables, an integral representation of the propagator
and methods from pseudo-differential operator calculus to explicitly compute the en-
tanglement entropy of the horizon in the limiting case that the regularization tends
to zero. It turns out that it equals a numerical constant times the number of angular
momentum modes occupied at the horizon. A similar result is proven to hold for the
Rényi entanglement entropies with Rényi index κ > 2

3 .
In the case of Minkowski spacetime we study the entanglement entropy of bounded

spatial subregions. We consider two limiting cases: one where the regularization goes
to zero and one where the regularization is fixed and the size of the region tends
to infinity. The corresponding limiting coefficient is obtained by applying a more
general result from [15]. We then show the positivity of this coefficient and prove
that it is proportional to the area of the considered region, giving an area law. The
positivity is also proven to hold for the Rényi entanglement entropies with Rényi
index 0 < κ < 2, the other main results in this part even apply for arbitrary Rényi
entanglement entropies (with κ > 0).

Zusammenfassung

Wir definieren und untersuchen die fermionische Verschränkungsentropie für räumliche
Teilmengen in Schwarzschild- und Minkwoski-Raumzeit. Unser Ausgangspunkt ist in
jedem Fall der Dirac Propagator für den Vakuumzustand (aus der Sicht eines Beob-
achters im Unendlichen). Wir führen dann eine ultraviolett-Regularisierung ein und
drücken den Propagator als Pseudodifferentialoperator aus.

In der Schwarzschild-Raumzeit betrachten wir die Verschränkungsentropie des Ho-
rizonts des schwarzen Lochs. Wir verwenden Trennung der Variablen, eine Integ-
raldarstellung des Propagators und Methoden aus der Theorie der Pseudodifferen-
tialoperatoren um die Verschränkungsentropie des Horizonts in dem Grenzfall, dass
die Regularisierung gegen Null strebt, explizit zu berechnen. Es stellt sich heraus,



dass diese bis auf eine numerische Konstante proportional zur Anzahl der der besetz-
ten Winkelmoden am Horizont ist. Ein ähnliches Resultat ergibt sich für die Rényi
Verschränkungsentropien mit Rényi Index κ > 2/3.

Im Fall der Minkowski-Raumzeit beschäftigen wir uns mit der Verschränkungsentro-
pie von beschränkten räumlichen Teilmengen. Wir betrachten zwei verschiedene Grenz-
fälle: Im einen lassen wir die Regularisierung gegen null gehen, im anderen fixieren
wir die Regularisierung und lassen das Größe der betrachteten Region gegen unendlich
streben. Wir erhalten einen Ausdruck für die führende Ordnung durch ein allgemeineres
Resultat aus [15]. Wir zeigen dann, dass dieser Ausdruck positiv ist und proportional
zur Oberfläche der betrachteten Region skaliert, was zu einem Oberflächengesetz führt.
Die Positivität wird außerdem für die Rényi Verschränkungsentropien mit Rényi Index
κ < 2 bewiesen. Die anderen Hauptresultate in diesem Teil können sogar auf alle Rényi
Verschränkungsentropien (mit κ > 0) angewendet werden.
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1. Introduction

This chapter is based on [13, Section 1 and 2.3.1 and Notation 6.1] and [15, Sections 1
and 2.1] (partly with similar or same phrasing).
Entropy is often said to be a measure of the disorder of a physical system. However,

there are various different notions of entropy and while the connection to disorder
might still be evident for the entropy in classical statistical mechanics as introduced
by Boltzmann and Gibbs, it is not so clear anymore for more abstract definitions
of entropy like the Shannon and Rényi entropies in information theory or the von
Neumann entropy for quantum systems. A more general way to phrase it would be
that entropy measures the lack of knowledge or information about a physical system.
In this thesis our main objective is the so called entanglement entropy, which tells

about non-classical correlations between subsystems of a composite quantum system [1,
26]. Moreover, our methods also apply to some cases of Rényi entanglement entropies.
One reason, entanglement entropy is an interesting topic of current research is the
discovery of the so-called black hole information paradox [23]. In this paradox a black
hole and its outside is considered as composite quantum system, which in total is in
a so called pure state. For such a state, the von Neumann entropies of the inside and
outside coincide and the entanglement entropy of the composite system equals this
quantity. This holds at all times due to the principle of unitary time evolution, which
ensures that the overall state always stays pure. Now there are two main discoveries
that lead to the paradox. One was Bekenstein’s and Hawking’s finding that black
holes behave thermally if one interprets surface gravity as temperature and the area
of the event horizon as entropy [3, 22]. The other one was the discovery of Hawking
radiation and the resulting “evaporation” of a black hole [20, 21]. This evaporation
leads to the decrease of the black hole itself and an increase of Hawking radiation over
time. This implies that over time the Bekenstein-Hawking entropy of the inside of the
black hole decreases and the von Neumann entropy of the outside increases. However,
this leads to a contradiction of the above mentioned principle for the entanglement
entropy of a pure state, if one identifies the Bekenstein-Hawking entropy of the inside
with its von Neumann entropy. This paradox inspired the holographic principle [43, 45]
and the current program of attempting to understand the structure of spacetime via
information theory, entanglement entropy and gauge/gravity dualities [36, 25]. A
crucial point in the paradox is the question whether the von Neumann entropy of the
inside of a black hole really is proportional to its area. The largest part of this thesis
(Chapter 4) is dedicated to this problem.

The idea that the entropy of a black hole scales like its area gave rise to the question
if a so called area law holds for the entropy of other physical systems as well. This can
be understood with the following thought experiment as described in [19, Section 6.1]
with reference to [44]: Consider a system with mass M contained in a ball with radius
R, which is not a black hole. Therefore, its mass M must be smaller than the mass of
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1. Introduction

a black hole with radius R. Now let a spherical shell with this mass difference collapse
onto the original system, leading to the formation of a black hole with radius R. Thus
the Bekenstein-Hawking entropy of the resulting system is proportional to R2. Then,
employing classical thermodynamical principles like the positivity and additivity of
entropy together with the second law of thermodynamics (stating that entropy can
only increase), it follows that the thermodynamical entropy of the original system
must be smaller or equal to the resulting one, i.e. bounded by a constant times R2.
This leads us to the question, if such an area bound or even an area law holds for the
von Neumann entropy of the original system as well. Chapter 5 is dedicated to this
problem in Minkowski spacetime.
As previously mentioned, this thesis is concerned with entanglement entropy. We

here consider the fermionic case, where the many-particle system is composed of
fermions satisfying the (Pauli-)Fermi-Dirac statistics. Moreover, for simplicity we con-
sider the quasi-free case where the particles do not interact with each other. This makes
it possible to express the entanglement entropy in terms of the reduced one-particle
density operator [24] (for details see Section 2.1.2). This setting has been studied ex-
tensively for a free Fermi gas formed of non-relativistic spinless particles [24, 31, 32]
(for more details see the preliminaries in Section 2.1.2). In the present thesis, we turn
attention to a relativistic system formed of particles with spin.

The first main part (Chapter 4) of this thesis is based on the work [13]. It is devoted
to the mathematical analysis of the entropy of the horizon of a Schwarzschild black hole
with mass M . More precisely, we compute the entanglement entropy of the quasi-free
fermionic Hadamard state which is obtained by frequency splitting for the observer in
a rest frame at infinity, with an ultraviolet regularization on a length scale ε. We find
that, up to a prefactor which depends on εM , this entanglement entropy is given by
the number of occupied angular momentum modes, making it possible to reduce the
computation of the entanglement entropy to counting the number of occupied states. A
similar result is obtained for the Rényi entanglement entropies with Rényi index κ > 2

3 .
We choose the one-particle density operator as the regularized projection operator to
all negative-frequency solutions of the Dirac equation in the exterior Schwarzschild
geometry (where frequency splitting refers to the Schwarzschild time of an observer
at rest at infinity). Making use of the integral representation of the Dirac propagator
in [11] and employing techniques developed in [31, 49, 40, 41, 39], it becomes possible
to compute the entanglement entropy of the black hole horizon explicitly.
More precisely, the general definition of the Rényi entanglement entropy is given

as follows. First of all, we denote by Π(ε) the regularized projector to the negative
frequency solutions of the Dirac equation in a given spacetime (in our cases this will
either be Schwarzschild or Minkowski spacetime). Moreover, for each κ > 0 we intro-
duce the Rényi entropy function, which is defined as follows. If t /∈ [0, 1] then we set
ηκ(t) := 0. For t ∈ [0, 1] we define

ηκ(t) :=
1

1− κ
ln
(
tκ + (1− t)κ

)
for κ ̸= 1 ,

η(t) := η1(t) := lim
κ′→1

ηκ′(t) = − t ln t− (1− t) ln(1− t) for κ = 1 ,

(1.1)

2



1. Introduction
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Figure 1.1.: Plot of the Rényi entropy functions η, η1/2, η3/2 and η10 for t ∈ [0, 1].
Note that all displayed functions are non-negative and vanish at t = 0 and
t = 1. Further, η, η1/2 and η3/2 are concave. Moreover, the derivatives of
η and η1/2 tend to infinity for t↘ 0 and t↗ 1.

(for a plot see 1.1). Where η ≡ η1 describes the von Neumann entropy of the corre-
sponding fock state. Therefore the case κ = 1 describes the ordinary entanglement
entropy, which we are mainly interested in. Similarly, the functions ηκ describe the
Rényi entropies of the corresponding fock state (a detailed derivation of both these
cases can be found in [14, Appendix A]). Now, for any spatial subset Λ ⊂ Rd (always
assumed non-empty) we can define the Rényi entanglement entropy associated with
the bi-partition Λ ∪ Λc (see e.g. [30, Section 3]):

Sκ(Π
(ε),Λ) := tr

(
ηκ
(
χΛ Π(ε) χΛ

)
− χΛ ηκ(Π

(ε))χΛ

)
. (1.2)

In the Schwarzschild case we denote the regularized projection operator to the neg-

ative frequency solutions of the Dirac equation by Π
(ε)
BH. In order to obtain the entropy

of the horizon, we choose Λ as an annular region around the horizon of width ρ and
denote it by K̃, i.e. using the Regge-Wheeler coordinate u ∈ R,

K̃ := (u0 − ρ, u0)× S2 (1.3)

≡


u sinϑ cosφu sinϑ sinϕ

u cosϑ

 ∣∣∣∣∣∣ u0 − ρ < u < u0, 0 < ϑ < π, 0 < φ < 2π


(see also Figure 4.1 on page 43). In these coordinates, the horizon is located at

u → −∞. Therefore, the Rényi entanglement entropy is given by Sκ
(
Π

(ε)
BH, K̃

)
in the

limit u0 → −∞. We shall prove that, to leading order in the regularization length ε,
this trace is independent of ρ. It turns out that we get equal contributions from the
two boundaries at u0 − ρ and u0 as u0 → −∞. Therefore, the fermionic entanglement
entropy is given by one half this trace.
Before stating our main result, we note that the trace of the entropic difference

operator can be decomposed into a sum over all occupied angular momentum modes
(we will make this precise in Section 4.2.1), i.e.

3



1. Introduction

Sκ
(
Π

(ε)
BH, K̃

)
=
∑
(k,n)

occupied

tr
(
ηκ
(
χKOpα

(
(Π

(ε)
BH)kn

)
χK
)
− χKηκ

(
Opα

(
(Π

(ε)
BH)kn

))
χK

)

=
∑
(k,n)

occupied

Sκ
(
(Π

(ε)
BH)kn,K

)
,

where (Π
(ε)
BH)kn can be thought of as diagonal block element of Π

(ε)
BH acting on a subspace

of the solution space corresponding to the given angular mode. As a consequence of
the mode decomposition, the characteristic function χK̃ goes over to χK with

K := (u0 − ρ, u0) . (1.4)

We define the mode-wise Rényi entanglement entropy of the black hole as

SBH
κ,kn :=

1

2
lim
ρ→∞

lim
ε↘0

1

f(ε)
lim

u0→−∞
Sκ
(
(Π

(ε)
BH)kn,K

)
, (1.5)

where f(ε) is a function describing the highest order of divergence in ε (we will later
see that here f(ε) = ln(M/ε) where M is the black hole mass). Finally, the resulting
fermionic Rényi entanglement entropy operator of the black hole can be written as the
sum of the entropies of all occupied modes,

SBH
κ =

∑
(k,n)

occupied

SBH
κ,kn . (1.6)

Our main result shows that SBH
κ,kn has the same numerical value for each angular mode.

Theorem 1.0.1. Let κ > 2
3 , n ∈ Z and k ∈ Z+ 1/2 arbitrary, then

lim
ε↘0

lim
u0→−∞

1

ln(M/ε)
Sκ
(
(Π

(ε)
BH)kn,K

)
=

1

2π2
U(1; ηκ) =

1

12

κ + 1

κ
,

where M is the black hole mass.

In simple terms, this result shows that each occupied angular momentum mode gives
the same contribution to the Rényi entanglement entropy. This makes it possible to
compute the entanglement entropy of the horizon simply by counting the number of
occupied angular momentum modes. This is reminiscent of the counting of states in
string theory [42] and loop quantum gravity [2]. In order to push the analogy further,
assuming a minimal area ε2 on the horizon, the number of occupied angular modes
should scale like M2/ε2. In this way, we find that the entanglement entropy is indeed
proportional to the area of the black hole. More precisely, the factor ln(M/ε) in the
above theorem can be understood as an enhanced area law. We point out that, in our
case, the counting takes place in the four-dimensional Schwarzschild geometry.

4



1. Introduction

In the second main part (Chapter 5), which is based on the work [15], we consider a
free Dirac field in a bounded spatial subset of Minkowski spacetime. We compute the
entanglement entropy for the quantum state describing the vacuum with an ultraviolet
regularization on a length scale ε. The corresponding one-particle density operator
turns out to be the regularized projection operator to all negative-frequency solutions
of the Dirac equation. Making use of the explicit form of the Dirac propagator and
employing the techniques developed in [15], it becomes possible to compute the limiting
coefficient of the entanglement entropy of bounded spatial subregions in Minkowski
spacetime. Using the Lorentz invariance of the Dirac equation and the concavity of
the Rényi entropy functions we prove an area law in two limiting cases: that the
volume tends to infinity and that the regularization goes to zero.

More precisely, let Π
(ε)
MI be the projection onto the negative frequency subspace of

the Dirac operator in Minkowski spacetime. Our main objective is to analyze the

asymptotic behavior of the entropy Sκ(Π
(ε)
MI, LΛ) as the regularization parameter ε

tends to zero and/or the scaling parameter L tends to infinity.
The following theorem constitutes the main result of this chapter – it provides the

area law for the asymptotics of the entanglement entropy.

Theorem 1.0.2. Let Λ ⊂ R3 be a bounded open spatial region of Minkowski spacetime
with C1-boundary consisting of finitely many connected components. Then, as Lε−1 →
∞ and ε→ 0, the following asymptotics hold:

lim L−2ε2 Sκ(Π
(ε)
MI, LΛ) = Mκ vol2(∂Λ) , (1.7)

where Mκ is some explicit constant.
If L→ ∞ and ε > 0 is fixed, then

lim L−2ε2 Sκ(Π
(ε)
MI, LΛ) = M(ε)

κ vol2(∂Λ) , (1.8)

where M
(ε)
κ is some explicit constant such that M

(ε)
κ → Mκ as ε→ 0.

If 0 < κ < 2, then both coefficients Mκ and M
(ε)
κ are strictly positive.

The definitions of the coefficients Mκ and M
(ε)
κ require more technical preliminaries

and are given in Section 5.5.

The technical core of the results in this thesis relies on rewriting the regularized
projector in each spacetime as pseudo-differential operator of the form(

Opα(A)ψ
)
(x) :=

( α
2π

)d ˆ
Rd

ˆ
Rd

e−iαξ·(x−y) A(x,y, ξ) ψ(y) dy dξ ,

for suitable functions ψ from Rd to Cn. The parameter α ∈ R will play the role
of the limiting parameter (e.g. ε−1 or Lε−1). The matrix-valued function A ∈
L1
loc(R3d,Cn×n) is referred to as the symbol of the pseudo-differential operator (for

more details on this see Section 2.2.1). In the case that Opα(A) defines a self-adjoint
operator on L2(Rd,Cn), we define for measurable functions f and subregions Λ ⊆ Rd

the operator

Dα(f,Λ,A) := f
(
χΛOpα(A)χΛ

)
− χΛf

(
Opα(A)

)
χΛ . (1.9)

5



1. Introduction

When rewriting Π(ε) as pseudo-differential operator, its symbol usually depends on the
regularization length ε. We denote this by a super- or subscript ε, e.g.

Π(ε) = Opα(A(ε)) ,

for a suitable symbol A(ε) and suitable a choice of α. Then, we may also rewrite the
Rényi entanglement entropy as

Sκ(Π
(ε),Λ) = trDα(ηκ,Λ,A(ε)) .

We are then usually interested in the limit where ε↘ 0 and α→ ∞ at the same time
(except for the result (1.8)). There are some previously established results, which give
more explicit formulas for (1.9) in the limit α → ∞, but often only for symbols that
do not depend on ε (or α) and/or only for functions f which are more regular than
the Rényi entropy functions (for example in [49] or [47]).
Therefore, in Chapter 4 the idea is to generalize one of these results and apply it to a

simplified limiting symbol which is related to the limit of the symbol A(ε) as ε↘ 0 and
does not depend on ε anymore. The error cased by replacing the symbol in such a way
then needs to be estimated. To this end we employ several different techniques and
previously established estimates mostly from the theory of pseudo-differential operator
calculus.

In Chapter 5 (i.e. the Minkowski case) the procedure presented in this thesis is a
little different. This is because we take the limiting coefficient (which is established in
[15] with methods related to the ones just described) as given and focus on proving
that it is positive and proportional to the area of the considered region, resulting in
the area law. As we will see, the proportionality to the area can be derived using
the symmetry of the Dirac equation. The positivity follows using a well-known result
going back to Berezin from [4] together with the fact that the Rényi entropy functions
ηκ are strictly concave for 0 < κ < 2.

The thesis is structured as follows. We start with some general preliminaries in
Chapter 2. The physical preliminaries (Section 2.1) contain general information on the
Dirac equation (Section 2.1.1) and on the entanglement entropy of a fermionic quantum
fock state (Section 2.1.2). The second part of this chapter (Section 2.2) is concerned
with some technical preliminaries such as the precise definition of Opα(A) and some
useful norms (Section 2.2.1). Moreover, we collect some previously established esti-
mates mainly on pseudo-differential operators (Section 2.2.2 and Section 2.2.3), which
we will need among others to generalize a result for (1.9) in the limit α → ∞ as well
as estimate the error terms.
Some more helpful tools for working with pseudo-differential operators are estab-

lished in Section 3.
Chapter 4 is dedicated to the analysis of the entanglement entropy of a Schwarzschild

black hole. The chapter begins by providing necessary preliminaries on the Schwarz-
schild Propagator in Section 4.1. Then (Section 4.2), the regularized projection op-
erator to the negative-frequency solutions of the Dirac equation is defined and de-
composed into angular momentum modes. For each angular momentum mode, the
resulting functional calculus is formulated and the corresponding operator is rewritten

6



1. Introduction

in the language of pseudo-differential operators. Moreover, the symbol will be fur-
ther simplified at the horizon. After these preparations, we can give a mathematical
definition of the entanglement entropy of the black hole (Section 4.3). Following the
preparations, the core of the work begins in Section 4.4, where we calculate the entropy
corresponding to a simplified limiting operator (in the sense that the regularization
goes to zero) at the horizon by generalizing a theorem by Widom (Theorem 4.4.2).
Afterwards (Section 4.5) we estimate the error caused by using the limiting operator
instead of the regularized one. It turns out that it drops out in the limiting process.
Subsequently (Section 4.6) we complete the proof of the main result (Theorem 1.0.1)
by combining the results from the previous sections.
In Chapter 5 we analyze the entanglement entropy of bounded spatial regions in

Minkowski spacetime. Again we start our analysis by recalling a few physical prelim-
inaries on the Dirac equation in Minkowski spacetime (Section 5.1). In Section 5.2
we provide some mathematical background of our analysis including an asymptotic
formula by H. Widom, see Proposition 5.2.2. Moreover we state two results from
[15] giving a formula for the liming coefficient. Using these results we prove an ab-
stract area law in Section 5.3. In Section 5.4 we use a well-known result going back
to Berezin from [4] for concave functions to examine the positivity of the asymptotic
coefficient. Afterwards, in Section 5.5 the results of Sections 5.2 and 5.4 are applied
to the entanglement entropy Sκ(Π

(ε), LΛ) to complete the proof of our main result,
Theorem 1.0.2.
We finally discuss conclusions and open problems (Section 6).
Moreover, note that some detailed computations and proofs have been moved to the

appendices A, B and C.

Units and notational conventions.

• We work throughout in natural units ℏ = c = 1. Then the only remaining unit is
that of a length (measured for examples in meters). It is most convenient to work
with dimensionless quantities. This can be achieved by choosing an arbitrary
reference length ℓ and multiplying all dimensional quantities by suitable powers
of ℓ. For example, we work with the

dimensionless quantities mℓ, ωℓ, ξℓ, kℓ,
x

ℓ
,

u

ℓ
,

ε

ℓ
etc. . (1.10)

For ease in notation, in what follows we set ℓ = 1, making it possible to leave out
all powers of ℓ. The dimensionality can be recovered by rewriting all formulas
using the dimensionless quantities in (1.10).
In the Schwarzschild case we will think of ℓ as the black hole mass M .

• For two non-negative numbers (or functions) X and Y depending on some pa-
rameters, we write X ≲ Y (or Y ≳ X) if X ≤ CY for some positive constant C
independent of those parameters. To avoid confusion we may comment on the
nature of (implicit) constants in the bounds. If X ≲ Y ≲ X, we write X ≃ Y .
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1. Introduction

• By F we denote the unitary extension of the Fourier transform to L2(Cd,Rn),
which for any ψ ∈ L1(Cd,Rn) is given by

(
Fψ
)
(ξ) :=

1√
(2π)d

ˆ
e−iξxψ(x) dx .

• In the following we can sometimes factor out a characteristic function in ξ in the
a symbol A, i.e.

A(x,y, ξ) = χΩ(ξ) Ã(x,y, ξ) .

In this case, we will sometimes denote the characteristic function in ξ corre-
sponding to the set Ω by IΩ. This is to avoid confusion with the characteristic
functions χΛ in the variables x or y.

• For any two bounded self-adjoint operators A and B on the Hilbert space H the
inequality A ≤ B is understood in the standard quadratic form sense:

(Au, u) ≤ (Bu, u) , for all u ∈ H .

• For any matrix B the notation |B| stands for its Hilbert-Schmidt norm. In the
case that B = B(ξ), ξ ∈ Rd, is a smooth matrix-valued function then we write

|∇l
ξB(ξ)| =

∑
|m|=l

|∂mξ B(ξ)|,

where ∂mξ is the standard partial derivative of order m ∈ Zd
+.

• For operators on a normed space we denote the ordinary operator norm by ∥.∥∞.

• For n-component functions ψ : Rd → Rn the pointwise norm in Cn will be
denoted by | . |, the canonical inner product on L2(Rd,Cn) by ⟨.|.⟩ and the cor-
responding norm by ∥.∥. In particular this holds for d = 1, n = 2 and the
two-component functions of the form

A :=

(
A+

A−

)
,

which will come up in Chapter 4.

• For ξ ∈ Rd we denote
⟨ξ⟩ :=

√
1 + |ξ|2 .

• The symbol voln(Ω) with n = 0, 1, . . . , d stands for the induced n-dimensional
Lebesgue measure of the measurable set Ω ⊂ Rd.

• We call Ω ⊂ Rd a region if it is a non-empty open set with finitely many connected
components such that their closures are disjoint.

• The symbol Cn×k denotes the space of all (n× k)-matrices.
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1. Introduction

• Let f : Rd → Cn×k be a function, then we denote the operator

{ψ | ψ : Rn → Ck} → {ψ | ψ : Rn → Cn} ,(
x 7→ ψ(x)

)
7→
(
x 7→ f(x)ψ(x)

)
,

in some cases (for simplicity) again by f , or in other cases (for clarity) by Mf .

• We denote the characteristic functions of the half-spaces R+ and R− by

χ+ := χR+ , χ− := χR− .

• For any vector space V we denote

L(V ) :=
{
f : V → V

∣∣ f bounded and linear
}
.

9



2. General Preliminaries

2.1. Physical Preliminaries

2.1.1. The Dirac Equation in Globally Hyperbolic Spacetimes

This section corresponds to [13, Section 2.2] (with slight modifications).
The abstract setting for the Dirac equation is given as follows (for more details see for

example [16]). Our starting point is a four-dimensional, smooth, globally hyperbolic
Lorentzian spin manifold (M, g), with metric g of signature (+,−,−,−). We denote
the corresponding spinor bundle by SM. Its fibres SxM are endowed with an inner
product ≺.|.≻x of signature (2, 2), referred to as the spin inner product. Moreover,
the mapping

γ : TxM → L(SxM) , u 7→
∑3

j=0
γjuj ,

where the γj are the Dirac matrices defined via the anti-commutation relations

γ(u) γ(v) + γ(v) γ(u) = 2 g(u, v) 11Sx(M) ,

provides the structure of a Clifford multiplication.
Smooth sections in the spinor bundle are denoted by C∞(M, SM). Likewise, the

space C∞
0 (M, SM) are the smooth sections with compact support. We also refer to

sections in the spinor bundle as wave functions. The Dirac operator D takes the form

D := i
3∑

j=0

γj∇j : C∞(M, SM) → C∞(M, SM) ,

where ∇ denotes the connections on the tangent bundle and the spinor bundle. Then
the Dirac equation with parameter m (in the physical context corresponding to the
particle mass) reads

(D −m)ψ = 0 ,

(for more details on the Dirac equation see [46] or [12, Sections 1.2-1.4 and 4.2-4.4]).
Due to global hyperbolicity, our spacetime admits a foliation by Cauchy surfaces

M = (Nt)t∈R. Smooth initial data on any such Cauchy surface yield a unique global
solution of the Dirac equation. Our main focus lies on smooth solutions with spatially
compact support, denoted by C∞

sc (M, SM). The solutions in this class are endowed
with the scalar product

(ψ|ϕ) =
3∑

j=0

ˆ
N

≺ψ | νjγj ϕ≻x dµN(x) , (2.1)

10



2. General Preliminaries

where N is a Cauchy surface with future-directed normal ν and dµN denotes the
measure on N induced by the metric g (compared to the conventions in [16], we here
preferred to leave out a factor of 2π). This scalar product is independent on the choice
of N (for details see [16, Section 2]). Finally we define the Hilbert space (H , (.|.)) by
completion,

H := C∞
sc (M, SM)

(.|.)
. (2.2)

2.1.2. The Entanglement Entropy of a Quasi-Free Fermionic Quantum
State

The first part of this section corresponds to the first part of [15, Section 2.2] and the
second part to [13, Remark 2.1] (both with slight modifications).
Given a Hilbert space (H , ⟨.|.⟩H ) (the “one-particle Hilbert space”), we let

(F , ⟨.|.⟩F ) be the corresponding fermionic Fock space, i.e.

F =

∞⊕
k=0

H ∧ · · · ∧ H︸ ︷︷ ︸
k factors

(where ∧ denotes the totally anti-symmetrized tensor product). We define the creation
operator Ψ† by

Ψ† : H → L(F ) , Ψ†(ψ)
(
ψ1 ∧ · · · ∧ ψp

)
:= ψ ∧ ψ1 ∧ · · · ∧ ψp .

Its adjoint is the annihilation operator denoted by Ψ(ψ) := (Ψ†(ψ))∗. These operators
satisfy the canonical anti-commutation relations{

Ψ(ψ),Ψ†(ϕ)
}
= (ψ|ϕ) and

{
Ψ(ψ),Ψ(ϕ)

}
= 0 =

{
Ψ†(ψ),Ψ†(ϕ)

}
.

Next, we let W be a statistical operator on F , i.e. a positive semi-definite linear
operator of trace one,

W : F → F , W ≥ 0 and trF (W ) = 1 .

Given an observable A (i.e. a symmetric operator on F ), the expectation value of the
measurement is given by

⟨A⟩ := trF
(
AW ) .

The corresponding quantum state ω is the linear functional which to every observable
associates the expectation value, i.e.

ω : A 7→ trF
(
AW ) .

The von Neumann entropy of the state ω is defined by

S1(ω) := − trF
(
W lnW

)
.

In this thesis, we restrict our attention to the subclass of so-called quasifree states,
fully determined by their two-point functions

ω2(ψ, ϕ) := ω
(
Ψ(ψ)Ψ†(ϕ)

)
, for any ψ, ϕ ∈ H .

11



2. General Preliminaries

Definition 2.1.1. The reduced one-particle density operator D is the positive
linear operator on the Hilbert space (H , (.|.)H ) defined by

ω2(ψ, ϕ) = ⟨ψ |Dϕ⟩H , for any ψ, ϕ ∈ H .

The von Neumann entropy S1(ω) of the quasi-free fermionic quantum state can be
expressed in terms of the reduced one-particle density operator by

S1(ω) = tr η(D) , (2.3)

where η = η1 is the von Neumann entropy function defined in (1.1). This formula
appears commonly in the literature (see for example [35, Equation 6.3], [27, 9, 33]
and [24, eq. (34)]). A detailed derivation can be found in [14, Appendix A]. Similar
to (2.3) also other entropies can be expressed in terms of the reduced one-particle
density operator. Namely, the Rényi entropy and the corresponding entanglement
entropy can be written as Sκ(ω) = tr ηκ(D) and (1.2), respectively. These formulas
are also derived in [14, Appendix A].
We here consider a quasi-free state formed of solutions of the Dirac equation. Thus

we choose the Hilbert space H as the solution space of the Dirac equation with scalar
product ⟨.|.⟩H = (.|.). Moreover, we consider the regularized vacuum state, in which
case the reduced two-particle density operator is equal to the regularized projection
operator onto all negative-frequency solutions of the Dirac equation in the respective
spacetime, i.e.

D = Π(ε) .

with Π(ε) as in (5.5). We point out that, in the limiting case ε ↘ 0, the operator D
goes over to the projection operator to all negative-frequency solutions (5.4). The
corresponding quantum state ω is the vacuum state in the corresponding spacetime.

Remark 2.1.2. [13, Remark 2.1] (with slight modifications)
We point out that our definition of entanglement entropy differs from the conventions

in [24, 30] in that we do not add the corresponding term for the complement of Λ
in (1.2). This is justified as follows. On the technical level, our procedure is easier,
because it suffices to consider compact spatial regions in the cases of Schwarzschild

and Minkowski spacetimes (indeed, we for example expect that ηκ
(
χK̃c Π

(ε)
BH χK̃c

)
−

χK̃c ηκ
(
Π

(ε)
BH

)
χK̃c is not trace class). Conceptually, restricting attention to Sκ(Π

(ε),Λ)
can be understood from the fact that occupied states which are supported either inside
or outside Λ do not contribute to the entanglement entropy. Thus it suffices to consider
the states which are non-zero both inside and outside. These “boundary states” are
taken into account already in (1.2).
This qualitative argument can be made more precise with the following formal com-

putation, which shows that at least for the unregularized fermionic projector (denoted
by Π−) the value of Sκ(Π−,Λ) is the same as Sκ(Π−,Λ

c): First of all note that ηκ(t)
vanishes at t = 0 and t = 1. Since Π− is a projection this means that

ηκ(Π−) = 0 and therefore tr
(
χΛ ηκ(Π−) χΛ

)
= 0 = tr

(
χΛc ηκ(Π−) χΛc

)
.

12



2. General Preliminaries

Moreover, if we assume that both χΛ Π− χΛ and Π− χΛ Π− are compact operators,
we can find a one-to-one correspondence between their non-zero eigenvalues: Take any
eigenvector ψ of χΛ Π− χΛ with eigenvalue λ ̸= 0, then we must have

χΛψ =
1

λ
χ2
Λ Π− χΛψ = ψ and Π−ψ ̸= 0 ,

which yields
λ ψ =

(
χΛ Π− χΛ

)
ψ =

(
χΛ Π−

)
ψ .

Then Π−ψ is an eigenvector of Π− χΛ Π− with eigenvalue λ because(
Π− χΛ Π−

)
(Π−ψ) = Π−

(
χΛ Π−

)
ψ = λΠ−ψ .

Since the same argument also works with the roles of Π− χΛ Π− and χΛ Π− χΛ in-
terchanged, this shows, that the nonzero eigenvalues of both operators (counted with
multiplicities) coincide. Then the same holds true for ηκ(Π−χΛΠ−) and ηκ(χΛΠ−χΛ),
proving that

tr ηκ(χΛ Π− χΛ) = tr ηκ(Π− χΛ Π−) .

Due to the symmetry of ηκ, namely

ηκ(t) = ηκ(1− t) for any t ∈ R ,

this then leads to

tr ηκ(χΛ Π− χΛ) = tr ηκ(Π− χΛ Π−) = tr ηκ
(
Π− −Π− χΛ Π−

)
= tr ηκ(Π− χΛc Π−) .

Repeating the same argument as before with χΛc Π− χΛc finally gives

tr ηκ(χΛ Π− χΛ) = tr ηκ(Π− χΛc Π−) = tr ηκ(χΛc Π− χΛc) .

Regularizing this expression suggests that the entanglement entropies of the inside
and outside as defined in (1.2) coincide. Then, our definition of entanglement entropy
would agree (up to a numerical factor) with the one in [24, 30].
Note that the above formal computation corresponds to the fact, that for a pure

bipartite state, the von Neumann entropy of both parts coincide. ♢

2.2. Technical Preliminaries

2.2.1. Definitions

Singular Values and Schatten-von Neumann Classes

This section is based on [15, Section 4.1], [14, Section 2.3.2] and [13, Sections 2.4
and 7.1] (with similar phrasing).
Given a separable Hilbert space H we denote the space of compact operators on

it by S∞. For any A ∈ S∞ we denote by sk(A), k = 1, 2, . . . , its singular values
i.e. eigenvalues of the self-adjoint compact operator

√
A∗A labeled in non-increasing
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2. General Preliminaries

order counting multiplicities. For the sum A + B the following inequality holds (see
[7, Sec. 11.1 Eq. (14)]):

s2k(A+B) ≤ s2k−1(A+B) ≤ sk(A) + sk(B).

We say that A belongs to the Schatten-von Neumann class Sp, p > 0, if

∥A∥p :=
(
tr |A|p

)1/p
=
( ∞∑

k=1

sk(A)
p
)1/p

<∞ .

The functional ∥A∥p defines a norm if p ≥ 1 and a quasi-norm if 0 < p < 1. With
this (quasi-)norm, the class Sp is a complete space (see also [7, Sections 11.4.2 and
11.5.4]). Note that for p = 1 this coincides with the trace norm. For 0 < p < 1 the
quasi-norm is actually a p-norm, that is, it satisfies the following “triangle inequality”
for all A,B ∈ Sp (see [7, Section 11.5.4]):

∥A+B∥pp ≤ ∥A∥pp + ∥B∥pp . (2.4)

This inequality is used systematically in what follows. We point out a useful estimate
for individual eigenvalues for operators in Sp:

1

sk(A) ≤ k
− 1

p ∥A∥p, k = 1, 2, . . . .

Moreover, as explained in [7, Section 11.4.1]2, for any two bounded operators B1, B2

on H, p > 0 and A ∈ Sp it holds that B1AB2 ∈ Sp with

∥B1AB2∥p ≤ ∥A∥p∥B1∥∞∥B2∥∞ , (2.5)

and for any two 0 < p1 < p2 ≤ ∞, we have Sp1 ⊂ Sp2 and for any A ∈ Sp1

∥A∥p2 ≤ ∥A∥p1 . (2.6)

Finally (also according to [7, Section 11.4.1]), for any p > 0 and A ∈ Sp, the adjoint
A∗ ∈ Sp with

∥A∗∥p = ∥A∥p . (2.7)

Remark 2.2.1.

(i) Note that for any p > 0, the norm ∥.∥p is invariant under unitary transformations:
LetH and G be separable Hilbert spaces, U : G → H unitary and A ∈ Sp ⊆ L(H),
then

(U−1AU)∗U−1AU = (U∗AU)∗U−1AU = U∗A∗UU−1AU = U−1A∗AU ,

which is unitarily equivalent to A∗A and thus has the same eigenvalues showing
that

∥A∥p = ∥U−1AU∥p .
1This follows by definition since kspk(A) ≤

∑k
l=1 sl(A)p ≤ ∥A∥pp (see also [7, Section 11.6.1]).

2There is a typing error in the source for (2.6), but the similarity to the lp-spaces makes it clear.
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(ii) Let k ∈ N be a number and H a separable Hilbert space. Denote Sp as the

p-Schatten-von Neumann class in L(H,H) and let S
(k)
p be the p-Schatten-von-

Neumann class in L(Hk,Hk). Moreover, let A = (aij)1≤i,j≤ be a formal block
operator such that each block aij ∈ Sp. Denote by ãi,j is the block operator with
zeros everywhere except for position (i, j), where it coincides with ai,j . Since for
any i, j ∈ {1, ..., n}, the operator ã∗i,j ãi,j is also a formal block operator with the

only non-zero entry a∗i,jai,j we conclude that ãi,j ∈ S
(k)
p and

∥ãi,j∥p = ∥ai,j∥p , for any i, j ∈ {1, ..., n} ,

where the norms on the left hand side are with respect to S
(k)
p and the ones on

the right hand side with respect to Sp. Then, applying the triangle inequality

(2.4) we see that A ∈ S
(k)
p as well and its p-norm can be estimated by

∥A∥pp ≤
n∑

i=1

n∑
j=1

∥ãi,j∥pp =
n∑

i=1

n∑
j=1

∥ai,j∥pp ,

where the norms on the very left hand side are with respect to S
(k)
p and on the

very right hand side with respect to Sp.

♢

We refer to [7, Chapter 11] for more details on singular values.

Pseudo-differential Operators

This section is based on [13, Sections 3.3 and 6.2], [14, Section 2.3.1] and [15, Section 1]
(with similar phrasing).

Let n, d ∈ N be two parameters. We will often rewrite operators on L2(Rd,Cn) as
Pseudo-differential operators of the form(

Opα(A)ψ
)
(x) :=

( α
2π

)d ˆ
Rd

ˆ
Rd

e−iαξ·(x−y) A(x,y, ξ) ψ(y) dy dξ

for any ψ ∈ C∞
0 (Rd,Cn) .

(2.8)

The so called symbol A is a suitable measurable matrix-valued map A : (Rd)3 → Cn×n

such that the operator on C∞
0 (Rd,Cn) defined by (2.8) can be extended continuously

to all of L2(Rd,Cn). The parameter d ∈ N can be thought of as the spatial dimension
and the parameter n ∈ N as the number of components of the wave function ψ.

Note that symbols denoted with lowercase letters in this thesis usually indicate that
the symbol is scalar-valued.

Moreover, the symbols sometimes additionally depend on ε or other parameters. We
usually denote this by corresponding super- or subscripts.

For some symbols A the integral representation (2.8) extends to all Schwartz- or even
all L2-functions. If this condition is assumed for specific results, we will mention it
explicitly. We will also establish some conditions on A that guarantee such extensions.
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The notation of the arguments of the symbol A is often adapted to the application
in mind. In particular, if the arguments are not boldface this usually implies that they
are scalar-valued, i.e. d = 1.

Furthermore, note that for any measurable set U ⊂ Rd we can identify Opα(A) as
an operator on L2(U,Cn) by restricting the y-integral in (2.8) to U and only evaluating
for x ∈ U . Moreover, given an operator on L2(U,Cn) with integral representation (2.8)
but with the y-integral restricted to U , we can identify it with a pseudo-differential
operator on L2(Rd,Cn) by integrating in y over all of Rd and replacing A(x,y, ξ)
with χU (x)A(x,y, ξ)χU (y). We will sometimes make use of this identification later on
without specifically mentioning it.

For self-adjoint operators Opα(A) we recall the definition of Dα(η,Λ,A) from (1.9):

Dα(f,Λ,A) = f
(
χΛOpα(A)χΛ

)
− χΛf

(
Opα(A)

)
χΛ ,

where Λ ⊆ Rd is some measurable set which will be specified later and f is a measur-
able function on the spectrum of Opα(A). For technical purposes it is also useful to
introduce the truncated operator:

Wα(A,Λ) := χΛOpα(A)χΛ.

Moreover, in what follows we will often use the notation

PΩ,α := Opα(χΩ)

for some measurable set Ω ⊆ Rd, which emphasizes that this is a projection operator
(this and its well-definedness will follow from Lemma 3.0.1). In Lemma 3.0.2 we will
see that the integral representation of such operators always extends to all Schwartz
functions.

Norms on Symbols and Functions

This section is based on [13, Defintion 2.7] and [15, Section 4.2] (with similar phrasing).
We will frequently use the following function norms.

Definition 2.2.2. (see for example [39, Section 2.1] with slight modifications)
Let S(j,k,l)(Rd) with j, k, l ∈ N0 be the space of all complex-valued functions on (Rd)3,
which are continuous, bounded and continuously partially differentiable in the first
variable up to order j, in the second to k and in the third to l and whose partial
derivatives up to these orders are bounded as well. For a ∈ S(j,k,l)(Rd) and s, δ > 0 we
introduce the norm

N(j,k,l)(a; s, δ) := max
0≤j̃≤j

0≤k̃≤k
0≤l̃≤l

sup
x,y,ξ

sj̃+k̃δ l̃
∣∣∇j̃

x∇k̃
y∇l̃

ξa(x,y, ξ)
∣∣ .

Similarly, S(j,l)(Rd) with j, l ∈ N0 denotes the space of all complex-valued functions on
(Rd)2, which are continuous and bounded and continuously partially differentiable in

16



2. General Preliminaries

the first variable up to order j and in the second to l and whose partial derivatives up
to these orders are bounded. For a ∈ S(j,l)(Rd) and s, δ > 0 we introduce the norm

N(j,l)(a; s, δ) := max
0≤j̃≤j

0≤l̃≤l

sup
x,ξ

sj̃δ l̃
∣∣∇j̃

x∇k̃
ξa(x, ξ)

∣∣ .
Finally, by S(l)(Rd) with l ∈ N0 we denote the space of all complex-valued functions
on Rd, which are continuous and bounded and continuously partially differentiable up
to order l and whose partial derivatives up to this order are bounded. For a ∈ S(l)(Rd)
and δ > 0 we introduce the norm

N(l)(a; δ) := max
0≤l̃≤l

sup
ξ
δ l̃
∣∣∇l̃

ξa(ξ)
∣∣ .

Note that any function a ∈ S(j,l)(Rd) may be interpreted as element of in S(j,k,l)(Rd)
for any k ∈ N0 by the identification

a(x,y, ξ) ≡ a(x, ξ) for any y ∈ Rd .

Then, for any s, δ > 0 one has

N(j,k,l)(a; s, δ) = N(j,l)(a; s, δ) .

And similarly for a ∈ S(l)(Rd).
Another useful functional is given as follows.

Definition 2.2.3. (see [40, Section 2.1] with similar phrasing)
Let C = [0, 1)d and for any u ∈ Rd set Cu := C + u. Let h ∈ Lrloc(Rd) and p ∈ (0,∞),
then we denote 

h p,δ =

[∑
n∈Zd

( ´
Cn

|h(x)|pdx
) δ

p
] 1

δ

, 0 < δ <∞,

h p,∞ = supu∈Rd

( ´
Cu

|h(x)|pdx
) 1

p

, δ = ∞.

Sometimes these functionals are called lattice quasi-norms (norms for p, δ ≥ 1).
We say h ∈ lδ(Lp)(Rd) if h p,δ <∞.

2.2.2. Abstract Estimates

In this section we list a few (mostly) previously established results, which can mostly
also be found in a similar (or sometimes same) form and phrasing in several chapters
of the works [13], [14] and [15].

Consider an arbitrary separable Hilbert space H. Let A be a bounded self-adjoint
operator and let P be an orthogonal projection on H. Given a measurable function3

f we define the operator

D(A,P ; f) := Pf(PAP )P − Pf(A)P. (2.9)

3We use the convention that if the function is initially not defined on the entire spectrum of A, we
simply extend it by 0.
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Sometimes for ease of notation we leave out some of the arguments of D, i.e. we
sometimes write D(A; f) ≡ D(A,P ; f) or D(A) ≡ D(A,P ; f).

In the following we establish a few estimates for this operator.

Theorem 2.2.4. [41, Corollary 2.11] (Simplified and adapted to our notation)
Let H be a separable Hilbert space, q,R > 0 parameters, k ≥ 2 a natural number and
f ∈ Ck

0(−R,R). Let σ ∈ (0, 1] such that

(k − σ)−1 < q ≤ 1 .

Given a bounded self-adjoint operator A on H and an orthogonal projection P on H
such that PA(I − P ) ∈ Sσq, the following estimate holds

∥f(PAP )P − Pf(A)∥q ≲ max
0≤j≤k

(
Rj∥f (j)∥L∞

)
R−σ

∥∥PA(1− P )
∥∥σ
σq

with an implicit constant independent of A, P , f and R.4

In what follows it is convenient to require that the function f satisfies the following
condition, which can for example be found in [41, Theorem 4.4] (with similar phrasing).

Condition 2.2.5. Let T := {t0, . . . , tK} be a finite set and g ∈ C2(R \ T ) ∩ C0(R) be
a function such that there exists a constant γ > 0 and in the neighborhood of every ti
there are constants ck > 0, k = 0, 1, 2 satisfying the conditions

|g(t)(x)| ≤ ck |t− ti|γ−k .

For technical purposes we will also make use of the following related condition.

Condition 2.2.6. [15, Condition 5.1] The function f ∈ C2(R \ {t0})∩C(R) satisfies
the bound

f 2 := max
0≤k≤2

sup
t̸=t0

|f (k)(t)||t− t0|−γ+k <∞

for some γ ∈ (0, 1], and it is supported on the interval (t0−R, t0+R) with some finite
R > 0.

Remark 2.2.7. Note that if T contains only one element, the two conditions coincide.
Moreover, if f satisfies Condition 2.2.5 and (ψk)0≤k≤l is suitable partition of unity such
that the support of each ψk only contains exactly one of the elements in T, then each
fψk satisfies Condition 2.2.6. ♢

Example 2.2.8. As shown in detail in Lemma C.0.1, for any κ ̸= 1, the Rényi entropy
function ηκ satisfies Condition 2.2.5 with T = {0, 1} for any γ ≤ min{κ, 1}. Moreover,
η = η1 satisfies Condition 2.2.5 with T = {0, 1} for any γ < 1. ♢

The next proposition follows from a more general fact proven in [41, Theorem 2.4],
see also [31, Proposition 2.2] (note that we used similar phrasing).

4The independence on f and R is not explicitly stated in [41, Corollary 2.11], but [41, Corollary 2.7]
plus the proofs of both corollaries make it clear.
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2. General Preliminaries

Proposition 2.2.9. Suppose that f satisfies Condition 2.2.6 with some γ ∈ (0, 1] and
some t0 ∈ R, R > 0. Let q ∈ (1/2, 1] and assume that σ < min{2 − q−1, γ}. Let
A be a bounded self-adjoint operator on a separable Hilbert space H and let P be an
orthogonal projection on H such that PA(1− P ) ∈ Sσq. Then

∥D(A,P ; f)∥q ≲ f 2R
γ−σ ∥PA(1− P )∥σσq,

with an implicit constant independent of A, P, f, R and t0.

Applying Proposition 2.2.9 with

A = Opα(A) , P = χΛ ,

we obtain the following Corollary (we again use similar phrasing as in [41, Theorem 2.4]
and [31, Proposition 2.2]).

Corollary 2.2.10. Suppose that f satisfies Condition 2.2.6 with some γ ∈ (0, 1] and
some t0 ∈ R, R > 0. Let q ∈ (1/2, 1] and assume that σ < min{2 − q−1, γ}. Let
A be a bounded, Hermitian matrix-valued symbol and Λ ⊂ Rd such that the operator
χΛOpα(A)(1− χΛ) ∈ Sσq. Then

∥Dα(A, χΛ; f)∥q ≲ f 2R
γ−σ ∥χΛOpα(A)(1− χΛ)∥σσq, (2.10)

with a positive implicit constant independent of A, Λ, the function f and the parameter
R.

In order to estimate the Schatten norm on the right hand side of (2.10), we will
sometimes use estimates of the Schatten norm of the commutator [χΛ,Opα(A)]. The
next Lemma shows that this is indeed equivalent.

Lemma 2.2.11. Let 0 < p < 1 and H a separable Hilbert space.

(i) If A,B are bounded self-adjoint operators on H such that BA(1−B) ∈ Sp, then
also [A,B] ∈ Sp and

∥[A,B]∥p ≤ 2∥BA(1−B)∥p .

(ii) If B is a projection on H and A some operator on H such that [A,B] ∈ Sp, then
also BA(1−B) ∈ Sp and

∥BA(1−B)∥p ≤ ∥[A,B]∥p

Proof. (i): We apply the triangle inequality,

∥[A,B]∥pp = ∥AB −BAB +BAB −BA∥pp = ∥(1−B)AB −BA(1−B)∥pp
≤ ∥(1−B)AB∥pp + ∥BA(1−B)∥pp ≤ 2∥BA(1−B)∥pp

where we also used that

((1−B)AB)∗ = BA(1−B) ,

together with (2.7).
(ii): We make use of (2.5) and the fact that B is a projection,

∥BA−BAB∥p = ∥B(BA−AB)∥p ≤ ∥B∥∞∥[A,B]∥p ≤ ∥[A,B]∥p .
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2. General Preliminaries

2.2.3. Estimates for Pseudo-Differential Operators

In this section we list a few previously established results, which can also be found in
a similar (or sometimes same) form and phrasing in several chapters of the works [13],
[14] and [15].
The first lemma shows that Opα(a) is bounded with respect to the operator norm

uniformly in α as long as the symbol a is suitably regular.

Lemma 2.2.12. [39, Lemma 3.9] (with slight modifications)
Let k := ⌊d/2⌋+1 be a parameter, α0 > 0 a constant and s, δ > 0 such that αsδ ≥ α0.
Moreover, let a ∈ S(k,k,d+1)(Rd) be a symbol. Assume that Opα(a) is well defined, its
integral representation extends to all Schwartz functions and the y- and ξ-integrals in
the integral representation are interchangeable for any Schwartz function. Then

∥Opα(a)∥∞ ≲ N(k,k,d+1)(a; s, δ) ,

with an implicit constant only depending on d and α0.

Proposition 2.2.13. [39, Proposition 3.8] with reference to [6, Theorem 11.1], [5,
Section 5.8] and [38, Theorem 4.5] (with slight modifications)5

Let a, h ∈ lq(L2)(Rm) for some q ∈ (0, 2). Assume that the integral representation of
Op1(a) extends to all Schwartz functions and that the y- and ξ-integrals in the integral
representation are interchangeable for any Schwartz function. Then hOp1(a) ∈ Sq and∥∥hOp1(a)

∥∥
q
≲ h 2,q a 2,q ,

with an implicit constant independent of a and h.

The next Corollary helps us to estimate the error caused by interchanging charac-
teristic functions in position and momentum space.

Corollary 2.2.14. [40, Corollary 4.7](case d = 1, with slight modifications)
For any two open bounded intervals K,J ⊂ R as well as numbers q ∈ (0, 1] and α ≥ 2,
the following estimate holds,

∥χKPJ,α(1− χK)∥q ≲ (lnα)1/q ,

with an implicit constant independent of α ≥ 2.

The next proposition gives an estimate for terms of the form ∥χΛOpα(a)(1−χΛ)∥q,
which will come up when applying Theorem 2.2.4 or Proposition 2.2.9. It follows from
the more general result [31, Proposition 3.2] (see also [40, Corollary 4.4]). We adapted
it to the cases needed and to our notation, moreover the coefficient in k was corrected
(in comparison to the version in [31, Proposition 3.2]), after talking it over with one
of the authors (Alexander V. Sobolev).

Proposition 2.2.15. Let d = 1 and K ⊂ R be and open bounded interval and let
α0 > 0 be a constant. Let q ∈ (0, 1] and

k = ⌊2q−1⌋+ 1 .

5There is a typing error in [39, Proposition 3.8], but [6, Theorem 11.1] makes it clear.
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2. General Preliminaries

Let a be a scalar-valued symbol independent of x and y, i.e. a(x, y, ξ) ≡ a(ξ) with
support contained in Bδ(ζ) for some ζ ∈ R and δ > 0. Assume that a ∈ S(k)(R) and
Opα(a) is well defined with integral representation extending to all Schwartz functions.
Then for any αδ ≥ α0,

∥χKOpα(a)(1− χK)∥q ≲ N(k)(a; δ) ,

with implicit constants independent of a, α, δ and ζ.
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3. Further Properties of
Pseudo-Differential Operators

This section is based on [13, Section 5] and [14, Section 2.3.1] (with similar phrasing).
We establish a few general results for pseudo-differential operators.

Lemma 3.0.1. Let A be a is Hermitian matrix-valued symbol which is measurable,
independent of x and y, i.e. A(x,y, ξ) ≡ A(ξ) and bounded in ξ, then Opα(A) is well-
defined and self-adjoint. Moreover, for any Borel function f defined on the spectrum
of Opα(A), we have

f(Opα(A)) = Opα(f(A)) .

Proof. Note that for a symbol A as in the claim

Opα(A) = F A(./α) F−1 , (3.1)

since (3.1) holds for all C∞
0 (Rd,Cn)-functions and the right hand side defines a bounded

operator on L2(Rd,Cn). This also shows, that Opα(A) is bounded (and therefore well-
defined) and self-adjoint. Since for any ξ ∈ Rd, the matrix A(ξ/α) is Hermitian
matrix-valued the spectral theorem for matrices yields a unitary matrix V(ξ) such
that

V(ξ)A(ξ/α)V(ξ)−1 = diag(b1(ξ), . . . , bn(ξ)) =: B(ξ) .

Then, using the identification L2(Rd,Cn) ∼= L2
(
{1, . . . , n} × Rd,C

)
, the operator

V(·)−1F−1 can be interpreted as the unitary transformation form the multiplicative
version of the spectral theorem for the operator Opα(A) and B as the corresponding
function. Thus we have

f(Opα(A)) = F V(·) f(B(·/α)) V(·)−1 F−1 = F f(A(·/α)) F−1 = Opα(f(A)) .

A similar argument as in the above proof can be used to prove a criterion on when
the integral representation of Opα(A) extends to all Schwartz functions.

Lemma 3.0.2. Let A be a symbol which is independent of x and y such that for any
Schwartz function ψ ∈ S(Rd,Cn), the vector-valued function A(·/α)ψ(·) ∈ L1(Rd,Cn),
then the integral representation of Opα(A) extends to all Schwartz functions. In par-
ticular this holds for any measurable symbol A which is independent of x and y and
bounded in ξ.

Proof. Just as in the proof of Lemma 3.0.1 we conclude that

Opα(A) = F−1 A(·/α) F .

22



3. Further Properties of Pseudo-Differential Operators

Now take an arbitrary Schwartz function ψ ∈ S(Rd,Cn), then Fψ is defined by the
usual integral representation. Moreover we have Fψ ∈ S(Rd,Cn), since F is an auto-
morphism on the Schwartz space. Furthermore, since the map ξ 7→ A(ξ/α) (Fψ)(ξ) is
in L1(Rd,Cn), the inverse Fourier transform is again given by the usual integral rep-
resentation meaning that the integral representation of Opα(A) extends to ψ. Since
ψ ∈ S(Rd,Cn) was chosen arbitrarily, the claim follows.

The next lemma will be needed for consistency reasons when considering the limit
u0 → −∞:

Lemma 3.0.3. Let Opα(A) as in Section 2.2.1, let U, V ⊂ Rd be arbitrary Borel sets
and c ∈ Rd an arbitrary vector. For any x,y, ξ ∈ Rd we transform a given symbol A
by

Tc(A)(x,y, ξ) := A(x+ c,y + c, ξ) .

Then there is a unitary transformation tc on L2(Rd,Cn) such that

tc χU+c Opα
(
T−c(A)

)
χV+c t

−1
c = χU Opα(A) χV . (3.2)

Moreover, assuming in addition that Opα(A) is self-adjoint, we conclude that for any
Borel function f on the spectrum of A,

f
(
χU Opα(A) χU

)
= tc f

(
χU+c Opα(T−c(A)) χU+c

)
t−1
c . (3.3)

Proof. We will show that the desired unitary operator is given by the translation
operator

tc : L2(Rd) → L2(Rd), f 7→ f(·+ c) ,

(which is obviously unitary). Note that for any Borel set W ⊆ Rd

χW+c = t−c χW tc , (3.4)

and therefore

χU Opα(A) χV = tc χU+c t−c Opα(A) tc χV+ct−c .

By a change of variables we obtain for arbitrary ψ ∈ C∞
0 (Rd,Cn)(

t−c Opα(A) tcψ
)
(x)

=
(
Opα(A) tcψ

)
(x− c) =

αd

(2π)d

ˆ
dξ

ˆ
dy e−iαξ(x−c−y) A(x− c,y, ξ) ψ(y + c)

=
αd

(2π)d

ˆ
dξ

ˆ
dy e−iαξ(x−y) A(x− c,y − c, ξ, ) ψ(y) =

(
Opα

(
T−c(A)

)
ψ
)
(x) .

This shows (3.2).
For (3.3) we make use the multiplication operator version of the spectral theorem.

This provides a unitary transformation V and a suitable function g such that

χU Opα(A) χU = V−1 g V .
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3. Further Properties of Pseudo-Differential Operators

Combined with the previous discussion this implies

χU+c Opα
(
T−c(A)

)
χU+c = (V tc)−1 g (V tc) ,

which is the multiplication operator representation of χU+c Opα
(
T−c(A)

)
χU+c, be-

cause V tc is also a unitary operator. Therefore

f
(
χU+c Opα(T−c(A)) χU+c

)
=
(
V tc

)−1
(f ◦ g)

(
V tc

)
= t−1

c f
(
χU Opα(A) χU

)
tc ,

concluding the proof.

Remark 3.0.4. A similar result as Lemma 3.0.3 holds for translations in the
ξ-variable: Let c ∈ Rd be an arbitrary vector. For any x,y, ξ ∈ Rd we transform
a given symbol A by

Rc(A)(x,y, ξ) := A(x,y, ξ + c) .

Then, for any ψ ∈ C∞
0 (Rd,Cn) and x ∈ Rd we have

(
Opα(Rc(A))ψ

)
(x) =

αd

(2π)d

ˆ
Rd

dξ

ˆ
Rd

dy e−iαξ(x−y)A(x,y, ξ + c)ψ(y)

=
αd

(2π)d

ˆ
Rd

dξ

ˆ
Rd

dy e−iα(ξ−c)(x−y)A(x,y, ξ)ψ(y)

=
αd

(2π)d
e−iαcx

ˆ
Rd

dξ

ˆ
Rd

dy e−iαξ(x−y)A(x,y, ξ) eiαcyψ(y) .

Denoting the function f(x) := eiαcx, this shows that

Opα(Rc(A)) = f Opα(A) f−1 ,

which implies similar consequences for trace and Schatten-norms since the multiplica-
tion by f is a unitary operator. ♢

The following result can (at least for scalar-valued symbols) also be found in [39,
Eq. (2.10)] using a slightly different notation and a slightly different definition of
Opα(·). Nevertheless we decided it would be helpful to give a proof and reformulate
it here.

Lemma 3.0.5. Let A be a symbol such that Opα(A) is well defined on L2(Rd,Cn), let
Λ ⊂ R be some measurable set and α, δ > 0 some arbitrary constants. Then,

(i) There is a unitary operator Vδ on L2(Rd,Cn) such that

V −1
δ χΛ Opα(A) χΛ Vδ = χδΛ Opα/δ(A) χδΛ .

We refer to this as rescaling in position space.

(ii) By rescaling in momentum space we mean the equality

Opα(A) = Opδα
(
A(δ ·)

)
.
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3. Further Properties of Pseudo-Differential Operators

Proof. First, (ii) simply follows by changing coordinates in the ξ-integral.
For (i) consider the unitary operator Vδ, which is for any ψ ∈ L2(Rd,Cn) defined by(

Vδφ
)
(x) := δd/2 ψ(δx) , for any x ∈ R .

Then, for any ψ ∈ L2(Rd,Cn) and x ∈ Rd,(
V −1
δ χΛVδψ

)
(x) = δd/2

(
V −1
δ χΛψ(δ.)

)
(x) = χΛ(x/δ)ψ(x) =

(
χδΛψ

)
(x)

and for any ψ ∈ S(Rd,Cn)

(
V −1
δ Opα(A)Vδψ

)
(x) =

αd

2π

ˆ ∞

−∞
dξ

ˆ ∞

−∞
dy eiαξ(x/δ−y)A(ξ)ψ(δy)

=
(α/δ)d

2π

ˆ ∞

−∞
dξ

ˆ ∞

−∞
dy eiα/δξ(x−y)A(ξ)ψ(y) = (Opα/δ(A)ψ)(x) ,

where in the second step we applied a change of variables in the y-integral.

Lemma 3.0.6. Let Opα(A) as in Section 2.2.1, such that A satisfies

ˆ
Rd

dξ

√ˆ
Rd

dy
∥∥A(x,y, ξ)

∥∥2
n×n

<∞ , for any x ∈ Rd

(where ∥.∥n×n is the ordinary sup-norm on the n × n-matrices). Then the integral-
representation of Opα(A) may be extended to all L2(Rd,Cn)-functions and the y and
the ξ integrations may be interchanged. Thus for any ψ ∈ L2(Rd,Cn) and almost any
x ∈ Rd, the following equations hold,(

Opα(A)ψ
)
(x) =

( α
2π

)d ˆ
Rd

dξ

ˆ
Rd

dy e−iαξ·(x−y) A(x,y, ξ) ψ(y)

=
( α
2π

)d ˆ
Rd

dy

ˆ
Rd

dξ e−iαξ·(x−y) A(x,y, ξ) ψ(y) .

Proof. Let ψ ∈ L2(Rd,Cn) arbitrary. We first show that, applying the Fubini-Tonelli
theorem and Hölder’s inequality, the integrations may be interchanged, by estimating

ˆ
Rd

dξ

ˆ
Rd

dy
∣∣e−iαξ·(x−y)A(x,y, ξ)ψ(y)

∣∣
≤
ˆ
Rd

dξ

√ˆ
Rd

dy
∥∥A(x,y, ξ)ψ(y)

∥∥2
n×n

∥∥ψ∥∥ <∞ .

Next, we want to show that we can extend the integral representation to all L2(Rd,Cn)-
functions, i.e that the above integral indeed corresponds to

(
Opα(A)ψ

)
(u). To this

end let (ψn)n∈N be a sequence of C∞
0 (Rd,Cn)-functions converging to ψ with respect

to the L2(Rd,Cn)-norm. Then Opα(A)ψ is by definition given by

Opα(A)ψ = lim
n→∞

Opα(A)ψn , (3.5)
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3. Further Properties of Pseudo-Differential Operators

where the convergence is with respect to the L2(Rd,Cn)-norm. However, going over
to a subsequence we can assume that this convergence also holds pointwise outside of
a null set N ⊆ Rd (see for example [37, Theorem 3.12]). Moreover for any x ∈ Rd \N
and we can compute

lim
n→∞

∣∣∣∣( α2π)d
ˆ
Rd

dξ

ˆ
Rd

dy e−iαξ·(x−y) A(x,y, ξ) ψ(y)−
(
Opα(A)ψn

)
(x)

∣∣∣∣
= lim

n→∞

∣∣∣∣( α2π)d
ˆ
Rd

dξ

ˆ
Rd

dy e−iαξ·(x−y) A(x,y, ξ) ∆ψn(y)

∣∣∣∣
≤
( α
2π

)d ˆ
Rd

dξ

√ˆ
Rd

dy
∥∥A(x,y, ξ)

∥∥2
n×n

lim
n→∞

∥∆ψn∥2 = 0 ,

with ∆ψn := ψ − ψn. Combining this estimate with the pointwise convergence (3.5)
in Rd \N yields the claim.

Remark 3.0.7. Let A be a symbol such that for any x ∈ Rd the function

max
y∈Rd

|A(x,y, ·)| ∈ L1(Rd)

Then, the ξ- and y-integrals in (2.8) are interchangeable for any ψ ∈ L1(Rd,Cn) by
the Fubini-Tonelli theorem.

Note that this is in particular the case for symbols A ∈ L1(Rd,Cn×n) which are
independent of x and y. ♢

Lemma 3.0.8. Let A(x,y, ξ) ≡ A(x, ξ) (i.e. A is independent of y) and B(x,y, ξ) ≡
B(y, ξ) be symbols such that Opα(A) and Opα(B) are well-defined and the following
two conditions hold:

(i) The operator A defined for any ψ ∈ L2(Rd,Cn) by

(Aψ)(x) :=

ˆ
Rn

e−iξx A(x, ξ/α) ψ(ξ) dξ ,

is bounded on L2(Rd,Cn).

(ii) The operator B defined for any ψ ∈ C∞
0 (Rd,Cn) by

(Bψ)(ξ) :=
1

(2π)d

ˆ
Rn

eiξy B(y, ξ/α) ψ(y) dy ,

may be continuously extended to L2(Rd,Cn).

Then
Opα(A) Opα(B) = Opα(AB) .

Proof. We first note that, due to condition (i),

Opα(A) = A F−1 ,
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3. Further Properties of Pseudo-Differential Operators

as both sides define continuous operators on L2(Rd,Cn) and agree on the C∞
0 (Rd,Cn)-

functions. Similarly, we conclude that

Opα(B) = F B .

This yields
Opα(A) Opα(B) = AB ,

and for any ψ ∈ C∞
0 (Rd,Cn) we have(
Opα(A)Opα(B)ψ

)
(x) =

(
ABψ

)
(x)

=
αd

(2π)d

ˆ
Rd

dξ

ˆ
Rn

dy e−iαξ(x−y)A(x, ξ)B(y, ξ)ψ(y) .

Note that as Opα(A) and Opα(B) are bounded operators, so is Opα(A) Opα(B). This
concludes the proof by continuous extension and by the definition of Opα(AB).

Remark 3.0.9.

(i) In what follows we often apply the previous Lemma in the case that B is inde-
pendent of both x and y and bounded by a constant C > 0. Then condition (ii)
of Lemma 3.0.8 is obviously fulfilled, because for any ψ ∈ C∞

0 (Rd,Cn) we have

Bψ = B(·/α) F−1ψ ,

and thus
∥Bψ∥ = ∥B(·/α) F−1ψ∥ ≤ C∥F−1ψ∥ = C∥ψ∥ .

(ii) Moreover, in the following, the symbol A is sometimes also independent of both x
and y and bounded by a constant C > 0 (with respect to the matrix sup-norm),
then for any ψ ∈ L2(Rd,Cn) it follows that

Aψ = F A(./α)ψ

and moreover

∥Aψ∥ = ∥F A(./α)ψ∥ = ∥A(./α)ψ∥ ≤ C∥ψ∥ .

Therefore, condition (i) in Lemma 3.0.8 is also fulfilled.

(iii) Another case we will consider later is that A ≡ a is scalar-valued, independent
of y and continuous with compact support

supp a ⊆ Bl(v)×Bδ(ζ) .

Then from the following argument we conclude that A also fulfills condition (i)
from Lemma 3.0.8. Take ψ ∈ L2(Rd) arbitrary and consider

ˆ
|Aψ(x)|2 dx

=

ˆ
Bl(v)

dx

ˆ
Bδ(ζ)

dξ

ˆ
Bδ(ζ)

dξ′ e−iu(ξ′−ξ) ψ(ξ) ψ(ξ′) a(x, ξ/α) a(x, ξ′/α)
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Here we may interchange the order of integration due to the Fubini-Tonelli The-
orem sinceˆ

Bl(v)
dx

ˆ
Bδ(ζ)

dξ

ˆ
Bδ(ζ)

dξ′
∣∣∣ψ(ξ) ψ(ξ′) a(x, ξ/α) a(x, ξ′/α)∣∣∣

≤ C2 vol(Bl(v)) ∥ψ∥2L1(Bδ(ζ),C2) <∞ ,

where C is a bound for the absolute value of the continuous and compactly
supported function a. Note that L2(Bδ(ζ),C2) ⊆ L1(Bδ(ζ),C2) since Bδ(ζ) is
bounded. We then obtainˆ

|Aψ(u)|2 du

=

ˆ
dξ ψ(ξ)

ˆ
dξ′ ψ(ξ′)

ˆ
dx e−ix(ξ′−ξ) a(x, ξ/α) a(x, ξ′/α)︸ ︷︷ ︸

=:ã(ξ,ξ′)

≤ ∥ψ∥
ˆ

|ψ(ξ)| ∥ã(ξ, .)∥ dξ ≤ ∥ψ∥2
√ˆ

dξ

ˆ
dξ′ |ã(ξ, ξ′)|2 ,

where the function ã is again continuous and compactly supported, which makes
the last integral finite. We remark that in the last line we again applied Hölder’s
inequality twice.

This estimate shows that condition (i) from Lemma 3.0.8 is again satisfied. ♢
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4. The Fermionic Entanglement Entropy
of a Schwarzschild Black Hole

4.1. Further Preliminaries: The Dirac Propagator in the
Schwarzschild Geometry

This section corresponds to [13, Section 2.3] (with some modifications).

4.1.1. The Integral Representation of the Propagator

We recall the form of the Dirac equation in the Schwarzschild geometry and its sepa-
ration, closely following the presentation in [11] and [17]. Given a parameter M > 0
(the black hole mass), the exterior Schwarzschild metric reads

ds2 =
3∑

j,k=0

gjk dx
j dxk =

∆(r)

r2
dt2 − r2

∆(r)
dr2 − r2 dϑ2 − r2 sin2 ϑ dφ2 ,

where
∆(r) := r2 − 2Mr .

Here the coordinates (t, r, ϑ, φ) take values in the intervals

−∞ < t <∞, r1 < r <∞, 0 < ϑ < π, 0 < φ < 2π ,

where r1 := 2M is the event horizon.
In this geometry, the Dirac operator takes the form (see also [17, Section 2.2]):

D =


0 0 α+ β+
0 0 β− α−
α− −β+ 0 0
−β− α+ 0 0

 with

β± =
i

r

(
∂

∂ϑ
+

cotϑ

2

)
± 1

r sinϑ

∂

∂φ
and

α± = − ir√
∆(r)

∂

∂t
±
√
∆(r)

r

(
i
∂

∂r
+ i

r −M

2∆(r)
+

i

2r

)
.

It is most convenient to transform the radial coordinate to the so called Regge-Wheeler-
coordinate u ∈ R defined by

u(r) = r + 2M ln(r − 2M) , so that
du

dr
=

r2

∆(r)
.
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4. The Fermionic Entanglement Entropy of a Schwarzschild Black Hole

In this coordinate, the event horizon is located at u → −∞, whereas u → ∞ corre-
sponds to spatial infinity i.e. r → ∞. Then the Dirac equation can be separated with
the ansatz

ψknω(t, u, φ, ϑ) = e−ikφ 1

∆(r)1/4
√
r


Xkn

− (t, u)Y kn
− (ϑ)

Xkn
+ (t, u)Y kn

+ (ϑ)
Xkn

+ (t, u)Y kn
− (ϑ)

Xkn
− (t, u)Y kn

+ (ϑ)


with k ∈ Z + 1/2, n ∈ N and ω ∈ R. The angular functions Y kn

± can be ex-
pressed in terms of spin-weighted spherical harmonics and form an orthonormal basis
of L2

((
(−1, 1), dϑ cosϑ

)
,C2

)
(see [17, Section 2.4] with additional reference to [18]).

The radial functions Xkn
± satisfy a system of partial differential equations(√

∆(r)D+ imr − λ

−imr − λ
√

∆(r)D−

)(
Xkn

+

Xkn
−

)
= 0 , (4.1)

where m denotes the particle mass and

D± =
∂

∂r
∓ r2

∆(r)

∂

∂t
,

for details see [11, Section 2]. Moreover, employing the ansatz

Xkn
± (t, u) = e−iωt Xknω

± (u) ,

equation (4.1) goes over to a system of ordinary differential equations, which admits
two two-component fundamental solutions labeled by a = 1, 2. We denote the result-
ing Dirac solution by Xknω

a = (Xknω
a,+ , X

knω
a,− ) (for more details on the choice of the

fundamental solutions see Section 4.1.4 below).
As implied by [11, Theorem 3.6], one can then find the following formula for the

mode-wise propagator:

Theorem 4.1.1. Given initial radial data X0 ∈ C∞
0 (R,C2) at time t = 0, the corre-

sponding solution X ∈ C∞
sc (R2,C2) (i.e. smooth with spatially compact support) of the

radial Dirac equation (4.1) can be written as

X(t, u) =
1

π

ˆ ∞

−∞
dω e−iωt

2∑
a,b=1

tknωab Xknω
a (u) ⟨Xknω

b |X0⟩ ,

for any u, t ∈ R. The Xknω
a (u) are the fundamental solutions mentioned before. Here

the coefficients tknωab satisfy the relations

tknωab = tknωba ,

and  tknωab = δa,1 δb,1 if |ω| ≤ m

tknω11 = t22 =
1

2
,
∣∣tknω12

∣∣ ≤ 1

2
if |ω| > m

. (4.2)
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4.1.2. Hamiltonian Formulation

We may rewrite the Dirac equation in Hamilton form, i.e.

i
∂

∂t
Xkn(t, u) =

(
HknX

kn|t
)
(u)

⇐⇒ (D −m) e−ikφ 1

∆(r)1/4
√
r


Xkn

− (t, u)Y kn
− (ϑ)

Xkn
+ (t, u)Y kn

+ (ϑ)
Xkn

+ (t, u)Y kn
− (ϑ)

Xkn
− (t, u)Y kn

+ (ϑ)

 = 0 ,

where the Hamiltonian Hkn is an essentially self-adjoint operator on L2(R,C2) with
dense domain D(Hkn) = C∞

0 (R,C2). We identify it with its self-adjoint extension.
This makes it possible to write the solution of the Cauchy problem as

X(t, u) =
(
e−itHkn X0

)
(u) with u ∈ R .

Here, the initial data can be an arbitrary vector-valued function in the Hilbert space,
i.e. X0 ∈ L2(R,C2). If we specialize to smooth initial data with compact support, i.e.
X0 ∈ C∞

0 (R,C2), then the time evolution operator can be written with the help of
Theorem 4.1.1 as

(
e−itHknX0

)
(u) =

1

π

ˆ ∞

−∞
dω e−iωt

2∑
a,b=1

tknωab Xknω
a (u) ⟨Xknω

b |X0⟩ ,

for X0 ∈ C∞
0 (R,C2) .

We point out that this formula does not immediately extend to generalX0 ∈ L2(R,C2);
we will come back to this technical issue a few times in this thesis.

4.1.3. Connection to the Full Propagator

In this section we explain, why it suffices to focus on one angular mode instead of the
full propagator and why we can use the ordinary L2-scalar product instead of (.|.).

To this end, we introduce the function

S := ∆(r)1/4
√
r .

Moreover, for each fixed k ∈ Z+ 1/2, n ∈ Z we denote by (H0)kn the completion of

Vkn := span

{
S−1 e−ikφ


Xknω

− (u)Y kn
− (ϑ)

Xknω
+ (u)Y kn

+ (ϑ)
Xknω

+ (u)Y kn
− (ϑ)

Xknω
− (u)Y kn

+ (ϑ)

 ∣∣∣∣X = (X+, X−) ∈ L2(R,C2)

}
,

with respect to (.|.), i.e.
(H0)kn := Vkn

(.|.)
.

This space can be thought of as the mode-wise solution space of the Dirac-equation at
time t = 0. Note that the entire Hilbert space of solutions at time t = 0, namely

H |t=0 =: H0
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has the orthogonal decomposition

H0 =
⊕
i∈N

(H0)kini
. (4.3)

(again with respect to (.|.)), where ((ki, ni))i∈N is an enumeration of (Z + 1/2) × Z.
Furthermore, each space (H0)kn can be connected with L2(R,C2) using the mapping

S̃ :
(
(H0)kn , (.|.)

)
→ L2(R,C2) ,

which for any (ψ1, · · · , ψ4) ∈ (H0)kn is given by(
S̃(ψ1, · · · , ψ4)

)
1

=

ˆ 1

−1
dϑ cosϑ

ˆ 2π

0
dφ
〈(
ψ2(u, ϑ, φ) , ψ3(u, ϑ, φ)

) ∣∣∣ e−ikφ
(
Y kn
+ (ϑ) , Y kn

− (ϑ)
)〉

C2
,(

S̃(ψ1, · · · , ψ4)
)
2

=

ˆ 1

−1
dϑ cosϑ

ˆ 2π

0
dφ
〈(
ψ4(u, ϑ, φ) , ψ1(u, ϑ, φ)

) ∣∣∣ e−ikφ
(
Y kn
+ (ϑ) , Y kn

− (ϑ)
)〉

C2
.

It has the inverse

S̃−1 : L2(R,C2) →
(
(H0)kn , (.|.)

)
,

(X+, X−) 7→ S−1e−ikφ


X−(u)Y

kn
− (ϑ)

X+(u)Y
kn
+ (ϑ)

X+(u)Y
kn
− (ϑ)

X−(u)Y
kn
+ (ϑ)

 ,

(where ⟨., .⟩C2 is the canonical scalar product on C2). Then a direct computation shows
that the scalar products transform as

⟨S̃ψ | S̃ϕ⟩L2 = (ψ |ϕ) for any ϕ, ψ ∈ (H0)kn .

This implies that S̃ is unitary and we can identify the two spaces.
Now recall that the Dirac-equation can be separated by solutions of the form

ψ̂ = S−1e−ikφ


X−(t, u)Y

kn
− (ϑ)

X+(t, u)Y
kn
+ (ϑ)

X+(t, u)Y
kn
− (ϑ)

X−(t, u)Y
kn
+ (ϑ)

 ,

and can then be described mode-wise by the Hamiltonian Hkn on the space L2(R,C2).
Therefore denoting

H̃kn := S̃−1HknS̃ ,

the diagonal block operator (with respect to the decomposition (4.3))

H̃ := diag
(
H̃(k1,n1) , H̃(k2,n2) , . . .

)
,

defines an essentially self-adjoint Hamiltonian for the original Dirac equation on the
space H0.
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Moreover, any function of H̃ is of the same diagonal block operator form. The same
holds for any multiplication operator by a characteristic function χŨ , where Ũ is a
spherically symmetric set

Ũ := U × S2 ⊆ R× S2 .

In particular, such an operator has the block operator representation

χŨ = diag
(
χŨ , χŨ , . . .

)
.

We therefore conclude that when computing traces of operators of the form

χŨf(H̃)χŨ or f(χŨH̃χŨ ) ,

(for some suitable function f), we may consider each angular mode separately and then
sum over the occupied states (and similarly for Schatten norms of such operators).
Moreover we point out that instead of (H0)kn we can work with the correspond-

ing objects in L2(R,C2), as the spaces are unitarily equivalent. Note, that then the
multiplication operator χŨ goes over to the operator χU , i.e.

S̃−1χŨ S̃ = χU .

In particular this leads to

tr
(
χŨf(H̃)χŨ

)
=
∑
k,n

tr
(
χŨf(H̃kn)χŨ

)
=
∑
k,n

tr
(
χUf(Hkn)χU

)
and

tr f
(
χŨH̃χŨ

)
=
∑
k,n

tr f
(
χŨH̃knχŨ

)
=
∑
k,n

tr f
(
χUHknχU

)
.

4.1.4. Asymptotics of the Radial Solutions

We now recall the asymptotics of the solutions of the radial ODEs and specify our
choice of fundamental solutions. Since we want to consider the propagator at the
horizon, we will need near-horizon approximations of the Xknω’s. In order to control
the resulting error terms, we now state a slightly stronger version of [11, Lemma 3.1],
specialized to the Schwarzschild case.

Lemma 4.1.2. For any u2 ∈ R fixed, in Schwarzschild spacetime every solution
X(u, ω) ≡ Xknω(u) for u ∈ (−∞, u2) is of the form

X(u, ω) =

(
f+0 e

−iωu

f−0 e
iωu

)
+R0(u, ω)

where the error term R0 decays exponentially in u, uniformly in ω. More precisely,
writing

R0(u, ω) =

(
e−iωug+(u, ω)
eiωug−(u, ω)

)
,
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the vector-valued function g = (g+, g−) satisfies the bounds

|g(u, ω)| ≤ cedu ,

∣∣∣∣ ddug(u, ω)
∣∣∣∣ ≤ dcedu for all u < u2 ,

with coefficients c, d > 0 which can be chosen independently of ω and u < u2 (only
depending on M, m, k, n and u2).

The proof, which follows the method in [11], is given in detail in Appendix A.
We can now explain how to construct the fundamental solutions Xa = (X+

a , X
−
a )

for a = 1 and 2 (for this see also [11, Section 3] and [17, Section 2.4]). In the case
that |ω| > m we choose X1 and X2 such that the corresponding functions f0 from the
previous lemma are of the form

f0 =

(
1
0

)
for X1 and f0 =

(
0
1

)
for X2 .

In the case |ω| ≤ m we consider the behavior of solutions at infinity (i.e. asymptotically
as u→ ∞). It turns out that there is (up to a prefactor) a unique fundamental solution
which decays exponentially. We denote it by X1. Moreover, we choose X2 as an ex-
ponentially increasing fundamental solution. We normalize the resulting fundamental
system at the horizon by

lim
u→−∞

|X1/2| = 1 .

Representing these solutions in the form of the previous lemma we obtain

X1/2(u) =

(
e−iωuf+0,1/2
eiωuf−0,1/2

)
+R0,1/2(u)

with coefficients f±0,1/2 ∈ C. Due to the normalization, we know that

|f0,1/2| = 1 and in particular |f±0,1/2| ≤ 1 .

Note however, that f0 and R0 from the previous Lemma may in general also depend
on k and n, but we will suppress to corresponding indices for ease of notation.

4.2. The Regularized Projection Operator

This section corresponds to [13, Section 3] (with some modifications).

4.2.1. Definition and Basic Properties

As previously mentioned, the entropy is computed using the mode-wise regularized

projection operator to the negative frequency space (Π
(ε)
BH)kn. This operator emerges

from e−itHkn from Section 4.1.2 by setting t = iε (the “iε”-regularization) and restrict-
ing to the negative frequencies. So more precisely, for any X ∈ C∞

0 (R,C2) and u ∈ R
the operator (Π

(ε)
BH)kn is defined by

(
(Π

(ε)
BH)kn X

)
(u) :=

1

π

ˆ 0

−∞
dω eεω

2∑
a,b=1

tknωab Xknω
a (u)⟨Xknω

b |X⟩ . (4.4)
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Moreover, we only consider finitely many occupied angular momentum modes. This
can be thought of as an additional regularization, which we now make precise. Let
O ⊂ (Z + 1/2) × N be an arbitrary finite subset (the “occupied” modes). We then

define the regularized projection operator to the negative frequency space Π
(ε)
BH in the

spirit of Section 4.1.3 as diagonal block operator

Π
(ε)
BH := diag

(
(Π̌

(ε)
BH)k1n1 , (Π̌

(ε)
BH)k2n2 , . . .

)
, with

(Π̌
(ε)
BH)kn :=

{
(Π

(ε)
BH)kn , (k, n) ∈ O

0 , else
,

where again ((ki, ni))i∈N is an enumeration of (Z + 1/2) × Z. Similar as explained
in Section 4.1.3, for operators of this form it suffices to consider the corresponding

operator for one angular mode (Π
(ε)
BH)kn.

Since in this section we focus on one angular mode, we will drop the superscripts
kn on the functions Xknω

a and tknωab in (4.4). Moreover, we will sometimes write the
ω-dependence of Xknω

a or tknωab as an argument, i.e.

Xknω
a (u) ≡ Xω

a (u) ≡ Xa(u, ω) for any u ∈ R .

The asymptotics of the radial solutions at the horizon (Lemma 4.1.2) yield the
following boundedness properties for the functions Xω

a :

Remark 4.2.1. Given u2 ∈ R and a constant C > 0, we consider functions X,Z ∈
L∞(R,C2) with the properties

suppX, suppZ ⊂ (−∞, u2] and ∥X∥L∞ , ∥Z∥L∞ < C .

Then the estimate in Lemma 4.1.2 yields∑
a,b

|tωab| |X(u)| |Xω
a (u, ω)| |Xω

b (u
′, ω)| |Z(u′)| ≤ 2C2 (1 + cedu) (1 + cedu

′
) ,

for almost all u, u′, ω ∈ R and with constants c, d only depending on k, n and u2 (as
well as M and m).
If we assume in addition that X and Z are compactly supported, then for any

g ∈ L1(R) the Lebesgue integral

ˆ ∞

−∞
du

ˆ ∞

−∞

dω

π
g(ω)

ˆ ∞

−∞
du′ tωab X

†(u)Xω
a (u, ω)X

ω
b (u

′, ω)† Z(u′) ,

is well-defined. Moreover, applying Fubini we may interchange the order of integration
arbitrarily. ♢

Furthermore, we will need the following technical Lemma, which tells us that testing
with smooth and compactly supported functions suffices to determine if a function is
in L2 and to estimate its L2-norm:
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Lemma 4.2.2. Let N be a manifold with integration measure µ. Given a function f ∈
L1
loc(N,Cn) (with n ∈ N), we assume that the corresponding functional on the test

functions

Φ : C∞
0 (N,Cn) → C , v 7→

ˆ
N
⟨v(x) | f(x)⟩Cn dµ(x)

is bounded with respect to the L2-norm, i.e.∣∣Φ(v)∣∣ ≤ C ∥v∥L2(N,Cn) for all v ∈ C∞
0 (N,Cn) .

Then f ∈ L2(N,Cn) and ∥f∥L2(N,Cn) ≤ C.

Proof. Being bounded, the functional Φ can be extended continuously to L2(N,Cn).
The Fréchet-Riesz theorem makes it possible to represent this functional by an L2-
function f̂ i.e. ∥f̂∥L2(N,Cn) ≤ C andˆ

N
⟨v(x),

(
f(x)− f̂(x)

)
⟩Cn dµ(x) = 0 for all v ∈ C∞

0 (N,Cn) .

The fundamental lemma of the calculus of variations (for vector-valued functions on a
manifold) yields that f = f̂ almost everywhere.

Now we have all the tools to prove the boundedness of the operator (Π
(ε)
BH)kn.

Lemma 4.2.3. Equation (4.4) defines a continuous endomorphism (Π
(ε)
BH)kn on the

space L2(R,C2) with operator norm

∥(Π(ε)
BH)kn∥∞ ≤ 1 .

Proof. Let X,Z ∈ C∞
0 (R,C2) be arbitrary. We apply (Π

(ε)
BH)kn to X and test with Z,

i.e. consider 〈
Z
∣∣∣ 1
π

ˆ 0

−∞
dω eεω

2∑
a,b=1

tωab Xa(u, ω)
〈
Xω

b

∣∣X〉〉 =: (∗) .

Applying Remark 4.2.1, we may interchange integrations such that

(∗) = 1

π

ˆ 0

−∞
dω eεω

2∑
a,b=1

tωab
〈
Z
∣∣Xω

a

〉 〈
Xω

b

∣∣X〉 .
Moreover, from [11, proof of Theorem 3.6] we obtain the estimate

ˆ ∞

−∞

dω

π

∣∣∣∣ 2∑
a,b=1

tωab
〈
X
∣∣Xω

a

〉〈
Xω

b

∣∣ Z〉∣∣∣∣ ≤ ∥X∥∥Z∥ , (4.5)

which yields
|(∗)| ≤ ∥X∥∥Z∥ .

Now by Lemma 4.2.2 we conclude that

(Π
(ε)
BH)knX ∈ L2(R,C2) and ∥(Π(ε)

BH)knX∥ ≤ ∥X∥ .

This estimate shows that (Π
(ε)
BH)kn extends to a continuous endomorphism on L2(R,C2)

with operator norm ∥(Π(ε)
BH)kn∥∞ ≤ 1.
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4.2.2. Functional Calculus for Hkn

In order to derive some more properties of (Π
(ε)
BH)kn we need to employ the functional

calculus of Hkn, as we want to rewrite

(Π
(ε)
BH)kn = g(Hkn) ,

for some suitable function g.
The following two Propositions constitute the main result of this section.

Proposition 4.2.4. Let g ∈ L1(R) be a bounded real-valued function. Then for any
X ∈ C∞

0 (R,C2), the operator g(Hkn) has the integral representation

(
g(Hkn)X

)
(u) =

ˆ ∞

−∞

dω

π
g(ω)

ˆ ∞

−∞
du′

2∑
a,b=1

tωab Xa(u, ω)
〈
Xb(u

′, ω)
∣∣X(u′)

〉
C2 , (4.6)

valid for almost any u ∈ R. Moreover, for any Z ∈ C∞
0 (R,C2),

⟨Z | g(Hkn)X⟩ =
ˆ ∞

−∞

dω

π
g(ω)

2∑
a,b=1

tωab ⟨Z|Xω
a ⟩⟨Xω

b |X⟩ , (4.7)

Proposition 4.2.5. Let g ∈ L1(R) be a bounded real-valued function. Then the oper-
ator g(Hkn) has the following properties:

(i) g(Hkn) extends to a continuous endomorphism on L2(R,C2) with operator norm

∥g(Hkn)∥∞ ≤ ∥g∥L∞(R) .

(ii) The operator g(Hkn) is self-adjoint.

Note that the above proposition also follows from the spectral theorem for the (pos-
sibly unbounded) self-adjoint operator Hkn, however we give another proof later, using
the integral representation which will follow from Proposition 4.2.4.

Proof of Proposition 4.2.4. We proceed in two steps.

First step: Proof for g ∈ C∞
0 (R): Since the Fourier transform is an automorphism on

the Schwartz space, for any g ∈ C∞
0 (R) there is a function ĝ ∈ S(R) such that

g(ω) =

ˆ
ĝ(t) e−iωt dt for any ω ∈ R .

We evaluate the right hand side of (4.6) for X ∈ C∞
0 (R,C2) arbitrary. Note that, when

testing this with some Z ∈ C∞
0 (R,C2), we may interchange the u- and ω-integrations

due to an argument similar as in Remark 4.2.1 We thus obtain〈
Z
∣∣∣ 1
π

ˆ
g(ω)

2∑
a,b=1

tab(ω)X
ω
a ⟨Xω

b |X⟩ dω
〉

=
1

π

ˆ
g(ω)

2∑
a,b=1

tab(ω)
〈
Z
∣∣Xω

a

〉 〈
Xω

b

∣∣X〉 dω
=

1

π

ˆ
dω

(ˆ
dt ĝ(t) e−itω

) 2∑
a,b=1

tab(ω)
〈
Z
∣∣Xω

a

〉 〈
Xω

b

∣∣X〉 =: (∗) .
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Using the rapid decay of ĝ together with (4.5), we can make use of the Fubini-Tonelli
theorem which leads to

(∗) =1

π

ˆ
dt ĝ(t)

ˆ
dω e−itω

2∑
a,b=1

tab(ω)
〈
Z
∣∣Xω

a

〉 〈
Xω

b

∣∣X〉 .
It is shown in [11] that

(∗) =
ˆ
ĝ(t)

〈
Z
∣∣ e−itHknX

〉
dt .

Now we can again apply Fubini’s theorem due to the rapid decay of ĝ and the bound-
edness of the operator e−itHkn (which follows from 4.5), leading to

(∗) =
〈
Z
∣∣∣ ( ˆ ĝ(t) e−itHkndt

)
X
〉
.

Next we use the multiplication operator version of the spectral theorem to rewrite Hkn

as
Hkn = U f U−1 ,

with a suitable unitary operator U and a Borel function f on the corresponding measure
space

(
σ(Hkn),Σ, µ

)
. Then

e−itHkn = U e−itf U−1 ,

and thus for any X̃ ∈ L2(R,C2) and almost any x ∈ σ(Hkn) it holds that(( ˆ
ĝ(t)e−itfdt

)
U−1X̃

)
(x) =

(ˆ
ĝ(t)e−itf(x)dt

)
(U−1X̃)(x) = g

(
f(x)

)
(U−1X̃)(x) ,

which leads to
(∗) =

〈
Z
∣∣ U(g ◦ f) U−1X

〉
=
〈
Z
∣∣ g(Hkn)X

〉
.

Thus we conclude that for any X,Z ∈ C∞
0 (R,C2),

〈
Z
∣∣∣ 1
π

ˆ ∞

−∞
g(ω)

2∑
a,b=1

tωab X
ω
a ⟨Xω

b |X⟩
〉
=
〈
Z
∣∣ g(Hkn)X

〉
.

Then Lemma 4.2.2 (together with similar estimates as before) yields that

ˆ ∞

−∞
g(ω)

2∑
a,b=1

tωab X
ω
a (.) ⟨Xω

b |X⟩ ∈ L2(R,C2) ,

and therefore

g(Hkn)X =
∑
kn

ˆ ∞

−∞
g(ω)

2∑
a,b=1

tωab X
ω
a ⟨Xω

b |X⟩ ,

almost everywhere.
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Second step: Proof for bounded g ∈ L1(R): We can find a sequence of test functions

(gn)n∈N in C∞
0 (R) which is uniformly bounded by a constant C > 0 such that6

gn → g in L1(R) and pointwise almost everywhere .

Then with f and U as before (where we applied the spectral theorem to Hkn) we
obtain for any X ∈ L2(R,C2)

gn
(
f(x)

)
(U−1X)(x) → g

(
f(x)

)
(U−1X)(x) for almost all x ∈ σ(Hkn) .

Moreover, with the notation ∆gn := gn − g we can estimate∣∣∆gn(f(x))(U−1X)(x)
∣∣ ≤ (C+∥g∥L∞(R)

)∣∣(U−1X)(x)
∣∣ for almost all x ∈ σ(Hkn),

note that a we can use ∥g∥L∞(R) instead of ∥g∥L∞(σ(Hkn),µ), because g is bounded on
all of R. The previous estimate shows that the function

(
C + ∥g∥L∞(R)

)
|U−1X| ∈

L2(σ(Hkn), µ) dominates the sequence of measurable functions
(
M∆gn◦f (U

−1X)
)
n∈N

which additionally tends to zero pointwise almost everywhere. Therefore, making use
of Lebesgue’s dominated convergence theorem, we conclude that

Mgn◦fU
−1X → Mg◦fU

−1X in L2(σ(Hkn), µ)

and thus
gn(Hkn)X → g(Hkn)X in L2(R,C2) .

In particular, this implies that for any X,Z ∈ C∞
0 (R,C2),

⟨Z | gn(Hkn)X⟩ → ⟨Z | g(Hkn)X⟩ . (4.8)

Next we need to show that the corresponding integral representations converge. To
this end, we note that, just as in the first case, we may interchange integrations in the
way

〈
Z
∣∣∣ ˆ ∞

−∞
dω ∆gn(ω)

2∑
a,b=1

tωab X
ω
a ⟨Xω

b |X⟩
〉

=

ˆ ∞

−∞
dω ∆gn(ω)

2∑
a,b=1

tωab ⟨Z|Xω
a ⟩⟨Xω

b |X⟩ =: (∗∗) .

Now keep in mind that Remark 4.2.1 also yields the bound∣∣∣∣ 2∑
a,b=1

tωab ⟨Z|Xω
a ⟩⟨Xω

b |X⟩
∣∣∣∣ ≤ CZ,X ,

6Note that such a sequence can always be constructed from an arbitrary sequence (g̃n)n∈N ⊆ C∞
0 (R)

converging to g in L1(R) by smoothly cutting off the values of the function whenever its absolute
value is larger than ∥g∥L∞(R) + 1 (to ensure uniform boundedness) and then going over to a
subsequence (to get pointwise convergence a.e., see for example [37, Theorem 3.12]).
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which holds uniformly in ω. Using this inequality, we obtain the estimate

|(∗∗)| ≤
ˆ ∞

−∞
dω
∣∣∆gn(ω)∣∣ ∣∣∣ 2∑

a,b=1

tωab⟨Z|Xknω
a ⟩⟨Xknω

b |X⟩
∣∣∣

≤ CZ,X

ˆ ∞

−∞

∣∣∆gn(ω)∣∣ dω n→∞−→ 0 .

Combined with (4.8), this finally yields for any X,Z ∈ C∞
0 (R,C2)

⟨Z | g(Hkn)X⟩ =
〈
Z
∣∣∣ ∑

kn

ˆ ∞

−∞
dω g(ω)

2∑
a,b=1

tωab X
ω
a ⟨Xω

b |X⟩
〉
.

We obtain (4.6) just as in the first case using Lemma 4.2.2. Finally, (4.7) follows by
testing with Z and again interchanging the integrals as explained before.

Proof of Proposition 4.2.5.

(i) This follows directly from (4.7) together with (4.5), because

|⟨Z | g(Hkn)X⟩L2 | (4.7)=
∣∣∣ ˆ dω

π
g(ω)

2∑
a,b=1

tωab
〈
Z |Xω

a

〉〈
Xω

b |X
〉∣∣∣

(4.5)

≤ ∥g∥∞∥Z∥∥X∥ .

(ii) Using (4.6), the following computation shows that the operator g(Hkn) is self-
adjoint because for any X,Z ∈ C∞

0 (R,C2) we have

⟨Z | g(Hkn)X⟩

=

ˆ
du

ˆ
dω

π
g(ω)

ˆ
du′

2∑
a,b=1

tωba
〈
X(u′) |Xb(u′, ω)

〉
C2

〈
Xa(u, ω) | Z(u)

〉
C2

Fubini
=

ˆ
du′
ˆ
dω

π
g(ω)

ˆ
du

2∑
a,b=1

tωab
〈
X(u′) |Xa(u′, ω)

〉
C2

〈
Xb(u, ω) | Z(u)

〉
C2

=
〈
X | g(Hkn)Z

〉
=
〈
g(Hkn)Z |X

〉
,

where in the second step we interchanged the names of the variables a and b.
Note that applying Fubini is justified in view of Remark 4.2.1. From this equation
the self-adjointness follows by continuous extension.

Now we apply these results to the operator Π
(ε)
BH:
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Corollary 4.2.6. Consider the function

g : R → R , ω 7→ χ(−∞,0)(ω) e
εω ,

then
(Π

(ε)
BH)kn = g(Hkn) .

Moreover, for ηκ as before we have:

ηκ
(
(Π

(ε)
BH)kn

)
= (ηκ ◦ g)(Hkn) . (4.9)

Proof. First of all note that

(Π
(ε)
BH)kn = g(Hkn) ,

as both operators clearly agree on the dense subset C∞
0 (R,C2) ⊆ L2(R,C2) (see Propo-

sition 4.2.4) and are bounded (see Lemma 4.2.3 and Proposition 4.2.5). Equation (4.9)
then follows by applying the functional calculus of Hkn (which is applicable due to
Proposition 4.2.5).

4.2.3. Representation as a Pseudo-Differential Operator

The general idea is to rewrite Π
(ε)
BH in the form of Opα(A) and identify α with the

inverse regularization constant.
With the help of (4.6), we obtain for any ψ ∈ C∞

0 (R,C2)(
(Π

(ε)
BH)knψ

)
(u)

=
1

π

ˆ ∞

−∞
dω

ˆ ∞

−∞
du′e−iω(u−u′)

[(
aε,11(ω) aε,12(u, ω)

aε,21(u, ω) aε,22(ω)

)
+R0,ε(u, u

′, ω)

]
ψ(u′) ,

(4.10)

with

aε,11(ω) = eεω
(∣∣f+0,1(ω) ∣∣2 χ(−m,0)(ω) +

1

2
χ(−∞,−m)(ω)

)
aε,12(u, ω) = e−εω e2iωu

(
f−0,1(−ω) f

+
0,1(−ω) χ(0,m)(ω) + t12(−ω) χ(m,∞)(ω)

)
aε,21(u, ω) = eεω e2iωu

(
f−0,1(ω) f

+
0,1(ω) χ(−m,0)(ω) + t21(ω) χ(−∞,−m)(ω)

)
aε,22(ω) = e−εω

(∣∣f−0,1(ω) ∣∣2 χ(0,m)(ω) +
1

2
χ(m,∞)(ω)

)
,

and some error matrix R0,ε(u, u
′, ω) related to the error term R0(u, ω) in Lemma 4.1.2.

A more detailed computation is given in Appendix B. Moreover, a more precise form
of R0,ε(u, u

′, ω) can be found in Section 4.5.1.

In order to bring (Π
(ε)
BH)kn in the form of Opα(A), we need to rescale the ω-integral

by a parameter α. As previously mentioned the idea in this chapter is to use ε−1 for
the role of α. Introducing the notation

ξ := εω ,
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we thereby obtain for any ψ ∈ C∞
0 (R,C2)(

(Π
(ε)
BH)knψ

)
(u)

=
ε−1

π

ˆ ∞

−∞
dξ

ˆ ∞

−∞
du′e−iξ(u−u′)/ε

[( aε,11(ξ/ε) aε,12(u, ξ/ε)
aε,21(u, ξ/ε) aε,22(ξ/ε)

)
+R0,ε(u, u

′, ξ/ε)
]
ψ(u′) ,

(4.11)

and set

R(ε)
0 (u, u′, ξ) := R0,ε(u, u

′, ξ/ε)

A(ε)
BH(u, ξ) :=

(
aε,11(ξ/ε) aε,12(u, ξ/ε)

aε,21(u, ξ/ε) aε,22(ξ/ε)

)
. (4.12)

Note that for the Schwarzschild case we always replace the arguments x and y in the
definition of Opα(A) by u and u′ to emphasize that we are working with Regge-Wheeler
coordinates.

4.3. Definition of the Entropy of the Horizon

This section corresponds to [13, Section 4] (with some modifications).
We now explain in more detail what we mean by the Rényi entanglement entropy

of the horizon. Our starting point is the Rényi entropy operator from (1.2)

ηκ
(
χK̃Π

(ε)
BHχK̃

)
− χK̃ηκ

(
Π

(ε)
BH

)
χK̃ , (4.13)

where for the area we take an annular region K̃ around the horizon of width ρ as
defined in (1.3):

K̃ := (u0 − ρ, u0)× S2 ,

see also figure 4.1. Note that in the Regge-Wheeler coordinate u the horizon is located
at u→ −∞, so ultimately we want to consider the limit u0 → −∞ and ρ→ ∞.

As explained in Section 4.1.3 we can compute the trace of the operator (4.13) mode
wise going over to the subregions K:

tr
(
ηκ
(
χK̃Π

(ε)
BHχK̃

)
− χK̃ηκ

(
Π

(ε)
BH

)
χK̃

)
=

∑
(k,n)∈O

tr
(
ηκ
(
χK(Π

(ε)
BH)knχK

)
− χKηκ

(
(Π

(ε)
BH)kn

)
χK

)
,

where O ⊂ (Z + 1/2) × N denotes the set of occupied modes as introduced in Sec-
tion 4.2.1.
Thus we consider the mode-wise Rényi entropy of the black hole as defined in (1.5):

SBH
κ,kn =

1

2
lim
ρ→∞

lim
ε↘0

1

f(ε)
lim

u0→−∞
trSκ

(
(Π

(ε)
BH)kn,K

)
where f(ε) is a function describing the highest order of divergence in ε (we will later
see that here f(ε) = ln(1/ε)).
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K̃

Figure 4.1.: Cross section visualizing the set K̃ = K × S2 (similar to [13, Figure 2]).

The complete entanglement entropy of the black hole is then the sum over all occu-
pied modes (see equation (1.6)).
In order to compute this in more detail, we will prove that

lim
ρ→∞

lim
ε↘0

1

f(ε)
lim

u0→−∞
tr
(
ηκ
(
χK(Π

(ε)
BH)knχK

)
− χKηκ

(
(Π

(ε)
BH)kn

)
χK

)
(4.14)

= lim
ρ→∞

lim
ε↘0

1

f(ε)
lim

u0→−∞
tr
(
ηκ
(
χKOp1/ε(A

(0))χK
)
− χKηκ

(
Op1/ε(A

(0))
)
χK

)
, (4.15)

with the symbol

A(0)(ξ) :=

(
eξχ(−∞,0)(ξ) 0

0 e−ξχ(0,∞)(ξ)

)
. (4.16)

(We will later see that the operators in (4.14) and (4.15) are well-defined and trace
class). The notation A(0) is supposed to emphasize the connection to the ε → 0 limit

of A(ε)
BH. Since A(0) is diagonal the computation of (4.15) is much easier than the one

for (4.14). In fact we have

(4.15) =
2∑

j=1

lim
ρ→∞

lim
ε↘∞

1

f(ε)
lim

u0→−∞
tr
(
ηκ
(
χKOp1/ε(a0,j)χK

)
− χKηκ

(
Op1/ε(a0,j)

)
χK

)
with the scalar functions

a0,1(ξ) := eξχ(−∞,0)(ξ) and a0,2(ξ) := e−ξχ(0,∞)(ξ) . (4.17)

This reduces the computation of (4.15) to a problem for real-valued symbols for which
many results are already established.

4.4. Trace of the Limiting Operator

This section corresponds to [13, Section 6] (with some modifications).
In this section we will only consider the operator Op1/ε(a0,1) in (4.17). Of course,

the same methods apply to Op1/ε(a0,2).
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Remark 4.4.1. Note similar as in the proof of Lemma 3.0.1, the operator Op1/ε(a0,1)
can be rewritten as

Op1/ε(a0,1) = F a0,1(ε ·) F−1 ,

and is therefore well-defined on all of L2(R). Moreover, due to Lemma 3.0.2 its integral
representation extends to all Schwartz functions. Furthermore, if we add characteristic
functions χU for some bounded subset U ⊆ R, the integral representation of the
operator χUOp1/ε(a0,1)χU holds on all of L2(R) due to Lemma 3.0.6. ♢

4.4.1. A Theorem by Widom and Proof for Smooth Functions

The general idea is to make use of the following one-dimensional result by Widom
in [49] (adapted to our notation).

Theorem 4.4.2. Let K,J ⊆ R be intervals, f ∈ C∞(R) a smooth function with
f(0) = 0 and a ∈ C∞(R2) a complex-valued Schwartz function which we identify with
the symbol a(x, y, ξ) ≡ a(x, ξ) for any x, y, ξ ∈ R. Moreover, for any symbol b we
denote its symmetric localization by

A(b) :=
1

2

(
χK Opα

(
IJ b
)
χK +

(
χKOpα

(
IJ b
)
χK

)∗)
, (4.18)

(recall that IJ is the characteristic function corresponding to J ⊆ R with respect to the
variable ξ). Then

tr
(
f(A(a))− χK Opα

(
IJ f(a)

)
χK

)
=

1

4π2
ln(α)

∑
i

U
(
a(vi); f

)
+O(1) ,

where vi are the vertices of K × J (see Figure 4.2) and

U(c; f) :=

ˆ 1

0

f(tc)− tf(c)

t(1− t)
dt for any c ∈ R .

Remark 4.4.3. (i) To be precise, Widom considered operators with kernels

α

2π

ˆ
dy

ˆ
dξ e+iαξ(x−y) a(x, ξ)

but the results can clearly be transferred using the transformation ξ → −ξ.

(ii) Moreover, Widom considered operators of the form Opα(a) whose integral rep-
resentation extends to all of L2(K). We note that, in view of Lemma 3.0.6, this
assumption holds for any operator Opα(a) with Schwartz symbol a = a(x, ξ),
even if, a-priori, the integral representation holds only when inserting smooth
compactly supported functions. ♢

We want to apply the above theorem with

α = ε−1 , J = (−∞, 0) =: J , K = K = (u0 − ρ, u0) ,

where we choose f as a suitable approximation of the Rényi entropy function ηκ
(such that f(0) = 0) and a as an approximation of the diagonal matrix entries a0,j
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(a) Vertices if K and J are both finite: There
are in total four vertices.

(b) Vertices if K is finite and J is infinite:
There are only two vertices.

Figure 4.2.: Illustration with examples of the “vertices” in Theorem 4.4.2 (see [13,
Figure 3]).

with j = 1, 2 in (4.17). For ease of notation, we only consider a ≈ a0,1, noting that
our methods apply similarly to a0,2. To be more precise, we first introduce the smooth
non-negative cutoff functions Ψ,Φ ∈ C∞(R) with

Ψ(ξ) =

{
1 , ξ ≤ 0

0 , ξ > 1
and Φ(u) =

{
1 , u ∈ [−ρ, 0]
0 , u /∈ (−ρ− 1, 1) ,

and set Φu0(x) := Φ(x− u0). Then we define

a(u, ξ) := Ψ(ξ) Φu0(u) e
ξ , (4.19)

this will play the role of a in Theorem 4.4.2. Note that then a is a Schwartz function
and

χK Op1/ε(IJ a) χK = χK Op1/ε(a0,1) χK .

Moreover, the resulting symbol clearly fulfills the condition of Lemma 3.0.6, so we can
extend the corresponding integral representation to all L2(R,C)-functions. In addition,
the operator is self-adjoint, because of Lemma 3.0.1. This implies that we can leave
out the symmetrization in (4.18), i.e.

A(a) = χK Op1/ε(IJ a) χK = χK Op1/ε(a0,1) χK .

Furthermore, due to Lemma 3.0.1, we may pull out any function f as in the above
Theorem 4.4.2 in the sense that

χK Op1/ε
(
IJ f(a)

)
χK = χK Op1/ε

(
f(a0,1)

)
χK = χK f(Op1/ε(a0,1)) χK ,

where we used that a0,1 vanishes outside J and that f(0) = 0.
The vertices of K × J are (similar as in Figure 4.2 (B)) given by

v1 = (u0, 0) and v2 = (u0 − ρ, 0) ,
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and thus
a(vi) = 1 , for any i = 1, 2 ,

leading to

tr
(
f
(
χKOp1/ε(a0,1)χK

)
− χKf

(
Op1/ε(a0,1)

)
χK

)
=

1

2π2
ln(1/ε) U(1; f) +O(1) ,

(4.20)

valid for any f ∈ C∞(R) with f(0) = 0.
Note that, using Lemma 3.0.3 and the fact that a0,1 does not depend on u or u′, the

O(1)-term does not change when varying u0, and therefore the result stays same when
we take the limit u0 → −∞. We need to keep this in mind because we shall take the
limit u0 → −∞ before the limit ε↘ 0 (see (1.5)).

4.4.2. Proof for Non-Differentiable Functions

Note that from now on we will use the scaling parameter α (which is simply a math-
ematical parameter) for more abstract results. In the end results we then apply this
to α = 1/ε (with the regularization length ε), as in the following theorem, which
constitutes the main result of this section.

Theorem 4.4.4. Let K = (u0 − ρ, u0) (as in (1.4)) and a0,1(ξ) = eξ χ(−∞,0)(ξ) as

in (4.17). Moreover, let g ∈ C2(R \ {t0, . . . , tl}) ∩ C0(R) satisfy Condition 2.2.5 with
g(0) = 0. Then

lim
α→∞

lim
u0→−∞

1

lnα
trDα(g,K, a0,1) =

1

2π2
U(1; g) .

In particular for α = 1/ε,

lim
ε↘0

lim
u0→−∞

1

ln(1/ε)
trD1/ε(g,K, a0,1) =

1

2π2
U(1; g) . (4.21)

In the proof of Theorem 4.4.4, we will apply Theorem 2.2.4 and Proposition 2.2.9.
In order to complete the error estimates, we need to control the term ∥PA(1− P )∥σq
in the end. This can be done with the following lemma.

Lemma 4.4.5. Let u0 ∈ R arbitrary and K = (u0− ρ, u0). Choose numbers q ∈ (0, 1],
α ≥ 3 and ρ ≥ 2. Then the symbol a0,1 from (4.17) satisfies∥∥χK Opα(a0,1) (1− χK)

∥∥q
q
≲ lnα .

with implicit constants independent of α ≥ 3 and u0.

Proof. First of all we make use Lemma 3.0.3 in order to replace the region K by the
interval K0 := (−ρ, 0):

∥χK Opα(a0,1) (1− χK)∥qq = ∥χK0 Opα(a0,1) (1− χK0)∥qq .
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Next, let (Ψj)j∈Z be a partition of unity with Ψj(x) = Ψ0(x − j) for all j ∈ Z
and suppΨ0 ⊆ (−1

2 ,
3
2). For any j ∈ Z we consider the symbols

aj(ξ) := Ψj(ξ) e
ξ ,

Using the notation Jj := (j − 1, j) for any j ∈ Z≤0 we obtain with the help of
Lemma 3.0.8 together with Remark 3.0.9,

χK0 Opα(IJja0,1) (1−χK0) = χK0 Opα(IJjaj) (1−χK0) = χK0 PJj ,αOpα(aj) (1−χK0) ,

so with the triangle inequality (2.4) we conclude that

∥χK0 Opα(a0,1) (1− χK0)∥qq ≤
∑

j∈Z≤0

∥χK0 PJj ,α Opα(aj) (1− χK0)∥qq . (4.22)

In the next step we want to interchange PJj ,α and χK0 . To this end we make use of
Lemma 2.2.11 giving

∥[PJj ,α, χK0 ]∥qq ≤ 2∥(1− χK0)PJj ,αχK0∥qq .

Moreover, using Remark 3.0.4 together with Corollary 2.2.14 we conclude that for any
j ∈ Z≤0:

∥(1−χK0)PJj ,αχK0∥qq = ∥(1−χK0)Opα(IJj )χK0∥qq = ∥(1−χK0)Opα(IJ0)χK0∥qq ≲ lnα,

with an implicit constant independent of j ∈ Z≤0, α ≥ 2 and u0. Moreover making
use of Lemma 2.2.12 together with Lemma 3.0.2 and Remark 3.0.7 and the fact that

N(1,1,2)(aj ; 1, 1) ≲ ej ,

with an implicit constant independent of j we obtain for any α ≥ 1,

∥Opα(aj)∥q∞ ≲ eqj ,

again with an implicit constant independent of j and α. Using (2.5), this allows us to
estimate

∥χK0 PJj ,α Opα(aj) (1− χK0)∥qq
≤ ∥[χK0 , PJj ,α] Opα(aj) (1− χK0)∥qq + ∥PJj ,α χK0 Opα(aj) (1− χK0)∥qq
≤ ∥[χK0 , PJj ,α]∥qq ∥Opα(aj) (1− χK0)∥q∞ + ∥PJj ,α∥q∞ ∥χK0 Opα(aj) (1− χK0)∥qq
≲ eqj lnα+ ∥χK0 Opα(aj) (1− χK0)∥qq , (4.23)

with an implicit constant independent of j ∈ N0 and α ≥ 2. Thus it remains to estimate
the term ∥χK0 Opα(aj) (1− χK0)∥

q
q. To this end we want to apply Proposition 2.2.15

to aj . So choose δ = 2 and ζ = j − 1/2 and k = ⌊2q−1⌋+ 1, then

N(k)(aj ; δ) ≲ ej ,

with an implicit constant independent of j. This yields

∥χK0 Opα(aj) (1− χK0)∥qq ≤ ∥χK0 Opα(aj) (1− χK0)∥qq ≲ eqj , (4.24)
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with an implicit constant independent of j and α ≥ 2. Then, summarizing (4.22),
(4.23) and (4.24) yields

∥χK Opα(a0,1) (1− χK)∥qq ≤
∑

j∈Z≤0

∥χK0 PJj ,α Opα(aj) (1− χK0)∥qq

≲
∞∑
j=0

e−qj (lnα+ 1) ≲ lnα ,

with an implicit constant independent of α ≥ 3 and u0.

In the proof of Theorem 4.4.4 we will also make use of the following continuity result
for U(1; f).

Lemma 4.4.6. Let f be a function on [0, 1] with f(0) = 0.

(i) If f ∈ C2([0, 1]) denote

∥f∥C2 := max
0≤k≤2

max
t∈[0,1]

∣∣f (k)(t)∣∣ .
Then,

|U(1; f)| ≤ 9

2
∥f∥C2 .

(ii) If f satisfies Condition 2.2.5 with T = {z} where z = 0 or z = 1 and is supported
in [z −R, z +R] ∩ [0, 1] for some R < 1

2 , then

|U(1; f)| ≤ f 2
Rγ

γ(1−R)
.

Proof. First split the integral in the definition of U(1; f) as follows:

∣∣U(1; f)
∣∣ ≤ ∣∣∣∣∣
ˆ 1/2

0

1

t(1− t)

(
f(t)− tf(1)

)
dt

∣∣∣∣∣︸ ︷︷ ︸
=:(I)

+

∣∣∣∣∣
ˆ 1

1/2

1

t(1− t)

(
f(t)− tf(1)

)
dt

∣∣∣∣∣︸ ︷︷ ︸
=:(II)

.

(i) For the estimate of (I) consider the Taylor expansion for f around t = 0 keeping
in mind that f(0) = 0:

f(t) = tf ′(0) +
t2

2
f ′′
(
t̃
)

for suitable t̃ ∈ [0, t] ,

and therefore

(I) ≤
ˆ 1/2

0

∣∣∣ 1

(1− t)

∣∣∣︸ ︷︷ ︸
≤2

(
|f ′(0)|︸ ︷︷ ︸
≤∥f∥C2

+ |t/2|︸︷︷︸
≤1/4

|f ′′(t̃)|︸ ︷︷ ︸
≤∥f∥C2

)
dt+

ˆ 1/2

0

∣∣∣ 1

(1− t)

∣∣∣︸ ︷︷ ︸
≤2

|f(1)|︸ ︷︷ ︸
≤∥f∥C2

dt

≤ 9

4
∥f∥C2
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(note that t̃ is actually a function of t, but this is unproblematic because f ′′ is
uniformly bounded).

Similarly, for the estimate of (II) we use the Taylor expansion of f , but now
around t = 1,

f(t) = f(1) + (t− 1)f ′(1) +
(t− 1)2

2
f ′′(t̃) for suitable t̃ ∈ [0, t] .

We thus obtain

(II) ≤
ˆ 1

1/2

∣∣∣ 1

t(1− t)

∣∣∣(|1− t| |f(1)|+ |1− t| |f ′(1)|+ |1− t|2

2
|f ′′(t̃)|

)
dt

≤
ˆ 1

1/2
|1/t|︸︷︷︸
≤2

(
|f(1)|︸ ︷︷ ︸
≤∥f∥C2

+ |f ′(1)|︸ ︷︷ ︸
≤∥f∥C2

+
|1− t|

2︸ ︷︷ ︸
≤1/4

|f ′′(t̃)|︸ ︷︷ ︸
≤∥f∥C2

)
dt ≤ 9

4
∥f∥C2 .

(ii) (a) Case z = 0: First note that

|f(t)| ≤ f 2|t|γ for any t ∈ (0, 1/2) .

This yields for R < 1/2,

|(I)| =
∣∣∣ˆ 1/2

0

1

t(1− t)
f(t)dt

∣∣∣ ≤ ˆ R

0

1

|1− t|︸ ︷︷ ︸
≤1/(1−R)

f 2|t|γ−1dt

≤ 1

1−R
f 2

ˆ R

0
|t|γ−1︸ ︷︷ ︸

=Rγ/γ

dt ≤ f 2
Rγ

γ(1−R)
,

Moreover, the integral (II) vanishes for R < 1/2.

(b) Case z = 1: Similarly as in the previous case, we now have

(I) = 0 for R < 1/2 .

Moreover, just as before, we can estimate

|f(t)| ≤ f 2|1− t|γ for any t ∈ (1/2, 1) .

This yields for R < 1/2,

|(ii)| ≤ f 2

ˆ 1

1−R

1

|t|
|1− t|1−γ dt ≤ f 2

Rγ

γ(1−R)
.

Now we have all the tools to prove Theorem 4.4.4.
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Proof of Theorem 4.4.4. Before beginning, we note that the u0-limit in (4.21) may be
disregarded, because the symbol is translation invariant in position space (see Lemma
3.0.3, noting that a0,1 does not depend on u ≡ x or u′ ≡ y).

The remainder of the proof is based on the idea of [41, Proof of Theorem 4.4] Let a
be the symbol in (4.19). By Lemma 2.2.12 together with Lemma 3.0.6, we can assume
that the operator norm of Opα(a) is uniformly bounded in α. Next, we want to apply
Lemma 3.0.8 with A = a and B = IJ (recall that J = (−∞, 0)). In order to verify
the conditions of this lemma, we first note that, Remark 3.0.9 (i) yields condition (ii),
whereas condition (i) follows from the estimate

ˆ
du
∣∣∣ˆ dξ e−iξu eξ ψ(ξ) Ψ(ξ) Φu0(u)

∣∣∣2 ≤ ˆ u0+1

u0−ρ−1
du
( ˆ

dξ χ(−∞,1)(ξ) e
ξ |ψ(ξ)|

)2
≤ (ρ+ 2) ∥χ(−∞,1) e

·∥2L2(R,C) ∥ψ∥
2
L2(R,C) ,

(which holds for any ψ ∈ L2(R)). Now Lemma 3.0.8 yields

Opα(IJ a) = Opα(a) Pα,J .

Since Pα,J is a projection operator, we see that ∥Opα(IJ a)∥∞ ≤ ∥Opα(a)∥∞ for all α.
In particular, the operator Opα(IJ a) is bounded uniformly in α. Hence,∥∥χKOpα(a0,1)χK

∥∥
∞ =

∥∥χK Opα(IJ a) χK
∥∥
∞ ≤ ∥Opα(a)∥∞ =: C1 ,

uniformly in α. Moreover, the sup-norm of the symbol a0,1 itself is bounded by a
constant C2. We conclude that we only need to consider the function g on the interval[

−max{C1, C2}, max{C1, C2}
]
.

Therefore, we may assume that

supp g ⊆ [−C,C] with C := max{C1, C2}+ 1 ,

possibly replacing g by the function

g̃ = ΨC g

with a smooth cutoff function ΨC ≥ 0 such that

ΨC |[−C+1,C−1] ≡ 1 , and suppΨC ⊆ [−C,C] .

For ease of notation, we will write g ≡ g̃ in what follows.
We remark that the functions ηκ which we plan to consider later already satisfy this

property by definition with C = 2. From Proposition 2.2.9 and Lemma 4.4.5 we see
that Dα(g,K, a0,1) is indeed trace class. We now compute this trace, proceeding in
two steps.

First Step: Proof for g ∈ C2(R).
To this end, we first apply the Weierstrass approximation theorem as given in [34,
Theorem 1.6.2] to obtain a polynomial gδ such that fδ := g − gδ fulfills

max
0≤k≤2

max
|t|≤C

∣∣f (k)δ (t)
∣∣ ≤ δ . (4.25)
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-2 -1 1 20

-1Figure 4.3.: Visualization of the cutoffs and approximations in the first step of the
proof of Theorem 4.4.4 for C = 2. We start with a function g, which is
first multiplied by the cutoff-function ΨC , giving g̃. This function is then
approximated by a polynomial gδ. Multiplying gδ by the cutoff function
ΨC results in a function which is here called g̃δ (but does not directly
appear in the proof). The function f̃δ is then given by the difference
between g̃ and g̃δ (see [13, Figure 5]).

Without loss of generality we can assume that fδ(0) = 0 (otherwise replace fδ by
the function t 7→ fδ/2(t) − fδ/2(0)). In order to control the error of the polynomial
approximation, we apply Theorem 2.2.4 with k = 2, R = C, some σ ∈ (0, 1), q = 1
and

A = Opα(a0,1) , P = χK , g = f̃δ := fδ ΨC

(note that here g is the function in Theorem 2.2.4) where ΨC is the cutoff function
from before (the cutoffs and approximation are visualized in Figure 4.3). This gives∥∥fδ(χK Opα(a0,1

)
χK
)
− χK fδ

(
Opα(a0,1)

)
χK
∥∥
1

=
∥∥f̃δ(χK Opα(a0,1) χK

)
− χK f̃δ

(
Opα(a0,1)

)
χK
∥∥
1

≲ δ
∥∥χK Opα(a0,1) (1− χK)

∥∥σ
σ
.

with an implicit constant independent of δ and α. Moreover, applying Lemma 4.4.5,
we conclude that for α large enough∥∥fδ(χK Opα(a0,1) χK

)
− χK fδ(Opα(a0,1)) χK

∥∥
1
≲ δ lnα ,

(again with an implicit constant independent of δ and α). Using this inequality, we
can estimate the trace by

trDα(g,K, a0,1) ≤ trDα(gδ,K, a0,1) + ∥Dα(fδ,K, a0,1)∥1
≤ trDα(gδ,K, a0,1) + C3 δ lnα ,

with a constant C3 independent of δ and α. In order to compute the remaining trace,
we can again apply Theorem 4.4.2 (exactly as in the example (4.20)). This gives

trDα(gδ,K, a0,1) =
1

2π2
ln(α) U(1; gδ) +O(1) ,
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and thus

trDα(g,K, a0,1) ≤
1

2π2
ln(α) U(1; gδ) + C3 δ lnα+O(1) ,

which yields,

lim sup
α→∞

1

lnα
trDα(g,K, a0,1) ≤

1

2π2
U(1; gδ) + C3 δ . (4.26)

Moreover, applying Lemma 4.4.6 (i) to fδ we obtain due to (4.25)

lim
δ→0

|U(1; gδ)− U(1; g)| = lim
δ→0

|U(1; fδ)| = 0 .

Therefore, taking the limit δ → 0 in (4.26) gives

lim sup
α→∞

1

lnα
trDα(g,K, a0,1) ≤

1

2π2
U(1; g) .

Analogously, using

1

2π2
ln(α) U(1; gδ) +O(1) = trDα(gδ,K, a0,1) ≤ trDα(g,K, a0,1) + ∥Dα(fδ,K, a0,1)∥1

≤ trDα(g,K, a0,1) + C3 δ lnα ,

we obtain

lim inf
α→∞

1

lnα
trDα(g,K, a0,1) ≥

1

2π2
U(1; gδ) + C3 δ .

Now we can take the limit δ → 0,

lim inf
α→∞

1

lnα
trDα(g,K, a0,1) ≥

1

2π2
U(1; g) .

Combining the inequalities for the lim sup and lim inf, we conclude that for any func-
tion g ∈ C2(R),

lim
α→∞

1

lnα
trDα(g,K, a0,1) =

1

2π2
U(1; g) . (4.27)

Second Step: Proof for g as in claim.
By choosing a suitable partition of unity and making use of linearity, it suffices to
consider the case T = {z} meaning that g is non-differentiable only at one point z.
Next we decompose g into two parts with a cutoff function ξ ∈ C∞

0 (R) with the
property that

ξ(t) =

{
1, |t| ≤ 1/2

0, |t| ≥ 1
.

and writing

g = g
(1)
R + g

(2)
R ,

with

g
(1)
R (t) := g(t) ξ

(
(t− z)/R

)
⇒ supp g

(1)
R ⊆ [z −R, z +R] ,

g
(2)
R (t) := g(t)− g

(1)
R (t) ⇒ supp g

(2)
R ⊆ [−C,C] ;
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0.25 0.5 0.75 10

0.25

0.5

Figure 4.4.: Schematic plot of a function g (blue) with diverging derivative for t ↘ 0

with the corresponding functions g
(1)
1/2 (red), g

(1)
1/4 (orange) and g

(1)
1/10

(green): They are cutting out the non-differentiable point (see [13, Fig-
ure 6]).

see also Figure 4.4. Note that the derivatives of g
(1)
R satisfy the bounds

(
g
(1)
R

)(k)
(t) =

k∑
n=0

c(n, k) g(k−n)(t) ξ(n)
(
(t− z)/R

) 1

Rn
,

(with some numerical constants c(n, k)) and therefore the norm . 2 in Condition 2.2.6
can be estimated by

g
(1)
R 2 = max

0≤k≤2
sup
t̸=z

∣∣∣∣ k∑
n=0

c(n, k) g(k−n)(t) ξ(n)
(
(t− z)/R

) 1

Rn

∣∣∣∣ · |t− z|−γ+k

≤ max
0≤k≤2

sup
t̸=z

k∑
n=0

∣∣c(n, k)∣∣ ∣∣g(k−n)(t)
∣∣ |t− z|−γ+k−n

∣∣ξ(n)((t− z)/R
)∣∣ |t− z|n

Rn
.

Noting that on the support of
(
g
(1)
R

)(k)
we have

|t− z|
R

≤ 1 ,

we conclude that

g
(1)
R 2 ≤ C4 g 2 (4.28)

with C4 independent of R (also note that g 2 is bounded by assumption).
For what follows, it is also useful to keep in mind that

0 = g
(1)
R (0) = g

(2)
R (0) .

Now we apply (4.27) to the function g
(2)
R (which clearly is in C2(R)),

lim
α→∞

1

lnα
trDα(g

(2)
R ,K, a0,1) = U(1; g

(2)
R ) .
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Next, we apply Proposition 2.2.9 to g
(1)
R with A and P as before, q = 1 and some

σ < min{1, γ},∥∥Dα

(
gR(1),K, a0,1

)∥∥
1
≤ Cσ g 2 R

γ−σ
∥∥χK Opα(a0,1) (1− χK)

∥∥σ
σ
.

Then applying Lemma 4.4.5 (for α large enough) yields∥∥Dα

(
gR(1),K, a0,1

)∥∥
1
≤ C5 g 2 R

γ−σ lnα .

where the constant C5 is independent of R and α. Just as before, it follows that

lim sup
α→∞

1

lnα
trDα(g,K, a0,1) ≤ U

(
1; g

(2)
R

)
+ C5 g 2 R

γ−σ ,

lim inf
α→∞

1

lnα
trDα(g,K, a0,1) ≥ U

(
1; g

(2)
R

)
+ C5 g 2 R

γ−σ .

The end result follows just as before by taking the limit R → 0, provided that we

can show the convergence U(1; g
(2)
R ) → U(1; g) for R → 0. To this end note that if

z /∈ {0, 1} we have

|U(1; g
(2)
R )− U(1; g)| = |U(1; g

(1)
R )| ≤ C6R

for some C6 > 0 independent of R provided that R is sufficiently small (more precisely,

so small that g
(1)
R vanishes in neighborhoods around 0 and 1; note that the integrand

is supported in [z − R, z + R] and bounded uniformly in R). These estimates show

that limR→0 U(1; g − g
(2)
R ) = 0 in the case that z is neither 0 nor 1. In the remaining

cases where z is either 0 or 1 we can apply Lemma 4.4.6, which also yields due to
(4.28),

lim
R→0

|U(1; g
(2)
R )− U(1; g)| = lim

R→0
|U(1; g

(1)
R )| = C4 g 2 lim

R→0

Rγ

γ(1−R)
= 0 .

This concludes the proof.

We finally apply Theorem 4.4.4 to the functions ηκ and the matrix-valued symbol A0

(see (1.1) and (4.16)).

Corollary 4.4.7. For any κ > 0, ηκ, K and A(0) as before,

lim
ε↘0

lim
u0→∞

1

ln(1/ε)
trD1/ε(ηκ,K,A(0)) =

1

π2
U(1; ηκ) =

1

6

κ + 1

κ
.

Moreover, in the case that κ = 1, i.e. ηκ = η, we can explicitly compute the coefficient
U(1; η) to give

lim
ε↘0

lim
u0→∞

1

ln(1/ε)
trD1/ε(η,K,A(0)) =

1

π2
U(1; η) =

1

3
.
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Proof. As explained in Example 2.2.8, the functions ηκ satisfy Condition 2.2.5 with
for any γ < min(1,κ). Moreover, we have ηκ(0) = 0 for any κ > 0. Therefore we can
apply Theorem 4.4.4 and obtain

lim
ε↘0

lim
u0→∞

1

ln(1/ε)
trD1/ε(ηκ,K, a0,1) =

1

2π2
U(1; ηκ) .

Repeating the procedure analogously for a0,2 gives

lim
ε↘0

lim
u0→∞

1

ln(1/ε)
trD1/ε(ηκ,K, a0,2) =

1

2π2
U(1; ηκ) ,

and therefore

lim
ε↘0

lim
u0→∞

1

ln(1/ε)
trD1/ε(ηκ,K,A(0)) =

1

π2
U(1; ηκ) .

By [29, Appendix], evaluating U(1; ηκ) yields

U(1; ηκ) =

ˆ 1

0

ηκ(t)

t(1− t)
dt =

π2

6

κ + 1

κ
,

and therefore

lim
ε↘0

lim
u0→∞

1

ln(1/ε)
trD1/ε(ηκ,K,A(0)) =

1

π2
U(1; ηκ) =

1

6

κ + 1

κ
.

This concludes the proof.

Corollary 4.4.7 already looks quite similar to Theorem 1.0.1. The remaining task is
to show equality in (4.15). To this end, we need to show that all the correction terms
drop out in the limits u0 → ∞ and α→ ∞. The next section is devoted to this task.

4.5. Estimating the Error Terms

This section corresponds to [13, Section 7] (with slight modifications).
In the previous section, we worked with the simplified kernel (4.16) and computed

the corresponding entropy. In this section, we estimate all the errors, thereby proving
the equality in (4.15). Our procedure is summarized as follows. Using (4.11), the

regularized projection operator (Π
(ε)
BH)kn can be written as

(Π
(ε)
BH)kn = Op1/ε

(
2
(
A(ε)

BH +R(ε)
0

))
and A(ε)

BH as in (4.12) and the error term

R(ε)
0 (u, u′, ξ) = R0,ε(u, u

′, ξ/ε) ,

We denote the corresponding symbol by(
(afull)ij

)
1≤i,j≤2

:= A(ε)
full := 2

(
A(ε)

BH +R(ε)
0

)
.
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In preparation, we translate K to K0 with the help of the unitary operator Tu0 making

use of Lemma 3.0.3 together with (3.4). Moreover, we use that the operators (Π
(ε)
BH)kn

and Op1/ε(A
(0)) are self-adjoint. We thus obtain

D1/ε

(
ηκ,K,A(ε)

full

)
−D1/ε

(
ηκ,K,A(0)

)
= D1/ε

(
ηκ,K0, Tu0(A

(ε)
full)
)
−D1/ε

(
ηκ,K0, Tu0(A

(0))
)
,

where A(0) is the kernel of the limiting operator from (4.16). Note that Tu0(A
(0)) = A(0)

since the symbol A(0) is independent of u and u′. Now we can estimate

∥D1/ε(ηκ,K0, Tu0(A
(ε)
full))−D1/ε(ηκ,K0,A

(0))∥1

≤
∥∥∥ηκ(χK0 Op1/ε(Tu0(A

(ε)
full)) χK0

)
− ηκ

(
χK0 Op1/ε(A

(0))) χK0

)∥∥∥
1

(I)

+
∥∥∥χK0

(
ηκ
(
Op1/ε

(
Tu0(A

(ε)
full)
))

− ηκ
(
Op1/ε(A

(0))
))
χK0

∥∥∥
1
. (II)

In the following we will estimate the expressions (I) and (II) separately.

4.5.1. Estimate of the Error Term (I)

The following Theorem follows from [41, Theorem 2.4] (we use similar phrasing). It is
related to Proposition 2.2.9.

Theorem 4.5.1. Let H be a Hilbert space and f a function which satisfies Condi-
tion 2.2.6 with some γ,R > 0. Let σ ∈ (0, 1) with σ < γ. Let A,B be two bounded
self-adjoint operators on H. Suppose that |A−B| ∈ Sσ, then

∥f(A)− f(B)∥1 ≲ Rγ−σ f 2

∥∥A−B
∥∥σ
σ

with an implicit constant independent of A, B, f and R.

In order to apply this theorem to the functions ηκ we use a partition of unity as
explained in Remark 2.2.7. As explained in Example 2.2.8, we need to choose γ < 1
for κ = 1 and γ ≤ min{κ, 1} otherwise. We will later see that with the methods in
this thesis we can only estimate the error terms if κ > 2/3. Thus we assume that
2/3 < γ < 1 allowing us to treat all these cases simultaneously. This gives rise to the
constraint

σ ∈
(2
3
, 1
)
.

Setting A = χK0Op1/ε
(
Tu0(A

(ε)
full)
)
χK0 and B = χK0Op1/ε(A

(0))χK0 (which are
clearly bounded and self-adjoint) by Theorem 4.5.1 we obtain∥∥ηκ(χK0 Op1/ε

(
Tu0(A

(ε)
full)
)
χK0

)
− ηκ

(
χK0Op1/ε

(
A(0)

)
χK0

)∥∥
1

≲
∥∥χK0 Op1/ε

(
Tu0(A

(ε)
full)− A(0)

)
χK0

∥∥σ
σ

with implicit constant independent of our choices of A and B (and thus in particular
independent of u0 and ε).
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For ease of notation, from now on we will denote(
∆(aij)

(ε)
u0

)
1≤i,j,≤2

:= ∆A(ε)
u0

:= Tu0(A
(ε)
full)− A(0) .

Note that the symbol ∆A(ε)
u0 is matrix-valued, but applying Remark 2.2.1 (ii), we

obtain ∥∥χK0Op1/ε(∆A(ε)
u0

)χK0

∥∥σ
σ
≤

2∑
i,j=1

∥∥∥χK0 Op1/ε
(
∆(aij)

(ε)
u0

)
χK0

∥∥∥σ
σ
,

with the scalar-valued symbols ∆(aij)
(ε)
u0 .

We now proceed by estimating the Schatten norms of the operators

χK0 Op1/ε
(
∆(aij)

(ε)
u0

)
χK0 .

This will also show that these operators are well-defined and bounded on L2(K0,C).
For the estimates we need the detailed form of the symbols given by

(∆a11)
(ε)
u0

(u, u′, ξ) = eξχ(−mε,0)(ξ)
(
2|f+0,1|

2
(ξ
ε

)
− 1
)
+ r11

(
u+ u0, u

′ + u0,
ξ

ε

)
(4.29)

(∆a12)
(ε)
u0

(u, u′, ξ) = 2e−ξe2iξ(u+u0)/(ε)
[
f−0,1

(−ξ
ε

)
f+0,1

(−ξ
ε

)
χ(0,mε)(ξ)

+ t12

(−ξ
ε

)
χ(mε,∞)(ξ)

]
+ r12

(
u+ u0, u

′ + u0,
ξ

ε

)
(4.30)

(∆a21)
(ε)
u0

(u, u′, ξ) = 2eξe2iξ(u+u0)/ε
[
f−0,1

(ξ
ε

)
f+0,1

(ξ
ε

)
χ(−mε,0)(ξ)

+ t21

(ξ
ε

)
χ(−∞,−mε)(ξ)

]
+ r21

(
u+ u0, u

′ + u0,
ξ

ε

)
(4.31)

(∆a22)
(ε)
u0

(u, u′, ξ) = −e−ξχ(0,mε)(ξ)
(
2|f−0,1|

2
(−ξ
ε

)
− 1
)

+ r22

(
u+ u0, u

′ + u0,
ξ

ε

)
, (4.32)

with rij(u, u
′, ξ) = (R0,ε(u, u

′, ξ))ij for any 1 ≤ i, j ≤ 2. Note that these equations
only hold as long as u is smaller than some fixed u2 which we may always assume as
we take the limit u0 → −∞.
One can group the terms in these functions into three classes, each of which will be es-

timated with different techniques: There are terms which are supported on “small” in-
tervals [−mε/M, 0] or [0,mε/M ]. There are terms that contain the factor e2Miξ(u+u0)/ε,
which makes them oscillate faster and faster as u ≤ u0 → −∞. And, finally, there are
the rij-terms which decay rapidly in u and/or u′. Due to the triangle inequality (2.4),
it will suffice to estimate each of these classes separately.

Error Terms with Small Support

We use this method for terms which do not depend on u and u′ and which in ξ are
supported in a small neighborhood of the origin. More precisely, these terms are of
the form

eξχ(−mε,0)(ξ)
(
2|f+0,1|

2(ξ/ε)− 1
)

in ∆(a11)
(ε)
u0

−e−ξχ(0,mε)(ξ)
(
2|f−0,1|

2(−ξ/ε)− 1
)

in ∆(a22)
(ε)
u0 .
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Since these operators are translation invariant, we do not need to apply the translation
operator Tu0 . This also shows that the error corresponding to these terms can be
estimated independent of u0. For the estimate we will apply Proposition 2.2.13. As
an example, consider

a(ε)(ξ) := eξχ(−mε,0)(ξ)
(
2|f+0,1|

2(ξ/ε)− 1
)
,

and
h := χK ,

which are both in L2
loc(R) because |f+0,1| is bounded. Moreover, applying Lemma 3.0.5

(rescaling in momentum space) we obtain:

Op1/ε(a
(ε)) = Op1(aε) ,

for
aε(ξ) := a(ε)(εξ) = eεξ χ(−m,0)(ξ)

(
2
∣∣f+0,1(ξ)∣∣2 − 1

)
,

which is again in L2
loc(R) for the same reasons as a(ε). Moreover, since |f+0,1| is bounded,

so is a(ε) and therefore by Lemma 3.0.2, the integral representation of Opα(a
(ε)) ex-

tends to all Schwartz functions for any α > 0. Further, due to Remark 3.0.7 and the
exponential decay of the symbol in ξ, the u′- and ξ-integrals in the integral represen-
tation are interchangeable for any Schwartz function.
Therefore we can now apply the estimate (2.5) together with Proposition 2.2.13 for

p ∈ (0, 1) arbitrary to obtain∥∥χK0 Op1/ε(a
(ε)) χK0

∥∥p
p
≤ ∥χK0∥p∞

∥∥χK0Op1/ε(a
(ε))
∥∥p
p
≤
∥∥χK0Op1(aε)

∥∥p
p

≲ χK0

p
2,p aε

p
2,p ,

with an implicit constant independent of ε. Next, noting that

K0 = (−ρ, 0) ⊆ (−⌈ρ⌉, 0)

it follows that

χK0

p
2,p ≤

0∑
−⌈ρ⌉

1 = ⌈ρ⌉ .

Similarly, since |aε(ω)| is bounded by one,

aε
p
2,p ≤

0∑
−⌈m⌉

1 ≤ ⌈m⌉ .

Combining the last two inequalities, we conclude that

∥χK0 Op1/ε(a
(ε)) χK0∥pp ≲ ⌈ρ⌉⌈m⌉ . (4.33)

Completely similar for
ã(ε)(ξ) := −e−ξχ(0,mε)(ξ)

58



4. The Fermionic Entanglement Entropy of a Schwarzschild Black Hole

we obtain
∥χK0 Op1/ε(ã

(ε)) χK0∥pp ≲ ⌈ρ⌉⌈m⌉ , (4.34)

for any p ∈ (0, 1) so in particular for p = σ. The estimates (4.33) and (4.34) show that
the error terms with small support are independent of u0 and bounded in ε. Therefore,
dividing by ln(1/ε) and taking the limits u0 → −∞ and ε ↘ 0 (in this order), these
error terms drop out.

Rapidly Oscillating Error Terms

After translating the symbol by u0, these error terms are of the form

b(ε)(u, ξ) = e−ξ e2iξ(u+u0)/ε g(ξ/ε) χ(0,∞)(ξ) or

b̃(ε)(u, ξ) = eξ e2iξ(u+u0)/ε g̃(ξ/ε) χ(−∞,0)(ξ) ,

for some functions g, g̃ which are measurable and bounded. They appear in ∆(a12)
(ε)
u0

and ∆(a21)
(ε)
u0 . For simplicity, we restrict attention to the symbols of the form b(ε), but

all estimates work for b̃(ε) in the same way. We make use of the result below, which
follows from [7, Theorem 11.8.4 and Section 11.6.1] (we use similar phrasing).

Theorem 4.5.2. Let l ∈ N0, K0 = (−ρ, 0) and K be an integral operator on L2(K0)
with kernel k, i.e. for any ψ ∈ L2(K0):

(Kψ)(u) =

ˆ
K0

k(u, u′) ψ(u′) du′ .

If k(., u′) ∈W l
2(K0) for almost all u′ ∈ K0 with

θ22(t) :=

ˆ
K0

∥∥k(., u′)∥∥2
W l

2(K0)
du′ <∞ ,

then
K ∈ Sp for p > (1/2 + l)−1

and
∥K∥p ≲ θ2(k) ,

with an implicit constant independent of k.

We want to apply this theorem for p ∈ (0, 1) arbitrary, thus let l ∈ N arbi-
trary. Moreover, in view of Lemma 3.0.6, the integral representation corresponding
to χK0Op1/ε(b

(ε))χK0 may be extended to all of L2(R) and we may interchange the
dξ and du′ integrations. Thus we need to estimate the norm θ2 of the kernel of this
operator. Therefore we consider kernels of the form

ku0,ε(u, u
′) :=

1

2πε

ˆ ∞

0
e−ξ eiξ(u+u′+u0)/ε g(ξ/ε) dξ =

1

2π

ˆ ∞

0
e−εξ eiξ(u+u′+u0) g(ξ) dξ ,

where we used the change of variables ξ → ξ/ε (note that we could leave out the
χK0-functions because in Theorem 4.5.2 we consider the operator on L2(K0)). Since g
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is bounded and the factor e−εξ provides exponential decay, these kernels are always
differentiable up to arbitrary orders with

ds

dus
ku0,ε(u, u

′) =
1

2π

ˆ ∞

0
(iξ)s e−εξ eiξ(u+u′+u0) g(ξ) dξ , for any s ∈ N .

Our goal is to show that the limit u0 → −∞ of θ2
(
ku0,ε

)
is uniformly bounded in ε.

To this end, we first note that for any s ∈ N0,

ds

dus
ku0,ε(u, u

′) = F(hs,(ε))(−u− u′ − u0) ,

with

hs,ε(ξ) :=
1√
2π

(iξ)s e−εξ g(ξ) χ(0,∞)(ξ) .

Now note that hs,ε ∈ L1(R) for any s ∈ N0, so the Riemann-Lebesgue Lemma (see for
example [8, Theorem 1]) tells us that for any δ > 0 we can find R = R(s, ε) > 0 such
that for any l ∈ N0,∣∣∣∣ dsdusku0,ε(u, u

′)

∣∣∣∣ ≤ δ for |u+ u′ + u0| > R .

Keeping in mind that for u0 ≤ 0,

|u+ u′ + u0| ≥ |u0| for any u, u′ ∈ K0 ,

this is satisfied for u0 < −max{R(s, ε) | 0 ≤ s ≤ l}. This yields∥∥ku0,ε(., y)
∥∥2
W l

2(K0)
≤ lδ2ρ ,

which in turn leads to
θ2(ku0,ε ≤

√
lδρ ,

and so
lim

u0→∞
∥χK0 Op1/ε(b

(ε)) χK0∥p ≲
√
lρδ ,

for any p ∈ (0, 1), so in particular this holds for p = σ. As δ is arbitrary, we conclude
that the rapidly oscillating error terms vanish in the limit u0 → −∞. We note for
clarity that, since we take the limit u0 → −∞ first, we do not need to worry about
the dependence of the above estimate on ε.

Rapidly Decaying Error Terms

Finally, we consider the rapidly decaying error terms. In order to determine their
detailed form, we first note that the solutions of the radial ODE have the asymptotics
as given in Lemma 4.1.2 with an error term of the form

R0(u) =

(
e−iωuR+(u, ω)
e−iωuR−(u, ω)

)
,
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with
R±(u) := f±(u)− f±0

and f± as in (A.1). Using these asymptotics in the integral representation, the error
terms in (4.29)–(4.32) can (similar as explained in Appendix B) be computed to be

r11(u, u
′, ξ) = χ(−∞,0)(ξ) e

εξ
2∑

a,b=1

tab(ξ)

×
[
f+0,a(ξ)R

+
b (u

′, ξ) +R+
a (u, ξ) f

+
0,b(ξ) +R+

a (u, ξ)R
+
b (u

′, ξ)
]

r12(u, u
′, ξ) = χ(0,∞)(ξ) e

2iξu e−εξ
2∑

a,b=1

tab(−ξ)

×
[
f+0,a(−ξ)R

−
b (u

′,−ξ) +R+
a (u,−ξ) f−0,b(−ξ) +R+

a (u,−ξ)R−
b (u

′,−ξ)
]

r21(u, u
′, ξ) = χ(−∞,0)(ξ) e

2iξu eεξ
2∑

a,b=1

tab(ξ)

×
[
f−0,a(ξ)R

+
b (u

′, ξ) +R−
a (u, ξ) f

+
0,b(ξ) +R−

a (u, ξ)R
+
b (u

′, ξ)
]

r22(u, u
′, ξ) = χ(0,∞)(ξ) e

−εξ
2∑

a,b=1

tab(−ξ)

×
[
f−0,a(−ξ)R

−
b (u

′,−ξ) +R−
a (u,−ξ) f−0,b(−ξ) +R−

a (u,−ξ)R−
b (u

′,−ξ)
]
.

Where by R±
a we denote the function R± corresponding to Xa for each a = 1, 2. In

order to estimate these terms, the idea is to apply Theorem 4.5.2 (as well as the triangle
inequality (2.4)) to each of these terms (with u and u′ shifted by u0) and then take
the limit u0 → −∞. We will do this for the first few terms explicitly, noting that the
other terms can be estimated similarly.
Given u2, we know from Lemma 4.1.2 that for all u < u2,

|R±(u, ω)| ≤ cedu , |∂uR±(u, ω)| ≤ cdedu , (4.35)

with constants c, d > 0 that can be chosen independently of ω. Now for any a, b ∈ {1, 2}
we consider the symbol

c(ε)(u, u′, ξ) := χ(−∞,0)(ξ) e
ξ tab

(
ξ/ε
)
f+0,a
(
ξ/ε
)
R+

b

(
u′, ξ/ε

)
χK(u) χK(u

′) ,

which is contributing to r11(u, u
′, ξ/ε) (note that we again rescaled here in order to

get the correct prefactor e−iξ(u−u′)/ε). Translating by u0 as before gives

c̃(ε)(u, u′, ξ) = c(ε)(u+ u0, u
′ + u0, ξ)

= χ(−∞,0)(ξ) e
ξ tab

(
ξ/ε
)
f+0,a
(
ξ/ε
)
R+

b

(
u′ + u0, ξ/ε

)
χK0(u) χK0(u

′) .

By Lemma 3.0.6, the corresponding integral representation can be extended to all of
L2(K0), since R

+ is bounded uniformly in ξ when restricted to the compact interval K0
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due to Lemma 4.1.2, and the eξ-factor provides exponential decay in ξ. Moreover,
Lemma 3.0.6 again implies that we may interchange the dξ and du′ integrations when
restricting to K0.
In order to estimate the corresponding error term, we apply Theorem 4.5.2 to the

kernel

k̃(ε)u0
(u, u′) :=

1

2π

ˆ 0

−∞
e−iξ(u−u′) eεξ tab(ξ) f

+
0,a(ξ)R

+
b (u

′ + u0, ξ) dξ

(note that we rescaled back as before). This kernel is differentiable for similar reasons
as before and

d

du
k̃u0,ε(u, u

′) :=
1

2π

ˆ 0

−∞
(−iξ) e−iξ(u−u′) eεξ tab(ξ) f

+
0,a(ξ)R

+
b (u

′ + u0, ξ) dξ ,

(note that we always normalize the solutions by |f0| = 1). Using again the estimates
for R± in (4.35) yields for any u, u′ ∈ K0:

|k̃u0,ε(u, u
′)| ≤ ced(u

′+u0)

2π

ˆ 0

−∞
eεξ dξ =

ced(u
′+u0)

2πε
,∣∣∣ d

du
k̃u0,ε(u, u

′)
∣∣∣ ≤ ced(u

′+u0)

2π

ˆ 0

−∞
|ξ| eεξ dξ = ced(u

′+u0)

2πε2
,

where we used that |tab|, |f±0,1/2| ≤ 1. Therefore,

∥∥k̃u0,ε(., u
′)
∥∥2
W 1

2 (K0)
= ρ

c2e2d(u
′+u0)

4π2ε4
(1 + ε2) ,

and thus

θ22(k̃u0,ε) ≤ C
ρ2

ε4
(1 + ε2) e2du0 ,

which makes clear that the corresponding error term vanishes in the limit u0 → −∞.
We next consider a u-dependent contribution to r11 for some a, b ∈ {1, 2} whose

kernel is (by similar arguments as before) of the form

ǩu0,ε(u, u
′) :=

1

2π

ˆ 0

−∞
e−iξ(u−u′) eεξ tab(ξ)R

+
a (u+ u0, ξ) f

+
0,b(ξ) dξ .

Differentiating with respect to u gives

d

du
ǩu0,ε(u, u

′) :=
1

2π

ˆ 0

−∞
e−iξ(u−u′) eεξ tab(ξ) f

+
0,b(ξ)(

∂uR
+
a (u+ u0, ξ)− iξ R+

a (u+ u0, ξ)
)
dξ ,

so that, similarly as before,

∣∣ǩu0,ε(u, u
′)
∣∣ ≤ ced(u+u0)

2πε
,∣∣∣∣ dduǩu0,ε(u, u

′)

∣∣∣∣ ≤ c

2πε2
ed(u+u0)(1 + ε) .
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This gives for u < u2 < 0, ∥∥ǩu0,ε(., u
′)
∥∥2
W 1

2 (K0)
≤ ρ Cε e

2du0

and thus
θ2(ǩu0,ε)

2 ≤ ρ2 C2
ε e

2du0

with a constant Cε independent of u0. This shows that the corresponding error term
again vanishes as u0 → ∞.

All the other error terms contributing to rij can be treated in the same way: The
absolute value of the corresponding kernels (and their first derivatives) can always be
estimated by a factor continuous in u and u′ times a factor exponentially decaying
in u0 like edu0 . This makes it possible to estimate θ2 by a function which decays
exponentially as u0 → −∞.
Note that since we only have estimates for R± and its first derivative in u, these

estimates only apply for σ ∈ (2/3, 1), i.e. κ ∈ (2/3, 1).

4.5.2. Estimate of the Error Term (II)

It remains to estimate the error terms (II) on page 56. First of all note that due to
Lemma 3.0.3, ∥∥∥χK0

(
ηκ
(
Op1/ε

(
Tu0

(
A(ε)

full

)))
− ηκ

(
Op1/ε(A

(0))
))
χK0

∥∥∥
1

=
∥∥∥χK

(
ηκ
(
(Π

(ε)
BH)kn

)
− ηκ

(
Op1/ε(A

(0))
))
χK

∥∥∥
1

Luckily, in this case we can directly compute ηκ
(
(Π

(ε)
BH)kn

)
and ηκ

(
Op1/ε(A

(0))
)
, which

simplifies the estimate. As explained before in Lemma 3.0.1 we have

ηκ
(
Op1/ε(A

(0))
)
= Op1/ε

(
ηκ(A

(0))
)
.

Moreover, from Proposition 4.2.4 and Corollary 4.2.6 we conclude that for any function
X ∈ C∞

0 (R,C2),

(
ηκ
(
(Π

(ε)
BH)kn

)
X
)
(u) =

1

π

ˆ 0

−∞
ηκ(e

εω)
2∑

a,b=1

tab(ω)Xa(u, ω)
〈
Xb(., ω)

∣∣X〉 dω .
Therefore we can rewrite

ηκ
(
Op1/ε(a0)

)
− ηκ

(
(Π

(ε)
BH)kn

)
= Op1/ε(∆Ã(ε)) , (4.36)

where the entries of the symbol ∆Ã(ε) = (∆ã
(ε)
i,j )1≤i,j≤2 are given by

∆ã
(ε)
1,1(u, u

′, ξ) = ηκ
(
eξ
)
e−ξ (∆a11)

(ε)
0 (ξ) ,

∆ã
(ε)
1,2(u, u

′, ξ) = ηκ
(
e−ξ
)
eξ ∆a12)

(ε)
0 (u, ξ) ,

∆ã
(ε)
2,1(u, u

′, ξ) = ηκ
(
eξ
)
e−ξ (∆a21)

(ε)
0 (ξ) ,

∆ã
(ε)
2,2(u, u

′, ξ) = ηκ
(
e−ξ
)
eξ (∆a22)

(ε)
0 (u, ξ) ,
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note that Op1/ε(∆Ã(ε)) is well defined, because the left hand side of (4.36) is a bounded

operator which has the same integral representation on C∞
0 (R,C2). Thus these error

terms are almost the same as before, except that the factor eξ has been replaced by
ηκ(e

ξ) etc. and without translation by u0. Therefore, after applying Lemma 3.0.3 in
order to again translate by u0,∥∥∥χK

(
ηκ

(
(Π

(ε)
BH)kn

)
− ηκ

(
Opα(A

(0))
))
χK

∥∥∥
1
=
∥∥∥χK0 Opα

(
Tu0(∆Ã(ε))

)
χK0

∥∥∥
1
,

we can use the same techniques as before since the functions ηκ(e
εξ) have similar

decay-properties for ξ → −∞ and ξ ↗ 0 as eεξ, as the following lemma shows.

Lemma 4.5.3. Let κ, a > 0 arbitrary and denote κ̃ := min{κ, 1}, then

χ(−∞,0)(ξ)ηκ(e
aξ) ≃ χ(−∞,0)(ξ)e

κ̃aξ (4.37)

lim
ξ↗0

ηκ(e
aξ) = 0 (4.38)

By symmetry reasons this also implies corresponding decay properties for ηκ(e
−ξ)

for ξ → ∞ and ξ ↘ 0.

Proof of Lemma 4.5.3. We start with the case that κ = 1 and first rewrite these
functions in more detail as

η(eaξ) = −aξ eaξ −
(
1− e−aξ

)
ln
(
1− eaξ

)
.

The term −aξ eaξ clearly satisfies the claim. Moreover,

lim
ξ↗0

((
1− eaξ

)
ln
(
1− eaξ

))
= lim

ξ↗0

ln
(
1− eaξ

)(
1− eaξ

)−1

L′H
= lim

ξ↗0

−a
(
1− eaξ

)−1
eaξ

a
(
1− eaξ

)−2
eaξ

= − lim
ξ↗0

(
1− eaξ

)
= 0 ,

(where “L′H” denotes the use of L’Hôpital’s rule) showing that these terms are
bounded near ξ = 0. Next,

lim
ξ→−∞

ln
(
1− eaξ

)
eaξ

L′H
= lim

ξ→−∞

−a
(
1− eaω

)−1
eaξ

a eaξ
= lim

ξ→−∞

−1

1− eaξ
= −1 ,

showing that as ξ → −∞ this term decays like −eaξ. This yields the claim for κ = 1.
Now let κ ̸= 1, then

ηκ(e
aξ) =

1

1− κ
ln
(
eκaξ + (1− eaξ)κ

)
.

Thus (4.38) is evident. Moreover, (4.37) follows from

lim
ξ→−∞

ηκ(e
aξ)

eκ̃aξ
L′H
=

κ
1− κ

lim
ξ→−∞

e(κ−1)aξ−(1−eaξ)κ−1

eκaξ+(1−eaξ)κ
aeaξ

aκ̃eκ̃aξ
=

κ
(1− κ)κ̃

lim
ξ→−∞

eκaξ−eaξ

eκaξ+1

eκ̃aξ

=
κ

|1− κ|κ̃
.
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4.6. Proof of the Main Result

This section corresponds to [13, Section 8] (with some modifications).
We can now prove our main result.

Proof of Theorem 1.0.1. Having estimated all the error terms in trace norm and know-
ing that the limiting operator is trace class (see the proof of Theorem 4.4.4), we con-
clude that the operator

ηκ
(
χK (Π

(ε)
BH)kn χK

)
− χK ηκ

(
(Π

(ε)
BH)kn

)
χK

is trace class. Moreover, we saw that all the error terms vanish after dividing by ln(1/ε)
and taking the limits u0 → −∞ and ε ↘ 0 (in this order). We thus obtain by
Corollary 4.4.7,

lim
ε↘0

lim
u0→−∞

1

ln(1/ε)
tr
(
ηκ
(
χK (Π

(ε)
BH)kn χK

)
− χK ηκ

(
(Π

(ε)
BH)kn

)
χK

)
= lim

ε↘0
lim

u0→−∞

1

ln(1/ε)
trD1/ε(ηκ,K,A(0)) =

1

π2
U(1; ηκ) =

1

π2

ˆ 1

0

ηκ(t)

t(1− t)
dt .

Moreover since by [29, Appendix],

ˆ 1

0

ηκ(t)

t(1− t)
dt =

π2

6

κ + 1

κ
,

expressing ε in dimensionless way yields the claim.

65



5. The Fermionic Entanglement Entropy
of Bounded Regions in Minkowski
Space

We begin by noting that in this section, all symbols are independent of x and y.
Since for any such measurable and bounded symbol, the integral representation

automatically extends to all Schwartz functions (due to Lemma 3.0.2), we will leave
out this distinction in this chapter.

Moreover, note that for any x- and y-independent symbol A ∈ L1(Rd), the y- and
ξ-integrals in the definition of Opα(A) are interchangeable for any Schwartz function
due to Remark 3.0.7.

5.1. The Dirac Equation in Minkowski Spacetime

This section corresponds to [15, Section 2.1] with some parts from [15, Section 1] (both
with some modifications).
Minkowski spacetime (M, ⟨., .⟩) is described by a real four-dimensional vector space

endowed with an inner product ⟨., .⟩ of signature (+ − −−). For M one may always
choose a basis (ei)i=0,...,3 satisfying ⟨e0, e0⟩ = 1 and ⟨ei, ei⟩ = −1 for i = 1, 2, 3. Such
a basis is called pseudo-orthonormal basis or reference frame, since the correspond-
ing coordinate system (xi) describes time and space as observed by an observer in a
system of inertia. We also refer to t := x0 as time and denote spatial coordinates by
x = (x1, x2, x3). Representing two vectors x, y ∈ M in such a basis as x =

∑3
i=0 x

iei
and y =

∑3
i=0 y

iei, the inner product takes the form

⟨x, y⟩ =
3∑

j,k=0

gjk x
j yk ,

where gij , the Minkowski metric, is the diagonal matrix g = diag (1,−1,−1,−1).
The Dirac equation for a wave function ψ ∈ C∞(M,C4) of mass m ≥ 0 in the

Minkowski vacuum (i.e. without external potential) reads

(i∂/−m)ψ(x) = 0 , (5.1)

where we use the slash notation with the Feynman dagger ∂/ :=
∑3

j=0 γ
j∂j (for more

details on the Dirac equation see [46] or [12, Sections 1.2-1.4]). In this chapter we work
with the Dirac matrices in the Dirac representation

γ0 =

(
1C2 0
0 −1C2

)
, γ⃗ =

(
0 σ⃗
−σ⃗ 0

)
,
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and σ⃗ are the three Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

The wave functions at a spacetime point x take values in the spinor space Sx, a
four-dimensional complex vector space endowed with an indefinite inner product of
signature (2, 2), which we call spin inner product and denote by

≺ψ|ϕ≻x =
4∑

α=1

sα ψ
α(x)†ϕα(x) , s1 = s2 = 1, s3 = s4 = −1 ,

where ψ† is the complex conjugate wave function (in the physics literature, this inner
product is often written as ψϕ with the so-called adjoint spinor ψ = ψ†γ0).
Since the Dirac equation is linear and hyperbolic (meaning that it can be rewritten as

a symmetric hyperbolic system; for details see for example [12, Chapter 13]), its Cauchy
problem for smooth initial data is well-posed, giving rise to global smooth solutions.
Moreover, due to finite propagation speed, starting with compactly supported initial
data, we obtain solutions which are spatially compact (meaning that their restriction
to any Cauchy surface has compact support). Then, the Hilbert space H is defined as
explained in Section 2.1.1 (see (2.2)) by completion of the space of smooth solutions
with spatially compact support with respect to the scalar product (.|.) as defined
in (2.1). In Minkowski spacetime we choose the Cauchy surface N in the definition of
(.|.) as a surface with fixed time t, such that

(ψ|ϕ) =
ˆ
R3

≺ψ|γ0ϕ≻|(t,x) d3x . (5.2)

In this setting, it is most convenient to write the Dirac equation in an equivalent
way which resembles the Schrödinger equation. To this end, we multiply the Dirac
equation (5.1) by γ0 and isolate the t-derivative on one side of the equation,

i∂tψ = Hψ where H := −γ0(iγ⃗∇⃗ −m) (5.3)

(note that
∑3

j=0 γ
j∂j = γ0∂0 + γ⃗∇⃗). The operator H is referred to as the Dirac

Hamiltonian, and (5.3) is the Dirac equation in the Hamiltonian form. By direct
computation one verifies that the Hamiltonian is a symmetric operator on the Hilbert
space H . Working at fixed time t = 0, in view of (5.2), the Hilbert space H can be
identified with with the square-integrable spinors,

H = L2(R3,C4) .

In what follows, we shall always work with this identification.
Applying the unitary extension of the Fourier transform F , the Hamiltonian H may

be rewritten as

H = F−1

(
3∑

β=1

kβγ
β +m

)
γ0F .
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Using that the Hermitian 4 × 4-matrix
(∑3

β=1 kβγ
β + m

)
γ0 is trace-free and that

its square can be computed with the help of the anti-commutation relations to be
k2 +m2 times the identity matrix, we conclude that its eigenvalues are ±

√
k2 +m2,

both with multiplicity two. Hence, diagonalizing this matrix with a suitable unitary
matrix S gives( 3∑

β=1

kβγ
β +m

)
γ0 = S−1JS with J :=

√
k2 +m2 diag

(
− 1,−1, 1, 1

)
.

Therefore, the projection onto the negative spectral subspace of H is given by

ΠMI := (S F)−1 1

2

(
1− 1√

k2 +m2
J

)
S F . (5.4)

Inserting the regularizing factor e−ε
√
k2+m2

, where ε > 0 is the regularization length
we obtain the regularized projection operator

Π
(ε)
MI := (SF)−1 1

2
e−ε

√
k2+m2

(
1− 1√

k2 +m2
J
)
S F

= F−1 1

2
e−ε

√
k2+m2

(
1−

(∑3
β=1 kβγ

β +m
)
γ0

√
k2 +m2

)
F .

(5.5)

Changing the variable k = ξε−1 we can rewrite Π
(ε)
MI as

Π
(ε)
MI = Op1/ε

(
A(ε)

MI

)
, with (5.6)

A(ε)
MI(ξ) :=

1

2

(
1+

∑3

β=1
ξβγ

β − εm√
ξ2 + ε2m2

γ0

)
e−

√
ξ2+(εm)2 , (5.7)

Rescaling in position space, i.e. applying Lemma 3.0.5 (i) this yields

Sκ(Π
(ε)
MI, LΛ) = trDα

(
A(ε)

MI,Λ; ηκ
)
, where α = Lε−1 .

Remark 5.1.1. (Connection with the kernel of the fermionic projector) For
simplicity, we here restrict attention to the Hamiltonian formulation and work exclu-
sively with operators acting on the spatial Hilbert space L2(R3,C4). Nevertheless,

the operator Π
(ε)
MI is closely related to kernels in spacetime, as we now explain. The

subspace of negative-energy solutions of Dirac equation in Minkowski spacetime can
be described by the kernel of the fermionic projector P (ε)(x, y) defined by

P (ε)(x, y) =

ˆ
1

(2π)4

( 3∑
j=0

kjγ
j +m

)
δ
(
⟨k, k⟩ −m2

)
Θ(−k0) exp(εk0) e−i⟨k,x−y⟩ d4k ,

where the parameter ε > 0 again describes the regularization (and ⟨·, ·⟩ is the Minkowski
inner product). This kernel plays a central role in the theory of causal fermion systems
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(for more details see [10, Section 2.4.1] or [12, Chapters 15 and 16]). If we choose both
arguments on the Cauchy surface {t = 0}, i.e.

x = (0,x), y = (0,y) with x,y ∈ R3

and carry out the integral over k0, we obtain

P (ε)
(
(0,x), (0,y)

)
=

1

(2π)4

ˆ
1

2|ω|
(/k +m) exp(εω)

∣∣∣
ω=−

√
k2+m2

eik(x−y) d3k .

Comparing with (5.5), one sees that

Π(ε)(x,y) = −2π P (ε)((0,x), (0,y)
)
γ0 .

Hence the integral kernel of the spatial operator Π
(ε)
MI is obtained from the regularized

kernel of the fermionic projector simply by multiplying with a prefactor and with the
matrix γ0 from the right. This matrix γ0 will appear frequently in our formulas; it can
be understood as describing the transition from the setting in a Lorentzian spacetime
to the purely spatial formulation on a given Cauchy surface. ♢

5.2. Widom’s Formula and its Generalizations

This section is based on [15, Section 3] (with similar phrasing).
In [15] a formula for the asymptotic coefficient was established starting from a result

by Widom. In order to state these results, we need to describe first the asymptotic
coefficient. For a vector e ∈ Sd−1, we represent ξ ∈ Rd as

ξ = ξ̂ + te, where t ∈ R and ξ̂ ∈ Te := {ξ | ξ · e = 0} .

Instead of A(ξ) we sometimes write

A(ξ̂; t) := A(ξ̂ + te).

For a function f : R → C denote

M(ξ̂; e;A; f) := tr
[
χ+ f

(
W1(A(ξ̂; · );R+)

)
χ+ −W1

(
f(A(ξ̂; · ));R+

)]
, ξ̂ ∈ Te ,

and introduce

M(e;A; f) :=
1

(2π)d−1

ˆ
Te

M(ξ̂; e;A; f) dξ̂. (5.8)

Finally, denoting the outer unit normal to ∂Λ at x ∈ ∂Λ by nx, we can define the
main asymptotic coefficient:

B(A; f) :=

ˆ
∂Λ

M(nx;A; f) dSx . (5.9)

In what follows we will need the following condition.
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Condition 5.2.1. Let A ∈ C∞(Rd;Cn×n), d ≥ 2, be a matrix-valued symbol (not
necessarily Hermitian) such that

|∇n
ξA(ξ)| ≲ ⟨ξ⟩−µ, n = 0, 1, . . . , µ > d.

Our analysis stems from the following result for smooth symbols A due to H. Widom
[47]. The following is Widom’s result stated in the form adapted for our needs.

Proposition 5.2.2. Let d ≥ 2, and let Λ ⊂ Rd be a bounded C1-region. Suppose
that A ∈ C∞(Rd;Cn×n) is a matrix-valued symbol satisfying Condition 5.2.1. Let f be
a polynomial with f(0) = 0. Then

tr f(Wα(A; Λ)) =

(
α

2π

)d

vold(Λ)

ˆ
Rd

tr f
(
A(ξ)

)
dξ + αd−1B(A; f) + o(αd−1). (5.10)

Remark 5.2.3. (i) If the symbol A is independent of x and y and bounded in
ξ (as for example in Proposition 5.2.2), we may rewrite Dα(A,Λ; f) due to
Lemma 3.0.1 as

Dα(A,Λ; f) = χΛf
(
Wα(A,Λ)

)
χΛ −Wα(f ◦ A,Λ) . (5.11)

(ii) Under the conditions of Proposition 5.2.2 both operators in (5.11) are trace class,
and the first term on the right-hand side of (5.10) is exactly tr Wα(f ◦ A,Λ).
In this case we also have the equality χΛf

(
Wα(A,Λ)

)
χΛ = f

(
Wα(A,Λ)

)
, and

therefore the formula (5.10) can be rewritten as

lim
α→∞

α1−d trDα(A,Λ; f) = B(A; f). (5.12)

On the other hand, if f is a polynomial such that f(0) ̸= 0, then (5.10) does not
make sense, but (5.12) still holds.

(iii) One should mention that in contrast with the matrix case, for scalar symbols
A = a the coefficient B(a; f) can be found explicitly, see [48] and [50].

In [15] the above result is extended to non-smooth symbols A and non-smooth

functions f . Remembering the relation Π
(ε)
MI = Op1/ε

(
A(ε)

MI

)
(see (5.6)), the idea was

to study symbols that model the symbolA(ε)
MI (as defined in (5.7)) and its limit as ε↘ 0.

More precisely, this is mimicked by symbols satisfying the following condition.

Condition 5.2.4. Consider symbols A that are C∞ outside of a fixed finite set
Ξ = {ξ(1), ξ(2), . . . , ξ(N)} ⊂ Rd, and satisfy the bound

|∇n
ξ A(ξ)| ≲ ⟨ξ⟩−µ d(ξ)−n, d(ξ) := min

{
dist(ξ,Ξ), 1

}
, n = 0, 1, . . . ,

where ⟨ξ⟩ =
√

1 + |ξ|2.

Moreover, we introduce families of symbols that converge in the following sense.
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Condition 5.2.5. Let Ξ ⊂ R3 be a finite set. We assume that the family of Hermitian
symbols A(ε) ∈ C∞(Rd \Ξ;Cn×n), ε ∈ [0, 1], satisfies the bounds

|∇n
ξ A(ε)(ξ)| ≲ ⟨ξ⟩−µ d(ξ)−n, k = 0, 1, . . . ,

for some µ > d, uniformly in ε. Away from Ξ the symbols A(ε) converge to A := A(0)

uniformly, i.e. for each h > 0 we have

sup
ξ:d(ξ)>h

|A(ε)(ξ)−A(ξ)| → 0, as ε↘ 0 .

Using these conditions we can now state the previously mentioned generalizations of
Proposition 5.2.2 from [15]. The first of them deals with fixed non-smooth symbols A.

Theorem 5.2.6. [15, Theorem 3.4] (adapted to our notation)
Let d ≥ 2, and let Λ ⊂ Rd be a bounded C1-region. Assume that the function f satisfies
Condition 2.2.5 for some γ ∈ (0, 1]. Suppose that a Hermitian matrix-valued symbol
A ∈ C∞(Rd \ Ξ;Cn×n) satisfies Condition 5.2.4 for a finite set Ξ ⊂ Rd and µ > 0
with µγ > d. Then the formula

lim
α→∞

α1−d trDα(A,Λ; f) = B(A; f) (5.13)

holds.

The next theorem considers families of convergent symbols.

Theorem 5.2.7. [15, Theorem 3.5] (adapted to our notation)
Let d ≥ 2, and let the region Λ ⊂ Rd and the function f be as in Theorem 5.2.6. Sup-
pose that the family of Hermitian matrix-valued symbols A(ε) satisfies Condition 5.2.5
for some µ > 0 with µγ > d. Then, as α→ ∞ and ε↘ 0, we have

lim α1−d tr Dα(A(ε),Λ; f) = B(A; f) .

5.3. An Abstract Area Law

This section is based on [15, Sections 3 and 7.3] with a result from [15, Section 5.2]
(we use similar or sometimes the same phrasing).

As the next Proposition shows, if the symbol A is “radially symmetric”, then the
integral (5.8) is independent of the unit vector e, which simplifies the expression for
the coefficient B(A; f) resulting in an abstract area law.

Proposition 5.3.1. [15, Propoistion 3.6] (adapted to our notations)
Let d ≥ 2. Suppose that f satisfies Condition 2.2.5 with some γ ∈ (0, 1], and that ∂Λ
is a union of finitely many bounded piece-wise C1-surfaces. Suppose that a Hermitian
matrix-valued symbol A ∈ C∞(Rd \ Ξ;Cn×n) satisfies Condition 5.2.4 with some µ >
0 such that µγ > d. Suppose also that for each R ∈ SO(d) there exists a matrix
Q = QR ∈ SU(n) such that

A(ξ) = QA(Rξ)Q∗ for a.e. ξ ∈ Rd . (5.14)
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Then Ξ = {0}, and the integral (5.8) does not depend on the vector e ∈ Sd−1 and

B(A; f) = M(A; f) vold−1(∂Λ) , (5.15)

where we have denoted M(A; f) = M(e;A; f) for an arbitrary e.

The identity Ξ = {0} is an immediate consequence of the symmetry (5.14). Indeed
if Ξ contained a singular point ξ0 ̸= 0, then by (5.14) the symbol A would have a
singularity on the sphere |ξ| = |ξ0|, which is not a finite set.

Note that in Proposition 5.3.1, the region Λ corresponding to the boundary ∂Λ does
not need to be bounded. In fact, any Λ satisfying the following condition, would be
suitable:

Condition 5.3.2. The set Λ ⊂ Rd, d ≥ 2, is a region with piece-wise C1-smooth
boundary, and either Λ or Rd \ Λ is bounded.

We note that Λ and Rd \Λ satisfy Condition 5.3.2 simultaneously. The boundedness
of Λ in Theorems 5.2.6 and 5.2.7 is assumed only because both of them are derived
from Proposition 5.2.2 where Λ is supposed to be bounded. We remark that many of
the intermediate results in [15] hold for the regions satisfying Condition 5.3.2.
For the proof of Proposition 5.3.1 and what follows we will need the following Lemma

from [15].

Lemma 5.3.3. [15, Lemma 5.5] (with slight modifications)
Let d ≥ 2. Suppose that f satisfies Condition 2.2.6 with some γ ∈ (0, 1], and Λ
satisfies Condition 5.3.2. Moreover, let A satisfy Condition 5.2.4 with some µ > 0
such that µγ > d. Then for any σ ∈ (dµ−1, γ) we have

|M(ξ̂; e;A; f)| ≲ f 2R
γ−σ ⟨ξ̂⟩−µσ+1 ln

(
r(ξ̂)−1 + 2

)
,

for ξ̂ ∈ Te, ξ̂ /∈ Ξ̂e ,

where Ξ̂ = Ξ̂e denotes the projection of the set Ξ onto the hyperplane Te and

r(ξ̂) = min
{
dist(ξ̂, Ξ̂e), 1

}
.

The bound is uniform in A and e ∈ Sd−1.
Furthermore,

|M(e;A; f)| ≲ f 2R
γ−σ, (5.16)

uniformly in A and e ∈ Sd−1, and

|B(A; f)| ≲ f 2R
γ−σ,

uniformly in A. The implicit constants in these bounds do not depend on the set Ξ,
but on the number N = card Ξ only..

We can now prove Proposition 5.3.1.
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Proof of Proposition 5.3.1. First, note that the coefficientM(e;A; f) is finite by (5.16).
Let e,b ∈ Sd−1 be two arbitrary unit vectors. Let R ∈ SO(d) be a matrix such that
Re = b, and let Q = QR ∈ SU(n) be such that (5.14) holds. Thus

A(ξ̂; t) = A(ξ̂ + te) = QA(R ξ̂ + tb)Q−1,

and hence, by cyclicity of trace, M(ξ̂; e;A; f) = M(R ξ̂;b;A; f). Integrating in ξ̂, we
get

M(e;A; f) =
1

(2π)d−1

ˆ
Te

M(R ξ̂;b;A; f) dξ̂

=
1

(2π)d−1

ˆ
Tb

M(ξ̂;b;A; f) dξ̂ = M(b;A; f).

ThusM(e;A; f) is indeed e-independent. Now it is clear that the formula (5.9) rewrites
as (5.15), as claimed.

5.4. Positivity of the Coefficient B(A; f)

This section corresponds to [15, Section 8] (with slight modifications).
The goal of this section is to investigate under which conditions on the function f

and on the matrix-valued symbol A the asymptotic coefficient B(A; f) defined in (5.9)
is strictly positive.

5.4.1. An Abstract Result

Our starting point is the following abstract fact stated in [32, Proposition 3.2] with
reference to [28, Theorem A.1] and [4]. Below H is a complex separable Hilbert space,
P an orthogonal projection on H and A a self-adjoint operator on H. The opera-
tor D(A,P ; f) is defined in (2.9).

Proposition 5.4.1. Suppose that the spectrum of A is contained in the interval I ⊂ R,
and f : I → R is a concave function. Assume that D(A,P ; f) is trace class and
that PAP compact. Then trD(A,P ; f) ≥ 0.

Using this proposition we can prove the following bound in the spirit of [28, Theo-
rem A.1].

Theorem 5.4.2. Suppose that the spectrum of A is contained in the interval I ⊂ R and
that AP ∈ S2 and D(A,P ; f) ∈ S1. Assume also that f : I → R is a W2,∞

loc (I)-function
such that

ess-sup
t∈I

f ′′(t) = −l0, with some l0 > 0.

Then, with the notation f0(t) = −1
2 t

2, we have

trD(A,P ; f) ≥ l0 trD(A,P ; f0) =
l0
2
∥(I − P )AP∥22. (5.17)
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Proof. We essentially follow the proof of [28, Theorem A.1]. Denote D(f) = D(A,P ; f)
and

g(t) = f(t)− l0f0(t),

so that ess-supI g
′′(t) = 0. Thus g is concave on I, and by Proposition 5.4.1,

tr D(f)− l0 tr D(f0) = tr D(g) ≥ 0,

The first trace on the left-hand side is finite by assumption, and the second one equals

2 tr D(f0) = tr
(
PA2P − PAPAP

)
= tr

(
PA(I − P )AP

)
= ∥(I − P )AP∥22,

and hence it is also finite. This leads to the required bound (5.17).

5.4.2. Application to Pseudo-Differential Operators

Now we can apply the above results to the operator Dα(A; f). We do not intend to
consider the most general functions f satisfying Condition 2.2.5 with some γ ∈ (0, 1],
but assume that f is real-valued, the set T consists of two points, i.e. T = {t1, t2}
with t1 < t2, and that

ess-sup
t∈(t1,t2)

f ′′(t) = −l0, where l0 > 0.

We want to prove the following theorem.

Theorem 5.4.3. Let d ≥ 2, and let f be as described above. Let Λ ⊂ Rd be a bounded
region with a C1-boundary. Suppose that A is a non-zero Hermitian matrix-valued
symbol that satisfies Condition 5.2.4 with some µ > 0 such that µγ > d. Assume also
that the for all ξ the spectrum of A(ξ) belongs to the interval [t1, t2]. Then B(A; f) > 0.

We precede the proof with two lemmata.

Lemma 5.4.4. Let A ∈ C2(R;Cn×n), be a Hermitian matrix-valued symbol satisfying∣∣∣∣ dldξlA(ξ)

∣∣∣∣ ≲ ⟨ξ⟩−µ, (5.18)

for some µ > 1 and l = 0, 1, 2. Then the operator χ−Op1(A)χ+ is Hilbert-Schmidt.
If A(ξ) is a non-zero operator function, the Hilbert-Schmidt norm ∥χ−Op1(A)χ+∥2

is strictly positive.

Proof. Denote the kernel of the operator Op1(A) by

Ǎ(x) =
1

2π

ˆ
e−ixξA(ξ)dξ ,

meaning that for any Schwartz function ψ and almost any x ∈ R,

(Opα(A)ψ)(x) =

ˆ ∞

−∞
Ǎ(x− y)ψ(y) dy , (5.19)
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(due to Remark 3.0.7). Moreover, because of (5.18),

|Ǎ(x)| ≲ ⟨x⟩−2,

so by a similar argument as in the proof of Lemma 3.0.6 (applying Hölder’s inequality in
(5.19) with ψ replaced by ∆ψn), we see that the representation (5.19) can be extended
to all ψ ∈ L2(R).
Then, the (squared) Hilbert-Schmidt norm

∥χ−Op1(A)χ+∥22 =
ˆ 0

−∞

ˆ ∞

0
|Ǎ(x− y)|2dydx

=
∑
i,j

ˆ 0

−∞

ˆ ∞

0
|Ǎi,j(x− y)|2 dydx,

is finite. Assume now that there is an interval I ⊂ R such that A(ξ) ̸= 0 for all ξ ∈ I.
Without loss of generality we may assume that the matrix entry Ai,j(ξ) with some i, j,
is not zero for all ξ ∈ I. Since A is Hermitian, we also have

Ai,j(ξ) = Ai,j(ξ) ̸= 0, ξ ∈ I .

As a consequence, Ǎi,j(−x) = Ǎi,j(x), so that the function

F (x) :=
1

2

(
|Ǎk,l(x)|2 + |Ǎl,k(x)|2

)
is even and not identically zero. Therefore there is an interval J ⊂ R− such that
F (x) > 0 for all x ∈ J . Estimating

∥χ−Op1(A)χ+∥22 ≥
ˆ 0

−∞

ˆ ∞

0
F (x− y) dy dx

≥
ˆ
J

ˆ x

−∞
F (t) dt dx,

we conclude that the Hilbert Schmidt norm on the left-hand side is strictly positive,
as required.

Using the above lemma we can now show the positivity of the asymptotic coefficient
B(A; f0) for the function f0(t) = −t2/2.

Lemma 5.4.5. Let A ∈ C∞(Rd \Ξ;Cn×n), d ≥ 2, be a non-zero Hermitian operator-
valued symbol satisfying Condition 5.2.4 with µ > d. Then denoting the function
f0(t) = −t2/2 we have B(A; f0) > 0.

Recall that the coefficient B(A; f0) is finite due to Lemma 5.3.3.

Proof. By definition (5.9) it suffices to show that M(e;A; f) > 0 for each e ∈ Sd−1.
Fix a vector e and rewrite the integrand in (5.8) using the notation A = Op1(A(ξ̂; · )),
P = χ+. As in the proof of Theorem 5.4.2, we obtain (also making use of Lemma 3.0.1)

2M(ξ̂; e;A; f0) = tr
(
PA2P − PAPAP

)
= tr

(
PA(I − P )AP

)
= ∥(I − P )AP∥22 ≥ 0.
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Since A is a non-zero symbol, there is a ball B̂ ⊂ Te \ Ξ̂ such that for all ξ̂ ∈ B̂ the
symbol A(ξ̂; · ) is in C∞(R;Cn×n), non-zero and satisfies∣∣∣∣ dkdξkA(ξ̂; ξ)

∣∣∣∣ ≲ ⟨ξ⟩−µ, k = 0, 1, . . . , ξ ∈ R,

with a constant uniform in ξ̂ ∈ B̂. Thus by Lemma 5.4.4, M(ξ̂; e;A; f0) > 0 for
all ξ̂ ∈ B̂. This leads to the positivity of B(A; f0).

5.4.3. Proof of the Positivity of the Limiting Coefficient

Proof of Theorem 5.4.3. In order to use Theorem 5.4.2 we check that Opα(A)χΛ is
Hilbert-Schmidt:

∥Opα(A)χΛ∥22 =
1

(2πα)d

ˆ
|A(ξ)|2 dξ

ˆ
Λ
dx <∞,

where we have used that |A(ξ)| ≲ ⟨ξ⟩−µ with µ ≥ µγ > d. Now, by Theorem 5.4.2,

trDα(A; f) ≥ l0 trDα(A; f0), f0(t) = −1

2
t2.

Using the asymptotics (5.13) established in Theorem 5.2.6, we obtain

B(A; f) ≥ l0 B(A; f0) .

The latter is positive by Lemma 5.4.5. This completes the proof.

5.4.4. Corollaries for the Functions ηκ

Let the functions ηκ be as defined in (1.1). As computed in detail in Lemma C.0.1, each
function ηκ satisfies Condition 2.2.5 with T = {0, 1}, with γ ≤ min{κ, 1}, if κ ̸= 1,
and γ < 1 if κ = 1.

Corollary 5.4.6. Let A and Λ be as in Theorem 5.4.3 and such that 0 ≤ A(ξ) ≤ 1.
If κ ∈ (0, 2), then B(A; ηκ) > 0.

Proof. By Theorem 5.4.3 it suffices to show that for κ ∈ (0, 2) the derivative

ess-sup
t∈(0,1)

η′′κ(t) < 0 .

If κ = 1, then one easily finds that η′′1(t) = −t−1(1 − t)−1 ≤ −4. For κ ̸= 1 we use a
slightly modified version of the proof of [32, Lemma 3.1]. One checks directly that

η′′κ(t)[t
κ + (1− t)κ

]2
= −κ[t(1− t)]κ−2 − κ

1− κ
[
tκ−1 − (1− t)κ−1

]2
. (5.20)

For κ < 1 the right-hand side is clearly negative for t ∈ (0, 1) and ess-sup η′′κ(t) < 0,
as required.

It remains to consider the case κ ∈ (1, 2). We rewrite (5.20) as
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η′′κ(t)[t
κ + (1− t)κ]2 = − κ

κ − 1
gκ−1(t) ,

gp(t):= p[t(1− t)]p−1 − [tp − (1− t)p]2 ,

for p := κ− 1 ∈ (0, 1). Since the term [tκ + (1− t)κ]2 is strictly positive and bounded
for t ∈ [0, 1], it suffices to show that gp(t) ≥ c with some positive c. This claim is
equivalent to

[t(1− t)]1−p
[
t2p + (1− t)2p + c

]
≤ 2t(1− t) + p . (5.21)

Using the notation

Mp:=2p−1 max
t∈[0,1]

[
t2p + (1− t)2p

]
=

{
2−p if 0 < p < 1/2

2p−1 if 1/2 ≤ p < 1
,

the (elementary example of the) Young inequality

ab ≤ au

u
+
bv

v
, a, b ≥ 0 , u, v > 1 ,

1

u
+

1

v
= 1

for a = [2t(1− t)]1−p, u = (1− p)−1 and b = 1, v = p−1 yields

[t(1− t)]1−p
[
t2p + (1− t)2p + c

]
≤
(
Mp + 2p−1c

)
[2t(1− t)]1−p

≤
(
Mp + 2p−1c

)[
(1− p)(2t(1− t)) + p

]
.

Since Mp < 1 for p ∈ (0, 1), the number

c = (1−Mp)2
1−p

is positive. With this choice of c the above inequality becomes

[t(1− t)]1−p
[
t2p + (1− t)2p + c

]
≤ (1− p)

(
2t(1− t)

)
+ p ≤ 2t(1− t) + p ,

so (5.21) holds. This completes the proof of the inequality ess-supt∈(0,1) η
′′
κ(t) < 0 and

hence entails that B(A; ηκ) > 0.

5.5. Proof of the Main Theorem

The main part of this section corresponds to [15, Section 9] with some parts from [15,
Section 1] (with slight modifications).
We are now in a position to complete the proof of Theorem 1.0.2. In order to use

Theorems 5.2.6 and 5.2.7 we begin with the relation derived already in Section 5.1.

Sκ
(
Π

(ε)
MI, LΛ

)
= trDα

(
A(ε)

MI,Λ; ηκ
)
, α = Lε−1,

where the symbol A(ε) is given by

A(ε)
MI(ξ) =

1

2

(
1+

∑3
β=1 ξβγ

β − εm√
ξ2 + ε2m2

γ0
)
e−

√
ξ2+(εm)2 .
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The symbol A(ε)
MI is Hermitian 4×4-matrix-valued and it satisfies Condition 5.2.5 with

the limiting symbol

AMI(ξ) =
1

2

(
1+

3∑
β=1

ξβ
|ξ|
γβγ0

)
e−|ξ| , (5.22)

with the finite set Ξ = {0} and for arbitrary µ > 0. Note that in the case m = 0,

the symbol A(ε)
MI coincides with the limiting symbol (5.22) for all ε ≥ 0. Moreover,

as we have already observed earlier, each function ηκ satisfies Condition 2.2.5 with
T = {0, 1}, with γ ≤ min{κ, 1}, if κ ̸= 1, and γ < 1 if κ = 1 (see also Lemma C.0.1).
Thus, according to Theorem 5.2.6, as L→ ∞ and ε > 0 is fixed, we have

lim (Lε−1)−2Sκ
(
Π

(ε)
MI, LΛ

)
= limα−2 tr Dα

(
A(ε)

MI,Λ; ηκ
)
= B

(
A(ε)

MI; ηκ
)
,

for any bounded C1-region Λ ⊂ R3. Similarly, if ε ↘ 0 and α = Lε−1 → ∞, then
Theorem 5.2.7 leads to the formula

lim L−2ε2 Sκ
(
Π

(ε)
MI, LΛ

)
= B

(
AMI; ηκ

)
,

for any bounded C1-region Λ ⊂ R3. To complete the proof of (1.7) and (1.8) we
will check that the symbols A(ε),A satisfy the conditions of Proposition 5.3.1. The
following lemma is the first step in this direction.

Lemma 5.5.1. Let R ∈ SO(3) be arbitrary. Then there exists a matrix Q = QR ∈
SU(4) such that for any v ∈ R3:

Q
3∑

β=1

(Rv)β γ
β Q−1 =

3∑
β=1

vβγ
β , and Qγ0Q−1 = γ0.

Proof. The foundation for this proof can for example be found in [12, Lemma 1.3.1
and its proof].
It suffices to prove this lemma for rotations around the three coordinate axes, since

any other rotation may be written as a product of those three rotations.
Without loss of generality assume that R is a rotation around the z-axis. Then it

is given by

R =

cos θ − sin θ 0
sin θ cos θ 0
0 0 1

 ,

where θ ∈ R is the rotation angle. We claim that

Q :=


e−iθ/2

eiθ/2

e−iθ/2

eiθ/2


is the sought matrix. Indeed, note that

Q γ0 Q−1 = γ0 , Q γ3 Q−1 = γ3 ,
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Q γ1 Q−1 =


eiθ

e−iθ

−eiθ
−e−iθ

 ,

Q γ2 Q−1 =


−ieiθ

ie−iθ

ieiθ

−ie−iθ

 .

Then, by a straightforward computation we see that

Q
3∑

β=1

(Rv)β γ
β Q−1

= v1

(
cos θQ γ1 Q−1 + sin θQ γ2 Q−1

)
+ v2

(
− sin θQ γ1 Q−1 + cos θQ γ2 Q−1

)
+ v3γ

3 =

3∑
β=1

vβγ
β ,

which concludes the proof.

Lemma 5.5.1 ensures that the symbols AMI and A(ε)
MI satisfy the conditions of Propo-

sition 5.3.1. Therefore for any bounded C1-region Λ with finitely many connected
components,

B
(
A(ε)

MI; ηκ
)
= M(ε)

κ vol2(∂Λ), B
(
AMI; ηκ

)
= Mκ vol2(∂Λ),

where

M(ε)
κ := M

(
e;A(ε)

MI; ηκ
)
, Mκ := M

(
e;AMI; ηκ

)
,

with an arbitrary unit vector e. The convergence M
(ε)
κ → Mκ as ε ↘ 0, follows from

the next lemma from [15].

Lemma 5.5.2. [15, Lemma 7.2] Let f and Λ be as in Theorem 5.2.6, and let the
family A(ε) satisfy Condition 5.2.5. Then

B(A(ε); f) → B(A; f), as ε↘ 0.

Finally, since the matrix symbols AMI and A(ε)
MI satisfy the bounds 0 ≤ AMI(ξ) ≤ 1

and 0 ≤ A(ε)
MI(ξ) ≤ 1 for all ξ, it follows from Corollary 5.4.6 that B(AMI; ηκ) > 0

and B
(
A(ε)

MI; ηκ
)
> 0 for κ ∈ (0, 2). This immediately implies that M

(ε)
κ > 0 and

Mκ > 0 for κ ∈ (0, 2), as claimed. The proof of Theorem 1.0.2 is now complete.
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6. Summary and Outlook

We finally summarize this thesis and give some perspectives for future research. The
first part of this section is based on [13, Section 9] (with some modifications) moreover
some of the remaining section is based on [15, Sections 1 and 3].
In the Schwarzschild case we introduced the Rényi entanglement entropy of a Schwarz-

schild black hole horizon based on the Dirac propagator as

SBH
κ =

1

2

∑
(k,n)

occupied

lim
ε↘0

lim
u0→−∞

1

ln(M/ε)
tr
(
ηκ
(
χK(Π

(ε)
BH)knχK

)
−χKηκ

(
(Π

(ε)
BH)kn

)
χK

)
, (6.1)

(we left out the ρ-limit here since we have seen, that the ρ-dependence drops out after
taking the u0- and ε-limits). We have shown that we may treat each angular mode sep-
arately. This transition enables us to disregard the angular coordinates, which makes
the problem essentially one-dimensional in space. Furthermore, in the limiting case we
were able to replace the symbol of the corresponding pseudo-differential operator by
A(0) in (4.16) provided that κ > 2

3 . Since this symbol is diagonal matrix-valued, this

reduces the problem to one spin dimension. Moreover, because A(0) is also independent
of ε, the trace with the replaced symbol can be computed explicitly. It turns out to
be a numerical constant independent of the considered angular mode.
This leads us to the conclusion that the fermionic entanglement entropy of the

horizon is proportional to the number of angular modes occupied at the horizon,

SBH
1 =

∑
(k,n)

occupied

SBH
1,kn =

1

6
#
{
(k, n)

∣∣ angular mode (k, n) occupied
}
,

and a similar result holds for the Rényi entropies with κ > 2
3 . This is comparable to

the counting of states in string theory [42] and loop quantum gravity [2]. Furthermore,
assuming that there is a minimal area of order ε2, the number of occupied modes at
the horizon were given by M2/ε2, which would lead to

SBH
1 =

1

6

M2

ε2
.

Bringing the factor ln(M/ε) in (6.1) to the other side, this would mean that, up to
lower orders in ε−1, we would obtain the enhanced area law∑

(k,n)
occupied

lim
u0→−∞

tr
(
η
(
χΛ(Π

(ε)
BH)knχΛ

)
− χΛη

(
(Π

(ε)
BH)kn

)
χΛ

)

=
1

6

M2

ε2
ln(M/ε) + o

(
M2/ε2 ln(M/ε)

)
, as ε↘ 0 .
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6. Summary and Outlook

An interesting topic for future research would be to determine the number of occupied
anuglar momentum modes at the horizon in more detail, for example by considering a
collapse model.

Moreover, since initially we only had the entanglement entropy (i.e. the case κ = 1)
in mind, we only established estimates for R± and its first derivative in u. This had the
consequence that were not able to estimate the corresponding error terms for Rényi
entropies with κ ≤ 2

3 with the same methods. However, those methods would in prin-
ciple also apply for κ ≤ 2

3 as well if suitable estimates for higher derivatives of R±

were worked out. This is another topic for future research.

In the second part of this thesis we considered the Rényi entanglement entropy
operator Sκ(Π

MI
ε , LΛ) of bounded spatial regions LΛ with C1-boundary and finitely

many connected components in Minkowski spacetime. We considered two limiting
cases. The first where L is kept fixed and the regularization tends to zero, which is the
usual definition of entanglement entropy. Furthermore we considered the case where
the regularization is fixed and the parameter L describing the size of LΛ tends to
infinity. This gives under the assumption of a fixed regularization (for example when
identifying it with the Planck length) the behavior of the entanglement entropy when

the volume gets larger and larger. We started by rewriting Π
(ε)
MI as pseudo-differential

operator and then applying results from [15] to obtain the limiting coefficient. The
symmetry of the Dirac equation then allowed us to factor out the area and finally the
strict concavity of the function ηκ for 0 < κ < 2 together with a result going back
to Berezin from [4] lead to the positivity of the Rényi entanglement entropy. This
resulted in an area law for the Rényi entanglement entropies in both liming cases.
Namely in the first case where Lε−1 → ∞ and ε↘ 0

lim L−2ε2 Sκ(Π
(ε)
MI, LΛ) = Mκ vol2(∂Λ) ,

where Mκ is an explicit constant. And for L→ ∞ and ε > 0 is fixed,

lim L−2ε2 Sκ(Π
(ε)
MI, LΛ) = M(ε)

κ vol2(∂Λ) .

where M
(ε)
κ is some explicit constant such that M

(ε)
κ → Mκ as ε → 0. Moreover, for

0 < κ < 2, both coefficients Mκ and M
(ε)
κ are strictly positive.

Since as mentioned before, many interim results in [15] hold for any region satisfying
Condition 5.3.2, an interesting topic for future research would be to investigate if a
similar result holds for unbounded regions Λ satisfying Condition 5.3.2.
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A. Proof of Lemma 4.1.2

We follow the proof of [11, Lemma 3.1]. As explained there, employing the ansatz

X(u) =

(
e−iωuf+(u)
eiωuf−(u)

)
, (A.1)

the vector-valued function f must satisfy the ODE

d

du
f =

√
∆(r)

r2

(
0 e2iωu (imr − λ)

e−2iωu (−imr − λ) 0

)
f , (A.2)

where λ is an eigenvalue of the operator

A :=

(
0 d

dϑ + cotϑ
2 + k+1/2

sinϑ

− d
dϑ − cotϑ

2 + k+1/2
sinϑ 0

)
(see [11, Appendix A]) and thus does not depend on ω (in contrast to the Kerr-Newman
case as explained in [11, Appendix A]). Estimating (A.2) gives∣∣∣∣ dduf

∣∣∣∣ ≤ ∣∣∣∣√r − 2M

r3/2

∣∣∣∣ (mr + |λ|)|f | =
√
r − 2M

r

(
m+

|λ|
r

)
|f | .

Next, we transform r − 2M to the Regge-Wheeler-coordinate,

r − 2M = 2M W
(
eu/(2M)−1/2M

)
,

where W is the inverse log function, i.e. the inverse function of x 7→ xex. An ele-
mentary estimate7 shows that 0 ≤ W (x) ≤ x for any x ≥ 0 and therefore we can
estimate ∣∣∣∣ dduf

∣∣∣∣ ≤ eu/2M−1
(
m+

|λ|
2M

)
|f | . (A.3)

Setting

c1 :=
1

e

(
m+

|λ|
2M

)
, d :=

1

2M
,

we can proceed just as in [11, Proof of 3.1]:
Without loss of generality we can assume that |f | is nowhere vanishing8 and divide

(A.3) by |f | giving

|d/duf |
|f |

≤ c1e
du .

7Since the function f(x) := xex is strictly increasing (and differentiable) on (0,∞), so is W = f−1

on
(
f(0), f(∞)

)
= (0,∞). So from xex ≥ x for any x ≥ 0 follows x = W (xex) ≥ W (x). Moreover,

due to the monotony and since W (0) = 0, we have W (x) ≥ 0 for any x ≥ 0.
8If f(ũ) = 0 for one ũ ∈ R, then due to (A.2) also ( df

du
)|ũ = 0 and thus by the Picard-Lindelöf

theorem, f vanishes identically on R.
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This yields for any u < u2,

∣∣ ln(|f(u2)|)− ln(|f(u)|)
∣∣ = ∣∣∣∣∣

ˆ u2

u

d
du(|f

+(u′)|2 + |f−(u′)|2)
|f(u′)|2

du′

∣∣∣∣∣ ≤ 4

ˆ u2

u
c1 e

du′
du′

=
4c1
d

(
edu2 − edu

)
.

From this we conclude that

ln(|f(u)|) ≥ ln(|f(u2)|)−
4c1
d

(
edu2 − edu

)
≥ ln(|f(u2)|)−

4c1
d
edu2

ln(|f(u)|) ≤ ln(|f(u2)|) +
4c1
d

(
edu2 − edu

)
≤ ln(|f(u2)|) +

4c1
d
edu2 ,

which yields

|f(u2)| exp
(
− 4c1

d
edu2

)
≤ |f(u)| ≤ |f(u2)| exp

(4c1
d
edu2

)
. (A.4)

Using this inequality in (A.3), we obtain∣∣∣∣ dduf
∣∣∣∣ ≤ c1 |f(u2)| exp

(4c1
d
edu2

)
edu , (A.5)

which shows that df
du is integrable. Moreover due to (A.4), f(u) converges for u→ −∞

to

f0 := lim
u→−∞

f(u)
(A.4)

̸= 0 .

Now integrating (A.5) from −∞ to u < u2, we get

|f(u)− f0| ≤
c1
d

∣∣f(u2)∣∣ exp(4c1
d
edu2

)
edu . (A.6)

Finally, in order to get rid of the factor |f(u2)|, we make use of (A.4) in the limit
u→ −∞,

|f(u2)| ≤ |f0| exp
(4c1
d
edu2

)
. (A.7)

Substituting this in (A.6), we end up with the desired result

|g(u)| ≤ cedu ,

with

g(u) := f(u)− f0 , and c :=
c1
d

|f0| exp
(8c1
d
edu2

)
.

Similarly, removing |f(u2)| from (A.5) using (A.7) we obtain∣∣∣∣ ddug
∣∣∣∣ ≤ dcedu ,

which completes the proof.
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B. Computing the Symbol of (Π
(ε)
BH)kn

In this section, we give a more detailed computation of the symbol of the operator

(Π
(ε)
BH)kn for given k and n. Recall that (Π

(ε)
BH)kn is for any function ψ ∈ C∞

0 (R,C2)
given by,

(
(Π

(ε)
BH)knψ

)
(u) =

1

π

ˆ
dω

ˆ
du′e−εω

2∑
a,b=1

tωa,bXa(u, ω)
〈
Xb(., ω)

∣∣ ψ〉 .
The main task is therefore to determine

2∑
a,b=1

tωa,bXa(u, ω)Xb(u
′, ω)† =: (∗) . (B.1)

To this end first note that the details of the coefficients tab in (4.2) give

(∗) = χ(−m,0)(ω)X1(u, ω)X1(u
′, ω)† (B.2)

+ χ(−∞,−m)(ω)
[ 1
2
X1(u, ω)X1(u

′, ω)† +
1

2
X2(u, ω)X2(u

′, ω)† (B.3)

+ tω12 X1(u, ω)X2(u
′, ω)† + tω21 X2(u, ω)X1(u

′, ω)†
]
. (B.4)

Moreover, using the asymptotics of the radial solutions given in Lemma 4.1.2 the
matrix Xa(u, ω)Xb(u

′, ω)† can for any a, b ∈ {1, 2} be written as

Xa(u, ω)Xb(u
′, ω)†

=

(
f+0,a(ω) f

+
0,b(ω) e

−iω(u−u′) f+0,a(ω) f
−
0,b(ω) e

−iω(u+u′)

f−0,a(ω) f
+
0,b(ω) e

iω(u+u′) f−0,a(ω) f
−
0,b(ω) e

iω(u−u′)

)
(B.5)

+R0,a(u, ω)

(
f+0,b(ω) e

−iωu′

f−0,b(ω) e
iωu′

)†

+

(
f+0,a(ω) e

−iωu

f−0,a(ω) e
iωu

)
R0,b(u

′, ω)† (B.6)

+R0,a(u, ω)R0,b(u
′, ω)† . (B.7)

Where by f±0,a and R0,a we denote the functions f±0 and R0 corresponding to Xa for
each a = 1, 2. The terms in (B.6)-(B.7) will result in the error matrix R0,ε and will be
computed in Section 4.5.1. Here we are mainly interested in the terms in (B.5).
Combining our choices of f0 from Section 4.1.4 with (B.5) and (B.2)-(B.4), we obtain

(∗) = χ(−m,0)(ω)

(
|f+0,1(ω)|2 e−iω(u−u′) f+0,1(ω) f

−
0,1(ω) e

−iω(u+u′)

f−0,1(ω)f
+
0,1(ω) e

iω(u+u′) |f−0,1(ω)|2 eiω(u−u′)

)

+ χ(−∞,−m)(ω)

(
1
2 e

−iω(u−u′) tω12 e
−iω(u+u′)

tω21 e
iω(u+u′) 1

2 e
iω(u−u′)

)
+ R̃0(u, u

′, ω) ,
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where R̃0(u, u
′, ω) consists of the terms (B.6)-(B.7) inserted in the sum (B.1).

In order to rewrite (Π
(ε)
BH)kn as a pseudo-differential operator, we need a prefactor of

the form e−iω(u−u′) before the symbol. The matrix components in (∗) indeed involve
such plane waves. However, the (2, 2)-components oscillate with the wrong sign. In
order to circumvent this issue, we can use the freedom of coordinate change ω → −ω
in the dω integration of the (2, 2) and (1, 2) components. This yields (4.10).
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C. Regularity of the Functions ηκ

We now verify in detail that the functions ηκ satisfy Condition 2.2.5.

Lemma C.0.1. Consider the functions ηκ in (1.1). Then for any κ ̸= 1, ηκ satisfies
Condition 2.2.5 with T = {0, 1} for any γ ≤ min{κ, 1}. Moreover, η = η1 satisfies
Condition 2.2.5 with T = {0, 1} for any γ < 1.

Proof. We start with the case that κ = 1. Then, in order to prove that

η ∈ C2(R \ {0, 1}) ∩ C0(R) ,

it suffices to show the continuity at t = 0 and t = 1, which follows from

lim
t↘0

(
− t ln(t)− (1− t) ln(1− t)

)
= − lim

t↘0

ln(t)

t−1

L′H
= lim

t↘0

t−1

t−2
= 0 ,

(where “L′H” denotes the use of L’Hôpital’s rule) and

lim
t↗1

(
− t ln(t)− (1− t) ln(1− t)

)
= − lim

t↗1

ln(1− t)

(1− t)−1

L′H
= lim

t↗1

(1− t)−1

(1− t)−2
= 0 .

Moreover, for any t ∈ (0, 1) we have

η′(t) = − ln(t) + ln(1− t) ,

η′′(t) = −1

t
− 1

1− t
.

Thus, for any γ < 1

lim
t↘0

η(t)t−γ =− lim
t↘0

ln t

tγ−1
− lim

t↘0

ln(1− t)

tγ
L′H
= − lim

t↘0

t−1

(γ − 1)tγ−2
+ lim

t↘0

(1− t)−1

γtγ−1

= lim
t↘0

t1−γ

1− γ
+ lim

t↘0

t1−γ

γ(1− t)
= 0 ,

and obviously
lim
t↗0

η(t)t−γ = 0 .

Therefore, there exists a neighborhood U0,0 of t0 = 0 and a constant C0,0 such that
for any t ∈ U0,0,

|η(t)| ≤ C0,0|t|γ .

Similarly we obtain for t1 = 1,
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lim
t↗1

η(t)(1− t)−γ = − lim
t↗1

ln t

(1− t)γ
− lim

t↗1

ln(1− t)

(1− t)γ−1

L′H
= lim

t↗1

t−1

γ(1− t)γ−1
− lim

t↗1

(1− t)−1

(γ − 1)(1− t)γ−2
= 0 ,

lim
t↘1

η(t)(1− t)−γ = 0 ,

yielding a neighborhood U1,0 of t1 = 1 and a constant C1,0 such that for any t ∈ U1,0:

|η(t)| ≤ C1,0 |t− 1|γ .

The other estimates follow analogously by computing the limits

lim
t↘0

η′(t)t1−γ =− lim
t↘0

ln(t)

tγ−1

L′H
= lim

t↘0

t−1

(1− γ)tγ−2
= lim

t↘0

t1−γ

1− γ
= 0 ,

lim
t↗1

η′(t)(1− t)1−γ = lim
t↗1

ln(1− t)

(1− t)γ−1

L′H
= lim

t↗1

(1− t)−1

(γ − 1)(1− t)γ−2
= lim

t↗1

(1− t)1−γ

γ − 1
= 0 ,

lim
t↘0

η′′(t)t2−γ =− lim
t↘0

t1−γ = 0 ,

lim
t↗1

η′′(t)(1− t)2−γ =− lim
t↗1

(1− t)1−γ = 0 ,

lim
t↗0

η′(t)t1−γ = lim
t↘1

η′(t)(1− t)1−γ = lim
t↗0

η′′(t)t2−γ = lim
t↘1

η′′(t)(1− t)2−γ = 0 .

This concludes the proof for the case that κ = 1.
Next, consider κ ̸= 1. It is evident that

ηκ ∈ C2(R \ {0, 1}) ∩ C0(R) .

Moreover, note that for any γ ≤ κ,

lim
t↘0

ηκ(t)

tγ
=

1

1− κ
lim
t↘0

ln(tκ + 1)

tγ
L′H
=

κ
1− κ

lim
t↘0

(tκ + 1)−1tκ−1

tγ−1

=
κ

1− κ
lim
t↘0

tκ−γ <∞ ,

lim
t↗1

ηκ(t)

(1− t)γ
=

1

1− κ
lim
t↗1

ln(1 + (1− t)κ)

(1− t)γ
L′H
=

κ
1− κ

lim
t↗1

(1 + (1− t)κ)−1(1− t)κ−1

(1− t)γ−1

=
κ

1− κ
lim
t↗1

(1− t)κ−γ <∞ ,

Furthermore, the derivatives of ηκ for t ∈ (0, 1) are given by

η′κ(t) =
κ

1− κ
tκ−1 − (1− t)κ−1

tκ + (1− t)κ
,

η′′κ(t) = κ
tκ−2 + (1− t)κ−2

tκ + (1− t)κ
− κ2

1− κ

(
tκ−1 + (1− t)κ−1

)2(
tκ + (1− t)κ

)2 .

Thus we conclude that for κ < 1:
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η′κ(t) ≃ tκ−1 , η′′κ(t) ≃ tκ−2 , for t↘ 0 ,

η′κ(t) ≃ (1− t)κ−1 , η′′κ(t) ≃ (1− t)κ−2 , for t↗ 1 ,

so that we may choose γ ≤ κ. For 1 < κ ≤ 2 first note that the first derivatives in
t = 0 and t = 1 are bounded but non-zero, so we have

η′κ(t) ≃ 1 , η′′κ(t) ≃ tκ−2 , for t↘ 0 ,

η′κ(t) ≃ 1 , η′′κ(t) ≃ (1− t)κ−2 , for t↗ 1 ,

and therefore we have to take take γ ≤ 1. Similarly for κ > 2 we have

η′κ(t) ≃ 1 , η′′κ(t) ≃ 1 , for t↘ 0 ,

η′κ(t) ≃ 1 , η′′κ(t) ≃ 1 , for t↗ 1 ,

so we can only take γ ≤ 1 as well.
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