Universität Regensburg Mathematik

Circular sets of primes of imaginary quadratic number fields

Denis Vogel

Preprint Nr. 13/2006

CIRCULAR SETS OF PRIMES OF IMAGINARY QUADRATIC NUMBER FIELDS

DENIS VOGEL

ABSTRACT. Let p be an odd prime number and let K be an imaginary quadratic number field whose class number is not divisible by p . For a set S of primes of K whose norm is congruent to 1 modulo p , we introduce the notion of strict circularity. We show that if S is strictly circular, then the group $G(K_S(p)/K)$ is of cohomological dimension 2 and give some explicit examples.

1. INTRODUCTION

Let K be a number field, p a prime number and S a finite set of primes of K not containing any primes dividing p . Only little has been known on the structure of the Galois group $G(K_S(p)/K)$ of the maximal p-extension of K unramified outside S , in particular there has been no result on the cohomological dimension of $G(K_S(p)/K)$. Recently, Labute [La] showed that pro-p-groups whose presentation in terms of generators and relations is of a certain type, so-called mild pro-p-groups, are of cohomological dimension 2. If $K = \mathbb{Q}$, Labute used results of Koch on the relation structure of $G(\mathbb{Q}_S(p)/\mathbb{Q})$ and ended up with a criterion on the set S for the group $G(\mathbb{Q}_S(p)/\mathbb{Q})$ to be of cohomological dimension 2. Schmidt [S] extended the result of Labute by arithmetic methods and weakened Labute's condition on S.

The objective of this paper is to study the case where K is an imaginary quadratic number field whose class number is not divisible by p . In the first section we introduce the notions of the linking number of two primes and of strict circularity of a set of primes of K , all of this in complete analogy with the case $K = \mathbb{Q}$. Using Labute's results we obtain the criterion that if S is strictly circular then $G(K_S(p)/K)$ is a mild pro-p-group and hence of cohomological dimension 2. In the following section we give some explicit examples of strictly circular sets of primes, and in section 4 we study how a strictly circular set T can be enlarged to set S of primes of K , such that $G(K_S(p)/K)$ has cohomological dimension 2 as well.

2. Linking numbers and strictly circular sets

Let p be an odd prime number and K an imaginary quadratic number field whose class number is not divisible by p, and which is different from $\mathbb{Q}(\sqrt{-3})$ if $p = 3$. Let $S = \{q_1, \ldots, q_n\}$ be a set of primes of K whose norm is congruent to 1 mod p . For a subset T of S , we denote the maximal

Date: May 12, 2006.

2 DENIS VOGEL

p-extension of K unramified outside T by $K_T(p)$, and we put $G_T(p)$ $G(K_T(p)/K)$.

Let I_K denote the idèle group of K, and for a subset T of S let U_T be the subgroup of I_K consisting of those idèles whose components for $\mathfrak{q} \in T$ are 1 and for $\mathfrak{q} \notin T$ are units. For $\mathfrak{q} \in S$ we denote by $K_{\mathfrak{q}}$ the completion of K at q and by U_q the unit group of K_q . Furthermore, let π_q be a uniformizer of $K_{\mathfrak{q}}$ and let $\alpha_{\mathfrak{q}}$ be a generator of the cyclic group $U_{\mathfrak{q}}/U_{\mathfrak{q}}^p$. Let \mathfrak{Q} be an extension of q to $K_S(p)$. We let σ_q be an element of $G_S(p)$ with the following properties:

- (1) $\sigma_{\mathfrak{q}}$ is a lift of the Frobenius automorphism of \mathfrak{Q} ;
- (2) the restriction of $\sigma_{\mathfrak{q}}$ to the maximal abelian subextension K/K of $K_S(p)/K$ is equal to $(\hat{\pi}_{\mathfrak{g}}, K/K)$, where $\hat{\pi}_{\mathfrak{g}}$ denotes the idèle whose q-component equals $\pi_{\mathfrak{q}}$ and all other components are 1.

Let $\tau_{\mathfrak{a}}$ denote an element of $G_S(p)$ such that

- (1) $\tau_{\mathfrak{q}}$ is an element of the inertia group $T_{\mathfrak{Q}}$ of \mathfrak{Q} in $K_S(p)/K$;
- (2) the restriction of $\tau_{\mathfrak{q}}$ to \tilde{K}/K equals $(\hat{\alpha}_{\mathfrak{q}}, \tilde{K}/K)$, where $\alpha_{\mathfrak{q}}$ denotes the idèle whose q-component equals α_{q} and all other components are equal to 1.

For any subset T of S , class field theory provides an isomorphism

$$
I_K/(U_T I_K^p K^\times) \cong G_T(p)/G_T(p)^p[G_T(p),G_T(p)] = H_1(G_T(p),\mathbb{Z}/p\mathbb{Z}).
$$

Let V_T denote the Kummer group

 $V_T = \{a \in K^\times \mid a \in K_\mathfrak{q}^{\times m} \text{ for } \mathfrak{q} \in T \text{ and } a \in U_\mathfrak{q} K_\mathfrak{q}^{\times m} \text{ for } \mathfrak{q} \notin T\}$

We remark that due to [NSW], 8.7.2, we have an exact sequence

$$
0 \to \mathcal{O}_K^{\times}/p \to V_{\varnothing}(K) \to {}_p\mathrm{Cl}(K) \to 0.
$$

By our assumptions, this yields that $V_{\mathcal{Q}}(K) = 0$, and since $V_T(K) \subset V_{\mathcal{Q}}(K)$ we have $V_T(K) = 0$. This implies that the dual of the Kummer group $\mathbb{B}_T(K) = V_T(K)^\vee$ is trivial. The group on the left hand side of the above isomorphism is therefore given by

$$
I_K/(U_T I_K^p K^\times) \cong U_\varnothing/U_T U_\varnothing^p = \prod_{\mathfrak{q} \in T} U_\mathfrak{q}/U_\mathfrak{q}^p = (\mathbb{Z}/p\mathbb{Z})^{\#T}
$$

(see [Ko], §11.3). In particular, the automorphism $\tau_{\mathfrak{q}}$ restricts to a generator of the cyclic group $H_1(G_{\{q\}}(p), \mathbb{Z}/p\mathbb{Z})$. We use this fact for the definition of the linking numbers.

Definition 2.1. For two primes q_i , $q_j \in S$, the linking number $\ell_{ij} \in \mathbb{Z}/p\mathbb{Z}$ of \mathfrak{q}_i and \mathfrak{q}_j is defined by the formula

$$
\sigma_{\mathfrak{q}_i} \equiv \tau_{\mathfrak{q}_j}^{\ell_{ij}} \mod G_{\{\mathfrak{q}_j\}}(p)^p [G_{\{\mathfrak{q}_j\}}(p), G_{\{\mathfrak{q}_j\}}(p)].
$$

In other words, ℓ_{ij} is the image of the Frobenius automorphism $\sigma_{\mathfrak{q}_i} \in$ $G_S(p)$ in $H_1(G_{\{q_j\}}(p), \mathbb{Z}/p\mathbb{Z})$ which we identify with $\mathbb{Z}/p\mathbb{Z}$ by means of its generator $\tau_{\mathfrak{q}_i}$. Note that $\ell_{ii} = 0$ for all $i = 1, \ldots, n$. The linking number ℓ_{ij} is independent of the choice of the uniformizer $\pi_{\mathfrak{q}_i}$ of $K_{\mathfrak{q}_i}$ (this follows from the above isomorphism for the case $T = {\mathfrak{q}}_i$, but it depends on the choice of $\alpha_{\mathfrak{q}_j}$. If $\alpha_{\mathfrak{q}_j}$ would be replaced by $\alpha_{\mathfrak{q}_j}^s$, where s is prime to p, then

 ℓ_{ij} would be multiplied by s. Of course, the defining equation of the linking number ℓ_{ij} is equivalent to

$$
\hat{\pi}_{\mathfrak{q}_i} \equiv \hat{\alpha}_{\mathfrak{q}_j}^{\ell_{ij}} \mod U_S I_K^p K^\times
$$

which makes it possible to calculate the linking numbers in some examples, see section 3.

Let us pause here for a moment to explain the analogy to link theory. Assume we are given two disjoint knots I and J in S^3 . Then the linking number $lk(I, J)$ is defined as follows. The knot I is a loop in $S^3 - J$, hence it represents an element of $\pi_1(S^3 - J)$. After a choice of a generator of the infinite cyclic group $H_1(S^3 - J)$, $\text{lk}(I, J)$ is defined as the image of I under the map

$$
\pi_1(S^3 - J) \twoheadrightarrow \pi_1^{ab}(S^3 - J) \cong H_1(S^3 - J) \cong \mathbb{Z}.
$$

In the number theoretical context described above, the linking number ℓ_{ij} is given by the image of the Frobenius automorphism σ_i under the map

$$
\pi_1^{et}(X-S) \twoheadrightarrow \pi_1^{et}(X - {\mathfrak{q}}_j) \twoheadrightarrow H_1(X - {\mathfrak{q}}_j), \mathbb{Z}/p\mathbb{Z}) = H_1(G_{\{{\mathfrak{q}}_j\}}(p), \mathbb{Z}/p\mathbb{Z})
$$

$$
\cong \mathbb{Z}/p\mathbb{Z}
$$

where $X = \text{Spec}(\mathcal{O}_K)$ and we have chosen a generator of the cyclic group $H_1(X - \{q_j\}, \mathbb{Z}/p\mathbb{Z}).$

We denote by $\Gamma_S(p)$ the directed graph with vertices the primes of S and a directed edge $\mathfrak{q}_i \mathfrak{q}_j$ from \mathfrak{q}_i to \mathfrak{q}_j if $\ell_{ij} \neq 0$. The graph $\Gamma_S(p)$, together with the ℓ_{ij} is called the *linking diagram* of S.

Definition 2.2. A finite set of primes of K whose norm is congruent to 1 modulo p is called strictly circular with respect to p (and $\Gamma_S(p)$ a nonsingular circuit) if there exists an ordering $S = \{q_1, \ldots, q_n\}$ of the primes in S such that the following conditions are fulfilled:

- (1) The vertices q_1, \ldots, q_n of $\Gamma_S(p)$ form a circuit $q_1q_2 \ldots q_nq_1$.
- (2) If i, j are both odd, then $q_i q_j$ is not an edge of $\Gamma_S(p)$.
- (3) $\ell_{12}\ell_{23} \ldots \ell_{n-1,n}\ell_{n1} \neq \ell_{1n}\ell_{21} \ldots \ell_{n,n-1}.$

We remark that condition (1) implies that *n* is even and ≥ 4 . Note that condition (3) does not depend on the choice of the α_{q_j} . It is satisfied if there exists an edge $\mathfrak{q}_i \mathfrak{q}_j$ of the circuit $\mathfrak{q}_1 \mathfrak{q}_2 \dots \mathfrak{q}_n \mathfrak{q}_1$ such that $\mathfrak{q}_j \mathfrak{q}_i$ is not an edge of $\Gamma_S(p)$.

We will now show that G has representation of Koch type.

Proposition 2.3 (Koch). The group $G_S(p)$ has a presentation of Koch type, *i.e.* we have a minimal presentation $G_S(p) = F/R$ where F is the free prop-group on generators x_1, \ldots, x_n , and R is minimally generated as a normal subgroup of F by relations r_1, \ldots, r_n which are given modulo $F_{(3)}$ by

$$
r_i \equiv x_i^{N(\mathfrak{q}_i)-1} \prod_{\substack{j=1 \ j \neq i}}^n [x_i, x_j]^{\ell_{ij}} \mod F_{(3)}, \ i = 1, \dots, n.
$$

Here $F_{(3)}$ denotes the third step of the descending p-central series of F.

4 DENIS VOGEL

Proof. We have already seen above that $G_S(p)$ has a minimal generating system consisting of the *n* elements $\tau_{\mathfrak{q}_1}, \ldots, \tau_{\mathfrak{q}_n}$. The abelianization $G_S(p)^{ab}$ of $G_S(p)$ is a finitely generated abelian pro-*p*-group. If $G_S(p)^{ab}$ were infinite, it would have a quotient isomorphic to \mathbb{Z}_p , which corresponds to a \mathbb{Z}_p -extension K_{∞} of K inside $K_S(p)$. By [NSW], Thm. 10.3.20(ii), a \mathbb{Z}_p extension of K is ramified at at least one prime dividing p . This contradicts $K_{\infty} \subset K_S(p)$, hence $G_S(p)^{ab}$ is finite. In particular, $G_S(p)$ has at least as many relations as generators. From $[NSW]$, 8.7.11 we obtain the inequality

$$
\dim_{\mathbb{Z}/p\mathbb{Z}} H^1(G_S(p), \mathbb{Z}/p\mathbb{Z}) \ge \dim_{\mathbb{Z}/p\mathbb{Z}} H^2(G_S(p), \mathbb{Z}/p\mathbb{Z}),
$$

which implies that a minimal system of generators of R as a normal subgroup of F consists of n elements. Such a system is given by the set of relations

$$
r_i = x_i^{N(\mathfrak{q}_i)-1}[x_i^{-1}, y_i^{-1}], \quad i = 1, \dots, n,
$$

where $y_i \in F$ denotes a preimage of $\sigma_{\mathfrak{q}_i}$, see [Ko], §11.4. The definition of the +linking numbers yields

$$
y_i \equiv \prod_{\substack{j=1 \ j \neq i}}^n x_j^{\ell_{ij}} \mod F_{(2)}.
$$

Hence we obtain

$$
r_i \equiv x_i^{N(\mathfrak{q}_i) - 1}[x_i, y_i] \equiv x_i^{N(\mathfrak{q}_i) - 1}[x_i, \prod_{\substack{j=1 \ j \neq i}}^n x_j^{\ell_{ij}}] \equiv x_i^{N(\mathfrak{q}_i) - 1} \prod_{\substack{j=1 \ j \neq i}}^n [x_i, x_j]^{\ell_{ij}} \mod F_{(3)},
$$

which finishes the proof. \Box

Since $G_S(p)$ is of Koch a type, a result of Labute, ([La], Thm. 1.6.), applies, which states that $G_S(p)$ is a mild pro-p-group if S is strictly circular with respect to p. Then, in particular, $G_S(p)$ has cohomological dimension 2. We summarize our considerations in the following

Theorem 2.4. Let p be an odd prime number and let K be an imaginary quadratic number field whose class number is not divisible by p, and which is different from $\mathbb{Q}(\sqrt{-3})$ if $p=3$. Let $S = \{\mathfrak{q}_1, \ldots, \mathfrak{q}_n\}$ be a set of primes of K whose norm is congruent to 1 mod p. Is S is strictly circular with respect to p, then $G(K_S(p)/K)$ is a mild pro-p-group and hence of cohomological dimension 2.

3. Some examples

We use the same notation as in section 1. We let $S = {\mathfrak{q}}_1, \ldots, {\mathfrak{q}}_n$, and denote by q_i the prime of $\mathbb Z$ lying below $\mathfrak q_i$.

We firstly consider the case where each q_i is inert in K/\mathbb{Q} . Then $\pi_{\mathfrak{q}_i} = q_i$ is a uniformizer of $K_{\mathfrak{q}_i}$, and an element of $U_{\mathfrak{q}}$ for all primes $\mathfrak{q} \neq \mathfrak{q}_i$ of K. Hence, the idèle $\hat{\pi}_{q_i}$, when considered modulo $U_S I_K^p K^\times$, is equivalent to the idèle whose q-component is equal to 1 for $\mathfrak{q} \not\in S$ and $\mathfrak{q} = \mathfrak{q}_i$, and equal to q_i^{-1} for $\mathfrak{q} \in S \setminus \{\mathfrak{q}_i\}.$ This means that, after a choice of a generator $\alpha_{\mathfrak{q}_j}$ of $U_{\mathfrak{q}_j}/U_{\mathfrak{q}_j}^p$, ℓ_{ij} is given by by

$$
q_i = \alpha_{\mathfrak{q}_j}^{-\ell_{ij}} \mod U_{\mathfrak{q}_j}^p.
$$

Equivalently, we can choose a primitive root ϵ_j of $\kappa_{\mathfrak{q}_j}^{\times}$, where $\kappa_{\mathfrak{q}_j}$ denotes the residue field of \mathfrak{q}_i . Then ℓ_{ij} is the image in $\mathbb{Z}/p\mathbb{Z}$ of any integer c satisfying

$$
q_i = \epsilon_j^{-c} \mod \mathfrak{q}_j.
$$

In particular, $\ell_{ij} = 0$ if and only if q_i is a p-th power modulo q_j . This is equivalent to q_i being a p-th power modulo q_j : if $q_i \equiv x^p \mod{q_j}$ for some $x \in \mathcal{O}_K$, then $q_i^2 \equiv N_{K/\mathbb{Q}}(x)^p \mod{q_j}$, and the claim follows. This implies in the case under consideration, that $S = {\mathfrak{q}_1, \ldots, \mathfrak{q}_n}$ is strictly circular with respect to p if and only if $S_{\mathbb{Q}} = \{q_1, \ldots, q_n\}$ is strictly circular (over \mathbb{Q}) with respect to p.

Example 3.1. (cf. the example after Thm 2.1 in $[S]$) Let $K = \mathbb{Q}$ √ $\overline{-359}$), $p = 3$. The class number of K equals 19. The prime numbers 7, 19, 61, 163 are inert in K/\mathbb{Q} . We set

$$
\mathfrak{q}_1 = (61), \quad \mathfrak{q}_2 = (19), \quad \mathfrak{q}_3 = (163), \quad \mathfrak{q}_4 = (7)
$$

and $S = {\mathfrak{q}_1, \mathfrak{q}_2, \mathfrak{q}_3, \mathfrak{q}_4}$. The linking diagram has the following shape:

Hence, S is a circular set of primes and $\text{cd } G(K_S(3)/K) = 2$.

In the calculations above we have made use of two things: the uniformizers $\pi_{\mathfrak{q}_i}$ have been chosen in K^{\times} , and $\pi_{\mathfrak{q}_i}$ has been a unit in $U_{\mathfrak{q}}$ for all $\mathfrak{q} \in S \setminus {\mathfrak{q}_i}$. Another case in which this is easily achieved is the case when the ideal class group of K is trivial. Then we can take a generator of q_i as the uniformizer $\pi_{\mathfrak{q}_j}$ and ℓ_{ij} can be obtained from the same equations as above with q_j replaced by $\pi_{\mathfrak{q}_j}$.

Example 3.2. Let $K = \mathbb{Q}(i)$, $p = 3$. We put

$$
\mathfrak{q}_1 = (2+15i), \qquad \mathfrak{q}_2 = (4+15i), \quad \mathfrak{q}_3 = \overline{\mathfrak{q}}_1, \quad \mathfrak{q}_4 = \overline{\mathfrak{q}}_2
$$

and $S = \{\mathfrak{q}_1, \mathfrak{q}_2, \mathfrak{q}_3, \mathfrak{q}_4\}.$ Then we have $q_1 = q_3 = 229, q_2 = q_4 = 241,$ and we set

$$
\pi_{\mathfrak{q}_1} = 2 + 15i, \quad \pi_{\mathfrak{q}_2} = 4 + 15i, \quad \pi_{\mathfrak{q}_3} = \overline{\pi}_{\mathfrak{q}_1}, \quad \pi_{\mathfrak{q}_4} = \overline{\pi}_{\mathfrak{q}_2}
$$

The linking diagram has the following shape:

Hence cd $G(K_S(3)/K) = 2$. Note that, by [Ko], Ex. 11.15, $G(\mathbb{Q}_{\{q_1, q_2\}}(3)/\mathbb{Q})$ is finite.

6 DENIS VOGEL

The last example raises the following question. There are no examples known of prime numbers q_1, q_2 congruent to 1 modulo p where one can show that the cohomological dimension of $G(\mathbb{Q}_{q_1,q_2}(p)/\mathbb{Q})$ equals 2. Is it possible to obtain such an example by considering strictly circular sets of primes $\{\mathfrak{q}_1,\mathfrak{q}_2,\overline{\mathfrak{q}}_1,\overline{\mathfrak{q}}_2\}$ of an imaginary quadratic number field K of class number one, in combination with some kind of descent argument? Unfortunately, the answer to this question is negative as the following considerations show. Let q_1, q_2 be prime numbers congruent to 1 modulo p, and assume there exists an imaginary quadratic number field of class number one in which q_1 , q_2 are completely decomposed:

$$
q_1 \mathcal{O}_K = \mathfrak{q}_1 \mathfrak{q}_3, \quad q_2 \mathcal{O}_K = \mathfrak{q}_2 \mathfrak{q}_4.
$$

This definition of the primes q_i implies (for an appropriate choice of the primitive roots) the following equations for the linking numbers:

$$
\ell_{12}=\ell_{34}, \; \ell_{23}=\ell_{41}, \; \ell_{13}=\ell_{31}, \; \ell_{24}=\ell_{42}.
$$

Since we want to avoid that the group $G(\mathbb{Q}_{q_1,q_2}(p)/\mathbb{Q})$ is finite, we have to make sure that the conditions of [Ko], Ex. 11.15 are not fulfilled, and therefore we have in addition to assume that q_1 is a p-th power modulo q_2 and that q_2 is a p-th power modulo q_1 . It is easily seen that this puts the following restraints on the linking numbers:

$$
\ell_{12} + \ell_{32} = 0, \; \ell_{14} + \ell_{34} = 0, \; \ell_{21} + \ell_{41} = 0, \; \ell_{23} + \ell_{43} = 0.
$$

If ρ_i denotes the initial form of the image of r_i in the graded Lie algebra associated to the descending p-central series of F , the above conditions yield the equation

$$
\ell_{23}\rho_1 - \ell_{12}\rho_2 + \ell_{23}\rho_3 - \ell_{12}\rho_4 = 0.
$$

This means that the sequence ρ_1, \ldots, ρ_4 is not strongly free (cf. the definition of strong freeness in [La]), which implies, in particular, that the set $\{q_1, q_2, q_3, q_4\}$ is not strictly circular, and this holds true as well if we make a different choice of the primitive roots.

4. Enlarging the set of primes

Proposition 4.1. Let p be an odd prime number and and K an imaginary quadratic number field whose class number is not divisible by p, and which is different from $\mathbb{Q}(\sqrt{-3})$ if $p=3$. Let $S=\{\mathfrak{q}_1,\ldots,\mathfrak{q}_n\}$ be a set of primes of K whose norm is congruent to 1 mod p. If $\text{cd }G(K_S(p)/K) \leq 2$, then the scheme $X = \operatorname{Spec}(\mathcal{O}_K) - S$ is a $K(\pi, 1)$ for the étale topology, i.e. for any discrete p-primary $G(K_S(p)/K)$ -module M, considered as a locally constant $\acute{e}t$ ale sheaf on X, the natural homomorphism

$$
H^i(G(K_S(p)/K),M)\to H^i_{et}(X,M)
$$

is an isomorphism for all i.

Proof. We put $G = G(K_S(p)/K)$. In the same way as in the proof of [S], Prop. 3.2., the Hochschild-Serre spectral sequence

$$
E_2^{pq} = H^p(G, H^q_{et}(\tilde{X}, \mathbb{Z}/p\mathbb{Z})) \Rightarrow H^{p+q}_{et}(X, \mathbb{Z}/p\mathbb{Z}),
$$

where \tilde{X} denotes the universal p-covering of X, implies isomorphisms

$$
H^i(G,\mathbb{Z}/p\mathbb{Z})\cong H^i_{et}(X,\mathbb{Z}/p\mathbb{Z}),\ \ i=0,1
$$

and a short exact sequence

$$
0 \to H^2(G, \mathbb{Z}/p\mathbb{Z}) \xrightarrow{\phi} H^2_{et}(X, \mathbb{Z}/p\mathbb{Z}) \to H^2_{et}(\tilde{X}, \mathbb{Z}/p\mathbb{Z})^G \to 0.
$$

We set \bar{X} = Spec \mathcal{O}_K . By the flat duality theorem of Artin-Mazur, ([Mi], III, Thm. 3.1), we have

$$
H^3_{et}(\bar{X}, \mathbb{Z}/p\mathbb{Z}) = \text{Hom}_{\bar{X}}(\mathbb{Z}/p\mathbb{Z}, \mathbb{G}_m)^{\vee} = 0
$$

and

$$
H^{2}_{et}(\bar{X},\mathbb{Z}/p\mathbb{Z})^{\vee}=\mathrm{Ext}^{1}_{\bar{X}}(\mathbb{Z}/p\mathbb{Z},\mathbb{G}_{m}),
$$

the latter group sitting in an exact sequence

$$
0 \to \mathcal{O}_K^{\times}/p \to \text{Ext}^1_{\bar{X}}(\mathbb{Z}/p\mathbb{Z}, \mathbb{G}_m) \to {}_p\text{Cl}(K) \to 0.
$$

Our assumptions on K implies

$$
H^2_{et}(\bar{X}, \mathbb{Z}/p\mathbb{Z}) = 0.
$$

The excision sequence for the pair (\bar{X}, X) yields an isomorphism

$$
H^2_{et}(X,\mathbb{Z}/p\mathbb{Z}) = \bigoplus_{\mathfrak{q} \in S} H^3_{\{\mathfrak{q}\}}(\operatorname{Spec} \mathcal{O}_{\mathfrak{q}}^h,\mathbb{Z}/p\mathbb{Z}),
$$

where $\mathcal{O}_{\mathfrak{q}}^h$ denotes the henselization of the local ring of \bar{X} at \mathfrak{q} . The local duality theorem ([Mi], II, Thm. 1.8) gives

$$
H^3_{\{\mathfrak{q}\}}(\operatorname{Spec} \mathcal{O}_{\mathfrak{q}}^h, \mathbb{Z}/p\mathbb{Z}) \cong \mathrm{Hom}_{\operatorname{Spec} \mathcal{O}_{\mathfrak{q}}^h}(\mathbb{Z}/p\mathbb{Z}, \mathbb{G}_m)^{\vee}.
$$

As we have assumed that for all $\mathfrak{q} \in S$, the norm of \mathfrak{q} is congruent to 1 modulo p, we obtain $\dim_{\mathbb{Z}/p\mathbb{Z}} H^2_{et}(X,\mathbb{Z}/p\mathbb{Z}) = n$. Hence, by the proof of Lemma 2.3, ϕ is an isomorphism, and therefore

$$
H^2_{et}(\tilde{X}, \mathbb{Z}/p\mathbb{Z})^G = 0.
$$

The proof is then concluded as in [S], Prop. 3.2. \Box

Theorem 4.2. Let p be an odd prime number and let K be an imaginary quadratic number field whose class number is not divisible by p, and which is different from $\mathbb{Q}(\sqrt{-3})$ if $p=3$. Let S be a set of primes of K whose norm is congruent 1 mod p. Assume that $\operatorname{cd} G(K_S(p)/K) = 2$. Let $\mathfrak{l} \notin S$ be a prime whose norm is congruent to 1 modulo p, and which does not split completely in the extension $K_S(p)/K$. Then

$$
\operatorname{cd} G(K_{S\cup\{\mathfrak{l}\}}/K) = 2.
$$

Proof. The proof is the same as the proof of [S], Thm. 2.3, we just have to replace Prop. 3.2. of (loc.cit.) by Prop. 4.1. above. \Box

Corollary 4.3. Assume that S contains a strictly circular subset T such for each $\mathfrak{q} \in S \setminus T$ there exists an edge from \mathfrak{q} to a prime of T. Then $cd(G(K_S(p)/K)) = 2.$

Proof. We only need to remark that if we are given a prime $\mathfrak{q} \in S$ such that the linking number of $\mathfrak q$ and a certain prime l of T is nontrivial, then q does not split completely in $K_T(p)/K$. To see this, we fix an extension $\mathfrak Q$ of q to $L = K_{\{i\}}(p)^{ab}$. Since the linking number of q and l is nontrivial, the Frobenius of \mathfrak{Q} in L/K generates the whole Galois group $G(L/K) \cong \mathbb{Z}/p\mathbb{Z}$. Hence q does not split completely in L/K , which proves the claim. \Box

Example 4.4. Let $K = \mathbb{Q}($ √ $\overline{-359}$, $p=3$. The prime number $l=113$ is inert in K/Q, and if we put $\mathfrak{q}_5 = l\mathcal{O}_K$, and $S = {\mathfrak{q}_1, \mathfrak{q}_2, \mathfrak{q}_3, \mathfrak{q}_4, \mathfrak{q}_5}$ where q_1, q_2, q_3, q_4 are given as in Example 3.1, the linking diagram looks as follows:

Hence, by Cor. 4.3 we have $\text{cd } G(K_S(p)/K) = 2$ (although S is not strictly circular with respect to p).

Example 4.5. Let $K = \mathbb{Q}$ (√ (-359) , $p = 3$ and $S = \{q_1, q_2, q_3, q_4\}$, where **Example 4.3.** Let $K = \mathbb{Q}(\sqrt{-339})$, $p = 3$ and $S = \{41, 42, 43, 44\}$, where q_1, q_2, q_3, q_4 are given as in Example 3.1. Wet set $\mathbb{I} = (37, 14 + \sqrt{-359})$. Note that $[37, and 37]$ is completely decomposed in K/\mathbb{Q} . The unique subfield L of degree 3 over K of the extension $K(\mu_7)/K$ is a subfield of $K_S(p)/K$, and the prime $\mathfrak l$ of K is inert in L. Therefore, we obtain by Thm. 4.2 that cd $G(K_{S \cup \{R\}}/K) = 2.$

Another result from [S] which carries over to our situation with identical proof is given by the following theorem.

Theorem 4.6. Let p be an odd prime number and let K be an imaginary quadratic number field whose class number is not divisible by p, and which is different from $\mathbb{Q}(\sqrt{-3})$ if $p=3$. Let S be a set of primes of K whose norm is congruent to 1 mod p. Assume that $G(K_S(p)/K) \neq 1$ and $cd G(K_S(p)/K) \leq$ 2. Then scd $G(K_S(p)/K) = 3$ and $G(K_S(p)/K)$ is a pro-p duality group.

REFERENCES

- [Ko] Koch, H.: Galoissche Theorie der p-Erweiterungen. Deutscher Verlag der Wiss., 1970 (English translation Berlin 2002)
- [La] Labute, J.: Mild Pro-p-Groups and Galois Groups of p-Extensions of Q (to appear in J. Reine Angew. Math.)
- [NSW] Neukirch, J., Schmidt, A., Wingberg, K.: Cohomology of number fields. Springer 2000
- [Mi] Milne, J.: Arithmetic duality theorems. Academic Press 1986
- [S] Schmidt, A.: Circular sets of prime numbers and p-extensions of the rationals. (to appear in J. Reine Angew. Math.)

Denis Vogel NWF I - Mathematik, Universität Regensburg 93040 Regensburg Deutschland email: denis.vogel@mathematik.uni-regensburg.de