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Abstract 

Nucleoside analogues like 4-thiouridine (4sU) are used to metabolically label newly synthesized RNA. Chemical conversion of 4sU before se- 
quencing induces T-to-C mismatches in reads sequenced from labelled RNA, allowing to obtain total and labelled RNA expression profiles from 

a single sequencing library. Cytotoxicity due to extended periods of labelling or high 4sU concentrations has been described, but the effects of 
e xtensiv e 4sU labelling on expression estimates from nucleotide con v ersion RNA-seq ha v e not been studied. Here, w e perf ormed nucleotide 
con v ersion RNA-seq with escalating doses of 4sU with short-term labelling (1h) and o v er a progressiv e time course (up to 2h) in different cell 
lines. With high concentrations or at later time points, expression estimates were biased in an RNA half-life dependent manner. We show 

that bias arose by a combination of reduced mappability of reads carrying multiple conversions, and a global, unspecific underrepresentation 
of labelled RNA emerging during library preparation and potentially global reduction of RNA synthesis. We de v eloped a computational tool to 
rescue unmappable reads, which performed favourably compared to previous read mappers, and a statistical method, which could fully remo v e 
remaining bias. All methods de v eloped here are freely a v ailable as part of our GRAND-SLAM pipeline and grandR package. 
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ntroduction 

ucleotide conversion sequencing of metabolically labelled
NA ( 1–3 ) enables the direct analysis of the temporal dynam-

cs of RNA expression upon different perturbations in bulk
r single cells ( 4–7 ) and of different quantitative parameters
 8 ,9 ). Cells are simultaneously subjected to a certain condi-
ion of interest and labelled with the nucleoside analogue 4-
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approaches nevertheless provide unbiased estimates of the
new-to-total RNA ratio (NTR) and quantify the uncertainty
in these estimates ( 11 ). Recent methods carry these uncertain-
ties forward for the estimation of biophysical parameters of
the temporal kinetics of RNA expression such as synthesis
rates and half-lives and for identifying differentially regulated
genes ( 12 ). 

The precision and accuracy of the quantification of labelled
RNA is strongly affected by the frequency of 4sU incorpora-
tion: The more 4sU is incorporated into each newly synthe-
sized RNA molecule, the better are estimates of the NTR (see
Supplementary Note S1 and ref ( 11 )). In principle, this incor-
poration frequency depends on the relative concentrations of
triphosphorylated 4sU and U available for incorporation into
nascent RNA. Thus, a straight-forward way to optimize the
quantification of labelled RNA is to increase the 4sU concen-
tration. However, labelling using very high concentrations of
4sU especially over several hours affects cell viability ( 1 ) and
rRNA processing ( 13 ). We recently showed that expression
estimates from nucleotide conversion RNA-seq experiments
can be affected before significant effects on cell viability are de-
tectable ( 12 ). In multiple data sets, we observed marked differ-
ences between samples labelled with 4sU and unlabelled but
otherwise biologically equivalent control samples in principal
component analyses. In addition, in a differential gene expres-
sion analysis of total RNA levels, comparing 4sU labelled cells
against equivalent unlabelled controls preferentially genes
with short RNA half-lives appeared to be downregulated. This
observed downregulation can have biological or technical rea-
sons (see Figure 1 ): Excessive 4sU labelling might have direct
effects on RNA metabolism, e.g. incorporation of 4sU into
nascent RNA might result in reduced processivity of RNA
polymerase II or 4sU containing RNA might be less stable than
unlabelled RNA molecules. Excessive labelling might also in-
duce indirect effects, e.g. due to the activation of cellular stress
pathways. 

The observed downregulation of short-lived RNA might
also have technical reasons. In a recent study, reverse tran-
scription efficiency was found to be reduced for RNA con-
taining 4sU converted with iodoacetamide ( 14 ) as it is used
for SLAM-seq ( 1 ). The consequence of such a strong reduc-
tion of reverse transcription due to 4sU is that labelled RNA
is underrepresented in the sequencing library for 4sU-labelled
samples. While this manuscript was under review, a preprint
showed very convincingly that sub-optimal sample handling
can also lead to a loss of labelled RNA independent of re-
verse transcription ( 15 ). Moreover, mismatched bases gener-
ally impact negatively on read mappability. If mappability is
strongly impaired, reads corresponding to labelled RNA are
underrepresented among the mapped reads used for quantify-
ing gene expression. Since genes with short-lived RNAs have a
higher percentage of labelled RNA in the total RNA pool than
genes with long-lived RNAs, both, an underrepresentation of
labelled RNA in the library, and an underrepresentation of la-
belled RNA in the mapped reads could explain quantification
bias correlating with RNA half-lives. ( 11 ) 

Here, we performed nucleotide conversion RNA-seq with
increasing concentrations of 4sU and with several periods of
labelling in different cell types. We used these data to study
the cell type specificity and dependence on the duration of la-
belling and 4sU concentration of biased expression estimates
due to 4sU labelling and to assess the impact of technical rea-
sons thereof. To counter these effects, we here propose a new
method to rescue previously unmappable reads. We compared 

it to existing read mapping tools and evaluated it using in- 
silico simulated and real data sets. Furthermore, we devised 

a scaling strategy to correct for the underrepresentation of 
new RNA in the sequencing library or among mapped reads.
Our data provides evidence that this correction completely re- 
moved this effect from the data enabling the analysis of sam- 
ples that otherwise suffer from quantification bias due to ex- 
cessive 4sU treatment. 

Materials and methods 

Cell culture and 4sU labelling 

NIH-3T3 (ATCC CRL-1658) Swiss murine embryonic fibrob- 
lasts, human U2OS ( RRID:CVCL _ 0042 ), HFF-TERT (ATCC 

CRL-4001) hTERT-immortalized human foreskin fibroblasts 
and HCT 116 ( RRID:CVCL _ 0291 ) cells were grown in 

DMEM (Dulbecco’s Modified Eagle’s Medium) supplemented 

with 100 IU / mL Penicillin and 100 mg / mL Streptomycin at 
37 

◦C / 5% CO 2 . NIH-3T3 cells were supplemented with 10% 

NCS (New-born calf serum), U2OS, HFF-TerT and HCT116 

cells were supplemented with 10% FBS. 
All cells were seeded in six-well plates at 5 × 10 

6 cells / well 
followed by 4sU-labelling the next day. NIH-3T3 cells were 
labelled with 800 μM 4sU for 15, 30, 60, 90 and 120 min.
U20S, HFF-TerT and HCT116 cells were labelled with 0, 100,
200, 400 or 800 μM 4sU for 1 h. 

The cell lines were routinely checked for Mycoplasma by 
PCR and tested negative at all times. 

Nucleotide conversion RNA-seq 

Cells subject to 4sU-labelling were harvested using TRI 
reagent (Sigma) and RNA isolation was carried out for 
U2OS, HFF-TerT and HCT116 cells following a protocol 
recommended for TRI reagent. For NIH-3T3 cells, RNA 

was extracted using the Zymo DirectZol RNA-microprep kit 
(R2062) as described by the manufacturer and re-suspended 

in 1X PBS buffer. SLAM-seq ( 1 ) was conducted as described 

before ( 16 ) using IAA (Iodoacetamide) to mediate U > C 

conversions at 50 

◦C / 20 minutes for NIH-3T3 and at 37 

o C / 1h for U2OS, HFF-TerT and HCT116. The reaction was 
quenched using excess DTT (Dithiothreitol). RNA was then 

purified using RNeasy Mini elute kit (Qiagen) and subject to 

quality control via gel electrophoresis for 18S and 28S RNA 

followed by Bioanalyzer assessment (Agilent 2100). Library 
preparation (Illumina TruSeq) and sequencing (2 × 75 pair- 
ended) was conducted by the Core Unit SysMed (Würzburg) 
using NextSeq500 as described previously ( 16 ). 

For the experiment involving TUC-seq, total RNA from 

4sU-labelled and unlabelled cells was isolated as described 

above and eluted in RNAase-free H2O. RNA (5 μg) conver- 
sion using TUC chemistry was performed as previously de- 
scribed ( 17 ), except that incubation with OsO4 / NH4Cl was 
performed for 1h at 40 

◦C. SLAM conversion was done at 
50 

◦C / 30 minutes. RNA was purified by precipitation as de- 
scribed above and subjected to quality control using a Bio- 
analyzer instrument (Agilent 2100). For a side-by-side com- 
parison of SLAM-seq and TUC-seq (Figure 8 F), cell labelling,
RNA conversion, library preparation (DNBSEQ stranded 

mRNA) and sequencing (2 × 100 nt paired-end; DNBseq) 
were performed in parallel. 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae120#supplementary-data
https://scicrunch.org/resolver/RRID:CVCL_0042
https://scicrunch.org/resolver/RRID:CVCL_0291
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Figure 1. Ov ervie w of 4sU-induced quantification bias in ne w RNA. Cells are labeled with 4-thiouridine (4sU), which is incorporated into ne wly 
synthesized RNA. Incorporated 4sU could globally reduce transcriptional activity or induce degradation of labeled mRNAs (A) . 4sU has been shown to 
interfere with re v erse transcription and must be handled carefully to be well represented in the sequencing library ( 15 ) (B) . T-to-C mismatches within 
read sequences makes it harder to correctly map reads (C) . All three effects result in dropout of 4sU reads, mainly affecting genes with short half-lives 
and therefore introducing quantification bias. The incorporation frequency p 4 sU is defined as the relative frequency of T-to-C conversions in all observed 
reads corresponding to newly synthesized RNA (RNAPII: RNA polymerase II; RT: reverse transcriptase; obs: observed; unobs: unobserved). 
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For the methanol-fixed cells, 4sU-labelled NIH-3T3 cells
ere trypsinized and fixed in PBS and methanol at a ra-

io of 1:4. Methanol-fixed cells were stored at –80 

◦C. On
he day of the experiment, cells were taken out and were
hawed on ice for 30 min. Subsequently, IAA was added to
he methanol-fixed cells and kept at 4 

◦C overnight under pro-
ection from light. Next day, cells were centrifuged down to re-
ove methanol. Subsequently, cells were rehydrated in PBS for
0 min and used for RNA extraction using TRI reagent. Con-
ersion for the ‘Tube’ samples of this experiment was done at
7 

o C / 1h. Total RNA was processed for library preparation
n a similar way as done for the rest of the samples with the
xception that the QuantSeq FWD Kit was used for library
reparation and sequencing was done in 100 nt single-end
ode on the Illumina NextSeq2000 platform. 

NA-seq / SLAM-seq data processing 

ll publicly available RNA-seq and newly generated SLAM-
eq data used here were processed using the GRAND-SLAM
ipeline ( 11 ). Fastq files of publicly available RNA-seq data
ere downloaded from the SRA database. The accession
umbers were: GSE162264 for the simulation of mismatches
n read mappability and the evaluation of read mapping
ools from ( 4 ) (sample: GSM4948135), GSE124167 (samples:
SM3523316- GSM3523318) and GSE109480 (Samples:
SM2944116 – GSM2944120) for the comparison of read
appability after T > C mismatch introduction in TruSeq ( 18 )

nd QuantSeq ( 19 ) data sets respectively. 
Adapter sequences were trimmed using cu-

adapt (version 3.5) using parameters ‘-a
 GATCGGAA GA GCA CA CGTCTGAA CTCCA GTCA-A 

 GATCGGAA GA GCGTCGTGTA GGGAAA GA GTGT’ 
or the increasing concentrations and progressive la-
elling data and ‘-a A GATCGGAA GA GCA CA CGTCT-
AA CTCCA GTCA’ for data from r ef (4) . Then, bowtie2

version 2.3.0) was used to map read against an rRNA
NR_046233.2 for TruSeq and QuantSeq data, and
13369.1 for increasing concentrations, progressive la-
elling and ref. ( 4 )) and Mycoplasma database using default
arameters. Remaining reads were mapped against target
atabases using STAR (version 2.7.10b) using parameters
–outFilterMismatchNmax 20 –outFilterScoreMinOverLread
.4 –outFilterMatchNminOverLread 0.4 –alignEndsType
Extend5pOfReads12 –outSAMattributes nM MD NH –
outSAMunmapped Within’. We used the murine genome for
TruSeq and QuantSeq data, the human genome for increasing
concentrations, progressive labelling and data from ref. ( 4 ).
All genome sequences were taken from the Ensembl database
(version 90 for human, version 102 for mouse). Bam files for
each data set were merged and converted into a CIT file using
the GEDI toolkit and then processed using GRAND-SLAM
(version 2.0.7) with parameters ‘-trim5p 15 -modelall’ to
generate read counts and NTR values on the gene level,
taking into account all reads that are compatible with at least
one isoform of a gene. For the newly generated SLAM-seq
data sets only genes with > 200 reads in half of the samples
were retained for the evaluation of 4sU dropout scaling. 

Incorporation frequency saturation curves 

We assume that the incorporation frequency of 4sU only de-
pends on the relative concentrations of (triphosphorylated) U
and 4sU. Ignoring 4sU uptake into cells and all steps necessary
to make 4sU available for transcription, the incorporation fre-
quency p can be computed from the U concentration c U 

and
4sU concentration c 4 sU 

as p = 

c 4 sU 
c 4 sU + c U 

. This p is shown as a
function of c 4 sU 

in Figure 2 D. The unknown U concentrations
are estimated by solving this equation for c U 

= 

c 4 sU ( 1 −p ) 
p , and

taking the average of the c U 

computed from the 100 μM and
200 μM samples. 

4sU dropout plots 

4sU dropout plots are computed for a sample labelled with
4sU and a biologically equivalent 4sU naïve control sample.
The x axis of 4sU dropout plots is the RNA half-life computed
from the 4sU labelled sample using the formula ( 11 ) 

t 1 / 2 = 

−t 
log 2 ( 1 − ν) 

Here, t is the labelling time and ν the new-to-total RNA
ratio (NTR) estimated by GRAND-SLAM ( 11 ). Alternatively,
the x axis is the NTR rank among all genes. The y axis is the
log 2 fold change of the labelled vs the naïve sample computed
using the lfc package ( 20 ). These plots can be generated us-
ing the function Plot4sUDropout or Plot4sUDropoutRank of
grandR ( 12 ). We want to point out that genes with estimated
half-lives above 15h are removed from these plots by default.
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For the experiment involving labelling with uridine, the
NTR ranks were computed from the SLAM-seq samples. 

Simulation of nucleotide conversion RNA-seq with 

defined incorporation rates 

We used the mapped reads from ref. ( 4 ) to obtain the corre-
sponding mapping positions and genes for each read sequence
while unmapped reads were removed from the simulation. To
classify reads as new or old, we used NTR values estimated
from the data as follows: For a gene with a read count of n
and an NTR value ν, we randomly selected n · ν reads and
defined them as new. 

In each new read, we randomly introduced additional T-to-
C mismatches into the sequence by mutating a T in the read
sequence into a C with probability equal to a defined incor-
poration rate. Pre-existing T-to-C mismatches were kept. To
simulate reads with shorter read lengths we trimmed the 3 

′

ends to the desired length. 
Simulations based on the QuantSeq ( 19 ) and Illumina

TruSeq ( 18 ) experiments where performed in the same man-
ner to evaluate the effect of additional T-to-C mismatches on
mappability in different library preparation methods and read
lengths. 

To evaluate and compare the mapping accuracy of STAR,
grand-Rescue, SLAM-DUNK, HISAT2 and HISAT-3N we
generated read sequences fully in silico . We created 75 bp read
sequences equal to the read counts per gene in the dataset from
ref. ( 4 ) from random exonic locations of the respective genes.
To simulate polymerase and technical errors, the reads were
subjected to a 0.2% error rate by randomly altering single
nucleotides. Then, T-to-C conversions were introduced as de-
scribed above. 

These reads were then mapped by all mapping tools,
using the following parameters: For STAR we used ‘–
outFilterMismatchNmax 20 –outFilterScoreMinOverLread
0.4 –outFilterMatchNminOverLread 0.4 –alignEndsType
Extend5pOfReads12 –outSAMattributes nM MD NH –
outSAMunmapped Within’, for HISAT2 ‘–no-repeat-index’,
for HISAT-3N ‘–base-change T,C –no-repeat-index’ and stan-
dard parameters for SLAM-DUNK. 

Gene ontology analysis 

Gene ontology analysis was performed using GOrilla ( 21 )
with two unranked lists as the running mode, the default p-
value threshold of 10 

−3 and the process ontology output. We
used all genes in the data set as the background list and genes
with a log fold change lower than –0.1 as the target list. 

Pseudotranscriptome generation 

As a basis for the creation of the pseudotranscriptomes of the
Homo sapiens and Mus musculus genomes, we used the fasta-
and gtf-files from the Ensembl database (versions 90 and 102,
respectively). For each genome, we processed the gtf-files to
keep all entries with the gene, exon or CDS feature. Coordi-
nates were adapted to reduce intronic and intergenic regions
to 100 nucleotide spacers and genes on the negative strand
were projected onto the plus strand. We then processed the
fasta files, accordingly, removing intronic and intergenic se-
quences and replacing them by a uniform spacer of 100 N
nucleotides. To transfer genes from the negative strand to the
plus strand, their sequences were replaced by their reverse
complements. Finally, all T nucleotides were exchanged by C.
grand-Rescue 

grand-Rescue is a two-step process that starts from a bam file 
(containing read mappings without rescued 4sU labelled reads 
and unmappable reads) and generates a new bam file (addi- 
tionally containing the mappings of rescued reads). 

After mapping fastq files with STAR, grand-Rescue ex- 
tracts unmapped reads, using the command ‘gedi -e Ex- 
tractReads’ with standard parameters, writing all unmapped 

read sequences to a new fastq file, converting all T nu- 
cleotides to C and saving the original sequence per read along 
with the read IDs and all of its bam file tags to an idMap 

file. The resulting fastq file is then mapped to the pseudo- 
transcriptome, using STAR with the following parameters: 
‘–outFilterMismatchNmax 10 –outFilterScoreMinOverLread 

0.4 –outFilterMatchNminOverLread 0.4 –alignEndsType 
Extend5pOfReads12 –outSAMattributes nM MD NH –
outSAMmode Full’. Afterwards, we removed all multimapped 

reads from this file with samtools (version 1.13) with the pa- 
rameters ‘view -b -F 256’. 

Subsequently, ‘gedi -e RescuePseudoReads’ is used to trans- 
fer the mapping position to the original genome by using the 
mapped position in the pseudotranscriptome. We first iden- 
tified the gene a read was mapped to in the pseudotranscrip- 
tome and the gene’s location on the plus or minus strand in the 
original genome. We calculate the distance of the alignment 
start position to the gene start position in the pseudotranscrip- 
tome and determine its alignment start position in the original 
genome by adding this distance to the gene start position in 

the original genome (or subtracting it from the gene end posi- 
tion, if the gene is originally on the negative strand and reverse 
complementing the sequence), skipping over intronic regions 
that may exist. Then, we recover the original read sequence 
before full T-to-C conversion along with all saved bam file 
tags and recalculate the nM and MD tags. 

Finally, we remove unmapped reads from the original bam 

file and merge it with the rescued bam file from the pseudo- 
transcriptome mapping using samtools. 

Correcting 4sU dropout 

The percentage of 4sU dropout can be estimated for a sample 
labelled with 4sU if there is a biologically equivalent 4sU naïve 
control samples. It is estimated by numerically finding a factor 
f such that, if the NTR is multiplied by f , the spearman cor- 
relation coefficient of the log2 fold change 4sU / no4sU vs the 
NTR rank is 0. The 4sU dropout percentage then is d = 

f 
f+ 1 .

To correct for 4sU dropout, the expression of labelled RNA 

is multiplied by f = 

1 
1 −d , and the total expression estimate and 

the NTR is changed accordingly. 

RNA half-lives and testing for mis-normalization 

RNA half-lives and 95% confidence intervals were estimated 

from the progressive labelling data using the non-linear least 
squares method ( 12 ) using the grandR function FitKinetics 
after recalibrating effective labelling times using the grandR 

function CalibrateEffectiveLabelingTimeKineticFit. The like- 
lihood ratio test for an upward or downward trend in the total 
RNA of uncorrected data was performed by using the 4sU la- 
belling time as independent variable in the target model, and 

only an intercept term for the background model. Testing was 
performed using the LikelihoodRatioTest function of grandR.
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ropout fragment nucleotide compositional 
nalysis 

o determine the RNA fragments for the paired-end reads, we
rst used kallisto (version 0.44.0) with parameter –rf-stranded
o infer transcript level expression for the two pooled 4sU
aïve samples from our progressive labelling time course. We
etermined the major isoform for each gene by identifying the
ranscript with highest TPM value per gene, and the major iso-
orm percentage by dividing the TPM of the major isoform by
he total TPM of all transcripts for a gene. All genes with RNA
alf-life < 30 min, TPM > 10 and a major isoform percentage
f > 90% were considered further. For each of these genes,
nd each sample, we collected all mapped read pairs, and de-
ermined the RNA fragment by connecting the two mates ac-
ording to the exon-intron pattern of the major isoform. The
orresponding sequences was used to count all k -mers with
 = 1…3. 

tatistical analyses 

ierarchical clustering for the heatmaps in Figure 8 D and
upplementary Figure S10 B have been performed using com-
lete linkage and Euclidean distances. The DESeq2 ( 22 ) anal-
sis for Figure 7 E was conducted using a likelihood ratio test
omparing the background linear model where only an inter-
ept term was fitted to all samples (replicates and time points)
o the target linear model where the time point was included as
ndependent variable for regression. The test was performed
n total RNA levels separately before and after correction. 

esults 

xcessive 4sU treatment results in quantification 

ias preferentially for short-lived RNAs 

ince strong incorporation frequencies are beneficial for quan-
ifying labelled RNA (see Supplementary Note S1 ), we inves-
igated to which extent an increase of 4sU concentrations im-
roves the incorporation frequency, and whether this has a
egative effect on the samples. We previously observed short-

ived RNAs to be downregulated when comparing samples
hat were treated with 4sU for long periods of time (8h)
o 4sU naïve samples ( 12 ). We reasoned that this could be
aused by three effects (Figure 1 ): First, long-term treatment
y 4sU could globally impact on RNA metabolism by reduc-
ng transcriptional activity or accelerating degradation of la-
elled RNA. With reduced transcriptional activity, all RNAs
re inhibited by the same factor, but levels of short-lived RNAs
ould drop more rapidly than levels of long-lived RNAs,

hereby explaining our observation. Second, as described pre-
iously, converted 4sU might reduce reverse transcription effi-
iency ( 14 ), or other steps of the library preparation might be
mplemented in a sub-optimal way for 4sU ( 15 ), such that la-
elled RNA is underrepresented in the sequencing library. The
otal number of T-to-C conversions for short-lived RNAs is
arger than for long-lived RNAs, and, therefore, this could also
xplain the apparent downregulation of short-lived RNAs in
sU treated samples. Third, the probability that a read is cor-
ectly mapped to its genomic locus of origin declines with
ncreasing numbers of mismatched bases, which would also
ave its strongest effect on short-lived RNAs. Importantly, in
ll three cases fewer reads corresponding to newly synthesized
NA are mapped in the 4sU treated sample than in the 4sU
aïve sample. In the first case, these reads are missing due to
reduced RNA levels in the cells. In the second case, RNA levels
are unaltered, but the composition of the sequencing library is
changed. In the third case, the representation of genes by se-
quencing reads is unchanged but the read mapping algorithm
could not assign them to their correct genomic loci. 

To further investigate these, not mutually exclusive, causes,
we generated several nucleotide conversion RNA-seq data sets
of 4sU labelled samples: We performed dose escalation experi-
ments by labelling with 0 μM, 100 μM, 200 μM, 400 μM and
800 μM of 4sU for 1h in the two cancer cell lines U2OS and
HCT116 as well as in human telomerase reverse transcriptase
immortalized primary foreskin fibroblasts (HFF-TerT; Figure
2 A). The observed 4sU-induced T-to-C conversions among
all mapped reads increased with higher concentrations for all
three cell lines (Figure 2 B). Interestingly, the maximal value
at 800 μM was remarkably similar among the three cell lines
(HFF-TerT, 0.80%; U2OS, 0.87%; HCT116, 0.94%), but the
temporal kinetics were quite different. To investigate this fur-
ther, we used GRAND-SLAM ( 11 ) to estimate the 4sU incor-
poration frequency (percentage of T-to-C conversions among
labelled RNA only) and the percentage of labelled RNA for
all samples. Except for HCT116, the estimated percentage of
labelled RNA was largely constant for all concentrations in-
dicating that GRAND-SLAM could reliably deconvolute the
observed T-to-C conversions into contributions of the percent-
age of labelled RNA and different 4sU incorporation frequen-
cies (Figure 2 C). Consistent with previous observations ( 23 ),
incorporation frequencies among the three cell lines differed
substantially and, as expected, increased with higher concen-
trations (Figure 2 D). The incorporation frequency only de-
pends on the relative concentrations of activated 4sU and uri-
dine (U) and is therefore expected to be approximately a linear
function of the 4sU concentration in the regime well below the
U concentration (see Materials and methods). However, this
increase saturated for all three cell lines well below 100%, in-
dicating that, with increasing 4sU concentrations, import or
activation of 4sU became rate limiting or that 4sU containing
reads were underrepresented for the three reasons introduced
above. 

To investigate the effect of 4sU on short-lived RNAs we
performed 4sU dropout analysis by correlating the log 2 fold
change of each 4sU treated sample to the corresponding 4sU
naïve control sample of the same cell line vs the NTR. Interest-
ingly, U2OS, which had the overall lowest incorporation fre-
quencies (Figure 2 D), did not show downregulation of short-
lived RNA even with 800 μM 4sU (Figure 2 E). By contrast,
HCT116 and especially HFF-TerT showed this effect at higher
concentrations (Figure 2 E). 

We also sequenced a time course of murine NIH-3T3 fi-
broblasts labelled using 800 μM 4sU for 0, 15, 30, 60, 90 and
120 min (Figure 3 A). Here, as expected, the raw T-to-C con-
versions as well as the percentage of newly synthesized RNA
increased with longer periods of labelling (Figure 3 B, C). Inter-
estingly, consistent with the observations made by us and oth-
ers that activated 4sU accumulates only slowly in cells ( 12 ,24 ),
the incorporation frequencies of 4sU also increased from 2%
for the 15 min and 30 min timepoints to more than 4% at the
1 and 2 h time point (Figure 3 D). 4sU dropout analyses did not
reveal any effects of 4sU up to 30 min treatment but showed
increasingly stronger downregulation of short-lived RNAs at
later time points (Figure 3 E). 

In summary, both increasing concentrations of 4sU as well
as extended periods of labelling bias the quantification of total

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae120#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae120#supplementary-data
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Figure 2. Evaluation of increasing concentrations on quantification bias. (A) SLAM-seq experiments were conducted with U20S, HCT116 and HFF-TerT 
cells labeled for 1h with 4sU concentrations of 0 μM, 100 μM, 200 μM, 400 μM or 800 μM. (B) Observed T-to-C mismatches across all reads per cell line 
and 4sU concentration. (C) Percentages of new RNA content per cell line and 4sU concentration estimated by GRAND-SLAM. (D) Incorporation 
frequency of 4sU into newly synthesized RNA per cell line and 4sU concentration estimated by GRAND-SLAM (solid line). The dashed lines represent 
the theoretically expected incorporation frequency (see Materials and methods). (E) 4sU dropout plots of n = 6454 genes for the 800 μM 4sU samples 
versus 4sU naïve samples for all three cell lines. The x axis shows the RNA half-life, the y axis the median centered log 2 fold change of total RNA 

e xpression f or the 4sU labelled sample v ersus the corresponding 4sU naïv e control sample. A local polynomial regression (loess) fit is indicated in red. 
Spearman’s correlation coefficient ( ρ) and the associated P value (approximate t test) are given. Only genes with estimated half-lives < 15 h are shown to 
focus on the trend for short-lived RNAs. 
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RNA due to fewer observed sequencing reads in short lived
RNAs. 

Introduction of additional mismatches impairs read 

mappability 

We first investigated whether the observed downregulation of
short-lived RNA is solely due to diminished mappability of
reads with T-to-C conversions. To this end, we considered all
mapped reads (76 bp, single-end) from a 4sU naïve control
sample of a recent study ( 4 ) as a starting point and artificially
and randomly introduced T-to-C conversions with varying in-
corporation frequencies ranging from 0% (equal to the origi-
nal data) up to a maximum of 25% into the reads. This was
done only for a fraction of the reads corresponding to the
gene-wise NTR estimated in the original data, thus simulat-
ing a realistic nucleotide conversion sequencing experiment
with controlled 4sU incorporation. We then used STAR ( 25 )
to map these reads back to the reference genome. 

First, we investigated how many of the introduced T-to-
C conversions were lost due to reduced mappability. As ex-
pected, higher incorporation frequencies directly correlated
with the amount of lost T-to-C conversions, reaching already
9.8% at 10% incorporation rate and a maximum of 38.7% 

in the 25% sample (Figure 4 A). Interestingly, the number of 
lost mismatches did not rise linearly with increasing incorpo- 
ration rates, indicating that reads with multiple mismatches 
are increasingly difficult to map. To test this, we binned the 
reads according to their number of introduced T-to-C con- 
versions and analysed the count ratio of mappable reads vs 
the simulated reads in each bin. This ratio dropped steeply 
with every additional mismatch, resulting in a loss of 19% 

of reads with 3, and almost 50% of the reads with 5 T-to-C 

conversions (Figure 4 B). Thus, mappability suffers substan- 
tially in presence of multiple 4sU induced nucleotide conver- 
sions on the same read. Generally, mappability of reads de- 
creases with increasing T-to-C conversion rates, but to a vary- 
ing degree in relation to sequencing technique and read lengths 
( Supplementary Figure S1 ). 

Next, we used GRAND-SLAM to estimate incorporation 

frequencies in labelled RNA. Interestingly, the incorporation 

frequencies were underestimated by a fixed factor of approxi- 
mately 0.83 for all simulated samples (Figure 4 C). This was an 

effect of read mapping, as introducing the mismatches into al- 
ready mapped reads before running GRAND-SLAM resulted 

in unbiased estimates (Figure 4 C). Underestimation by a fixed 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae120#supplementary-data
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A

B C D

E

Figure 3. Evaluation of progressive labelling durations on quantification bias. (A) SLAM-seq experiments were conducted with NIH-3T3 cells with 
labelling for 0, 15, 30, 60, 90 or 120 min with 800 μM of 4sU. (B) Observed T-to-C mismatches o v er all reads per time point and replicate. (C) 

Percentages of new RNA per time point and replicate estimated by GRAND-SLAM. (D) Incorporation frequency of 4sU into newly synthesized RNA per 
time point and replicate estimated by GRAND-SLAM. (E) 4sU dropout plots of n = 9072 genes for all time points of replicate A. The x axis shows the 
RNA half-life, the y axis the median centered log 2 fold change of total RNA expression for the 4sU labelled sample vs. the corresponding 4sU naïve 
control sample. A local polynomial regression (loess) fit is indicated in red. Spearman’s correlation coefficient ( ρ) and the associated p value (approximate 
t test) are given. Only genes with estimated half-lives < 15 h are shown to focus on the trend for short-lived RNAs. 
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actor is not unexpected since GRAND-SLAM utilizes the
roportions of read counts with > 1 T-to-C conversions for
stimation of the incorporation frequency which suffer to the
ame extent from reduced mappability independent of the true
ncorporation frequency (Figure 4 B). The estimated incorpo-
ation frequency is an important parameter for the estimation
f gene-wise NTRs. However, gene-wise NTR estimates were
ot biased due to underestimated incorporation frequencies
f up to 15% ( Supplementary Figure S2 ) and were underesti-
ated specifically for high NTR values for incorporation fre-
uencies above 15%. This indicates that the GRAND-SLAM
odel inherently compensates for biased estimates of incor-
oration frequencies when T-to-C mismatches are unobserved
nd only suffers when a substantial fraction of the reads is
issing. 
Finally, we compared our simulated samples with a 4sU

aïve sample from the original data set to mimic 4sU dropout
nalyses of real data. Interestingly, similar to real data with
igh 4sU concentrations, short-lived RNAs appeared to be
ownregulated (Figure 4 D). However, this effect was only ap-
arent at simulated incorporation frequencies of > 15% and
enerally less pronounced as in the extreme cases of real data.
We also compared the 25% sample with the 0% sample,
which reflects the original reads without introduced T-to-C
conversions, thereby removing variance between replicates.
This revealed the loss of reads of short-lived key transcrip-
tion factors like MYC and JUN or central signalling molecules
like CYR61 (Figure 4 E). Gene set enrichment analysis revealed
200 gene ontology terms that consist of short-lived RNAs and
therefore appear to be downregulated due to reduced map-
pability ( Supplementary Table S1 ). We concluded that albeit
contributing, reduced mappability cannot explain the drastic
loss of reads from short-lived RNAs observed in real samples
treated with high concentrations of 4sU but might still result
in biased fold changes for highly relevant classes of genes. 

grand-Rescue improves mappability of T-to-C 

conversion reads 

Since reduced mappability of reads with T-to-C conversions
has significant effects on quantification, we wondered whether
read mapping could be improved. A promising approach that
has been used in the past for other applications that involve
nucleotide conversion such as bisulfite sequencing is to per-

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae120#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae120#supplementary-data
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A B C

D E

Figure 4. In-silico simulation of nucleotide-con v ersion RNA-seq. (A) Line plots showing the number of simulated, observed and unobserved T-to-C 

mismatc hes af ter simulating T-to-C con v ersion rates of 0% up to 25% in 4sU naïv e reads and subsequent remapping with S TAR. (B) Line plots sho wing 
the percentage of reads with 0 up to 14 T-to-C mismatches observed after mapping versus the true number of reads created by SLAM-seq simulations 
with 5% to 25% con v ersion rates. (C) GRAND-SLAM estimates of incorporation frequencies in newly synthesized RNA after introduction of T-to-C 

mismatches into read sequences and subsequent mapping (empty dots, with mapping) and into already mapped reads (solid dots, without mapping) for 
con v ersion rates of 5% to 25%. (D) 4sU dropout plot of a simulated 25% con v ersion rate sample versus a 4sU naïve sample. Only genes with 
estimated half-lives < 25 h are shown to focus on the trend for short-lived RNAs. (E) 4sU dropout plot of a simulated 25% con v ersion rate sample vs. the 
true read counts from the 0% con v ersion rate sample. All genes with a log 2 fold change < –0.12 are highlighted. 
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form read mapping under a three-letter alphabet, e.g. after
changing all T to C in both reads and reference ( 26 ). In prin-
ciple, after switching to a three-letter alphabet, any standard
read mapping tool can be used. Among the plethora of avail-
able read mapping tools, there are large differences in terms
of mapping accuracy also without nucleotide conversion ( 27 ).
We therefore favoured an approach that can use any available
tool to do the actual read mapping, instead of adapting an
existing tool or developing a new tool. Our method termed
grand-Rescue is a two-step algorithm that first tries to map
all reads to the reference genome without any modification,
and then subsequently tries to map all unmappable reads to a
pseudotranscriptome with a reduced alphabet. The final map-
ping locations are then transferred to the original reference
genome (Figure 5 A). We use STAR ( 25 ) as the internal read
mapper, which we found to have superior performance over
several other read mapping tools. 

We used simulated nucleotide conversion sequencing data
to evaluate and compare the performance of grand-Rescue
with STAR ( 25 ) and HISAT2 ( 28 ), two standard read map-
pers, as well as SLAM-DUNK ( 29 ) and HISAT3N ( 30 ), tools
that have been developed specifically for nucleotide conver-
sion RNA-seq. Instead of using STAR mapped reads as start- 
ing point as above, which would favour STAR based read 

mapping, we randomly redistributed reads across their mRNA 

(see Methods). As expected, the percentage of unmappable 
reads for STAR and especially HISAT2 increased drastically 
with the conversion rate (Figure 5 B). Surprisingly, this was 
also the case for the T-to-C conversion aware read mapper 
SLAM-DUNK, while HISAT3N and grand-Rescue remained 

unaffected by increasing T-to-C conversions. Among the reads 
mappable by each individual tool, the percentage of uniquely 
mappable reads with increasing T-to-C conversions stayed 

constant for HISAT3N and only dropped slightly for both 

grand-Rescue and SLAM-DUNK (Figure 5 C). Importantly,
however, HISAT3N and SLAM-DUNK only mapped 96.6% 

of the reads uniquely, while 97.8% where uniquely mapped by 
grand-Rescue even for the 25% sample. We observed a simi- 
lar picture when analyzing the percentage of correctly mapped 

reads among unique reads, i.e. the mapping accuracy: For 
both, grand-Rescue and HISAT3N the accuracy did not drop 

with increasing T-to-C conversions, but HISAT3N had over- 
all lower performance than grand-Rescue across all samples 
(Figure 5 D). Using STAR and adapting its mapping pa- 
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A

B C D

E

F

Figure 5. Evaluation of grand-Rescue and comparison to existing mapping tools (A) grand-Rescue first extracts unmappable reads, converts all T in their 
sequences to C and maps these reads with a read mapping tool of choice to a three-letter (T con v erted to C) pseudo-transcriptome. Rescued reads are 
then transferred to the original genome. (B) Percentage of unmapped reads for HISAT2, HISAT3N, SLAM-DUNK, STAR and STAR + Rescue for different 
simulated incorporation frequencies. (C) Percentage of uniquely mapped reads in relation to all reads per sample for HISAT2, HISAT3N, SLAM-DUNK, 
STAR and STAR + Rescue. (D) Correctly mapped reads in relation to all reads for HISAT2, HISAT3N, SLAM-DUNK, STAR and STAR + Rescue. (E) 

GRAND-SLAM estimates of incorporation frequencies before (empty dots) and after (solid dots) rescue. (F) 4sU dropout plots of a simulated 25% 

con v ersion rate sample vs. the true read counts from the 0% con v ersion rate sample before (top) and after (bottom) rescue. 
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ameters only minimally improves its performance but is
till suboptimal compared to grand-Rescue ( Supplementary 
igure S3 ). 
We concluded that all three T-to-C conversion aware

ead mappers, which follow different strategies, can in-
eed improve read mapping and that grand-Rescue performs
avourably . Importantly , however, the internally used read
apping algorithm, which can be changed for grand-Rescue,

lso has a great effect on read mappability. 

 

grand-R escue mitig ates effects of reduced 

mappability 

Rescuing previously unmappable T-to-C conversion reads us-
ing grand-Rescue substantially improved the estimates of the
T-to-C conversion frequency which were now only slightly
underestimated by a factor of roughly 0.97 instead of 0.83
before rescue (Figure 5 E). More importantly, after rescue,
the apparent downregulation of short-lived RNA due to
read mappability was not observed anymore (Figure 5 F). To

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae120#supplementary-data
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account for the impact of different library preparation pro-
tocols and read lengths on the estimation of 4sU incorpo-
ration rates by GRAND-SLAM, we used different starting
points for our simulation, including data generated using a
3 

′ end sequencing protocol (QuantSeq) as well as paired-end
and single-end data sets based on random priming (TruSeq),
and simulated 4sU incorporation rates from 0% to 10%. The
QuantSeq data consisted of 75bp single end reads, whereas
the TruSeq data were sequenced with 2 × 125 bp paired
end reads. To mimic other sequencing modes, we in-silico
trimmed the TruSeq reads to 100 or 75 bp reads and also dis-
carded the second reads, and thus analyzed overall six set-
tings based on TruSeq data, each with different incorpora-
tion rates ( Supplementary Figure S4 ). The percentage of res-
cued reads was highest in QuantSeq, especially in the sample
with a 10% conversion rate with 0.58% of all reads being
rescued whereas in the single end TruSeq samples, less reads
were rescued ( Supplementary Figure S4 A). These findings are
also reflected in the incorporation estimation, which was un-
derestimated most in 75 bp in QuantSeq and could be res-
cued ( Supplementary Figure S4 B) and to a minor extent in the
TruSeq data sets, whereas longer reads showed less to no signs
of underestimation ( Supplementary Figure S4 B). 

Both the dose escalation as well as progressive time course
data sets were generated using the TruSeq protocol and se-
quenced with 2 × 76 bp paired end reads. Indeed, in ac-
cordance with the simulated data, the estimated 4sU incor-
poration frequency did not change significantly for these
data sets ( Supplementary Figures S5 and S6 ), and the ef-
fect on short-lived RNA was still clearly visible after rescue
( Supplementary Figures S7 and S8 ). 

We concluded that even though improved read mapping
can fully mitigate the effect of reduced mappability of T-to-C
conversion reads, short-lived RNA still appears to be down-
regulated with high 4sU concentrations at long labelling times.

Labelled RNA is underrepresented by a constant 
factor 

We hypothesized that a global and unspecific underrepresen-
tation of labelled RNA in the sequencing libraries is respon-
sible for the observed downregulation of short-lived RNAs
and that gene-specific differences in RNA half-lives can ex-
plain gene-specific differences in downregulation. In this case,
in each sample the same fraction of labelled RNA is missing
for each gene. To test this hypothesis, we devised an algorithm
to estimate this percentage of 4sU dropout and used this pa-
rameter to scale up the estimated newly synthesized RNA per
gene (Figure 6 A). 

We estimated 4sU dropout to minimize the absolute cor-
relation of the log 2 fold change of the 4sU treated sample
vs the corresponding 4sU naïve sample (4sU versus no4sU)
against the new-to-total RNA ratio per gene. Before this cor-
rection, this correlation was strong and highly significant for
the 800 μM HFF-TerT sample (Figure 6 B, Spearman’s ρ =
0.29, P < 2.2 × 10 

−16 , asymptotic t test). After correction, the
correlation vanished (Figure 6 C, Spearman’s ρ = 0, P = 0.91,
asymptotic t test). Importantly, we did not observe any signs
of a non-monotonic correlation after correction: The distribu-
tions of the 4sU versus no4sU log 2 fold change for 10 equi-
sized bins along the NTRs were indistinguishable ( P = 0.11,
Kruskall–Wallis-test). This result suggests that scaling by the
percentage of transcriptional loss completely removed the ob- 
served effect of preferential downregulation of short-lived 

RNAs. 
The 4sU dropout percentage cannot only be used to cor- 

rect for this effect, but also is a convenient way to quantify 
the extent of this effect per sample as an alternative to visu- 
ally inspecting the corresponding 4sU dropout plots. Indeed,
the dropout values for the 4sU dose escalation experiments 
mirrored our visual impression (Figure 6 D): For HFF-TerTs,
the 4sU dropout rose to > 40% at 800 μM and was lower 
for all other samples. For the two cancer cell lines, only the 
800 μM sample of HCT116 was above 30%. In summary,
the 4sU dropout percentage can be used as a statistic to quan- 
tify preferential downregulation of short-lived RNA and to 

correct for it. 

4sU dropout scaling mitigates biased expression 

estimates 

To further investigate whether scaling using the 4sU dropout 
percentage can mitigate the effect of downregulation of short- 
lived RNAs, we analysed our progressive labelling time course 
data set. The transcriptional loss was remarkably consistent 
among replicates and increased steadily and almost linearly 
with longer labelling time up to a value of 31.6% and 33.5% 

for the two replicates with 2 h labelling (Figure 7 A). Again,
scaling labelled RNA based on the 4sU dropout percentage 
corrected for the downregulation effect without clear signs of 
non-monotonic correlations (Figure 7 B, C). 

4sU dropout does not only bias estimates of the NTRs, but 
also has profound effects for normalization across samples 
with distinct labelling times, e.g. for progressive labelling time 
courses. This is because under 4sU dropout, the fundamental 
assumption of no global changes in gene expression that most 
normalization methods make is violated. Indeed, normaliza- 
tion resulted in downward trends along the labelling time for 
short-lived RNAs, and in upwards trends for long-lived RNAs 
(Figure 7 D, E). For example, the levels of the short-lived RNA 

of Dusp4 declined at a rate of 12% per hour after size factor 
normalization ( 22 ) whereas the levels of the long-lived RNA 

of Eif3l increased at a rate of 5% per hour (Figure 7 D). Both 

trends were fully corrected by 4sU dropout scaling (Figure 
7 D). Of note, these downwards and upwards trends due to 

normalization also bias half-life estimates: Upon correction,
the estimated half-lives changed from 28.7 min (0.95% CI: 
25.5–32.8 min) to 23.0 min (0.95% CI: 20.6–26.0 min) for 
Dusp4 and from 9:39 h (0.95% CI: 7:56–12:19 h) to 5:51 

h (0.95% CI: 5:22–6:25 h) for Eif3l. Globally, n = 162 genes 
showed a strong and significant upwards or downwards trend 

without correction (absolute log 2 fold change per hour > 0.25,
P value < 5%, likelihood ratio test, Benjamini–Hochberg ad- 
justed for multiple testing, Figure 7 E), and only n = 23 re- 
mained after 4sU dropout factor scaling (Figure 7 E). 

To test our correction approach further, we considered 

SLAM-seq data previously published by us ( 4 ). This data set 
is a progressive labelling time course with 0, 1, 2 or 4 h of 
labelling and is part of a larger study on the molecular mech- 
anisms of the transcription elongation factor SPT6. Since we 
had noticed 4sU dropout for the 2 and 4 h time points, we 
had to exclude labelled RNA from these for estimating ki- 
netic parameters in the previous publication and focused on 

synthesis rates only ( 4 ). Indeed, half-lives estimated without 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae120#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae120#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae120#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae120#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae120#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae120#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae120#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae120#supplementary-data
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A

B C

D

Figure 6. Correction of 4sU dropout by scaling labelled RNA. (A) Correction of three example genes affected by 4sU dropout with short ( a ), medium ( b ) 
and long RNA half-life ( c ). A dropout factor ‘d’ is calculated and subsequently expression of labelled RNA is multiplied by 1 / 1-d. ( B , C ) 4sU dropout rank 
plots of the 800 μM HFF-TerT sample before and after correction. The x axis here is the rank of the new-to-total RNA ratio (largest NTR left). Boxplots 
showing the log 2 fold changes of the 4sU labelled sample vs unlabelled control are overlayed for 10 equisized bins along the x axis. Spearman’s 
correlation coefficient ( ρ) and the associated P value (approximate t test) are given. (D) Comparison of 4sU dropout percentage before and after 
correction in all three cell lines and for all 4sU concentrations. 
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orrection using all time points deviated drastically from the
nes estimated with correction ( Supplementary Figure S9 A).
nterestingly, bias was strongest for long half-lives, where the
stimator is more dependent on the later time points. How-
ver, bias was substantially reduced when labelled RNA from
he 2 and 4 h time points were excluded as done in the pub-
ication ( 4 ) ( Supplementary Figure S9 B). Since a lot of use-
ul information was excluded, it was not unexpected that
here was strong variance especially for half-lives longer than
 h ( Supplementary Figure S9 B) and that the estimated con-
dence intervals where much larger when only using the 1 h
ime point than when using all time points with correction
 Supplementary Figure S9 C). Thus, with the correction ap-
roach proposed here, also the 2 and 4 h time points can now
e used e.g. to assess the impact of SPT6 depletion on RNA
alf-lives. 
In summary, scaling by the 4sU dropout percentage re-
oved global 4sU induced effects on expression estimates

hat occur with high 4sU concentrations and long periods of
abelling. 
 

Multiple sample handling steps result in 4sU 

dropout 

In principle, extensive 4sU dropout observed in our progres-
sive labelling data set could be due to a direct or indirect ef-
fect of 4sU on RNA metabolism in the living cells, or because
labelled RNA is underrepresented in the sequencing library.
This underrepresentation could be due to diminished reverse
transcription efficiency of 4sU containing RNA ( 14 ) or due
to other properties of 4sU that interfere with sample handling
and library preparation ( 15 ). To test this hypothesis, we deter-
mined the RNA fragments that were reverse transcribed from
the paired-end sequencing data for all samples for n = 105
genes that had an RNA half-life of < 30 min, were strongly ex-
pressed ( > 10 TPM) and had an estimated major isoform per-
centage of > 90%. Interestingly, RNA fragments across all 105
genes that were sequenced from cells that were treated with
4sU for 2 h had significantly lower U or 4sU content than RNA
fragments sequenced from 4sU naïve cells ( P < 2.2 × 10 

−16 ,
Wilcoxon test, Figure 8 A, B). Lower U or 4sU content was
consistent for both replicates and gradually decreased with the

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae120#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae120#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae120#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae120#supplementary-data
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A B C

D E

Figure 7. Evaluation of 4sU dropout correction in progressive labelling data. (A) Comparison of the 4sU dropout percentage before and after correction 
in progressive labelling data over all time points in replicate A. ( B , C ) 4sU dropout rank plots of the 120 min sample in replicate A before and after 
correction with o v erla y ed bo xplots as in Figure 6 B, C. Spearman’s correlation coefficient ( ρ) and the associated p value (approximate t test) are given. (D) 

Old, new and total gene expression of Dusp4 and Eif3l over 2 hours of labelling before (left) and after (right) correction. The kinetic model fits are 
indicated as dashed lines. (E) Vulcano plot of genes showing an upwards or downwards trend on total RNA level before (left) and after correction (right). 
The y axis shows -log 10 of the DESeq2 P value (likelihood ratio test comparing a model with the 4sU labelling time as independent variable vs a model 
with intercept only) adjusted for multiple testing (Benjamini–Hochberg; FDR, false discovery rate). The numbers of genes above and below 5% FDR and 
log 2 fold changes of > 0.25 are indicated. Gene half-lives are represented by color. 
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labelling time (Figure 8 C). This was not due to issues with read
mappability since reads were mapped using grand-Rescue,
and we also observed the same differences in nucleotide con-
tent for the not sequenced parts of the RNA fragments in be-
tween the read pair ( Supplementary Figure S10 ). Notably, by
counting di- and trinucleotides, we found that underrepresen-
tation of U or 4sU in the RNA fragments in 4sU labelled sam-
ples depended on the sequence context with neighbouring U
(or 4sU), A or G nucleotides resulting in stronger underrepre-
sentation (Figures 8 D and S10 ). Taken together, this suggests
that RNA fragments that contain 4sU residues have a lower
probability to be reverse transcribed into cDNA than RNA
fragments without 4sU. This can be a direct effect of 4sU on re-
verse transcription efficiency of iodoacetamide-converted 4sU
nucleotides, as described ( 14 ) or because 4sU containing RNA
drops out earlier during sample preparation, e.g. because it in-
teracts with the material of the tubes, as also described ( 15 ). 

To further test these possibilities, we performed nucleotide
conversion RNA-seq in NIH-3T3 cells, where we either did
not label cells at all (control), labelled cells with 800 μM uri-
dine (U) or 800 μM 4sU for 2 h. The latter sample was split
and either not converted at all, converted with the SLAM-seq
approach ( 1 ) (which converts 4sU into a cytosine analogue) or
the TUC-seq approach ( 3 ) (which converts 4sU into an actual
cytosine) (Figure 8 E). While the U labelled samples showed
no signs of dropout, 4sU labelling alone without conversion
step resulted in intermediate levels of dropout (10–20%) but 
high levels of dropout (25–40%) for both SLAM and TUC 

conversion. This indicates that inefficient reverse transcription 

does not play a major role in the dropout of 4sU and that 
at least half of the RNA dropped out during SLAM or TUC 

conversion. 
To further investigate this, we performed another exper- 

iment, where we labelled cells with either 0 μM (control),
200 μM or 800 μM 4sU, and then performed SLAM con- 
version either in intact, methanol fixed cells, or in tubes as in 

all other experiments (Figure 8 G). Surprisingly, in these ex- 
periments, in the tubes both 4sU concentrations resulted in 

intermediate dropout levels ( ∼20%). Here, SLAM conversion 

was done at 37 

◦C in contrast to the 50 

◦C used in the other ex- 
periments, indicating that conversion done at lower tempera- 
tures mitigated 4sU dropout. In fixed cells, dropout increased 

from ∼20% with 200 μM to ∼30% with 800 μM 4sU (Fig- 
ure 8 H). Thus, also when 4sU containing RNA is not in con- 
tact with the potentially sticky plastic of the tubes, substantial 
4sU dropout occurred in a concentration dependent manner.
Taken together, these data show that there are multiple steps 
during sample handling that can result in 4sU containing RNA 

to drop out. 
If 4sU containing RNA drops out during library prepara- 

tion, it is a global and random effect that affects all fragments 
from labelled RNAs to roughly the same extent. Any other 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae120#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae120#supplementary-data
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I J

Figure 8. Various steps during sample handling result in 4sU dropout. (A) Scatter plot of nucleotide content in sequenced RNA fragments in 4sU naïve 
sample versus 2 h 4sU labelling. n = 105 genes with an RNA half-life < 30 min, > 10 TPM and an estimated major isoform percentage of > 90% are 
shown. ( B ) Boxplots showing the log 2 fold changes for all n = 105 genes of nucleotide content in 2 hours 4sU labelling vs. 4sU naïve sample for all 
nucleotides. P values ( < 2.2 × 10 −16 , Wilcoxon test) are indicated. (C) Line plots showing the average log 2 fold changes across the n = 105 genes of 
nucleotide content o v er all labelling times versus 4sU naïve sample and both replicates. (D) Heatmaps showing the average log 2 fold changes across all 
n = 105 genes for all dinucleotides over all labelling times vs. 4sU naïve sample in both replicates. (E) Experimental design for the conversion 
experiment. (F) 4sU dropout values for the two replicates involving labelling with U and no conversion, and labelling with 4sU and either no conversion, 
SLAM con v ersion or TUC con v ersion. (G) Experimental design f or the methanol fixation e xperiment. (H) 4sU dropout v alues f or the tw o replicates 
in v olving con v ersion in tubes with 20 0 μM or 80 0 μM 4sU, or f or con v ersion in methanol fix ed cells as indicated. (I, J) Scatter plot of log 2 f old changes 
for 2 h labelling versus 4sU naïve sample in replicate A against log 2 fold changes in replicate B before (I) and after (J) correction. The Spearman 
correlation coefficient and associated P values (asymptotic t test) are indicated. 
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ovariate that correlates with the 4sU versus no4sU log 2 fold
hange would also result in a correlation of the 4sU versus
o4sU log 2 fold change among replicates. Indeed, these fold
hanges of the uncorrected 2h replicates were strongly corre-
ated (Spearman’s ρ = 0.42, P < 2.2 × 10 

−16 , asymptotic t
est, Figure 8 I). However, after scaling this correlation disap-
eared completely (Spearman’s ρ = 0.01, P = 0.47, asymptotic
 test, Figure 8 J). Thus, any other additional factor resulting
n differences between 4sU treated and 4sU naïve samples was
inor in comparison to biological variability among samples.

n summary, these findings indicate that scaling by the 4sU
dropout percentage could fully correct for bias in expression
estimates due to excessive 4sU labelling in this experiment. 

Discussion 

Nucleotide conversion RNA-seq requires high 4sU concentra-
tions: The 4sU concentration correlates with the 4sU incorpo-
ration frequency in labelled RNA, which in turn determines
how many reads originating from labelled RNA carry a T-
to-C mismatch. For the data from ref. ( 1 ), we estimated an
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incorporation frequency in labelled RNA of 2% ( 11 ). Based
on binomial statistics, with the 50bp single end reads that were
used in this study, 75% of all reads originating from labelled
RNA are expected to carry no T-to-C mismatch ( 10 ). With
higher concentrations resulting in an incorporation frequency
of 10%, about 80% would carry at least one T-to-C mismatch.
Statistical approaches such as GRAND-SLAM can deal with
such missing observations, but also benefit substantially from
higher incorporation frequencies ( 11 ). In addition, the accu-
racy of half-life estimates drop severely when the labelling
time is much shorter than the RNA half-life ( 12 ). Thus, in
addition to high concentrations, long periods of labelling are
required for accurately estimating the whole spectrum of RNA
half-lives for mammalian genes. However, excessive labelling
with 4sU reduces cell viability ( 1 ) and has been shown to affect
rRNA processing ( 13 ). In addition to these biological effects,
we show here that excessive labelling also affects sequencing
data due to dropout of 4sU containing RNA molecules dur-
ing library preparation and reduced mappability of reads with
many mismatches. 

String matching allowing for mismatches is computation-
ally a much harder problem than exact string matching ( 31 ).
Therefore, all available read mapping tools use a two-step ap-
proach to quickly map reads: First, using a data structure for
exact string matching and some heuristics to allow for mis-
matches, candidate mapping positions are identified. Second,
the candidate positions are then filtered according to user-
defined criteria such as the number of maximal mismatches.
To improve read mapping for T-to-C mismatches, two differ-
ent strategies have been proposed: HISAT-3N ( 30 ) operates
on a genome with reduced, three-letter alphabet, and SLAM-
dunk ( 29 ) uses adapted criteria that do not penalize T-to-C
mismatches in the filtering step. Thus, HISAT-3N is aware of
4sU induced conversions for both candidate generation and
filtering, while SLAM-dunk considers conversions only for fil-
tering. Both strategies have disadvantages that could be ob-
served for our simulated reads: Mapping with reduced al-
phabets generates more multi-mappers, whereas conversion
aware filtering misses true mapping locations with increas-
ing numbers of mismatches. Our grand-Rescue approach is
also based on a reduced alphabet, but we mitigate the ef-
fect of multi-mappers by only mapping previously unmap-
pable reads against a three-letter pseudo-transcriptome. To
additionally reduce the search space while still conserving
the original genome organisation into exonic and intronic
regions, we replaced all intronic regions with 100 N spac-
ers. This allows grand-Rescue to be agnostic of how the in-
creased number of multimapping reads in long intronic se-
quences with a 3-letter alphabet are handled by the underlying
read mapping tool, which also has major impact on the overall
performance. 

While we have shown that read mappability, especially for
short read lengths, has an effect, it could not explain the extent
of 4sU dropout observed in our experiments. Previous reports
have shown that converted 4sU residues can act as a road-
block for the reverse transcriptase ( 14 ), and that suboptimal
sample handling and 4sU binding to sample tubes results in
dropout ( 15 ). Here, by comparing SLAM conversion and TUC
conversion chemistries, we have shown that blocking reverse
transcription is not a major cause of the dropout observed in
our SLAM-seq experiments, since TUC-seq converts 4sU into
an actual cytosine, and both chemistries resulted in highly sim-
ilar levels of dropout. This experiment also included samples
that were labelled with 4sU but not subjected to any conver- 
sion step. The intermediate dropout levels of these samples 
provide clear evidence that loss of 4sU occurred before con- 
version and during conversion. Furthermore, performing the 
conversion in intact, methanol fixed cells also showed substan- 
tial 4sU dropout. Importantly, this does not rule out 4sU con- 
taining RNA sticking to plastic as a major cause of dropout,
which has been shown convincingly recently ( 15 ). Rather, this 
means that at high 4sU concentrations, there are multiple fac- 
tors that result in an underrepresentation of 4sU containing 
RNA in sequencing libraries. 

The central question regarding 4sU dropout is whether it 
is a global and unspecific phenomenon. If dropout is mainly 
caused by steps during library preparation, or due to an un- 
specific effect on transcription or degradation that applies to 

all genes, the effects of 4sU dropout on quantitative expres- 
sion estimates can be corrected for by the approach proposed 

here. By contrast, if high 4sU concentrations are not unspe- 
cific effects and, e.g. activate cellular stress response pathways,
the biology of the cells is changed by labelling, which can im- 
pact on the quantitative parameters to be measured using nu- 
cleotide conversion RNA-seq. In this case, our correction ap- 
proach cannot remove the effects of high 4sU concentrations 
from data. Importantly, as shown here, specific effects that are 
not corrected for can be revealed by comparing the 4sU ver- 
sus no4sU log fold changes among replicates. Thus, we rec- 
ommend to always perform this comparison after using our 
correction approach. 

In principle, the uridine content of mRNAs could be used 

as a covariate when correcting 4sU dropout. For several rea- 
sons, we here resided with a more parsimonious model: First,
it is impossible to evaluate whether including uridine con- 
tent would provide improved quantifications. Second, we ex- 
pect the influence of uridine content to even out when RNA 

fragments over full length mRNAs are sequenced. Third, we 
also observed dependence on surrounding nucleotides, which 

would suggest even more complex models. Finally, our data 
indicate that also with a simpler model, the influence of RT 

efficiency could be removed from the data. 
To achieve optimal accuracy in quantifying labelled RNA 

using nucleotide conversion RNA-seq experiments, we sug- 
gest the following guidelines: First, due to the cell type and la- 
belling time specificity of 4sU uptake and incorporation, for a 
new experimental system a small-scale sequencing experiment 
should be performed first to test several 4sU concentrations in 

duplicates with shallow sequencing. This experiment can then 

be used to assess (i) incorporation frequency (at least 4%, bet- 
ter 8%, see Supplementary Note S1 ), (ii) 4sU dropout and (iii) 
whether the effects of 4sU dropout can be removed using our 
correction approach (a vignette on this is provided as part of 
our grandR package). Second, if only insufficient incorpora- 
tion frequencies can be achieved without causing 4sU dropout,
the conversion temperature or other steps of the experimental 
protocol should be optimized to minimize loss of 4sU ( 15 ).
Third, at least 2 × 75 bp read lengths should be used to fa- 
cilitate accurate read mapping. Fourth, especially for shorter 
reads, either HISAT3N or our read mapping rescue tool in 

conjunction with STAR should be used to improve read map- 
pability. Fifth, for all experiments, a no4sU control should be 
included and 4sU dropout should be assessed. If 4sU dropout 
is identified, it should be removed from data using our cor- 
rection approach, and the efficacy of this correction should be 
assessed by comparing replicates. 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae120#supplementary-data
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Implementations of the two methods introduced here are
vailable as part of our GRAND-SLAM / grandR pipeline.
rand-Rescue is a stand-alone program that is integrated as
n additional step into the pipeline. Its only input is a single
am file containing mapped and unmapped reads, and it gen-
rates a new bam file containing the rescued read mappings
n addition to previously mapped reads. Thus, it can be inte-
rated into any existing pipeline as an additional step. Com-
utation of the 4sU dropout percentage and the scaling ap-
roach to correct for dropout are implemented as functions in
ur grandR package ( 12 ), and we provide a vignette to show-
ase the usage of these functions. In principle, computing the
sU dropout percentage of a sample that has been labelled
ith 4sU requires an otherwise biologically equivalent con-

rol sample without 4sU labelling as reference, or a reference
ample without a global change in RNA synthesis or stability.

Here, we report that high concentrations of 4sU or pro-
onged labelling resulted in an apparent downregulation of
hort-lived RNAs, which can have profound impact on results
hen staying unnoticed. We therefore advocate that checking

or this effect is a mandatory part of quality control for nu-
leotide conversion RNA-seq. If such quantification bias is ob-
erved, it is important to investigate its causes. Technical issues
uch as reduced read mappability for labelled RNA or various
teps during library preparation can result in 4sU dropout und
herefore in apparent downregulation of short-lived RNA. It
s not unlikely, that such technical issues might be the only
ause for 4sU dropout in this experiment, since after correc-
ion by our scaling approach, no quantification bias was ob-
erved anymore, and the correlation of log2 fold changes be-
ween replicates disappeared completely. However, downreg-
lation of short-lived RNA can also be a sign of 4sU affecting
he living cells biologically. If such an effect of 4sU on RNA
etabolism cannot be excluded, all obtained results can be
isleading and must be interpreted withcare. 

ata availability 

aw data generated here have been deposited at GEO under
ccession numbers GSE229504 (Increasing concentrations),
nd GSE229506 (Progressive labelling), GSE253169 (SLAM-
 TUC-seq), and GSE253370 (Fixed cell SLAM-seq). 
All processed data (GRAND-SLAM outputs) are available

n zenodo: 
https:// doi.org/ 10.5281/ zenodo.7805929 (progressive la-

elling) 
https:// doi.org/ 10.5281/ zenodo.7753460 (Increasing con-

entrations) 
https:// doi.org/ 10.5281/ zenodo.7760483 (QuantSeq ( 19 )), 
https:// doi.org/ 10.5281/ zenodo.7760437 (Illumina TruSeq

 18 )) 
https:// doi.org/ 10.5281/ zenodo.8225022 (Reanalysis

pt6( 4 )) 
https:// doi.org/ 10.5281/ zenodo.10470570 (SLAM- &

UC-seq, Fixed cell SLAM-seq) 
R notebooks and data files for generating all figures

re available on zenodo ( https:// doi.org/ 10.5281/ zenodo.
0478770 ). 
The release version, source code and documentation of

randRescue can be found on github ( https://github.com/
rhard-lab/grandRescue ). All other methods including 4sU
ropout plots and the dropout scaling method are avail-
able as part of our grandR package ( https://cran.r-project.org/
package=grandR ). 

Supplementary data 

Supplementary Data are available at NAR Online. 
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