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In the case of (∞, 1)-categories, the homotopy coherent nerve gives a right Quillen 
equivalence between the models of simplicially enriched categories and of quasi-
categories. This shows that homotopy coherent diagrams of (∞, 1)-categories can 
equivalently be defined as functors of quasi-categories or as simplicially enriched 
functors out of the homotopy coherent categorifications.
In this paper, we construct a homotopy coherent nerve for (∞, n)-categories. We 
show that it realizes a right Quillen equivalence between the models of categories 
strictly enriched in (∞, n − 1)-categories and of Segal category objects in (∞, n −
1)-categories. This similarly enables us to define homotopy coherent diagrams of 
(∞, n)-categories equivalently as functors of Segal category objects or as strictly 
enriched functors out of the homotopy coherent categorifications.
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0. Introduction

0.1. The challenge of coherent mathematics

The concept of equality has firmly established itself as an important part of mathematical foundation 
and enables us to define a variety of mathematical objects, particularly algebraic ones, such as groups or 
rings. However, in recent decades we are more and more confronted with objects whose structure cannot be 
captured via equalities. A simple example is given by the loop space; we can compose loops, however the 
two possible compositions of three loops are only homotopic rather than equal.

These encounters have motivated the rise of coherent mathematical structures. Intuitively, the notion of a 
coherent structure is easy to convey: one simply replaces equalities with an appropriately chosen data, which 
could be a path in a topological space, a quasi-isomorphism of two chain complexes or a term in an identity 
type in a given type theory. However, making this idea precise turns into a challenge. Indeed, each layer 
of data that witnesses an equality necessitates one higher layer of data that guarantees all previous choices 
are appropriately compatible. This can already be witnessed in the definition of a monoidal category whose 
associator, the isomorphism witnessing associativity, needs to satisfy the pentagon identity. As a result, any 
effort to explicate coherent structures results in an infinite and interlocked tower of intractable data.

In certain situations the infinite tower of data that arises in such situations can be tackled effectively via 
modern machinery, such as operads. For example, we can give a precise definition of a homotopy group via 
the A∞-operad and then show loop spaces are an example of such coherent groups. These methods using 
operadic techniques have, among others, been effectively used by Haugseng and various collaborators, to 
study a wide range of homotopy coherent settings [9,20,23,27].

0.2. Homotopy coherent nerve

Despite those advances, we cannot always tackle the issue of defining coherent structures by hand and we 
need to find a more conceptual approach that can generalize a given (algebraic) structure to its appropriately 
defined coherent analogue. Here we can benefit from the well-known observation that algebraic structures 
can be characterized via appropriately chosen functors. For example, the category of monoid objects in 
a finitely complete category C is precisely given via a full subcategory of simplicial objects in C. This 
suggests that an important first step towards defining homotopy coherent structures consists of developing 
an appropriate notion of homotopy coherent functors out of small categories, such as Δ. Similar to above, 
intuitively a homotopy coherent functor should satisfy functoriality only up to appropriately chosen data. 
However, again it is challenging to translate this intuition into a precise mathematical definition and there 
are two broad ways we can approach this problem:

(I) We can adjust a given indexing category in a specific way so that functors out of this category now 
incorporate the desired coherence.

(II) Instead of solving the problem one category at a time, we identify an appropriate homotopy coherent 
generalization of the notion of a category itself. Then a coherent diagram would simply be a functor in 
this generalized setting.

A first comprehensive solution following the line of thinking outlined in (I) was employed by Cordier and 
Porter [13,14]. They constructed an adjunction

SetΔop sSet-Cat ,
Nh

ch

⊥
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known as the homotopy coherent categorification and homotopy coherent nerve adjunction between simplicial 
sets and simplicially enriched categories. In particular, for a given (1-)category C, in the simplicially enriched 
category chNhC, every pair of composable morphisms is now only related by a path to its original composite 
in C, and any original instance of associativity in C is now witnessed by higher simplices. Hence a homotopy 
coherent functor out of C can be defined very precisely as a simplicially enriched functor out of chNhC, 
resting assured that the simplicial enrichment takes care of the desired coherence.

A proper development of a fully coherent category theory realizing approach (II) did follow not long 
after. Starting in the 90s we saw the rise of various weak models of (∞, 1)-categories, prominent among 
them quasi-categories [31] and complete Segal spaces [45]. There the (∞, 1)-categories are defined as certain 
simplicial objects and functors are defined as simplicial morphisms, meaning the coherence is built into 
the definition of a functor via simplicial identities. In fact early versions of quasi-categories were precisely 
introduced with the goal of characterizing homotopy coherent data [7].

A priori this suggests two different definitions of a homotopy coherent diagram, however, closing this long 
developmental arc, it was proved first by Joyal, then Lurie [37], and also Dugger–Spivak [16,17] that the 
adjunction ch � Nh in fact gives us an equivalence, by establishing a Quillen equivalence of model categories, 
which in particular means the two notions of homotopy coherent data are appropriately equivalent. As a 
consequence, every quasi-category is (up to equivalence) of the form NhC for some Kan-enriched category 
C and so for a given simplicial set K a homotopy coherent diagram in sense above chK → C is the same as 
a homotopy coherent diagram in the sense of quasi-categories K → NhC.

To summarize, as a result of this extensive work, we can now very precisely define a homotopy coherent 
diagram as a functor of quasi-categories or, equivalently, as a simplicially enriched strict functor out of the 
categorification of the homotopy coherent nerve, each approach having shown their advantages in a variety 
of settings.

(1) Classifying diagrams in (∞, 1)-categories: The homotopy coherent nerve enables us to give explicit 
descriptions of homotopy coherence via classifying objects. For example, in [37, §4.4.5], Lurie uses the 
homotopy coherent nerve to construct the homotopy coherent idempotent classifier and uses that to 
prove that homotopy coherent idempotent completion is an infinite operation, meaning (unlike the 
1-categorical case) there are finitely complete categories that are not idempotent complete.

(2) Coherent diagrams valued in spaces: The same way that the category of sets plays a central role in 
classical category theory, the (∞, 1)-category of spaces plays an analogous role in (∞, 1)-category theory, 
being the natural codomain of representable functors. As a result, defining and studying homotopy 
coherent diagrams of spaces plays a central role. However, there is no direct non-technical way to 
construct the quasi-category of spaces given all the higher coherences it entails and the most standard 
construction is given by the Kan-enriched category of Kan complexes. That means we cannot use 
method (II) to study homotopy coherent diagrams of spaces, and need the homotopy coherent nerve, 
an important example being the first construction of the Yoneda embedding for quasi-categories; see 
[37, Proposition 5.1.3.1].

(3) Straightening construction for (∞, 1)-categories: In [37] Lurie uses the homotopy coherent nerve in an 
essential manner to define the straightening construction, which for a given simplicial set K identifies 
homotopy coherent diagrams out of chKop valued in spaces with right fibrations over K; see [37, Theorem 
2.2.1.2]. The straightening construction provides us with the most effective method to analyze coherent 
diagrams and particularly identify representable functors. It is hence the key step in the development 
of (∞, 1)-category theory, such as the study of limits or presentability; see [31] and [37, §4-5].

(4) (∞, 1)-limits: When working with (∞, 1)-categories modeled by strictly Kan-enriched categories, we 
can rely on the extensive literature regarding simplicially enriched colimits; see e.g. [47]. However, 
this approach is computationally unfeasible as it necessitates constructing free contractible homotopy 
coherent diagrams (concretely modeled by the cofibrant replacement of the terminal diagram). Therefore, 
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instead of studying limits for diagrams valued in a category strictly enriched over spaces, one prefers to 
use the notion of a limit for diagrams valued in the corresponding quasi-category, as defined by Joyal 
[31], using quasi-categories of cones.

While studying limits via cones is much more effective, it creates the possibility of a mismatch between 
the two possible notions of limits. However, using the interplay between homotopy coherent nerves 
and homotopy coherent diagrams permits Riehl and Verity [51] and the third author [49] to describe 
limits in a quasi-category as a weighted simplicially enriched limits of its corresponding homotopy 
coherent diagram, which has both demonstrates that the notions agree appropriately as well as aids 
with computations.

0.3. Developing a theory of (∞, n)-categories

While many structures (such as groups) by default assemble into categories, some naturally exhibit more 
data, the prime example being categories, which assemble into a 2-category given by categories, functors, 
and natural transformations. Proceeding inductively we can more generally define a strict n-category as 
consisting of objects, 1-morphisms, 2-morphisms between 1-morphisms, up to n-morphisms between (n −1)-
morphisms, or, more succinctly a category enriched over strict (n − 1)-categories. Similar to before we are 
confronted with objects that satisfy equalities only in a coherent manner, an example being monoidal n-
categories, and hence would like to define and study coherent structures in this setting.

As before there are two main ways to tackle this problem:

(I) We can work with a notion of weak n-category that is strictly enriched and adjust the chosen diagram 
so that strictly enriched functors already encode the desired homotopy coherence.

(II) We can develop a notion of weak n-categories, such that functors are by definition coherent.

For historical reasons, we will start with approach (II) as it has been developed much more extensively. 
There is now a wide range of weak models of (∞, n)-categories, explicitly given as presheaves on appropri-
ately chosen diagram categories, such as (saturated) n-complicial sets [42,53], n-fold complete Segal spaces 
[2], complete Segal Θn-spaces [46], n-quasi-categories [1], and saturated n-comical sets [10,15]. Hence, rely-
ing on the existing literature we can define already homotopy coherent diagrams as functors in these weak 
models.

The situation regarding approach (I) has as of yet remained unclear. We can generalize simplicially 
enriched categories (that we used in the (∞, 1)-categorical setting) in a way that incorporates n-categories, 
by strictly enriching categories over any of the weak models of (∞, n − 1)-categories introduced above. 
While we know that this strictly enriched model is abstractly equivalent to a weak model via an intricate 
zig-zag of equivalences [4,5], we currently do not have a homotopy coherent categorification and homotopy 
coherent nerve adjunction that can help us adjust a given n-category in a manner that incorporates homotopy 
coherence. This is despite the fact that such a construction would be key in obtaining several further results, 
analogous to the work done for (∞, 1)-categories.

(1) Classifying diagrams in (∞, n)-categories: Similar to the (∞, 1)-categorical situation we would like to 
have the ability to construct classifying objects for important diagrams with the goal of understanding 
the data of a diagram by analyzing its classifying object. There are successful examples in (∞, 2)-
category that managed to avoid the nerve, such as the construction of the free homotopy coherent 
adjunction due to Riehl and Verity, which benefited from the fact that the free homotopy coherent 
adjunction happened to be a simplicial computad, which guarantees the required coherence [50]. This 
does not hold for general diagrams of interest (for example the classifying diagram of a bimonad [8]) 
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and hence any further advances in this direction requires a deep understanding of more general coherent 
diagrams.

(2) Coherent diagrams valued in (∞, n − 1)-categories: Arguably the most important (∞, n)-category 
is the (∞, n)-category of (∞, n − 1)-categories and any advance in the theory of (∞, n)-categories, 
particularly the study of representable functors and the Yoneda embedding, necessitates a conceptual 
and computational understanding of homotopy coherent diagrams valued in (∞, n − 1)-categories. 
Similar to the case of (∞, 1)-categories existing constructions of this (∞, n)-category are given via 
strict models and so we need a homotopy coherent nerve to be able to define homotopy coherent 
diagrams valued in (∞, n − 1)-categories.

(3) Straightening construction for (∞, n)-categories: Any advances in the theory of (∞, n)-categories ne-
cessitates an ability to analyze functors valued in the (∞, n)-category of (∞, n − 1)-categories, and 
particularly computationally feasible criteria when such a functor is representable. As discussed above, 
in the (∞, 1)-categorical context this has mainly been achieved via the straightening construction, 
which studies presheaves via fibrations. We hence anticipate the existence of a similar straightening 
construction for (∞, n)-categories, the construction of which should similarly fundamentally hinge on 
an appropriately defined categorification functor.

(4) (∞, n)-limits: Similar to the (∞, 1)-case, the correct notion of a limit for diagrams valued in an (∞, n)-
category presented by an enriched category over a model of (∞, n − 1)-categories is already established 
as part of a more general pattern for enriched categories; see [52]. However, similar to the (∞, 1)-
categorical case discussed above, this approach is often computationally unfeasible, suggesting the need 
for an alternative, more computationally feasible, approach to limits via cones. However, any such 
approach would need to be compatible with limits in the strictly enriched setting, which similar to the 
case for (∞, 1)-categories necessitates an appropriately defined homotopy coherent nerve.

0.4. A homotopy coherent nerve of (∞, n)-categories

To summarize the previous paragraph, we already have a weak notion of (∞, n)-categories and their 
corresponding notion of functor. However, we lack the ability to strictify coherent data in a way that gives 
us an equivalence between weak and strict functors, although having such an ability is a key component 
towards further advancing (∞, n)-category theory. The goal of this paper is to precisely address these two 
shortcomings.

Concretely we construct in Definition 2.3.1 an adjunction C � N consisting of the homotopy coherent 
categorification and homotopy coherent nerve between a strictly enriched model of (∞, n)-categories (cat-
egories strictly enriched over complete Segal Θn−1-spaces) and a weak model of (∞, n)-categories (Segal 
category objects in complete Segal Θn−1-spaces), and show that it is a Quillen equivalence in Theorem 4.3.3.

Theorem. There is a Quillen equivalence

sSetΘ
op
n−1

(∞,n−1)-Cat PCat(sSetΘ
op
n−1

(∞,n−1))inj
N

C

⊥

between the model structure sSetΘ
op
n−1

(∞,n−1)-Cat of which the fibrant objects are the categories enriched over 
complete Segal Θn−1-spaces, and the model structure PCat(sSetΘ

op
n−1

(∞,n−1))inj of which the fibrant objects are the 
injectively Segal category objects in complete Segal Θn−1-spaces.

The Quillen equivalence enables us to realize all of the goals outlined above.
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(1) First of all we can now define a homotopy coherent diagram out of a category C as a strictly enriched 
functor out of CNC, where the enrichment guarantees the desired homotopy coherence. Moreover, given 

a (fibrant) sSetΘ
op
n−1

(∞,n−1)-enriched category C, we can use this explicit Quillen equivalence to represent the 
same (∞, n)-category as the Segal category object NC in complete Segal Θn−1-spaces. Furthermore, 
every diagram W → NC can be represented as a diagram CW → C. This precisely establishes that the 
two possible notions of homotopy coherent diagrams coincide with each other.

(2) As a particular application of the previous item, the category of complete Segal Θn−1-spaces is enriched 
over itself, meaning we can define a homotopy coherent diagram valued in complete Segal Θn−1-spaces 
as a functor of precategory objects valued in its homotopy coherent nerve.

(3) In follow-up work [40] we use the homotopy coherent categorification to construct a straightening 

construction, which for every W ∈ PCat(sSetΘ
op
n−1

(∞,n−1))inj constructs an equivalence between strictly 
enriched functors CW op → sSetΘ

op
n−1 and double (∞, n − 1)-right fibrations over W . This is a direct 

generalization of the (∞, 1)-categorical straightening construction in [37], and is expected to play a 
similar fundamental role in all of (∞, n)-category theory.

(4) In [41], we develop a notion of limit for (∞, n)-categories via double (∞, n − 1)-categorical cones that 
does correctly coincide with the strict definitions, generalizing work done in the 2-categorical setting by 
clingman–Moser [12], Grandis [26], Grandis–Paré [24,25], and Verity [54]. Combining our results here 
with work done in [40] we will show in upcoming work that this notion of limit for (∞, n)-categories is 
independent of the model.

0.5. Necklace calculus

In two seminal papers Dugger and Spivak developed a theory of necklaces, as an effective tool to study 
hom spaces of homotopy coherent categorifications of quasi-categories [16,17]. The power of the necklace 
machinery can be witnessed in the widespread applications it has found in several other (related) contexts, 
such as [6,11,28,35].

As part of our effort to study and construct the homotopy coherent nerve, we describe effective tools to 
make computations via necklaces in a context suitable for (∞, n)-categories; this necklace calculus could be 
of independent interest. In particular, we characterize a broad class of simplicial sets that play an important 
role in the study of (∞, n)-categories, the 1-ordered simplicial sets, for which the computation of the hom 
space via necklaces can be reduced to the colimit over a poset. See Corollary 2.2.4 for a more explicit 
statement.

The theory of 1-ordered simplicial sets and their associated necklace calculus gives us a concrete method 
to compute hom objects of homotopy coherent categorifications of relevant objects. For example, given 
m ≥ 0 and a Θn−1-space X, one can consider the Segal category object L(F [m] × X), which models 
an (∞, n)-category with m + 1 objects 0, 1, . . . , m and hom Θn−1-spaces X between consecutive objects 
(see Lemma 3.1.1). Here, the simplicial set F [m] models the category [m], and its homotopy coherent 
categorification CF [m] = chF [m] is classically understood (see Definition 2.2.1). The canonical projection 
L(F [m] ×X) → F [m] induces a family of discrete fibrations which relate the categories of necklaces obtained 
from L(F [m] × X) and the category of necklaces of F [m] (see Proposition 3.2.5). The necklace calculus 
developed in this paper allows us to compute the hom objects of CL(F [m] ×X) from those of CF [m] (see 
Proposition 3.4.2), which is a key ingredient for the proof of the main theorem.
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1. Preliminaries and background

In this section we recall the relevant model structure for (∞, n − 1)-categories in Section 1.1, the model 
structure for categories enriched over (∞, n − 1)-categories in Section 1.2, the model structure for Segal 
categories in (∞, n − 1)-categories in Section 1.3, and the diagonal model structure in Section 1.5. We also 
recall in Section 1.4 the Quillen equivalence between models of (∞, n)-categories given by the strict nerve 
of categories enriched over (∞, n − 1)-categories.

1.1. Model structures for (∞, n − 1)-categories

We recall the model structure sSetΘ
op
n−1

(∞,n−1) on sSetΘ
op
n−1 for (∞, n − 1)-categories given by Rezk’s complete 

Segal Θn−1-spaces [46].
For n ≥ 1, recall from [30] Joyal’s cell category Θn. For n = 1, then Θn−1 = Θ0 is the terminal category, 

and for n > 1, the category Θn−1 is the wreath product Δ � Θn−2 (see e.g. [3, Definition 3.1]).
Throughout the paper we will use the following notational conventions.

Notation 1.1.1. We write:

• F [m] ∈ SetΔop for the representable at m ≥ 0, and Sp[m] := F [1] 	F [0] . . . 	F [0] F [1] for the spine of 
F [m],

• Θn−1[θ] ∈ SetΘ
op
n−1 for the representable at θ ∈ Θn−1,

• Δ[k] ∈ sSet for the representable at k ≥ 0,
• Θn−1[θ] × Δ[k] ∈ sSetΘ

op
n−1 for the representable at (θ, [k]) ∈ Θn−1 × Δ,

• F [m] × Θn−1[θ] ∈ SetΘ
op
n−1×Δop

for the representable at ([m], θ) ∈ Δ × Θn−1,
• F [m] × Θn−1[θ] × Δ[k] ∈ sSetΘ

op
n−1×Δop

for the representable at ([m], θ, [k]) ∈ Δ × Θn−1 × Δ.

The categories SetΔop , SetΘ
op
n−1 , sSet, sSetΘ

op
n−1 , and SetΘ

op
n−1×Δop

are all naturally included into sSetΘ
op
n−1×Δop

, 
and we regard all the above as objects of it without further specification. We refer to an object of sSetΘ

op
n−1

as a Θn−1-space.

Roughly speaking, we think of F [m] as the standard m-simplex living in the categorical direction and 
of Δ[k] as the standard k-simplex living in the spacial direction. More generally, we follow the convention 
that, given any small category A, the simplicial direction in AΔop is considered to be categorical, whereas 
the simplicial direction in sA is considered to be spacial.

The model structure sSetΘ
op
n−1

(∞,n−1) is defined recursively as a localization of the injective model structure 

(sSet(∞,0))
Θop

n−1
inj on the category of Θn−1-presheaves valued in sSet(∞,0) with respect to a set S(∞,n−1) of maps 

in SetΘ
op
n−1 .

The set S(∞,0) is the empty set, and for n > 1 the set S(∞,n−1) consists of the following monomorphisms:
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• the Segal maps

Θn−1[1; θ1] 	[0] . . .	[0] Θn−1[1; θ�] ↪→ Θn−1[�; θ1, . . . , θ�],

for all � ≥ 1 and θ1, . . . , θ� ∈ Θn−2,
• the completeness map

F [0] ↪→ NI

seen as a map in SetΘ
op
n−1 through the inclusion SetΔop

↪→ SetΘ
op
n−1 induced by pre-composition along 

the projection Θn−1 → Δ given by [�; θ1, . . . , θl] 
→ [�], where I denotes the free-living isomorphism,
• the recursive maps

Θn−1[1;A] ↪→ Θn−1[1;B],

where A ↪→ B ∈ sSetΘ
op
n−2 ranges over all monomorphisms in S(∞,n−2).

Note that by [46, Theorem 8.1] the model structure sSetΘ
op
n−1

(∞,n−1) obtained by localizing the injective model 
structure (sSet(∞,0))

Θop
n−1

inj with respect to the set S(∞,n−1) is cartesian closed. This is enough to guarantee 

that the model structure sSetΘ
op
n−1

(∞,n−1) is excellent in the sense of [37, Definition A.3.2.16].

1.2. Enriched model structures for (∞, n)-categories

Since the model structure sSetΘ
op
n−1

(∞,n−1) is excellent, the category sSetΘ
op
n−1-Cat supports the left proper 

model structure sSetΘ
op
n−1

(∞,n−1)-Cat from [4, §3.10], obtained as a special instance of [37, Proposition A.3.2.4, 
Theorem A.3.2.24]. The main features of this model structure rely on the notion of homotopy category from 
[37, § A.3.2], which we now recall.

Definition 1.2.1. Let C be a sSetΘ
op
n−1-enriched category. The homotopy category of C is the category Ho C

such that

• its set of objects Ob(Ho C) is Ob C,
• for a, b ∈ Ob C, its hom set is given by

(Ho C)(a, b) := Ho(sSetΘ
op
n−1

(∞,n−1))(Δ[0],HomC(a, b)),

where Ho(sSetΘ
op
n−1

(∞,n−1)) is the homotopy category of the model category sSetΘ
op
n−1

(∞,n−1),
• composition is induced from that of C.

Finally, we recall some of the data defining the model structure sSetΘ
op
n−1

(∞,n−1)-Cat.

Recall 1.2.2. In the model structure sSetΘ
op
n−1

(∞,n−1)-Cat, a sSetΘ
op
n−1-enriched category C is fibrant if, for all 

a, b ∈ Ob C, the hom Θn−1-space HomC(a, b) is fibrant in sSetΘ
op
n−1

(∞,n−1), and a sSetΘ
op
n−1-enriched functor 

F : C → D is:

• a weak equivalence if the induced functor HoF : Ho C → HoD between homotopy categories is essen-
tially surjective on objects, and for all a, b ∈ Ob C the induced map
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Fa,b : HomC(a, b) → HomD(Fa, Fb)

is a weak equivalence in sSetΘ
op
n−1

(∞,n−1),
• a fibration between fibrant objects if it the induced functor HoF : Ho C → HoD between homotopy 

categories is an isofibration of categories, and for all a, b ∈ Ob C the induced map

Fa,b : HomC(a, b) → HomD(Fa, Fb)

is a fibration in sSetΘ
op
n−1

(∞,n−1),
• a trivial fibration if it is surjective on objects, and for all a, b ∈ Ob C the induced map

Fa,b : HomC(a, b) → HomD(Fa, Fb)

a trivial fibration in sSetΘ
op
n−1

(∞,n−1).

The homs of the homotopy category of a fibrant sSetΘ
op
n−1

(∞,n−1)-enriched category admit a more explicit 
description in terms of π0 : sSet → Set, the left adjoint to the inclusion Set ↪→ sSet.

Proposition 1.2.3. Let C be a fibrant sSetΘ
op
n−1

(∞,n−1)-enriched category. Then, for all a, b ∈ Ob C, there is a 
natural isomorphism of sets

(Ho C)(a, b) ∼= π0(HomC(a, b)[0]).

Proof. Since the model structure sSetΘ
op
n−1

(∞,n−1) is simplicial, as a consequence of [29, Proposition 9.5.24] we 

have that, for every object A ∈ sSetΘ
op
n−1

(∞,n−1) and every fibrant object X ∈ sSetΘ
op
n−1

(∞,n−1), an isomorphism of sets

Ho(sSetΘ
op
n−1

(∞,n−1))(A,X) ∼= π0 Map
sSetΘ

op
n−1

(A,X),

where Map
sSetΘ

op
n−1

(−, −) denotes the hom space functor. Hence, if C is fibrant sSetΘ
op
n−1

(∞,n−1)-Cat, then, for 

every a, b ∈ Ob C, the hom Θn−1-space HomC(a, b) is fibrant in sSetΘ
op
n−1

(∞,n−1) and so we get an isomorphism 
of sets

Ho(C)(a, b) ∼= π0 Map
sSetΘ

op
n−1

(Δ[0],HomC(a, b)) ∼= π0(HomC(a, b)[0]). �
Many of the sSetΘ

op
n−1-enriched categories that feature in this paper have the following property, so we 

introduce a terminology that streamlines the exposition.

Definition 1.2.4. A sSetΘ
op
n−1-enriched category C is directed if

• its set of objects Ob C is {0, 1, . . . , m}, for some m ≥ 0,
• for 0 ≤ j ≤ i ≤ m, the hom Θn−1-space HomC(i, j) is given by

HomC(i, j) =
{
∅ if j < i

Δ[0] if j = i.

In particular, composition maps in a directed sSetΘ
op
n−1-enriched category C involving the above hom Θn−1-

spaces are uniquely determined. Moreover, the value of a sSetΘ
op
n−1 -enriched functor from a directed sSetΘ

op
n−1-

enriched category is also uniquely determined on these hom Θn−1-spaces.
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The assignment (C, a, b) 
→ HomC(a, b) of the hom Θn−1-space to every two objects a and b of a sSetΘ
op
n−1-

enriched category C defines a functor Hom: {0,1}/sSetΘ
op
n−1-Cat → sSetΘ

op
n−1 , where {0,1}/sSetΘ

op
n−1-Cat denotes 

the category of bi-pointed sSetΘ
op
n−1-enriched categories. This functor admits a left adjoint, the suspension

functor Σ: sSetΘ
op
n−1 → {0,1}/sSetΘ

op
n−1-Cat. Given an object X ∈ sSetΘ

op
n−1 , the sSetΘ

op
n−1-enriched cate-

gory ΣX is the directed sSetΘ
op
n−1-enriched category with object set {0, 1} and hom Θn−1-space given by 

HomΣX(0, 1) = X.
The model structure sSetΘ

op
n−1

(∞,n−1)-Cat is designed so that the adjunction Σ � Hom has good homotopical 
properties. Here {0,1}/sSetΘ

op
n−1

(∞,n−1)-Cat denotes the slice model structure, in which cofibrations, fibrations, and 

weak equivalences are created by the forgetful functor to sSetΘ
op
n−1

(∞,n−1)-Cat.

Proposition 1.2.5. The adjunction

sSetΘ
op
n−1

(∞,n−1)
{0,1}/sSetΘ

op
n−1

(∞,n−1)-Cat ,
Hom

Σ
⊥

is a Quillen pair.

Proof. This follows directly from [32, Lemma E.2.13] and the local properties of trivial fibrations and 
fibrations between fibrant objects. �

The following lemma gives a useful criterion to recognize when a sSetΘ
op
n−1-enriched functor is a (trivial) 

cofibration in sSetΘ
op
n−1

(∞,n−1).

Lemma 1.2.6. Let P and Q be directed sSetΘ
op
n−1-enriched categories such that

• they have the same set of objects ObP = {0, 1, . . . , m} = ObQ,
• for 0 < j − i < m, they have the same hom Θn−1-spaces HomP(i, j) = HomQ(i, j).

Let F : P → Q be a sSetΘ
op
n−1-enriched functor such that

• on objects, it is the identity at {0, 1, . . . , m},
• for all 0 < j − i < m, the map Fi,j on hom Θn−1-spaces is the identity.

Then the following is a pushout in sSetΘ
op
n−1-Cat.

Σ HomP(0,m)

Σ HomQ(0,m)

P

Q
�

ι0,m

ΣF0,m F

ι0,m

Moreover, if F0,m is a (trivial) cofibration in sSetΘ
op
n−1

(∞,n−1), then F : P → Q is a (trivial) cofibration in 

sSetΘ
op
n−1

(∞,n−1)-Cat.

Proof. In order to show that Q satisfies the universal property of the desired pushout, we show that there 
is a unique sSetΘ

op
n−1-enriched functor H : Q → C making the following diagram commute.
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Σ HomP(0,m)

Σ HomQ(0,m)

P

Q

C

ι0,m

ΣF0,m F

ι0,m

G

K

H

First, we construct H. For 0 ≤ i ≤ m, we set H(i) := G(i), for 0 < j − i < m, we set

Hi,j := Gi,j : HomQ(i, j) = HomP(i, j) → HomC(G(i), G(j)),

and we set

H0,m := K0,1 : HomQ(0,m) → HomC(G(0), G(m)).

The maps Hi,j , Hj,k, Hi,k are compatible with composition for all 0 ≤ i < j < k ≤ m with k − i < m since 
the corresponding maps of G do. It remains to show that H0,i, Hi,m, H0,m are compatible with composition 
for all 0 ≤ i ≤ m. For 0 ≤ i ≤ m we have that the following diagram commutes,

HomQ(0, i) × HomQ(i,m)

HomP(0, i) × HomP(i,m)

HomQ(0,m)

HomP(0,m)

◦0,i,m

◦0,i,m

F0,m

HomC(G(0), G(i)) × HomC(G(i), G(m)) HomC(G(0), G(m))

G0,mH0,i ×Hi,m = G0,i ×Gi,m

◦G(0),G(i),G(m)

K0,1 = H0,m

where the top rectangle commutes by compatibility of F with composition, the bottom one by compati-
bility of G with composition, and the right-hand triangle since G ◦ ι0,m = K0,1 ◦ ΣF0,m. This shows that 
H0,i, Hi,m, H0,m are compatible with composition for all 0 ≤ i ≤ m. Moreover, observe that H is the unique 
sSetΘ

op
n−1-enriched functor with the desired properties. This shows that Q is the pushout

Q ∼= P 	Σ HomP(0,m) Σ HomQ(0,m).

Finally, the “moreover” part follows directly from the facts that, if F0,m is a (trivial) cofibration in 

sSetΘ
op
n−1

(∞,n−1), then ΣF0,m is a (trivial) cofibration in sSetΘ
op
n−1

(∞,n−1)-Cat by Proposition 1.2.5, and that (trivial) 
cofibrations are closed under pushout. �
Notation 1.2.7. For m ≥ 0 and X ∈ sSetΘ

op
n−1 , we denote by ΣmX the pushout of m copies of ΣX along 

consecutive sources and targets:

ΣmX := ΣX 	[0] . . .	[0] ΣX.

By convention Σ0X is the terminal enriched category [0]. This construction extends to a functor 
Σm : sSetΘ

op
n−1 → sSetΘ

op
n−1-Cat.

The sSetΘ
op
n−1-enriched category ΣmX admits the following description.



12 L. Moser et al. / Journal of Pure and Applied Algebra 228 (2024) 107620
Proposition 1.2.8. Let m ≥ 0 and X ∈ sSetΘ
op
n−1 . Then the sSetΘ

op
n−1-enriched category ΣmX is the directed 

sSetΘ
op
n−1-enriched category such that:

• its set of objects Ob(ΣmX) is {0, 1, . . . , m},
• for 0 ≤ i < j ≤ m, the hom Θn−1-space is HomΣmX(i, j) = X×(j−i),
• for 0 ≤ i < j < k ≤ m, the composition map is given by

HomΣmX(i, j) × HomΣmX(j, k) = X×(j−i) ×X×(k−j)

HomΣmX(i, k) = X×(k−i) .

◦i,j,k ∼=

1.3. Weakly enriched model structures for (∞, n)-categories

Let PCat(sSetΘ
op
n−1) denote the full subcategory of sSetΘ

op
n−1×Δop

spanned by those (Δ × Θn−1)-spaces 
W such that W0 is discrete, i.e., such that W0 in the image of Set ↪→ sSetΘ

op
n−1 . As also mentioned in [4, 

§7], one sees that the inclusion I : PCat(sSetΘ
op
n−1) → sSetΘ

op
n−1×Δop

admits a left adjoint L, so there is an 
adjunction

sSetΘ
op
n−1×Δop PCat(sSetΘ

op
n−1) .

I

L

⊥

In [4], Bergner–Rezk construct two model structures on the category PCat(sSetΘ
op
n−1): the “projective-like” 

and the “injective-like” model structures. Here, we denote these two model structures by PCat(sSetΘ
op
n−1

(∞,n−1))proj

and PCat(sSetΘ
op
n−1

(∞,n−1))inj. As shown in [4, Proposition 7.1], these model structures are Quillen equivalent via 
the identity functor.

Proposition 1.3.1. The adjunction

PCat(sSetΘ
op
n−1

(∞,n−1))proj PCat(sSetΘ
op
n−1

(∞,n−1))inj
id

id
⊥

is a Quillen equivalence.

We now describe the main features of the injective-like model structure PCat(sSetΘ
op
n−1

(∞,n−1))inj: the fi-
brant objects, a set of generating cofibrations, a fibrant replacement, and weak equivalences between 

fibrant objects. Let (sSetΘ
op
n−1

(∞,n−1))Δ
op

inj denote the injective model structure on the category (sSetΘ
op
n−1)Δop ∼=

sSetΘ
op
n−1×Δop

of simplicial objects in sSetΘ
op
n−1

(∞,n−1).

Recall 1.3.2. An object W is fibrant in PCat(sSetΘ
op
n−1

(∞,n−1))inj if W is fibrant in (sSetΘ
op
n−1

(∞,n−1))Δ
op

inj and the Segal 
map

Wm → W1 ×(h)
W0

. . .×(h)
W0

W1

is a weak equivalence in sSetΘ
op
n−1

(∞,n−1), for all m ≥ 1. Here, the ordinary pullbacks are homotopy pullbacks 
because they are taken over the discrete object W0 (see [4, §4.1]).
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Recall that L : sSetΘ
op
n−1×Δop → PCat(sSetΘ

op
n−1) denotes the left adjoint functor to the inclusion.

Notation 1.3.3. Let A → B and X → Y be two maps in a presheaf category. We denote by (A → B)×̂(X →
Y ) the pushout-product map

(A → B)×̂(X → Y ) := (A× Y 	A×X B ×X → B × Y ).

Recall 1.3.4. By [4, §6.1], a set of generating cofibrations for the injective-like model structure
PCat(sSetΘ

op
n−1

(∞,n−1))inj is given by the set containing the map

∅ → F [0]

and all maps of the form

L((∂F [m] ↪→ F [m])×̂(∂Θn−1[θ] ↪→ Θn−1[θ])×̂(∂Δ[k] ↪→ Δ[k]))

for m ≥ 1, θ ∈ Θn−1, k ≥ 0.

Recall 1.3.5. Using standard model categorical techniques, we see that a fibrant replacement functor

(−)fib : PCat(sSetΘ
op
n−1) → PCat(sSetΘ

op
n−1)

for the injective-like model structure PCat(sSetΘ
op
n−1

(∞,n−1))inj can be realized by running the small object argu-
ment to the set containing all maps of the form

L((Sp[m] ↪→ F [m])×̂(∂Θn−1[θ] ↪→ Θn−1[θ])×̂(∂Δ[k] ↪→ Δ[k]))

for m ≥ 1, θ ∈ Θn−1, k ≥ 0 and all maps of the form

L((∂F [m] ↪→ F [m])×̂(X ↪→ Y ))

for m ≥ 1, X ↪→ Y ∈ J , where J is a set of generating trivial cofibrations for sSetΘ
op
n−1

(∞,n−1). This is 
briefly mentioned in [4, §6.7] and is discussed explicitly in [4, §5] for the case n = 1. In particular, for 
W ∈ PCat(sSetΘ

op
n−1), the fibrant replacement map W → W fib is a transfinite composition of pushouts of 

the above maps.

The notion of weak equivalences in PCat(sSetΘ
op
n−1

(∞,n−1))inj relies on the notion of Dwyer-Kan equivalences
from [4, §3.12], which are in turn phrased in terms of the homotopy category and mapping objects for 
objects of PCat(sSetΘ

op
n−1

(∞,n−1))inj. We briefly recall these.

Definition 1.3.6. Let W be a fibrant object in PCat(sSetΘ
op
n−1

(∞,n−1))inj. For a, b ∈ W0, the mapping Θn−1-space
MapW (a, b) is the following pullback in sSetΘ

op
n−1 .

MapW (a, b)

Δ[0]

W1

W0 ×W0

�

(a, b)
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The following description of the homotopy category for an object in PCat(sSetΘ
op
n−1

(∞,n−1))inj can be extracted 
from [4, Lemma 7.5] and a similar argument to Proposition 1.2.3.

Definition 1.3.7. Let W be a fibrant object in PCat(sSetΘ
op
n−1

(∞,n−1))inj. The homotopy category of W is the 
category HoW such that

• its set of objects Ob(HoW ) is W0,
• for a, b ∈ W0, its hom set is given by (HoW )(a, b) := π0(MapW (a, b)[0]),
• composition comes from the Segal maps.

The weak equivalences between fibrant objects have a similar flavor to the weak equivalences in the 
enriched setting and are given by the Dwyer-Kan equivalences from [4, Definition 3.15].

Definition 1.3.8. A map f : W → Z between fibrant objects in PCat(sSetΘ
op
n−1

(∞,n−1))inj is a Dwyer-Kan equiva-
lence if the induced functor HoW → HoZ is an equivalence of categories and, for all a, b ∈ W0, the induced 
map

MapW (a, b) → MapZ(fa, fb)

is a weak equivalence in sSetΘ
op
n−1

(∞,n−1).

Having discussed a construction for a fibrant replacement, and having fixed the weak equivalences between 
fibrant objects, the weak equivalences between ordinary objects are then enforced.

Recall 1.3.9. A map f : W → Z in PCat(sSetΘ
op
n−1) (with W, Z not necessarily fibrant) is a weak equivalence

in PCat(sSetΘ
op
n−1

(∞,n−1))inj if and only if the induced map ffib : W fib → Zfib is a Dwyer-Kan equivalence.

1.4. The strict nerve

There is a canonical inclusion N : sSetΘ
op
n−1-Cat → PCat(sSetΘ

op
n−1) that admits a left adjoint

c : PCat(sSetΘ
op
n−1) → sSetΘ

op
n−1-Cat.

At a sSetΘ
op
n−1-enriched category C, the strict nerve NC is the (Δ × Θn−1)-space given at m = 0 by 

(NC)0 = Ob C – the set of objects of C seen as an object in sSetΘ
op
n−1 – and at m ≥ 1 by the object in 

sSetΘ
op
n−1

(NC)m :=
∐

c0,...,cm∈Ob C HomC(c0, c1) × HomC(c1, c2) × . . .× HomC(cm−1, cm)
∼= Mor C ×Ob C Mor C ×Ob C . . .×Ob C Mor C,

where Mor C is the object of sSetΘ
op
n−1 given by Mor C :=

∐
c0,c1∈Ob C HomC(c0, c1).

The following appears as [4, Theorem 7.6].

Proposition 1.4.1. The adjunction

PCat(sSetΘ
op
n−1

(∞,n−1))proj sSetΘ
op
n−1

(∞,n−1)-Cat
N

c

⊥

is a Quillen equivalence.
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However, the following example shows that the analog statement fails when replacing the projective with 
the injective model structure.

Remark 1.4.2. The adjunction

PCat(sSetΘ
op
n−1

(∞,n−1))inj sSetΘ
op
n−1

(∞,n−1)-Cat
N

c

⊥

is not a Quillen pair. Indeed, given a fibrant sSetΘ
op
n−1

(∞,n−1)-enriched category C, Example 1.4.3 shows that the 

nerve NC is generally not fibrant in (sSetΘ
op
n−1

(∞,n−1))Δ
op

inj .

Example 1.4.3. Let X be a fibrant object in sSetΘ
op
n−1

(∞,n−1) that is not in the image of the inclusion 

SetΘ
op
n−1 ↪→ sSetΘ

op
n−1 . The sSetΘ

op
n−1-enriched category ΣX is by construction fibrant in sSetΘ

op
n−1

(∞,n−1)-Cat, 
however its strict nerve NΣX is not fibrant in (sSetΘ

op
n−1

(∞,n−1))Δ
op

inj . To see this, we first observe that the 

model structure (sSetΘ
op
n−1

(∞,n−1))Δ
op

inj is enriched over sSetΘ
op
n−1

(∞,n−1) (see e.g. [39, Theorem 5.4]), and we denote 
by Hom

sSetΘ
op
n−1×Δop (−, −) its hom Θn−1-space functor. Now, the map ∂F [2] ↪→ F [2] is a cofibration in 

(sSetΘ
op
n−1

(∞,n−1))Δ
op

inj , but the map

Hom
sSetΘ

op
n−1×Δop (F [2], NΣX) → Hom

sSetΘ
op
n−1×Δop (∂F [2], NΣX),

is isomorphic to the map

Δ[0] 	X 	X 	 Δ[0] → Δ[0] 	 (X ×X) 	 (X ×X) 	 Δ[0],

induced by the diagonal map of the non-discrete Θn−1-space X. As the diagonal map of a Θn−1-space X is 
a fibration in (sSet(∞,0))

Θop
n−1

inj if and only if the Θn−1-space X is discrete, the above map is not a fibration 

in (sSet(∞,0))
Θop

n−1
inj and hence also not a fibration in sSetΘ

op
n−1

(∞,n−1). This contradicts the fact that the model 
structure (sSetΘ

op
n−1

(∞,n−1))Δ
op

inj is enriched in sSetΘ
op
n−1

(∞,n−1).

1.5. Diagonal model structures

Now consider the diagonal functor δ : Δ → Δ × Δ given by sending [k] 
→ ([k], [k]) and either projection 
π : Δ × Δ → Δ. These induce adjunctions

ssSet sSet
δ∗

δ∗

⊥ sSet ssSet
π∗

π∗

⊥

where ssSet is the category of bisimplicial sets. We think of both simplicial directions in ssSet as spacial 
directions.

We now lift these adjunctions to Quillen equivalences. Let ssSetdiag be the diagonal model structure on 
ssSet from [44, Theorem 2.11], in which the cofibrations are the monomorphisms and the weak equivalences 
are created by the functor δ∗ : ssSet → sSet(∞,0). By construction, it is a localization of the injective model 
structure (sSet(∞,0))Δ

op

inj . By [44, Theorem 2.13] we have the following result.
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Proposition 1.5.1. The adjunctions

ssSetdiag sSet(∞,0)

δ∗

δ∗

⊥ sSet(∞,0) ssSetdiag
π∗

π∗

⊥

are Quillen equivalences.

They induce by post-composition adjunctions

ssSetΘ
op
n−1 sSetΘ

op
n−1

(δ∗)∗

diag := (δ∗)∗
⊥ sSetΘ

op
n−1 ssSetΘ

op
n−1

(π∗)∗

ι := (π∗)∗
⊥

We denote by (ssSetdiag)
Θop

n−1
inj the injective model structure on the category of Θn−1 -presheaves valued 

in ssSetdiag. As a consequence of [37, Remark A.2.8.6] and Proposition 1.5.1, we obtain:

Proposition 1.5.2. The adjunctions

(ssSetdiag)
Θop

n−1
inj (sSet(∞,0))

Θop
n−1

inj
(δ∗)∗

diag
⊥ (sSet(∞,0))

Θop
n−1

inj (ssSetdiag)
Θop

n−1
inj

(π∗)∗

ι

⊥

are Quillen equivalences.

We denote by ssSetΘ
op
n−1

diag,(∞,n−1) the localization of the model structure (ssSetdiag)
Θop

n−1
inj with respect to the 

maps in S(∞,n−1) from Section 1.1. As a consequence of [29, Theorem 3.3.20(1)(b)] and Proposition 1.5.2, 
we have:

Proposition 1.5.3. The adjunctions

ssSetΘ
op
n−1

diag,(∞,n−1) sSetΘ
op
n−1

(∞,n−1)
(δ∗)∗

diag
⊥ sSetΘ

op
n−1

(∞,n−1) ssSetΘ
op
n−1

diag,(∞,n−1)
(π∗)∗

ι

⊥

are Quillen equivalences.

2. The homotopy coherent categorification and its description

This section is devoted to constructing the homotopy coherent categorification-nerve adjunction

PCat(sSetΘ
op
n−1) sSetΘ

op
n−1-Cat

N

C

⊥

and describing the left adjoint C. To this end, building on work by Dugger–Spivak, we introduce the notion 
of a 1-ordered simplicial set in Section 2.1 and study its category of necklaces. In Section 2.2 we recall the 
classical homotopy coherent categorification ch by Cordier–Porter, and the description of its hom spaces in 
terms of necklaces. In Section 2.3 we define the desired functor C using ch, and in Section 2.4 (resp. Sec-
tion 2.5) we give explicit formulas for the hom Θn−1-spaces (resp. the homotopy category) of the homotopy 
coherent categorification C.
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2.1. Necklaces and 1-ordered simplicial sets

We recall the main terminology about necklaces, introduced in [18, §3].
A necklace is a simplicial set, i.e., an object in SetΔop , given by a wedge of representables

T = F [m1] ∨ . . . ∨ F [mt]

obtained by gluing the final vertex mi ∈ F [mi] to the initial vertex 0 ∈ F [mi+1] for all 1 ≤ i ≤ t − 1. By 
convention, if t > 1, then mi > 0 for all 1 ≤ i ≤ t. We say that F [mi] is a bead of T , and an initial or a final 
vertex in some bead is a joint of T . We write B(T ) for the set of beads of T ; in particular, we have that 
|B(T )| = t.

We consider the necklace T to be a bi-pointed simplicial set (T, α, ω) where α is the initial vertex 
α = 0 ∈ F [m0] ↪→ T and ω is the final vertex ω = mt ∈ F [mt] ↪→ T . We write N ec for the full subcategory 
of the category SetΔop

∗,∗ of bi-pointed simplicial sets spanned by the necklaces.
Given a simplicial set K and a, b ∈ K0, we denote by Ka,b the simplicial set bi-pointed at (a, b) : F [0] 	

F [0] → K. A necklace in Ka,b is a bi-pointed map T → Ka,b. We denote by N ec(K)a,b := N ec/Ka,b
the 

category of necklaces T → Ka,b in K from a to b, obtained as a full subcategory of the slice category 
SetΔop

∗,∗ /Ka,b
.

Definition 2.1.1. Let K be a simplicial set and a, b ∈ K0. A necklace

f : T = F [m1] ∨ . . . ∨ F [mt] → Ka,b

is totally non-degenerate if, for all 0 ≤ i ≤ t, the restriction of f to the i-th bead

F [mi] ↪→ F [m1] ∨ . . . ∨ F [mk] = T
f−→ K

is a non-degenerate mi-simplex of K.

We write N ec(K)tnd
a,b for the full subcategory of N ec(K)a,b spanned by the totally non-degenerate neck-

laces.
We now recall the notion of ordered simplicial sets presented in [17, §3.1] and introduce the weaker notion 

of 1-ordered simplicial sets.

Notation 2.1.2. Let K be a simplicial set. Denote by �K the relation on the set of 0-simplices K0 given by 
x �K y if and only if there is a necklace of the form f : Sp[m] = F [1] ∨ . . . ∨ F [1] → K such that f(α) = x

and f(ω) = y for some m ≥ 0.

Definition 2.1.3. A simplicial set K is

• ordered if the relation �K is antisymmetric and the canonical map Km → K
×(m+1)
0 is injective, for all 

m ≥ 1,
• 1-ordered if the relation �K is antisymmetric and, for all m ≥ 1, the restriction of the Segal map to 

the set Knd
m of non-degenerate m-simplices of K

Knd
m ⊆ Km → K1 ×K0 . . .×K0 K1

is injective and, for every non-degenerate m-simplex F [m] → K, its restriction along the inclusion 
Sp[m] ↪→ F [m] is a monomorphism Sp[m] ↪→ K.
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Remark 2.1.4. Note that the definition of ordered simplicial sets coincides with that of Dugger–Spivak from 
[17, Definition 3.2].

Lemma 2.1.5. Every ordered simplicial set is 1-ordered.

Proof. Suppose that K is an ordered simplicial set. For m ≥ 1, consider the following commutative triangle

Knd
m ⊆ Km K1 ×K0 . . .×K0 K1

K
×(m+1)
0

where the composite Knd
m ⊆ Km → K

×(m+1)
0 is injective by assumption. Then the top map Knd

m ⊆ Km →
K1 ×K0 . . .×K0 K1 is also injective by cancellation of injective maps.

Next, we show that, for every non-degenerate m-simplex F [m] → K, its restriction along Sp[m] ↪→ F [m]
is a monomorphism Sp[m] ↪→ K. By the injectivity of the map K1 → K0 ×K0, it suffices to prove that its 
restriction along 

∐
m+1 F [0] ↪→ F [m] is a monomorphism 

∐
m+1 F [0] ↪→ K. We prove this by contraposition.

Let σ : F [m] → K be an m-simplex whose restriction (σ(0), . . . , σ(m)) :
∐

m+1 F [0] → K is not a 
monomorphism. Then we have an ordered tuple σ(0) �K . . . �K σ(m) and, as (σ(0), . . . , σ(m)) is not 
a monomorphism, there is 0 ≤ i ≤ m − 1 such that σ(i) = σ(i + 1). Consider the m-simplex given by 
σ ◦ di ◦ si : F [m] → K. Then the image of σ ◦ di ◦ si under Km ↪→ K

×(m+1)
0 is also (σ(0), . . . , σ(m)). Hence, 

by injectivity of Km ↪→ K
×(m+1)
0 , we get that σ = σ ◦ di ◦ si is degenerate. �

Remark 2.1.6. By [17, Lemma 3.3], we have that every necklace is ordered and that every simplicial subset 
of an ordered simplicial set is ordered. Hence, it follows from Lemma 2.1.5 that the simplicial sets F [m], 
∂F [m], and Sp[m], for m ≥ 0, and all necklaces are 1-ordered.

We now aim to characterize the totally non-degenerate necklaces of a 1-ordered simplicial set as the 
monomorphisms. For this, we first need the following.

Lemma 2.1.7. Let K be a 1-ordered simplicial set. Then an m-simplex σ : F [m] → K is non-degenerate if 
and only if it is a monomorphism.

Proof. We show that an m-simplex σ : F [m] → K is degenerate if and only if it is not a monomorphism. 
First note that, if an m-simplex σ : F [m] → K is degenerate, then σ is not a monomorphism as it factors 
through a map F [m] → F [m′] with m′ < m that is not a monomorphism.

Now, suppose that σ : F [m] → K is not a monomorphism. We show that its restriction to 0-simplices 
(σ(0), . . . , σ(m)) :

∐
m+1 F [0] → K is not a monomorphism, showing that the induced map Sp[m] ↪→

F [m] σ−→ K is also not a monomorphism. As K is 1-ordered, this implies that σ is degenerate.
Since σ : F [m] → K is not a monomorphism, we can choose 0 ≤ m′ ≤ m the smallest integer such that 

there are monomorphisms α, β : F [m′] ↪→ F [m] with α �= β and σ ◦ α = σ ◦ β. Suppose by contradiction 
that m′ ≥ 1. As σ ◦ α = σ ◦ β, we have that σ(α(i)) = σ(β(i)) for all 0 ≤ i ≤ m′. As σ is injective on 
0-simplices by minimality of m′, we get that α(i) = β(i) for all 0 ≤ i ≤ m′. Hence α, β are two m′-simplices 
of F [m] such that their restrictions to 0-simplices are equal, and so we must have α = β as F [m] is an 
ordered simplicial set. This gives a contradiction and shows that m′ = 0, as desired. �
Lemma 2.1.8. Let K be a 1-ordered simplicial set and x ∈ K0. Let K�x and K�x be the simplicial subsets 
of K given at m ≥ 0 by
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(K�x)m = {σ ∈ Km | σ(i) �K x for all 0 ≤ i ≤ m},
(K�x)m = {σ ∈ Km | x �K σ(i) for all 0 ≤ i ≤ m}.

Then the map K�x ∨K�x → K induced by the canonical inclusions is a monomorphism.

Proof. Since K�x and K�x are simplicial subsets of K, to establish the desired monomorphism, we only 
need to prove that for m ≥ 0, except for the degenerate m-simplex at the 0-simplex x, no m-simplex of 
K lies in the image of both simplicial subsets. If such an m-simplex σ of K existed, then we must have 
x �K σ(i) �K x, for all 0 ≤ i ≤ m, and so σ(i) = x, for all 0 ≤ i ≤ m, by antisymmetry of �K .

Hence, in order to finish the proof it suffices to show that, for every σ : F [m] → K such that σ(i) = x, 
for all 0 ≤ i ≤ m, then σ is the degenerate m-simplex F [m] → F [0] x−→ K. If m = 0, there is nothing to 
prove. Now, let m ≥ 1. As σ : F [m] → K is not a monomorphism and K is 1-ordered, by Lemma 2.1.7, we 
have that σ is degenerate. Hence it factors as

σ : F [m] → F [m′] τ−→ K

for some 0 ≤ m′ < m. As τ(i) = x for all 0 ≤ i ≤ m′, then by induction τ is the degenerate m′-simplex 
F [m′] → F [0] x−→ K. Hence σ is the degenerate m-simplex constant at x, as desired. �
Lemma 2.1.9. Let K be a 1-ordered simplicial set. Then a necklace T → Ka,b is totally non-degenerate if 
and only if it is a monomorphism.

Proof. First, if a necklace f : T → Ka,b is not totally non-degenerate, then there is a bead F [mi] of T such 
that the induced map

F [mi] ↪→ T
f−→ K

is a non-degenerate mi-simplex of K. Then the above map is not a monomorphism by Lemma 2.1.7, and 
so f is also not a monomorphism.

We now show that if a necklace f : T → Ka,b is totally non-degenerate, then it is a monomorphism. We 
do this by induction on the number of beads t of T . If t = 1, this follows directly from the definition of 
totally non-degenerate necklaces and Lemma 2.1.7.

Now, let t > 1. We can write T = T ′ ∨ F [mt], where T ′ is a necklace with t − 1 beads. As f : T → K is 
totally non-degenerate, so are the induced necklaces

T ′ ↪→ T
f−→ K and F [mt] ↪→ T

f−→ K.

By induction, the above maps are monomorphisms. Then f factors as the composite of two monomorphisms

T = T ′ ∨ F [mt] ↪→ K�f(i) ∨K�f(i) ↪→ K,

where i is the last vertex of T ′, and the second map is a monomorphism by Lemma 2.1.8. Hence f is a 
monomorphism. �

Using this characterization of totally non-degenerate necklaces in 1-ordered simplicial sets and results by 
Dugger–Spivak, we show that the inclusion N ec(K)tnd

a,b ↪→ N ec(K)a,b is final, in the sense of [38, §IX.3].

Remark 2.1.10. Let K be a simplicial set and a, b ∈ K0. As explained in the paragraph before Proposition 
4.7 in [17, §4], for every necklace T → Ka,b, there is a totally non-degenerate T → Ka,b and an epimorphism 
of simplicial sets T → T over Ka,b.
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Proposition 2.1.11. Let K be a 1-ordered simplicial set and a, b ∈ K0. Then the inclusion functor

J : N ec(K)tnd
a,b → N ec(K)a,b

is final.

Proof. We show that, for every necklace U → Ka,b in N ec(K)a,b, the comma category U ↓ J is non-empty 
and connected.

We first show that the category U ↓ J is non-empty. Using Remark 2.1.10 for the necklace U → Ka,b, 
there is a totally non-degenerate necklace U → Ka,b and an epimorphism U → U over Ka,b. This defines a 
map U → U in N ec(K)a,b from the given necklace U → Ka,b to a totally non-degenerate necklace U → Ka,b. 
Hence the comma category U ↓ J is non-empty.

We now show that the category U ↓ J is connected. Let U → T be a map in N ec(K)a,b from the 
necklace U → Ka,b to a totally non-degenerate necklace T → Ka,b. Using Remark 2.1.10 for the necklace 
U → Tα,ω, there is a totally non-degenerate necklace T → Tα,ω and an epimorphism U → T over Tα,ω. 
By Remark 2.1.6, the necklace T is 1-ordered, so by Lemma 2.1.9 the map T → T is a monomorphism 
of simplicial sets. Moreover, the simplicial set K is 1-ordered by assumption, so by Lemma 2.1.9 the map 
T → K is a monomorphism, too. Hence the composite T ↪→ T ↪→ Ka,b is also a monomorphism, and by 
Lemma 2.1.9 it defines a totally non-degenerate necklace T → Ka,b. By [17, Proposition 4.7(b)], there is a 
map U → T making the following diagram commute.

U T T

U Ka,b

Then the composite U → T → T defines a map in U ↓ J from the totally non-degenerate necklace 
U → Ka,b to the totally non-degenerate necklace T → Ka,b, which shows that the comma category U ↓ J

is connected. �
2.2. The classical homotopy coherent categorification-nerve

We first recall the homotopy coherent nerve construction by Cordier–Porter [14].

Definition 2.2.1. Let m ≥ 0. Define ch[m] to be the directed sSet-enriched category such that

• its set of objects Ob(ch[m]) is {0, 1, . . . , m},
• for 0 ≤ i < j ≤ m, the hom space is

Homch[m](i, j) :=
∏

[i+1,j−1] Δ[1],

where [i + 1, j − 1] ⊆ {0, 1, . . . , m} denotes the interval between i + 1 and j − 1,
• for 0 ≤ i < j < k ≤ m, the composition map is given by

Homch[m](i, j) × Homch[m](j, k) =
∏

[i+1,j−1] Δ[1] ×
∏

[j+1,k−1] Δ[1]

Homch[m](i, k) =
∏

[i+1,k−1] Δ[1] .

◦i,j,k
∏

[i+1,j−1] idΔ[1] ×〈1〉 ×
∏

[j+1,k−1] idΔ[1]
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Remark 2.2.2. By [37, Definition 1.1.5.3], the assignment [m] 
→ ch[m] extends to a cosimplicial object 
Δ → sSet-Cat. In particular, by unpacking definitions, the coface map d� : [m − 1] → [m] for 0 ≤ � ≤ m is 
sent to the sSet-enriched functor chd� : ch[m − 1] → ch[m] given on objects by

d� : {0, 1, . . . ,m− 1} → {0, 1, . . . ,m}

and on hom spaces, for 0 ≤ i < j ≤ m − 1, by the identity if j < � or i ≥ �, and by

Homch[m−1](i, j) ∼=
∏

[i+1,j]\{�} Δ[1]

Homch[m](i, j + 1) ∼=
∏

[i+1,j] Δ[1] .

(chd�)i,j (
∏

[i+1,�−1] idΔ[1]) × 〈0〉 × (
∏

[�+1,j] idΔ[1])

if i < � ≤ j.

By taking the left Kan extension of the assignment Δ → sSet-Cat given by [m] 
→ ch[m], we obtain an 
adjunction

SetΔop sSet-Cat .
Nh

ch

⊥

Dugger–Spivak provide in [16, Proposition 4.3] the following explicit description of the hom spaces of the 
categorification ch in terms of necklaces.

Theorem 2.2.3. Let K be a simplicial set and a, b ∈ K0. Then there is a natural isomorphism in sSet

HomchK(a, b) ∼= colimT∈Nec(K)a,b
HomchT (α, ω).

In the case of 1-ordered simplicial sets, the above result refines to a description in terms of totally 
non-degenerate necklaces.

Corollary 2.2.4. Let K be a 1-ordered simplicial set and a, b ∈ K0. Then there is a natural isomorphism in 
sSet

HomchK(a, b) ∼= colimT∈Nec(K)tnd
a,b

HomchT (α, ω).

Proof. This follows from Proposition 2.1.11 and Theorem 2.2.3 together with [38, Theorem IX.3.1]. �
We denote by SetΔop

(∞,1) Joyal’s model structure on simplicial sets, in which the fibrant objects are the 
quasi-categories. Then, in the case of a quasi-category, [16, Corollary 5.3] shows that the hom spaces of its 
categorification ch are further related to its mapping spaces, as follows.

Theorem 2.2.5. Let K be a fibrant object in SetΔop

(∞,1) and a, b ∈ K0. Then there is a natural zig-zag of weak 
equivalences in sSet(∞,0) connecting the spaces

HomchK(a, b) ∼ mapK(a, b),

where mapK(a, b) = {a} ×K ×KF [1] ×K {b}.
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2.3. The homotopy coherent categorification-nerve

The adjunction ch � Nh from Section 2.2 induces by post-composition an adjunction

(SetΔop)Δ
op×Θop

n−1 (sSet-Cat)Δop×Θop
n−1 .

Nh
∗

ch∗

⊥

We consider the category ssSetΘ
op
n−1 of Θn−1-bi-spaces and also the category ssSetΘ

op
n−1-Cat of ssSetΘ

op
n−1-

enriched categories.
Recall that the category of ssSetΘ

op
n−1-enriched categories can equivalently be seen as the full subcategory 

of (sSet-Cat)Δop×Θop
n−1 spanned by those functors C : Θop

n−1 ×Δop → sSet-Cat that are constant at the level of 
objects, i.e., such that Ob(Cθ,k) = Ob(C0,0) for all θ ∈ Θn−1 and k ≥ 0. The inclusion can be implemented 
in a similar way to [47, §3.6].

Moreover, recall that PCat(sSetΘ
op
n−1) is the full subcategory of sSetΘ

op
n−1×Δop

spanned by those (Δ ×
Θn−1)-spaces W such that W0,θ,k = W0,0,0 for all θ ∈ Θn−1 and k ≥ 0. Moreover, observe that there is 
an identification sSetΘ

op
n−1×Δop ∼= (SetΔop)Δ

op×Θop
n−1 , which sends W ∈ sSetΘ

op
n−1×Δop

to Ŵ : Θop
n−1 × Δop →

SetΔop given at θ ∈ Θn−1 and m, k ≥ 0 by (Ŵθ,k)m := Wm,θ,k. So we can regard PCat(sSetΘ
op
n−1) as a full 

subcategory of (SetΔop)Δ
op×Θop

n−1 .
Then the above adjunction restricts to an adjunction

PCat(sSetΘ
op
n−1) ssSetΘ

op
n−1-Cat .

Nh
∗

ch∗

⊥

Next, recall the functor diag : ssSetΘ
op
n−1 → sSetΘ

op
n−1 from Section 1.5. Given that it is also a right adjoint 

functor, it preserves products, hence the adjunction diag � (δ∗)∗ induces by base-change an adjunction 
between enriched categories

ssSetΘ
op
n−1-Cat sSetΘ

op
n−1 -Cat .

((δ∗)∗)∗

diag∗
⊥

Definition 2.3.1. We define the homotopy coherent categorification-nerve adjunction to be the following 
composite of adjunctions.

PCat(sSetΘ
op
n−1) ssSetΘ

op
n−1-Cat sSetΘ

op
n−1-CatC : :N

((δ∗)∗)∗

diag∗
⊥
Nh

∗

ch∗

⊥

In order to develop intuition on the action of C, we compute here some of its values.

Example 2.3.2. As a first example, we can see that, for m ≥ 0, we have

CF [m] = ch[m],

where ch[m] is the sSet-enriched category from Definition 2.2.1 seen as a sSetΘ
op
n−1-enriched category through 

base-change along the canonical inclusion sSet ↪→ sSetΘ
op
n−1 .

• When m = 0, we get that CF [0] is the terminal sSetΘ
op
n−1-enriched category [0].
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• When m = 1, we get that CF [1] is the directed sSetΘ
op
n−1-enriched category with object set {0, 1} and 

hom Θn−1-space HomCF [1](0, 1) = Δ[0] and so it is the sSetΘ
op
n−1-enriched category generated by the 

following data

0 1
f

• When m = 2, we get that CF [2] is the directed sSetΘ
op
n−1-enriched category with object set {0, 1, 2} and 

hom Θn−1-spaces

HomCF [2](0, 1) = HomCF [2](1, 2) = Δ[0] and HomCF [2](0, 2) = Δ[1]

and so it is the sSetΘ
op
n−1-enriched category generated by the following data

0

1

2

f g

h

together with a homotopy between h and the composite gf .

Example 2.3.3. We also study the sSetΘ
op
n−1-enriched category CL(F [m] × Θn−1[1; 0]) for small values of 

m ≥ 0, where we recall that L : sSetΘ
op
n−1×Δop → PCat(sSetΘ

op
n−1) denotes the left adjoint functor to the 

inclusion. These can be computed using the techniques developed later in Section 3.

• When m = 0, as L(F [m] × Θn−1[1; 0]) = F [0], we get that CL(F [0] × Θn−1[1; 0]) = CF [0] = [0].
• When m = 1, using Lemma 3.5.1 applied to the case where X = Θn−1[1; 0], we get that CL(F [1] ×

Θn−1[1; 0]) is the directed sSetΘ
op
n−1-enriched category ΣΘn−1[1; 0] with object set {0, 1} and hom Θn−1-

space

HomCL(F [1]×Θn−1[1;0])(0, 1) = Θn−1[1; 0]

and so it is the sSetΘ
op
n−1-enriched category generated by the following data

0 1

f

f ′

α

• When m = 2, using Proposition 3.4.2 applied to the case where m = 2 and X ↪→ Y is the identity at 
Θn−1[1; 0], we get that CL(F [2] ×Θn−1[1; 0]) is the directed sSetΘ

op
n−1-enriched category with object set 

{0, 1, 2} and hom Θn−1-spaces

HomCL(F [2]×Θn−1[1;0])(0, 1) = HomCL(F [2]×Θn−1[1;0])(1, 2) = Θn−1[1; 0]

and

HomCL(F [2]×Θn−1[1;0])(0, 2) = (Θn−1[1; 0] × Θn−1[1; 0]) 	Θn−1[1;0] Θn−1[1; 0] × Δ[1]

and so it is the sSetΘ
op
n−1-enriched category generated by the following data
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0

1

2

f

f ′

α
g

g′

β

h

h′

γ

together with a homotopy between γ and the horizontal composite βα, which in particular gives ho-
motopies between h and the composite gf and between h′ and the composite g′f ′.

2.4. The homs of the homotopy coherent categorification

Using the description of the hom spaces of the homotopy coherent categorification ch of a simplicial 
set, we can compute explicitly the hom Θn−1-spaces of the homotopy coherent categorification C of an 
object in PCat(sSetΘ

op
n−1). The following two results are obtained by applying level-wise Theorem 2.2.3

and Corollary 2.2.4.

Proposition 2.4.1. Let W be an object in PCat(sSetΘ
op
n−1) and a, b ∈ W0. Then there is a natural isomorphism 

in sSetΘ
op
n−1

HomCW (a, b) ∼= diag(colimT∈Nec(W−,�,�)a,b
HomchT (α, ω))

where colimT∈Nec(W−,�,�)a,b
HomchT (α, ω) is the Θn−1-bi-space given at θ ∈ Θn−1 and k ≥ 0 by the colimit 

in sSet

colimT∈Nec(W−,θ,k)a,b
HomchT (α, ω).

Corollary 2.4.2. Let W be an object in PCat(sSetΘ
op
n−1) and a, b ∈ W0. Suppose that, for all θ ∈ Θn−1 and 

k ≥ 0, the simplicial set W−,θ,k is 1-ordered. Then there is a natural isomorphism in sSetΘ
op
n−1

HomCW (a, b) ∼= diag(colimT∈Nec(W−,�,�)tnd
a,b

HomchT (α, ω))

where colimT∈Nec(W−,�,�)tnd
a,b

HomchT (α, ω) is the Θn−1-bi-space given at θ ∈ Θn−1 and k ≥ 0 by the colimit 
in sSet

colimT∈Nec(W−,θ,k)tnd
a,b

HomchT (α, ω).

We now aim to compare the hom Θn−1-spaces of the categorification CW with the mapping Θn−1-spaces 
of W in the case where W is fibrant. For this, we first need the following.

Lemma 2.4.3. Let W be a fibrant object in PCat(sSetΘ
op
n−1

(∞,n−1))inj. For every θ ∈ Θn−1 and k ≥ 0, the simplicial 
set W−,θ,k is fibrant in SetΔop

(∞,1).

Proof. Recall that, if W is fibrant in PCat(sSetΘ
op
n−1

(∞,n−1))inj, then it is fibrant in (sSetΘ
op
n−1

(∞,n−1))Δ
op

inj and it satisfies 
the Segal condition, i.e., it is fibrant in the localization (sSetΘ

op
n−1

(∞,n−1))Δ
op

Seg of (sSetΘ
op
n−1

(∞,n−1))Δ
op

inj with respect to 
the Segal maps

(Sp[m] ↪→ F [m]) × Θn−1[θ]
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for all m ≥ 1 and θ ∈ Θn−1. By [33, Lemma 3.5], if a saturated class of monomorphisms satisfying the 
right cancellation property contains the Segal maps Sp[m] ↪→ F [m] – which is the case of the class of trivial 
cofibrations of (sSetΘ

op
n−1

(∞,n−1))Δ
op

Seg – then it must contain the inner horn inclusions Lt[m] ↪→ F [m], for all m ≥ 2
and 0 < t < m. Furthermore, as the model structure (sSetΘ

op
n−1

(∞,n−1))Δ
op

Seg is cartesian closed by [5, Theorem 5.2], 
the maps

(Lt[m] ↪→ F [m]) × Θn−1[θ] × Δ[k]

are trivial cofibrations in (sSetΘ
op
n−1

(∞,n−1))Δ
op

Seg , for all m ≥ 2, 0 < t < m, θ ∈ Θn−1, and k ≥ 0.
Now, for all m ≥ 2, 0 < t < m, θ ∈ Θn−1, and k ≥ 0, a lift in the below left diagram in SetΔop corresponds 

to a lift in the below right diagram in sSetΘ
op
n−1×Δop

, which exists by the above discussion.

Lt[m]

F [m]

W−,θ,k Lt[m] × Θn−1[θ] × Δ[k]

F [m] × Θn−1[θ] × Δ[k]

W

This shows that W−,θ,k is fibrant in SetΔop

(∞,1), as desired. �
Definition 2.4.4. Let W be a fibrant object in PCat(sSetΘ

op
n−1

(∞,n−1))inj. For a, b ∈ W0, we define homW (a, b) to 
be the following pullback in sSetΘ

op
n−1×Δop

.

homW (a, b)

Δ[0]

WF [1]

W ×W

�

(a, b)

Remark 2.4.5. Since homW (a, b) is homotopically constant, i.e., for every m ≥ 0, the map homW (a, b)0 →
homW (a, b)m is a weak equivalence in sSetΘ

op
n−1

(∞,n−1), we equivalently regard it as an object of ssSetΘ
op
n−1 through 

the canonical isomorphism sSetΘ
op
n−1×Δop ∼= ssSetΘ

op
n−1 .

Note that MapW (a, b) = homW (a, b)0. We then have the following.

Proposition 2.4.6. Let W be a fibrant object in PCat(sSetΘ
op
n−1

(∞,n−1))inj and a, b ∈ W0. Then there is a natural 
zig-zag of weak equivalences in (sSet(∞,0))

Θop
n−1

inj connecting the Θn−1-spaces

HomCW (a, b) ∼ diag homW (a, b).

Proof. For θ ∈ Θn−1 and k ≥ 0, as W−,θ,k is fibrant in SetΔop

(∞,1) by Lemma 2.4.3, by Theorem 2.2.5 we have 
a natural zig-zag of weak equivalences in sSet(∞,0)

Homch∗W
(a, b)θ,k ∼= Homch(W−,θ,k)(a, b) ∼ mapW−,θ,k

(a, b) ∼= homW (a, b)−,θ,k.

Hence, we obtain a natural zig-zag of weak equivalences in (sSet(∞,0))
Θop

n−1×Δop

inj

HomchW (a, b) ∼ homW (a, b),

∗
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and so in its localization (ssSetdiag)
Θop

n−1
inj . As diag : (ssSetdiag)

Θop
n−1

inj → (sSet(∞,0))
Θop

n−1
inj preserves weak equiv-

alences by Proposition 1.5.2, we obtain the desired natural zig-zag of weak equivalences in (sSet(∞,0))
Θop

n−1
inj

HomCW (a, b) = diag Homch∗W
(a, b) ∼ diag homW (a, b). �

Thanks to the previous result, in order to compare HomCW (a, b) with MapW (a, b), it is enough to compare 
MapW (a, b) with diag homW (a, b).

Proposition 2.4.7. Let W be a fibrant object in PCat(sSetΘ
op
n−1

(∞,n−1))inj and a, b ∈ W0. Then there is a natural 
weak equivalence in (sSet(∞,0))

Θop
n−1

inj

MapW (a, b) ∼−→ diag homW (a, b).

Proof. As W is a fibrant object PCat(sSetΘ
op
n−1

(∞,n−1))inj (see Recall 1.3.2), by [43, Theorem 2.30] the map 
π : {a} ×W WF [1] → W in sSetΘ

op
n−1×Δop

is a Θn−1-left fibration in the sense of [43, Definition 2.1]. By 
[43, Lemma 2.10], Θn−1-left fibrations are stable under pullbacks. So the pullback of π along b : F [0] → W , 
which is by Definition 2.4.4 precisely

homW (a, b) → F [0],

is a Θn−1-left fibration. It then follows from [43, Lemma 2.6] that the map

MapW (a, b) = homW (a, b)0 → homW (a, b)

is a weak equivalence in (sSet(∞,0))
Θop

n−1×Δop

inj , and hence also in its localization (ssSetdiag)
Θop

n−1
inj . As 

diag : (ssSetdiag)
Θop

n−1
inj → (sSet(∞,0))

Θop
n−1

inj preserves weak equivalences by Proposition 1.5.2, we obtain the 

desired weak equivalence in (sSet(∞,0))
Θop

n−1
inj

MapW (a, b) = diag MapW (a, b) ∼−→ diag homW (a, b). �
Combining Propositions 2.4.6 and 2.4.7, we get the following.

Corollary 2.4.8. Let W be a fibrant object in PCat(sSetΘ
op
n−1

(∞,n−1))inj and a, b ∈ W0. Then there is a natural 
zig-zag of weak equivalences in (sSet(∞,0))

Θop
n−1

inj connecting the Θn−1-spaces

HomCW (a, b) ∼ MapW (a, b).

2.5. The homotopy category of the homotopy coherent categorification

We now compare the homotopy category of CW with that of W in the case where W is fibrant.

Lemma 2.5.1. Let W be a fibrant object in PCat(sSetΘ
op
n−1

(∞,n−1))inj and a, b ∈ W0. If CW → (CW )fib is a fibrant 
replacement in (sSet(∞,0))

Θop
n−1

inj -Cat, then there is a natural zig-zag of weak equivalences in (sSet(∞,0))
Θop

n−1
inj

between the Θn−1-spaces

Hom(CW )fib(a, b) ∼ MapW (a, b).
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Proof. This follows from Corollary 2.4.8 and the fact that by definition of the fibrant replacement (CW )fib

the map HomCW (a, b) ∼−→ Hom(CW )fib(a, b) is a weak equivalence in (sSet(∞,0))
Θop

n−1
inj . �

Lemma 2.5.2. Let W be a fibrant object in PCat(sSetΘ
op
n−1

(∞,n−1))inj. If CW → (CW )fib is a fibrant replacement 
in (sSet(∞,0))

Θop
n−1

inj -Cat, then (CW )fib is in fact fibrant in sSetΘ
op
n−1

(∞,n−1)-Cat.

Proof. Let a, b ∈ W0. Since (CW )fib is a fibrant object in (sSet(∞,0))
Θop

n−1
inj -Cat and W is a fibrant object 

in PCat(sSetΘ
op
n−1

(∞,n−1))inj, then Hom(CW )fib(a, b) and MapW (a, b) are fibrant in (sSet(∞,0))
Θop

n−1
inj . Moreover, by 

Lemma 2.5.1, we have a zig-zag of weak equivalence in (sSet(∞,0))
Θop

n−1
inj

Hom(CW )fib(a, b) ∼ MapW (a, b).

As both Θn−1-spaces are fibrant in (sSet(∞,0))
Θop

n−1
inj , we can assume that the above zig-zag only passes 

through fibrant objects of (sSet(∞,0))
Θop

n−1
inj (by fibrantly replacing the intermediate objects if necessary). As 

MapW (a, b) is further fibrant in sSetΘ
op
n−1

(∞,n−1), then by [29, Lemma 3.2.1] we have that Hom(CW )fib(a, b) is also 

fibrant in sSetΘ
op
n−1

(∞,n−1). It follows that (CW )fib is fibrant in sSetΘ
op
n−1

(∞,n−1)-Cat, as desired. �
Proposition 2.5.3. Let W be a fibrant object in PCat(sSetΘ

op
n−1

(∞,n−1))inj. Then there is a natural isomorphism of 
categories

Ho(CW ) ∼= HoW.

Proof. By construction, the homotopy categories Ho(CW ) and HoW have the same set of objects W0, hence 
it is enough to show that their hom sets are isomorphic.

Let CW → (CW )fib be a fibrant replacement in (sSet(∞,0))
Θop

n−1
inj -Cat. By Lemma 2.5.2 we have that (CW )fib

is in fact a fibrant replacement in sSetΘ
op
n−1

(∞,n−1)-Cat. As CW → (CW )fib is a Dwyer-Kan equivalence, we have 
an equivalence of categories Ho(CW ) � Ho((CW )fib).

Let a, b ∈ W0. By Lemma 2.5.1, we have a natural zig-zag of weak equivalences in (sSet(∞,0))
Θop

n−1
inj

Hom(CW )fib(a, b) ∼ MapW (a, b).

As weak equivalences in (sSet(∞,0))
Θop

n−1
inj are level-wise, we get a natural zig-zag of weak equivalences in 

sSet(∞,0)

Hom(CW )fib(a, b)[0] ∼ MapW (a, b)[0].

As π0 : sSet → Set sends weak equivalences in sSet(∞,0) to isomorphisms, we obtain

Ho(CW )(a, b) ∼= Ho((CW )fib)(a, b) ∼= π0(Hom(CW )fib(a, b)[0])
∼= π0(MapW (a, b)[0]) ∼= Ho(W )(a, b),

where the isomorphism Ho((CW )fib)(a, b) ∼= π0(Hom(CW )fib(a, b)[0]) holds by Proposition 1.2.3. This con-
cludes the proof. �
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3. Explicit computations of the homotopy coherent categorification

In order to show in Section 4 that C is left Quillen, we need to understand the image of the (trivial) 
cofibrations in PCat(sSetΘ

op
n−1

(∞,n−1))inj from Recalls 1.3.4 and 1.3.5, which are of the form

Pm(X ↪→ Y ) ↪→ L(F [m] × Y ) := L((∂F [m] ↪→ F [m])×̂(X ↪→ Y ))

and L((Sp[m] ↪→ F [m])×̂(X ↪→ Y ))

for m ≥ 1 and X ↪→ Y a monomorphism in sSetΘ
op
n−1 , where L : sSetΘ

op
n−1×Δop → PCat(sSetΘ

op
n−1) denotes 

the left adjoint to the inclusion. In this section, we collect the technical results regarding these maps, and 
the reader is encouraged to skip this section on a first read.

In Section 3.1 we introduce Pm(X ↪→ Y ) and in Section 3.2 we describe the category of necklaces in 
Pm(X ↪→ Y ). In Section 3.3 we discuss how the category of necklaces in Pm(X ↪→ Y ) is a discrete fibration 
over the category of necklaces in F [m], and then describe the hom Θn−1-spaces of CPm(X ↪→ Y ) as a 
certain weighted colimit. This relies on results that will be postponed until Section 5. In Section 3.4 we 
use this to describe the sSetΘ

op
n−1-enriched category CPm(X ↪→ Y ) and study the sSetΘ

op
n−1-enriched functor 

C(Pm(X ↪→ Y ) ↪→ L(F [m] ×Y )). Finally, in Section 3.5 we construct and study a sSetΘ
op
n−1-enriched functor 

C(L(F [m] ×X)) → ΣmX, related to the image under C of the second type of monomorphisms.

3.1. Study of Pm(X ↪→ Y )

We denote by π0 : sSetΘ
op
n−1 → Set the left adjoint to the inclusion Set ↪→ sSetΘ

op
n−1 . Also recall the left 

adjoint L : sSetΘ
op
n−1×Δop → PCat(sSetΘ

op
n−1) to the inclusion. We get the following description.

Lemma 3.1.1. For m ≥ 1 and X ∈ sSetΘ
op
n−1 , we can compute L(F [m] × X) and L(∂F [m] × X) as the 

following pushouts in sSetΘ
op
n−1×Δop

.∐
m+1 X

∐
m+1 π0X

F [m] ×X

L(F [m] ×X)
�

∐
m+1 X

∐
m+1 π0X

∂F [m] ×X

L(∂F [m] ×X)
�

In this section we want to understand the object Pm(X ↪→ Y ) that we now define.

Notation 3.1.2. For m ≥ 1 and X ↪→ Y a monomorphism in sSetΘ
op
n−1 , we write Pm(X ↪→ Y ) for the following 

pushout in PCat(sSetΘ
op
n−1) (hence also in sSetΘ

op
n−1×Δop

).

L(∂F [m] ×X)

L(∂F [m] × Y )

L(F [m] ×X)

Pm(X ↪→ Y )

L(F [m] × Y )

�

I

By the universal property of pushout, it comes with a map I in PCat(sSetΘ
op
n−1) as depicted above.

Note that, if we consider the identity Y ↪→ Y , then Pm(Y ↪→ Y ) ∼= L(F [m] × Y ).
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Lemma 3.1.3. Let m ≥ 1 and X ↪→ Y be a monomorphism in sSetΘ
op
n−1 . Then Pm(X ↪→ Y ) is the following 

pushout in sSetΘ
op
n−1×Δop

. ∐
m+1 Y

∐
m+1 π0Y

∂F [m] × Y 	∂F [m]×X F [m] ×X

Pm(X ↪→ Y )
�

Proof. This is an instance of pushouts commuting with pushouts, using Lemma 3.1.1. �
Remark 3.1.4. For m ≥ 1 and X ↪→ Y a monomorphism in sSetΘ

op
n−1 , the map

∂F [m] × Y 	∂F [m]×X F [m] ×X → ∂F [m] 	∂F [m] F [m] = F [m]

induced by the projection maps gives a commutative square∐
m+1 Y

∐
m+1 π0Y

∐
m+1 F [0]

∂F [m] × Y 	∂F [m]×X F [m] ×X

F [m] .

By Lemma 3.1.3, as Pm(X ↪→ Y ) is the pushout of the above span, we get an induced map

Q : Pm(X ↪→ Y ) → F [m].

We particularly care to study Pm(X ↪→ Y ) in the case where Y is connected.

Definition 3.1.5. A Θn−1-space Y is connected if there is an isomorphism of sets π0Y ∼= {∗}.

Remark 3.1.6. For θ ∈ Θn−1 and k ≥ 0, the representable Θn−1[θ] × Δ[k] is a connected Θn−1-space. In 
particular, this says that all monomorphisms in sSetΘ

op
n−1 of the form

(∂Θn−1[θ] ↪→ Θn−1[θ])×̂(∂Δ[k] ↪→ Δ[k])

are monomorphisms with connected target.

In the case where Y is connected, we can describe Pm(X ↪→ Y ) as follows.

Lemma 3.1.7. Let m ≥ 1, Y be a connected Θn−1-space, and X ↪→ Y be a monomorphism in sSetΘ
op
n−1 . 

Then there is an isomorphism in sSetΘ
op
n−1

Pm(X ↪→ Y )0 ∼= {0, 1, . . . ,m}.

Proof. First note that, as X ⊆ Y , we have an isomorphism in sSetΘ
op
n−1

(∂F [m] × Y 	∂F [m]×X F [m] ×X)0 ∼=
∐

m+1 Y.

By applying the (colimit-preserving) functor (−)0 : sSetΘ
op
n−1×Δop → sSetΘ

op
n−1 to the pushout of Lemma 3.1.3, 

we obtain that Pm(X ↪→ Y ) ∼=
∐

F [0] ∼= {0, 1, . . . , m}. �
0 m+1
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Remark 3.1.8. Let m ≥ 1, Y be a connected Θn−1-space, and X ↪→ Y be a monomorphism in sSetΘ
op
n−1 . By 

Lemma 3.1.3, we obtain that, for θ ∈ Θn−1 and k ≥ 0, the simplicial set Pm(X ↪→ Y )−,θ,k is the following 
pushout in SetΔop . ∐

m+1
∐

Yθ,k
F [0]

∐
m+1 F [0]

(
∐

Yθ,k\Xθ,k
∂F [m]) 	 (

∐
Xθ,k

F [m])

Pm(X ↪→ Y )−,θ,k

�

Moreover, the component Q−,θ,k : Pm(X ↪→ Y )−,θ,k → F [m]−,θ,k = F [m] of the map from Remark 3.1.4 is 
induced by the fold map

(
∐

Yθ,k\Xθ,k
∂F [m]) 	 (

∐
Xθ,k

F [m]) → ∂F [m] 	 F [m] ↪→ F [m] 	 F [m] → F [m].

The object Pm(X ↪→ Y ) satisfies the following useful property introduced in Section 2.1.

Proposition 3.1.9. Let m ≥ 1, Y be a connected Θn−1-space, and X ↪→ Y be a monomorphism in sSetΘ
op
n−1 . 

For all θ ∈ Θn−1 and k ≥ 0, the simplicial set Pm(X ↪→ Y )−,θ,k is 1-ordered.

Proof. By Lemma 3.1.7, we have that Pm(X ↪→ Y )0,θ,k = {0, 1, . . . , m} and by construction every 1-simplex 
goes from i to j where i ≤ j. Hence the relation �Pm(X↪→Y )−,θ,k

is precisely the linear order 0 ≤ 1 ≤ . . . ≤ m, 
and so it is in particular anti-symmetric.

For m′ ≥ 1, we first show that, for every m′-simplex F [m′] → Pm(X ↪→ Y )−,θ,k, its restric-
tion along the inclusion Sp[m′] ↪→ F [m′] is a monomorphism Sp[m′] → Pm(X ↪→ Y )−,θ,k. Let 
σ : F [m′] → Pm(X ↪→ Y )−,θ,k be a non-degenerate m′-simplex of Pm(X ↪→ Y )−,θ,k. By the description 
of Pm(X ↪→ Y )−,θ,k given in Remark 3.1.8, such an m′-simplex comes from a non-degenerate m′-simplex

σ : F [m′] → (∂)F [m] ↪→ (
∐

Yθ,k\Xθ,k
∂F [m]) 	 (

∐
Xθ,k

F [m]).

Since the simplicial sets ∂F [m] and F [m] are 1-ordered by Remark 2.1.6, it follows that the induced map 

Sp[m′] ↪→ F [m′] σ−→ (∂)F [m] is a monomorphism. Now, as the composite

(∂)F [m] ↪→ (
∐

Yθ,k\Xθ,k
∂F [m]) 	 (

∐
Xθ,k

F [m]) → Pm(X ↪→ Y )−,θ,k

is also a monomorphism, it follows that the induced map Sp[m′] ↪→ F [m′] σ−→ Pm(X ↪→ Y )−,θ,k is the 
composite of monomorphisms

Sp[m′] ↪→ F [m′] σ−→ (∂)F [m] ↪→ Pm(X ↪→ Y )−,θ,k

and so is also a monomorphism.
Next, we show that the restriction of the Segal map

Pm(X ↪→ Y )m′,θ,k → Pm(X ↪→ Y )1,θ,k ×Pm(X↪→Y )0,θ,k . . .×Pm(X↪→Y )0,θ,k Pm(X ↪→ Y )1,θ,k

to the subset Pm(X ↪→ Y )nd
m′,θ,k of non-degenerate m′-simplices of Pm(X ↪→ Y )−,θ,k is injective. Let 

σ, τ : F [m′] → Pm(X ↪→ Y )−,θ,k be non-degenerate m′-simplices of Pm(X ↪→ Y )−,θ,k such that their re-
strictions along Sp[m′] ↪→ F [m′] coincide. As before, they come from non-degenerate m′-simplices

σ : F [m′] → {y} × (∂)F [m] and τ : F [m′] → {y′} × (∂)F [m],
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where y, y′ ∈ Yθ,k, and {y} × (∂)F [m], {y′} × (∂)F [m] are the corresponding factors of the coproduct 
(
∐

Yθ,k\Xθ,k
∂F [m]) 	 (

∐
Xθ,k

F [m]). As the restrictions of σ and τ along Sp[m′] ↪→ F [m′] coincide, and the 
map

(
∐

Yθ,k\Xθ,k
∂F [m]) 	 (

∐
Xθ,k

F [m]) → Pm(X ↪→ Y )−,θ,k

is injective on 1-simplices, it follows that y = y′. So σ and τ are two non-degenerate m′-simplices of 
{y} × (∂)F [m] whose restrictions along Sp[m′] ↪→ F [m′] coincide. Hence, as ∂F [m] and F [m] are 1-ordered 
by Remark 2.1.6, it follows that σ = τ and so σ = τ . �
3.2. Study of necklaces in Pm(X ↪→ Y )

In this subsection, we study the category of necklaces in Pm(X ↪→ Y ) in the case where Y is connected.

Remark 3.2.1. Let m ≥ 1, Y be a connected Θn−1-space, and X ↪→ Y be a monomorphism in sSetΘ
op
n−1 . 

As Pm(X ↪→ Y )−,θ,k is 1-ordered for all θ ∈ Θn−1 and k ≥ 0 by Proposition 3.1.9, in order to study the 
homotopy coherent categorification of Pm(X ↪→ Y ), by Corollary 2.4.2 it is enough to study the totally 
non-degenerate necklaces in Pm(X ↪→ Y )−,θ,k.

Lemma 3.2.2. Let m ≥ 1, Y be a connected Θn−1-space, and X ↪→ Y be a monomorphism in sSetΘ
op
n−1 . For 

all θ ∈ Θn−1, k ≥ 0, and all 0 < j− i < m, then the canonical map I : Pm(X ↪→ Y ) → L(F [m] ×Y ) induces 
a natural isomorphism of categories

N ec(Pm(X ↪→ Y )−,θ,k)
tnd
i,j

∼= N ec(L(F [m] × Y )−,θ,k)tnd
i,j .

Proof. Recall that Pm(Y ↪→ Y ) ∼= L(F [m] × Y ) and that by Lemma 3.1.7

Pm(X ↪→ Y )0,θ,k ∼= {0, 1, . . . ,m} ∼= Pm(Y ↪→ Y )0,θ,k ∼= L(F [m] × Y )0,θ,k.

We denote respectively by (Pm(X ↪→ Y )−,θ,k)[i,j] and (L(F [m] × Y )−,θ,k)[i,j] the simplicial subsets of 
Pm(X ↪→ Y )−,θ,k and L(F [m] × Y )−,θ,k spanned by the 0-simplices i, i + 1, . . . , j. Using the description 
of Pm(X ↪→ Y )−,θ,k given in Remark 3.1.8, we get that (Pm(X ↪→ Y )−,θ,k)[i,j] is the following pushout in 
SetΔop . ∐

j−i+1
∐

Yθ,k
F [0]

∐
j−i+1 F [0]

(
∐

Yθ,k\Xθ,k
∂F [m][i,j]) 	 (

∐
Xθ,k

F [m][i,j])

(Pm(X ↪→ Y )−,θ,k)[i,j]
�

Similarly, as L(F [m] × Y )−,θ,k
∼= Pm(Y ↪→ Y )−,θ,k, we get that (L(F [m] × Y )−,θ,k)[i,j] is the following 

pushout in SetΔop . ∐
j−i+1

∐
Yθ,k

F [0]

∐
j−i+1 F [0]

∐
Yθ,k

F [m][i,j]

(L(F [m] × Y )−,θ,k)[i,j]
�

As ∂F [m][i,j] ∼= F [m][i,j] as 0 < j − i < m, there is an isomorphism in SetΔop

(
∐

∂F [m][i,j]) 	 (
∐

F [m][i,j]) ∼=
∐

F [m][i,j],
Yθ,k\Xθ,k Xθ,k Yθ,k
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and so the two pushouts must be isomorphic. This gives an isomorphism in SetΔop

(Pm(X ↪→ Y )−,θ,k)[i,j] ∼= (L(F [m] × Y )−,θ,k)[i,j].

The desired isomorphism of categories follows from the fact that the order �Pm(X↪→Y )−,θ,k
(resp. 

�L(F [m]×Y )−,θ,k
) are given by 0 ≤ 1 ≤ . . . ≤ m, and so every necklace from i to j has to be fully con-

tained in (Pm(X ↪→ Y )−,θ,k)[i,j] (resp. (L(F [m] × Y )−,θ,k)[i,j]). �
We now aim to show that the projection Q−,θ,k : Pm(X ↪→ Y )−,θ,k → F [m] induces a functor between 

their categories of totally non-degenerate necklaces and that this functor is a discrete fibration. We first 
need the following.

Lemma 3.2.3. Let m ≥ 1, Y be a connected Θn−1-space, and X ↪→ Y be a monomorphism in sSetΘ
op
n−1 . For 

θ ∈ Θn−1 and k ≥ 0, the map

Q−,θ,k : Pm(X ↪→ Y )−,θ,k → F [m]

sends a non-degenerate simplex of Pm(X ↪→ Y )−,θ,k to a non-degenerate simplex of F [m].

Proof. Consider an m′-simplex F [m′] → Pm(X ↪→ Y )−,θ,k. By the description of Pm(X ↪→ Y )−,θ,k given in 
Remark 3.1.8, this amounts to an m′-simplex of the form

F [m′] →
∐

Yθ,k\Xθ,k
∂F [m] or F [m′] →

∐
Xθ,k

F [m].

By Remark 3.1.8, these are sent by Q−,θ,k to an m′-simplex

F [m′] →
∐

Yθ,k\Xθ,k
∂F [m] → ∂F [m] ↪→ F [m] or F [m′] →

∐
Xθ,k

F [m] → F [m].

In particular, an m′-simplex of Pm(X ↪→ Y )−,θ,k is non-degenerate if and only if its image under Q−,θ,k is 
non-degenerate in F [m]. �
Proposition 3.2.4. Let m ≥ 1, Y be a connected Θn−1-space, and X ↪→ Y be a monomorphism in sSetΘ

op
n−1 . 

For θ ∈ Θn−1 and k ≥ 0, the map Q−,θ,k : Pm(X ↪→ Y )−,θ,k → F [m] induces by post-composition a functor

(Q−,θ,k)! : N ec(Pm(X ↪→ Y )−,θ,k)
tnd
0,m → N ec(F [m])tnd

0,m.

Proof. By post-composing with the canonical map Q−,θ,k : Pm(X ↪→ Y )−,θ,k → F [m], we get a functor

(Q−,θ,k)! : N ec(Pm(X ↪→ Y )−,θ,k)0,m → N ec(F [m])0,m.

Furthermore, by Lemma 3.2.3, the map Q−,θ,k sends a non-degenerate simplex of Pm(X ↪→ Y )−,θ,k to a 
non-degenerate simplex of F [m]. It then follows that (Q−,θ,k)! sends a totally non-degenerate necklace of 
(Pm(X ↪→ Y )−,θ,k)0,m to a totally non-degenerate necklace of F [m]0,m. Hence (Q−,θ,k)! restricts to a functor

(Q−,θ,k)! : N ec(Pm(X ↪→ Y )−,θ,k)
tnd
0,m → N ec(F [m])tnd

0,m,

as desired. �
Recall from e.g. [36, Definition 2.1.1] the notion of a discrete fibration.
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Proposition 3.2.5. Let m ≥ 1, Y be a connected Θn−1-space, and X ↪→ Y be a monomorphism in sSetΘ
op
n−1 . 

For θ ∈ Θn−1 and k ≥ 0, the functor

(Q−,θ,k)! : N ec(Pm(X ↪→ Y )−,θ,k)
tnd
0,m → N ec(F [m])tnd

0,m

is a discrete fibration.

Proof. Let T → (Pm(X ↪→ Y )−,θ,k)0,m be an object in N ec(Pm(X ↪→ Y )−,θ,k)tnd
0,m and consider its image 

T → F [m]0,m under (Q−,θ,k)!. Given a map f : U → T in N ec(F [m])tnd
0,m, the composite

U
f−→ T → (Pm(X ↪→ Y )−,θ,k)0,m,

is the unique lift of f via (Q−,θ,k)!. Hence (Q−,θ,k)! is a discrete fibration. �
As a consequence, to study the category of totally non-degenerate necklaces in Pm(X ↪→ Y )−,θ,k, it is 

enough to study the category N ec(F [m])tnd
0,m and compute the fibers of the discrete fibration (Q−,θ,k)!, which 

we now do.

Remark 3.2.6. Recall from Remark 2.1.6 that F [m] is a 1-ordered simplicial set, and so every totally non-
degenerate necklace T → F [m]0,m in N ec(F [m])tnd

0,m is a monomorphism by Lemma 2.1.9. Then every map 
in N ec(F [m])tnd

0,m has to be a monomorphism as well by the cancellation property of monomorphisms. Hence 
N ec(F [m])tnd

0,m is a poset. For a combinatorial description of this category, see Section 5.1.

Remark 3.2.7. Recall from Section 2.1 that B(T ) denotes the set of beads of a necklace T ∈ N ec. Now, 
given a monomorphism f : U ↪→ T in N ec, by [17, Lemma 3.3] each bead F [mi] of U is mapped into a 
unique bead of T , which we denote B(f)(F [mi]). So we get a well-defined map of sets B(f) : B(U) → B(T ), 
and the assignment f 
→ B(f) is functorial in all monomorphisms f . Note that the assignment B(f) is not 
well-defined in general, because if f is not a monomorphism, it might map a whole bead of U to a joint of 
T , which does not belong to a unique bead of T .

As a consequence, since every map in N ec(F [m])tnd
0,m is a monomorphism by Remark 3.2.6, we get a 

functor

B : N ec(F [m])tnd
0,m → Set, (T ↪→ F [m]0,m) 
→ B(T ).

Proposition 3.2.8. Let m ≥ 1, Y be a connected Θn−1-space, and X ↪→ Y be a monomorphism in sSetΘ
op
n−1 . 

For θ ∈ Θn−1 and k ≥ 0, the fiber of the discrete fibration

(Q−,θ,k)! : N ec(Pm(X ↪→ Y )−,θ,k)
tnd
0,m → N ec(F [m])tnd

0,m

at an object T ↪→ F [m]0,m in N ec(F [m])tnd
0,m is given by the set

fibT ↪→F [m]0,m((Q−,θ,k)!) ∼=
{∏

B(T ) Yθ,k if T �= F [m]
Xθ,k if T = F [m].

Proof. Let T = F [m1] ∨ . . .∨F [mt] ↪→ F [m]0,m be a totally non-degenerate necklace in F [m]. If T �= F [m], 
we show that there is an isomorphism of sets

fibT ↪→F [m]0,m((Q−,θ,k)!) ∼=
∏

Yθ,k.
B(T )
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Given a totally non-degenerate necklace T ↪→ (Pm(X ↪→ Y )−,θ,k)0,m which is sent by (Q−,θ,k)! to the 
totally non-degenerate necklace T ↪→ F [m]0,m, then, for each 1 ≤ i ≤ t, the restriction of T →
(Pm(X ↪→ Y )−,θ,k)0,m to the bead F [mi] corresponds by the description of Pm(X ↪→ Y )−,θ,k given in Re-
mark 3.1.8 to a non-degenerate mi-simplex

F [mi] → {yi} × ∂F [m] ↪→ (
∐

Yθ,k\Xθ,k
∂F [m]) 	 (

∐
Xθ,k

F [m]),

for some yi ∈ Yθ,k. Then the data (T ↪→ F [m]0,m, (yi)1≤i≤t) uniquely determine the necklace T →
(Pm(X ↪→ Y )−,θ,k)0,m, hence giving the desired isomorphism.

Now, if T = F [m], necessarily T = F [m] → F [m]0,m is the identity, and we show that there is an 
isomorphism of sets

fibT ↪→F [m]0,m((Q−,θ,k)!) ∼= Xθ,k.

This follows from the fact that a non-degenerate m-simplex of Pm(X ↪→ Y )−,θ,k comes from a non-
degenerate m-simplex F [m] → {x} × F [m] ↪→

∐
Xθ,k

F [m], for some x ∈ Xθ,k, and a similar argument 
to the one above. �

We further record the following.

Proposition 3.2.9. Let m ≥ 1 and X be a connected Θn−1-space. For θ ∈ Θn−1 and k ≥ 0, there is an 
isomorphism of categories

N ec(L(Sp[m] ×X)−,θ,k)tnd
0,m

∼= X×m
θ,k ,

where the set X×m
θ,k is seen as a discrete category.

Proof. Using that there is an isomorphism of categories

N ec(Sp[m])tnd
0,m = {idSp[m]}

∼=−→ {Sp[m] ↪→ F [m]}

and by Proposition 3.2.8 applied to the identity map X ↪→ X, there are isomorphisms of categories

N ec(L(Sp[m] ×X)−,θ,k)tnd
0,m

∼= N ec(Sp[m])tnd
0,m ×Nec(F [m])tnd

0,m
N ec(L(F [m] ×X)−,θ,k)tnd

0,m

∼= fibSp[m]→F [m](Q−,θ,k)! ∼= X×m
θ,k . �

3.3. Auxiliary results about weighted colimits over N ec(F [m])tnd
0,m

Recall from [36, Theorem 2.1.2] that there is an equivalence between the categories of functors 
(N ec(F [m])tnd

0,m)op → Set and of discrete fibrations over N ec(F [m])tnd
0,m. We now identify the set-valued 

functor corresponding to the discrete fibration (Q−,θ,k)! under this equivalence.

Notation 3.3.1. Let m ≥ 1, Y be a connected Θn−1-space, and X ↪→ Y be a monomorphism in sSetΘ
op
n−1 . 

We define a functor

G(X ↪→ Y ) : (N ec(F [m])tnd
0,m)op → sSetΘ

op
n−1

given on objects by
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(T ↪→ F [m]0,m) 
→
{∏

B(T ) Y if T �= F [m]
X (∼=

∏
B(F [m]) X) if T = F [m],

and on morphisms by

(f : U ↪→ T ) 
→

⎧⎨⎩B(f)∗ :
∏

B(T ) Y →
∏

B(U) Y if U, T �= F [m]

X ↪→ Y
B(f)∗−−−−→

∏
B(U) Y if U �= F [m], T = F [m],

where B(f)∗ is given by pre-composition with B(f) : B(U) → B(T ) from Remark 3.2.7.
For θ ∈ Θn−1 and k ≥ 0, we write G(X ↪→ Y )θ,k for the composite

G(X ↪→ Y )θ,k : (N ec(F [m])tnd
0,m)op G(X↪→Y )−−−−−−→ sSetΘ

op
n−1

(−)θ,k−−−−→ Set.

Proposition 3.3.2. Let m ≥ 1, Y be a connected Θn−1-space, and X ↪→ Y be a monomorphism in sSetΘ
op
n−1 . 

For θ ∈ Θn−1 and k ≥ 0, the discrete fibration

(Q−,θ,k)! : N ec(Pm(X ↪→ Y )−,θ,k)
tnd
0,m → N ec(F [m])tnd

0,m

corresponds to the functor

G(X ↪→ Y )θ,k : (N ec(F [m])tnd
0,m)op → Set.

Proof. We show that there is a natural isomorphism between the functor obtained from (Q−,θ,k)! by taking 
fibers and the functor G(X ↪→ Y )θ,k. In Proposition 3.2.8, we have shown that, for every T ↪→ F [m]0,m in 
N ec(F [m])tnd

0,m, there is an isomorphism of sets

fibT ↪→F [m]0,m((Q−,θ,k)!) ∼=
{∏

B(T ) Yθ,k if T �= F [m]
Xθ,k if T = F [m]

= G(X ↪→ Y )θ,k(T ↪→ F [m]0,m).

It remains to show that these isomorphisms are natural. For this, note that if f : U ↪→ T is a map in 
N ec(F [m])tnd

0,m, then by the proof of Proposition 3.2.5, the map f acts on the fibers of (Q−,θ,k)! by pre-
composition

f∗ : fibT→F [m]0,m((Q−,θ,k)!) → fibU→F [m]0,m((Q−,θ,k)!).

A direct computation using this description and the definition of G(X ↪→ Y )θ,k on morphisms shows that 
the isomorphisms of Proposition 3.2.8 assemble into a natural isomorphism. �

We now use this to express the hom Θn−1-spaces of CPm(X ↪→ Y ) in terms of certain weighted colimits. 
We refer the reader to e.g. [34, § 3.1] for an account on the theory of weighted colimits.

Remark 3.3.3. Here we will be interested in two cases of weighted colimits: the ordinary weighted colimits 
and the simplicially enriched weighted colimits. We recall the definition of these weighted colimits in our 
case of interest.

Let A and D be small categories. Given functors W : Aop → (s)Set and F : A → (s)SetDop , the weighted 
colimit of F by W can be computed using [34, (3.70)] as the coequalizer in (s)SetDop

colimW
A F ∼= coeq(

∐
′ F (a) ×W (a′) ⇒

∐
F (a) ×W (a)).
a→a ∈A a∈A
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We first introduce the following notation.

Notation 3.3.4. For m ≥ 1, we define a functor

Hm : N ec(F [m])tnd
0,m → sSet

given on objects by

(T ↪→ F [m]0,m) 
→ HomchT (α, ω)

and on morphisms by

(f : U ↪→ T ) 
→ ((chf)α,ω : HomchU (α, ω) → HomchT (α, ω)).

Given the description of the hom Θn−1-spaces of C from Corollary 2.4.2, we are interested in understand-
ing the colimit featured in the following proposition.

Proposition 3.3.5. Let m ≥ 1, Y be a connected Θn−1-space, and X ↪→ Y be a monomorphism in sSetΘ
op
n−1 . 

Then there is an isomorphism in sSetΘ
op
n−1

colimT∈Nec(Pm(X↪→Y )−,�,�)tnd
0,m

HomchT (α, ω) ∼= colimG(X↪→Y )�,�
Nec(F [m])tnd

0,m
Hm,

where colimT∈Nec(Pm(X↪→Y )−,�,�)a,b
HomchT (α, ω) is the Θn−1-bi-space given at θ ∈ Θn−1 and k ≥ 0 by the 

colimit in sSet

colimT∈Nec(Pm(X↪→Y )−,θ,k)a,b
HomchT (α, ω),

and colimG(X↪→Y )�,�
Nec(F [m])tnd

0,m
Hm is the Θn−1-bi-space given at θ ∈ Θn−1 and k ≥ 0 by the colimit in sSet of Hm

weighted by G(X ↪→ Y )θ,k.

Proof. Let θ ∈ Θn−1 and k ≥ 0. Recall from Proposition 3.3.2 that the category of elements of the functor 
G(X ↪→ Y )θ,k is given by the discrete fibration

(Q−,θ,k)! : N ec(Pm(X ↪→ Y )−,θ,k)
tnd
0,m → N ec(F [m])tnd

0,m.

So by [48, (7.1.8)] we have isomorphisms in sSet

colimT∈Nec(Pm(X↪→Y )−,θ,k)tnd
0,m

HomchT (α, ω) ∼= colimNec(Pm(X↪→Y )−,θ,k)tnd
0,m

Hm ◦ (Q−,θ,k)!

∼= colimG(X↪→Y )θ,k
Nec(F [m])tnd

0,m
Hm. �

Lemma 3.3.6. Let A and D be small categories, and F : A → sSet and W : Aop → SetDop be functors. Write 
ι : SetDop

↪→ sSetDop for the canonical inclusion and note that sSetDop is canonically enriched over sSet. 
Then there is an isomorphism in sSetDop

colimW�

A F ∼= colimF
Aop ιW

where colimW�

A F : Dop → sSet is the functor sending an object d ∈ D to the colimit of the functor F weighted 
by
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Wd := Aop W−→ SetDop evd−−→ Set

and colimF
Aop ιW is the sSet-enriched colimit of ιW : Aop → sSetDop weighted by F .

Proof. Using Remark 3.3.3, for every d ∈ D, there is an isomorphism in sSet

colimWd

A F ∼= coeq
(∐

a→a′∈A Wd(a) × F (a′) ⇒
∐

a∈A Wd(a) × F (a)
)

natural in d ∈ D. Hence this yields an isomorphism in sSetDop

colimW�

A F ∼= coeq
(∐

a→a′∈A W (a) × F (a′) ⇒
∐

a∈A W (a) × F (a)
)
.

On the other hand, again by Remark 3.3.3, we have an isomorphism in sSetDop

colimF
Aop ιW ∼= coeq

(∐
a′→a∈Aop F (a′) ×W (a) ⇒

∐
a∈A F (a) ×W (a)

)
∼= coeq

(∐
a→a′∈A W (a) × F (a′) ⇒

∐
a∈A W (a) × F (a)

)
.

Hence, we get the desired isomorphism. �
Remark 3.3.7. Let ϕ : sSetΔop×Θop

n−1 ∼= ssSetΘ
op
n−1 be one of the two canonical isomorphism, and consider the 

inclusion

ι : sSetΘ
op
n−1 ∼= SetΔop×Θop

n−1 ↪→ sSetΔop×Θop
n−1

ϕ∼= ssSetΘ
op
n−1 .

Then sSetΔop×Θop
n−1 is canonically enriched over sSet and we consider the sSet-enrichment of ssSetΘ

op
n−1 via 

ϕ : sSetΔop×Θop
n−1 ∼= ssSetΘ

op
n−1 .

Proposition 3.3.8. Let m ≥ 1, Y be a connected Θn−1-space, and X ↪→ Y be a monomorphism in sSetΘ
op
n−1 . 

We have the following isomorphism in ssSetΘ
op
n−1

colimT∈Nec(Pm(X↪→Y )−,θ,k)tnd
0,m

HomchT (α, ω) ∼= colimHm

(Nec(F [m])tnd
0,m)op ιG(X ↪→ Y ),

where colimHm

(Nec(F [m])tnd
0,m)op ιG(X ↪→ Y ) is the sSet-enriched colimit of ιG(X ↪→ Y ) weighted by Hm.

Proof. This is obtained by taking in Lemma 3.3.6 A = N ec(F [m])tnd
0,m, D = Θn−1 × Δ, F = Hm, and 

W = G(X ↪→ Y ) and combining with Proposition 3.3.5. �
We further compute the colimit of the functor G(X ↪→ X), which will be useful to describe the hom 

Θn−1-spaces of the categorification C(L(Sp[m] ×X)).

Proposition 3.3.9. Let m ≥ 1 and X be a connected Θn−1-space. Then there is an isomorphism in sSetΘ
op
n−1

colimNec(F [m])tnd
0,m

G(X ↪→ X) ∼= colimΔ[0]
(Nec(F [m])tnd

0,m)op G(X ↪→ X) ∼= X×m.

Proof. Consider the canonical inclusion Sp[m] ↪→ F [m]0,m. Then |B(Sp[m])| = m and there is a canonical 
isomorphism 

∏
B(Sp[m]) X

∼= X×m in sSetΘ
op
n−1 .

We define a natural cone γ under G(X ↪→ X) with summit X×m as follows. Given a necklace T ↪→
F [m]0,m of (N ec(F [m])tnd

0,m, we construct a necklace T ↪→ F [m]0,m with the same set of joints as T , but 
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with vertex set all vertices of F [m]0,m. Then there are canonical inclusions j : Sp[m] ↪→ T and T ↪→ T , and 
moreover B(T ) ∼= B(T ). We define the component γT to be the composite

γT :=
(
G(X ↪→ X)(T ) =

∏
B(T ) X

∼=
∏

B(T ) X
B(j)∗−−−−→

∏
B(Sp[m]) X

∼= X×m

)
.

Note that γ is natural in T ↪→ F [m]0,m in N ec(F [m])tnd
0,m. Indeed, this follows from the fact that, if f : U ↪→ T

is a map in (N ec(F [m])tnd
0,m, then it induces a map f : U ↪→ T under Sp[m].

We show that γ is a colimit cone. Let δ be a cone under G(X ↪→ X) with summit Y ∈ sSetΘ
op
n−1 . Define 

a map d : X×m → Y to be the following composite

d :=
(
X×m ∼=

∏
B(Sp[m]) X = G(X ↪→ X)(Sp[m])

δSp[m]−−−−→ Y

)
.

Then, by naturality of δ, we have that d ◦ γ = δ. Moreover, the map d is the unique map X×m → Y with 
this property as γSp[m] is given by the canonical isomorphism 

∏
B(Sp[m]) X

∼= X×m. �
Finally, we record here the following useful facts that depend on results postponed to Section 5.

Proposition 3.3.10. For m ≥ 1, the functor

colimHm

(Nec(F [m])tnd
0,m)op(−) : (ssSetΘ

op
n−1

diag,(∞,n−1))
(Nec(F [m])tnd

0,m)op

inj → ssSetΘ
op
n−1

diag,(∞,n−1)

given by taking the sSet-enriched colimit weighted by Hm is left Quillen.

Proof. As we will see in Theorem 5.3.12, the functor Hm : N ec(F [m])tnd
0,m → sSet(∞,0) is projectively cofi-

brant, and so the result follows from [21, Theorem 3.3] by considering the model structure ssSetΘ
op
n−1

diag,(∞,n−1)

as enriched over sSet(∞,0) in the correct variable as in Remark 3.3.7. �
Proposition 3.3.11. Let m ≥ 1 and X be a connected Θn−1-space. The functor

colim(−)
(Nec(F [m])tnd

0,m)op ιG(X ↪→ X) : (sSet(∞,0))
(Nec(F [m])tnd

0,m)op

inj → ssSetΘ
op
n−1

diag,(∞,n−1)

given by taking the sSet-enriched colimit of the functor ιG(X ↪→ X) weighted by a functor N ec(F [m])tnd
0,m →

sSet is left Quillen.

Proof. As we will see in Corollary 5.2.11, the functor

ιG(X ↪→ X) : (N ec(F [m])tnd
0,m)op → ssSetΘ

op
n−1

diag,(∞,n−1)

is projectively cofibrant, and so the result follows from [21, Theorem 3.3] by considering the model structure 

ssSetΘ
op
n−1

diag,(∞,n−1) as enriched over sSet(∞,0) in the correct variable as in Remark 3.3.7. �
3.4. Study of CPm(X ↪→ Y ) → SmY

We are now ready to give an explicit description of CPm(X ↪→ Y ) and study the image under C of the 
canonical map I : Pm(X ↪→ Y ) → L(F [m] × Y ).
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Notation 3.4.1. For m ≥ 0, we write Sm for the functor

Sm : sSetΘ
op
n−1

F [m]×(−)−−−−−−→ sSetΘ
op
n−1×Δop L−→ PCat(sSetΘ

op
n−1) C−→ sSetΘ

op
n−1-Cat

and ∂Sm for its boundary

∂Sm : sSetΘ
op
n−1

∂F [m]×(−)−−−−−−−→ sSetΘ
op
n−1×Δop L−→ PCat(sSetΘ

op
n−1) C−→ sSetΘ

op
n−1-Cat.

By applying C to the diagram of Notation 3.1.2, as C commutes with colimits, we have the following 
diagram in sSetΘ

op
n−1-Cat.

∂SmX

∂SmY

SmX

CPm(X ↪→ Y )

SmY

�

CI

Proposition 3.4.2. Let m ≥ 1, Y be a connected Θn−1-space, and X ↪→ Y be a monomorphism in sSetΘ
op
n−1 . 

Then the sSetΘ
op
n−1-enriched category CPm(X ↪→ Y ) is the directed sSetΘ

op
n−1-enriched category such that:

• its set of objects Ob(CPm(X ↪→ Y )) is {0, 1, . . . , m},
• for 0 < j − i < m, the hom Θn−1-space HomCPm(X↪→Y )(i, j) is given by

HomCPm(X↪→Y )(i, j) ∼= HomSmY (i, j),

• the hom Θn−1-space HomCPm(X↪→Y )(0, m) is given by

HomCPm(X↪→Y )(0,m) ∼= diag(colimHm

(Nec(F [m])tnd
0,m)op ιG(X ↪→ Y ))

Proof. By Lemma 3.1.7, we have that Ob(CPm(X ↪→ Y )) = Pm(X ↪→ Y )0 = {0, 1, . . . , m}. Now recall from 
Proposition 3.1.9 that Pm(X ↪→ Y )−,θ,k is 1-ordered for all θ ∈ Θn−1 and k ≥ 0. Hence, we can apply 
Corollary 2.4.2 and so we get that, for all 0 ≤ i < j ≤ m,

HomCPm(X↪→Y )(i, j) ∼= diag(colimT∈Nec(Pm(X↪→Y )−,�,�)tnd
i,j

HomchT (α, ω)).

As L(F [m] × Y ) ∼= Pm(Y ↪→ Y ), we also get that, for all 0 ≤ i < j ≤ m,

HomSmY (i, j) ∼= diag(colimT∈Nec(L(F [m]×Y )−,�,�)tnd
i,j

HomchT (α, ω)).

Now, if 0 < j − i < m, by Lemma 3.2.2, we have a natural isomorphism of categories

N ec(Pm(X ↪→ Y )−,�,�)
tnd
i,j

∼= N ec(L(F [m] × Y )−,�,�)tnd
i,j

so that HomCPm(X↪→Y )(i, j) ∼= HomSmY (i, j). Finally, by Proposition 3.3.8, we get that

HomCPm(X↪→Y )(0,m) ∼= diag(colimT∈Nec(Pm(X↪→Y )−,�,�)tnd
0,m

HomchT (α, ω))

∼= diag(colimHm

(Nec(F [m])tnd
0,m)op ιG(X ↪→ Y ))

which concludes the proof. �
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Proposition 3.4.3. Let m ≥ 1, Y be a connected Θn−1-space, and X ↪→ Y be a (trivial) cofibration in 
sSetΘ

op
n−1 . Then the map

HomCPm(X↪→Y )(0,m) → HomSmY (0,m)

is a (trivial) cofibration in sSetΘ
op
n−1

(∞,n−1).

Proof. By Proposition 3.4.2 applied once to X ↪→ Y and once to the identity Y ↪→ Y , we have the following 
isomorphisms.

HomCPm(X↪→Y )(0,m)

HomSmY (0,m)

diag(colimHm

(Nec(F [m])tnd
0,m)op ιG(X ↪→ Y ))

diag(colimHm

(Nec(F [m])tnd
0,m)op ιG(Y ↪→ Y ))

∼=

∼=

As X ↪→ Y is a (trivial) cofibration in sSetΘ
op
n−1

(∞,n−1) and ι : sSetΘ
op
n−1

(∞,n−1) → ssSetΘ
op
n−1

diag,(∞,n−1) is left Quillen by 

Proposition 1.5.3, then ι(X ↪→ Y ) is also a (trivial) cofibration in ssSetΘ
op
n−1

diag,(∞,n−1). As (trivial) cofibrations 

are defined level-wise in (ssSetΘ
op
n−1

diag,(∞,n−1))
(Nec(F [m])tnd

0,m)op

inj , it is straightforward to check by unpacking the 
definitions that

ιG(X ↪→ X) → ιG(X ↪→ Y )

is a (trivial) cofibration in (ssSetΘ
op
n−1

diag,(∞,n−1))
(Nec(F [m])tnd

0,m)op

inj . By Proposition 3.3.10, the functor

colimHm

(Nec(F [m])tnd
0,m)op(−) : (ssSetΘ

op
n−1

diag,(∞,n−1))
(Nec(F [m])tnd

0,m)op

inj → ssSetΘ
op
n−1

diag,(∞,n−1)

is left Quillen, and so

colimHm

(Nec(F [m])tnd
0,m)op ιG(X ↪→ Y ) → colimHm

(Nec(F [m])tnd
0,m)op ιG(Y ↪→ Y )

is a (trivial) cofibration in ssSetΘ
op
n−1

diag,(∞,n−1). Finally, by Proposition 1.5.3, we have that the functor 
diag : ssSetΘ

op
n−1

diag,(∞,n−1) → sSetΘ
op
n−1

(∞,n−1) is left Quillen, and so we conclude that the map

diag(colimHm

(Nec(F [m])tnd
0,m)op ιG(X ↪→ Y )) → diag(colimHm

(Nec(F [m])tnd
0,m)op ιG(Y ↪→ Y ))

is a (trivial) cofibration in sSetΘ
op
n−1

(∞,n−1), as desired. �
3.5. Study of SmX → ΣmX

We now show that the categorification of L(Sp[m] ×X) is ΣmX. Then we construct and study a sSetΘ
op
n−1-

functor SmX → ΣmX, which will be shown in Section 4.2 to be a retract of the image under C of the map 
L(Sp[m] ×X) ↪→ L(F [m] ×X).

Lemma 3.5.1. Let X be a connected Θn−1-space. There is a natural isomorphism in sSetΘ
op
n−1-Cat

S1X ∼= ΣX.
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Proof. We need to show that, if X ∈ sSetΘ
op
n−1 is connected, then S1X = C(L(F [1] ×X)) is isomorphic to 

ΣX. We first compute ch∗(L(F [1] ×X)). For this, we apply the colimit-preserving functor ch∗ : sSetΘ
op
n−1×Δop →

sSet-CatΔ
op×Θop

n−1 to the pushout in sSetΘ
op
n−1×Δop

from Lemma 3.1.1 describing L(F [1] ×X). At θ ∈ Θn−1
and k ≥ 0, as ch commutes with colimits, we have

(ch∗X)θ,k ∼= ch(Xθ,k) ∼= ch(
∐

Xθ,k
F [0]) ∼=

∐
Xθ,k

[0],

and we have

(ch∗(F [1] ×X))θ,k ∼= ch(F [1] ×Xθ,k) ∼= ch(
∐

Xθ,k
F [1]) ∼=

∐
Xθ,k

chF [1] ∼=
∐

Xθ,k
ΣΔ[0].

Hence ch∗(L(F [1] ×X))θ,k is the below pushout in sSet-Cat.∐
2
∐

Xθ,k
[0]

∐
2[0]

∐
Xθ,k

ΣΔ[0]

ch∗(L(F [1] ×X))θ,k
�

As Σ: sSet → {0,1}/sSet-Cat commutes with colimits, it takes the coproduct Xθ,k =
∐

Xθ,k
Δ[0] to the above 

pushout, and so

ch∗(L(F [1] ×X))θ,k ∼= Σ(
∐

Xθ,k
Δ[0]) ∼= Σ(Xθ,k).

This shows that ch∗(L(F [1] ×X)) is the ssSetΘ
op
n−1-enriched category Σ(ιX) and, by applying diag∗, we get 

that S1X = diag∗ch∗(L(F [1] ×X)) is the sSetΘ
op
n−1-enriched category ΣX, as desired. �

Corollary 3.5.2. Let m ≥ 1 and X be a connected Θn−1-space. Then there is a natural isomorphism in 
sSetΘ

op
n−1-Cat

C(L(Sp[m] ×X)) ∼= ΣmX.

Proof. Given X ∈ sSetΘ
op
n−1 connected, since C commutes with colimits and S1 = C(L(F [1] × (−))), we 

have a natural isomorphism in sSetΘ
op
n−1-Cat

C(L(Sp[m] ×X)) = C(L((F [1] 	F [0] . . .	F [0] F [1]) ×X)) ∼= S1X 	[0] . . .	[0] S1X.

As on connected objects S1 coincides with Σ by Lemma 3.5.1 and Σm = Σ 	[0] . . .	[0] Σ, we have

S1X 	[0] . . .	[0] S1X ∼= ΣX 	[0] . . .	[0] ΣX ∼= ΣmX

and so we get the desired result. �
Remark 3.5.3. Let m ≥ 1 and X be a connected Θn−1-space. By Propositions 1.2.8 and 3.3.9 there are 
natural isomorphisms in sSetΘ

op
n−1

HomΣmX(0,m) ∼= X×m ∼= colimΔ[0]
(Nec(F [m])tnd

0,m)op G(X ↪→ X)

∼= diag(colimΔ[0]
tnd op ιG(X ↪→ X)).
(Nec(F [m])0,m)
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We now build the desired sSetΘ
op
n−1-enriched functor SmX → ΣmX and show that it is a Dwyer-Kan 

equivalence.

Proposition 3.5.4. Let m ≥ 0 and X be a connected Θn−1-space. Then there is a natural sSetΘ
op
n−1-enriched 

functor SmX → ΣmX such that

• it is the identity on objects,
• for 0 < j − i < m the following diagram commutes

HomSmX(i, j) HomSj−iX(i, j)

HomΣmX(i, j) HomΣj−iX(i, j)

∼=

∼=

for full subcategories Sj−iX ⊆ SmX and Σj−iX ⊆ ΣmX spanned by the objects i, i + 1, . . . , j,
• the following diagram commutes

HomSmX(0,m)

HomΣmX(0,m)

diag(colimHm

(Nec(F [m])tnd
0,m)op ιG(X ↪→ X))

diag(colimΔ[0]
(Nec(F [m])tnd

0,m)op ιG(X ↪→ X))

∼=

∼=

where the right-hand map is induced by the unique map Hm → Δ[0] and the horizontal maps are the 
isomorphisms from Proposition 3.4.2 applied to the identity at X and from Remark 3.5.3.

Proof. The desired sSetΘ
op
n−1-enriched functor can be constructed by induction on m ≥ 0. If m = 0, it is the 

identity at [0] and, if m = 1, it coincides with the isomorphism from Lemma 3.5.1. If m > 1, the construction 
is fully determined by the conditions. �
Proposition 3.5.5. Let m ≥ 1 and X be a connected Θn−1-space. Then the sSetΘ

op
n−1-enriched functor 

SmX → ΣmX from Proposition 3.5.4 induces a weak equivalence in sSetΘ
op
n−1

(∞,n−1)

HomSmX(0,m) → HomΣmX(0,m).

Proof. By Proposition 3.5.4, we have the following isomorphisms.

HomSmX(0,m)

HomΣmX(0,m)

diag(colimHm

(Nec(F [m])tnd
0,m)op ιG(X ↪→ X))

diag(colimΔ[0]
(Nec(F [m])tnd

0,m)op ιG(X ↪→ X))

∼=

∼=

Since the values of Hm are contractible by [17, Corollary 3.10], then Hm → Δ[0] is a weak equivalence in 

(sSet(∞,0))
(Nec(F [m])tnd

0,m)op

inj . Hence, by Proposition 3.3.11, the functor

colim(−)
tnd op ιG(X ↪→ X) : (sSet(∞,0))

(Nec(F [m])tnd
0,m)op

inj → ssSetΘ
op
n−1

diag,(∞,n−1)
(Nec(F [m])0,m)
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preserves weak equivalences, and so

colimHm

(Nec(F [m])tnd
0,m)op ιG(X ↪→ X) → colimΔ[0]

(Nec(F [m])tnd
0,m)op ιG(X ↪→ X)

is a weak equivalence in ssSetΘ
op
n−1

diag,(∞,n−1). Finally, by Proposition 1.5.3, we have that the functor 
diag : ssSetΘ

op
n−1

diag,(∞,n−1) → sSetΘ
op
n−1

(∞,n−1) preserves weak equivalences, and so we conclude that the map

diag(colimHm

(Nec(F [m])tnd
0,m)op ιG(X ↪→ X)) → diag(colimΔ[0]

(Nec(F [m])tnd
0,m)op ιG(X ↪→ X))

is a weak equivalence in sSetΘ
op
n−1

(∞,n−1), as desired. �
Corollary 3.5.6. Let m ≥ 1 and X be a connected Θn−1-space. Then the sSetΘ

op
n−1-enriched functor from 

Proposition 3.5.4 defines a weak equivalence in sSetΘ
op
n−1

(∞,n−1)-Cat

SmX
�−→ ΣmX.

Proof. We show this by induction on m. If m = 1, then S1X ∼= ΣX by Lemma 3.5.1. If m > 1, first observe 
that SmX and ΣmX are directed sSetΘ

op
n−1-enriched categories with set of objects {0, 1, . . . , m} and the 

map Ob(SmX) → Ob(ΣmX) is the identity. So it is enough to show that

HomSmX(i, j) → HomΣmX(i, j)

is a weak equivalence in sSetΘ
op
n−1

(∞,n−1), for all 0 ≤ i < j ≤ m. If i = 0 and j = m, this is the content 
of Proposition 3.5.5. If 0 < j − i < m, using the isomorphisms from Proposition 3.5.4 for corresponding 
subcategories Sm−1X ⊆ SmX and Σm−1X ⊆ ΣmX, we can conclude by induction. �
4. The homotopy coherent categorification is a Quillen equivalence

The goal of this section is to prove the main theorem. Precisely, we show that C preserves cofibrations, 
respectively weak equivalences, in Section 4.1, respectively Section 4.2, so that the adjunction C � N is a 
Quillen pair. Finally, in Section 4.3, we show that C � N is further a Quillen equivalence.

4.1. C preserves cofibrations

In order to show that the functor C is left Quillen, we first prove that it preserves cofibrations.

Theorem 4.1.1. The functor C : PCat(sSetΘ
op
n−1

(∞,n−1))inj → sSetΘ
op
n−1

(∞,n−1)-Cat preserves cofibrations.

Proof. By Recall 1.3.4, a set of generating cofibrations in PCat(sSetΘ
op
n−1

(∞,n−1))inj is given by the map ∅ → F [0]
together with all maps of the form

L((∂F [m] ↪→ F [m])×̂(∂Θn−1[θ] ↪→ Θn−1[θ])×̂(∂Δ[k] ↪→ Δ[k]))

for m ≥ 1, θ ∈ Θn−1, and k ≥ 0.
First observe that the image of the map ∅ → F [0] under C is the sSetΘ

op
n−1-enriched functor ∅ → [0], 

which is a cofibration in sSetΘ
op
n−1

(∞,n−1)-Cat.



44 L. Moser et al. / Journal of Pure and Applied Algebra 228 (2024) 107620
Now, let m ≥ 1, θ ∈ Θn−1, and k ≥ 0. If we write

(X ↪→ Y ) := (∂Θn−1[θ] ↪→ Θn−1[θ])×̂(∂Δ[k] ↪→ Δ[k]),

the image under C of the map L((∂F [m] ↪→ F [m])×̂(X ↪→ Y )) is the sSetΘ
op
n−1-enriched functor

CI : CPm(X ↪→ Y ) → SmY.

By Remark 3.1.6, the map X ↪→ Y is a monomorphism in sSetΘ
op
n−1 with Y connected. Hence, by Propo-

sition 3.4.2, we have that Ob(CPm(X ↪→ Y )) = {0, 1, . . . , m} = Ob(SmY ) and, for all 0 < j − i < m, we 
have that

HomCPm(X↪→Y )(i, j) = HomSmY (i, j).

Moreover, by Proposition 3.4.3, the map

HomCPm(X↪→Y )(0,m) → HomSmY (0,m)

is a cofibration in sSetΘ
op
n−1

(∞,n−1). Applying Lemma 1.2.6, we conclude that the sSetΘ
op
n−1-enriched functor CI

is a cofibration in sSetΘ
op
n−1

(∞,n−1)-Cat, as desired. �
4.2. C preserves weak equivalences

We now show that the functor C preserves weak equivalences. For this, we first prove that it sends 
Dwyer-Kan equivalences between fibrant objects to weak equivalences.

Proposition 4.2.1. The functor C : PCat(sSetΘ
op
n−1

(∞,n−1))inj → sSetΘ
op
n−1

(∞,n−1)-Cat sends Dwyer-Kan equivalences be-
tween fibrant objects to weak equivalences.

Proof. Let f : W → Z be a Dwyer-Kan equivalence between fibrant objects in PCat(sSetΘ
op
n−1

(∞,n−1))inj. By 
definition, the functor Ho f : HoW → HoZ is an equivalence of categories and, for all a, b ∈ W0, the map 

MapW (a, b) → MapZ(fa, fb) is a weak equivalence in sSetΘ
op
n−1

(∞,n−1). By Proposition 2.5.3, we obtain that the 
functor

HoCf : HoCW → HoCZ

is an equivalence of categories. By 2-out-of-3, using Corollary 2.4.8 and the fact that weak equivalences in 

(sSet(∞,0))
Θop

n−1
inj are in particular weak equivalences in sSetΘ

op
n−1

(∞,n−1), we get that the map

HomCW (a, b) → HomCZ(fa, fb)

is a weak equivalence in sSetΘ
op
n−1

(∞,n−1). Hence the sSetΘ
op
n−1-enriched functor Cf : CW → CZ is a weak equiva-

lence in sSetΘ
op
n−1

(∞,n−1)-Cat, as desired. �
We now aim to prove that the functor C sends fibrant replacements in PCat(sSetΘ

op
n−1

(∞,n−1))inj as con-
structed in Recall 1.3.5 to weak equivalences in sSetΘ

op
n−1

(∞,n−1)-Cat. For this, we first show that C sends the map 
L((Sp[m] ↪→ F [m])×̂(∂Θn−1[θ] ↪→ Θn−1[θ])×̂(∂Δ[k] ↪→ Δ[k])) to a trivial cofibration.
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Lemma 4.2.2. Let m ≥ 1 and X be a connected Θn−1-space. Then the functor C sends the map L((Sp[m] ↪→
F [m]) ×X) to a sSetΘ

op
n−1-enriched functor ΣmX → SmX such that the induced map on hom Θn−1-spaces

HomΣmX(0,m) → HomSmX(0,m)

is given by the diagonal of the leg of the weighted colimit

Hm(Sp[m]) × ιG(X ↪→ X)(Sp[m]) → colimHm

(Nec(F [m])tnd
0,m)op ιG(X ↪→ X).

Proof. By Corollary 3.5.2, the image under C of the map L((Sp[m] ↪→ F [m]) ×X) in PCat(sSetΘ
op
n−1) is a 

sSetΘ
op
n−1-enriched functor of the form ΣmX → SmX. Then, by Corollary 2.4.2, we have that the map in 

sSetΘ
op
n−1

HomΣm
(0,m) → HomSmX(0,m)

is the diagonal of the map in ssSetΘ
op
n−1

colimT∈Nec(L(Sp[m]×X)−,�,�)tnd
0,m

HomchT (α, ω) → colimT∈Nec(L(F [m]×X)−,�,�)tnd
0,m

HomchT (α, ω)

induced at θ ∈ Θn−1 and k ≥ 0 by the inclusion of categories

N ec(L(Sp[m] ×X)−,θ,k)tnd
0,m ↪→ N ec(L(F [m] ×X)−,θ,k)tnd

0,m.

Under the isomorphisms from Propositions 3.2.9 and 3.3.8, this map in ssSetΘ
op
n−1 corresponds to the leg of 

the weighted colimit

Δ[0] × ιX×m ∼= Hm(Sp[m]) × ιG(X ↪→ X)(Sp[m]) → colimHm

(Nec(F [m])tnd
0,m)op ιG(X ↪→ X),

as desired. �
Lemma 4.2.3. Let m ≥ 1 and X be a connected Θn−1-space. Then the functor C sends the trivial cofibration 

in PCat(sSetΘ
op
n−1

(∞,n−1))inj

L((Sp[m] ↪→ F [m]) ×X)

to a trivial cofibration in sSetΘ
op
n−1

(∞,n−1)-Cat.

Proof. By Theorem 4.1.1, the cofibration L((Sp[m] ↪→ F [m]) ×X) in PCat(sSetΘ
op
n−1

(∞,n−1))inj is sent by C to a 

cofibration in sSetΘ
op
n−1

(∞,n−1)-Cat. It remains to show that it is also a weak equivalence in sSetΘ
op
n−1

(∞,n−1)-Cat.
By Lemma 4.2.2, the image under C of L((Sp[m] ↪→ F [m]) × X) is a sSetΘ

op
n−1-enriched functor of the 

form ΣmX → SmX. We show by induction on m ≥ 1 that its composite

ΣmX → SmX
�−→ ΣmX

with the weak equivalence in sSetΘ
op
n−1

(∞,n−1)-Cat from Corollary 3.5.6 is the identity. Then, by 2-out-of-3, we 

can deduce that ΣmX → SmX is a weak equivalence in sSetΘ
op
n−1

(∞,n−1)-Cat, as desired.
When m = 1, this follows from Lemma 3.5.1. If m > 1, recall that ΣmX and SmX are directed sSetΘ

op
n−1-

enriched categories with set of objects {0, 1, . . . , m} and both sSetΘ
op
n−1-enriched functors act on objects as 
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the identity. So it remains to show that, for all 0 ≤ i ≤ j ≤ m, the following composite is the identity in 
sSetΘ

op
n−1 .

HomΣmX(i, j) → HomSmX(i, j) → HomΣmX(i, j)

If i = 0 and j = m, by Proposition 3.5.4 and Lemma 4.2.2, the above composite can be identified with the 
diagonal of the following commutative triangle in ssSetΘ

op
n−1 .

Hm(Sp[m]) × ιG(X ↪→ X)(Sp[m]) colimHm

(Nec(F [m])tnd
0,m)op ιG(X ↪→ X)

colimΔ[0]
(Nec(F [m])tnd

0,m)op ιG(X ↪→ X)

∼=

Hence it is the identity. Now, if 0 < j − i < m, we conclude by induction using the isomorphisms from 
Proposition 3.5.4 for corresponding subcategories Sm−1X ⊆ SmX and Σm−1X ⊆ ΣmX. �
Lemma 4.2.4. Let m ≥ 1 and X ↪→ Y be a monomorphism in sSetΘ

op
n−1 of the form

(∂Θn−1[θ] ↪→ Θn−1[θ])×̂(∂Δ[k] ↪→ Δ[k])

for θ ∈ Θn−1 and k ≥ 0. Then the functor C sends the trivial cofibration in PCat(sSetΘ
op
n−1

(∞,n−1))inj

L((Sp[m] ↪→ F [m])×̂(X ↪→ Y ))

to a trivial cofibration in sSetΘ
op
n−1

(∞,n−1)-Cat.

Proof. By Theorem 4.1.1, the cofibration L((Sp[m] ↪→ F [m])×̂(X ↪→ Y )) in PCat(sSetΘ
op
n−1

(∞,n−1))inj is sent by 

C to a cofibration in sSetΘ
op
n−1

(∞,n−1)-Cat. It remains to show that it is also a weak equivalence in sSetΘ
op
n−1

(∞,n−1)-Cat.
We first deal with the cases where X ↪→ Y is not one of the following maps in sSetΘ

op
n−1

∅ ↪→ Δ[0], Δ[0] 	 Δ[0] ↪→ Δ[1], or Δ[0] 	 Δ[0] ↪→ Θn−1[1; 0]

so that X and Y are both connected Θn−1-spaces. In this case, using Corollary 3.5.2, the functor C sends 
the pushout-product map L((Sp[m] ↪→ F [m])×̂(X ↪→ Y )) to the canonical sSetΘ

op
n−1-enriched functor

ΣmY 	ΣmX SmX → SmY.

This sSetΘ
op
n−1-enriched functor is the unique dashed arrow that fits into the following commutative diagram 

in sSetΘ
op
n−1

(∞,n−1)-Cat,

ΣmX

ΣmY

SmX

ΣmY 	ΣmX SmX
�

�

�

SmY�
∃!
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where the top and bottom horizontal sSetΘ
op
n−1-enriched functors are the trivial cofibrations from 

Lemma 4.2.3, and the middle sSetΘ
op
n−1-enriched functor is a trivial cofibration as a pushout of a triv-

ial cofibration. By 2-out-of-3, it follows that the dashed sSetΘ
op
n−1-enriched functor is a weak equivalence in 

sSetΘ
op
n−1

(∞,n−1)-Cat, as desired.
If instead X = Δ[0] 	 Δ[0] and Y = Θn−1[1; 0] or Y = Δ[1], one could adjust the argument above. The 

key fact is to observe that, in this case, the top horizontal sSetΘ
op
n−1-enriched functor in the relevant diagram 

is replaced by the coproduct of trivial cofibrations in sSetΘ
op
n−1

(∞,n−1)-Cat

ΣmΔ[0] 	 ΣmΔ[0] �−→ SmΔ[0] 	SmΔ[0],

which is a trivial cofibration, too.
Finally, if X = ∅ and Y = Δ[0], one could also adjust the argument above noticing that the top horizontal 

sSetΘ
op
n−1-enriched functor in the relevant diagram is the identity at ∅. �

We now show that C sends the map L((∂F [m] ↪→ F [m])×̂(X ↪→ Y )) to a trivial cofibration, where 

X ↪→ Y is a trivial cofibration in sSetΘ
op
n−1

(∞,n−1). For this, we first need to identify a generating set of trivial 
cofibrations X ↪→ Y in sSetΘ

op
n−1

(∞,n−1) with connected Y .

Remark 4.2.5. Every object Y in sSetΘ
op
n−1 can be written as a coproduct Y ∼=

∐
[y]∈π0Y

Y[y] in sSetΘ
op
n−1 , 

where Y[y] is the fiber of Y → π0Y at [y] ∈ π0Y and is connected.

Lemma 4.2.6. There exists a set J of generating trivial cofibrations in sSetΘ
op
n−1

(∞,n−1) such that every map 
X ↪→ Y in J has Y connected.

Proof. Let J ′ be a generating set of trivial cofibrations in sSetΘ
op
n−1

(∞,n−1), and f : X ↪→ Y be a map in J ′. 
Using Remark 4.2.5, the map f can be rewritten as a coproduct

f : X ∼=
∐

[y]∈π0Y
f−1(Y[y]) ↪→

∐
[y]∈π0Y

Y[y] ∼= Y.

For every [y] ∈ π0Y , observe that the map f−1(Y[y]) ↪→ Y[y] is a retract of f : X ↪→ Y , hence a trivial 
cofibration in sSetΘ

op
n−1

(∞,n−1). By setting

J := {f−1(Y[y]) ↪→ Y[y] | (f : X ↪→ Y ) ∈ J ′, [y] ∈ π0Y }

we see that J generates the same class as J ′, namely the class of trivial cofibrations of sSetΘ
op
n−1

(∞,n−1). Moreover, 
note that J is a set as it is indexed by the set 

∐
X↪→Y ∈J ′ π0Y . �

Lemma 4.2.7. Let m ≥ 1 and X ↪→ Y be a trivial cofibration in sSetΘ
op
n−1

(∞,n−1). Then the functor C sends the 

trivial cofibration in PCat(sSetΘ
op
n−1

(∞,n−1))inj

L((∂F [m] ↪→ F [m])×̂(X ↪→ Y ))

to a trivial cofibration in sSetΘ
op
n−1

(∞,n−1)-Cat.

Proof. Without loss of generality we can assume that X ↪→ Y belongs to J , where J is a set of generating 

trivial cofibrations in sSetΘ
op
n−1

(∞,n−1) as in Lemma 4.2.6. Then the functor C sends the map L((∂F [m] ↪→
F [m])×̂(X ↪→ Y )) to the sSetΘ

op
n−1-enriched functor
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CPm(X ↪→ Y ) → SmY.

By construction of the set J , the map X ↪→ Y is a monomorphism in sSetΘ
op
n−1 with Y connected. Hence, by 

Proposition 3.4.2, we have that Ob(CPm(X ↪→ Y )) = {0, 1, . . . , m} = Ob(SmY ) and, for all 0 < j − i < m, 
we have that

HomCPm(X↪→Y )(i, j) = HomSmY (i, j).

Moreover, by Proposition 3.4.3, the map

HomCPm(X↪→Y )(0,m) → HomSmY (0,m)

is a trivial cofibration in sSetΘ
op
n−1

(∞,n−1). Applying Lemma 1.2.6, we conclude that the sSetΘ
op
n−1-enriched functor 

CPm(X ↪→ Y ) → SmY is a trivial cofibration in sSetΘ
op
n−1

(∞,n−1)-Cat, as desired. �
By assembling the above results, we get the following.

Proposition 4.2.8. Let W be an object in PCat(sSetΘ
op
n−1). Then the functor C sends the fibrant replacement 

W → W fib in PCat(sSetΘ
op
n−1

(∞,n−1))inj to a weak equivalence in sSetΘ
op
n−1

(∞,n−1)-Cat.

Proof. If J is a set of generating trivial cofibrations for sSetΘ
op
n−1

(∞,n−1), by Recall 1.3.5, a fibrant replacement 
W → W fib is obtained as a transfinite composition of pushouts of maps of the form

L((Sp[m] ↪→ F [m])×̂(∂Θn−1[θ] ↪→ Θn−1[θ])×̂(∂Δ[k] ↪→ Δ[k]))

for m ≥ 1, θ ∈ Θn−1, and k ≥ 0, and of the form

L((∂F [m] ↪→ F [m])×̂(X ↪→ Y ))

for m ≥ 1 and X ↪→ Y ∈ J . By Lemmas 4.2.4 and 4.2.7, we have that C sends every such map to a trivial 
cofibration in sSetΘ

op
n−1

(∞,n−1)-Cat. As C commutes with colimits, the sSetΘ
op
n−1-enriched functor CW → C(W fib)

is a transfinite composition of pushouts of trivial cofibrations in sSetΘ
op
n−1

(∞,n−1)-Cat, and so is also a trivial 
cofibration in sSetΘ

op
n−1

(∞,n−1)-Cat. �
We can now deduce the desired result.

Theorem 4.2.9. The functor C : PCat(sSetΘ
op
n−1

(∞,n−1))inj → sSetΘ
op
n−1

(∞,n−1)-Cat preserves weak equivalences.

Proof. Let W → Z be a weak equivalence in PCat(sSetΘ
op
n−1

(∞,n−1))inj. By Recall 1.3.9, this means that the 
induced map W fib → Zfib between fibrant replacements is a Dwyer-Kan equivalence. Then, we have a 

commutative square in sSetΘ
op
n−1

(∞,n−1)-Cat,

CW

C(W fib)

CZ

C(Zfib)

� �

�
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1))proj.
where the vertical sSetΘ
op
n−1-enriched functors are weak equivalences in sSetΘ

op
n−1

(∞,n−1)-Cat by Proposition 4.2.8, 
and the bottom horizontal one is a weak equivalence in sSetΘ

op
n−1

(∞,n−1)-Cat by Proposition 4.2.1. Hence CW → CZ

is also a weak equivalence in sSetΘ
op
n−1

(∞,n−1)-Cat by 2-out-of-3, and this shows the desired result. �
4.3. C is a Quillen equivalence

By assembling Theorems 4.1.1 and 4.2.9, the functor C preserves cofibrations and weak equivalences and 
so it is a left Quillen functor. Hence we have the following.

Theorem 4.3.1. The adjunction

sSetΘ
op
n−1

(∞,n−1)-Cat PCat(sSetΘ
op
n−1

(∞,n−1))inj
N

C

⊥

is a Quillen pair.

The goal of this section is to show that the Quillen pair C � N is in fact a Quillen equivalence. For this, 
we first compare it to the Quillen equivalence c � N recalled in Section 1.4.

Proposition 4.3.2. Let C be a fibrant sSetΘ
op
n−1

(∞,n−1)-enriched category. The natural canonical map

NC → NC

is a weak equivalence in (sSet(∞,0))
Θop

n−1×Δop

inj , and so a weak equivalence in (sSetΘ
op
n−1

(∞,n−1))Δ
op

inj and PCat(sSetΘ
op
n−1

(∞,n−

Proof. By Proposition 1.4.1 and Theorem 4.3.1, the following functors are right Quillen

N : sSetΘ
op
n−1

(∞,n−1)-Cat → PCat(sSetΘ
op
n−1

(∞,n−1))proj and N : sSetΘ
op
n−1

(∞,n−1)-Cat → PCat(sSetΘ
op
n−1

(∞,n−1))inj,

and so, as C is fibrant in sSetΘ
op
n−1

(∞,n−1)-Cat, then NC is fibrant in PCat(sSetΘ
op
n−1

(∞,n−1))proj and NC is fibrant in 

PCat(sSetΘ
op
n−1

(∞,n−1))inj. In particular, they both satisfy the Segal condition and are such that, for every m ≥ 0, 
the Θn−1-spaces (NC)m and (NC)m are fibrant in sSetΘ

op
n−1

(∞,n−1).
Next, observe that there is a canonical map NC → NC induced by the sSetΘ

op
n−1-enriched functors

Sm(Θn−1[θ] × Δ[k]) → Σm(Θn−1[θ] × Δ[k])

from Proposition 3.5.4, for m ≥ 0, θ ∈ Θn−1, and k ≥ 0. At m = 0, 1, this map induces equalities

(NC)0 = Ob C = (NC)0 and (NC)1 = Mor C = (NC)1.

Given m > 1, there is a commutative diagram in sSetΘ
op
n−1

(∞,n−1)

(NC)m (NC)1 ×(h)
(NC)0 . . .×

(h)
(NC)0 (NC)1

(NC)m (NC)1 ×(h)
(NC)0 . . .×

(h)
(NC)0 (NC)1

∼=

∼=

�



50 L. Moser et al. / Journal of Pure and Applied Algebra 228 (2024) 107620
where the horizontal maps are weak equivalences as NC and NC satisfy the Segal condition. Then by 2-out-
of-3, the left-hand map is also a weak equivalence in sSetΘ

op
n−1

(∞,n−1). Since the Θn−1-spaces (NC)m and (NC)m
are fibrant in sSetΘ

op
n−1

(∞,n−1), the map (NC)m → (NC)m is in fact a weak equivalence in (sSet(∞,0))
Θop

n−1
inj . This 

shows that NC → NC is a weak equivalence in (sSet(∞,0))
Θop

n−1×Δop

inj . �
We can deduce from this result the desired Quillen equivalence.

Theorem 4.3.3. The adjunction

sSetΘ
op
n−1

(∞,n−1)-Cat PCat(sSetΘ
op
n−1

(∞,n−1))inj
N

C

⊥

is a Quillen equivalence.

Proof. We have a triangle of right Quillen functors from Propositions 1.3.1 and 1.4.1 and Theorem 4.3.1

sSetΘ
op
n−1

(∞,n−1)-Cat

PCat(sSetΘ
op
n−1

(∞,n−1))inj

PCat(sSetΘ
op
n−1

(∞,n−1))proj

N

id�
�
N

which commutes up to isomorphism at the level of homotopy categories by Proposition 4.3.2. Moreover, the 
functor N and id are Quillen equivalences by Propositions 1.4.1 and 1.3.1. Hence, by 2-out-of-3, we conclude 
that N is also a Quillen equivalence. �
5. Projective cofibrancy results

In this section we provide the proofs for some technical facts that have been used in the previous sections. 
As a preliminary tool, in Section 5.1 we give an alternative combinatorial description of the category 
N ec(F [m])tnd

0,m as the category Cubem. Then in Section 5.2, respectively Section 5.3, we show that the 
functor

Hm : N ec(F [m])tnd
0,m → sSet(∞,0),

respectively the functor

ιG(X ↪→ X) : (N ec(F [m])tnd
0,m)op → ssSetΘ

op
n−1

diag,(∞,n−1),

is projectively cofibrant.

5.1. Combinatorics of necklaces

Recall that N ec(F [m])tnd
0,m is the category of totally non-degenerate necklaces in F [m]0,m. By Re-

mark 3.2.6, its objects are monomorphisms T ↪→ F [m]0,m with T a necklace and its morphisms are 
monomorphisms over F [m]0,m, and so it is a poset. We now describe this category in a more combina-
torial way.
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Definition 5.1.1. Let m ≥ 1. We define the category Cubem to be the poset such that

• its objects are pairs (I, S) of subsets I ⊆ S ⊆ {1, . . . , m − 1},
• there is a morphism (I ′, S′) → (I, S) if and only if I ′ ⊆ I and S = S′ ∪ I.

By convention, the category Cube1 is the terminal category.

Remark 5.1.2. The category Cubem is generated by two different kinds of morphisms, namely

(I \ {j}, S) → (I, S) and (I \ {j}, S \ {j}) → (I, S)

for every object (I, S) ∈ Cubem and every element j ∈ I.

Proposition 5.1.3. For m ≥ 1, there are assignments

(T ↪→ F [m]0,m) 
→ (IT , ST )

(T(I,S) ↪→ F [m]0,m) ← � (I, S)

that define an isomorphism of categories

N ec(F [m])tnd
0,m

∼= Cubem.

Proof. We first construct the functor N ec(F [m])tnd
0,m → Cubem. Given f : T ↪→ F [m]0,m in N ec(F [m])tnd

0,m, 
we set (IT , ST ) to be the object of Cubem given by

ST := {f(v) | v ∈ T0} \ {0,m} ⊆ {1, . . . ,m− 1} = F [m]0 \ {0,m}

and IT := ST \ JT , where

JT := {f(v) | v is a joint in T} \ {0,m} ⊆ ST .

Then, given a map g : T ′ ↪→ T in N ec(F [m])tnd
0,m, as g is a monomorphism by Remark 3.2.6, we have that 

ST ′ ⊆ ST and JT ⊆ JT ′ ; thus IT ′ ⊆ IT . It remains to show that ST = ST ′ ∪ IT . For this, it is enough 
to see that each element of ST that is not in ST ′ is in IT , i.e., is not the image of a joint of T . But since 
JT ⊆ JT ′ ⊆ ST ′ , then any image of a joint in T is contained in ST ′ . Hence we get a map (IT ′ , ST ′) → (IT , ST )
in Cubem.

We now construct the functor Cubem → N ec(F [m])tnd
0,m. Given a pair (I, S) in Cubem, we set T(I,S) ↪→

F [m]0,m to be the necklace such that T(I,S) has set of vertices S∪{0, m} and set of joints (S\I) ∪{0, m}. Then, 
given a map (I ′, S′) → (I, S), we need to show that there is an induced monomorphism T(I′,S′) ↪→ T(I,S). 
Indeed, as I ′ ⊆ I and S = S′ ∪ I, we have that S′ ⊆ S and

S \ I = (S′ ∪ I) \ I ⊆ (S′ ∪ I ′) \ I ′ = S′ \ I ′.

Hence the set of vertices of T(I′,S′) is contained in that of T(I,S), and the set of joints of T(I,S) is contained 
in that of T(I′,S′). In particular, this says that every bead of T(I′,S′) is sent in a bead of T(I,S) and so there 
is a monomorphism T(I′,S′) ↪→ T(I,S).

Clearly, the two constructions are inverse to each other and so we get the desired isomorphism of cate-
gories. �
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We now aim to give a description of the bead functor B : N ec(F [m])tnd
0,m → Set from Remark 3.2.7 as a 

functor Cubem → Set.

Definition 5.1.4. We construct a functor

B : Cubem → Set.

Given an object (I, S) in Cubem, as S \ I ⊆ {1, . . . , m − 1}, write S \ I = {s1 < s2 < . . . < st−1}, and set 
s0 := 0 and st := m. We define B(I, S) to be the set

B(I, S) := {{s ∈ S | si−1 ≤ s ≤ si} | 1 ≤ i ≤ t}

and we refer to its elements as interval in S.
Given a morphism (I ′, S′) → (I, S) in Cubem, there is an induced assignment B(I ′, S′) → B(I, S) sending 

an interval in S′ to the interval in S that contains it. This is well-defined as S′ ⊆ S and S \ I ⊆ S′ \ I ′.

Lemma 5.1.5. For m ≥ 1, the following diagram of categories commutes up to isomorphism.

N ec(F [m])tnd
0,m Cubem

Set

∼=

B B

Proof. Given a necklace T ↪→ F [m]0,m, we have a canonical natural isomorphism of sets

B(T ) ∼= B(IT , ST ),

which can be constructed using the fact that the set (ST \ IT ) ∪ {0, m} corresponds to the set of joints of T
and so an element of B(IT , ST ) corresponds to the data of all vertices of F [m] contained in a bead of T . �

Using this, we can now describe the functor G(X ↪→ X) : (N ec(F [m])tnd
0,m)op → sSetΘ

op
n−1 introduced in 

Section 3.3 as a functor Cubeop
m → sSetΘ

op
n−1 .

Definition 5.1.6. Let m ≥ 1 and X be a connected Θn−1-space. We define a functor

G(X) : Cubeop
m → sSetΘ

op
n−1

given on objects by

(I, S) 
→
∏

B(I,S) X

and on a morphism (I ′, S′) → (I, S) by the map

∏
B(I,S) X →

∏
B(I′,S′) X

induced by pre-composition along the induced map B(I ′, S′) → B(I, S).

Proposition 5.1.7. Let m ≥ 1 and X be a connected Θn−1-space. The following triangle of categories com-
mutes up to isomorphism.
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(N ec(F [m])tnd
0,m)op Cubeop

m

sSetΘ
op
n−1

∼=

G(X ↪→ X) G(X)

Proof. This follows directly from Lemma 5.1.5. �
We now aim for a more combinatorial description of the functor Hm : N ec(F [m])tnd

0,m → sSet introduced 
in Section 3.3 as a functor Cubem → sSet.

Remark 5.1.8. Given a morphism (I ′, S′) → (I, S) in Cubem, there is a partition of I as

I = I ′ 	 (I ∩ (S′ \ I ′)) 	 ((I ∪ S′) \ S′).

Definition 5.1.9. Let m ≥ 1. We define a functor

Hm : Cubem → sSet

given on objects by the map

(I, S) 
→
∏

I Δ[1]

and on a morphism (I ′, S′) → (I, S) by

Hm(I ′, S′) =
∏

I′ Δ[1]

Hm(I, S) =
∏

I Δ[1] .

∏
I′ Δ[1] ×

∏
I∩(S′\I′)〈1〉 ×

∏
(I∪S′)\S′〈0〉

By a [17, Corollary 3.10], we have the following computations for the hom spaces of the categorification 
of necklaces.

Lemma 5.1.10. Let T = F [m1] ∨ . . . ∨ F [mt] be a necklace with t ≥ 1 and mi ≥ 1 for 1 ≤ i ≤ t. Then there 
is a natural isomorphism in sSet

HomchT (α, ω) ∼=
∏t

i=1
∏

[1,mi−1] Δ[1] ∼=
∏∐t

i=1[1,mi−1] Δ[1].

Proposition 5.1.11. For m ≥ 1, the following triangle of categories commutes up to isomorphism

N ec(F [m])tnd
0,m Cubem

sSet

∼=

Hm Hm

Proof. Recall that Hm sends a necklace T = F [m1] ∨ . . . ∨ F [mt] ↪→ F [m]0,m to

HomchT (α, ω) ∼=
∏∐t

i=1[1,mi−1] Δ[1],

where the isomorphism holds by Lemma 5.1.10. Note that the set 
∐t

i=1[1, mi − 1] can be made into a poset 
with the lexicographic order. Moreover, a direct computation shows that the posets 

∐t [1, mi − 1] and IT
i=1
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have the same cardinality, namely 
∑t

i=1(mi−1), and so there is a unique isomorphism 
∐t

i=1[1, mi−1] ∼= IT
preserving the order. This induces an isomorphism sSet

Hm(T ) ∼=
∏∐t

i=1[1,mi−1] Δ[1] ∼=
∏

IT
Δ[1] = Hm(IT , ST ).

It remains to show that this isomorphism is compatible with morphisms.
By Remark 5.1.2, it is enough to check that it is compatible with the generating morphisms (IT \

{j}, ST ) → (IT , ST ) and (IT \ {j}, ST \ {j}) → (IT , ST ) of Cubem, for all j ∈ IT . Note that an element 
j ∈ IT corresponds to a vertex � ∈ F [mi] with 0 < � < mi for some 1 ≤ i ≤ t.

In the case (IT \ {j}, ST ) → (IT , ST ), by definition of Hm, the induced map is given by

Hm(IT \ {j}, ST ) =
∏

IT \{j} Δ[1]

Hm(IT , ST ) =
∏

IT
Δ[1] .

(
∏

IT \{j} Δ[1]) × 〈1〉

Then, the necklace U ↪→ F [m]0,m corresponding to (IT \ {j}, ST ) is the subnecklace of T given by

U ∼= F [m1] ∨ . . . ∨ F [mi−1] ∨ F [�] ∨ F [mi − �] ∨ F [mi+1] ∨ . . . ∨ F [mt]

and the inclusion U ↪→ T is induced by F [�] ∨ F [mi − �] ↪→ F [mi]. The latter induces a map

Homch[�]�[0]ch[mi−�](α, ω) ∼= Homch[mi](0, �) × Homch[mi](�,mi) → Homch[mi](0,mi)

which corresponds to the composition map of ch[mi] as in Definition 2.2.1. Hence the image under Hm of 
the inclusion U ↪→ T is given by

Hm(U) =
∏

(
∐t

i=1[1,mi−1])\{�} Δ[1]

Hm(T ) =
∏∐t

i=1[1,mi−1] Δ[1] .

(
∏

(
∐t

i=1[1,mi−1])\{�} Δ[1]) × 〈1〉

This shows that the isomorphisms are compatible with this first type of generating morphisms.
In the case (IT \ {j}, ST \ {j}) → (IT , ST ), by definition of Hm, the induced map is given by

Hm(IT \ {j}, ST \ {j}) =
∏

IT \{j} Δ[1]

Hm(IT , ST ) =
∏

IT
Δ[1] .

(
∏

IT \{j} Δ[1]) × 〈0〉

Then, the necklace U ↪→ F [m]0,m corresponding to (IT \ {j}, ST \ {j}) is the subnecklace of T given by

U ∼= F [m1] ∨ . . . ∨ F [mi−1] ∨ F [mi − 1] ∨ F [mi+1] . . . . . . ∨ F [mt]

and the inclusion U ↪→ T is induced by the coface map d� : F [mi − 1] → F [mi]. The latter induces a map

Homch[mi−1](0,mi − 1) → Homch[mi](0,mi)

as described in Remark 2.2.2. Hence the image under Hm of the inclusion U ↪→ T is given by
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Hm(U) =
∏

(
∐t

i=1[1,mi−1])\{�} Δ[1]

Hm(T ) =
∏∐t

i=1[1,mi−1] Δ[1] .

(
∏

(
∐t

i=1[1,mi−1])\{�} Δ[1]) × 〈0〉

This shows that the isomorphisms are compatible with this second type of generating morphisms, and 
concludes the proof. �
5.2. Projective cofibrancy of G(X)

In this section, we aim to show that the functor G(X) is cofibrant in (sSetΘ
op
n−1

(∞,n−1))
Cubeop

m
proj . For this, all 

the results in this section are towards proving that G(X) satisfies the left lifting property against all trivial 
fibrations in (sSetΘ

op
n−1

(∞,n−1))
Cubeop

m
proj .

Let Pm := P({1, . . . , m − 1}) be the poset of subsets of {1, . . . , m − 1} ordered by inclusion. Then there 
is an embedding

σ : Pm ↪→ Cubem, I 
→ (I, {1, . . . ,m− 1})

which admits a retraction

r : Cubem → Pm, (I, S) 
→ I ∪ ({1, . . . ,m− 1} \ S).

Note that r is well-defined since, given a morphism (I ′, S′) → (I, S) in Cubem, then there is a morphism 
r(I ′, S′) → r(I, S) in Pm as, using that S = S′ ∪ I, we have

I ′ ∪ ({1, . . . ,m− 1} \ S′) ⊆ I ∪ ({1, . . . ,m− 1} \ S′) = I ∪ ({1, . . . ,m− 1} \ S).

It is straightforward to check that rσ = idPm
. Moreover, we have a natural transformation α : idCubem →

σr given at (I, S) by the morphism in Cubem

(I, S) → (I ∪ ({1, . . . ,m− 1} \ S), {1, . . . ,m− 1}) = σr(I, S)

which exists as I ⊆ I ∪ ({1, . . . , m − 1} \ S) and {1, . . . , m − 1} = S ∪ I ∪ ({1, . . . , m − 1} \ S).

Lemma 5.2.1. Let m ≥ 1 and (I, S) be an object in Cubem. Then the component (I, S) → σr(I, S) of α
induces a natural isomorphism of sets

B(I, S) ∼= B(σr(I, S)).

Proof. First note that {1, . . . , m − 1} \ (I ∪ ({1, . . . , m − 1} \ S)) = ({1, . . . , m − 1} \ I) ∩ S = S \ I. Write 
S \ I = {s1 < . . . < st−1}. Then we have

B(I, S) =
{
{s ∈ S | si−1 ≤ s ≤ si} | 1 ≤ i ≤ t

}
,

B(σr(I, S)) =
{
{s ∈ {1, . . . ,m− 1} | si−1 ≤ s ≤ si} | 1 ≤ i ≤ t

}
.

So the map (I, S) → σr(I, S) induces a canonical isomorphism between these sets given by

{s ∈ S | si−1 ≤ s ≤ si} 
→ {s ∈ {1, . . . ,m− 1} | si−1 ≤ s ≤ si}. �
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Lemma 5.2.2. Let m ≥ 1 and X be a connected Θn−1-space. Then the natural transformation G(X) ◦
αop : G(X) ◦ σoprop → G(X) is an isomorphism in (sSetΘ

op
n−1)Cubeop

m .

Proof. The component at (I, S) in Cubem of G(X) ◦ αop is given by the map

∏
B(σr(I,S)) X →

∏
B(I,S) X

induced by pre-composing with the isomorphism of sets B(I, S) ∼= B(σr(I, S)) from Lemma 5.2.1. Hence, 
this is an isomorphism. �
Corollary 5.2.3. Let m ≥ 1, X be a connected Θn−1-space, and F : Cubeop

m → sSetΘ
op
n−1 be a functor. There 

is a natural isomorphism of sets

(sSetΘ
op
n−1)Cubeop

m (G(X), F ) ∼= (sSetΘ
op
n−1)P

op
m (G(X) ◦ σop, F ◦ σop).

Proof. We define maps in both directions by sending β : G(X) → F to β ◦ σop : G(X) ◦ σop → F ◦ σop, and 
by sending γ : G(X) ◦ σop → F ◦ σop to the composite

G(X) (G(X)◦αop)−1

−−−−−−−−−→ G(X) ◦ σoprop γ◦rop

−−−−→ F ◦ σoprop F◦αop

−−−−→ F,

where G(X) ◦ αop is invertible by Lemma 5.2.2. The fact that these constructions are inverse to each other 
is a consequence of the relation rσ = idPm

and the naturality of α. �
The following is a straightforward verification.

Lemma 5.2.4. Let m ≥ 1. Write P1,2
m and P≥1

m for the sub-posets of Pm given by

P1,2
m = {I ⊆ {1, . . . ,m− 1} | |I| = 1, 2} and P≥1

m = {I ⊆ {1, . . . ,m− 1} | |I| ≥ 1}.

Then the inclusion P1,2
m ↪→ P≥1

m is cofinal, and so (P1,2
m )op ↪→ (P≥1

m )op is final.

Lemma 5.2.5. Let m ≥ 1, X be a connected Θn−1-space, and I ⊆ {1, . . . , m − 1}. Then there is an isomor-
phism in sSetΘ

op
n−1

colimI�J∈Pm
G(X)(σJ) ∼= coeq

(∐
I�J∈Pm

|J|=|I|+2
G(X)(σJ) ⇒

∐
I�J∈Pm

|J|=|I|+1
G(X)(σJ)

)
.

Proof. Note that we have isomorphisms of posets

{I � J ∈ Pm | |J | = |I| + 1, |I| + 2} ∼= P1,2
m−|I| and {I � J ∈ Pm} ∼= P≥1

m−|I|.

Hence, by Lemma 5.2.4, the inclusion

{I � J ∈ Pm | |J | = |I| + 1, |I| + 2}op ↪→ {I � J ∈ Pm}op

is final. Using the formula for colimits in terms of coequalizers as in the dual of [38, Theorem V.2.2]), we 
obtain the desired result. �
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Remark 5.2.6. Let m ≥ 1 and I ⊆ {1, . . . , m − 1}. Write {1, . . . , m − 1} \ I = {s1 < . . . < st−1} and set 
s0 = 0, st = m. Recall that

B(σI) = {[si−1, si] ⊆ {1, . . . ,m− 1} | 1 ≤ i ≤ t}.

Then, for 1 ≤ j ≤ t − 1, the map

B(σI) → B(σ(I 	 {sj}))

is given by

[si−1, si] 
→
{

[si−1, si] if 1 ≤ i ≤ t, i �= j, j + 1
[sj−1, sj+1] if i = j, j + 1.

Lemma 5.2.7. Let m ≥ 1, X be a connected Θn−1-space, and I ⊆ {1, . . . , m −1}. For all j0, j1 ∈ {1, . . . , m −
1} \ I, there is a pullback square in sSetΘ

op
n−1

G(X)(σ(I 	 {j0, j1}))

G(X)(σ(I 	 {j0}))

G(X)(σ(I 	 {j1}))

G(X)(σI)

�

.

Proof. Recall that G(X)(σI) =
∏

B(σI) X. Hence, to show that the desired square is a pullback, as ∏
(−) X : Setop → sSetΘ

op
n−1 sends colimits in Set to limits in sSetΘ

op
n−1 , it is enough to show that the 

following square is a pushout of sets.

B(σI)

B(σ(I 	 {j0}))

B(σ(I 	 {j1}))

B(σ(I 	 {j0, j1}))
�

Now, as j0, j1 ∈ {1, . . . , m − 1} \ I, by Remark 5.2.6, for ε = 0, 1, the map

B(σI) → B(σ(I 	 {jε}))

identifies the intervals with end point jε and starting point jε, and the map

B(σ(I 	 {jε})) → B(σ(I 	 {j0, j1}))

identifies the intervals with end point j|ε−1| and starting point j|ε−1|. It is then clear from these descriptions 
that the above square is a pushout. �
Lemma 5.2.8. Let m ≥ 1, X be a connected Θn−1-space, and I ⊆ {1, . . . , m − 1}. Then the induced map

colimI�J∈Pm
G(X)(σJ) → G(X)(σI)

is a monomorphism in sSetΘ
op
n−1 .
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Proof. By Lemma 5.2.5, we have an isomorphism in sSetΘ
op
n−1

colimI�J∈Pm
G(X)(σJ) ∼= coeq

(∐
I�J∈Pm

|J|=|I|+2
G(X)(σJ) ⇒

∐
I�J∈Pm

|J|=|I|+1
G(X)(σJ)

)
.

Then the fact that the map

coeq
(∐

I�J∈Pm

|J|=|I|+2
G(X)(σJ) ⇒

∐
I�J∈Pm

|J|=|I|+1
G(X)(σJ)

)
→ G(X)(σI)

is a monomorphism in sSetΘ
op
n−1 follows from the following observations. First we have that, for j ∈

{1, . . . , m − 1} \ I, the map

G(X)(σ(I 	 {j})) → G(X)(σI)

is a monomorphism in sSetΘ
op
n−1 as it is the image under 

∏
(−) X : Setop → sSetΘ

op
n−1 of the epimorphism 

B(σI) → B(σ(I 	 {j})) described in Remark 5.2.6. Then, for j0, j1 ∈ {1, . . . , m − 1} \ I, by Lemma 5.2.7, 
the intersection of the images of the monomorphisms

G(X)(σ(I 	 {j0})) ↪→ G(X)(σI) and G(X)(σ(I 	 {j1})) ↪→ G(X)(σI)

is precisely the image of the monomorphism G(X)(σ(I 	 {j0, j1})) ↪→ G(X)(σI). Hence they are identified 
in the coequalizer. �
Theorem 5.2.9. Let m ≥ 1 and X be a connected Θn−1-space. Then we have that the functor G(X) : Cubeop

m →
sSetΘ

op
n−1

(∞,n−1) is projectively cofibrant.

Proof. Let ρ : F → G be a trivial fibration in (sSetΘ
op
n−1

(∞,n−1))
Cubeop

m
proj , i.e., for all (I, S) in Cubem, the map 

ρ(I,S) : F (I, S) → G(I, S) is a trivial fibration in sSetΘ
op
n−1

(∞,n−1). We show that there is a lift γ in the below 
left diagram in (sSetΘ

op
n−1)Cubeop

m , which is equivalent by Corollary 5.2.3 to showing that there is a lift in the 
below right diagram in (sSetΘ

op
n−1)Pop

m .

G(X) G

F

β

ρ
γ

G(X) ◦ σop G ◦ σop

F ◦ σop

β ◦ σop

ρ ◦ σop
γ ◦ σop

To this end, for I ⊆ {1, . . . , m − 1}, we construct the components γσI by reverse induction on |I| ≤ m − 1
in such a way that the below right diagram commutes and, for every I � J ∈ Pm, the below left diagram 
commutes.

G(X)(σJ)

G(X)(σI)

F (σJ)

F (σI)

γσJ

γσI
G(X)(σI) G(σI)

F (σI)

βσI

ρσI
γσI

If |I| = m − 1, then I = {1, . . . , m − 1}. As there exists no J � I and G(X)(σI) = X is cofibrant in 

sSetΘ
op
n−1

(∞,n−1), we get a lift γσ{1,...,m−1} satisfying the desired conditions. Now suppose that |I| < m − 1 and 
assume that the components of γ◦σop have already been constructed for all J ⊆ {1, . . . , m −1} with |J | > |I|
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and satisfy the induction hypothesis. Then there is an induced map colimI�J∈Pm
G(X)(σJ) → F (σI) in 

the following diagram given by the universal property of colimit.

G(X)(σJ)

colimI�J∈Pm
G(X)(σJ)

G(X)(σI) G(σI)

F (σI)

F (σJ)
γσJ

∃!

βσI

ρσI
γσI

As colimI�J∈Pm
G(X)(σJ) ↪→ G(X)(σI) is a cofibration in sSetΘ

op
n−1

(∞,n−1) by Lemma 5.2.8, there is a lift in the 
above diagram. This builds the desired lift γ ◦ σop. �

As a consequence of [37, Remark A.2.8.6], the Quillen equivalence ι � (π∗)∗ from Proposition 1.5.3 induces 
by post-composition the following Quillen equivalence.

Proposition 5.2.10. The adjunction

(sSetΘ
op
n−1

(∞,n−1))
Cubeop

m
proj (ssSetΘ

op
n−1

diag,(∞,n−1))
Cubeop

m
proj

((π∗)∗)∗

ι∗

⊥

is a Quillen equivalence.

The fact that ι∗ is left Quillen together with Theorem 5.2.9 gives the following.

Corollary 5.2.11. Let m ≥ 1 and X be a connected Θn−1-space. Then we have that the functor 
ιG(X) : Cubeop

m → ssSetΘ
op
n−1

diag,(∞,n−1) is projectively cofibrant.

5.3. Projective cofibrancy of Hm

To prove that the functor Hm is cofibrant in (sSet(∞,0))Cubem
proj , we apply the following criterion; see the 

statement at [22], there attributed to [19].

Theorem 5.3.1. Let F : D → sSet be a functor. For every k ≥ 0, write Fk for the composite

Fk : D F−→ sSet (−)k−−−→ Set,

and suppose that the following conditions are satisfied:

(i) the functor Fk can be written as a coproduct of representables in SetD

Fk
∼=

∐
i∈I D(dki ,−),

where {dki }i∈I is a family of objects in D,
(ii) the functor Fk splits as a coproduct in SetD

Fk
∼= Nk 	Dk
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where Nk : D → Set (resp. Dk : D → Set) are functors such that, for every d ∈ D, the set Nk(d)
(resp. Dk(d)) consists exactly of the non-degenerate (resp. degenerate) k-simplices of F (d).

Then F is cofibrant in (sSet(∞,0))Dproj.

To apply Theorem 5.3.1 to F = Hm and D = Cubem, we first want to verify Condition (i).

Notation 5.3.2. Let m ≥ 1 and k ≥ 0. Denote by 0: [k] → [1] (resp. 1 : [k] → [1]) the constant maps in Δ at 
0 (resp. 1). We write

Δnc([k], [1]) := Δ([k], [1]) \ {0, 1}

for the subset of Δ([k], [1]) consisting of the non-constant maps. With this notation, we denote by (Fm)k
the presheaf in SetCubem given by

(Fm)k :=
∐

(I′,S′)∈Cubem
∐∏

I′ Δnc([k],[1]) Cubem((I ′, S′),−)

We now show that (Hm)k can be written as the coproduct of representables in SetCubem given by (Fm)k.

Proposition 5.3.3. Let m ≥ 1 and k ≥ 0. Then there is an isomorphism in SetCubem

(Hm)k ∼= (Fm)k.

To show this, we need to construct for each (I, S) ∈ Cubem an isomorphism

(Hm)k(I, S) ∼= (Fm)k(I, S) =
∐

(I′,S′)∈Cubem
∐∏

I′ Δnc([k],[1]) Cubem((I ′, S′), (I, S))

that is natural in (I, S).

Remark 5.3.4. Recall that, for (I, S) ∈ Cubem, we have

(Hm)k(I, S) = (
∏

I Δ[1])k =
∏

I Δ([k], [1]).

Moreover, as Cubem is a poset, the set Cubem((I ′, S′), (I, S)) is either a point or empty, for all (I ′, S′) ∈
Cubem. In particular, we can identify an element of (Fm)k(I, S) with a tuple ((I ′, S′), (τi)i∈I′) with (I ′, S′)
an object of Cubem such that Cubem((I ′, S′), (I, S)) = {∗} and (τi)i∈I′ an element of 

∏
I′ Δnc([k], [1]). Hence

(Fm)k(I, S) ∼= {((I ′, S′), (τi)i∈I′) ∈ Cubem ×
∏

I′ Δnc([k], [1]) | I ′ ⊆ I, S = S′ ∪ I} .

We construct a natural map α(I,S) : (Hm)k(I, S) → (Fm)k(I, S) and an inverse β(I,S) of α(I,S).

Construction 5.3.5. Let m ≥ 1, k ≥ 0, and (I, S) ∈ Cubem. Given a tuple (σi)i∈I ∈
∏

I Δ([k], [1]), we define 
(Iσ, Sσ) to be the object of Cubem given by

Iσ := {i ∈ I | σi ∈ Δnc([k], [1])} and Sσ := S \ {i ∈ I | σi = 0}.

Observe that Iσ ⊆ Sσ, Iσ ⊆ I, and S = Sσ ∪ I. We further set (τσi )i∈Iσ to be the tuple in 
∏

Iσ Δnc([k], [1])
given by τσi := σi for all i ∈ Iσ; note that this is well-defined by definition of Iσ. We then define α(I,S) to 
be the map
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α(I,S) : (Hm)k(I, S) → (Fm)k(I, S), (σi)i∈I 
→ ((Iσ, Sσ), (τσi )i∈Iσ ).

These assignments assemble into a natural transformation α : (Hm)k → (Fm)k.

Construction 5.3.6. Let m ≥ 1 and k ≥ 0, and consider an object (I, S) ∈ Cubem. Given a tuple 
((I ′, S′), (τi)i∈I′) ∈ (Fm)k(I, S), we define (στ

i )i∈I ∈
∏

I Δ([k], [1]) to be given at i ∈ I by

στ
i :=

⎧⎪⎪⎨⎪⎪⎩
τi if i ∈ I ′

1 if i ∈ I ∩ (S′ \ I ′)
0 if i ∈ (I ∪ S′) \ S′.

We then define β(I,S) to be the map

β(I,S) : (Fm)k(I, S) → (Hm)k(I, S), ((I ′, S′), (τi)i∈I′) 
→ (στ
i )i∈I .

Proof of Proposition 5.3.3. A direct computation shows that, for all (I, S) ∈ Cubem, the maps α(I,S) and 

β(I,S) are inverse to each other, and so the natural transformation α : (Hm)k
∼=−→ (Fm)k provides the desired 

natural isomorphism. �
We now prove Condition (ii) of Theorem 5.3.1. For this, we first study the non-degenerate simplices of ∏
I Δ[1].

Lemma 5.3.7. Let k ≥ 0 and I be a finite set. A k-simplex in the product 
∏

I Δ[1], i.e., a tuple (σi)i∈I ∈∏
I Δ([k], [1]), is non-degenerate if and only if Δnc([k], [1]) ⊆ {σi | i ∈ I}.

Proof. A non-constant map σ : [k] → [1] is uniquely determined by an integer 0 ≤ � < k such that σ(i) = 0
for 0 ≤ i ≤ � and σ(i) = 1 for � + 1 ≤ i ≤ k. In other words, it is uniquely determined by an integer 
0 ≤ � < k such that σ(�) �= σ(� + 1). We denote the map associated to 0 ≤ � < k by ρ� : [k] → [1], and so 
we have Δnc([k], [1]) = {ρ� | 0 ≤ � < k}.

Now, by definition, a k-simplex in 
∏

I Δ[1], i.e., a tuple (σi)i∈I ∈
∏

I Δ([k], [1]), is degenerate if and 
only if there is 0 ≤ � < k and (σ′

i)i∈I ∈
∏

I Δ([k − 1], [1]) with s�σ′
i = σi, i.e., σi(�) = σi(� + 1) for all 

i ∈ I. Hence, by negation, we get that (σi)i∈I ∈
∏

I Δ([k], [1]) is non-degenerate if and only if, for all 
0 ≤ � < k, there exists an i ∈ I such that σi(�) �= σi(� + 1). By the above arguments, this is equivalent 
to saying that, for all 0 ≤ � < k, there exists an i ∈ I such that σi = ρ�. Hence, this proves that 
Δnc([k], [1]) = {ρ� | 0 ≤ � < k} ⊆ {σi | i ∈ I}. �
Notation 5.3.8. Let m ≥ 1 and k ≥ 0. For (I ′, S′) ∈ Cubem, we define subsets of 

∏
I′ Δnc([k], [1])

Nk(I ′) := {(τi)i∈I′ ∈
∏

I′ Δnc([k], [1]) | Δnc([k], [1]) ⊆ {τi | i ∈ I ′}} ,
Dk(I ′) := (

∏
I′ Δnc([k], [1])) \Nk(I ′).

With these notations, we denote by (Nm)k and (Dm)k the sub-presheaves of (Fm)k in SetCubem given by

(Nm)k :=
∐

(I′,S′)∈Cubem
∐

Nk(I′) Cubem((I ′, S′),−),

(Dm)k :=
∐

(I′,S′)∈Cubem
∐

Dk(I′) Cubem((I ′, S′),−).

We also write (Hm)k(I, S)nd (resp. (Hm)k(I, S)deg for the subsets of non-degenerate (resp. degenerate) 
k-simplices of Hm(I, S) =

∏
Δ[1].
I
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We show that (Hm)k splits as non-degenerate and degenerate simplices as follows.

Proposition 5.3.9. Let m ≥ 1 and k ≥ 0. Then there is an isomorphism in SetCubem

(Hm)k ∼= (Nm)k 	 (Dm)k,

and, at every object (I, S) in Cubem, it restricts to isomorphisms

(Hm)k(I, S)nd ∼= (Nm)k(I, S) and (Hm)k(I, S)deg ∼= (Dm)k(I, S).

Remark 5.3.10. Using Proposition 5.3.3 and the fact that, by definition, for every (I ′, S′) ∈ Cubem, we have ∏
I′ Δnc([k], [1]) = Nk(I ′) 	Dk(I ′), there are isomorphisms in SetCubem

(Hm)k ∼= (Fm)k ∼= (Nm)k 	 (Dm)k.

Recall that the first natural isomorphism has component at an object (I, S) ∈ Cubem the map 
α(I,S) : (Hm)k(I, S) → (Fm)k(I, S) from Construction 5.3.5 with inverse β(I,S) from Construction 5.3.6, 
and note that the second isomorphism is just a re-ordering of the coproduct.

Lemma 5.3.11. Let m ≥ 1 and k ≥ 0. Given an object (I, S) in Cubem, the inverse assignments

α(I,S) : (Hm)k(I, S) → (Fm)k(I, S) and β(I,S) : (Fm)k(I, S) → (Hm)k(I, S)

restrict to assignments

α(I,S) : (Hm)k(I, S)nd → (Nm)k(I, S) and β(I,S) : (Nm)k(I, S) → (Hm)k(I, S)nd.

Proof. This is straightforward from the definition of (Nm)k and the characterization of non-degenerate 
k-simplices of 

∏
I Δ[1] from Lemma 5.3.7. �

Proof of Proposition 5.3.9. By Remark 5.3.10, we have an isomorphism (Hm)k ∼= (Nm)k 	 (Dm)k, which, 
at every object (I, S) ∈ Cubem, restricts by Lemma 5.3.11 to an isomorphism

(Hm)k(I, S)nd ∼= (Nm)k(I, S).

Hence, it also restricts at every object (I, S) ∈ Cubem to an isomorphism

(Hm)k(I, S)deg ∼= (Dm)k(I, S).

This shows the desired result. �
Finally, by Propositions 5.3.3 and 5.3.9, the functor Hm satisfies the condition of Theorem 5.3.1, and so 

we get the following.

Theorem 5.3.12. Let m ≥ 1. The functor Hm : Cubem → sSet(∞,0) is projectively cofibrant.
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