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Abstract 

Real-world data typically exhibit aleatoric uncertainty which 
has to be considered during data-driven decision-making to 
assess the confidence of the decision provided by machine 
learning models. To propagate aleatoric uncertainty repre-
sented by probability distributions (PDs) through neural net-
works (NNs), both sampling-based and function approxima-
tion-based methods have been proposed. However, these 
methods suffer from significant approximation errors and are 
not able to accurately represent predictive uncertainty in the 
NN output. In this paper, we present a novel method, Piece-
wise Linear Transformation (PLT), for propagating PDs 
through NNs with piecewise linear activation functions (e.g., 
ReLU NNs). PLT does not require sampling or specific as-
sumptions about the PDs. Instead, it harnesses the piecewise 
linear structure of such NNs to determine the propagated PD 
in the output space. In this way, PLT supports the accurate 
quantification of predictive uncertainty based on the criterion 
exactness of the propagated PD. We assess this exactness in 
theory by showing error bounds for our propagated PD. Fur-
ther, our experimental evaluation validates that PLT outper-
forms competing methods on publicly available real-world 
classification and regression datasets regarding exactness. 
Thus, the PDs propagated by PLT allow to assess the uncer-
tainty of the provided decisions, offering valuable support. 

Introduction  

Neural networks (NNs) have been deployed in data-driven 

decision-making in many tasks and fields, such as autono-

mous driving (Chen et al. 2021; Huang et al. 2021), medical 

diagnostics (Takenaka et al. 2020; Yu et al. 2021), cyber se-

curity (Pawlicki, Kozik, and Choraś 2022; Vigneswaran et 

al. 2018), industrial processes (Nunez et al. 2020; Zhang et 

al. 2021), and many more. However, despite being applied 

in high-risk and safety-critical domains, traditional NNs 

only yield deterministic point estimates without further valid 

information about the confidence or uncertainty of their pre-

dictions (Gal 2016; Ayhan and Berens 2018). For example, 

this is particularly relevant for cyber threat intelligence data, 
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which typically suffer from a high number of missing or un-

certain values and extreme class imbalance (because actual 

cyber-attacks are rather scarce). Indeed, inherent scores such 

as the softmax output of a NN have been shown to be no 

valid measure for the confidence of the prediction (Hen-

drycks and Gimpel 2017; Nguyen, Yosinski, and Clune 

2015). Exacerbating this issue, NNs are prone to overconfi-

dent predictions (Guo et al. 2017; Wilson and Izmailov 

2020) and opaque due to their ‘black-box’ nature (Roy et al. 

2019). Hence, the uncertainty of a prediction needs to be in-

corporated and accurately assessed in NN-based decision-

making. Predictive uncertainty in the NN output can be in-

duced by the ubiquitous noise in the data analyzed (aleatoric 

uncertainty), by uncertainty in the model and its parameters 

(epistemic uncertainty), or a combination of both (Gal 

2016). 

In recent years, many works on uncertainty in NNs have 

emerged, in which uncertainty is typically represented in 

probabilistic terms such as probability distributions (PDs). 

Most of these works focus on epistemic uncertainty, e.g., by 

incorporating uncertainty in the weights of the NN in a prob-

abilistic setting (e.g., Gal 2016; Kendall and Gal 2017; Gou-

let, Nguyen, and Amiri 2021). In such Bayesian NNs, each 

weight parameter is treated as a PD, thus representing un-

certainty in the NN itself. In addition, due to the high pres-

ence of noise and data quality defects in real-world data, 

other works focusing on aleatoric uncertainty and its effect 

on the NN output have been published, which aim to propa-

gate aleatoric uncertainty (represented by PDs) through NNs 

(e.g., Abdelaziz et al. 2015; Gast and Roth 2018; Jin, 

Dundar, and Culurciello 2015). However, regarding exact-

ness, these methods suffer from significant approximation 

errors and are unable to accurately quantify predictive un-

certainty in the NN output. This is mainly due to restrictive 

and approximative assumptions about the PDs in the input, 

hidden, or output layer (e.g., the assumption of any post-ac-

tivation PD being a Gaussian). Therefore, the following re-

search question arises: 

 



How can PDs representing aleatoric uncertainty in input 

data be propagated through NNs regarding exactness? 

To address this research question, we propose Piecewise 

Linear Transformation (PLT) in this paper, a novel method 

for propagating aleatoric uncertainty. Our main idea is to 

harness the locally simple piecewise linear structure of NNs 

with piecewise linear activation functions, such as ReLU or 

Leaky ReLU NNs (cf. e.g., Hanin and Rolnick 2019; Sattel-

berg et al. 2020). Note that our method is still generally ap-

plicable, since any activation function can be approximated 

by piecewise linear functions (Hu et al. 2020; Liao et al. 

2023). Our main contributions can be summarized as fol-

lows: 

• First, we propose PLT, a method for propagating PDs rep-
resenting aleatoric uncertainty in the input data of a NN 
with piecewise linear activation functions. PLT makes no 
restrictive assumptions about the characteristics or type of 
the input PDs (e.g., an assumption about the input PD be-
ing Gaussian) and is thus able to propagate arbitrary PDs. 

• Second, PLT supports the accurate quantification of pre-
dictive uncertainty based on the criterion exactness of the 
propagated PD in the output. 

• Third, we show the exactness of PLT in theory by proving 
error bounds for our propagated PDs. We evaluate our 
method on several real-world datasets induced with alea-
toric uncertainty represented by PDs, and validate exact-
ness of our propagation compared to results of competing 
methods from literature. 

Related Work 

Literature already provides several works aiming to propa-

gate PDs through NNs. These works can be structured in two 

groups: function approximation-based approaches and sam-

ple-based approaches. 

The core idea of the first group is to approximate (possi-

bly arbitrary) PDs in the input layer or the hidden layers of 

a NN with well-known, parametrical PDs to facilitate their 

propagation: Astudillo and Neto (2011) and Abdelaziz et al. 

(2015) assume the PDs in each layer to be Gaussian and fo-

cus on their propagation through sigmoid NNs. To this end, 

they approximate the sigmoid activation function with two 

piecewise exponential functions and derive closed-form for-

mulas for the mean and variance of a post-activation Gauss-

ian on this basis. Considering Leaky ReLU and ReLU NNs, 

Gast and Roth (2018) use Gaussians to approximate the 

post-activation PD of each neuron in each layer. To this end, 

they propose closed-form analytical formulas to obtain the 

optimal (with respect to the Kullback-Leibler divergence) 

means and variances for the approximating Gaussians. Jin, 

Dundar, and Culurciello (2015) follow a similar approach in 

the context of Convolutional NNs and propose formulas for 

the mean and variance of a Gaussian after a max-pooling 

layer. Titensky, Jananthan, and Kepner (2018) also assume 

the PDs in the hidden layers to be Gaussian. To estimate 

their mean and covariance matrix, the Extended Kalman Fil-

ter technique (cf. Julier and Uhlmann 1997) is applied. 

Zhang and Shin (2021) approximate input PDs with Gauss-

ian Mixture Models (GMMs) and demonstrate their propa-

gation through one activation layer. Their main idea is that 

GMMs with a sufficiently high number of components can 

approximate arbitrary PDs well. Then, the propagation of 

the whole PD is split up into simpler propagations of indi-

vidual Gaussian components based on the Unscented Trans-

form technique (cf. Julier and Uhlmann 2004).  

In summary, the parametrical form of the approximating 

(or assumed) PD often enables a closed-form representation, 

leading to a straightforward propagation of PDs. However, 

since not all input and post-activation PD can be approxi-

mated well by a parametrical PD, propagation via existing 

function approximation-based approaches results in sub-

stantial errors. This holds even for generic NNs when 

Gaussians are used to approximate post-activation PDs (for 

a theoretical analysis of the approximation error cf. Theorem 

7 and 8 in Appendix D). Moreover, these substantial approx-

imation errors are also evident in our experimental findings 

(cf. Section ‘Evaluation’), providing empirical evidence. 

Hence, these approaches are not able to perform an exact or 

near exact propagation of arbitrary input PDs. 

The second group of sample-based approaches aims to 

propagate PDs by mapping a set of samples through the NN 

based on which either characteristics of the output PD or the 

output PD itself should be derived. A very well-known sam-

ple-based approach is the Monte Carlo simulation which uti-

lizes a high number of random samples drawn from the input 

PD (e.g., Abdelaziz et al. 2015; Truong 2021). After propa-

gation through the NN, the output samples are used to ag-

gregate an output PD. However, because drawing a very 

large number of random samples is associated with high 

computational cost, lightweight sample-based approaches 

are necessary and have been proposed in literature: Ab-

delaziz et al. (2015) suggest using the Unscented Transform 

(UT) technique to estimate the first two statistical moments 

of the output PD based on a set of specific, systematically 

chosen samples. Ji, Ren, and Law (2019) aim to find a 

lower-dimensional ‘active’ subspace (AS) of the input space 

which is designed to describe most of the variation of the 

NN as an input-to-output function. Then, as an approxima-

tion of the NN, a less complex response surface defined on 

the lower-dimensional subspace is estimated. Finally, 

Monte Carlo samples are propagated through the response 

surface to approximate the output PD. Smieja et al. (2018) 

use GMMs to model aleatoric uncertainty in the context of 

missing data. An analytical formula is derived for the first 

statistical moment (i.e., the mean) of the activated GMM af-

ter a first ReLU hidden layer. In this sense, the uncertainty 

is discarded after the first layer and the mean (as a single 



sample) is propagated through the NN, thus yielding a de-

terministic output only. Finally, Jia et al. (2019) propose an 

approach for uncertainty propagation through non-linear 

systems which aims to compute the first statistical moments 

of the output PD based on their integral-based definitions. 

To solve the integrals efficiently, a sparse grid-based tech-

nique which identifies a small representative set of grid 

point samples is chosen. 

These lightweight sample-based approaches share the 

drawback that the whole output PD has to be estimated 

based on very limited information. More precisely, this in-

formation about the output PD is either given by a small set 

of samples or a small number of statistical moments. How-

ever, because equality of a finite set of statistical moments 

of two PDs does not imply equality of the PDs themselves, 

this leads to substantial errors. For instance, a Gaussian and 

a uniform distribution with the same mean and variance still 

differ substantially due to their different shape. Indeed, we 

obtain significant errors in our experimental results for light-

weight sample-based approaches for this reason (cf. Section 

‘Evaluation’). 

Uncertainty Propagation via 

Piecewise Linear Transformation 

In this section, we present our method − Piecewise Linear 

Transformation (PLT) − for propagating PDs through NNs 

with piecewise linear activation functions (e.g., ReLU acti-

vation). To this end, we first establish the fact that such NNs 

can be represented by a piecewise linear function. Thus, we 

begin by deriving an exact formula for the propagation of an 

arbitrary PD through a single, affine linear mapping. Cru-

cially for our method, we further extend this formula for 

NNs with piecewise linear activation functions utilizing 

their piecewise linear form. Finally, we show how PLT can 

be used to 1) exactly evaluate the propagated PD in arbitrary 

output space points and 2) obtain a piecewise constant form 

of the propagated PD on the whole output space. 

We first elaborate on the mathematical structure of NNs 

with piecewise linear activation functions. Without loss of 

generality, we exclusively focus on NNs of such structure 

for the remainder of this paper. Following Sattelberg et al. 

(2020), we recall definitions of the necessary mathematical 

concepts of polytopes and piecewise linear functions. The 

piecewise linear structure of NNs has been recognized in lit-

erature and is key in the discussion of expressiveness and 

complexity of NNs (e.g., Hanin and Rolnick 2019). 

Definition 1 (Polytope, polytopic subdivision). Let 𝑚 ≥ 0 

be an integer. A bounded convex polyhedron 𝐴 ⊂ ℝ𝑚 is 

called a polytope. A polytopic subdivision of a bounded set 

𝐷 ⊂ ℝ𝑚 is a set of finitely many polytopes 𝔸 =
{𝐴1, 𝐴2, … , 𝐴𝑘} such that 𝐷 = ⋃𝑖𝐴𝑖. A polytopic subdivision 

is called disjoint if for every 𝑖 ≠ 𝑗 such that dim(𝐴𝑖) =

dim(𝐴𝑗) the intersection of 𝐴𝑖 and 𝐴𝑗 is either empty or a 

polytope of lower dimension dim(𝐴𝑖 ∩ 𝐴𝑗) < dim(𝐴𝑖). 

Definition 2 (Piecewise linear function, linear regions). A 

function 𝑓: 𝐷 → ℝ𝑛 is called piecewise linear with respect 

to a polytopic subdivision 𝔸 = {𝐴1, 𝐴2, … , 𝐴𝑘} of 𝐷 if the 

restriction 𝑓𝑖 ≔ 𝑓|𝐴𝑖
 is an affine linear function for all 𝐴𝑖 ∈

𝔸. In this case, we call 𝐴1, 𝐴2, … , 𝐴𝑘 linear regions of 𝑓. 

Definition 3 (NNs as piecewise linear functions). Let 𝐷 ⊂
ℝ𝑚 and 𝑓: 𝐷 → ℝ𝑛 be the function representing a NN (with 

𝑛-dimensional output space). Then the function 𝑓 has the 

form 

𝑓(𝑥) = {

𝑊1𝑥 + 𝑏1, 𝑖𝑓 𝑀1𝑥 ≤ 𝑐1,
𝑊2𝑥 + 𝑏2, 𝑖𝑓 𝑀2𝑥 ≤ 𝑐2,

…
𝑊𝑡𝑥 + 𝑏𝑡 , 𝑖𝑓 𝑀𝑡𝑥 ≤ 𝑐𝑡

 (1) 

with 𝑊𝑖 ∈ ℝ𝑛×𝑚, 𝑀𝑖 ∈ ℝ𝑢𝑖×𝑚, 𝑏𝑖 ∈ ℝ𝑛, 𝑐𝑖 ∈ ℝ𝑢𝑖 for 𝑡 ∈
ℕ, 𝑢𝑖 ∈ ℕ, 1 ≤ 𝑖 ≤ 𝑡. 

The inequalities 𝑀𝑖𝑥 ≤ 𝑐𝑖 in Eq. 1 divide 𝐷 into poly-

topes 𝐴𝑖 = {𝑥 ∈ 𝐷 | 𝑀𝑖𝑥 ≤ 𝑐𝑖}, which are disjoint (in the 

sense of Definition 1) and satisfy 𝐷 = ⋃𝑖=1
𝑡 𝐴𝑖. On each pol-

ytope 𝐴𝑖, 𝑓 is given by an affine linear function defined by 

𝑊𝑖 and 𝑏𝑖. Thus, 𝑓 is a piecewise linear function with respect 

to the linear regions 𝐴𝑖, which in particular also define a pol-

ytopic subdivision of 𝐷. In order to rigorously define prob-

ability density functions (PDFs) on such subdivisions in the 

input, hidden, and output layers of NNs, we now introduce 

our notion of piecewise PDFs. 

Definition 4 (Piecewise PDF). Let 𝒜 = 𝔅(𝐷) be the Borel 

𝜎-Algebra of 𝐷 ⊂ ℝ𝑚. We call a function 𝑃: 𝒜 → ℝ piece-

wise with respect to a set of subsets  𝔸 =
{𝐴1, 𝐴2, … , 𝐴𝑘|𝐴𝑖 ⊂ 𝐷} if there exists a set of functions 

{𝑝𝑖 : 𝐴𝑖 → ℝ}, such that 𝑃(𝑋) =  ∑ ∫ 𝑝𝑖d𝜇𝐴𝑖𝐴𝑖∩𝑋
𝑘
𝑖=1  holds for 

all 𝑋 ∈ 𝒜. Hereby 𝜇𝐴𝑖
 denotes the dim(𝐴𝑖)-dimensional 

Lebesgue measure. If P is additionally a PD on D, 𝑃 is 

called a piecewise PD (PPD) on 𝐷 with respect to 𝔸, and 
the set of underlying functions 𝑝𝑖  is called the piecewise 

PDF (PPDF). 

An example for a PPD and its associated PPDF is pro-

vided in Appendix A. In other words, a PD on 𝐷 is piecewise 

with respect to a set 𝔸 = {𝐴1, 𝐴2, … , 𝐴𝑘} if it is described by 

parts of PDFs with each part being restricted to a subset 𝐴𝑖 ∈
𝔸. In particular, any PD defined by a PDF 𝑝: 𝐷 → ℝ satisfies 

this condition if dim(𝐴𝑖) = 𝑚 for all 𝑖. Crucially however, 

our notation of a PPDF allows to describe PDs which are 

(partially) defined by PDFs on degenerate polytopes. This 

case of a polytopic subdivision containing degenerate poly-

topes occurs regularly, especially in the output space of NNs 

as a consequence of degenerate linear matrices 𝑊𝑖 (cf. Eq. 

1). Hence, propagated PDs in general cannot be described 

by traditional PDFs (with respect to the Lebesgue measure 

of the output space), but a more general notion of PDFs as 

in Definition 4 is needed. 



For the following discussions, we fix the notation of an 

arbitrary bounded subset 𝐷 ⊂ ℝ𝑚 together with a disjoint 

polytopic subdivision 𝔸 = {𝐴1, 𝐴2, … , 𝐴𝑘}. If 𝐷 itself is a 

polytope, we may assume without loss of generality that 𝐷 

is not degenerate itself (i.e., that dim(𝐷) = 𝑚). Moreover, 

let 𝑓: 𝐷 → ℝ𝑛 be a function representing a NN such that 𝑓 

is piecewise linear with respect to 𝔸. Further, let 𝑃 be a PPD 

on 𝐷 with a PPDF 𝑝 with respect to 𝔸 and functions 𝑝𝑖  on 

𝐴𝑖. In this setting, we refer to 𝐷 as the input space and to 𝑃 

as the input PD. 

 Crucial for the exactness of our method, we next address 

dependencies between neurons in the same layer. Thus, we 

first model the input layer of a NN with 𝑚 ∈ ℕ real-valued 

input neurons as a multivariate random variable (RV) 

�̅�: (Ω, ℱ, 𝜇) → ℝ𝑚 for a probability space (Ω , ℱ, 𝜇). Fol-

lowing common notation, we denote the pushforward meas-

ure on ℝ𝑚 induced by the measure 𝜇 via the RV �̅� by �̅�∗𝜇. 

As the RVs representing neurons in subsequent layers 

emanate from the same RV representing the neurons in the 

input layer, they obviously exhibit substantial dependencies 

(for a deeper analysis, cf. Appendix D). However, these de-

pendencies are often disregarded in literature and independ-

ence between the univariate RVs representing single neu-

rons in the same layer of a NN is typically assumed (Gast 

and Roth 2018; Wang, Shi, and Yeung 2016; Wu et al. 2018; 

Jin, Dundar, and Culurciello 2015). Even for the input layer, 

this assumption of independence severely restricts the set of 

input PD that can be considered for propagation. In Theo-

rem 8 (Appendix D) we prove that even in the simple case 

of Gaussians, disregarding dependency substantially im-

pairs the exactness of the propagation. Therefore, instead of 

considering univariate PDFs of each neuron in a layer indi-

vidually, we utilize their joint PPDF as a whole. Hence, we 

preserve dependencies between the neurons in all layers of 

the NN (including the input layer) because the information 

of dependency is contained in the joint PPDF. Note that the 

PPDFs of single neurons can easily be deduced from the 

joint PPDF by aggregating their respective marginal PPDF. 

For the propagation of a PPDF through a NN via PLT, we 

first determine the linear regions that the input PPDF lies in, 

and then aggregate the desired output PPDF based on the 

formulas for PDFs on single linear regions. Therefore, let 

𝑊: ℝ𝑚 → ℝ𝑛 be a surjective linear map and 𝑝𝑋 be a (tradi-

tional) PDF describing the input PD 𝑃 on a linear region. As 

any linear map 𝑊 is surjective onto its image, we may re-

place 𝑊 by 𝑊: ℝ𝑚 → Im(𝑊) without loss of generality. By 

the Radon-Nikodym Theorem the pushforward measure 

𝑊∗𝑃 admits a PDF with respect to the 𝑛-dimensional Lebes-

gue measure. We denote this PDF by 𝑊∗𝑝𝑋, i.e., 𝑊∗𝑃 =
𝑊∗𝑝𝑋d𝑥. In other words, the pushforward of the PD 𝑃 ad-

mits the pushforward of the PDF 𝑝𝑋 as a PDF again. 

Theorem 1 (Propagation of PDFs through linear operators). 

Let 𝑊: ℝ𝑚 → ℝ𝑛 be a surjective linear map and 𝑝𝑋 be a 

PDF as above. Then 𝑝𝑌 = 𝑊∗𝑝𝑋 follows the formula 

𝑝𝑌(𝑦) = ∫ 𝑝𝑋(𝑥)|det �̃�−1|d𝑥
𝑊−1(𝑦)

 

almost everywhere. Hereby  �̃� is given by the restriction of 

𝑊 to ker 𝑊⊥. If 𝑊 is bijective, this formula simplifies to 

𝑝𝑌(𝑦) = 𝑝𝑋(𝑊−1𝑦)|det 𝑊−1| . 
Proof. Let 𝑌 ⊂ ℝ𝑛 be a measurable subset and π: ℝ𝑚 →
ker 𝑊⊥ the orthogonal projection. By transformation of var-

iables, we get 

∫ 𝑝𝑌(𝑦)d𝑦 = ∫ 𝑝𝑋(𝑥)d𝑥
𝑊−1𝑌𝑌

= ∫ 𝑝𝑋(𝑥)d𝑥
ker 𝑊+π(𝑊−1𝑌)

= ∫ ∫ 𝑝𝑋(𝑥 + 𝑦)d𝑥d𝑦
ker 𝑊π(𝑊−1𝑌)

= ∫ ∫ 𝑝𝑋(𝑥 + �̃�−1𝑦)|det �̃�−1|d𝑥d𝑦
ker 𝑊𝑌

. 

Since a measurable preimage under 𝑊 exists for any meas-

urable subset 𝑌 ⊂ ℝ𝑛, this yields the desired identity almost 

everywhere.                   □ 

Theorem 1 presents an exact formula for the propagation 

of PDFs through affine linear operators representing the NN 

on its linear regions. By utilizing joint PDFs in this formula, 

we preserve the dependencies between the neurons and thus 

retain crucial information for exact propagation. Next, we 

extend this result to piecewise linear functions and PPDFs. 

Theorem 2 (Propagation of PPDFs through piecewise linear 

functions). For all 1 ≤ 𝑖 ≤ 𝑘 let 𝑓𝑖 denote the affine linear 

map such that 𝑓|𝐴𝑖
= 𝑓𝑖. Then the (propagated) PPD 𝑓∗𝑃 is 

represented by the PPDF 𝑓∗𝑝 defined by 

𝑓∗𝑝(𝑦) = ∑
1

det 𝑓�̃�

∫ 𝑝𝑖

 

𝑓𝑖
−1(𝑦)∩𝐴𝑖

(𝑥)d𝑥.

𝑘

𝑖=1 
𝑦∈𝑓𝑖(𝐴𝑖)

 (2) 

In this formula, 𝑓�̃� denotes the restriction of 𝑓𝑖 to ker(𝑓𝑖)
⊥. 

Moreover, the integrals are defined with respect to the 

dim(𝐴𝑖)-dimensional Lebesgue measure. 

Proof. First consider a single polytope 𝐴𝑖 ∈ 𝔸 together with 

𝑝𝑖 : 𝐴𝑖 → ℝ and the function 𝑓𝑖: ℝ𝑚 → ℝ𝑛. The function 

𝑝𝑖  defines a measure 𝑀 on 𝐴𝑖 and we aim to find 𝑓∗𝑝𝑖  on ℝ𝑛 

which defines the pushforward measure 𝑓∗𝑀. This problem 

can be traced back to the formula for linear operators by ex-

tending 𝑝𝑖  to a function 𝑝𝑖  on ℝ𝑚 by  

𝑝𝑖(𝑥) ≔ {
𝑝𝑖(𝑥), 𝑖𝑓 𝑥 ∈ 𝐴𝑖 ,

0, 𝑒𝑙𝑠𝑒.
 

The pushforward measure associated to 𝑝𝑖  is also given by 

𝑓∗𝑀, and from Theorem 1 (with (𝑓𝑖)∗𝑝𝑖 = 𝑝𝑌) we obtain 

(𝑓𝑖)∗𝑝𝑖(𝑦) =
1

det(𝑓�̃�) 
∫ 𝑝𝑖(𝑥)d𝑥

𝑓𝑖
−1(𝑦)

=
1

det(𝑓�̃�) 
 ∫ 𝑝𝑖(𝑥)d𝑥.

𝑓𝑖
−1(𝑦)∩𝐴𝑖

 

Note that (𝑓𝑖)∗𝑝𝑖(𝑦) only attains nonzero values if 𝑦 ∈
𝑓(𝐴𝑖). Hence, it is fully described by its restriction to 

𝑓(𝐴𝑖) = 𝑓𝑖(𝐴𝑖), which also is a polytope. As the intersection 

of images of different polytopes under 𝑓 can be non-empty, 

the formula for the pushforward of a PPD along 𝑓 has to be 



obtained by taking the sum over all polytopes in the subdi-

vision 𝔸. Moreover, the PD 𝑓∗𝑃 on 𝑓(𝐷) is also piecewise 

and can be described by a PPDF with respect to 𝑓(𝔸) ≔
{𝑓(𝐴1), … , 𝑓(𝐴𝑘)} and the functions (𝑓𝑖)∗𝑝𝑖 : 𝑓(𝐴𝑖) → ℝ. In 

summary, the statement given by Eq. 2 follows.    □ 

The formula in Eq. 2 for input PD propagation is now ap-

plicable to NNs, which poses a vital step of our PLT method 

proposed in this paper. However, it involves computing in-

tegrals of the form as in Eq. 2, which is not possible in closed 

form for arbitrary PPDFs, e.g., PPDFs without a closed an-

alytical formula. In order to cope with this problem, we next 

introduce a grid-based approximation technique. We sim-

plify the above formula in Eq. 2 for such approximate 

PPDFs, enabling a tractable propagation. In particular, by 

approximating the PPDF on a fine-grained grid, the shape of 

the input PD can be preserved all the way through the prop-

agation process.  

In a first step, we approximate 𝑝 with another piecewise 

constant PPDF 𝑝′. We construct this approximate PPDF to 

be piecewise with respect to a very fine-grained grid of pol-

ytopes to minimize the approximation error. A discussion of 

this theoretical error is part of the following section and is 

deepened further in Appendix C. More precisely, the initial 

polytopic subdivision 𝔸 = {𝐴1, 𝐴2, … , 𝐴𝑘} of 𝐷 is refined as 

follows: First, each polytope 𝐴𝑖 is subdivided into dim(𝐴𝑖)-

dimensional simplices by applying Delaunay triangulation 

(Delaunay 1934). As a result, we obtain a (more fine-

grained) polytopic subdivision of 𝐷 solely consisting of sim-

plices. Moreover, any subdivision of this form can be sub-

divided further using the edgewise subdivision technique 

(cf. Edelsbrunner and Grayson 2000) satisfying the property 

that for any 𝑏 ∈ ℕ, each simplex of dimension 𝑑 can be sub-

divided into 𝑏𝑑 sub-simplices of dimension 𝑑 and equal vol-

ume. In this way, an arbitrarily, evenly fine-grained grid can 

be obtained (Edelsbrunner and Grayson 2000, also cf. Ap-

pendix B for more details). 

To control the granularity of the grid, we fix a small 

threshold 𝜀 > 0. We require that for each (simplicial) poly-

tope 𝐴 in the final subdivision, every edge of 𝐴 is shorter 

than 𝜀 (i.e., 𝑑𝑖𝑠𝑡(𝑐1, 𝑐2) < 𝜀, ∀𝑐1, 𝑐2 ∈ 𝐶(𝐴) with 𝐶(𝐴) de-

noting the set of all vertices of 𝐴). This can either be 

achieved by choosing the subdivision parameter 𝑏 large 

enough or by iteratively applying the edgewise subdivision. 

The result is a fine-grained polytopic subdivision 

𝔸𝑒𝑑𝑔𝑒
𝜀 = {𝐴1,1

𝜀 , 𝐴1,2
𝜀 , … , 𝐴1,𝑙1,𝜀

𝜀 , 𝐴2,1
𝜀 , … , 𝐴𝑘,𝑙𝑘,𝜀

𝜀 }, (3) 

where 𝑙𝑖,𝜀 denotes the number of edgewise simplices of the 

polytope 𝐴𝑖, and the length of any edge of any simplex 

𝐴𝑖,𝑗
𝜀 ⊂ 𝐴𝑖 is smaller than 𝜀. We then define the approxima-

tive PPDF 𝑝′ by 

𝑝′: 𝐷 → ℝ, 𝑝′(𝑥) = 𝑐𝑖𝑗 

with 𝑐𝑖𝑗 ≔
1

dim(𝐴𝑖) + 1
∑ 𝑝𝑖(𝑐)

𝑐 ∈ 𝐶(𝐴𝑖,𝑗
𝜀 )

, (4) 

if 𝑥 ∈ 𝐴𝑖,𝑗
𝜀 ∈ 𝔸𝑒𝑑𝑔𝑒

𝜀 . 

By this definition, 𝑝′ is constant on each edgewise simplex 

𝐴𝑖,𝑗
𝜀 , attaining the average value of 𝑝 evaluated in the verti-

ces of 𝐴𝑖,𝑗
𝜀 . Applying Theorem 2 to 𝑝′ now yields the follow-

ing result: 

Theorem 3. If the PPDF 𝑝 is approximated using the piece-

wise constant PPDF 𝑝′ given by Eq. 4, the formula from 

Theorem 2 simplifies to: 

𝑓∗𝑝′(𝑦) = ∑ ∑
𝑐𝑖𝑗

det 𝑓�̃�

𝑙𝑖 

𝑗=1,

𝑦∈𝑓𝑖(𝐴𝑖,𝑗)

𝑘

𝑖=1 

vol(𝑓𝑖
−1(𝑦) ∩ 𝐴𝑖,𝑗). 

(5) 

Proof. Follows directly from Theorem 2 and the definition 

of piecewise constant PPDFs in Eq. 4.           □ 

With Eq. 5, we have derived a formula based on PLT to 

evaluate the propagated PPDF at any point 𝑦 ∈ ℝ𝑛 in the 

output space. Hence, we can obtain the propagated PPD as 

a whole by iteratively applying Eq. 5 on the points of a grid 

over the output space (e.g., the grid induced by the edgewise 

subdivision on the output space as described above). 

Moreover − instead of evaluating a set of grid points in 

the output space − PLT can also be used to infer the whole 

propagated PPDF from an input grid (for which again the 

edgewise subdivision is a natural choice). More precisely, 

the core idea is to map the input grid points together with 

their closely adjacent probability mass into the output space 

via the simple linear operator of the respective linear region. 

Finally, the probability mass is assigned to a cuboid bin in 

the output space. By defining a fine-grained grid of such cu-

boid bins on the output space, we also obtain the output 

PPDF in a piecewise constant form, similar to a (multidi-

mensional) histogram. In Theorem 5 (cf. Appendix C) we 

show that this piecewise constant form also can be rendered 

arbitrarily exact for bins with increasingly small volume. 

Formally, let 𝔸𝑒𝑑𝑔𝑒  be the edgewise subdivision of the in-

put space as in Eq. 3. Then, the function 𝑓 representing the 

NN is also affine linear on each 𝐴𝑖,𝑗 ∈ 𝔸𝑒𝑑𝑔𝑒 . Moreover, let 

𝑆 be a bin grid of disjoint bins of equal size on the output 

space. For a 𝑛-dimensional output space we can choose cu-

boid bins with side lengths 𝑙1, … , 𝑙𝑛 for each dimension, en-

suring equal size of bins and easier computation. Since on 

each polytope 𝐴𝑖,𝑗 with center 𝑡𝑖𝑗 the input PPDF is given 

by a constant value 𝑐𝑖𝑗 ∈ ℝ (cf. Eq. 4), the probability mass 

of 𝐴𝑖,𝑗 (equal to 𝑐𝑖𝑗 ⋅ vol(𝐴𝑖𝑗)) can be propagated and as-

signed to the bin 𝐵 ∈ 𝑆 containing 𝑓(𝑡𝑖𝑗). Thus, the esti-

mated constant PPDF on a bin 𝐵 is given by  

 

𝑓∗𝑝(𝑦) =
1

𝑙1 ⋅ … ⋅ 𝑙𝑛

∑ ∑ vol(𝐴𝑖,𝑗) ⋅ 𝑐𝑖𝑗

 

𝑗

𝑓(𝑡𝑖𝑗)∈𝐵

𝑘

𝑖=1

 
(6) 



for all 𝑦 ∈ 𝐵. While the formula in Eq. 5 is particularly ad-

vantageous when evaluating the output PPDF in a certain set 

of points, propagation via Eq. 6 yields the output PPDF as a 

whole, since all probability mass in the input is propagated 

and assigned to the respective bin in the output space. In 

Theorem 5 (cf. Appendix C) we prove that for increasingly 

fine subdivision 𝔸𝑒𝑑𝑔𝑒  and bin grid 𝑆 this PPDF described 

in Eq. 6 becomes arbitrarily exact. 

Evaluation 

We first provide a theoretical evaluation by establishing the 

mathematical exactness of PLT. We discuss rigorous 

bounds for possible approximation errors made by PLT for 

which detailed proofs are provided in Appendix C. In 

Lemma 3 (cf. Appendix C) we show that for piecewise con-

stant approximations of arbitrary input PDs as defined in 

Eq. 4, the approximation error converges to zero for increas-

ingly small diameters (i.e., the maximum distance of two 

vertices) of edgewise simplices 𝐴𝑖,𝑗
𝜀 . As 𝜀 can be chosen ar-

bitrarily small and the diameter of any 𝐴𝑖,𝑗
𝜀  is smaller than 𝜀 

by construction of the edgewise subdivision, the approxima-

tion error also becomes arbitrarily small. As a direct conse-

quence of the simple piecewise linear form of NNs, we fur-

ther show in Theorem 4 (cf. Appendix C) that the error after 

propagation through the NN in the output space is always 

bounded by the approximation error in the input space. From 

the combination of these results the theoretical exactness of 

our method and our formula of the propagated PD as in Eq. 6 

follows: Since we obtain an approximative piecewise con-

stant output PPDF with respect to a cuboid bin grid, the ap-

proximation error in the output again becomes arbitrarily 

small for an increasingly fine-grained bin grid. Hence, the 

PPDF in Eq. 6 indeed converges towards the true output PD 

(for details cf. Theorem 5, Appendix C). 

 In the following, we aim to substantiate our theoretical 

results with empirical evidence. To this end, we evaluate our 

method on a broad range of publicly available real-world 

datasets from various domains for both classification and re-

gression tasks. Details about the datasets are provided in Ta-

ble 2 (cf. Appendix E). We randomly split each dataset into 

training and test dataset and train a standard ReLU NN for 

classification or regression depending on the task associated 

to the dataset. 

 Since the datasets do not exhibit aleatoric uncertainty rep-

resented by PDs, we induce uncertainty according to the fol-

lowing procedure: In a first step, we analyze each dataset 

regarding feature importance. On this basis, we select a set 

of features with high feature importance. Each feature value 

of these selected features is labeled as uncertain with a fixed 

 
1 The uncertain datasets resulting from this procedure are provided 
in the supplementary material.  

probability (e.g., 50 percent, cf. ‘%unc’ in Table 1). By fo-

cusing on features with high importance for the output re-

sult, we make sure that the induced aleatoric uncertainty in-

deed affects the NN prediction and non-trivial predictive un-

certainty can be observed. For each data instance containing 

uncertain feature values, the multiple imputation method 

MICE (van Buuren and Groothuis-Oudshoorn 2011) is de-

ployed (as if the values were missing), leading to a set of 

multiple values suggested for imputation. Finally, for each 

instance we apply a Gaussian kernel density estimation on 

this set of imputation values, thus obtaining a (potentially 

multivariate) continuous PD1 over its uncertain features.  

 To evaluate our method with respect to the criterion ex-

actness, the deviation of the propagated PD obtained by our 

method from an exact ground truth has to be quantified. We 

generate this ground truth output PD by utilizing a Monte 

Carlo simulation with a very high sample count. To ensure 

a high quality of this ground truth, we start with a fixed num-

ber of samples that are propagated through the NN and com-

pare the resulting output PD to a more refined PD obtained 

analogously but with twice the number of samples. This pro-

cess is iterated until this increasingly exact sequence of PDs 

converges, i.e., until the L1-distance between two consecu-

tive PDs falls under a fixed, small threshold. The generation 

of a high-quality ground truth via Monte Carlo simulation 

comes with enormous computational effort, which we un-

dertook once for each data instance in the datasets analyzed. 

 The PDs propagated by PLT and the other existing and 

applicable methods from literature2 (cf. Related Work) are 

then evaluated against this ground truth. More precisely, we 

calculate L1-, L2-, and Hellinger distance between the 

ground truth and the PD obtained by each method as these 

are well-known and meaningful standard metrics for PDFs 

(for definitions and more details, cf. Appendix C). Evaluat-

ing deterministic performance metrics such as accuracy or 

mean squared error is not desirable in this context because 

of two reasons: First, the output PDs would be condensed 

into single, deterministic values, resulting in a significant 

loss of information. Second, the uncertainty-based ground 

truth often induces ‘true’ labels different to the ones given 

by the certain dataset. By quantifying PDF-based distances 

between the PD and the ground truth, more general metrics 

accounting for both of these points are considered. 

The experimental results presented in Table 1 substantiate 

that PLT significantly outperforms existing methods regard-

ing exactness across all metrics, thus confirming our theo-

retical results and validating the ability our of method for 

accurate uncertainty propagation with respect to exactness. 

2 Code for the approach of Zhang and Shin (2021) was requested, 
but not provided by the authors. Therefore, this method could not 
be considered in the evaluation. 



Discussion and Conclusion 

In this paper, we proposed PLT, a novel method for the 

propagation of aleatoric uncertainty through NNs that is ap-

plicable to arbitrary PDs in the input space. To this end, we 

introduced the notion of PPDFs, which allows to generalize 

the concept of PDFs to the polytopic subdivisions occurring 

in NNs. By propagating a joint PD across all uncertain fea-

tures, our method is able to preserve vital dependencies be-

tween neurons in each NN layer. We provided mathematical 

proofs that neuron dependencies must be considered as the 

simplifying assumption of independence leads to large ap-

proximation errors (cf. ADF in Table 1). Further, we showed 

that our method is able to approximate the true propagated 

PD up to an arbitrarily small error, allowing us to accurately 

quantify predictive uncertainty. We evaluated our method 

on a broad range of real-world datasets for both classifica-

tion and regression tasks, where it achieved higher exactness 

than competing methods from literature. In particular, our 

evaluation shows that methods making restrictive assump-

tions (ADF and UT), such as independence of neurons in 

NN layers or Gaussian form of PDs, exhibit high errors re-

garding exactness, thus confirming our theoretical findings. 

Similarly, a competing sample-based method (AS) suffered 

from the drawback that complex PDs have to be estimated 

from limited information and yielded a worse exactness than 

PLT. 

Moving forward, our method has broad application poten-

tial across various domains, particularly in areas where un-

certainty and its quantification play a pivotal role, such as 

medicine, finance, and high-risk environments (e.g., self-

driving cars). One limitation to acknowledge is that PLT re-

quires an already trained NN to propagate aleatoric uncer-

tainty. Hence, the quality of our propagated PD is subject to 

the quality of the given NN model. Moreover, despite posing 

a potential starting point, uncertainty during the training 

phase of a NN is not yet addressed by PLT. Additionally, 

our results only hold for NNs with piecewise linear activa-

tion functions, thus PLT cannot be directly applied to NNs 

with other activation functions. However, as mentioned ear-

lier, any activation function can be approximated by a piece-

wise linear function in order to apply PLT. Another intri-

guing direction to explore is the integration of PLT into dif-

ferent NN architectures (e.g., CNNs). These challenges rep-

resent interesting avenues for future research. 

 

 

  

Data-

sets 

% 

unc 
PLT (ours) ADF (Gast and Roth) AS (Ji, Ren, and Law) UT (Abdelaziz et al.) 

  L1 L2 H L1 L2 H L1 L2 H L1 L2 H 

Appen-

dicitis 

25 0.029 1.048 0.040 1.623 27.490 0.813 0.333 8.129 0.198 0.889 25.615 0.539 

50 0.045 3.381 0.052 1.293 68.298 0.669 0.969 20.239 0.497 0.983 67.555 0.556 

Banana 
25 0.114 0.694 0.104 1.332 1.995 0.759 1.198 2.167 0.609 1.018 1.985 0.656 

50 0.079 0.316 0.072 1.346 1.434 0.761 1.313 1.780 0.657 1.037 1.433 0.669 

Balance 
25 0.038 1.375 0.047 0.793 40.805 0.405 0.502 19.539 0.264 0.654 38.936 0.321 

50 0.044 1.222 0.042 0.776 27.221 0.383 0.560 18.718 0.298 0.625 27.439 0.289 

Bands 
25 0.130 22.331 0.078 1.738 134.118 0.875 0.422 25.562 0.249 14.978 426.529 1.067 

50 0.220 15.676 0.121 1.695 76.088 0.861 0.452 18.525 0.270 8.602 221.450 1.238 

Boston  
25 0.131 0.661 0.097 0.859 1.734 0.429 0.368 1.078 0.193 0.565 1.330 0.301 

50 0.083 0.156 0.065 0.782 1.170 0.380 0.300 0.578 0.162 0.516 0.750 0.259 

Breast 
25 0.151 5.301 0.099 1.628 64.911 0.827 0.281 18.933 0.161 9.204 151.424 1.052 

50 0.230 5.857 0.131 1.632 50.158 0.826 0.281 9.110 0.173 22.927 486.339 1.431 

Califor-

nia 

25 0.147 11.925 0.074 0.987 97.197 0.617 0.335 29.937 0.193 0.898 73.451 0.458 

50 0.304 19.492  0.140 0.836 64.378 0.435 0.415 30.829 0.242 0.750 54.400 0.387 

Diabe-

tes 

25 0.014 0.078 0.009 0.534 3.057 0.266 0.259 1.588 0.136 0.420 2.235 0.219 

50 0.012 0.059 0.008 0.522 2.556 0.250 0.235 1.284 0.121 0.415 1.943 0.210 

Iris 
25 0.023 0.330 0.037 1.854 11.643 0.920 0.564 6.082 0.333 0.999 11.710 0.695 

50 0.029 0.153 0.035 1.856 4.204 0.907 0.380 1.368 0.259 0.999 4.257 0.701 

Ma-

chine 

25 0.031 5.032 0.027 0.873 121.193 0.422 0.180 20.733 0.099 0.736 95.224 0.345 

50 0.034 4.652 0.032 0.820 88.004 0.392 0.186 16.689 0.103 0.661 67.060 0.305 

Real  

estate 

25 0.021 2.381 0.011 0.596 77.677 0.294 0.133 12.939 0.076 0.399 46.363 0.191 

50 0.015 1.752 0.009 0.613 70.441 0.296 0.148 13.043 0.083 0.430 44.167 0.207 

Vehicle 
25 0.035 26.123 0.029 0.887 460.033 0.471 0.103 60.106 0.059 0.681 275.497 0.340 

50 0.045 25.491 0.038 0.888 396.444 0.467 0.100 52.507 0.049 0.718 268.618 0.358 

Wine 
25 0.042 7.587 0.043 1.742 159.540 0.882 0.592 61.310 0.326 1.036 160.301 0.704 

50 0.043 41.778 0.046 1.736 902.390 0.870 0.801 115.544 0.422 1.696 910.188 0.778 

Table 1: Experimental Results (cf. Table 2 in Appendix E for details on the datasets) 



Appendix 

Appendix A: Propagation of Densities 

In this section, some additional information about PPDs and their propagation through linear operators is provided. We show 

a simple example of a PD on a union of polytopes of different dimensions which does not admit a PDF with respect to the 

Lebesgue measure in the traditional sense but does admit a PPDF in our sense with respect to Lebesgue measures of different 

dimensions. Additionally, we give a Corollary to Theorem 1 which shows that the dimension of the output PD is bounded by 

that of the input PD.  

 

Example 1 (Piecewise probability distribution). First, we provide a simple 2-dimensional example of a PD given by a PPDF 

on a polytopic subdivision consisting of 1-dimensional and 2-dimensional polytopes. Consider the 1-dimensional polytopes 𝐴0 

and 𝐴1 defined by the closed intervals [0, 0.5] × [2] and [0.5, 1] × [2], respectively, and the 2-dimensional polytope 𝐴2 given 

by the rectangle [0, 0.5375] × [0,1]. Let 𝐷 = 𝐴0 ∪ 𝐴1 ∪ 𝐴2. The functions 𝑝0: 𝐴0 → ℝ, (𝑥1, 𝑥2) → 3𝑥1, 𝑝1: 𝐴1 → ℝ, (𝑥1, 𝑥2) →
0.3𝑥1

2 and 𝑝2: 𝐴2 → ℝ, (𝑥1, 𝑥2) → 1 define a piecewise function 𝑃: ℬ(𝐷) → ℝ as in Definition 4. Additionally, the function 𝑃is 

𝜎-additive and satisfies 𝑃(𝐷) = 𝑃(𝐴0) + 𝑃(𝐴1) + 𝑃(𝐴2) = 1. Note the first two summands are given by integrals with respect 

to the 1-dimensional Lebesgue measure whereas the third summand is given by an integral with respect to the 2-dimensional 

Lebesgue measure. It follows that 𝑃 defines a PPD and the set (𝑝0, 𝑝1, 𝑝2) is the associated PPDF. 

 

Corollary 1 (Dimensionality is bounded). We define the dimensionality of a PPDF to be the dimension of its support, i.e., the 

dimension of the highest-dimensional polytope on which the PPDF is defined. In the situation of Theorem 1, let 𝑑 ∈ ℕ, 𝑑 ≤ 𝑚,  
be the dimensionality of 𝑝𝑋. Then the dimensionality 𝑑′ of 𝑝𝑌 = 𝑊∗𝑝𝑋 is bounded by 𝑑, i.e., 𝑑′ ≤ 𝑑. 

Proof. The support 𝑠𝑢𝑝𝑝(𝑝𝑋) ⊂ ℝ𝑚 is a 𝑑-dimensional manifold (with 𝑑 ≤ 𝑚). If 𝑊 is injective, the support 𝑠𝑢𝑝𝑝(𝑝𝑌) ⊂ ℝ𝑛 

again is a 𝑑-dimensional manifold. If 𝑊 is non-injective (i.e. ker(𝑊) is a 𝑘-dimensional subspace of ℝ𝑚, 𝑘 ≥ 1), the dimen-

sionality of 𝑠𝑢𝑝𝑝(𝑝𝑌) is 𝑑 − 𝑖 with 0 ≤ 𝑖 ≤ 𝑘, depending on the number of basis vectors of the kernel that generate 𝑠𝑢𝑝𝑝(𝑝𝑋). 

                                                    □ 

Appendix B: Edgewise Subdivision  

In PLT, we use edgewise subdivision to obtain a fine-grained grid of simplices in the input space on which the input PD is 

approximated by a piecewise constant PPDF. We now elaborate on edgewise subdivision by first explaining the construction 

of the subdivision and then discussing some useful properties.  

 

Definition 5 (Corners and dimensions of a polytope). Let 𝑚 ≥ 0 be an integer and 𝐴 ⊂ ℝ𝑚 a polytope. There is a unique 

minimal set of points 𝐶(𝐴) in ℝ𝑚 such that A is the convex hull of these points. We call an element of 𝐶(𝐴) a corner of 𝐴. The 

dimension 𝑑𝑖𝑚(𝐴) is given by the dimension of the affine hyperplane spanned by 𝐶(𝐴). 

We call 

ℎ(𝐴) = max
𝑎𝑖,𝑎𝑗∈𝐶(𝐴)

|𝑎𝑖 − 𝑎𝑗| 

the diameter of 𝐴 and set 

𝜌(𝐴) = 2 sup{𝑅 > 0: 𝐵𝑅(𝑥0) ⊂ 𝐴, 𝑥0 ∈ 𝐴} 

as the diameter of the biggest inner ball contained in 𝐴. 

 

We now follow Edelsbrunner & Grayson (2000) to construct the edgewise subdivision of a simplex.  Let 𝐴 be a simplex of 

dimension 𝑑. For a natural number 𝑘 ∈ ℕ, each 1-dimensional facet between exactly two corners of the simplex is divided into 

𝑘 ∈ ℕ pieces of equal length creating a grid of points. The edgewise subdivision of 𝐴 comprises the 𝑘𝑑 (sub-)simplices spanned 

by adjacent (in direction of the vectors spanning the simplex) points of the grid. The edgewise subdivision for 𝑘 = 2 on a 2-

simplex and a 3-simplex is illustrated in Figure 1. 



The subdivision of 𝐴 obtained by this method is denoted by 𝔸𝑒𝑑𝑔𝑒
𝑘 (𝐴). It follows immediately from the definition of edgewise 

subdivision that for sufficiently large 𝑘 ∈ ℕ the distance between any two corners of any simplex in 𝔸𝑒𝑑𝑔𝑒
𝑘 (𝐴) becomes arbi-

trarily small. Thus, for every 𝜀 > 0 there exists a 𝑘𝜀 ∈ ℕ such that 𝑑(𝑐1, 𝑐2) < 𝜀 for all 𝑐1, 𝑐2 ∈ 𝐶(𝐴𝑖) and every simplex 𝐴𝑖 ∈

𝔸𝑒𝑑𝑔𝑒
𝑘𝜀 (𝐴). The minimal choice of 𝑘𝜀 ∈ ℕ depends on 𝐴. 

 

 

 

 

 

 
 
 
 

 

 

Figure 1: Edgewise Subdivision of a 2-simplex (left) and a 3-simplex (right) for 𝑘 = 2 (Edelsbrunner & Grayson, 2000)  

Lemma 1. Let 𝑘, 𝑙 ∈ ℕ. Then edgewise subdivision with respect to 𝑘𝑙 is equivalent to first subdividing with respect to 𝑙 and 

then further subdividing each simplex in 𝔸𝑒𝑑𝑔𝑒
𝑙 (𝐴) with respect to 𝑘, i.e., 

𝔸𝑒𝑑𝑔𝑒
𝑘𝑙 (𝐴) = 𝔸𝑒𝑑𝑔𝑒

𝑘 ( 𝔸𝑒𝑑𝑔𝑒
𝑙 (𝐴)). 

Proof. Edelsbrunner & Grayson (2000). □ 

 

The simplices in 𝔸𝑒𝑑𝑔𝑒
𝑘 (𝐴) can be assigned to congruence classes, i.e., two simplices belong to the same congruence class if 

and only if they are congruent. We denote the set of congruence classes of 𝔸𝑒𝑑𝑔𝑒
𝑘 (𝐴) by 𝐶𝑜𝑛𝑔 (𝔸𝑒𝑑𝑔𝑒

𝑘 (𝐴)). It can be shown 

that there exists an upper bound for the number of congruence classes which does not depend on 𝑘: 

 

Lemma 2. For any simplex 𝐴 of dimension 𝑑, the set 𝔸𝑒𝑑𝑔𝑒
𝑘 (𝐴) has at most 𝑑!/2 congruence classes.  

Proof. Edelsbrunner & Grayson (2000). □ 

Appendix C: Error Estimation  

In this subsection we study the error made when approximating the PPDF 𝑝 with a piecewise polynomial density 𝑝′ of degree 

𝑘. In particular, choosing constant polynomials yields an error estimation for the method described in the main chapter. We 

measure the error by means of 𝑝-norms and the Hellinger distance, which we will define in the following. We will then provide 

upper bounds for the approximation error both in the input (Lemma 3) and output space (Theorem 4) and show that if the input 

subdivision and the output bin grid are fine enough, our method PLT is able to approximate the true propagated PD arbitrarily 

closely (Theorem 5).  

 

Definition 6 (𝑝-Norm). Let (𝛺, 𝒜, 𝜇) be a measure space and 𝑓: 𝛺 → ℝ a measurable function. The 𝑝-norm of 𝑓 is defined as 

‖𝑓‖𝑝 = ‖𝑓‖𝐿𝑝(𝛺) = (∫ |𝑓|𝑝

𝛺

d𝜇)

1
𝑝

 

for 𝑝 ∈ [1, ∞) and 
‖𝑓‖∞ = ‖𝑓‖𝐿∞(𝛺) = ess sup𝑥∈𝛺|𝑓(𝑥)| 

for 𝑝 = ∞. We say 𝑓 ∈ 𝐿𝑝(𝛺) if ‖𝑓‖𝑝 < ∞.  

 

In our case, we always consider a measure space 𝛺 ⊂ ℝ𝑚 together with the Borel 𝜎-Algebra 𝒜 = ℬ(𝛺) and the Lebesgue 

measure 𝜇 . 

 

Definition 7 (𝜎-finite measure). Let (𝛺, 𝒜, 𝜇) be a measure space. The measure 𝜇 is called 𝜎-finite if 𝛺 can be covered by 

countably many measurable sets 𝐵1 , 𝐵2, … ∈ 𝒜 such that 𝜇(𝐵𝑖) < ∞ for all 𝑖. 
 



Definition 8 (Absolutely continuous measure). Let 𝜇1, 𝜇2 be two measures on a measureable space 𝑋. The measure 𝜇1 is 

absolutely continuous with respect to 𝜇2 if every measurable set 𝐵 ⊂ 𝑋 with 𝜇2(𝐵) = 0 also satisfies 𝜇1(𝐵) = 0. 

 

Definition 9 (Hellinger distance). Let 𝑃1, 𝑃2 be PDs on a measurable space 𝑋. Choose a 𝜎-finite measure 𝜇 with respect to 

which 𝑃1 and 𝑃2 are absolutely continuous. Note that such a measure always exists (for example, 𝜇 = 𝑃1 + 𝑃2 is a possible 

choice). Then by the Radon-Nikodym Theorem 𝑃1 and 𝑃2 have PDFs 𝑝1 and 𝑝2, respectively, on X with respect to 𝜇. The 

Hellinger distance between 𝑃1 and 𝑃2 is defined as 

𝐻(𝑃1, 𝑃2) = √
1

2
∫ (√𝑝1 − √𝑝2)

2
d𝜇

𝑋

. 

 

By Pollard (2001), 𝐻(𝑃1, 𝑃2) does not depend on the choice of 𝜇. Hence, the Hellinger distance is well-defined. The Hellinger 

distance defines a metric on the set of measures on the measurable space 𝑋. The maximum value of the Hellinger distance 

between 𝑃1 and 𝑃2 is 1, which is attained if and only if 𝑃1 and 𝑃2 are mutually singular (Pollard 2001), i.e., there exists a 

measurable subset 𝑆 of 𝑋 such that 𝑃1(𝑆) = 0 = 𝑃2(𝑋\𝑆). 

For a symmetric semi-positive definite (s.s.p.d.) 𝑛 × 𝑛-matrix Σ, we set 𝑠𝑢𝑝𝑝(Σ): =  Im(Σ). This is the unique linear sub-

space 𝑉 of ℝ𝑛 such that the normal distribution 𝑁(0, Σ) admits a PDF with respect to the Lebesgue measure on 𝑉. 

To denote the Hellinger distance between normal distributions, we will use the abbreviation 𝐻(Σ1, Σ2) ≔
𝐻(𝑁(0, Σ1), 𝑁(0, Σ2)). 

We will now provide error estimations for our approximation of the true PPDF. While we only use a constant approximation 

of the PPDF on each polytope in 𝔸𝑒𝑑𝑔𝑒(𝐴𝑖), we give an upper bound for the approximation error in a more general case where 

for each polytope, the PPDF values on 𝐶(𝐴) are interpolated by a polynomial of degree 𝑘 such that for any polynomial PPDF 

of degree ≤ 𝑘 the interpolation polynomial agrees with the PPDF. Note that our constant approximation fulfills this condition 

for 𝑘 = 0. We start by estimating the approximation error of the polynomial approximation by means of the 2-norm. We 

consider the case where the PPDF 𝑝 on a polytope 𝐴𝑖 is (𝑘 + 1)-times differentiable in a weak sense and its weak derivatives 

have finite 2-norm. In particular, every function 𝑝 for which the first 𝑘 + 1 (classic) derivatives exist and have finite 2-norm, 

is an element of 𝑊𝑘+1,2(𝐴𝑖). 

 

Lemma 3 (Approximation error, 2-norm). Let 𝑝 ∈ 𝑊𝑘+1,2(𝐴𝑖) (i.e., 𝑝 is (𝑘 + 1)-times differentiable in a weak sense and the 

weak derivatives have finite 2-norm). Let 𝑝′ be the polynomial approximation of degree 𝑘 on an edgewise subdivision 

𝔸𝑖,𝑒𝑑𝑔𝑒
𝜀 (𝐴𝑖) of 𝐴𝑖. Then there exist 𝐶0, 𝐶1 > 0 such that  

‖𝑝 − 𝑝′‖𝐿2(𝐴𝑖) ≤ 𝐶0ℎ𝑘+1‖𝐷𝑘+1𝑝‖𝐿2(𝐴𝑖), 

‖𝛻𝑝 − 𝛻𝑝′‖𝐿2(𝐴𝑖) ≤ 𝐶1𝜎ℎ𝑘‖𝐷𝑘+1𝑝‖𝐿2(𝐴𝑖). 

where 

ℎ = 𝑚𝑎𝑥
𝐴∈𝔸𝑖,𝑒𝑑𝑔𝑒

𝜀
ℎ(𝐴), 

𝜎 = 𝑚𝑎𝑥
𝐴∈𝔸𝑖,𝑒𝑑𝑔𝑒

𝜀  

ℎ(𝐴)

𝜌(𝐴)
 and 

‖𝐷𝑘+1𝑝‖𝐿2(𝐴𝑖): = (∫ ∑ |𝐷𝛼𝑝|2d𝑥
|𝛼|=𝑘+1𝐴𝑖

)

1
2

 

where 𝛼 ∈ ℕ𝑜
𝑚 is the associated multi-index vector with ∑ 𝛼𝑖𝑖 = 𝑘 + 1. The constants 𝐶0 and 𝐶1 depend on both k and  𝐴𝑖 .  

Moreover, we have 

𝑙𝑖𝑚
𝜀→0

 ‖𝑝 − 𝑝′‖𝐿2(𝐴𝑖) = 0, 

𝑙𝑖𝑚
𝜀→0

 ‖𝛻𝑝 − 𝛻𝑝′‖𝐿2(𝐴𝑖) = 0 

Note that 𝑝′ is dependent on 𝜀 > 0 as it is defined based on the subdivision 𝔸𝑖,𝑒𝑑𝑔𝑒
𝜀 . 

Proof. The first two inequalities are derived in Ciarlet (2002). To show the claims about the limit of the errors for 𝜀 → 0, it 

suffices to show that 𝜎 and ‖𝐷𝑘+1𝑝‖𝐿2(𝐴𝑖) are bounded and that ℎ ≤ 𝜀. For two congruent simplices 𝐴𝑖, 𝐴𝑗 ∈ 𝑐 (where 𝑐 denotes 

the associated congruence class) it is clear that 

ℎ(𝐴𝑖)/𝜌(𝐴𝑖) =  ℎ(𝐴𝑗)/𝜌(𝐴𝑗) =: 𝜎𝑐 

holds and 𝜎𝑐 is finite. By Lemma 2 𝔸𝑖,𝑒𝑑𝑔𝑒
𝜀  comprises at most 𝑑!/2 congruence classes. Hence, 𝜎 = max

c
𝜎𝑐 < ∞ can be chosen 

as the maximum of the finite set {𝜎𝑐  |𝑐 ∈ 𝐶𝑜𝑛𝑔(𝔸𝑖,𝑒𝑑𝑔𝑒
𝜀 )} and is independent of 𝜀. Moreover, ‖𝐷𝑘+1𝑝‖𝐿2(𝐴𝑖) < ∞ holds by 

definition as 𝑝 ∈ 𝑊𝑘+1,2(𝐴𝑖). It follows immediately from the construction of edgewise subdivision that for any 𝑙 ∈ ℕ we have 



ℎ(𝐴𝑖,𝑗) ≤ 1/𝑙 ⋅ ℎ(𝐴𝑖) for all simplices 𝐴𝑖,𝑗 ∈ 𝔸𝑖,𝑒𝑑𝑔𝑒
𝑙 (𝐴𝑖). By definition of  𝔸𝑖,𝑒𝑑𝑔𝑒

𝜀 , 𝑙 ∈ ℕ is chosen large enough such that 

ℎ(𝐴𝑖,𝑗) ≤ 𝜀 holds for all 𝐴𝑖,𝑗 ∈ 𝔸𝑖,𝑒𝑑𝑔𝑒
𝑙 (𝐴𝑖) which yields the claim. □ 

 

The constants ‖𝐷𝑘+1𝑝‖𝐿2(𝐴𝑖) and 𝜎 can be interpreted as follows: If the (𝑘 + 1)-th derivatives of 𝑝 attain large values or 

variations on major parts of 𝐴𝑖, it is difficult to approximate 𝑝 in these regions by polynomial interpolation. In this case, the 

value of ‖𝐷𝑘+1𝑝‖𝐿2(𝐴𝑖) (and hence, the right-hand side of the error estimation) is rather large. The value 𝜎 = max
𝐴∈𝔸𝑖,𝑒𝑑𝑔𝑒

𝜀  

ℎ(𝐴)

𝜌(𝐴)
 is a 

measure of how geometrically “flat” the simplices in 𝔸𝑖,𝑒𝑑𝑔𝑒
𝜀  are. For a flat simplex the longest 1-dimensional facet of the 

simplex is relatively large when compared to the diameter of its largest inner circle. Thus, a polynomial interpolation of a 

function defined on this simplex is prone to error due to the relatively large distances of the points used for interpolation. A 

large value of 𝜎 accounts for this condition. 

The approximation error on 𝔸𝑖,𝑒𝑑𝑔𝑒
𝜀 (𝐴𝑖) with respect to the 2-norm is of order 𝑂(𝜀𝑘+1) for ‖𝑝 − 𝑝′‖𝐿2(𝐴𝑖) and 𝑂(𝜀𝑘) for 

‖∇𝑝 − ∇𝑝′‖𝐿2(𝐴𝑖), respectively. Thus, for a higher-degree interpolation, the approximation error in the input space decreases 

faster. However, for any degree 𝑘 > 0, the propagation of 𝑝′ through a NN can no longer be done in an exact manner as it 

involves calculating integrals of 𝑝′ over polytopes. Therefore, we only use constant approximations of the true PDF for our 

method PLT. 

 

Theorem 4 (Error propagation, 𝑝-norm). Let 𝑝1, 𝑝2 be PDFs on a polytope 𝐴, let 𝑝 ∈ [1, ∞) and 𝑓: 𝐴 → ℝ𝑚 a linear function 

on 𝐴. Then there exists 𝐶 > 0 such that 

‖𝑓∗(𝑝1) − 𝑓∗(𝑝2)‖𝐿𝑝

𝑝
≤ 𝐶 ⋅ ‖𝑝1 − 𝑝2‖

𝐿𝑝
𝑝

 

Proof. Let 𝑓 be the restriction of 𝑓 to ker 𝑓⊥and 𝑐 ≔ |det (𝑓−1)|. Using Hölder inequality and triangle inequality for integrals, 

we get  

‖𝑓∗𝑝1 − 𝑓∗𝑝2‖𝐿𝑝

𝑝

=  ∫ |∫ 𝑐 ⋅ 𝑝1(𝑦)d𝑦
𝑓−1(𝑥)∩𝐴 

− ∫ 𝑐 ⋅ 𝑝2(𝑦)d𝑦
𝑓−1(𝑥)∩𝐴 

|

𝑝

d𝑥
𝑓(𝐴)

= ∫ |∫ 𝑐 ⋅ (𝑝1(𝑦) − 𝑝2(𝑦))d𝑦
𝑓−1(𝑥)∩𝐴 

|

𝑝

d𝑥 ≤ 
𝑓(𝐴)

𝐶 ∫ ∫ |𝑝1(𝑦) − 𝑝2(𝑦)|𝑝 d𝑦
𝑓−1(𝑥)∩𝐴 

d𝑥
𝑓(𝐴)

= 𝐶 ∫ |𝑝1(𝑧) − 𝑝2(𝑧)|𝑝 d𝑧 = 
𝐴 

𝐶‖𝑝1 − 𝑝2‖
𝐿𝑝
𝑝

 

for some constant 𝐶 which depends on 𝐴 and 𝑓. □ 

 

Finally, we prove that our propagated piecewise constant PPDF given by formula (6) can approximate the true output PD 𝑃𝑦 

arbitrarily closely if the bin grid in the output space and the edgewise subdivision of the input polytopes are chosen fine enough.  

 

Theorem 5. Let 𝑃 be a PPD in the input space of a neural network 𝑓. Then the output distribution obtained by PLT can 

approximate the propagated PPD 𝑃𝑦 = 𝑓∗𝑃 up to an arbitrarily small error.  

Proof. We first claim that for a given bin grid 𝑆 in the output space, our method can approximate the true probability mass of 

𝑃𝑦 in each bin 𝑏 ∈ 𝑆 up to an arbitrarily small error. Consider a subdivision 𝔸𝑒𝑑𝑔𝑒  of the input space 𝐷 such that 𝑓 is linear 

and the input 𝑃𝐷 is approximated by a piecewise constant PD 𝑃′ given by a constant PDF 𝑐𝑖 ∈ ℝ on each 𝐴𝑖 ∈ 𝔸𝑒𝑑𝑔𝑒  as defined 

in Eq. 3. We denote the pushforward of 𝑃′ with respect to 𝑓 by 𝑃𝑦
′ = 𝑓∗𝑃′. Let 𝑏 ∈ 𝑆 and 𝜀 > 0. The entire probability mass of 

𝑃′ in each 𝐴𝑖 is assigned to the output bin containing the image 𝑓(𝑡𝑖) of the center 𝑡𝑖 of 𝐴𝑖. We first show that the probability 

mass of 𝑃𝑦′ in 𝐵 can be approximated up to an error 𝜀 by PLT. Denote the output PD obtained by PLT by 𝑃𝑃𝐿𝑇 . For any 𝐴𝑖 ∈

𝔸𝑒𝑑𝑔𝑒 , the fraction of the probability mass 𝑃′(𝐴𝑖) that is propagated into 𝐵 is correct if 𝑓(𝐴𝑖) ⊂ 𝐵 or 𝑓(𝐴𝑖) ∩ 𝐵 =   ∅. If 𝑓(𝐴𝑖) 

is only partially contained in 𝐵, then a fraction of the probability mass 𝑃(𝐴𝑖) is either incorrectly propagated into 𝐵 (if 𝑓(𝑡𝑖) ∈
𝐵) or incorrectly not propagated into 𝐵 (if 𝑓(𝑡𝑖) ∉ 𝐵). By the construction of the edgewise subdivision, the total volume (and, 

therefore, the total probability mass with respect to 𝑃′) of all polytopes 𝐴𝑖 with images 𝑓(𝐴𝑖) not contained in a single bin 

becomes arbitrarily small if the subdivision is chosen fine enough. In particular, there is a 𝐾 ∈ ℕ such that |𝑃𝑦
′(𝐵) − 𝑃𝑃𝐿𝑇(𝐵)| <

ε /2 for all 𝐵 ∈ 𝑆 and all 𝑘 ≥ 𝐾 if 𝔸𝑒𝑑𝑔𝑒
𝑘  is chosen as the input subdivision. Furthermore, the difference between 𝑃 and 𝑃′ 

becomes arbitrarily small for fine enough subdivision by Lemma 3. Hence, the difference between their respective pushfor-

wards also becomes arbitrarily small. Therefore, there exists a 𝐾′ ∈ ℕ such that |𝑃𝑦(𝐵) − 𝑃𝑦
′(𝐵)| < 𝜀/2 for all 𝑏 ∈ 𝑆 and for 



all 𝑘 ≥ 𝐾′ if 𝔸𝑒𝑑𝑔𝑒
𝑘  is chosen as input subdivision. It follows immediately that |𝑃𝑦(𝐵) − 𝑃𝑃𝐿𝑇(𝐵)| < 𝜀 for all bins 𝐵 ∈ 𝑆 if 𝑘 is 

chosen large enough which proves our first claim.  

It is well-known that the true output distribution can be approximated arbitrarily closely by a piecewise constant PD if the 

underlying bin grid 𝑆 is chosen fine-granular enough. Together with the first claim, this yields that for fine enough bin grid and 

input subdivision, the piecewise constant output PD obtained by PLT can approximate the true output PPDF up to an arbitrarily 

small error. □ 

 

Thus, we have shown that for increasingly fine-grained subdivision in the input and bin grid in the output, the result of PLT 

converges to the true propagated distribution.  

Appendix D: Dependencies of Neurons 

In this section, we will show that in general neurons in the same layer of a NN are dependent and that the assumption of 

independence between neurons can lead to large errors in the propagated PD. To achieve this, we consider a setting where the 

input neurons are given by independent Gaussian distributions, i.e., the input PD is a Gaussian with diagonal covariance matrix. 

We proof that even in this case, the neurons in the first hidden layer are only independent if the weight matrix satisfies specific 

requirements (Lemma 5). We then analyze the difference between the true distribution in a NN layer and the distribution 

resulting from assuming independent neurons, measured by the Hellinger distance introduced in Appendix C. We give a max-

imality criterion to determine when the Hellinger distance between two normal distributions assumes the maximal value of 1 

(Lemma 6). We then use this maximality criterion to proof theorems yielding a wide range of examples of covariance matrices 

and weight matrices where the assumption of independent neurons in the hidden layer results in a maximal Hellinger distance 

of 1 between the true PD in the hidden layer and the PD obtained by assuming independence (Theorems 7 and 8). Finally, we 

show some formulas for the Hellinger distance between a Gaussian distribution with non-diagonal covariance matrix and the 

Gaussian distribution resulting from restricting the covariance matrix to its diagonal (Theorem 9). These allow quantifying the 

error that would be made even in the input space if the input neurons are dependent and normally distributed but are modelled 

as independent. The formula depends on a set of eigenvalues, and it can be seen that it may result in large errors, measured by 

the Hellinger distance, as well.  

Let 𝑘 be a positive integer, 𝜇 be an element of ℝ𝑘 and 𝛴 be a symmetric positive definite (s.p.d.) 𝑘 × 𝑘-matrix. We denote 

the PDF of the Gaussian distribution with mean 𝜇 and covariance matrix 𝛴 by N(𝜇, 𝛴) and the identity matrix of dimension 𝑛 

by 𝐸𝑛. 

 

Lemma 4 (Propagation of Gaussian distributions). Let W be a non-singular 𝑘 × 𝑘-matrix. Then 𝑊∗N(𝜇, 𝛴) = N(𝑊𝜇, 𝑊𝛴𝑊T). 

Proof. By the bijective case of Theorem 1, we can directly compute 

𝑊∗N(𝜇, 𝛴)(𝑦) =  N(𝜇, 𝛴)(𝑊−1𝑦)|𝑊−1| 

=
|𝑊−1|

(√(2𝜋)𝑘|𝛴|
exp (−

1

2
(𝑊−1𝑦 − 𝜇)T𝛴−1(𝑊−1𝑦 − 𝜇)) 

=
1

|𝑊|√(2𝜋)𝑘|𝛴|
exp (−

1

2
(𝑊−1(𝑦 − 𝑊𝜇))

T
Σ−1(𝑊−1(𝑦 − 𝑊𝜇))) 

=
1

√(2𝜋)𝑘|𝑊𝛴𝑊T|
exp (−

1

2
(𝑦 − 𝑊𝜇)T𝑊−T𝛴−1𝑊−1(𝑦 − 𝑊𝜇)) = N(𝑊𝜇, 𝑊𝛴𝑊T) 

which proves the claim. □   

         
Definition 10. We call a 𝑘 × 𝑘-matrix 𝑊 permutation diagonal if 𝑊 is diagonal up to a permutation of its columns. 

 

Lemma 5.  Let 𝑊 be a non-singular 𝑘 × 𝑘-matrix such that for all diagonal s.p.d. matrices 𝛴 the matrix 𝑊𝛴𝑊T is diagonal. 

Then 𝑊 is permutation diagonal. 

Proof. By replacing 𝑊 with 𝑊T we can assume that 𝑊T𝛴𝑊 is diagonal for each diagonal s.p.d. matrix 𝛴. Denote the columns 

of 𝑊 by (𝑤𝑖)𝑖=1,…,𝑘. For any 𝑖 ≠ 𝑗, we obtain 

0 = (𝑊T𝛴𝑊)
𝑖,𝑗

= 𝑒𝑖
T𝑊T𝛴𝑊𝑒𝑗 = 𝑤𝑖

T𝛴𝑤𝑗 . 

In other words, 𝑤𝑖  is orthogonal to 𝛴𝑤𝑗  for all 𝑖 ≠ 𝑗. As 𝑊 is non-singular and Σ = 𝐸𝑘 is a valid choice, (𝑤𝑖)𝑖  is an orthogonal 

basis. Now fix an index 𝑗. Because 𝛴𝑤𝑗  is orthogonal to 𝑤𝑖  for all 𝑖 ≠ 𝑗, it follows that 𝛴𝑤𝑗  is a multiple of 𝑤𝑗 . Since this holds 



for all diagonal s.p.d. matrices 𝛴, we can conclude that the vector 𝑤𝑗  has a single non-zero entry. Since 𝑊 is non-singular, this 

proves the claim. □  

 

Theorem 6.  We denote by 𝑝𝑟𝑖  the projection to the i-th component. For a non-singular 𝑘 × 𝑘-matrix 𝑊 the following are 

equivalent: 

1. For each probability measure 𝜇 on ℝ𝑘 such that the family of random variables (pr
𝑖
)

𝑖=1,…,𝑘
 is independent, 

(pr
𝑖
𝑊)

𝑖=1,…,𝑘
 is independent as well. 

2. The matrix 𝑊 is permutation-diagonal. 

Proof. We first show that 2 implies 1. Let 𝑊 be permutation-diagonal. Then (pr
𝑖
𝑊)

𝑖
= (𝑎𝑖pr

𝜎(𝑖))
𝑖
 for a permutation 𝜎 and 𝑎𝑖 

in ℝ. The independence of (pr
i
)

𝑖=1,…,𝑘
 implies the independence of (𝑎𝑖pr

𝜎(𝑖))
𝑖=1,…,𝑘

. To prove the converse, specializing con-

dition 1 to non-degenerate normal distributions and applying Lemma 4 yields that for each s.p.d. diagonal matrix 𝛴 the matrix 

𝑊𝛴𝑊T is diagonal. By Lemma 5, this implies that 𝑊 is permutation-diagonal. □ 

 

Lemma 6 (Maximality criterion). Let 𝛴1, 𝛴2 be s.s.p.d. 𝑛 × 𝑛 matrices. Then 𝐻(𝛴1, 𝛴2) = 1 if and only if 𝑠𝑢𝑝𝑝(𝛴1) ≠
𝑠𝑢𝑝𝑝(𝛴2). 
Proof. As stated in Appendix C, 𝐻(Σ1, Σ2) = 1 if and only if 𝑁(0, Σ1) and 𝑁(0, Σ2) are mutually singular. This is equivalent 

to 𝑠𝑢𝑝𝑝(Σ1) ≠ 𝑠𝑢𝑝𝑝(Σ2). □ 

 

For the following discussion, we fix a 𝑘 × 𝑛 matrix 𝑊 and a s.s.p.d. matrix Σ. The matrix Σ defines a scalar product ⟨⋅,⋅⟩Σ on 

ℝ𝑛 by ⟨𝑎, 𝑏⟩Σ = 𝑎𝑇Σ𝑏 for 𝑎, 𝑏 ∈ ℝ𝑛. We denote by 𝑤𝑖  the 𝑖-th row of 𝑊 viewed as a column vector. Further let (𝑒𝑖)𝑖=1,…,𝑘 

denote the standard basis of ℝ𝑘. For any matrix 𝑀, we denote by 𝑀𝑑 the diagonal matrix containing only the diagonal entries 

of 𝑀, i.e., (𝑀𝑑)𝑖𝑗 = 𝑀𝑖𝑗 for 𝑖 = 𝑗 and 𝑀𝑖𝑗 = 0  for 𝑖 ≠ 𝑗. 

 

Lemma 7. The Hellinger distance 𝐻(𝑊𝛴𝑊𝑇 , (𝑊𝛴𝑊𝑇)𝑑) is maximal if and only if 

𝑠𝑢𝑝𝑝(𝑊𝛴𝑊𝑇) ≠ ⟨𝑒𝑖|⟨𝑤𝑖 , 𝛴𝑤𝑖⟩ ≠ 0⟩. 

Proof. By the maximality criterion, it suffices to show ⟨𝑒𝑖|⟨𝑤𝑖 , Σ𝑤𝑖⟩ ≠ 0⟩ = 𝑠𝑢𝑝𝑝((𝑊Σ𝑊𝑇)𝑑). The support of (𝑊Σ𝑊𝑇)𝑑 is 

given by ⟨𝑒𝑖|((𝑊Σ𝑊𝑇)𝑑)𝑖𝑖 ≠ 0⟩. By definition the 𝑖-th diagonal entry of (𝑊Σ𝑊𝑇)𝑑 is given by ⟨𝑤𝑖 , Σ𝑤𝑖⟩ and the claim follows 

immediately. □ 

 

Theorem 7. If 𝑊 is not surjective and does not have a zero row and 𝛴 is non-singular, then 

𝐻(𝑊𝛴𝑊𝑇 , (𝑊𝛴𝑊𝑇)𝑑) = 1. 
Proof. Since 𝑊 is not surjective, we have dim 𝑠𝑢𝑝𝑝(𝑊Σ𝑊𝑇) ≠ 𝑘. As each row of 𝑊 is non-zero the dimension of 

⟨𝑒𝑖|⟨𝑤𝑖 , 𝑤𝑖⟩
Σ

≠ 0⟩ = ℝ𝑘 is 𝑘. Thus, it follows from Lemma 7 that 𝐻(𝑊Σ𝑊𝑇 , (𝑊Σ𝑊𝑇)𝑑) = 1. □ 

 

For 𝑠 in {1, … , 𝑛}, we denote by 𝐷𝑠 the 𝑛 × 𝑛  matrix satisfying (𝐷𝑠)𝑠,𝑠 = 1 where every other matrix entry is 0. 

 

Lemma 8. If the 𝑠-th column of 𝑊 has 2 non-zero entries, then 𝐻(𝑊𝐷𝑠𝑊𝑇 , (𝑊𝐷𝑠𝑊𝑇)𝑑) = 1. 

Proof. Since 𝐷𝑠 has rank 1, it follows that 𝑊𝐷𝑠𝑊𝑇  has rank at most 1. In other words, 𝑠𝑢𝑝𝑝(𝑊𝐷𝑠𝑊𝑇) has dimension at most 

1. We can compute 

(𝑊𝐷𝑠𝑊𝑇)𝑑 = 𝑑𝑖𝑎𝑔(𝑊1,𝑠
2 , … , 𝑊𝑘,𝑠

2 ). 

Therefore, the dimension of 𝑠𝑢𝑝𝑝((𝑊𝐷𝑠𝑊𝑇)𝑑) is given by the number of non-zero entries of the 𝑠-th column of the matrix 

𝑊, which is greater than 1. This implies 𝑠𝑢𝑝𝑝(𝑊𝐷𝑠𝑊𝑇) ≠ 𝑠𝑢𝑝𝑝((𝑊𝐷𝑠𝑊𝑇)𝑑). □ 

 

Using the maximality criterion from Lemma 6, we characterize the matrices 𝑊 for which there exists some s.s.p.d. matrix Σ 

with the property that 𝐻(𝑊Σ𝑊𝑇 , (𝑊Σ𝑊𝑇)𝑑) = 1. 
 

 

Theorem 8. The following are equivalent: 

1. There exists a diagonal s.s.p.d. matrix 𝛴 such that 𝐻(𝑊𝛴𝑊𝑇 , (𝑊𝛴𝑊𝑇)𝑑) = 1. 
2. The matrix 𝑊 has a column with at least 2 non-zero entries. 



Proof. The fact that 2 implies 1 follows from Lemma 8 as the matrix 𝐷𝑠 is s.s.p.d for all 𝑠 = 1, … , 𝑛. We show that 2 implies 1 

via contradiction. Assume that 𝑊 does not have a column with at least 2 non-zero entries and let Σ be a diagonal s.s.p.d matrix. 

Then a direct computation shows 𝑊Σ𝑊𝑇 = (𝑊Σ𝑊𝑇)𝑑, which implies 𝐻(𝑊Σ𝑊𝑇 , (𝑊Σ𝑊𝑇)𝑑) = 0 ≠ 1. □ 

 

From Theorems 7 and 8, we get a large set of diagonal s.s.p.d matrices Σ and matrices 𝑊 for which the Hellinger distance 

𝐻(𝑊Σ𝑊𝑇 , (𝑊Σ𝑊𝑇)𝑑) is maximal. In particular, this means that if the input distribution is given by a normal distribution with 

covariance matrix Σ and the weight matrix of the first layer of a NN is given by a matrix 𝑊 such that 𝑊 and Σ fulfill the 

conditions discussed in Theorem 7 or Theorem 8, the assumption of independent neurons in the first hidden layer of the neural 

network results in a distribution 𝑁(0, (𝑊Σ𝑊𝑇)𝑑) with maximal Hellinger distance 𝐻(𝑊Σ𝑊𝑇 , (𝑊Σ𝑊𝑇)𝑑) = 1  to the true 

distribution 𝑁(0, 𝑊Σ𝑊𝑇) in the first hidden layer. Note that a mean of 0 can be assumed here without loss of generality.  

In the remainder of this section, we want to give a formula for the distance 𝐻(𝑊Σ𝑊𝑇 , (𝑊Σ𝑊𝑇)𝑑) – under appropriate 

assumptions on 𝑊 and Σ – if it is not maximal. More precisely, we will consider the case 𝑠𝑢𝑝𝑝(𝑊Σ𝑊𝑇) = 𝑠𝑢𝑝𝑝((𝑊Σ𝑊𝑇)𝑑) =
ℝ𝑘. 

 

Lemma 9. Let 𝛴1, 𝛴2 be s.p.d. matrices, then 

𝐻2(𝛴1, 𝛴2) = 1 − (
det(𝛴1) det(𝛴2)

det (
𝛴1+𝛴2 

2
)

2 )

1
4

. 

Proof. Pardo (2005). □ 

 

For a s.p.d. matrix Σ, we define the correlation matrix associated to Σ by 

Σ𝑐𝑜𝑟: = √Σ𝑑

−1
Σ√Σ𝑑

−1
. 

Here, √Σ𝑑 is computed by applying the square root to each entry of Σ𝑑 . Further, √Σ𝑑

−1
 exists as each entry of Σ𝑑 is positive. 

By the multiplicativity of the determinant, it follows that 𝐻(Σ, Σ𝑑) = 𝐻(Σ𝑐𝑜𝑟 , 1). 
 

Theorem 9. Denote by (𝜇𝑖)𝑖=1,…,𝑛 the eigenvalues of 𝛴𝑐𝑜𝑟. Then the equation 

𝐻2(𝛴, 𝛴𝑑) = 𝐻2(𝛴𝑐𝑜𝑟 , 𝐸𝑛) = 1 − (∏
𝜇𝑖

(
1 + 𝜇𝑖

2
)

2

 

𝑛

𝑖=1

)

1
4

 

holds. 

Proof. We compute 

𝐻2(Σ, Σd) = 𝐻2(Σ𝑐𝑜𝑟 , 𝐸𝑛) = 1 −
det(Σ𝑐𝑜𝑟)

1
4 det(𝐸𝑛)

1
4

det (
Σ𝑐𝑜𝑟+1 

2
)

1
2

= 1 − (∏
𝜇𝑖

(
1 + 𝜇𝑖

2
)

2

 

𝑛

𝑖=1

)

1
4

. 

Here we used that the eigenvalues of 
1

2
(Σ𝑐𝑜𝑟 + 𝐸𝑛) are (

1

2
(𝜇𝑖 + 1))

𝑖
. □ 

 

Note that if Σ is diagonal, Σ𝑐𝑜𝑟  is equal to 𝐸𝑛 and the above formula yields a Hellinger distance of 0. Applying Theorem 9 to 

𝑊Σ𝑊𝑇 we obtain: 

 

Corollary 2. If 𝑊 is surjective and Σ s.p.d, then 

𝐻2(𝑊𝛴𝑊𝑇 , (𝑊𝛴𝑊𝑇)𝑑) = 1 − (∏
𝜎𝑖

(
1 + 𝜎𝑖

2
)

2

 

𝑛

𝑖=1

)

1
4

, 

where (𝜎𝑖)𝑖=1,…,𝑘 denotes the family of eigenvalues of (𝑊𝛴𝑊𝑇)𝑐𝑜𝑟 . 

Proof. By assumption Σ is s.p.d., which means that 𝑊Σ𝑊𝑇 is s.p.d. as well. Hence, we can apply Theorem 9 which proves the 

claim. □ 

 



Based on Theorem 9, we see that if the true input PD contains dependencies between neurons, the assumption of independ-

ence can lead to large errors depending on the eigenvalues of Σ𝑐𝑜𝑟 . Corollary 2 can be used to find more examples of covariance 

matrices and weight matrices where the assumption of independence in the propagated distribution can lead to large values of 

the Hellinger distance. In Theorems 7 and 8, we have already seen that even the maximal value of 1 can be attained depending 

on the weight matrix of the NN layer. Thus, we have shown that even under the restrictive assumption that the input neurons 

are independent and normally distributed, neglecting potential dependencies between neurons in subsequent layers generally 

results in large errors between the propagated PD and the true PD.  

Appendix E: Datasets and Models 

In this section, we provide additional information about the datasets on which our method was evaluated. The evaluation was 

performed on datasets widely used for classification and regression tasks which are shown in Table 2. All datasets are publicly 

available, and sources are provided.  

 

Dataset Features Instances Reference 

Appendi-

citis 

7 106 Wang, Zhang and 

Min 2019 

Banana 2 5300 Jaichandaran 

2023 

Balance 4 625  Siegler 1976 

Bands 35 541 Evans 1994 

Boston 13 506 Harrison and Ru-

binfeld 1978 

Breast 30 569 Wolberg 1990  

Califor-

nia 

8 20640 Kelley Pace and 

Barry 1997 

Diabetes 10 442 Efron et al. 2004 

Iris 4 150 Fisher 1936 

Machine 9 209 Feldmesser 1987 

Real Es-

tate 

7 414 Unknown 2018 

Vehicle 18 847 Mowforth and 

Shepherd 1987 

Wine 13 178 Aeberhard and 

Forani 1992 

Table 2: Datasets 

 For each dataset, instances with naturally missing attribute values were excluded before deleting values and applying MICE 

imputation as described in the evaluation. We provide the code used for our experiments in a publicly available repository3.  

 

 

 
3 https://github.com/URWI2/Piecewise-Linear-Transformation 
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