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Abstract 

 

The function and dynamics of brain networks are products of the complex interplay among 

the networks’ constituent components. Common organizational principles are thought to 

govern this interplay across spatial scale. Such organizational features of functional network 

topology, such as integration and segregation, are known to be altered in depression. However, 

how depression affect functional topology across the different scales of network organization 

remains a domain poorly understood. This work aims to investigate whether MDD patients and 

healthy controls differ in features of functional network topology and to assess whether such 

differences are consistent across two levels of granularity: the cellular and systems levels.  

Cellular human neural networks were developed through reprogramming of skin 

fibroblasts collected from nine MDD patients and nine age- and sex-matched healthy controls. 

These cellular networks were examined by means of Calcium imaging. Seven of these same 

patients and seven matched controls were recruited for a follow up session of functional 

magnetic resonance imaging to capture functional networks on the systems level. Graph theory 

analysis was utilized to quantify topological properties of segregation, integration, and overall 

connections using the graph metrics clustering coefficient, global efficiency, and average node 

degree, respectively. Additionally, the efficiency and centrality of individual brain regions 

were examined to detect any MDD-related differences in nodal topology. 

At the cellular level, iPSCs-derived networks of MDD patients showed decreased 

clustering coefficient and average node degree. On the other hand, large-scale brain networks 

did not exhibit significant group differences in global functional topology, although a 

contrasting trend emerged involving enhanced global efficiency and average node degree in 

networks of depressed patients. Similarly, nodal graph metrics did not differ between groups. 

Nonetheless, trends of altered betweenness centrality were observed in anterior insula and 

intraparietal sulcus. 

The current work marks the first attempt to explore multiscale alterations in functional 

network topology in MDD. Together, the findings suggest reduced segregation and overall 

node connections in microscale networks of depressed patients. They also suggest a potential 

compensatory mechanism of micro-macro scale association that might explain the contrasting 

patterns of topology seen across scales. This work sets a framework for a scale-bridging 

investigation to understand how network topology across scale is affected in mental disorders.  
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Zusammenfassung 

 

Die Funktion und die Dynamik von Gehirnnetzwerken sind das Ergebnis des komplexen 

Zusammenspiels der einzelnen Komponenten der Netzwerke. Es wird angenommen, dass 

dieses Zusammenspiel auf verschiedenen räumlichen Ebenen von gemeinsamen 

Organisationsprinzipien bestimmt wird. Es ist bekannt, dass solche organisatorischen 

Merkmale der funktionellen Netzwerktopologie, wie Integration und Segregation, bei 

Depressionen verändert sind. Wie sich Depressionen auf die funktionelle Topologie in den 

verschiedenen Skalen der Netzwerkorganisation auswirken, ist jedoch noch nicht ausreichend 

erforscht. In dieser Arbeit soll untersucht werden, ob sich Patienten mit MDD und gesunde 

Kontrollpersonen in den Merkmalen der funktionellen Netzwerktopologie unterscheiden und 

ob diese Unterschiede auf zwei verschiedenen Ebenen bestehen: auf der zellulären und der 

Systemebene. 

Durch Reprogrammierung von Hautfibroblasten, die von neun MDD-Patienten und neun 

alters- und geschlechtsgleichen gesunden Kontrollpersonen entnommen wurden, wurden 

zelluläre menschliche neuronale Netzwerke entwickelt. Diese zellulären Netzwerke wurden 

mit Hilfe der Kalzium-Bildgebung untersucht. Sieben dieser Patienten und sieben alters- und 

geschlechtsgleiche Kontrollpersonen wurden für eine Folgesitzung mit funktioneller 

Magnetresonanztomographie rekrutiert, um funktionelle Netzwerke auf Systemebene zu 

erfassen. Mit Hilfe der graphentheoretischen Analyse wurden die topologischen Eigenschaften 

der Segregation, der Integration und der Gesamtverbindungen anhand der Graphmetriken 

Clustering-Koeffizient, globale Effizienz und durchschnittlicher Knotengrad quantifiziert. 

Zusätzlich wurden die Effizienz und Zentralität einzelner Hirnregionen untersucht, um etwaige 

MDD-bedingte Unterschiede in der Knotentopologie zu erkennen. 

Auf zellulärer Ebene wiesen iPSCs-abgeleitete Netzwerke von MDD-Patienten einen 

geringeren Clustering-Koeffizienten und durchschnittlichen Knotengrad auf. Andererseits 

wiesen großräumige Hirnnetzwerke keine signifikanten Gruppenunterschiede in der globalen 

funktionellen Topologie auf, obwohl sich ein kontrastierender Trend abzeichnete, der eine 

höhere globale Effizienz und einen höheren durchschnittlichen Knotengrad in Netzwerken 

depressiver Patienten beinhaltete. Auch die Metrik der Knotengraphen unterschied sich nicht 

zwischen den Gruppen. Dennoch wurden in der anterioren Insula und im intraparietalen Sulcus 

Tendenzen zu einer veränderten Betweenness-Zentralität beobachtet. 
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Die aktuelle Arbeit stellt den ersten Versuch dar, multiskalige Veränderungen in der 

Topologie funktioneller Netzwerke bei MDD zu untersuchen. Die Ergebnisse deuten auf eine 

geringere Segregation und insgesamt geringere Knotenverbindungen in mikroskaligen 

Netzwerken von depressiven Patienten hin. Sie deuten auch auf einen potenziellen 

Kompensationsmechanismus der Mikro-Makro-Assoziation hin, der die kontrastierenden 

Muster der Topologie auf verschiedenen Skalen erklären könnte. Diese Arbeit bildet den 

Rahmen für eine skalenübergreifende Untersuchung, um zu verstehen, wie die 

Netzwerktopologie über Skalen hinweg bei psychischen Störungen beeinflusst wird. 
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Chapter 1. Introduction 

 

 

 

 

1.1. A journey through network neuroscience’s timeline 

“In a way, the history of neuroscience is the history of its methods” 

Yuste, 2015 

 

For years, the neuron doctrine that crowned the neuron as the structural and functional 

building block of the nervous system constituted the main school of thought in modern 

neuroscience. This conceptual principle was built upon the outstanding work of Santiago 

Ramón y Cajal (1852–1934) in characterizing the properties of the neural cell (Ramón y Cajal, 

1888). The general focus on individual neuron properties in the late 19th and early 20th centuries 

was driven by the methodological advancements in single-cell techniques in that era, such as 

Golgi staining, the light microscope, and microelectrodes for single-cell recordings. While the 

neuron doctrine facilitated a comprehensive understanding of the nervous system using the 

available analytical tools of its time (Yuste, 2015), such a reductionist approach fell short in 

providing a comprehensive framework that links neuron function to cognition and behavior 

within which mental illnesses could be explained. As a result of this major conceptual 

limitations, the field’s investigational lens started to shift its focus from the single neuron to 

encompass a more holistic view of neural ensembles or populations and their interaction. This 

marked the birth of network theory in contemporary neuroscience which states that intricate 

patterns of connectivity between ensembles of neurons, rather than the discrete individual 

neurons themselves, serve as the foundation of brain function (Churchland & Sejnowski, 1992). 

According to network models, the functional properties of a network emerge from the 

interaction of its individual elements which may not possess these properties when considered 

in isolation. Although theoretical models of neural network were formulated since the 1940s 

(Hebb, 1949; McCulloch & Pitts, 1943), the technology required for testing these theories was 

lagging behind. Nevertheless, the recent advances in optical, magnetic, electrophysiological, 
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and computational modelling techniques have revolutionized the field of network neuroscience 

and made it possible to capture the activity of extended neural circuits and probe and perturb 

their connectivity and dynamics as an attempt to understand their role in brain function (Yuste, 

2015). Mapping the comprehensive set of connection between neural elements of the nervous 

system, commonly known as a the “connectome”, has long been a primary objective of systems 

neuroscience. Not only does this pursuit promise to advance our understanding of the brain’s 

basic cognitive functions, but it also has the potential to reveal how irregularities in network 

properties may contribute to the development of pathological processes in the context of mental 

illnesses. 

 

The organizational principles governing neural networks in the brain are nonrandom and 

conserved across species and special scales (see section 1.2). The special organizational levels 

of brain networks span the micro-, meso-, and macroscale (see section 1.3). At each of these 

special scales, network connectivity can be described in terms of the structural or functional 

relations between the network’s elements (see section 1.3.1). Akin to earlier advancement in 

neuroscience, the accumulation of connectivity data across different scales followed the 

technological breakthroughs made in optical imaging and physiological recording (Fornito et 

al., 2016; Sporns, 2016). This is exemplified by the successful reconstruction of the entire 

nervous system of Caenorhabditis elegans by White et al., (1986) and the identification of the 

links between wiring features and specific patterns of behavior in C.elegnas, drosophila, and 

mouse retina (Jarrell et al., 2012; Rivera-Alba et al., 2011; Briggman et al., 2011). Moreover, 

the growing accessibility of imaging techniques has contributed to our understanding of both 

structural and functional aspects of the mammalian brain organization, whether on the cellular 

or the systems level (section 1.3.2). The invasiveness of cellular imaging methods such as 

Calcium imaging and tract-tracing has been overcome by the introduction of noninvasive, 

whole-brain covering imaging tools such as functional magnetic resonance imaging (fMRI) 

and diffusion tensor imaging (DTI). The safety and flexibility of these methods resulted in a 

rapid expansion in large-scale connectivity data from individual subjects and allowed for 

clinical comparison between groups to identify connectivity-related disease phenotypes. 

 

However, acquiring the data was only half the challenge. The deep insights collected from 

the large amount of complex network data would have not been possible without the giant leap 

made in analytical approaches and statistical and mathematical modelling of neural data. By 
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using computational tools that are mostly borrowed from physics and mathematics, researchers 

have been able to address the brain as a complex system of interconnected elements and model 

the relations between these elements to depict, elucidate, and predict the behavior of that 

system (Bassett et al., 2018). 

 

As brain network data collected at individual observation levels becomes increasingly 

ubiquitous, a major challenge arises in developing a comprehensive, cross-level approach to 

address the multiscale nature of brain network organization and function. An accumulating line 

of evidence suggests that the multiple levels of brain network organization are related and 

interlinked (van den Heuvel et al., 2019) (see section 1.3). Therefore, an approach that bridges 

the gap between different scales of brain organization can provide insight into how alterations 

in network organization at one level may impact function and dynamics at other levels. This 

approach offers the potential to uncover the fundamental mechanisms behind cognitive 

dysfunction in the context of mental disorders, presenting a challenging, yet promising avenue 

of research. 

 

One of the major challenges in such a cross-level investigation of brain networks in the 

realm of psychiatric diseases is the availability of multiscale data collected from the same 

groups of individuals. While large-scale human brain networks can be examined non-

invasively using brain imaging techniques, obtaining non-invasive microscale data from the 

same human subjects has posed difficulties. As a result, most available data on cellular-level 

network organization are derived either from animal models or postmortem tissue, which, 

while informative, lacks the resemblance to a viable human tissue. Once again, the stride of 

technology comes to the rescue. The introduction of the human induced pluripotent stem cell 

(hiPSC) technology in the late 2000 (Takahashi et al., 2007) has helped overcome this hurdle 

and has unlocked novel possibilities in disease modelling and drug discovery (Soliman et al., 

2017) (see section 1.5.1). With this technique, somatic cells can be reprogrammed into adult 

pluripotent stem cells that can adopt any neuronal fate, providing disease-relevant, patient-

specific neural tissues that were previously inaccessible. 

 

The work presented in this thesis seeks to integrate some of the above-mentioned cutting-

edge advances in network neuroscience to explore multiscale functional network organization 

in the realm of major depressive disorder. This pioneering exploration spans the cellular, 
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microscale and the systems, macroscale levels. The following introduction section embarks on 

elucidating the foundational aspects of human brain organization and their representation 

through graph theory (section 1.2). It further delves into the mapping of these topological 

features across different spatial scales and network modalities (structure and function) (section 

1.3), with particular emphasis on their potential involvement in psychopathological processes. 

The introduction also provides a concise overview of major depressive disorder (MDD), 

encompassing its definition, etiology, and available treatment options (section 1.4). This is 

followed by a review of the current state of the art addressing changes in functional topology 

in depression across both micro and macroscale (section 1.5). With the necessary background 

information provided, the chapter concludes by defining the precise aim of this study. 

 

1.2. The brain as a complex network 

1.2.1. Fundamental principles of brain network organization 

“We realized that all of the various conformations of the neuron and its 
various components are simply morphological adaptations governed by 
laws of conservation for time, space and material”    

Ramón y Cajal (1995), p.116, Volume I. 

 

As in any complex system, the function and resulting behavior of the brain arise from the 

intricate interplay among its constituent components, be they individual neurons or a 

population of neurons forming brain regions (Bressler & Menon, 2010; Vértes & Bullmore, 

2015). This core concept of network neuroscience allows one to represent the brain as a 

network providing a simplified framework to tackle its complexity and offering a valuable 

insight into its fundamental processes in health and in disease. 

 

Accumulated evidence strongly supports the notion that the organizational principles of 

the brain’s network is nonrandom, exhibiting a significant degree of conservation across 

species, spatial scales, and between functional and structural modalities (van den Heuvel et al., 

2016; Bullmore & Sporns, 2009). More than a decade ago, Cajal proposed what is called 

conservation laws (see quote at the beginning of this section). These laws govern the 

organization of almost all aspects of the nervous system, including its communication and 
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connectivity. Cajal anticipated that aspects of brain network organization, whether anatomical 

or functional, are selected to minimize three main critical elements: space, time, and material. 

 

The brain resides within a finite three-dimensional physical space. Building and 

maintaining such a spatially embedded system place high constrains on many anatomical 

features such as the number of neurons and wiring patterns involving connection density 

(number of synapsis), axonal length, and axonal cross-sectional diameters. This pertains to 

Cajal’s conservation laws concerning space and material, which postulate that complex 

networks of the brain evolve to minimize these aspects by reducing what is known as axonal 

wiring cost (Attwell & Laughlin, 2001). Cost, in this context, refers to any biological 

expenditure utilized for establishing connections between neurons, be it energy, metabolism 

requirements, or cellular resources (Bullmore & Sporns, 2012; Chklovskii, 2004). 

Consequently, it becomes advantageous - and highly probable - for the brain network to 

construct axonal connections with shorter projections and smaller diameters between spatially 

adjacent neurons, optimizing spatial utilization and minimizing resource expenditure 

(Bullmore & Sporns, 2009). Under these constrains of space and material, connections between 

remote neurons are rendered more costly and therefore, less likely. 

 

Time, on the other hand, an aspect related to function and efficiency, can be conserved by 

enhancing signal transmission speed and minimizing conduction delay between remote regions 

of the brain (Wen & Chklovskii, 2005). For instance, signal delay between distant regions can 

be minimized by establishing long-distance direct connections that passes through as few 

synapsis as possible. These long-distance connections are vital for brain function and dynamics 

as they mediate strong oscillations in neural networks, enabling the efficient spread of 

synchronized activity among topologically remote oscillators (Buzsáki et al., 2004). However, 

as discussed above, establishing and sustaining such direct, monosynaptic short-cuts that 

facilitate information flow and coordination of neural activity is energy expensive. 

Furthermore, conduction velocity is higher along axonal projections with large cross-sectional 

diameter, which is an expensive feature (Puppo et al., 2018; Niven & Laughlin, 2008). This 

shows that while minimizing wiring costs is a strong selection pressure in constructing brain 

networks, exclusively prioritizing brain networks for this aspect can potentially compromise 

overall function and efficiency. Thus, the brain, like any complex spatially embedded system, 

must strike an economical balance between minimizing wiring cost and maximizing efficiency 



Introduction 

 

 

 
6 

in information flow and processing (Fornito et al., 2011; Meunier et al., 2010; Schröter et al., 

2017). This trade-off between function and cost underpins the concept of “brain economy”, 

which illustrates how the brain’s organization enables efficient performance by optimally 

managing its resources (Bullmore & Sporns, 2012). The focal point of this concept is to 

prioritize efficient resource management rather than solely focusing on cost reduction. In other 

words, brain networks occasionally compromise the minimum cost in order to ensure efficient 

functionality, as exemplified by the presence of the expensive direct short-cut connections. 

 

The presence of such a function/cost trade-off highlights the complex, non-trivial 

organization of brain networks. Complex organization refers to the presence of intricate 

structure that is irregular and temporally dynamic allowing for complex function (Boccaletti et 

al., 2006). In particular, when a network compromises a certain cost in favor of functional 

efficiency, two contrasting aspects emerge: the segregation of different regions within the 

network, and the integration of information across those regions. Neighboring neurons in the 

brains of higher vertebrates tend to form densely connected neuronal clusters or communities 

to minimize wiring costs. This modular architecture allows for functional segregation, where 

distinct communities or modules perform specialized functions. Conversely, integration in 

brain networks occurs when certain material and metabolic costs are sacrificed to establish 

costly long-range connections between distant parts of the network, facilitating efficient large-

scale information transmission. Therefore, maintaining a cost/function trade-off allows the 

brain to strike a balance between integration and segregation processes. This balance is critical 

to accommodate the highly dynamic cognitive demands and to generate complex, adaptive 

behavior (Cocchi et al., 2013). 

 

These fundamental principles governing brain network organization are often empirically 

depicted and quantified through the application of graph theory. The following section touches 

on the basics of graph theory and elucidate the relevance of its metrics in revealing insights 

into the topological architecture of human brain networks. 

 

1.2.2. Topology and graph theory 

Topology first developed as a branch of mathematics in the 19th century and involved 

studying geometric object properties that are invariant under any continuous spatial 

deformation. In the context of network science, network topology refers to the patterns of 
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connections and relations occurring between the network’s elements (Bullmore & Sporns, 

2012). Graph theory, originally developed in the 18th century by the mathematician Leonhard 

Euler (1707-1783), became pivotal for network analysis to describe the general principles of 

complex systems organization. It was not until the end of the 20th century that graph theory 

found its way into biology and network neuroscience, unravelling the intricate connectivity 

patterns in the cortex and enhancing our understanding of brain network organization 

(Felleman & Van Essen, 1991; Young, 1992; Watts & Strogatz, 1998). 

 

The power of graph theory lies on its ability to provide a simple, straightforward means to 

examine complex systems like the brain. Within this mathematical framework, a network is 

modeled as a graph consisting of vertices (nodes) and their connections (edges) (Figure 1A). 

The interpretation of edges differs depending on the network modality in hand, whether 

structural or functional (Butts, 2009, Sporns, 2011). In graphs describing structural networks, 

an edge reflects the presence of an anatomical connection between the nodes, while in 

functional graphs, edges typically indicate coactivation between nodes, inferred statistically by 

pairwise temporal correlations between their activity (Park & Friston, 2013). Graphs can be 

further differentiated based on other properties of their edges. For instance, a graph can be 

directed, in which edges represent a directional relationship between the nodes, or undirected, 

in which edges represent a symmetrical relationship with no directional information (Stam & 

Reijneveld, 2007). Another distinction is made between binarized and weighted graphs. 

Binarized or unweighted graphs assign binary values (1 or 0) to their edges after a thresholding 

procedure, denoting the presence or absence of a connection. In such graphs, all present edges 

are considered equally important or “unweighted”. In contrast, edges in weighted graphs retain 

their numerical values, which indicate the strength of the connection or the distance between 

the nodes, providing additional information about the magnitude of the relationships within the 

graph (Stam & Reijneveld, 2007). 

 

Once nodes of a given network have been defined, their pair-wise structural or functional 

associations are measured to create a “connectivity matrix”, which is one way to represent a 

network. When binarized undirected graphs are examined, a binarized “adjacency matrix” is 

generated by thresholding the aforementioned connectivity matrix. Subsequently, graph 

measures are computed to examine relevant aspects of that network’s architecture, allowing to 

compare individuals and groups of subjects. These measures serve as robust and reliable means 
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to characterize both the overall global topology of the network as well as the specific local 

topological features of individual nodes. The broad range of graph metrics available can be 

categorized into three distinct classes based on the attributes of network organization they 

capture: measures of segregation, integration, and influence (Sporns, 2011). 

 

1.2.2.1. Measures of segregation 

A graph with segregation attributes shows the capacity to form clusters of densely 

connected nodes that are adjacent and functionally related. This clustered architecture with 

localized specialization grants the system robustness, reliability and resilience to injuries, as 

damage to one specific region would not cripple the entire network (Bullmore & Sporns, 

2009b; Meunier et al., 2010; Robinson et al., 2009). Furthermore, clustered topology influences 

neural function and shapes network dynamics (Arenas et al., 2006; Sporns et al., 2000; 

Yamamoto et al., 2018). Graph metrics of segregation depict the presence of such functionally 

specialized clusters or communities. Examples of segregation metrics include clustering 

coefficient, local efficiency, and modularity. Clustering coefficient (C) measures the number of 

closed triangles that are connected to a given node relative to the number of all possible 

triangles (Fornito et al., 2016) (Figure 1). In other words, it depicts the proportion of a node’s 

neighbors that are also neighbors of each other. Local efficiency (Eloc) is another measure of 

segregation that quantifies the effectiveness of information exchange within localized 

subnetworks (Latora & Marchiori, 2001). These subnetworks are defined as direct neighbors 

of a given node after removing that node and its incident edge. Modularity quantifies the 

number of nonoverlapping “modules” in the network, which are community structures 

characterized by dense within-module connections, while exhibiting sparse connectivity 

between modules (Newman, 2004) (Figure 1). Modularity is considered a more sophisticated 

measure of network segregation as it not only depicts the presence of clustered communities 

but also provide detailed information about their specific size and composition (Rubinov & 

Sporns, 2010). 
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Figure 1. Graph metrics of segregation. Left, clustering coefficient reflects how much neighbors of a given node are also 

neighbors of each other. Right, Modularity quantifies the number of “modules” in the network. Modules refer to clustered 

communities in the network which exhibit dense connections between nodes within a given module or cluster, and sparse 

connections between nodes belonging to different modules. Adapted from (Farahani et al., 2019). 

 

1.2.2.2. Measures of Integration 

Functional integration indicates the capacity of the network to sustain rapid and efficient 

communication between all its nodes, combining information from its specialized, distributed 

parts. Graph theoretical measures of integration captures this capacity quantitatively by 

utilizing the concept of path (Rubinov & Sporns, 2010). A path in graph theory refers to the 

number of edges that need to be traversed in order to travel from one node to another (Bullmore 

& Sporns, 2009). Therefore, the average path length serves as an indicator of the speed and 

efficiency with which information is transmitted throughout that network, with shorter path 

lengths on average reflecting more efficient and integrative networks. The characteristic path 

length (L) is a common integration measure that stems from this concept. L represents the 

average shortest paths linking all nodes in the network (Figure 2). However, the characteristic 

shortest path is not numerically applicable in “fragmented” graphs, in which there is at least 

one node that is not connected by an edge to any other node in the graph, dividing the graph 

into more than one component (Fornito et al., 2016). This problem often occurs when applying 

relatively high thresholds to connectivity matrices that might result in the disconnection of the 

weakly connected regions, forming disconnected components. In such cases, the path length 

between this disconnected node and any other node in the graph is assumed to be infinite, which 

means that the characteristic path length will be also infinite. One approach to avoid this 

problem in a fragmented graph is to compute the reciprocal of the shortest path length. By 

taking the reciprocal of the shortest path length, the infinite path between two disconnected 

nodes becomes zero, as 
1

∞
 = 0, contributing nothing to the sum and keeping the mean 

Clustering coefficient Modularity

node

edge
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necessarily finite. One graph metric that adopt this approach is global efficiency (Eglob), defined 

as the reciprocal of the shortest path length (Rubinov & Sporns, 2010; Feldt et al., 2011). 

 

 

Figure 2. Shortest path is a measure of integration. It quantifies the minimum number of edges that need to be traversed to 

get from one node to the other. Adapted from (Farahani et al., 2019). 

 

Most of the above-mentioned segregation and integration measures provide a node-level 

topological description. When these nodal measurements are averaged across the network’s 

nodes, they provide a comprehensive, global assessment of the segregation and integration 

features of the entire network. 

 

1.2.2.3. Measures of Influence 

Measures of influence reveal the topological importance or contribution of individual 

nodes in the graph. Such measures are highly interesting in the context of brain networks as 

they emphasize how the embedding of brain regions within the network governs their 

functional participation in dynamic processes (Sporns et al., 2007). Graph theory offers a wide 

range of influence measures, also called measures of centrality or “hubness”, as they identify 

highly connected regions, so-called “hubs”. Each of these measures highlights a distinct aspect 

of the region participation in the network (Figure 3). For example, node degree, also known 

as degree centrality, is one of the simplest and easily computed measures to identify hubs 

(Bullmore & Sporns, 2009) (Figure 3). It is simply defined as the number of edges connected 

to a specific node within a network. Nevertheless, degree centrality solely considers the 

number of neighbors connected to a node, failing to account for the “quality” of these 

neighbors, specifically whether the neighboring nodes themselves show high centrality. 

Eigenvector centrality (Bonacich, 1972) is a measure that accounts for both quantity and 

quality of a node’s neighbors as it quantifies the influence of a node based on the centrality of 
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its connected neighbors. In other words, nodes with high eigenvector centrality are those that 

are connected to other highly central nodes (Figure 3). Some centrality measures are path-

based, of which betweenness centrality is one example. Betweenness centrality (BC) is another 

measure of hubness that takes into account the number of shortest paths between all nodes in a 

network that passes through a given node (Freeman, 1977) (Figure 3). As the name implies, 

BC measures the degree to which a node lies “between” other nodes, thereby strongly 

mediating the flow of information across the network through the shortest paths. When a set of 

highly central hubs are also densely connected to each other, this organization is called “rich-

club” and is considered to form the “connectivity backbone” in the network (Zhou & 

Mondragon, 2004; Van Den Heuvel & Sporns, 2011). 

 

 

 

 

Figure 3. Graph metrics of centrality and influence. Left, degree centrality is calculated as the number of edges connected 

to a given node. Middle, eigenvector centrality takes both the number and the quality of a connection into account; the red 

node is more central than the gray one despite having the same degree. This is because the red node is connected to a central 

node with high degree. Right, betweenness centrality computes the proportion of shortest paths that cross through a given node 

relative to the total number of shortest paths in the network. 

 

 

 

Network hubs are elements of integration. Their topological centrality allows them to play 

a vital role in facilitating efficient communication through rapid routing of information across 

distant parts of the network. This is mainly facilitated by the high number of shortest paths that 

a hub-node lies on. Since wiring costs depend on the number and length of connections, one 

expects that hubness (whether defined as high betweenness or simply high degree) is a 

biologically expensive topological feature as it entails increased wiring. Several studies have 

shown that the presence of hubs in a network, particularly when they organize in rich-clubs, 

accounts for high wiring demands and energy burden whether in humans, rodents, or in the 

nematode C.elegans (Collin et al., 2014; van den Heuvel et al., 2012; Fulcher & Fornito, 2016; 

Towlson et al., 2013). This high metabolic burden associated with the brain’s hub-nodes 
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explains their increased vulnerability to diseases and lesions that might effect energy supplies, 

as seen in schizophrenia and Alzheimer’s disease (Buckner et al., 2009; Crossley et al., 2014). 

Furthermore, centrality is a double-edged sword. On one hand centrality is crucial for efficient 

information exchange across the network. On the other hand, the high centrality and 

connectivity of hub-nodes make them more susceptible to injury as they are easy to reach by 

pathological processes (Fornito et al., 2015). Furthermore, hubs play a significant role in the 

propagation of disease and have a negative influence on the prognosis of recovery after insult 

(Fornito et al., 2015). Once a hub-node is affected, its topological centrality facilitates the 

spread of the pathological process throughout the network. This results in a diffuse impact on 

network function, contributing to pervasive cognitive impairment that is associated with poor 

recovery prognosis (Kitsak et al., 2010; Warren et al., 2014). 

 

Therefore, exploring and understanding the complex patters of influence becomes 

particularly important in the context of brain disorders. These measures are not only 

instrumental in understanding disease mechanism and predicting the pathological progression, 

but also essential to identify potential targets for therapeutic interventions.  

 

1.2.3. It is a small world, isn’t it? 

The term “small-worldness” originated from the social sciences when Milgram  (1967) 

found that any person (from a random set) was on average 5.9 degrees distant from one target 

person. This suggests that any large network could be traversed with a small number of steps 

on average – a small world!  

 

Later on, in their groundbreaking work, Watts & Strogatz (1998) introduced a 

mathematical model of the small-world phenomenon by focusing on two key network 

attributes: clustering coefficient and characteristic path length. The Watts-Strogatz model of 

small-world involved randomly rewiring the connections of a regular, lattice-like network. 

They found that introducing even a small number of random connections into the network led 

to a significant increase in its efficiency, as indicated by the decreased path length. 

Interestingly, these random connections had a minimal impact on the network’s clustering 

structure. This hybrid model exhibited a unique combination of topological properties which 

constituted a middle ground on the spectrum of network topology between regular network 
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(high clustering and high segregation) and random network (short path length and high 

integration) (Figure 4). This organization that supports the delicate integration-segregation 

balance as a defining feature was referred to as “small-world” as it drew parallels to the 

properties of the first explored social network of Milgram (1967). 

 

Small-worldness is ubiquitous. In fact, abundant scientific investigation has shown that 

brain networks organize in a small-world architecture (Achard, 2006; Achard & Bullmore, 

2007; Bassett et al., 2006; Sporns & Zwi, 2004). This topology enables efficient integration of 

information across distant network’s components while maintaining a level of segregation that 

allows for effective local communication and functional specialization. Such an inherit trade-

off between integration and segregation is hallmark of many complex real-world systems such 

as the brain as it guarantees a flexible, efficient network function and rich dynamic repertoire 

(Achard, 2006; Achard & Bullmore, 2007). Interestingly, not only macroscale brain networks, 

but also neural circuits grown in cultures tend to self-organize into a small-world configuration 

throughout their development and maturation, whether on the microscale (tens of neurons) or 

the mesoscale (hundreds to thousands of neurons) (Perin et al., 2011; Schröter et al., 2017; 

Shimono & Beggs, 2015; Yamamoto et al., 2018; Downes et al., 2012). Several neuroimaging 

studies reported altered small-world organization of large-scale networks in depression (Gong 

& He, 2015). However, MDD-related effect on functional topology of neuronal networks on 

the microscale is still a domain rarely investigated. Section 1.5 will provide a comprehensive 

review on the existing research on alterations of small-worldness in the context of MDD. 
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Figure 4. Fundamental topological attributes of brain networks. (A) An efficient network is one that strikes a balance 

between its integration and segregation attributes. Graph theory offers a framework to examine topological network properties 

by representing networks as graphs composed of nodes (neurons or brain regions, depending on the spatial scale) and edges 

(connections between nodes). Left, a network with segregation attributes demonstrates dense connections between neighboring 

nodes leading to the formation of clustered communities exhibiting specialized functions. The graph metric “clustering 

coefficient” is used to assess network segregation (see section 1.2.2.1 for definition). Right, integration capacity allows for 

effective coordinating and combining information arriving from different communities in the network. Integration is 

topologically supported by efficient long-ranging connections with short path length connecting spatially remote parts of the 

network. The graph metric “global efficiency” is used to assess network integration (see section 1.2.2.2 for definition). (B) a 

representation of a continuum of network topology on a randomness scale ranging from a completely lattice-like organization 

(left) exhibiting maximal segregation to a completely random organization exhibiting maximal integration. Brain networks 

organize in “small-world” topology (middle) which constitutes a middle ground between a regular and random topology. 

Small-world network combines the highly clustered topology observed in regular networks while harboring a number of 

efficient long-ranging paths that are characteristic for random networks. Accordingly, small-world organization in brain 

networks harbor a balance between integration and segregation that is crucial for efficient function and cognition. 
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1.3. The Multiscale Brain 

Brain networks exist on multiple levels of spatial organization, ranging from micro to 

macroscale. At a microscale level, networks are shaped by a small number of neurons, typically 

tens to hundreds, that establishe intricate connectivity patterns through axonal projections and 

local synaptic connections. Zooming out to the mesoscale level, networks represent 

connections between populations of neuronal assemblies rather than individual neurons, as 

seen for example on the level of cortical columns or larger cytoarchitectonic regions. At the 

macroscale, network components are large-scale brain regions consisting of million to billions 

of neurons. These regions coordinate activity and integrate information through complex 

connectivity facilitated by white matter connections, giving rise to complex cognitive functions 

and behavior such as learning, memory, and decision making (Figure 5). 

 

The principal topological features of brain network organization discussed in the previous 

sections govern the emergence of both the macro- as well as the micro-connectome. For 

instance, a substantial line of evidence shows that both large-scale brain networks (Achard, 

2006; Bassett et al., 2006) and in vitro neuronal circuits of cultured neurons (Perin et al., 2011; 

Shimono & Beggs, 2015; Teller et al., 2014; Yamamoto et al., 2018) tend to self-organize into 

a small-world architecture that is conserved across both anatomical structure (Santos-Sierra et 

al., 2014; Yu et al., 2008) and function (Bullmore & Sporns, 2009; Downes et al., 2012). Perin 

et al. (2011) even proposed that microscale small-world structure serves as the building block 

for the emergence of larger scale nonrandom structure. 

 

One question that might arise to the reader is: how does such a micro-macro association 

manifest? Several mechanisms have been proposed through which an inter-scale relationship 

can take form: 

• The simplest suggested mechanism for micro-macro relationship proposes that microscale 

organizational features could serve as “Lego-like building blocks” that accumulate to form 

larger scale networks (Perin et al., 2011). This form of multiscale relationship implies that 

alteration in macroscale networks are a consequence of similar alterations that occurred in 

microscale networks and propagated across scales (van den Heuvel et al., 2019). However, 

it is argued that such multiscale link is overly simplistic when it comes to explaining 

organizational association in complex dynamic systems such as the brain (van den Heuvel 

& Yeo, 2017). 
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• Another form of micro-macro interaction is denoted in the organizational constrains that 

one scale could place on the other (Goulas et al., 2017). One of the simplest examples of 

such constraints is that neurons that share similarities in cell type, gene expression pattern, 

and/or myeloarchitecture are more likely to connect to each other (Hilgetag et al., 2016; 

Krienen et al., 2016; Buckner & Krienen, 2013). This cytoarchitectural similarity 

constitutes a “like-connect-to-like” guiding principle in the formation of the macroscale 

interregional corticocortical connectivity (van den Heuvel & Yeo, 2017). However, this 

interlevel interaction might similarly occur in the opposite direction (macro to micro). 

Namely, the macroscale organization can exert a top-down causal effect on network 

processes at the cellular level. This type of interaction is particularly evident in the context 

of neurodegenerative disorders, where disease onset and spread are suggested to be 

governed by the macro level network organization of the brain (Seeley et al., 2009; Zhou 

et al., 2012). For instance, during the initial stages of a disease, the modular organization 

of the brain network typically constrains disease-related cellular alterations to a local 

network surrounding the pathology’s epicenter (Zhou et al., 2012). However, as the 

disorder progresses, these alterations begin to spread to topologically distant regions by 

means of integrative hub regions (Crossley et al., 2014). This phenomenon underscores the 

significant role of macroscale network organization in governing the spread of disease and 

suggests that targeting these hub regions may be an effective strategy for interventions 

aimed at slowing or stopping disease progression (van den Heuvel & Yeo, 2017; Crossley 

et al., 2014). 

• Alternatively, micro-macro relationship can manifest as a common set of organizational 

principles that are shared between brain networks at different spatial scale (Scholtens et al., 

2022). Several studies have demonstrated that distinct network configuration features are 

conserved across multiple network scales (Schroeter et al., 2015), modules (structural or 

functional), and species (van den Heuvel et al., 2016). Examples of these features include 

the tendency to form densely connected local clusters, together with features that promote 

network efficiency such as short connecting paths, hubs, and rich clubs. Such 

organizational principles are subject to both genetic regulation, exhibiting substantial 

heritability (Fornito et al., 2011; Jahanshad et al., 2012; Lydon-Staley & Bassett, 2018) as 

well as ongoing modulation by various environmental perturbations and behavior patterns 

(Gibson, 2008), and/or development (Douet et al., 2014). 
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The evident cross-scale interplay makes it interesting to examine how topological features 

unfold on different organizational levels within the same individuals. Such an endeavor aims 

to unravel how alterations in network organization at one level may impact function and 

dynamics at another level in the same organism. This scale-bridging approach holds the 

potential to forge a deeper understanding not only on the functional brain organization across 

different levels of granularity, but also on the mechanisms underlying cognitive dysfunction in 

the context of mental disorders. Despite the growing evidence of micro-macro scale 

association, our understanding of how these two organizational scales interact within the realm 

of psychiatric disorders remains remarkably limited. Certain endeavors have undertaken 

multiscale investigations in psychiatric conditions, such as schizophrenia (Lawrie et al., 2001; 

Romme et al., 2017) and bipolar disorder (McCarthy et al., 2014). However, these studies 

primarily focused on linking large-scale network attributes to specific genetic variations, 

without examining how network organization on the microscale might also be affected by such 

genetic modulations. Moreover, there is a lack of multiscale studies aimed at probing 

alterations in network topology in depression, a wildly common psychopathology with 

mechanisms that remains poorly understood. 

 

 

 

Figure 5. The multiscale organization of the brain. Examples of the multi-level organization of brain on the microscale 

(genes and brain cells ((left) neurons in black, (right) astrocytes in green, and microglia in red shown among human cultivated 

cells), mesoscale (cytoarchitecture), and macroscale (connectivity and systems). Collectively, the structure and function of 

these different levels of organization give rise to collective behavior. The dysfunction at one of these levels can affect the 

others leading to the abnormal behavior observed in mental disorders. Reprinted from (van den Heuvel et al., 2019). 
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1.3.1. Functional and structural network relationship  

The interplay between structure and function in neuronal networks is dynamic and 

interconnected where one exerts a continuous influence on the other. Structural brain 

connectivity forms the backbone of functional connectivity, yet it does not rigidly dictate 

function. Instead, it imposes certain constrains on functional robustness and dynamic repertoire 

(Sporns, 2011). Within that constrained functional space, neural dynamics remain rich and 

varied. On a relatively long time scale, in which mechanisms of learning and plasticity could 

take place, functional connectivity itself can exhibit strong influence on the patterns of 

anatomical connections in a network (Rubinov et al., 2009). 

 

Both structural and functional networks have been shown to exhibit a complex topology, 

e.g., small-worldness, modularity, and hubness (He & Evans, 2010; Stam et al., 2016; Wang et 

al., 2015). Several studies have been conducted on the same subjects to directly compare the 

two modalities of connectivity in brain networks (Hagmann et al., 2008; Honey et al., 2009; 

Skudlarski et al., 2008). They revealed a positive association between the strength of structural 

connectivity with that of functional connectivity. Notably, robust functional connections were 

detected between regions that lack direct structural links. This highlights the intricate interplay 

between direct and indirect structural pathways in shaping pair-wise dynamics within the 

network (Sporns, 2011). The consequences of this phenomenon are evident in brain 

pathologies. When a specific region within the brain network is damaged, the repercussions of 

this damage on the dynamic interactions occurring in remote regions are only partially 

predicted by structural network connectivity (Alstott et al., 2009; O’Reilly et al., 2013). One 

other key difference between structural and functional connectivity is that while structural 

connections are rather stable (apart from the long-term effect of plasticity), functional 

connectome is non-stationary and dynamic (Park et al., 2008). Mišić and colleagues 

demonstrated how a particular structure topology can give rise to diverse functional network 

configurations (Mišić et al., 2016). This further explains why previous studies failed to obtain 

a one-to-one mapping between structural and functional connectome. 

 

This comprehensive exploration of structure-function relationship extends beyond the 

large-scale brain network, encompassing microscale neuronal networks as well, whether using 

in vitro or in silico neuronal cultures (Yamamoto et al., 2018; Pernice et al., 2011; Wang, 2011; 

Kim & Lim, 2015). These cellular-level investigations have consistently revealed similar 
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findings, highlighting the profound influence of structural organization on functional network. 

They also suggest that given the strong interplay between functional and structural networks, 

estimation of functional connectivity may be a mean to infer structural connectivity (Stetter et 

al., 2012) Moreover, several reports on both micro- and macroscale elucidated the critical role 

of specific structural configurations within the network (such as hierarchical modularity and 

rich clubs) in the emergence of rich patterns of complex dynamics such as orchestrated 

synchronous activity (Feldt et al., 2011; Yamamoto et al., 2018; Reimann et al., 2017; Van Den 

Heuvel & Sporns, 2013). This further underscores the reciprocal influence between structure 

and function. 

 

As discussed above, this structure-function relationship is complex and non-linear, yet 

essential to further our understanding of how the anatomical neural connectome can give rise 

to coherent function and rich dynamics. Numerous research endeavors set on to address the 

nature of this relationship. However, such enquiries fall beyond the scope of the current work. 

This thesis exclusively centers on the functional domain of neural networks. Nevertheless, it 

was vital to provide above a brief contextual understanding of the dynamic interplay between 

functional organization and the underlying anatomical structure in the brain and the instances 

of their convergence and divergence (Mišić et al., 2016). 

 

1.3.2. Mapping structural and functional neural connections 

The recent advances in network methodologies have allowed for the dissection of neural 

connectivity and topology, whether structural or functional, on both macro- and microscale 

levels. On the macroscale: structural networks are investigated using diffusion magnetic 

resonance imaging (dMRI) that, as the name implies, measures the diffusion of water molecules 

along the fatty myelinated brain fibers. This method allows for the reconstruction of presumed 

trajectories of axonal fibers in the brain using what is called fiber tracking or “tractography” 

algorithms (Hagmann et al., 2007; Iturria-Medina et al., 2008). On the other hand, several 

techniques are accessible for exploring functional connectivity at the macroscale, including 

functional magnetic resonance imaging (fMRI), electroencephalography (EEG), and 

magnetoencephalography (MEG) (Fornito et al., 2016). These non-invasive approaches 

provide a mean to quantify the functional association between brain regions by measuring their 

electrical activity (EEG), the magnetic signal generated by neuronal currents (MEG), or their 
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blood-oxygenation-level-dependent (BOLD) signal (fMRI). These methods exhibit a trade-off 

between spatial and temporal resolution. For example, both EEG and MEG demonstrate 

impressive temporal resolution, capturing measurements on a millisecond scale. However, they 

still suffer in terms of spatial resolution. In contrast, fMRI offer high spatial precession, making 

it the most commonly used tool for assessing the brain’s functional connectivity, despite its 

relatively low temporal resolution (0.5-1.5 Hz). Ultimately, the choice of which method to 

utilize will hinge on the specific scientific question being investigated. 

 

At cellular resolution, the integration of microscopic technologies, tract tracing, and 

genetic labelling methods offers a powerful approach to investigate structural connectivity. To 

map micro/mesoscale functional neuronal interactions, researchers have at their disposal 

optical imaging techniques using fluorescent calcium indicators or voltage-sensitive dyes, as 

well as electrophysiological methods like multi-electrode arrays (MEA) (Bonifazi & 

Massobrio, 2019; Chemla & Chavane, 2010). Similar to whole-brain imaging techniques, these 

cellular methods differ in the spatial and temporal resolution they provide. The choice between 

them again depends on the scientific questions and which level of resolution the experimenter 

is willing to compromise. These versatile techniques can be employed both invasively in 

animal models or in in vitro neuronal cultures, facilitating detailed investigations of functional 

neuronal circuitry and network dynamics. 

 

In this study, functional networks were captured and examined using fMRI on the 

macroscale, and calcium imaging at the microscale. This section provides a suitable occasion 

to briefly introduce the mechanisms behind these techniques. 

 

1.3.2.1. Calcium imaging: a window into neuronal activity 

Calcium (Ca2+) is an important intracellular messenger that plays a crucial role in the 

regulation of a broad spectrum of cellular processes, ranging from neurotransmitter release to 

regulating gene transcriptions (Grienberger & Konnerth, 2012). As such, intracellular calcium 

signal serves as robust indicator of cellular function, as Ca2+concentrations transiently rise upon 

neuronal activation. In calcium imaging, this signal is measured by utilizing calcium-sensitive 

indicators, which can be either chemical dyes or genetically encoded proteins. When bound to 

free Ca2+ ions inside the cell, these indicators undergo conformational changes that lead to 

changes in their fluorescence properties. In other words, as the cell activates and experience an 
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influx of calcium, the calcium indicators rapidly bind to the calcium ions leading to a change 

in the fluorescence signal which can be picked up by optical recordings techniques. Through 

detecting these activity-related intracellular calcium dynamics, calcium imaging provides a 

mean to monitor and quantify neuronal activity across a large population of neurons, the size 

of which is dependent on culture density and objective magnifications. 

 

Accordingly, Ca2+ imaging offers a powerful tool for examining neuronal connectivity and 

topology whether in vivo (Denk et al., 1994; Grewe et al., 2010) or in the dish (Tibau et al., 

2013). However, it does suffer from some important caveats. These include low temporal 

resolution and low signal-to-noise ratio (Nelson & Bonner, 2021). In addition, Ca2+ imaging 

can record from dozens to thousands of neurons simultaneously at a single-cell resolution, 

producing challenging large datasets that call for scalable and automated analysis methods 

(Pnevmatikakis, 2019). Despite these methodological shortcomings, Ca2+ imaging continues to 

be a dominant method for recording neuronal activity. After segmenting active neurons in a 

Ca2+ recording and extracting their activity time courses, pairwise correlation is computed to 

reflect their coactivation and extract connectivity information. This information is then used to 

construct graphs and examine their functional topology by assessing the relevant graph metrics. 

The growing application of graph theory in the analysis of Ca2+ data holds promise for 

addressing pressing biological questions related to network function and connectivity (for 

review see Nelson & Bonner, 2021). 

 

1.3.2.2. fMRI: the interplay between physics and biology 

fMRI is one of the most commonly used techniques to acquire whole-brain network data. 

The impressive spatial resolution provided by fMRI together with its ease of use makes it an 

attractive tool for mapping functional networks. fMRI measures fluctuations in regional levels 

of blood oxygenation as a non-invasive method to detect the changes in neural activity. When 

a population of neurons activate, whether spontaneously or in response to external stimuli, their 

oxygen consumption increases to meet the elevated metabolic demands. This leads to an 

increased influx of oxygenated cerebral blood to the activated regions through vasodilation, 

resulting in a net decrease in deoxygenated blood. Oxygenated and deoxygenated hemoglobin 

have opposing magnetic properties. While oxygenated hemoglobin is “diamagnetic”, which 

means it is weakly repelled by the magnetic field, deoxygenated hemoglobin is weakly 

attracted to the magnetic field or “paramagnetic”, causing high interference with the MR signal. 
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This change in the ratio of oxygenated and deoxygenated blood at activated areas of the brain 

is what gives rise to the MR signal, where lower amounts of deoxygenated blood causes less 

signal distortion. The signal that measures such blood-oxygenations-level-dependent (BOLD) 

fluctuations is termed “the hemodynamic response”. 

 

Thus, fMRI serves as a valuable tool for capturing changes in neural activity, whether 

during cognitive tasks or at rest. In resting state fMRI (rs-fMRI), subjects lie quietly in the 

scanner without having to perform any cognitive task. Here, the BOLD signal can reveal 

spontaneous low-frequency fluctuations (0.01-0.08 Hz) that exhibit temporal correlation 

between different brain regions (Anand, Li, Wang, Gardner, & Lowe, 2007). By examining 

these correlations, fMRI provides insights into the brain’s functional connectivity, leveraging 

on the premise that coactivation between two regions signifies information exchange and 

communication between them, thus indicating their “functionally connectivity”. 

 

Before delving into the research that has been done on the different spatial scales regarding 

disturbed network topology in depression, it is important to provide a concise overview of this 

psychiatric illness. The following introductory section encompasses its definition, etiology, and 

therapeutic options, serving to provide a comprehensive grasp of the complex psychiatric 

challenge that forms the focus of this study. 

 

1.4. Major Depressive Disorder 

1.4.1. Definition of depression 

“I felt that I breathed an atmosphere of sorrow.”  Edgar Allan Poe 

 

Depression is the common cold of mental disorders. It affects over 280 million people 

worldwide (World Health Organization [WHO], 2023) and is considered among the top ten 

diseased with the highest global burden (Vos et al., 2020). Furthermore, depression has been 

linked to a high mortality rate owing to suicidal ideation, in addition to an increased risk of 

comorbid conditions including anxiety disorders (Kessler et al., 2005), as well as digestive, 

cardiac, and cardiovascular diseases (Duman et al., 2016; Lee et al., 2015). The average age of 

onset in depression is around 30 years. However, cases occurring at almost any age have been 

reported, including adolescent depression starting at an average age of 14 years (Lewinsohn et 
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al., 1994) and geriatric depression occurring after the age of 60 (Brodaty et al., 2001). Women 

are typically twice as likely to be affected as men regardless of age group (Kessler et al., 2005).  

 

While depression is a universal term that is usually used imprecisely to refer to a general 

sense of sadness or to a set of mental disorders, major depressive disorder (MDD) refers to a 

specific affective illness characterized by a set of cognitive, affective, and vegetative deficits. 

Cognitive dysfunctions include a reduced goal-directed behavior, inappropriate cognitive 

appraisal of negative events, and a persistent inward shift of attentional focus which gives rise 

to pathological rumination and over-dwelling in self-referential thoughts (Fischer et al., 2016). 

Affective symptoms, on the other hand, are characterized by an enduring sad mood, 

accompanied by a range of other manifestations. These include excessive worry, a processing 

bias towards negative stimuli, and altered reward and incentive processing, which can lead to 

amotivation and anhedonia, i.e., the inability to experience pleasure (Price & Drevets, 2012). 

Finally, the vegetative symptoms associated with MDD originate from disturbed autonomic 

and endocrine functions regulating sleep, appetite, weight, and psychomotor activity (Cheng et 

al., 2016). Although the neurobiological correlates of depression outlined above have been 

studied and characterized over several decades, the clinical definition and diagnosis of MDD 

continue to rely solely on the psychological and behavior symptomatology of the disorder. The 

Diagnostic and Statistical Manual of Mental Disorders, 5th edition (DSM-V) provides a 

guideline for the clinical diagnoses of MDD, in which these dysregulations are listed as nine 

main symptoms of depression (Figure 6). MDD is clinically diagnosed if the patient checks at 

least five out of the nine symptoms, with one of them being either depressed mode or 

anhedonia. For the diagnosis to be made, these symptoms should persist for more than two 

weeks in a way that intervene with the patient’s social and occupational life, without being 

attributable to medical conditions or a substance abuse or being an appropriate response to grief 

or traumatic event (American Psychiatric Association [APA], 2013). 
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Figure 6. DSM-5 criteria for the clinical diagnosis of Major Depressive Disorder. 

 

Depression is a complex disorder. This rather broad, unspecific definition of depression 

brings a substantial number of clinically different sub-phenotypes with inherently differential 

biological etiologies under one umbrella. The heterogeneous nature of depression has 

hampered the understanding of its underlying pathophysiology. For that reason, tremendous 

efforts are being made to delineate the neurobiological mechanisms of major depression and to 

identify an objective biomarker that can guide the currently unreliable clinical diagnosis. This, 

in consequence, would provide a solid ground for developing more effective treatment 

interventions with novel biological and neural targets.  

 

1.4.2. Etiology of Depression: A Complex Interplay of Nature and 

Nurture 

Major depression is a complex disorder with a multifactorial genesis including both 

genetic and environmental factors. The genetic component of MDD involves complex, 

polygenic variations and explains around 30-40% of the disorder’s etiology (Sullivan et al., 

2000). The complexity of the disorder stems from the fact that it is influenced by a relatively 

large number of susceptibility genes, with each having little impact on the disorder genesis. 

Depression arises through the interaction among these genes and/or their interaction with 
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environmental risk factors (Fava & Kendler, 2000). It is also possible that different 

combinations of vulnerability genes that contribute to depression are expressed in different 

individuals, which further complicates the identifications of these implicated genes (Nestler et 

al., 2002). Furthermore, the expression of certain genetic risk factors appears to be modulated 

in depression by gender and developmental phase (Kendler et al., 2001, 2006). All the 

aforementioned facts render isolating and identifying the chromosomal locations of 

susceptibility genes in depression extremely challenging (Fava & Kendler, 2000). 

 

Nevertheless, the genetic contribution is only part of the etiological equation of 

depression. Environmental factors such as stress, early-life trauma, and socioeconomic 

adversity also play an important role in the development of this mental illness. Notably, not 

every stressful event will eventually lead to depression. Individuals vary in their response to 

the same adverse event and the risk of developing MDD is determined by genetic disposition. 

The precise nature of this complex interaction between the environment and genetic makeup 

remains an active area of research (Saveanu & Nemeroff, 2012; Nestler et al., 2002). 

 

1.4.3. Treatment options 

Several treatment approaches are now available for the management of MDD including 

psychotherapy, pharmacotherapy, and somatic therapy. The most commonly practiced 

psychotherapeutic techniques nowadays are interpersonal psychotherapy (IPT) and cognitive 

behavioral therapy (CBT). When used as a monotherapy, these techniques exhibit comparable 

efficacy to antidepressants and are associated with longer-lasting effect (Beck, 2005; Mello et 

al., 2005). Psychotherapy, however, is frequently used in combination with antidepressant 

medications, which are considered the mainstay of effective treatment of MDD. 

 

Since the introduction of the first drug in the mid-fifties, several antidepressant 

medications have been developed and approved for the treatment of MDD. These 

antidepressants share their effect on the monoaminergic (neurotransmission) system and are 

classified based on their target monoamine synaptic receptors and/or monoamine transporters 

(Otte et al., 2016). The main antidepressant classes include: tricyclic antidepressants (TCAs), 

monoamine oxidase inhibitors (MAOIs), selective serotonin reuptake inhibitors (SSRIs), 

norepinephrine reuptake inhibitors (NRIs), serotonin-norepinephrine reuptake inhibitors 
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(SNRIs), and finally, noradrenergic and specific serotonergic antidepressants (NASSAs). 

These drugs share a common effect of elevating monoamines concentrations at the synaptic 

cleft. However, they differ in their affinity to the various monoamine receptors, and therefore 

in their efficacy, tolerability and side effect profile (Cipriani et al., 2009). The effect of these 

drugs supports the monoamine hypothesis of depression that suggests a link between the 

pathophysiology of MDD and a catecholamine-deficiency in the brain (catecholamine 

including: noradrenaline, serotonin, and/or dopamine) (Schildkraut, 1965). 

 

However, recent studies have identified several other systems that are implicated in MDD 

and can serve as novel targets for antidepressant development. The hypothalamic-pituitary-

adrenal (HPA) axis is one such system, with drugs that modulate this system showing potential 

antidepressant effects such as corticotrophin-releasing hormone (CRH) antagonists (Cowen, 

2010). Additionally, The acute antidepressant effect of ketamine, the N-methyl-D-aspartate 

glutamate receptor antagonist (NMDA), has proposed a role of glutamate and γ-aminobutyric 

acid (GABA) in mood regulation (Berman et al., 2000). The antimuscarinic agent scopolamine 

has also shown a rapid antidepressant effect, highlighting the hyperactive cholinergic system 

as a potential target for MDD treatment (Jaffe et al., 2013). Another system of interest is the 

melatonin system that can be targeted using the melatonin receptor agonist agomelatine, which 

has demonstrated therapeutic benefit in treating depression (S. H. Kennedy & Emsley, 2006). 

 

Despite the various treatment options available on the market today, depression treatment 

remains suboptimal. It is true that antidepressants offer substantial benefit for depression 

patients and up to 80% of patients manage to achieve partial responses. However, only around 

half of MDD patients show a complete remission (Nestler et al., 2002). Relapse and treatment 

resistance are still two major problems in MDD therapy. In addition, most antidepressants have 

delayed onset of action, extending to over three weeks, which can further complicate the 

treatment process and be an added strain for patients, especially those experiencing suicidal 

thoughts (Stassen & Angst, 1998). Tolerability is another crucial issue and is often used as a 

basis for prescribing of antidepressants (Penn & Tracy, 2012). 

 

When two or more adequate treatment trails (in terms of duration and dosage) of different 

classes of antidepressants fail to achieve response in a current episode, the case is considered 

a treatment-resistant depression (TRD) (Ruhé et al., 2011). 20-30% of MDD patients remain 
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at risk of developing TRD and are then candidates for neuromodulatory somatic therapy such 

as electroconvulsive therapy (ECT), transcranial magnetic stimulation (TMS), vagus nerve 

stimulation (VNS), and deep brain stimulation (DBS) (Cusin & Dougherty, 2012). These 

physical techniques work by stimulating the brain to reestablish homeostasis in neural circuits 

that are usually dysregulated in depression (S. H. Kennedy & Giacobbe, 2007). 

 

In summary, the current state of depression treatment is found on a slippery ground. This 

state of uncertainty is presumably due to an incomplete understanding of the underlying 

pathophysiology of depression as a mental illness and the inherent heterogeneity rooted in its 

broad clinical definition. One other reason is the limited knowledge we have concerning the 

exact mechanism of action of antidepressants as they evidently modulate neurophysiological 

targets and cause adaptive changes that work beyond their direct molecular mechanism of 

increasing monoamine levels. The alarming rates of relapse and treatment resistance in 

depression not only highlight the suboptimal treatment process but also underscores our limited 

understanding of the disorder’s etiology and mechanisms. Examining the brain on a network 

level provides a new perspective to understand its complex function and how this function can 

go awry in face of a challenging environment. This level of understanding can be further 

deepened by addressing these network-related questions at a multiscale level, ultimately 

identifying new therapeutic targets and optimizing the so far suboptimal diagnostic and 

prescribing procedure. 

 

1.5. State of the art: Disturbed functional topology in depression 

A large body of evidence has demonstrated that depression, among other psychiatric 

illnesses, is a disorder of disrupted neuronal circuits rather than a localized dysfunction in a 

discrete brain region, which could fairly explain this disorder’s complexity (J. P. Hamilton et 

al., 2013; J. L. Price & Drevets, 2012; L. Wang et al., 2012; Zeng et al., 2012). This led to the 

reconceptualizing of MDD as a complex network disorder in which connectivity is disturbed. 

This connectivity is postulated to be governed by a specific set of topological rules, and it is 

deviations from these fundamental principles of large-scale brain network organization that 

underlies the behavioral and physical dysfunctions observed in depression (van den Heuvel & 

Sporns, 2019). Clinical network neuroscience offers a conceptual basis and analytical tools to 

study topological network alterations in MDD. Identifying such alterations is key for 
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establishing network-based biomarkers that would aid in the currently suboptimal diagnostic 

and therapeutic procedure of depression (for review, see Lydon-Staley & Bassett, 2018). 

 

As discussed in the previous section, addressing network alterations on a multiscale level 

is crucial for gaining deeper insight into the pathological effects of MDD on network 

organization. Yet, no multiscale studies in the context of topological network dysfunction in 

MDD are available at the time of writing this thesis. Most of the evidence for disrupted 

functional network topology in depression originates from macroscale, whole-brain imaging 

studies using fMRI and EEG data (see literature review below). Studies linking dysfunctional 

topology to depression at the cellular level are lacking, likely due to the absence of a suitable 

human cellular model. This section reviews the body of MDD-related research conducted at 

each of these special scales individually (micro and macro) and present the efforts made to 

employ iPSC-derived cellular models for dissecting MDD and antidepressants mechanisms. 

1.5.1. On the microscale 

Until recently, methods available for modeling psychiatric illnesses preclinically were 

limited to animal models and postmortem analyses of brain tissue. Both approaches, albeit 

informative, fail to recapitulate the complexity and heterogeneity of psychiatric disorders. 

Moreover, these methods inherently lack a vital key to understanding and dissecting cellular 

mechanisms of human psychopathologies: an access to a viable, functioning human tissue 

(Colpo & Teixeira, 2021; Wang et al., 2020).  

 

Animal models have been subject to scrutiny when used for “mental” illnesses such as 

MDD. The absence of objective biomarkers for depression coupled with the phenotype-based 

diagnosis present a challenge in accurately relating and validating the disorder’s 

phenomenology to animal models. This is mainly attributed to the subjective nature of many 

of the MDD-associated symptoms, e.g., sadness and guilt. It is true that behavioral correlates 

of these symptoms can be observed in animals (such as abnormal social behavior, motivation, 

and working memory, among others), yet linking such behavior to the subjective emotional 

symptoms of the disorder can only be approximate. Moreover, although animals and humans 

share certain biological processes, notable distinctions in gene expression and regulation exist, 

contributing to inherent variations in physiology (Barré-Sinoussi & Montagutelli, 2015; 

Cardoso-Moreira et al., 2020). Furthermore, the heterogeneity of some mental disorders like 
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MDD rooted in the vague symptom-based diagnostic boarders (discussed earlier) poses 

extreme challenges for the development and validation of animal models. While animal models 

continue to provide insights into the complex networks abnormalities underling 

psychopathologies, it is important to address their findings with caution, recognizing their 

limited capacity to fully capture the breadth of DSM-defined psychiatric disorders (Nestler & 

Hyman, 2010). Similarly, the analysis of postmortem tissues has its own limitations in 

modelling mental illness, despite it providing a window into diseased human tissues. For 

example, postmortem tissues are unable to reveal the early complex dynamic cellular changes 

that drove the development of the disorder, offering only a limited prospect of the disease end-

point (Wang et al., 2020). 

 

The introduction of human induced pluripotent stem cells (hiPSCs) technology (Takahashi 

et al., 2007) helped overcome these aforementioned hurdles and opened up new avenues in 

psychiatric disease modeling and drug discovery (Soliman et al., 2017). The iPSC technology 

offers a great advantage over the use of embryonic stem cells (ESCs) as it allows derivation 

from readily available adults cells, providing disease-relevant, patient-specific viable neuronal 

cultures accessible for investigation (Bardy et al., 2020; Soliman et al., 2017). With this 

technique, mature human somatic cells can be reprogrammed into adult stem cells with a set 

of just four transcription factors. The regained pluripotency allows for the stem cells to adopt 

a neuronal fate while preserving the genetic makeup of the donor cells. This makes iPSC 

technology particularly useful for modeling diseases with strong genetic components such as 

MDD, where complex, polygenic variations account for 30-40% of the disorder etiology 

(Sullivan et al., 2000; Shadrina et al., 2018; Wray et al., 2018). Epigenetic modifications, 

however, occurring in depression as a result of various environmental risk factors such as 

stress, early-life trauma, and medications, are normally erased after several cell divisions of 

fibroblasts (Garbett et al., 2015) and upon the reprogramming procedure (Soliman et al., 2017). 

This might pose a challenge when modelling disorders such as depression where the influence 

of environmental factors plays a significant role in the disorder’s etiology. 

 

iPSCs have been successfully used to model complex neurological and psychiatric 

disorders such as schizophrenia (Brennand et al., 2011), bipolar disorder (Mertens et al., 2015, 

O'Shea et al., 2016), autism spectrum disorder (ASD) (DeRosa et al., 2012), and Parkinson’s 

disease (Kikuchi et al., 2017). In the realm of depression research, two distinct research teams 
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have established effective protocols for generating serotonergic neurons from iPSCs. This 

provided a platform for investigating dysfunctions specific to serotonergic system, including 

those related to depression (Xu et al., 2016; Vadodaria et al., 2016). Vadodaria et al. later 

employed their iPSC-derived model and examined the cellular mechanism underlying SSRI-

resistance (Vadodaria et al., 2019a). They compared serotonergic responses and neural activity 

in in vitro neuronal cultures derived from SSRI-remitters and SSRI-non-remitters depression 

patients. They observed a serotonin induced hyperactivity downstream of the upregulated 

excitatory serotonergic receptors in the neurons of the non-remitter cohort. In another study, 

they revealed no differences in serotonin-related genes but showed significantly lower 

expression of genes regulating neuronal growth and morphology in the non-remitters group 

compared to remitters and healthy controls (Vadodaria et al., 2019b). This suggested that 

inherent differences in neurite growth and morphology might contribute to SSRI-resistance in 

depression and have serious consequences on the structure and function of neural circuits.  

 

Another group examined the involvement of mitochondrial dysfunction in the etiology of 

depression. They reported altered energy metabolism and impaired mitochondrial function in 

both fibroblasts and neural progenitor cells (NPCs) of depressed patients (Kuffner et al., 2020; 

Triebelhorn et al., 2022). This disturbed bioenergetic activity was evident by reduced oxygen 

consumption rates and mitochondrial membrane potential in patient-derived fibroblasts 

(Kuffner et al., 2020). Similar reduction was also observed in respiration, cytosolic Ca2+ levels, 

and cell size of NPCs (Triebelhorn et al., 2022). Furthermore, the group also generated iPSC-

neurons in which they observed a less negative resting membrane potential in MDD patient-

derived neurons compared to healthy controls. They also reported reduced membrane 

capacitance of patient-derived neurons indicative of diminished neuronal cell size, the finding 

that was consistent with the smaller cell size they observed in patients-derived NPCs. 

 

Human iPSCs derived from healthy donors have been employed in several studies to 

elucidate the acute antidepressant mechanism of ketamine, specifically in dopaminergic 

neurons which are known to be involved in depression’s core symptom, anhedonia (Cavalleri 

et al., 2018; Collo & Merlo Pich, 2018; Collo et al., 2018, 2019). These reports, generated by 

the same research group, emphasized the role of ketamine in driving structural neuroplasticity 

in dopaminergic neuronal cultures. This role was mediated by activating specific downstream 

intracellular pathways. These pathways involve α-amino-3-hydroxy-5-methyl-4-
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isoxazolepropionic acid (AMPA) receptors and brain-derived neurotrophic factor (BDNF), 

ultimately leading to the activation of the mammalian target of rapamycin (mTOR), which is 

associated with cell growth and survival. Other groups used human iPSC models derived from 

healthy subjects to explore either the antidepressive mechanism of fibroblast growth factor 2 

(FGF2) (Gupta et al., 2018), or the neurotoxicity of certain antidepressants (Huang et al., 2017; 

Pei et al., 2016) 

 

While the body of research exploring the cellular mechanisms of MDD and 

antidepressants using human iPSC models is expanding steadily, the application of this 

technique to investigate alterations in functional network architecture on the microscale and 

how they might contribute to the disorder remain unexplored thus far. The only evidence for 

disturbed functional organization at the microscale in depression stems from a recent study 

conducted on dissociated hippocampal neuronal culture in healthy rats. Trepl et al (2022) 

examined the effect of various antidepressants on large-scale network wiring, revealing 

reduced number of connections and Eglob, as well as increased local clustering in the treated 

cultures. However, it is important to consider the limitations of this study, including the use of 

healthy (animal) neural tissues on which antidepressant might have little or atypical effect, and 

the restricted effect of antidepressants on a specific neural tissue (hippocampal). Nonetheless, 

these results underscore the implication of functional network organization in the underlying 

mechanism of antidepressant action, thereby prompting a need for further explorations in this 

particular direction. 

 

1.5.2. On the macroscale 

1.5.2.1. Global functional network alterations 

Several brain imaging studies using rs-fMRI have investigated changes in functional 

network organization in MDD and their effect on the essential integration-segregation balance. 

The findings of these investigations, however, remain inconsistent. For example, Zhang et al, 

showed a topological shift toward randomization in functional brain networks of untreated 

patients with first episode MDD compared to controls, as was evident by increased Eglob and 

decreased path lengths in whole-brain networks of the patients cohort (Zhang et al., 2011). 

Meng et al, on the other hand observed an opposite pattern in depressed patients (decreased 

Eglob), although small-world topology and C did not differ from healthy controls (Meng et al., 
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2014). Unlike Zhang et al., Meng and colleagues recruited patient with recurrent major 

depression who were treated with antidepressants. This difference in medication status might 

be one reason behind these varying results. Two additional investigations did not reported any 

significant depression-related changes in these global measures of functional topology (Bohr 

et al., 2013; Lord et al., 2012). 

 

Two other studies explored whole-brain functional network topology alterations in first-

episode, medication-naive adolescent MDD patients (Jin et al., 2011; Wu et al., 2020). Both 

investigations reported a general departure from small-worldness in MDD patient compared to 

their healthy cohort. More specifically, Wu et al. observed topological aberration consisting 

with those reported by Zhang, where depressed patients showed lower C and higher integration 

efficiency (Wu et al., 2020). Integration and segregation topological features were also 

examined in late-life depression by Li and colleagues (Li et al., 2015). Their results indicated 

a lower integration (reduced Eglob) accompanied by a lower segregation (reduced Eloc) in 

depressed patients with and without cognitive impairment compared to healthy subjects. 

Notably, the observed reduction in small-world measures in this study was associated with 

higher depressive symptom severity in the depressed group irrespective of the cognitive status.  

 

An important factor contributing to the inconsistency of these findings is the substantial 

heterogeneity present within the patient sample across the studies. Certain investigations 

included patients that varied in terms of their age, clinical characteristics, number of depressive 

episodes, and/or treatment status. Additional factors involve differences across studies is the 

definition of nodes and the choice of brain parcellation, two key aspects that typically dictate 

the final graph structure and thus the graph measures (Wang et al., 2009; Zalesky et al., 2010). 

Furthermore, variations in motion artifacts and how the data were preprocessed may further 

contribute to the incongruences observed in the results (Liang et al., 2012). 

 

1.5.2.2. Subnetwork-specific and nodal alterations in functional organization 

The brain’s capacity to segregate and establish functionally specialized modules offers an 

intriguing avenue for examining module-specific topological changes and their potential 

implication in the cognitive and affective dysfunction associated with depression. Furthermore, 

exploring nodal topological characteristics of various brain regions, particularly in terms of 

their degree and centrality is of interest to inspect how the psychopathy affect these regions’ 



Introduction 

 

 

 
33 

influence in the network. In fact, frequent reports have highlighted the aberrant connectivity 

patterns within three specific modules or subnetworks that consistently feature in depression 

research: the default mode network (DMN), the cognitive control network (CCN), and the 

salience network (SN). The DMN encompasses spatially remote regions spanning the medial 

prefrontal cortex (MPFC), inferior parietal lobules (IPLs), posterior cingulate cortex (PCC), 

and the precuneus (Raichle et al., 2001). It is believed to mediate self-referential thoughts and 

introspective processing involved in “mind wandering”. As a result, DMN is typically activated 

at rest and deactivated during the performance of cognitive tasks. In contrast, CCN, 

alternatively referred to as frontoparietal network (FPN), activates during tasks and deactivate 

at rest. It supports executive functions and goal-directed behavior as well as decision making 

processes (Sheline et al., 2010). CCN is structurally composed of lateral frontal regions 

including the dorsolateral prefrontal cortex (DLPFC), dorsal anterior cingulate cortex (ACC), 

and posterior parietal cortex. SN constitutes a mesocortico-limbic network responsible for 

processing affective stimuli and regulating emotions and behavior. Core regions of the SN 

include cortical areas such as orbitofrontal cortex (OFC), ventral frontal cortex (VFC), and 

limbic structures of the ACC (subgenual ACC), together with limbic regions like the ventral 

striatum and nucleus accumbens. Depression-related dysfunctions and altered connectivity 

patterns within and between these distinct functional brain networks maps well onto core 

symptoms of depression. For instance, rumination correlates with the DMN (Hamilton et al., 

2011; Fischer et al., 2016), attention deficits and reduced concentration are closely linked to 

the CCN (Alexopoulos et al., 2012; Kaiser et al., 2015), and anhedonia and amotivation are 

associated with the aberrations in the SN. 

 

On the nodal level, Zhang et al. showed reduced regional connectivity and integration in 

the DLPFC, measured by degree, efficiency, and betweenness centrality (Zhang et al., 2011). 

The DLPFC is a core region of the CCN that supports mood regulation and other cognitive 

function. DLPFC altered connectivity has been frequently reported to play a critical role in the 

pathophysiology of depression (Bae et al., 2006; Sheline et al., 2010). In addition to the 

observed overall reduction in small-worldness, Jin and colleagues (2011) also reported a higher 

functional node degree in first-episode adolescent depressed patients in several regions of the 

DMN, including areas of prefrontal cortex (PFC) (ACC, dorsolateral, medial, and inferior PFC) 

and in insula and the amygdala. They also reported a positive correlation between the 

amygdala’s degree and the depression duration. Similar results were reported in the study of 
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Wu et al. (2020) that included a similar cohort of adolescent patients. The increased nodal 

centrality reported in their work also involved the hippocampus and the parahippocampal 

gyrus, while regions in the orbitofrontal, temporal, and occipital cortex showed decreased 

centrality. However, a contrasting pattern of DMN topology was found in remitted geriatric 

depression (RGD) patients (Zhu et al., 2018). In this study, the DMN of RGD patients exhibited 

lower Eglob and increased path length compared to controls, implying a less optimal network 

integration in RGD. They also investigated several regions of the posterior part of the DMN 

and showed decreased functional connectivity in PCC, precuneus, angular gyrus, and middle 

temporal gyrus. 

 

Depression-related topological changes were also reported in different regions of the 

striatum, a subcortical system related to the SN and implicated in regulating emotional 

processes and reward-related responses (Meng et al., 2014; Robinson et al., 2012). Putamen 

and the nucleus accumbens of the striatum exhibited increased nodal degree and centrality in 

MDD, which positively correlated with the number of depressive episodes. This correlation 

was independent of current depressive symptoms, medication status, or disease duration, 

suggesting a link between striatum connectivity and the course of the disorder and its relapse 

(Meng et al., 2014). Similarly, Ye et al. (2016) also reported increased nodal efficiency in many 

limbic regions regulating mood and affective processing, together with decreased nodal 

efficiency in regions of cognitive control such as DLPFC and ACC. This is consistent with 

prior findings that related pathophysiology of depression to a breakdown in the cortico-limbic 

network (Price & Drevets, 2012). The corticolimbic model of depression suggests decreased 

cortical and increased limbic activity as well as connectivity. This translates into a loss of top-

down regulation by the higher-order cortical areas (the regulatory system) over the mood 

related limbic structure (the affective system) (Price & Drevets, 2012). This pattern of 

abnormal cooperation between the two systems was observed and reported in several 

neuroimaging studies (Delaveau et al., 2011; Drevets et al., 2008). 

 

Together, these rs-MRI studies reveale a global topological aberration in macroscale brain 

network in individuals with MDD. Besides, they underscore the significance of hub regions 

within major large-scale brain networks in the disorder’s mechanism and provide insights into 

how their altered topology is linked to the resultant cognitive deficit and behavioral 

abnormalities. This region-specific information is highly important when considering novel 
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therapeutic targets in depression, e.g., potential target regions for TMS. However, the 

inconsistency among the findings of these reports necessitates further validation, preferably 

with consistent data preprocessing and analysis strategies. It is also worth noting the above 

reviewed literature primarily addresses abnormalities in functional topology in the resting brain 

in the absent of a cognitive task. Aberrant functional connectivity in depression patients 

performing cognitive or emotional tasks was reported in a number of studies (Frodl et al., 2010; 

Versace et al., 2010), yet similar investigation on network topology is lacking. Examining 

topological alterations during task performance is crucial to better understand the depression-

related network effect on cognition and mood. 
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1.6. Aim of the study  

Based on the stated literature, the distinct spatial scales of nervous system organization 

are highly interdependent and the changes on one scale could influence changes on the other. 

However, how this micro-macro relationship of network topology manifest in 

psychopathologies such as MDD is still a scarcely investigated area. Despite the wealth of 

research linking MDD to abnormal network communication, there is little evidence available 

on how functional network topology is affected by this disorder. While empirical findings from 

whole-brain studies on network topology in depression remain inconclusive, research 

conducted at the microscale is unavailable altogether. Such cross-scale information is essential 

to better elucidate the fundamentals of neural network communication and how they map 

across scales. Answering such a multiscale question is crucial to shed new light on the 

biological mechanisms underlying MDD pathological processes and how they map across 

scales affecting cognition and behavior. 

 

Here, we set out to investigate whether MDD patients and their age- and sex-matched 

healthy controls differ in graph theoretical measures of integration and segregation and overall 

node connections at two levels of spatial organization: cellular and systems. Furthermore, our 

objective was to assess whether such differences are consistent between the micro and macro 

levels. Functional networks were modelled and probed using iPSC technology and calcium 

imaging on the microscale, cellular level, and fMRI on the macroscale, systems level. We 

employed graph theory analysis to examine features of functional network topology at both 

scales. Additionally, a key aim of this research was to pinpoint specific brain regions exhibiting 

differences in their functional topological properties in MDD, including properties of efficiency 

and centrality. Ultimately, this project aims to establish an integrative framework to study the 

cross-scale effect of depression on neural network organization. It does so by piecing together 

data describing multiple levels of brain organization to better understand brain function in both 

health and disease. 
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Chapter 2. Materials and Methods 

 

 

 

 

2.1. On the microscale 

2.1.1. Participants and behavioral assessment 

Skin biopsies were collected from 9 MDD patients and 9 age- and gender-matched healthy 

controls by the Department of Dermatology, University Hospital of Regensburg, Regensburg, 

Germany. Patient donated skin biopsies at the end of their hospital stay after receiving 

antidepressant treatment. A written informed consent was obtained from all participants, and 

the study was approved by the ethics committee of the University of Regensburg (ref: 13-101-

0271). The diagnosis of MDD was made based on the ICD10 (WHO, 1993). The 21-item 

Hamilton Rating Scale for Depression (HAMD21) (Hamilton, 1960) was used to rate depression 

severity in the MDD group at hospital admission and to confirm the absence of depression 

symptoms in control groups. The HAMD21 scale is comprised of 21 items, each is a multiple-

choice question examining a distinct symptom of MDD with 3-5 possible responses that 

increase in severity. The HAMD21 ratings are determined by a clinician during a clinical 

interview based on the clinical observations reported by the patient. This final HAMD21 score 

reflects the presence and severity of the depressive disorder as depicted in  

Table 1.  

 

 

Total HAMD21 Score Depression Level 

0-9 Normal (no depression) 

10-20 Mild depression 

21-30 Moderate depression 

> 30 Severe depression 

 

Table 1. HAMD21 cut-off scores. HAMD12: The 21-item Hamilton Rating Scale for Depression 
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2.1.2. Cultivating primary human fibroblasts and generating hiPSCs  

The obtained human fibroblasts were subsequently cultured, frozen until later use, and 

then thawed as described in Kuffner et al. (2020). Human iPSCs were generated with episomal 

plasmid vectors (Okita et al., 2011) as reported in Triebelhorn et al. (2022). Quality assessment 

of the pluripotency of the generated iPSC was performed using the PluriTest® assay adjusted 

for next-generation sequencing (NGS) data (Schulze et al., 2015). 

 

2.1.3. Generating and culturing of hiPSC-derived neural progenitor 

cells (NPCs) 

The generated hiPSCs were differentiated into NPCs in accordance with the derivation 

protocol outlined in the work of Yan et al. (2013). NPCs cultures were subsequently cultivated 

and expanded as described in the following sections. 

 

2.1.3.1. NPCs seeding 

NPCs were seeded onto Matrigel-coated dishes, ensuring the maintenance of cells in a 

healthy and undifferentiated state (Hughes et al., 2010). Matrigel (Corning Incorporated), 

stored at -80 C, was thawed on ice to prevent its polymerization (typically occurring at 10 C). 

It was then resuspended in cold DMEM/F12 (Dulbecco's Modified Eagle Medium/Nutrient 

Mixture F-12) (Gibco by Life Technologies) and applied to pre-cooled 6-well plates (1 ml per 

well) to yield a final concentration of 8 μg/cm2. The coated plates were then incubated for 30-

60 min at 37 C and subsequently washed with 1ml/well F12 before plating the NPCs. If the 

plates were not intended for immediate use, a 1:1 ratio of DMEM/F12 was added and the plates 

were carefully sealed with Parafilm to prevent evaporation and stored at 4 C for a maximum 

duration of 7 day. 

 

2.1.3.2. NPCs passaging 

NPCs were cultivated in a neural expansion medium (NEM) (49.5% Neurobasal medium 

(Gibco by Life Technologies), 49.5% Advanced DMEM/F12 media, and 1% neural induction 

supplement (Life Technologies)). NEM medium was changed every two days until the cell 

culture reached 80-90% confluency. NPCs were passaged roughly once every 7-10 days. The 

passaging procedure of NPCs was commenced by first dissociating the cells using 500 μl 



Materials and Methods 

 

 

 
39 

prewarmed Accutase (StemCell Technologies) per well and incubating for 3 min at 37 C. 

After that, 1 ml of prewarmed F12 was added per well to stop the proteolytic enzyme activity 

of Accutase and prevent its toxicity. The cells were then harvested with 5 ml of prewarmed 

F12 medium and centrifuged the cell suspension at 800 rpm for 5 min. Cell counting was 

performed using trypan blue dye and a Neubauer counting chamber. After another round of 

centrifugation, 2 x 106 cells were resuspended in 2 ml of NEM and seeded in each well of a 

Matrigel-coated plates. The plates were then carefully moved in an “figure-eight” movement 

to ensure a homogeneous cell distribution and adhesion on the plates after seeding, and were 

incubated over night at 37C. On the following day, the NEM media was changed to remove 

any remaining traces of Accutase. 

 

2.1.3.3. NPCs freezing and thawing 

For cryopreservation of NPCs, 7-10 x 106 cells were centrifuged at 800 rpm for 5 minutes. 

After removal of the supernatant, 1 ml of cold STEMdiffTM Neural Progenitor Freezing 

medium (StemCell Technologies) was carefully added to the cell pallet. Subsequently, the cell 

pallet was transformed together with the freezing medium to a cryovial and swiftly moved into 

a freezing container with 2-propanol to ensure a gradual temperature decrease (-1 C/min) and 

thus a consistent freezing profile. The containers were stored at -80 C overnight and the next 

day the cryovials were taken out of the freezing containers. For extended storage, the vials were 

kept at -196 C in a liquid nitrogen tank. 

 

To thaw NPCs, the cryovial was subjected to a 3-minute incubation in a 37 C water bath. 

Subsequently, the cell pallet was resuspended and transformed into a 15 ml falcon tube. 5 ml 

prewarmed F12 was added for washing purposes and the falcon was centrifuged at 800 rpm for 

5 min. After the removal of the supernatant, the resultant pallet was resuspended in 2 ml NEM 

and seeded the cell suspension onto prewarmed Matrigel-coated plates. The plates were then 

incubated at 37 C overnight. On the following day, the NEM was changed to eliminate any 

residual freezing medium. Subsequent medium change was carried out every 2-3 day, taking 

into account the cell density in the dish. 
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2.1.4. Differentiation of NPCs into human induced neurons 

(iNeurons) 

NPCs intended for differentiation were plated on ibidi dishes (Ibidi GmbH, Germany) 

coated with poly-L-ornithine (PLO) (Sigma-Aldrich) and laminin (Sigma-Aldrich). PLO 

facilitates optimal cellular adhesion by positively charging the surface, thereby enhancing the 

binding of negatively charged glycoproteins expressed by neurons (Mazia et al., 1975). On the 

other hand, laminin assumes a pivotal role as an extracellular matrix molecule that promotes 

the generation, expansion, and differentiation of neural progenitors into neurons and stimulate 

neurite outgrowth (Ma et al., 2008). The coating procedure involved diluting PLO in Phosphate 

Buffered Saline (PBS) to a concentration of 15 μg/ml and adding 1 ml of that solution to each 

ibidi dish (1 ml/4 cm2) and distribute it with a an 8-shaped movement. The dishes were 

incubated overnight (or for a minimum period of 4 hours) at 37 C, or stored at 4 C for weeks 

if not used immediately. Next, the dishes were coated with laminin by replacing the PLO 

coating solution in each ibidi dish with a solution containing 20 μg of laminin in 1 ml of 

Advanced DMEM/F12. This ensured a laminin concentration of 5 μg/cm2, covering an area of 

4.1 cm2 per dish. 

 

The differentiation of NPCs to neurons was specifically carried out using cells from 

passages 5-10 to insure their complete maturation and optimal health. At the end of the 

passaging procedure, 3 x 105 NPCs were centrifuged and resuspended in 400 μl NEM per dish 

and seeded on the growth area (3.5 cm2) of the PLO/laminin-coated ibidi dishes.  

 

Following seeding of NPCs on coated ibidi dishes, the cells were incubated at 37 C 

overnight to allow for full attachment and cell division. When a confluency of about 70% was 

achieved, typically occurring after 24 h of seeding, the differentiation process were initiated by 

washing off NEM and culturing the cells in 400 μl neuronal differentiation medium (NDM) 

(1% B27+ supplement (Life technologies), 0.5% GlutaMax (Life Technologies), 0.5% non-

essential amino acids, 0.5% Culture One supplement (Thermo Fisher Scientific), 200 nM 

ascorbic acid (Carl Roth), 20 ng/ml BDNF (PeproTech), 20 ng/ml GDNF (PeproTech), 1 mM 

dibutyryl-cAMP (StemCell Technologies), 4 μg/ml laminin (Sigma), 50 U/ml Penicillin 

(Thermo Fisher Scientific), 50 μg/ml Streptomycin (Thermo Fisher Scientific) in Neurobasal 

Plus medium (Thermo Fisher Scientific)). Half of NDM was changed every other day by 

removing 200 μl and slowly adding another 200 μl of fresh NDM. To suppress the growth of 
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other differentiating, non-neuronal cells, the iNeuron cultures were treated with Cytosine 

arabinoside (Ara-C or Cytarabine), a pyrimidine antimetabolite that directly inhibits DNA 

replication. Ara-C was added at 6 days in vitro (DIV) following differentiation by removing 

NDM and adding another 400 μl of NDM containing 1 μM of Ara-C. Ara-C-containing NDM 

was replaced the following day with fresh NDM to prevent potential Ara-C toxicity. Cultures 

of mature neurons were obtained at 21 DIV and were ready for imaging (Figure 7A).  

 

To ensure results reliability and to boost statistical power, three different iNeuron cultures 

stemming from different NPCs passages were prepared for each subject’s iPS cell line. These 

cultures served as biological replicates. 

 

2.1.5. Microscopy and Calcium imaging 

Calcium imaging was employed to detect and record spontaneous neural activity of in 

vitro neuronal network. The ratiometric calcium indicator Fura-2/AM (Gibco by Life 

Technologies) was used to monitor changes in the cytosolic free calcium. The acetoxymethyl 

(AM) ester group renders the fluorescent dye membrane-permeable and is removed by cellular 

esterases once inside the cell, trapping the dye intracellularly. Fura-2 has an excitation 

spectrum/peak at 380 nm in its free form. Upon binding free cytosolic Ca2+ ions, Fura-2 

undergoes conformation change resulting in an excitation shift from 380 nm to 340 nm (with 

maintaining the same emission wavelength at 510 nm). Thus, cellular Ca2+ dynamics, and 

therefore neural activity, can be determined using the Fura-2 by measuring fluorescence 

intensity induced at the two wavelength 340 nm and 380 nm and emitted at 510 nm. The 

intensity ratio 340/380 is then calculated to indicate cytosolic Ca2+ dynamics. 
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Figure 7. developing a human cellular model and whole-brain, large-scale model to probe network topology in 

depression. (A) Generating a pluripotent stem cell (iPSC)-based cellular model for depression. Skin biopsies were collected 

from 9 depressed patients and their matched healthy subjects. Fibroblasts were cultured and reprogrammed into iPSCs and 

subsequently differentiated into neuronal lineage to NPCs. NPCs were then induced into fully developed neurons, so-called 

“induced neurons” (iNeurons). At 21 DIV, the cultured neurons were stained with calcium sensitive florescent dye (Fura-

2/AM) and collected 20-minute-recordings of their spontaneous activity under the microscope by means of calcium imaging. 

(B) generating a large-scale brain network human model. Seven patients and seven matched controls from the cohorts that 

donated skin biopsies were recruited for an MRI session. Functional MR images were collected in a 20-min resting-state (rs-

fMRI) scanning session in the absence of any cognitive task. Functional brain images were later used to explore functional 

network topology at the systems level in depression. iPSCs: induced pluripotent stem cells, NPCs: neural progenitor cells, 

iNeurons: induced neurons, DIV: days in vitro, rs-fMRI: resting-state functional magnetic resonance imaging.  

 

 

In practice, the neuronal cell cultures were loaded with a solution of Fura-2/AM (2 μM, 

Gibco by Life Technologies) and 10% Pluronic-F127 (1:1) (Thermo Fisher Scientific) in Opti-

MEM solution (Gibco by Life Technologies) and incubated at 37 ℃ for 30 minutes. After the 

incubation period, the cells were subjected to three consecutive washes, each involving 500 μl 

of glucose-containing Ringer's solution. The fourth volume of the solution was retained on the 

cultures, rendering them ready for the subsequent imaging process. 

 

The cultures were then examined with an observer.Z1 inverted fluorescence microscope 

equipped with a Fluar 20x/0.75 objective and an AxioCam MRm CCD camera (ZEISS, Jena, 

Germany). Fura2-loaded cell cultures were excited with ultraviolet light at wavelengths of 340 

and 380 nm (BP 340/30 HE, BP 387/15 HE) using a fast wavelength switching and excitation 

device (Lambda DG-4, Sutter Instrument), and fluorescence signal at 510 nm was captured (BP 

510/90 HE and FT 409). Zen imaging software (ZEISS) was applied to control the hardware 

and capture a 20-minute-long recording of spontaneous neural activity for each dish. The 

recordings were acquired at a 1.89 Hz rate, resulting in 2265 frames/images of size 272x208 

pixels (438.736x335.504 μm). It is worth noting that in our sample, Ca2+ imaging recordings 

A

B
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of 2 patients and their corresponding controls were collected for another project at a different 

acquisition rate (0.5 Hz) resulting in a different frame count (1200 frames). While a lower 

sampling rate can potentially inflate pairwise correlations between time courses, it is crucial to 

emphasize that the inclusion of these 4 subjects in the analysis does not introduce bias to our 

comparison between patients and controls. This is due to that fact that both groups have an 

equal number of datasets that are impacted by the reduction in sampling rate, ensuring an 

unbiased comparison between the group. For each image in a recording, the Ca2+ signal was 

expressed as the 340/380 fluorescence intensity ratio (indicating the bound/free Ca2+ ratio), 

which was computed using the ImageJ plugin “Ratio_Plus” (Magalhães, 2003, Schneider et 

al., 2012). 

 

2.1.6. Motion correction and segmentation 

The preprocessing and segmentations of Ca2+ recordings were conducted in MATLAB 

R2020b (The MathWorks Inc, Natick, MA, USA). Correcting for motion artifacts was carried 

out by aligning the images within each video using the Non-Rigid Motion Correction 

(NoRMCORRE) software (Pnevmatikakis & Giovannucci, 2017) (Figure 8A). To eliminate 

distortions introduced by motion correction, a 2-pixel margin was removed from all video 

edges. Subsequently, a correlation image was generated for each motion-corrected video. This 

was accomplished by computing the average temporal correlation of each pixel’s activity with 

that of its nearest 4 neighbors (Smith & Häusser, 2010). This image serves as a summary image 

that aids the subsequent segmentation process by enhancing active neurons while suppressing 

uncorrelated neuropil noise (Giovannucci et al., 2019). Next, a segmentation pipeline was 

designed in CellProfiler (McQuin et al., 2018; Stirling et al., 2021) to generate binary mask 

images corresponding to each correlation image. These masks outline the boundaries of all 

neurons in the correlation image, including both active and non-active ones. Similar to the 

trimming applied to the recordings, the masks produced by CellProfiler were also trimmed to 

ensure consistent sizes, and cell boundaries were identified and cells were labeled in the binary 

masks. We then segmented active neurons in each recording as regions of interests (ROIs) by 

implementing an intensity-thresholding based workflow programmed in MATLAB (Figure 

8A). First, each video was spatially smoothed with an 8-pixel Gaussian kernel to mitigate 

spatially distributed noise, consequently enabling smoother time courses. Then, we normalized 

the data and computed Z-scores across the temporal dimension. Subsequently, we computed 



Materials and Methods 

 

 

 
44 

the frame-wise maximum Z-score and chose the smallest of these values as the threshold above 

which we considered a pixel to represent neuronal activity. Additionally, we established a size 

criterion for the detected above-threshold contiguous pixels; only clusters containing more than 

14 pixels (equivalent to 22.6 μm) were considered as neurons. In a later step, the identified 

ROIs were masked with the binary mask of all cells to limit misidentification of background 

elements as neurons. The temporal evolution (time-course) of each segmented ROI was then 

determined by averaging the Ca2+ signal across all corresponding pixels within that ROI 

(Figure 8A). Validation of the segmented neurons was performed through manual inspection, 

involving a visual assessment of their temporal profile and spatial masks superimposed onto a 

summary image (e.g., mean image). Neurons exhibiting non-active Ca2+ traces were excluded 

from the analysis. Time-courses from all active cells in each video were saved for subsequent 

graph analysis. 

 

2.1.7. Graph theory analysis  

Graph theory analysis was performed in Python using the NetworkX 2.2 package 

(Hagberg et al., 2008) (Figure 8C). To reduce temporal noise, we first band-pass filtered the 

extracted time-courses between 0.0001 and 0.07 Hz. The connectivity profile of the neuronal 

network in each recording was determined by computing pairwise Pearson correlations 

between the filtered time-courses, yielding one functional connectivity (FC) matrix per video. 

Subsequently, a threshold was applied to the FC matrices to create binarized adjacency 

matrices. These resultant adjacency matrices are composed of binary values - ones and zeros - 

where “one” signifies the presence of a suprathreshold connection (correlation value) between 

two nodes, and “zero” signifies the absence of such connection.  Next, binary undirected graphs 

were constructed from the resultant adjacency matrices by depicting the neurons in the matrix 

as nodes, and assigning an edge to every connection that surpassed the threshold. To assess the 

network’s attributes of integration and segregation attributes, we measured the graph measures 

Eglob and C, respectively. Additionally, we computed average node degree (ANDeg) to estimate 

the overall number of connections within our graphs (see (Rubinov & Sporns, 2010) for a 

review on the interpretation of graph metrics).  

 

The number of supra-threshold edges in the constructed graphs, and consequently the 

resulting graph measure, is significantly influenced by the choice of correlation threshold rthresh. 
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In order to mitigate potential bias arising from the selection of an arbitrary threshold, we 

conducted the graph analysis iteratively across a range of rthresh spanning ±0.2-0.8 (in steps of 

0.1). There is no evidence available on the range of rthresh suitable for investigating microscale 

graphs. Nevertheless, previous studies have noted that graphs generated using very low or very 

high thresholds tend to exhibit attributes that are indistinguishable from those of random or 

lattice networks (Achard & Bullmore, 2007). Accordingly, we chose a wide range of rthresh 

(±0.2-0.8) to examine graph attributes excluding only two thresholds: the excessively liberal 

rthresh ±0.1, which produces spurious correlation/edges, and the extremely strict rthresh ±0.9, 

typically yielding fragmented or sparsely connected graphs.  

 

One of the challenges we encountered when analyzing the Ca2+ imaging data was the 

varying number of cells in each video. This variance was due to the fact that recordings were 

collected from different cultures, each with a unique cellular organization. In order to 

accommodate this variability in cell counts, we computed graph measures for 500 unique 

randomly sampled sets of cells for set-sizes of 5 to 47 cells. These boundaries were selected 

such that a) 500 unique combinations were possible and b) data from at least five subjects per 

group could be included (refer to Figure A1 in Appendix A). 
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Figure 8. Processing pipeline and graph theoretical analysis of Ca2+ imaging recordings and fMRI data. (A) Motion 

Correction: The Ca2+ imaging recordings underwent motion correction to account for any motion artifacts. Segmentation: 

Next, active neurons were segmented using a semi-automated pipeline. Source Extraction: The time-course of Ca2+ signal for 

each segmented neuron was extracted. (B) Data Preprocessing: Structural and functional MRI data were preprocessed using 

a standardized fMRIPrep pipeline. Brain Parcellation: subsequently, brain parcellation was performed, resulting in the 

division of the brain into 380 distinct regions using the surface-based Glasser atlas. Source Extraction: similar to the cellular 

data, Bold activity averaged across voxels was then extracted from each brain region. (C) Once the time-course of active 

neurons and brain regions are extracted, the following steps of the graph theoretical analysis were identical for both datasets. 

FC Matrix: functional connectivity (FC) matrices were generated by computing the pair-wise Pearson correlation of all 

regions of interest (ROIs) in each subject’s dataset, whether these ROIs are active neurons in the cellular data, or brain regions 

in the macroscale data. Adjacency Matrix: the FC matrices were then thresholded to create binarized adjacency matrices with 

values of 0 and 1, where 1 indicates the presence of a suprathreshold connection and 0 indicates the absence of such a 

connection between a pair of nodes. Graph Construction: Binary, undirected graphs were constructed, with nodes 

representing the ROIs in the adjacency matrix, and edges representing the suprathreshold connections. Graph theory metrics, 

including measures of network integration (Eglob), segregation (C), and ANDeg, were computed and compared between 

experimental groups. 
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2.1.8. Definition of graph measures 

2.1.8.1. Clustering coefficient 

The clustering coefficient C characterizes the level of segregation in a network by 

quantifying its tendency to form clusters. On the level of individual nodes, it reflects the 

proportion of a given node’s neighbors that are also neighbors of each other (Watts & Strogatz, 

1998). In other words, the clustering coefficient 𝑐𝑖 is the proportion of closed triangles attached 

to node i, relative to all possible closed triangles between i’s neighbors. Nodal C can be 

averaged across all nodes to produce a global description of clustering tendencies of the entire 

graph. Such network-wide C of a graph 𝐺(𝑁, 𝐾) with N nodes and K edges is given by the 

following equation: 

 

 
𝐶 =  

1

𝑁
 ∑ 𝑐𝑖 =

1

𝑁
∑

2𝑡𝑖

𝑘𝑖(𝑘𝑖 − 1)
𝑖∈𝑁𝑖∈𝑁

 Equation (1) 

 

where 𝑘𝑖  is the number of edges attached to a node i, and 𝑡𝑖 is the number of closed 

triangles connected to node i (or the number of edges between the direct neighbors of the node 

i). The term 𝑘𝑖(𝑘𝑖 − 1)/2 represents all possible connections between the neighbors of the ith 

node in an undirected graph. C ranges from zero to one, where C = 0 indicates the complete 

absence of clusters (closed triangles) in the network, while C = 1 indicates a fully connected 

graph. 

2.1.8.2. Global efficiency 

Eglob is defined as the average reciprocal of the shortest path length between any two nodes 

of the network, with the shortest path being the minimal number of edges passed to get from 

one node to another (Rubinov & Sporns, 2010; Feldt et al., 2011). Average 𝐸𝑔𝑙𝑜𝑏  of a graph 

with N nodes is the mean of 𝐸𝑔𝑙𝑜𝑏  of all nodes in the networks and is mathematically defined 

as follows: 

 

 
𝐸𝑔𝑙𝑜𝑏 =  

1

𝑁
∑ 𝐸𝑔𝑙𝑜𝑏(𝑖) =

𝑖∈𝑁

1

𝑁(𝑁 − 1)
∑

1

𝑙𝑖𝑗
𝑖,𝑗∈𝑁,𝑖≠𝑗

 Equation (2) 

 

Here, 𝐸𝑔𝑙𝑜𝑏  is the sum of the reciprocal of the shortest path lengths 𝑙𝑖𝑗 connecting any two 

nodes i and j in a graph. This sum is normalized by 𝑁(𝑁 − 1) which is the number of all 
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possible pairs of nodes in the network excluding self-pairs, i.e., the connection of a node with 

itself. Thus, 𝑁(𝑁 − 1) represents the off-diagonal elements in the adjacency matrix. The use 

of the reciprocal of the shortest path length 
1

𝑙
 , instead of l itself, makes Eglob numerically 

measurable in fragmented graphs in which some nodes are disconnected. In fragmented graphs 

at least one node i is not connected to the rest of the graph by an edge and 𝑙𝑖𝑗 = ∞. 

 

Eglob values range between zero and one where a Eglob = 0 indicates the absence of 

“shortcuts” or long-ranging connections in a network, while a Eglob = 1 indicates that all nodes 

in a network could be reached from any point with few efficient “jumps”/steps.  

2.1.8.3. Average node degree 

Node degree is one of the most fundamental and easy to derive metrics in graph analysis, 

defined simply as the total number of edges connected to a particular node i (𝑘𝑖) (Bullmore & 

Sporns, 2009). Average node degree (ANDeg) is thus the number of the functional connections 

found in a graph divided by the number of nodes in that graph:  

 

 
𝐴𝑁𝐷𝑒𝑔 =

1

𝑁
 ∑ 𝑘𝑖

𝑖∈𝑁

 Equation (3) 

 

2.1.9. Statistical testing 

Three-way repeated measures ANOVA (Group x Threshold x Network) was conducted 

on each of the graph measures computed to assess group differences between MDD patients 

and healthy controls. We looked for a main effect of Group (controls versus patients) and a 

possible interaction between the Group factor and other factors (Threshold and Network size). 

When a group effect or an interaction with the Group factor was detected, we performed post-

hoc t-tests of group differences at each network size and each threshold level. This allowed us 

to determine the specific levels of the factors at which our analysis was more sensitive. To that 

end, we used Monte Carlo permutation testing by creating a null-distribution of t-values for 

each measure, shuffling group labels 5000 times, and computing an independent t-test at each 

level of Threshold and Network size. We used these null distributions to assess the statistical 

significance of observed t-values in terms of group differences. However, after correcting for 

multiple comparisons using false discovery rate (FDR) (Benjamini & Hochberg, 1995), the 
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observed t-values did not show statistically significant differences between groups. 

Nevertheless, for exploratory purposes, we present the finding at (puncorrected < 0.05) in the 

results section. 
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2.2. On the macroscale 

2.2.1. Participants and behavioral assessment 

The MRI follow-up study was conducted 4-5 years following the acquisition of the skin 

biopsies. We contacted former patients and controls from which the skin biopsies were 

obtained and invited them for a follow-up fMRI scanning session. 15 subjects out of the 18 

contacted agreed to participate in the MRI study and were recruited to the Oberpfalz District’s 

Medical Hospital (medbo) in Regensburg. Exclusion criteria included contraindication to MRI 

scanning (e.g., pacemakers, metal implants, or claustrophobia), pregnancy, and lactation. One 

patient was wearing hair extensions that was MRI incompatible and was excluded from the 

study. In total, seven patients and seven controls were included in the study. All enrolled 

participants provided a written consent in accordance with the ethic commission of the 

University Hospital of Regensburg (approval number 16-101-0049). 

 

Before the scanning session, subjects completed three questionnaires in German: a 

demographic questionnaire, the Positive and Negative Affect Schedule (PANAS), and the Beck 

Depression Inventory (BDI). The PANAS is a 10-item self-report that reliably measures the 

two primary dimensions of a subject’s current mood: positive and negative affect (Krohne et 

al., 1996; Watson et al., 1988). We used short-term instructions (e.g., “im Moment” meaning 

right now) to assess the subject’s state of mood at the time of scanning as the mood state can 

affect functional brain connectivity (Brady et al., 2017; Price et al., 2017). On the other hand, 

the BDI is a self-report questionnaire to quantitively the behavioral manifestations of 

depression (intensity) (Beck, 1961). It comprises 21 clinically derived items or depressive 

symptom category, each with a list of 4-5 self-evaluative statements from which the 

participants select the statement that best describe their symptom. The statements are ranked 

in a way that indicates the severity of a given symptom from neutral to maximum severity. The 

depression score is calculated by summing the ranks of the chosen statements. The resulting 

score signifies the presence and severity of the depressive disorder, as delineated in Table 2. 
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BDI Total Score Depression Level 

0-10 Non to minimal range of depression 

11-18 Mild depression 

19-29 Moderate depression 

30-63 Severe depression 

Table 2. BDI scale cut-off points. BDI: The Beck Depression Inventory. 

 

2.2.2. MRI acquisition 

Functional, field map, and structural MRI data were collected using a Siemens Magnetom 

Prisma 3T Scanner with a 64-channel head-coil at the Brain Imaging Center of the university 

of Regensburg. During the resting-state fMRI (rs-fMRI) scan, participants were instructed to 

lie still in the scanner with their eyes closed while staying awake. We used a multiband echo-

planar imaging (EPI) sequence with a multiband factor of 4 in a descending order for acquiring 

functional images with the following acquisition parameters: repetition time (TR) of 1000 ms, 

echo time (TE) of 30 ms, flip angle (FA) of 60, and slice thickness of 3 mm. A total of 1320 

volumes were collected during a 22-min scan with a field of view (FoV) of 192 mm x 192 mm, 

an acquisition matrix (AM) of 64 x 64, and an isotopic voxel size of 3 mm.  

 

We acquired field map images after each functional scan to correct for any inhomogeneity 

in the magnetic field that may have arisen during the scan and caused distortions in the EPI 

images. Field mapping was carried out using double-echo spoiled gradient echo sequence with 

TR=715 ms, TE=5.81/8.27 ms, FA=40, and an isotopic voxel size of 3 mm. This sequence 

created two magnitude images (one for each echo time) and one phase difference image (the 

difference between 2 phase images at each echo time). The phase-difference map was then 

used to estimate the static magnetic field B0-nonuniformity map (also known as field map).  

 

Lastly, we acquired high resolution T1-weighted images using a Magnetization Prepared 

Rapid Gradient Echo (MP_RAGE). Acquisition parameters included: TR=1910 ms, TE= 3.67 

ms, FA=9, slice thickness = 1 mm, AM= 256 x 256, and FoV= 250mm X 250 mm. 
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2.2.3. MRI preprocessing 

Functional and structural data were preprocessed using a standardized pipeline (fMRIPrep 

version 20.2.1) (Esteban et al., 2019). The preprocessing steps for structural images comprised 

segmenting brain tissue and reconstructing the brain surface with FreeSurfer software package 

(version 6.0.1) (Fischl, 2012) and a spatial normalization of the brain-extracted T1-weighted 

images to a standard space with nonlinear registration. Resting-state functional images 

underwent several preprocessing steps. We performed bias field correction performed using 

estimated field maps that were aligned to the corresponding EPI reference image, followed by 

susceptibility distortion correction, motion correction, and slice-timing correction. In a last 

step, the preprocessed functional time-courses were resampled onto the subject-specific 

cortical surface, resulting in high resolution grayordinate time-courses (Figure 8B) (an 

automatically-generated summary of fMRIPrep preprocessing steps is provided in Appendix 

A).  

 

2.2.4. Graph theory analysis 

2.2.4.1. Global level 

To parcellate the brain into distinct regions, the surface-based Glasser atlas was employed 

(Glasser et al., 2016), which subdivides each hemisphere into 180 distinct brain regions or 

region of interests (RIOs) (Figure 8B). In a process analogous to time-course extraction in the 

cellular data, we computed the mean activity time-course within each region by averaging the 

activity time-series of all voxels within that region (Figure 8B). Band-pass filtering was then 

performed on the resulting region-specific signal retaining the characteristic low frequency 

range of the BOLD signal between 0.01 and 0.1 Hz. This frequency range mitigates the impact 

of low-frequency drift and high frequency physiological noise, including respiration and 

cardiac pulse. Next, an FC matrix of the 360-ROI network was created for each subject. Similar 

to the cellular data, we constructed the 360 x 360 FC matrices by computing the pair-wise 

Pearson correlation coefficient between the BOLD time-courses of all ROIs (Figure 8C). 

 

We then binarized the FC matrices using three rthresh (±0.5, ±0.6, ±0.7). The choice of these 

thresholds was based on the connection density of the graph that they generate. Connection 

density quantifies the number of existing edges in a graph relative to the maximum possible 

number of edges. This metric reflects connection costs, where increased connection density 
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signifies a greater number of edges, leading to higher wiring costs. In contrast to in vitro 

microscale neuronal networks, prior research at the macroscale has provided evidence that 

human brain networks typically exhibit a connection density range of 5-50%, emphasizing a 

tendency towards sparse network connectivity in the brain (Humphries et al., 2005; Lynall et 

al., 2010; Meng et al., 2014; Vértes et al., 2012). In our data, this range of connection densities 

was attained through the three rthresh (0.5, 0.6, 0.7) (Figure 9). Accordingly, these rthresh were 

used to binarize the connectivity matrices, resulting in adjacency matrices. In an adjacency 

matrix, a value of 1 reflects the presence of a suprathreshold connection/correlation between a 

pair of ROIs, and a value of 0 represents the absence of such connection/correlation. Finally, 

we constructed a binary, undirected graph from each subject’s adjacency matrix in which nodes 

represented different brain regions, and edges represented the suprathreshold functional 

connections between these regions (Figure 8C). 

 

To investigate differential functional network topology in depression on a whole-brain, 

systems level, we computed and compared the same graph metrics that we estimated for the 

cellular data. These include Eglob and C for assessing integration and segregation properties, 

respectively. ANDeg was also computed to determine and compare the overall number of edges 

in the patients and controls graphs (see section 2.1.8 for mathematical definitions). 
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Figure 9. Connection density of whole-brain networks across groups as a function of correlation threshold. The 

thresholds (±0.5, ±0.6, ±0.7) correspond to the connection density range of 0.05-0.5 (the filled red area) which is typically 

reported in macroscale human brain networks. The shaded area represents the 95% confidence interval. 

 

2.2.4.2. Nodal level 

In contrast to single neurons within in vitro cultures, developed brain regions at the whole-

brain level exhibit specialized functionality resulting in region-specific, unique and meaningful 

topological profile that is worth investigating. To that end, we computed graph theory metrics 

to describe the functional topological characteristics of the individual 360 parcellated ROIs of 

the Glasser atlas. We investigated nodal efficiency and centrality depicted by the two graph 

metrics of betweenness centrality and node degree.  

 

2.2.4.2.1. Betweenness centrality 

BC counts the proportion of shortest paths that crosses a given node, thus, reflecting how 

“central” that node is in a network. The highest BC is for one node, the more influential that 

node is by mediating a high proportion of information traffic (Fornito et al., 2016). BC is for a 

given node i is computed as follows: 
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𝐵𝐶(𝑖) =  

1

(𝑁 − 1)(𝑁 − 2)
∑

𝜌ℎ𝑗(𝑖)

𝜌ℎ𝑗
ℎ≠𝑖,ℎ≠𝑗,𝑗≠𝑖

  Equation (4) 

 

Where 𝜌ℎ𝑗(𝑖) is the number of shortest paths between h and j that passes through i. This 

number is normalized by 𝜌ℎ𝑗 , which is the total number of shortest paths from node h to node 

j, including the ones that do not go through node i. (𝑁 − 1)(𝑁 − 2) is the number of node pairs 

that does not include node i and is used to normalize betweenness centrality between 1 and 0. 

A value of 1 means that a node lies on every single shortest path in the network, and a value of 

0 indicates that the node is not crossed by any shortest path. 

 

2.2.5. Statistical analysis: 

On the global level, similar to the analysis on the microscale, we conducted a Two-way 

repeated measures ANOVA (Group x Threshold) to examine potential group differences in 

Eglob, C, and ANDeg. In this analysis, the fact “Network size” was omitted given the uniformity 

of the whole-brain data in terms of the number of parcellated ROIs. This uniformity is a result 

of employing the same atlas in the parcellation step. On the nodal level, we assessed group 

differences in each of the computed graph measures by employing permutation test (5000 

iterations; p < 0.05) at each ROI/node and at each rthresh. The results did not survive the FDR 

correction for multiple comparisons (360 comparisons/nodes) (pcorrected < 0.05). Therefore, only 

the uncorrected results at puncorrected < 0.01 will be reported in the following results section. 
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Chapter 3. Results 

 

 

 

 

This chapter presents the findings of this multiscale study of functional network topology 

in MDD. It begins by reporting topological findings on the microscale level followed by 

reviewing the global and nodal topological results at the macroscale. 

3.1. On the microscale  

The first part of this work involved examined differential functional network topology in 

in vitro cultures of reprogrammed neurons derived from 9 MDD patients and matched healthy 

controls. These cellular networks were captured by means of Ca2+ imaging and probed for their 

functional architecture using graph theory analysis focusing on the most fundamental 

functional principles: integration and segregation. Considering that single neurons in in vitro 

cultures are unlikely to exhibit specialized functions, particularly in the absence of stimuli, our 

microscale analysis primarily focused on averaged graph metrics that describe network 

organization at a global level rather than on an individual node level. Furthermore, since 

binarized adjacency matrices change substantially with rthresh, we computed graph measures for 

a range of such thresholds (rthresh = ±0.2-0.8). These global metrics were Eglob (integration), C 

(segregation), and ANDeg.  

 

3.1.1. Demographic details and sample characteristics 

We investigated group differences in age, gender, body mass index (BMI), and HAMD21 

scores (Table 3). Since the control group was selected to match MDD patients in terms of 

gender and age, the two groups do not differ in gender (4 males and 5 females) nor in age 

(ageMDD= 32.33, agecontrol= 33.22, t(16)= 0.19, p= 0.85). Similarly, BMI (BMIMDD=22.67, 

BMIcontrol=24.58) did not differ between the groups (t(16)=-1.29 , p=0.22). As expected, 

HAMD21 score differed significantly between patients and controls (HAMDMDD=26 (moderate 

to severe depression), HAMDcontrol=0.4 (no depression), t(16)=-12.19, p<0.001). Furthermore, 
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the control subjects did not report any past occurrences of depressive episodes or other 

psychiatric conditions. 

 

Measure 
Healthy controls 

Mean (±SEM) 

MDD patients 

Mean (±SEM) 
t value p value 

N 9 9 - - 

Gender (M/F) 4/5 4/5 - - 

Age 33.22 (±3.44) 32.33 (±3.82) 0.195 0.85 

BMI 22.67 (±0.72) 24.58 (±1.29) -1.29 0.22 

HAMD 0.4 (±0.25) 26 (±1.63) -12.19 < 0.001 

 

Table 3. Demographic and clinical characteristics of microscale study’s cohorts. SEM: Standard error of the mean, 

BMI:Body mass index; HAMD: Hamilton Rating Scale for Depression. 

 

 

3.1.2. Segregation properties 

Segregation attributes of cultured neuronal networks were assessed by computing C. C 

gives an estimation about the neighbors of one node being also neighbors of each other, 

indicating the capacity of the network to form clusters that could engage in specialized 

functions. We detected a reduction in the C in patient-derived neuronal cultures compared to 

controls (main effect of group, F(1,8)= 5.97, p= 0.04, Figure 10). This decrease indicated a 

diminished segregation capacity in cultured neural networks of the patient group compared to 

their matched healthy controls. The C varied significantly with network size (main effect of 

network size, F(37, 296)= 73.59, p< 0.001) and threshold (main effect of threshold, F(6, 48)= 

1003.25, p< 0.001). 

 

Post-hoc t-tests were performed to assess the specific network sizes and thresholds at 

which a significant decrease in C occurred (Figure 10). These tests showed that group 

differences were primarily noticeable in larger network sizes (refer to Table B1 in Appendix B 

for post-hoc statistics). 
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Figure 10. Decreased clustering coefficient in patient-derived neurons compared to controls across varying network 

thresholds and sizes. (A) Schematic illustration of two networks with high and low C, a segregation measure. C of a given 

node i (the orange node) represents the proportion of closed triangles attached to node i relative to all possible closed triangles 

between i’s neighbors. In the left network, the orange node has a low C as its direct neighbors are sparsely connected, resulting 

in only 2 closed triangles (out of 6 possible ones). In contrast, the right network shows a higher C since the number of closed 

triangles between the orange node and its neighbors is higher (4 in this case). (B) C showed a significant overall reduction 

(p=0.04) in neuronal cultures of MDD patients (dashed lines) compared to controls (solid lines) across network sizes and all 

correlation thresholds rthresh (depicted in different colors). C was significantly higher when lower rthresh was applied (p< 0.001) 

and for larger network sizes (p< 0.001). We explored the levels of network sizes and rthresh at which group differences in C 

occurred. Asterisks (*) indicate the presence of statistically significant difference (p<0.05, uncorrected). C was computed for 

all rthresh ranging from  0.2 – 0.8 (see Figure B1 in Appendix B); for clarity, results of only four thresholds are shown. The 

shaded area represents the 95% confidence intervals. 

  



Results 

 

 

 
59 

3.1.3. Integration properties 

We estimated Eglob as a measure of the network capacity for parallel information routing 

and integration across its distributed units. Although our data revealed a general trend of 

reduced Eglob in neuronal networks derived from patients compared to controls, group 

difference did not reach statistical significance (no main effect of group, F(222,1776)=1.63, 

p=0.194, Figure 11). Additionally, no significant influence of different network sizes or 

thresholds was detected on group differences in Eglob (no three-way interaction effect Group x 

Network size x Threshold, F(222,1776)= 1.86, p=0.152).  

 

However, the data demonstrates a significant increase in Eglob as a function of network 

size (main effect of network size, F(37, 296)= 23.56, p< 0.001). Furthermore, there was a 

significant reduction in Eglob as the rthresh used for constructing binarized graph increased (main 

effect of threshold, F(6, 48)=1157.36, p< 0.001).  
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Figure 11. Alterations in global efficiency across experimental groups, thresholds, and network sizes. (A) Schematic 

illustration of two graphs with high and low Eglob. Eglob is a measure of network integration determined by averaging the 

reciprocal of the shortest path length between all pair of nodes in a network. Shortest path length, in turn, is defined as the 

minimum number of edges that must be traversed to get from one node to another. The network on the left depicts a graph 

with low Eglob evident by the large number of steps (6) required to reach node B from node A, while the network on the right 

shows high Eglob as only 3 steps are required. (B) Changes in mean Eglob in graphs of depressed patients (dashed lines) compared 

to controls (solid lines) across different network sizes and rthresh (depicted by difference colors). Although an overall trend of 

lower Eglob in MDD neuronal cultures is present, no statistically significant group differences in network integration capacity 

could be detected (p=0.194). Eglob significantly increased as the networks grew larger (p< 0.001) and as rthresh became more 

liberal (p< 0.001). Eglob was computed for all rthresh ranging from  0.2 – 0.8 (see Figure B2 in Appendix B); for clarity, results 

of only four thresholds are shown. The shaded area represents the 95% confidence interval. 
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3.1.4. Average node degree 

ANDeg is one of the most fundamental graph metrics. It describes the number of functional 

connections that nodes in a network have on average. ANDeg in our patient-derived neuronal 

microscale networks showed a significant decrease compared to networks of healthy controls 

(main effect of group; F(1,8)=5.44, p=0.048, Figure 12). Besides, ANDeg showed an overall 

significant increase as the network grew larger (main effect of network size, F(37, 

296)=167.82, p< 0.001) and at more liberal rthresh (main effect of threshold, F(6, 48)= 622.24, 

p< 0.001) as seen with the previously reported graph metrics. 

 

We also performed post-hoc t-tests to identify the specific network sizes and thresholds at 

which significant group differences in ANDeg became evident. As seen in C, group differences 

in ANDeg were discernible at larger network sizes (more than 20) (refer Table B2 in Appendix 

B for post-hoc statistics). 
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Figure 12. Decreased average node degree in patient-derived neurons compared to controls across varying network 

thresholds and sizes. (A) schematic illustration of two network topologies with contrasting ANDeg. ANDeg is defined as the 

mean of the number of functional connections per node in the network (illustrated here by a number inside each node in the 

graphs). The graph on the left represents a network with low ANDeg (equals to 2), while the right graph shows high ANDeg 

(equals to 3.3) as the overall number of connections in the network increases. (B) ANDeg showed a significant overall decrease 

(p=0.048) in graphs of depressed patients (dashed lines) compared to controls (solid lines) across varying network sizes and 

rthresh (depicted in different colors). ANDeg significantly increased with larger network sizes (p<0.001) and lower rthresh 

(p<0.001). We explored the levels of network sizes and rthresh at which group differences in ANDeg occurred. Asterisks (*) 

indicate the presence of statistically significant difference (p<0.05, uncorrected). ANDeg was computed for all rthresh ranging 

from  0.2 – 0.8 (see Figure B3 in Appendix B); for clarity, results of only four thresholds are shown here. The shaded area 

represents the 95% confidence intervals. 
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3.2. On the macroscale 

3.2.1. Demographic details and sample characteristics 

Table 4 demonstrates BMI values and behavioral scores and their differences between the 

patient group and their age- and gender-matched healthy controls who were recruited for the 

MRI study. BMI differed significantly between groups showing higher values in MDD group 

(BMIMDD=28.83, BMIcontrol=23.29, t(12)=-2.827, p=0.015). There were no differences between 

the groups in terms of positive and negative affect measured prior to the fMRI, as statistically 

tested by an independent t-test (p < 0.05). Interestingly, BDI scores did not differ between 

groups (Table 4). It is also worth noting that there was high variability in BDI within the patient 

group, with BDI scores ranging from 0 to 23. Among the seven patients, three were receiving 

antidepressant treatment at the time of scanning, with only two of those reporting BDI scores 

indicative of moderate depression. The remainder of the patient cohort demonstrated BDI 

scores typical for normal mood.  

 

 
Healthy controls 

Mean (±SEM) 

MDD patients 

Mean (±SEM) 
t value df p value 

N 7 7 - - - 

Gender (M/F) 3/4 3/4 - - - 

Age 37.71 (±4.76) 37.86 (±5.04) -0.02 12 0.984 

BMI 23.29 (±1.09) 28.83 (±1.63) -2.827 12 0.015 

BDI 3.86 (±2.24) 9.57 (±3.37) -1.413 12 0.183 

PANAS pos. 35.71 (±2.93) 34.29 (±2.45) 0.375 12 0.715 

PANAS neg. 11.43 (±0.81) 13.71 (±1.38) -1.431 12 0.178 

 

Table 4. Demographic profile and mood rating of macroscale study’s cohorts.  

SEM: Standard error of the mean; BMI: Body mass index; BDI: Beck Depression Inventory; PANAS: Positive and Negative 

Affect Schedule. 

 

3.2.2. Global graph theoretical analysis 

In this analysis, we investigated differences in macroscale functional network topology 

between the experimental groups at a global level. Figure 13 illustrates the computed metrics 

of integration (Eglob) and segregation (C), together with ANDeg at the three rthresh corresponding 

to connection densities range between 5-50%. The mixed ANOVA (Group x Threshold) 
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showed no significant group effects observed neither in C (no main effect of group; 

F(1,12)=0.002, p=0.965) nor in Eglob (no main effect of group; F(1,12)=0.141, p=0.714) 

(Figure 13). Similarly, ANDeg did not differ significantly between the experimental groups 

(no main effect of group; F(1,12)=0.102, p=0.755) (Figure 13). However, the fMRI data 

showed a trend of increased C and ANDeg in large-scale networks of depressed patients. 

 

Graph metrics at the macroscale decreased significantly as the rthresh applied increased 

(Figure 13). This effect of threshold on graph measures was observed for all computed graph 

metrics: C (main effect of threshold; F(1.3,16)=321.264, p<0.001), Eglob (main effect of 

threshold; F(1,13.1)=617.485, p<0.001), and ANDeg (main effect of threshold; 

F(1,13.1)=63.237, p<0.001). However, graph metrics did not differ between groups as rthresh 

varied: C (no Group x Threshold interaction; F(1.3,16)=0.47, p=0.558), Eglob (no Group x 

Threshold interaction; F(1,13.1)=0.193, p=0.69), and ANDeg (no Group x Threshold 

interaction; F(1,13.1)=0.015, p=0.921). 
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Figure 13. Differences in functional network organization between groups on the macroscale. At each of rthresh tested, no 

significant differences between former depressed patients and their healthy controls in terms of their segregation capacity as 

measured by C (A), integration capacity as measured by Eglob (B), or in the overall number of connections per node as measured 

by ANDeg (C). Error bars represent the 95% confidence intervals. ns: not significant (after correcting for false discovery rate). 
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3.2.3. Nodal graph theoretical analysis 

To further localize distinct regional differences in topological properties between groups, 

we measured nodal graph metrics — node efficiency, node degree, and betweenness centrality 

— for each of the 360 regions defined by the Glasser atlas. Even at a puncorrected < 0.01, no 

significant depression-related changes were observed in nodal efficiency or node degree. 

However, only BC differed between groups at puncorrected < 0.01. Betweenness centrality is a 

measure of hubness. It reflects how central a given region is in a network in terms of integrating 

information through shortest paths. Two regions in the left hemisphere exhibited differential 

BC in the patient group compared to healthy controls within the investigated threshold range. 

These regions are an area in the intraparietal sulcus (IPS) and the anterior agranular insula 

complex (AAIC) (Figure 14). While BC of left IP decreased in the patient group, left AAIC 

showed increased centrality in the patient networks compared to those of healthy controls 

(puncorrected < 0.01). 

Table 5 summarizes the statistics of this analysis. 

 

Node Side rthresh Group Mean 
CI 

t value df p value 
upper lower 

Intraparietal 

(IP0) 
L 0.5 

Control 0.0022 0.00076 0.00082 
3.555 12 0.0029 

patient 0.0006 0.00023 0.00024 

Intraparietal 

(IP0) 
L 0.6 

Control 0.004 0.002 0.002 
2.893 12 0.0069 

Patient 0.0007 0.00031 0.00027 

anterior 

agranular 

insula (AAI) 

L 0.7 

Control 0.006 0.0037 0.0034 

-3.052 12 0.0058 
Patient 0.0023 0.0024 0.0015 

 

Table 5. descriptive and inferential statistics on nodal betweenness centrality in large-scale networks.  

rthresh: correlation threshold; CI: confidence interval; df: degrees of freedom. 
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Figure 14. Changes in nodal betweenness centrality in the brain of depressed patients in comparison to healthy controls 

at different correlation thresholds. (A) BC of the left intraparietal region was reduced in depressed patients at r=0.5 and (B) 

at r=0.6 compared to controls. (C) At r=0.7, increased BC of the anterior agranular insula complex was observed in depressed 

patients in comparison to healthy controls. 
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Chapter 4. Discussion 

 

 

 

 

This chapter delves into the findings of this research and discusses their interpretations, as 

they aim to explore the differential functional organization of neuronal network in MDD. These 

MDD-related topological changes were probed across two scales of spatial granularity within 

the same groups of subjects: the cellular and the systems levels. We set out to examine potential 

differences in graph theoretical measures of integration and segregation between MDD patients 

and controls and to assess the consistency of these results between micro and macro levels. 

Network architecture was captured at the cellular level by means of calcium imaging and 

fluorescent microscopy, while fMRI was utilized to investigate whole-brain, macroscale 

networks. Graph theory was employed to characterize global and nodal functional network 

topology on the two scales. The main focus was on graph metrics that reflected features of 

segregation (C), integration (Eglob), and the overall number of nodal connections (ANDeg). 

Additionally, nodal graph metrics identifying nodes of influence in the large-scale brain 

networks were also examined (degree, efficiency, and BC). 

 

The investigation of multiscale network topology in psychiatry, and particularly in the 

context of MDD, remains a relatively unexplored area. To date, there is a notable lack of 

research against which we can compare our multiscale findings. In this chapter, we will 

examine and discuss our findings at each scale individually, facilitating a comparative 

discussion with the existing body of research specific to each respective scale. The discussion 

is commenced by presenting the microscale findings, followed by a discussion of the results 

on the macroscale level. Subsequently, an integrated view will be developed that aims to 

elucidate the relation between the findings observed at both scales. 
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4.1. Findings on the microscale 

The microscale findings involved decreased segregation capacity coupled with a reduction 

in overall node degree in iPSC-derived neuronal networks of depressed patients compared to 

their healthy controls. Although integration properties, as measured by Eglob, also exhibited a 

clear reduction trend in patient-derived networks, this reduction did not show statistical 

significance.  

 

4.1.1. Reduced segregation capacity and overall node degree in 

patient-derived cellular networks 

Small-world, efficient networks typically support a level of segregation that can be 

measured by the graph metric C. These segregation abilities are typically facilitated by a 

network topology that allows for dense connections between adjacent and functionally related 

neurons, forming functionally specialized clusters or “communities”. The significant reduction 

in C we found in iPSC-derived neuronal cultures of depressed patients indicates altered local 

organization and diminished functional specialization and segregation capacity at the cellular 

level in depression. The influence of clustered topology on neural function (Bisio et al., 2014; 

Shein-Idelson et al., 2011) and network dynamics (Yamamoto et al., 2018; Wang, 2011; 

Litwin-Kumar & Doiron, 2012) suggests that the breakdown of such clustered topology is 

likely to have implications for the network’s dynamic repertoire, impacting neural activity and 

potentially contributing to the restricted dynamics repertoire previously reported in MDD at 

the macroscale (Holtzheimer & Mayberg, 2011; Kaiser et al., 2015; Tognoli & Kelso, 2014). 

However, further multiscale investigations examining the relationship between microscale 

topological alterations and disease manifestation on the macroscale are warranted to establish 

a causal link between these phenomena. Additionally, the positive effect of segregated 

topology on the network’s robustness and resilience to insult (Teller et al., 2014; Yamamoto et 

al., 2018) suggests that a network lacking strong local interconnectivity can no longer confine 

and impede the propagation of pathological processes within the system. Consequently, this 

diminishes the network's ability to withstand damage, rendering it more vulnerable to the 

spread of psychopathologies across its parts (Fornito et al., 2015). Therefore, the reduced 

segregation capacity seen in our patient-derived cellular networks highlights their increased 

vulnerability to the pathological processes of depression and the subsequent propagation of 

these processes throughout the network. 
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In our patient data, ANDeg showed a significant decrease in patient-derived neuronal 

networks compared to those of controls. This finding aligns with previous postmortem studies 

that have indicated a link between depression symptoms and reduced synaptic density in 

prefrontal cortex and hippocampus (for reviews see Kang et al., 2012; Duman & Aghajanian, 

2012). The aforementioned link was further substantiated in iPSCs of patients with a commonly 

found mutation in major psychiatric disorders that is involved in synaptic regulations (Wen et 

al., 2014). While we did not directly assess synaptic density and dendritic complexity in our 

neuronal cultures, we postulate that the reduced overall node degree in our patients’ data could 

be a result of such synaptic loss, hindering the formation of healthy connections between 

neurons. This assumption is in line with previous in vitro and in vivo investigations reporting 

an impact of synaptic loss on network connectivity and dynamics in depression. An in vitro 

study linked reduced dendritic complexity and synaptic density to alterations in network 

dynamics observed in iPSC-derived neurons of patients with mitochondrial pathology 

accompanied with depressive mood manifestations to (Gunnewiek et al., 2020). On the other 

hand, Holmes et al. (2019) observed alterations in network connectivity in relation to 

diminished synaptic density in depressed patient in vivo. This established effect of molecular 

alteration on functional network organization might suggest that the reduced ANDeg we 

observe here in patient-derived networks could be a consequence of genetically determined 

variations in synaptic formation affecting microscale network communication and architecture. 

 

4.1.2. Changes in integration capacity of patient-derived cellular 

networks 

Network segregation must be balanced with robust integration features that is vital to 

efficiently integrate and combine information across network parts and communities, ensuring 

dynamic flexibility. In this work, we observed no significant differences in integration 

properties measured by Eglob between the experimental groups. Nevertheless, our data 

demonstrates a consistence tendency towards reduced Eglob, suggesting a potential significance 

that could be unraveled with a larger sample size. Typically, an effective integration of 

information is facilitated by few efficient, yet energy-expensive, long-distance connections 

linking remote parts of the network, so called “shortcuts”. Accordingly, the reduction trend we 

report in Eglob in microscale networks of depressed patients might be a consequence of 

inadequate energy metabolism that would hinder first and foremost the formation of those 

costly shortcuts required for optimal integration function. Interestingly, our group previously 
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reported bioenergetic imbalance and mitochondrial dysfunction in both fibroblasts and NPCs 

of depressed patients, with a significant overlap between the subjects in that study and our 

sample (Kuffner et al., 2020; Triebelhorn et al., 2022). The findings of these reports, along with 

evidence from large-scale studies, support the hypothesis that relates MDD etiology to 

mitochondrial dysfunction (Tobe, 2013; Rezin et al., 2008). However, further investigations 

are warranted to establish a direct link between dysfunctional bioenergetic status and network 

functional topology in depression. 

 

4.1.3. Remarks on methodology and analysis 

Microscale graph topology was significantly influenced by both the network size and the 

threshold applied to binarize FC matrices. These two factors dictate the number of nodes and 

edges that will be included in the graph. Larger network sizes (more nodes) and lower 

thresholds (more edges) broaden the range of connectivity patterns available to the network. 

This diversity in FC configurations increases the likelihood for an enhanced functional 

topology, and explains the observed increase in graph metrics as the network size increases and 

the correlation threshold becomes more liberal.  

 

While the conducted post-hoc analysis of C and ANDeg did not survive multiple correction 

comparisons, the omnibus test of ANOVA showed significant findings. This highlights that the 

group differences observed in these two measures are nonrandom and strong, with the potential 

of becoming more statistically pronounced with a larger sample size. 

 

Even though our skin biopsies were obtained at the end of the patients’ hospital stay after 

receiving different antidepressants, the confounding variations between patients in terms of 

medication use is expected to be eliminated after several cell divisions of the fibroblasts and 

upon reprogramming (Garbett et al., 2015; Soliman et al., 2017). Thus, the aberration in 

functional topology we detected in neural cultures of depressive patients suggests a genetic 

predisposition for neural networks to functionally organize differently in depression, even at a 

cellular resolution. Since the genetic influence undoubtedly plays a role in shaping and 

controlling network organization and connectivity (van den Heuvel et al., 2013; Fornito et al., 

2011; Smit et al., 2010), iPSC technology is thus an invaluable tool to identify measures of 

microcircuit topology as endophenotypes of neuropsychiatric disorders. It is important to point 
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out, however, that iPS cells could still retain residual epigenetic memory from its parent 

somatic cells, due, for example, to incomplete programming (Kim et al., 2010; Ohi et al., 2011). 

Therefore, further research is needed before making strong claims about the pure genetic or 

epigenetic origin of the microscale topological dysfunction we found in microscale neuronal 

networks of depressed patients. 

 

A valid alternative to investigating and modeling environmental effects on network 

topology in psychiatric diseases like MDD is to utilize a sister technology that generates what 

is referred to as induced neurons (iNs) (Vierbuchen et al., 2010; Yang et al., 2011). Unlike 

iPSC technology, the somatic cells are directly induced into neurons with this technique, 

skipping the reprogramming step and thus preserving the entire epigenetic landscape of the 

donor cells. This is assuming that the epigenetic modifications in skin cells are relevant for 

psychiatric disorders such as MDD (Soliman et al., 2017). Such technique can be used in 

exploring the functional features of microscale neuronal circuits in MDD, offering valuable 

insights into the underlying biological mechanisms of the disorder and its potential connection 

to epigenetic regulation. 

 

The iPSC-derived NPCs and neurons were further examined and characterized in a 

previous study of our group which involved half of the cell lines that were included in the 

current work (Triebelhorn et al., 2022). Not only did patient-derived NPCs show altered 

mitochondrial function as previously mentioned, but they also showed lower cytosolic Ca2+ 

levels and smaller soma sizes. Additionally, iPSC-derived neurons showed a clear bipolar or 

multipolar morphology and expressed neural markers indicative of both glutamatergic and 

GABAergic signalling. The electrophysiology of iPSC-derived neurons of MDD patients was 

also examined, revealing lower membrane capacitance, lower resting membrane potential, 

increased Na+ current density, and increased spontaneous activity compared to neurons of 

controls. The observed decrease in membrane capacitance, which is indicative of smaller cell 

size (Kim & von Gersdorff, 2010; Lindau & Neher, 1988), aligns with the diminished cell size 

reported in the NPCs from which these neurons were generated (Triebelhorn et al., 2022). 

Moreover, the decreased membrane potential and cell size were reportedly linked to 

bioenergetic dysfunction or delayed neural development (Triebelhorn et al., 2022; Vaarmann 

et al., 2016). In any case, it is unclear how these MDD-related differences in biophysics and 

spontaneous activity relate to the alterations in microscale network topology we report in this 
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work. While the current study did not specifically aim to explore this association, investigating 

such a connection presents an intriguing direction for future research. 

 

4.2. Findings on the macroscale 

At the systems level, we did not discern any statistically significance distinctions between 

brain networks of MDD patients and those of the control group. Nevertheless, an intriguing 

inverse pattern emerges; Eglob and ANDeg seemed to increase in MDD patients compared to 

the control group. Given that nodes in large-scale networks represent brain regions with known 

function, we conducted a deeper examination of whole-brain networks and explored nodal 

graph characteristics of these various brain regions. While the nodal graph theoretical analysis 

did not yield any group differences that survived correction for multiple testing, it is worth 

emphasizing and discussing the trends in nodal topological differences observed in the data (at 

puncorrected < 0.01). These trends involved two prominent regions within the left hemisphere that 

exhibited a noticeable shift in influence as measured by BC. These regions are IP region, 

exhibiting a reduction in BC, and AAIC, exhibiting an increase in BC within large-scale 

networks of MDD patients compared to healthy controls. 

 

4.2.1. Alterations in global network organization of whole-brain 

networks of MDD patients 

The absence of statistically significant differences in global network topology between the 

groups could be attributed to the limited statistical power of the analysis due to the relatively 

small sample size, with only 7 subjects in each group. However, there was a notable increasing 

trend in both Eglob and ANDeg in whole-brain networks of MDD patients, indicating a tendency 

towards increased integration and overall node connections in large-scale networks in 

depression. 

 

The existing body of literature on changes in network topology associated with MDD at 

the macroscale presents inconclusive findings (Gong & He, 2015). While some reports suggest 

a shift towards randomness and enhanced Eglob and integration in individuals with depression 

(Wu et al., 2020; Zhang et al., 2011), contrasting observations underscore an opposing pattern 

marked by decreased integration (Meng et al., 2014). In select instances, this diminished 

integration was accompanied by reduced network segregation, as noted by Li et al. (2015). 
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Notably, some studies have reported the absence of discernible differences in network topology 

between brain networks of individuals with depression and those of healthy controls (Bohr et 

al., 2013; Lord et al., 2012). This inconsistency in the results is likely attributed to the 

considerable heterogeneity within the patient sample across these studies as they included 

patients with varying age, clinical characteristics, number of depressive episodes, and/or 

treatment status. Other factors contributing to the disparities of the results include: variations 

in motion artifacts, in data preprocessing approaches (Liang et al., 2012), and in node 

definitions and brain parcellation methods which profoundly influence graph structure and, 

therefore, graph metrics (Wang et al., 2009; Zalesky et al., 2010). 

 

Another important highlight in the fMRI data is the high variability of global graph metrics 

within both experimental groups (indicated by confidence interval). This observed variance 

may be due to the inter-subject variability within the groups. For example, the MDD patients 

group included subjects who classified as non-depressed on the BDI scale. Moreover, there 

were variations in medication status among the MDD patients, with three patients undergoing 

antidepressant therapy at the time of scanning. The control group also included one subject 

whose BDI score indicated mild depression. Hence, the high variability in graph measures seen 

at the macroscale may be linked to the influence of diverse environmental factors on network 

topology at the systems level. The previous results stress the critical need to take individual 

characteristics and environmental factors into account when interpreting network metrics at the 

macroscale. 

 

4.2.2. Alterations in nodal topological features in large-scale 

networks of MDD patients 

In the nodal graph theoretical analysis at the systems level, no significant results survived 

the correction of multiple comparison using FDR. While applying FDR to control for false 

positives in neuroimaging data is crucial (Genovese et al., 2002; Nichols, 2012), it is interesting 

to emphasize certain trends in the data that could become more apparent in the presence of a 

larger sample and increased statistical power. Therefore, brain regions that exhibited changes 

in nodal graph measures at puncorrected < 0.01 will be highlighted for context and interpreted 

tentatively. 
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Only BC, a measure of influence and hubness, showed group differences in the whole-

brain networks at puncorrected < 0.01. More specifically, macroscale networks of MDD patients 

exhibited a BC decrease in a region in IPS and an increase in AAIC. The IP sulcus is part of 

the dorsal FPN with a function typically linked to visuospatial attention, top-down control of 

attention allocation, and goal-directed behavior. It is involved in the cognitive selection of 

relevant sensory stimuli and guiding eye movement to filter out irrelevant information in the 

environment – selective attention (Szczepanski et al., 2013). Attentional processes are known 

to be affected in depression. Many MDD patients frequently report concentration difficulties 

and impaired cognition and attention, massively affecting the psychological and occupational 

aspects of their lives (Zuckerman et al., 2018). Moreover, the attentional bias towards 

processing negative stimuli, a distinctive symptom of MDD, is rooted in the disrupted 

allocation and reallocation of attention to behaviorally relevant cues (for reviews see Gotlib & 

Joormann, 2010; Kircanski & Gotlib, 2015). The hypoconnectivity of IPS was frequently 

reported in previous studies and has been linked to impaired goal-directed attention in 

depression (Keller et al., 2020). Dai et al (2023) also showed a decrease in right IPS centrality 

and nodal degree in first-episode drug-naïve MDD patients. Decreased nodal efficiency of IPS 

was also reported both in first-episode and recurrent MDD (Yang et al., 2021). The results 

reported in this analysis are in line with the previous research, indicating that the reduced IPS 

centrality may contribute to altered attentional modulation in MDD. 

 

Conversely, AAIC showed increased centrality in networks of MDD patients compared to 

controls. Anterior agranular insula is one of the three main subdivisions of insula. It is a 

functionally heterogeneous region involved in interoceptive awareness, emotional processing, 

and cognitive control (Craig, 2002; Mutschler et al., 2009; Phan et al., 2002; Molnar-Szakacs 

& Uddin, 2022). It constitutes a core region in the SN with a flexible functional connection 

profile which allows it to orchestrate activity of major functional brain networks such as the 

DMN and the CCN (Molnar-Szakacs & Uddin, 2022; Menon et al., 2023). This explains how 

the anterior insula can serve as a global functional hub for channeling and integrating 

information across multiple cognitive domains (Molnar-Szakacs & Uddin, 2022; Uddin et al., 

2017). AAIC is frequently reported as a region that is highly implicated in depression (Gong 

& He, 2015; Hamilton et al., 2012; Zhang et al., 2011; Zheng et al., 2015). For instance, two 

studies reported a higher nodal degree in anterior insula in both adult MDD and medication-

naïve adolescent depressed patients compared to a control group (Jin et al., 2011; Zheng et al., 
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2015). Interestingly, an increase in anterior insula’s centrality was also reported in subjects 

with early life stress (Teicher et al., 2014), a key environmental risk factor in the development 

of MDD that is typically modulated by age, gender, and genetic factors (Heim et al., 2004; 

Kaufman et al., 2000). In addition, Jakab et al. (2012) demonstrated a leftward functional 

dominance of the anterior insula enhancing the sensitivity of functional analyses to detect 

topological changes on the left hemisphere. This observation could potentially account for the 

unilateral differential centrality in the left AAIC detected in this study. Taken together, these 

reports align with the results presented in this work that suggest a trend towards increase BC 

in AAIC in brain networks of MDD patients. Hubs are elements of integration. Consequently, 

the observed overall trend of increased integration detected in large-scale networks of 

depressed patients in this study might be mainly driven by this heightened centrality of this key 

hub AAIC. Given the tight connections of anterior insula to limbic areas, such as amygdala and 

orbitofrontal cortex (OFC), and its key role (as a switching lever) in modulating other networks 

like the DMN and CCN, the observed increase in its centrality/hubness might be involved in 

the exaggerated salience response to negative stimuli frequently observed in depression, along 

with the disturbed contextual and reappraisal processes. A further dissect of the connectivity 

profile of the anterior insula in future research would be interesting to determine the mechanism 

behind AAIC implication in depression by investigating the regions or networks between 

which AAIC mediates integration of information. Another plausible explanation for the 

increased centrality of AAI in MDD is that the anterior insula may need to exert greater control 

to compensate for the suboptimal regulation and switching between the brain’s three major 

large-scale networks in the depressed brain: the SN, DMN and CCN. 

 

4.2.3. General remarks on the sample 

In the MRI study, subjects were recruited several years after their initial diagnosis and 

hospitalization. At the time of recruitment, the subjects of the patient group differed in their 

medication status and BDI scores. This indicated a variation in the influence of environmental 

factors between the patients. Both genetics and environmental factors can exert their effect on 

macroscale network topology and organization. It is therefore not possible to determine 

whether the phenotypic topological changes observed between groups in this study are due to 

genetic variations or to environmental contributions, or an interplay of both. A number of twin 

and association studies have investigated the genetic basis of human brain network 
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organization and suggested region-dependent genetic influence where connectivity of some 

neural nodes, particularly hubs and rich clubs, is under tighter genetic control compared to non-

hub regions (Arnatkeviciute et al., 2021). Accordingly, one could argue that the alterations 

observed in the anterior insula, a key hub in the brain, is mainly influenced by depression-

related genetic variations. However, it is not possible to verify such a claim in our data, 

especially given the analysis’s low power. Discerning the nuanced impact of genetics and 

environment on network organization in future investigations holds considerable interest and 

promises a deeper insight into the etiology of depression. 

 

Lastly, we note that the two experimental groups differed in terms of their BMI, with the 

patient group exhibiting higher BMI on average. This finding is not surprising as it has been 

shown that overweight and obesity share a bidirectional relationship with MDD, where one 

disorder could contribute to the development of the other (Luppino et al., 2010). Some studies 

demonstrated a link between high BMI and alteration in the connectivity and topology of large-

scale brain networks (Coveleskie et al., 2015; Park et al., 2015). While BMI should be 

considered as a confounding variable in our macroscale analysis, its specific effect on any 

group differences in network organization is still unclear. 

 

4.3. Integrated micro-macro view 

In this scale-bridging investigation, microscale networks of depressed patients showed 

significantly diminished segregation (C) and overall node degree (ANDeg) compared to those 

of controls. A trend of decreased integration (Eglob) was also observed in patient-derived 

microcircuits. On the systems level, however, significant group differences were absent, 

although an opposing pattern to that observed on the microscale is detected: increased 

integration and overall node degree in large-scale networks of depressed patients compared to 

those of controls. It is therefore difficult to address the multiscale association in our data given 

the absence of significant group differences at the macroscale. Further research with a larger 

sample size is warranted to confirm the tendencies we observed in the macroscale data. 

 

For the sake of argument, let’s assume that the macroscale changes observed here represent 

the ground truth. That would mean that large-scale networks in depression either do not show 

any topological differences compared to controls, or they show reduced integration and degree. 
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In both cases, network topology at the macroscale diverges from that observed at the microscale 

data. What could be the reason of these different, sometimes contrasting, patterns? These 

between-scale discrepancies can emerge as a result of inherent differences in three main 

aspects: the spatial scale itself, the method used to capture network topology, and the 

underlying mechanisms governing network organization. This section will include a discussion 

of these aspects. 

 

Differences between micro and macro network organization might be due to the inherent 

differences in the scale of the neural elements that define the network nodes. At the microscale, 

nodes represent individual neurons interacting by means of axonal projections and synaptic 

transmission. At the macroscale, network nodes represent brain regions connected through 

bundles of white matter or fibre tracts. Albeit the different scales of granularity, prior 

investigations proposed that fundamental principles of network organization are conserved 

across scales (Scholtens et al., 2022). That means that the topological variation observed in this 

study might not necessarily be a result of differences in organization level (cell-cell vs region-

region communication). However, our microscale 2D cultures consisted of only neuronal cells. 

These 2D neuronal monocultures lack the cytoarchitecture and functional complexity of the 

native 3D brain tissue which stems from the diverse neural cell types and the wide range of 

cell-cell and cell-extracellular matrix (ECM) interaction taking place in the brain (Dingle et al., 

2020; Zhuang et al., 2018). One highly important, non-neuronal cell type that is absent in our 

cultures is glia. Neuron-glia interaction is crucial for signal transmission (Araque et al., 1998) 

and synaptic formation and plasticity (Araque et al., 1999; Papouin et al., 2017; Pfrieger & 

Barres, 1997), ultimately influencing network functional organization. In fact, glial cell 

dysfunction has been implicated in many psychiatric disorders including MDD (Di Benedetto 

& Rupprecht, 2013; Rial et al., 2016; Wang et al., 2017). Therefore, any differences in network 

topology we observe between scales might be influenced by these inherent distinctions in the 

microenvironment wherein the network nodes are situated. 

 

In this work, we used Ca2+ imaging and fMRI techniques to capture neuronal networks at 

the micro and macroscale, respectively. The BOLD signal detected by fMRI is an indirect 

measure of regional neural activity. Changes in BOLD signal arises from haemodynamic 

changes at functionally active regions. These haemodynamic changes include changes in blood 

flow, volume, and magnetic properties (Kim & Ogawa, 2012; Pauling & Coryell, 1936). 
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Several attempts have been made to understand the neural and biophysical components that 

contribute to the BOLD response (Kim & Ogawa, 2012; Logothetis et al., 2001). One major 

neural component is local field potential (LFP), which represents the aggregated electrical 

signal of extracellular dendritic potentials originating from a large population of neurons. Is it 

crucial to note that the neural component in BOLD signal is often contaminated by non-

neuronal components, e.g., head motion, physiological noise (respiration, pulse), and magnetic 

field instability. This requires meticulous data preprocessing practices to ensure thorough 

cleaning of fMRI data while preserving the integrity of the neural component (Caballero-

Gaudes & Reynolds, 2017; Esteban et al., 2019). In contrast to BOLD, Ca2+ signal reflects the 

activity of individual neurons detected by monitoring their intracellular Ca2+ dynamics 

(Grienberger & Konnerth, 2012). Ca2+ is a versatile ion involved in a wide range of cellular 

functions including neurotransmitter release (Neher & Sakaba, 2008), synaptic plasticity 

(Zucker, 1999), and transcriptional regulation. Ca2+ signal can reflect neural activity at the 

soma as well as at the synaptic level (Grienberger & Konnerth, 2012; Li et al., 2017). Despite 

having varying underlying mechanisms, Ca2+ and BOLD signals show strong correspondence 

when the two responses are measured simultaneously in animals (Lake et al., 2020; Ma et al., 

2022). Additionally, calcium dynamics (whether in neurons or astrocytes) were shown to 

contribute to the haemodynamic response of fMRI (Tesler et al., 2023). In this light, and given 

the robust cleaning we performed on fMRI data, it is unlikely that the cross-scale discrepancies 

we found in functional network organization are related to methodological differences. 

 

The third potential source of micro-macro differences in network topology involves the 

varying degree of influence of genetics and environmental factors on network organization in 

our two datasets. In our microscale data, we assume that the group differences we observe are 

mainly attributed to differential genetic influence in depression. At this scale and with the iPSC 

technology used, the environmental influence is supposedly negligible given the epigenetic 

memory reset during the reprogramming of the fibroblasts (Garbett et al., 2015; Soliman et al., 

2017). On the other hand, in the fMRI data, both genetic and environmental factors contribute 

to group differences (Reineberg et al., 2020; Yang et al., 2016), making it increasingly difficult 

to disentangle the specific impact of each of these factors on network topology. In other words, 

it remains unclear whether the observed changes at the macroscale are primarily linked to the 

pathophysiological processes of MDD or if they are largely influenced by the treatment, given 

that the patients in this study had previously received or are currently receiving antidepressants. 
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This means that the observed cross-scale differences might be attributed to differences in the 

genetic and environmental influence on the two datasets. 

 

Even in the absence of differences in the three factors discussed above (scale and 

microenvironment, measuring method, and underlying influential factors), patterns of network 

topology can still differ across scales. This is due to the complex nature of cross-scale 

interaction involving a range of potential dynamics. One potential and straightforward 

mechanism of between-scale relationship is that the topological changes at the microscale may 

persist to the macroscale and manifest similarly. However, that is not always the case. Patterns 

of brain organization in different scales could still diverge. In fact, alterations at one level might 

trigger adaptive plasticity mechanisms aimed at mitigating the pathological process and 

constraining or managing its progression (van den Heuvel et al., 2019). One could argue that 

the observed macroscopic trend of increased Eglob and ANDeg in MDD is indicative of such 

compensatory mechanism. This mechanism could potentially serve as a driving force aimed at 

reconciling the inherent reduction in integration and neuron-to-neuron functional connections 

within microscale networks of MDD patients by establishing more functional connections 

linking large-scale brain regions and enhancing efficiency at the macroscale. The noted 

heightened centrality of the AAIC in depression can also be explained within this 

compensatory framework. Arguably, the AAIC increases its influence in MDD patients as an 

attempt to counteract the depression-related altered modulation of dynamical switching 

between large-scale functional networks associated with high-level cognitive processes. 

However, it is essential to interpret these macroscale findings and their relation to the cellular 

findings with caution, given their lack of statistical significance in the current analysis. 

Attempting to replicate this study with larger sample size would yield valuable insights into 

the complex dynamic interplay among the distinct spatial scales of functional network 

organization of the brain. 
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4.4. Limitations and methodological considerations 

This study is subject to a number of limitations common to both experiments on the micro 

and macroscale. Firstly, the non-depressed status of the control cohort was determined solely 

by self-reported absence of any history of depression. That means we were unable to control 

for the potential genetic or environmental risk factors that may have been present in the control 

group and may have caused a predisposition for depression. Secondly, given that the subjects 

in the control group were chosen to be paired with MDD patients in terms of age and sex, the 

inter-subject variability in age, lifestyles, genetics, and physiology limits this study. 

 

The experiment at the cellular level suffered from a specific set of constraints. The analysis 

at that level demonstrated an overall higher sensitivity to detect topological differences within 

larger networks, as evident by the increased significance of post-hoc tests at larger network 

sizes. However, it remains unclear why this heightened sensitivity was not consistently 

observed across different thresholds. Additionally, the analysis was constrained by the number 

of nodes within the networks. Attempting to include larger network sizes (exceeding 47 nodes) 

resulted in an insufficient number of subjects for a meaningful statistical analysis. 

Consequently, this restricted the generalization of our results to networks with number of nodes 

higher than 47. This was in part due to the high magnification of the microscope objective used. 

An objective with a lower magnification would have provided a wider field of view with a 

higher number of active neurons and allowed for a better estimation of network organization 

in culture. Nevertheless, even with a limited field of view capturing only tens of active neurons, 

we still detect significant network alterations. Another methodological limitation in the 

microscale experiment involves the use of pure neuronal cultures. While human-derived 

monocultures of neurons used in this work provide a powerful tool to study psychiatric 

disorders that is superior to animal models and post-mortem tissues, they represent an 

oversimplification of the human brain tissue. Potential alternatives include hiPSC-derived co-

cultures of neurons and glial cells, or 3D cultures, whether biology-based such as spheroids 

and organoids, or engineering-based such as scaffold and microfluidic platforms. These 

modelling options all carry a better resemblance to brain tissues and provide an environment 

that supports the interaction between different cell types which is essential for neuronal health, 

functionality, and dynamics (Falk et al., 2016; Feldt et al., 2010; Fields & Stevens-Graham, 

2002; Lemke, 2001; Ma et al., 2005). 
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One major constraint of this study on the macroscale is the small sample size, resulting in 

underpowered statistical analysis, which limited the interpretability of the results on the 

systems level. It is important to note that this study should be regarded as exploratory, given 

the inability to recruit a larger number of subjects, despite our best efforts within these 

constraints. The inter-individual differences between the subjects of the patient group, 

specifically in terms of their BDI scores and medication status, may have contributed to the 

low statistical power/sensitivity of the analysis. To attain better discernible differences in 

network topological features and allow better interpretability, subsequent investigations ought 

to consider replicating this work with larger sample size and with fMRI scans obtained closer 

to hospital admission to insure a homogeneous sample with minimal effect of therapeutic 

intervention on network architecture.  

 

4.5. Future outlook 

This work sets the stage for future cross-scale investigations, leveraging cutting-edge 

technologies to describe how network topology and behavior connect across scales and how 

this link is influenced in disease. Such technologies include utilizing iPSC-derived human 

neural tissue that offers a closer approximation to native brain tissue such as 3D cultures of 

brain organoids. Integrating iPSC-technology with tract-tracing and genetic labelling methods, 

which were not available for this study, can enhance our understanding of the structural aspect 

of microscale networks. Combining this with whole-brain DWI of the same subjects enables a 

comprehensive multiscale investigation of this underlying structural architecture. When 

coupled with functional investigations, these approaches can give insights into structural-

functional interaction at different spatial granularities that is especially informative in the 

context of psychopathologies. 

 

Employing multiscale network models to explore brain dynamics and how it is affected 

by altered network topology constitute an interesting line of research that can provide valuable 

intuition into disease-related brain dysfunction. This is particularly important as the topology 

of the network shapes its dynamic repertoire and governs the emergence of synchronous 

behavior whether at the cellular (Poli et al., 2015; Wang, 2011; Yamamoto et al., 2018) or 

systems level (Breakspear & Stam, 2005; Meunier et al., 2010; Zhou et al., 2006). Several lines 

of evidence at whole-brain level have linked MDD to altered temporal coordination and 
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reduced dynamical range rendering the network less flexible and more prone to get “stuck” in 

a particular state – the depressive state (Alonso Martínez, Deco, et al., 2020; Alonso Martínez, 

Marsman, et al., 2020; Yang et al., 2022). Thus, exploring the nature of this altered dynamics 

and its relation to aberrations in network topology across scales is relevant to understand MDD 

mechanism and the emergence of its behavioral consequences. For such enquiries of dynamics 

at the cellular level, in vitro techniques like MEAs or the application of voltage-sensitive dyes 

emerge as preferred choice over calcium imaging (Bonifazi & Massobrio, 2019; Chemla & 

Chavane, 2010). This preference stems from their ability to offer superior temporal resolution 

(single action potential) and broader dynamic range. Moreover, MEAs feature a fixed number 

of electrodes that are considered as network’s nodes, effectively resolving the issue of variable 

nodes count within each in vitro culture that was faced in this study. 

 

This scale-bridging approach is crucial for elucidating the micro-macro association and 

thereby gaining deeper insights into the multiscale disease processes affecting neural network 

organization and their impact on behavior. The utilization of iPSCs technology provides a 

novel human cellular model for probing microscale network organization, a resource that was 

previously not available. This is complemented by integrating neuroimaging methods like 

fMRI to capture network topology at the systems level. 

 

Another intriguing direction for research is to examine the effect of varying biological 

processes at the cellular level on multiscale network topology in mental illnesses. With an 

access to iPSC-derived neuronal tissues, studying the influence of genetic variation, altered 

electrophysiology and bioenergetics in depression on micro and macroscale alterations in 

functional network topology is now feasible. This can provide deeper insights into the genetic 

control on topology, the direct relation between altered neuronal function and network 

formation and interaction. 

 

Continued advancements in brain modelling and simulation and increased data 

availability will support cross-scale investigations, promising a comprehensive understanding 

of the complex multiscale relationship and how it unfolds in disease development and 

progression (D’Angelo & Jirsa, 2022). iPSC-driven neuronal data can enrich the current 

neurobiological knowledge, e.g., in biophysics, 3D morphology, and membrane properties, that 

is used to replicate neuronal function and dynamics in simulated models of brain microcircuits. 
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By integrating microscale computational models with whole-brain models reconstructed from 

MRI, EEG, and MEG datasets, the micro-macro relationship can be simulated. This approach 

enables prediction about the influence of specific cellular processes such as genetic variations 

or drug-receptor interactions on macroscale network function and dynamics, contributing to a 

profound understanding of brain function. Multiscale brain modelling not only has its cutting-

edged potentials in personalized medicine through the generation of brain digital twins for each 

patient, but it also contributes massively to the field of artificial intelligence and robotics as it 

offers means for modeling adaptive behaviors.  

 

Multiscale network neuroscience, especially in the context of psychiatry, is still in its 

infancy but making consistent strides. Increased efforts are being made to build tailored 

multiscale models of brain networks that effectively bridge cellular attributes of neural 

networks with their higher-level, coarse-grained counterparts to establish a 

comprehensive/holistic understanding of brain connectivity, its functional implications, and its 

consequences for cognition and collective behavior. However, it is important to acknowledge 

that these endeavors are not devoid of limitations and challenges. One major challenge involves 

the inherent complexity when trying to address and model different levels of biological 

information, rendering accurate models more complex and harder to interpret. Not to mention 

that any network model will be sensitive to the underlying network structure. That means that 

between-study variations in node definition and the choice of brain parcellation will have a 

great impact on the resultant topological properties of the network. An additional challenge is 

the cross-sectional nature of most of the multiscale investigation that neglects the chronological 

aspect of the disease. In other words, these studies provide a snapshot at a given point in time 

and fail to depict how these disease-related multiscale mechanisms have developed and 

progressed over time. The advancement of computational methodologies and data-acquisition 

techniques will be instrumental in driving the field forward. Furthermore, the growing 

availability of open datasets will allow for all numerous comparisons between multiscale 

network features not just of combining micro and macro features of network organization but 

also linking other genomics, cytoarchitecture, electrophysiology and bioenergetics factors to 

network connectivity and topology. Bringing data together from different levels of granularities 

into the same reference space is crucial for an integrative understanding of brain function and 

dynamics and for delineating the intricate causal chain from gene to cell to network to 

collective behavior, both in health and in the context of mental disorders.  
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Conclusion 

 

The current work marks the pioneering effort to explore multiscale alterations in functional 

network topology in MDD. The novelty of our approach lies in our human cellular model that 

was developed by reprogramming fibroblasts derived from the same group of subjects that 

were later recruited for a whole-brain fMRI scanning session. Our investigation sought to 

bridge the gap between these distinct but interdependent scales of inquiry, as a comprehensive 

understanding of the disorder’s etiology is unlikely to be achieved by considering single scales 

in isolation. Together, the findings of this study align with previous research, reaffirming the 

presence of altered functional network topology in MDD. Notably, such alterations primarily 

manifested at the cellular level, characterized by decreased segregation capacity coupled with 

a reduction in overall node degree. Macroscale networks of depressed patients on the systems 

level showed a contrasting trend of increased integration and overall nodal connections, 

suggesting a potential compensatory mechanism of micro-macro scale association that needs 

to be validated in future investigations. On the nodal level, this work highlights changes in 

regional BC in macroscale networks of MDD patients, featuring a reduction in the IP region 

and an increase in AAIC, adding to the existing body of evidence implicating these regions in 

depression. 

 

This scale-bridging approach is pivotal for advancing our understanding of the multiscale 

mechanisms of depression, ultimately providing valuable insights to inform diagnostic and 

therapeutic interventions. 
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Appendix A. Method-related material 

 

 
Figure A1. Number of subjects as a function of number of cells in calcium recordings across study groups. This figure 

illustrates how the number of subjects in the analysis decreases as the number of cells increase. This is due to the variability 

in the number of cells in the microscale subject data leading to subjects dropping from the analysis as the number of cells 

increases. Network size of 47 cells was the largest number at which at least 5 subjects from each group were included. 

 

FMRIPrep Methods: 

 

 The following was automatically generated by fMRIPrep software and is copied here 

unchanged: 

Results included in this manuscript come from preprocessing performed using *fMRIPrep* 

20.2.1 

@fmriprep1; @fmriprep2; RRID:SCR_016216), 

which is based on *Nipype* 1.5.1 

(@nipype1; @nipype2; RRID:SCR_002502). 

 

Anatomical data preprocessing 

: A total of 1 T1-weighted (T1w) images were found within the input BIDS dataset.The T1-

weighted (T1w) image was corrected for intensity non-uniformity (INU) with 
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`N4BiasFieldCorrection` [@n4], distributed with ANTs 2.3.3 [@ants, RRID:SCR_004757], and 

used as T1w-reference throughout the workflow. 

The T1w-reference was then skull-stripped with a *Nipype* implementation of the 

`antsBrainExtraction.sh` workflow (from ANTs), using OASIS30ANTs as target template. 

Brain tissue segmentation of cerebrospinal fluid (CSF), white-matter (WM) and gray-matter 

(GM) was performed on the brain-extracted T1w using `fast` [FSL 5.0.9, RRID:SCR_002823, 

@fsl_fast]. 

Brain surfaces were reconstructed using `recon-all` [FreeSurfer 6.0.1,RRID:SCR_001847, 

@fs_reconall], and the brain mask estimated previously was refined with a custom variation 

of the method to reconcile ANTs-derived and FreeSurfer-derived segmentations of the 

cortical gray-matter of Mindboggle [RRID:SCR_002438, @mindboggle]. 

Volume-based spatial normalization to two standard spaces (MNI152NLin2009cAsym, 

MNI152NLin6Asym) was performed through nonlinear registration with `antsRegistration` 

(ANTs 2.3.3), using brain-extracted versions of both T1w reference and the T1w template. 

The following templates were selected for spatial normalization: 

*ICBM 152 Nonlinear Asymmetrical template version 2009c* [@mni152nlin2009casym, 

RRID:SCR_008796; TemplateFlow ID: MNI152NLin2009cAsym], *FSL's MNI ICBM 152 non-

linear 6th Generation Asymmetric Average Brain Stereotaxic Registration Model* 

[@mni152nlin6asym, RRID:SCR_002823; TemplateFlow ID: MNI152NLin6Asym],  

 

Functional data preprocessing 

: For each of the 1 BOLD runs found per subject (across all tasks and sessions), the following 

preprocessing was performed. 

First, a reference volume and its skull-stripped version were generated using a custom 

methodology of *fMRIPrep*. 

A B0-nonuniformity map (or *fieldmap*) was estimated based on a phase-difference map 

calculated with a dual-echo GRE (gradient-recall echo) sequence, processed with a custom 

workflow of *SDCFlows* inspired by the [`epidewarp.fsl` 

script](http://www.nmr.mgh.harvard.edu/~greve/fbirn/b0/epidewarp.fsl) and further 

improvements in HCP Pipelines [@hcppipelines]. 

The *fieldmap* was then co-registered to the target EPI (echo-planar imaging) reference run 

and converted to a displacements field map (amenable to registration tools such as ANTs) 

http://www.nmr.mgh.harvard.edu/~greve/fbirn/b0/epidewarp.fsl
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with FSL's `fugue` and other *SDCflows* tools. 

Based on the estimated susceptibility distortion, a corrected EPI (echo-planar imaging) 

reference was calculated for a more accurate co-registration with the anatomical reference. 

The BOLD reference was then co-registered to the T1w reference using `bbregister` 

(FreeSurfer) which implements boundary-based registration [@bbr]. 

Co-registration was configured with six degrees of freedom. 

Head-motion parameters with respect to the BOLD reference (transformation matrices, and 

six corresponding rotation and translation parameters) are estimated before any 

spatiotemporal filtering using `mcflirt` [FSL 5.0.9, @mcflirt].BOLD runs were slice-time 

corrected using `3dTshift` from AFNI 20160207 [@afni, RRID:SCR_005927]. 

The BOLD time-series were resampled onto the following surfaces (FreeSurfer reconstruction 

nomenclature): 

*fsaverage*. 

The BOLD time-series (including slice-timing correction when applied) were resampled onto 

their original, native space by applying a single, composite transform to correct for head-

motion and susceptibility distortions. 

These resampled BOLD time-series will be referred to as *preprocessed BOLD in original 

space*, or just *preprocessed BOLD*. 

The BOLD time-series were resampled into standard space, generating a *preprocessed 

BOLD run in MNI152NLin2009cAsym space*. 

First, a reference volume and its skull-stripped version were generated using a custom 

methodology of *fMRIPrep*. 

*Grayordinates* files [@hcppipelines] containing 91k samples were also generated using the 

highest-resolution ``fsaverage`` as intermediate standardized surface space. 

Several confounding time-series were calculated based on the *preprocessed BOLD*: 

framewise displacement (FD), DVARS and three region-wise global signals. 

FD was computed using two formulations following Power (absolute sum of relative motions, 

@power_fd_dvars) and Jenkinson (relative root mean square displacement between affines, 

@mcflirt). 

FD and DVARS are calculated for each functional run, both using their implementations in 

*Nipype* [following the definitions by @power_fd_dvars]. 

The three global signals are extracted within the CSF, the WM, and the whole-brain masks. 

Additionally, a set of physiological regressors were extracted to allow for component-based 

noise correction [*CompCor*, @compcor]. 
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Principal components are estimated after high-pass filtering the *preprocessed BOLD* time-

series (using a discrete cosine filter with 128s cut-off) for the two *CompCor* variants: 

temporal (tCompCor) and anatomical (aCompCor). 

tCompCor components are then calculated from the top 2% variable voxels within the brain 

mask. 

For aCompCor, three probabilistic masks (CSF, WM and combined CSF+WM) are generated 

in anatomical space. 

The implementation differs from that of Behzadi et al. in that instead of eroding the masks by 

2 pixels on BOLD space, the aCompCor masks are subtracted a mask of pixels that likely 

contain a volume fraction of GM. 

This mask is obtained by dilating a GM mask extracted from the FreeSurfer's *aseg* 

segmentation, and it ensures components are not extracted from voxels containing a minimal 

fraction of GM. 

Finally, these masks are resampled into BOLD space and binarized by thresholding at 0.99 

(as in the original implementation). 

Components are also calculated separately within the WM and CSF masks. 

For each CompCor decomposition, the *k* components with the largest singular values are 

retained, such that the retained components' time series are sufficient to explain 50 percent 

of variance across the nuisance mask (CSF, WM, combined, or temporal). The remaining 

components are dropped from consideration. 

The head-motion estimates calculated in the correction step were also placed within the 

corresponding confounds file. 

The confound time series derived from head motion estimates and global signals were 

expanded with the inclusion of temporal derivatives and quadratic terms for each 

[@confounds_satterthwaite_2013]. 

Frames that exceeded a threshold of 0.5 mm FD or 1.5 standardised DVARS were annotated 

as motion outliers. 

All resamplings can be performed with *a single interpolation step* by composing all the 

pertinent transformations (i.e. head-motion transform matrices, susceptibility distortion 

correction when available, and co-registrations to anatomical and output spaces). 

Gridded (volumetric) resamplings were performed using `antsApplyTransforms` (ANTs), 

configured with Lanczos interpolation to minimize the smoothing effects of other kernels 

[@lanczos]. 

Non-gridded (surface) resamplings were performed using `mri_vol2surf` (FreeSurfer). 
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Many internal operations of *fMRIPrep* use *Nilearn* 0.6.2 [@nilearn, RRID:SCR_001362], 

mostly within the functional processing workflow. 

For more details of the pipeline, see [the section corresponding to workflows in *fMRIPrep*'s 

zocumentation](https://fmriprep.readthedocs.io/en/latest/workflows.html "FMRIPrep's 

documentation"). 

### Copyright Waiver 

The above boilerplate text was automatically generated by fMRIPrep with the express 

intention that users should copy and paste this text into their manuscripts *unchanged*. 

It is released under the [CC0](https://creativecommons.org/publicdomain/zero/1.0/) license. 
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Demographic questionnaire: 

 

  

Demographischer Fragebogen   Code:                                Datum:  

 

Angaben zur Person: Bitte kreuzen Sie die für Sie zutreffenden Antworten an.  

 
Alter              ________ Jahre     Höchster   Volks-,Hauptschulabschluß 

     Schulabschluß mittlere Reife 

Geschlecht  weiblich       Fachhochschulreife 

 männlich       Hochschulreife 

 andere 

 keine Angabe 

Händigkeit rechts  
 links   

beide   
 
Familienstand ledig, allein lebend  Derzeitige Tätigkeit   

 ledig, mit Partner/in lebend      im Studium / in Ausbildung  

 verheiratet        teilzeitbeschäftigt 

 verwitwet         voll berufstätig 

 geschieden, getrennt lebend      Sonstiges 

 geschieden, mit Partner/in lebend   

 

 

Ich nehme folgende Medikamente ein: 
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PANAS: 

 
  

PANAS 

 
 
 

 
Dieser Fragebogen enthält eine Reihe von Wörtern, die unterschiedliche Gefühle und 
Empfindungen beschreiben. Lesen Sie jedes Wort und tragen Sie dann in die Skala 
neben jedem Wort die Intensität ein. Sie haben die Möglichkeit, zwischen fünf 
Abstufungen zu wählen: 
 
1. ganz wenig oder gar nicht     2. ein bißchen     3. einigermaßen     4. erheblich     5. äußerst 

 
 
Geben Sie bitte an, wie Sie sich im Moment fühlen.  
 
 
 ganz wenig 
 oder  einiger- 
 gar nicht ein bißchen maßen erheblich äußerst 
 

aktiv          O - - - - - - - - - O - - - - - - - - - O - - - - - - - - - O - - - - - - - - - O 

bekümmert      O - - - - - - - - - O - - - - - - - - - O - - - - - - - - - O - - - - - - - - - O 

interessiert   O - - - - - - - - - O - - - - - - - - - O - - - - - - - - - O - - - - - - - - - O 

freudig erregt O - - - - - - - - - O - - - - - - - - - O - - - - - - - - - O - - - - - - - - - O 

verärgert      O - - - - - - - - - O - - - - - - - - - O - - - - - - - - - O - - - - - - - - - O 

stark          O - - - - - - - - - O - - - - - - - - - O - - - - - - - - - O - - - - - - - - - O 

schuldig       O - - - - - - - - - O - - - - - - - - - O - - - - - - - - - O - - - - - - - - - O 

erschrocken    O - - - - - - - - - O - - - - - - - - - O - - - - - - - - - O - - - - - - - - - O 

feindselig     O - - - - - - - - - O - - - - - - - - - O - - - - - - - - - O - - - - - - - - - O 

angeregt       O - - - - - - - - - O - - - - - - - - - O - - - - - - - - - O - - - - - - - - - O 

stolz          O - - - - - - - - - O - - - - - - - - - O - - - - - - - - - O - - - - - - - - - O 

gereizt        O - - - - - - - - - O - - - - - - - - - O - - - - - - - - - O - - - - - - - - - O 

begeistert     O - - - - - - - - - O - - - - - - - - - O - - - - - - - - - O - - - - - - - - - O 

beschämt       O - - - - - - - - - O - - - - - - - - - O - - - - - - - - - O - - - - - - - - - O 

wach           O - - - - - - - - - O - - - - - - - - - O - - - - - - - - - O - - - - - - - - - O 

nervös         O - - - - - - - - - O - - - - - - - - - O - - - - - - - - - O - - - - - - - - - O 

entschlossen   O - - - - - - - - - O - - - - - - - - - O - - - - - - - - - O - - - - - - - - - O 

aufmerksam     O - - - - - - - - - O - - - - - - - - - O - - - - - - - - - O - - - - - - - - - O 

durcheinander  O - - - - - - - - - O - - - - - - - - - O - - - - - - - - - O - - - - - - - - - O 

ängstlich      O - - - - - - - - - O - - - - - - - - - O - - - - - - - - - O - - - - - - - - - O 
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Beck’s Depression Inventory (BDI):  

 
 

 

B  D  I 
 
Die folgenden beiden Seiten enthalten 21 Gruppen von Aussagen. Bitte lesen Sie jede Gruppe 

sorgfältig durch. Kreuzen Sie dann die eine Aussage jeder Gruppe an, die am besten beschreibt, wie 

Sie sich in dieser Woche einschließlich heute gefühlt haben! Falls mehrere Aussagen in einer Grup-

pe gleichermaßen zuzutreffen scheinen, können Sie auch mehrere Ziffern ankreuzen. Lesen Sie auf 

jeden Fall alle Aussagen in jeder Gruppe, bevor Sie Ihre Wahl treffen. 

 
 
 A 

0 Ich fühle mich nicht traurig. 

1 Ich fühle mich traurig. 

2 Ich bin die ganze Zeit traurig und komme 

nicht davon los. 

3 Ich bin so traurig oder unglücklich, dass 

ich es kaum noch ertrage. 

 

 B 

0 Ich sehe nicht besonders mutlos in die 

Zukunft. 

1 Ich sehe mutlos in die Zukunft 

2 Ich habe nichts, worauf ich mich freuen 

kann. 

3 Ich habe das Gefühl, dass die Zukunft 

hoffnungslos ist, und dass die Situation 

nicht besser werden kann. 

 

 C 

0 Ich fühle mich nicht als Versager. 

1 Ich habe das Gefühl, öfter zu versagt zu 

haben als der Durchschnitt. 

2 Wenn ich auf mein Leben zurückblicke, 

sehe ich bloß eine Menge Fehlschläge. 

3 Ich habe das Gefühl, als Mensch ein 

völliger Versager zu sein. 

 

 D 

0 Ich kann die Dinge genauso genießen wie 

früher. 

1 Ich kann die Dinge nicht mehr so genießen 

wie früher. 

2 Ich kann aus nichts mehr eine echte 

Befriedigung mehr ziehen. 

3 Ich bin mit allem unzufrieden oder 

gelangweilt. 

 

  E 

0  Ich habe keine Schuldgefühle. 

1  Ich habe häufig Schuldgefühle. 

2  Ich habe fast immer Schuldgefühle. 

3  Ich habe immer Schuldgefühle. 

 F 

0 Ich habe nicht das Gefühl, gestraft zu sein. 

1 Ich habe das Gefühl, vielleicht bestraft 

zu sein. 

2  Ich erwarte, bestraft zu werden. 

3  Ich habe das Gefühl, bestraft zu gehören. 

 

 G 

0 Ich bin nicht von mir enttäuscht. 

1 Ich bin von mir enttäuscht. 

2 Ich finde mich fürchterlich. 

3 Ich hasse mich. 

 

 H 

0 Ich habe nicht das Gefühl, schlechter zu 

 sein als alle anderen. 

1 Ich kritisiere mich wegen meiner 

 Fehler oder Schwächen. 

2 Ich mache mir die ganze Zeit Vorwürfe 

 wegen meiner Mängel. 

3 Ich gebe mir für alles die Schuld was 

 schief geht. 

 

 I 

0 Ich denke nicht daran, mir etwas anzutun. 

1 Ich denke manchmal an Selbstmord, ich 

 würde es aber nicht tun. 

2 Ich möchte mich am liebsten umbringen. 

3 Ich würde mich umbringen, wenn ich 

 es könnte. 

 

 J 

0 Ich weine nicht öfter als früher. 

1 Ich weine jetzt mehr als früher. 

2 Ich weine jetzt die ganze Zeit. 

3 Früher konnte ich weinen, aber jetzt 

 kann ich es nicht mehr, obwohl ich es 

 möchte. 
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 K 

0 Ich bin nicht reizbarer als sonst. 

1 Ich bin jetzt leichter verärgert oder 

 gereizt als früher. 

2 Ich fühle mich dauernd gereizt. 

3 Die Dinge die mich früher geärgert 

 haben, berühren mich nicht mehr. 

 

 L 

0 Ich habe nicht das Interesse an anderen 

 Menschen verloren. 

1 Ich interessiere mich jetzt weniger 

 für andere Menschen als früher. 

2 Ich habe mein Interesse an anderen 

 Menschen zum größten Teil verloren. 

3 Ich habe mein ganzes Interesse an 

 anderen Menschen verloren. 

 

 M 

0 Ich bin so entschlussfreudig wie immer.  

1  Ich schiebe jetzt Entscheidungen öfter 

 als früher auf. 

2 Es fällt mir jetzt schwerer als früher, 

Entscheidungen zu treffen. 

3 Ich kann überhaupt keine Entscheidungen 

mehr treffen. 

 

 N 

0 Ich habe nicht das Gefühl schlechter aus-

zusehen als früher. 

1 Ich mache mir Sorgen, dass ich alt oder 

unattraktiv aussehe. 

2 Ich habe das Gefühl, dass in meinem Aus-

sehen Veränderungen eingetreten sind, die 

mich unattraktiv machen. 

3 Ich finde mich hässlich. 

 

 O 

0 Ich kann genauso gut arbeiten wie früher.  

1  Ich muss mir einen Ruck geben, bevor ich 

 eine Tätigkeit in Angriff nehme.  

2  Ich muss mich zu jeder Tätigkeit zwingen. 

3 Ich bin unfähig zu arbeiten. 

 

 P 

0 Ich schlafe so gut wie sonst. 

1 Ich schlafe nicht mehr so gut wie früher. 

2 Ich wache 1 bis 2 Stunden früher auf als 

sonst, und es fällt mir schwer wieder 

einzuschlafen. 
3 Ich wache mehrere Stunden früher auf als 

sonst und kann nicht mehr einschlafen. 

 Q 

0 Ich ermüde nicht stärker als sonst. 

1 Ich ermüde schneller als früher. 

2 Fast alles ermüdet mich. 

3 Ich bin zu müde um etwas zu tun. 

 

R 

0 Mein Appetit ist nicht schlechter als sonst. 

1  Mein Appetit ist nicht mehr so gut wie 

 früher. 

2   Mein Appetit hat sehr stark nachgelassen. 

3   Ich habe überhaupt keinen Appetit mehr. 

  

 S 

0 Ich habe in letzter Zeit kaum abgenommen. 

1 Ich habe mehr als zwei Kilo abgenommen. 

2 Ich habe mehr als fünf Kilo abgenommen. 

3 Ich habe mehr als acht Kilo abgenommen. 

 

Ich esse absichtlich weniger, um abzunehmen:    

   ja  nein 

 

T 

0 Ich mache mir keine größeren Sorgen um 

meine Gesundheit als sonst. 

1 Ich mache mir Sorgen über körperliche 

Probleme, wie Schmerzen, Magenbe-

schwerden oder Verstopfung. 

2 Ich mache mir so große Sorgen über 

gesundheitliche Probleme, dass es mir 

schwer fällt, an etwas anderes zu denken. 

3 Ich mache mir so große Sorgen über meine 

gesundheitlichen Probleme, dass ich an 

nichts anderes denken kann. 

 

 U 

0 Ich habe in letzter Zeit keine Veränderung 

 meines Interesses an Sexualität bemerkt. 

1 Ich interessiere mich jetzt weniger 

 für Sexualität als früher. 

2 Ich interessiere mich jetzt viel weniger 

 für Sexualität. 

3 Ich habe das Interesse für Sexualität völlig 

  verloren. 
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Appendix B. Result-related material 

 

 

 

 

 

 

 

Figure B1. Decreased clustering coefficient in patient-derived neurons compared to controls across varying network 

thresholds and sizes. C showed a significant overall reduction (p=0.04) in neuronal cultures of MDD patients (dashed lines) 

compared to controls (solid lines) across network sizes and all correlation thresholds rthresh (depicted in different colors). C 

was significantly higher when lower rthresh were applied (p< 0.001) and for larger network sizes (p< 0.001). We explored the 

levels of network sizes and rthresh at which group differences in C occurred. Asterisks (*) indicate the presence of statistically 

significant difference (p<0.05, uncorrected). The shaded area represents the standard error of the mean (SEM) (instead of 

confidance coefficient shown in the main text) for better visability. 
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Figure B2. Alterations in global efficiency across experimental groups, thresholds, and network sizes. Changes in mean 

Eglob in graphs of depressed patients (dashed lines) compared to controls (solid lines) across different network sizes and 

correlation rthresh (depicted by difference colors). Although an overall trend of lower Eglob in MDD neuronal cultures is present, 

no statistically significant group differences in network integration capacity could be detected (p=0.194). Eglob significantly 

increased as the networks grew larger (p< 0.001) and as rthresh became more liberal (p< 0.001). The shaded area represents the 

standard error of the mean (SEM) (instead of confidance coefficient shown in the main text) for better visability. 

  



Appendix B. Result-related material 

 

 

 
128 

 

 

 

 

 

 

 

 

 

 
Figure B3. Decreased average node degree in patient-derived neurons compared to controls across varying network 

thresholds and sizes. ANDeg showed a significant overall decrease (p=0.048) in graphs of depressed patients (dashed lines) 

compared to controls (solid lines) across varying network sizes and rthresh (depicted in different colors). ANDeg significantly 

increased with larger network sizes (p<0.001) and lower rthresh (p<0.001). We explored the levels of network sizes and rthresh 

at which group differences in ANDeg occurred. Asterisks (*) indicate the presence of statistically significant difference 

(p<0.05, uncorrected). The shaded area represents the standard error of the mean (SEM) for better visability (instead of 

confidance interval shown in the main text). 
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Table B1. Descriptive statistics of C of in vitro neural networks of experimental groups across thresholds 

and network sizes. 

Threshold 
Network 

size 
Group Mean C Confidence interval C t-values p-values 

0,2 10 control 0,5871 0.0312/0.0295 
1,1751 0,2544 

0,2 10 patient 0,5503 0.0466/0.0502 

0,2 11 control 0,5986 0.0319/0.0286 
1,8850 0,0762 

0,2 11 patient 0,5492 0.0358/0.0399 

0,2 12 control 0,6161 0.0349/0.0329 
2,0699 0,0512 

0,2 12 patient 0,5592 0.036/0.0389 

0,2 13 control 0,6186 0.0345/0.0327 
1,9840 0,0618 

0,2 13 patient 0,5650 0.0342/0.0383 

0,2 14 control 0,6250 0.0363/0.0333 
2,1842 0,0442 

0,2 14 patient 0,5649 0.0357/0.0373 

0,2 15 control 0,6111 0.049/0.0556 
1,2076 0,2378 

0,2 15 patient 0,5691 0.0355/0.0385 

0,2 16 control 0,6145 0.0484/0.053 
1,3169 0,203 

0,2 16 patient 0,5699 0.0357/0.0359 

0,2 17 control 0,6182 0.05/0.0554 
1,3202 0,2056 

0,2 17 patient 0,5734 0.0334/0.0356 

0,2 18 control 0,6195 0.0502/0.0524 
1,4396 0,1712 

0,2 18 patient 0,5687 0.0377/0.0419 

0,2 19 control 0,6075 0.0447/0.0506 
1,1742 0,2596 

0,2 19 patient 0,5681 0.0376/0.0409 

0,2 20 control 0,6180 0.0476/0.0548 
1,2946 0,2182 

0,2 20 patient 0,5748 0.0343/0.0369 

0,2 21 control 0,6189 0.0457/0.0526 
1,2854 0,2208 

0,2 21 patient 0,5772 0.0339/0.0352 

0,2 22 control 0,6263 0.0485/0.0553 
1,4487 0,1668 

0,2 22 patient 0,5784 0.0325/0.0351 

0,2 23 control 0,6452 0.0394/0.041 
2,2991 0,0412 

0,2 23 patient 0,5797 0.0324/0.0334 

0,2 24 control 0,6458 0.0387/0.0413 
2,2853 0,042 

0,2 24 patient 0,5819 0.0312/0.033 

0,2 25 control 0,6421 0.0429/0.0441 
2,0616 0,0656 

0,2 25 patient 0,5821 0.0313/0.034 

0,2 26 control 0,6416 0.0427/0.0435 
1,8585 0,0888 

0,2 26 patient 0,5899 0.0277/0.0303 

0,2 27 control 0,6417 0.0424/0.0441 
1,8633 0,0884 

0,2 27 patient 0,5893 0.0273/0.0303 

0,2 28 control 0,6428 0.0429/0.0429 
1,8729 0,0854 

0,2 28 patient 0,5904 0.028/0.0299 

0,2 29 control 0,6431 0.0413/0.0431 
2,0729 0,0604 

0,2 29 patient 0,5877 0.0246/0.0284 
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Threshold 
Network 

size 
Group Mean C Confidence interval C t-values p-values 

0,2 30 control 0,6346 0.0474/0.0458 
1,6727 0,11655012 

0,2 30 patient 0,5884 0.0236/0.0282 

0,2 31 control 0,6343 0.0466/0.0454 
1,6413 0,12354312 

0,2 31 patient 0,5885 0.0239/0.0281 

0,2 32 control 0,6351 0.0471/0.0447 
1,6590 0,12087912 

0,2 32 patient 0,5894 0.0242/0.0273 

0,2 33 control 0,6354 0.0468/0.0446 
1,6307 0,12820513 

0,2 33 patient 0,5917 0.0223/0.0256 

0,2 34 control 0,6460 0.0406/0.0378 
2,2678 0,04895105 

0,2 34 patient 0,5907 0.0223/0.0257 

0,2 35 control 0,6523 0.0381/0.0383 
2,5862 0,02597403 

0,2 35 patient 0,5910 0.0225/0.0247 

0,2 36 control 0,6640 0.0341/0.0364 
2,8991 0,01398601 

0,2 36 patient 0,5852 0.0287/0.034 

0,2 37 control 0,6592 0.0389/0.036 
2,6662 0,01942502 

0,2 37 patient 0,5852 0.0276/0.0345 

0,2 38 control 0,6597 0.0384/0.0356 
2,7078 0,01787102 

0,2 38 patient 0,5848 0.0281/0.0337 

0,2 39 control 0,6603 0.0379/0.0354 
2,7700 0,01767677 

0,2 39 patient 0,5803 0.0313/0.0379 

0,2 40 control 0,6604 0.0355/0.0355 
2,6685 0,02164502 

0,2 40 patient 0,5945 0.0221/0.0269 

0,2 41 control 0,6606 0.0376/0.0351 
2,6595 0,02164502 

0,2 41 patient 0,5955 0.0215/0.0268 

0,2 42 control 0,6599 0.0357/0.0357 
2,6081 0,02164502 

0,2 42 patient 0,5954 0.0217/0.0274 

0,2 43 control 0,6544 0.038/0.0329 
2,5166 0,02380952 

0,2 43 patient 0,5957 0.0219/0.0263 

0,2 44 control 0,6543 0.0337/0.0325 
2,5643 0,02597403 

0,2 44 patient 0,5950 0.022/0.027 

0,2 45 control 0,6640 0.0533/0.0414 
2,1836 0,03463203 

0,2 45 patient 0,5987 0.0232/0.0299 

0,2 46 control 0,6636 0.0537/0.0426 
1,7770 0,07936508 

0,2 46 patient 0,6115 0.0159/0.017 

0,2 47 control 0,6639 0.0538/0.0416 
1,7853 0,07936508 

0,2 47 patient 0,6114 0.0157/0.0171 

0,3 10 control 0,4219 0.0464/0.0512 
0,9851 0,3368 

0,3 10 patient 0,3775 0.0678/0.067 

0,3 11 control 0,4423 0.0457/0.0489 
1,5414 0,145 

0,3 11 patient 0,3810 0.055/0.0573 

0,3 12 control 0,4774 0.0577/0.0582 
1,7851 0,0914 

0,3 12 patient 0,3991 0.0555/0.0579 
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Threshold 
Network 

size 
Group Mean C Confidence interval C t-values p-values 

0,3 13 control 0,4904 0.0586/0.0576 
1,7277 0,1002 

0,3 13 patient 0,4148 0.0524/0.0574 

0,3 14 control 0,5017 0.0582/0.0562 
1,6971 0,1074 

0,3 14 patient 0,4258 0.0572/0.0594 

0,3 15 control 0,4900 0.0722/0.079 
1,0659 0,2962 

0,3 15 patient 0,4350 0.055/0.0568 

0,3 16 control 0,4972 0.0736/0.0799 
1,0996 0,2836 

0,3 16 patient 0,4419 0.0521/0.0539 

0,3 17 control 0,5066 0.0733/0.0756 
1,1787 0,2546 

0,3 17 patient 0,4487 0.0514/0.0527 

0,3 18 control 0,5112 0.0741/0.0773 
1,2152 0,2426 

0,3 18 patient 0,4489 0.0567/0.0595 

0,3 19 control 0,4956 0.0631/0.0711 
0,9233 0,3694 

0,3 19 patient 0,4511 0.058/0.0585 

0,3 20 control 0,5085 0.0661/0.0728 
0,8603 0,406 

0,3 20 patient 0,4676 0.0516/0.0562 

0,3 21 control 0,5126 0.0637/0.0706 
0,8468 0,4128 

0,3 21 patient 0,4734 0.0506/0.0529 

0,3 22 control 0,5158 0.0652/0.0741 
0,8588 0,4054 

0,3 22 patient 0,4758 0.0509/0.0519 

0,3 23 control 0,5495 0.05/0.0531 
1,6727 0,1144 

0,3 23 patient 0,4822 0.0494/0.0528 

0,3 24 control 0,5512 0.0487/0.0517 
1,6467 0,119 

0,3 24 patient 0,4855 0.0497/0.0521 

0,3 25 control 0,5479 0.0509/0.0536 
1,4288 0,1724 

0,3 25 patient 0,4890 0.0505/0.054 

0,3 26 control 0,5518 0.0518/0.0518 
1,2421 0,2336 

0,3 26 patient 0,5035 0.0454/0.0496 

0,3 27 control 0,5526 0.0521/0.0525 
1,2481 0,231 

0,3 27 patient 0,5036 0.0462/0.0502 

0,3 28 control 0,5543 0.0513/0.0528 
1,1162 0,2766 

0,3 28 patient 0,5120 0.043/0.0478 

0,3 29 control 0,5564 0.0504/0.052 
1,1115 0,2818 

0,3 29 patient 0,5154 0.0403/0.0466 

0,3 30 control 0,5474 0.0582/0.0558 
0,7898 0,44522145 

0,3 30 patient 0,5169 0.0416/0.0455 

0,3 31 control 0,5496 0.0555/0.0555 
0,7961 0,44322344 

0,3 31 patient 0,5193 0.0403/0.0451 

0,3 32 control 0,5509 0.0559/0.0536 
0,7819 0,45088245 

0,3 32 patient 0,5213 0.0393/0.0454 

0,3 33 control 0,5521 0.0555/0.0552 
0,6892 0,5004995 

0,3 33 patient 0,5274 0.0374/0.0388 
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Threshold 
Network 

size 
Group Mean C Confidence interval C t-values p-values 

0,3 34 control 0,5657 0.0502/0.0482 
1,0972 0,29437229 

0,3 34 patient 0,5291 0.0349/0.0379 

0,3 35 control 0,5744 0.0467/0.0476 
1,3573 0,1968032 

0,3 35 patient 0,5301 0.0355/0.0385 

0,3 36 control 0,5876 0.0433/0.0514 
1,6240 0,12587413 

0,3 36 patient 0,5306 0.0369/0.042 

0,3 37 control 0,5800 0.0503/0.0515 
1,3899 0,18881119 

0,3 37 patient 0,5303 0.0374/0.0423 

0,3 38 control 0,5809 0.0498/0.0498 
1,3767 0,18958819 

0,3 38 patient 0,5322 0.0368/0.0414 

0,3 39 control 0,5818 0.0498/0.0507 
1,7895 0,09974747 

0,3 39 patient 0,5208 0.032/0.038 

0,3 40 control 0,5827 0.0497/0.0509 
1,4272 0,18181818 

0,3 40 patient 0,5403 0.0227/0.0212 

0,3 41 control 0,5840 0.0493/0.0507 
1,4407 0,17748918 

0,3 41 patient 0,5414 0.0223/0.0216 

0,3 42 control 0,5844 0.0485/0.0487 
1,4879 0,16883117 

0,3 42 patient 0,5410 0.0216/0.0219 

0,3 43 control 0,5783 0.0477/0.0413 
1,2646 0,22294372 

0,3 43 patient 0,5434 0.0215/0.0209 

0,3 44 control 0,5783 0.048/0.0439 
1,2223 0,24025974 

0,3 44 patient 0,5441 0.0229/0.0218 

0,3 45 control 0,5885 0.0659/0.0505 
1,1033 0,32467532 

0,3 45 patient 0,5494 0.0295/0.0248 

0,3 46 control 0,5892 0.0656/0.0501 
0,8101 0,50793651 

0,3 46 patient 0,5589 0.0299/0.0195 

0,3 47 control 0,5895 0.0656/0.0502 
0,7685 0,53968254 

0,3 47 patient 0,5607 0.0295/0.0197 

0,4 10 control 0,2563 0.047/0.0483 
0,7441 0,4662 

0,4 10 patient 0,2252 0.0643/0.0574 

0,4 11 control 0,2754 0.0481/0.05 
1,1274 0,2734 

0,4 11 patient 0,2324 0.052/0.0485 

0,4 12 control 0,3118 0.0615/0.0607 
1,4561 0,1636 

0,4 12 patient 0,2484 0.0542/0.0509 

0,4 13 control 0,3286 0.0614/0.0603 
1,4172 0,171 

0,4 13 patient 0,2662 0.0548/0.0536 

0,4 14 control 0,3435 0.0612/0.0619 
1,4000 0,1776 

0,4 14 patient 0,2799 0.0553/0.0538 

0,4 15 control 0,3387 0.0733/0.0818 
0,9127 0,362 

0,4 15 patient 0,2907 0.0609/0.0571 

0,4 16 control 0,3500 0.0744/0.0809 
1,0252 0,3168 

0,4 16 patient 0,2963 0.0581/0.0524 
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Threshold 
Network 

size 
Group Mean C Confidence interval C t-values p-values 

0,4 17 control 0,3614 0.0759/0.0822 
1,0082 0,3282 

0,4 17 patient 0,3085 0.0587/0.0543 

0,4 18 control 0,3708 0.0741/0.0805 
1,0140 0,3284 

0,4 18 patient 0,3155 0.0647/0.0618 

0,4 19 control 0,3568 0.0677/0.0775 
0,5332 0,5976 

0,4 19 patient 0,3287 0.0642/0.0635 

0,4 20 control 0,3848 0.0783/0.0879 
0,6957 0,5008 

0,4 20 patient 0,3480 0.0574/0.0501 

0,4 21 control 0,3941 0.0793/0.0875 
0,7038 0,4882 

0,4 21 patient 0,3566 0.0578/0.0491 

0,4 22 control 0,4062 0.0829/0.0858 
0,7446 0,4602 

0,4 22 patient 0,3656 0.0588/0.0503 

0,4 23 control 0,4458 0.0676/0.0714 
1,4785 0,163 

0,4 23 patient 0,3757 0.0587/0.0499 

0,4 24 control 0,4518 0.0674/0.0739 
1,4698 0,164 

0,4 24 patient 0,3809 0.058/0.0506 

0,4 25 control 0,4522 0.0712/0.0732 
1,2789 0,221 

0,4 25 patient 0,3897 0.0597/0.0508 

0,4 26 control 0,4567 0.0728/0.0755 
1,2034 0,25 

0,4 26 patient 0,3944 0.0652/0.055 

0,4 27 control 0,4610 0.0749/0.0746 
1,2161 0,2408 

0,4 27 patient 0,3979 0.0653/0.055 

0,4 28 control 0,4661 0.0756/0.0764 
1,1860 0,2566 

0,4 28 patient 0,4039 0.066/0.056 

0,4 29 control 0,4703 0.0744/0.0772 
1,0518 0,307 

0,4 29 patient 0,4126 0.0758/0.0596 

0,4 30 control 0,4492 0.0706/0.0714 
0,5643 0,58474858 

0,4 30 patient 0,4187 0.0718/0.0586 

0,4 31 control 0,4522 0.0713/0.0716 
0,5144 0,61471861 

0,4 31 patient 0,4242 0.0727/0.0587 

0,4 32 control 0,4563 0.0717/0.0731 
0,5094 0,61904762 

0,4 32 patient 0,4286 0.0704/0.0581 

0,4 33 control 0,4586 0.0723/0.0723 
0,4589 0,65301365 

0,4 33 patient 0,4339 0.0717/0.0571 

0,4 34 control 0,4707 0.0692/0.0692 
0,6272 0,54045954 

0,4 34 patient 0,4374 0.0694/0.0569 

0,4 35 control 0,4869 0.0673/0.0737 
0,8336 0,41924742 

0,4 35 patient 0,4430 0.0688/0.0566 

0,4 36 control 0,5182 0.05/0.0653 
1,4043 0,18648019 

0,4 36 patient 0,4411 0.0717/0.0617 

0,4 37 control 0,5123 0.0577/0.0666 
1,2196 0,24553225 

0,4 37 patient 0,4453 0.0704/0.0632 



Appendix B. Result-related material 

 

 

 
134 

Threshold 
Network 

size 
Group Mean C Confidence interval C t-values p-values 

0,4 38 control 0,5130 0.059/0.0695 
1,1364 0,27661228 

0,4 38 patient 0,4499 0.0728/0.0648 

0,4 39 control 0,5159 0.058/0.0684 
2,1100 0,06186869 

0,4 39 patient 0,4235 0.0458/0.0491 

0,4 40 control 0,5172 0.0594/0.0696 
1,7059 0,11904762 

0,4 40 patient 0,4452 0.0399/0.0444 

0,4 41 control 0,5186 0.0604/0.0677 
1,6501 0,13852814 

0,4 41 patient 0,4481 0.0387/0.0464 

0,4 42 control 0,5202 0.0602/0.0683 
1,6011 0,15151515 

0,4 42 patient 0,4515 0.0406/0.0453 

0,4 43 control 0,5195 0.0584/0.0733 
1,5096 0,17316017 

0,4 43 patient 0,4555 0.0394/0.0449 

0,4 44 control 0,5202 0.0586/0.0707 
1,4406 0,19047619 

0,4 44 patient 0,4588 0.0397/0.0465 

0,4 45 control 0,5288 0.071/0.0732 
1,3846 0,2034632 

0,4 45 patient 0,4629 0.044/0.0487 

0,4 46 control 0,5318 0.0712/0.0728 
0,9688 0,34126984 

0,4 46 patient 0,4866 0.0361/0.0274 

0,4 47 control 0,5326 0.0715/0.073 
0,9029 0,38888889 

0,4 47 patient 0,4902 0.0363/0.028 

0,5 10 control 0,1395 0.0404/0.0366 
0,7189 0,4892 

0,5 10 patient 0,1147 0.0541/0.0456 

0,5 11 control 0,1579 0.04/0.0367 
1,7798 0,0984 

0,5 11 patient 0,1072 0.0385/0.0332 

0,5 12 control 0,1818 0.044/0.0456 
2,0292 0,0598 

0,5 12 patient 0,1175 0.0417/0.0351 

0,5 13 control 0,1943 0.0434/0.0471 
1,8524 0,0814 

0,5 13 patient 0,1328 0.0448/0.0381 

0,5 14 control 0,2069 0.0437/0.0477 
1,8597 0,0804 

0,5 14 patient 0,1428 0.0465/0.0408 

0,5 15 control 0,2024 0.0553/0.0573 
1,1130 0,271 

0,5 15 patient 0,1587 0.0474/0.0439 

0,5 16 control 0,2159 0.0555/0.058 
1,4341 0,1692 

0,5 16 patient 0,1595 0.0485/0.0415 

0,5 17 control 0,2251 0.0543/0.0621 
1,3623 0,1902 

0,5 17 patient 0,1709 0.0476/0.0425 

0,5 18 control 0,2375 0.0538/0.0584 
1,5106 0,1506 

0,5 18 patient 0,1739 0.0542/0.0509 

0,5 19 control 0,2311 0.0561/0.0618 
1,0152 0,3352 

0,5 19 patient 0,1868 0.0539/0.0514 

0,5 20 control 0,2651 0.0757/0.0795 
1,2627 0,2322 

0,5 20 patient 0,2034 0.0526/0.0468 
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0,5 21 control 0,2738 0.0763/0.078 
1,2665 0,2314 

0,5 21 patient 0,2114 0.0508/0.048 

0,5 22 control 0,2821 0.0786/0.0783 
1,2398 0,2412 

0,5 22 patient 0,2204 0.0507/0.0464 

0,5 23 control 0,3233 0.0699/0.0701 
2,0930 0,0552 

0,5 23 patient 0,2265 0.0534/0.0493 

0,5 24 control 0,3278 0.0708/0.0704 
1,9509 0,0734 

0,5 24 patient 0,2381 0.0523/0.05 

0,5 25 control 0,3278 0.074/0.0696 
1,7576 0,1012 

0,5 25 patient 0,2445 0.0543/0.05 

0,5 26 control 0,3343 0.0698/0.0709 
1,5988 0,13 

0,5 26 patient 0,2516 0.0636/0.0585 

0,5 27 control 0,3406 0.0734/0.0716 
1,6099 0,126 

0,5 27 patient 0,2558 0.0655/0.059 

0,5 28 control 0,3459 0.0719/0.0696 
1,6530 0,1192 

0,5 28 patient 0,2586 0.0677/0.0575 

0,5 29 control 0,3500 0.0734/0.0738 
1,2981 0,214 

0,5 29 patient 0,2726 0.087/0.0694 

0,5 30 control 0,3453 0.0848/0.0813 
1,0191 0,32667333 

0,5 30 patient 0,2794 0.088/0.0719 

0,5 31 control 0,3499 0.0875/0.0832 
0,9686 0,35131535 

0,5 31 patient 0,2867 0.0881/0.0699 

0,5 32 control 0,3542 0.0853/0.0819 
0,9765 0,34698635 

0,5 32 patient 0,2905 0.0878/0.0721 

0,5 33 control 0,3586 0.0864/0.0828 
0,9427 0,36396936 

0,5 33 patient 0,2972 0.0915/0.0705 

0,5 34 control 0,3802 0.0742/0.0668 
1,2293 0,24608725 

0,5 34 patient 0,3037 0.0921/0.0698 

0,5 35 control 0,3971 0.0665/0.0699 
1,4223 0,18015318 

0,5 35 patient 0,3086 0.0907/0.0714 

0,5 36 control 0,4274 0.0711/0.0642 
1,7623 0,1025641 

0,5 36 patient 0,3073 0.0972/0.0786 

0,5 37 control 0,4307 0.0683/0.0615 
1,6638 0,12587413 

0,5 37 patient 0,3169 0.0992/0.0807 

0,5 38 control 0,4343 0.0676/0.0594 
1,6375 0,12898213 

0,5 38 patient 0,3218 0.0974/0.0808 

0,5 39 control 0,4369 0.0685/0.0615 
3,2630 0,00883838 

0,5 39 patient 0,2830 0.0541/0.057 

0,5 40 control 0,4394 0.068/0.0593 
3,0369 0,01515152 

0,5 40 patient 0,3092 0.0445/0.0461 

0,5 41 control 0,4427 0.0676/0.0584 
2,9940 0,01298701 

0,5 41 patient 0,3144 0.045/0.0478 
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0,5 42 control 0,4439 0.067/0.0586 
2,9511 0,01731602 

0,5 42 patient 0,3165 0.0472/0.0472 

0,5 43 control 0,4416 0.0557/0.0537 
2,9303 0,02164502 

0,5 43 patient 0,3205 0.0486/0.0501 

0,5 44 control 0,4440 0.0555/0.0522 
2,8631 0,02164502 

0,5 44 patient 0,3251 0.0488/0.0497 

0,5 45 control 0,4576 0.0495/0.0572 
2,6326 0,03463203 

0,5 45 patient 0,3376 0.059/0.0585 

0,5 46 control 0,4582 0.0507/0.0579 
2,1429 0,08730159 

0,5 46 patient 0,3584 0.0601/0.0617 

0,5 47 control 0,4616 0.0506/0.0585 
2,0788 0,08730159 

0,5 47 patient 0,3632 0.0619/0.0617 

0,6 10 control 0,0550 0.0261/0.0209 
0,0081 0,9948 

0,6 10 patient 0,0548 0.0515/0.0366 

0,6 11 control 0,0643 0.0286/0.0234 
1,3274 0,2054 

0,6 11 patient 0,0394 0.0251/0.0189 

0,6 12 control 0,0771 0.03/0.0268 
1,5256 0,1358 

0,6 12 patient 0,0447 0.03/0.0212 

0,6 13 control 0,0888 0.033/0.0303 
1,7389 0,0968 

0,6 13 patient 0,0501 0.0296/0.0221 

0,6 14 control 0,0961 0.0329/0.0308 
1,5209 0,1382 

0,6 14 patient 0,0599 0.0335/0.0249 

0,6 15 control 0,1002 0.0365/0.0338 
1,2911 0,2072 

0,6 15 patient 0,0673 0.0345/0.0259 

0,6 16 control 0,1087 0.0373/0.0354 
1,3299 0,1894 

0,6 16 patient 0,0739 0.0356/0.0268 

0,6 17 control 0,1140 0.0369/0.0363 
1,1992 0,2434 

0,6 17 patient 0,0816 0.0372/0.0293 

0,6 18 control 0,1201 0.0359/0.035 
1,2209 0,2294 

0,6 18 patient 0,0848 0.043/0.0353 

0,6 19 control 0,1201 0.038/0.0366 
0,8229 0,4398 

0,6 19 patient 0,0952 0.0429/0.037 

0,6 20 control 0,1445 0.0538/0.047 
1,1080 0,3004 

0,6 20 patient 0,1054 0.0435/0.0368 

0,6 21 control 0,1524 0.054/0.0487 
1,1252 0,2934 

0,6 21 patient 0,1120 0.0454/0.0389 

0,6 22 control 0,1594 0.0555/0.0507 
1,1223 0,2952 

0,6 22 patient 0,1176 0.0477/0.0403 

0,6 23 control 0,1840 0.0555/0.0452 
1,5911 0,1368 

0,6 23 patient 0,1250 0.0478/0.0415 

0,6 24 control 0,1914 0.0545/0.0438 
1,6056 0,1314 

0,6 24 patient 0,1316 0.0481/0.043 
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0,6 25 control 0,1953 0.0553/0.0476 
1,4596 0,1744 

0,6 25 patient 0,1383 0.0499/0.0458 

0,6 26 control 0,2044 0.0557/0.0466 
1,5198 0,1528 

0,6 26 patient 0,1384 0.0651/0.0506 

0,6 27 control 0,2111 0.0541/0.0436 
1,4898 0,161 

0,6 27 patient 0,1457 0.0657/0.0513 

0,6 28 control 0,2180 0.0566/0.0467 
1,6037 0,1328 

0,6 28 patient 0,1448 0.0699/0.0551 

0,6 29 control 0,2237 0.0564/0.0483 
1,2224 0,2432 

0,6 29 patient 0,1584 0.089/0.0636 

0,6 30 control 0,2268 0.0642/0.0522 
1,1046 0,3036963 

0,6 30 patient 0,1619 0.0935/0.0654 

0,6 31 control 0,2306 0.0626/0.0536 
1,0467 0,32900433 

0,6 31 patient 0,1673 0.0945/0.0681 

0,6 32 control 0,2372 0.0649/0.0526 
1,0278 0,33699634 

0,6 32 patient 0,1746 0.096/0.0694 

0,6 33 control 0,2408 0.0645/0.0513 
1,0241 0,33866134 

0,6 33 patient 0,1775 0.0977/0.0717 

0,6 34 control 0,2656 0.0568/0.0491 
1,3254 0,21744922 

0,6 34 patient 0,1837 0.0988/0.0731 

0,6 35 control 0,2724 0.0559/0.0485 
1,3462 0,20845821 

0,6 35 patient 0,1881 0.104/0.0731 

0,6 36 control 0,2820 0.0688/0.0628 
1,2924 0,22144522 

0,6 36 patient 0,1854 0.1074/0.0868 

0,6 37 control 0,3020 0.0611/0.0653 
1,4399 0,18181818 

0,6 37 patient 0,1921 0.1106/0.0878 

0,6 38 control 0,3034 0.0671/0.0625 
1,3691 0,1973582 

0,6 38 patient 0,1973 0.1104/0.0916 

0,6 39 control 0,3075 0.0614/0.0668 
3,1540 0,01388889 

0,6 39 patient 0,1513 0.0516/0.0625 

0,6 40 control 0,3096 0.0629/0.0657 
3,0056 0,01948052 

0,6 40 patient 0,1817 0.0382/0.044 

0,6 41 control 0,3128 0.0601/0.0661 
2,9763 0,01948052 

0,6 41 patient 0,1858 0.0379/0.045 

0,6 42 control 0,3154 0.0606/0.0661 
2,9325 0,01948052 

0,6 42 patient 0,1884 0.0399/0.0459 

0,6 43 control 0,3113 0.0559/0.0576 
3,0222 0,01948052 

0,6 43 patient 0,1910 0.0394/0.0455 

0,6 44 control 0,3114 0.0513/0.0598 
2,8353 0,01948052 

0,6 44 patient 0,1965 0.0409/0.0471 

0,6 45 control 0,3239 0.0492/0.0601 
2,5615 0,04112554 

0,6 45 patient 0,2112 0.0497/0.0527 
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0,6 46 control 0,3255 0.0491/0.0593 
2,1546 0,07936508 

0,6 46 patient 0,2368 0.0422/0.0422 

0,6 47 control 0,3280 0.0485/0.061 
2,0650 0,07936508 

0,6 47 patient 0,2411 0.0417/0.0425 

0,7 10 control 0,0172 0.0065/0.0059 
-0,0390 0,9946 

0,7 10 patient 0,0177 0.0255/0.016 

0,7 11 control 0,0204 0.0073/0.0067 
2,1480 0,0492 

0,7 11 patient 0,0079 0.0093/0.0061 

0,7 12 control 0,0269 0.0087/0.0088 
2,7379 0,0162 

0,7 12 patient 0,0086 0.0101/0.0066 

0,7 13 control 0,0317 0.0087/0.0089 
3,1378 0,0092 

0,7 13 patient 0,0099 0.0103/0.0072 

0,7 14 control 0,0362 0.0113/0.0112 
2,9457 0,0118 

0,7 14 patient 0,0119 0.0113/0.008 

0,7 15 control 0,0328 0.0136/0.0133 
2,1017 0,0516 

0,7 15 patient 0,0127 0.0129/0.0091 

0,7 16 control 0,0372 0.0152/0.0149 
1,9671 0,0632 

0,7 16 patient 0,0157 0.0153/0.0106 

0,7 17 control 0,0402 0.016/0.0157 
1,9930 0,0638 

0,7 17 patient 0,0170 0.016/0.0115 

0,7 18 control 0,0450 0.0179/0.0172 
2,1005 0,0518 

0,7 18 patient 0,0183 0.0167/0.0121 

0,7 19 control 0,0414 0.0171/0.0176 
1,5452 0,15 

0,7 19 patient 0,0210 0.0195/0.0136 

0,7 20 control 0,0555 0.0285/0.0248 
1,8702 0,0846 

0,7 20 patient 0,0230 0.0198/0.0144 

0,7 21 control 0,0573 0.0269/0.0257 
1,8678 0,0868 

0,7 21 patient 0,0251 0.0209/0.0151 

0,7 22 control 0,0609 0.0299/0.028 
1,8417 0,0898 

0,7 22 patient 0,0263 0.0231/0.0165 

0,7 23 control 0,0802 0.0301/0.0251 
2,8091 0,0166 

0,7 23 patient 0,0279 0.0233/0.0172 

0,7 24 control 0,0833 0.0302/0.0264 
2,6157 0,0224 

0,7 24 patient 0,0314 0.0264/0.0187 

0,7 25 control 0,0883 0.0297/0.0237 
2,7709 0,0164 

0,7 25 patient 0,0334 0.0266/0.0199 

0,7 26 control 0,0939 0.0317/0.0264 
2,3832 0,0312 

0,7 26 patient 0,0393 0.0334/0.0227 

0,7 27 control 0,0989 0.0339/0.0276 
2,3036 0,0378 

0,7 27 patient 0,0421 0.037/0.0245 

0,7 28 control 0,1043 0.0342/0.0286 
2,4262 0,0314 

0,7 28 patient 0,0450 0.0354/0.0235 
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0,7 29 control 0,1075 0.0351/0.0297 
1,9417 0,0762 

0,7 29 patient 0,0519 0.0445/0.029 

0,7 30 control 0,1061 0.0425/0.0292 
1,5823 0,15417915 

0,7 30 patient 0,0548 0.0476/0.0312 

0,7 31 control 0,1107 0.0426/0.0283 
1,5919 0,15184815 

0,7 31 patient 0,0580 0.0494/0.0328 

0,7 32 control 0,1137 0.043/0.0296 
1,5070 0,17282717 

0,7 32 patient 0,0610 0.0532/0.0343 

0,7 33 control 0,1184 0.0442/0.0294 
1,5132 0,17182817 

0,7 33 patient 0,0634 0.0556/0.0353 

0,7 34 control 0,1430 0.0453/0.0417 
1,9679 0,07659008 

0,7 34 patient 0,0671 0.0577/0.0377 

0,7 35 control 0,1510 0.0441/0.0403 
1,9991 0,07326007 

0,7 35 patient 0,0709 0.0619/0.0397 

0,7 36 control 0,1437 0.0499/0.04 
1,6277 0,13442113 

0,7 36 patient 0,0726 0.0621/0.0408 

0,7 37 control 0,1501 0.0517/0.0427 
1,6038 0,13986014 

0,7 37 patient 0,0788 0.064/0.0419 

0,7 38 control 0,1533 0.0512/0.0428 
1,5486 0,15229215 

0,7 38 patient 0,0813 0.0672/0.0435 

0,7 39 control 0,1565 0.0497/0.0416 
4,2087 0,00126263 

0,7 39 patient 0,0508 0.0147/0.0189 

0,7 40 control 0,1582 0.0568/0.0441 
3,6859 0,0021645 

0,7 40 patient 0,0626 0.0087/0.0082 

0,7 41 control 0,1616 0.053/0.0443 
3,6328 0,0021645 

0,7 41 patient 0,0652 0.0096/0.0098 

0,7 42 control 0,1640 0.0538/0.0445 
3,5960 0,0021645 

0,7 42 patient 0,0679 0.0105/0.0105 

0,7 43 control 0,1616 0.0452/0.0393 
3,9006 0,0021645 

0,7 43 patient 0,0696 0.0107/0.0106 

0,7 44 control 0,1651 0.0471/0.0404 
3,8645 0,0021645 

0,7 44 patient 0,0718 0.0116/0.0109 

0,7 45 control 0,1752 0.0451/0.0445 
3,5999 0,00649351 

0,7 45 patient 0,0811 0.0197/0.0174 

0,7 46 control 0,1786 0.0486/0.046 
3,0601 0,01587302 

0,7 46 patient 0,0885 0.0216/0.0198 

0,7 47 control 0,1808 0.0459/0.0454 
3,0473 0,01587302 

0,7 47 patient 0,0907 0.0251/0.0213 

0,8 10 control 0,0011 0.0009/0.0008 
-0,4894 0,9654 

0,8 10 patient 0,0022 0.0041/0.0022 

0,8 11 control 0,0014 0.0014/0.0012 
1,3927 0,23 

0,8 11 patient 0,0004 0.0004/0.0004 
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0,8 12 control 0,0016 0.0015/0.0013 
1,5486 0,1448 

0,8 12 patient 0,0004 0.0006/0.0004 

0,8 13 control 0,0020 0.0017/0.0016 
1,5578 0,1434 

0,8 13 patient 0,0005 0.0007/0.0005 

0,8 14 control 0,0028 0.0025/0.0024 
1,5403 0,1472 

0,8 14 patient 0,0007 0.0009/0.0007 

0,8 15 control 0,0033 0.003/0.0029 
1,4179 0,193 

0,8 15 patient 0,0009 0.001/0.0009 

0,8 16 control 0,0032 0.003/0.0025 
1,4821 0,1374 

0,8 16 patient 0,0008 0.0012/0.0008 

0,8 17 control 0,0036 0.0032/0.0029 
1,3347 0,1744 

0,8 17 patient 0,0012 0.0015/0.0012 

0,8 18 control 0,0044 0.004/0.0037 
1,4705 0,1664 

0,8 18 patient 0,0012 0.0015/0.001 

0,8 19 control 0,0049 0.0042/0.0035 
1,8303 0,1018 

0,8 19 patient 0,0009 0.0013/0.0009 

0,8 20 control 0,0064 0.0061/0.0052 
1,6615 0,1218 

0,8 20 patient 0,0013 0.0016/0.0013 

0,8 21 control 0,0073 0.0067/0.0055 
1,6952 0,106 

0,8 21 patient 0,0015 0.0022/0.0015 

0,8 22 control 0,0075 0.0067/0.0056 
1,7608 0,115 

0,8 22 patient 0,0015 0.0017/0.0012 

0,8 23 control 0,0092 0.0076/0.0066 
1,9772 0,0666 

0,8 23 patient 0,0018 0.0023/0.0018 

0,8 24 control 0,0102 0.0087/0.0075 
1,9731 0,0654 

0,8 24 patient 0,0018 0.0022/0.0018 

0,8 25 control 0,0109 0.0088/0.0078 
2,0413 0,0522 

0,8 25 patient 0,0021 0.0025/0.0018 

0,8 26 control 0,0124 0.0107/0.0089 
1,7211 0,1104 

0,8 26 patient 0,0030 0.003/0.0023 

0,8 27 control 0,0128 0.0112/0.0091 
1,7996 0,105 

0,8 27 patient 0,0028 0.0028/0.0022 

0,8 28 control 0,0140 0.0113/0.01 
1,8749 0,0962 

0,8 28 patient 0,0031 0.0034/0.0031 

0,8 29 control 0,0143 0.0115/0.0098 
1,8218 0,1036 

0,8 29 patient 0,0033 0.0034/0.0025 

0,8 30 control 0,0174 0.0132/0.0118 
2,0891 0,06193806 

0,8 30 patient 0,0038 0.0038/0.0028 

0,8 31 control 0,0189 0.0146/0.0126 
2,1410 0,04195804 

0,8 31 patient 0,0038 0.0038/0.0029 

0,8 32 control 0,0195 0.0148/0.013 
2,1159 0,04761905 

0,8 32 patient 0,0042 0.0045/0.0032 
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Threshold 
Network 

size 
Group Mean C Confidence interval C t-values p-values 

0,8 33 control 0,0200 0.0156/0.0138 
2,0745 0,05228105 

0,8 33 patient 0,0043 0.0045/0.0033 

0,8 34 control 0,0230 0.0169/0.0157 
2,1565 0,04229104 

0,8 34 patient 0,0048 0.0048/0.0036 

0,8 35 control 0,0241 0.0167/0.0152 
2,3048 0,03696304 

0,8 35 patient 0,0049 0.0049/0.0037 

0,8 36 control 0,0300 0.018/0.018 
2,8416 0,01165501 

0,8 36 patient 0,0053 0.0053/0.0039 

0,8 37 control 0,0288 0.0157/0.0158 
2,7662 0,01631702 

0,8 37 patient 0,0059 0.0059/0.0046 

0,8 38 control 0,0311 0.0173/0.0175 
2,6388 0,01631702 

0,8 38 patient 0,0066 0.0068/0.0052 

0,8 39 control 0,0315 0.0177/0.0177 
2,3187 0,04040404 

0,8 39 patient 0,0079 0.0075/0.0062 

0,8 40 control 0,0344 0.0183/0.0187 
2,1765 0,04978355 

0,8 40 patient 0,0097 0.0086/0.0075 

0,8 41 control 0,0350 0.0191/0.0191 
2,0872 0,06709957 

0,8 41 patient 0,0104 0.0092/0.0081 

0,8 42 control 0,0363 0.0192/0.0195 
2,2092 0,06060606 

0,8 42 patient 0,0102 0.0087/0.008 

0,8 43 control 0,0409 0.0236/0.0233 
2,0368 0,06060606 

0,8 43 patient 0,0117 0.0102/0.009 

0,8 44 control 0,0425 0.0255/0.0244 
2,0015 0,06926407 

0,8 44 patient 0,0122 0.0097/0.009 

0,8 45 control 0,0419 0.026/0.0246 
1,9928 0,06709957 

0,8 45 patient 0,0121 0.0102/0.0095 

0,8 46 control 0,0443 0.0284/0.0262 
1,6465 0,13492063 

0,8 46 patient 0,0151 0.0117/0.0117 

0,8 47 control 0,0469 0.0286/0.0267 
1,7186 0,12698413 

0,8 47 patient 0,0159 0.0123/0.0123 

 

  



Appendix B. Result-related material 

 

 

 
142 

Table B2. Descriptive statistics of ANDeg of in vitro neural networks of experimental groups across thresholds and network 

sizes. 

Threshold 
Network 

size 
Group 

Mean 
ANDeg 

Confidence interval 
ANDeg 

t-values p-values 

0,2 10 control 6,4954 0.3034/0.2673 
0,9210 0,3766 

0,2 10 patient 6,2318 0.4398/0.4401 

0,2 11 control 7,0026 0.3464/0.3111 
1,7116 0,1076 

0,2 11 patient 6,5478 0.3316/0.3977 

0,2 12 control 7,5941 0.3353/0.3183 
2,0411 0,054 

0,2 12 patient 7,0185 0.3663/0.4472 

0,2 13 control 8,0683 0.3742/0.3612 
1,9162 0,0718 

0,2 13 patient 7,4688 0.3994/0.4812 

0,2 14 control 8,6027 0.4138/0.3884 
2,0600 0,0542 

0,2 14 patient 7,9035 0.4308/0.5085 

0,2 15 control 8,8396 0.637/0.7636 
0,9864 0,3418 

0,2 15 patient 8,3635 0.4849/0.5678 

0,2 16 control 9,3263 0.6889/0.7976 
1,1036 0,2878 

0,2 16 patient 8,7642 0.5176/0.5873 

0,2 17 control 9,8223 0.7478/0.9264 
1,0991 0,2898 

0,2 17 patient 9,2221 0.5378/0.6025 

0,2 18 control 10,2818 0.7818/0.932 
1,2182 0,2364 

0,2 18 patient 9,5604 0.6387/0.6992 

0,2 19 control 10,7252 0.9375/1.0927 
1,2385 0,235 

0,2 19 patient 9,8844 0.7386/0.7734 

0,2 20 control 11,4517 1.1487/1.3042 
1,4019 0,1842 

0,2 20 patient 10,3694 0.746/0.7772 

0,2 21 control 11,9311 1.1753/1.3644 
1,3824 0,1902 

0,2 21 patient 10,8199 0.7858/0.8382 

0,2 22 control 12,5270 1.3016/1.4887 
1,4673 0,1654 

0,2 22 patient 11,2557 0.7989/0.8559 

0,2 23 control 13,7067 0.9807/0.9974 
2,7475 0,0156 

0,2 23 patient 11,6900 0.8565/0.9176 

0,2 24 control 14,2272 1.0464/1.0588 
2,7288 0,016 

0,2 24 patient 12,1397 0.8952/0.9417 

0,2 25 control 14,6104 1.27/1.1677 
2,4255 0,0316 

0,2 25 patient 12,5783 0.953/0.9839 

0,2 26 control 15,1314 1.259/1.2056 
2,3757 0,0362 

0,2 26 patient 13,0414 1.0262/1.0513 

0,2 27 control 15,6492 1.3744/1.2593 
2,3710 0,0368 

0,2 27 patient 13,4450 1.0579/1.1275 

0,2 28 control 16,2001 1.4555/1.3104 
2,4479 0,031 

0,2 28 patient 13,8080 1.1419/1.1895 

0,2 29 control 16,7206 1.4828/1.3334 
2,6058 0,024 

0,2 29 patient 14,1632 1.1054/1.1899 
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Threshold 
Network 

size 
Group 

Mean 
ANDeg 

Confidence interval 
ANDeg 

t-values p-values 

0,2 30 control 16,9150 1.5653/1.4649 
2,2162 0,04928405 

0,2 30 patient 14,5869 1.1081/1.2166 

0,2 31 control 17,4151 1.6393/1.56 
2,1645 0,05527806 

0,2 31 patient 15,0449 1.1623/1.2439 

0,2 32 control 17,9410 1.6784/1.58 
2,2008 0,05061605 

0,2 32 patient 15,4645 1.2061/1.275 

0,2 33 control 18,4556 1.7056/1.6353 
2,1998 0,05094905 

0,2 33 patient 16,0008 1.1571/1.224 

0,2 34 control 19,1440 1.6693/1.5795 
2,4265 0,03396603 

0,2 34 patient 16,4109 1.2093/1.2861 

0,2 35 control 19,9854 1.6344/1.5997 
2,7902 0,01665002 

0,2 35 patient 16,8435 1.2678/1.3014 

0,2 36 control 20,9083 1.7375/1.6446 
3,0125 0,01243201 

0,2 36 patient 17,2868 1.2907/1.3436 

0,2 37 control 21,3095 1.8593/1.8593 
2,9212 0,01787102 

0,2 37 patient 17,6852 1.2824/1.3295 

0,2 38 control 21,8470 1.9136/1.9136 
2,9154 0,01709402 

0,2 38 patient 18,1112 1.3554/1.4082 

0,2 39 control 22,4027 1.9525/1.9525 
3,2069 0,01262626 

0,2 39 patient 18,1875 1.3607/1.3828 

0,2 40 control 22,9427 2.0099/2.0099 
2,9318 0,01731602 

0,2 40 patient 19,0945 1.2546/1.2254 

0,2 41 control 23,4967 2.0479/2.0479 
2,9350 0,01731602 

0,2 41 patient 19,5564 1.2787/1.276 

0,2 42 control 24,0102 2.1216/2.1216 
2,8972 0,01948052 

0,2 42 patient 20,0105 1.2986/1.3417 

0,2 43 control 24,1951 1.8364/1.8118 
2,9268 0,01948052 

0,2 43 patient 20,4352 1.3411/1.3411 

0,2 44 control 24,7272 1.9009/1.8533 
2,9374 0,01948052 

0,2 44 patient 20,8717 1.3677/1.3677 

0,2 45 control 25,6267 2.6554/2.2584 
2,7277 0,02164502 

0,2 45 patient 21,4022 1.4125/1.4534 

0,2 46 control 26,1507 2.731/2.2991 
2,3195 0,05555556 

0,2 46 patient 22,3372 1.3048/1.5919 

0,2 47 control 26,6894 2.8091/2.3669 
2,3161 0,05555556 

0,2 47 patient 22,7751 1.3326/1.6376 

0,3 10 control 4,8826 0.3284/0.3031 
1,0266 0,326 

0,3 10 patient 4,5686 0.4807/0.4602 

0,3 11 control 5,1992 0.3967/0.3518 
1,8063 0,089 

0,3 11 patient 4,6937 0.3404/0.3775 

0,3 12 control 5,6073 0.4102/0.3872 
2,1008 0,0518 

0,3 12 patient 4,9630 0.3787/0.4111 



Appendix B. Result-related material 

 

 

 
144 

Threshold 
Network 

size 
Group 

Mean 
ANDeg 

Confidence interval 
ANDeg 

t-values p-values 

0,3 13 control 5,9309 0.4514/0.4465 
2,0809 0,054 

0,3 13 patient 5,2278 0.4076/0.4415 

0,3 14 control 6,2626 0.496/0.4687 
2,0790 0,0536 

0,3 14 patient 5,4919 0.4614/0.5152 

0,3 15 control 6,3507 0.7145/0.7972 
1,1940 0,2492 

0,3 15 patient 5,7562 0.5009/0.5207 

0,3 16 control 6,6427 0.7608/0.8926 
1,3040 0,213 

0,3 16 patient 5,9619 0.5124/0.5457 

0,3 17 control 6,9644 0.8319/0.8992 
1,3623 0,1944 

0,3 17 patient 6,2043 0.5562/0.5742 

0,3 18 control 7,2598 0.8474/0.9745 
1,4441 0,169 

0,3 18 patient 6,3758 0.656/0.6807 

0,3 19 control 7,5088 1.0205/1.0984 
1,3548 0,2014 

0,3 19 patient 6,5554 0.7504/0.7616 

0,3 20 control 8,0373 1.2079/1.3298 
1,4892 0,1598 

0,3 20 patient 6,8714 0.7366/0.7614 

0,3 21 control 8,3552 1.2569/1.3856 
1,4797 0,1628 

0,3 21 patient 7,1422 0.763/0.8096 

0,3 22 control 8,7067 1.3483/1.4896 
1,5232 0,1514 

0,3 22 patient 7,3726 0.8077/0.8353 

0,3 23 control 9,6831 1.1576/1.1661 
2,6212 0,023 

0,3 23 patient 7,6365 0.8302/0.8768 

0,3 24 control 10,0141 1.1789/1.1941 
2,6091 0,022 

0,3 24 patient 7,9022 0.8994/0.9344 

0,3 25 control 10,2438 1.2871/1.2735 
2,4077 0,0334 

0,3 25 patient 8,1670 0.9343/0.957 

0,3 26 control 10,6133 1.4046/1.3059 
2,2570 0,0454 

0,3 26 patient 8,5630 0.9519/0.9834 

0,3 27 control 10,9559 1.5126/1.4252 
2,2573 0,0456 

0,3 27 patient 8,7972 0.9945/1.0457 

0,3 28 control 11,2850 1.5225/1.4701 
2,2612 0,0436 

0,3 28 patient 9,0335 1.0564/1.085 

0,3 29 control 11,6195 1.5377/1.5131 
2,4454 0,0334 

0,3 29 patient 9,1857 0.9576/1.0449 

0,3 30 control 11,6243 1.7052/1.609 
2,0544 0,06726607 

0,3 30 patient 9,4354 0.9796/1.0637 

0,3 31 control 11,9693 1.7921/1.747 
2,0585 0,06626707 

0,3 31 patient 9,6885 1.0525/1.0968 

0,3 32 control 12,3173 1.8598/1.7897 
2,0754 0,06460206 

0,3 32 patient 9,9457 1.0675/1.1771 

0,3 33 control 12,6505 2.0037/1.7908 
2,0736 0,06426906 

0,3 33 patient 10,2489 1.0613/1.1092 
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Threshold 
Network 

size 
Group 

Mean 
ANDeg 

Confidence interval 
ANDeg 

t-values p-values 

0,3 34 control 13,2256 1.8325/1.7621 
2,3710 0,03596404 

0,3 34 patient 10,5212 1.0826/1.175 

0,3 35 control 13,8136 1.8208/1.7341 
2,6921 0,01631702 

0,3 35 patient 10,7420 1.1229/1.1898 

0,3 36 control 14,5874 1.8761/1.8665 
2,9354 0,01320901 

0,3 36 patient 10,9779 1.1858/1.2681 

0,3 37 control 14,6692 2.2437/2.2437 
2,6065 0,02408702 

0,3 37 patient 11,2277 1.2006/1.2832 

0,3 38 control 15,0100 2.2853/2.2745 
2,6086 0,02486402 

0,3 38 patient 11,4826 1.2297/1.3194 

0,3 39 control 15,3637 2.3614/2.3614 
2,8671 0,01641414 

0,3 39 patient 11,3507 1.2133/1.3461 

0,3 40 control 15,7229 2.4282/2.4282 
2,5203 0,03030303 

0,3 40 patient 12,1647 1.0249/1.1091 

0,3 41 control 16,0644 2.4533/2.4968 
2,5147 0,03030303 

0,3 41 patient 12,4235 1.0383/1.1135 

0,3 42 control 16,4288 2.5288/2.3486 
2,5557 0,02813853 

0,3 42 patient 12,6760 1.1112/1.1636 

0,3 43 control 16,5404 2.3445/2.3445 
2,5647 0,02813853 

0,3 43 patient 12,9389 1.0739/1.1482 

0,3 44 control 16,8408 2.404/2.2417 
2,5261 0,03030303 

0,3 44 patient 13,2000 1.1079/1.1743 

0,3 45 control 17,7031 3.3803/2.9621 
2,2927 0,04112554 

0,3 45 patient 13,5722 1.1974/1.2347 

0,3 46 control 18,0553 3.4292/3.0211 
1,9293 0,08730159 

0,3 46 patient 14,2949 1.0897/1.2792 

0,3 47 control 18,4295 3.5113/3.1096 
1,9226 0,0952381 

0,3 47 patient 14,5859 1.0592/1.2971 

0,4 10 control 3,7293 0.2909/0.2644 
0,8542 0,4106 

0,4 10 patient 3,5018 0.445/0.3698 

0,4 11 control 3,9176 0.3302/0.2992 
1,7615 0,0962 

0,4 11 patient 3,5169 0.2719/0.2707 

0,4 12 control 4,1847 0.3879/0.3691 
1,9749 0,0628 

0,4 12 patient 3,6658 0.3089/0.3103 

0,4 13 control 4,3966 0.4357/0.4044 
2,0201 0,0578 

0,4 13 patient 3,8093 0.3222/0.3335 

0,4 14 control 4,5866 0.4718/0.4369 
1,9828 0,063 

0,4 14 patient 3,9678 0.3465/0.35 

0,4 15 control 4,6159 0.6224/0.6481 
1,2715 0,2212 

0,4 15 patient 4,1033 0.388/0.3961 

0,4 16 control 4,8053 0.6697/0.6867 
1,4247 0,1686 

0,4 16 patient 4,1997 0.3976/0.3878 
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Threshold 
Network 

size 
Group 

Mean 
ANDeg 

Confidence interval 
ANDeg 

t-values p-values 

0,4 17 control 4,9827 0.6985/0.7357 
1,3995 0,177 

0,4 17 patient 4,3499 0.4299/0.4166 

0,4 18 control 5,1753 0.746/0.7803 
1,4865 0,1532 

0,4 18 patient 4,4466 0.5023/0.4857 

0,4 19 control 5,1924 0.8345/0.8439 
1,1982 0,2588 

0,4 19 patient 4,5552 0.5378/0.5161 

0,4 20 control 5,5370 0.9863/0.9796 
1,3733 0,1984 

0,4 20 patient 4,7191 0.5541/0.5261 

0,4 21 control 5,7420 1.0454/1.0449 
1,4151 0,1844 

0,4 21 patient 4,8518 0.5806/0.5493 

0,4 22 control 6,0028 1.1241/1.1274 
1,4750 0,1688 

0,4 22 patient 5,0013 0.5882/0.5857 

0,4 23 control 6,6458 0.9721/0.9461 
2,4513 0,0302 

0,4 23 patient 5,1530 0.6127/0.5913 

0,4 24 control 6,8441 1.0479/1.0282 
2,4430 0,032 

0,4 24 patient 5,2817 0.6476/0.628 

0,4 25 control 7,0199 1.0997/1.0225 
2,3509 0,0386 

0,4 25 patient 5,4421 0.673/0.6666 

0,4 26 control 7,2315 1.1545/1.1187 
2,1408 0,0562 

0,4 26 patient 5,6595 0.7892/0.7391 

0,4 27 control 7,4452 1.188/1.1372 
2,1726 0,0518 

0,4 27 patient 5,7810 0.794/0.7459 

0,4 28 control 7,6512 1.2914/1.2108 
2,1788 0,0492 

0,4 28 patient 5,9036 0.8577/0.7923 

0,4 29 control 7,8587 1.3074/1.2303 
2,3712 0,0352 

0,4 29 patient 5,9668 0.7551/0.7572 

0,4 30 control 7,8628 1.4715/1.3434 
2,0061 0,07126207 

0,4 30 patient 6,1189 0.7897/0.7791 

0,4 31 control 8,0731 1.5091/1.4885 
1,9756 0,07492507 

0,4 31 patient 6,2789 0.8783/0.8219 

0,4 32 control 8,2788 1.5916/1.5258 
2,0058 0,07059607 

0,4 32 patient 6,4026 0.8927/0.8372 

0,4 33 control 8,4885 1.6152/1.5912 
2,0031 0,07026307 

0,4 33 patient 6,5737 0.8606/0.8414 

0,4 34 control 8,9065 1.5547/1.4891 
2,3663 0,03363303 

0,4 34 patient 6,7049 0.8963/0.857 

0,4 35 control 9,3177 1.611/1.5588 
2,6085 0,02197802 

0,4 35 patient 6,8612 0.9498/0.868 

0,4 36 control 9,9894 1.6243/1.6243 
2,9990 0,01243201 

0,4 36 patient 6,9180 1.0055/1.0016 

0,4 37 control 10,0587 1.8223/1.8223 
2,7553 0,01709402 

0,4 37 patient 7,0643 1.0237/1.0561 
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Threshold 
Network 

size 
Group 

Mean 
ANDeg 

Confidence interval 
ANDeg 

t-values p-values 

0,4 38 control 10,2816 1.8754/1.8754 
2,7574 0,01787102 

0,4 38 patient 7,1994 1.0773/1.0691 

0,4 39 control 10,5019 1.9074/1.9074 
3,2547 0,00378788 

0,4 39 patient 6,9331 0.8811/1.0131 

0,4 40 control 10,7309 1.9678/1.9678 
2,9332 0,00649351 

0,4 40 patient 7,4982 0.6735/0.7308 

0,4 41 control 10,9261 2.0289/2.0289 
2,8846 0,00865801 

0,4 41 patient 7,6461 0.7089/0.7268 

0,4 42 control 11,1611 2.061/2.061 
2,9459 0,00649351 

0,4 42 patient 7,7502 0.7346/0.7647 

0,4 43 control 11,2007 1.9364/1.9364 
2,9415 0,00649351 

0,4 43 patient 7,9239 0.711/0.7654 

0,4 44 control 11,4125 1.9665/1.9665 
2,9540 0,00649351 

0,4 44 patient 8,0687 0.7496/0.7713 

0,4 45 control 12,0838 2.7789/2.4901 
2,6182 0,01082251 

0,4 45 patient 8,2126 0.7956/0.8217 

0,4 46 control 12,3508 3.0329/2.5589 
2,2347 0,03968254 

0,4 46 patient 8,6783 0.7324/0.8384 

0,4 47 control 12,5859 3.0872/2.6164 
2,2364 0,03968254 

0,4 47 patient 8,8415 0.7636/0.8624 

0,5 10 control 2,9570 0.2185/0.1781 
0,5534 0,5886 

0,5 10 patient 2,8517 0.3165/0.2657 

0,5 11 control 3,0724 0.2523/0.2018 
1,6232 0,1236 

0,5 11 patient 2,8084 0.2027/0.1881 

0,5 12 control 3,2098 0.2774/0.243 
1,7949 0,0878 

0,5 12 patient 2,8816 0.2219/0.2033 

0,5 13 control 3,3120 0.2937/0.257 
1,7153 0,1072 

0,5 13 patient 2,9697 0.248/0.2345 

0,5 14 control 3,4152 0.312/0.274 
1,8317 0,0856 

0,5 14 patient 3,0231 0.2681/0.2455 

0,5 15 control 3,4611 0.3835/0.38 
1,3489 0,1928 

0,5 15 patient 3,1130 0.2942/0.2744 

0,5 16 control 3,5805 0.4244/0.4173 
1,6921 0,108 

0,5 16 patient 3,1197 0.2972/0.2624 

0,5 17 control 3,6737 0.451/0.4322 
1,6646 0,1148 

0,5 17 patient 3,1987 0.31/0.2714 

0,5 18 control 3,7891 0.4655/0.4593 
1,7498 0,098 

0,5 18 patient 3,2518 0.3482/0.3056 

0,5 19 control 3,8085 0.5402/0.5186 
1,4415 0,179 

0,5 19 patient 3,3243 0.3616/0.3165 

0,5 20 control 4,0683 0.6569/0.613 
1,7045 0,1156 

0,5 20 patient 3,4067 0.3834/0.3291 
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Threshold 
Network 

size 
Group 

Mean 
ANDeg 

Confidence interval 
ANDeg 

t-values p-values 

0,5 21 control 4,1706 0.6752/0.6664 
1,6851 0,1194 

0,5 21 patient 3,4825 0.405/0.3482 

0,5 22 control 4,3242 0.7295/0.7163 
1,7466 0,1068 

0,5 22 patient 3,5595 0.4247/0.3702 

0,5 23 control 4,7122 0.7105/0.6668 
2,5778 0,0236 

0,5 23 patient 3,6254 0.444/0.3776 

0,5 24 control 4,8310 0.7237/0.6891 
2,5662 0,0238 

0,5 24 patient 3,7082 0.4696/0.3948 

0,5 25 control 4,9374 0.7953/0.7238 
2,4774 0,0288 

0,5 25 patient 3,7770 0.4826/0.4201 

0,5 26 control 5,0542 0.8252/0.7477 
2,2127 0,0454 

0,5 26 patient 3,9244 0.5809/0.4767 

0,5 27 control 5,1764 0.8597/0.8128 
2,2105 0,0468 

0,5 27 patient 3,9958 0.6114/0.4956 

0,5 28 control 5,2876 0.8777/0.817 
2,1886 0,0512 

0,5 28 patient 4,0684 0.6215/0.5256 

0,5 29 control 5,4043 0.9132/0.8566 
2,2315 0,0452 

0,5 29 patient 4,1148 0.637/0.5411 

0,5 30 control 5,3866 1.0519/0.9735 
1,8751 0,09057609 

0,5 30 patient 4,2003 0.6685/0.5637 

0,5 31 control 5,4996 1.0595/1.0034 
1,8405 0,09423909 

0,5 31 patient 4,2869 0.6913/0.5932 

0,5 32 control 5,6133 1.1274/1.0454 
1,8699 0,09090909 

0,5 32 patient 4,3587 0.7163/0.5911 

0,5 33 control 5,7340 1.1538/1.0798 
1,8536 0,09423909 

0,5 33 patient 4,4434 0.7495/0.6092 

0,5 34 control 5,9913 1.1094/1.0366 
2,1539 0,05361305 

0,5 34 patient 4,5250 0.7424/0.6315 

0,5 35 control 6,2657 1.0963/1.0481 
2,4315 0,03196803 

0,5 35 patient 4,5991 0.761/0.6357 

0,5 36 control 6,6788 1.1994/1.1591 
2,7028 0,02175602 

0,5 36 patient 4,6449 0.8304/0.7078 

0,5 37 control 6,7587 1.2452/1.2452 
2,6039 0,02331002 

0,5 37 patient 4,7314 0.8219/0.7221 

0,5 38 control 6,8898 1.2668/1.2668 
2,6255 0,02331002 

0,5 38 patient 4,7995 0.8572/0.7547 

0,5 39 control 7,0213 1.322/1.322 
3,4778 0,00378788 

0,5 39 patient 4,4974 0.493/0.5686 

0,5 40 control 7,1518 1.3602/1.3602 
3,1038 0,00649351 

0,5 40 patient 4,8047 0.3939/0.4222 

0,5 41 control 7,2973 1.3974/1.3974 
3,1092 0,004329 

0,5 41 patient 4,8892 0.3946/0.4428 
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0,5 42 control 7,4163 1.421/1.421 
3,1168 0,00649351 

0,5 42 patient 4,9461 0.4212/0.4606 

0,5 43 control 7,3975 1.4203/1.3062 
3,1394 0,00649351 

0,5 43 patient 5,0192 0.4122/0.4536 

0,5 44 control 7,5388 1.4507/1.3421 
3,1520 0,00649351 

0,5 44 patient 5,0878 0.4419/0.4669 

0,5 45 control 8,0960 2.2103/1.7918 
2,6008 0,00865801 

0,5 45 patient 5,2242 0.4581/0.5066 

0,5 46 control 8,2041 2.3901/1.8259 
2,1989 0,03174603 

0,5 46 patient 5,5074 0.3801/0.5146 

0,5 47 control 8,3458 2.2057/1.8571 
2,2262 0,02380952 

0,5 47 patient 5,5774 0.3919/0.5144 

0,6 10 control 2,4492 0.1261/0.1122 
0,0794 0,9434 

0,6 10 patient 2,4385 0.2413/0.1839 

0,6 11 control 2,5079 0.1423/0.1238 
1,3180 0,2028 

0,6 11 patient 2,3781 0.1344/0.1039 

0,6 12 control 2,5756 0.1548/0.1482 
1,4442 0,1636 

0,6 12 patient 2,4160 0.1512/0.1157 

0,6 13 control 2,6363 0.1745/0.1603 
1,5580 0,133 

0,6 13 patient 2,4497 0.1563/0.1263 

0,6 14 control 2,6865 0.1905/0.1721 
1,5954 0,1248 

0,6 14 patient 2,4809 0.1719/0.134 

0,6 15 control 2,7233 0.2133/0.2099 
1,3428 0,1948 

0,6 15 patient 2,5237 0.1855/0.1435 

0,6 16 control 2,7716 0.2312/0.2177 
1,3465 0,1984 

0,6 16 patient 2,5601 0.2011/0.1549 

0,6 17 control 2,8163 0.2454/0.2328 
1,2438 0,2278 

0,6 17 patient 2,6058 0.2196/0.1707 

0,6 18 control 2,8620 0.2485/0.2483 
1,3120 0,2088 

0,6 18 patient 2,6244 0.2399/0.1968 

0,6 19 control 2,8758 0.3022/0.2825 
1,0480 0,32 

0,6 19 patient 2,6662 0.2443/0.2015 

0,6 20 control 2,9989 0.3813/0.351 
1,1454 0,2754 

0,6 20 patient 2,7352 0.261/0.1988 

0,6 21 control 3,0521 0.3968/0.365 
1,1850 0,258 

0,6 21 patient 2,7683 0.2665/0.2063 

0,6 22 control 3,0954 0.4171/0.3824 
1,1727 0,264 

0,6 22 patient 2,8000 0.2845/0.2165 

0,6 23 control 3,2889 0.4254/0.3786 
1,7414 0,1042 

0,6 23 patient 2,8459 0.2888/0.2207 

0,6 24 control 3,3428 0.4261/0.3934 
1,7476 0,1042 

0,6 24 patient 2,8807 0.3022/0.2311 
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0,6 25 control 3,3828 0.4699/0.425 
1,6477 0,1278 

0,6 25 patient 2,9189 0.3168/0.2438 

0,6 26 control 3,4477 0.478/0.4436 
1,4275 0,176 

0,6 26 patient 2,9982 0.3855/0.2965 

0,6 27 control 3,5063 0.5058/0.4513 
1,4290 0,1728 

0,6 27 patient 3,0411 0.3978/0.3049 

0,6 28 control 3,5673 0.5132/0.4834 
1,4454 0,1702 

0,6 28 patient 3,0684 0.4206/0.3288 

0,6 29 control 3,6255 0.5563/0.5042 
1,5266 0,1512 

0,6 29 patient 3,0887 0.418/0.335 

0,6 30 control 3,7002 0.615/0.5734 
1,4328 0,18081918 

0,6 30 patient 3,1324 0.4439/0.3512 

0,6 31 control 3,7471 0.6236/0.6166 
1,4169 0,18481518 

0,6 31 patient 3,1697 0.4448/0.3595 

0,6 32 control 3,8240 0.6615/0.6557 
1,4497 0,17649018 

0,6 32 patient 3,2101 0.4659/0.3769 

0,6 33 control 3,8670 0.6759/0.6597 
1,4228 0,18215118 

0,6 33 patient 3,2489 0.4722/0.3814 

0,6 34 control 4,0124 0.6564/0.6353 
1,6654 0,12587413 

0,6 34 patient 3,2911 0.5025/0.3966 

0,6 35 control 4,1243 0.6619/0.6619 
1,8284 0,0955711 

0,6 35 patient 3,3263 0.5198/0.4095 

0,6 36 control 4,3755 0.7188/0.7167 
2,1582 0,05050505 

0,6 36 patient 3,3650 0.5294/0.4171 

0,6 37 control 4,5114 0.7206/0.7162 
2,3197 0,04118104 

0,6 37 patient 3,4075 0.5446/0.4278 

0,6 38 control 4,5717 0.7173/0.7074 
2,3421 0,03962704 

0,6 38 patient 3,4458 0.5776/0.4375 

0,6 39 control 4,6477 0.7509/0.7509 
3,4031 0,00631313 

0,6 39 patient 3,2349 0.2792/0.2853 

0,6 40 control 4,7091 0.7634/0.7634 
3,0265 0,01082251 

0,6 40 patient 3,3713 0.2622/0.2784 

0,6 41 control 4,7783 0.7832/0.7733 
3,0494 0,01082251 

0,6 41 patient 3,4040 0.2734/0.2864 

0,6 42 control 4,8558 0.8084/0.8063 
3,0179 0,00865801 

0,6 42 patient 3,4429 0.2849/0.3056 

0,6 43 control 4,8369 0.7427/0.7265 
3,1451 0,01082251 

0,6 43 patient 3,4723 0.2896/0.3132 

0,6 44 control 4,8783 0.768/0.74 
3,0764 0,01082251 

0,6 44 patient 3,5123 0.2937/0.314 

0,6 45 control 5,1969 1.2278/0.9931 
2,6811 0,01082251 

0,6 45 patient 3,5705 0.3228/0.3546 



Appendix B. Result-related material 

 

 

 
151 

Threshold 
Network 

size 
Group 

Mean 
ANDeg 

Confidence interval 
ANDeg 

t-values p-values 

0,6 46 control 5,2575 1.2463/1.0032 
2,3244 0,03968254 

0,6 46 patient 3,7121 0.2708/0.3969 

0,6 47 control 5,3431 1.2924/1.0411 
2,3042 0,03968254 

0,6 47 patient 3,7546 0.2808/0.4004 

0,7 10 control 2,1955 0.0406/0.0397 
-0,1200 0,9392 

0,7 10 patient 2,2048 0.1567/0.11 

0,7 11 control 2,2166 0.0468/0.0468 
1,3304 0,201 

0,7 11 patient 2,1565 0.0757/0.0585 

0,7 12 control 2,2584 0.0626/0.0623 
1,6182 0,1228 

0,7 12 patient 2,1713 0.0851/0.0641 

0,7 13 control 2,2832 0.0678/0.0651 
1,7288 0,0996 

0,7 13 patient 2,1857 0.0904/0.0692 

0,7 14 control 2,3040 0.0739/0.0733 
1,6633 0,1128 

0,7 14 patient 2,2001 0.0971/0.0756 

0,7 15 control 2,3085 0.0957/0.1002 
1,2906 0,208 

0,7 15 patient 2,2128 0.1061/0.0817 

0,7 16 control 2,3293 0.1037/0.1043 
1,3003 0,204 

0,7 16 patient 2,2264 0.1163/0.0851 

0,7 17 control 2,3487 0.1114/0.1127 
1,2484 0,2234 

0,7 17 patient 2,2431 0.1232/0.0924 

0,7 18 control 2,3733 0.117/0.117 
1,3360 0,1924 

0,7 18 patient 2,2522 0.1307/0.1016 

0,7 19 control 2,3552 0.1112/0.1169 
0,8608 0,4118 

0,7 19 patient 2,2750 0.1377/0.1065 

0,7 20 control 2,4249 0.1622/0.1576 
1,1604 0,2716 

0,7 20 patient 2,2970 0.1379/0.1025 

0,7 21 control 2,4439 0.1746/0.1606 
1,1171 0,2912 

0,7 21 patient 2,3157 0.1409/0.1082 

0,7 22 control 2,4451 0.1813/0.1604 
0,9985 0,3452 

0,7 22 patient 2,3266 0.1597/0.1153 

0,7 23 control 2,5465 0.1704/0.1367 
1,7472 0,107 

0,7 23 patient 2,3430 0.156/0.1228 

0,7 24 control 2,5687 0.178/0.1413 
1,7035 0,1152 

0,7 24 patient 2,3596 0.1713/0.1254 

0,7 25 control 2,5805 0.1846/0.1512 
1,5938 0,1402 

0,7 25 patient 2,3766 0.1747/0.1332 

0,7 26 control 2,6086 0.1984/0.1589 
1,3669 0,1954 

0,7 26 patient 2,4124 0.2073/0.1544 

0,7 27 control 2,6362 0.2074/0.1724 
1,3634 0,1968 

0,7 27 patient 2,4289 0.2198/0.1636 

0,7 28 control 2,6615 0.2141/0.1718 
1,4700 0,1654 

0,7 28 patient 2,4292 0.2359/0.1724 
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0,7 29 control 2,6837 0.2276/0.1832 
1,4612 0,1684 

0,7 29 patient 2,4463 0.2403/0.1782 

0,7 30 control 2,7065 0.255/0.224 
1,3186 0,21778222 

0,7 30 patient 2,4648 0.238/0.1853 

0,7 31 control 2,7384 0.2741/0.2238 
1,3665 0,20612721 

0,7 31 patient 2,4802 0.2516/0.1928 

0,7 32 control 2,7614 0.2822/0.2396 
1,3465 0,20912421 

0,7 32 patient 2,4975 0.2633/0.2031 

0,7 33 control 2,7843 0.2951/0.2377 
1,3628 0,20546121 

0,7 33 patient 2,5077 0.2745/0.208 

0,7 34 control 2,8577 0.2748/0.2392 
1,6151 0,13653014 

0,7 34 patient 2,5281 0.2854/0.2149 

0,7 35 control 2,9140 0.2691/0.245 
1,7650 0,10689311 

0,7 35 patient 2,5446 0.2943/0.2201 

0,7 36 control 2,9905 0.3164/0.2855 
1,8686 0,08857809 

0,7 36 patient 2,5565 0.304/0.2271 

0,7 37 control 3,0623 0.3231/0.3311 
2,0204 0,07148407 

0,7 37 patient 2,5784 0.2991/0.2368 

0,7 38 control 3,0906 0.3349/0.327 
2,0153 0,07070707 

0,7 38 patient 2,5914 0.3193/0.2439 

0,7 39 control 3,1220 0.3442/0.3389 
3,4894 0,00631313 

0,7 39 patient 2,4622 0.1588/0.1553 

0,7 40 control 3,1461 0.3485/0.3424 
3,0845 0,01731602 

0,7 40 patient 2,5338 0.135/0.1372 

0,7 41 control 3,1800 0.3547/0.365 
3,1173 0,01515152 

0,7 41 patient 2,5454 0.1389/0.1435 

0,7 42 control 3,2083 0.3717/0.3613 
3,1070 0,01515152 

0,7 42 patient 2,5627 0.1416/0.1448 

0,7 43 control 3,1694 0.2723/0.318 
3,3412 0,01948052 

0,7 43 patient 2,5730 0.1454/0.1503 

0,7 44 control 3,1912 0.2728/0.326 
3,2975 0,01948052 

0,7 44 patient 2,5848 0.1504/0.157 

0,7 45 control 3,2907 0.3164/0.3712 
3,2054 0,01731602 

0,7 45 patient 2,6277 0.1727/0.1804 

0,7 46 control 3,3253 0.321/0.3778 
2,8102 0,04761905 

0,7 46 patient 2,6981 0.1623/0.1868 

0,7 47 control 3,3565 0.335/0.3843 
2,7977 0,04761905 

0,7 47 patient 2,7114 0.1682/0.191 

0,8 10 control 2,0515 0.0127/0.0137 
-0,9769 0,4316 

0,8 10 patient 2,0762 0.0502/0.0349 

0,8 11 control 2,0575 0.0154/0.0154 
0,0661 0,9416 

0,8 11 patient 2,0567 0.0174/0.0153 
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0,8 12 control 2,0696 0.018/0.0192 
0,4458 0,6622 

0,8 12 patient 2,0633 0.0195/0.0172 

0,8 13 control 2,0730 0.0188/0.0204 
0,2098 0,8436 

0,8 13 patient 2,0697 0.023/0.0201 

0,8 14 control 2,0828 0.0221/0.0234 
0,9776 0,3458 

0,8 14 patient 2,0654 0.0258/0.021 

0,8 15 control 2,0768 0.0287/0.0299 
0,3469 0,7358 

0,8 15 patient 2,0694 0.0286/0.0226 

0,8 16 control 2,0804 0.0314/0.0325 
0,3029 0,7608 

0,8 16 patient 2,0736 0.03/0.024 

0,8 17 control 2,0867 0.0318/0.0346 
0,2775 0,783 

0,8 17 patient 2,0801 0.0333/0.0258 

0,8 18 control 2,0931 0.0342/0.0366 
0,5033 0,6274 

0,8 18 patient 2,0797 0.0368/0.0296 

0,8 19 control 2,0879 0.037/0.0384 
-0,0426 0,968 

0,8 19 patient 2,0891 0.0378/0.0307 

0,8 20 control 2,1134 0.0592/0.0544 
0,4498 0,6578 

0,8 20 patient 2,0976 0.037/0.0306 

0,8 21 control 2,1189 0.0631/0.0579 
0,4584 0,6484 

0,8 21 patient 2,1018 0.0401/0.0309 

0,8 22 control 2,1133 0.0623/0.0559 
0,1649 0,8666 

0,8 22 patient 2,1072 0.0417/0.0339 

0,8 23 control 2,1384 0.0606/0.0512 
0,7120 0,4904 

0,8 23 patient 2,1122 0.0444/0.0358 

0,8 24 control 2,1441 0.0653/0.0531 
0,7355 0,4806 

0,8 24 patient 2,1158 0.0453/0.0366 

0,8 25 control 2,1553 0.064/0.0517 
0,8645 0,4128 

0,8 25 patient 2,1215 0.049/0.0389 

0,8 26 control 2,1622 0.069/0.0547 
0,7809 0,4544 

0,8 26 patient 2,1284 0.0534/0.0454 

0,8 27 control 2,1706 0.0734/0.0567 
0,8989 0,388 

0,8 27 patient 2,1303 0.0546/0.0444 

0,8 28 control 2,1760 0.0696/0.0581 
0,9587 0,3574 

0,8 28 patient 2,1307 0.0606/0.0499 

0,8 29 control 2,1801 0.0714/0.0601 
0,6246 0,5306 

0,8 29 patient 2,1457 0.0833/0.0628 

0,8 30 control 2,1894 0.0922/0.0737 
0,6155 0,54312354 

0,8 30 patient 2,1505 0.0876/0.0663 

0,8 31 control 2,1962 0.0959/0.0765 
0,6338 0,52980353 

0,8 31 patient 2,1551 0.0872/0.0648 

0,8 32 control 2,2051 0.0995/0.0788 
0,6504 0,51948052 

0,8 32 patient 2,1609 0.0938/0.0694 
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0,8 33 control 2,2084 0.1032/0.082 
0,5975 0,55078255 

0,8 33 patient 2,1666 0.0932/0.0715 

0,8 34 control 2,2427 0.097/0.0861 
0,9858 0,34798535 

0,8 34 patient 2,1716 0.102/0.0767 

0,8 35 control 2,2559 0.0944/0.0783 
1,1253 0,28571429 

0,8 35 patient 2,1767 0.1/0.0782 

0,8 36 control 2,2744 0.1164/0.1019 
1,1675 0,27583528 

0,8 36 patient 2,1802 0.1052/0.08 

0,8 37 control 2,2756 0.1085/0.0973 
1,0386 0,32634033 

0,8 37 patient 2,1904 0.1031/0.0827 

0,8 38 control 2,2830 0.1154/0.1026 
1,0382 0,32711733 

0,8 38 patient 2,1947 0.1078/0.086 

0,8 39 control 2,2919 0.1285/0.1063 
2,0597 0,06060606 

0,8 39 patient 2,1529 0.0578/0.0592 

0,8 40 control 2,2992 0.1302/0.1073 
1,7642 0,10822511 

0,8 40 patient 2,1752 0.056/0.0579 

0,8 41 control 2,3086 0.1334/0.1099 
1,8206 0,0974026 

0,8 41 patient 2,1778 0.0552/0.059 

0,8 42 control 2,3148 0.1356/0.1122 
1,8226 0,0952381 

0,8 42 patient 2,1816 0.0573/0.0599 

0,8 43 control 2,2952 0.0874/0.0874 
1,7674 0,11471861 

0,8 43 patient 2,1891 0.06/0.0669 

0,8 44 control 2,3013 0.0873/0.0873 
1,8234 0,10822511 

0,8 44 patient 2,1920 0.0588/0.0626 

0,8 45 control 2,3182 0.0903/0.0903 
1,8110 0,1017316 

0,8 45 patient 2,2043 0.0638/0.072 

0,8 46 control 2,3274 0.0943/0.0943 
1,4633 0,18253968 

0,8 46 patient 2,2263 0.0597/0.082 

0,8 47 control 2,3356 0.0946/0.0946 
1,4658 0,19047619 

0,8 47 patient 2,2327 0.0633/0.0858 
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