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1 Introduction

Cyclotron resonance is a well-known phenomenon that was first observed and de-
scribed in germanium and silicon crystals by Dresselhaus et al. in the early 1950s [1,
2]. Based on this first observation, a large number of experiments and techniques
were performed and established, promoting this fundamental phenomenon as a stan-
dard experimental method widely used in solid state research [3]. To observe a dis-
tinct cyclotron resonance, it is desirable to satisfy the condition ωcτp � 1, which
necessitates the use of low temperatures and high radiation frequencies in the mi-
crowave or terahertz range. Common approaches are based on the study of radiation
transmittance/reflectance, quenching of photoluminescence by cyclotron resonance
absorption, and photoelectric methods (for a review see Ref. [4]). The latter, in
particular, was described as early as 1958 by Zeiger et al. [5] and paved the way for
the investigation of cyclotron resonance absorption via photoresistance and photo-
voltage. Since this method uses the sample itself as a detector, it allows the study of
modern two-dimensional structures on the micrometer scale, where the exploration
of cyclotron resonance by transmittance and reflectance measurements is almost
infeasible.

Moreover, such studies facilitate the discovery and investigation of phenomena re-
lated to cyclotron resonance, or more precisely to its harmonics. A prominent ex-
ample is microwave-induced resistance oscillations [6–12], reviewed in [13], and their
terahertz analog [14–18], which reflect the commensurability between the incident
radiation frequency and the quasiclassical cyclotron frequency. Most of the experi-
ments exploring various phenomena made accessible by the photoelectric approach
have been performed in gallium arsenide based heterostructures. In recent years,
however, another two-dimensional material has attracted much attention: graphene
– a single-layer crystal of hexagonally arranged carbon atoms. Due to its linear en-
ergy spectrum, the charge carriers behave like massless relativistic particles, leading
to unique properties, see Refs. [19–26]. Since its discovery in 2004 [27], graphene has
provided access to a multitude of fascinating phenomena in a variety of experiments
and studies, particularly in the fields of optoelectronics [28–32] and plasmonics [33–
38]. In fact, the interaction of electromagnetic radiation with graphene is one of
the most promising and fastest growing fields, taking advantage of graphene’s ex-
ceptional properties, such as fast and sensitive detection of light in a huge range of
frequencies up to the terahertz domain [39–44]. Together with the fact that it is
possible to fabricate graphene structures with a extremely high mobility, it is a very
promising system to investigate and extend the field of magneto-optical phenomena.
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The present work is devoted to the exploration of terahertz-induced photoelectric
phenomena coupled to the cyclotron resonance and its harmonics. In particular,
monolayer graphene structures of excellent quality revealed terahertz-driven non-
local Bernstein modes [45], and terahertz-induced magnetooscillations [46]. Both
have been observed for the first time in graphene. Furthermore, an anomalous he-
licity insensitivity of the cyclotron resonance absorption has been discovered during
the study of conventional gallium arsenide and mercury telluride quantum wells [47,
48].

Terahertz-induced magnetoplasmonic excitations, the so-called Bernstein modes, are
observed as huge photoresponse peaks near the cyclotron resonance overtones [45].
A comprehensive study shows that these features are induced by near-field effects in
the vicinity of metallic contacts, which partially protrude into the Hall bar channel.
The resulting magnetoplasmons exhibit a flat dispersion near the cyclotron resonance
harmonics, leading to a strong heating of the electron gas, which is detected in the
photoresponse. The influence of magnetoplasmons has also been recently observed
in bilayer graphene structures [49] via the ratchet effect [50, 51]. Here, the near-
field coupling has been provided by a large metallic interdigitated dual-grating gate
structure leading to the coexistence of cyclotron and magnetoplasmon resonances.

Furthermore, the investigation of high-quality graphene structures leads to the dis-
covery of terahertz-induced magnetooscillations [46]. Analysis of their variation with
carrier density and radiation frequency reveals a common origin with microwave-
induced resistance oscillations observed in gallium arsenide heterostructures [47,
48]. It is shown that their graphene analog is also governed by the ratio of the
incident radiation frequency to the quasiclassical cyclotron frequency [46]. However,
the magnetooscillations in graphene reveals significant differences, in particular that
they persist up to T = 90 K and occur at much higher radiation frequencies.

Anomalous helicity insensitivity of cyclotron resonance absorption is observed in
gallium arsenide and mercury telluride quantum wells. More specifically, the exami-
nation of cyclotron resonance and microwave-induced resistance oscillations demon-
strates that the cyclotron resonance absorption occurs independently of the direction
of the circularly polarized radiation [47, 48]. In contrast, the simultaneously mea-
sured radiation transmittance follows an ordinary helicity dependence. Moreover, it
is shown that the amplitude ratio of the active and inactive sides of the cyclotron
resonance strongly depends on the sample temperature T and the radiation power
P . Under the condition of the lowest temperature T and the highest radiation power
P , the signal responses at both polarities of the magnetic field reveal almost similar
magnitudes.
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The thesis is conceived as follows. In Chap. 2, the theoretical foundations are de-
scribed, including the materials studied and the relevant physical concepts. First,
the formation of a two-dimensional electron gas in a gallium arsenide based het-
erojunction is considered [Sec. 2.1.1], followed by a brief introduction to the pecu-
liar properties of mercury telluride based quantum wells [Sec. 2.1.2]. Thereafter,
Sec. 2.1.3 outlines the properties of graphene, focusing on its crystalline and elec-
tronic structure. Section 2.2 delineates the cyclotron resonance in both semiclassical
and quantum mechanical frameworks, which is complemented by the modeling of the
cyclotron resonance transmittance and absorptance in Sec. 2.2.1. Furthermore, the
radiation-induced µ-photoconductivity is considered in Sec. 2.3. Finally, the chapter
concludes with a description of the basic properties of plasmons with and without the
application of a magnetic field in Sec. 2.4. Chapter 3 includes the description of the
generation of continuous wave terahertz radiation via the optically pumped molecu-
lar gas laser [Sec. 3.1], the impact ionization avalanche transit time diode [Sec. 3.2],
and the backward wave oscillator [Sec. 3.3]. This is followed by an illustration of
the measurement techniques in Sec. 3, namely photoresistance/photovoltage and
radiation transmittance. Before discussing the experimental results, the samples
investigated are outlined in Sec. 4.

The experimental findings are presented in Chaps. 5 to 8. It starts with the investi-
gation of the cyclotron resonance in two-dimensional electron systems with parabolic
and linear dispersions [Chap. 5]. The chapter contains a general description of the
observations based on the classical Drude theory. The experimental results and
the associated discussion are presented in Secs. 5.1 and 5.2, respectively. Next, the
terahertz-driven Bernstein modes observed in graphene are described in Sec. 6. The
results are presented in Sec. 6.1 and discussed in Sec. 6.2. Chapter 7 presents the
terahertz-induced magnetooscillations found in graphene. The experimental data are
shown in Sec. 7.1 and the corresponding discussion is given in Sec. 7.2. Finally, the
study of the anomalous helicity insensitivity is outlined in Sec. 8. The experimental
results are presented in Sec. 8.1 and the corresponding analysis of the observed data
in Sec. 8.2. Chapter 9 summarizes the work and provides a brief outlook on future
studies in the field of magneto-optoelectronic phenomena. Supplemental experimen-
tal data supporting the discussed observations are given in Apps. A to E.
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2 Theoretical Background

This chapter is devoted to theoretical concepts that are important for understanding
the physical phenomena in the context of this work. It begins with an outline of the
properties of two-dimensional electron systems (2DES), including gallium arsenide
(GaAs), mercury telluride (HgTe), and monolayer graphene (MLG). Thereafter, the
interaction of the electromagnetic (EM) wave with the 2DES exposed to a magnetic
field is considered via the cyclotron resonance. The semiclassical as well as the quan-
tum mechanical approach will serve to explain this fundamental phenomenon. After
the foundations have been laid, the cyclotron resonance transmittance and absorp-
tance are derived. Next, another radiation-induced optoelectronic phenomenon is
introduced: µ-photoconductivity. Finally, a brief introduction to plasmonics in two
dimensions is given. The effect of the magnetic field on their dispersion relation is
emphasized.

2.1 Two-dimensional Electron Systems

In this section, a variety of 2DES are outlined. First, the properties of heterostruc-
tures based on GaAs and aluminum gallium arsenide (AlGaAs) are considered via an
AlGaAs/GaAs heterojunction approximated by the triangular potential well model.
Then, a second type of quantum wells (QWs) based on HgTe is briefly described,
focusing on its particular band structure. Finally, the fundamental properties of
graphene – a monolayer of graphite – are presented.

2.1.1 Gallium Arsenide-based Quantum Wells

The conduction electrons in a semiconductor can usually move freely in three dimen-
sions. However, their motion in one dimension can be confined to discrete energy
levels by placing them in a narrow potential well whose thickness has to be smaller
than the Fermi or de Broglie wavelength. If this confinement is strong enough, it
results in quantized energy levels and no free motion is possible in this direction.
The result is a two-dimensional electron gas (2DEG).

One of the best-studied heterojunctions is the GaAs-based heterostructure consisting
of multiple layers of GaAs and AlxGa1−xAs (x describes the composition of the
compounds). An important advantage of these alloys is that the lattice constant
changes less than 0.15 % with x. This allows high quality structures to be grown
without significant lattice stress [52]. To introduce carriers into the junction, the
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corresponding regions of the heterostructure are usually doped. However, when
the electrons or holes are released from the donor or acceptor atoms, the donors
begin to act as charged scattering centers and interfere with the carrier propagation
within the structure. To overcome this problem, doping is applied to one region
to release the carriers, which then move to another region. This process is called
remote or modulation doping and facilitates the fabrication of structures with high
mobilities. Figure 2.1 shows the formation of a heterojunction between p-doped
GaAs and n-doped AlGaAs alloys. At the beginning [Fig. 2.1(a)] the bands are flat
and the electrons are bound to their donors. Released electrons move around with
probability to reach the undoped GaAs layer. Since εC(n-AlGaAs) > εC(p-GaAs),
the electrons lose their potential energy and are trapped in the GaAs region. This
causes the formation of an electrostatic potential between the trapped electrons and
the positively charged donors, resulting in band bending near the junction as shown
in Fig. 2.1(b). Due to the discontinuity introduced in the conduction (CB) and
valence (VB) bands, the electrons are pushed against the junction interface. If the
equilibrated Fermi energy εF is substantially high, the electrons are trapped in a
potential well that can be approximated by a triangular shape.

This confinement leads to a discrete energy spectrum and can be quantitatively
described by the time-independent Schrödinger equation in three dimensions [52,
53]

[
− ~2

2m∗∇
2
r + V (r)

]
Ψ(r) = εΨ(r) (2.1)

with m∗ and ε denoting the in general anisotropic effective mass and the eigenener-
gies, respectively. Here, the three-dimensional vector is denoted as r = (x, y, z) and
∇2

r = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2 defines the Laplace operator in three dimensions.
The expression for the potential energy V (r) is in general non-trivial and requires
proper knowledge of the system under study. In fact, for the layered heterostruc-
tures considered in this work, the potential energy is simplified to: V (r) = V (z),
depending only on the coordinate z, which is perpendicular to the growth direction.

Using the plane-wave ansatz in the non-confined directions x and y, the wave function
can be written in the form

Ψ(r) = C exp(ikxx) exp(ikyy)ψ(z) , (2.2)
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Figure 2.1: (a) Schematic illustration of the conduction and valence bands of n-
AlGaAs and p-GaAs aligned to the vacuum level, whose Fermi energies are defined
as εF and ε̃F, respectively. The differences ∆εC and ∆εV are given by the dif-
ferences between the respective conduction band minima (εC and ε̃C) and valence
band maxima (εC and ε̃V), respectively. (b) Visualization of the band bending
when the heterojunction is in equilibrium with aligned Fermi energy levels. The
resulting two-dimensional electron gas, governed by a triangular potential well, is
shaded in orange. (c) First three energy levels (dashed lines) and corresponding
wave functions (solid colored lines) of a two-dimensional electron gas confined in
a triangular potential well with potential energy V (z) = eEz. The axis values are
given for an electric field of E = 5 MVm−1 in GaAs. Figure adapted from Ref. [52].

where C is a normalization constant. Inserting this into Eq. (2.1) yields
[
~2k2

x

2m∗x
+

~2k2
y

2m∗y
− ~2

2m∗z
d2

dz2 + V (z)
]
ψ(z) = εψ(z) (2.3)

with the effective masses m∗x, m∗y and m∗z. Defining the expression for the energy as

ε′ = ε− ~2k2
x

2m∗x
−

~2k2
y

2m∗y
(2.4)

and substituting it into Eq. (2.3) results in
[
− ~2

2m∗z
d2

dz2 + V (z)
]
ψ(z) = ε′ψ(z) (2.5)

and, therefore, eliminates the dependencies on x and y revealing a purely one-
dimensional Schrödinger equation as a function of z. A GaAs-based heterojunction
consisting of GaAs and AlGaAs layers can be simplified as a triangular well, as il-
lustrated in Figs. 2.1(b, c). It is assumed that the potential well is infinitely high
for negative z and scales linearly for positive z values, consequently, it is defined
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according to

V (z) =
 ∞ , for z < 0 ;
eEz , for z > 0

(2.6)

with e > 0. The one-dimensional Schrödinger equation [Eq. (2.3)] can be simplified
to

d2ψ(u)
du2 = uψ(u) (2.7)

by introducing a dimensionless variable

u = 3

√
2m∗zeE

~2

(
z − ε′

eE

)
. (2.8)

It is apparent that this equation reduces to the so-called Airy equation [54]. The
solutions of Eq. (2.7) are given by the Airy functions Ai(u) and Bi(u). Since the wave
function ψ(u) should be finite at z →∞, i.e., u→∞, Bi(u) can be disregarded as a
possible solution. Due to the infinitely high barrier for z < 0, the wave function has
to satisfy the boundary condition ψ(z = 0) = ψ

(
u = − 3

√
2m∗zeE/(~eE)2ε′

)
= 0. To

ensure that this condition is fulfilled, it is necessary to set − 3
√

2m∗zeE/(~eE)2ε′ = an,
which represents zero values of the Airy function, i.e., Ai(an) = 0 with n ∈ N.
Therefore, the discrete energy spectrum in z direction is given by

ε′n = an

[
(eE~)2

2eEm∗z

]1/3

, n = 1, 2, 3, ... . (2.9)

Since the potential well becomes wider at higher energies, the corresponding energy
levels become closer as n grows. Note that this is in contrast to the energy spectrum
of an infinitely deep square well, where the distance between the levels grows with
increasing n. Thus, the corresponding unnormalized wave functions read

ψn(z) = Ai(u), (2.10)

where u is defined by Eq. (2.8).

The next section briefly discusses the peculiar behavior of HgTe QWs, whose energy
dispersion can be modified by varying the QW confinement. This serves as a bridge
before discussing the properties of massless Dirac fermions in graphene.
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2.1.2 Mercury Telluride-based Quantum Wells

Mercury telluride is a direct II-VI semiconductor and crystallizes like GaAs in a
zinc blende structure. For both materials, the important bands near the Fermi level
are located close to the Γ point in the Brillouin zone (BZ). However, in contrast
to GaAs, the energy dispersion of HgTe shows very unique properties owing to its
large spin-orbit coupling. Here, the states of the conduction band are formed by
5p (Γ8) electrons located at the telluride atoms, while the valence band consists
of 6s (Γ6) states from the mercury [56]. Subsequently, the band ordering of bulk
HgTe is reversed [57–59] so that the light and heavy hole bands (LH and HH bands,
respectively) of the Γ8 states become the conduction and valence bands, respectively,
as demonstrated in Fig. 2.2(a). Due to the LH and the HH bands degeneracy, bulk
HgTe is considered a zero gap semiconductor [57].

Remarkably, this intriguing electronic structure of HgTe can be tuned over a wide
range of energy dispersions. A common technique is to sandwich a thin layer of
HgTe between cadmium telluride (CdTe) barriers. The latter is a conventional semi-
conductor with a trivial band structure, see Fig. 2.2(b). When the QW thickness
dQW of the CdTe/HgTe/CdTe structure is below a critical thickness dcrit, the energy
levels within the HgTe are shifted, resulting in a regular energy band order. In
fact, below the critical thickness, the heterostructure behaves like CdTe with nor-
mal band ordering. Here the Γ6 states form the conduction subbands, whereas the
Γ8 bands yield the corresponding valence subbands. As dQW exceeds the critical
value, the structure resembles the inverted band ordering of HgTe. This behavior
is illustrated in Fig. 2.2, showing an inverted band order at dQW > dcrit [panel (c)],
where HH1 is energetically above the E1 state belonging to the electron band, and
a normal one at dQW < dcrit [panel (d)], where E1 lies above the HH1 level. Note
that for dQW > dcrit, the HgTe QW structure forms a two-dimensional topological
insulator with protected edge states. These occur at the interface of the HgTe QW
with inverted band order and a topologically trivial material, e.g., ambient air, and
are therefore energetically located in the band gap. For a detailed description, see
Refs. [58, 60, 61]. The tunable behavior implies that at dQW = dcrit there is an
inversion of the subbands. More precisely, at dQW = 6.3 nm the system exhibits
a graphene-like linear energy dispersion and is described by the Dirac equation for
massless particles [58].
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Figure 2.2: (a, b) Schematic representation of the band structure of bulk HgTe
[panel (a)] and bulk CdTe [panel (b)] around the Γ point. The dashed orange lines
mark the position of the Fermi energy εF in the corresponding material. While
bulk CdTe has an energy gap between the HH and the E bands at the Γ point
and behaves like a trivial semiconductor, bulk HgTe has no energy gap and an
inverted band ordering. Here, the CB is represented by the LH band and the VB
by the HH band. (c, d) CdTe/HgTe/CdTe QW structures with different HgTe
layer thicknesses dQW. Above the critical thickness (dQW > dcrit) the band order
of HgTe is inverted, while for dQW < dcrit the HH1 state moves over the E1 state
and the band ordering becomes trivial. At dQW = dcrit = 6.3 nm the QW structure
exhibits a linear energy dispersion. Figure adapted from Ref. [55].

2.1.3 Graphene

Monolayer graphene is a special modification of carbon and is the first experimentally
proven strictly two-dimensional structure [27, 62]. It forms a regular hexagonal
lattice, similar to the honeycomb structure (point group of D6h), with two equivalent
sublattices A and B, see Fig. 2.3(a). These are shifted by a constant vector and can
be described by the primitive unit vectors [24]

a1 = a0

2 (3,
√

3) and a2 = a0

2 (3,−
√

3) , (2.11)

where a0 ≈ 1.42 Å is the distance between neighboring carbon atoms. Accordingly,
the corresponding reciprocal lattice vectors are

b1 = 2π
3a0

(1,
√

3) and b2 = 2π
3a0

(1,−
√

3) . (2.12)

It follows that the first BZ of a uniform hexagonal lattice also forms a hexagonal lat-
tice, as illustrated in Fig. 2.3(b). In particular, the six corners of the BZ are of partic-
ular importance, playing a role similar to the Γ point in GaAs and HgTe heterostruc-
tures. At these so-called Dirac points, which are located at the K and K′ points in
the BZ, given by K = (2π/3a0, 2π/3

√
3a0) and K ′ = (2π/3a0,−2π/3

√
3a0), respec-
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tively, the CB and VB touch each other, see inset in Fig. 2.3(c). Due to this fact,
graphene has no band gap and thus exhibits the behavior of an electrical conductor.
This peculiarity was already recognized by P. R. Wallace in 1947, who calculated
the dispersion relation for graphene using the tight-binding approach [63]. Limiting
the tight-binding approximation by the second-nearest neighbor hopping term, the
corresponding Hamiltonian for electrons in graphene is given by [24]

H =− t
∑
〈i,j〉,σ

(a†σ,ibσ,j + h.c.)

− t′
∑
〈〈i,j〉〉,σ

(a†σ,iaσ,j + b†σ,ibσ,j + h.c.) . (2.13)

Here a†σ,i (aσ,i) represents the creation (annihilation) of an electron with spin σ ∈↑, ↓
within the sublattice A. Correspondingly, b†σ,i and bσ,i provide the operators for
the sublattice B. The hopping energies t ≈ 2.8 eV (the value of t varies in the
literature from 2.7 eV to 3.1 eV) and t′ ≈ 0.1 eV cover the intersublattice (A – B)
and the intrasublattice (A – A or B – B) hopping, respectively [24, 25, 65–67]. Their
corresponding manifolds are denoted by 〈i, j〉 and 〈〈i, j〉〉. The calculation of the
energy spectrum for the CB (+) and VB (−) results in [63]

ε±(k) =± t
√

3 + f(k)− t′f(k) with
f(k) = 2 cos

(√
3kya0

)
+ 4 cos

(√
3kya0/2

)
cos

(√
3kxa0/2

)
. (2.14)

Apparently, the bands are symmetrically arranged around zero energy when only
intersublattice hopping is considered (t′ = 0). The dispersion according to Eq. (2.14)
is presented in Fig. 2.3(c) for finite values of t and t′. Around the Dirac points,
the energy dispersion in Eq. (2.14) can be expanded in terms of small momenta
|k| � |k|, |k ′| [24, 63], yielding

ε±(k) = ±~vF|k|+O{(k/K)2} (2.15)

with the Fermi velocity vF = 3ta0/(2~) ≈ 1 × 106 m/s. Note that the presence of
carriers may lead to a many-body renormalization of this velocity, which is small
for graphene. The first order contribution in Eq. (2.15) is fully sufficient to describe
the properties of graphene that are important in the context of this work. In fact,
the deviation of the energy spectrum from a pure Dirac-like dispersion occurs at
ε(k) ≈ 1.12 eV, which is about five times larger than the energy scales used in the
experiments. Hence, the higher order terms are neglected in the following.

The reason for such a high electron velocity in graphene is the vanishing effective



2.1 Two-dimensional Electron Systems 13

a1

a2

A B

x

y

b1

b2

K

K

′

ky

kx

Γ ky
kx

ε

(a) (b) (c)

Figure 2.3: (a) Schematic representation of the honeycomb lattice of graphene con-
sisting of two equivalent sublattices denoted by A and B. The respective lattice
vectors are represented by a1 and a2 [see Eq. (2.11)] and shown as an example
for sublattice A. (b) Corresponding hexagonal reciprocal lattice with the vectors
b1 and b2 given by Eq. (2.12). The CB and VB touch at K and K′, forming a
linear energy dispersion. (c) Three-dimensional visualization of the energy disper-
sion relation according to Eq. (2.14) for t′ = 0. The inset shows an enlarged view
of the Dirac cone where the electron and hole bands touch. Figures adapted from
Refs. [24] and [64].

mass as a consequence of the linear dispersion. Thus, the charge carriers in graphene
are described by the Dirac equation and thus resemble ultra-relativistic particles
with spin 1/2, also referred to as massless Dirac fermions [25, 68]. A profound
consequence of the two equivalent but independent sublattices A and B is that
graphene exhibits a chiral pseudospin in addition to the conventional carrier spin.
Due to a relatively weak intervalley coupling between K and K ′, graphene exhibits
two equivalent valleys. This valley degeneracy, which should be considered together
with the spin degeneracy, can be incorporated via the degeneracy factor gv = 2.

Putting it all together, the resulting spinor-like two-component electron wave func-
tion Ψ(r) (due to the two atoms per unit cell) near the Dirac point obeys the
two-dimensional Dirac equation [25, 68]

−i~vFσ · ∇rΨ(r) = εΨ(r) . (2.16)

Hence, the effective low energy Hamiltonian reads

H = ~vFσ · k = ~vF

 0 kx − iky
kx + iky 0

 , (2.17)

containing the usual two-dimensional Pauli-matrices vector σ = (σx, σy) taking into
account the pseudospin. In analogy to Eq. (2.17) the Hamiltonian for K′ is obtained
by the transformation HK ′ = −HK . The product σ · k is also known as the helicity
operator and proves the chiral nature of the graphene energy spectrum. In particular,
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electrons have positive (negative) chirality and holes negative (positive) chirality in
the K (K ′) valley. The corresponding electron wave functions in momentum space
are

ΨK
± (k) = 1√

2

e−iθk/2

±eiθk/2

 and ΨK ′

± (k) = 1√
2

 eiθk/2

±e−iθk/2

 . (2.18)

Here θk = arctan(kx/ky) is the angle in momentum space and the ± signs indicate
the corresponding eigenergies ε±(k) = ±~vFk of CB (+) and VB (−). Note that
the wave functions change their sign, which implies an additional phase of π when
the angle θk is rotated by 2π. This additional phase is called Berry phase and is a
characteristic of two-component spinors [24]. Furthermore, a non-zero Berry phase
yields a half-integer shifted quantum Hall effect and a phase shift of the Shubnikov–
de Haas quantum oscillations (SdHO) [21, 22, 25].

Now that the basics of the materials used in this work have been outlined, the
next chapter will discuss fundamental phenomena, the understanding of which is of
utmost importance for the discussion of the experimental results.

2.2 Cyclotron Resonance

In general, cyclotron resonance (CR) refers to the resonant absorption of EM waves
by charged particles, such as free electrons or conduction electrons in a solid, when
exposed to a constant magnetic field. This section provides a more quantitative
description of this fundamental physical phenomenon based on the semiclassical and
quantum mechanical approaches. While the semiclassical model originates from the
Drude model [69, 70], the quantum mechanical approach treats CR via optical tran-
sitions between adjacent Landau levels. Landau quantization becomes important in
the regimes of SdHO and quantum Hall effect. The description of both approaches
follows the considerations covered in Refs. [3, 4, 71].

Consider a free carrier of charge q moving with velocity v in a uniform magnetic
field B parallel to the z direction êz, the trajectory influenced by the Lorentz force
F = q(v × B) constrains the carrier motion to spiral cyclotron orbits 1. Note that
the charge q is negative for electrons (q = −e < 0) and positive for holes (q = e > 0).
The angular frequency of this trajectory around the direction of the applied magnetic

1The described trajectory applies to the consideration of motion in real space. Translating this
behavior into k-space yields the motion perpendicular to the magnetic field on planes of constant
energy [72].
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Figure 2.4: The absorbed power Pabs, Eq. (2.23), expressed in units of E2
0σ0 as a

function of the ratio ω/ωc for several representative values of ωcτp. A distinct CR
appears for ω = ωc for the condition ωcτp � 1 (blue and red traces), while it is
substantially suppressed for ωcτp . 1 (green and purple traces). Figure adapted
from Ref. [4].

field is given by (the absolute value of) the cyclotron frequency

ωc = qBz

m
, (2.19)

where B = Bz êz and m is the free carrier mass. Projecting this helical motion
onto the x − y plane, perpendicular to the magnetic field, yields a circle with the
cyclotron radius Rc = v/ωc [3]. Considering a solid state system, the relation in
Eq. (2.19) is modified by simply replacing the free carrier mass m by components of
the effective mass tensor ↔

m
∗, taking into account the carrier dynamics influenced by

the surrounding lattice potential [73]. If an incident EM wave with an electric field
E interacts with charge carriers in a material, the corresponding equation of motion
becomes

m∗
dv
dt = q(E + v ×B)− m∗v

τp
(2.20)

under the assumption of an isotropic effective mass m∗. Here τp is the momentum
relaxation time, which describes the time scale on which the electron randomizes its
direction of motion due to scattering events. If the frequency of the EM wave matches
the cyclotron frequency ωc of the system, the carriers will effectively absorb the
incoming radiation. This fundamental phenomenon is called cyclotron resonance [3].
Knowing the radiation frequency ω, which determines the magnetic field position of
the CR BCR, one can access the effective mass m∗ via Eq. (2.19).
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The equation of motion [Eq. (2.20)] can be solved by using j = qnev and considering
that the electric field E and the velocity v have a harmonic form proportional to
exp(−iωt) [4]. In the following considerations, the electric field of the EM wave is
perpendicular to the applied magnetic field – a configuration called Faraday geom-
etry. Using the obtained conductivity tensor, the absorbed power Pabs is given by
the Joule losses formula as

Pabs = jE , (2.21)

where the overline represents the average over time. Assuming that the EM wave is
linearly polarized, the absorbed power is then explicitly given by [3, 4]

Pabs(ω) = 1
2E

2
0σ0<

{
iωτp + 1

(iωτp + 1)2 + ω2
cτ

2
p

}
, (2.22)

where E0 is the amplitude of the electric field and σ0 = qneµ = q2neτp/m
∗ is the

static direct current (dc) conductivity including the carrier density ne and the carrier
mobility µ. As the linear polarization is the sum of the left-handed (P+) and right-
handed (P−) circular polarization states, Eq. (2.22) can be further rearranged into

Pabs(ω) = 1
4

[
E2

0σ0

1 + (ω − ωc)2τ 2
p︸ ︷︷ ︸

= P+

+ E2
0σ0

1 + (ω + ωc)2τ 2
p︸ ︷︷ ︸

= P−

]
. (2.23)

Note that an additional factor of 1/2 comes from the fact that the root mean square
field of the linearly polarized EM wave is smaller by a factor of

√
2 than that of the

circularly polarized wave. Therefore, the intensity (Poynting vector) of the linearly
polarized EM wave is given by I = E2

0/(2Z0) and for the circularly polarized wave
I = E2

0/Z0 with the vacuum impedance Z0 = 1/ε0c ≈ 377 Ω. In contrast to the
absorbed power, the dimensionless absorptance A = Pabs/I for the linearly polarized
wave denotes simply Alin = (A+ +A−)/2, see also Sec. 2.2.1.

For illustration, the absorbed power is visualized in Fig. 2.4 for different values of
the product ωcτp. It is clearly seen that distinct and sharp resonances are present at
ω = ωc and ω = −ωc for ωcτp � 1. In other words, the CR absorption is significantly
suppressed if the carriers loose information about their initial momentum due to
scattering by impurities or phonons before completing a closed cyclotron loop [3,
72].

From Eq. (2.23) it is clear that CR under circularly polarized radiation provides a
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method to determine the dominant carrier type in a semiconductor: The resonant
absorption is only possible if the polarization state of the radiation contains a com-
ponent that rotates synchronously and in the same direction as the electric current
associated with the cyclotron motion of the carriers. As a result, only left-handed
(right-handed) circularly polarized radiation directed along the applied magnetic
field is absorbed when electrons (holes) prevail in the structure. For an antiparallel
configuration of incoming radiation and magnetic field, the resonance condition is
reversed [72]. Subsequently, it is natural to introduce the CR active magnetic field
polarity, where resonant absorption is obtained, and the CR inactive polarity, which
does not fulfill the CR condition.

As touched on above, the absorption shape facilitates access to the momentum re-
laxation time τp. However, the classical Drude approach underestimates the width of
the CR, especially in high-mobility 2DES such as GaAs QWs. In particular, electrons
exposed to the incident EM wave try to follow its rapidly oscillating electric field. As
a result, accelerated charges produce secondary radiation leading to a strong reflec-
tion of the incident EM wave at the CR condition, similar to a metallic surface [74].
This in turn produces an additional contribution, called radiative/superradiant de-
cay, which broadens the linewidth of the resonance [17, 74, 75]. Consequently, the
shape of the CR is determined by both the momentum relaxation rate γ = 1/τp and
the radiative decay rate [17]

Γ = e2ne
2ε0cm∗ω

. (2.24)

The ratio of these two contributions yields

Γ
γ

= σ0

2ε0cω
. (2.25)

Considering the product of µ and ne in the numerator, it is evident that this ratio is
much larger than unity for high-mobility 2DES, resulting in a huge influence of the
radiative decay on the CR linewidth. Indeed, only a small part of the radiation is
absorbed by the 2DES due to the strong reflection under the CR condition [17, 74].

The above consideration is only valid under classical conditions, which include mod-
erate magnetic fields and temperatures. However, when a semiconductor is subjected
to a strong magnetic field, its energy bands transform into discrete levels due to Lan-
dau quantization [76, 77]. The emergence of Landau levels leads to a variety of new
phenomena. The most fundamental is the quantum Hall effect in 2DES, which de-
scribes the appearance of quantized plateaus in the Hall resistance [3, 78]. In this



18 2 Theoretical Background

picture, CR is facilitated by resonant optical transitions between adjacent LLs. As-
suming a semiconductor permeated by a uniform magnetic field in the z direction,
the Schrödinger equation for electrons becomes [3]

[
1

2m∗ (p + eA)2 + V (z)
]
ψ(r) = εψ(r) , (2.26)

and can be rewritten as [71] 2

[
1

2m∗ (py + eBzx)2 + p2
x

2m∗ + p2
z

2m∗

]
ψ(r) = εψ(r) , (2.27)

by considering a parabolic energy dispersion with the eigenenergies ε(k) = ~2k2/2m∗.
The wave function can be expressed as ψ(r) = exp(−ikyy) exp(−ikzz)U(x) and thus,
Eq. (2.27) turns into [71]

[
p2
ζ

2m∗ + e2B2
z

2m∗ ζ
2
]
U(ζ) =

(
ε− ~2k2

z

2m∗

)
U(ζ) . (2.28)

Here, the relative coordinate ζ = x+ ~ky

eBz
was used for convenience. This equation is

the same as that describing the one-dimensional harmonic oscillator. Consequently,
the parabolic dispersion (P) eigenenergies yield a discrete spectrum given by [3, 71]

εP
l =

(
l + 1

2

)
~ωc + ~2k2

z

2m∗ with l = 0, 1, 2, ... (2.29)

by utilizing the expression for ωc according to Eq. (2.19) with q → e and m→ m∗.
As a result, the motion perpendicular to the applied magnetic field is quantized,
whereas the spectrum parallel to Bz êz remains unchanged. However, in 2DES the
contribution along the z direction in Eq. (2.29) is also governed by an energy quan-
tization by assuming that the magnetic field points in the direction of confinement
(parallel to the growth direction), see, e.g., Eq. (2.9) in Sec. 2.1.1. The discrete
energy levels feature an equidistant energy spacing ∆P

l = ~ωc for a parabolic band
and are called Landau levels (LLs). It is clear that ∆P

l is independent of the Fermi
level position and is therefore not affected by changes in the carrier density. The LL
spectrum is presented in Fig. 2.5(a). According to the selection rules in the dipole
approximation, transitions are only possible between adjacent LL l → l ± 1 [71].
Considering instead a two-dimensional structure with linear energy dispersion (e.g.,
graphene, see Sec. 2.1.3), it becomes clear that the above equations can not be ap-

2Here, the Landau gauge is used for the vector potential A = (0, Bzx, 0)T, whereas the scalar
potential is set to zero, ϕ = 0.
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Figure 2.5: (a) Landau level spectrum for a system with parabolic energy dispersion,
calculated according to Eq. (2.29) neglecting the contribution proportional to kz.
The first 10 LLs are plotted for l = 0, 1, ..., 9. (b) Calculated LL spectrum for
massless Dirac fermions. The energies εL

l [see Eq. 2.30] are shown for the first 10
levels. At higher energies the distance between the levels can be well approximated
by the semiclassical CR frequency. Cyclotron resonance transitions between the
LLs are illustrated in both panels as examples for a given Fermi energy εF. The
respective magnetic fields in which the CR occurs are denoted as BP

CR and BL
CR.

Figure adapted from Ref. [4].

plied, since the carriers are characterized as massless Dirac fermions 3. The solution
of the Dirac equation near the Dirac points in the presence of a uniform magnetic
field yields linear dispersion (L) eigenergies [20, 24, 79–81]

εL
l = ±vF

√
2e~B|l| with l = 0,±1,±2, ... (2.30)

for the CB (+) and VB (−). The LL spectrum is plotted against the magnetic
field in Fig. 2.5(b). It is noticeable that in contrast to Eq. (2.29), the Landau
quantization of the linear dispersion has a zero-energy LL at l = 0, which is a
direct consequence of the electron-hole symmetry. In systems such as graphene, the
experimental observation of this zero-energy state attests to its Dirac-like nature [21,
82, 83]. Moreover, εL

l scales with the square root of the magnetic field and the LL
number, which is a peculiar feature of linear dispersion. Indeed, the corresponding
density of states (DOS) scales linearly as a function of energy in the absence of a
magnetic field. As a result, when the magnetic field is turned on, the LLs require
less spacing to achieve an equivalent number of states necessary to fully occupy each
LL. This results in a nonequidistant LL spectrum [84].

Subsequently, the emergence of the CR, which is governed by the transition between
3For Dirac-like carriers the effective mass vanishes, which according to Eq. (2.19) yields ωc →∞.
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adjacent LLs, involves the square root of l and B. Calculating the energy difference
according to Eq. (2.30) for the transition l→ l + 1 in the CB yields

∆L
l = εL

l+1 − εL
l = ~ωc = vF

√
2e~B

(√
l + 1−

√
l
)
. (2.31)

In the limit of small l (l ∼ 1) of the involved LLs, or in other words for a large
resonant photon energy with respect to the Fermi level of the system, the spacing
between the LLs follows a strict square root behavior given by Eq. (2.31). However,
for l � 1, under the condition that the Fermi energy εF � max{~ω, kBT}, the
energy spacing can be approximated as [85]

∆L
l ≈

vF

2

√
2e~B
l

(2.32)

by using the series expansion
√

1 + 1/x ≈ 1 + 1/(2x) in the limit of x � 1. As
the LL energy for high l is close to the Fermi energy, i.e., εL

l ≈ εF, resulting in√
l ≈ εF/(vF

√
2~eB), the cyclotron frequency can be expressed as

ωc = ∆L
l

~
≈ eB

mc

. (2.33)

The corresponding density dependent cyclotron mass mc = εF/v
2
F = ~√πne/vF [21,

86] is a peculiarity of the linear dispersion and the main difference to the parabolic
one. According to Eq. (2.33), the obtained cyclotron frequency scales linearly with
B, yielding an equidistant LL spectrum within the semiclassical approach, similar
to the case of a parabolic dispersion. In fact, this is justified for the experimental
conditions mostly used in this work for graphene. With ne = 1 × 1012 cm−2 and
B = 1 T, the Fermi energy is estimated as εF ≈ 110 meV, corresponding to the
LL indices l > 10 relevant for optical transitions. A comparison of the semiclassical
approach with the quantum mechanical limit for l = 10 reveals a deviation of less
than 1%.

Finally, as the experiments are performed with a fixed radiation frequency, the cor-
responding cyclotron magnetic field positions for the parabolic and linear dispersions
are given by

BP
CR = m∗ω

e
and BL

CR = ~ω
√
πn

evF
. (2.34)
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Figure 2.6: Schematic representation of the sample (orange shaded area) containing
a 2DES (dashed line) for the theoretical derivation of transmittance, absorptance,
and reflectance. Figure adapted from Ref. [17].

2.2.1 Cyclotron Resonance Transmittance and Absorptance

In the previous section we introduced the interaction of an EM wave with the con-
duction electrons via CR. This section extends this description by considering the
relation between external incoming wave and internal EM wave acting on electrons.
We will take into account multiple reflections within the dielectric substrate contain-
ing 2DES as well as resonant metallic reflection of the wave from 2DES itself. In
this context, the modeling of radiation transmittance and absorptance becomes of
major importance. In the following, the concept of transmission and absorption of
a plane EM wave within the classical Drude approximation is addressed by consid-
ering a sample sheet containing a uniform isotropic 2DES [17, 87–89]. The sample
consists of a dielectric substrate, characterized by thickness w and refractive index
nr, occupying 0 < z < w, and a conducting 2DES located at z = d, see Fig. 2.6.
Typical values for GaAs are w = 500 µm and nr = 3.6. Since the 2DES sits very
close at the front interface of the dielectric, so that d � 1/kr with the wave vector
inside the substrate kr = ωnr/c, it is sufficient to consider d = 0. However, due to
a long optical path φ = krw � 1 through the whole sample, it facilitates multiple
reflections between the dielectric interfaces, resulting in a Fabry-Pérot interference.

Next, assume a well-defined circularly polarized wave propagating along the z di-
rection, normally incident on the front interface of the sample where the 2DES is
located. Its electric field is given by

E i = E0<êη exp [−i(ωt− kz)] , (2.35)

where the polarization unit vector êη = êx + iηêy defines the circular polarization of
the wave with the helicity η = ±1. Furthermore, considering that the transport in
the 2DES, characterized by the local dynamic conductivity tensor ↔

σ(ω), is isotropic,
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i.e., σxx = σyy and σxy = −σyx, it can be shown that the conductivity tensor is
diagonal in the helicity basis [17]

↔
σ(ω)êη = σηêη, with ση = σxx + iησxy. (2.36)

Note that the time-reversal symmetry is broken (σxy 6= 0) due to the magnetic
field applied perpendicular to the sample surface. Thus, the polarization state of
the incident wave is generally different from that of the transmitted and reflected
waves. However, in the case of an isotropic 2DES and a normally incident circularly
polarized wave, its axial symmetry is preserved, so the circular components do not
couple and can be considered independently. The corresponding electric field of the
wave propagating in the z direction can be written for the whole spatial range as [17]

E(z, t) = Ei<êηa(z) exp(−iωt) , (2.37)

introducing a(z) according to

a(z) =


exp(ikz) + r exp(−ikz) , for z < 0 ;
sr exp(ikrz) + sl exp(−ikrz) , for w > z > 0 ;
t exp[ik(z − w)] , for z > w .

(2.38)

Here the transmission and reflection amplitudes are defined by t and r, respectively,
while s = sr + sl considers the amplitude Eη of the field screened by the electrons in
the 2DES [i.e., <êηEη exp(−iωt) = Ei<êηs exp(−iωt)] passing it from the right or left
side. Note that in the equations above the index η of the amplitudes t, r and s has
been omitted for better readability. The corresponding partial waves are presented
in Fig. 2.6. As dictated by Maxwell equations, the tangential component of the
electric field at the interfaces of the sample substrate is continuous. Furthermore,
since the EM wave induces a current within the 2DES, the corresponding alternating
magnetic field, which is related to the current density by Ampère’s law, exhibits a
jump at the position of the 2DES. Thus, defining the vector V(z) = [a(z), ∂za(z)]T

for convenience and using the above boundary conditions, we obtain [17]

V(δ) =M2DESV(−δ) and V(w + δ) =MdielV(δ) , (2.39)
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with δ being a positive infinitesimal and

V(δ) =
 sr + sl

ikr(sr − sl)

 , V(−δ) =
 1 + r

ik(1− r)

 and V(w+δ) =
 t

ikt

 .

(2.40)

The transfer matrices in Eq. (2.39) are given by [17]

M2DES =
 1 0

2iωσηZ0/c 1

 and Mdiel =
 cosφ k−1

r sinφ
−kr sinφ cosφ

 , (2.41)

with the interference phase φ = krw defined above. The former transfer matrix
describes the discontinuity of V(z) due to the alternating current (ac) generated
inside the 2DES, whereas the latter accounts for the propagation of the EM wave
inside the dielectric substrate. Solving the equations in (2.39) gives the expression
for the transmission amplitude [17, 89]

t = 1

(1 + σηZ0/2) cosφ− i
1 + n2

r + nrσηZ0/

2nr

 sinφ
= 2
ξ1(1 + Z0ση) + ξ2

,

(2.42)

where the complex parameters ξ1,2 = cosφ−in∓1
r sinφ describe the Fabry-Pérot inter-

ference caused by multiple reflections in the dielectric substrate. The corresponding
field screened by the 2DES plane reads

s = 1 + r = t(cosφ− in−1
r sinφ) = tξ1 . (2.43)

It should be noted that the helicity dependence of the amplitudes t, r and s is
governed only by ση [Eq. (2.36)], which enters Eq. (2.42). The related expressions
for transmittance T (B) and absorptance A(B) are given by [17]

T (B) = |t|2 and A(B) = 1− |r|2 − |t|2 = Z0|tξ1|2<ση . (2.44)

Taking the complex dynamic conductivity of the 2DES ση = ene/(µ−1− iBCR + iηB)
using the Drude approximation, the transmittance and absorptance get the form [17,
89]

T (B) = |α|2
∣∣∣∣∣1− β

µ−1 + β − iBCR + iηB

∣∣∣∣∣
2

(2.45)
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and

A(B) = Z0|ξ1α|2ene/µ
|µ−1 + β − iBCR + iηB|2 . (2.46)

For convenience, the parameters α = 2/(ξ1 + ξ2) and β = eneZ0/(1 + ξ2/ξ1) are
introduced. The latter is related to Γ [see Eq. (2.24)] as β = ΓBCR, assuming
constructive interference, see Chap 5. It is important to note that Eqs. (2.45) and
(2.46) are derived for the case where the sample is illuminated from the 2DES side.
However, if the sample is illuminated from the substrate side, the relation for T (B)
remains unchanged, but A(B) has to be divided by the constant factor |ξ1|2.

To connect this presentation to the power absorption Pabs considered in Sec. 2.2, we
recall that Pabs = IA(B) with the Poynting vector I = E2

0/Z0 of the incoming wave
can be equivalently written as

Pabs = IZ0|tξ1|2<ση = E2
2D<ση , (2.47)

where we used Eq. (2.44) connecting the external field E0 with the self-consistent
screened electric field E2D in the plane of the 2DES. Therefore, the absorbed power
as a response to the left-handed and right-handed circularly polarized states yields

Pη = E2
2D<

{
ene

µ−1 − iBCR + iηB

}
= E2

2Deneµ

1 + (BCR − ηB)2 = E2
2Dσ0

1 + (ω − ηωc)2τ 2
p

,

(2.48)

utilizing σ0 = eneµ, ωc = eB/m∗ and µ = eτp/m
∗, in accord with Eq. (2.23).

As will be discussed in Chap. 5, the transmitted signal through a 2DES obtained ex-
perimentally can be straightforwardly matched by Eq. (2.45) using ne and µ as fixed
parameters determined via standard magnetotransport measurements. Its shape,
especially in the vicinity of the CR, determines the complex interference parameters
ξ1,2, providing full knowledge to model the absorptance as a function of the magnetic
field.

2.3 µ-Photoconductivity

Another fundamental optoelectronic phenomenon is photoconductivity, which mani-
fests itself as a higher-order correction of the induced electric current. It characterizes
the change in the conductivity of the material caused by the excitation of radiation
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and can be generally expressed as [90]

jα =
∑
βγδ

σ
(3′′)
αβγδEβ(ω, q)E∗γ(ω, q)Eδ(ω = 0, q = 0) , (2.49)

where the dc current is proportional to the third-order electric field. The fourth-rank
conductivity tensor σ(3′′)

αβγδ facilitates the interaction between the static electric field
Eδ(ω = 0, q = 0), provided simply by applying a bias to the system, and a term
proportional to the intensity of the incident radiation I ∝ Eβ(ω, q)E∗γ(ω, q) with
frequency ω and photon wave vector q. The decomposition of this tensor into its
symmetric and antisymmetric components allows to distinguish between the linear
and the circular photoconductivity [40].

Within the Drude model, the static conductivity is given by σ0 = eneµ, which con-
tains the density, ne, and the mobility, µ, of the charge carriers [3]. It is evident that
varying either ne or µ will change the conductivity of the system. Considering only
optical excitations, the former case is typically achieved by the generation of electron-
hole pairs caused by transitions between the valence and conduction bands [3], or
by the selective generation of a specific type of carriers due to photoionization of
deep or shallow impurities within a semiconductor [91]. In contrast, the change in
mobility is a result of intraband transitions caused by Drude absorption, a process
that is particularly important when the energies of the exciting radiation are smaller
than the band gap and Fermi energy in the material under study. Absorption leads
to radiation-induced heating of the charge carriers, resulting in a change in their en-
ergy distribution and hence their mobility. The corresponding mechanism is called
µ- or bolometric photoconductivity [91].

This work focuses on the examination of high-density 2DES with radiation energies
of the order of a few millielectronvolts. Such experimental conditions facilitate the
study of the bolometric photoconductivity, which will be outlined in the following. In
general, radiation-induced heating can be described by the energy balance equation

A(I)I = Q(I) , (2.50)

accounting for the energy A(I)I absorbed by the carriers and the energy losses Q(I)
governed by the energy flow from hot electrons to the lattice [91, 92]. The latter is
characterized by the energy relaxation time τe−ph, a measure of the equalization of
electron Te and lattice temperatures T by inelastic electron-phonon scattering. How-
ever, at low temperatures a high-density 2DES is characterized by a fast electron-
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electron scattering time τee, leading to a fast equilibration of the electron gas. There-
fore, an average electron temperature Te is established, which consequently gives a
well-defined shape of the equilibrium Fermi-Dirac distribution governed by the ele-
vated electron temperature Te > T . This temperature fully characterizes radiation-
induced heating effects and should be found self-consistently from Eq. (2.50). At the
same time, variations of the chemical potential in a degenerate high-density 2DES
induced by electron gas heating can be disregarded.

Assuming the limit I → 0, which corresponds to linear heating, the absorptanceA(I)
in Eq. (2.50) yields the linear response A(I → 0). Under the condition of CR, this
linear-response absorptance of a 2DES can be replaced by Eq. (2.46). Furthermore,
in the linear regime the energy losses can be expressed in terms of electron and lattice
temperatures, i.e., Q(I) ∝ (Te−T )τ−1

e−ph(T ), leading to Te−T ∝ IAτe−ph(T ) [48]. It
is worth noting that the I-independent inelastic scattering time τe−ph is assumed to
be a function of the lattice temperature T only, satisfying the condition Te−T � T ,
which is generally not true for arbitrary radiation intensities, as will be reviewed in
Chap. 8.

In the case of weak heating, the corresponding µ-photoconductivity and photore-
sistance, the latter being more convenient for further consideration, are obtained
by [91]

∆σ = ∂σ

∂µ

∂µ

∂Te
(Te − T ) , (2.51)

and [48, 93]

∆R = ∂R

∂µ

∂µ

∂Te
(Te − T ) , (2.52)

respectively. For zero magnetic field, the resistance is related to the conductivity
via R ∝ σ−1 and the signs of µ-photoconductivity ∆σ and photoresistance ∆R are
opposite. However, in this work the focus lies on the investigation of 2DES that are
exposed to a classically strong magnetic field (in the sense of ωcτp � 1). Under this
condition the µ-photoconductivity and photoresistance exhibit the same sign. An
increase of the mobility with growing electron temperature, occurring for instance
when scattering on charged impurities dominates the energy loss rate, results in a
negative µ-photoconductivity. On the other hand, a decrease in mobility due to
strong electron-phonon interaction leads to positive µ-photoconductivity [3, 94], a
behavior that predominates in the samples studied in this work.
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2.4 Plasmons and Magnetoabsorption

This chapter is dedicated to a brief overview of plasmons and their properties. In
general, plasmons describe collective excitations in electronic systems caused by a
relative displacement of electrons from their positively charged background. Qual-
itatively, their origin can be understood as follows: Electrons that experience a
restoring force due to positive ions tend to overshoot slightly with respect to their
intended position, which would screen the electric field of the ions. Their velocity
is reduced and they are attracted towards the ion exceeding the equilibrium posi-
tion again. The consequence of this oscillatory motion is the appearance of charge
density oscillations [33, 95–97].

In 2DES, the plasmon dispersion can be characterized in terms of hydrodynamics,
which is based on macroscopic considerations of electron dynamics. In this sense,
to describe the charge density waves inside the 2DES, δne(r , t) is introduced as a
small variation of the electron density from its mean value and δj(r , t) is its corre-
sponding induced current density. Note that both are collective quantities obeying
macroscopic conservation laws. In the long-wavelength limit, q � kF, and addi-
tionally assuming that |δne/ne| � 1 (ne yields the average carrier density of the
2DES, which is independent of spatial coordinates and time), the periodic density
fluctuations follow the linearized Euler equation of motion given by [33, 95]

∂j(r , t)
∂t

= − D
πe2∇r

∫
d2r ′ e2

ε|r − r ′| δne(r
′, t) . (2.53)

Here ε is the dielectric constant of the surrounding medium and D is the Drude
weight. The integral describes the electrostatic potential and is evaluated at r
considering the charges at r ′ with the respective density δne(r ′, t). Taking the di-
vergence of both sides of Eq. (2.53) and using the relation ∂ne(r , t)/∂t = −∇j(r , t),
which is the continuity equation for conserved quantities, the Euler equation takes
the form [33, 95]

∂2 δne(r , t)
∂2t

+ D
πe2∇

2
r

∫
d2r ′ e2

ε|r − r ′| δne(r
′, t) = 0 . (2.54)

Utilizing the Fourier transform with regard to r and t yields the following equation
for the Fourier component of δne(r , t)

[
ω2 − D

πe2 q
2uq

]
δne(q, ω) = 0 , (2.55)

where uq = 2πe2/εq is the Fourier transform of ur(|r − r ′|) = e2/ε|r − r ′|. As a
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result, Eq. (2.55) predicts the emergence of a density wave, i.e., plasmons with the
plasma frequency ωpl(q) =

√
Dπe2q2uq =

√
2Dq/ε. It is important to note that

the square root behavior on the wave vector is a special feature of plasmons in two
dimensions [98]. Consulting the expression for the Drude weight D, the plasma
frequency can be rewritten as [99–102]

ωpl(q) =



√
2πe2neq

εm∗
, for parabolic dispersion ;

√
2e2vF

√
πneq

ε~
, for linear dispersion .

(2.56)

It follows that for massless Dirac fermions the plasma frequency scales proportional
to n1/4

e .

Applying a classically strong magnetic field B (ωcτp � 1) perpendicular to the 2DES
plane alters the plasmonic dispersion relations outlined above. In particular, due to
the interaction of the electron plasma with the magnetic field, the carriers undergo a
cyclotron motion. As a result, ωpl(q) reaches a gap at zero wave vector q determined
by the electron’s cyclotron frequency ωc [103]. Consequently, magnetoplasmons obey
the dispersion relation

ωmp =
√
ω2

pl(q) + ω2
c (B) , (2.57)

where ωpl(q) is given by Eq. (2.56) and ωc(B) by the corresponding expressions in
Sec. 2.2. A detailed derivation of the plasmon dispersion in a strong magnetic field
can be found in Ref. [103]. For illustration, both the plasmon and magnetoplasmon
dispersions are sketched in Fig. 2.7(a) and (b), respectively.

Moreover, these plasma oscillations [Eq. (2.57)] are governed by an interaction with
harmonics of the CR at large q 4. This interplay manifests so-called Bernstein modes
– a series of magnetoplasmon branches separated by gaps located near the harmonics
of the CR, i.e., ω = nωc with n = 2, 3, ... . – illustrated in Fig. 2.7(c). These gaps are
usually smeared out by fast electron-impurity collisions, resulting in the conventional
magnetoplasmon dispersion [104]. However, if the splitting remains, the absorption
of an incoming EM wave is strongly enhanced near ω = nωc.

In the following, the magnetoabsorption of an inhomogeneous electric field by a
2DES is briefly outlined. Detailed calculations can be found in Refs. [45, 105]. For
simplicity, the lateral dimensions of the absorbing ungated 2DES are assumed to be

4Here, the condition qRc & 1 has to apply, where Rc = vF/ωc denotes the cyclotron radius.
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Figure 2.7: (a) Plot of the plasmon frequency ωpl as a function of the wave vector q
showing the plasmon dispersion at zero magnetic field B [see Eq. (2.56)]. (b) The
corresponding magnetoplasmon dispersion of a 2DES exposed to a finite magnetic
field demonstrating a gap at q = 0. The dispersion is calculated according to
Eq. (2.57). (c) The interaction of the magnetoplasma dispersion with the harmonics
of the CR is presented for the second and third harmonics. This behavior leads to a
splitting of the magnetoplasmon dispersion into separate branches called Bernstein
modes. These splittings are highlighted by the red shaded areas. In all panels,
the sample containing the 2DES is assumed to be ungated. Figure adapted from
Ref. [45].

infinite. The absorbed power is given by the Joule losses formula [45, 105]

Pabs = 2
∫
<{E(q, ω)j∗} dq , (2.58)

where E(q, ω) = FqωE0 represents the inhomogeneous electric field with its associ-
ated Fourier components Fqω. Considering in addition Ohm’s law j = ↔

σE with the
conductivity tensor defined as

↔
σ =

σxx −σxy
σyx σyy

 , (2.59)

the absorbed power can be rewritten as [45, 105]

Pabs = 2
∫ dq

(2π)2

(
<{σxx}|E(q, ω)|2 + ={σxy}={E∗x(q, ω)Ey(q, ω)}

)
. (2.60)

The incoming EM wave is screened by electrons in the 2DES. Assuming a sharp
increase in the electron screening in the 2DES, the total potential in the electrostatic
approximation created by the charge density ρ(r) ∝ e−iωt and governed by a short
distance L from the 2DES plane reads

ϕ|z=0 = 2πρ(q)e−qL
qε0ε(q, ω) . (2.61)

Here ε0 is the dielectric constant of the substrate and ε(q, ω) represents the dielectric
function. The latter can be obtained by solving the field equation of a symmetric
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and ungated 2DES with known conductivity ↔
σ under the condition qL� 1:(

∂2

∂z2 − q
2
)
ϕ(q, z) = 4π

ε0
[ρind(q) + ρ(q)] δ(z) . (2.62)

The induced charge density is defined as ρind(q) = q j/ω. Thus, the dielectric
function can be expressed as [45, 105]

ε(q, ω) = 1 + i2πq
ε0ω

σxx(q, ω) . (2.63)

Considering the special case of absorption when an incident plane wave is diffracted
by a thin contact resulting in an inhomogeneous charge field inside the 2DES [45],
the respective absorbed power in Eq. (2.60) then takes the form [45]

Pabs = 2
∫ dq

(2π)2
ω

2πq |E(q, ω)|2=
{
ε(q, ω)−1

}
. (2.64)

Note that the second contribution proportional to ={σxy} in Eq. (2.60) accounts for
the polarization sensitivity of the regular CR at ω = ωc. For the absorbed power
near the CR harmonics, this term can be safely neglected because they are not
affected by the polarization of the incoming EM wave diffracted by a thin contact.
In fact, the electric field component perpendicular to the contact surface is enhanced
whereas its tangential component is screened. Therefore, the resulting polarization
of the diffracted wave is very close to a linear one.
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3 Radiation Sources and Experimental Methods

First, the basic principles of the utilized THz sources are outlined, namely the op-
tically pumped molecular gas laser, the impact ionization avalanche transit time
diode, and the backward wave oscillator. Subsequently, the experimental techniques
are described. These include the measurement of photoresistance, photovoltage, and
transmittance, which are used to explore the CR-coupled effects. Finally, the inves-
tigated samples, namely GaAs and HgTe QWs as well as graphene, are discussed by
examining their transport properties.

3.1 Optically Pumped Molecular Gas Laser

Stimulated far-infrared (FIR) radiation was first observed by Chang and Bridges in
1970 [106]. They obtained FIR continuous wave (cw) emission in methyl fluoride gas
optically pumped by a carbon dioxide (CO2) laser. Since then, a large number of
emission lines have been found and characterized, ranging from tens of gigahertz to a
few terahertz, with corresponding powers ranging from nanowatts to a few hundred
milliwatts (for review, see, e.g., Refs. [107, 108]).

The physical concept of such lasers relies on transitions between rotational states
in the vibrational spectrum of a molecule with a permanent dipole moment [91,
109]. The molecules are pumped by the cw CO2 laser, which emits radiation in
the mid-infrared (MIR) range with wavelengths from 9.2 to 11.2 µm within the
P and R branches of the CO2 molecule [110–112]. CO2 is a linear molecule and
has three vibrational modes, namely the symmetric stretching mode, the bending
mode, and the antisymmetric stretching mode, which are assigned to four quan-
tum numbers (ν1, ν

l
2, ν3). Here, l represents the angular momentum, quantized with

l = 0,±1,±2, ... . The gas mixture of the CO2 pump laser usually comprises three
molecules, namely CO2, helium (He), and nitrogen (N2). Figure 3.1(a) shows the
energy scheme of the CO2 laser. The N2 molecules are excited to the first excited
vibrational state (ν = 0→ ν = 1), due to the longitudinal excitation of the gas ad-
mixture by electrical discharge 5. Since N2 has no permanent electric dipole moment,
the transition is infrared inactive (IRI) and the state is metastable. This provides
an effective way to transfer energy via collisions to the CO2 molecules, whose first
excited state of the antisymmetric stretching mode, (0001), has nearly the same
energy. Since (0001) is infrared active (IRA), the creation of the population inver-
sion in CO2 yields transitions to (1000) and (0200) states, which generate the laser

5Excitation of the N2 molecules by electron collisions is a more efficient process than the
excitation of the much heavier CO2 molecules.
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Figure 3.1: (a) Energy scheme of the lasing process of the CO2 laser. N2 is excited
by an electrical discharge (ν = 0 → ν = 1), which subsequently populates the
antisymmetric stretching mode (0001). The generated population inversion relaxes
via radiative transitions, producing laser radiation (blue and red arrows). Dotted
arrows indicate the excitation and relaxation processes. (b) Illustration of THz
generation in a symmetric top molecule optically pumped by the CO2 laser. J is
the angular momentum quantum number and J ′ its projection on the symmetry
axis of the molecule. The pump beam (blue arrow) excites a higher vibrational state
causing a population inversion and a subsequent THz emission transition between
the rotational states (red arrows). The scale on the left schematically shows the
energy-state distribution N(ε). The higher vibrational state is resonantly pumped,
while the lower one is governed by the thermal distribution. Figure adapted from
Ref. [91].

emission in the P and R branches of the CO2 molecule. A Fermi resonance [113,
114] between the (1000) and (0200) states causes a splitting of the (0200) and (0220)
states, which allows a radiative depopulation of (1000) into (0110). The latter also
allows radiative transitions, since the bending mode causes a nonvanishing dipole
moment and is therefore IRA. An effective non-radiative depletion of the energy
states is additionally provided by the inelastic scattering of the CO2 molecules with
He atoms.

Wavelength selection is accomplished by a blaze grating, also known as an echelette.
It is usually attached to the end of the laser near the rear resonator mirror and
produces maximum reflection at a certain diffraction order, while the other orders
are governed by high losses. By changing the angle between the optical axis and
the mounted echelette grating, the desired laser line can be selected by effectively
suppressing the other lines.

The CO2 laser beam is then guided by mirrors into the FIR resonator, which is filled
with a gaseous medium. The lasing process is shown in Fig. 3.1(b) as an example
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for a prolate top molecule 6 [115]. Here J ′ is the projection of the molecule’s angular
momentum onto its symmetry axis. Resonant pumping of the CO2 laser excites the
rotational states within the higher vibrational state, causing population inversion
in both the excited and ground states. If the lifetime of the vibrational states is
sufficiently long, the generation of THz radiation is achieved by relaxation of the
rotational states. Importantly, radiative transitions between the excited states can
only occur if the associated molecule has a permanent electric dipole moment. The
generated FIR radiation is usually linearly polarized when excited by a linearly
polarized pump beam. Indeed, under the condition that the angular momentum J

is much larger than its projection J ′, the degree of linearly polarized radiation at
the FIR output is high. This is facilitated by a low collisional reorientation time for
J ′ � J compared to transitions with J ′ ≈ J . Furthermore, the polarization planes
of the pump and FIR beams have the same orientation when the pump and laser
transitions are governed by the same angular momentum change |∆J |. In other
cases, the polarization planes are orthogonal [116].

Figure 3.4 shows the setup of the optically pumped molecular gas laser. The FIR
is composed of a resonator cavity sealed with silver-coated quartz mirrors contain-
ing the gaseous molecular laser medium. Formic acid (HCOOH), difluoromethane
(CH2F2), and methanol (CH3OH) are used as active media, providing frequencies of
f = 0.69, 1.63, and 2.54 THz with corresponding photon energies of 2.9, 6.7, and
10.5 meV, respectively. The FIR laser delivers maximum radiation powers in the
range of 20 to 50 mW, see Tab. 1 for the main parameters. The laser output of the
CO2 can be brought into resonance with the desired laser line of the molecule by
selecting the longitudinal laser mode by adjusting the echelette grating. A Brewster
window at the MIR input ensures that the CO2 radiation is vertically polarized. The
longitudinal modes supported by the CO2 can be selected by changing the length
of the FIR resonator. Its length is mechanically varied by the mode controller. It
should be noted that the different longitudinal modes strongly change the output
power and intensity profile of the FIR beam and therefore have to be adjusted with
care. In the case of the CO2 resonator, a piezo element mounted on the decoupling
mirror is used whose geometric parameters are varied by applying a bias voltage.

The next section covers the generation of THz radiation frequencies via the process
of avalanche breakdown in semiconductor junctions.

6Prolate top molecules are characterized by two degenerate axes and one unique axis, where the
inertia of the latter is less than the inertia of the degenerate axes. Examples of prolate molecules
are fluoromethane (CH3F) and ammonia (NH3).



34 3 Radiation Sources and Experimental Methods

3.2 Impact Ionization Avalanche Transit Time Diode

The measurements were also performed for lower frequencies of fractions of terahertz,
which could not be achieved with the laser. For this purpose, a continuously tunable
cw source was used to provide frequencies in the range f = 0.280 to 0.312 THz
(corresponding photon energies 1.1 to 1.3 meV) with a maximum output power of
about 30 mW, which varies with the operating radiation frequency [see Tab. 1]. The
source consists of two components connected by a coaxial connector of the type SMA
(subminiature version A), see Fig. 3.4. The high-frequency radiation is generated by
a local oscillator based on an impact ionization avalanche transit time (IMPATT)
diode, providing frequencies in the range f = 7.3 to 14.6 GHz. Its output is fed
into an amplifier multiplier chain that supports input frequencies from f = 11.7 to
13 GHz. The latter comprises a chain of Schottky diodes that generate the 24th
harmonic of the input frequency to achieve the desired THz frequency range. A
horn antenna is used to couple the radiation into the quasi-optical setup.

The operating principle of the IMPATT diode exploits the characteristics of a neg-
ative differential resistance caused by the combination of impact-ionization and
transit-time effects in semiconductor devices [117–119]. William Shockley was the
first to investigate the concept of negative differential resistance using the effect of
the carrier transit time delay in 1954 [120]. Only after more than 10 years, Johnston
et al. at Bell Telephone Laboratories succeeded in observing the first high-frequency
oscillations using a silicon-based read-type diode [121, 122].

The fundamental phenomenon of high-frequency generation in an IMPATT diode
is based on impact ionization. Consider a free-moving electron accelerated by an
electric field in a material. If the kinetic energy of the accelerated electron is suffi-
ciently high and an electron-atom collision occurs, the impact can ionize a secondary
electron. As a result, it gains energy from the applied electric field and can release
another electron. Repeating this process multiple times leads to an exponentially
increasing number of ionized electrons and thus to an exponentially increasing cur-
rent flow. This effect is called avalanche breakdown and results in a region of high
resistance called the drift zone [3]. When a p − n junction is reversely biased into
avalanche breakdown, it can operate in the IMPATT regime. Figure 3.2(a) shows
the cross-section of a high-low structure typically used to realize an IMPATT diode
proposed by Read [121]. The p+ − n+ junction additionally comprises a nA region
of high doping and a nB region of lower doping with a total length of W . This type
is called a single-drift structure because only one type of charge carriers (electrons)
travels through the drift region. The corresponding doping levels for each region are
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Figure 3.2: (a) Schematic illustration of a high-low IMPATT diode structure and its
corresponding doping profile, as well as the electric field distribution just below the
onset of the avalanche breakdown process at Ecrit. The electric fields in the nA and
nB regions are represented by EA(x) and EB(x), respectively. (b – e) Electric field
distributions for different times shown in panel (f) of an ac voltage cycle applied to
the high-low structure. The blue shaded areas indicate the corresponding generated
electron densities. (f) Time evolution of the ac voltage with amplitude Uac on top
of the dc voltage Udc applied to the structure. The bold letters b to e mark the
time stamps for the corresponding panels. (g) Maximum carrier density (shaded
blue) and the respective current flow (solid orange) generated in the structure by
drifting carriers. The phase shift of π between Uac and Iinj results in a negative
differential resistance. Figure adapted from Ref. [117].

shown in the middle panel of Fig. 3.2(a). The ionization rate is strongly affected by
the electric field. Therefore, the doping level of nA and the thickness W of the drift
region have to be chosen such that the majority of the avalanche processes (typically
about 95 %) are located near the transition interface between the p+- and nA-doped
regions. Here the electric field strength is highest. This region is indicated by the
blue shaded area in the bottom panel of Fig. 3.2(a) displaying the respective electric
field distribution [117, 121].

As a starting point, the diode is biased with a reverse dc voltage Udc, chosen so
that the threshold value for the avalanche electric field, denoted Ecrit, is just not
reached, see Fig. 3.2(b). In addition to Udc, a small sinusoidal ac bias Uac is applied.
Initially (t = 0) Uac is zero, see Fig. 3.2(f), which illustrates the time evolution of
the ac voltage. For t > 0, the ac bias exceeds the avalanche threshold, causing the
generation of electron-hole pairs due to impact ionization, see Fig. 3.2(c). As long
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as the applied bias is sufficiently high, resulting in an electric field above Ecrit, the
generation of electron-hole pairs grows exponentially with t. The ionized electrons
are accelerated along the diode and drift towards the n+ region, while the generated
holes are collected at the p+ contact. Even when the ac voltage begins to decrease
again, the process of impact ionization remains intact, leading to a further increase
in the electron-hole pair concentration. Since the density of generated electron-hole
pairs also depends on the number of carriers already generated, there is a delay with
respect to the applied electric field. Apparently, the concentration of the carrier
peaks when the ac bias reaches the average voltage value Udc, i.e., the ac component
is zero, see Fig. 3.2(d). This delay results in a phase shift of π/2 due to the nature
of the avalanche effect.

Subsequently, the ac contribution reaches the regimes where it falls below the avalanche
threshold, see Fig. 3.2(e). The avalanche processes decrease exponentially and the
electrons are injected into the nB region drifting towards the n+ contact. This re-
sults in the generation of a current in the external circuit, see Fig. 3.2(g). As the
phase of this resulting current is opposite to that of the applied ac bias, the drifting
electrons are slowed down by the ac field. This deceleration of the charges leads to a
release of energy and can be used to form spontaneous oscillations in an appropriate
circuit [117, 118, 121]. The transit time of the carriers gives a second shift that can
be manipulated by adjusting the parameters of the diode. The ideal transit-time de-
lay is achieved when the carriers traversing the drift region thickness W reaches the
n+ contact at the same time as the ac bias completes its negative half-cycle. Conse-
quently, comparing the ac bias contribution and the external current shows that the
transit-time delay exhibits a negative differential resistance characteristic [117, 121].
In this ideal case, the relation between the drift region thickness and the operating
frequency reads [117, 121]

W − wA

vsat
= 1

2f (3.1)

with the saturation velocity vsat
7. Adapting Eq. (3.1) yields the frequency of the

system

f = vsat

W − wA
. (3.2)

Typical values used for a commercially available IMPATT diode with an operating
7The saturation velocity refers to the maximum velocity of charge carriers exposed to a high

electric field in a semiconductor. Typical values for silicon and GaAs are of the order of 1×107 cm/s
at T = 300 K, where the electric field strength can be several tens of kV/cm [123].
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frequency of a few tens of gigahertz are in the range of a few micrometers. By
changing the current in the diode or tuning the parameters of the connected circuits,
the operating frequency of the diode can be varied. Indeed, by using specially
designed cavities and circuits, these devices can be efficiently tuned over a wider
range of frequencies [121, 124, 125]. It should be noted that the radiation generated
by the IMPATT diode exhibits a high degree of phase noise. This is a consequence of
the statistical nature of avalanche breakdown, which is due to random fluctuations
in the impact ionization processes [117].

As mentioned above, the radiation produced by the IMPATT diode is fed into an
amplifier multiplier chain that generates higher frequency harmonics. The chain
is based on Schottky diodes, which have nonlinear current-voltage characteristics.
Consider a sinusoidal signal x(t) = x0 sin(2πft) applied to a linear and a nonlinear
circuit. The former reproduces the waveform, whereas the circuit with the nonlinear
I − V behavior distorts the sinusoidal signal, producing higher harmonics. This can
be expressed by the Fourier series [121]

x(t) =
∞∑

n=−∞
cn exp(i2πnft) with cn = 1

2π

∫ t′

0
x(t) exp(−i2πnft/t′)dt .

(3.3)

The latter describes the generated harmonics cn, which are given by evaluating the
integral within the interval determined by the fundamental period t′. The desired
harmonic is then extracted by a bandpass filter and fed again into a nonlinear circuit
in which the same process takes place. However, due to the relatively low efficiency
of high harmonic generation, each conversion of the initially lower frequency to a
higher one is associated with significant losses in output power. Consequently, such
devices require very high input power in the range of a few watts [109, 121, 126].

The next section introduces another THz source belonging to the traveling-wave tube
family. It is characterized by a wide continuous frequency tunability and covers a
wide range of operating frequencies up to 1 THz.

3.3 Backward Wave Oscillator

The backward wave oscillator (BWO) is a special type of traveling-wave tube [127]
in which an EM wave interacts with accelerated electrons to produce high-frequency
radiation [109, 128–130]. The transfer of energy between a freely propagating EM
wave and an electron beam is not possible, as the conservation laws for energy and
momentum are not fulfilled for this process. However, this problem can be solved
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Figure 3.3: Structural design of the BWO. The electrons emitted by the cathode and
focused by the magnetic field of a permanent magnet are generating a THz wave
in the vicinity of a periodic grating with period Lg. The emerging THz radiation
travels in the opposite direction of the electron beam and is guided through a
waveguide. Figure adapted from Ref. [109].

by using a metallic periodic structure in the direction of the electron beam. The
first BWOs were demonstrated as early as 1951, generating cw radiation in the
frequency range from 1 to 40 GHz with corresponding powers of several hundred
milliwatts [128, 131].

Usually the BWO is mounted in a quasi-optical setup where the THz radiation is
coupled out of the waveguide by utilizing a horn antenna similar to the IMPATT
diode system described in the previous section, see Fig. 3.4. The system used in this
work was established at the technical university of Vienna and consists of several
BWOs covering a frequency range between 50 and 500 GHz (corresponding photon
energies 0.2 to 2.1 meV) with a maximum output power of a few milliwatts [see
Tab. 1]. The corresponding experimental measurements were performed by Maxim
Savchenko and Alexey Shuvaev in the group of Andrei Pimenov.

The BWO comprises a periodic metal structure, a strong permanent magnet and an
electron gun, see Fig. 3.3. The heated cathode emits electrons, which gain energy
from the applied dc electric field and are accelerated to the anode. The perma-
nent magnets are mounted to collimate the electron beam. As the electrons move
very close to the metallic periodic structure, they introduce surface charge waves
via the Smith-Purcell effect [132]. This, in turn, produces an EM wave generated
by Coulomb scattering at the boundaries of the structure, whose frequency is deter-
mined by the its period Lg. Since this EM wave also moves very close to the metallic
structure, its phase velocity vph is reduced in the z direction. The harmonics m of
the electric field of the EM wave depend on Lg and can be expressed in a Fourier
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series, which results in the corresponding phase velocity [109, 130]

vph = ω

km
= ω

k0 + 2πm/Lg
. (3.4)

Apparently, harmonics with m > 1 experience a reduced phase velocity, which facili-
tates the interaction of the electron beam with the EM wave. Due to its electric-field
components that are parallel to the path of the electrons, regions are formed in which
the electrons are accelerated or decelerated. This causes a modulation in the den-
sity of the electron beam, known as bunching. The distance between the electron
bunches is equal to the wavelength of the traveling EM wave. If the velocity of the
electrons ve is equal to the phase velocity of the EM wave, a synchronized state
occurs and no energy transfer takes place between the electron beam and the EM
wave. However, if the speed of the electrons is kept slightly higher than vph of the
wave, the electrons will always be slightly decelerated by the components of the EM
electric field that are parallel to their path, thus exchanging energy. This leads to
an amplification of the propagating EM wave, which is decoupled by a waveguide.
The resulting wave possesses a group velocity that is opposed to the direction of its
phase velocity and is therefore called a backward wave [109, 128, 130, 133].

Now that the radiation sources have been outlined, the next section will examine
the details of the measurement methods.

3.4 Measurement Techniques

This section outlines the experimental methods used to access the optoelectronic
phenomena discussed in this thesis. First, the general setup for the different sources
is presented, followed by specific descriptions of the measurement techniques, includ-
ing photoresistance, photovoltage, and transmittance.

3.4.1 Experimental Setup

During the experiments, the sample was placed in a variable temperature insert
(VTI) inside an Oxford Spectromag optical cryostat, accessible through optical win-
dows made of z-cut quartz. The latter were covered with a polyethylene foil to avoid
room light excitation, but at the same time allowing the to irradiate the sample with
polarized THz radiation. A homogeneous magnetic field up to ±7 T was applied
to the sample by a pair of superconducting solenoids. The achievable temperature
range in the VTI lies between 1.8 and 300 K. For all measurements the THz beam
was oriented perpendicular to the sample surface and parallel to the magnetic field
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Source f (THz) λ (µm) ~ω (meV) dFWHM (mm) I (W/cm2)
IMPATT 0.290 1034 1.20 5.9 0.03
IMPATT 0.297 1010 1.23 5.8 0.04
BWO 0.324 926 1.33 4.6 0.003
BWO 0.350 857 1.45 4.5 0.003

FIR laser 0.69 432 2.85 3.0 0.29
FIR laser 1.63 184 6.73 1.8 1.96
FIR laser 2.54 118 10.5 1.5 2.26

Table 1: The main parameters of the THz sources, including frequency f , corre-
sponding wavelength λ, energy ~ω, beam diameter at FWHM dFWHM measured in
the focal plane, and radiation intensity I.

in the so-called Faraday geometry. Figure 3.4 shows a schematic view of the laser
(marked by a red dashed frame) and the IMPATT diode setup (marked by a cyan
dashed frame). The generated THz radiation exiting the FIR laser cavity is colli-
mated by a polymethylpentene (TPX) lens. The radiation then passes through a
tilted mylar foil, resulting in a reflected beam and a transmitted beam. The for-
mer is guided and closely focused by a gold-coated off-axis parabolic mirror onto a
pyroelectric reference detector. This detector feeds the CO2 stabilizer, which con-
trols the piezo-adjustable mirror inside the CO2 resonator, stabilizing the FIR laser
output via an internal phase-lock loop. The part of the beam passing through the
mylar foil is modulated by a reflective opto-mechanical chopper. A fraction of the
beam is reflected and then focused by a TPX lens onto a pyroelectric reference de-
tector, which is used to monitor the laser power during measurements. The beam
transmitted by the chopper traverses a number of auxiliary optical elements that
are installed in the optical path depending on the type of measurement. To vary
the beam power, two wire grid polarizers are used in a cross-polarizer configuration.
In this configuration, the first polarizer can rotate freely to change the polarization
and power of the initial beam. The second polarizer, however, remains fixed; thus,
the radiation power is controlled and an unchanged output polarization is ensured
for the whole power range [134, 135]. The polarization state itself is manipulated
by rotating λ/2 and λ/4 waveplates made of x-cut quartz. The former changes the
plane of the linear polarization component, while the latter affects the circular polar-
ization contribution. After passing through the optical elements, the radiation was
guided by gold-coated flat mirrors and then focused onto the mounted sample by an
off-axis parabolic mirror. In addition, radiation transmitted through the sample can
exit the cryostat through the rear windows and reach another pyroelectric detector
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directed by off-axis parabolic mirrors.

The radiation generated by the IMPATT diode is coupled into a linear or circular
waveguide polarizer 8, which changes the polarization state as desired. The beam
is then decoupled by a rectangular or conical horn antenna, depending on the po-
larization state used. A polytetrafluoroethylene (PTFE) lens collimates the beam,
which is then directed by mirrors to the sample and transmittance detector using
the same optical path as the laser. Modulation is provided by an internal waveguide
modulator whose modulation frequency can be set by the lock-in amplifier. The
power level of the delivered radiation is varied by the internal power attenuator.

As mentioned above, the BWO system is installed at the technical university of
Vienna, and details of the actual setup can be found in Ref. [89]. However, it fol-
lows the same pattern as the IMPATT diode. The main difference is the control
of the polarization state. Here, a so-called polarization transformer is used, which
consists of a fixed polarizer mounted in parallel in front of a plane mirror. The po-
larization state can be adjusted by changing the distance between the two [12, 89].
The power level of the sources was calibrated using a thermopile sensor (3A-P-THz
manufactured by Ophir Spiricon), which is calibrated for a spectral range of 0.3 to
10 THz. To record the intensity profile of the beam, a pyroelectric camera (PY-III-
HR manufactured by Ophir Spiricon) was mounted at the sample position outside
the cryostat. The camera has a spectral range of 0.1 to 300 THz and a pixel array
with a size of 12.8 × 12.8 mm2 with a resolution of 160 × 160 pixels. The analysis
of the profiles showed an almost Gaussian intensity distribution, see Fig. 3.5(a) as a
representative example measured at f = 0.69 THz. The spot diameters were deter-
mined as the full width half maximum (FWHM) of the recorded intensity profiles
and ranged from 1.5 to 5.8 mm depending on the radiation frequency. As a result,
the radiation intensities lie in the range of 0.05 to 3 W/cm2. Figure 3.5 shows ex-
amples of laser [f = 0.69 and 2.54 THz] and IMPATT diode [f = 0.297 THz] beam
spots. Table 1 shows a summary of the specific frequencies used in this work and
their corresponding parameters.

In order to resolve the radiation-induced response of the sample and possible changes
in the transmitted radiation, the signals were passed through coaxial cables with
standard BNC (Bayonet Neill Concelman) connectors and then filtered using stan-
dard lock-in amplifiers. Depending on the signal strength, an operational amplifier
with a gain of 100 is used in the setup. The cw THz beam is modulated either by an
opto-mechanical chopper (laser, BWO) or by an internal waveguide modulator (IM-

8In contrast to conventional waveplates used in optical setups, the polarization state here is
achieved by a geometric structure specially designed for the particular frequency band required.
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7 mm
10 mm10 mm

f = 0.69 THz f = 0.297 THz
f = 2.54 THz

(b)

FWHMf = 0.69 THz

(a)

Figure 3.5: (a) Three-dimensional view of the intensity profile of the laser beam
(f = 0.69 THz) recorded by a pyroelectric camera in the focal plane. The arrows
represent the beam diameter at FWHM. (b) Two-dimensional intensity distribution
of the beam spots at f = 0.69 and 2.54 THz (FIR laser) and f = 0.297 THz
(IMPATT diode). Figure adapted from Refs. [47, 48].

PATT) with a frequency between 20 and 150 Hz. The data were recorded and stored
by a LabVIEW instrument control script using the General Purpose Interface Bus
(GPIB) protocol for communication with external measurement equipment. Details
of the measurement techniques are described in the next section.

3.4.2 Photoresistance, Photovoltage, and Transmittance

The THz-induced changes in the samples were recorded via either the photoresis-
tance or photovoltage method. The latter was performed by directly probing the
desired contacts to obtain their potential difference generated in response to the
chopper-modulated radiation, which was read out by standard lock-in technique.
Importantly, this method does not require the application of any external bias to
the sample. In contrast, the photoresistance is obtained by using both the modu-
lated radiation and an additional ac bias Uac applied via a load resistor RL across
the sample in either a four- or two-terminal contact configuration. This is called the
double modulation technique [136–138]. Since the obtained photoresponse has to be
demodulated twice, two lock-in amplifiers are connected in series. This provides a
higher signal-to-noise ratio as compared to the photovoltage method.

Figure 3.6 shows the general measurement setup for photoresistance and transmit-
tance [panel (a)] using a van der Pauw (vdP) configuration as an example, accom-
panied by a schematic illustration of the double-modulation technique [panel (b)].
Typically, the modulation frequency of the ac bias (fac = 5 to 12 Hz) lies well below
the modulation frequency of the radiation (fchop = 130 to 500 Hz). The optical re-
sponse delivered by the sample is fed into the first lock-in amplifier phase-locked to
fchop, whose time constant is set to 10 ms (cutoff frequency at ≈ 16 Hz). As a result,
the filtered total photosignal comprises a component proportional to the photovolt-
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Figure 3.6: (a) Typical measurement configuration demonstrated for a sample in
van der Pauw geometry. The sample is exposed to a magnetic field and illuminated
by left-handed (σ−) circularly polarized THz radiation. The transmitted radiation
is recorded by the pyroelectric detector placed behind the sample. (b) Sketch of
the double modulation technique with two lock-in amplifiers connected in series.
The first receives the signal from the sample phase-locked to fchop (modulation of
the radiation, e.g., by an opto-mechanical chopper) and feeds the second, which
modulates the current flowing through the sample with fac. Panel (a) is adapted
from Refs. [47, 48].

age generated in the sample and a contribution alternating with fac proportional to
the intended photoresistance. This total photosignal then enters the second ampli-
fier (usually set to a time constant of 300 ms), which demodulates at fac and thus
yields the desired photoresistance signal Vpr. Since the x channel is used to provide
the signal filtered by the first lock-in amplifier, its sensitivity settings have to be
taken into account. Finally, the measured signal is related to the photoresistance as

∆R = 1
10
S1VprRL

|Uac|
, (3.5)

where S1 is the applied sensitivity setting of the first lock-in amplifier. Equation (3.5)
assumes that the x channel of the first lock-in amplifier provides the majority of the
induced photosignal. In this case, the photoresistance is the difference between the
resistance of the sample measured with and without THz illumination. Note that
it is also possible to invert this technique by first feeding the lock-in amplifier that
provides the ac current and then connecting the second lock-in that is phase-locked
to the radiation modulation, see, e.g., Ref. [89]. The modulation frequencies have to
be adjusted accordingly.

Furthermore, the setup is prepared to measure the radiation transmitted by the
sample simultaneously with the photovoltage or photoresistance. As mentioned in
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Sec. 3.4.1, this is achieved by directing the radiation onto a low-noise pyroelectric
detector using a lock-in amplifier phase locked to fchop.

In the following, the fabrication processes of the investigated samples and their
transport characteristics are outlined.
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4 Samples

This chapter is dedicated to the description of the investigated samples. In the first
part, GaAs and HgTe-based QWs are discussed, focusing on their fabrication process
and transport characteristics. In this context, differences in the technological design
of the samples, namely GaAs #A, #B, and #C, are highlighted. The graphene
samples studied are then reviewed in a similar manner.

4.1 Gallium Arsenide andMercury Telluride QuantumWells

In this thesis, several 2DES are studied, among them AlGaAs/GaAs, including GaAs
#A and #B with a QW thickness dQW of 10 nm, and GaAs #C with dQW = 16 nm.
In addition, HgCdTe/HgTe QWs are investigated, namely HgTe #A and #B with
QW thicknesses of 8.1 (inverted band order) and 5.7 nm (regular band order). Both
types of heterostructures were fabricated in vdP geometry.

Figure 4.1 shows the cross section of GaAs #A and #B [panels (a, b)] as well as
GaAs #C [panel (c)]. All three AlGaAs/GaAs QWs heterostructures were grown on
(001)-oriented GaAs substrates (thickness of 350 µm) by molecular beam epitaxy
(MBE). For GaAs #A and #B, a 100 nm thick buffer layer was first deposited on
the substrate, followed by an AlGaAs/GaAs superlattice containing 100 alternating
periods of 7 nm AlGaAs and 3 nm GaAs to reduce the influence of impurities on the
active layer. GaAs QWs with thicknesses of 10 nm were then grown on the prepared
wafers, sandwiched between 85 nm (100 nm) AlGaAs layers on the bottom side and
30 nm (45 nm) AlGaAs on the top side for GaAs #A (GaAs #B). The aluminum
content in the AlGaAs layers was 32 %. Finally, a GaAs coating was deposited
on the heterostructures to avoid oxidation processes. In addition, silicon (Si)-delta
dopants were introduced on both sides at 10 nm (GaAs #A) and 25 nm (GaAs #B)
symmetrically around the QWs. The dopant concentration was also chosen to be
symmetrical [139]. The overall growth temperature was 570 °C. However, to avoid
segregation of the Si-delta dopants, the temperature was lowered to 500 °C, while
the buffer layer was deposited at 620 °C.

The GaAs #C was grown on a 1 µm thick buffer layer deposited on the 350 µm
thick GaAs substrate followed by 30 nm of AlGaAs. In contrast to GaAs #A and
#B, the 16 nm thick QW in GaAs #C was covered from both sides by AlAs/GaAs
superlattice barriers selectively doped with Si-delta dopants. The detailed layer
thicknesses and locations of the Si-delta dopants are shown in Fig. 4.1(b).

The HgCdTe/HgTe heterostructures were also grown by MBE on GaAs substrates.
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Figure 4.1: Cross sections of the investigated QW samples. (a) Composition of
AlGaAs/GaAs QWs (GaAs #A and #B). The numbers in parentheses indicate
the corresponding layer thicknesses. The samples differ in the thicknesses of the
AlGaAs layers surrounding the QW denoted by (d#A/d#B). The red dashed lines
represent the Si-delta doped layers. (b) Structure of the AlAs/GaAs QW (GaAs
#C) fabricated with AlAs/GaAs superlattice barriers. (c) Cross section of the
HgCdTe/HgTe QW with different QW thicknesses dQW = 8.1 nm (HgTe #A) and
dQW = 5.7 nm (HgTe #B). Figures adapted from Refs. [47, 89] and supplemental
material therein.

The latter was (013)-oriented and prepared by chemical etching and thermal anneal-
ing in arsenide flux. First, a 5 nm zinc telluride layer was deposited on the substrate,
followed by a 6 µm CdTe layer to avoid strain-related effects due to lattice mismatch.
Subsequently, 5.7 nm (HgTe #A) and 8.1 nm (HgTe #B) HgTe QWs were grown
encapsulated by Hg0.4Cd0.6Te of 30 nm thickness from each side. These QWs possess
normal (5.7 nm) and inverted (8.1 nm) band orders, see Sec. 2.1.2. A 40 nm thick
layer of CdTe was deposited on top as a cap layer [140, 141]. During the growth
procedure the temperature was kept between 180 and 190 °C. The cross section of
the heterostructure with corresponding layer thicknesses is presented in Fig. 4.1.

The fabricated heterostructure wafers of GaAs and HgTe were cut into 10× 10 mm2

and 7 × 7 mm2 square samples, respectively, and provided with ohmic contacts at
the corners. These sizes exceed the FWHM diameters of the THz beam spots and
thus exclude the contribution of edges and contacts to the photoresponse. Fig-
ure 3.5(b) shows the recorded intensity distribution of the beam spots for f = 0.69
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Figure 4.2: Representative traces for the longitudinal Rxx (black) and Hall Rxy
resistances (red) of the QW samples measured at T = 2 K showing pronounced
SdHO and Hall plateaus. (a) Magnetoresistance curves for GaAs #A. The inset
shows the change in Hall resistance and carrier density as a function of time t during
room light illumination. The black dashed line in the inset indicates the point in
time at which the sample was started to be exposed to ambient light. (b, c) Traces
for HgTe #A [panel (b)] and #B [panel (c)]. The latter was illuminated prior to the
measurements. Figure adapted from Ref. [47] and supplemental material therein.

and 0.297 THz within a 10 × 10 mm2 area representing the GaAs samples and the
spot for f = 2.54 THz place in a 7 × 7 mm2 area (HgTe samples). Thereafter, the
samples were glued to carriers and attached to the sample probe. These carriers
allowed to record the transmitted radiation by implementing apertures larger than
the beam diameters. Soldered gold wires served as connections between the sample
contacts and the socket pins of the carrier.

Figures 4.2(a) to (c) show typical magnetotransport traces of the GaAs- and HgTe-
based QWs obtained at T = 2 K. The longitudinal resistance Rxx is dominated by
pronounced SdHO starting at fields below 2 T, while the corresponding Rxy com-
ponent exhibits well-defined plateaus. In addition, the QW structures were in some
cases illuminated by ambient light prior to the measurements, leading to a substan-
tial increase in carrier density. The inset in Fig. 4.2(a) shows the temporal evolution
of the Hall resistance and the corresponding carrier density for GaAs #A during
the exposure to ambient light. After the polyethylene cover was removed from the
cryostat windows, the Hall resistance decreased significantly due to the persistent
photoconductivity effect [3, 52, 142–146]. When the sample is exposed to ambient
light, electrons from so-called DX centers – deep donor impurities with comparably
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Sample QW thickness Lateral size ne µ τp
(nm) (mm2) 1011 (cm−2) 104 (cm2/Vs) (ps)

GaAs #A 10 10× 10 6.8 [12] 37 [66] 13 [24]
GaAs #B 10 10× 10 6.7 [12] 20 [43] 7 [15]
GaAs #C 16 10× 10 6.9 100 36
HgTe #A 8.1 7× 7 3.6 1.8 0.3
HgTe #B 5.7 7× 7 1.3 0.9 0.13

Table 2: Summary of the main parameters for the GaAs- and HgTe-based QW
samples, namely GaAs #A to #C as well as HgTe #A and #B. The first two
columns show the QW thicknesses and the corresponding lateral dimensions (length
× width) of the square vdP samples. The data for carrier density ne, mobility µ and
momentum relaxation time τp were extracted from magnetotransport data obtained
at T = 1.8 K. The parameters for GaAs QWs in square brackets were obtained after
brief exposure to ambient light.

high energy barriers – are ionized, resulting in an increase of the density of mo-
bile conduction carriers [52, 146]. These contribute to the conductivity of the QW,
resulting in lower resistance. If the sample is kept in the dark, this state relaxes
very slowly (the electrons are slowly trapped again) and lasts for a few hours below
T = 150 K. Above this temperature, the DX centers are thermally ionized and a
subsequent cooldown returns the sample to its previous state before illumination.
It is worth noting that GaAs #C showed no significant changes in transport prop-
erties such as resistance, carrier density, and mobility, which are attributed to its
different fabrication process. The main parameters for all samples obtained from
magnetotransport measurements are presented in Tab. 2.

4.2 Encapsulated Monolayer Graphene

Besides the GaAs- and HgTe-based QWs presented in the last section, several mono-
layer graphene samples with different fabrication techniques are investigated. Details
on the specific fabrication techniques for MLG #A, #B, and #C can be found in
Refs. [47], [45], and [46], respectively, as well as in the corresponding supplemental
material.

The encapsulated monolayer graphene samples used in this work were prepared by a
hot-release method described in Ref. [147]. First, the graphene flakes were mechan-
ically exfoliated from a high-purity pyrolytic graphite crystal using the scotch-tape
technique [27]. Layers of hexagonal boron nitride (hBN) were used to encapsulate
the graphene flake and protect it from adsorbates such as H2O. The crystals were
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Figure 4.3: (a) Cross section of the graphene structures with a SiO2 (MLG #A and
#B) or graphite (MLG #C) backgate. (b) Microphotograph of a MLG #B with
special contacts protruding into the Hall channel. (c) Microphotograph of MLG
#C equipped with conventional contacts. The graphene area is indicated by the
dashed rectangle. Figures adapted from Refs. [45–47] and supplemental material
therein.

stacked using a micromanipulator with a dome-shaped stamp from a polycarbonate
film on polydimethylsiloxane. The resulting hBN/MLG/hBN van der Waals struc-
ture was picked up and stacked either on a prepared multilayer graphite backgate
electrode (MLG #C) or on a conventional p++-doped Si/SiO2 silicon wafer with
285 nm SiO2 thickness (MLG #A and #B). Electron beam lithography was then
applied to the structure to form the contact regions in preparation for the Hall-bar
configuration. The areas of the top hBN unprotected by the lithographic resist were
removed by reactive ion etching with oxygen and sulfur hexafluoride gases. The
resulting trenches were used to deposit gold and chromium electrical contacts with a
typical total thickness of up to 100 nm by thermal evaporation in high vacuum. For
MLG #B, an additional gold top gate etch mask was used to process the special con-
tact geometry. Figure 4.3(a) shows a schematic cross section and Figs. 4.3(b) and (c)
present microphotographs of MLG #B and #C, respectively. The dimensions of the
structures are given in Tab. 3. The fabricated samples were mounted on a ceramic
carrier using conductive silver paste to optionally attach the silicon backgate. The
contact pads were connected with gold wires using a solderless bonding technique.
Finally, the prepared samples were attached to a sample probe. Figure 4.4 presents
transport and magnetotransport for MLG #B, representing a typical behavior of
high-quality graphene samples. Clear resistance maxima are observed for all sam-
ples studied when the backgate voltage UBG and thus the carrier density ne were
tuned. The dependence of the longitudinal resistance Rxx on ne obtained at zero
magnetic field is shown in Fig. 4.4(a). Due to the injection of carriers, an electric
field is established between the Si wafer and the graphene flake, resulting in a carrier
density ne proportional to the effective gate voltage.

Since the tuning of the back gate voltage consequently controls the level of the
Fermi energy via εF = ~vF

√
πne, the resistance maxima are clearly attributed to

the charge neutrality point (CNP), i.e., the Dirac point in the energy dispersion
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Sample Size length hBN top ne µ τp
[width] (µm) [bottom] (nm) 1011 (cm−2) 104 (cm2/Vs) (ps)

MLG #A 24 [5] 32 [40] 21 24 4.5
MLG #B 32 [8] 48 [53] 39 30 8
MLG #C 11.5 [12] 18 [25] 27.5 30 5.8

Table 3: Summary of the main parameters for monolayer graphene sample MLG #A
to #C. The dimensions of the graphene flakes and the thicknesses of the encapsu-
lating hBN layers are given in the first two columns. Carrier density ne, mobility µ,
and momentum relaxation time τp were obtained from standard magnetotransport
data at T = 1.8 K and the highest possible backgate voltage for each structure.

of graphene. This point represents the carrier type transition and the electron-like
states are located to the right of the resistance maximum and the hole-like states
to the left. Note that there may be a slight shift of the CNP and thus of the
resistance maxima with respect to the applied gate voltage, revealing a low residual
doping of the graphene structure. In addition, a minimal hysteresis was observed by
comparing measurements with opposite gate sweep directions. To avoid any shifts,
the experiments were always performed with the same sweep direction.

Exploiting the standard Drude model relation Rxx = L/(eneµW ), where L and W
represent the length and width of the measurement channel, yields the mobility µ, the
momentum relaxation time τp as well as the mean free path lmfp of the samples. The
main parameters for MLG #A to #C are given in Tab. 3. As an example, Figs. 4.4(a,
b) show the dependencies of µ, τp, and lmfp on the carrier density for MLG #B. Note
that the momentum relaxation time and the mean free path are almost independent
of ne. Furthermore, the mean free path lmfp ≈ 8 µm resembles the width of the
device, thus demonstrating ballistic electron transport at B = 0 mainly driven by
scattering at the edges of the graphene channel. This behavior is further supported
by the magnetoresistance Rxx(B) shown in Fig. 4.4(c). Here, a strong decrease
in resistance is observed as the magnetic field is increased, resulting in a negative
differential magnetoresistance at |B| < 1 T. Such behavior can be understood in
terms of skipping orbits formed by the magnetic field [148, 149]. The radius of these
cyclotron orbits becomes smaller with increasing B, eventually reaching a diffusive
transport regime characterized by cyclotron orbits smaller than the width of the
device. In this regime, the transport properties are not affected by backscattering
at the edges. The red trace in Fig. 4.4(c) shows the corresponding Hall resistance
Rxy. A very similar transport and magnetotransport behavior was also observed in
MLG #A and #C, see Refs. [46, 47] and supplemental material therein. However, in
MLG #C the negative differential magnetoresistance was less pronounced because
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Figure 4.4: Transport and magnetotransport in MLG #B measured at T = 4.2 K.
(a) Longitudinal resistance (black trace) and mobility (blue circles) as a function
of the carrier density ne. (b) Dependence of the momentum relaxation time τp and
the corresponding mean free path lmfp on ne. The red dashed line indicates the
width of the device channel, see Fig. 4.3(b). (c) Corresponding longitudinal Rxx
and Hall resistance Rxy. Figure adapted from Ref. [45] and supplemental material
therein.

the momentum relaxation time was shorter. These results clearly demonstrate the
diffusive nature of the dc transport in the magnetic field range relevant for the studied
effects and further confirm the excellent quality of the investigated structures.

A further evidence for the transition to the diffusive transport regime was observed
by examining the transport properties of MLG #B, see Fig. 4.5(a). At T > 15 K,
the SdHO are superimposed by less frequent phonon-induced resistance oscillations
(PIRO), previously known from studies on GaAs-based QWs [13, 150, 151] and re-
cently observed in high quality graphene samples [152]. This phenomenon is governed
by the ratio of the acoustic phonon energy εphonon = 2~kFvs (where vs denotes the
speed of sound) and the cyclotron energy ~ωc. The former is required to back-scatter
an electron at the Fermi surface via inelastic scattering events by low-energy acoustic
phonons. This process leads to resonant inter-LL transitions and the resistance is
resonantly enhanced at

p = 2~kFvs

~ωc
= hvsne
eBvF

(4.1)

in graphene structures. The participating acoustic phonons require sufficiently high
temperatures, in contrast to the SdHO, which are thermally suppressed at T ≈ 25 K
at relevant magnetic fields. This fact is reflected in a non-monotonic behavior of
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Figure 4.5: (a) Longitudinal resistance illustrating the evolution of PIRO and SdHO
with temperature up to T = 100 K. While the SdHO are strongly suppressed, PIRO
grow significantly with temperature. The maxima of the latter are marked with
p = 1, 2 and 3 . The inset shows the magnetic field values of the PIRO maxima Bmax
at p = 1 (blue squares), p = 2 (green circles), and p = 3 (purple triangles) plotted
against ne. The corresponding colored solid lines are fits according to Eq. (4.1)
with vF = 1.06 × 106 m/s and vs = 1.36 × 104 m/s. (b) Longitudinal resistance
R

(d)
xx = (dVx/dIx)Ix=Idc at T = 50 K under the influence of a strong dc bias.

The traces are shown for different values of the injected current Idc and are shifted
vertically for clarity. The data in both panels were obtained for ne = 3.9×1012 cm−2

in MLG #B. Figure adapted from Ref. [45] and supplemental material therein.

PIRO, see Fig. 4.5(a). They emerge at T > 15 K, become well pronounced at about
50 K, and then decrease due to strong LL smearing [152]. However, there first period
appears well above 100 K. In addition, the inset in Fig. 4.5(a) displays the magnetic
field values Bmax of the first three PIRO maxima (p = 1, 2, and 3) as a function of
the carrier density. The extracted points can be well fitted by Eq. (4.1) using the
values vF = 1.06× 106 m/s and vs = 1.36× 104 m/s for Fermi and sound velocities,
respectively, typical for high quality graphene structures [152].

In addition, Fig. 4.5(b) reveals a modification of PIRO at T = 50 K by applying a
dc current Idc up to 100 µA. By increasing Idc, the maxima (minima) of PIRO are
suppressed and eventually become minima (maxima). This behavior was previously
observed in GaAs-based QWs [153] and is attributed to a LL tilt in the Hall field
induced by the application of the dc current [154]. Pure PIRO without the use of a
dc Hall field are governed by a well-defined spatial shift of the cyclotron orbit equal
to 2Rc facilitated by backscattering on phonons. However, the introduction of the dc
Hall field changes the electrostatic energy of the back-scattered electrons, leading to
a modification of the resonance conditions of the inter-LL transitions, see Ref. [13]
for further details.
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5 Cyclotron Resonance in Two-Dimensional Elec-
tron Systems

Before presenting our main results, this chapter examines the conventional behavior
of transmittance and photoresistance under the condition of CR in high-mobility
2DES at low T . Basic methods and mechanisms related to CR are outlined, thus
serving as an introduction to the non-trivial CR-coupled phenomena discussed in
subsequent chapters. It is shown that CR is indeed present in graphene and GaAs
QWs. Furthermore, the differences between the parabolic and the linear energy
dispersion relation are highlighted, where in the latter case the position of the CR
depends on the effective carrier mass. The shapes of the transmittance and photore-
sistance are further analyzed. At high temperatures they follow the conventional
Drude model within the picture of a uniform isotropic 2DES illuminated by a uni-
form circularly polarized wave. In addition, at low temperatures, where quantum
corrections become important, the photoresistance is strongly affected by the emer-
gence of SdHO-related oscillations. In this context, the importance of the electron
gas heating induced by the THz radiation, which is the main origin of the observed
signal in the photoresistance, is discussed.

5.1 Experimental Results

Starting with the conventional GaAs-based QW sample (GaAs #A), Fig. 5.1(a)
shows a contour plot of the transmittance T (B) as a function of temperature in the
range from T = 1.8 to 15.2 K. The traces were obtained as a response to left-handed
(σ−) circularly polarized radiation of frequency f = 0.297 THz using the highest
possible power of the IMPATT-diode system. The QW was kept in the dark, i.e.,
no prior ambient light illumination was used for this series of measurements, see
Sec. 4.1 for details. To allow a straightforward comparison of signal shape and
amplitude, the transmittance curves were normalized to their zero magnetic field
values T (B = 0). Note that the focus of this chapter lies on the CR condition only,
and therefore the description and analysis of the data are limited to the positive
magnetic field polarity. The contour plot reveals a clear feature in the transmittance
at B ≈ 0.79 T, see also the red trace in Fig. 5.1(c). This strong and wide dip reveals
the emergence of the CR and is caused by resonant reflection and absorption of the
incoming THz radiation. This behavior is well described by the conventional Drude
model, as will be discussed below. Apart from the changes of the transmittance
shape in the vicinity of the CR with temperature [see Fig. B.1 in App. B], which will



5.1 Experimental Results 55

0 . 5 1 . 50 1

0

2

4

2 3 4 50 1
0
1
2
3
4
5
6
7
8

2 3 4 50 1
0

1

2

3

0
1
2
3

20 10
2
4

Ph
oto

res
ista

nce
, ∆

R xx
 /∆

R m
ax

xx

M a g n e t i c  f i e l d ,  B  ( T )

( b )
T  =  1 5 . 2  K

1 1 . 8  K
7 . 7  K
4 . 2  K
1 . 8  K

5
1 0
1 5

T (
K)

( a )

0 . 3 0
0 . 6 0
0 . 9 0
1 . 2

f  =  0 . 2 9 7  T H z G a A s  # A ,  �  -

/
(B = 0)

Ph
oto

res
ista

nce
, ∆

R xx
 /∆

R m
ax

xx
M a g n e t i c  f i e l d ,  B  ( T )

( d ) f  =  0 . 2 9 7  T H z

0 . 6 9

1 . 6 3
/

(B 
= 0

) ( c )
C R
f  =  0 . 2 9 7  T H z

0 . 6 9
1 . 6 3

T  =  1 . 8  K

�
 P CR

 (Τ
)

f  ( T H z )

Figure 5.1: (a) Transmittance T (B) normalized to its value at zero field T (B = 0)
measured as a response to a frequency of f = 0.297 THz. The data are displayed as
a color map for a temperature range from T = 1.8 to 15.2 K. (b) Photoresistance
traces ∆Rxx normalized to its maximum value ∆Rmax

xx plotted for several temper-
atures measured simultaneously with the transmittance. (c, d) Normalized trans-
mittance T (B)/T (B = 0) and corresponding photoresistance curves ∆Rxx/∆Rmax

xx

for different THz frequencies, f = 0.297, 0.69 and 1.63 THz, labeled in the corre-
sponding color. The vertical arrows mark the positions of the CR, termed BP

CR,
which are shown in the inset as a function of radiation frequency. The dashed
line represents a fit according to BP

CR = 2πfm∗/e with m∗ = 0.074m0. All mea-
surements were performed in GaAs #A with left-handed (σ−) circularly polarized
radiation. The dashed horizontal lines in panels (b, d) indicate the individual zero
value for each curve, while the shaded areas in panels (b – d) highlight the vicinity
of CR. The traces are shifted by a constant value for clarity. Figure adapted and
modified from Refs. [47, 48] and supplemental material therein.

also be discussed in Sec. 5.2, the magnetic field position of the dip remained almost
unchanged over the whole temperature range studied.

The simultaneously recorded temperature dependence of the corresponding photore-
sistance ∆Rxx is presented in Fig. 5.1(b). For illustration purposes, the photoresis-
tance traces are normalized to their maximum value, denoted as ∆Rmax

xx . At the
highest temperature (T = 15.2 K) the photoresistance shows a clear enhancement
near the position of the CR dip detected in the transmittance. As discussed be-
low in Sec. 5.2, this behavior is attributed to resonant electron gas heating under
CR-enhanced absorption, leading to a heating-induced reduction in electron mo-
bility and hence to a positive photoresistance ∆Rxx. The slight shift between the
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CR dip minimum and the photoresistance maximum is produced by variations of
the Fabry-Pérot interference pattern in the substrate, see Sec. 5.2. Decreasing the
sample temperature yields a gradually increasing oscillatory behavior, resulting in
a strong modification of the photoresistance. At T = 1.8 K, the oscillations in-
duce a B-dependent sign change, leading to an alternating photoresistance around
∆Rxx = 0, where its envelope follows the CR-enhanced response. The photoresis-
tance oscillations are confirmed to be 1/B-periodic [see Fig. A.1 in App. A, where
both helicities are shown for f = 0.297 THz] possessing the periodicity of SdHO.

This is due to the fact that the periodicity is determined by the carrier density,
which is found to be fully consistent with the characterization by conventional mag-
netotransport measurements. Indeed, Fig. A.2 in App. A presents the dependence of
the filling factor as a function of the inverse magnetic field position, demonstrating
that the observed photoresistance oscillations are related to the SdHO visible in the
dark magnetoresistance. Note that as illustrated in Fig. A.1, the period remains
unchanged over the entire temperature range studied. This conventional behavior
of the CR in transmittance and photoresistance was also observed in the GaAs #B
sample with similar transport parameters and additionally in a HgTe-based QW.
Both are discussed in more detail in Chap. 8.

As discussed in Sec. 2.2, a fundamental property of the CR is that its magnetic field
position should scale linearly with the applied radiation frequency. To demonstrate
this, the transmittance and the corresponding photoresistance were measured for
different frequencies from different sources, see Figs. 5.1(c, d). Indeed, both the
transmittance and the associated CR-enhanced photoresistance clearly show a shift
of the CR towards higher magnetic fields as the applied radiation frequency is in-
creased. The position of the CR is highlighted by shaded areas with the same color
as the corresponding traces. Extracting the positions of the CR, BP

CR, and plot-
ting them as a function of the radiation frequency, see inset in Fig. 5.1(d), proves
a clear linear-in-f behavior following accurately BP

CR = 2πfm∗/e [Eq. (2.34)] with
m∗ = 0.074m0 (dashed line). Since for higher frequencies CR appears at higher mag-
netic fields, the period of the enhanced SdHO-periodic oscillations becomes longer
and the shape of the envelope gets more distorted, see in particular the blue pho-
toresistance trace recorded at f = 1.63 THz.

The data presented so far have been obtained in a GaAs QW, a conventional 2DES
with a parabolic energy dispersion relation. Another 2DES under study is graphene,
which in contrast exhibits a linear energy dispersion resulting in a different LL spec-
trum. Since the graphene devices used in this work are about four orders of magni-
tude smaller than the beam spot of the THz radiation, conventional transmittance
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Figure 5.2: (a) Photoresistance ∆Rxx of MLG #A normalized to its maximum
value ∆Rmax

xx as a function of the magnetic field. The traces were obtained for
different temperatures, T = 4.2, 30 and 60 K and a fixed carrier density ne =
2.1×1012 cm−2. The CR position is labeled as an example for the high-temperature
trace. (b) Normalized photoresistance traces measured for a fixed temperature
(T = 4.2 K) but continuously increasing carrier densities in the range ne = (0.7−
2.1) × 1012 cm−2. The inset shows the magnetic field position BL

CR of the CR as
a function of the Fermi wave number kF = √πne. The solid lines represent a fit
according to BL

CR = 2πf~kF/evF with vF = 1.08×106 m/s. All measurements were
taken at a frequency of f = 2.54 THz as a response to left-handed (σ−) circularly
polarized light and are shifted for clarity. The dashed horizontal lines indicate the
individual zero value for each curve. Figure adapted and modified from Ref. [47]
and supplemental material therein.

measurements in such structures are not feasible. Therefore, only photoresistance
data are presented below.

Figure 5.2(a) shows the photoresistance ∆Rxx recorded in sample MLG #A for
left-handed (σ−) circularly polarized radiation at a frequency of f = 2.54 THz.
As an example, traces are shown where the graphene sheet was kept at a carrier
density of ne = 2.1 × 1012 cm−2 by applying bias to the silicon back gate, for
details on samples see Sec. 4.2. As before, the photoresistance is normalized to its
maximum value ∆Rmax

xx for better comparison. The traces reveal a typical picture
of resonantly enhanced photoresistance, demonstrating that electron gas heating is
maximized at the position of the CR. At T = 60 K, see top trace in Fig. 5.2(a), ∆Rxx

exhibits a smooth and clear Lorentzian shape. When the sample is cooled to liquid
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helium temperature, the CR-enhanced photoresistance is modulated by the emerging
SdHO-periodic oscillations, see traces for T = 30 and 4.2 K, similar to the observed
photoresistance in the GaAs QW. This characteristic temperature dependence is
observed for the whole range of carrier densities, ne = (0.7 − 2.1) × 1012 cm−2. To
further support the statement that the increase in the photoresistance is indeed due
to the CR, the carrier density and hence the Fermi wave number were varied. The
dependence is shown in Fig. 5.2(b) using carrier densities in the aforementioned range
and a fixed temperature of T = 4.2 K, chosen to maximize the magnitude of the
photoresistance. Importantly, the data show a progressive shift of the CR position
towards higher magnetic fields with an increasing carrier density. To determine
the magnetic field positions of the CR BL

CR plotted in the inset of Fig. 5.2(b) as a
function of the Fermi wave number kF = √πne, the photoresistance were mapped
by a fit. The cyan dashed curve is an example of such a fit following the Lorentzian
shape calculated according to classical Drude theory, see Sec. 2.2, which reproduces
the envelope of the photoresistance. As expected, the CR position is governed by
a linear dependence on kF, as shown by the dashed line, which accurately follows
BL

CR = 2πf~kF/evF [Eq. (2.34)] using vF = 1.08× 106 m/s. In addition, it should be
noted that the amplitude of the CR-enhanced photoresistance decreases significantly
with increasing kF, which is not explicitly shown in Fig. 5.2. This behavior is due
to increased radiation screening at high carrier densities, see discussion below.

To briefly summarize, clear CR has been observed in GaAs QWs and in monolayer
graphene. Both has shown an increased photoresistance in the vicinity of the CR,
which in GaAs was complemented by a CR dip in the simultaneously measured
transmittance. While a single smooth peak was observed in the photoresistance
of both structures at the highest temperature, lowering the temperature gradually
revealed the emergence of strong SdHO-periodic oscillations superimposed on the
CR-enhancement. The observed CR exhibits a linear in f dependence and shows
a linear dependence on the Fermi wave number in graphene, reflecting the peculiar
non-parabolicity of the Dirac fermions.

5.2 Discussion

As mentioned in the last section, the results presented above can be well understood
in terms of the classical Drude model. In the following, the transmittance and
absorptance properties are discussed in terms of the local dynamic and static Drude
conductivity of an isotropic 2DES irradiated by a uniform circularly polarized wave.

In Sec. 2.2.1 the transmittance T (B) and the absorptance A(B) were derived in the
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Figure 5.3: (a) Normalized transmittance T (B)/T (B = 0) (red solid trace) obtained

in GaAs #A at T = 1.8 K for f = 0.297 THz and σ− helicity. The green dashed
curve shows the best fit according to Eq. (5.1) with η = +1, BP

CR = 0.79 T and
µ−1 = 0.027 T using β = (0.031 − i0.0015) T as the fitting parameter. The green
solid curve represents the calculated normalized absorptance according to Eq. (5.2)
with the determined values. The vertical arrows mark the position of the CR in the
transmittance and absorptance. Corresponding axes are indicated by the curved
arrows on the sides. (b) Normalized experimental (red solid) and theoretical (green
dashed) transmittance obtained in GaAs #A for f = 0.297 THz at T = 8 K and
the corresponding calculated absorptance (green solid). (c)Modeled transmittance
curves under strong reflection (<β � µ−1) or impurity scattering (<β � µ−1)
dominating in 2DES, as well as when both effects are comparable (<β ≈ µ−1).
Figure adapted and modified from Ref. [48].

Drude approximation for a sample subjected to a perpendicular magnetic field and
exposed to an EM wave with well-defined circular polarization directed normally to
the sample surface. According to these relations, they are given by [48, 89]

T (B) = |α|2
∣∣∣∣∣1− β

µ−1 + β − iBCR + iηB

∣∣∣∣∣
2

(5.1)

and

A(B) = Z0|αξ1|2ene/µ
|µ−1 + β − iBCR + iηB|2 . (5.2)

To briefly recapitulate, α = 2/(ξ1 + ξ2) and β = eneZ0/(1 + ξ2/ξ1) are introduced,
which are functions of the complex interference parameters describing the Fabry-
Pérot interference pattern attributed to multiple reflections in the substrate with
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refractive index nr (about 3.6 in GaAs). Specifically, they are denoted as ξ1,2 =
cosφ − in∓1

r sinφ with φ = nrkw = 2πwfnr/c, where w is the sample thickness.
Furthermore, η = ±1 describes the helicity of the incident wave, and Z0 = 1/ε0c ≈
377 Ω is the vacuum impedance.

Figure 5.3(a) presents the normalized transmittance T (B)/T (B = 0) (shown in red)
taken from Fig. 5.1(c), obtained in GaAs #A at temperature T = 1.8 K and fre-
quency f = 0.297 THz. The shape of the transmitted signal is accurately reproduced
according to Eq. (5.1), which is shown by the green dashed line. Here a fixed radia-
tion helicity (η = +1 for σ− configuration) was used, BP

CR = 0.79 T as the position
of the CR and the reciprocal mobility µ−1 = 0.027 T. The latter was obtained from
dark magnetotransport measurements in GaAs #A, see Sec. 4.1. The effective mass
was determined using the frequency dependence of BP

CR, which was accurately fitted
by BP

CR = 2πfm∗/e, yielding a value m∗ = 0.074m0, see inset in Fig. 5.1(d). The
complex parameter β = (0.031− i0.0015) T was used as the fitting parameter and is
remarkably close to the calculated value, β = (0.030− i0.0030) T, assuming a total
sample thickness of w = 351.2 µm. Knowing all the parameters for the transmit-
tance, one has full access to the shape of the absorptance via Eq. (5.2), shown as
a green solid line in Fig. 5.3(a). It can be seen that the magnetic field position of
the absorptance maximum corresponds to the CR minimum in the transmittance,
highlighted by the vertical arrows. The considered condition yields <β � =β, there-
fore, let us first address <β. The real part describes the strong metallic reflection
of the radiation from the 2DES (dynamic screening) in the vicinity of the CR and
contributes to the linewidth of the CR in addition to µ−1. For the trace obtained in
GaAs #A, see Fig. 5.3(a), the broadening due to impurity scattering is comparable
to that of the dynamic screening, i.e., <β ≈ µ−1. In Fig. 5.3(c) the transmittance
is plotted for three different regimes of <β with µ−1 remaining fixed. For reference,
the green dashed line corresponds to the transmittance in Fig. 5.3(a). It is evident
that increasing <β produces a wider CR, while decreasing its value yields a narrower
shape. Note that <β also contributes to the numerator in Eq. (5.1), so manipulating
<β also changes the depth of the CR, as seen in Fig. 5.3(c). Since, apart from the
electron density, β is strongly sensitive to the interference phase φ, the most conve-
nient way to change its value in the experiment is to vary the radiation frequency.
Figure 5.4(a) shows an example of such a variation of the interference pattern, where
the transmitted radiation of GaAs #A was measured by continuously varying the
frequency in the range from f = 0.220 to 0.375 THz. The data were kindly provided
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Figure 5.4: (a) Transmittance as a function of radiation frequency in the range f =
0.220 to 0.375 THz measured in GaAs #A with a BWO quasi-optical setup. The
green solid line represents a fit following Eqs. (2.42) and (2.44) in Sec. 2.2.1 using
the expression ση = e2ne/[m∗(τ−1 − i2πf + i2πηfc)] for the dynamic conductivity
at zero B-field [fc = eB/(2πm∗) = 0] and the parameters µ = 37 m2/Vs, ne =
6.65 × 1011 cm−2, nr = 3.58, and w = 351.2 µm. The red dashed line indicates
the position of the frequency used in Figs. 5.3(a, b). (b – e) Illustration of the
influence of a Fabry-Pérot pattern inside the sample substrate on the shape of
the CR in the transmittance visualized for different frequency positions of CR, fc.
The parameters w = 351.2 µm and nr = 3.58 were used for its modeling. The
frequency positions of CR are indicated by arrows in each panel. The constructive
and destructive interference conditions are denoted with arrows in panel (b) as
representative examples.

by our collaborators at the technical university of Vienna 9.

The pattern consists of pronounced long-ranged maxima and minima superimposed
by rapid oscillations. The latter are attributed to standing waves due to multiple
reflections from optical components – such as windows, polarizers, but also the de-
tector surface – and are modified by changes in the optical setup. The long-ranged
pattern, on the other hand, arises naturally from the multiple reflections from the
back and front interfaces of the substrate, resulting in a Fabry-Pérot interference in-
side the sample [12, 87, 88, 155]. This pattern can be accurately reproduced by using
the expression for the transmission amplitude [Eq. (2.42) in Sec. 2.2.1] and calculat-
ing the transmittance T = |t|2 with the relation for the dynamic conductivity given

9Measurements were performed by Maxim Savchenko and Alexey Shuvaev in the group of
Andrei Pimenov, https://www.ifp.tuwien.ac.at/spectroscopy (accessed January 1st, 2024).
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in terms of the radiation frequency f and cyclotron frequency fc = eB/(2πm∗) as
ση = e2ne/[m∗(τ−1− i2πf + i2πηfc)]. In this case the magnetic field is zero yielding
fc = 0. The result is displayed in Fig. 5.4(a) as the green solid trace. The remaining
parameters are given in the caption. To understand how this long-ranged pattern
affects the shape of the CR, the transmitted signal was modeled as a function of
radiation frequency and superimposed on the CR transmittance. Figures 5.4(b – e)
show the results for several frequency positions of CR, fc, i.e., different B-field val-
ues, namely constructive (c) and destructive (e) interference, as well as positions in
between (b, d). In the regime of constructive (sinφ = 0, cosφ = 1) and destructive
(sinφ = 1, cosφ = 0) interference, β becomes real, i.e., =β = 0, and the trans-
mittance takes a symmetric form according to Eq. (5.1). This is clearly seen from
the transmittance traces in Fig. 5.1(b) measured at different frequencies on GaAs
#A. At f = 0.297 THz, the partial waves destructively overlap inside the substrate,
resulting in a narrow shape of the CR. In contrast, at f = 0.69 THz, the interference
is constructive, producing a wide CR shape. This difference in CR shapes is due
to the fact that βconstr. � βdestr.. Under the condition of constructive interference,
corresponding to Fig. 5.4(c), only a small fraction of the incident radiation is ab-
sorbed by the 2DES in the vicinity of the CR due to βconstr. � µ−1, while width of
the dip in transmittance is mostly caused by strong resonant reflection [17, 74, 75,
89, 156, 157]. Note that as addressed in Sec. 2.2.1, β is related to Γ [17, 74, 75] as
Γ = β/BP

CR, considering constructive interference.

For an arbitrary interference phase φ, β remains a complex parameter and the shape
becomes asymmetric. As an example, this condition is shown in Fig. 5.3(b) for GaAs
#A, f = 0.297 THz and T = 8 K. Here the transmittance (red solid) possesses a
strongly asymmetric shape with a higher shoulder at B > BP

CR. Looking at the
corresponding absorptance (green solid), calculated from the parameters provided
by the fit of the transmittance (green dashed), it can be seen that its maximum
is significantly shifted from the CR position determined by the transmittance dip.
This is a consequence of the non-vanishing imaginary part of β (=β = −0.02 T),
which leads to BP

CR → BP
CR +=β in the absorptance. Unlike T (B), the shape of the

absorptance remains a symmetrical Lorentzian for all values of β.

Interestingly, although Figs. 5.3(a) and 5.3(b) show transmittance curves obtained
for the same frequency and sample by varying only its temperature (from T = 1.8 to
8 K), the transmittance shape has changed considerably. Since a very small change of
=β influences the transmittance shape, even small variations of the standing wave
pattern can significantly affect the transmittance. For example, the jump in the
permittivity of the helium surrounding the sample caused by the transition between
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liquid and gaseous phases [158, 159] may significantly alter the transmittance.

Absorption of the THz radiation leads to heating of the electron gas, which changes
the transport properties and results in a non-zero photoresistance, see Sec. 2.3. For
sufficiently small radiation intensities, such a bolometric photoresistance is given by

∆R = ∂R

∂µ

∂µ

∂Te
(Te − T ) (5.3)

with the electron Te and lattice T temperatures. At sufficiently high tempera-
tures, where quantum corrections are negligible, the longitudinal resistance does
not depend on the magnetic field and simply follows the classical Drude expression,
R0 = g/(eneµ), with a geometrical factor, g, to account for the type of measure-
ments. Evaluating Eq. (5.3) under this condition, the B-dependence of the linear
photoresistance is described by the µ-photoconductivity according to Eq. (5.2), i.e.,
∆R ∝ −I(∂µ/∂Te)A(B); thus reproducing its Lorentzian shape, see the modeled
orange trace in Fig. 5.5(c) and the green curve in Figs. 5.3(a, b). In Eq. (5.2), the
energy losses given in the energy balance equation, see Eq. (2.50) in Sec. 2.3, are as-
sumed to scale linearly with the temperature difference, resulting in Te−T ∝ IA(B).
Such a bolometric photoresistance is consistent with our observations, see Figs 5.1(b)
and 5.2(a), which clearly demonstrate a Lorentzian shape in the photoresistance data
at high temperatures for GaAs and graphene, respectively. Moreover, the observed
positive sign of the photoresistance is in agreement with the decrease in mobility
due to acoustic phonon scattering [48, 91]. Importantly, at low temperatures, where
quantum corrections have to be taken into account, the picture becomes more com-
plex: the data exhibit a combined effect of CR heating on SdHO and mobility.

The dark magnetoresistance, measured in the absence of radiation, can be modeled
by the conventional Lifshitz-Kosevich formula [13, 160–162]

Rxx(B) = R0 + 4R0δinhδ
X(Te)

sinhX(Te)
cos

(
2πν
gsgv

− π + φ0

)
, (5.4)

describing an oscillatory correction to the classical Drude expression R0 introduced
above. The SdHO arise from the modulation of the DOS mapping the discrete
LL spectrum of the 2DES. Their period is determined by the filling factor, ν =
2π~ne/e|B|, and gs and gv account for spin and valley degeneracy. In GaAs there
is no valley degeneracy, thus gs = 2 and gv = 1, while graphene has two inequiv-
alent valleys, therefore, gs = gv = 2. The sign of the oscillatory contribution is
determined by the Berry phase of the 2DES with φ0 = 0 for conventional QWs and
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Figure 5.5: (a)Measured (red solid) and calculated (black dashed) dark longitudinal
magnetoresistance at T = 1.8 K for GaAs #A. The corresponding parameters are
R0 = 3.4 Ω, τq = 1.3 ps, ne = 6.63 × 1011 cm−2, T = Te = 1.8 K, m∗ = 0.074m0,
and Binh = 1.1 T. (b) Dark magnetoresistance calculated for two temperatures,
T = 1.8 and 4.2 K. The double arrow represents the difference in resistance ∆Rxx.
(c) Modeled normalized photoresistance ∆Rxx/∆Rmax

xx at different temperatures,
T = 1.8, 4.2 and 11.8 K. The curves are calculated using Eqs. (5.3) and (5.4) with
the parameters obtained from the dark magnetoresistance fit [panel (a)]. The traces
are up shifted for clarity. The vertical arrows in panels (b) and (c) label the odd
(ν = 27) and even (ν = 24) filling factors, respectively, highlighting the relative
phase of SdHO in photoresistance and dark magnetoresistance. Figure adapted
from Ref. [48].

φ0 = π for monolayer graphene [162, 163]. At very small temperatures (T → 0) the
decay of SdHO towards low B follows the so-called Dingle factor δ = exp(−π/ωcτq)
containing the quantum relaxation time τq which accounts for the disorder broad-
ening of the LLs separated by ~ωc, see Sec. 2.2. An increase in temperature leads
to an additional thermal smearing of the LLs, which is accounted for by the fac-
tor X(Te) = 2π2kBTe/~ωc. A further damping parameter δinh = exp(−B2

inh/B
2)

reflects possible smooth fluctuations and inhomogeneities of the filling factor across
the sample [48].

Equation (5.4) closely reproduces the measured dark magnetoresistance at T =
1.8 K in GaAs #A, see Fig. 5.5(a) with the corresponding parameters given in the
figure caption. Figure 5.5(b) shows the representative magnetoresistance for two
different temperatures T = 1.8 and 4.2 K, calculated using the determined values.
As expected, the SdHO are thermally suppressed, reflecting their strong sensitivity
to the electronic temperature, as seen in Eq. (5.4). This picture remains in close
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analogy to the emergence of the photoresistance: The incoming THz radiation is
absorbed by the CR and heats the electron gas. This in turn leads to an increase of
the electron temperature, which results in a suppression of the SdHO amplitude and
thus to ∆Rxx. The latter can be understood as the difference of the sample resistance
at two temperatures, as indicated by ∆Rxx in Fig. 5.5(b). This radiation-induced
reduction of the oscillation amplitude naturally leads to the same periodicity of the
photoresistance oscillations as that of SdHO in conventional magnetotransport.

Figure 5.5(c) shows the result of the modeled photoresistance for different measure-
ment temperatures as used in the experiment. The overall behavior of the photore-
sistance under CR conditions in GaAs #A [Fig. 5.1(b)] and MLG #A [Fig. 5.2(a)]
is well reproduced, showing a strong enhancement of the SdHO-periodic oscillations
at lower temperatures. These are superimposed on the envelope, which represents
the shape of the magnetoabsorptance as it appears at higher temperatures. At low
T this smooth Lorentzian-shaped contribution is distorted by the exponential decay
of the SdHO towards low B, which are symmetric with respect to the abscissa for
low radiation frequencies f = 0.297 and 0.69 THz. However, this is not the case for
higher excitation frequencies such as f = 1.63 and 2.54 THz as shown in Figs. 5.1(d)
and 5.2(a), respectively, where CR shifts into the region of well separated LLs. Here
the carriers are fully localized and the SdHO exhibit plateaus of almost zero resis-
tance, resulting in an asymmetric photoresistance shape. In contrast to the SdHO
in the magnetoresistance, which feature maxima (minima) at odd (even) LL filling
factors, the SdHO-periodic oscillations in the photoresistance exhibit maxima (min-
ima) at even (odd) ν, see Figs. 5.5(b) and (c), respectively, where vertical arrows
indicate representative values. This sign change is a direct consequence of the SdHO
suppression and is in agreement with the data.

So far, the observations in both systems show a very similar qualitative behavior.
Before concluding this chapter, the difference found in graphene is briefly discussed.
Since graphene has a linear dispersion relation, its LL spectrum yields a square root
behavior, a peculiarity that leads to the ability to manipulate the effective mass by
the carrier density. Consequently, using the semiclassical approach and assuming CR
transitions between high LLs (l� 1), i.e., far away from the CNP, the effective mass
and thus the magnetic field position of the CR scales proportional to kF = √πne [21],
see detailed description in Sec. 2.2. This is clearly observed in Fig. 5.2(b), where the
relation BL

CR = 2πf~kF/evF was evaluated to accurately fit the linear behavior of the
Fermi wave number with vF = 1.08× 106 m/s – a value typical for graphene devices
of similar quality [21, 22, 46, 152]. This is in strong contrast to GaAs, for which BL

CR

is insensitive to carrier density variations ascribed to the equidistant LL spectrum, if
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one neglects small corrections due to density-dependent renormalization caused by
electron-electron interactions [164, 165]. Note that with increasing ne, the graphene
sheet screens the incident THz field as a result of a larger radiative decay, thus
lowering the absorption coefficient in the vicinity of the CR, which eventually leads
to a degradation of the CR magnitude [17, 75, 88, 166]. For detailed calculations
see Ref. [45] and supplemental material therein.

In conclusion, the observed THz-induced enhanced photoresistance in GaAs and
graphene is indeed associated with CR. Its positions scales linearly with the radi-
ation frequency. Furthermore, the magnetic field position of the CR in graphene
is tunable by the carrier density, reflecting its linear energy dispersion. The CR-
enhanced photoresistance is governed by the shape of the magnetoabsorptance at
high temperatures, while at low T it shows a combined effect of the CR-induced
heating on electron mobility and SdHO. In GaAs, this picture is supported by the
CR dip in the simultaneously measured transmittance, whose shape is related to
the CR absorptance at low and high T , taking into account SdHO. The following
chapter demonstrates that this conventional CR behavior in a 2DES can be strongly
influenced by magnetoplasmonic excitations caused by near-field effects, which are
intentionally enhanced by a special contact geometry.
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6 Terahertz-driven non-local Bernstein Modes in
Graphene

Taking advantage of a special contact geometry and the exceptional quality of
graphene devices, a qualitative deviation from the usually expected CR behavior
is observed. The emergence of peculiar resonant peaks detected in the THz pho-
toresponse at CR harmonics is presented and discussed. An extensive experimental
analysis using various parameters, namely carrier density, radiation frequency, tem-
perature, and radiation intensity, will reveal that this intriguing phenomenon orig-
inates from enhanced magnetoabsorption, which in turn is facilitated by branches
of the THz-induced magnetoplasmonic excitations, called Bernstein modes. The en-
hanced absorption is caused by near fields arising in the vicinity of metallic contacts
with sharp edges, resembling structures usually implemented for plasmonic exper-
iments. A theoretical model will demonstrate that the resulting Bernstein modes
exhibit a flat dispersion leading to a divergent plasmonic DOS, which significantly
enhances the absorption of radiation and consequently leads to a strongly increased
photoresponse.

6.1 Experimental Results

Figure 6.1(a) shows the magnetic field dependence of the low temperature longitu-
dinal resistance Rxx in sample MLG #B at a carrier density of ne = 3.9×1012 cm−2.
Here, the black trace represents the dark resistance, while the effect of THz irradia-
tion on the magnetoresistance is demonstrated by the red trace. The dark resistance
exhibits a negative differential magnetoresistance (see Sec. 4.2) for small magnetic
fields (|B| < 0.5 T) followed by SdHO at |B| > 0.5 T. This is a standard behav-
ior typical for high-quality graphene devices. When the sample is exposed to THz
radiation at frequency f = 0.69 THz, the behavior changes significantly: while the
resistance remains unchanged at low fields, the amplitude of the SdHO appearing
at higher fields is suppressed due to the radiation-induced increase in electron tem-
perature. Moreover, in the presence of THz illumination, a strong resistance peak
is observed at B ≈ 0.5 T. Strikingly, this pronounced peak occurs close to the po-
sition of the second CR harmonic, B ≈ BL

CR/2 (purple line), corresponding to the
condition ω = 2ωc, determined via Eq. (2.34). Although the regular CR, marked by
a black dashed line, is a distinct effect as described in Chap. 5, it is hardly visible
in the data and appears only at lower carrier densities or higher THz frequencies.
Figure 6.1(b) shows the photoresistance ∆Rxx, obtained as the difference between
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Figure 6.1: (a) Longitudinal magnetoresistance Rxx obtained in MLG #B at fre-
quency f = 0.69 THz and carrier density ne = 3.9×1012 cm−2. The dark resistance
is indicated by the black trace, while the red trace shows the change in magnetoresis-
tance of the sample caused by THz radiation. (b) Photoresistance ∆Rxx obtained
as the difference between the red and black traces in panel (a), isolating the dis-
tinct feature from the smooth magnetoresistance background. (c) Photovoltage
trace obtained in MLG #B for ne = 3.25× 1012 cm−2. The blue and yellow arrows
denote the features near the second and third CR harmonics. The black dashed
and purple solid lines in panel (a) and (c) mark the position of the main CR, BL

CR,
and its second harmonic, BL

CR/2, determined according to Eq. (2.34). All curves
were obtained at a temperature of T = 4.2 K. Figure adapted from Ref. [45].

the dark and illuminated traces, isolating the pronounced peak from the magnetore-
sistance background. This presentation of the data clearly reveals large asymmetric
peaks for both magnetic field polarities, representing a steep rise followed by a slower
decay at higher B fields.

This unusual and pronounced signature is also observed in the photovoltage, i.e.,
without any bias applied to the sample shown in Fig. 6.1(c). Similar to the pho-
toresistance data, the signal at the position of the main CR is small, while highly
asymmetric peaks appear in the vicinity of the main CR harmonics for both magnetic
field polarities. In addition, at B ≈ 0.3 T, the trace exhibits signatures of asym-
metric but weaker peaks (indicated by yellow arrows), which are also attributed to
the resonant features, but associated with higher order CR harmonics, as will be
discussed below. Unlike in photoresistance, where these prominent features appear
as peaks, in photovoltage their sign is an odd function of the magnetic field, as
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indicated by the blue arrows. Indeed, the parity of the signal strongly depends on
the direction of the generated photovoltage. In order to keep the complexity within
reasonable limits, the following considerations will focus on the photoresistance data.

Figure 6.2(a) presents a color map of the measured photoresistance, normalized to
the radiation intensity, as a function of magnetic field (horizontal axis) and carrier
density (vertical axis). The latter was varied in the range ne = (0.65 − 3.9) ×
1012 cm−2. The data were obtained at frequency f = 0.69 THz and temperature
T = 20 K, chosen to avoid any influence of SdHO-periodic oscillations, resulting in
a smooth and non-oscillating magnetoresistance background. Examples of sectional
views are illustrated in Fig. 6.2(b) for several representative carrier densities, offset
for clarity. The pronounced peak marked with red arrows in panels (a) and (b) is
observed over the entire carrier density range. Although much weaker at higher ne,
the regular CR is also present (black arrows) and is strongly enhanced at doping
levels closer to the CNP. This evolution is attributed to the radiative decay of the
CR. Figure 6.2(c) shows the resonant magnetic field positions of the peak and CR
plotted against the Fermi wave number kF. It shows that Bpeak scales accurately
according to

Bpeak ≈ BL
CR/2 = πf~kF/evF , (6.1)

while CR follows Eq. (2.34) as expected, with both relations utilizing vF = 1.06 ×
106 m/s for the Fermi velocity. The B-field position of the peak shows that the
anomalous resonance occurs very close to the main CR overtone in the studied
range of ne.

In addition, a broader peak was observed emerging at slightly higher magnetic fields,
partially superimposed on the regular CR, especially at lower ne. These photoresis-
tance maxima correspond to the minima of PIRO, which in this sample also appear
in the conventional magnetoresistance, see Sec. 4.2. The inset of Fig. 6.2(c) shows
the maxima in ∆Rxx plotted against the Fermi wave number following Eq. (4.1)
(dashed green lines), with p = 1.5, vF = 1.06 × 106 m/s, and a sound velocity of
vs = 1.36× 104 m/s. The occurrence of PIRO in the photoresistance can be under-
stood in terms of radiation-induced electron-phonon coupling, as will be addressed
below.

The evolution of the photoresistance with temperature is shown in Fig. 6.3(a). The
traces are obtained for a carrier density of ne = 3.9 × 1012 cm−2 and a frequency
of f = 0.69 THz. It is clearly seen that the sharp and highly asymmetric peaks
in the vicinity of the main CR overtone are most pronounced at T = 2 K and
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The colored arrows mark the resonant peaks (red), CR (black), and PIRO (green)
corresponding to the lines in panel (a). The traces are upshifted for clarity. (c)
The resonant magnetic field position Bres of the peak feature (red) and the main
CR (black) as a function of the Fermi wave number kF for both magnetic field
polarities. The black and red dashed lines follow Eq. (2.34) and Eq. (6.1), respec-
tively, using vF = 1.06× 106 m/s. The inset shows the peak position of PIRO as a
function of kF. The dashed lines are calculated according to Eq. (4.1) with p = 1.5.
All results were obtained at f = 0.69 THz and T = 20 K. Figure adapted from
Ref. [45] and supplemental material therein.

are suppressed with increasing T . At T ≈ 50 K the resonant peak almost disap-
pears. While a small feature is present at the position of the regular CR, similar
to Fig. 6.1(c), additional signatures were observed at higher harmonics of the CR,
BCR/3 and BCR/4, see Fig. 6.3(b) that shows an enlarged window of the temper-
ature dependence. However, these features are less pronounced at lower B-fields,
experiencing a faster decrease with rising temperature. To visualize the thermal
damping of the photoresistance peak, its magnitude was plotted as a function of T
on a log-linear scale, see Fig. 6.3(c). Here, the blue and green circles indicate the
peak height for the positive and negative magnetic field polarities of the data set
shown in panels (a) and (b), while the red squares indicate the peak magnitude ob-
tained at f = 2.54 THz. The dependencies are normalized to the amplitude values
of ∆Rxx at T = 2 K for the corresponding radiation frequency. The amplitudes
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Figure 6.3: (a) Photoresistance curves recorded at f = 0.69 THz for different tem-
peratures up to T = 50 K. The blue dashed lines indicate the positions of the
main CR and its second harmonic. The traces are offset for clarity. (b) Enlarged
data window showing the thermal damping of the features close to the higher CR
harmonics, BCR/3 and BCR/4. (c) Amplitude of the photoresistance peak, normal-
ized to the amplitude values of ∆Rxx at T = 2 K for the corresponding radiation
frequency, plotted on a log-linear scale. The blue and green circles correspond to
the amplitude values determined at positive and negative magnetic field polarities
shown in panels (a) and (b). The red squares represent the temperature depen-
dence obtained at f = 2.54 THz. The black dashed and red solid lines denote
fits according to ∆R ∝ exp(−T/T0), yielding T0(f = 0.69 THz) ≈ 12.8 K and
T0(f = 2.54 THz) ≈ 20.1 K. All traces were recorded at ne = 3.9 × 1012 cm−2.
Figure adapted from Ref. [45] and supplemental material therein.

approximately follow an exponential decay given by exp(−T/T0) (black dashed and
red solid lines), yielding characteristic temperatures T0(f = 0.69 THz) ≈ 12.8 K and
T0(f = 2.54 THz) ≈ 20.1 K.

The pronounced peaks were also detected when THz radiation at higher frequencies
was applied to the sample. Figures 6.4(a, b) display examples of photoresistance
traces for several carrier densities obtained at T = 40 K for frequencies f = 1.63
and 2.54 THz. Although their amplitudes slightly vary, the peaks are clearly visible
for both frequencies over the range of investigated densities. However, the overall
behavior of the photoresistance is rather complex. In fact, besides a prominent
CR at lower ne, especially at f = 2.54 THz a strong admixture of two oscillatory
phenomena was observed, namely the THz-induced magnetooscillations (TIMO) and
PIRO. While the extrema of PIRO exhibit a quadratic-in-kF dependence, see inset in
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Figure 6.4: (a, b)Magnetic field dependencies of the photoresistance at f = 1.63 and
2.54 THz recorded for a wide range of carrier densities given in units of 1012 cm−2.
The resonant peaks near the main CR overtone are marked with red arrows. At
lowest carrier densities, the main CR becomes apparent, indicated by black arrows.
In addition, the traces for f = 2.54 THz show the appearance of TIMO (marked by
yellow arrows) at moderate electron densities, which are superimposed by PIRO at
the highest densities. The traces are shifted for clarity. (c) Magnetic field positions
Bres of the photoresistance peaks determined for both magnetic field polarities
plotted against the Fermi wave number kF for the data measured at f = 1.63
and 2.54 THz, represented by green and blue circles/squares, respectively. The
blue and green dashed lines follow Eq. (6.1) using vF = 1.06 × 106 m/s. (d)
Frequency dependence ofBres shown for several carrier densities. The corresponding
colored dashed lines are calculated via Eq. (6.1). Figure adapted from Ref. [45] and
supplemental material therein.

Fig. 6.2(c), the period of TIMO scales linearly with kF similar to the photoresistance
peak, but has a damped sinusoidal shape. In Chap. 7 TIMO are analyzed and
discussed in detail. Figure 6.4(c) shows the resonant magnetic field positions of
the peak near the main CR overtone as a function of kF for both frequencies. The
dependencies accurately exhibit a linear behavior according to Eq. (6.1) (blue and
green dashed lines). To further confirm the validity of this equation, Bres was plotted
as a function of f at several fixed carrier densities, see Fig. 6.4(d). It reveals that
the resonant peak follows the dashed lines in corresponding colors calculated via
Eq. (6.1), demonstrating a linear scaling with the radiation frequency.

The dependence of the anomalous photoresistance peak was also investigated with
respect to the intensity I of the incident radiation. Figure 6.5(a) presents photore-
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Figure 6.5: (a) Photoresistance traces recorded for different radiation intensities I
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overtone, while the two black dashed and solid lines indicate the extrema of the
SdHO-periodic oscillations used to determine the amplitude value for the intensity
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dashed red and black lines denote linear fits to ∆Rxx ∝ I. The traces were obtained
at f = 2.54 THz, T = 20 K, and ne = 3.9×1012 cm−2. Figure adapted from Ref. [45]
and supplemental material therein.

sistance traces ∆Rxx measured for different intensity levels in the range I = 0.2 to
1.9 Wcm−2, recorded at f = 2.54 THz. At this frequency, the radiation has a small
spot diameter and a high laser output power at the same time, thus providing the
highest possible intensity, see Sec. 3. The analysis shows that the strength of the
photoresistance peak near the main CR overtone scales linearly with the applied
radiation intensity, see red circles in Fig. 6.5(b). This direct proportionality is il-
lustrated by the red dashed line following ∆Rxx ∝ I. For comparison, the intensity
dependence of the amplitude of SdHO-periodic oscillations in the vicinity of the reg-
ular CR was also analyzed. To determine their amplitude, half of the difference of the
maximum and minimum values was extracted, which is indicated by black dashed
and solid lines in Fig. 6.5(a). As for the photoresistance peak, the SdHO-periodic
oscillations show a linear-in-I dependence, following the black dashed line.

Summarizing, giant photoresistance peaks induced by THz radiation have been ob-
served in a high-quality graphene. These resonant peaks have been studied over a
wide range of Fermi wave number, temperature, radiation frequency, and intensity.
Data analysis have provided strong evidence that the asymmetric peaks couple to
harmonics of the CR. Their theoretical description is the subject of the next chapter.
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6.2 Discussion

The results presented above can be ascribed to signatures of near-field magnetoab-
sorption facilitated by metallic contacts, resulting in the excitation of so-called Bern-
stein modes (BM). According to the model, which describes the absorption of an
inhomogeneously diffracted incoming EM wave enhanced by electron plasma oscilla-
tions, see Sec. 2.4, the total absorbed power is obtained as an integral over the wave
vectors q:

Pabs = 2
∫ dq

(2π)2
ω

2πq |E(q, ω)|2=
{
ε(q, ω)−1

}
. (6.2)

Here E(q, ω) = FqωE0 represents the amplitude of the q-th spatial harmonic of the
near field, defined by the product of the incident electric field E0 and the correspond-
ing diffraction amplitude Fqω. The latter is very small at q → 0 due to the influence
of the sample substrate, which acts as a gate leading to a large screening [45]. As q
increases, the diffraction amplitude reaches a maximum and then decays due to the
finite length and width of the sample contacts. This rapid decay for large q is shown
in Fig. 6.6(a), where the diffraction amplitude 〈|Fqω|2〉ϕ averaged in the sample plane
over the angle ϕ is plotted as a function of q. The imaginary part of the inversed
dielectric function ={ε(q, ω)−1}, also called the loss function, which depends on
the wave vector and the frequency, is associated with the magnetoplasmon-assisted
absorption. It is determined by the nonlocal conductivity σ(ω, ωc, q) of the 2DES
following from the classical kinetic equation for the electrons’ distribution function,
for details see Ref. [45] and supplemental material therein. For the sake of simplicity,
the following discussion is limited to the ungated case, where the loss function can
be approximated by

=
{
ε(q, ω)−1

}
=
∑
i

δ(q − q(i)
mp)

|∂ε′/∂ω|v(i)
g
. (6.3)

This relation holds in the vicinity of the magnetoplasmon dispersion, where q(i)
mp is

the real wave vector of the magnetoplasmon such that ε(qmp, ω, ωc) = 0 and v(i)
g =

(∂ω/∂q)|
q= q

(i)
mp

is the magnetoplasmon group velocity. Note that the summation is
applied to all branches of the plasmon dispersion at given ω and ωc, resulting in the
appearance of anti-crossings at ω = nωc. These are characterized by two branches
just below each CR harmonic and a single branch just above. An illustration of
Eq. (6.3) in Figs. 6.7(a, b) shows well-defined BMs.

The collective mode contribution [Eq. (6.3)] reveals that the total absorbed power
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Figure 6.6: (a) Diffraction amplitude 〈|Fqω|2〉ϕ averaged in the sample plane over
the angle ϕ as a function of q. The calculations were performed for a contact length
and width of 15 µm and 1 µm, respectively. (b) Absorbed power plotted against
the frequency ratio ωc/ω. The magnetoabsorption is significantly enhanced at the
second harmonic of the CR (ωc/ω = 0.5). The height and width of the absorption
peak depend on the momentum relaxation time τp. Figure adapted from Ref. [45]
and supplemental material therein.

Pabs in Eq. (6.2) is proportional to the reciprocal magnetoplasmon group velocity
vg(ω)−1. A vanishing group velocity in the immediate vicinity of the anti-crossings
of the magnetoplasmon dispersion leads to a divergence of the loss function. Under
this condition, the absorbed power is limited by the plasmon losses related to the
electron momentum relaxation time τp as Pabs ∝

√
τp, which directly affects the

magnitude of the resonant peaks in the photoresponse. The resulting shape of the
absorption at the second harmonic of the CR is shown in Fig. 6.6(b). Its width is
proportional to 1/τp.

The above expressions can be understood qualitatively as follows: the sample is ex-
cited by the incident THz radiation, which is scattered by sharp metallic contacts
located inside the Hall-bar region of the graphene structure (see microphotograph
of MLG #B in Sec. 4.2 for comparison). This particular contact configuration leads
to highly non-uniform near-fields with electric near field components E(q, ω), which
are screened by the bare magnetoplasmon mode ωmp(q) [Eq. (2.57)]. Strikingly, in
regions where the magnetoplasmon mode crosses CR harmonics (q ∼ 1/Rc), screen-
ing turns into anti-screening, resulting in a resonant field enhancement. Indeed,
ωmp(q) exhibits gaps at ω/ωc = 2, 3, ... and splits into branches. The emerging
anti-crossings near these gaps produce plateaus in the magnetoplasmon dispersion,
see Figs. 6.7(a, b). Here, the plasmonic group velocity vanishes and thus their DOS
becomes exceptionally high. This in turn leads to a large loss function, see Eq. (6.3),
which causes a strong enhancement of the near fields. Since the absorbed power is
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Figure 6.7: (a) Color map of the loss function =
{
ε(q, ω)−1} calculated in the pres-

ence of a magnetic field, assuming that the silicon substrate acts as a perfectly
conducting metal gate. The dashed horizontal lines indicate the frequency ratios
ω/ωc = 2.05 and 1.95 used in the simulations [(d) and (e)]. (b) Enlarged region
from (a) close to the main CR overtone. (c – e) Simulated plasmonic near-field
distribution, i.e., the real part of the vertical field component <{Ez(x, y)}, fa-
cilitated by a metal lead (shaded rectangles) that is excited by THz radiation.
This metal lead is located above the silicon gate and placed in contact with the
graphene sheet. The panels show the distribution for graphene plasmons at zero
B-field (c) and above (d) as well as below (e) the anti-crossing at ω/ωc = 2, using
ω/2π = 1 THz and ne = 0.65×1012 cm−2 as parameters for numerical calculations.
Figure adapted from Ref. [45].

strongly enhanced in these regions of high plasmonic density, the sample exhibits
resonant electron gas heating, revealing a large photoresistance at the harmonics of
the CR.

Figures 6.7(c – e) illustrate the calculated distribution of the scattered THz electric
field around a metal lead in real space [45]. For vanishingly small magnetic fields
(ωc = 0) as well as for frequencies above the BM plateau (ω & 2ωc), the irradiated
contacts excite plasmons or magnetoplasmons, respectively, with a well-defined pe-
riod of the electric field in real space referring to the wave vector qmp(ω) [167], see
Figs. 6.7 (c, d). However, due to the fact that the BM branch exhibits a maximum
just below the gap at ω = 2ωc followed by a downward bend, there are two mag-
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Figure 6.8: (a) BM-assisted absorption of THz radiation calculated according to
Eq. (6.2) and plotted against the magnetic field normalized to BL

CR. The inset shows
a graphical representation of the magnetoplasmons launched at the graphene-metal
interface by the incident radiation. (b) Experimentally measured photoresistance
obtained in sample MLG #B at T = 2 K and f = 0.69 THz. The dashed vertical
lines in both panels indicate the harmonics of the CR. Figure adapted from Ref. [45].

netoplasmon modes with different q values initiated by a given radiation frequency,
see the bottom dashed vertical line in Figs. 6.7(a, b). This results in a double-
mode beating, where a short-period fringing of the electric field is superimposed by
a low-frequency pattern. These two periods merge at the plateau, causing a resonant
enhancement of the radiation absorption.

Exploiting the absorbed power expression [Eq. (6.2)], the corresponding magnetoab-
sorption was calculated and compared with the experimentally observed photore-
sistance. Both are shown in Figs. 6.8(a, b), plotted as a function of the magnetic
field normalized to BL

CR. They reveal an excellent qualitative agreement. In par-
ticular, the resonant peaks appear close to the CR harmonics (see dashed vertical
lines) and exhibit a strong asymmetry. Indeed, going to higher B-fields, the latter
is characterized by a steep increase before approaching the maximum, followed by a
gradual decrease. This asymmetry can be understood by looking at the BM disper-
sion near the gap: as the ratio ω/ωc converges from the gap side to the plateau of
the lower BM branch, the absorption and thus the photoresistance increase sharply.
After approaching its maximum value, a slowly increasing group velocity leads to
a smooth decay, mapping the regime of conventional magnetoplasmon excitation,
where non-locality no longer plays an essential role. This asymmetric shape is also
preserved for the higher harmonics of the CR, specifically the third and fourth, as
can be seen in Figs. 6.8(a, b). This strongly supports the explanation of the sharp
photoresistance peaks in terms of the BM-assisted resonances. Similar to the regular
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CR analyzed in Chap. 5, the positive photoresistance [see Figs. 6.1(a, b)] is due to
an enhanced absorption, which enables a strong THz-induced electron gas heating
and consequently an enhanced electron-phonon scattering (see also Sec. 2.3).

Another strong confirmation that the peaks are related to anti-crossings of the BM
dispersion appearing at CR overtones is the fact that their magnetic field positions
are precisely determined by integer fractions ofBL

CR given by Eq. (2.34). As expected,
the dominant photoresistance peak scales linearly with the Fermi wave number and
the applied radiation frequency, see Figs. 6.2(c) and 6.4(c, d). Note that when
comparing the photoresistance values at different THz frequencies, the magnitudes
of the resonant peaks show a clear decrease towards higher radiation frequencies. A
possible explanation is that the increase in frequency shifts the BM dispersion to
larger q values, where the diffraction amplitude Fqω, which determines the scattered
near field amplitude, decreases significantly, see Fig. 6.6(a). As a consequence, the
electron gas heating is suppressed, resulting in a less pronounced photoresistance
peak.

It is worth noting that the BMs fully evolve in sufficiently clean systems, which
provide a ballistic regime, i.e., ωτee � 1 [105]. In Fig. 6.9 the magnetoplasmon
dispersion around the second harmonic of the CR is visualized using three regimes
of electron transport determined by the electron-electron (e-e) scattering time, τee.
Panel (a) shows the ballistic regime (τee = 10 ps) where the anti-crossing is clearly
visible. Apparently, moving to shorter τee [panel (b) with τee = 1 ps] reveals a
smearing of the BM anti-crossing, which finally disappears completely at τee = 0.1 ps,
see panel (c). The latter condition corresponding to the hydrodynamic regime [105].
Consequently, the BM-assisted photoresistance not only confirms that the ballistic
regime is fully applicable, but also directly attests a superior quality of MLG #B,
as supported by the corresponding transport characterization, see Sec. 4.2.

Under certain conditions, the main CR overtone in the photoresponse significantly
exceeds the signal of the regular CR. In particular, the latter is strongly pronounced
at sufficiently low carrier densities and high radiation frequencies. However, this
peculiar behavior is attributed to the radiative decay, which is a consequence of
the screening of the radiation by electrons in graphene [45]. In contrast to regular
CR, the strength of the photoresponse peaks should not be affected by radiation
screening, since magnetoabsorption at the CR overtones is facilitated by BM-assisted
near-field excitations. In fact, the results show a relatively weak decay of the peak
strength at higher carrier densities, which is due to a small decrease of the diffraction
amplitude Fqω.

Let us now say a few words about PIRO in the photoresistance. The appearance
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Figure 6.9: Magnetoplasmon dispersion visualized by the loss function against the
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were obtained using ne = 0.65 × 1012 cm−2 and f = 2 THz. Figure adapted from
Ref. [45] and supplemental material therein.

of PIRO is somewhat unexpected and may be understood as follows: in the non-
resonant case, the incoming THz radiation is mostly absorbed by the electron gas.
Since the energies required to reach optical phonons are too large, the absorbed
energy is transferred to acoustic phonon branches via electron-phonon coupling.
Subsequently, this increase in the acoustic phonon population leads to the forma-
tion of PIRO in the THz photoresistances due to resonant absorption of phonons by
carriers [168]. The maxima of PIRO observed in the photoresistance seem to corre-
spond to the first minima of the conventional dark magnetoresistance at conditions
where PIRO appear. They follow accurately Eq. (4.1) with p = 1.5. The value for
the sound velocity given by vs = 1.36 × 104 m/s according to the fit in the inset
of Fig. 6.2(c) agrees well with the analysis of PIRO in dark magnetoresistance, see
Sec. 4.2, and with previous studies in similar high quality graphene structures [152].
This, and the fact that PIRO emerge at elevated T in the dark magnetoresistance,
provide compelling arguments that the photoresistance does indeed exhibit PIRO-
related oscillations. However, a detailed analysis of PIRO in photoresistance requires
further intensive studies beyond the scope of this work.

Finally, the discussion is supplemented by another possible description of the reso-
nant photoresponse close to the CR harmonics. In particular, it has recently been
proposed that a high-frequency flow of a two-dimensional electron fluid exposed
to a magnetic field may lead to viscoelastic resonances related to the generation
of the transverse magnetosound [169]. Moreover, these resonances associated with
the viscous electron transport regime have been discussed in relation to the reso-
nant photoresistivity observed in GaAs-based heterostructures near the main CR
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overtone [170]. However, in the proposed scenario, it is not feasible to explain our
experimental findings.

First, the asymmetry of the resonant peaks in our experiments is different from that
proposed in Refs. [105, 169]. Indeed, a smooth tail at low B-fields and a steep de-
crease of the photoresponse at higher fields is predicted, which is in strong contrast
to our observations, see Figs. 6.1(a – c). Furthermore, these works confirm that
there is only a single peak appearing around the second CR harmonic. However, the
results here also show resonances at double and even triple the cyclotron frequency,
see, e.g., Fig. 6.3(b), which are not predicted by the hydrodynamic model, but are
in accordance with BM theory. Next, the regime of hydrodynamics in high-quality
graphene is achieved at rather large temperatures, exceeding T & 100 K [171]. This
is in sharp contrast to the observed resonant photoresistance, which vanishes already
at about T ≈ 50 K, considering the most dominant peak at the main CR overtone,
see Fig. 6.3(a). This behavior is in line with the theory of BM-assisted magne-
toabsorption [105]. Considering that the e-e collision rate becomes more dominant
with increasing T , this significantly reduces the magnitude of the photoresistance
around the harmonics of the CR and smears the anti-crossing in the BM disper-
sion, as demonstrated in Fig. 6.9. Moreover, the photoresistance peak observed here
scales linearly with radiation intensity, which is consistent with the overall linear-
in-P scaling of the photoresistance, as confirmed by the comparison between the
peak and the SdHO-periodic signal in Fig. 6.5(b). The absence of a saturation or
threshold behavior apparently precludes the scenario discussed in terms of possible
instabilities of the electron plasma [172] that accounts for the observations of pho-
toresistance peaks in GaAs-based heterostructures. Furthermore, the linear scaling
with radiation intensity also excludes possible multiphoton effects [13].

Before concluding this chapter, we will briefly refer to our related study without a
detailed discussion. Very recently, a strong near-field coupling in bilayer graphene
structures, facilitated by metallic interdigitated dual-grating gate fingers located
at the top of the devices, has been exploited to induce plasmonic splitting of the
CR [49]. In contrast to MLG #B, the periodic metallic structure in this work covers
a substantial part of the sample, see the microphotograph in Fig. 6.10(b), and thus
enhances the near-field diffraction used to force an even stronger interaction of the
magnetoplasma with the THz radiation. Figure 6.10(a) shows our central result, the
photovoltage response as a function of the applied magnetic field, using a similar
experimental setup. Figures 6.10(b, c) present the modeled ratchet response at
both limits of the developed theory, in the regimes of τee � τp [panel (b)] and
τee � τp [panel (c)]. While the measured response at the second CR overtone
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Figure 6.10: (a) Magnetic field dependence of the induced photovoltage, normal-
ized to the effective power Psample incident on the sample surface. The trace
was obtained in a bilayer graphene device under THz radiation with frequency
f = 2.54 THz and biased top gate voltage (UTG1 = 0.4 V). (b, c) Calculated
normalized ratchet current in the regime of sufficiently fast e-e collisions (b) and
dominant impurity scattering (c). The inset shows a microphotograph of the inves-
tigated structure. The source and drain contacts are marked with S and D. The
gray shaded area highlights the enhanced region near the CR overtone. The cy-
clotron and magnetoplasmon resonances are denoted by CR and MP, respectively.
The data were obtained at T = 4.2 K and a carrier density of ne = 3.2×1011 cm−2.
Figure adapted from Ref. [49].

is substantially suppressed (B ≈ 1 T), two distinct dips are observed near the
regular CR (B ≈ 2.5 T): the CR itself and a magnetoplasmon resonance. The
coexistence of both resonances is attributed to a combination of the dominant e-e
collisions in the structured bilayer graphene, resulting in an almost hydrodynamic
system, and the nonlinear nature of the observed ratchet effect. The latter describes
the conversion of the ac THz electric field into a dc electric current and has been
extensively studied in monolayer [173, 174] and bilayer graphene [49–51]. Due to
the metallic structure on top of the graphene sandwich, the radiation field has a
homogeneous and an inhomogeneous component modulated by a finite wave vector
q = 2π/L, where L is the superlattice period. The former gives rise to the regular CR,
while the latter yields the magnetoplasmon resonance, which reflects the nonlinear
conversion of an ac drive into a dc current. Thus, structured graphene-based devices
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provide a fruitful platform and promising tool for studying the properties of the
two-dimensional electron plasma via optical excitation.

Summarizing, it has been demonstrated that the experimental results are accurately
described by the developed theory. In particular, the resonant peaks coupled to the
CR harmonics observed in the photoresponse unambiguously stem from BM-assisted
magnetoabsorption facilitated by THz-induced near fields. Based on the calculations
of the loss function, it has been shown that under the condition of strong photore-
sponse, the BM dispersion exhibits plateaus. This in turn leads to a divergent plas-
monic DOS and a resonantly enhanced radiation absorption, manifested in strong
electron gas heating and resonant photoresistance peaks. The above observations
have already shown signatures of TIMO at higher radiation frequencies. The next
chapter is devoted to a detailed study of these oscillations in graphene using a Hall
bar geometry with conventional contacts.
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7 Magnetooscillations in Graphene induced by Ter-
ahertz Radiation

After studying graphene with a special contact geometry, this chapter focuses on a
standard Hall bar with conventional contacts, using metal leads outside the main
graphene channel. Pronounced TIMO are observed at low magnetic fields. The anal-
ysis of their variation with radiation frequency and carrier density reveals a common
origin with the well-known microwave-induced resistance oscillations (MIRO) de-
tected in GaAs QWs. Similar to the latter, their graphene analog is also governed
by the ratio of the incident radiation frequency to the quasiclassical cyclotron fre-
quency. To this end, theoretical descriptions based on the shift of the cyclotron
resonance orbit center, known as the displacement mechanism, and the inelastic
mechanism, considering a radiation-induced variation of the distribution function,
are reviewed.

7.1 Experimental Results

Figure 7.1 shows the magnetic field dependencies of the photosignals obtained in
MLG #C as a response to linearly polarized radiation with frequency f = 0.69 THz.
The different traces of the photoconductive signal, ∆σ, [panel (a)] and the photo-
voltage, Vph, [panel (b)] are presented for several representative values of the car-
rier density in the range of ne = (0.14 − 2.75) × 1012 cm−2, labeled next to the
curves. The signals are normalized to the radiation intensity, which is estimated
as I ≈ 0.24 Wcm−2. For low carrier densities, the traces exhibit the conventional
behavior: the photoresponse undergoes a clear enhancement that shifts to higher
magnetic fields with increasing ne, which is additionally superimposed by fast 1/B-
periodic oscillations. These are clearly attributed to an admixture of CR-enhanced
µ-photoconductivity and CR heating-induced suppression of SdHO. Both result from
the THz-induced electron gas heating, as addressed in Chap. 5. Strikingly, at higher
carrier densities (ne > 1×1012 cm−2), see Fig. 7.1(b), the picture changes quali-
tatively: at lower fields, in the region where SdHO-periodic oscillations are expo-
nentially suppressed, the photoresponse exhibits a second type of magnetooscilla-
tions, termed as TIMO (THz-induced magnetooscillations). As will be discussed
below, these low-B oscillations share a common origin with MIRO, first observed in
GaAs-based heterostructures [6], but remarkably reveal some peculiarities specific
to graphene.

To follow up on this, Figs. 7.2(a, b) show the transmittance and corresponding nor-
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Figure 7.1: Photosignal traces for low (a) and high (b) carrier densities ne versus the
magnetic field obtained at T = 4.2 K in response to radiation with f = 0.69 THz.
The traces are up-shifted for clarity and correspond to the different carrier densities
in units of 1012 cm−2, which are labeled near the curves. The black arrows in panel
(a) mark the position of the CR. The dashed horizontal lines indicate the zero line
for each photoresponse curve. Figure adapted from Ref. [46].

malized photoresistance traces obtained in GaAs #A at T = 1.8 K for f = 0.297
(red) and 0.69 THz (black). In contrast to the results shown in Fig. 5.1, here
GaAs #A was illuminated with ambient light prior to the measurements, result-
ing in higher electron density and mobility due to the persistent photoconductivity
effect, see Sec. 4.1 for details. This property allows to resolve clear MIRO. Note
that due to the change in electron mobility, the width of the CR dip in the trans-
mittance becomes considerably wider, while the shape gets slightly asymmetric [see
the trace for f = 0.297 and 0.69 THz in Fig. 5.1(c) for comparison]. Figures 7.2(c,
d) present the photoresistance as a function of the inverse magnetic field, which is
additionally normalized to the magnetic field position of the CR determined by the
transmittance. The data clearly show a damped sinusoidal behavior with exponen-
tial growth towards the CR (BP

CR/B = 1). In addition, the 1/B-periodicity of MIRO
is revealed, with nodes at the CR harmonics, i.e., BP

CR/2, BP
CR/3, ..., indicated by

the gray guidelines.

A very similar picture is observed for TIMO. Figure 7.3(a) shows the correspond-
ing traces from Fig. 7.1(b) replotted as a function of the inverse magnetic field.
Since TIMO appear below the onset of the SdHO-periodic oscillations, only the low
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Figure 7.2: (a) Normalized radiation transmittance obtained in GaAs #A after brief
illumination with room light prior to measurements for two radiation frequencies,
f = 0.297 and 0.69 THz, represented by the red and black traces, respectively. The
arrows mark the CR dips. (b) Simultaneously measured normalized photoresis-
tance ∆Rxx/∆Rmax

xx . The shaded areas labeled BP
CR indicate the CR position. (c,

d) Photoresistance for both frequencies plotted as a function of the inverse mag-
netic field normalized to BCR determined from the corresponding transmittance
dip. The gray lines point to the nodes of MIRO. All measurements were performed
at T = 1.8 K. Figure adapted from Refs. [47, 48].

magnetic field region is shown here, excluding higher fields. To rigorously prove
the 1/B-periodicity, each successive peak and dip of TIMO was assigned an integer
number. This procedure is exemplified for the red curve, where the extrema were
consecutively labeled with index numbers N = 1, 2, ..., 5 corresponding to the inverse
magnetic field values 1/BN at which the extrema appear. This functional relation-
ship is illustrated in Fig. 7.3(b) for various carrier densities following the color code
in panel (a), clearly demonstrating that the positions of all the extrema for each car-
rier density accurately follow straight lines. This analysis confirms that TIMO are
1/B-periodic, while the slopes of these lines simultaneously reveal their fundamental
frequency BF. Although the slope becomes steeper as the carrier density increases,
the intercept of the lines with the vertical axis remains almost unchanged, yielding
a value of −0.25± 0.1. This result can then be transformed into a functional behav-
ior for the extrema given by N/2 = BF/BN − 0.25, where the offset represents the
phase shift of the extrema with respect to the nodes. Consequently, the oscillatory
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Figure 7.3: (a) TIMO data from Fig. 7.1(b) as a function of the inverse magnetic
field. Only the low magnetic field region is shown here, omitting the SdHO-periodic
oscillations at higher fields for convenience. The curves are up-shifted for clarity.
(b) TIMO extrema assigned with index numbers N = 1, 2, ...5 plotted against the
inverse magnetic field values 1/BN at which the peaks and dips occur. The assign-
ment is illustrated in panel (a) with vertical arrows for the red trace. The dashed
colored lines correspond to linear fits of the data points providing the fundamental
frequency BF and the phase of TIMO. (c) Dependence of BF on the carrier density
ne. The dashed line follows BL

CR, see Eq. (2.34) in Sec. 2.2 with vF = 1.06×106 m/s
as the Fermi velocity. Figure adapted from Ref. [46].

behavior of TIMO is described by a sinusoidal expression according to the relation

V TIMO
ph ∝ − sin

(2πBF

B

)
, (7.1)

therefore, determining their phase. From Eq. (7.1) it becomes clear that the value
of BF coincides with the last node of TIMO, while all other nodes correspond to
higher harmonics of the fundamental frequency. Figure 7.3(c) shows BF, determined
by the slopes in Fig. 7.3(b), as a function of ne. It demonstrates that the funda-
mental frequency of TIMO closely follows the magnetic field position of the CR in
graphene BF = BL

CR = hf
√
πn/evF with vF = 1.06× 106 m/s for the Fermi velocity.

This already gives a strong evidence that similar to MIRO in GaAs QW, TIMO in
graphene are coupled to the harmonics of the CR.

The periodicity of MIRO has a linear frequency dependence, as can be seen from
the traces in Fig. 7.2(b). Indeed, extracting BP

CR from MIRO recorded at f = 0.297
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Figure 7.4: (a) Normalized photoresponses for two different excitation frequencies
f = 0.69 (black trace) and 1.63 THz (red trace) offset for clarity. The vertical
arrows indicate the extrema of TIMO and assign integer numbers to the peaks and
dips. These numbers are plotted in the inset against the inverse magnetic field
values 1/BN of the corresponding extrema. The dashed lines are fits to the data
points, yielding values for BF. (b) Fundamental frequency as a function of f . Here
the dashed line was calculated according to the semiclassical expression for BL

CR, see
Eq. (2.34) in Sec. 2.2. (c) The amplitude Aph of TIMO determined from half the
difference of the two extrema of the first oscillation period. Additionally, the value
for the frequency f = 2.54 THz was included as a data point (sheer and blue square).
The dashed line is a fit according to ∝ f−5/2. All panels use the same color code
for the corresponding frequency. All results were obtained at ne = 2.75×1012 cm−2

and T = 4.2 K. Figure adapted from Ref. [46] and supplemental material therein.

and 0.69 THz gives BP
CR(0.297 THz) = 0.84 T and BP

CR(0.69 THz) = 1.90 T; thus,
the ratio is about 2.2, which, assuming a linear dependence, corresponds to the
frequency scaling factor (0.69/0.297 ≈ 2.3). Returning to TIMO, Fig. 7.4(a) shows
photovoltage traces recorded as a response to f = 0.69 (black trace) and 1.63 THz
(red trace) for ne = 2.75× 1012 cm−2 and T = 4.2 K. Note that the trace obtained
at f = 1.63 THz has been multiplied by a factor of three for clarity. Surprisingly, at
such a high frequency, i.e., well above 1 THz, the first period of TIMO is still clearly
distinguishable from the smooth background and the fast SdHO-periodic oscillations.
The influence of the latter is considerable, since TIMO are shifted into the region
where they are already strongly developed. Since MIRO were completely suppressed
in GaAs #A at these frequencies, this observation is particularly remarkable. The
inset shows the analysis of the periodicity of TIMO by plotting the index numbers
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of peaks and dips against the corresponding inverse magnetic field using the same
procedure as introduced in Fig. 7.3. The linear behavior for both traces proves a
1/B-periodicity, while the slope determines the BF. The latter scales linearly with
the excitation frequency as shown in Fig. 7.4(b) and is well fitted by the semiclassical
expression forBL

CR, see Eq. (2.34) in Sec. 2.2. This is an additional feature in common
with the MIRO effect, confirming that TIMO are indeed a MIRO analog.

Figure 7.4(c) presents the TIMO amplitude as a function of the excitation frequency.
The amplitudes were determined by taking half the difference between the peak and
dip values (indicated by 1 and 2, respectively) of the first oscillation period for
both frequencies. The black and red squares represent the values for f = 0.69
and 1.63 THz, which follow the black dashed curve in good agreement, yielding
Aph ∝ f−5/2. Despite this intriguing behavior in graphene, excitation frequencies
above 2 THz prove that the detection of TIMO is already challenging. This is not
least due to the strong superposition of SdHO-periodic oscillations, making TIMO
almost indistinguishable at high frequencies. However, a roughly estimated value for
the trace at f = 2.54 THz (not explicitly shown) is indicated as a blue and sheer
square in Fig. 7.4(c). This observation is further supported by the appearance of
TIMO in MLG #B at f = 2.54 THz and similar carrier densities, see Fig. 6.4(b)
in Chap. 6. Here the SdHO-periodic oscillations are thermally suppressed revealing
clear TIMO denoted by yellow arrows. This behavior underlines an exceptional
stability of TIMO towards higher frequencies.

So far, the temperature dependence of TIMO has been disregarded, as all previous
data have been obtained at liquid helium temperature. However, this degree of free-
dom plays a crucial role in understanding the microscopic mechanism associated with
TIMO observed in graphene. Figure 7.5(a) shows normalized photovoltage traces
recorded at temperatures ranging from T = 4.2 to 90 K for f = 0.69 THz. Remark-
ably, in sharp contrast to the SdHO-periodic response, TIMO and especially its first
period are well resolved even above liquid nitrogen temperatures T > 77 K. Indeed,
as illustrated in the inset of Fig. 7.5(a), the traces for T = 80 and 90 K exhibit an os-
cillatory signature where the first period of TIMO is expected (indicated by the black
vertical arrows), while the SdHO-periodic oscillations are already clearly suppressed.
To explore this behavior, the amplitudes of TIMO, A(T )TIMO

ph , and SdHO-periodic
oscillations, A(T )SdHO

ph , normalized to the amplitude value at T = 4.2 K, were plotted
as a function of temperature in Fig. 7.5(b). The amplitudes of TIMO were obtained
as the half difference between the respective maxima and minima of the first oscilla-
tion period. The values for the SdHO periodic response were estimated by the same
procedure, except that a magnetic field was chosen where the oscillations are well
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Figure 7.5: (a) Photovoltage traces for different temperatures recorded in response
to f = 0.69 THz at a fixed carrier density ne = 2.75× 1012 cm−2. The inset shows
a close-up of the curves for T = 80 and 90 K with the TIMO signatures indicated
by vertical arrows. (b) The corresponding temperature dependencies of the first
period of TIMO (ATIMO

ph ) and of the SdHO-periodic photovoltage (ASdHO
ph ). The

values were determined by calculating half the difference between the peak and the
dip of one oscillation period (for TIMO the first one and for SdHO the one near
B ≈ 1.8 T). The former is fitted for T ≥ 10 K by the function ∝ exp(−γTT

2) which
gives the damping parameter γT = 4.4 × 10−4 K−2. The dashed line is calculated
by the conventional Lifshitz-Kosevich formula following the data points of ASdHO

ph
and providing an estimate for the effective mass m∗ = 0.03me with me as the free
electron mass. Figure adapted from Ref. [46] and supplemental material therein.

established and less disturbed by the background. As can be seen, both follow a
very different temperature dependence: while TIMO remains visible up to 90 K, the
SdHO-periodic signal disappears completely at T ≈ 40 K over the whole B-range
under study. The former follows closely Vph ∝ exp(−γTT

2) (shown by the dashed
line) for temperatures above 10 K with γT = 4.4×10−4 K−2, a dependence character-
istic for the displacement mechanism of MIRO [175, 176]. The SdHO-periodic signal
is well fitted by the conventional Lifshitz-Kosevich formula [160, 161] as indicated
by the solid line, see Eq. 5.4.

Of no less importance is the study of the photovoltage signal in relation to the exci-
tation power. The previously presented data were measured at the highest possible
radiation intensity of about I ≈ 0.24 Wcm−2. Figure 7.6(a) shows the photovoltage
obtained for a frequency of f = 0.69 THz, T = 4.2 K, and ne = 1.65 × 1012 cm−2.
Despite the fact that TIMO and the SdHO-periodic oscillations remained visible by



90 7 Magnetooscillations in Graphene induced by Terahertz Radiation

0 . 5 1 . 50 1 2- 0 . 3

- 0 . 2

- 0 . 1

0 . 1

0

0 . 1 0 . 2 0 . 30

0 . 0 5

0 . 1 5

0

0 . 1
0 . 2 4
0 . 2 2
0 . 1 7
0 . 1 3
0 . 0 9
0 . 0 6

M a g n e t i c  f i e l d ,  B  ( T )

Ph
oto

vol
tag

e, V
ph (

mV
)

n e  =  1 . 6 5 × 1 0 1 2  c m - 2

I  ( W c m - 2 )

( a )

M L G  # C
T  =  4 . 2  K

f  =  0 . 6 9  T H z

Am
pli

tud
e, A

ph (
mV

)
I n t e n s i t y ,  I  ( W c m - 2 )

A  T I M O p h  

A  S d H O p h  

( b )

~  I / ( 1 + I / I s )

~  I

Figure 7.6: (a) Photovoltage recorded at different radiation intensities, obtained for
f = 0.69 THz at ne = 1.65 × 1012 cm−2 and T = 4.2 K. (b) The corresponding
amplitudes of TIMO ATIMO

ph and SdHO-periodic oscillations ASdHO
ph plotted against

the corresponding radiation intensity. The values were determined by calculating
half the difference between the peak and the dip of an oscillation period (for TIMO
the first one and for SdHO the one near B ≈ 1.8 T). The dashed line follows a
linear dependence on I, which represents the TIMO amplitude, while the solid line
is calculated according to the expression ASdHO

ph ∝ I/(1 + I/Is) with a saturation
intensity of Is = 0.26 Wcm−2. Figure adapted from Ref. [46] and supplemental
material therein.

reducing the radiation intensity down to I = 0.06 Wcm−2, the evolution of both is
found to be different as demonstrated in Fig. 7.6(b) for A(I)TIMO

ph and A(I)SdHO
ph . The

dependence of the TIMO amplitude is rather linear corresponding to the fit Aph ∝ I

(dashed line) with a weak tendency to saturate above 0.22 Wcm−2. In contrast, the
SdHO-periodic response clearly shows a sublinear power dependence. To emphasize
this behavior, the data points were fitted by the saturation dependence according to
the empirical expression ASdHO

ph ∝ I/(1 + I/Is) (solid line) with a saturation power
Is = 0.26 Wcm−2.

In conclusion, the emergence of a new type of strong low-field magnetooscillations
induced by THz radiation in the photovoltage response has been demonstrated.
These oscillations have been studied in terms of several parameters, such as car-
rier density, excitation frequency, temperature and radiation intensity, which have
proved that TIMO in graphene share a common origin with the MIRO phenomenon
in GaAs. However, the presented analysis has also revealed strong qualitative dif-
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ferences, namely that TIMO appear at much higher frequencies, well above 1 THz,
and persist up to T = 90 K, which is beyond the boiling point of liquid nitrogen.
These found similarities and differences are the focus of the following discussion.

7.2 Discussion

The experimental results and highlighted features of TIMO presented above are
discussed in terms of a theoretical model developed for linear energy dispersion.
Furthermore, the following discussion will substantiate that TIMO are indeed a
MIRO analog in monolayer graphene structures.

The central feature of MIRO is that the effect develops nodes at the positions of
the CR harmonics, related to its nature as a result of resonant photon-assisted
transitions between distant LLs [13]. As only transitions between adjacent LLs are
dipole-allowed, these processes require simultaneous impurity scattering, which leads
to a disorder broadened LL spectrum and thus to the lifting of the selection rules [86,
177, 178]. To describe the origin of MIRO, there are two closely related mechanisms:
the displacement [179–183] and the inelastic mechanisms [178, 184]. Both provide
similar contributions to the photovoltage [185] and photoresistance [186] responses.
The former mechanism is easier to understand on a qualitative level, thus in the
following we will first focus on the displacement mechanism to describe the main
features of TIMO.

Figure 7.7(a) provides a schematic illustration of the displacement mechanism. The
Landau quantization caused by the perpendicularly applied magnetic field leads to
a modulation of the DOS. The purple solid stripes indicate the corresponding re-
sulting LL spectrum, representing the maxima of the local DOS of the l-th disorder-
broadened and strongly overlapping LLs shown in shaded purple. The LLs are
nonequidistant according to εl ∝

√
l, l = 0, 1, 2, ..., reflecting the linear dispersion

relation of graphene as shown in Sec. 2.2, and are further tilted by the presence of a
static electric field E – here, for example, pointing to the right. Note that the latter
can be interpreted as a local gradient of the electrostatic potential introduced either
by the application of an external dc potential or by the formation of built-in electric
fields within the sample. In fact, a nonzero difference between the work functions
of the contact probes, e.g., caused by an asymmetric contact configuration or the
presence of intrinsic inhomogeneities, produces a band mismatch that should be com-
pensated. This compensation leads to the formation of built-in electric fields, which
take over the role of an applied electric field in photovoltage measurements [185,
187–190]. The origin of the oscillatory current is attributed to the interplay between
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Figure 7.7: (a) Sketch of the displacement mechanism for TIMO. The purple stripes
represent the local maxima of the DOS of the nonequidistant LL spectrum in real
space (shown on the right) tilted by a static electric field E. The l + i LLs with
i = 0, 1, 2, ... overlap strongly due to impurity induced disorder broadening. The
energy separation ∆ε between the involved LLs is slightly exceeded by the incident
photon energy hf .This results in a spatial shift of the cyclotron orbit center of
the electron ∆X towards E due to an impurity assisted scattering event, pointing
to a larger final DOS. This generates a photocurrent jph pointing in the opposite
direction of E. (b) Cyclotron orbits before (gray shaded circle) and after (orange
shaded circle) the shift ∆R induced by elastic scattering off disorder. R and R′
represent the vectors pointing to the guiding centers of the cyclotron orbits, while v
and v′ define the corresponding cyclotron velocities. Figure adapted from Refs. [13,
46].

the photon energy and the energy difference of the involved LLs. Let us assume that
the applied magnetic field induces a quantized LL spectrum such that the incoming
radiation with photon energy hf slightly exceeds the energy separation ∆ε between
the involved LLs. Due to the fact that any impurity-scattering process leads to a
displacement ∆X of the electron cyclotron orbit center in real space, see Fig. 7.7(b),
this facilitates the carriers to move between the LLs by absorbing incoming photons.
The preferred direction of the scattering event is in accordance with Fermi’s golden
rule [13, 179]; hence, in the statistical mean, the displacement vector in Fig. 7.7(a)
points towards the local DOS maximum of the (l-th + 2) LL and thus along the
static electric field vector E. This results in a spatial separation of the carriers,
which enables the generation of a nonzero photocurrent jph, pointing in the oppo-
site direction to the spatial displacement of the electron. Now, considering that a
sweeping magnetic field changes the energy separation ∆ε, it ultimately controls the
direction of the displacement, and thus the orientation of the generated photocur-
rent. In general, if hf − ∆ε > 0 (hf − ∆ε < 0), the photocurrent points against
(along) the static electric field, producing the oscillatory behavior. Note that in our
work this generated photocurrent is then recorded via the photovoltage technique
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using an open circuit, see Sec. 3.4.2. In this picture it is immediately clear that for
a direct transition between the maxima of the local DOS of the involved LLs, i.e.,
hf −∆ε = 0, there is no preferred scattering direction: the average displacement is
negligibly small due to a symmetric decrease of the local DOS. Therefore, the pho-
tocurrent vanishes when the photon energy matches direct transitions corresponding
to the CR harmonics.

According to this theoretical model, the oscillations are controlled by the ratio
ω/ωc = BCR/B [6, 8, 13, 17], where BCR defines the magnetic field of the CR via
Eq. (2.34) in Sec. 2.2 for the parabolic, BP

CR, or linear energy dispersions, BL
CR. Since

the corresponding LL spectrum in GaAs is equidistant, the CR position is insensitive
to changes in the carrier density, as discussed in Chap. 5, and thus to the periodicity
of MIRO. This consideration is not valid for graphene due to its nonequidistant LL
spectrum. Within the semiclassical approach, see Sec. 2.2, the density-dependent
magnetic field of the CR, and therefore the fundamental frequency of TIMO, is given
by BF ≡ BL

CR = 2πf√πne/evF. This suggests that the period of TIMO scales as
the square root of ne and is proportional to the radiation frequency. The exper-
imental results in Figs. 7.3(c) and 7.4(b) for MLG #C show excellent agreement
with this behavior. They are accurately reproduced by the corresponding fits using
BL

CR with a Fermi velocity of vF = 1.06 × 106 m/s, which is a typical value for
the relevant regions in graphene [21, 22, 152] and, moreover, agrees well with the
values obtained in MLG #A and #B, see Chaps. 5 and 6, respectively. Further-
more, TIMO exhibit a vanishing photoresponse at integer BF/B and an exponential
damping at low magnetic fields – features common to MIRO [13, 191]. In the regime
of strongly overlapping LL and sufficiently small radiation intensities, the waveform
of conventional MIRO in systems with parabolic energy dispersion is given by [13,
191]

Vph = −A exp
(
−κB

P
CR
B

)
sin

(
2πBP

CR
B

)
, (7.2)

with amplitude A and damping amplitude κ. Figure 7.8(a) presents TIMO for
various carrier densities as a function of the inverse magnetic field, similar to Fig. 7.3
but normalized to BF. The photovoltage was additionally smoothed by a moving
average procedure with a window size larger than the period of TIMO to subtract
the nonoscillating background. The traces are approximated by Eq. (7.2) illustrated
as solid lines in the corresponding color. To fit the waveform we used A, BF and κ as
fitting parameters. The notable disagreement for the maximum of the first period is
in line with previous studies on MIRO and can be attributed to the regime of already
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Figure 7.8: (a) The colored circles show the replotted data of Fig. 7.3(a) normalized
to the fundamental frequency BF, which was chosen to give the best fit to the period
of TIMO with a phase fixed by Eq. (7.2) for each carrier density. The photovoltage
was smoothed by a moving average procedure with a window size larger than the
period of TIMO to subtract the nonoscillating background. (b) BF values of TIMO
( indicated by a solid ellipse) determined by linear fits (red squares) from Fig. 7.3(b)
and fixed-phase fits (blue squares) by Eq. (7.2) [panel (a)] as a function of the Fermi
wave number kF. The dashed line illustrates the fit of the fundamental frequency
of TIMO according to BL

CR, see Eq. (2.34) in Sec. 2.2, with a Fermi velocity of
vF = 1.06×106 m/s. The green circles (indicated by a dashed ellipse) represent the
magnetic field positions of the CR peaks BL

CR recorded for small carrier densities,
see Fig. 7.1(a). Figure adapted from Ref. [46].

separated LLs and thus a strong modulation of the DOS [182, 184, 192, 193]. The
values for BF obtained from Eq. (7.2) (red squares) are plotted against the Fermi
wave number kF = √πne in Fig. 7.8(b). Together with the values estimated from
the linear fits (blue squares), see Fig. 7.3(b), the data follow BL

CR (dashed line) with
vF = (1.06 ± 0.06) × 106 m/s, see Eq. (2.34) in Sec. 2.2. To further support this
analysis of TIMO, the magnetic field positions of the CR peaks BL

CR (green circles)
have been included. These were obtained for lower carrier densities [see Fig. 7.1(a)]
and fit well to the dashed line.

As mentioned above, the exponential damping of TIMO at low B is also an important
property shared with conventional MIRO. The damping is well reproduced by the
exponential decay exp(−κBF/B) with κ ≈ 1, see Fig. 7.8(a), which characterizes
the overlap of broadened LLs and can be rewritten in terms of the conventional
Dingle factor squared, exp(−κBF/B) ≡ exp(−2π/ωcτq). The calculation of the
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corresponding quantum scattering time leads to τq = 1/κf ≈ 1.5 ps, a value which
is several times smaller than the estimation for the momentum relaxation time,
τp ≈ 5 − 10 ps. However, τq significantly exceeds the values obtained from the
exponential decay of SdHO towards lower B-fields in graphene devices of similar
quality [194]. These scattering times, which are at least one order of magnitude
shorter than typical values in GaAs QWs used to study conventional MIRO [13],
indicate the importance of higher frequencies (in the THz range) to probe such
phenomena in graphene. This is in accordance with the observation of TIMO at
higher frequencies beyond 1 THz, see Fig. 7.4, where the photovoltage clearly exhibits
signatures of the first period of TIMO at f = 1.63 THz. In addition, weak but clear
traces of TIMO were detected even at f = 2.54 THz, resulting in an amplitude
decay that scales with f−5/2. This is a slightly faster decay as compared to the
Drude absorption (∝ f−2). However, the fact that TIMO are still visible at such
frequencies implies a remarkable stability against electron gas heating compared to
MIRO in conventional GaAs heterostructures [10, 13, 14, 195, 196] and extends the
field of MIRO-like phenomena well into the THz domain.

Also remarkable is the surprisingly slow decay of the TIMO amplitude with tem-
perature compared to GaAs heterostructures [13]. Figure 7.9(a) presents the data
from Fig. 7.5 of the normalized photovoltage amplitude around B = BF replotted
on a log-linear scale. It is clearly seen that the behavior accurately follows the expo-
nentially damped dependence proportional to exp(−γTT

2) for temperatures above
T > 10 K. At these temperatures, an additional contribution to the damping am-
plitude κ of TIMO in Eq. (7.2) becomes essential, which is determined by the e-e
scattering time τee, yielding κ = 1/f(τq + τee) [175, 176, 186, 198]. The e-e col-
lisions result in an effective broadening of the LLs with increasing temperature,
which is given by τee = 1/fγTT

2 [175, 176, 186, 198]; thus, providing a value of
τee ≈ (57 K/T )2 ps for the e-e scattering time by using the estimated damping am-
plitude γT = 4.4 × 10−4 K−2. This extracted value is confirmed by experimental
values reported for graphene [197]. Figure 7.9(b) compares the temperature de-
pendencies of τee determined from the TIMO amplitude (colored squares) with the
data from Ref. [197] (black solid line), which supports our analysis. Furthermore,
the e-e lifetime is determined by the e-e scattering rate τ−1

ee = cT 2/εF~ of a Fermi
liquid [199, 200] with a constant c including numerical factors [184, 186]. For a
reasonable value (c ≈ 5.6), the experimentally obtained τee is in agreement with the
theoretical prediction for graphene [201, 202], which further substantiates the ex-
perimental findings. It should be noted that the relevant Fermi energies of graphene
lie in the range of εF ≈ 200 meV, which is at least one order of magnitude larger
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Figure 7.9: (a) The normalized photovoltage amplitude of TIMO ∆Aph(T )/∆Aph(T
= 4.2 K) [see Fig. 7.5(b)] plotted on a log-linear scale as a function of temperature.
The dashed curve follows ∝ exp(−γTT

2) with a damping amplitude of γT = 4.4×
10−4 K−2. (b) Temperature dependence of the e-e scattering time, shown as colored
squares, calculated from τee = 1/γTfT

2 with the value of γT determined from the
experimental data given in panel (a). The solid curve represents the results of τee
taken from Ref. [197]. Figure adapted from Ref. [46] and supplemental material
therein.

than the values of GaAs QWs used for conventional MIRO measurements well below
1 THz. Considering the frequencies used to excite TIMO, the temperature damping
amplitude γT ∝ 1/fεF is more than 100 times smaller, proving that graphene is well
suited for MIRO-related studies over an exceptionally wide temperature range.

The features of TIMO observed and discussed above are also compatible with the
inelastic mechanism [178, 203]. Although the displacement and inelastic mechanisms
yield a similar phase and periodicity of MIRO and are proportional to the sinusoidal
behavior − sin(2πBF/B), their origins are rather different. While the displacement
mechanism assumes an equilibrium energy distribution of the electrons, the inelastic
model considers a radiation-induced variation of the distribution function. Indeed,
resonant transitions between the involved LLs of the oscillating DOS cause a modifi-
cation of the Fermi energy distribution, leading to a change in the occupation of the
electronic states. This correction of the Fermi energy distribution oscillates periodi-
cally, governed by the period ω/ωc ≡ BCR/B, enabling a net current flow. Since the
direction of the current depends on the phase difference between the oscillations of
the DOS and the nonequilibrium correction, it exhibits an oscillatory behavior de-
termined also by the ratio ω/ωc with a flowing direction coinciding with that of the
displacement mechanism. The change of the electronic state occupancy is controlled
by inelastic scattering processes [178, 204], thus the mechanism is usually referred
to as inelastic.

The analysis of the temperature dependence of TIMO clearly shows that the domi-
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nant source of damping is the e-e scattering induced broadening of LLs. Considering
that the data additionally indicate that the amplitude A in Eq. (7.2) is indepen-
dent of temperature for T > 10 K, the discussed exponential damping exp(−γTT

2)
is in agreement with the theory for the displacement mechanism [175, 176] and
is assumed to prevail in the considered temperature range, where τp � τee [186].
However, at lower T , i.e., in the limit of τp � τee, the inelastic mechanism is ex-
pected to dominate the photoresponse [184], resulting in a temperature-dependent
amplitude A(T ) ∝ τee ∝ T−2 and consequently a much steeper temperature decay
∝ T−2 exp(−γTT

2) [186, 193, 196, 205]. Recall the evaluated values for τp ≈ 5−10 ps
and τee ≈ (57 K/T )2 ps, the crossover of both regimes is estimated to occur at
T ≈ 20 K, while the actual data reveal only a weak deviation from the exponen-
tial decay at the lowest T . This may reflect the special thermalization processes of
graphene and requires further extensive investigation at low temperatures.

Before concluding this chapter, let us briefly discuss the intensity dependence of
TIMO. At sufficiently low intensities, the amplitude of MIRO is expected to scale
linearly with I [13, 206]. This is consistent with the recorded intensity dependence
of TIMO shown in Fig. 7.6, where only a slight saturation is visible at the highest
intensities I = 0.25 Wcm−2. This may indicate the existence of two distinct regimes
in the weak and strong intensity limits. In fact, this crossover is characterized by a
linear dependence at low I and translates into a strongly sublinear response at high
I. This behavior is in conformity with a number of experimental works studying
MIRO [7, 187, 207–209]. Despite the fact that TIMO exhibit a slight tendency
to saturate, this may pave the way to observe even stronger TIMO by extending
the intensity range using more powerful sources of THz radiation. However, the
SdHO-periodic response in the photovoltage shows a distinct behavior and a strong
saturation in the considered intensity range. The origin of the saturation lies in
the electron gas heating and is attributed to a strong temperature dependence of
the energy losses. This behavior can be well described by the empirical expression
ASdHO

ph ∝ I/(1 + I/Is), with the saturation intensity Is depending on the reciprocal
energy relaxation time and the cross section of the Drude absorption [135, 210]. A
possible explanation for a nonlinear intensity dependence of the electron gas heating
is discussed in the next chapter.

Overall, it has been demonstrated that TIMO observed in graphene are indeed a
MIRO analog. The experimental investigation has revealed common features such
as periodicity and phase that follow the theory of the MIRO effect, including the
displacement and inelastic mechanisms adapted to the linear energy dispersion of
graphene. However, in sharp contrast to MIRO in GaAs, TIMO in graphene have
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shown a remarkably slow decrease in amplitude with increasing temperature, due to
a slower e-e scattering rate, and have appeared at much higher frequencies.

So far, a very general and common property of CR- and MIRO-induced photore-
sponses has been omitted in the above presentation, namely their expected strong
dependence on the radiation helicity. Its study is the subject of the following chapter.
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8 Anomalous Helicity Insensitivity of the Cyclotron
Resonance

The experimental results in Chap. 5 have been obtained under a well-defined CR
condition, demonstrating conventional CR absorption and reflection of the 2DES.
The observations presented in this chapter, however, will reveal intriguing anoma-
lies that contrasts with the regular CR. Specifically, it is shown that CR absorption
within a 2DES can occur independently of the sense of circularly polarized THz radi-
ation. Remarkably, a detailed study of the CR- and MIRO-induced photoresistance
in GaAs and HgTe QWs reveals that at lowest temperatures and highest radiation
powers, the amplitude of the photoresistance is observed to be almost the same for
both CR active (CRA) and inactive (CRI) magnetic field polarities. This puzzling
behavior is rather expected for linearly polarized radiation where both magnetic field
polarities satisfy the CR condition.

Moreover, the anomalous ratio between the amplitudes of the CRA and CRI sides
shows a strong dependence on the sample temperature T and the radiation power P ,
which contradicts the simultaneously measured radiation transmittance that exhibits
an ordinary helicity dependence for all T and P . A closer inspection of the results
reveals a distinct saturation behavior for the CRA and CRI polarities of the electron
gas heating at low T and higher P , caused by a fast increase of the energy losses
leading to a short electron-phonon relaxation time. To explain the anomalous CRI
absorption, the emergence of scattered near-fields close to the 2DES is proposed,
which distort the incoming THz wave with well-defined polarization and thus may
provide CR absorption in the CRI regime.

8.1 Experimental Results

Before presenting the findings for GaAs and HgTe QWs, which reveal the helicity
anomalies observed in the photoresistance, we briefly report the results for graphene.
Figure 8.1 shows the normalized photoresistance ∆Rxx/∆Rmax

xx obtained in MLG
#A, recorded for left- and right-handed circularly polarized radiation at a frequency
of f = 2.54 THz. It reveals the typical picture expected for conventional CR absorp-
tion at the CRA side (see Sec. 2.2), which clearly exhibits a resonantly enhanced
photoresponse only at B < 0 for σ+ helicity (dashed traces) and at B > 0 for σ−

helicity (solid traces), where the electron gas heating is maximized. Indeed, on the
CRI side, the response is significantly weaker, showing only very small signatures.
In graphene, this behavior remains unchanged and has been observed for the whole
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Figure 8.1: (a) Carrier density [ne = (0.7− 2.1)× 1012 cm−2] and (b) temperature
(T = 4.2 to 60 K) dependencies of the normalized photoresistance of MLG #A.
The data were recorded as a function of left-handed (σ−) and right-handed (σ+)
radiation helicity, corresponding to the solid and dashed traces, respectively. Each
pair is offset for clarity. All results were performed at a frequency of f = 2.54 THz.
Figure adapted from Ref. [47] and supplemental material therein.

range of carrier densities [ne = (0.7 − 2.1) × 1012 cm−2] and temperatures (up to
T = 60 K) studied, see Figs. 8.1(a, b). Note that the data measured at σ− for
different carrier densities and temperatures have been already discussed in Chap. 5
in Fig. 5.2, but with the focus on the positive magnetic field polarity.

While the results in graphene are conventional and consistent with the classical
Drude model of CR absorption, the behavior of the photoresistance obtained in GaAs
and HgTe QWs is substantially different. Figures 8.2(b, d) present the temperature
dependencies of the normalized photoresistance and Figs. 8.2(a, c) the simultane-
ously recorded normalized transmittance T /T (B = 0) for GaAs #A obtained at a
frequency of f = 0.297 THz. These data have already been presented in Fig. 5.1 in
Chap. 5, considering only the range B > 0. The transmittance shows a clear CR at
all investigated T , see the contour plots in Figs. 8.2(a, c) for σ− and σ+ helicities.
The traces for the lowest temperature (T = 1.8 K) are plotted in Figs. 8.2(b, d)
(black dashed traces) for the corresponding helicity, revealing a distinct CR dip that
appears for only one magnetic field polarity (B > 0 for σ− and B < 0 for σ+ helic-
ity). As discussed in Chap. 5, these strong dips are caused by resonant reflection and
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Figure 8.2: (a, c) Transmittance T (B) normalized to its value at zero field T (B =
0) measured as a response to left-handed (σ−) and right-handed (σ+) radiation
helicity. The data are plotted as contour maps for a temperature range of T =
1.8−11.8 K. (b, d) Corresponding normalized photoresistance traces ∆Rxx/∆Rmax

xx

obtained at σ− [panel (b)] and σ+ [panel (d)] helicity for several temperatures.
The traces are offset for clarity. The dashed curve represents the transmittance at
T = 1.8 K. Vertical arrows indicate the positions of the CR, and the red and blue
shaded areas denote the vicinity of the CRA and CRI sides, respectively. Dashed
horizontal lines near the CR dips mark the zero transmittance value. All results
were performed in GaAs #A at a frequency of f = 0.297 THz. Figure adapted
from Ref. [47] and supplemental material therein.

absorption of the incoming THz radiation whose shape is affected by the standing
waves inside the substrate. The detected transmittance remained similar over the
entire temperature range studied and, importantly, exhibits no significant features
at the CRI polarity, confirming a high purity of the polarization state of the incident
THz radiation. Figure E.1 in App. E supports this statement by demonstrating the
deviations of the recorded polarization state from a perfect circle obtained at the
sample position. This deviation was determined by measuring the signal transmitted
through a linear polarizer while it was rotated by 360◦. A perfectly circularly polar-
ized beam has the same intensity level when passing through any angle of a linear
polarizer, so performing a 360° scan yields a constant value. At worst, the deviation
from a circle of the polarization state at f = 0.297 THz with σ− helicity is less than
6 %, providing a minimum purity level of 94 %. In addition, due to the large lateral
dimensions of the GaAs QWs compared to the THz beam spot, illumination of edges
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and contacts has been excluded, thus eliminating an additional potential source of
polarization distortion.

Strikingly, the simultaneously measured photoresistance [Figs. 8.2(b, d)] contra-
dicts the regular Drude-like behavior observed in the transmittance: At the high-
est temperature, the photoresistance shows the well-established behavior attributed
to resonant electron gas heating under CR-enhanced absorption (dominated by µ-
photoconductivity, see Chap. 5). Lowering the temperature leads to a superposition
of the CR-enhanced photoresistance with SdHO-periodic oscillations. Most impor-
tantly, an anomalous enhancement of the photoresponse at the CRI polarity is ob-
served, yielding almost similar magnitudes of the resonant signal for positive and
negative B-fields, see the traces for T = 1.8 K in Figs. 8.2(b, d). Such results would
be expected for a linearly polarized THz wave rather than a circular one, since the
former can be decomposed into the sum of the two circular components and thus
satisfies the CR condition for both magnetic field polarities, see Eq. 2.23 in Sec 2.2.
Moreover, for the sequence of temperatures studied, the relative magnitude of the
resonant photosignals at the CRI polarity shows a gradual decrease to higher T .
This general behavior of the anomalous photoresistance is confirmed by additional
measurements in GaAs #A shown in Figs. B.2 and B.3 as well as the corresponding
analysis in Fig. B.6 in App. B obtained for f = 0.69 and 1.63 THz, respectively.
This is further supported by similar findings for the same frequencies in GaAs #B,
see Figs. B.4 and B.5 in App. B.

The anomalous helicity dependence is also observed in the photoresistance of HgTe
QWs of different QW thicknesses. Figure 8.3 shows the temperature dependence of
∆Rxx/∆Rmax

xx for HgTe #A (dQW = 8.1 nm) and #B (dQW = 5.7 nm) obtained at
σ+ helicity and f = 2.54 THz, revealing a similar qualitative behavior. While at
low T the magnitudes for both B polarities are almost equal, the CRI side decreases
progressively with increasing temperature, until at the highest T the CRI response
disappears, restoring the behavior expected for circularly polarized radiation. At
the same time, the simultaneously measured transmittance is almost not affected
by temperature and exhibits no resonant features on the CRI side for all considered
T . Note that compared to GaAs, the transmittance dips in Fig. 8.3 are much less
pronounced. For instance, in HgTe #A the transmittance drops by less than 35 %
at the CR condition, a behavior that can be attributed to a much lower electron
mobility in these structures, see Sec. 4.1.

The above qualitative picture is quantitatively elaborated in Fig. 8.4. To determine
the relative magnitudes of the photoresistance, the amplitudes of the CRA and CRI
signals, termed ACRA and ACRI, respectively, were extracted. At low temperatures,
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Figure 8.3: (a) Normalized transmittance (black dashed curve) at T = 2 K and
normalized photoresistance at T = 2, 10, and 60 K (colored solid curves) obtained
in HgTe #A (dQW = 8.1 nm). (b) Normalized photoresistance measured in HgTe
#B (dQW = 5.7 nm) presented for the same temperatures T = 2, 10 and 60 K.
The inset shows the CR in the corresponding transmittance data obtained at T
= 90 K. The curves are offset for clarity. All results were obtained in response to
right-handed (σ+) circularly polarized radiation with a frequency of f = 2.54 THz.
Vertical arrows indicate the positions of the CR, and the red and blue shaded areas
denote the vicinity of the CRA and CRI sides, respectively, in both panels. Figure
adapted from Ref. [47] and supplemental material therein.

the photoresistance is dominated by the SdHO-periodic oscillations, whose envelope
corresponds to a Lorentzian function given by the CR absorptance, as discussed in
Chap. 5. Therefore, to accurately determine the magnitude, a Lorentzian fit was used
to reproduce ∆Rxx, which subsequently yielded a clean peak height of the signal, see
Fig. 8.4(a). At intermediate T beyond the SdHO regime, where the photoresistance is
completely dominated by the µ-photoconductivity, ACRA and ACRI were determined
by the full photoresponse height, see Fig. 8.4(b). Here, the ∆Rxx value at zero field
(indicated by the horizontal red dashed line) was used as a reference to determine
the full height of the CR-enhanced response. Since at the highest temperatures, e.g.,
for T & 10 K, the noise level becomes almost comparable to the THz-induced signal,
the estimation of the amplitudes is a delicate task. To overcome this, the data were
processed by a moving average procedure before amplitude analysis, see the blue
trace in Fig. 8.4(b). An example of the amplitude analysis is given in Fig. 8.4(c)
for GaAs #A, f = 0.297 THz and σ− helicity. An equivalent analysis was also
performed for higher radiation frequencies f = 0.69 and 1.63 THz, as presented
in Fig. B.6 in App. B. Overall, the data show that the amplitude values for both
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Figure 8.4: (a, b) Positive B-field polarity of the unnormalized photoresistance
obtained at σ−-helicity, presented for T = 1.8 and 11.8 K as examples to demon-
strate the amplitude estimation procedure. The green dashed curve in (a) shows a
Lorentzian fit that yields the envelope of the fast oscillating signal. The peak of this
fit curve is then used to estimate the amplitude ACRA, denoted by the red arrow.
The solid blue curve in (b) shows the moving average of the experimental data
(indicated in orange) used to determine the photoresistance amplitude at higher
temperatures beyond the SdHO regime. (c) Photoresistance amplitude values of
the CRA side (ACRA) and the CRI side (ACRI) as a function of sample temperature
for the data recorded at f = 0.297 THz and σ− helicity. The cyan dashed curve
represents a fit using the Lifshitz-Kosevich formula [160, 161] with an effective mass
of m∗ = 0.066me. The red and blue solid lines represent guides for the eye follow-
ing an exponential decay. The inset shows the corresponding amplitude ratio RAI

[Eq. 8.1] for both helicities. Here, the black dashed-dotted line is calculated by
taking the ratio from the guiding curves in panel (c). The gray shaded areas in (c)
and its inset denote the region where the SdHO-periodic oscillations dominate the
photosignal. All results were obtained in GaAs #A. Figure adapted from Ref. [48]
and supplemental material therein.

polarities decrease significantly with increasing temperature. To characterize this
behavior, the amplitude ratio is introduced

RAI = ACRA

ACRI . (8.1)

The ratio is illustrated in the inset of Fig. 8.4(c) for both σ− and σ+ helicities.
For both helicities it is clearly seen that the ratio increases about three times with
temperature due to the faster decrease of the CRI amplitude. Furthermore, RAI

depends only slightly on the radiation frequency, yielding similar values for f = 0.69
and f = 1.63 THz, see Fig. B.6 in App. B. Note that these values are still far from
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the conventional ratio that can be estimated using the Drude model, see Sec. 8.2. For
comparison, the ratio extracted from the measurements in graphene at T = 4.2 K
is about RAI ≈ 20. At higher temperatures, where the signal is dominated by
the µ-photoconductivity, the amplitude dependencies in Fig. 8.4(c) are guided by
solid, correspondingly colored curves showing an exponential decay. The ratio of
these curves is also shown in the inset as a black dashed-dotted line, reproducing
the increase at higher T . On the contrary, at low T (gray shaded area) the SdHO-
periodic oscillations in the photoresistance dominate, leading to a strong deviation
from the high-T behavior. Their temperature dependence can be well fitted by the
conventional Lifshitz-Kosevich formula, see cyan dashed curve, using the effective
mass m∗ = 0.066me. In addition, the enhanced photoresistance is less sensitive to
temperature at higher radiation frequencies. In particular, comparing the amplitudes
for f = 0.297 [Fig. 8.2] and 1.63 THz [Fig. B.3 in App. B], the photosignal begins to
disappear at T ≈ 15 K in the former case, while it is still pronounced at T = 40 K
in the latter.

The above results were obtained by varying the sample temperature while keeping
the radiation power constant at the highest possible level to maximize the pho-
toresponse. As discussed in Chap. 5, under this condition the main origin of the
photoresistance is the radiation-induced electron gas heating. Based on the data
presented, it is intuitive to explore the regime of electron gas heating by exploit-
ing its dependence on the radiation power. Representative results of transmittance
and photoresistance at different power levels are shown in Fig. 8.5 for GaAs #A,
f = 0.297 THz, σ− helicity, and T = 1.8 K. Equivalent results for the opposite
helicity (σ+) as well as a higher radiation frequency (f = 0.69 THz) are given in
Figs. C.1 and C.2 in App. C. In addition, Figs. C.3 and C.4 in App. C support
the presented results by illustrating the analysis of the photoresistance traces for
f = 0.69 THz. The transmittance remains conventional over the whole power range,
while the photoresistance shows an intriguing behavior. At the highest power, the
CRA and CRI amplitudes are almost equal, which is consistent with Fig. 8.2(b).
Strikingly, a reduction of P by about two orders of magnitude significantly lowers
the response of the CRI polarity, see the yellow trace in Fig. 8.5(b). Furthermore,
a closer look at the CR-enhanced signal reveals that the long tail towards higher
magnetic fields becomes less pronounced at lower P , resulting in a more symmet-
ric shape. To emphasize this, the data shown in Fig. 8.5(b) are replotted, dividing
the photoresistance magnitude by its corresponding radiation power. The results
in Figs. 8.5(d, e) reveal a remarkable deviation of the shape near the CR at the
CRA polarity, while the shape of the CRI response remains almost the same. This
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Figure 8.5: (a) Color-contour plot of the normalized radiation transmittance
T (B)/T (B = 0) as a function of power obtained at f = 0.297 THz with σ−

helicity. (b) Corresponding photoresistance curves ∆Rxx/∆Rmax
xx for various radi-

ation powers down to fractions of milliwatt. The curves are up-shifted for clarity.
The black dashed line represents the transmittance measured at the highest power,
P = 10 mW. (c) Transmittance (dashed) and photoresistance (solid) for left-handed
circularly polarized radiation, a radiation power of P = 0.5 mW, and a radiation
frequency of f = 0.350 THz generated by the BWO quasi-optical setup. In panels
(b, c), the CR dip is denoted by a vertical arrow and the zero transmittance is
indicated by a dashed horizontal line near the dip. The shaded red and blue areas
mark the CRA and CRI polarities. (d, e) Photoresistance ∆Rxx for the CRA and
CRI polarity normalized to the corresponding radiation power in milliwatts. The
data sets are plotted without offsets as functions of the absolute value of the mag-
netic field. All results were obtained at T = 1.8 K in GaAs #A. Figure adapted
from Ref. [48].

already indicates a strong nonlinear behavior of the CRA photoresistance, which is
most pronounced near the CR, where the absorption and thus the heating of the
electron gas is maximized.

In addition, Fig. 8.5(c) shows the radiation transmittance and the corresponding
photoresistance measured for the frequency f = 0.350 THz at the same radiation
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helicity and temperature 10. The coherent radiation was generated by a BWO quasi-
optical system providing a radiation power of P ≈ 0.5 mW at the position of the
sample, see Sec. 3.4.1. The observed ratio RAI is significantly larger compared
to the low-power measurements at f = 0.297 THz. Under these conditions, it is
evident that the CR dip is substantially broader than that at f = 0.297 THz,
which is related to the shape of the photoresistance. These different shapes can be
attributed to the difference in the interference pattern inside the sample substrate,
which is strongly dependent on the radiation frequency [see Chap. 5] and can also
significantly influence the amplitude ratio, as will be addressed below.

Let us now quantify this anomalous power dependence by estimating the ampli-
tudes ACRA(P ), ACRI(P ), and the corresponding ratio RAI(P ). Since the photore-
sistance is clearly dominated by SdHO-periodic oscillations over the whole power
range, the amplitude values of the traces were determined in the same way as shown
in Fig. 8.4(a). The results of the amplitude analysis for f = 0.297 THz are presented
in Fig. 8.6(a) for T = 1.8 and 10 K, where the triangles represent the CRA and the
squares the CRI polarities. We begin with the low-temperature data. For low P

the amplitudes ACRA(P ) and ACRI(P ) exhibit an almost linear behavior with the
radiation power and are therefore well fitted by dashed straight lines. However, at
higher powers, the CRA signal reveals a clear deviation from this linear-in-P behav-
ior, while the CRI response shows only a relatively weak saturation. At high powers,
both data sets are well fitted by the empirical formula

A(P ) = aP

1 + P/Ps
, (8.2)

where a is a scaling parameter and Ps the saturation power, specifically yielding
PCRA

s = 12 mW and PCRI
s = 25 mW. These values demonstrate that the saturation

power for the CRA polarity is about twice that for the CRI polarity. Further-
more, the scaling parameters for these fits yield aCRA = 0.46 ΩmW−1 and aCRI =
0.24 ΩmW−1, so that their ratios satisfy the relation PCRA

s /PCRI
s ≈ aCRI/aCRA.

Taking the amplitude ratio RAI(P ), illustrated as black circles in Fig. 8.6(b), it
initially has a value close to unity at the highest power, but eventually increases
significantly to a value of about 3.5 at lower powers. This behavior clearly reflects
the strong amplitude dependencies and in particular the strong saturation of the
CRA response. This behavior is supported by the results for f = 0.69 THz and
T = 1.8 K in GaAs #A, see Fig. C.4 in App. C, which shows a similar illustration

10Measurements were performed at the technical university of Vienna by Maxim Savchenko
and Alexey Shuvaev in the group of Andrei Pimenov, https://www.ifp.tuwien.ac.at/spectroscopy
(accessed January 1, 2024).
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Figure 8.6: (a) Amplitudes ACRA and ACRI of the photoresistance traces as a func-
tion of radiation power evaluated at f = 0.297 THz for T = 1.8 K (dark red triangles
and dark blue squares) and T = 10 K (brighter associates). The solid colored curves
are fits according to Eq. (8.2) using PCRA

s = 12 mW and PCRI
s = 25 mW for the

saturation powers as well as aCRA = 0.46 ΩmW−1 and aCRI = 0.24 ΩmW−1 as
scaling parameters at T = 1.8 K. To emphasize the deviations from a linear behav-
ior, the low-power amplitude (Ps →∞) was also plotted. These are represented by
dashed lines colored accordingly. The data for T = 10 K are magnified by a factor
of 15 and fitted with a linear-in-P dependence. (b – f) Corresponding amplitude
ratios RAI as a function of radiation power obtained at f = 0.297 THz and different
temperatures. The corresponding data sets for panel (c – f) are shown in Figs. C.5
and C.6 in App. C. The dashed curves are results of the ratios of the amplitude
fits. The purple circle in panel (b) represents the ratio of the photoresistance curve
measured with the BWO quasi-optical setup at f = 0.350 THz shown in Fig. 8.5(c).
All results were obtained in GaAs #A for σ− helicity. Figure adapted from Ref. [48]
and supplemental material therein.

of the power dependence of the CRA and CRI amplitudes and their ratio RAI(P ).
Although the sublinearity of ACRI(P ) for high powers is quite strong compared to
the corresponding amplitude response for f = 0.297 THz, the overall behavior is the
same and the ratio covers an equal range of values, approaching nearly unity at the
highest powers and reaching a value of about 3.2 at the lowest power. The saturation
powers used to fit the data are given by PCRA

s = 8.0 mW and PCRI
s = 16 mW and the

corresponding scaling parameters yield aCRA = 3.5 ΩmW−1 and aCRI = 1.7 ΩmW−1,
satisfying the condition PCRA

s /PCRI
s ' aCRI/aCRA. Note that at low powers the fits

deviate from the data, revealing that Eq. (8.2) does not apply correctly at very low
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P . While the fits exhibits a linear regime towards lower powers, the experimental
results do not. This deviation is particularly evident in the amplitude ratio, where
the data do not fully saturate at low P as predicted for the linear regime.

At higher temperatures, the change of the amplitude ratio with the radiation power
disappears, as demonstrated in Figs. 8.6(c – f) (full photoresistance sets are shown
in Figs. C.5 and C.6 in App. C). Interestingly, the ratio remains constant for T ≥
4.2 K. The reason is clear: due to the fact that both amplitude responses exhibit no
saturation and follow a linear-in-P dependence [see, e.g., the data for T = 10 K in
Fig. 8.6(a)], the ratio shows no dependence on P and consequently yields a constant
value. Note that at the highest powers in Figs. 8.6(b – f), RAI shows an increase
with temperature, consistent with the previous discussion of the inset in Fig. 8.4(c).
For comparison, we have included the ratio of ∆Rxx shown in Fig. 8.5(c) as a purple
circle. The ratio is about twice the value for the lowest power of the data at f =
0.297 THz.

Besides studying the general CR in photoresistance, we also studied MIRO and
its dependence on temperature and radiation power in the GaAs samples. Some
results of MIRO have already been shown in Chap. 7, where their general properties
have been discussed in the context of TIMO in graphene structures. In GaAs #A
and #B these quantum oscillations emerge due to the persistent photoconductivity
effect induced by the illumination of ambient light, as described in Sec. 4.1 and
Chap. 7. Figure 8.7 shows the temperature (a, b) and power (c, d) dependencies
of the transmittance and the corresponding photoresistance curves for GaAs #A
[f = 0.297 THz and σ− helicity] obtained after brief illumination with room light.
Similar measurements were carried out for f = 0.69 THz in GaAs #A and #B for
both helicities, see Figs. D.3 and D.4 in App. D. The radiation transmittance is
regular and follows the expected behavior over the entire temperature and power
range considered. A closer comparison of the transmittance with Fig. 8.2 shows that
the CR dip becomes deeper and wider after the sample is illuminated with room light.
This change is expected and can be attributed to the change in electron density and
mobility, which strongly influences the CR shape, as discussed in Chap. 7. In close
analogy to the bolometric effect caused by electron gas heating [see Figs. 8.2(b, d)
and 8.5(b)], the amplitudes of the CRA and CRI polarities of the MIRO-related
response are almost identical at the lowest temperature and highest power. Here
the photoresistance exhibits the strongest MIRO, which is superimposed by SdHO-
periodic oscillations. With increasing T both types of quantum oscillations are
thermally suppressed, until at T ≈ 15 K only the first period of MIRO remains
visible. At T ≈ 4.2 K, a dominant bolometric photoresistance starts to evolve in
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Figure 8.7: (a, c) Color-contour maps of normalized transmittance for a range of
temperatures (T = 1.8−15 K) and radiation powers (P = 0.2−10 mW). The former
[panel (a)] was measured at P = 10 mW and the latter [panel (c)] by keeping the
sample at T = 1.8 K. (b, d) Corresponding traces of the normalized photoresistance
∆Rxx/∆Rmax

xx for different temperatures [panel (b)] and power levels [panel (d)].
The black dashed curves at the top of both panels represent the transmittance at
the lowest temperature (T = 1.8 K) and the highest available power (P = 10 mW).
The CR dips are denoted by vertical arrows, and zero transmittance is indicated
by dashed horizontal lines near the dips. The shaded red and blue areas mark the
CRA and CRI polarities. (e) Transmittance (dashed) and photoresistance (solid)
traces recorded at a frequency of f = 0.350 THz generated by a BWO quasi-optical
setup with a radiation power of P ≈ 0.5 mW. All results were obtained by σ−

helicity configuration in GaAs #A after brief illumination with room light. The
measurements in panel (a – d) were recorded at f = 0.297 THz. Figure adapted
and modified from Ref. [48].

the vicinity of the CR. Its appearance leads to a significant distortion of the MIRO
shape and also increases the amplitude ratio with rising temperature.

At lower power MIRO continue to dominate the signal and persist down to P ≈
0.5 mW. Here the noise becomes almost comparable to the photosignal. In contrast
to the temperature dependence, the dependence on the radiation power shows only
a weak influence on the amplitude ratio. In addition, the measurements performed
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at the technical university of Vienna 11 with a BWO-based quasi-optical setup at
a frequency of f = 0.350 THz and an estimated power of P ≈ 0.5 mW are in-
cluded, shown in Fig. 8.7(e). The ratio is notably larger, similar to the result of the
bolometric photoconductivity in GaAs #A, see Fig. 8.5.

We will now briefly discuss the results obtained in GaAs #C. While the fabrication
scheme of GaAs #A and #B is very similar, GaAs #C features a selectively doped
16 nm GaAs QW with AlAs/GaAs superlattice barriers, see Sec. 4.1. Figure D.1
in App. D shows the temperature and power dependencies of the transmittance (a,
c) and the corresponding photoresistance (b, d) at f = 0.290 THz generated by the
IMPATT diode setup and σ+ helicity configuration. Measurements were performed
after room light illumination, similar to GaAs #A and #B. Note that in GaAs #C
the latter procedure does not reveal any significant changes in carrier density and
mobility, see Sec. 4.1 for details, but still facilitates the observation of strong MIRO
in the photoresistance. The radiation transmittance shows a clear dip at the CRA
polarity for the whole range of T and P . The broadened and highly asymmetric
shape of the CR dip is attributed to interference effects, see Chap. 5. The fact
that the value of the transmittance at the position of the CR is well below the
value for GaAs #A and #B can be attributed to a higher mobility in GaAs #C, see
Sec. 4.1 for transport properties. However, the dependence of the photoresistance on
temperature and power shows a familiar picture similar to that observed for GaAs
#A. At T = 1.8 K distinct MIRO are observed superimposed on high frequency
SdHO-periodic oscillations. Both are gradually suppressed with temperature and
eventually vanish at T = 18 K, where the photoresistance is dominated by the CR-
induced µ-photoconductivity, which significantly enhances the ratio. Decreasing the
radiation power at a fixed temperature (T = 1.8 K), both MIRO and SdHO-periodic
oscillations are visible down to P = 0.1 mW. As for GaAs #A, the ratio shows only
a slight tendency towards higher values with decreasing P .

Figure D.1(e) in App. D shows an additional measurement taken with the au-
thors’ permission from Ref. [89]. The traces were obtained with a BWO setup
(f = 0.324 THz, P ≈ 0.5 mW). The transmittance and especially the photoresis-
tance show a very regular behavior. The latter reveals a strong sensitivity of MIRO
to circularly polarized radiation, in agreement with the simultaneously measured
transmittance. The analysis yields an amplitude ratio of approximately 30 between
the CRA and CRI polarities for the first period of MIRO.

11Measurements were performed at the technical university of Vienna by Maxim Savchenko
and Alexey Shuvaev in the group of Andrei Pimenov, https://www.ifp.tuwien.ac.at/spectroscopy
(accessed January 1, 2024).
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Figure 8.8: (a, b) Estimation of the MIRO amplitude shown exemplarily for the
CRA polarity at two representative temperatures T = 1.8 K and T = 11 K of the
data obtained at f = 0.297 THz. To overcome the amplitude distortion caused
by SdHO-periodic oscillations, the data were smoothed with via a moving-average
procedure before amplitude evaluation, see cyan traces. (c) Amplitude values of
MIRO ÂCRA and ÂCRI as well as the corresponding ratio R̂AI (shown in the in-
set) as a function of sample temperature. The colored curves are fits according
to ÂCRA,CRI(T ) ∝ exp(−T 2/T 2

1 ) with a corresponding characteristic temperature
of T1 ≈ 4.5 K. The colored dashed curves are guides for the eye following an ex-
ponential decay. The gray shaded area denotes the region where MIRO dominate
the photoresistance. The dashed line in the inset indicates the constant values at
higher temperatures. (d) Power dependence of the amplitudes ÂCRA and ÂCRI

obtained at f = 0.297 THz. The data are well fitted by linear-in-P dependen-
cies, represented by the colored lines. The inset shows the ratio for the data in
panel (d) (black circles) and for the photoresistance trace measured in Vienna at
f = 0.350 THz, see Fig. 8.7(e), (purple circle). The data were recorded in GaAs
#A in the σ− configuration. Figure adapted from Ref. [48].

To determine the full amplitude of the MIRO-induced photoresistance, the traces
were processed by a moving-average smoothing similar to the µ-photoconductivity
traces at high T , see Fig. 8.4. This significantly reduces the influence of the SdHO-
periodic oscillations at low temperatures as well as the increasing noise at higher
T . Representative examples are shown in Figs. 8.8(a, b) for GaAs #A and f =
0.297 THz, where the cyan curves illustrate the moving average of the experimental
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traces shown in black (T = 1.8 K) and orange (T = 11 K) color. The amplitudes
for the CRA and CRI polarities are denoted by ÂCRA and ÂCRI, respectively, and
defined as half the difference of the maximum and minimum values around the
CR position. It is worth noting that, as discussed above, the µ-photoconductivity
response strongly increases with growing temperature, resulting in a superposition
with MIRO. Similar to the analysis of the pure bolometric signal in Fig. 8.4, we
introduce the ratio of the amplitudes according to

R̂AI = ÂCRA

ÂCRI
, (8.3)

which quantifies the anomalous behavior. Figure 8.8 shows the photoresistance am-
plitudes as a function of temperature [panel (c)] and power [panel (d)] for both
polarities obtained from the photoresistance data presented in Figs. 8.7(b, d). The
T -dependence exhibits a superimposed behavior. Below T ≈ 5 K the photoresis-
tance is dominated by MIRO, marked by the gray shaded area, and the amplitudes
clearly follow ÂCRA,CRI(T ) ∝ exp(−T 2/T 2

1 ). This temperature behavior is attributed
to the displacement mechanism, see Chap. 7. In contrast, at higher temperatures
(T & 5 K), where the µ-photoconductivity begins to dominate the photoresponse,
the amplitudes deviate from the low-T behavior and instead follow an exponen-
tial decay, represented by the dashed lines in the corresponding color. Looking at
R̂AI(T ), illustrated in the inset, the ratio first increases (by a factor of two) in the
region where MIRO dominate and eventually flattens out, revealing that the ratio
remains almost independent of temperature at T > 5 K.

As per power dependence, see Fig. 8.8(d), the µ-photoconductivity does not appear
here, instead showing only MIRO and SdHO-periodic oscillations in contrast to the
temperature dependence. The MIRO amplitudes clearly exhibit a linear behavior
with a slight tendency to a superlinear increase at the highest P . Thus, due to
the almost linear scaling of the CRA and CRI amplitudes, the ratio [see inset of
Fig. 8.8(d)] remains nearly constant and only grows slightly towards lower radiation
powers. This is in strong contrast to the analysis of the pure bolometric photoresis-
tance, see Fig. 8.6, where a clear saturation of ACRA and ACRI is visible. In addition,
the ratio of the photoresistance trace performed in Vienna, shown in Fig. 8.7(c), is
represented by the purple circle in the inset of Fig. 8.8(d). Qualitatively similar
results for the temperature and power dependence have also been obtained for GaAs
#C, see Fig. D.2 in App. D. Note that the photoresistance curve in Fig. D.1(e) ob-
tained with the BWO setup at T = 3.7 K demonstrates a very high amplitude ratio
of about 30, see Ref. [89] for detailed analysis.



114 8 Anomalous Helicity Insensitivity of the Cyclotron Resonance

In conclusion, photoresistance measurements in response to circularly polarized THz
radiation have been performed in MLG, HgTe with different QW thicknesses as well
as several GaAs QWs. While MLG exhibits conventional helicity sensitivity result-
ing in CR-enhanced photoresistance only at CRA polarity, the QWs have revealed
anomalous resonant features for CRI magnetic field polarity. This puzzling behavior
is in strong contrast to the simultaneously measured radiation transmittance, which
demonstrates a regularly strong dependence on the radiation helicity for the whole
range of T and P . At lowest temperatures and highest radiation powers, the am-
plitudes of the resonances at the CRA and CRI polarities have been observed to be
almost the same. Furthermore, the ratio of these amplitudes has increased towards
higher temperatures and lower radiation powers. However, even here the values of
the photoresistance ratio are anomalously small, contradicting the expected helic-
ity sensitivity of conventional radiation absorption based on classical Drude theory.
In addition to the pure bolometric photoresistance at CR induced by electron gas
heating, MIRO have also been observed and studied. While the ratio of MIRO am-
plitudes for both magnetic field polarities clearly increases with temperature, they
are only slightly affected by the radiation power.

The observed saturation of the THz CR absorption is discussed in the next section
on the basis of nonlinear electron gas heating. This mechanism explains the observed
temperature and power dependence of the anomalous photoresistance. Furthermore,
possible microscopic origins of the helicity anomalies are proposed to explain the
puzzling CRI absorption.

8.2 Discussion

The results presented above reveal an anomalous response to the helicity of the
incoming THz radiation in GaAs and HgTe QWs. While the measured transmittance
shows a clear dependence on the helicity for all temperature and radiation powers,
the generated bolometric and MIRO-induced photoresistance exhibits an almost
symmetric resonant signal for both magnetic field directions at low T and high P .
The observed temperature and power dependencies of the anomalous photoresistance
are discussed in terms of nonlinear electron gas heating. Thereafter, a possible
explanation for the anomalous CRI absorption is provided.

As detailed in Chap. 5 at the CRA polarity, the measured photoresistance and trans-
mittance are well described in terms of classical Drude theory, including the influence
of the Fabry-Pérot interference. Figure 8.9 presents the full transmittance trace (red
solid) recorded in GaAs #A at f = 0.297 THz, T = 1.8 K, P = 10 mW, and σ−
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Figure 8.9: Normalized transmittance T (B)/T (B = 0) (top colored traces) and
corresponding absorptance A/Amax (bottom colored traces) modeled according to
Eq. (2.45) in Sec. 2.2.1 with η = +1, BP

CR = 0.79 T, µ−1 = 0.027 T and β =
0.031 − i0.0015 T using the experimental transmittance trace shown as a black
dashed line. This was obtained in GaAs #A at T = 1.8 K for f = 0.297 THz,
P = 10 mW and σ− helicity. The theoretical curves are illustrated for different
purities of circularly polarized radiation assigned to the trace color. The curves are
up-shifted for clarity. Figure adapted from Ref. [48].

configuration. The shape is accurately reproduced by Eq. (2.45) [see Sec. 2.2.1], as-
suming that the incoming radiation is 100 % σ− polarized. Spoiling the well-defined
polarization state with small admixtures (2, 5, and 10 %) of the σ+-polarization
component leads to apparent changes in CRI polarity, see the colored transmittance
and corresponding absorptance curves in Fig. 8.9. Here a purity of about 95 % is
already visible as a clear feature. Thus, the almost flat CRI side of the measured
transmittance attests a very high purity of the circular polarization in the transmit-
ted and thus also in the incident wave. Furthermore, the THz beam spot focused
on the sample is significantly smaller than the lateral dimensions of the GaAs and
HgTe QWs, which excludes the influence of edges and contacts and thus a possible
breakdown of the circular polarization in terms of antenna effects [89]. This proves
that the anomalous CRI response detected in the photoresistance, see Fig. 8.2(b),
cannot originate from an external admixture of the opposite helicity components. In
fact, the calculated absorptance in Fig. 8.9 shows that a few percent admixture of
the opposite helicity should reveal a similar CRI signal in the photoresistance, also
not exceeding a few percent of the CRA signal. Note that the high purity of the
circular polarization, confirmed by the transmittance obtained for the σ− configura-
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tion, also holds for measurements with the opposite helicity (σ+) and, furthermore,
for the whole range of temperatures, powers, and frequencies used in this work.

The observed striking behavior in the photoresistance, which reveals almost equal
signals for the CRA and CRI polarities, clearly contradicts the regular transmittance,
see, e.g., Figs. 8.2 and 8.3 for GaAs and HgTe QWs, respectively. For quantitative
comparison, we estimate the amplitude ratio RAI [Eq. (8.1)] at B = BP

CR − =β
and its CRI counterpart using the Drude absorptance [Eq. (2.46) in Sec. 2.2.1] and
assuming that the incoming radiation is 100 % σ− polarized (η = +1). Taking
ACRA,CRI ∝ ACRA,CRI and ACRA → A(B),ACRI → A(−B) the ratio is given by

RAI = A
CRA

ACRI = |µ
−1 + β − iBP

CR − iηB|2
|µ−1 + β − iBP

CR + iηB|2 = |µ
−1 + β − 2iBP

CR + i=β|2
|µ−1 + β − i=β|2 . (8.4)

As discussed in Chap. 5, the CR width is maximal (minimal) for the constructive
(destructive) interference condition, thus providing the minimal (maximal) limit of
the CRA/CRI ratio. Under these conditions, β ∈ R and thus =β = 0, so Eq. (8.4)
is simplified to

RAI = (µ−1 + β)2 + 4(BP
CR)2

(µ−1 + β)2 . (8.5)

Evaluating the relation for β, as introduced in Chap. 5, yields β = 0.21 T (β =
0.03 T) for constructive (destructive) interference. Using µ−1 = 0.027 T and BCR =
BP

CR = 0.79 T, the ratio is

RAI
constr. ≈ 45 and RAI

destr. ≈ 769 . (8.6)

These values are substantially larger than the observed behavior in the photoresis-
tance, see inset in Figs. 8.4(c) and 8.6(b).

The observed power dependencies of the photoresistance amplitudes suggest that
the CR-induced signal arises from nonlinear electron gas heating. This mechanism
has already been discussed in Chap. 5 for the limit of small intensities I → 0, i.e., in
the linear regime, in terms of the energy balance equation [Eq. (2.50) in Sec. 2.3]. In
general, two possible scenarios have to be considered, which may lead to a nonlinear
dependence of the electron gas heating: the saturation of the radiation absorptance
A(I) and/or the nonlinear dependence of the energy losses Q(I). The former necessi-
tates a very high radiation intensity of the order of I ≈ 100 kWcm−2 [135, 211–213],
which is almost five orders of magnitude larger than the intensities used in this work
and therefore does not play a significant role here. However, the nonlinear depen-
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dence of Q(I) becomes important when the electron temperature Te increases such
that the heating ∆T = Te−T starts to be comparable to the lattice temperature T .
A prominent example resulting in a pronounced nonlinear behavior is the mechanism
of low-angle electron-phonon scattering. It has been addressed theoretically [92] and
observed experimentally in Si MOSFET structures where it leads to saturation of
the THz induced photoconductivity [91, 214, 215]. Under the condition of low T ,
the energy losses depend strongly superlinearly on the electron temperature, yield-
ing Q(I) ∝ (Te − T )5 due to low-angle electron-phonon scattering. This leads to an
extremely fast growth of Q(I) with increasing radiation intensity and thus to a rapid
rise of the inelastic scattering rate τ−1

e−ph. As a consequence, the electrons lose their
heat to the lattice more and more efficiently, leading to a saturation of the electron
heating. Since the photoresistance is proportional to ∆T , see Eq. (2.52) in Sec. 2.3,
it also exhibits a sublinear behavior. The stronger radiation absorption on the CRA
side results in a higher electron temperature and thus a stronger saturation com-
pared to the CRI polarity. This picture is consistent with our data, see Figs. 8.6(a)
for f = 0.297 THz and Fig. C.4(a) in App. C for f = 0.69 THz. Although the fre-
quencies differ by a factor of two, the saturation powers PCRA

s and PCRI
s are almost

the same, while the corresponding saturation intensity is about four times higher for
f = 0.69 THz. This behavior is in line with the Drude absorptance, which exhibits a
f−2 scaling. For ACRI, the saturation powers are twice as high as for the CRA ampli-
tude, which agrees with the ratio of the linear coefficients aCRA/aCRI. Furthermore,
this interpretation is supported by the broadening of the CR-enhanced signal shape.
Figures 8.5(c, d) illustrate this behavior. The photoresistance traces, normalized
to the applied radiation power, show similar shapes and magnitudes for the entire
CRI side and at the wings of the CRA signal, clearly demonstrating a linear power
dependence. In strong contrast, the photoresponse reveals a clear deviation at high
P on the CRA side, where electron gas heating is the strongest. This behavior is
governed by a transition from linear to nonlinear heating, which explains the growth
of the CRA/CRI ratio [Eq. (8.1)] at lower powers. Remarkably, the measured RAI

remains anomalously small even at the lowest available P .

This nonlinearity becomes weaker at higher T , which is well reproduced by the ob-
tained photoresistance, see Fig. C.7 in App. C showing traces at T = 6 K. Here, the
shapes and magnitudes of the traces for the entire power range are nearly equal at
both polarities, yielding an almost constant ratio, see Fig. 8.6(d). This behavior is in-
tuitively clear: since at higher T the relative radiation-induced change in Te becomes
smaller, higher intensities are required to facilitate its saturation. At even higher
T , when a certain temperature limit is reached, the involved phonon modes are all
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equally occupied and large-angle scattering becomes possible, yielding a universal
linear dependence of the energy losses on the electron temperature, Q(I) ∝ Te − T .
Under this condition, the energy losses scale linearly with the applied radiation in-
tensity, and the nonlinearity for the electron temperature is absent. It is noteworthy
that the photoresistance may still exhibit a nonlinear behavior even in this high-T
regime. In particular, at high intensities, Eq. (2.52) in Sec. 2.3, is not always valid
and should be replaced by a more general form ∆R = R[Te(I), T ]−R[Te(I → 0), T ].
The increased photoresistance obtained at different radiation frequencies shows that
the features near the CR at higher frequencies survive much higher temperatures. In-
deed, a comparison of the amplitudes for f = 0.297 [Fig. 8.2], f = 0.69 THz [Fig. B.2
in App. B] and 1.63 THz [Fig. B.3 in App. B] demonstrates that the photosignal for
the CRA polarity at the lowest frequency starts to disappear already at T ≈ 15 K,
while for the highest it is still pronounced at T = 40 K. This observation is con-
sistent with the fact that for higher frequencies, the CR condition occurs at higher
magnetic fields between less broadened LL, which are more resilient to temperature
smearing. Consequently, higher T are required to quench the photosignal.

Summarizing the discussion above, the photoresponse at the CRA side is conven-
tional and can be well described within the bolometric mechanism combined with
the nonlinear electron gas heating. The anomalous photoresponse on the CRI side
has very similar shape, while evolution of the CRA/CRI ratio with radiation inten-
sity can be well understood as a result of nonlinear heating. At the same time, the
microscopic origin of the anomalous CRI absorption remains unclear. In the follow-
ing we present a possible explanation proposed in Refs. [47, 48] that may resolve
this puzzling behavior assuming the emergence of near fields.

The electrons in an isotropic and uniform 2DES experience the electric field E of
an incident circularly polarized plane wave as a driving force, resulting in a uniform
circular electric current of the same helicity, which is defined by j = ↔

σE with the
local dynamic conductivity ↔

σ(ω, q → 0). Depending on the helicity, this current
is only resonantly enhanced near CR at B > 0 (σ−) or B < 0 (σ+) [3, 4, 13]. In
order to obtain a resonant CRI response, the observations in the photoresistance
inevitably require a mechanism that converts the uniform THz radiation into non-
uniform evanescent near-fields, thus affecting the polarization state of the incoming
wave within the 2DES. The emergence of evanescent near fields within the sample
locally perturbs the incoming circularly polarized radiation, leading to a mixing of
the otherwise independent helicity components. This results in a non vanishing
absorption at the CRI polarity. Possible sources of such near fields may be rare
and strong impurities or inhomogeneities [13, 216–223]. Indeed, in the vicinity of
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such impurities, the induced electron flow is substantially modified, leading to local
anisotropy. Consequently, this scattering centers should facilitate the coupling of
both helicity modes, thus allowing CR-enhanced absorption for both magnetic field
polarities. Since most of the incoming radiation is reflected under CR condition [see
Chap. 5], the uniform, high-density and high-mobility 2DES containing such strong
impurities can be viewed as an old mirror with randomly distributed dark spots.
The radiation is not effectively reflected near these dark or "dirty" spots, resulting in
enhanced absorption. This means that the near-field absorption inducing resonant
heating at both CRA and CRI polarities is enhanced near these scattering centers
both due to stronger scattering and a larger E-field acting on the carriers. At higher
T the near fields become thermally suppressed due to more frequent phonon and
electron-electron scattering, leading to a decrease in the passive helicity component
and hence a smaller CRI signal. Moreover, the induced helicity coupling produced
by THz near fields is only present in the immediate vicinity of the sample, leaving the
transmittance shape unaffected as it is measured in the far field at a large distance
from the sample, see Sec. 3.4.2. On the contrary, the radiation absorption in the
2DES and thus the obtained photoresistance are directly sensitive to both far-field
and near-field components. Related considerations of strong impurities and their
ability to alter the electron transport properties within a 2DES in both static and
dynamic regimes can be found in Refs. [13, 216–223].

In view of the high quality of the investigated QWs, especially GaAs, the observed
photoresistance with almost equal amplitudes for both polarities is still remarkable.
In fact, such near-field coupling is usually mediated by macroscopic metallic ob-
jects [224–226] as presented in Chap. 6 in a graphene structure with long metallic
contacts, where strong induced near-fields have been observed. In the graphene
experiments, the focused THz beam was much larger than the structure. This is
excluded here by the choice of larger lateral sample dimensions, which prevents the
influence of contacts and edges and provides the illumination of a nominally uniform
2DES. However, it should be noted that the CRI polarity is dominated by much
stronger near fields compared to the CRA side. In fact, at the CRA polarity, most
of the incident radiation is reflected, suppressing the plane-wave component reach-
ing the 2DES and thus the emergence of potential near-fields. At the CRI side, the
radiation is almost completely transmitted, allowing the formation of stronger near
fields, leading to an increased absorption. Once the absorbed energy per unit area
of the 2DES reaches a certain value, the nonlinearity of the electron gas heating
leads to a helicity immune photoresistance, regardless of the nature of the initial
absorbing source.
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Let us now comment briefly on the helicity anomaly observed in the MIRO regime.
Since the samples were exposed to ambient light prior to the measurements, which
changed their transport properties as discussed in Sec. 4.1, this also affected the
transmittance curve. A comparison of Figs. 8.2(b) and 8.7(b) [or Figs. 8.5(b) and
8.7(d)] clearly shows that an increase in mobility leads to a narrower shape and
a deeper minimum. Despite these changes, the overall behavior of the transmit-
tance remains regular and exhibits no features on the CRI side. However, similar to
the bolometric response, the MIRO-induced photoresistance shows almost the same
magnitude for both magnetic field polarities under certain experimental conditions.
The observation of the intriguing helicity immunity of MIRO was already investi-
gated in previous works conducted in GaAs QW structures, which contradict the
established theories [13]. These studies were performed with comparable powers in
the milliwatt range [12, 17] and in the ultra-high power regime of the order of a few
tens of watts [18] achieved by pulsed operation. Most importantly, the observation of
the anomalous helicity dependence of the bolometric photoresistance demonstrates
that the insensitivity of MIRO to circularly polarized radiation is not an intrinsic
property of MIRO itself, but rather a direct consequence of the helicity-insensitive
absorption. In this view, MIRO simply provides an alternative way to probe the
helicity anomalies in the CR absorption.

As can be seen in Figs. 8.7(d) and 8.8(d), the MIRO CRA and CRI amplitudes
show linear-in-P dependencies, indicating no sublinear behavior. Subsequently, the
amplitude ratio R̂AI shows almost no substantial changes over the entire range of
available radiation powers, even at the lowest temperature T = 1.8 K. This be-
havior is different from that observed for the bolometric response discussed above,
which exhibits a clear saturation and hence a substantial change in the ratio with P .
However, the linear-in-P dependencies of MIRO amplitudes are consistent with the
understanding that the appearance of MIRO is not related to the electron gas heating
mechanism. At the same time, according to the displacement and inelastic mecha-
nisms, see Chap. 7 for details, MIRO are proportional to the radiation absorption
under the assumption of not too large radiation powers [13]. Thus, the enhanced CRI
absorption due to scattered near-fields described above should influence the helicity
dependence of MIRO in the same way as the bolometric photoresistance. Consider-
ing that the obtained CRA/CRI ratios for MIRO are in line with the range of values
for the bolometric response, it substantiates that the helicity immunity of MIRO
only reflects the anomalous resonant CRI absorption. However, the amplitude ratio
of the photoresistance trace in Fig. D.1(e) in App. D obtained by the BWO setup
in GaAs #C at T = 3.7 K and f = 0.324 THz reveals a surprisingly high value of
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R̂AI ≈ 30 [89]. This regular behavior reproduces the theoretically predicted ratio
and accurately fits the observed transmittance. At the same time, it is still unclear
why only GaAs #C under these experimental conditions shows the expected conven-
tional behavior, while the other QWs, including GaAs and HgTe, exhibit anomalous
photoresponses. This is indeed puzzling and requires a clarification.

The amplitudes of the MIRO of the CRA and CRI polarities, and thus the ratio
R̂AI, are clearly affected by temperature, see Fig. 8.8(c) for GaAs #A and also
Fig. D.2(a) in App. D for GaAs #C. While at low T MIRO clearly dominate the
photoresistance with almost complete helicity immunity, at higher temperatures,
where MIRO are strongly suppressed, the ratio increases significantly. Note that this
rapid temperature decay of MIRO after ÂCRA,CRI(T ) ∝ exp(−T 2/T 2

1 ) is predicted
by the displacement mechanism, which is in agreement with previous works (for
review, see Ref. [13]). At T & 9 K, the µ-photoconductivity response dominates
the photoresistance, resulting in a slower T -decay. Together with the linear power
dependence, this behavior demonstrates that the large values of the amplitude ratio
at higher T are not due to MIRO, but rather to the temperature dependence of the
nonlinear electron gas heating causing the bolometric photoresistance.

Before concluding, the CR-enhanced photoresistance in MLG shown in Fig. 8.1
is briefly addressed. The obtained photoresponse exhibits a regular CR behavior
with no resonant features on the CRI side and a remarkably high CRA/CRI ratio
[RAI(T = 4.2 K) ≈ 20] over the whole range of carrier densities and temperatures.
This is a surprising result since the sample is several orders of magnitude smaller
than the focused THz beam and thus edges and contacts are inevitably illuminated.
As described above, this should apparently lead to the emergence of evanescent near-
fields and thus modify the radiation polarization leading to resonant CRI absorption.
Furthermore, it is not fully understood whether rare and strong impurities, respon-
sible for the enhanced CRI absorption mentioned above, are present in encapsulated
monolayer graphene. In our samples, the electron mean free path, determined from
magnetotransport measurements see Sec. 4.2, is constrained by the width of the Hall
bar structure, thus proving that electron transport is mostly dominated by edge scat-
tering. However, the influence of the latter on the polarization of the incident plane
wave is still unclear and requires further investigation. Taken together, these re-
sults show that the helicity anomaly in CR absorption reflects peculiarities of the
dynamic response in specific 2DES, and thus demonstrates that its occurrence is not
universal.

To summarize, it has been demonstrated that the observed anomalous CR pho-
toresistance in GaAs and HgTe QWs is strongly affected by the nonlinear electron
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gas heating. A sufficiently high radiation power leads to saturation of the electron
temperature at low T , resulting in sublinear dependencies of the CRA and CRI am-
plitudes on the applied radiation power. Due to the different absorption strengths,
the CRA and CRI amplitudes exhibit different saturation powers. Although the am-
plitude ratio increases significantly with increasing power, it remains anomalously
small even at the lowest P . This puzzling behavior can originate from the resonant
absorption in the CRI regime by scattered near-fields in the proximity of the 2DES.
Their appearance should significantly affect the polarization characteristics of the
incoming plane wave and thus provide a resonant CR photoresistance at both B-field
polarities. The assumption that the 2DES also absorbs at the CRI side also explains
the helicity insensitivity of the CR-coupled MIRO, which have shown a linear-in-P
dependence and whose appearance is not related to electron gas heating. On the
contrary, the small graphene structure, which has been exposed to a THz beam or-
ders of magnitude larger than the entire structure, has shown a regular CR in the
photoresistance, demonstrating non-universality of the helicity immunity.
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9 Conclusion and Outlook

In this thesis, various terahertz-induced optoelectronic phenomena coupled to the
cyclotron resonance and its harmonics have been observed and thoroughly investi-
gated. Different classes of two-dimensional electron systems characterized by linear
and parabolic energy dispersions, the latter with inverted and normal band orders,
served as fruitful playgrounds for the observation of intriguing effects probed by mag-
netophotoresistance and photovoltage. The studies include encapsulated graphene-
based structures and gallium arsenide and mercury telluride heterostructures. The
observed phenomena have been explored in the semiclassical regime where the pho-
ton energy is significantly smaller than the Fermi energy. Graphene structures of
excellent quality have revealed Bernstein modes facilitated by near-field enhanced
magnetoabsorption [45] and terahertz-driven magnetooscillations [46]. While study-
ing the latter in gallium arsenide quantum wells, an anomalous insensitivity of the
cyclotron absorption to the helicity of the radiation has been found. This behavior
is in contrast to the obtained radiation transmittance, which accurately follows the
well-established Drude theory [47, 48].

Basic properties and approaches describing the cyclotron resonance in transmittance
and corresponding absorptance have been outlined in Chap. 5. The main experimen-
tal results and discussions of the observed effects have been presented in Chaps. 6,
7 and 8.

Terahertz-induced Bernstein modes, manifested as sharp photoresponse peaks near
the cyclotron resonance harmonics, have been observed. An extensive study, de-
scribed in Chap. 6, has revealed that these originate from enhanced magnetoab-
sorption caused by near-field effects arising in the vicinity of metallic contacts that
partially protrude into the Hall bar channel. It has been shown that the emerging
Bernstein modes exhibit a flat dispersion leading to a divergent plasmonic density of
states. This in turn resonantly enhances the radiation absorption, resulting in strong
electron gas heating and consequently a resonantly enhanced photoresponse [45].
Extending these considerations, a strong near-field coupling mediated by metallic
interdigitated dual-grating gate fingers has been exploited in bilayer graphene-based
structures [49–51]. The structure yields enhanced near-field diffraction, which has
been used to impose an even stronger coupling of terahertz radiation and magne-
toplasma excitations. Exploiting the nonlinear nature of the ratchet effect – the
generation of a dc electric current in response to an ac electric field – revealed the
coexistence of cyclotron and magnetoplasmon resonances.

Furthermore, the emergence of terahertz-induced magnetooscillations coupled to the



124 9 Conclusion and Outlook

harmonics of the cyclotron resonance has been demonstrated in graphene with con-
ventional contacts in Chap. 7. Analysis of their variation with carrier density and
radiation frequency has revealed a common origin with the well-known microwave-
induced resistance oscillations observed in gallium arsenide heterostructures [13].
It has been shown that, similar to the latter, their graphene analog is governed
by the ratio of the incident radiation frequency to the quasiclassical cyclotron fre-
quency [46]. In this context, the theory of microwave-induced resistance oscillations
has been adapted to the linear energy dispersion of graphene. The displacement
mechanism based on the shift of the cyclotron resonance orbit center and the inelas-
tic mechanism describing a radiation-induced variation of the distribution function
have been considered. Importantly, the presented analysis has also revealed strong
qualitative differences, namely that terahertz-induced magnetooscillations appear at
much higher frequencies, well above 1 THz, and persist up to T = 90 K, which is at-
tributed to a slower electron-electron scattering rate [46]. However, the present study
still lacks a clear assignment of the dominant mechanism in graphene and requires
further investigation to identify its contributions. This necessitates more focused
studies at low temperatures. The observation of the presented phenomena demon-
strates that such high-quality graphene structures provide an excellent platform for
the exploration of novel effects and, furthermore, offer a valuable opportunity to gain
a more profound understanding of the rich spectrum of radiation-induced phenomena
in two-dimensional electron systems.

Cyclotron resonance absorption in gallium arsenide and mercury telluride quantum
wells has revealed an anomalous insensitivity to the helicity of the incident terahertz
radiation, as demonstrated in Chap. 8. In contrast to the investigated graphene
structures, it has been observed that the amplitude of the photoresistance is almost
the same for both the cyclotron resonance active and inactive magnetic field polar-
ities at lowest temperatures and highest radiation powers [47, 48]. The amplitude
ratio of the active and inactive sides of the cyclotron resonance has been shown
to be strongly dependent on sample temperature and radiation power. This is in
strong contrast to the simultaneously measured radiation transmittance, which has
demonstrated an ordinary helicity dependence for all T and P . It has been proposed
that this dependence is caused by nonlinear heating of the electron gas. This heat-
ing leads to saturation of the photoresistance with different saturation behaviors for
the cyclotron resonance active and inactive polarities. However, even at the lowest
powers, the value of the amplitude ratio remains much lower than predicted by the
conventional Drude theory. This puzzling behavior may be resolved by assuming
resonant absorption of the incident radiation via the occurrence of near-field effects
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in the vicinity of the two-dimensional electron system in the cyclotron resonance
inactive regime. Furthermore, this may also explain the helicity insensitivity demon-
strated for the observed microwave-induced resistance oscillations. The presented
anomalies are indeed remarkable and of great importance for polarization-sensitive
photoelectric studies in two-dimensional electron systems. As a perspective, it is
worth mentioning that a more comprehensive understanding of the regular helicity
sensitivity of microwave-induced resistance oscillations under certain conditions may
provide an access to the solution of the long-standing immunity puzzle. An explana-
tion of this behavior may further classify the origin of near-field sources and, more
importantly, shed light on the appearance of cyclotron resonance inactive absorption.
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Appendices
The following figures illustrate further results and analysis of additional measure-
ments that complement and support the data presented and discussed in the main
text. For convenience, the figure sets are organized into subsections.

A SdHO-periodic Oscillations in the Photoresis-
tance

An analysis of the SdHO-periodic oscillations in the photoresistance is presented.
Fig. A.1 shows a representative example of the data for GaAs #A obtained at a fre-
quency of f = 0.297 THz plotted against the absolute value of the inverse magnetic
field 1/|B|. Panels (a – d) correspond to the left-handed (σ−), and panels (e – h)
to the right-handed (σ+) radiation helicity. The inverse magnetic field values are
rescaled to the period of the oscillations at T = 1.8 K for clarity. It is clearly seen
that the photoresistance oscillations are indeed 1/B-periodic and feature the same
period over the whole temperature range, as indicated by the equidistant gray book
lines. This behavior is further supported by Fig. A.2, where the inverse magnetic
field positions of the oscillation extrema are plotted as a function of the filling factor
ν of the LLs for the σ− helicity and corresponding temperatures. The positions
follow a straight line through the origin given by 1/|Bν | = 2π~ne/eν. Since the
oscillations in the photoresistance arise from the reduction in oscillation amplitude
caused by electron gas heating, they have maxima (minima) at even (odd) LL fill-
ing factors, in contrast to SdHO in the dark magnetotransport, which have minima
(maxima) at even (odd) filling factors. This and the periodicity clearly confirm
that the photoresistance oscillations are related to the SdHO in conventional mag-
netoresistance. A similar behavior is observed for all samples, including GaAs and
HgTe QWs as well as graphene, under conditions where the SdHO-related heating
mechanism dominates.

ere an analysis of the SdHO-periodic oscillations in the photoresistance is presented.
displays a representative example of the data for GaAs #A obtained at a frequency
of f = 0.297 THz replotted against the absolute value of the inverse magnetic field
1/|B|. Panels (a – d) correspond to left-handed (σ−), and panels (e – h) to the
right-handed (σ+) radiation helicity. The inverse magnetic field values are rescaled
to the period of the oscillations at T = 1.8 K for clarity. It is clearly seen that the
photoresistance oscillations are indeed 1/B-periodic behaving similarly in the whole
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Figure A.1: (a – d) Normalized photoresistance obtained for GaAs #A, f =
0.297 THz and left-handed (σ−) helicity plotted against the absolute value of the
inverse magnetic field. The traces are shown for different temperatures indicated
next to the corresponding curve. (e – h) Similar plot of photoresistance traces mea-
sured at right-handed (σ+) helicity. For a clearer illustration of the 1/B-periodicity,
the inverse magnetic field scale has been multiplied for each temperature by a fixed
difference of one period of the photoresistance oscillations at T = 1.8 K. Figure
adapted from Ref. [47] and supplemental material therein.

range of temperatures as indicated by the equidistant gray ledger lines. Further-
more, this behavior is supported by where the inverted magnetic field positions of
the oscillation’s extrema are illustrated as a function of the filling factor ν of the LLs
for the left-handed helicity and corresponding temperatures. The positions follow a
straight line crossing the origin given by 1/|Bν | = 2π~ne/eν. Since the oscillations
in the photoresistance emerge due to the reduction in oscillation amplitude caused
by the electron gas heating, they exhibit maxima (minima) at even (odd) LL fill-
ing factors, unlike SdHO in the dark magnetotransport having minima (maxima)
at even (odd) filling factors. This and the periodicity unequivocally confirm that
photoresistance oscillations are related to the SdHO in conventional magnetoresis-
tance. A similar behavior is observed for all samples namely GaAs an origin given
by 1/|Bν | = 2π~ne/eν. Since the oscillations in the photoresistance emerge due
to the reduction in oscillation amplitude caused by the electron gas heating, they
exhibit maxima (minima) at even (odd) LL filling factors, unlike SdHO in the dark
magnetotransport having minima (maxima) at even (odd) filling factors. This and
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Figure A.2: (a – d) The inverse magnetic field positions of the oscillation extrema
of the photoresistance shown in Figs. A.1(a – d) as a function of the filling factor
of the LL. The panels present the data for different temperatures T = 1.8, 3.4, 4.2
and 6.2 K. The dashed lines denote the calculated relation according to 1/Bν =
2π~ne/eν. Figure adapted from Ref. [47] and supplemental material therein.

the periodicity unequivocally confirm that photoresistance oscillations are related to
the SdHO in conventional magnetoresistance. A similar behavior is observed for all
samples namely GaAs anorigin given by 1/|Bν | = 2π~ne/eν. Since the oscillations
in the photoresistance emerge due to the reduction in oscillation amplitude caused
by the electron gas heating, they exhibit maxima (minima) at even (odd) LL fill-
ing factors, unlike SdHO in the dark magnetotransport having minima (maxima) at
even (odd) filling factors. This and the periodicity unequivocally confirm that pho-
toresistance oscillations are related to the SdHO in conventional magnetoresistance.
A similar behavior is observed for all samples namely GaAs an
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B Temperature Dependencies of Transmittance
& Photoresistance

A set of transmittance curves for different temperatures is presented in Fig. B.1 in
response to f = 0.297 THz for σ− [panel (a)] and σ+ [panel (b)] radiation helicities.
The power was set to P = 10 mW. It is evident that the shape of the CR dip changes
slightly with temperature. Figures B.2 and B.3 show the temperature dependencies
at f = 0.69 and 1.63 THz, respectively, for both radiation helicities obtained in
GaAs #A and at the highest available power levels. In addition, Figs. B.4 and B.5
illustrate similar data sets recorded in GaAs #B. The overall behavior, including the
significant increase in the amplitude ratio, supports the results shown in Fig. 8.2 of
the main text. As an example, this is illustrated quantitatively in Fig. B.6 for GaAs
#A and both frequencies in an analog manner as presented in Fig. 8.4.
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Figure B.1: (a) Radiation transmittance T /T (B = 0) for different temperatures,
normalized to its value at B = 0. The set of curves was obtained under left-handed
(σ−) circular polarization. (b) Transmittance measured in response to right-handed
(σ+) circularly polarized radiation. The vertical arrows mark the position of the
CR, and the red and blue shaded magnetic-field regions indicate the vicinity of the
CRA and CRI sides. All traces were obtained in GaAs #A, f = 0.297 THz and
P = 10 mW. Figure adapted from Ref. [48] and supplemental material therein.

peculiarities of the dynamic response in specific 2DES, and thus demonstrates that its
occurrence is not univer To summarize, we demonstrated that the observed anoma-
lous CR photoresistance in GaAs and HgTe QWs is allocated to the mechanism of
nonlinear electron gas heating, while the simultaneously measured transmittance fol-
low a conventional approach based on the standard Drude theory. Due to a strongly
superlinear relation between the energy losses and the electron temperature a suf-
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Figure B.2: (a, c) Temperature-contour maps of the normalized transmittance
T /T (B = 0) traces measured at a frequency of f = 0.69 THz for left-handed (σ−)
[panel (a)] and right-handed (σ+) [panel (c)] circularly polarized radiation. (b,
d) Corresponding temperature dependencies of the photoresistance ∆Rxx for both
radiation helicities. The photoresistance curves were normalized to their maximum
value ∆Rmax

xx . The traces are up-shifted for clarity. The dashed curve denotes the
transmittance for T = 2 K, where zero transmittance is marked by a dashed hori-
zontal line near the CR dip. The vertical arrow marks the position of the CR, and
the red and blue shaded magnetic-field regions indicate the vicinity of the CRA and
CRI sides. All results were performed in GaAs #A using the maximum available
radiation power P ≈ 10 mW at the sample. Figure adapted from Ref. [47].

ficiently high radiation intensity yields a saturation of the latter. This proposal is
strongly supported by sublinear dependencies of the CRA and CRI amplitudes on
the applied radiation power, featuring different saturation powers. Although the
amplitude ratio significantly increases with growing power, it still remains anoma-
lously small even at lowest P . This puzzling behavior is resolved by the assumption
of resonant absorption in the CRI regime via scattered near-fields in the proximity of
the 2DES. Their emergence substantially influence the polarization characteristics of
the incoming plane wave and hence provided a resonant CR photoresistance at both
B-field polarities. The assumption that the 2DES also absorbs at the CRI side also
explained the helicity insensitivity of CR-coupled MIRO, which showed a linear-in-P
dependence and whose appearance is not related to the electron gas heating. On
the contrary, the small graphene structure, whose edges and contacts were exposed
to the orders of magnitude larger THz beam, revealed a regular CR in the pho-
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Figure B.3: (a, c) Temperature-contour maps of the normalized transmittance
curves measured at a frequency of f = 1.63 THz for left-handed (σ−) [panel (a)] and
right-handed (σ+) [panel (c)] circularly polarized radiation. (b, d) Correspond-
ing temperature dependencies of the normalized photoresistance for both radiation
helicities. The traces are up-shifted for clarity. The dashed trace represents the
transmittance for T = 2 K, where zero transmittance is marked by a dashed hori-
zontal line near the CR dip. The vertical arrow marks the position of the CR, and
the red and blue shaded magnetic-field regions indicate the vicinity of the CRA
and CRI sides. All results were obtained in GaAs #A using the highest possible
power of P ≈ 40 mW at the sample. Figure adapted from Ref. [47].

toresistance, demonstrating the non-universality of helicity immunity.peculiarities
of the dynamic response in specific 2DES, and thus demonstrates that its occur-
rence is not univer To summarize, we demonstrated that the observed anomalous
CR photoresistance in GaAs and HgTe QWs is allocated to the mechanism of non-
linear electron gas heating, while the simultaneously measured transmittance follow
a conventional approach based on the standard Drude theory. Due to a strongly
superlinear relation between the energy losses and the electron temperature a suf-
ficiently high radiation intensity yields a saturation of the latter. This proposal is
strongly supported by sublinear dependencies of the CRA and CRI amplitudes on
the applied radiation power, featuring different saturation powers. Although the
amplitude ratio significantly increases with growing power, it still remains anoma-
lously small even at lowest P . This puzzling behavior is resolved by the assumption
of resonant absorption in the CRI regime via scattered near-fields in the proximity of
the 2DES. Their emergence substantially influence the polarization characteristics of
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Figure B.4: (a, c) Temperature-contour maps of the normalized transmittance traces
measured at a frequency of f = 0.69 THz for left-handed (σ−) [panel (a)] and
right-handed (σ+) [panel (c)] circularly polarized radiation. (b, d) Correspond-
ing temperature dependencies of the normalized photoresistance for both radiation
helicities. The traces are up-shifted for clarity. The dashed trace denotes the trans-
mittance for T = 2 K, where zero transmittance is marked by a dashed horizontal
line near the CR dip. The vertical arrow marks the position of the CR, and the
red and blue shaded magnetic-field regions indicate the vicinity of the CRA and
CRI sides. All traces were obtained in GaAs #B using the highest possible power
of P ≈ 10 mW at the sample. Figure adapted from Ref. [47] and supplemental
material therein.

the incoming plane wave and hence provided a resonant CR photoresistance at both
B-field polarities. The assumption that the 2DES also absorbs at the CRI side also
explained the helicity insensitivity of CR-coupled MIRO, which showed a linear-in-P
dependence and whose appearance is not related to the electron gas heating. On
the contrary, the small graphene structure, whose edges and contacts were exposed
to the orders of magnitude larger THz beam, revealed a regular CR in the photore-
sistance, demonstrating the non-universality of helicity immunity.peculiarities of the
dynamic response in specific 2DES, and thus demonstrates that its occurrence is not
univer To summarize, we demonstrated that the observed anomalous CR photore-
sistance in GaAs and HgTe QWs is allocated to the mechanism of nonlinear electron
gas heating, while the simultaneously measured transmittance follow a conventional
approach based on the standard Drude theory. Due to a strongly superlinear re-
lation between the energy losses and the electron temperature a sufficiently high
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Figure B.5: (a, c) Temperature-contour maps of the normalized transmittance traces
measured at a frequency of f = 1.63 THz for left-handed (σ−) [panel (a)] and
right-handed (σ+) [panel (c)] circularly polarized radiation. (b, d) Correspond-
ing temperature dependencies of the normalized photoresistance for both radiation
helicities. The traces are up-shifted for clarity. The dashed trace represents the
transmittance for T = 2 K, where zero transmittance is marked by a dashed hori-
zontal line near the CR dip. The vertical arrow marks the position of the CR, and
the red and blue shaded magnetic-field regions indicate the vicinity of the CRA and
CRI sides. All traces were obtained in GaAs #B using the highest possible power
of P ≈ 40 mWat the sample. Figure adapted from Ref. [47] and supplemental
material therein.

radiation intensity yields a saturation of the latter. This proposal is strongly sup-
ported by sublinear dependencies of the CRA and CRI amplitudes on the applied
radiation power, featuring different saturation powers. Although the amplitude ratio
significantly increases with growing power, it still remains anomalously small even
at lowest P . This puzzling behavior is resolved by the assumption of resonant ab-
sorption in the CRI regime via scattered near-fields in the proximity of the 2DES.
Their emergence substantially influenccontrary, the small graphene structure, whose
edges and contacts were exposed to the orders of magnitude larger THz beam, re-
vealed a regular CR in the photoresistance, demonstrating the non-universality of
helicity immunity.peculiarities of the dynamic response in specific 2DES, and thus
demonstrates that its occurrence is not univer To summarize, we demonstrated that
the observed anomalous CR photoresistance in GaAs and HgTe QWs is allocated
to the mechanism of nonlinear electron gas heating, while the simultaneously mea-
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Figure B.6: (a) Temperature dependencies of the CRA and CRI amplitudes recorded
in response to f = 0.69 THz and σ− configuration, referring to the traces shown
in Fig. B.2. The values were determined using the estimation procedure presented
in Figs. 8.4(a, b). The solid colored lines are guides for the eyes following an
exponential decay. The inset shows the amplitude ratios RAI calculated for both
helicities. The dashed curve follows the ratio of the guidelines in the main panel.
(b) Analogous plot to panel (a) but for the traces obtained at f = 1.63 THz shown
in Fig. B.3. Gray shaded areas in all panels indicate the region where the SdHO-
periodic oscillations dominate the photosignal. All results were obtained in GaAs
#A and recorded at the highest power available at the corresponding frequency.
Figure adapted from Ref. [47] and supplemental material therein.

sured transmittance follow a conventional approach based on the standard Drude
theory. Due to a strongly superlinear relation between the energy losses and the
electron temperature a sufficiently high radiation intensity yields a saturation of the
latter. This proposal is strongly supported by sublinear dependencies of the CRA
and CRI amplitudes on the apomalous CR photoresistance in GaAs and HgTe QWs
is allocated to the mechanism of nonlinear electron gas heating, while the simultane-
ously measured transmittance follow a conventional approach based on the standard
Drude theory. Due to a strongly superlinear relation between the energy losses and
the electron temperature a sufficiently high radiation intensity yields a saturation
of the latter. This proposal is strongly supported by sublinear dependencies of the
CRA and CRI amplitudes on the ap
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C Power Dependencies of Transmittance & Pho-
toresistance

Figure C.1 shows the power dependence for f = 0.297 THz measured in GaAs #A
at T = 1.8 K. The data set is the σ+ counterpart of the results shown in Fig. 8.5
in the main text. The growth of the amplitude ratio as well as the nonlinearity of
the CRA photoresistance in the vicinity of the CR is accurately reproduced. This
behavior is complemented by data measured at a higher frequency (f = 0.69 THz).
The individual traces are shown in Fig. C.2, the power evolution of the shape of the
photoresistance curves and the corresponding amplitude analysis are presented in
Figs. C.3 and C.4, respectively. Figures C.5 and C.6 show additional power depen-
dencies obtained at higher temperatures in the range T = 4.2 − 10 K. Already at
T = 4.2 K the amplitude ratio exhibits no significant change with power reduction.
For comparison, see Fig. 8.6 in the main text, where the amplitude ratios for differ-
ent measurement temperatures are plotted as a function of radiation power. This
constant ratio is a consequence of the absence of nonlinearity in the photoresponse.
Figure C.7 supports this statement by comparing the photoresistance curves for the
CRA and CRI regimes normalized to their respective radiation powers.

peculiarities of the dynamic response in specific 2DES, and thus demonstrates that its
occurrence is not univer To summarize, we demonstrated that the observed anoma-
lous CR photoresistance in GaAs and HgTe QWs is allocated to the mechanism of
nonlinear electron gas heating, while the simultaneously measured transmittance fol-
low a conventional approach based on the standard Drude theory. Due to a strongly
superlinear relation between the energy losses and the electron temperature a suf-
ficiently high radiation intensity yields a saturation of the latter. This proposal is
strongly supported by sublinear dependencies of the CRA and CRI amplitudes on
the applied radiation power, featuring different saturation powers. Although the
amplitude ratio significantly increases with growing power, it still remains anoma-
lously small even at lowest P . This puzzling behavior is resolved by the assumption
of resonant absorption in the CRI regime via scattered near-fields in the proximity of
the 2DES. Their emergence substantially influence the polarization characteristics of
the incoming plane wave and hence provided a resonant CR photoresistance at both
B-field polarities. The assumption that the 2DES also absorbs at the CRI side also
explained the helicity insensitivity of CR-coupled MIRO, which showed a linear-in-P
dependence and whose appearance is not related to the electron gas heating. On
the contrary, the small graphene structure, whose edges and contacts were exposed
to the orders of magnitude larger THz beam, revealed a regular CR in the photore-
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Figure C.1: Analog of Fig. 8.5 obtained for the opposite radiation helicity (σ+). (a)
Contour map of the normalized transmittance for different radiation powers. (b)
The colored curves represent the corresponding normalized photoresistance traces,
offset for clarity. The dashed curve denotes the transmittance for P = 10 mW,
where zero transmittance is marked by a dashed horizontal line near the CR dip.
The vertical arrow marks the position of the CR, and the red and blue shaded
magnetic-field regions indicate the vicinity of the CRA and CRI sides. (c, d) CRA
and CRI photoresistance normalized to the corresponding radiation power. The
results were obtained for GaAs #A at T = 1.8 K in response to f = 0.297 THz.
Figure adapted from Ref. [48] and supplemental material therein.

sistance, demonstrating the non-universality of helicity immunity.peculiarities of the
dynamic response in specific 2DES, and thus demonstrates that its occurrence is not
univer To summarize, we demonstrated that the observed anomalous CR photore-
sistance in GaAs and HgTe QWs is allocated to the mechanism of nonlinear electron
gas heating, while the simultaneously measured transmittance follow a conventional
approach based on the standard Drude theory. Due to a strongly superlinear relation
between the energy losses and the electron temperature a sufficiently high radiation
intensity yields a saturation of the latter. This proposal is strongly supported by sub-
linear dependencies of the CRA and CRI amplitudes on the applied radiation power,
featuring different saturation powers. Although the amplitude ratio significantly in-
creases with growing power, it still remains anomalously small even at lowest P .
This puzzling behavior is resolved by the assumption of resonant absorption in the
CRI regime via scattered near-fields in the proximity of the 2DES. Their emergence
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Figure C.2: (a, c) Power dependence contour plots of the normalized radiation
transmittance recorded in response to f = 0.69 THz for left-handed [panel (a)] and
right-handed helicity [panel (c)]. (b, d) Corresponding normalized photoresistance
curves for various radiation powers down to fractions of milliwatt, up-shifted for
clarity. The black dashed curve represents the transmittance at the highest power
P = 8.1 and 10.1 mW in panels (b) and (d), respectively. The CR dip is denoted
by a vertical arrow, and zero transmittance is indicated by a dashed horizontal line
near the dip. The shaded red and blue areas mark the CRA and CRI polarities,
respectively. All results were obtained at T = 1.8 K in GaAs #A. Figure adapted
from Ref. [48] and supplemental material therein.

substantially influence the polarization characteristics of the incoming plane wave
and hence provided a resonant CR photoresistance at both B-field polarities. The
assumption that the 2DES also absorbs at the CRI side also explained the helicity in-
sensitivity of CR-coupled MIRO, which showed a linear-in-P dependence and whose
appearance is not related to the electron gas heating. On the contrary, the small
graphene structure, whose edges and contacts were exposed to the orders of magni-
tude larger THz beam, revealed a regular CR in the photoresistance, demonstrating
the non-universality of helicity immunity.peculiarities of the dynamic response in
specific 2DES, and thus demonstrates that its occurrence is not univer To summa-
rize, we demonstrated that the observed anomalous CR photoresistance in GaAs and
HgTe QWs is allocated to the mechanism of nonlinear electron gas heating, while
the simultaneously measured transmittance follow a conventional approach based on
the standard Drude theory. Due to a strongly superlinear relation between the en-
ergy losses and the electron temperature a sufficiently high radiation intensity yields
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Figure C.3: Traces measured for different radiation powers in the corresponding
available range, normalized to their respective powers. The CRA and CRI polarities
are shown separately. The full traces are provided in Fig. C.2. Panels (a, b) and
(c, d) present curves for σ− and σ+, respectively. The results were obtained for
GaAs #A at T = 2 K in response to f = 0.69 THz. Figure adapted from Ref. [47]
and supplemental material therein.

a saturation of the demonstrated that the observed anomalous CR photoresistance
in GaAs and HgTe QWs is allocated to the mechanism of nonlinear electron gas
heating, while the simultaneously measured transmittance follow a conventional ap-
proach based on the standard Drude theory. Due to a strongly superlinear relation
between the energy losses and the electron temperature a sufficiently high radiation
intensity yields a saturation of theheory. Due to a strongly superlinear relation be-
tween the energy losses and the electron temperature a sufficiently high radiation
intensity yields a saturation of thufficiently high radiation intensity yields a satura-
tion of the demonstrated that the observed anomalous CR photoresistance in GaAs
and HgTe QWs is allocated to the mechanism of nonlinear electron gas heating, while
the simultaneously measured transmittance follow a conventional approach based on
the standard Drude theory. Due to a strongly superlinear relation between the en-
ergy losses and the electron temperature a sufficiently high radiation intensity yields
a saturation of theheory. Due to a strongly superlinear relation between the energy
losses and the electron temperature a sufficiently high radiation intensity yields a
saturation of thufficiently high radiation intensity yields a saturation of the demon-
strated that the observed anomalous CR photoresistance in GaAs and HgTe QWs is
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Figure C.4: (a) Power dependence of ACRA (red triangles) and ACRI (blue squares)
for f = 0.69 THz and T = 2 K. The solid curves are fits according to Eq. (8.2)
and the dashed lines represent their linear dependencies (Ps →∞). The saturation
powers used to fit the data yield PCRA

s = 8.0 mW and PCRI
s = 16 mW, and the

corresponding scaling parameters are given by aCRA = 3.5 Ω/mW and aCRI =
1.7 Ω/mW. The parameters satisfy the condition PCRA

s /PCRI
s ' aCRI/aCRA. (b)

Power dependence of the corresponding amplitude ratio RAI. The dashed curve
denotes the ratio of the fitting curves in panel (a). All results were obtained in
GaAs #A for σ− helicity. Figure adapted from Ref. [48] and supplemental material
therein.

allocated to the mechanism of nonlinear electron gas heating, while the simultane-
ously measured transmittance follow a conventional approach based on the standard
Drude theory. Due to a strongly superlinear relation between the energy losses and
the electron temperature a sufficiently high radiation intensity yields a saturation of
theheory. Due to a strongly superlinear relation between the energy losses and the
electron temperature a sufficiently high radiation intensity yields a saturation of thn
of theheory. Due to a strongly superlinear relation between the energy losses and
the electron temperature a sufficiently high radiation intensity yields a saturation
of thufficiently high radiation intensity yields a saturation of the demonstrated that
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Figure C.5: (a) Contour map of the normalized transmittance obtained at a fixed
measurement temperature T = 4.2 K and different radiation powers. (b) Power
dependence of the corresponding normalized photoresistance curves at T = 4.2 K,
up-shifted for clarity. (c, d) Normalized transmittance and photoresistance ob-
tained at T = 6 K and different radiation powers, presented in an similar way
as panels (a, b). The dashed traces in panels (b, d) show the transmittance for
P = 10 mW, where zero transmittance is marked by dashed horizontal lines near
the CR dips. The vertical arrows mark the position of the CR, and the red and
blue shaded magnetic-field regions indicate the vicinity of the CRA and CRI sides.
All results were measured in GaAs #A for σ− helicity and f = 0.297 THz. Figure
adapted from Ref. [48] and supplemental material therein.
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Figure C.6: (a, c) Power dependence of the normalized transmittance for T = 8
and 10 K visualized as a color map. (b, d) Normalized photoresistance curves
for different powers and fixed temperatures, T = 8 and 10 K. The dashed traces
denote the transmittance for P = 10 mW, where zero transmittance is marked by
dashed horizontal lines near the CR dips. The vertical arrows mark the position of
the CR, and the red and blue shaded magnetic-field regions indicate the vicinity of
the CRA and CRI sides. All results were obtained in GaAs #A for σ− helicity and
f = 0.297 THz. Figure adapted from Ref. [48] and supplemental material therein.
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D Transmittance & Photoresistance in the MIRO
Regime

Figure D.1 shows the temperature and power dependencies of the transmittance
and photoresistance in the MIRO regime. The data were recorded in GaAs #C
after room light illumination at a frequency of f = 0.290 THz and σ+ helicity.
Note that GaAs #C was grown with a different fabrication scheme than GaAs #A
and #B, see Sec. 4.1 for details. The results are presented in a similar manner
to Fig. 8.7 in the main text. The corresponding amplitude analysis is shown in
Fig. D.2 with respect to temperature and power (analogous to Fig. 8.8 in the main
text). Similar to GaAs #A in Fig. 8.7, the amplitude ratio becomes significantly
larger at high T , where the photoresistance is dominated by bolometric effects. For
completeness, Fig. D.1(e) presents the transmittance and photoresistance curves
obtained with a BWO setup at f = 0.324 THz, T = 3.7 K, and P ≈ 0.5 mW 12.
The photoresistance amplitude ratio is about 30. Figures D.3 and D.4 extend the
temperature dependence of transmittance and MIRO photoresistance with high-
frequency data (f = 0.69 THz). The former figure shows the results for GaAs #A
and the latter figure presents the measurements for GaAs #B.

peculiarities of the dynamic response in specific 2DES, and thus demonstrates that its
occurrence is not univer To summarize, we demonstrated that the observed anoma-
lous CR photoresistance in GaAs and HgTe QWs is allocated to the mechanism of
nonlinear electron gas heating, while the simultaneously measured transmittance fol-
low a conventional approach based on the standard Drude theory. Due to a strongly
superlinear relation between the energy losses and the electron temperature a suf-
ficiently high radiation intensity yields a saturation of the latter. This proposal is
strongly supported by sublinear dependencies of the CRA and CRI amplitudes on
the applied radiation power, featuring different saturation powers. Although the
amplitude ratio significantly increases with growing power, it still remains anoma-
lously small even at lowest P . This puzzling behavior is resolved by the assumption
of resonant absorption in the CRI regime via scattered near-fields in the proximity of
the 2DES. Their emergence substantially influence the polarization characteristics of
the incoming plane wave and hence provided a resonant CR photoresistance at both
B-field polarities. The assumption that the 2DES also absorbs at the CRI side also
explained the helicity insensitivity of CR-coupled MIRO, which showed a linear-in-P

12Measurements were performed at the technical university of Vienna by Maxim Savchenko
and Alexey Shuvaev in the group of Andrei Pimenov, https://www.ifp.tuwien.ac.at/spectroscopy
(accessed January 1, 2024) and published in Ref. [89].
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Figure D.1: (a) Contour maps of normalized transmittance for different temper-
atures and a fixed radiation power P = 10 mW. (b) Corresponding normalized
photoresistance shown for different temperatures up to T = 18 K. (c) Power de-
pendence of the normalized transmittance for a fixed temperature of T = 1.8 K
shown as a color map. (d) Power dependence of the corresponding photoresistance.
The traces in panels (b, d) are offset for clarity, and the dashed curves denote the
transmittance for T = 1.8 K and P = 7.8 mW, where the zero values are marked
by dashed horizontal lines near the CR dips. The vertical arrows mark the posi-
tion of the CR, and the red and blue shaded magnetic-field regions indicate the
vicinity of the CRA and CRI sides. The result in panels (a – d) were performed
for f = 0.290 THz. (e) Transmittance (dashed) and photoresistance (solid) traces
recorded at T = 3.7 K and a frequency of f = 0.324 THz generated by a BWO with
a power of about P ≈ 0.5 mW. The data in panels (a – d) are adapted from Ref. [48]
and the traces in panel (e) were taken with authors’ permission from Ref. [89]. All
results were obtained in GaAs #C after room light illumination and σ+ helicity
configuration.

dependence and whose appearance is not related to the electron gas heating. On
the contrary, the small graphene structure, whose edges and contacts were exposed
to the orders of magnitude larger THz beam, revealed a regular CR in the photore-
sistance, demonstrating the non-universality of helicity immunity.peculiarities of the
dynamic response in specific 2DES, and thus demonstrates that its occurrence is not
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Figure D.2: (a) Amplitude values of MIRO, ÂCRA, and ÂCRI plotted as a function
of measurement temperature at P = 7.8 mW. The colored dashed lines represent
guides for the eye following an exponential decay. The gray shaded area indicates
the region where MIRO dominates the photoresponse. The inset shows the corre-
sponding dependence of the amplitude ratios R̂AI(T). Here the dashed curves rep-
resent guides for the eye. (b) Power dependence of the MIRO amplitudes recorded
at T = 1.8 K. The solid lines denote linear fits according to ÂCRA,CRI(P ) ∝ P . All
results were obtained at f = 0.290 THz and σ+ helicity in GaAs #C. The main
data set is shown in Fig. D.1. Figure adapted from Ref. [48].

univer To summarize, we demonstrated that the observed anomalous CR photore-
sistance in GaAs and HgTe QWs is allocated to the mechanism of nonlinear electron
gas heating, while the simultaneously measured transmittance follow a conventional
approach based on the standard Drude theory. Due to a strongly superlinear relation
between the energy losses and the electron temperature a sufficiently high radiation
intensity yields a saturation of the latter. This proposal is strongly supported by sub-
linear dependencies of the CRA and CRI amplitudes on the applied radiation power,
featuring different saturation powers. Although the amplitude ratio significantly in-
creases with growing power, it still remains anomalously small even at lowest P .
This puzzling behavior is resolved by the assumption of resonant absorption in the
CRI regime via scattered near-fields in the proximity of the 2DES. Their emergence
substantially influence the polarization characteristics of the incoming plane wave
and hence provided a resonant CR photoresistance at both B-field polarities. The
assumption that the 2DES also absorbs at the CRI side also explained the helic-
ity insensitivity of CR-coupled MIRO, which showed a linear-in-P dependence and
whose appearance is not related to the electron gas heating. On the contrary, the
small graphene structure, whose edges and contacts were exposed to of the dynamic
response in specific 2DES, and thus demonstrates that its occurrence is not univer
To summarize, we demonstrated that the observed anomalous CR photoresistance
in GaAs and HgTe QWs is allocated to the mechanism of nonlinear electron gas
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Figure D.3: (a) Contour map of the normalized transmittance curves at different
temperatures recorded in the σ− configuration. (b) Corresponding normalized
photoresistance traces, offset for clarity. The dashed curve shows the transmittance
for T = 2 K, where zero transmittance is marked by a dashed horizontal line near
the CR dip. The vertical arrow marks the position of the CR, and the red and blue
shaded magnetic-field regions indicate the vicinity of the CRA and CRI sides. (c,
d) Temperature dependence of the normalized transmittance and corresponding
photoresistance recorded for the opposite helicity (σ+ configuration) and plotted
similarly to panels (a, b). The sample was illuminated with ambient light prior
to the measurements. All results were recorded in GaAs #A and performed for
f = 0.69 THz at maximum available power P = 8 mW at the sample. Figure
adapted from Ref. [47].

heating, while the simultaneously measured transmittance follow a conventional ap-
proach based on the standard Drude theory. Due to a strongly superlinear relation
between the energy losses and the electron temperature a sufficiently high radiation
intensity yields a saturation of the latter. This proposal is strongly supported by
sublinear dependencies of the CRA and CRI amplitudes on the applied radiation
power, featuring different saturation powers. Although the amplitude ratio signifi-
cantly increases with growing power, it still remains anomalously small even at lowest
P . This puzzling behavior is resolved by the assumption of resonant absorption in
the CRI regime via scattered near-fields in the proximity of the 2DES. Their emer-
gence substantially influence the polarization characteristics of the incoming plane
wave and hence provided a resonant CR plation between the energy losses and the
electron temperature a sufficiently high radiation intensity yields a saturation of the
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Figure D.4: (a) Contour map of the normalized transmittance traces at different
temperatures obtained in the σ− configuration. (b) Corresponding normalized
photoresistance traces, offset for clarity. The dashed curve denotes the transmit-
tance for T = 2 K, where zero transmittance is marked by a dashed horizontal
line near the CR dip. The vertical arrow marks the position of the CR, and the
red and blue shaded magnetic-field regions indicate the vicinity of the CRA and
CRI sides. (c, d) Temperature dependence of the normalized transmittance and
corresponding photoresistance recorded for the opposite helicity (σ+ configuration)
and plotted similarly to panels (a, b). The sample was exposed to ambient light
prior to measurements. All traces were recorded in GaAs #B and were performed
for f = 0.69 THz at maximum available power P = 8 mW at the sample. Figure
adapted from Ref. [47] and supplemental material therein.

latter. This proposal is strongly supported by sublinear dependencies of the CRA
and CRI amplitudes on the applied radiation power, featuring different saturation
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E Polarization Purity of the Circularly Polarized
THz Radiation

Figure E.1(a) shows the recorded photosignal as a function of the polarizer angle.
The signal was detected by a zero-bias detector equipped with a horn antenna. The
radiation output of the IMPATT-diode source was σ− polarized. The THz radiation
was focused by a PTFE lens and directed to the detector by plane and parabolic
mirrors, see Fig. E.1(b). The linear wire-grid polarizer in front of the detector
was mounted to rotate freely, allowing the circularly polarized THz output to be
converted to linearly polarized radiation of arbitrary direction. Since for a perfectly
circularly polarized beam the detected photosignal should be independent of the
polarizer angle, i.e., it should give constant values for each angle, this setup can be
used to estimate the purity of the circular polarization provided by the source. The
deviation from the mean amplitude is about 6 %, which gives a circular purity of
94 %. Note that the radiation components polarized along the wires are reflected
by the polarizer. To avoid this back reflection into the source, which results in
a standing wave pattern, the polarizer was tilted by about 40°. The tilt of the
PTFE attenuator was also used to reduce back reflection. More details about the
IMPATT-diode source can be found in Sec. 3.2.
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Figure E.1: (a) Photosignal Vdet as a function of polarizer angle, recorded with
a pyroelectric detector. (b) Sketch of the corresponding IMPATT diode-based
quasi-optical setup. The result was obtained in response to f = 0.297 THz with
P = 10 mW and σ− configuration.
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