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Abstract

We demonstrate that column @ in System A of the Babylonian
moon ephemerides can be derived from such horizontal phenomena
as were observed and recorded by the Babylonians. Combining four
of the so-called ‘Lunar Six’ in such a way that the effects of the
oblique ascension are eliminated, we obtain a curve which oscillates,
indeed, with the exact period and the approximate amplitude of @.
Our curve (which we call %) also contains oscillations with the
approximate period of the Saros and allows us to find the period
relation which is underlying column @. Herewith it has been shown
for the first time that the length of the anomalistic month can be
derived from horizontal observations.

1. Introduction

Babylonian astronomy is characteristic for its way of observing and
calculating celestial phenomena. When we want to describe the
movement of a planet or the moon, we derive formulae enabling us
to find its position on the sky at any given time. The Babylonian
astronomers concentrated on special characteristic events taking
place at regular time intervals. They first observed and recorded
these events over a long period of time, and then were somehow
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able to construct numerical schemes, mainly using arithmetic pro-
gression, for calculating and predicting these characteristic events.
[For surveys of Babylonian astronomy, see Neugebauer 1955, 1975,
Waerden 1974].

In case of the moon, the time interval was one synodic month.
In the columns of the lunar ephemerides, a series of different
quantities is recorded for each full moon or each new moon. The
numerical algorithms for computing these columns have been
known for a long time [Neugebauer 1955, 1975; Aaboe 1968;
Aaboe and Hamilton 1979; Waerden 1966], and in most cases the
astronomical meaning of the numbers has been understood. But
how the Babylonians were able to derive these algorithms from their
observations has. so far largely remained unknown.

In this paper, we attempt to find a connection between obser-
vations and the methods of computation underlying column @ in
system A.

2. Column & of system A
2.1. Common interpretation

The predominant role of @ is clear: it is the second column in the
ephemerides of system A and is used as a basis for calculating all
other columns and quantities related to the non-uniform velocity
of the moon. The numerical values of &;, where i refers to the
consecutive lines (i.e., successive full moons) of the ephemerides,
form a linear zig-zag function [ACT, 28, 44].

The common interpretation of column @ is based upon its close
connection to column G. G gives the length of the synodic month
in the first approximation where only the variable moon velocity is
taken into account; it also forms a linear zig-zag function. The
structures of @ and G are such that the difference between two
values of G situated 1 Saros = 223 synodic months apart equals the
difference of two successive values of &:

Gi+223_Gi = ¢i—1—¢i- (1)

This led B. L. van der Waerden [1966] and A. Aaboe [1968] to
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interpret column @ as the length of the Saros (up to a constant) in
the first approximation where the sun velocity has a constant value
equal to 30°/month:

223 synod. months = 1 Saros = 6585%+ &~. (2)

(@ is measured in large hours H where 1¢ = 67 = 6,0°; ° = time
degrees.)

Inspired by this interpretation, we have in an earlier publication
[Brack-Bernsen, 1980] calculated the length 4223t of consecutive
Saroi as a function of the lunation number. We found that 4223t is
varying with a (mean) period different from that of column @. This
is so because the length of a Saros depends more strongly on the
variable sun velocity than on the variable moon velocity. This
means, however, that one would never arrive at column & by
observing the durations of Saroi.

We are convinced that column @& must be based directly on
observations. Our aim is here to find out which kind of observations
could possibly lead to column @ — observations which connect @
directly to the anomalistic month.

2.2. Babylonian observations

From the ‘Astronomical Diaries from Babylonia’ [Sachs & Hunger,
1988] we know which kind of observations the Babylonian astron-
omers made. They observed eclipses of the sun and of the moon
and noticed, e.g., ‘In the night of the 13th of month XY, 10° before
sunrise lunar eclipse’ [Sachs & Hunger, 1988, 243]. Thus we can
conclude that they knew at least the exact time of observed eclipses.
The diaries also remark the position of the moon with respect to
fixed stars, e.g. ‘month VII night of the 2nd, the moon was behind
o Scorpii’ [Sachs & Hunger, 1988, 173]. They also contain the dates
on which equinoxes and solstices took place. These dates were,
however, not observed but calculated according to a fixed scheme
[Neugebauer, 1975, 357]. Nevertheless, this implies that the Baby-
lonians at some earlier time must have observed the solstices and
equinoxes.
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Finally, the Babylonian astronomers observed moon and sun
around each full moon and new moon, concentrating on six
phenomena called the ‘Lunar Six’ by A. Sachs [Sachs & Hunger,
1988, 20]. These phenomena consist of six time intervals, two
around new moon and four around full moon, which were regularly
observed and recorded. In this paper, we confine ourselves to full
moon phenomena and therefore only mention the latter four, calling
them the ‘Lunar Four’.~

In order to obtain the ‘Lunar Four’, one has to observe the
moonset on the western horizon the last morning before opposition
and the next morning just after opposition; this gives the time
intervals '

SU = time from last moonset to sunrise before opposition, (3)
NA = time from first sunrise after opposition to moonset.

Similarly, observations of the moonrise on the eastern horizon in
the two evenings nearest to opposition will give the two intervals

ME = time from last moonrise to sunset before opposition, (4)
GE¢ = time from first sunset after opposition to moonrise.

These time differences were all measured in units of us, also called
‘time degrees’ by the Greek. 1 u§ equals 4 minutes, so that”
6,0 u§ = 360° = 1% = 24",

Which kind of information can we get out of such observations?
In order to answer this question, let us introduce a fictitious celestial
body, denoted by (O, which is situated on the ecliptic directly
opposite to the sun (®), such that iz = 45 +180°. At the time of
opposition, moon (Q) and © have the same length. The times
observed and recorded by the Babylonians are the rising times of
the little arc of ecliptic, 44,5 lying between O and O at the four
times where the observations are made.

At this point our trouble starts: horizontal observations of this
kind are influenced by a variety of factors. First, the rising (or

*) We use throughout the Babylonian sexagesimal number system, such that
6,5 =6-60+5 = 365, etc.
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setting) times depend on the length of the ecliptic arc 4455, and
this length in turn depends on the time difference between opposition
and sunrise (or sunset) and also on the momentary velocities of the
sun and the moon. Second, the rising time of 44,7 depends on the
angle between ecliptic and horizon; this angle varies between 30°
and 80° in Babylon. (The rising time in Babylon of an ecliptic arc
of 10° varies between 6°;45 and 13°%15, depending on its position
on the ecliptic.) Finally, the observed time differences depend on
the latitude of the moon.

We know from ephemerides and procedure texts [e.g., No 201,
ACT, pp. 226-240] that the Babylonian astronomers knew of all
these factors and were able to cope with them. In the different
columns of their ephemerides, they had calculated for each fuil
moon (amongst others) the momentaneous velocities of the sun and
the moon, the longitude and latitude of the moon, the time of
opposition and the corrections necessary in order to obtain the
oblique ascension of a given ecliptic arc (i.. the time it takes this
arc to pass the horizon). Using all these quantities, the Babylonian
astronomers were able to calculate the ‘Lunar Four’ SU, NA, GE
(= GE¢) and ME. _

Our working assumption is that the numerical methods de-
veloped for calculating the Babylonian ephemerides are based on
observations such as found in the diaries: namely observations of
eclipses, equinoxes, solstices and the ‘Lunar Four’. In a way, we
attempt to do the opposite of the procedure used in the procedure
text: starting from observations of the ‘Lunar Four’, we try to
reconstruct some of the numerical methods used in the ephemerides.

The following question now arises: How can we possibly filter
out all the different variants hidden in SU, N4, GE and ME? In
the first place, we search for ways of singling out the variable moon
velocity of such observations, just as we believe it has been done in
column .

2.3. A construction of column @ from the ‘Lunar Four’

The basic idea of our reconstruction is to try to eliminate the effects
of the oblique ascension. We remark that if a given little ecliptic arc
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AAoA5 passes the eastern horizon under a small angle (e.g., 30°),
then the same ecliptic arc will pass the western horizon 12 hours
later under a steep angle (80° in our example). This means that it
should be possible to reduce the effects of the oblique ascension by
combining morning observations and evening observations.

Unfortunately, the Babylonian observations left over to us are
too scarce and incomplete to allow a systematic analysis. Therefore
we had to produce thé ‘observed’ material ourselves. We have used
modern ephemerides and a computer code [Kreitmeier, 1990] for
calculating rising and setting times of sun and moon. From these
we have computed the ‘Lunar Four’, as seen from Babylon (32°;30 N,
45° W), for a series of successive oppositions O, over a large time
interval. (Of course, the Babylonians never could obtain such a
complete series of observations due to weather conditions. We shall,
nevertheless, perform our analysis from our complete data and show
later on, how even a less complete and more scattered set of data
still allows to find the same results.)

Investigating several combinations of morning and evening obser-
vations (see also Sect. 3), we found that the following procedure
leads to a curve which oscillates with the period of the moon. Let
us denote the ‘Lunar Four’, calculated or observed at the opposition
(lunation) O,, by SU, NA,, GE, and ME,, respectively. We then
build the sum

BABYLON: Lunation 1 = 13.2.1930
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Figure 1: Sum Z; of the ‘Lunar Four’, (5), as function of the lunation number i, calculated
for Babylon over a period of 240 lunations starting on the 13.2.1930 A.D. The values of Z;
(in minutes) are shown by the crosses and connected by straight lines.
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2= 8U,+NA,+ME;+GE,; 5

and plot it as a function of the lunation number i. The result
obtained for 240 lunations starting on the 13.2.1930 A.D. is shown
in Figure 1. We see that X, indeed, is oscillating with a period
of approximately 14 lunations which is close to Py = 13;56,39,6...
synodic months. It is such a curve we looked for in order to
reconstruct column .

Can the function X; be related to @,? X; is measured in minutes,
while @; in the common interpretation is measured in large hours
H (see (2)). We translate both these units into time degrees (1* =
15°, 1# = 60°) and compare the functions ¢; and X in Figure 2. X;
is as in Fig. 1; @; was reduced by a constant amount of 100° and is
seen as the piecewise linear zig-zag curve; both are given in time
degrees versus the lunation number i. The perfect agreement of the
period leads us to the following hypothesis:

The linear zig-zag function @; has been derived from the sum X,
(5), of the ‘Lunar Four'.
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Figure 2: X, as in Fig. 1. The solid linear zig-zag line contains the values &, of System A in
the Babylonians’ moon ephemerides, in time degrees (1° = 4 min), shifted by K = 100°
according to (6), (7). The horizontal dashed lines show where the Babylonians truncated the
zig-zag function [Aaboe, 1969; Waerden, 1966].
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If we neglect the small-amplitude variations in 2, extending the
longest straight sections to a linear zig-zag function X, we find that
%, has a period Ps ~ 13;57 lunations (of course, the same as that of
2 ) and an amplitude of 19° 12, whereas the maximum amplitude
of X, is 14° 30’ = 0*58™. Thus, we can write

& ~ 3 +K, (6)

where the best fit of the two zig-zag curves is obtained for shifts K
of the order

98° < K < 102°. )]

We shall discuss in a later publication, why the Babylonians have
added this constant K to 2.

In conclusion, we have found that the ‘Lunar Four’ can yield a
linear zig-zag function £; through the sum in (5), which can be used
exactly as @; is used in the ephemerides, namely for each lunation
to find the 1ocation of the moon within the anomalistic month. The
fact that the dominating oscillations of X; have the period P, very
strongly supports our assumption that the effects of the oblique
ascension can be practically eliminated by taking the sum of the
western (SU+ N A) and eastern (GE + ME) observations. A theoreti-
cal proof of this procedure and a deeper understanding of the
astronomical significance of X, based upon O. Schmidt’s excellent
treatment of the oblique ascension [Schmidt 19437, will be the
object of a forthcoming publication [Schmidt & Brack-Bernsen,
1991].

2.4. X and the Saros

2 has to do with the movement in elongation of the moon, and
since we interpret @ according to (6), @ is also closely related to the
elongation movement of the moon. Now, from the ‘Saros text’
[Neugebauer, 1957] and from the calculational scheme connecting
& with G and 4 [Aaboe, 1968], we know that the Babylonian zig-
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zag function @ is closely related to the Saros, i.e. the period of 223
synodic months.

To our big surprise, our curve X does, indeed, reflect the Saros:
If we look more closely at X, we note that its waves have rather
varying and bizarre structures. However, these structures repeat
themselves almost identically after 223 synodic months. This is
clearly demonstrated in Figure 3, where two successive periods of
223 lunations of X are placed on top of each other for the sake of
a better comparison.

Let us go back to column @. This column is constructed such
that

1,44,7 syn. months = (1,44,7+7,28) anom. months = 7,28 Py (8a)
As Neugebauer noticed in his Saros paper [ Neugebauer, 1957], the

relation (8a) combined with the Saros S = 3,43 syn. months tells us
that
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Figure 3: Lower part: X; as in Fig, 1. Upper part: Z;, 123, i.6. X over the next Saros period (1
Saros = 223 lunations), shifted by + 70 minutes. Note how the fine structure repeats itself
almost identically after one Saros.
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1,44,7 syn. months = 28 §+ 3 syn. months = 28- 16 P, . (8b)

In our analysis of the curve 2, we would formulate these relations
somewhat differently:

6247 lunations = 448 ‘waves’ = 448 P; , (9a)
28 - S+ 3 lunations = 28- 16 ‘waves’ = 448 P; . (9b)

From (8b) we see that 28 Saroi are almost equal to 28- 16 P, being
only 3 lunations shorter. (All this is, of course, well known — we just
transform this knowledge into a form which allows us to compare
@ with our X') (8b) tells us that if we were to look at the @ curve
28 Saroi apart, we would have the situation depicted in Figure 4.

Do the lunation points on our curve 2 behave in a similar
manner? The computer program we used is not accurate enough
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Figure 4: Two sections of the zig-zag function @, 28 Saroi = 28- 223 lunations apart. Note
how the maxima are shifted by 3 lunations after this period.
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for extrapolation over a period of 28 Saroi, but it covers correctly
some 10 Saroi. We therefore investigated the position of the lunation
points on the curve X at time intervals of 4, 6, 7, 9 and 95 Saroi.
We found that, indeed, the lunation points on X slide slowly
backwards with respect to the extrema of 2 when going forward
over several Saroi, exactly as they do on the zig-zag curve @.

If our interpretation of @ given in (6) is correct, we can go one
step further and try to find period relations by comparing carefully
the lunation points on X over large time intervals. Choosing pairs
of points which are situated analogously, but several Saroi apart, it
is very easy to count the number of main periods P; in between. As
an example, we show in Figure 5 two sections of X, about 93 Saroi
apart. The exact repetition of the fine structure of the lunation
points after 2078 lunations leads to the period relation.
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Figure 5: Two sections of the curve 2, similarly as in Fig. 3. Below: First lunation on the
9.12.1821 A.D. Above: 2078 lunations ~ 9% Saroi later; this time interval encompasses exactly
149 periods R.



50 Lis Brack-Bernsen

2078 lunations = 149 P; . (10a)
This corresponds to

7
448 P = 2705 448 syn. months = 6247.9 syn. months. (10b)

One very characteristic structure on X, occurring exactly again
between two lunation points some 4 Saroi apart, leads to

63 P; = 878.5 lunations , (11a)
giving
448 P; = 6247 syn. months . (11b)

Our curve X is, indeed, loaded with information!

In summary, the period of X' is that of a function which tabulates
the moon velocity once each full moon. 2 reflects the Saros, and
the lunation points on the curve allow us to determine good period
relations for the linear zig-zag function .

We are aware that the Babylonians cannot have made the curve
analysis as we have done it so far. But they did have the same
material of the ‘Lunar Four’, observed on consecutive full moons
(whenever visible) over long periods of time, and we know that they
were very skilled in handling numbers. We are therefore convinced
that they, in some way or other, were able to extract the same kind
of information from the sum X, (5), as we have done it above. This
is possible, even if not all successive lunations have been seen
without interruption: the lunation points on X lie quite densely,
namely 14 on each period P;. This means that only about one half
of the points of a period would be sufficient to give the function %
and, after averaging the monthly oscillations, the linear zig-zag
function 2. Knowing that the Babylonians observed the ‘Lunar
Four’ over many years, month after month, noting their magnitude
if visible, but also noting when they were not visible to keep track
of the lunation numbers, we feel sure that their material must have
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Figure 6: Z; as in Fig. 1 over 240 lunations, but starting from the 5.9.1971 A.D. (calculated
for Babylon). The circles show the lunations on which a moon eclipse took place. (Only
about half of the eclipses were visible in Babylon.)

been sufficiently comprehensive to enable them to construct the
function 2.

Observations of the ‘Lunar Four’ might have been combined with
accurate observations of moon eclipses (times and places), in order
to find the rather precise period relation (11b) for £ (and &). Eclipses
of the moon alone would not suffice for this task. This will become
evident from Figure 6 showing 2 over a period of 18 years, starting
with lunation 1 on the 5.9.1971 A.D., with all moon eclipses marked
by circles. They are so scarce that they will never allow to determine
the period P; of 2. (Of course, only about one half of these eclipses
would be visible from one and the same point on the earth.)

As a support for our conjecture that column @ has been construct-
ed from the sum, (5), of the ‘Lunar Four’, we point to the Goal-year
texts mentioned by van der Waerden (1974, p. 108). We quote:
“Lunar six and eclipses for the year X-18 and sums SU+ N4 and
ME+GE for the second half of year X-19.” We see that the
Babylonians really were concerned with the sums SU+NA and
ME + GE. They used these functions to produce astronomical pre-
dictions. In the following Section we shall see that more interesting
information can be extracted from these two functions, besides what
we just have gained from their sum X.
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3. Further information found from the ‘Lunar Four’

In Figure 7 we present a compilation of the following quantities as
functions of the lunation number, taken over a period of 500
lunations: SU, the sums SU+NA and ME+GE, their difference
A4 = ME +GE—(SU+ NA), and their sum X, (5). We see that SU
alone varies rather unpredictably, the monthly oscillations are so
dommatmg that it is practically impossible to extract any infor-
mation from $U by simple inspection of the curve. (The curves of
NA, GE and ME look very similar to that of SU.) However, taking
the sums SU+ NA and ME + GE, we get two very similar curves
which oscillate rapidly with a mean period of ca. 12;22 syn.
months ~ P, while their amplitudes vary slowly with a period

BABYLON: Lunation { = 13.2.1930
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Figure 7: Graphs of different horizontal phenomena derived from the ‘Lunar Four’, over a
period of 500 lunations. From top to bottom: $U (+ 340 min), SU+ NA (+ 260 min), GE + ME
(+ 200 min), 4 as defined in (13) (+ 180 min), and 2. Note how all amplitudes oscillate with
the approximate period of a Saros (223 lunations).
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D ~ 109.5 syn. months which is the revolution time of the apside
line. Oscillatory functions of this type have been discussed in our
earlier publication [ Brack-Bernsen, 19807]. They result from a super-
position of two oscillating functions with the periods P, and P,
respectively. In the present case of SU+NA4 and ME +GE, the
dominating term is the sun’s influence giving the period P of the
rapid oscillations, the influence of the moon term being seen by the
variation of the amplitudes with the period D:

D= (i - _1)
Py Po (12)

Of course, SU+ N4 is also influenced by other factors than those
with the periods P, and P. We also remark that both SU+ N4 and
ME +GE, as their sum X, reflect the Saros. The astronomical
meaning of SU+NA will be discussed in [Brack-Bernsen &
Schmidt, 1991.] ]

Taking the difference of ME +GE and SU+ NA, we obtain a
curve which we shall call 4:

4 = ME+GE—(SU+NA4). (13)

This curve is very smooth, almost without any monthly distur-
bances, and oscillates with the period P. It reminds us very much
of the zig-zag function in column A in the ephemerides of system
B, determining the position of the sun (and the moon) at each
lunation (ie., at each full or at each new moon). The question
therefore arises, if the lunation points on the curve 4 also slide
slowly with respect to its extrema, as it is the case for the curve 2.
This would imply the possibility of determining a period relation
from the curve 4 in exactly the same way as we did it above in the
case of 2. Indeed, by inspection of the lunation points about three
Saroi apart on the curve 4, we come to the following relation:

3 Saroi—1syn.month = 54 P, = 3-18 P,
668 syn. months = 54 P . (14)
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This period relation is identical to the one used in the abbreviated
version of column A in system B [ACT, p. 71}

II syn. months. = 5,34 syn. months = 27 P . (15)

The original column A is based upon a more accurate period
relation, namely

2,46,59 syn. months = 13,30 P, (16)
15-[3 Saroi—(1 syn. month+2")] = 15-3- 18 P,

where 1" = ¥ syn. month ~ 1%

It is possible that the Babylonian astronomers found their period
relation (15) vusing the information hidden in the ‘Lunar Four’ in
the combination 4, similarly as we found (14). The relation (16),
however, would require observations using smaller time units than
the synodic month (or observations over about 45 Saroi which seems
quite improbable). We rather see the relation (16) as a refinement of
the relations (14) or (15) — and not (15) as an abbreviation of (16)
found by rounding off, as suggested by O. Neugebauer [1975, p.
533]. We know that the Babylonians regularly calculated solstices
and equinoxes; in their diaries they mentioned the days and months
on which these events took place. It is exactly dates of this kind
which enable us to add a minor correction to (14). (Note that here,
we have to do with the day and not the month as a smallest unit.)
Using exact dates of observed or calculated solstices, the Babylonian
astronomers could easily have found that (14) should be corrected
to (16).

4. Summary and Conclusions

We have shown that it is possible to construct column @ from
horizontal observations. The sum of the ‘Lunar Four’ SU, N4, ME
and GE (calculated at successive lunations) defines us a function X
which oscillates with the same period as @. The fact that also their
amplitudes are closely the same allows us to derive @ from X.
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As we will show [Brack-Bernsen & Schmidt, 1991], 2 is closely
connected to the movement of the moon relatively to the sun (i.e,
to the moon’s movement in elongation).

At this place, we remind the reader about O. Neugebauer’s first
surmise of the astronomical significance of column @ [ACT, p. 44]:
“@ must describe a phenomenon very closely related to the lunar
velocity”, and later [ACT, p. 45]: “Perhaps @ is obtained from the
relative velocity”. We are convinced that Neugebauer was right.

The occurrence of the Saros in X enables us to determine the
period relation underlying &. In our interpretation of @, we therefore
see its connection to the Saros rather as an interior structure — built
into @ as a consequence of the period relation (8b) — than as the
origin of its construction.

Our new interpretation of column & as being derived from 2
will, of course, influence our understanding of the derivation of the
quantities F, G, 4, and W from column @. This will be discussed in
detail in a forthcoming publication.
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