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On the Foundations of the Babylonian
Column @: Astronomical Significance of
Partial Sums of the Lunar Four
by

Lis BRACK-BERNSEND™ AND OrLAF ScHMIDT™P

Abstract:

A characteristic feature of the Babylonian mathematical astron-
omy is the use of periodically varying functions in the form of
sequences of numbers (e.g. arithmetic progressions, zig-zag func-
tions, or piecewise constant step functions) to describe periodically
occurring astronomical phenomena. One major achievement of the
Babylonian astronomers consists in a very precise determination
of the periods of the number sequences used in their ephemeris
texts. Any reconstruction of the Babylonian calculation schemes
must explain how the fundamental periods or period relations can
be determined empirically by such astronomical observations as
were compiled in the Babylonian Diaries.

This paper is concerned with the Babylonian moon ephemer-
ides. The fundamental periods used here are the length Pg of the
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184 Lis Brack-Bernsen and Olaf Schmidt

solar year, the period P¢ of the lunar velocity, and the period Pg
of the moon’s movement in latitude. P¢ and P, are the periods of
the moon velocity v¢ and of the moon latitude f¢, respectively,
when these are measured once each synodic month, such as the
Babylonians did it in their ephemeris texts.

We have recently shown that horizontal phenomena observed by
the Babylonians, the so-called Lunar Four, contain information
on these periods. E.g., the period P¢ can be determined empiri-
cally by the sum of all Lunar Four, whereas partial sums oscillate
with the period Pg. In the present paper we will explain why and
how this works, through offering an astronomical interpretation
and analysis of (partial) sums of the Lunar Four. In so doing, we
will use the modern theory and ancient ideas on the oblique ascen-
sion of ecliptic arcs (i.e., the time it takes these arcs to pass the
horizon). We also dlscuss the implication of this knowledge on our
understanding of the development of the Babylonian astronomy.

1. Introduction on the Lunar Six

The ‘Lunar Six’ are some characteristic time intervals between sun-
rise or sunset and moonset or moonrise. These time intervals are
very easy to observe: the Babylonians, indeed, recorded them regu-
larly during the last six centuries B.C. as can be seen from the
‘Diaries’, the compilations of their observed data. In Figure 1 the
phenomenon KUR is illustrated in detail as follows. The horizontal
(thin) great circle is the horizon, the (thick) oblique circle is the
celestial equator (as seen from Babylon), and the dotted great
circle is the ecliptic. We consider a morning shortly before new
moon. The sun and the moon are placed somewhere on the ecliptic
near the eastern horizon; thus we have neglected the latitude of
the moon. The arc of the echptlc between moon and sun may be
around 20°; the moon has thus risen visibly about 1 hours before
sunrise. On the next morning, however, the moon w111 be so close
to the sun that the moonrise is invisible. The time difference be-
tween this last visible moonrise (before conjunction) and the sun-
rise is called KUR. One might think that this time difference is
measured by the arc of the ecliptic between moon and sun; but
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Equator

Figure 1. The celestial sphere for Babylon.

actually, times are measured on the equator and therefore we have
to find the points 4 and B on the equator that rise at the same
time as the sun and the moon, respectively. These points can be
found by drawing great circles passing through the moon and the
sun and being tangent to the greatest of the always visible small
circles. (For drawing the celestial sphere in this way, see Olaf
Schmidt [1994].) The observable KUR is the rising time of the
elongation arc D®. It is given by the length of the arc 4B and
depends on where the alongation arc ) © is placed on the ecliptic
and also upon the length of arc D ©®.

KUR is one of the Lunar Six. The others of the Lunar Six,
called NA, SU, ME, NA, and GE by the Babylonians,! are defined
similarly. For completeness, let us repeat here their definitions.

Around conjunction, two characteristic time differences can be
observed:

KUR=time interval between moonrise and sunrise measured on
the last morning where the moon is still visible before conjunction.

NAy=time interval between sunset and setting of the new moon
crescent on the first evening where the moon is visible again after
conjunction’.

Around opposition, four characteristic time differences were
regularly observed by the Babylonians. We call them in the follow-
ing the ‘Lunar Four’:
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SU =time interval from last moonset to sunrise before opposition,
NA =time interval from first sunrise after opposition to moonset!,
ME =time interval from last moonrise to sunset before opposition,
GE =time interval from first sunset after opposition to moonrise.

Although spectacular and easy to observe, these time intervals are
very complicated quantities from a theoretical point of view. Neu-
gebauer [1957, pp. 107-109] describes in detail the factors which
determine whether the new moon crescent can be seen after sunset
on the evening after new moon (conjunction). The same factors
also decide for how long time the new moon can be seen in the
evening of its first visibility. This time interval is NA . The others
of the Lunar Six are correspondingly determined by similar fac-
tors.

In Sections 5 and 6, the Lunar Four will be studied in more
detail. Here we just mention that each of the Lunar Six strongly
depends upon four variables:

1) the time interval A¢ between syzygy (conjunction or opposition)
and sunrise or sunset respectively:

2) the momentaneous moon velocity v¢;

3) the moon’s position A¢ in the ecliptic at the moment of the

syzygy; and
4) the momentaneous latitude ¢ of the moon.

In the case of the Lunar Four, At is the positive time interval
between opposition (z,,) and sunrise (f,) or sunset (%), respec-
tively, so that we have

At = t,,~t, for SU, At = t,—t,, for NA,
At =t,,—t, for ME, At =t—t,, for GE . (1)

Taking SU as an example, we can thus write it as a function of
four variables:

SU =f(At’ Ve, l@’ ﬂ() (2)
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and similarly for NA, GE, and ME, using the corresponding defi-
nitions (1) of At. In Figure 1 we saw that KUR is the rising time
of a small arc of the ecliptic, say e, and that the magnitude of KUR
is determined by e’s position in the ecliptic and by the length of e.
Similarly for the other Lunar Six. In all cases, the length of e, the
relevant little ecliptic arc is determined by Af and v¢, whereas the
position of e is given by our variable A¢.

Due to the complexity of these dependencies, it was silently as-
sumed for a long time that the Lunar Six were of no practical or
theoretical use — at least, nobody proposed how they could have
been used by the Babylonians to develop their astronomical calcu-
lation schemes. The ephemeris and procedure texts stemming from
the Seleucid era, however, demonstrate that during the last three
centuries B.C., the Babylonians were able to calculate and predict
the magnitude of the Lunar Six. We strongly agree with O. Neuge-
bauer [1957] who writes: ‘It is one of the most brilliant achieve-
ments in the exact sciences of antiquity to have recognized the
independence of these influences and to develop a theory which
permits the prediction of their combined effects.’

The fact that the Babylonian astronomers were able to calculate
the Lunar Four? by a skillful combination of these influences gives
us a hint that they might as well have been able to do the reverse,
i.e. to separate out the different influences from the observations.
We are convinced that they really did do so, namely by simple
combination of the Lunar Four data, and that their column & was
constructed from observations of the Lunar Four. In our search
for genuine Babylonian observations which possibly could have
been used for constructing the column &, we succeeded in showing
that & can, indeed, be derived from the Lunar Four [Brack-
Bernsen 1990]. This implies that the Babylonian function @ was
found empirically, and not deduced from theoretical consider-
ations. It also provides for the first time a proposal how the Baby-
lonians might have used their abundant observation material of
the Lunar Four.

In this paper we will explain how this is possible. We will show
that by simple addition of the Lunar Four, the influence of some
of the variables can be eliminated and that of others strongly re-
duced. By taking the sum SU+NA or ME+GE, the dependence
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on At is eliminated and the dependence on fi¢ is strongly reduced:
SU+NA as well as ME+GE are independent of At and almost
independent of f¢; they depend heavily upon A¢ and less upon
v¢. By adding SU+NA and ME+GE, the dependence on A¢ is
drastically reduced: T=SU+NA+ME+GE depends mostly on v¢
and less on A¢. This explains why the sum X of the Lunar Four as
a function of the lunation number varies periodically concurrently
with V.

2. Empirical information contained in the Lunar Four

The uppermost curve of Figure 2 demonstrates graphically the
complexity of one'of the Lunar Four. We have chosen SU as an
example and, inspired by the Babylonians who calculated or ob-
served characteristic moon phenomena once each synodic month,
we have calculated the observable SU during 60 consecutive syn-
odic months. These values of SU are marked in Figure 2 by crosses
(X), connected by straight lines, and shown as function of the lu-
nation number L. We remark how SU varies rather chaotically and
seemingly without any regularity. It is practically impossible to
extract any information from SU by simple 1nspect10n of this curve
or, as the Babylonians might have done it, by 1nspect10n of the
correspondingly tabulated values of SU. This is not surprising
since we know that SU is a complicated function of four variables.
Similar pictures would be obtained by plotting the other Lunar
Four in the same way.

It turns out, however, that the influence of the different variables
on which the Lunar Four depend can be effectively reduced if some
of them are combined. In Figure 2 we also show the sums SU+ NA,
ME+GE and the sum of all of the Lunar Four: X=
SU+ NA+ME+GE. They all show a much more regular behaviour
than SU, indicating that some of the dependencies on the variables
At, ve, A¢ and P¢ have been partially eliminated by simple ad-
dition of the Lunar Four values.

Figure 3 presents a compilation of the same four quantities SU,
SU+NA, ME+GE and X, now taken over a period of 450 Iu-
nations. The curves of the sums SU+NA4 and ME+GE are very
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Figure 2. Different horizontal phenomena derived from the ‘Lunar Four’ as functions of
the lunation number L, calculated for Babylon over a per{od of 60 months (starting on JD
1444424~=Aug. 14, 759 BC). From top to bottom: $U, SU+NA, ME+GE and X.

similar. They oscillate rapidly with a mean period of ca. 12; 22
synodic months = Pg, the length of the solar year, and their ampli-
tudes vary slowly with a period D~109.5 synodic months, which
1s the revolution time of the moon’s apside line in the ecliptic. Os-
cillating functions of this type have been discussed in an older
publication {Brack-Bernsen 1980]. They result from a superpo-
sition of two oscillating functions with the periods P¢ and Po,
respectively. In the case of SU+NA and ME+GE, the dominating
term has the period Pg, reflecting the variable A with this period;
the influence of the variable v¢ is being seen through the variation
of the amplitudes.® The curve X, on the other hand, oscillates with
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Figure 3. The same phenomena as in Figure 2, now calculated over a period of 450 synodic
months.

a mean period of about 14 synodic months which is the period
P¢. This shows us that X depends most strongly on v¢, while only
a minor influence of A¢ is seen by the variation of its amplitude.
The smaller irregularities in these three sum curves show that they
are still influenced by other factors than those with the periods Pg
and P -

3. Reconstruction of column @

The fundamental quality of column @ consists of its period Py
which, with a surprisingly high accuracy, equals the period P¢ of the
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moon velocity v¢ as observed once each synodic month. Within sys-
tem A of the Babylonian moon ephemerides, all calculated quan-
tities depending on the moon velocity v¢ are derived from column
@, taking over the exact period Pg from column @. The fundamental
question therefore was: from where did the Babylonians know the
exact period relation which is built into their column @?

In searching for the origin of @, we had to look for observations
which eventually contain information about v, and concentrated
on the Lunar Four. As already stated above, these are very compli-
cated quantities. One of the disturbing factors stems from the fact
that sun and moon both move along the ecliptic, while time and
hence also the Lunar Four time intervals are measured along the
equator. This fact is called the ‘oblique ascension’. At the latitude
of Babylon, the angle between the equator and the horizon equals
57.5°, whereas the angle between the ecliptic and the horizon varies
between 34° and 81°. Therefore, depending upon its position in the
ecliptic, the rising time of a 10° arc of the ecliptic varies between
6°45 and 13°;15.

The basic idea behind the proposed reconstruction of column
@ was to reduce the influence of the oblique ascension (i.e., the
dependence on i¢) by combining observations on the eastern with
observations on the western horizon. This turned out to be poss-
ible: as we have seen in Figure 3, the sum 2 of the Lunar Four
does indeed oscillate with the very period P¢ we are looking for.
(This indicates that 2 depends most strongly on v¢ and less than
each of the Lunar Four upon 1¢, and also much less upon Ar and
Be¢.) Indeed, it was shown [Brack-Bernsen, 1990] that the sum 2
of the Lunar Four:

> = SU+NA+ME+GE (3)

varies with the same period and amplitude as @. We therefore pro-
posed the hypothesis: Column @ is derived from the sum X of the
Lunar Four.

Recently, using a more accurate computer code enabling us to
calculate lunar phenomena at ancient times [Moshier 1992], it was
shown [Brack-Bernsen 1994] that also the phases of the calculated
2 and the Babylonian Column @ were exactly the same in the
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Seleucid time. This is illustrated in Figure 4 which shows 2" over a
period of 260 synodic months starting January 23, 146 B.C., com-
pared with the Babylonian zig-zag function @ (dashed line) for the
same time period. The accordance between the ‘theoretical’ curve
and the Babylonian function @ is optimal. Note, in particular, that
the phase between 2 and @, i.e. their position along the time (L)
axis, had not been adjusted. We take this as a further convincing
support of our hypothesis that @ is derived from X

We have also demonstrated [Brack-Bernsen 1994] that old Baby-
lonian observations, as found in the text Cambyses (523 B.C.) and
in the Goal-Year texts (300-50 B.C.), show the right structure and
accuracy which is necessary and sufficient for the construction of
2 and thus of @. The Goal-Year texts also explicitly list the sums
SU+NA and ME+GE: a sign that the Babylonians, indeed, were
interested in partial sums of the Lunar Four. We have found no
tablets with the sum X of all the Lunar Four, but we think it is
very probable that the old astronomers went one step further and
also added SU+NA and ME+GE.
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Figure 4. The sum E=SU+NA+ME+GE of the Lunar Four as function of the lunation
number L (Xconnected by thick lines), calculated for Babylon over a period of 260 synadic
months (starting on JD=1668119=Jan. 23, 146 BC). The thin dashed line shows the Baby-
lonian zig-zag function @—100 u§ determined for this time interval.
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In the remainder of this paper we shall examine the partial sums
SU+NA and ME+ GE and the sum ~ in more detail, interpret them
astronomically and explain why the influence of some of the vari-
ables affecting the Lunar Four can be reduced by their addition.

4. Observation of the Lunar Four

In order to get a better understanding of the Lunar Four, let us
reflect upon when, how and where the Lunar Four were observed
(see also Neugebauer, ACT I, pp. 229-239). We are for a moment
neglecting the latitude of the moon and assume it to move along
the ecliptic. We consider one full moon and assume the opposition
to take place some time after sunset of a day N.*

We then have the situation indicated along the time axis in Fig-
ure 5. In the morning of day N, SU can be observed: the moon
sets at the western horizon and shortly afterwards the sun rises at
the eastern horizon. SU is the time difference between these two
events, measured in time degrees® us. Similarly, ME can be ob-
served in the evening of the day N. Towards the end of day N, the
opposition takes place. Thereafter, NA and GE can be observed in
the morning N+1 and in the evening N+1, respectively. We see
that the observations of the Lunar Four take place within a time
span of about one and a half day around full moon.

opposition

f day N T day N+l l

Figure 5. Times of opposition, sunrise, sunset, moonrise and moonset on the two days
around opposition, marked along the time axis. Also indicated are the ‘Lunar Four’ time
intervals SU, ME, NA and GE. (In this figure we have assumed the opposition to take place
some time before midnight. In a case where the opposition takes place during daytime, the
Lunar Four will occur in a different order, e.g. ME, SU, GE, NA.)
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The Lunar Four are concerned with the sun at the horizon in
one direction (east or west) and the moon in the opposite direction
(west or east, respectively). In the following figures, we introduce
for the sake of simplicity the symbol ® for the ‘antisun’, which we
define as the point on the ecliptic situated directly opposite the
sun. At the very moment when the sun rises, © sets, and vice versa.
With this definition, SU is the time difference between the setting
of the moon ) and the antisun ©. Similarly, ME is the time differ-
ence between moonrise and antisun rise, NA is the time difference
between antisun set and moonset, whereas GE is the time differ-
ence between antisun rise and moonrise.

Figure 6 illustrates the position of the moon relatively to the
antisun ®© at these times (i.e., at moonsets and moonrises on the
days N and N+1, respectively): it shows the distance (measured
along the ecliptic) between the moon and © at the times when the
Lunar Four are observed. (Remember that the opposition takes
place at the moment when the moon passes the point ©.)

These distances or elongations are important for our under-
standing of the Lunar Four; we shall name them egy, €%, €y4 and
ege- They correspond to arc D® which defines KUR in Figure 1
and tell us how far the moon has moved relatively to the sun in
the time between opposition and the observation of the particular
Lunar Four. Evidently, they depend upon the relative moon vel-
ocity (v¢ —ve) and upon the time #,, at which the opposition takes
place relatively to sunset ¢ or sunrise t,. We can take N4 as an

elongation

l eMEGE

Figure 6. Positions of the moon J relatively to the ‘antisun’ ® at the times where the lunar
four SU, ME, NA and GE are measured. {esy, €z, etc. denote the corresponding elonga-
tions of the moon.) The moon moves along the ecliptic from left to right; at opposition it
passes the point ©. :
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example for all: knowing that NA is observed at the time of the
sunrise, f,,, we have:

€na = (v((_vCD)X(tsr—top) .

The first term (v¢ —ve) can vary between 10° per day and 14° per
day; the variation of the second term Ar is much larger, namely
from 0" to 24", depending on whether the opposition takes place
just after or before the sunrise. We can thus estimate ey to vary
between 0° and 14°. Similarly, the other elongations are defined as

€su = (VCC_VO)X(top_tsr) s
CME = (VC_VG)X(top—tss) s
€GE= (v((_VG)X(tss_top) .

Let us now imagine what is going on at the western horizon when
SU and NA are observed. The left half of Figure 7 shows us the
western horizon (by the horizontal line) at sunrise on the last
mormng N before opposition (full moon), i.e. at the time when SU
1s measured. The dotted oblique line indicates the ecliptic at the
western horizon on this morning; the arrow indicates the directions
in which sun and moon are moving. In this figure, the ecliptic
passes the horizon at a low angle of ~34°; this happens when the
full moon occurs near the spring equinox. Had it taken place near
the autumn equinox, the angle would have been steep, about 81°.

equator equator
ecliptic

Western Horizon

Morning N+1

Morming N

Figure 7. Left half: Position of moon and antisun on the western horizon at the moment
of sunrise on the morning N. The moon has already set and the antisun is about to set.
Right half: The situation on the next morning N+ 1: here the moon will set after the antisun.
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The imaginary point © sets at the moment of sunrise, and through
that very point on the ecliptic the moon passes at opposition. The
solid oblique line indicates the equator at the western horizon, the
arrow showing us the direction of the daily revolution of the sky.
It is along this line that the times are measured.

The Babylonian observable SU is the time it takes the echptlc arc
esy between D gy and O to set. This setting time is visualized in the
figure, it depends on the length of eg;; and upon how steep the eclip-
tic stands at the western horizon. The angle between ecliptic and
horizon at the moment when eg is setting depends on where in the
ecliptic this arc is situated. Its position in the ecliptic is determined
by the position A¢ in the ecliptic where the opposition takes place.

We have thus learned: SU is determined by At=t,,~t,,, v¢, and
A¢ (and on the latitude fi¢ of the moon which we have neglected
so far). Hereby At is the dominating variable.

The right part of Figure 7 shows the situation on the next morn-
ing N+1 when NA is observed. The moon now has passed the
antisun ©, the opposition has taken place. NA is the time it takes
the ecliptic arc ©) n =€y, to pass the western horizon. Anal-
ogously to the case of SU, we therefore get: NA is determined by
At=t,—1,,, V¢, and A¢ (and on the neglected lunar latitude ,8@)

Similar considerations of the rising full moon on the evenings
before and after opposition will lead to an analogous understand-
ing of ME and GE as the rising times of the ecliptic arcs e,z and
esr (again measured in time degrees).

We shall next examine the sums SU+ N4 and ME+GE in order
to understand why they show a much more regular behaviour than
each of the Lunar Four. Later, Figure 10 will show us how the
Lunar Four depend heavily on B¢, whereas its influence on the
sums SU+NA and ME+GE is qu1te small.

5. The astronomical significance of SU+ NA and ME+GE

We examine SU+NA as an example, since the structure of
SU+NA and ME+GE in principle must be the same. Figure 8
summarizes, combining the left and the right halves of Figure 7,
the situation on the western horizon on the two mornings N and
N+1. Since we are concerned with the relative positions of sun
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equator

Western Horizon

Figure 8. Position of moon and antisun at the western horizon on the two mornings N and
N+1 around full moon at which SU and N4 are measured. The opposition is assumed to
take place before midnight of night N.

and moon, we have neglected the motion of the sun (and hence
also of the antisun) durmg the time from morning N to morning
N+1. The sum SU+NA4 is the settmg time of the ecliptic arc be-
tween Dgy and D n,. This arc is, of course, the sum of egy and
ey, which we shall call egyvs=€syteyy. Its length equals the
elongation movement of the moon in the time between morning N
and morning N+1. (By elongation movement we understand the
movement of the moon relatively to the sun.) But this elongation
movement does not depend on the time at which the opposition
took place. We have thus seen that by the addition of SU and N4,
the variable At is eliminated. The elongation movement of the
moon, €syn., only depends on the relative moon velocity (v¢ —ve)
at the day of opposition. This relative velocity is felt over a time
period of slightly more than a day The observation of SU+NA
starts SU time degrees before sunrise on day N and ends N4 time
degrees after sunrise on day N+1. This time interval equals thus
1+(SU+NA)/360 days. Hence we obtain:

esuna = (Ve —vo) [1H(SU+NA)/360] ,

where the velocity of moon and sun are measured in degrees per
day. Since vo=1%day, we get:

esuna = (ve—1°day) [1+(SU+NA)/360] .
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The time which it takes e suna to set only depends on its position
along the ecliptic which is given by the longitude A¢ of the moon
at opposmon We have thus seen that SU+NA, contrarily to SU
or NA, is independent of the time of day when the opposition takes
place.

Figure 9 shows the same phenomena as Figure 8, but for a situ-
ation where the opposition takes place in the morning shortly after
sunrise whereas in Figure 8, it occurred before midnight. The com-
parison between Figures 8 and 9 clearly demonstrates that, al-
though the single intervals SU and NA depend on the time of
opposition, their sum SU+NA remains the same.

We now have to investigate the influence of the lunar latitude f¢
which we have neglected so far. This is illustrated in Figure 10,
where we show two situations. The first, drawn with thin lines,
repeats the case of Figure 8 where the moon moves on the ecliptic
(dotted line) with the latitude f¢=0. The second case, drawn by
the parallel solid line, shows the trajectory of the moon for a la-
titude of f»=+3.3°. We note that SU and N4 (measured along the
equator!) both change appreciably. However, their sum SU+NA
remains the same for elementary geometrical reasons. Thus we
have learned: Each single of the Lunar four depends strongly on
the latitude f¢ of the moon. This latitude varies between +5° and
—5°, so that each of the Lunar Four reflects a total latitude vari-
ation of 10°. By taking the sums SU+NA or ME+GE, the influ-

. equator

‘Western Horizon {)‘ 50
D
S0,

Figure 9. Position of moon and antisun at the western horizon on the two mornings N and
N+1 around full moon at which SU and NA are measured. The opposition is assumed to
take place shortly after sunrise on day N.
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equator

Figure 10. The same situation as in Figure 8 (f¢=0) with a dotted line for the ecliptic, here
in comparison to the situation where the moon has a positive latitude of f¢=3.3° and
moves on the trajectory parallel to the ecliptic which is drawn by a solid line.

ence of the varying f¢ is strongly reduced. In the time between the
observations of SU and NA (or of ME and GE), the latitude of
the moon cannot have changed by more than ~1° only this vari-
ation of ~1° in latitude will contribute to the variation of SU+N4
or ME+GE.

We summarize: SU and NA are strongly depending on Az, ¢,
A¢ and v¢. By addition of SU and N4, the variable At is elimin-
ated and the influence of the variable f¢ is strongly reduced. This
explalns the fact that the sum S U+NA in Figures 2 and 3 forms
a nice and regular curve, whereas SU alone shows a very irregular
and unpredictable behaviour.

The intervals ME, GE and their sum ME+GE can be treated
completely analogously. We saw that SU+NA is the setting time
of the ecliptic arc egyy4. An investigation of the moon risings on
the eastern horizon on the days N and N+1 will show that
ME+GE is the rising time of e;zgz, an ecliptic arc situated
around A¢, the length of which equals the elongation movement
of the moon during the time between moonrise on day N and
moonrise on day N+1.
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6. The sum X of SU+NA and ME+GE

We have just seen: SU+NA is the setting time of ey 4, an ecliptic
arc situated around A¢ with a length equal to the elongation move-
ment of the moon during the time between moonset on morning
N and moonset on morning N+1. Analogously, ME+GE is the
rising time of ejrzgE, an ecliptic arc around A¢ corresponding to
the elongation movement of the moon during the time between
moonrise on evening N and moonrise on evening N+1. These two
ecliptic arcs will, in a good approximation, have the same length
and be situated almost at the same place of the ecliptic. Without
committing an error worth mentioning, we can identify these two
- ecliptic arcs and replace them by e¢:

LY

€ = €suN4A = CMEGE .

We have thus defined e¢ as the ecliptic arc situated symmetrically
around A¢ with the length of the elongation movement of the
moon on the day of opposition or, to be more precise, of the
elongation movement of the moon during the time of one day plus
(SU+NA)/360=o0ne day plus (ME+GE)/360. In a good approxi-
mation, SU+NA4 and ME+GE are thus the setting and rising
times of one and the same ecliptic arc e¢. Consequently, 2’ is the
sum of these times, i.e. the rising time of e¢ plus its setting time.
This fact is crucial in our understanding of X in combination with
our knowledge of the oblique ascension.

7. The problem of obligue ascension

Olaf Schmidt [1994, chapter III] treats the problem of the oblique
ascension with modern methods. The interested reader who may
want further detailed information is referred to this publication.
For our present purpose we need the two important results men-
tioned in the following.

The first result is summarized in Figure 11, where the arc AB is
part of the ecliptic and arc (4DCE) is part of the celestial equator.
The yearly revolution in the ecliptic is indicated by an arrow, and
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a,(4B)

Figure 11. Enlarged part of the celestial sphere for a place whose geographical latitude
equals p=32.5°. It shows the rising and setting arcs AD and AE, respectively, of the ecliptic
arc AB.

the daily revolution in the equator is similarly indicated by an ar-
row. The angle between the equator and the ecliptic is e=24°. The
geographical latitude of Babylon is ¢=32.5° and therefore the
angle between the equator and the horizon at Babylon is equal to
90°—¢p=57.5°. In ancient astronomy, the geographic latitude of a
place not on the terrestrial equator is called sphaera obliqgua. We
have drawn two positions of the horizon, namely the eastern and
western horizon. Arc BD is part of the eastern horizon showing
the situation when the ecliptic point B is about to rise. Arc BE is
part of the western horizon. The arc AB of the eclitpic thus rises
during the same time as the arc 4D of the equator. We call arc AD
the rising arc of arc AB and write:

AD =G, (AB) ,

where ¢ is the geographic latitude of Babylon (see Figure 11).
Similarly, we call arc AFE the setting arc of arc AB and write

AE = g,(AB) .

At the terrestrial equator, where the geographic latitude p=0°, the
angle between the horizon and the celestial equator is 90°, and this
place is called sphaera recta. The horizon at sphaera recta is arc
BC (see Figure 11). At sphaera recta the ecliptic arc AB rises at
the same time as arc AC, and we write
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AC =&§(AB) .

It also holds that AC is the setting arc of AB:
AC = ay(AB) .

We therefore write
AC = a(AB) .

In Figure 11 the spherical triangle DBE is equilateral because
angle (CDB)=angle(BEC)=57.5°. Therefore

arc DC = arc CE .
and hence
arc'AD+arc AE=2arc AC
or
a,(AB)+a,(AB) = 2a(AB) .

Expressed in words: for any arc AB of the ecliptic with fixed end
point in the vernal equinox A4, the sum of the rising and setting
times at sphaera obliqua equals twice its rising (or setting) time at
sphaera recta. This is also true for any other arc B;B, of the eclip-
tic. This can bee seen in the following way: the arbitrary arc BB,
can by found as the difference between the two arcs of the ecliptic,
AB; and AB,, both having the vernal equinox A4 as end point.

B1B2 = ABZ_ABI
For these two arcs we know that:

0,(AB2)+0a,(4B;) = 20(ABy) ,
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a,(AB)+a,(AB,) = 20(AB) . 4)

Now the rising time of arc By B, — let us call it a,(B;B,) — equals
the rising time of 4B, minus the rising time of arc 4B;. For the
setting times, the analogous equation is true:

aga(BlBZ) = a(p(ABZ) _a(p(ABl)
0,(B1B;) = a,(ABy)—a,(AB)) . ®)

By addition of the two equations (5) we get:

ay(B1B2)+a,(B1By) = [a,(4B;)+0,(4B)]
— [a,(4B1)+a,(4By)] .

The combined use of Eq. (4) and Eq. (5) gives us the desired result:

ay(B1B2) +0,(B1B,) = 20(AB2)—2a(AB,) (6)
= 2(1(B1B2) .

In words: for any arc BB, of the ecliptic, the sum of rising and
setting times at sphaera obliqua equals twice its rising (or setting)
time at sphaera recta. In particular this is true for arc e, the
elongation arc of the moon on the day of opposition. We therefore
now know that X equals twice the rising time at sphaera recta of
this arc e¢.

The second result in O. Schmidt [1994, chapter 111] gives a handy
graphic method, shown in Figure 12, for finding the rising time of
a given arc of the ecliptic at sphaera recta (curve A) and at sphaera
obliqua (curve C). The Curve C deals with the geographic latitude
¢=32.5° of Babylon: We find the rising time of an arbitrary arc of
the ecliptic BB, as the area bounded by the line segment B,B,,
the vertical lines through B, and B, and the curve C. Thus the
rising time of a minor arc of the ecliptic, say of ¢°, placed in Y is
much smaller than the rising time of an ecliptic arc of e° located
e.g. in 69. In the same way, curve A gives the rising time of an arc
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of the ecliptic at sphaera recta. We notice that the variation in the
rising time of an arc of the ecliptic is “smaller” at sphaera recta
and “larger” at sphaera obliqua (cf. the amplitudes of A and C in
Figure 12).

8. The astronomical significance of X

We have seen in Sect. 6 that X' is the sum of the setting and rising
times of e¢. (We remind the reader that e is an ecliptic arc situ-

3]
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Figure 12. Graphical method of finding the rising time of a given arc of the ecliptic at
sphaera recta (curve A) and at sphaera obliqgua with ¢=32.5° (curve C). The rising time of

an arc B; B, is equal to the area bounded by the line segment B, B, the vertical lines through
B, and B, and the curve A or C, respectively.
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ated around the position A¢ in the ecliptic at which the opposition
takes place, with a length that equals the elongation motion of the
moon during-the day of opposition). Let us briefly call this ecliptic
arc e¢ the daily elongation arc of the moon. In Sect. 7 we have
seen that the sum of the rising and setting times of an ecliptic arc
equals twice its setting time at sphaera recta.

Combining these two findings, we now have found the astro-
nomical significance of X it equals twice the setting time at sphaera
recta of the daily elongation arc of the moon on the day of oppo-
sition:

2 =a,eq)taylec) = 2aleq) . @)

2 is twice the time it takes e¢ to rise (or to set) when measured
from the earth’s equator

Knowing the astronomical significance of X', we can show numeri-
cally that the lunar velocity v¢ is the dominating variable in the
sum 2. The influence of A¢ is much smaller than the influence of
ve. This explains why X oscillates with the same period as the
lunar velocity. And we can show that in case of ME+GE, which is
the time it takes e to rise when measured from Babylon, A¢ is the
dommatmg variable and v¢ has much less influence. Of course, the
same is true for SU+NA. Both ME+GE and SU+NA oscillate
with the period Pg.

The lunar velocity v¢ determines the length e of the ecliptic arc
e¢, whereas its position in the ecliptic is determined by A¢.

The variation due to v¢.: The lunar velocity varies between 11.8°/
day and 15.3°/day®; therefore the length e of e¢ will vary between
10.8° and 14.3°% a variation of 14.3°—10.8°=3.5°. Therefore, the
variation of X due to v¢ is 2X3.5°=7°, and the variation of
ME+GE due to v¢ is 3.5°.

The variation due to A¢: Let us assume e¢ to be of constant
length: e =12° this is the same as assuming the lunar velocity to
be constant and equal its mean value. The curves A and C give us
an estimate of the variation in rising time of e¢ depending on its
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position A¢ in the ecliptic. Curve A varies between 0.92 and 1.08;
this means that at sphaera recta the shortest rising time of e¢ (of
length 12°) is 0.92X12° and the longest rising time of e¢ is
1.08x12°,

The variation of 2 due to A¢ equals twice the variation in rising
time of e¢ at sphaera recta: 2X(1.08—0.92)xX12°=3.84°. This vari-
ation is much smaller than 7°, the variation of 2 due to v¢. The
function X therefore oscillates with the mean period Pc.

Curve C varies between 0.65 and 1.22. We can thus find the
variation in rising time of e¢ at Babylon sphaera obliqua: namely
(1.22—0.65)X12°=6.84°. The variation of ME+GE due to A¢
equals 6.84°. This variation is much larger than 3.5°, the variation
of ME+GE due 4o v¢. The function ME+ GE therefore oscillates
with the mean period Pc.

We now understand why it is possible to find, purely empirically,
a function varying with the period P¢ from the observed Lunar
Four, simply by calculating their sum.

9. Concluding remarks

We now know the astronomical significance of X. It is, however, so
abstract and complicated that we must assume the Babylonians
did not know it. If therefore our hypothesis is right, that @ is
directly derived from X, we must conclude: The Babylonians suc-
ceeded in finding a purely empirical function, which contained in-
formation on the elongation movement of the moon (on the day
of opposition) and hence also on its momentaneous velocity on
this day. Without knowing its astronomical significance, they de-
rived all other quantities depending on v¢ and hence of the period
P¢ from @.

Through systematic treatment of their observed data, so we
think, the Babylonians observed the periodicity of different astro-
nomical quantities. Quantities of the same period were coupled:
Based on one known quantity, others of the same period were de-
rived. Scientific research always uses procedures of this kind: The
discovery of regularities leads to connections which can be used
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for predictions — also in cases where the fundamental natural laws
are not known or only partially understood.

Many other scholars (O. Neugebauer, A. Aaboe, Y. Maeyama
and B. L. van der Waerden) have pointed at the prevailing role of
periodic functions in the Babylonian astronomy; however, not as
radically as we do it in this paper. Therefore we mention two de-
tails from the cuneiform texts which clearly support this under-
standing of the development of the Babylonian astronomy:

The Goal-Year texts contain collections of characteristic
phenomena for the moon and the five known planets. They were
used for predicting astronomical events from known phenomena
of the same kind which occurred some characteristic time period
earlier. In case of the moon, the characteristic time interval was
223 synodic months=1 Saros. Among the moon phenomena re-
corded on the Goal-Year tablets, we find the sums SU+NA and
ME+GE. This shows us 1) that the Babylonians themselves, in-
deed, did calculate sums of the Lunar Four, and 2) that they prob-
ably used the sums SU+NA and ME+GE for prediction of Lunar
Four to come one Saros later. But by so doing they have used
empirically found periodic oscillations for lunar predictions.

In Figs. 2 and 3 we have seen that SU+NA and ME+GE as
functions of the lunation number form nice curves, indicating that
they might be easy to predict. In [Lis Brack-Bernsen 1994] it was
demonstrated that the curve SU+NA as well as ME+GE was re-
peated almost exactly after one Saros. In the same paper, a short
proposal was made about how some known values of the Lunar
Four and their partial sums SU+NA and ME+GE might have
been used in order to predict the Lunar Four one Saros later.

In the mean time this proposal has been confirmed by textual evi-
dence: namely by the lines 35-38 on the back side of the text TU 11.7
These lines show us that the Babylonians did, indeed, utilize the sum
SU+NA for predicting SU. But more than that in order to predict
NAy (new moon) they even used the sum SU+ N4 (full moon) as
observed 5 months earlier. To us, this procedure can only be under-
stood as an empmcal utilization of periodic oscillations.®

We see this as a support for our reconstruction of @ as a purely
empirical function, derived from the sum of the Lunar Four. We
therefore think that the Babylonian mathematical astronomy is
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more empirically founded and less theoretically than believed until
NOW.
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NOTES

. No difference is made in the Babylonian texts between the symbol for N4 (new moon)
observed around conjunction and that for N4 (full moon) observed around opposition.
In order to avoid confusion, we shall use the symbol NA  for the time interval observed
around conjunction.

. Neugebauer [ACT I, pp. 229-239] has discussed the Lunar Four in detail and explained
how the Babylonians calculated them. '

. Aaboe and Henderson [1975, p. 195] were the first to remark that the influence of v¢
on a quantity 44 can be seen in the amplitude variation of A4 when plotted as a
function of the lunation number. Here 41 denotes the ecliptic arc between the positions
A¢ of consecutive full moons.

. The days N, N+1 etc. here refer to the astronomical days starting at midnight — and
not to the civil days of the Babylonian calendar in which a new day started in the
evening at the moment of sunset.

. The Lunar Four and all their combinations are measured in u§=time degrees: 1 u§=4
minutes, so that 360 u§=1 day (i.e. the time of a whole revolution of the sky about
360°).

. The exact values v¢ {(max)=15.301°%day and v¢ (min)=11.799°/day have been derived
by Y. Maeyama. We thank him for this private communication.

. H. Hunger, who has kindly given us a translation of this very difficult text, shall be
warmly thanked at this place.

. These lines of text TU 11 will be treated in more detail in a volume on “Ancient
Astronomy and Celestial Divination”, to be published under the auspices of the Dibner
Institute of MIT.
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