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In this paper I shall mainly be concerned with predictions of the length of the
Babylonian lunar month. The reason for this choice is the fact that in the important
text TU 11 eight different methods for predicting “full” or “hollow” months are
collected. This means that we have in this text a substantial amount of material to
investigate in addition to what can be found on the topic in other texts.

The tablet AO 6455 (hereafter referred to as TU 11) is perfectly preserved and
was published in 1922 in an excellent copy by F. Thureau-Dangin as No. 11 in
Tablettes d’Uruk. It contains a mixture of primitive and advanced astronomical rules
alongside some astrological passages. The tablet TU 11 is a copy written towards
the end of the 3rd century B.C., and contains quite a number of errors. Until now
only short sections have been translated and commented on.1 A complete edition by
L. Brack-Bernsen and H. Hunger will soon appear in SCIAMVS 3. The reader is
referred to that edition for a translation and interpretation of the text, and for a
detailed discussion of its significance to the history of Babylonian astronomy.

In the present paper I shall only give an overview of the astronomical content of
TU 11 and then present all the rules we know of for predicting the length of the
Babylonian month. Most of these rules are written on TU 11, and at first glance
some of them seem quite strange. Are they just inventions and speculations by some
Seleucid scribe, or are they a collection of rules which had really been used by
earlier Babylonian astronomers? The present paper will try to provide an answer to
this question. If the text just reflects the speculations of one person, then it only tells
us how he thought about the problem, and the kind of ways he thought it might be
solved. But if it is a genuine collection of methods that were used then it gives us
very fruitful hints and ideas about concepts and methods used in intermediate
astronomy.2 Furthermore, it would provide a solid basis for efforts to reconstruct the
development of Babylonian lunar theory.3 Since a great part of my discussion is
based on tablets from the cuneiform collection of the British Museum, I am happy to
present them here. At this stage I would like to express my warmest thanks to Irving
Finkel and Christopher Walker for their search for parallel texts and for drawing my

1 NEUGEBAUER (1947) and VAN DER WAERDEN (1949, 1951).
2 In LBAT Sachs classified some tablets as containing Intermediate Astronomy. He defined
the term as follows: “This term refers to stages later than MUL.APIN and earlier than ACT.
The boundaries in both directions are not sharp”.
3 Another possible link between the non-mathematical astronomical texts and the ACT
methods, is provided by John Steele in a tablet published in this volume: “A Simple Function
for the Length of the Saros in Babylonian Astronomy”.
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attention to the texts they identified, and to Hermann Hunger and Christopher
Walker for making their translations of the texts available to me. Without these
translations I would not have been able to work on this topic in the first place.

Some Useful Preliminaries

The Babylonian month began on the evening after new moon (conjunction) on
which the thin crescent was visible for the first time. This event of course also
indicated the end of the current (old) month.

Figure 1: The situation at the western horizon on the evening when the
new crescent is visible for the first time after conjunction, announcing
the beginning of month I. The dashed line depicts the ecliptic, the path
along which sun and moon move. The direction of motion is indicated
by the arrow, and j, the sun, shows where the conjunction took place
some 1 1/2 days earlier. The moon, moving faster than the sun, has on
this evening reached a position so far from the sun, that it will be
visible at sunset. On the preceding evening it might have been in
Position at sunset, still too near to the sun to be seen. The thick line
is the equator, it shows the direction along which all luminaries set. The
time NAN from sunset until moonset is measured by the arc of the
equator, which sets simultaneously with arc (j2 ).

The Babylonian month had 29 or 30 days: if the moon was already visible at the
beginning of day 30 in a month, this day 30 was rejected, which meant that the
month only had 29 days. That month was called GUR (rejected) which is normally
translated as “hollow”. When the moon was still not visible after sunset on day 30,
this day was confirmed as the last of the (long) month. A month of 30 days was
called GIN (confirmed), normally translated as “full”.

On the evening when the new crescent indicated the beginning of the new
month, the time NAN between sunset and the setting of the crescent was measured. In
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the Astronomical Diaries4 this time interval was recorded together with the length of
the month which had just passed as follows: If the crescent was seen (and hence NAN

measured) on day 30 of the last month M-1, Month M would begin with “30 NAN

...”, whereas in the case of the moon being seen only the day after day 30, the new
month would start with a statement like: “Month M, 1 NAN ...” Hence we see that
30 and 1 were also used as an indicator for the hollow and full month. Sometimes,
Neugebauer translates 30 and 1 as “post hollow” and “post full” respectively,
because, normally, these numbers tell us the length of the past month. Babylonian
terminology is, however, not very consistent in that “30” in TU 11 Rev. 22 is used
for saying that the current month will have only 29 days.

All numbers on the tablets are given in the Babylonian sexagesimal system (a
positional number system with 60 as its basis). For example 2,15 can be read as
2ּ60 + 15 (or as (2ּ60 + 15)ּ60n, since the system did not always specify the
absolute value of a number).

A text I shall also refer to is MUL.APIN,5 an astronomical compendium
compiled around the end of the second or the beginning of the first millennium B.C.
It is found in several copies, the oldest dating from around 700 B.C. Amongst other
things it gives the length of day and night as (a linear zigzag) function of the month;
day and night are measured in mana. Day plus night equals 6 mana, the longest day
is 4 mana and the shortest 2 mana (values which are very inaccurate for the latitude
of Babylon). The daily retardation of the moon is also given as a function of the
month: it is calculated as 1/15 of the nightlength, but since the retardation is
measured in uš, while the night is measured in mana, it is found as 4 × the night
(4 × N mana = 1/15 × N,00 uš). It is evident, therefore, that the text must have put
1,00 uš = 60 uš equal to 1 mana.

The Lunar Six, which are more complicated observable phenomena, and the
Goal-Year method for their prediction are presented in the Appendix at the end of
this paper.

The Astronomical Content of TU 11

TU 11 is divided by horizontal rulings into 29 sections. Sections 9–22 have
astronomical content; the remaining sections are astrological. The astronomical
sections have brief rules for predicting the time of eclipses, lunar phases and the
length of the lunar months.

Sections 9–13 are concerned with the times of (lunar) eclipses.6 The Babylonians
specified the moment of a day by its distance in time to or from sunrise or sunset.
Time differences were measured in uš which are the same as our time degrees: the
daily revolution (by 360°) of the sky takes 24 hours, so that 1° = 1 uš ≈ 4 minutes.

Four examples demonstrate through calculations how the time of a future eclipse
can be determined by means of the Saros cycle of 18 years. The basis of the
calculation is the time T of an eclipse, which took place 1 Saros7 earlier than the

4 SACHS and HUNGER (1988).
5 HUNGER and PINGREE (1989).
6 Since TU 11 mainly treats the moon, we read these examples as calculating lunar (and not
solar) eclipses. Furthermore, the preceding astrological section 8 deals with lunar eclipses.
7 The Saros is a period of 223 synodic months = 6585 1/3 day ≈ 18 years: In a good
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eclipse to be predicted. To this time T is added one third of the day plus one third of
the night ending up with T+2[,00], which is then reduced to give the time in uš after
sunset or sunrise of the new eclipse. The text here apparently uses the knowledge
that eclipses will repeat after one Saros and that the time of full moon will be shifted
by about 1/3 of (day plus night) after 223 synodic months. There are many other
texts devoted to eclipses, e.g. lists of possible dates for eclipses, arranged in Saros
cycles.8

This knowledge is also used in the “Goal-Year” method for predicting lunar
phases, which is used and briefly described in sections 14 and 16.9 All the remaining
sections (14, 15, and 17 through 22) give rules for determining the length of the
Babylonian month.

Duration of the Babylonian Month

Before we consider the different Babylonian methods for predicting full or hollow
months, it is necessary to present some background knowledge on how to determine
the length of the synodic month. This “empirical” background knowledge has been
found by analyzing computer simulated lunar data.

The first crescent announces the new month, and by so doing it also determines
the length of the former month. But the first crescent also contains information on
the length of the month that has just started: The size of NAN measured (or
calculated) at the beginning of a month is connected to the length of that current
month. This is illustrated in Figure 2 below. Here the time between the setting of the
sun and the first crescent is depicted for a series of consecutive Babylonian
months.10

The full months are marked with a black dot. Note: all minima of the curve have
a dot, but none of the maxima has one. Hence the figure gives us a first, albeit rather
crude, rule: a small NAN indicates a long (full) month, while a large NAN announces
a short (hollow) month. For intermediate values of NAN, there is apparently no clear
information on months length: in this figure NAN at lunation 10 is larger than its
value at lunation 13, but month 10 is full while month 13 is hollow. We therefore
have a simple rule:





fullbecomemonth willthen thesmall,is

hollowbecomemonth willthen thelarge,is
If NNA

A closer analysis of NAN reveals a very useful insight: it is the magnitude or size of
consecutive NAN which decides the month length. Where NAN for a month(M) is
smaller than its value for the next month(M+1), month(M) will be full; where it is

approximation it also equals 239 anomalistic months and 242 draconitic months. The term
“Saros” is modern; the Babylonians simply called it “18 years”.
8 See STEELE (2000a, 2000b) and AABOE et al, (1991), pp. 35–62.
9 For a detailed presentation of the Goal-Year method, see the Appendix, which also
introduces the Lunar Six time intervals.
10 For the construction of the figures, I have used Peter Huber’s computer file, creslong.dat,
which among others gives for each month the magnitude of NAN and the length of the months.
I warmly thank him for providing and allowing me to use his computed lunar files.
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Figure 2: For consecutive months i = 0, 1, 2,..., 70, the time NAN(i)
from sunset to the setting of the new crescent is plotted as function of
the lunation number i. A black circle at a lunation i indicates that
month(i) will have 30 days.

Figure 3: For consecutive months i = 60, 61, 62,..., 130, the time NAN(i)
from sunset to the setting of the new crescent is plotted as a function of
the lunation number i. A black circle at a lunation marks a long month,
while a triangle tells that at the first day of the next month, the new
crescent will be visible for a longer time before setting. The dots and
triangles occur at the same lunations, except for i = 120 which has a dot
but no triangle, and for i = 132, which has a triangle but no dot.
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larger than the next, month (M) will become hollow. This is formulated in the
following Rule R, which works in 96 cases out of hundred:





+>
+<

hollowis)(monththenIf

fullis)(monththenIf
:RRule

M1),(MNA(M)NA

M1),(MNA(M)NA

NN

NN

The rule was found through analyzing figures like Figure 3. Here the size of a NAN

is compared graphically to its value for the next month. With very few exceptions it
is true that a month is long (marked by a dot) whenever its NAN is smaller than the
NAN of the next month (each month(M) for which NAN(M) < NAN(M+1) is marked
by a triangle). In Figure 3 the dots and triangles occur almost always at the same
lunations.

With this “empirical” knowledge we shall now return to the Babylonian texts.

Rules for predicting month lengths found in cuneiform texts

Most of the rules that have been uncovered in texts begin by finding in some way or
other the magnitude of NAN, and use it for predicting the month length. But two very
easy and rather primitive rules also exist, and we shall start with these rules.

In section 15 of TU 11 the altitude of the new crescent is used to foretell the
length of the new month which has just started:





fullbecomemonth willthen thehorizon,theabovelowis

hollowbecomemonth willthen thehorizon,over thehighis
crescentfirsttheIf

In the Reports11 another very primitive rule seems to have been used: The month
length was connected to the day at which the moon set for the first time after
sunrise, which means that the (full) “moon could be seen with the sun”. This event
takes place in the middle of a month, shortly after opposition: on the day before, the
moon (in its full phase) sets before sunrise, or in the terminology of the Reports:
“The moon does not wait for the sun, but sets”.





fullbecomemonth willthen themonth,in thelate

hollowbecomemonth willthen themonth,in theearly

sunwith the

seenismoontheIf

In the Reports and Letters to the Assyrian kings Essarhaddon and Assurbanipal, only
the day near middle month was recorded at which moon and sun were seen together.
But only a little later, texts record also the time measured between the risings and
the settings of sun and moon. (See, for example, Diary -567 I: “On the 14th one god
was seen with the other: NA = 4 uš”).

Intuitively we understand that when NA occurs early (at day number 12 or 13),
indicating that opposition of sun and moon also occurred early, then the Babylonian
month will also end early. And if full moon takes place late, then that Babylonian
month will also tend to end late. But this rule is very crude: a study of 223 months
shows that in 48 of these months, NA was measured on day 12 or 13, but only 38 of
these months were hollow. If NA was measured on day 15 or 16, then the month was

11 HUNGER (1992).
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full in 53 out of 73 cases. This is therefore a rather poor rule! Traces of this rule are
also found in Section 15 of TU 11.

I shall repeat these first and rough empirical rules in a schematic way:



























longmonth:small

shortmonth:large

longmonth:sunthetolow

shortmonth:sunthetohigh
Crescent

longmonth:elat

shortmonth:early
occurs

:RulesPrimitive

NNA

NA

More Advanced Rules

The new crescent announces the end of a Babylonian month. But above we have
seen that the time of its visibility, the quantity NAN, is also an indicator for the length
of the new month. The Babylonian astronomers also noticed this. The known textual
material bears witnesses to seven different methods for determining NAN, and
thereby predicting full or hollow months. Below is a survey of the methods using the
quantity NAN for predicting the month length:

− NAN is found by means of the Goal-Year method (using lunar six data from
lunations 18 years earlier) and a little detail within this calculation will
determine the length of the new month: Is an addition needed or not.

− NAN is found from KUR through extrapolation. The same value for the daily
retardation of the moon is used at the eastern and western horizon, namely a
fifteenth of the day length. The size of NAN decides the day on which the
crescent is expected to become visible.

− NAN is found from its values recorded 1 Saros earlier. The difference between
the two values of NAN, situated 1 Saros apart, is derived from the schematic
length of the night.

− NAN is found (by different methods) from its value one month earlier. In the
Atypical text K12 in the first approximation NAN(i+1) is found by adding
some value t to NAN(i), where t = t(λ) is a function of the lunar longitude. In
section 17 of TU 11 NAN(II) is found from NAN(I) and the values of NA(VII)
and NA(VIII), measured 5 1/2 months before the months I and II of interest.
The sign of NA(VII)−NA(VIII) determines the month length. Section 20
seems to find NAN(V) from NAN(IV) by calculations which must be
erroneous13 and which I cannot understand.

− NAN(I) of the new year seems to be inferred from NAN(I) of some old year in
combination with the two values of KUR(XII) which occurred a few days

12 NEUGEBAUER and SACHS (1969), pp. 96–108.
13 The text tells to calculate some quantity and compare it to 1/2 NAN in order to decide
between full or hollow month. The crucial criteria for full or hollow months is however
worthless, since for the calculations reproduced in the text, only one of the inequalities can be
true − the other will never occur. Therefore the text must be erroneous.
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before the beginning of month I(old) and month I(new). The relative size of
KUR(old) and KUR(new) determines the length of the month. The text does
not however specify which year is meant by the “old” year.

The rules from TU 11 for finding NAN are presented below in schematic form:





→
fullmonth:onsubtracti

hollowmonth:addition
MethodYear-Goal NNA:14Section

[Formulated and valid in case of the old month being full, NAN(i− 223) → NAN(i)]





>
<

→
fullmonth:

hollowmonth:

(II)NA(II)NA

(I)NA(II)NA
(II)NA(I)NA

NN

NN
NN:17Section





→
full:12ansmaller thif

hollow:12nlarger thaif
years][-18 (II)NA(II)NA NN:18Section

Section 19: KUR(i) extrapolated → day of new crescent





fullmonth:nsubtractio

hollowmonth:addition
throughfound(new)NAN:22Section

We can now ask “who invented these rules”? Was it a scribe from the Seleucid
period who knew the Goal-Year method and tried to play around with similar older
schemes and methods, or do we have here a genuine collection of newer and older
methods? This question is very important since some of the methods seem to apply
to astronomical schemes from MUL.APIN, so we might learn here how such
schemes were used.

Hermann Hunger gave the same answer to this question as I do, however by
arguments which I never thought about. The fact that something is written on a clay
tablet gives it a certain value and importance. A scribe who tried out new ideas
would never use such a valuable material. Hence, what occurs in cuneiform on a
nicely formed clay tablet is important and accepted knowledge.

The reasons why I am convinced that TU 11 contains a collection of methods
and rules which were actually developed and used by different astronomers over
time are the following: 1) Quite a lot of parallel texts in the British Museum have
been found, some of which are considerably older. Most of these texts came from
Babylon, while TU 11 originates from Uruk. Also TU 11 itself is a copy, so
someone thought that what it contained was worth copying. And 2) when we
analyse the methods, we see that they all (as far as we have been able to understand
them) reflect the same basic ideas which seem to have been refined over time. The
procedures are based on connections between the Lunar Six, on different methods
for determining the daily retardation of the moon, and on “similar situations”.

Parallel Texts and Texts with the Same Methods

The tablets BM 42282+42294 were tentatively dated by Irving Finkel to the fifth
century B.C. They have passages which correspond to section 14, 16, and 22 of TU
11. Apart from this, the text gives the Goal-Year method in a much clearer and more
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detailed formulation than what we have found on TU 11. At one point the text
disagrees with section 22 (of TU 11): at the place where TU 11 mentions some “new
year”, the parallel text has “old year”.

BM 36782 has passages parallel to section 17, 18, and 19, and BM 36747 which
joins to BM 37018 has parts of sections 19 and 20.14 Except for section 15 and 21,
to all the other sections on TU 11 dealing with lunar six and month lengths parallel
passages have been found on other tablets.

Structure of the Methods

The different methods (reproduced in condensed form above) have many common
features. In all cases the size of (the established) NAN is an indicator for the month
length. And NAN for the month in question is found from the value of NAN 1 Saros
earlier, 1(?) year earlier, or 1 month earlier; or it is found from KUR measured a few
days earlier:

(Section 14) NAN(I− 223) → NAN(i)

(Section 17) NAN(I) → NAN(II)

(Section 18) NAN(II)18 years back → NAN(II)

(Section 19) KUR(i) → NAN(i+1)

(Section 22) NAN(old) → NAN(new)

(Section 20 and 21 also seem to use a NAN to determine some later NAN however by
arithmetic manipulations which we cannot understand.)

Four of the methods listed above connect values of NAN measured at special
intervals utilizing what we would call the daily change of NAN, the monthly change
of NAN, the yearly (?) change of NAN, and the sarosly change of NAN. The values of
these changes are either determined empirically or found by theoretical
considerations, or by a combination of both. We use the term ∆NAN for the daily
change of NAN, and ∆KUR for the daily change of KUR, and remind the reader, that
these quantities measure the daily retardation of the moon (measured in the west by
setting, or in the east by rising, respectively). I want to stress the fact that already on
the earliest astronomical texts we find these daily retardations modelled
arithmetically: Enūma Anu Enlil Tablet XIV15 and MUL.APIN have tables in which
∆NAN is approximated by 1/15 × length of the night. A summary of the different
ways of finding the changes in NAN or KUR is given below:

The daily change of KUR: ∆KUR = 1/15 × length of daylight (Section 19)

The daily change of NAN: ∆NAN = 1/15 × length of night (MUL.APIN)

The daily change of NAN(i): ∆NAN = (ŠU + NA)(i− 6) (Section 16 and 14)

14 I would like to express my thanks to Clemency Williams for this information.
15 EAE is a great canonical omen series. Tablet XIV with astronomical schemes has been
published in AL-RAWI and GEORGE (1991).
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The monthly change of NAN: function of lunar longitude (Atypical Text K).

The monthly change: NAN(II) − NAN(I) = (NA(VIII) − NA(VII)) (Section 17)

The yearly(?) change of NAN: (KUR(old) − KUR(new)) (Section 22)

The sarosly change: NAN(i+223) − NAN(i) = 1/3(ŠU + NA)(i− 6) (Section 14)

The sarosly change of NAN = 1/30 × night (Section 18)

Of course, the accuracy of the predicted value of NAN depends on how good the
applied method approximates the changes of NAN. The best approximation to ∆NAN

is found in the Goal-Year method, which uses ŠU + NA, the daily retardation of the
moon measured at full moon 5 1/2 months earlier. Test calculations have shown that
∆NAN(i) is optimally approximated by (ŠU + NA)(i− 6).16 To me this fine method
seems to be the end result of refinements and a combination of older practices. In
any case sections 9−12, 15, 17, and 18 have elements reflecting some empirical
know-how, which in a skilled manipulation shows up in the Goal-Year method.
Section 9−12 and 18 connects lunar events which are situated 1 Saros apart in order
to make predictions.

The Goal-Year method and the method in Section 17 connect NAN with
quantities which occurred half a year earlier.17 It is wise to do so, because the
conditions under which the new crescent is seen in month (i) are very similar to the
conditions of the full moon when it sets for the first time after sunrise in month
(i− 6).18 This can be illustrated by comparing Figure 1 with Figure 4 (in the
Appendix). Figure 1 shows the situation at the western horizon at the very beginning
of month I, while Figure 4 shows the situation around full moon 5 1/2 months
earlier, in the middle of month VII. The antisun jjjj indicates the place where the
opposition took place. The inclination of the ecliptic is the same at the two events,
and so is the movement of the moon relative to the sun and antisun, respectively:
Arc( ,2 ) ≈ Arc(2 ŠÚ, 2 NA). The same will, for example, hold for the situation of
NAN in month VII compared to NA in month I. In these cases, the ecliptic would be
low, inclined by some 34° to the horizon. We have ignored here the lunar latitude;
but remark that it will be about the same in the two situations, since 5 1/2 mean
synodic months ≈ 6 mean draconitic months.

Section 15 (which also gave the simple rule: new crescent high, month short;
new crescent low, month long), has traces of this knowledge about “similar
situations” in its last passage. It says: From month I onwards, the first days [the
moon is] high, the fourteenth days [the moon is] low; from month VII on, the first
days [the moon is] low, the fourteenth days [the moon is] high. What is expressed
here reflects some knowledge about the inclination of the path of moon and sun:
That it stands steep to the horizon when the new crescent of month I is observed,
and also when the full moon sets in the middle of month VII. And that it is flat to the
horizon when the setting full moon is observed in month I, but also when the new

16 See BRACK-BERNSEN (1999), Figure 7.
17 Section 17 tells us to calculate NAN(I) - (NA(VIII) - NA(VII)) [= NAN(II)].
18 The longitude and latitude of the moon as well as the lunar velocity will be about the
same in the two situations. For further details see BRACK-BERNSEN (1999).
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crescent becomes visible near the western horizon announcing the beginning of
month VII.

In Mesopotamia there was a strong tradition of preserving old wisdom. Ancient
tablets were copied over and over again. I am sure that TU 11 is a collection of
genuine rules from both older and more recent times, and I hope that my arguments
will convince the reader too.

Appendix

The “Lunar Six”

The Babylonians specified a moment of a day by its time difference to sunrise or
sunset. They gave special attention to the movement of the moon in the days around
opposition or conjunction. The time of these events is not directly observable, so
what the Babylonians observed were the differences in time between the rising and
setting of the sun and moon in the days around opposition and conjunction. A. Sachs
called these time differences the “Lunar Six”.19 The four intervals relating to the full
moon, which we call the “Lunar Four”, are the following:

ŠÚ = time from moonset to sunrise, measured at last moonset before sunrise.

NA = time from sunrise to moonset, measured at first moonset after sunrise.

ME = time from moonrise to sunset, measured at last moonrise before sunset.

GE6 = time from sunset to moonrise, measured at first moonrise after sunset.

The setting moon is not visible before conjunction, and its rising is not visible after
conjunction. Therefore only two time intervals were observed around new moon.
1) On the evening when the new crescent became visible, indicating the first day of
the month:

NAN = the time between sunset and the setting of the moon, when it has become
visible for the first time after conjunction20 (Figure1).

And 2) at the end of the month:

KUR = the time from moonrise to sunrise, when the rising moon is visible for the
last time before conjunction.

19 SACHS (1948), p. 281.
20 In the texts with which we are working, this interval is called NA, but it occurs always
together with an indication that it is the NA of the first day or the NA at the beginning of the
month. We put this identification into the name, calling it NA (of the new crescent), or NAN.
We do this in order to be as precise as the Babylonian texts. There the term NA is also used
for a time interval in the middle of the month, but always identified by calling it the NA of
day 14 or the NA opposite the sun.
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The “Goal-Year” Method21

These time intervals between the rising and setting of the sun and moon are obvious
and easy to observe. From a theoretical point of view, however, they are very
complicated quantities. They depend on the time of the conjunction or the
opposition: when it takes place in comparison to sunset or sunrise. They also depend
on the position of the full or new moon in the ecliptic, and on the lunar velocity and
latitude.22

It was therefore very surprising and exciting to find out that the Babylonians had
developed an easy, elegant and very exact empirical method for the prediction of
these time intervals. They had noted that, in comparison to sunset or sunrise, a
syzygy would occur 1/3 day later than the one that took place a Saros earlier. And
they had realized that (ŠÚ + NA) measured the daily delay of the moon at setting,
and that (ME + GE6) measured its delay at rising. In addition, they must have
remarked that the daily delay of the moon would repeat after one Saros. All these
connections are implicitly used in what we have called the Goal-Year Method.
Below the method is reproduced in the form of mathematical equations:

(NAN)i = (NAN)i-223 – 1/3(ŠÚ + NA)i-229 (1)

ŠÚi = ŠÚi-223 + 1/3(ŠÚ + NA)i-223 (2)

NAi = NAi-223 – 1/3(ŠÚ + NA)i-223 (3)

MEi = MEi-223 + 1/3(ME + GE6)i-223 (4)

(GE6)i = (GE6)i-223 – 1/3(ME + GE6)i-223 (5)

KURi = KURi-223 + 1/3(ME + GE6)i-229 (6)

Corrections: Sometimes the results found by these calculations are preliminary. If
NAN < 10 uš, then wait a day:

corrected (NAN)i = preliminary (NAN)i + (ŠÚ + NA)i-229.

(The visibility limit of NAN is given in both sections 14 and 16 as 10 uš.)

(NAN)i = (NAN)i-223 + 2/3(ŠÚ + NA)i-229 (1 corrected)

Except for the few cases of eclipses, the time of opposition or conjunction cannot be
directly observed. The Babylonians used the Lunar Six to get information on the
relative position of the sun and moon around full moon and new moon. They used
the observable (ŠÚ + NA) as the daily retardation of the setting moon. The following
considerations will illustrate that it is quite obvious to do so:

In the very few “ideal” cases, in which opposition takes place at the moment of
sunrise, the full moon will set at the Western horizon while the sun will rise at the
Eastern horizon. At the next morning, the moon will set about an hour after sunrise.
And this time interval from sunrise to moonset evidently measures the retardation of
the moon on the day of opposition.

21 In TU 11 these rules were expressed more or less explicitly (in section 14 and 16) – some
of them were reconstructed; on the parallel tablet BM 42282+42294 the rules are formulated
more clearly.
22 For more details, see BRACK-BERNSEN and SCHMIDT (1994).
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Normally, the opposition does not take place at the moment of sunset (or
sunrise), therefore normally the daily retardation of the sun is split up into two
intervals: ŠÚ, the time from moonset to sunrise measured on the last morning before
opposition, and NA, the time from sunrise to moonset measured on the next
morning, the first after opposition. Obviously, their sum (ŠÚ + NA) measures, how
much later, in comparison to sunrise, the moon sets on the morning of NA than on
the morning before.

Figure 4: The situation at the Western horizon at sunrise in the days
around an opposition taking place in (the middle of) month VII. The
dashed line depicts the ecliptic, the path along which sun and moon
moves, the direction of motion is indicated by the arrow. The positions
of moon and "anti-sun" are shown on two mornings on which ŠÚ and
NA are measured.

Figure 4 illustrates the normal case when opposition does not take place at sunrise.

For the sake of simplicity we introduce the symbol jjjj for the “anti-sun”, which we
define as the point on the ecliptic situated directly opposite the sun. At the exact

moment when the sun rises, jjjj sets, and vice versa. It marks the point of the ecliptic
at which the opposition takes place. The daily retardation of the setting moon is
measured by the arc (ŠÚ + NA) of the equator.

The retardation of the rising moon at the day of opposition is determined in a
similar way: as the sum (ME + GE6) of ME, the time from last moonrise before
opposition to sunset, and of GE6, the time from sunset to first moonrise after
opposition.
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The Empirical Foundation of the Goal-Year Method

The Goal-Year method uses (ŠÚ + NA)(i− 223) as the daily retardation of the setting
moon around opposition i. It uses (ŠÚ + NA)(i− 229) for the daily retardation of the
new crescent in month (i), and it takes a third of the daily retardation as the change
after 1 Saros of ŠÚ, NA, and NAN, respectively. This method is based on the
following empirical recognition: The daily retardation at full moon will in a good
approximation repeat after 1 Saros:

(ŠÚ + NA)(i) ≈ (ŠÚ + NA)(i− 223)

The daily retardation of the new crescent is approximately equal to the daily
retardation of the setting moon in its full phase, measured 5 1/2 months earlier.

∆NAN(i) ≈ (ŠÚ + NA)(i− 6) ≈ (ŠÚ + NA)(i− 229).

The time of lunar eclipses in comparison to sunset is shifted by 1/3 of a day after
1 Saros. Or generally for each lunar month:

223 synodic months = 1 Saros is 1/3 day longer than a whole number of solar days.

Acknowledgements

At this place I express my thanks to the DFG (Deutsche Forschungsgemeinschaft)
for supporting this work. I warmly appreciate a careful reading of the manuscript by
Claire O’Reilly and thank Irving Finkel, Christopher Walker, and Hermann Hunger
for identifying and translating parallel texts, and Peter Huber for making his
computed lunar files available. Finally I thank John Steele and Hermann Hunger for
valuable corrections and suggestions to this paper.

Abbreviations
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