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Abstract 
At the heart of the Babylonian lunar theory known as System A is Column Φ, a function 

that represents the length of the Saros assuming that the solar velocity is at its maximum, 
and from which all functions that reflect the moon’s anomalistic motion are derived. In this 
paper we discuss the Q-polygon for analysing linear zig-zag functions and apply it to Column 
Φ. We show that using multiples of the smallest difference between Φ values provides a con-
venient way of calculating the change in Φ over long periods. We use this approach to ana-
lyse the Φ and related numbers on the so-called Atypical Text C. We draw attention to our 
new reading of some of the Φ-values and related numbers. These new readings show that 
the Φ-values are closely connected to the other, related, numbers in the text, and they make 
it obvious that there is a connection between the Φ-numbers, the 14-month anomalistic 
period and the truncated version of Φ, which was used for finding Λ and G from Φ. 
 
 
1   Introduction 
This paper is part of the talk given by Brack-Bernsen at the symposium in honour of 
Hermann Hunger in Vienna July 2007. In the first part of the talk the results of 
the collaboration with Hermann Hunger were presented: We had aimed at under-
standing some difficult astronomical texts from periods during which the formation 
of the astronomical theories took place. And we have succeeded in understanding 
several cuneiform texts and reconstructing many predicting rules for finding, 
among others, lunar phases (the Lunar Six), duration of the lunar month and the 
times of lunar eclipses. Such early predicting rules are very important for a deeper 
understanding of the Babylonian Astronomy—they help us to know which astro-
nomical concepts the Babylonians utilized, how they thought and argued: in short, 
how their early astronomical theories worked. Such knowledge is indispensable 
for the far goal of giving a credible reconstruction of how the Babylonian mathe-
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matical astronomy was developed and how its parameters were determined. The 
decoded (or reconstructed) predicting rules have already been published (see 
Brack-Bernsen and Hunger 2002, 2006, 2007, and 2008). Therefore at this place 
we only reproduce the last part of the talk, which was an account of work in pro-
gress on the so-called atypical astronomical text C. This investigation, under-
taken in collaboration with John Steele, has now been finished. And it fits well 
into the theme of this symposium: Assyriology and empiricism. Text C has some 
numbers (given in the Babylonian sexagesimal system) which clearly belong to 
column Φ, the first calculated number column in a lunar ephemeris of system A. 
Text C also has some coefficients, which are special numbers used for specific 
calculations (with Φ-numbers). Column Φ has caused the researchers many prob-
lems. It has two functions: it is the basic number function for grasping the vari-
able lunar velocity—and it gives the lunar contribution to the duration of one 
Saros = 223 lunar months, an important eclipse period which was known and 
utilized early by the Babylonian astronomers. Φ gives a very good approximation 
to the period of the varying lunar velocity, and not only the Babylonian numeri-
cal function for the lunar velocity is derived from it but also the lunar contribu-
tion to the duration of one and 12 synodic months, respectively. (A synodic month 
is the period between two consecutive full or new moons.) 

The question is how Φ was constructed. And in this connection, text C is very 
important, since its Φ numbers with the connected coefficients give us hints to 
how the Babylonians calculated and worked with Φ numbers. Text C has been 
published earlier by Neugebauer and Sachs (1967), but we have some new and 
better readings and a deeper understanding of the numbers. 

There have been several proposals for a reconstruction of Φ. It is generally 
agreed on that the period of Φ (= the period of the varying lunar velocity) was 
found from the sum Σ of the Lunar Four. The Lunar Four are time differences 
between risings and settings of the sun and the full moon, measured in the days 
around opposition. These time differences were observed regularly since 700 BC, 
and since the sixth century, the Babylonian astronomers knew how to predict 
them by means of the so called Goal-Year method (see Brack-Bernsen and Hunger 
2002). This method used sums of the Lunar Four in a way showing that the Babylo-
nians knew that the sums reflected the movement of the moon relatively to the sun. 
Therefore we understand that and how the Babylonians empirically could deter-
mine the period of the lunar velocity by means of the Lunar Four time intervals. 
The concepts underlying the Goal-Year method show us that the Babylonians 
knew what they were doing by adding the Lunar Four. 
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There have been several proposals for how the amplitude and phase of Φ was 
found: Brack-Bernsen (1991) proposed it to be a pure empirical fit to Σ, but now 
we know that the Babylonians also had a good approximation for the dominating 
solar contribution to the Saros (Brack-Bernsen and Hunger 2002, and Brack-Bernsen 
and Steele 2005). Therefore we now see the possibility that time differences be-
tween lunar eclipses were used for the construction of Φ. Text C also gives us the 
impression that lunar eclipses are connected to the Φ numbers written in the 
text. Teije de Jong (private communication) has proposed that Φ was con-
structed by means of an early and rather imprecise period relation: 27 solar 
years = 334 synodic months, while John Britton (preprint 2008) has presented a 
(rather modern) reconstruction of Φ based among others on the shortest and 
longest duration of the 235 months period (= 1 Saros + 12 months) and on the 
shortest 6 months intervals between lunar eclipses. Cuneiform texts show that 
the Babylonians were concerned with all these periods. But there is still a contro-
versy about Φ and many open questions remain. Thus, text C is a welcome source of 
information on Φ. Its Φ numbers give us hints to which calculations were per-
formed and they seem also to refer to the schemes for finding the duration of 1 
month and 12 months from Φ (reconstructed by Asger Aaboe 1971). 

Φ is a numerical linear zigzag function. Olaf Schmidt has introduced a mathe-
matical tool, the Q-polygon, which is very useful when working with linear zigzag 
functions. It helps us in understanding the derivation of the 1 or 12 months’ du-
ration from Φ and in analyzing the numbers in text C. The mathematical analysis 
with technical details is given in section 2 of this paper, while text C is presented 
and discussed in section 3. 
 

2   Column Φ, δ and the Q-polygon 
The numbers given in column Φ of a system A lunar ephemeris are discrete 

but are all situated on the branches of a linear zig-zag function. It is well known 
how the numbers were calculated: from the number 𝜙𝑖 in line i (lunation i) to 
the next, 𝜙𝑖+1, add or subtract dΦ , depending on whether 𝜙𝑖  is situated on the 
ascending or descending branch: 𝜙𝑖+1 = 𝜙𝑖 ± dΦ  

The numbers around the maximum MΦ  obey the equation: 
2MΦ − dΦ = 𝜙𝑖 + 𝜙𝑖+1 

the rule applies when 𝜙𝑖  is situated on the ascending branch and 𝜙𝑖 + dΦ > MΦ  
while the numbers around a minimum mΦ  obey the equation: 

2mΦ + dΦ = 𝜙𝑖 + 𝜙𝑖+1 
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the rule applies when 𝜙𝑖  is situated on the descending branch and 𝜙𝑖 − dΦ > mΦ  
Therefore, knowing all the parameters of column Φ, it is in principle possible 

to calculate by hand the 𝜙 values of all coming lunations—e.g. 𝜙𝑖+𝑚  for the lu-
nation (i+m) situated m months later than lunation(i). 

In his lectures on Babylonian Astronomy given at the University of Copenha-
gen, Olaf Schmidt presented the Q-Polygon, which can be used to facilitate such 
calculations. We shall here give an overview of his introduction of the Q-Polygon 
and then utilize it in connection with column Φ. 

Below we repeat the parameters of column Φ 
Maximum:  MΦ = 2,17; 04,48,53,20 
 ΔΦ =  MΦ −mΦ = 19; 16,51,06,40 
Minimum:  mΦ = 1,57; 47,57,46,40 
and the monthly difference  dΦ = 2; 45,55,33,20 

all numbers given in units of uš (=time-degrees). 
Hence, the Period of Φ 

PΦ =
2ΔΦ
𝑑Φ

=
38; 33,42,13,20

2; 45,55,33,20
=

1,44,7

7,28
 

or written in our decimal system 

PΦ =
6247

448
=
Π

𝑍
 

This means that there are ΠΦ = 1,44,7 (or 6247) different Φ1 (and Φ2) num-
bers, before the numbers repeat, having fulfilled ZΦ = 7,28 (or 448) Periods, PΦ . 
There are two disjunct series of Φ-numbers: those who are used by new moon 
are normally called Φ1-numbers, while we call those used by full moon Φ2-
numbers. 

 
Φ1, the function used by new moons, can assume the minimum m but not M, 

whereas Φ2, used in full moon ephemerides, assumes the maximum M but not m. 
The Φ1 and Φ2 numbers are all different. 
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Imagine all consecutive the Φ2 numbers (𝜙0, 𝜙1, 𝜙2, 𝜙3, ...) mapped in a coordi-
nate system, starting at the maximum M, then the discrete 𝜙-points will be placed 
equidistantly on a linear zig-zag function, returning back to M after 6247 points 
and exactly 448 zig-zags. 

Let this zig-zag function with all its 𝜙-points be mapped on the periphery of a 
circle with circumference equal to 2Δ in the following way: 

(Heuristically one can describe the process as follows: push all the 448 zig-
zags with their 𝜙-points together into the first zig-zag starting at m. We will then 
end up with one zig-zag starting at m going up to M and ending back at m. All 
6247 𝜙-points will be situated on this single zig-zag. Take now the ends, i.e., the 
two minima m and bend them together forming a circle instead of a zig-zag, so 
that the straight zig-zag lines will be bend to half circles.) 

The minimum m shall be depicted into the lowest point L of the circle and the 
maximum M shall be depicted on the highest point H of the circle. A 𝜙𝑖 situated 
on the ascending branch is depicted on the point P𝑖 of the left half circle so de-
termined that P𝑖 has the same distance to L as 𝜙𝑖 has to m, i.e. the circle-arc (L, 
𝑃𝑖) be shall equal to 𝜙𝑖 −m: 

 
and similarly, a 𝜙𝑗  on the descending branch is depicted on the point 𝑃𝑗  on 

the right half of the circle which obeys: 
𝜙𝑗 −m = 𝑃𝑗𝐿  

In this way all (𝜙-numbers or) all points 𝜙𝑖 on the zig-zag function are de-
picted on points P𝑖 on the circle: 
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We shall now show that this mapping also fits around the highest point, H, of 
the circle. Do we really get the correct distance, d, between two points on each 
side of a maximum? 

 
Let 𝜙𝑖−1  and 𝜙𝑖 (two arbitrary consecutive 𝜙-numbers be situated before and 

after the maximum M. For their mapping-points P𝑖−1 and P𝑖 on the circle we have: 

 
We can now calculate 
the circumference of the circle − 𝑃𝑖−1𝑃𝑖   = 𝐿𝑃𝑖−1 + 𝑃𝑖𝐿 =  
 2Δ  − 𝑃𝑖−1𝑃𝑖  = 𝜙𝑖−1 + 𝜙𝑖 − 2m 
   = 2 M − d − 2 m 
   = 2 Δ − d 
Hence, we have:  𝑃𝑖−1𝑃𝑖  = d, 

and we have demonstrated, that the mapping also fits at the top of the circle, 
around the maximum H. In other words for all i we have: 𝑃𝑖−1𝑃𝑖 = d. 

Since there are 6247 P-points on the circle, evidently, there will be many 
points between two points with consecutive numbers i. 
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We shall therefore give the P-points new names Q1, Q2, Q3, ..., QП so that Q2 is 
the first P-point we meet, when we from Q1 go clockwise around the circle, Q3 is 
the next P-point, and so on. These Q-points are spread equidistantly on the pe-
riphery of the circle: 

We shall now show, that 𝑄𝑖−1𝑄𝑖 = 𝑄𝑖𝑄𝑖+1
  for all 𝑖 = 2, 3,… ,Π-1 

 
Proof: 
Either the distances between consecutive Q-points are all equal or there exists 

one Q-point which is closest to the next: 
∃r so that 𝑄𝑟𝑄𝑟+1

 ≤𝑄𝑖𝑄𝑖+1
  for all i. 

The proof is finished when we have demonstrated, that for all i: 
𝑄𝑟𝑄𝑟+1
 = 𝑄𝑖𝑄𝑖+1

  
Let 𝑃𝑠 be the P-point equal to 𝑄𝑟 : 𝑃𝑠 = 𝑄𝑟 , and let 𝑃𝑡  be the P-point = 𝑄𝑟+1. If 

s ≺ t, we come from 𝑃𝑠 to 𝑃𝑡  by moving t – s = m steps of length d forward. (If 
s ≻ t, we come from 𝑃𝑠 to 𝑃𝑡  by moving s – t steps of length d backward, i.e., by 
moving t – s = m steps of length d forward.) 

If we now start by 𝑃𝑡  and again move m d-steps forward, we will come to 
point 𝑃𝑠+2m  for which we know that 
𝑃𝑠+𝑚𝑃𝑠+2𝑚
 = 𝑃𝑠𝑃𝑠+𝑚 = the smallest possible distance between Points. 

Now 𝑃𝑠+2m  equals some Q-point, and it must be 𝑄𝑟+2 the one closest to 
𝑄𝑟+1. Therefore we know that: 
𝑄𝑟𝑄𝑟+1
 = 𝑄𝑟+1𝑄𝑟+2

 = 𝑄𝑟+2𝑄𝑟+3
 = ... = 𝛿 
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We have demonstrated that the Q-points are placed equidistantly, so we can find 
𝛿, the difference between two consecutive Q-points (Olaf Schmidt called this 
smallest difference 𝛾. Since then J. Britton (1999) has also introduced this quan-
tity, calling it 𝛿. We shall here follow his notation.): 

𝑄𝑟𝑄𝑟+1
 = 𝛿 =

2ΔΦ
ΠΦ

=
38; 33,42,13,20

1,44,7,
= 0; 0,22,13,20 

In his lectures, Olaf Schmidt used such a mapping of Column A in system B for 
calculating (sums of A values) how far the sun has gone during 12, 13, and Π𝐴 
months. Since the linear zig-zag function A(i) is a function of the time (line number) 
and not (directly) of the position in the ecliptic, it could be shown, that the sun 
does not always move the same distance during a year—of the period 𝑃𝐴—How 
far it moves according to the model, depends on the starting position of the A-value 
within the Q-polygon. Therefore, according to our criteria, such a procedure can 
not correspond to a “velocity function.” Column B, giving the position of the moon 
at conjunction or opposition, respectively, is calculated from column A. Positioni+1 
= Positioni + Ai. In other words column A is the difference column of column B. 

Contrarily to the step function behind column B in system A, which really can 
be interpreted as a “velocity function” of new moon or full moon, column A in 
System B does not function alike—and this fact makes it awkward to work with. 
(See also Schmidt 1987.) 

We shall here utilize the Q-polygon differently: to analyse the function Φ(i). 
Let us again look at the parameters of column Φ: 
𝛿 =

2ΔΦ

ΠΦ
=
𝑑Φ

𝑍Φ
  

Therefore, 𝑑Φ , the monthly difference between Φ values, equals 𝛿 × 𝑍Φ : 
𝑑Φ = 448 × 𝛿. This means that we come from one P-point to the next by moving 
448 𝛿-steps = 448 Q-points forward on the circle. 

This knowledge is quite practical when one wants to calculate by hand Φ 
numbers m lunations apart. Starting with an arbitrary 𝜙𝑖  we can easily calculate 
𝜙𝑖+𝑚 , the value of column Φ m months later, if 𝜙𝑖 and 𝜙𝑖+𝑚  are situated on the 
same branch of Φ: 
𝜙𝑖+𝑚 = 𝜙

𝑖
+ m ×  dΦ = 𝜙

𝑖
+ m × 448𝛿 (modulo 2Δ) 

If 𝜙𝑖 and 𝜙𝑖+𝑚  are situated on different branches, then 𝜙𝑖+𝑚  found above will 
be larger than M. The difference 𝜙𝑖+𝑚  – M, used appropriately will then give the 
correct 𝜙𝑖+𝑚 . 
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The calculations are more easily done by decimal numbers, when we forget that 
all numbers are given in units of uš, so that we multiply them all by 604 and 
treat them as integers: 
𝛿 = 22,13,20 = 80000 
dΦ = 2,45,55,33,20 = 448 × 80000 
MΦ = 2,17, 4,48,53,20 = 1776560000 = 22207 × 80000 
mΦ = 1,57,47,57,46,40 = 1526680000 = 19083.5 × 80000 

The function Φ2 assumes M but not m, while the function Φ1 can assume the 
value m but not M. 

From this we see, that the Q1-polygon is shifted by 1/2 𝛿 in comparison to the 
Q2-polygon. This makes sense, since new moons take place half way between full 
moons. The smallest distance between Q1- and Q2-points being 1/2 𝛿 = 0;0,11,6,40 

We can now use the Q-technique to calculate the shift in Φ- value after 12 
and 14 Months and after 223 months = 1 Saros, knowing that dΦ = Δ1Φ = 448 δ 
(See also Britton 1999, 203): 

Δ12Φ = 12 × 448 𝛿 = 5376 𝛿 = −871 𝛿 (modulo 6247𝛿) 
Δ14Φ = 14 × 448 𝛿 = 6272 𝛿 = 25 𝛿 (modulo 6247𝛿) 

Δ223Φ = 223 × 448 𝛿 = 16 × 6247𝛿 − 48𝛿 = −48𝛿 (modulo 6247𝛿) 

Function Φ is, correctly, constructed in such a way, that lunations situated 14 
or 223 synodic months apart will have almost the same Φ-value and by this also 
almost the same lunar velocity. 

The shift after 2 × 14 + 223 = 251 synodic months will be very little: 
Δ251Φ = 2 × 25 𝛿 − 48𝛿 = 2𝛿 (modulo 6247𝛿) 

 
3   Evidence for the Babylonian Use of δ: Atypical Text C 
BM 36301 (= 80-6-17, 27) was published by Neugebauer and Sachs (1967) 

as Atypical Text C. BM 36301 is a well preserved tablet missing only a small part 
at the bottom left corner, and an even smaller piece at the top right. The obverse 
is divided into three columns. Column I continues around the lower edge and for 
a further two lines on the reverse which is otherwise uninscribed. It contains 
dates (years and months but no day numbers) and longitudes of first and last 
visibilities and stationary points of Mars calculated using a variant to the com-
mon System A scheme. Column II contains dates (years, months and day num-
bers) of Venus phenomena. The first five lines contain the word ḫi-pi “broken,” 
indicating that the tablet is a copy and that the original tablet was broken here. 
The bottom of column II, separated by a dividing line from the Venus data and 



 

 
L. Brack-Bernsen and J.M. Steele 

10 | 
 

extending into column III contains values Φ2 followed by an enigmatic collection 
of month names, numbers and the king’s name Kandalanu. Φ2 numbers continue 
for five lines at the top of column III, then, following a horizontal dividing line 
other numbers related to Φ are given. The first of these numbers is followed by 
the term igi-gub-ú-meš. 

Neugebauer and Sachs investigated the whole tablet. They showed that the 
Mars data was probably calculated for either the reign of Artaxerxes III (middle 
of the fourth century BC) or the beginning of the Seleucid Era 47 years later, and 
the Venus data may date to Artaxerxes I, although this is far from certain. They 
also noted that the Φ2 values date from the beginning of the fourth century BC if 
they are assumed to be on the ascending branch. In the following we shall be 
concerned only with the lunar part of the text. 

We give in figure 1 a revised transcription of the lunar sections of Text C, in-
corporating collations by H. Hunger and J. Steele. We have refrained from mak-
ing any restorations to missing text. 

 
Figure 1:   The revised transcription of the lunar sections of Text C 
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Critical Apparatus: 
Obv. III 1:  The final digit is damaged and could be 4, 5, 6, 7 or 8. 
Obv. III 2:  Neugebauer and Sachs read 20 after 33, but neither Hunger or Steele could 

see it. 
Obv. III 3:  Hunger writes: “After 31, traces of two verticals as lower part of 5 or 8; 

upper part gone so it could be 6; but then much space (broken) until 40.” 
Obv. III 5:  Of the 33, only 31+× remains. At the end of the line, extending around 

the edge, are three or four unreadable signs. 
Obv. III 7:  There is a clear separation mark between the 2 and the 22, indicating that 

we must read this number as 2,0,22,13,20. Neugebauer and Sachs noted this sepa-
ration mark in the transcription but ignored it in their analysis of the numbers. 

Obv. III 12:  Neugebauer and Sachs read 1,48,8,53,20 but there is no 1 at the beginning 
of the number. 

Obv. III 16:  Neugebauer and Sachs read 6,14,48,53,20 but both Hunger and Steele 
read the initial number as either 5 or 6. 

Obv. III 17:  Hunger writes concerning the 20: “last wedge double.” 
 
3.1   The igi-gub-ú-meš numbers 
For reasons that will become apparent, we begin our discussion with the num-

bers given in column III 6-19. The text calls the numbers igi-gub-ú-meš, custom-
arily translated as “coefficient.” We know the term igi-gub or igi-gub-ú from the 
so-called “coefficient lists” of the Old Babylonian period (Robson 1999 pp. 193–
207), collections in long lists of standard numbers used for calculating (e.g. the 
coefficient 5 was used for calculating the area of a circle starting with the square 
of its diameter), and also from Late Babylonian astronomical procedure texts 
(Neugebauer 1955, p. 476), where it also seems to refer to numbers used in cal-
culations. 

Neugebauer and Sachs divided the numbers into two groups (which the text 
does not do) and identified them as multiples of 11,6,40 and of 17,46,40 respec-
tively. In doing so, however, they had to correct some numbers. After collating 
the text we can identify all the numbers (without any correction) as multiples of 
𝛿 = 22,13,20. 

In table 1 below, we have identified all the igi-gub-ú-meš numbers as mul-
tiples of 𝛿. This can not be an accident. The numbers called igi-gub-ú-meš in Text C 
are a collection of numbers of the form n × 𝛿. 

Not only are the igi-gub-ú-meš numbers all multiples of 𝛿, most are also mul-
tiples of 25𝛿. We recall that 25𝛿 is the change in Φ over 14 months. This is sig-
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nificant because 14 months is the well-known shortest approximate period of return 
in lunar anomaly. The period relation is: 

14 synodic months = 15 anomalistic months. 

Other anomalistic period relations are connected to multiples of the 14 month 
period: 

41 months = 3 × 14 – 1 months 
223 months = 16 × 14 – 1 months 
251 months = 18 × 14 – 1 months 

 
Table 1:   The numbers called igi-gub-ú-meš in Text C 

The number N3 is of special interest in this context. N3 = 2,28, 8,53,20 = 400𝛿   
(= 16 × 25𝛿 = 448𝛿 − 48𝛿) can be seen as the change in Φ after 16 × 14 months 
= 224 Months, which is obviously the change after one month plus a Saros. 
Similarly, the difference between N5 and N6 equals 2𝛿, which is the difference be-
tween Φ-values situated 251 months apart, and N6 = 373𝛿 is the difference be-
tween Φ-values situated 41 months apart. 

Clearly the igi-gub-ú-meš numbers on Text C provide evidence of an interest 
in calculating with column Φ and that the period of 14 months and its multiples 
played a major role. Furthermore, it seems likely that the minimal difference 
between Φ values, 𝛿 might have been used in these calculations. To us it seems 
as if the numbers could have been used for long term calculation of Φ values in a 
way very similar to calculations undertaken by L. Brack-Bernsen by hand before 
we had a computer program which made it possible to calculate all values of Φ 
automatically. 
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3.2   The 𝚽𝟐 numbers 
The ten Φ values found at the bottom of column II and the top of column III are 
all Φ2 numbers, that is Φ values associated with full moons. We label those at 
the bottom of column II a-e and those at the top of column III f-j. 

Neugebauer and Sachs noted that the difference between most of the Φ2 va-
lues equals a multiple of 25𝛿. We point at the additional fact that for most of the 
Φ2 numbers the distance to the extreme values M’ and m’ of the truncated Φ 
function are also multiples of 25𝛿. 
M’ =  2,13; 20, 0, 0, 0 =  21600𝛿 and  m’ =  1,58; 31, 6,40, 0 =  19200𝛿 
M’ − m’ =  50 × 48𝛿 =  96 × 25𝛿 

Only two Φ-numbers, j and f, do not have this quality. We propose that there 
is an scribal error in j: if instead of 2,10,𝟓2,35,33,20 we read j =  2,10,𝟒2,35,33,20, 
then this is again a Φ-value which now also has the distance of n times 25𝛿 to 
M’, m’, and to the other eight Φ-numbers. By this correction j will have the same 
property as all the other 8 Φ-numbers have. We see this as a strong indication that j 
contains a scribal error, which we now have corrected. Of f only 1,59,50[+x...], 
was visible and Neugebauer and Sachs reconstructed it as 1,59,55,[11, 6,40], 
with a notation that the last 5 in 55 was not clearly readable. We propose an-
other reading: f must be a Φ2 number; it can, however, also be reconstructed such 
that it, similar to the other eight Φ2-numbers on text C, is situated within in the 
pattern of n × 25𝛿 values. We reconstruct f as 1,59,5[4,26,40, 0]. 

 
Table 2:   Our reading of the Φ numbers on Text C, their distance to M’ and m’. 

With this reading of the Φ2 numbers we have achieved that the distances be-
tween the corresponding dates (contrarily to Neugebauer and Sachs’ reading 
used in their Table 15) all are multiples of 14 Months. This clearly shows that 
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the Φ2 numbers on Text C were chosen because of their relation with the truncated 
maximum and minimum of Φ, pointing to the importance of these truncated maxi-
mum and minimums. 

Because of the long number period of Φ2, over 505 years, it is possible to find 
unique dates for the Φ2 values. Neugebauer and Sachs found dates around the 
beginning of the fourth century BC for the Φ2 values if they are assumed to be 
on the ascending branch of Φ2. If they are assumed to be on the descending branch, 
we obtain two further possible dates (presented in table 3), one in the seventh/sixth 
century BC and the other in the second/first century BC. Table 4 below lists the 
two most plausible datings. These datings take into account our new reconstruc-
tions of j and f. 

 
Table 3:   Dates when Φ2 numbers are assumed on descending branches 

Of the three possible dates for the Φ2 values, the late dating for the descending 
branch in the second/first century BC is almost certainly too late. The early date 
for the descending branch at first sight seems too early, but it is worth remarking 
that the date of one of the Φ2 values, -637 Jan 2, is within the reign of Kan-
dalanu and that his name is given after the first Φ2 number at the bottom of 
column II. In support of fifth/fourth century BC dates if we assume the as-
cending branch we note that the Mars and Venus data on the tablet probably 
correspond to the fourth century BC. However, since the present section of the 
text seems to be concerned with calculating Φ over long periods, we cannot rule 
out any of the datings. In the following analysis we will only be concerned with 
the differences in months between the Φ2 values which remain the same in all 
three datings. 
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Table 4:   Plausible Dates of Φ2 numbers (with Goldstine Numbers) 

We know that Column Φ contains information on the lunar velocity, and there-
fore it is worth repeating Neugebauer and Sachs’ notice, that the dates are al-
most all situated an entire number times 14 months apart. The interval of 14 syn-
odic months is a near approximation to the period of 13;56,39,6,25,... synodic 
months of column Φ. Neugebauer and Sachs write: “It seems likely that the sig-
nificance of these multiples of 14 lines (or months) is connected to the fact, that 
14 lines is a convenient control unit, following one traversal of the zig-zag, with 
the difference D = 0,0,9,15,33,20” (25𝛿 = 0;  0, 9,15,33,20). 

In the table 5 below, we give the line difference (= difference in lunation 
number) between the Φ2 values of text C as we read them. In the first column 
we give the difference between the Φ lunation, when their lunation numbers 
(=GN-number) have been rearranged in chronological order, as Neugebauer 
and Sachs did in their scheme 15, and in the second column we present the dif-
ferences between the dates, when given according to the order in which the Φ2-
dates are found on the tablet: 

 
Table 5:   Line-differences between the Φ2 values on Text C 
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When we arrange the Φ2 values in chronological order we see that there is a clear 
pattern in their distribution. All the Φ2values correspond to dates that are sepa-
rated by a multiple of 14 months. Furthermore, the intervals between the Φ num-
bers display a repeating pattern of 1 – 11 – 14 – 9 times 14 months (see Figure 2). 

Although we now understand that the Φ2 values recorded on Text C were chosen 
because they correspond to dates that were separated by 14 months, we cannot 
explain the ordering of the Φ2 values on the text. They are arranged neither in 
chronological order, nor in order of their size. There might, however, be a con-
nection between the Coefficients, N𝑖 , and the Φ2 values: there are N1 = 18 × 14 
months between date g and date e, N12 = 12 × 14 months between day c and j, 
and N11 = 34 × 14 is the number of months between date f and i. 

We do not know how and why the 10 Φ-numbers (a, b, ..., j) were selected. 
But they are surely somehow connected to the truncations at M’ and m’, and they 
are situated on some of the points intersecting the line between M’ and m’ in 95 
equal distances of 25𝛿. From many ACT texts we know that the Babylonians used 
another series of points (situated equidistantly between M’ and m’ at the dis-
tance of 48𝛿) in order to calculate the lunar contribution, G and Λ, to the dura-
tion of 1 or 12 months (See Aaboe 1971 and Neugebauer 1975). 

 
Figure 2:   Positions of the Φ2-Dates on the ascending branch. The numbers indicate the mul-

tiples of 14 months intervals between the dates 

In a coming paper, the useful tool of the Q-polygon (presented in this paper) 
shall be utilized to illustrate how column Φ was used to generate the other columns 
(Λ and G) depending on the lunar velocity. And it shall be investigated, what a 
similar numerical method using Φ-values at the distance of 25 𝛿 instead of 48 𝛿 
could deliver (Brack-Bernsen: Φ, Λ, and BM 77224+, a table with corresponding 
Φ- and Λ-values). 
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3.3   Kandalanu and the month names and numbers following  

the 𝚽𝟐 values at the bottom of column II 
Following the five Φ2 values at the bottom of column II and extending across 
column III we find the name of the seventh century BC king Kandalanu, a series 
of month names, and various numbers: 

We do not know the significance of any of this text. The series of month names 
does not correspond to the months of the Φ2 values. One of the Φ2 values by the 
earliest dating, value e, corresponds to a date during the reign of Kandalanu, but 
we do not know whether this is merely coincidence, especially as we cannot be 
certain that the early dating of the Φ2 values is the correct one. As noted by 
Neugebauer and Sachs, the pattern of the month names is suggestive of the pat-
tern of successive eclipse possibilities. The 36 before the name Kandalanu could 
refer to 36 years, twice the Saros cycle, but this is no more than a guess. Simi-
larly, the numbers 1,40 and 2(,0) could be the same type of numbers that we 
find on LBAT 1413 and LBAT 1414 that refer to the length of the Saros (Brown 
2000, p. 205; Steele 2002, Brack-Bernsen and Steele 2005), but again this is only 
a guess. What follows is therefore quite speculative. 

 
There may be a connection between the Φ2-values and the Saros Cycle Scheme 

for predicting lunar eclipses (For details of the Saros Cycle Scheme, see Steele 
(2000)): If we assume the Φ-points to be on the ascending branch, then the dates 
corresponding to e (=M’), h, d, and also m’ are all dates of lunar eclipse possi-
bilities occurring in the Saros Cycle Scheme. However, none of them are dates of 
lunar eclipses which are visible from Mesopotamia. 

According to the “old dating” where we locate the Φ2 points on the descend-
ing branch, three of the Φ2-values (b, f, and j) correspond to lunar eclipses. 
(Whereas neither M’ nor m’ refer to days of lunar eclipse possibilities.) 

j corresponds to -618 Mar. 31, where a lunar eclipse of magnitude 0.72 oc-
curred. The eclipse started around an hour before moonrise, so that the moon rose 
eclipsed. The same is true for f, corresponding to -539 June 24, which again is 
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the date of a total lunar eclipse starting over three hours before moonrise and end-
ing 0.43 hours = 6;27 uš after moonrise. (The numerical details of the lunar 
eclipses are taken from Huber and de Meis, 2004, pp. 184–187.) 

The date -589 Sep. 4, corresponding to b, is not the date of an observable eclipse, 
but only of an eclipse-possibility. However, the eclipse, taking place two Saros 
earlier on date -625 Aug. 13, is visible from Babylon. This is the eclipse of Kan-
dalanu Year 22 month VI. Could this eclipse possibly have something to do with 
our eclipse date b? 

In this regard it may be worth noting that if the remark “36 Kan-da-la-nu,” 
which follows number a, is shifted 1 line downwards, we could read it as comment 
to b = 2, 6,41, 6,40, and then it would make sense: 36 [Years] are often in cu-
neiform texts used for 2 Saros, and 2 Saros before the EP of -589 Sep. 4, we get 
to a lunar eclipse where the moon rose eclipsed within the time of Kandalanu (that 
of -625 Aug. 13). Around the time of this eclipse we have a very nice fit between 
the curves Σ and Φ. Σ is the sum of the Lunar Four, which constitute the observa-
tional basis of the period relation underlying Φ. In Figure 3 we have an instance 
where Σ and Φ appear nicely in phase. This is not an unique event. The period 
relation behind Φ is a very nice approximation to the period of the lunar veloc-
ity. Therefore there will be many such instances of nice agreement in phase be-
tween Σ and Φ during the time from 650 BC to 200 BC. 

 
Figure 3:   A graphical comparison between Σ and Φ. Around lunation i = 1645 there is a 

optimal fit between the curves Σ and Φ – 100°. Lunation 1645 is the full moon of -625 Aug. 13, the 

date 2 Saros before date b = -589 Sep. 4. 

We mention this as a possibility, that the text may contain some scattered 
notes giving hints to how Φ was constructed or how it was used for long term 
calculations, using: some special Φ2 values—coefficients connected to 14 months, 
which is a good approximation to the period P  = PΦ  of the lunar velocity, and 
finally—36 Kandalanu followed by month names written in the pattern of con-
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secutive eclipse possibilities. We remind the reader, however, that the evidence 
for the interpretation of this part of Atypical Text C is very limited, and we do 
not believe that any firm conclusions can be drawn from it. 

An additional reason for bringing Figure 3 is to point at another possible con-
sequence of the numbers in Text C. Clearly the 14-month anomalistic period played 
a major role, and it was closely connected to Φ. This connection may have been 
utilized in different ways. In Figure 3 we have the “lucky” case of a lunar eclipse 
which took place at a time when Σ was nice and linear. But Figure 3 also illus-
trates how the 14 month period eventually could have been used in a different 
way: for replacing “shaky parts” of Σ with straight parts, just by going a few 
times 14 months forward or backward. Whenever Σ has been recorded over a 
longer period, it is possible to find linear sections and e.g. to connect them to 
eclipses which can be timed quite exactly—as for instance eclipses where the 
moon rises or sets eclipsed (which was the case in the Figure 3). Or expressed 
the other way around: if one has an observed event which takes place at a time 
where Σ is shaky, then one can exchange the shaky part by a nicer, linear, part 
to be found some 14 months earlier or later. Such straight-lined parts of Σ may 
have been used to find the period of Φ. We have no idea if the Babylonians 
worked like this; but still we think it is worth mentioning it as a possibility. To 
sum up: we give three different possibilities for how the interval of 14 months 
may have been utilized: 

1. In order to exchange “shaky” parts of Σ by “usable,” linear parts, 
2. for something alike the scheme calculating Λ or G from Φ; but now with steps of 

25𝛿 instead of 48𝛿-steps, or 
3. for long term calculations of Φ-values. 
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