
Periodic GW calculations in the Gaussian and plane waves scheme

Jan Wilhelm∗ and Jürg Hutter
Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland

(Dated: June 7, 2017)

We present a correction scheme for periodic Γ-only GW calculations in a Gaussian basis. For four benchmark
systems, the dependence of the corrected GW quasiparticle levels on the cell size is reduced by a factor of three
to ten compared to GW calculations without correction. The correction scheme comes along with negligible
computational cost and enables GW calculations for supercells containing hundreds of atoms with Gaussian
basis functions.

I. INTRODUCTION

The accurate prediction of photoelectron spectroscopy is
still a major computational challenge in many fields of
physics, chemistry, and materials science.1 For medium and
large systems, the most used method is Kohn-Sham (KS)
density functional theory.2 As it is well-known, using KS-
DFT eigenvalues for computational spectroscopy has a seri-
ous fundamental and practical limitation: Depending on the
parametrization of the exchange-correlation functional, the
KS-DFT eigenvalues can shift substantially.

The GW approximation3 promises better accuracy for the
calculation of quasiparticle energy levels. Besides the search
for more accurate GW flavours4–7, the main challenges of GW
is related to the high computational cost and numerical issues.
Therefore, it is not surprising that it took more than twenty
years between proposing the GW method by Hedin3 and the
first application to real materials by Hybertsen and Louie8.

Significant progress has been made in reducing the com-
putational cost of GW in recent years: Plane-wave GW im-
plementations commonly suffer from requiring many virtual
states and the inversion of large dielectric matrices. Here,
the comination of without-virtual-states techniques9–11 with
a low-rank approximation of the dielectric matrix10,12–15 can
improve the computational efficiency enabling large-scale ap-
plications16–18. Another approach is to reformulate GW in a
Gaussian basis which can significantly reduce the dimension-
ality of the involved matrices19–29. GW in a Gaussian basis
can be applied to molecules without difficulty30–40 in contrast
to plane-waves implementations where several technical is-
sues have to be addressed10,41,42. Large-scale GW calculations
also have been reported using stochastic orbitals43,44.

Another issue of periodic GW is the necessity for a cor-
rection due to the spurious self-interaction between periodic
images of quasiparticle wavefunctions. This self-interaction
results in a slow 1/L convergence of the GW quasiparticle
levels with the cell length L. In case of Brillouin zone sam-
pling, the 1/L convergence translates to a N−1/3

k convergence
with the number of k-points.45 A similar slow convergence as
in GW has been found for coupled cluster46,47 and Hartree-
Fock exchange in the condensed phase. For the latter, various
corrections exist that aim to accelerate the Brillouin zone con-
vergence, including auxiliary function techniques48 and real-
space truncation of the Coulomb interaction49–51.

For plane-waves implementations of GW, several correc-
tion schemes have been proposed to correct for this slow con-
vergence: Analytic integration of the divergence at the Γ-
point8,52,53 which is suitable in case of dense k-point sam-
pling, the Γ-offset method54–56, or Brillouin zone integration
using analytical limits at the Γ-point10,41,45,57,58. In the pio-
neering implementation of periodic GW with Gaussians by
Rohlfing et al.24,25, which is so far the only implementation of
periodic GW in a Gaussian basis to the best of our knowledge,
dense k-point sampling is used while the periodic correction
has been computed in a plane-waves basis.

In this work, we propose a correction scheme for periodic
Γ-only GW calculations in a Gaussian basis. In Sec. II, we
derive our correction scheme in detail. We show benchmark
calculations on four materials in Sec. III.

II. DERIVATION OF THE CORRECTION TO THE
PERIODIC GW SELF-ENERGY IN A GAUSSIAN BASIS

In this section, we derive a correction for periodic GW cal-
culations that accelerates the slow 1/L convergence of GW
quasiparticle energies with the cell length L. In Sec. II A,
we start with a brief review of periodic GW calculations in
a plane-waves basis. Then, the derivation is tailored to the
use of Gaussian basis functions and the resolution of the iden-
tity with the overlap metric (Sec. II B). To apply the correc-
tion schemes from plane-waves GW, we express the screened
Coulomb interaction, the dielectric matrix and the polarizabil-
ity as square matrices in the resolution-of-the-identity (RI) ba-
sis, which corresponds to a plane-waves basis in plane-waves
GW (Sec. II C). For the correction scheme, we add the G = 0
function to the RI basis, see Sec. II D. The k-dependence
of the polarizability, the dielectric function and the screened
Coulomb interaction is needed for the correction and given in
Sec. II E. Using the k-dependence of the screened Coulomb
interaction and Brillouin zone sampling, we integrate the sin-
gularity in the self-energy, see Sec. II F. Finally, we give the
algorithm for periodic GW calculations in a Gaussian basis in
Sec. II G.
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A. Periodic GW calculations in a plane-waves basis

In this section, we summarize periodic GW calculations in
a plane-waves basis with a focus on the divergence of the
screened Coulomb interaction at the Γ-point. The equations
are taken from Refs. 52, 58 and 59.

The equation for computing the G0W0 bandstructure εG0W0
nk

reads52,58

εG0W0
nk = εDFT

nk + ZnkRe 〈nk|Σc(εDFT
nk ) + Σx − Vxc

DFT|nk〉 (1)

where we focus on the correlation part Σc
nk of the self-energy

in this work. On the imaginary frequency axis and using a
plane-waves basis, it can be computed as

Σc
nk(iω) = − 1

2π
1
Ω

1. BZ∑
q

all∑
m

∫ ∞

−∞
dω′

1
i(ω − ω′) + εF − εmk−q

×
∑
GG′

Ank,mk−q
G,q Wc

GG′ (iω
′,q)

(
Ank,mk−q

G′,q

)∗
(2)

where Ω = Ωcell/Nk and Ank,mk−q
G,q is given by

Ank,mk−q
G,q = 〈nk|ei(q+G)r|mk − q〉 . (3)

The correlation part of the screened Coulomb interaction
reads

Wc
GG′ (iω,q) =

√
4π

|q + G|
(
ε−1

GG′ (iω,q) − δGG′
) √

4π
|q + G′| , (4)

and the symmetric dielectric function is given by

εGG′ (iω,q) = δGG′ −
√

4π
|q + G| χ

0
GG′ (iω,q)

√
4π

|q + G′| , (5)

where χ0
GG′ (iω,q) is the independent particle polarizability,

χ0
GG′ (iω,q) =

1
Ω

occ,virt∑
kia

Aik,ak−q
G,q

2(εik − εak−q)
ω2 + (εik − εak−q)2

(
Aik,ak−q

G′,q

)∗
.

(6)

Now, we focus on the divergent terms for G = 0 at the
Γ-point of the Brillouin zone, k→0. We start by analyz-
ing the head of the polarizability, χ0

00(q, iω). Note that

Aik,ak−q
0,q

q→0−→ iq 〈ik|r|ak〉 for q→0 which can be seen by Taylor
expansion of eiqr for small q and the orthogonality of molec-
ular orbitals, 〈ik|ak〉= 0.45,60 Therefore, χ0

00(q, iω) =O(|q|2)
holds for small q and ε00(q, iω) remains finite for q→0. For
q→0, the head, Wc

00(q) and the wings, Wc
G0(q), Wc

0G′ (q) di-
verge as 1/q2 and 1/q, respectively, see Eq. (4). At the same

time Ank,nk−q
0,q

q→0−→ 1 and therefore, the entire expression for
the Brillouin zone sampling in Eq. (2) diverges as 1/q2 for
small q.

In the limit of very fine k-point sampling, we have∑
q f (q)→Ω/(2π)3

∫
dq 4πq2 f (q) such that the divergent

terms f (q) = 1/q2 and f (q) = 1/q can be integrated. Thus,
the Brilluoin zone sampling of the head and wings of Wc in
Eq. (2) converge to a finite value when increasing the k-point
mesh. The Γ-point has to be excluded from the k-point sam-
pling of the head and the wings of Wc due to the division by 0
in Eq. (4). In the case of a finite k-point mesh with a distance
1/L =

3√1/Ω of the Γ-point to other k-points, the integration of
the head Wc

00(q) in Eq. (2) for the Γ-point, scales as∫
B1/L(0)

d3q
1
q2 = 4π

∫ 1/L

0
dq =

4π
L
, (7)

where we used the notation Br(0) for the sphere in the Bril-
louin zone with radius r around the Γ-point. We miss the
1/L-scaling G = 0 terms of Wc in our Γ-point implementation
with Gaussian basis functions. This results in a slow conver-
gence of 1/L for GW quasiparticles with the cell length L. To
achieve a fast convergence of GW quasiparticle levels with the
cell size, we derive a correction term for our Gaussian Γ-point
GW implementation in this work.

B. Resolution of the identity with overlap metric

As in the GW implementation23 in the CP2K package61,62,
canonical GW implementations in a localized basis19,20,22 em-
ploy the resolution of the identity (RI) to reduce the compu-
tational scaling of GW from O(N6) to O(N4). In this section,
we give the equations that are used for the RI. The following
index notation has been adopted: i, j (a, b) refer to occupied
(virtual) molecular orbitals (MOs) ψ; n,m to either occupied
or virtual ones; µ, ν, λ, σ to primary Gaussian basis functions φ
and P,Q to auxiliary Gaussian RI basis functions ϕ. The pri-
mary basis functions φµ are employed to expand the KS or-
bitals while the RI basis {ϕP} is used to expand GW quanti-
ties as the polarizability, dielectric function and the screened
Coulomb interaction, as we show in Sec. II C.

In Γ-only GW, four-center Coulomb integrals

(ia| jb) =

∫
Ωcell

dr
∫
R3

dr′ψi(r)ψa(r)ψ j(r′)ψb(r′)v(r, r′) (8)

are appearing where v(r, r′) = 1/|r − r′| denotes the Coulomb
potential. All KS orbitals ψn(r) in Eq. (8) are periodically
repeated Bloch states at the Γ-point where we drop the k = 0
index. Within the RI approximation based on the overlap met-
ric, these integrals are factorized to63

(ia| jb)RI =
∑

PQRS

(iaP)S −1
PQVQRS −1

RS (S jb) . (9)

The resolution of the identity can be seen as inserting
Id =

∑
PQ |P〉 S −1

PQ 〈Q| twice into Eq. (8) which is exact in the
limit of a complete RI basis {P}. Here, the overlap matrix S in
the RI basis,64

S PQ =

∫
R3

dr ϕP
P(r)ϕQ(r) (10)
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is appearing since the Gaussian RI basis is non-orthogonal.
The superscript P indicates that the functions are periodically
repeated for condensed phase systems,

ϕP
Q(r) =

∑
i

ϕQ(r − Ri) , (11)

where Ri are the lattice vectors and ϕQ is a Gaussian basis
function being localized on a single atom. Further, V denotes
the Coulomb matrix in the RI basis,

VPQ =

∫
Ωcell

dr
∫
R3

dr′ϕP
P(r)ϕP

Q(r′)v(r, r′) . (12)

In practice, we compute the RI-Coulomb matrix by Ewald
summation65,66

VPQ =
∑
G>0

ϕP(G)ϕQ(G)
|G|2 . (13)

We refer to the computation of Coulomb matrix elements in
Eq. (13) as Gaussian and Plane Waves method which is com-
monly used for the Hartree energy67 and for wavefunction cor-
relation methods68–74. The G = 0 component is excluded from
Eq. (13) due to a divergence for s-type basis functions P,Q
with ϕP,Q(G=0), 0. The three-center overlap integrals (µνP)
are given by64

(µνP) =

∫
R3

dr φP
µ(r)φP

ν (r)ϕP(r) . (14)

The three-center overlap integrals (iaP) in Eq. (9) can be com-
puted from Eq. (14) by

(iaP) =
∑
µν

CµiCνa(µνP) (15)

where the MO coefficients Cµn are obtained from the expan-
sion of MOs in the primary Gaussian basis from KS DFT

ψn(r) =
∑
µ

Cµnφ
P
µ(r) . (16)

The RI factorization from Eq. (9) can be expressed in a
compact form as

(ia| jb)RI =
∑

P

Bia
P B jb

P , (17)

where the vector bia is given by

Bia
P =

∑
QR

(iaQ)S −1
QRLRP , (18)

where L is the Cholesky decomposition of V from Eq. (13),

V = LL† . (19)

For later use, we define aia by

Aia
P =

∑
Q

(iaQ)S −1
QP . (20)

C. Screened Coulomb interaction, dielectric matrix and
polarizability in the RI basis

In this section, we rewrite the self-energy in a Gaussian ba-
sis to match the formulas in a plane-waves basis. For expand-
ing GW quantities as the polarizability, the dielectric function
and the screened Coulomb interaction, we employ the Gaus-
sian RI basis from Sec. II B. This is the key to adopt the pe-
riodic correction from plane-waves GW to GW in a Gaussian
basis.

As in Eq. (1), we compute the G0W0 quasiparticle energies
in a Gaussian basis by

εG0W0
n = εDFT

n + ZnRe 〈n|Σc
n(εDFT

n ) + Σx − Vxc
DFT|n〉 (21)

where we have dropped the k-point index for a Γ-only imple-
mentation. The correlation part of the self-energyis is calcu-
lated for imaginary frequencies and analytically continued to
real energies.20,33,53,75–80 In a Gaussian basis, the correlation
self-energy can be computed as20,23,77

Σc
n(iω) = − 1

2π

∑
m

∫ ∞

−∞
dω′

1
i(ω − ω′) + εF − εm

×
∑
PQ

Bnm
P

[[
1 − Π(iω′)

]−1
PQ − δPQ

]
Bmn

Q ,

(22)

where

ΠPQ(iω) = 2
∑

ia

Bia
P

εi − εa

ω2 + (εi − εa)2 Bia
Q . (23)

Inserting Eq. (18) into Eq. (22) and using the definition in
Eq. (20) yields

Σc
n(iω) = − 1

2π

∑
m

∫ ∞

−∞
dω′

1
i(ω − ω′) + εF − εm

×
∑
PQ

Anm
P Wc

PQ(iω′)Amn
Q ,

(24)

where the correlation part of the screened Coulomb poten-
tial Wc(iω) is expanded in the Gaussian RI basis,

Wc
PQ(iω) =

∑
RT

LPR

[
ε−1

RT (iω) − δRT

]
L†T Q , (25)

and the symmetric dielectric matrix ε(iω) in the RI basis is
given by ε(iω) = 1−Π(iω) with elements

εPQ(iω) = δPQ −
∑

ia

∑
RT

L†PRAia
R

2(εi − εa)
ω2 + (εi − εa)2 Aia

T LT Q ,

(26)

where we have used Eq. (18), (20) and (23). In matrix nota-
tion, we have

ε(iω) = 1 − L†χ0(iω)L (27)
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and the polarizability χ0(iω) in the RI basis with elements
χ0

PQ(iω) reads

χ0
PQ(iω) =

∑
ia

Aia
P

2(εi − εa)
ω2 + (εi − εa)2 Aia

Q . (28)

As it can be seen by comparing Eq. (24) and (2), as well
as Eq. (28) and (6), the RI basis {ϕP} corresponds to a plane-
waves basis in plane-waves GW. We neglect the G = 0 com-
ponent when computing the bare Coulomb interaction in the
RI basis in Eq. (13) and thus our RI basis only spans the sub-
space of plane waves with |G|> 0. For a correction that re-
moves the slow 1/L convergence of GW with the cell size L
from Sec. II A, we add the G = 0 function as additional func-
tion to the RI basis, as we show in the following section.

D. Setting the G = 0 component of Gaussian RI basis functions
to zero and adding a single G = 0 function to the RI basis

Following the discussion at the end of the last section, we
describe in this section how to add the G = 0 function to the
Gaussian RI basis.

Consider Naux Gaussian RI basis functions ϕ1, . . . , ϕNaux

where all Gaussian RI functions exhibit a vanishing G = 0
component. This redefinition does not affect the GW results
since the G = 0 component is not used, see Eq. (13). Now, we
add the G = 0 function to the RI basis and the new RI basis
consists of Naux+1 functions ϕ0, ϕ1, . . . , ϕNaux , where ϕ0 is the
G = 0 function which is a normalized constant in real space,

ϕ0(r) = Ω
−1/2
cell δr∈Ωcell . (29)

Then, the Γ-only overlap matrix S reads

S ≡
(

S head Swings

S†wings Sbody

)
=

(
1 0
0 Sbody

)
(30)

where Sbody is the overlap matrix of the Gaussian RI basis.
The wings of S are zero since, according to the redefinition
from above, all RI Gaussian basis functions P ∈ [1,Naux] do
not exhibit a G = 0 component:

S 0P = S P0 =
∑

G

ϕ0(G)ϕP(G) = 0 . (31)

E. k-dependent polarizability, dielectric function and screened
Coulomb interaction

In this section, we expand the polarizability, the dielectric
function and the screened Coulomb interaction in the Gaus-
sian RI basis with additional G = 0 function from Sec. II D.
Moreover, we adopt k-points for head and wing elements from
plane-waves GW, see Sec. II A.

We start with the polarizability using Γ-only for the body53

χ0(iω,k) =


χ0

head(iω,k) χ0
wings(iω,k)(

χ0
wings(iω,k)

)†
χ0

body(iω)

 . (32)

Omitting the integration over the first Brillouin zone for the
polarizability, its head is given by Eq. (6)

χ0
00(iω,k) =

1
Ωcell

∑
ia

2(εi − εa)
ω2 + (εi − εa)2

∣∣∣〈ψi0|eikr|ψa−k〉
∣∣∣2 . (33)

The prefactor 1/Ωcell results from the normalization of ϕ0(r)
from Eq. (29). The wings are given by

χ0
0Q(iω,k) =

1

Ω
1/2
cell

∑
ia

Aia
Q

2(εi − εa)
ω2 + (εi − εa)2 〈ψi0|eikr|ψa−k〉

(34)

using the Γ-point for the RI basis function Q, cf. Eq. (6)
and (28).

The dielectric matrix from Eq. (27) for k-points is given by

ε(iω,k)
(5)
= 1 − L†(k)χ0(iω,k)L(k) , (35)

where L(k) is the Cholesky decomposition of the Coulomb
matrix

V(k) ≡
(

Vhead(k) 0
0 Vbody

)
= L(k)L†(k) . (36)

The elements of V(k) are given by45,64

V00(k) =
4π
|k|2 , VPQ =

∑
G>0

ϕP(G)ϕQ(G)
|G|2 , (37)

which are well-defined for k, 0. The wings of V(k) vanish
since ϕ0(G) = δG,0 and ϕP(G = 0) = 0 for the remaining Gaus-
sian RI functions. For Vbody, only the Γ point is used. Then,
the Cholesky decomposition L(k) of V(k) reads

L(k) =

( √
4π/|k| 0

0 Lbody

)
, (38)

where Lbody is the Cholesky decomposition of the body
Coulomb matrix Vbody.

The head, wings and the body of the dielectric matrix from
Eq. (35) are defined as

ε(iω,k) ≡
 εhead(iω,k) εwings(iω,k)

ε†wings(iω,k) εbody(iω)

 (39)

and read when using Eq. (32) and (38)

εhead(iω,k) = 1 − 4πχ0
head(iω,k)/|k|2 , (40)

εwings(iω,k) = −
√

4πχ0
wings(iω,k)Lbody/|k| , (41)

εbody(iω) = 1 − L†bodyχ
0
body(iω)Lbody . (42)

Its inverse ε inv(iω,k) is given by (for k, 0)

ε inv(iω,k) ≡
 ε inv

head(iω,k) ε inv
wings(iω,k)

ε inv,†
wings(iω,k) ε inv

body(iω,k)

 := ε−1(iω,k) ,

(43)
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where its elements are given by inverting Eq. (39)

ε inv
head(iω,k) = 1/[εhead(iω,k) − εwings(iω,k)

× ε−1
body(iω)ε†wings(iω,k)] . (44)

ε inv
wings(iω,k) = − ε inv

head(iω,k)εwings(iω,k)ε−1
body(iω) (45)

ε inv
body(iω,k) = ε−1

body(iω) + ε inv
head(iω,k)ε−1

body(iω)

× ε†wings(iω,k)εwings(iω,k)ε−1
body(iω) . (46)

Analogously to Eq. (4) and Eq. (25), we obtain Wc(iω,k)
for k, 0 as

Wc(iω,k) = L(k)(ε inv(iω,k) − 1)L†(k) (47)

=

 4π(ε inv
head(iω,k) − 1)/|k|2 √

4π ε inv
wings(iω,k)Lbody/|k|

√
4πL†bodyε

inv,†
wings(iω,k)/|k| L†body(ε inv

body(iω,k) − 1)Lbody

 .
(48)

F. k-point sampling for the self-energy in the limit of k→0

In order to identify, which contributions have to be taken
into account for the correction in periodic GW in a Gaussian

basis, we examine the behaviour of the k-point sum in the self-
energy at the Γ-point, k→0.

Comparing Eq. (2) and Eq. (24) and assuming flat bands
(εmq = εm), we obtain:

Σc
n(iω) = − 1

2π

∑
m

∫ ∞

−∞
dω′

1
i(ω − ω′) + εF − εm

× 1
Nk

∑
k,0

∑
PQ

An0,m−k
Pk Wc

PQ(iω,k)
(
An0,m−k

Qk

)∗
.

(49)

The summation over the RI indices P,Q include the summa-
tion over the G = 0 RI function. Due to the divergence of the
head Wc

00(iω,k) and the wings, Wc
P0(iω,k) and Wc

0Q(iω,k), for
k→0, the Γ point is excluded from the summation. The three-
center overlap integrals in the limit of small k for the G = 0 RI
function are given by45,60

An0,n−k
0k = 〈ψn0|eikr|ψn−k〉 k→0

= 1 + ik 〈ψn0|r|ψn0〉 , (50)

An0,m−k
0k = 〈ψn0|eikr|ψm−k〉 k→0

=
n,m

ik 〈ψn0|r|ψm0〉 , (51)

Then, the sum over RI basis functions in Eq. (49) for n = m using the matrix-vector notation with the row vector
(ann(k))P = An0,m−k

Pk in the limit k→0 turns into

ann(k)Wc(iω,k) (ann(k))† k→0
=

(50)
=

(
1 + ik 〈ψn0|r|ψn0〉 ann

body

)  4π(ε inv
head(iω,k) − 1)/|k|2 √

4π ε inv
wings(iω,k)Lbody/|k|

√
4πL†bodyε

inv,†
wings(iω,k)/|k| L†body(ε inv

body(iω,k) − 1)Lbody


 1 − ik 〈ψn0|r|ψn0〉

(ann
body)T

 (52)

=
4π
|k|2 (ε inv

head(iω,k) − 1) −
√

4π
|k|1 Re

(
2ε inv

wings(iω,k)Lbody(ann
body)T

)
+ O

(
1
|k|0

)
=

4π
|k|2 (ε inv

head(iω,k) − 1) + O
(

1
|k|0

)
. (53)

The 1/|k|1 term in Eq. (53) vanishes due to
Re(ε inv

wings(iω,k)) = 0 for k→0 [see Eqs. (45), (42), and
(34)] and Im(Lbody(ann

body)T) = 0. Therefore, a correction due
to wing contributions of Wc seems to be of minor importance
compared to the head when using a Gaussian basis.

For the contraction with n,m in Eq. (49), we have

anm(k)Wc(iω,k) (amn(k))†
(51)
= O(1/|k|0) . (54)

Therefore, we do not include An0,m−k
0k matrix elements with

n,m from Eq. (49) in the periodic correction scheme.

Then, the k-point sum for the periodic correction from
Eq. (49) only includes the head of Wc and matrix ele-

ments An0,n−k
0k with n = m:∑

mPQ

∑
k,0

An0,m−k
Pk Wc

PQ(iω,k)
(
An0,m−k

Qk

)∗
=

∑
k,0

4π
|k|2

(
ε inv

head(iω,k) − 1
) ∣∣∣〈ψn0|eikr|ψn−k〉

∣∣∣2 + O
(

1
|k|0

)
.

(55)

The divergence 1/|k|2 in Eq. (55) is integrable, as discussed in
Sec. II A.

G. Algorithm of the correction scheme for periodic GW with
Gaussians

1. Setup a k-point mesh excluding the Γ-point.
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2. Compute χ0
head(iω,k) according to Eq. (33):

χ0
head(iω,k) =

1
Ωcell

∑
ia

2(εi − εa)
ω2 + (εi − εa)2

∣∣∣〈ψi0|eikr|ψa−k〉
∣∣∣2 ,
(56)

According to what has been discussed in the previous sec-
tion, we assume the wings to have a small contribution and
we exclude their computation.

3. Compute the head of the dielectric matrix from Eq. (42):

εhead(iω,k) = 1 − 4πχ0
head(iω,k)/|k|2 . (57)

4. Compute the head of the inverse dielectric matrix ε inv ac-
cording to Eq. (44) with neglecting wing contributions:

ε inv
head(iω,k) =1/εhead(iω,k) . (58)

5. Compute the correction term ∆nn(iω) appearing from
the head of Wc in 1/Ω

∑
k anm(k)Wc(iω,k) (anm(k))† in

Eq. (49) according to Eq. (55) as:

∆nn(iω) =
4π
Ω

∑
k,0

ε inv
head(iω,k) − 1
|k|2

∣∣∣〈ψn0|eikr|ψn−k〉
∣∣∣2 . (59)

Then, the Γ-only correlation self-energy from Eq. (22) in-
cluding the correction term ∆nn(iω) reads

Σc
n(iω) = − 1

2π

∑
m

∫ ∞

−∞
dω′

1
i(ω − ω′) + εF − εm

×
[∑

PQ

Bnm
P

[[
1 − Π(iω′)

]−1
PQ − δPQ

]
Bmn

Q + ∆nn(iω′)δnm

]
.

(60)

III. BENCHMARK CALCULATIONS

A. Computational details

For all calculations reported here, we employ the Gaussian
and plane waves scheme (GPW)81 together with Goedecker-
Teter-Hutter (GTH) type pseudopotentials82,83 for the under-
lying generalized Kohn-Sham (KS) equations with the PBE
functional84 as implemented in CP2K61,62,67,85,86. For the ex-
change self-energy from Eq. (21), we employ a real-space
truncation of the Coulomb interaction49–51 with a truncation
radius equal to half of the cell size.

For expanding the KS orbitals, we use correlation-
consistent (cc) Gaussian basis sets87,88 which are specifically
designed for the use with GTH pseudopotentials. The basis
set extrapolated GW results are obtained from the cc double-,
triple- and quadrupole zeta split-valence quality basis sets by
a linear regression against the inverse of the total number of
basis functions.21,23,33 The extrapolation in the basis set for

Reference Diamond Lithium hydride
This work 5.48± 0.06 eV 4.66± 0.04 eV
Ref. 99 5.54 eV –
Ref. 100 5.55 eV –
Ref. 101 5.50 eV –
Ref. 102 – 4.75 eV
Experiment101,103 5.48 eV 4.99 eV

TABLE I. G0W0@PBE HOMO-LUMO gaps and measured funda-
mental gaps of diamond and LiH from the literature.

KS orbitals typically results in statistical errors below 0.1 eV
for GW quasiparticle levels.33

The Gaussian RI basis set is used for expanding the
screened Coulomb interaction and is designed for the use with
a specific basis set for the KS orbitals, as described in Ref. 89.
Typically, the convergence of GW quasiparticle energies with
respect to the RI basis is fast such that an extrapolation is not
necessary for the RI basis.

The Berry phase 〈φµ|eikr|φν〉 in the Gaussian basis is avail-
able in standard quantum chemistry codes for calculating
dipole moments in periodic systems90–95. To ensure numer-
ical stability when computing the Berry phase in the Gaussian
basis, we employ a non-diffuse auxiliary basis and project the
MO coefficients into this subspace.96,97 We employ 6×6×6
and 12×12×12 k-point meshes and extrapolate the results to
the infinitely dense k-point mesh.

As benchmark systems, we employ solid Lithium hydride,
diamond, and the molecular crystals build of ammonia and
carbon dioxide molecules. For LiH and diamond, we employ
the experimental lattice constants of 4.084 Å and 3.567 Å, re-
spectively. For both molecular crystals, we employ the geom-
etry from Ref. 98.

B. Results

The basis-set extrapolated G0W0@PBE fundamental gaps
as function of the cell size are shown in Fig. 1. We compare
the results without correction [Eq. (21) together with Eq. (22),
blue] with the results employing the correction [Eq. (21) to-
gether with Eq. (60), green].

For the uncorrected G0W0@PBE fundamental gaps (blue),
we observe a slow 1/L convergence with the cell length L.
The extrapolation with the inverse cell length yields the
G0W0@PBE gaps of 4.66± 0.04 eV for LiH, 5.48± 0.06 eV
for diamond, 7.49± 0.11 eV for the NH3 crystal and
10.51± 0.07 eV for the CO2 crystal. The statistical error in-
cludes both errors from basis set and the supercell extrapola-
tion. These values are in good agreement with (indirect) fun-
damental gaps from the literature, see Table I. For both molec-
ular crystals, we are not aware of fundamental gaps from the
literature. We conclude that using basis set and supercell ex-
trapolation, a Γ-only G0W0 implementation can give accurate
fundamental gaps.

In practice, the extrapolation of the supercell can be impos-
sible since the unit cell is already large if disordered systems
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FIG. 1. Basis-set extrapolated G0W0@PBE fundamental gaps of solid Lithium hydride, diamond and the molecular crystals NH3 and CO2 as
function of the supercell size. The blue circles are the gaps computed without the correction, see Eq. (21) together with Eq. (22), where the
blue line represents the linear regression. The intersept of the regression line with the ordinate determines the supercell extrapolated gap which
is indicated by the dashed gray line. By the green dots, we show the gaps being computed with the periodic correction from Eq. (21) together
with Eq. (60) where the dashed green lines are simple connections of the data points to guide the eye. It is observed that the corrected gaps are
much closer to the supercell extrapolated gap compared to the non-corrected gaps.

are considered, e.g. in molecular dynamics simulations10,16,17.
For GW calculations of these systems, a periodic correction is
necessary. In Fig. 1, we show the fundamental G0W0@PBE
gaps when using our correction from Sec. II G. We observe
that the gaps computed with the correction are a factor three
to ten closer to the extrapolated gap than the non-correct ones.
For the largest supercells which correspond to typical cells in
molecular dynamics simulations, the corrected G0W0@PBE
gaps are all within 0.5 eV compared to the extrapolated val-
ues. This improves substantially compared to the uncorrected
gaps and turns the Γ-only GW method in a Gaussian basis into
a useful tool for computing quasiparticle levels in periodic,
disordered systems where large unit cells are necessary.

IV. CONCLUSIONS

We have presented a correction scheme for periodic Γ-only
GW calculations in a Gaussian basis. The correction is derived
by adding the G = 0 function to the resolution-of-the-identity
(RI) basis. As a second step, we apply k-point sampling for

the correction mimicking an infinitely large cell for the head
matrix elements, i.e. the diagonal elements corresponding to
the G = 0 function in the RI basis. For the benchmark systems
solid Lithium hydride, diamond and two molecular crystals,
the dependence of the corrected GW quasiparticle levels on
the cell size is reduced by a factor of three to ten compared to
GW calculations without correction. The correction scheme
comes along with negligible computational cost and enables
GW calculations for supercells containing hundreds of atoms
with Gaussian basis functions.
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68 M. Del Ben, O. Schütt, T. Wentz, P. Messmer, J. Hutter, and

J. VandeVondele, Comput. Phys. Commun. 187, 120 (2015).
69 M. Del Ben, J. Hutter, and J. VandeVondele, J. Chem. Phys. 143,

102803 (2015).
70 V. V. Rybkin and J. VandeVondele, J. Chem. Theory Comput. 12,

2214 (2016).
71 C. Spreafico and J. VandeVondele, Phys. Chem. Chem. Phys. 16,

26144 (2014).
72 J. Cheng and J. VandeVondele, Phys. Rev. Lett. 116, 086402

(2016).
73 C. Spreafico and J. VandeVondele, J. Phys. Chem. C 119, 15009

(2015).
74 M. Del Ben, J. VandeVondele, and B. Slater, J. Phys. Chem. Lett.

5, 4122 (2014).
75 H. N. Rojas, R. W. Godby, and R. J. Needs, Phys. Rev. Lett. 74,

1827 (1995).
76 M. M. Rieger, L. Steinbeck, I. White, H. Rojas, and R. Godby,

Comput. Phys. Commun. 117, 211 (1999).
77 F. Caruso, P. Rinke, X. Ren, A. Rubio, and M. Scheffler, Phys.

Rev. B 88, 075105 (2013).
78 S.-H. Ke, Phys. Rev. B 84, 205415 (2011).
79 T. A. Pham, H.-V. Nguyen, D. Rocca, and G. Galli, Phys. Rev.

B 87, 155148 (2013).
80 C. Friedrich, M. Betzinger, M. Schlipf, S. Blügel, and
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99 J. Klimeš, M. Kaltak, and G. Kresse, Phys. Rev. B 90, 075125

(2014).
100 D. Nabok, A. Gulans, and C. Draxl, Phys. Rev. B 94, 035118

(2016).
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