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Abstract
The challenge of identifying and analyzing non-enhancing tumor regions (NET)
presents a critical frontier in radiology. The focus of this work is on the identification
of these NET tumor areas, which can be crucial in understanding tumor progression
and therapeutic response. This study addresses the detection of structural aspects of
NET in MRI records of glioblastoma, a special form of brain cancer, known for its
aggressive behavior and challenging treatment. Leveraging an innovative machine
learning model, this work aims to enhance the detection and characterization of the
NET regions. The approach will work towards improving diagnostic accuracy and
can aid in developing more effective treatment strategies.
The presented neural net architecture will be based on the classical U-Net, a suc-
cessful segmentation model in medical domains and beyond. This work will add an
upscaling extension in the decoder path which enables the neural net to generate res-
olution enhanced segmentation masks. The resulting upscaling pre-activation U-Net
will further be trained on a subset of the BraTS 2018 dataset after reconstructing
ground-truth data for NET tumor regions.
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1 Introduction

1 Introduction
This work will present a comprehensive and detailed exploration of non-enhancing
tumor (NET) regions in glioblastoma, utilizing advanced MRI techniques and ma-
chine learning models.

Therefore Section 2 will introduce the relevant pathological regions, which can typi-
cally be observed in brain tumors. A focus throughout this work and also in Section
2 will be the non-enhancing brain tumor parts. These are demanding in their identifi-
cation and are gaining increased attention when evaluating tumors in prognostic and
treatment aspects.

In Section 3 the physical foundation of magnetic resonance imaging (MRI) together
with different conventional MRI sequences will be introduced. Further advance-
ments in magnetic resonance imaging have opened new ways for the detailed study of
tumors and their structures. Section 3 will also introduce state-of-the-art MRI tech-
niques, which aim to uncover subtle but significant aspects of NET regions, which
traditional imaging methods might miss. This advanced detection capability is an
important step towards a more accurate diagnosis and has the potential to verify and
facilitate automated detection based on conventional imaging methods together with
sophisticated machine learning methods.

Furthermore, latest machine learning models to analyze the vast and complex data
obtained from MRI scans will be presented and discussed in Section 4. These models
are designed to identify patterns and characteristics within the NET regions that are
not immediately apparent to the human eye. This approach not only aids in better
understanding of the tumor’s structure and progression but also has the potential to
predict or interpret treatment responses more accurately.

The MICCAI BraTS challenges will serve as a major resource of training data for
these machine learning models. Section 5 will describe the datasets of the recent
years and will outline NET data being implicitly contained in some of this data.
Reconstructing and cleaning NET segmentation data from BraTS challenge records
offers a promising potential for obtaining training data for the automated identifica-
tion of non-enhancing brain tumor parts. Generally, machine learning models and
neural networks have high demand of training data for providing adequate results
and thus the availability of extensive amount of training data is essential.

An enhanced U-Net model will be presented in Section 6 which will be modified
towards an improved detection of small scaled NET parts. The architecture will be
developed and tested using the original BraTS data. For building a training data basis
serving the NET detection, the BraTS data will be processed using morphological fil-
ters for extracting and isolating non-enhancing ground truth data. This will allow to
refine BraTS labels and to make BraTS data from different years compatible to each
other. The formerly incompatible and strictly separated BraTS datasets of different
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years can then be unified to a large combined dataset.

Section 7 will show and discuss the results of the previous section. Selected examples
segmentations will be discussed and compared towards the characteristic properties
of NET in MRI images given in Sections 2 and 3. Statistical analysis of the vol-
ume distributions of the automatically segmented NET regions will be presented,
as well as an ANOVA analysis of the intensity distributions of the different tumor
region classes, which will give significant results. The novel U-Net model will be
trained on the new unified large dataset and will be able to reach competitive seg-
mentation accuracy while also detecting NET regions. Finally, 3D models based
on the automatically generated segmentation data will be presented showing typical
characteristic features of non-enhancing tumor areas.
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2 Brain Tumor Types and Regions

2 Brain Tumor Types and Regions
Brain tumors are abnormal growths of cells in the brain and can be categorized into
various types based on their nature, origin, and malignancy level. Gliomas are one
type of tumor that starts in the glial cells, which are cells in the brain and spinal
cord that support and protect nerve cells. They are classified into grades based on
their rate of growth and how the cells appear on a microscopic level. High-grade
gliomas (Grade III and IV) are more malignant and grow faster than low-grade
gliomas (Grade I and II). Among these, glioblastomas represent the most aggres-
sive form of brain cancer, categorized as a high-grade tumor due to its rapid growth
and the strength of symptoms they can cause. The World Health Organization’s
classification of tumors of the central nervous system [75] is a widely accepted re-
source for organizing and understanding the different types of brain tumor regions,
as well as radiology textbooks such as ”Osborn’s Brain” by Anne G. Osborn [93].
Glioblastoma tumors are classified as Grade IV under this classification system and
are characterized by distinct regions that are identified on medical imaging, such as
MRI. These regions are:

• Edema ED

• Necrosis NCR

• Enhancing Tumor ET

• Non-Enhancing Tumor NET

The treatment of glioblastoma typically consists of multiple approaches including
surgery, radiation therapy, and chemotherapy. However, due to their highly inva-
sive nature, complete surgical removal is challenging, and the disease often recurs.
Understanding the different parts and MRI imaging characteristics of glioblastoma
is crucial for clinicians to plan the best treatment strategies for patients. The com-
plexity of glioblastoma treatment and management underscores the need for ongoing
research and the development of novel diagnostic options.

The following paragraphs will summarize each of the above tumor region’s medi-
cal characteristics. Section 3.4 in the later course, will show up radiology imaging
features helping to identify and differentiate them.

2.1 Edema
In general there are various types of edema, but the main type of edema associated
with brain tumors is the so called vasogenic edema. This is mainly caused by the dis-
ruption of the blood-brain barrier, which is a protective layer that normally prevents
the entry of substances from the bloodstream into the brain tissue. Brain tumors, par-
ticularly high-grade and malignant tumors, can disrupt this barrier, allowing plasma
proteins and fluid to leak into other parts of the brain.
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2.2 Necrosis

The edema area generally surrounds the tumor and can extend into the neighbouring
white matter, following the natural pathways of fluid movement within the brain. Im-
age (A) in Figure 1 shows a typical example of edema. The higher quantity of fluid
in the brain tissue leads to an increase in volume, which can result in an increase in
intracranial pressure. This can cause a variety of symptoms, including headaches,
nausea or vomiting. Additionally, the edema can compress surrounding brain struc-
tures, which can lead to neurological deficits, such as weakness, numbness, or diffi-
culty speaking, depending on the area of the brain that is affected.

For the treatment of brain tumor-related edema, corticosteroids are commonly used
to reduce inflammation and decrease the edema extent. These medications can lead
to a rapid improvement in symptoms, although they do have potential side effects, es-
pecially with long-term use. In some cases, surgical intervention to resect the tumor
or relieve pressure may also be necessary. Furthermore, addressing the underlying
tumor through surgery, radiation therapy, or chemotherapy is a crucial part of man-
aging brain tumor-related edema.

Figure 1: Representative MR images showing tumor necrosis, rim enhancement, peri-tumoral edema,
and hemorrhage. Axial T2-weighted MRI image (A) shows central necrosis (asterisk) and peri-
tumoral vasogenic edema (arrow). Axial (B) and sagittal (C) contrast-enhanced T1-weighted MRI
image shows central necrosis (asterisk) and rim enhancement (arrowhead). Figure from [68].

2.2 Necrosis

Necrosis within a brain tumor refers to the death of cells in the tissue, which can oc-
cur for various reasons, including insufficient blood supply and lack of oxygen, or the
effects of a tumor treatment like radiation. Necrosis is a characteristic for high-grade,
aggressive tumors, but it can also be seen in lower-grade tumors under certain condi-
tions. Figure 1 image (A) gives an example of necrosis showing in an axial T2 image.

The presence of necrosis in a brain tumor is generally an unfavorable prognostic fac-
tor, as it is associated with more aggressive tumor behavior and a poorer response
to treatment. High-grade gliomas mostly have extensive necrosis, and their prog-
nosis is typically poor. Necrosis can also have implications for treatment planning.
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2 Brain Tumor Types and Regions

For example, in radiation therapy, the presence of necrosis may influence the spa-
tial limits of the target area for treatment. Additionally, in cases where surgery is
considered, the surgeon must carefully plan the approach to avoid causing additional
damage to the surrounding healthy brain tissue. The treatment of brain tumors with
necrotic regions typically involves a combination of surgery, radiation therapy, and
chemotherapy. The goal of surgery is often to reduce the tumor’s size, while radia-
tion and chemotherapy aim to target the remaining tumor cells.

In some cases, particularly in high-grade gliomas, the treatment itself can cause
necrosis in the tumor, which can sometimes make it challenging to distinguish be-
tween treatment effects and tumor progression on medical imaging.

2.3 Enhancing Tumor
The enhancing parts of a brain tumor on radiology imaging refer to regions that
show reception of contrast material, indicating a disruption of the blood-brain barrier.
These areas typically represent active and viable tumor tissue and their evaluation is
important for diagnosis, treatment planning, and monitoring the response to applied
therapy.

On magnetic resonance imaging, enhancing tumor regions become more visible af-
ter the administration of intravenous contrast substances, such as gadolinium. The
enhancement effects can be different and my be grouped as follows:

• Solid Enhancement: This pattern is typical for dense cellular tumor regions
with a disrupted blood-brain barrier. It can be seen in high-grade gliomas,
metastases and several other types of brain tumors.

• Rim Enhancement: This occurs when there is central necrosis surrounded by
a ring of enhancing tumor. This pattern is often associated with high-grade
gliomas, but can also be seen in brain abscesses, necessitating careful differen-
tial diagnosis, as shown in Figure 1 image (B).

• Heterogeneous Enhancement: Some tumors show a combination of solid
and rim enhancement or an irregular enhancement pattern, reflecting variable
tumor density and vascularity.

The presence and pattern of enhancement have significant clinical implications. En-
hancing tumor parts are often associated with higher-grade, more aggressive tumors,
similar to what was said about necrosis. Understanding the extent of the enhancing
tumor is crucial for surgical planning, as the goal is often to achieve a maximized,
yet safe resection. It also helps in planning radiation therapy. Generally, tumors
with more extensive enhancement have a worse prognosis, as they are likely to be
higher-grade and more aggressive. In the treatment phase, monitoring changes in
the enhancing parts of a tumor on MRI can help to judge the response to therapy.
Decreased enhancement might suggest a positive response, while increased or new
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2.4 Non-Enhancing Tumor

enhancement could indicate tumor progression or recurrence.

The treatment is often to resect as much of the enhancing tumor as possible with-
out causing significant neurological damage. In some cases, complete resection of
enhancing tumor can lead to improved outcomes. Additionally, radiation therapy is
used to target residual enhancing tumor after surgery (or as a primary treatment in
cases where surgery is not possible). Also chemotherapy can target enhancing tumor
regions, and this can be an important part of the treatment, especially for specific
tumor types like glioblastoma.

2.4 Non-Enhancing Tumor
The non-enhancing part of a brain tumor (NET) on medical imaging refers to regions
that do not show consumption of contrast material and thus do not show enhancement
on contrast-enhanced magnetic resonance imaging scans. These areas may represent
a variety of tissue types and tumor cells, and their interpretation requires careful con-
sideration of the clinical context and imaging characteristics.

On MRI scans, high-grade gliomas typically show a heterogeneous pattern of con-
trast enhancement, which indicates the presence of a disrupted blood-brain barrier
in the tumor. However, low-grade gliomas may not show any enhancement on
MRI scans, and instead, they may have a non-enhancing component that appears
hypointense on T1-weighted images and hyperintense on T2-weighted images (see
section 3.4). Moreover, in all glioma types non-enhancing regions may represent
edema, infiltrative tumor cells, or a combination of both. Distinguishing between
these possibilities can be very challenging, but is crucial for accurate tumor grading
and treatment planning.

The non-enhancing component of gliomas represents a region of the tumor that has
a lower density of tumor cells and a higher density of normal brain tissue. The non-
enhancing region may contain infiltrative tumor cells that are diffusely spread out
and cannot be detected by contrast-enhanced MRI scans. These infiltrative cells can
migrate into the surrounding brain tissue and cause tumor recurrence after surgery
[65]. This makes the the non-enhancing parts very crucial for the evaluation of can-
cer progression and also for it’s potential recurrence after resection.

The clinical implications of non-enhancing parts of a brain tumor depend on their un-
derlying nature. If the non-enhancing region represents infiltrative tumor growth, it is
indicative of a more diffuse and potentially aggressive tumor. For these areas a com-
plete surgical resection might not be possible, and they can significantly influence
the treatment plan and prognosis. The non-enhancing region is an important area to
consider in the treatment of brain tumors because it can be a source of diagnostic
and therapeutic challenges. Biopsies of the non-enhancing region can be difficult
to obtain because the region may not show any contrast enhancement. Therefore,
image-guided biopsy or functional imaging techniques may be hard to use to target
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the non-enhancing region for sampling.

The treatment of brain tumors that involve a non-enhancing part can also be challeng-
ing because the region may contain infiltrative tumor cells that cannot be removed by
surgery. Radiation- or chemotherapy may be used to target the non-enhancing region
and reduce the risk of tumor recurrence.

For patients undergoing a brain tumor treatment, the reduction or at least stability
of non-enhancing regions can be indicative of a positive response to therapy. Con-
versely, the expansion of non-enhancing areas might suggest tumor progression. The
treatment of non-enhancing parts of a brain tumor is tailored to the individual patient
and depends on factors such as the tumor type, location, and overall extent of the
disease:

• Observation: In cases where the non-enhancing region is believed to repre-
sent a lower-grade or less aggressive part of the tumor, and it is not causing
significant symptoms, observation with regular follow-up imaging might be an
appropriate approach.

• Surgery: If the non-enhancing region is accessible and causing symptoms, sur-
gical intervention might be considered. The goal of surgery is often to achieve
maximum safe resection while preserving neurological function.

• Other therapy: Radiation therapy and chemotherapy might be used to target
infiltrative tumor cells in non-enhancing regions, particularly if these areas are
not accessible to surgical resection.

In order to ensure appropriate treatment, reliable detection of non-enhancing tu-
mor parts must be possible and requires a comprehensive understanding of the imag-
ing findings. For surgical brain tumor treatment, the role of the non-enhancing tissue
comes into focus as a border region for resection, as stated by Brenner et al. [17]:

We found that new contrast enhancement appeared within the residual,
non-enhancing tumor mass in 21 of 24 patients (87.5%). The location
of new contrast enhancement within the residual tumor region was non-
random; it occurred adjacent to the wall of the resection cavity in 12 of
21 patients (57.1%).

and also by Lasocki et. al [65]:

There is a growing understanding of the prognostic importance of non-
contrast-enhancing tumor in glioblastoma, and recent attempts at more
aggressive management of this component using neurosurgical resection
and radiosurgery have been shown to prolong survival.

For finding appropriate resection borders of a brain tumor, the detection of the non-
enhancing area, which typically adjoins and extends the necrotic and enhancing tu-
mor core regions is therefore crucial.
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3.1 Physics of MRI Imaging

Magnetic Resonance Imaging (MRI) is a medical imaging technique that uses a mag-
netic field and radio waves to create detailed images of the inside of the body. The
basic principle of MRI is that when a person is placed in a strong magnetic field, the
nuclear spin moments of the hydrogen atoms in their body align towards the mag-
netic field. Radio waves are then used to disrupt this alignment, causing the atoms to
release energy in the form of a radio frequency signal. This signal is then detected
by a receiver coil and used to create an image of the body. The produced image can
be highly detailed and is used to identify a wide range of abnormalities, including
injuries, diseases of inner organs or, as in the scope of this work, tumors with a focus
on brain tumors and especially glioblastomas [77, 80].

Magnetic fields can be described by two distinct, but closely related physical enti-
ties, magnetic flux density B (measured in Tesla T ) and magnetic field strength H
(measured in A/m). In vacuum they are connected through the vacuum magnetic
permeability µ0

B = µ0H (1)

while in other materials they can be related linearly or non-linearly depending on the
material’s magnetic properties. In a less-strict sense the term magnetic field in this
work will refer to both interchangeably.

For creating image data, MRI utilizes the magnetic properties of hydrogen atoms,
which are present in the body’s water and fat molecules. When a person is placed
in a strong magnetic field, the randomly aligned hydrogen atoms’ spins tilt towards
the direction of the B-field. As a consequence of the collective behavior of quantum
spins the macroscopic magnetization is then pointing in B direction instead of being
zero without the strong external field [19, 42]. This alignment is called longitudinal
magnetization and is the basis for the resonance imaging process.

The magnetic field’s flux density used in MRI is typically about 1.5 Tesla (T) to
3 T, which is much stronger than that of the earth’s magnetic field (about 0.00005
T). This strong magnetic field causes the hydrogen nuclei to absorb energy from the
radiofrequency (RF) pulses sent by the MRI machine. The RF pulses are sent at a
specific frequency, known as the Larmor frequency [112], which depends on the flux
density of the magnetic field and the type of nucleus being imaged. For hydrogen
nuclei, the Larmor frequency is around 63.86 MHz (at a B-field of 1.5 T). Depending
on their frequency and duration, the radiofrequency pulses can cause the hydrogen
nuclei to flip their magnetic moment by 90 degrees, which is known as transverse
magnetization [91].
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After the RF pulses, the magnetization begins to relax back to its equilibrium state,
emitting a signal that is detected by the receiver coil and used to construct the image.
The process of relaxation is described by the T1 (spin-lattice) and T2 (spin-spin)
relaxation times, which depend on the properties of the tissue being imaged. The
different T1 and T2 relaxation times of the various tissues in the body allow the MRI
machine to create images with different contrasts, highlighting different structures in
the body.

The T1 relaxation time is the time it takes for the longitudinal magnetization to re-
turn to 63% of its initial value and is longer for fats than for water. The T2 relaxation
time is the time it takes for the transverse magnetization to decay to 37% of its initial
value and is longer for water than for fats, for example.

To examine and measure relaxation times, so called spin echo sequences are used
which repeatedly send and receive RF pulses to determine relaxation times. Spin
echo is commonly associated with T2-weighted imaging due to its effectiveness in
highlighting T2 relaxation differences, but also offers advantages when applied in
T1-weighted imaging. Therefore both, T2 as well as T1 will be covered when out-
lining the use of conventional spin echo sequences below.

3.2 Conventional MRI Sequences
When a patient is positioned within the MRI scanner, the hydrogen nuclei, primarily
found in water and fat molecules, are exposed to a strong and uniform magnetic field
with magnetic flux density B0. This causes the hydrogen protons’ spin to align with
the magnetic field in the z-component.

The alignment of these spins with the field is, however, not perfect. Due to their
intrinsic angular momentum, the protons precess about the direction of the magnetic
field at a specific frequency, the Larmor frequency. This frequency is given by the
Larmor Equation:

ω0 = γB0 (2)

where

• ω0 represents the Larmor frequency,

• γ is a constant, the gyromagnetic ratio (gyromagnetic ratios for different iso-
topes are shown in Table 1),

• B0 is the magnetic flux density.

To generate an MRI signal, a radiofrequency pulse with the Larmor frequency is ap-
plied, tipping the net magnetization out of alignment with the magnetic field. Once
the RF pulse is turned off, the system begins to relax back to its equilibrium state.
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Isotope Gyromagnetic Ratio (MHz/T)
1H (Hydrogen-1) 42.576
2H (Deuterium) 6.536
3He (Helium-3) -32.434
7Li (Lithium-7) 16.546
13C (Carbon-13) 10.705
15N (Nitrogen-15) -4.315
17O (Oxygen-17) -5.772
19F (Fluorine-19) 40.052
23Na (Sodium-23) 11.262
31P (Phosphorus-31) 17.235

Table 1: Gyromagnetic ratios of commonly measured isotopes. The gyromagnetic ratio [MHz/T] is
used in the Larmor equation to determine the resonance frequency of the nuclei in a magnetic field.

This relaxation process is characterized by two time constants: T 1 and T 2.

In order to spatially encode the MRI signal and create an image, gradient fields are
applied. These gradient fields vary the magnetic field linearly across the imaging
volume. The Larmor frequency at a particular location r within the body is then
modified according to the equation:

ω(r) = γ(B0 +G · r) (3)

where

• G is the gradient field vector,

• r is the position vector.

The received MRI signals are complex wave forms that are then transformed from
the time domain to the frequency domain using the Fourier Transform. This trans-
formation is crucial for reconstructing the final image, and it can be expressed with
the equation:

I(k) =
∫

ρ(r)e−2πik·rdr (4)

with terms

• I(k) representing the image in k-space (frequency domain),

• ρ(r) denoting the proton density at position r,

• k being the spatial frequency.

By applying an inverse Fourier Transform to the data in k-space, the final image in
the spatial domain can be obtained, revealing the internal structures of the body. T1-
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and T2-weighted images are used to visualize anatomical details, such as the brain’s
gray and white matter or changes in tissue structure caused by disease, injury or, as
needed here, tumors.

3.2.1 T1-Weighted Imaging

The T 1 time constant, or longitudinal relaxation time, represents the time it takes
for the longitudinal magnetization to recover to approximately 63% of its original
magnitude. Assuming that an RF pulse has tipped the net magnetization vector away
from its alignment with the magnetic field, the recovery of the longitudinal magneti-
zation Mz back to its equilibrium value M0 can be described by the model equation:

Mz(t) = M0 − (M0 −Mz(0))e−
t

T 1 (5)

where

• Mz(t) is the longitudinal magnetization at time t,

• M0 is the equilibrium magnetization,

• Mz(0) is the longitudinal magnetization just after the RF pulse

• T 1 is the longitudinal relaxation time constant.

• t is the time,

Just after the RF Pulse (at t = 0) the longitudinal magnetization Mz(0) would be sig-
nificantly less than M0, depending on how much the magnetization was tipped and
could even be negative if the magnetization was flipped by 180°. Long time after the
RF pulse (with t → ∞) Mz(t) approaches M0, meaning the magnetization has fully
recovered to its equilibrium state. The rate at which Mz(t) recovers is determined by
T 1. Smaller T 1 values mean faster recovery to equilibrium.

The spin echo sequence used in T1-weighted MRI imaging is performed in a repeated
application of RF pulses as described below. The key difference to T2 spin echo
sequence lies in the selection of how the sequence is timed, which is determined by
repetition and echo time:

1. Initial magnetization and RF pulse: The body is subjected to a strong mag-
netic field and a 90-degree RF pulse is applied to disturb the alignment of the
hydrogen protons.

2. T1 and T2 relaxation processes: After this RF pulse, both T1 and T2 relax-
ation processes begin. For T1-weighted imaging, the focus is on how quickly
protons realign with the main magnetic field.
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3. T1 relaxation (spin-lattice relaxation): T1 relaxation is the process by which
the protons return to their original state, aligned with the main magnetic field.
This process is called spin-lattice relaxation because it involves transferring
energy from the protons to the surrounding ’lattice’ or tissue environment.

4. 180-degree RF pulse: A 180-degree pulse is applied. This pulse creates an
echo by reversing the phase dispersion of the spinning protons.

5. Timing for T1 weighting: The key to achieving T1 weighting in a spin echo
sequence lies in the timing of the pulses and the intervals between them. To
emphasize T1 contrast, the repetition time (TR) (time between 90-degree pulses)
is kept short. A short TR does not allow tissues with long T1 relaxation times
to fully recover their longitudinal magnetization between pulses, resulting in
lower signal intensity from these tissues.

6. Echo time (TE): The echo time (TE), which is the time between the appli-
cation of the 90-degree pulse and the peak of the echo signal, is usually kept
relatively short in T1-weighted imaging. This minimizes the T2 decay effect,
thereby maintaining the focus on T1 contrast.

7. Image contrast: In T1-weighted spin echo images, tissues with short T1 re-
laxation times (like fat) appear brighter, while those with longer T1 times (like
water) appear darker.

By adjusting the TR and TE appropriately, a spin echo sequence can be used to
produce images that emphasize the T1 relaxation properties of different tissues. This
flexibility is part of what makes spin echo sequences widely used in MRI. T 1 weight-
ing in MRI is achieved by choosing specific repetition times (TR) and echo times
(TE) in the imaging sequence (as is shown in Figure 2) with short TR and short TE
enhancing T 1 contrast:

• Repetition time (TR): This is the time interval between successive RF pulse
applications. A shorter TR allows for less complete recovery of longitudinal
magnetization, emphasizing the differences in T1 relaxation times between
tissues.

• Echo time (TE): This is the time interval between the application of the RF
pulse and the acquisition of the MRI signal (echo). A shorter TE minimizes the
decay of transverse magnetization and the influence of T2-weighting effects,
resulting in images mainly influenced by T1 relaxation properties.

In T1-weighted imaging, a short repetition time and short echo time are used to
create images with high signal-to-noise ratio (SNR) and high spatial resolution. T1-
weighted images typically have bright signal intensity for fat, and intermediate signal
intensity for gray matter, while white matter has a relatively low signal intensity.
Fluids, such as cerebrospinal fluid (CSF), are dark on T1-weighted images. The
imaging characteristics of different brain tumor regions in T1-weighted images will
be discussed in section 3.4.
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3 Magnetic Resonance Imaging MRI

Figure 2: The two variables of interest in spin echo sequences are the repetition time (TR) and the
echo time (TE). Spin echo sequences include a 90 degree pulse followed by one (or more) 180 degree
refocusing pulses as shown in the diagrams. Illustration from Radiopedia [76].

3.2.2 T2-Weighted Imaging

On the other hand, T 2 or transverse relaxation time is the time it takes for the trans-
verse magnetization to decay to about 37% of its initial value. This decay is described
by the equation:

Mxy(t) = Mxy(0)e−
t

T 2 (6)

where

• Mxy(t) represents the transverse magnetization at time t,

• T 2 is the transverse relaxation time constant.

T2-weighted MRI sequences are designed to emphasize differences in T2 relaxation
times between tissues. In a T2-weighted sequence, the contrast between tissues is
primarily determined by their respective T2 relaxation times. Tissues with longer
T2 relaxation times will appear brighter on T2-weighted images, while those with
shorter T2 relaxation times will appear darker.

Similar to T1-weighted imaging, in T2-weighted spin echo sequences, the same pa-
rameters echo time (TE) and repetition time (TR) are used to be adjusted. The main
steps of spin echo sequence with emphasis on T2 behaviour are listed below and
illustrated in Figure 2:

1. Initial magnetization: In MRI, the body is placed in a strong magnetic field,
causing the protons (mainly in water molecules) in the body to align with the
field.
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2. 90-degree RF pulse: A radiofrequency (RF) pulse is applied at a certain an-
gle, commonly 90 degrees. This pulse disturbs the alignment of the protons,
causing them to tip away from the direction of the main magnetic field.

3. Precession and phase coherence: After the RF pulse is turned off, the protons
start to precess (spin) and initially have phase coherence, meaning they spin in
synchrony with each other.

4. De-phasing: Over time the protons begin to lose this coherence and start
to precess at slightly different rates, leading to de-phasing. This de-phasing
causes a decrease in the signal that can be detected. The de-phasing of spins is
primarily caused by spin-spin interactions, which are generally interactions
between the magnetic moments of different nuclei. In particular, this is caused
by dipole-dipole interactions of hydrogen nuclei, which is a specific type of
spin-spin interactions. These interactions lead to de-phasing of the spins be-
cause each nucleus experiences a slightly different local magnetic field due to
the presence of neighboring nuclei. Another reason for de-phasing are inhomo-
geneities in the main magnetic field. They affect the precession of neighboring
protons, leading to a loss of phase coherence.

5. 180-degree RF pulse: Before the signal decreases too much, a second RF
pulse, typically 180 degrees, is applied. This pulse flips the direction of the
spinning protons.

6. Re-phasing: After the 180-degree pulse, the protons that were de-phasing
now start to re-phase. This means they gradually come back into sync with
each other.

7. Echo signal: As the protons re-phase, they emit the spin echo signal. This
signal reaches its peak when the protons are most in phase, and this peak is
detected and used to create the image.

8. T2 relaxation: The time it takes for the protons to lose phase coherence after
the 180-degree pulse is associated with the T2 relaxation time, a property that
varies between different tissues and is used to generate contrast in the images.

This sequence is particularly sensitive to differences in the T2 relaxation times of
tissues, making it useful for detecting pathological changes in various organs and
structures within the body. T2-weighted sequences are useful for visualizing patholo-
gies that result in increased water content, such as edema, inflammation, and tumors.
These tissues tend to have longer T2 relaxation times and, therefore, appear hyperin-
tense on T2-weighted images.
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3.2.3 T1-Weighted Contrast-Enhanced T1ce

T1ce MRI sequences are T1-weighted sequences performed after the administration
of an intravenous contrast agent, typically a gadolinium-based compound. Gadolin-
ium is a paramagnetic substance that shortens the T1 relaxation time of tissues it
flows through. Consequently, regions that take up the contrast medium will have
a shortened T1 relaxation time and will appear hyperintense on the T1-weighted
images. This increased contrast between normal and abnormal tissues can help to
identify and characterize various pathologies.

Some common clinical applications of T1ce MRI sequences are:

• Inflammation and infection: T1ce sequences can help detect and evaluate
areas of inflammation or infection, as these regions often exhibit increased
vascular permeability and contrast uptake. Examples include abscesses, os-
teomyelitis, and inflammatory conditions such as multiple sclerosis.

• Vascular lesions: T1ce sequences can be used to examine vascular abnormal-
ities, such as arterial malformations, aneurysms, or areas of ischemia, as these
lesions often show contrast enhancement due to disrupted blood-brain barrier
or increased blood flow.

• Post-surgical evaluation: T1ce sequences can help evaluate the extent of sur-
gical resection, detect residual tumor tissue, or identify postoperative compli-
cations such as hemorrhage or infection.

• Tumor detection and characterization: T1ce sequences are very valuable for
visualizing and examining the extent of tumors in the brain, spine, and other
organs. The contrast enhancement can help to delineate the tumor borders, dif-
ferentiate between solid and necrotic components, and identify areas of tumor
infiltration or invasion into neighbour tissues.

3.2.4 Fluid Attenuated Inversion Recovery FLAIR

Fluid attenuated inversion recovery (FLAIR) is a refined magnetic resonance imaging
sequence that is widely used in clinical practice for its ability to suppress the signal
from cerebrospinal fluid (CSF) and enhance the visualization of certain structures,
particularly in the brain. The FLAIR images can provide valuable information about
various neurological disorders, white matter diseases, and other brain abnormalities.

To understand FLAIR MRI sequences, it is important to recall the principles of T2-
weighted MRI sequences, which emphasize differences in T2 relaxation times be-
tween tissues. In a T2-weighted sequence, tissues with longer T2 relaxation times
appear brighter, while those with shorter T2 relaxation times appear darker. How-
ever, T2-weighted sequences can sometimes be negatively affected by the bright sig-
nal from CSF, which may overlay or hide the appearance of certain other tissues or
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structures.

FLAIR sequences are thus designed to overcome this limitation by selectively sup-
pressing the signal from CSF. This is achieved by incorporating an inversion recovery
(IR) preparation pulse before the typical T2-weighted sequence.

In addition to suppressing the CSF signal, FLAIR sequences keep the T2-weighted
contrast between different tissues, allowing to show improved visualization of vari-
ous problems. Some clinical applications of FLAIR sequences are [90, 15]:

• Detection of white matter lesions: FLAIR sequences are highly sensitive for
identifying white matter lesions, such as those associated with multiple sclero-
sis, small vessel ischemic disease, or vasculitis. These lesions often appear as
hyperintense areas on FLAIR images due to their longer T2 relaxation times
compared to normal white matter.

• Assessment of intracranial hemorrhage: FLAIR sequences can help dif-
ferentiate between acute, subacute, and chronic intracranial hemorrhages by
suppressing the CSF signal and highlighting the different T2 relaxation times
of blood products at various stages of clot evolution.

• Identification of meningitis and encephalitis: FLAIR sequences can reveal
meningeal enhancement and cortical abnormalities associated with infectious
or inflammatory processes, such as bacterial or viral meningitis and encephali-
tis.

• Evaluation of brain tumors: FLAIR sequences can provide valuable infor-
mation about the extent and infiltration of brain tumors, particularly when the
tumor is located near the brain’s surface, where the bright CSF signal on con-
ventional T2-weighted images might cover the tumor’s boundaries.

The key to suppressing the CSF signal in FLAIR sequences lies in the selection of
an appropriate inversion time (TI). TI is the time interval between the application of
the 180° inversion recovery preparation pulse and the subsequent excitation pulse, as
is shown in Figure 3. The inversion time is chosen to coincide with the null point of
the CSF signal, which is the time at which the longitudinal magnetization of CSF is
zero. At this time point, the excitation pulse has minimal effect on the CSF signal, as
there is no net magnetization to tip into the transverse plane. Consequently, the CSF
signal is effectively suppressed in the resulting image.

Meanwhile, other tissues with different relaxation times will have non-zero longitu-
dinal magnetization at the time of the excitation pulse, producing a detectable signal
on the final image. This allows FLAIR sequences to maintain the T2-weighted con-
trast between different tissues while selectively suppressing the CSF signal, resulting
in improved visualization of various brain parts and tissues.
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Figure 3: The spin echo 90° readout pulse is applied at the exact time when longitudinal magnetization
reaches the null point for the tissue which is to suppress. The time elapsed between the preparatory
180° IR pulse and the 90° excitation RF pulse is called time to inversion (TI). Illustration from Ra-
diopedia [76].

3.3 Advanced MRI Sequences

3.3.1 Diffusion Weighted Imaging DWI

Diffusion weighted imaging (DWI) is different type of magnetic resonance imaging
technique, which uses the diffusion of water molecules to generate contrast in the im-
ages. This technique allows the imaging of cellular structures and provides a unique
insight into the microscopic characteristics of tissues [9, 42]. The DWI imaging is
based on the random, microscopic motion of water molecules, which is known as
Brownian motion. This motion is influenced by the cellular environment, mainly the
cell density and the integrity of cell membranes. When the diffusion is unrestricted
(as for example in cerebrospinal fluid) it is called isotropic. But within certain struc-
tures the diffusion can be more restricted in some directions than in others, then it is
called anisotropic.

In clinical practice, DWI is particularly useful for detecting early strokes, as restricted
diffusion is one of the earliest signs of cerebral ischemia. However, it is also useful
for analysing infection or inflammation or in the characterization of tumors [9].

The physics behind DWI is based on the concept of diffusion weighting. In DWI, the
strength of the diffusion weighting is expressed as a so called b-value. The b-value
determines the sensitivity of the DWI sequence to diffusion. Higher b-values lead to
greater diffusion weighting, but they also lead to a lower signal-to-noise ratio. The
most common approach used in DWI is the Stejskal-Tanner pulse sequence, which is
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characterized by a pair of diffusion-sensitizing magnetic field gradients [109]. These
gradients are typically added to a spin-echo or echo-planar imaging sequence. The
pulse sequence uses a specific row of gradient pulses to encode the diffusion of water
into the phase of the MRI signal (see Figure 4). The equation that describes the signal
attenuation S(b) due to diffusion in the presence of a gradient pulse is given by the
Stejskal-Tanner equation:

S(b) = S0e−bD (7)

where

• S(b) is the signal intensity with diffusion weighting.

• S0 is the signal intensity without diffusion weighting (i.e., when b = 0),

• D is the diffusion coefficient of the tissue, which here is a measure of the
diffusion rate of water molecules,

• b is the diffusion weighting factor or b-value, which is given as:

b = γ
2G2

δ
2(∆− δ

3
) (8)

In the above equation for the b-value

• γ is the gyromagnetic ratio (see Table 1),

• G is the amplitude of the gradient pulses,

• δ is the duration of each gradient pulse,

• ∆ is the time between the application of the gradient pulses.

The Stejskal-Tanner equation (7) is used to determine the diffusion coefficient by
measuring the signal attenuation at different b-values. It is assumed that the diffu-
sion process is Gaussian, which is true for free and unrestricted diffusion. But in
biological tissues, the diffusion may not be free caused by barriers such as cell mem-
branes, and thus, the received signal attenuation curve may deviate from the simple
exponential behavior predicted by the Stejskal-Tanner equation. This helps in quanti-
fying the diffusion of molecules (usually water) within tissue. By applying magnetic
field gradients during an MRI scan, it is possible to detect variations in the diffusion
of water molecules, which can indicate various abnormal conditions. For example, in
areas where diffusion is restricted (like in some types of stroke or tumor), the actual
signal intensity will be higher compared to the one predicted by the Stejskal-Tanner
equation (free diffusion).

An even more enhanced technique is available in Diffusion Tensor Imaging (DTI),
where diffusion effects are analysed towards their direction using the diffusion tensor.
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Figure 4: Schematic representation of a Diffusion Weighted Imaging sequence. Diffusion gradients
are applied with amplitude G, pulse duration δ and repetition time ∆. Illustration from Radiopedia
[76].

3.3.2 Diffusion Tensor Imaging DTI

Diffusion Tensor Imaging (DTI) is an even specialized form of Diffusion Weighted
Imaging that allows the visualization and quantification of water diffusion directions
within tissues. Similar to DWI it is also based on the water molecules’ Brownian
motion. In many tissues, this motion is isotropic. However, in structured tissues this
motion is restricted by cell membranes etc. making it anisotropic (directionally de-
pendent). This is the basic principle of DWI imaging as discussed above. But where
DWI only captures the degree of anisotropic diffusion, DTI also measures the diffu-
sion gradient direction.

Similar to the Stejskal-Tanner equation (7), the signal attenuation with a gradient
direction g is:

S(g,b) = S0e−bgT Dg (9)

Where D is the diffusion tensor and gT is the transpose of the gradient direction
vector. The diffusion tensor D is a mathematical construct which is used here to rep-
resent and calculate the diffusion of water molecules in all three spatial dimensions.
This provides a more comprehensive description of diffusion than a single diffusion
coefficient. D can be given as a 3x3 symmetric matrix with the diagonal elements
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representing diffusion along the axes of the coordinate system, and the off-diagonal
elements representing diffusion occurring off-axis. The calculation involves several
steps:

1. Acquisition of Diffusion-Weighted Images (DWIs): Multiple images are ac-
quired using different b-values and using the Stejskal-Tanner pulse sequence
with gradient pulses applied in at least six non-collinear directions. At least
two b-values are needed, including one very low or zero b-value (b0), which
doesn’t sense the image to diffusion, and at least one higher b-value (bi).

2. Signal intensity measurements: For each b-value, the MRI measures the sig-
nal intensity of the tissue. The diffusion gradient causes signal loss in the
tissue proportional to the amount of diffusion. The signal attenuation in each
voxel for each gradient direction can then be expressed using the generalized
Stejskal-Tanner equation (9) which can be rearranged as shown in the next
step.

3. Linear equation system: The natural logarithm of the signal attenuation ratio
between a diffusion-weighted signal Si (using bi) and a non-diffusion-weighted
signal S0 (using b0) is linearly related to the diffusion tensor and the b-value
bi, as shown in equation (10).

4. Solving for the tensor: Measurements from multiple directions result in a
system of equations that can be solved for the six unique elements of the dif-
fusion tensor (three diagonal elements and three off-diagonal elements due to
its symmetry).

ln
(

S0

Si

)
= bigT

i Dgi (10)

Here, S0 is the signal intensity in the absence of diffusion weighting (using low b0
value or zero b-value), Si is the signal intensity with diffusion weighting in the i-th
direction, bi is the corresponding b-value, and gi is the gradient direction vector for
the i-th measurement.

The diffusion tensor D, is represented as:

D =

Dxx Dxy Dxz
Dxy Dyy Dyz
Dxz Dyz Dzz

 (11)

Where the diagonal elements Dxx, Dyy, and Dzz are principal diffusivities along the
x, y, and z axes. The off-diagonal elements represent correlated diffusivities between
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the axes.

From the eigenvalues (λ1,λ2,λ3), quantitative measures like the Fractional Anisotropy
(FA) and the Mean Diffusivity (MD) can be calculated. Fractional Anisotropy (FA)
is a scalar value between 0 and 1 that describes the degree of anisotropy of a diffusion
process. A value of 0 means that diffusion is isotropic, whereas a value of 1 indicates
that diffusion occurs only along one axis and is restricted along the other axes. MD
gives the average diffusion across all directions:

1. The Mean Diffusivity (MD):

MD =
λ1 +λ2 +λ3

3
(12)

2. The Fractional Anisotropy (FA):

FA =

√
3
2
·
√

(λ1 −MD)2 +(λ2 −MD)2 +(λ3 −MD)2√
λ 2

1 +λ 2
2 +λ 2

3

(13)

Where λ1, λ2, and λ3 are the eigenvalues of the tensor D. The eigenvalues give the
magnitude of diffusion in the directions defined by their corresponding eigenvectors.
The principal eigenvector provides the direction of maximum diffusion, which is of-
ten aligned with the orientation of fibrous tissue.

The diffusion tensor provides much richer information about tissue structure than
just the diffusion coefficient. Diffusion Tensor Imaging data is often visualized as
color maps as shown in Figure 5, where the color encodes the primary direction of
diffusion, providing a visual assessment of the tissue structure.

Figure 5: Diffusion Tensor Image example from ”Role of Diffusion Tensor Imaging in Brain Tumor
Surgery” by Dubey et al. [32]. The colored lines show the primary directions of diffusion. Displace-
ment of the direction tracts is observable in the tumor region.
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3.4 Imaging Characteristics of Brain Tissues and Brain Tumor
Regions

Magnetic Resonance Imaging is a key diagnostic tool for identifying brain tumors
and brain tumor regions, providing detailed images of the brain’s anatomy and pathol-
ogy. The different conventional MRI sequences presented above (T1, T1ce, T2,
FLAIR) highlight different aspects of the tissue and different parts of a tumor. This
section will describe how these regions typically appear in each of the mentioned
sequences.

The interpretation of these imaging characteristics is very nuanced and can be influ-
enced by numerous factors such as the specific type of brain tumor or the settings of
the MRI scan itself. Radiologists and clinicians combine information from the dif-
ferent sequences to form an image of the brain tumor regions. The same is expected
to be achieved automatically by the BraTS challenge’s segmentation algorithms pre-
sented in the Sections 5.2.

Cerebrospinal Fluid CSF

Cerebrospinal fluid (CSF) is a clear, colorless fluid that surrounds the brain and spinal
cord, providing mechanical and immunological protection. In magnetic resonance
imaging, the signal from CSF can be particularly prominent due to its unique physi-
cal properties, including its high water content and long T1 and T2 relaxation times.

In MRI, the contrast between tissues is primarily determined by the differences in
their relaxation times (T1, T2) and proton density. CSF is mainly composed of wa-
ter, which is rich in hydrogen atom cores, thus resulting in a high proton density.
The large number of protons in CSF leads to a strong signal in MRI, as the signal
intensity increases with proton density.

In T1-weighted MRI sequences, tissues with shorter T1 relaxation times appear
bright (hyperintense), while those with longer T1 relaxation times appear darker (hy-
pointense). Conversely, in T2-weighted sequences, tissues with longer T2 relaxation
times appear bright, while those with shorter T2 relaxation times appear dark. Due to
the long T1 and T2 relaxation times of CSF, it appears hypointense on T1-weighted
images and hyperintense on T2-weighted images, see Table 2. Since CSF is not
affected by any contrast enhancing agent it will also appear hypointense on T1ce
modalities. Due to the active suppression in Flair records, it will also appear hy-
pointense there.

White Matter WM

White matter appears hyperintense on T1 compared to gray matter. The higher sig-
nal intensity of white matter in T1 images is due to the shorter T1 relaxation time
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of a substance named myelin, which is abundant in white matter. Myelin, being rich
in fats, has a shorter T1 relaxation time compared to the surrounding brain tissues,
making it appear brighter.

On T2 weighted sequences white matter appears hypointense compared to grey mat-
ter. In T2 sequences, the longer T2 relaxation time of water-rich tissues makes them
appear brighter. Since white matter contains less water compared to grey matter, it
appears darker. The T2 relaxation time is influenced by the water content and the
structural integrity of tissues. White matter, with its dense myelin sheaths, has a
longer T2 relaxation time, leading to lower signal intensity.

For white matter, the appearance on T1ce depends mostly on the presence of patho-
logical changes. In normal conditions, white matter does not significantly accumu-
late gadolinium contrast, and therefore its appearance is similar to that in standard
T1-weighted images – hyperintense compared to grey matter. However, in patholog-
ical conditions, such as in areas of inflammation, infection, or tumors, white matter
may accumulate the contrast agent. This leads, in such cases, to increased signal
intensity, making these areas appear brighter than the surrounding tissues.

For FLAIR images white matter appears darker compared to gray matter, similar to
T2 images. FLAIR is a special inversion recovery sequence designed to clean the
signal from fluids like CSF. Brain tissue on FLAIR images appears similar to T2
images, with grey matter being brighter than white matter. The long inversion time
used in FLAIR sequences suppresses the signal from free water, making CSF appear
very dark. Since white matter has less free water content compared to gray matter, it
appears darker than gray matter in FLAIR images as well, but still brighter than CSF.

Gray Matter GM

Gray matter has an intermediate signal intensity on T1 images. The intermediate
signal intensity has it’s reason in the balance of water and fat content in gray matter.
The T1 relaxation time, which is influenced by the molecular environment within the
tissue, results in an intermediate appearance.

Similarly to T1 images, gray matter also appears with intermediate signal intensity
on T2 images. In T2 imaging, tissues with longer T2 relaxation times, such as fluids,
appear brighter. Gray matter, having an intermediate T2 relaxation time due to its
composition, appears as intermediate in intensity.

In normal conditions, gray matter does not significantly accumulate gadolinium-
based contrast agents, so its appearance in contrast enhanced T1ce remains similar or
slightly hyperintense to non-contrast T1 images. However, in the presence of patho-
logical conditions, areas of gray matter that accumulate the contrast agent will appear
brighter.
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On FLAIR images, gray matter appears brighter than white matter, since FLAIR
is a variation of T2 imaging with suppression of the signal from fluids like CSF.
The contrast between gray and white matter is similar to that in T2 images, with
gray matter appearing isointense or slightly brighter due to its higher water content
compared to white matter.

Component T1 T2 T1ce FLAIR
Cerebrospinal Fluid CSF Hypointense Hyperintense Hypointense Hypointense
White Matter WM Hyperintense Hypointense Hyperintense Hypointense
Gray Matter GM Isointense Isointense Hyperintense Isointense
Edema ED Variable Iso/Hyperintense Hypointense Hyperintense
Necrosis NCR Hypointense Hyperintense Hypointense Hyperintense
Enhancing Tumor ET Iso/Hypointense Iso/Hyperintense Hyperintense Iso/Hyperintense
Non-Enhancing NET Iso/Hyperintense Iso/Hyperintense Variable Iso/Hyperintense

Table 2: Intensities of various brain and tumor components on MRI modalities. Variable intensity
means the signal can vary depending on specific conditions.

Edema ED

Edema generally appears hypointense on T1 due to it’s increased water content.
Edema tissue has a longer T1 relaxation time than normal brain tissue, resulting
in lower signal intensity on T1-weighted images [81]. However, the appearance of
edema on T1-weighted images can vary depending on the underlying cause and the
stage of the edema. For example, in some cases, such as with certain types of inflam-
mation or hemorrhage, the edematous area might appear slightly brighter or isoin-
tense (having similar signal intensity as surrounding tissues) compared to normal
tissue. On contrast enhanced T1ce, edema usually appears hypointense since con-
trast mainly enhances solid tumor components.

On T2 Edema appears isointense or hyperintense because of the increased water con-
tent, which shortens the T2 relaxation time, leading to higher signal intensity on T2-
weighted images. FLAIR imaging, which suppresses the signal from cerebrospinal
fluid, makes the edematous tissue appear even more obvious [45]. It suppresses the
signal from cerebrospinal fluid and makes the edema tissue be highlighted. The sig-
nal intensities for edema regions are listed in Table 2.

Necrosis NCR

Necrotic tissue appears hypointense on T1 due to the lack of viable tissue and in-
creased water content [22]. On T2-weighted images, it can appear bright due to the
presence of fluid in the necrotic tissue, while the surrounding tumor may be isoin-
tense or less hyperintense.
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On contrast-enhanced T1ce, the necrotic parts of a brain tumor typically appear as a
central area of hypointense tissue, surrounded by a rim of enhancement after the ad-
ministration of contrast material. This is due to the breakdown of the blood-brain bar-
rier in the viable tumor tissue surrounding the necrosis. The necrotic core generally
appears hypointense, but there can be an area of enhancement surrounding the necro-
sis, reflecting viable tumor tissue or also, in some cases, treatment-related changes
[94]. Advanced imaging techniques, such as the discussed Diffusion Weighted Imag-
ing, can provide additional information to help distinguish tumor necrosis from other
entities like treatment-related changes.

In FLAIR, similar to T2, the necrotic core may appear hyperintense reflecting the
increased water content. The surrounding rim of viable tumor tissue may appear
slightly hyperintense or isointense [25].

Enhancing Tumor ET

Before contrast administration, an enhancing tumor can be isointense or hypointense
on T1, making it difficult to distinguish from surrounding tissue. Also in T2, the
intensity is not clearly shown, the enhancing tumor regions may appear hyperintense
or isointense.

After administration of a contrast agent, the enhancing tumor appears very hyper-
intense due to the breakdown of the blood-brain barrier, allowing the contrasting
medium to accumulate in the tumor tissue [62]. This means, in contrast-enhanced
T1ce, the enhancing tumor parts ET are highlighted, which is crucial for identifying
active tumor tissue.

In FLAIR, again the enhancing tumor regions only appear hyperintense or isointense
and the brightness is not as pronounced as on post-contrast T1-weighted images.

Non-Enhancing Tumor NET

The detectability of non-enhancing tumor segments on MRI depends on various fac-
tors such as the MRI sequences used and the specific characteristics of the tumor
as well as the surrounding brain tissue. Mainly the presence of surrounding edema
can affect the visibility of non-enhancing tumor segments. While the non-enhancing
tumor segments can be very challenging to detect, the use of multiple standard MRI
sequences (T1, T2, T1ce, Flair) and the additional use of advanced imaging tech-
niques (such as DWI and DTI) can improve their visibility and contribute to a more
accurate analysis of the tumor.

The standard MRI sequences offer imaging characteristics pointing towards non-
enhancing parts, but often only give subtle expressions of the same making it hard
for radiologists to reliably detect the NET parts [76, 65, 34]. In T1-weighted im-
ages, non-enhancing tumor segments may appear isointense or hypointense and can
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be difficult to distinguish from surrounding normal brain tissue. That makes pre-
contrast T1-weighted images typically no good choice for detecting non-enhancing
tumor segments since it may not be clearly visible unless there is significant mass
effect or distortion of normal brain anatomy.

T2-weighted images can provide good contrast between tumor tissue and normal
brain tissue, helping to delineate the extent of the overall tumor. Also on T2-weighted
images non-enhancing tumor segments are often more visible, appearing slightly hy-
perintense compared to surrounding brain tissue, which is due to increased water
content, cellularity, and changes in the tissue’s micro structure, all of which affect
the T2 relaxation time.

T1-weighted records with contrast enhancement (T1ce) can sometimes make non-
enhancing regions more apparent by contrast, but only if there is a clear border be-
tween enhancing and non-enhancing regions [76]. The contrast results from non-
enhancing regions absorbing less or no gadolinium-based contrast agents. For non-
enhancing tumor parts lying apart from enhancing tissue, this effect is not helpful.
This means T1ce can highlight enhancing tumor regions to some degree, depending
on their localization.

FLAIR sequences are similarly useful for detecting non-enhancing tumor segments
as T2, as they provide high contrast between tumor tissue and normal brain tissue.
FLAIR images are sensitive to changes in water content and can highlight areas of
edema or infiltrative tumor that might not be apparent on other sequences. As it addi-
tionally suppresses the signal from CSF, it allows the tumor tissue to stand out more
clearly and gives together with T2 and within the standard MRI sequences, a good
resource for identifying NET.

The non-enhancing tumor parts are generally located within regions of edema or
surrounded by edema and are thus hard to distinguish from this domain. In their
paper ”Non-Contrast-Enhancing Tumor: A New Frontier in Glioblastoma Research”
[65] Lasocki et al. describe possible criteria for differentiating between edema and
non-enhancing tumor parts:

The white matter involvement of edema is typically relatively concentric
around the enhancing lesions, other than where hindered by the rela-
tive barrier afforded by the gray matter. In contrast, eccentric extension
of FLAIR hyperintensity, not accounted for by anatomic constraints, is
highly suggestive of nCET [NET]. [...]
Another useful differentiating feature is that edema is typically associ-
ated with more marked T2 and FLAIR hyperintensity than nCET [NET]
often fading somewhat toward the periphery of the edema. In contrast,
FLAIR hyperintensity related to nCET [NET] is usually more subtle. The
relatively mild FLAIR hyperintensity of nCET [NET] is well-demonstrated
in the gray matter where the distinction is simpler but can also be seen
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in the white matter, for example with an eccentric tongue of nCET [NET]
extending beyond an area that has the typical appearance of edema.
This finding has recently been supported by a study correlating radio-
graphically localized biopsies with multiparametric MR imaging, which
found that T2 FLAIR was inversely correlated with cell density. These re-
sults support mild FLAIR hyperintensity being a feature of nCET [NET],
while greater hyperintensity indicates that edema dominates. [65]

In summary, NET comes with slightly less intensity in the T2 and Flair modalities
compared to the actual edema parts. Also non-enhancing parts are often present in
an eccentric extension adjacent the enhancing tumor core. This phenomenon will be
visible in the 3D modeled representations shown in Section 7.5.
Advanced MRI sequence images such as Diffusion Weighted Imaging (DWI) and
Diffusion Tensor Imaging (DTI) can provide valuable additional information about
the cellular density of the tumor, which can aid in detecting non-enhancing tumor
segments. High cellular density can lead to restricted diffusion, which then appears
hyperintense on DWI and DTI [20]. Lasocki et. al [65] state the following about the
use of DWI and DTI for differentiating NET from edema, which is challenging in
the conventional sequences:

The potential use of DWI for identifying nCET [NET] is based on the cor-
relation between ADC [diffusion coefficient D] values and tumor cellu-
larity. This association suggests that relative diffusion restriction (lower
ADC values) is a marker of nCET [NET], in contrast to the facilitated
diffusion occurring with edema. Published results have been conflict-
ing, but reassuring results have been obtained with newer techniques.
For example, Price et al. have suggested value in DTI, with infiltrating
tumor suggested by the presence of an increase in the isotropic compo-
nent of the diffusion tensor and a marginal increase in the anisotropic
component. Stadlbauer et al. have suggested that fractional anisotropy
correlates better with histopathologic parameters than mean diffusivity.
Functional diffusion maps and high-b-value DWI have also been sug-
gested as useful tools for identifying nCET [NET]. [65]

Other advanced imaging techniques such as MR Spectroscopy and Perfusion-Weighted
Imaging (PWI) can provide additional information that may aid in the detection and
characterization of non-enhancing tumor segments [82, 35].
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This section will provide the machine learning concepts needed for the presented
application of non-enhancing tumor extraction in the BraTS datasets of the recent
years. Therefore the general concept of semantic image segmentation will be intro-
duced in Section 4.1. Section 4.2 will show different types of convolutional neural
nets for image segmentation and will detail the U-Net architecture, which will make
up the basis for further elaborations in the later chapters. Section 4.3 will describe
the common metrics in image segmentation applications and Section 4.4 will give
the needed loss functions respectively. An essential image analysis and enhancement
tool in this work will be morphological filtering, which will be used to process binary
brain tumor region masks and hence will be introduced in Section 4.5.

4.1 Semantic Image Segmentation
Image segmentation using neural networks is a powerful technique in computer vi-
sion that involves dividing an image into segments to isolate specific objects or re-
gions. The goal is to understand and interpret the image’s content at a more detailed
level by identifying objects and their boundaries, making it a key component in many
computer vision applications such as autonomous driving, robotics, medical imaging,
and scene understanding [71, 86].

Image segmentation applications occur in two forms, semantic image segmentation
and instance segmentation. While both, semantic image segmentation and instance
segmentation aim to classify pixels in an image, they differ in what they classify the
pixels as.

Semantic image segmentation focuses on assigning a class label to each pixel in
an image. However, it does not differentiate between different instances of the same
class. For example, if there are two cars in an image, semantic segmentation would
label all the pixels belonging to both cars as “car” without distinguishing between
the two individual cars.

Instance segmentation, on the other hand, not only classifies each pixel in an image
but also differentiates between different instances of the same class. Using the pre-
vious example, instance segmentation would label the pixels belonging to one car as
“car1” and the pixels belonging to the other car as “car2.”

As already stated in the previous chapters, one goal of medical screening and diag-
nostic assistance applications is the automatic semantic segmentation of a variety of
different regions in medical imaging data. As described by a comprehensive survey
on the medical use of semantic image segmentation by Risheng Wang [119] it plays a
vital role in medical applications, enabling the automatic analysis and interpretation
of medical images. It has the potential to significantly improve diagnosis, treatment
planning, and monitoring of various diseases and medical conditions. Some key
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medical applications of semantic image segmentation are:

• Organ and tissue segmentation: Semantic segmentation can be used to iden-
tify and delineate organs, tissues, and other anatomical structures in medical
images, such as CT, MRI, or ultrasound scans. This helps physicians to as-
sess organ size, shape and position, which is crucial for diagnosis, surgical
planning, and treatment monitoring [99].

• Lesion segmentation: In various medical conditions, such as multiple sclero-
sis, diabetic retinopathy, and skin diseases, detecting and quantifying lesions
is crucial for diagnosis and monitoring. Semantic segmentation can assist in
identifying and measuring lesions, providing valuable information about their
size, shape, and distribution [60].

• Vascular segmentation: Analyzing blood vessels in medical images is impor-
tant for diagnosing and treating vascular diseases, such as atherosclerosis or
aneurysms. Semantic segmentation can help identify and measure blood ves-
sel structures, aiding in the assessment of vascular abnormalities and planning
of interventions [121].

• Cardiac segmentation: In cardiac imaging, semantic segmentation can help
delineate the heart’s chambers, valves, and blood vessels. This enables accu-
rate assessment of cardiac function, diagnosis of heart diseases, and planning
of interventions such as valve replacement or coronary artery bypass surgery
[26].

• Brain segmentation: In neuroimaging, semantic segmentation can be used to
differentiate various brain structures, such as the cortex, white matter, and sub-
cortical regions. This information is valuable for studying brain development,
understanding neurological disorders, and planning neurosurgical procedures
[64].

• Tumor segmentation: Accurate identification and localization of tumors in
medical images are essential for cancer diagnosis, staging, and treatment plan-
ning. Semantic segmentation can help delineate tumor boundaries and differ-
entiate tumors from healthy tissues, enabling precise measurements and more
informed clinical decisions. The current state in breast cancer detection and
segmenation, for example, is shown in [84].

Accurate segmentation of anatomical structures and regions of interest is crucial for
planning and performing minimally invasive procedures. Semantic segmentation can
help create detailed 3D models, which can be used for surgical navigation and real-
time guidance during image-guided surgery interventions. These are just a few ex-
amples of the many potential applications of semantic image segmentation in the
medical domain. By automating the analysis of medical images, semantic segmenta-
tion can reduce the workload of clinicians, increase diagnostic accuracy, and improve
patient care.
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4.2 Convolutional Neural Networks for Image Segmentation

4.2.1 Fully Convolutional Networks

Fully Convolutional Networks (FCNs), historically mark an innovation in the field of
semantic segmentation. Introduced by Long et al. in 2015 [71], FCNs radically devi-
ated from the conventional architectural paradigm of Convolutional Neural Networks
(CNNs), particularly by enabling spatially dense predictions without necessitating
input of a fixed size or deploying fully connected layers. Before Long et al.’s work
the concept and architecture evolved from a rich history and prior works in neural
networks and image processing.

Introduced by Kunihiko Fukushima in 1980 [36], the Neocognitron, an early Con-
volutional Neural Network, set a milestone in neural networks capability of hierar-
chical, multi-layered pattern recognition. This model was influencing later models,
including the CNNs foundational for FCNs. Later LeCun et al. developed LeNet-5
in 1998 [66], a significant development in CNNs that recognized handwritten char-
acters. Although not directly linked to FCNs, LeNet-5 laid down the foundational
architectures of convolutional networks.

Before FCNs, semantic segmentation often involved patch classification, wherein im-
age patches were independently classified into categories, often disregarding spatial
and contextual information among neighboring patches. Classical machine learn-
ing techniques like TextonForest [104] and Random Forests [16] were popular for
such applications. Some methods implemented superpixel segmentation [67], where
images were over-segmented into superpixels, followed by labeling via classifiers.
These, however, lacked end-to-end training and dense prediction capabilities.

The leading work of Long et al. in 2015 [71] introduced FCNs, employing CNNs in
an end-to-end trainable architecture, efficiently performing semantic segmentation
by replacing fully connected layers with convolutional layers and utilizing upsam-
pling to generate dense pixel-wise outputs.

Looking into the architectural details, a FCN is divided into an encoder, which is
primarily responsible for downsampling and semantic understanding of the input
image, and a decoder that concerns itself with upsampling and spatially dense pre-
diction. The encoder employs a sequence of convolutional and pooling layers, suc-
cessively reducing spatial dimensions while incrementally increasing the depth of
feature channels. The principle scheme of this architecture is shown in Figure 6.
Often in practice, well established pre-trained models like VGG16 or AlexNet are
employed as the encoder, exploiting the powerful principle of transfer learning.

In contrast, the decoder is used to upscale the low-resolution feature maps derived
from the encoder, generating a high-resolution output. This is achieved via the use
of transpose convolutional layers, which effectively manage to upscale feature maps.
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Figure 6: Encoder-Decoder architecture as proposed by Long et al. in his paper ”Fully Convolutional
Networks for Semantic Segmentation” [71].

Within this architecture, the traditional fully connected layers of conventional CNNs,
typically employed for classification, are replaced with 1x1 convolutional layers in
FCNs. This strategic modification enables the network to accept input of arbitrary
size, thereby enhancing its versatility and application potential. The concept of trans-
posed convolutions, or fractionally-strided convolutions, further enables this archi-
tecture in the precise upsampling of lower-resolution feature maps to higher resolu-
tions.

FCNs are typically trained using pixel-wise cross-entropy loss, which compares the
predicted pixel-wise class probabilities against the one-hot encoded ground truth,
computing the loss for each pixel and averaging over the entire image or batch. Al-
ternative loss functions, such as the Sørensen-Dice loss, are also employed, espe-
cially in situations where class imbalance might be prevalent, gauging the overlap
between the predicted segmentation and the ground truth. Fully Convolutional Net-
works have been deployed for semantic segmentation, object detection, and instance
segmentation in a broad spectrum of applications, with capability across different
tasks in computer vision.

4.2.2 Mask R-CNN

Mask R-CNN is a deep learning model for instance segmentation, a task that com-
bines object detection and semantic segmentation. It was proposed by Kaiming He,
Georgia Gkioxari, Piotr Dollár, and Ross Girshick in a 2017 paper titled ”Mask R-
CNN” [48]. This model extends Faster R-CNN [96], a model for object detection,
by adding a branch for predicting an object mask in parallel with the existing branch
for bounding box recognition.

The major elements in a Mask R-CNN architecture are a Backbone Network followed
by a Region Proposal Network (RPN) using RoIAlign and incorporating Segmenta-
tion Masks. A Convolutional Neural Network (CNN) acts as the backbone of the
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Mask R-CNN. The backbone is responsible for the initial extraction of features from
the input image. The original Mask R-CNN paper [48] used a ResNet-101 model
with a Feature Pyramid Network (FPN) extension as the backbone. The Region Pro-
posal Network uses the output of the backbone to propose regions of the image that
may contain an object (that means regions of interests or RoIs). These proposals are
then used by the following layers to identify objects and their locations.

RoIAlign is a crucial part of the Mask R-CNN architecture that was not present in
Faster R-CNN. While Faster R-CNN used RoIPool [96], which could cause mis-
alignment between the RoIs and the extracted features, RoIAlign fixes this by using
bilinear interpolation to maintain spatial precision [48]. Similar to Faster R-CNN,
Mask R-CNN also includes a layer for object classification and bounding box re-
gression. Given the RoIs from the RPN, this layer outputs class labels for each RoI
along with refinements to the bounding box coordinates.

In parallel to the classification and bounding box regression layer, Mask R-CNN in-
cludes a branch for predicting a binary mask for each RoI. This mask indicates the
pixels in the bounding box that belong to the object. This is the component that
makes Mask R-CNN suitable for instance segmentation tasks. The key innovation
in Mask R-CNN was the addition of the segmentation mask branch to the existing
Faster R-CNN model, along with the use of RoIAlign to maintain spatial precision.
A schematic representation of the proposed Mask R-CNN model structure from He
et al.’s paper is shown in Figure 7.

Figure 7: Mask R-CNN architecture, segmentation mask branch is added in parallel to Faster R-
CNN’s bounding box and classification path. Image from He et al. [48].

Besides medical image processing, Mask R-CNN instance segmentation finds it’s
application in other popular domains like defect detection in manufacturing, robotics,
archeology, wildlife monitoring and more [30, 70, 14, 120].

4.2.3 U-Net Architecture

The U-Net architecture is a deep convolutional neural network that was first intro-
duced in 2015 by Olaf Ronneberger, Philipp Fischer, and Thomas Brox in a paper
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titled ”U-Net: Convolutional Networks for Biomedical Image Segmentation”, which
was published in the Proceedings of the International Conference on Medical Im-
age Computing and Computer-Assisted Intervention (MICCAI) in 2015 [97]. It has
quickly become a popular choice for image segmentation tasks due to its effective-
ness and adaptability. Despite it’s original scope of use was biomedical image anal-
ysis, it was later increasingly used in different fields of segmentation applications.

The team around Olaf Ronneberger from the University of Freiburg was working on
a medical image segmentation project and found that existing segmentation models
were not performing well enough. This led to the development a new model specif-
ically for medical image segmentation tasks in their original work from 2015 [97]
and was extended to the use of 3D medical image data in their paper ”3D U-Net:
Learning Dense Volumetric Segmentation from Sparse Annotation” from 2016 [24].

The U-Net architecture was inspired by the encoder-decoder architecture [110, 72]
as was shown in the previous section 4.2.1 Fully Convolutional Networks, which
was first proposed in the context of autoencoders. Autoencoders are neural networks
that are trained to reconstruct their input data, a leading work in this was done by
G. E. Hinton [51] regarding the utility of autoencoders for dimensionality reduction
and feature learning. The encoder-decoder architecture consists of an encoder that
compresses the input data into a low-dimensional representation and a decoder that
reconstructs the original data from the low-dimensional representation, see Figure 6
from [71].

The U-Net architecture extends the encoder-decoder architecture by adding skip con-
nections between the encoder and decoder path, see Figure 8. These skip connections
allow the decoder to access high-resolution feature maps from the encoder, which
improves the accuracy of the segmentation. The skip connections were a key con-
tribution of the U-Net architecture and have since been used in other segmentation
models.

The effectiveness of the U-Net architecture in segmenting biomedical images, includ-
ing CT and MRI scans was greatly proved since then, for example in brain tumor
segmentation, lumbar spine segmentation and various other MRI and CT segmen-
tation applications [117, 116, 100, 89, 43, 103]. Since its introduction, the U-Net
architecture has been widely adopted researchers and has been applied to a variety of
segmentation tasks. Also there were several different modifications and extensions
proposed to the U-Net architecture to improve its performance in different contexts.

One such modification is the Attention UNet, which was introduced in a paper titled
”Attention U-Net: Learning Where to Look for the Pancreas” by researchers from
the University of Pennsylvania [92]. An attention mechanism is used there to help
the model focus on more informative features and ignore irrelevant ones. This can
be particularly useful in processing data where certain areas of the images might be
more relevant for a given task than others. This modification has been applied suc-
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Figure 8: Original U-Net architecture design of Ronneberger et al. from their paper [97]. Skip
connections are added from the encoding to the decoding path.

cessfully to pancreas segmentation in CT scans.

Another modification is the ResUNet, which was introduced in a paper titled ”ResUNet-
a: a deep learning framework for semantic segmentation of remotely sensed data” by
researchers from the Indian Institute of Technology (IIT) Delhi. The ResUNet adds
residual connections to the U-Net architecture, which help to mitigate the vanishing
gradient problem and to facilitate the training of very deep networks by providing an
alternate pathway for the gradient to flow through. Other successful enhancements of
the original U-Net which were developed in the context of brain tumor segmentation
will be presented in section 5.2.

U-Net models often outperform Fully Convolutional Networks where precise local-
ization is crucial. Mask R-CNN based models are generally more capable when the
focus is on instance segmentation where the R-CNN’s object detection roots are ben-
eficial. But especially in biomedical image analysis where detailed boundaries and
small details in a semantic segmentation context are required, the U-Net architectures
are widely superior to R-CNN models. This is largely due to U-Net’s extensive use
of skip connections, which help combining coarse, semantic information with fine,
spatial information [5, 69].
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4.3 Metrics

4.3.1 Pixel-Wise Accuracy

Pixel-wise accuracy is one of the basic and straightforward evaluation metrics used
in image segmentation, where each pixel in an image is classified into a particular
class. Pixel-wise accuracy computes the fraction of pixels that are correctly classified
over the entire image or dataset [71, 97]:

A =
1
N

N

∑
i=1

δ (pi,gi) (14)

Where N is the total number of pixels and

δ (pi,gi) =

{
1 if pi = gi

0 if pi ̸= gi
(15)

is an indicator function that outputs 1 if the predicted label matches the ground truth
label and 0 otherwise. The accuracy is then the average of these values across all
pixels.

Another representation of pixel-wise accuracy, in binary classifier terms is:

ACC(X ,Y ) =
T P+T N

T P+FP+T N +FN
(16)

where T P and FP are true and false positives, T N and FN are true and false nega-
tives.

The obvious advantage of pixel-wise accuracy is that it is straightforward to un-
derstand and to compute. The major downside is that it can be widely misleading,
especially when the class distributions are imbalanced. If one label is dominant,
the network will tend to predict the dominant label, since this will give high pixel-
wise accuracy anyway. For instance, in medical images where a pathology might be
present in only a small part of the image, achieving high pixel-wise accuracy can be
trivial by simply classifying every pixel as the dominant (healthy) class.

In [38] a comprehensive review of commonly used metrics for semantic segmen-
tation, including pixel-wise accuracy, to evaluate the performance of segmentation
algorithms is discussed.
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4.3.2 Sørensen–Dice Coefficient

Another common metric in semantic segmentation, especially in medical applica-
tions, is the so called Sørensen–Dice coefficient (or only Dice-coefficient), also re-
ferred to as F1-score. It is based on the independent works of Thorvald Sørensen
[108] and Lee Raymond Dice [31] and is used as a measure for comparing two dis-
crete sets. In the case of segmentation it compares the predicted segmentation area
to the ground-truth area.

The Sørensen–Dice coefficient serves as a measure of similarity between two sets
of data and is commonly used in image processing and computational biology to
evaluate the performance of segmentation algorithms. It is defined as two times the
size of the intersection of the two sets divided by the sum of the sizes of the two
sets. Therefore the coefficient ranges from 0 to 1, with a value of 1 indicating perfect
similarity and a value of 0 indicating no similarity:

Dice(X ,Y ) =
2 · |X ∩Y |
|X |+ |Y |

=
2T P

2T P+FP+FN
(17)

In image processing, the Dice-coefficient is often used to evaluate the performance
of image segmentation algorithms, which aim to identify and separate objects or re-
gions of interest within an image. Another application example is in computational
biology, where the Dice-coefficient can be used to evaluate the similarity of pre-
dicted and observed protein structures. Protein structures are often represented as
3D models, and the Dice coefficient can be used to compare the similarity of two
such models. This is important in the field of protein structure prediction, where the
goal is to predict the 3D structure of a protein based on its amino acid sequence.

In the context of this work or in medical semantic image segmentation in general, a
segmentation model may be used to identify and isolate the region of a MRI or CT
scan that represents a tumor. The Dice-coefficient can then be used to evaluate the
accuracy of the segmentation by comparing the algorithm’s finding to a ground truth
segmentation [122].

The Dice-coefficient has the advantage of being symmetric, meaning that it does not
matter which set is considered the predicted set and which is considered the ground
truth set. Additionally, it is less sensitive to the size of the sets than other measures
of similarity.

However, it has some limitations as well, for instance, it can be over-sensitive to the
size of the structures being compared. It tends to give excessively low similarity
scores for small structures, which can be a significant drawback in medical imaging
where small anatomical structures are important. Another limitation is that it treats
all errors the same, whether they are false positives, false negatives, or total misses.
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This lack of distinction can be problematic in cases where different types of errors
have different consequences.

4.3.3 Hausdorff Distance

The Hausdorff distance is a mathematical concept that is used to quantify the simi-
larity or dissimilarity between two sets of points, typically used in image processing
and computer vision to evaluate the performance of image registration and object
recognition algorithms [47, 55, 111]. It is defined as the greatest distance from any
point in one set to the closest point in the other set:

dH(X ,Y ) = max

{
sup
x∈X

inf
y∈Y

d(x,y),sup
y∈Y

inf
x∈X

d(x,y)

}
This means the Hausdorff distance is determined in the following steps:

1. For each point in set X , find the distance to the nearest point in set Y .

2. For each point in set Y , find the distance to the nearest point in set X .

3. The Hausdorff distance is the maximum of the maximum distance from step 1
and the maximum distance from step 2.

The given definition is the typically used symmetric version of the Hausdorff dis-
tance. The so called directed Hausdorff distances would only follow step 1 or 2 of
the above, without selecting the maximum of the both.

In image processing, the Hausdorff distance is often used to evaluate the performance
of image registration algorithms, which aim to align two or more images of the same
scene taken at different times or from different viewpoints. The Hausdorff distance
can be used to measure the degree of alignment between the images by comparing
the locations of corresponding features in the images. In computer vision, the Haus-
dorff distance is also used to evaluate the performance of object detection algorithms.
It measures the dissimilarity between the predicted bounding boxes of an object and
the ground truth bounding boxes.

In the context of semantic image segmentation, set X could represent the pixels of the
ground truth segmentation of an object, while set Y represents the pixels of the pre-
dicted segmentation. The Hausdorff distance then provides a measure of the largest
local discrepancy between the two segmentations.

However, it also has some limitations as well. It is sensitive to the density of points
in the sets, making it more appropriate for sets with a similar number of points. Ad-
ditionally, it is not invariant to translation and rotation, meaning that the results may
vary depending on the position and orientation of the sets. It can also be sensitive to
outliers, as a single incorrect pixel in the predicted segmentation can lead to a large
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Hausdorff distance. As a result, in medical image analysis and other fields, the mod-
ified 95th percentile Hausdorff distance (i.e., the distance below which 95% of the
pairwise distances lie) is often used to reduce sensitivity to outliers [33].

4.4 Loss functions

4.4.1 Cross-Entropy Loss

Cross-entropy is a measure that quantifies the difference between two probability
distributions. The concept of cross entropy is widely used in machine learning, par-
ticularly in classification problems, as a loss function and was first established in the
work of Claude Shannon on information theory, particularly his definition of entropy
as a measure of information [102].

The cross-entropy H between the true distribution P and the predicted distribution Q
generally is defined as:

H(P,Q) =−
C

∑
c=1

P(c) logQ(c) (18)

with the true distribution P being the actual distribution of the data, the predicted
distribution Q being the distribution predicted by the model and an index c over all
classes. The logarithm is typically taken to be the natural logarithm, but the base can
be changed depending on the context.

In the context of machine learning, particularly in classification tasks P(c) is usually
taken to be the ground-truth label, i.e. it is 1 for the correct class and 0 for all others.
Q(c) is the predicted probability of class c, often obtained from the softmax function
when resulting from neural networks.

For a binary classification task, the cross-entropy loss (or then often called the lo-
gistic loss) simplifies to:

L(y, p) =−(y log(p)+(1− y) log(1− p)) (19)

where y is the true label (0 or 1) and p is the predicted probability of the positive class.

For multi-class classification, with C classes the definition is therefore

L(y, p) =−
C

∑
c=1

yc log(pc) (20)
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where

• C is the total number of classes

• yc is 1 if the true class is c and 0 otherwise

• pc is the predicted probability for class c

Cross-entropy penalizes confident and wrong predictions more heavily than non-
confident wrong predictions. Moreover its gradient works well with optimization
algorithms, such as gradient descent. The gradient of cross-entropy can be shown
to be beneficial for neural nets and deep learning applications, it’s derivation can for
example be found in Ian Goodfellow’s ”Deep Learning” book [41].

Given a vector of raw scores or logits z for each class, the softmax function σ(z)
is used to convert these scores into normalized probabilities. The softmax vector’s
component σ(z)c for class c is defined as:

σ(z)c =
ezc

∑
C
j=1 ez j

(21)

where

• C is the total number of classes

• zc is the logit for class c

• σ(z)c is the predicted probability for class c after applying the softmax func-
tion.

The cross-entropy L in a multi-class application using softmax is then given as

L(y,σ(z)) =−
C

∑
c=1

yc log(σ(z)c) (22)

having the gradient

∂L
∂ zk

= σ(z)k − yk (23)

which is an favorable equation since σ(z)k is the predicted probability of class k and
yk is the true label for class k, which is either 1 (for correct class) or 0 (otherwise).
The gradient of the loss with respect to the logits is generally crucial, as it is used
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to backpropagate the error and update the weights in neural networks. Here the gra-
dient results in a very simple form and essentially measures the difference between
the predicted probability and the true label for each class. It is then used in optimiza-
tion algorithms like gradient descent to adjust the parameters in the direction that
decreases the loss. If the model’s prediction is correct (i.e. high probability for the
correct class), the gradient will be small, resulting in a minor update to the weights.
If the model’s prediction is incorrect, the gradient will be large, pushing the weights
to adjust more significantly. Also the gradient will then be used with the chain rule
for derivatives of composed functions to further backpropagate through earlier lay-
ers and update weights. The chain rule is foundational in computing gradients for
deep networks and the efficiency and simplicity of the given gradient equation is one
of the reasons why cross-entropy loss combined with the softmax activation is very
popular in classification problems in deep learning.

4.4.2 Weighted Cross-Entropy Loss

In Olaf Ronneberger’s influential work on the U-Net architecture for biomedical im-
age segmentation [97], he used a pixel-wise soft-max over the final feature map com-
bined with a weighted cross-entropy loss function for training. This loss function L
is defined as:

L(w) = ∑
x∈Ω

w(x) log(pc(x)(x)) (24)

with

• Ω is the set of all pixels in the training samples

• pc(x)(x) is the predicted probability of the true class label c(x) at pixel x

• w(x) is a weight map introduced to give some pixels more importance during
training. In the original U-Net paper [97], this weight map was used to give
more weight to the border between segmented cells to improve separation

The weights w which are used here are generalizing and replacing the binary factors
y ∈ {0,1} in the basic cross-entropy definition. Instead, application or data adapted
weights are assigned to each pixel, for example this can also be used to handle class
imbalances present in a segmentation tasks.

4.4.3 Soft Dice Loss

The Soft-Dice-Loss (or Dice-Coefficient Loss) is derived from the Dice-coefficient,
which was described in the previous section. For two sets X and Y , the Dice-
coefficient Dice(X ,Y ) is defined as:

Dice(X ,Y ) =
2|X ∩Y |
|X |+ |Y |

(25)
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Since this formula is not differentiable, it can not be directly used as loss function
for training deep learning models, so a soft version of this Dice-coefficient function
is used instead. The Soft-Dice-Loss function is therefore defined as:

SoftDice(p,g) = 1− 2pg+ ε

p2 +g2 + ε
= 1−

2∑
N
i=1 pigi + ε

∑
N
i=1 p2

i +∑
N
i=1 g2

i + ε
(26)

Where:

• N is the total number of pixels in the images.

• p the prediction vector, where pi is the predicted probability of pixel i belong-
ing to the class in question.

• g the ground truth vector, with gi being the ground truth label 0 or 1 for pixel i.

• ε is a small constant to avoid division by zero.

For multi-class segmentation, as used in this work, the Soft-Dice-Loss will be com-
puted for each class separately and will be then averaged, a code example is given in
Appendix 9.1.

The Soft-Dice-Loss, especially in it’s application to medical imaging, is often asso-
ciated with the V-Net architecture proposed by Milletari et al in [85]. In this paper,
the authors introduce the V-Net architecture and employ a differentiable loss function
based on the Dice-coefficient, which is effectively the described Soft-Dice-Loss. The
use of this loss allowed the network to produce probabilistic segmentations, which
could then be thresholded to achieve binary segmentation results.

4.5 Morphological Filtering
Morphological filtering is an essential component of image processing, derived from
the principles of mathematical morphology to process digital images based on their
shape and structure. It can be used in various tasks, from noise reduction and im-
age enhancement to feature extraction. The book ”Morphological Image Analysis:
Principles and Applications” by Soille and Serra [106] as well as the work ”Image
analysis using mathematical morphology” by Haralick, Sternberg & Zhuang [46],
provide useful insights.

Traditionally and also in this work, these operations are applied to binary images,
which only have two pixel values, typically indicating an ’object’ and ’background’.
In the scope of this work, they will be applied to segmentations masks, however, they
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are generally also applicable to grayscale images. The operations use a so called
structuring element or kernel, which is essentially a small binary or grayscale image,
often in the form of a matrix, that determines the neighborhood to be considered dur-
ing the operation. Common structuring elements include shapes like squares, circles,
and lines. In application to 3D data, the structuring elements are given as 3D arrays,
as shown in Figure 9.

Figure 9: The figure shows typical binary 3D structures, which can be used for morphological opera-
tions. Left: rank 3, connectivity 1. Center: rank 3, connectivity 2. Right: rank 3, connectivity 3. The
image source is SciPy v1.11.4 Manual [29].

The basic morphological operations are erosion and dilation. Erosion works by
shrinking the image objects. For a binary image, if every pixel under the structuring
element is 1, the output pixel value is set to 1, otherwise it becomes 0. Dilation, on
the other hand, expands image objects. Here, the output pixel turns to 1 if any pixel
under the structuring element is 1. Further morphological operations are opening and
closing. Opening is an erosion followed by a dilation, which is particularly effective
in removing noise. Closing, on the other hand is a dilation followed by an erosion
and can therefore close small holes in objects.

Taking these principles into the context of grayscale images, grayscale morphology
becomes an intuitive extension of binary morphology. For grayscale images, dilation
and erosion consider the maximum and minimum pixel values under the structuring
element, respectively [101, 40].

The applications of morphological operations are broad, for example in the field of
noise reduction, where they can efficiently minimize or eliminate noise without blur-
ring distinct edges in the image. Feature extraction is another significant application
area, where morphological operations can emphasize or extract particular shapes or
structures. They also find great use in image segmentation tasks as done in the pre-
sented application, where they will be used to separate previously merged brain tu-
mor areas and therefore reconstruct training data.
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Dilation

Dilation is one of the basic morphological operations, and its mathematical foun-
dation will be given in the following. Consider a given image A and a structuring
element B. In the context of binary images, dilation can be defined using set opera-
tions. The dilation of image A by the structuring element B is denoted as A⊕B and
is defined as:

A⊕B =
⋃
b∈B

Ab =
⋃
a∈A

Ba (27)

where Ab is the translation of A by b and Ba vice versa. The dilation operation is
commutative and the structuring element B is thereby moved over the image A with
the dilation A⊕B being the union of all translated elements Ba.

In the case of grayscale images, the dilation at a pixel (x,y) is given by:

(A⊕B)(x,y) = max
(s,t)∈B

{A(x− s,y− t)+B(s, t)} (28)

This means essentially sliding the structuring element B over the image A and, for
each position, computing the local maximum value of the image A where the struc-
turing element B overlaps.

To understand this operation visually the structuring element can be imagined as a
small neighborhood or a shape. When binary image is dilated, the structuring ele-
ment probes the image at each position. If the structuring element overlaps anywhere
in the object in the image, it sets the corresponding central pixel in the output im-
age to 1 (or the maximum pixel value in the case of grayscale images). This results
in expanding or growing the white regions in a binary image or bright regions in a
grayscale image.

Erosion

Given an image A and a structuring element B, the erosion of A by B is typically
denoted as A⊖B. In the context of binary images, erosion can be understood through
set operations and the erosion of A by B is defined as:

A⊖B = {z ∈ E |Bz ⊆ A} (29)
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where E is the domain containing A and Bz is the translation of B by z. In the appli-
cation of grayscale images, the erosion at a pixel (x,y) is given as

(A⊖B)(x,y) = min
(s,t)∈B

{A(x+ s,y+ t)−B(s, t)} (30)

where the structuring element B is moved across the image A and for each position
and the local minimum value of A under B is calculated.

To visualize erosion, the structuring element can be considered as a small neigh-
borhood or shape. When eroding a binary image using this element, the structuring
element attempts to ”fit” within the image’s objects. If the structuring element fits
completely inside an object in the image, the corresponding central pixel in the out-
put image is set to 1, otherwise to 0. For grayscale images, the idea is similar, but
instead of a binary outcome, the local minimum value where the structuring element
fits is computed. Consequently, erosion typically shrinks the masks in binary images
or reduces bright areas in grayscale images.

Opening

The morphological operation of opening is a sequence of two operations, erosion
followed by dilation. It is mainly used to remove noise, especially small objects or
details from an image, while largely preserving the shape and size of other objects.

Given an image A and a structuring element B, the opening of A by B is denoted as
A◦B and is defined as the composition:

A◦B = (A⊖B)⊕B (31)

• Erosion A⊖B: First, the image A is eroded by B. This will generally shrink the
white or bright regions in the image, removing small objects or details smaller
than the structuring element.

• Dilation (A⊖B)⊕B: Then, the eroded image is dilated using the same struc-
turing element B. This process restores the size of the objects that were not
entirely removed by erosion, ensuring that larger objects return to a size close
to their original.

The outcome of this combined operation is that small objects, noise, or details, es-
pecially those that are smaller than the structuring element, get eliminated. At the
same time, larger objects, which survive the erosion, get restored to their approximate
original size after the dilation. The operation can be applied in multiple iterations to
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Figure 10: Examples of morphological operations. Dilation: The white border region is extended
by the dilation operation, the small center spots are enlarged. Erosion: The white border region is
shrinked by the erosion operation, the size of the center spots is reduced, some are deleted. Opening:
Consecutive application of erosion and dilation. Closing: Consecutive application of dilation and
erosion, note the small gap in the white border region, which is getting filled by the closing operation.
The image source is Scikit-Image documentation [114].
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increase the effect. Figure 10 illustrates a schematic example of this operation.

Closing

Closing is another fundamental morphological operation, essentially the reverse of
opening. It involves performing dilation followed by erosion. Closing is useful for
tasks like closing small holes within objects or bridging gaps between objects.

Given an image A and a structuring element B, the closing of A by B is denoted as
A•B. It is defined as:

A•B = (A⊕B)⊖B (32)

with the two operations being performed in composition:

• Dilation A⊕B: First, the image A is dilated by B. This operation generally
expands the white or bright regions in the image, filling small gaps or holes
and connecting nearby objects.

• Erosion (A⊕B)⊖B: Subsequently, the dilated image undergoes erosion using
the same structuring element B. This step shrinks the white or bright regions
back down. In the process, any structures or details that became connected or
filled during dilation and are larger than the structuring element remain, while
smaller extraneous details introduced by the dilation are removed.

The effect of closing is to bridge narrow breaks and fill small holes and gaps without
causing significant changes to the larger structures in the image. An example of 3D
closing is shown in Figure 11. Closing is often employed in image post-processing to
heal artifacts in binary segmentations, close up holes in detected objects, or to bridge
gaps in lines or object boundaries.

Figure 11: Example of binary 3D dilation followed by erosion. Left: Original. Center: Binary dilation
of original using a 3D ball structure with radius 3. Right: Binary erosion of the previous using a 3D
ball structure with radius 2. For having a simple and demonstrative example, different structuring
elements are used here for dilation and erosion. The image source is SciPy v1.11.4 Manual [29].
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5 MICCAI BraTS Challenge

5.1 Datasets and Labels

The BraTS (Brain Tumor Segmentation) datasets are collections of MRI brain scans
used for the evaluation of brain tumor segmentation algorithms. They are made avail-
able for the Multimodal Brain Tumor Segmentation (BraTS) challenge, which is or-
ganized annually by the International MICCAI Society [23].

The BraTS datasets contain large number of MRI scans of patients with brain tumors,
containing the four different MRI modalities: T1-weighted, T2-weighted, contrast-
enhanced T1-weighted (T1ce) and Fluid Attenuated Inversion Recovery (Flair). Each
scan also includes a manually-annotated ground truth segmentation of different tu-
mor regions, which is used to evaluate the performance of segmentation algorithms.

The BraTS datasets have become an important benchmark for the evaluation of brain
tumor segmentation algorithms, as they provide a large and diverse set of data that
can be used to test the performance of different models and algorithms. They have
played a significant role in the development of new prediction algorithms in this field
and to help improving existing ones. The data made available by the BraTS dataset
is a very valuable resource for the research work on brain tumor segmentation. The
large and diverse set of data can be used to evaluate the performance of different al-
gorithms and plays a significant role in the development of new methods. The BraTS
challenge provides an important platform for pushing the development of new and
more accurate brain tumor segmentation algorithms. A main challenge in the BraTS
dataset is the high variability in the appearance of brain tumors. Tumors can vary
in size, shape, and intensity, making it difficult for models to accurately segment
them. Additionally, the presence of healthy tissue, necrosis, and edema within the
tumor region can also add to the complexity of the segmentation task. To address
these challenges a variety of segmentation algorithms have been developed and have
demonstrated promising results on the BraTS dataset. In the coming paragraphs,
some of the most successful models from the competitions of the last years will be
discussed.

In addition to the standard BraTS MRI data, the challenge also includes a track for
the segmentation of low-grade gliomas which is a subtype of brain tumors that are
usually less aggressive and have a better prognosis and a track which includes sur-
vival data for a smaller group of patients [53, 2, 1]. Both of these will not be used in
the presented work.

The BraTS datasets changed and evolved over the years in terms of volume, mean-
ing that there were more records added over the years or in some years the whole
previous dataset was left behind and a new one was started with new segmentation
criteria. In the different years, the definition and number of brain tumor regions was
thus subjected to variation. Hence, in this chapter, the datasets of different years,
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namely BraTS 2015, BraTS 2018, BraTS 2021 and BraTS 2022 will be presented.

5.1.1 BraTS 2015

The BraTS 2015 [83] dataset consists of 220 high grade glioma (HGG) and 54 low
grade glioma (LGG) MRIs. The data is co-registered, skull-stripped, annotated and
it extends the data from the preceding years. All data was annotated manually by
experts and went through a review and approval process. The segmentation labels
given in the BraTS 2015 dataset are shown in Table 3.

Label Data Name Description
0 BG Background
1 NCR Necrosis
2 ED Edema
3 NET Non-Enhancing Tumor
4 ET Enhancing Tumor

Table 3: BraTS 2015 dataset labels.

For evaluation, the BraTS challenges do not use the labels given in the training data,
instead hierarchical combinations of the labels given in the dataset are used [83, 8, 6].
This leads to composed evaluation segments AT, TC and WT as given in Table 4.

Evaluation segment Description
AT Active tumor
TC Tumor core
WT Whole tumor

Table 4: BraTS evaluation segments.

The listed evaluation segments are the same in all discussed BraTS challenges (2015,
2018, 2021, 2022). But the provided data labels as well as the relation between data
labels and evaluation segments varies between the BraTS datasets of the different
years. In the 2015 dataset, the data labels NCR, ED, NET, ET and the evaluation
segments ET, TC, WT are linked as described in Table 5.

Figure 12 shows an example as provided by the BraTS 2015 announcement paper
[83]. In the image on the right side the data labels are shown as colored regions
where the necrotic core NCR is colored green, the enhancing tumor ET is blue, the
non-enhancing tumor NET is red and the edema ED is yellow. The three image pairs
on the left side are showing the evaluation segments, the bottom images show the
plain MRI slices, the top images showing the segmentation masks. From left to right
there is the whole tumor region WT (shown all yellow), the tumor core TC (shown
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Evaluation Segment BraTS 2015 Data Brats 2015 Labels Description
AT NCR + ET 1, 4 Active tumor
TC NCR + ET + NET 1, 4, 3 Tumor core
WT NCR + ET + NET + ED 1, 4, 3, 2 Whole tumor

Table 5: BraTS 2015 evaluation segments as combinations of data labels.

red) and the active tumor (shown green and blue).

Figure 12: From BraTS 2015 [83]. Left: Three image pairs showing the evaluation segments, whole
tumor WT (yellow), tumor core TC (red), active tumor (green and blue). Right: Colors showing
data labels, necrotic core NCR (green), enhancing tumor ET (blue), non-enhancing tumor NET (red),
Edema ED (yellow)

It should be noted, that compared to the datasets of BraTS 2018 and 2021 this is the
only one, which provides a dedicated label for the Non-Enhancing NET region. But
despite having the label, it does not provide very consistent NET data with respect to
the definition in the latest literature as discussed in section 2. For this reason, as well
as for the minor data quantity and partially very low MRI records quality, the BraTS
2015 data was not used as a reliable source for the identification of non-enhancing
tumor parts in this work.

5.1.2 BraTS 2018

The BraTS 2018 dataset [8] provides a set of 285 multimodal MRI records of human
brains, each containing scans of a brain with tumor (glioblastoma/high-grade-glioma
GBM/HGG or lower grade glioma LGG) in four modalities T1, T1ce, T2 and Flair
similar to the Brats2015 dataset. The segmentation masks were also created and
proved by human experts, similar to the one of BraTS 2015. The data provided in
BraTS 2018 does not extend the BraTS 2015 data, but instead is a completely new
dataset and therefore closing the previous track of BraTS 2015. The records have a
spatial resolution of 1x1x1mm and the dataset also contains overall survival data for
each of the records, which will be not considered by this work.

It also contains segmentation masks for different tumor regions which are compara-
ble to those of Brats2015, but with a notable difference. The non-enhancing regions

58



5.1 Datasets and Labels

are now incorporated into the necrosis parts. The list of data labels present in the
BraTS 2018 dataset is shown in Table 6.

Label Data Name Description
0 BG Background
1 NCR + NET Necrosis + Non-Enhancing Tumor
2 ED Edema
3 - not used
4 ET Enhancing Tumor

Table 6: BraTS 2018 dataset labels.

The announcement paper and documentations for Brats2018 [8] do not state any rea-
son for this change, also any obvious medical or technical reason is missing. Figure
13 shows sample images of the BraTS 2018 dataset. The combined NCR + NET
(label 1) region is shown in red. It can be observed, that this red region captures the
inner necrotic area as well as the non-enhancing parts lying around the enhancing
tumor core. Typically the non-enhancing NET region is found as a border region be-
tween the green edema part and the yellow enhancing part, while the necrotic NCR
area is a scattered or uniform area within the yellow enhancing region. Nevertheless,
in BraTS 2018 the two distinct regions NCR and NET are combined to a single seg-
mentation label.

The final regions which are used for evaluation are similar but not all the same as
in BraTS 2015, since they are combined using the pre-merged (NCR + NET) sub-
region. The combinations of evaluation segments from data labels is shown in Table
7.

Evaluation Seg. BraTS 2018 Data BraTS 2018 Labels Description
AT ET 4 Active tumor
TC ET + (NCR + NET) 4, 1 Tumor core
WT ET + (NCR + NET) + ED 4, 1, 2 Whole tumor

Table 7: BraTS 2018 evaluation segments as combinations of data labels.

It should already be sent ahead here, that in BraTS 2021 there will even be another
variant of combining the non-enhancing tumor part.

5.1.3 BraTS 2021 and 2022

The BraTS 2021 challenge [6] provides a total of 2040 records where 1251 of them
come as training data records together with labels. After BraTS 2015 and BraTS

59



5 MICCAI BraTS Challenge

Figure 13: Brats 2018 sample images. Red: NCR + NET (label 1). Green: ED (label 2). Yellow: ET
(label 4)

Label Data Name Description
0 BG Background
1 NCR Necrosis
2 ED + NET Edema + Non-Enhancing Tumor
3 - not used
4 ET Enhancing Tumor

Table 8: BraTS 2021 dataset labels.
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2018 the 2021 dataset comes with a third variation of data labels as listed in Table 8.

The evaluation regions are varied again compared to the 2015 and 2018 datasets.
Now the name active tumor AT is dropped and only enhancing tumor ET is used
as name for the smallest of the hierarchical parts, having the same name now as for
the corresponding data label (image A in Figure 14). The tumor core TC region is
now a combination of the center necrosis part and the surrounding enhancing tumor
region (image B in Figure 14), but without the non-enhancing part, as it was in both
previous datasets. Instead the non-enhancing parts are now combined to edema and
are therefore only counted towards the total whole tumor WT domain (image C in
Figure 14). A list showing the compositions of the evaluation segments is given in
Table 9.

Evaluation Segment BraTS 2021 Data BraTS 2021 Labels Description
ET ET 4 Enhancing tumor
TC ET + NCR 4, 1 Tumor core
WT ET + NCR + (ED + NET) 4, 1, 2 Whole tumor

Table 9: BraTS 2021 evaluation segments as combinations of data labels.

Figure 14: From Brats 2021 paper [6]. Left side showing the evaluation regions ET, TC and WT.
Right side showing the data labels NCR, ET and ED+NET.

Figure 15 shows some sample slices from the BraTS 2021 dataset with the three
given labels. Compared to Figure 13 from BraTS 2018 the non-enhancing regions
are not distinctly observable. They are usually found in the border region between
edema (green in Figures 13 and 15) and enhancing tumor (yellow in both figures).
Since BraTS 2021 counts the non-enhancing regions towards edema, the small non-
enhancing parts visually disappear within the large outer Edema region.

The training and validation data of the BraTS 2022 dataset are the same as in BraTS
2021. Only the testing dataset has been updated with more MRI scans, according to
announcement [12].
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Figure 15: Brats 2021 sample images. Red: NCR (label 1). Green: ED + NET (label 2). Yellow: ET
(label 4)
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5.2 BraTS Winning Models

This section will present the winning deep learning models of the MICCAI BraTS
brain tumor segmentation challenge of the years 2018, 2019, 2020 and 2021.

5.2.1 Residual U-Net with Autoencoder Regularization (SegResNetVAE)

The SegResNetVAE network was introduced by Andriy Myronenko [87] and won
1st place in the BraTS 2018 brain segmentation challenge. It combines three differ-
ent concepts in deep learning: Segmentation, ResNet, and Variational Autoencoders
(VAEs). The segmentation part was already introduced extensively in the previous
chapters and is implemented in form of a basic U-Net architecture in [87].

The ResNet (short for Residual Network) concept, which is also used in the SegRes-
NetVAE model, is a type of convolutional neural network architecture introduced
by Kaiming He et al. in 2015 in a paper titled ”Deep Residual Learning for Image
Recognition” [49]. ResNet is characterized by its use of residual connections or skip
connections, which allow the network to learn residual functions or shortcuts be-
tween layers. This design helps to mitigate the vanishing gradient problem, allowing
for the training of much deeper networks than was previously possible. In general
ResNets have been widely adopted in various computer vision tasks, including image
classification, object detection, and also image segmentation. In this special appli-
cation context, Myronenko uses residual connections within the horizontal filtering
parts of his U-Net design to support backpropagation and avoid vanishing gradients.
Skip connections like these will also be used in the model presented later in this work.

The third major concept of SegResNetVAE are Variational Autoencoders (VAEs),
which are a type of generative model introduced by Kingma and Welling in 2013 in
the paper ”Auto-Encoding Variational Bayes” [61]. VAEs combine concepts from
deep learning and Bayesian inference to learn a latent representation of the input
data in an unsupervised manner. VAEs consist of an encoder that maps input data
to a latent space and a decoder that reconstructs the input data from the latent space.
A key aspect of VAEs is the incorporation of a variational inference technique that
allows the model to learn a probabilistic distribution over the latent space, enabling
it to generate new samples similar to the input data.

In the SegResNetVAE model of A. Myronenko, VAE is implemented in a parallel
decoding branch and, in the original version, is used as a regularization method, see
Figure 16. In later SegResNet architectures which were presented in 2019 and 2021
[88, 105, 37], no VAE regularization was used anymore. The validation results of the
different iterations of this model on the BraTS 2018, BraTS 2019 and BraTS 2021
data is shown in Table 10.
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Figure 16: SegResNetVAE Network for brain tumor segmentation as used by A. Myronenko in [87]

SegResNetVAE SegResNetVAE SegResNet SegResNet
2018 [87] 2018 [87] 2019 [88] 2021 [105]

(Single model) (Ensemble of 10 models) (Single model) (Single model)
ET 0.8145 0.8233 0.800 0.8600
TC 0.8596 0.8668 0.834 0.8868
WT 0.9042 0.9100 0.894 0.9265
Mean 0.8594 0.8667 0.843 0.8911

Table 10: Validation results for SegResNetVAE 2018, SegResNet 2019 and SegResNet 2021 given by
A. Myronenko et al. [87, 88, 105]. The table shows the Sørensen–Dice-coefficients for the enhancing
tumor (ET), tumor core (TC) and whole tumor (WT) regions as well as their mean, evaluated on the
corresponding validation sets.
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5.2.2 Two-Stage Cascaded U-Net (TSC U-Net)

The Two-Stage Cascaded U-Net, developed by Zeyu Jiang et al. [59], is a state-of-
the-art model developed mainly for brain tumor segmentation. The main publication
detailing the Two-Stage Cascaded U-Net is titled ”Two-Stage Cascaded U-Net: 1st
Place Solution to BraTS Challenge 2019 Segmentation Task” and was published on-
line on Springer in May 2020. The authors presented their model in the context of the
BraTS Challenge 2019 segmentation challenge [7], showcasing how the novel two-
stage cascaded U-Net could effectively segment the substructures of brain tumors
from coarse to fine. Their Two-Stage Cascaded U-Net model (TSC U-Net) scored 1st
place in the BraTS 2019 challenge.

The overall design of the used model is a two-step structure for accurately outlin-
ing the different regions of the brain tumor. The first stage of the model starts on a
broader segmentation task, finding a coarse outline of the tumor regions. This pre-
liminary segmentation serves as a basis for the second stage, which incorporates a
more refined segmentation task, building out finer details of the tumor substructures
with an enhanced level of precision. The particular design of the second stage, con-
structed with a higher number of channels and dual decoders, amplifies the model’s
performance and enables a precise delineation of the tumor regions.

The two-stage design is essential for boosting the performance of the segmentation
task. By initially focusing on broader segmentation and subsequently refining the de-
tails, the model can potentially achieve high accuracy and robustness in segmenting
brain tumor substructures.

The architecture is shown in Figure 17 and operates in two distinct stages to improve
the segmentation accuracy progressively. In general it is based on the architecture
of the U-Net but incorporates two U-Net like stages which follow each other. The
first stage aims to provide a coarse segmentation of the tumor regions and follows
a standard U-Net architecture for an initial coarse segmentation of the tumor sub-
structures. This stage is crucial as it sets the groundwork for the finer segmentation
carried out in the next stage. Building upon the coarse segmentation from the first
stage, the second stage focuses on refining the segmentation to delineate finer details
of the tumor substructures.

The second stage of the model is designed with a higher number of channels, which
allows the model to capture more complex features of the tumor substructures. Ad-
ditionally, the use of two decoders in this stage is a significant design choice. Dual
decoders may aid in handling the hierarchical nature of the segmentation task more
effectively and allow the model to learn and represent different levels of details in the
segmentation. The second stage has a higher number of channels, which supports for
capturing more complex features. The utilization of two decoders is a novel addition
which likely helps in handling the hierarchical nature of the segmentation task, al-
lowing for more refined segmentation of different substructures. The key innovation
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Figure 17: TSC U-Net architecture from original paper [59], showing the two cascaded U-Nets, the
second stage using a dual decoder.

is the cascading of the two U-Nets. The coarse segmentation from the first stage is
used as an input to the second stage, enabling a more refined segmentation. This
cascading approach allows for a more hierarchical understanding and delineation of
the tumor substructures.

The entire network was trained end-to-end, meaning that the gradients are back-
propagated through both stages of the network during training, optimizing the model
to better learn the hierarchical representation of the data for improved segmentation
accuracy. This also ensures that the learning process is optimized across both stages
of the model, enabling the network to learn a hierarchical representation of the data
for improved segmentation accuracy.

The BraTS 2019 validation results of Z. Jiang et al.’s TSC U-Net model from their
original paper are listed in Table 11 for reference.

5.2.3 No New U-Net (nnU-Net)

The nnU-Net architecture, which stands for ”no-new-Net”, was developed by a re-
search group led by Fabian Isensee and Klaus H. Maier-Hein [57, 58]. The model has
gained significant attention for its excellent performance in various medical imaging
challenges and was not exclusively intended for the use on brain tumor segmentation.
The core idea behind nnU-Net is to provide a flexible and efficient pipeline that can
be easily adapted to different medical imaging segmentation tasks without the need
to develop new architectures. The framework is built upon the U-Net architecture
and claims to use the original U-Net in a very plain way.

66



5.2 BraTS Winning Models

TSC U-Net TSC U-Net TSC U-Net
2019 2019 2019

(Ensemble of 5-fold) (Best single model out of 12) (Ensemble of 12 models)
ET 0.7967 0.8020 0.8021
TC 0.8589 0.8632 0.8647
WT 0.9080 0.9082 0.9094
Mean 0.8545 0.8578 0.8587

Table 11: Validation results of Z. Jiang et al.’s Two-Stage Cascaded U-Net (TSC U-Net) for BraTS
2019 [59]. The table shows the Sørensen–Dice-coefficients for the enhancing tumor (ET), tumor core
(TC) and whole tumor (WT) regions as well as their mean, evaluated on the corresponding validation
sets.

Although named ”No New U-Net” (nnU-Net) to indicate it doesn’t introduce new
architectural variations, the network optimizes the existing U-Net structure to ex-
tract its full potential and is also embedded in a framework which allows the auto-
matic adaption of the nnU-Net to different medical segmentation tasks. Therefore
it can automatically configure various aspects like preprocessing, network architec-
ture, training, and post-processing. Being such adaptable, it demonstrated superior
performance across 23 public datasets used in international biomedical segmentation
competitions without any manual adjustments, thus making state-of-the-art segmen-
tation accessible to a broader audience without necessity of expert knowledge or
additional computing resources beyond standard network training [58, 98].

The essence of nnU-Net lies in its ability to self-adapt to new tasks, eliminating the
need for manual intervention in configuring the network, thus accelerating the de-
ployment of deep learning solutions in biomedical imaging. By applying nnU-Net
to the BraTS 2020 segmentation challenge, even the unmodified baseline configu-
ration of the architecture yielded notable results. With the incorporation of BraTS-
specific modifications regarding post-processing, region-based training, and a more
aggressive data augmentation strategy the segmentation performance could even be
improved. This resulted in winning the first place in the BraTS 2020 challenge, the
corresponding validation results from the paper are given in Table 12.

The winning model of the following BraTS 2021 challenge, was an extension of the
previous nnU-Net by Huan Minh Luu and Sung-Hong Park. In their paper titled
”Extending nn-UNet for Brain Tumor Segmentation” [78] they use the nn-UNet, as
the basis for their methods. They explored several modifications to nn-UNet to im-
prove its performance, including enlarging the network (by using a higher number of
filters in the encoding path, as done in Myronenko’s work previously [87]), substitut-
ing batch normalization with group normalization, and incorporating axial attention
in the decoder. Using 5-fold cross-validation they demonstrated the effectiveness of
their approach, achieving a slight improvement in quantitative metrics compared to
the baseline model, see Table 13. Their proposed models achieved first place in the
final ranking on unseen test data in the BraTS challenge of 2021.
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nnU-Net nnU-Net nnU-Net
2020 2020 2020
(BL) (BL, R+DA) (BL, R+DA, BN+BD)

ET 0.7664 0.7867 0.7945
TC 0.8370 0.8461 0.8524
WT 0.9093 0.9090 0.9119
Mean 0.8376 0.8473 0.8529

Table 12: Validation results of F. Isensee et al.’s No-New U-Net (nnU-Net) for BraTS 2020 [57].
BL: baseline nn-U-Net without modification, R+DA: region-based training and more aggressive data
augmentation, BN+BD: batch normalization and batch dice. The table shows the Sørensen–Dice-
coefficients for the enhancing tumor (ET), tumor core (TC) and whole tumor (WT) regions as well as
their mean, evaluated on the corresponding validation sets.

nnU-Net nnU-Net nnU-Net nnU-Net
2021 2021 2021 2021
(BL) (BL, GN) (BL, AA) (BL, L+GN)

ET 0.8837 0.8817 0.8723 0.8823
TC 0.9206 0.9211 0.9188 0.9235
WT 0.9378 0.9366 0.9321 0.9383
Mean 0.9140 0.9130 0.9077 0.9147

Table 13: Validation results of H. M. Luu et al.’s Extended nnU-Net for BraTS 2021 on 5-fold cross
validation [78]. BL: baseline nnU-Net with batch normalization, GN: using group normalization,
AA: using axial attention, L+GN: using larger U-Net and group normalization. The table shows the
Sørensen–Dice-coefficients for the enhancing tumor (ET), tumor core (TC) and whole tumor (WT)
regions as well as their mean, evaluated on the corresponding validation sets.

The axial attention extension which was used in their approach is based on a vari-
ant of self-attention mechanism designed to work efficiently with multi-dimensional
data by aligning with the multiple dimensions of the tensors in both the encoding
and decoding settings. It was initially introduced as criss-cross attention in 2018 by
Z. Huang in a model named CCNet in the paper ”CCNet: Criss-Cross Attention for
Semantic Segmentation” [54]. The criss-cross attention gathers the contextual infor-
mation of all the pixels along a criss-cross path. By employing a further recurrent
operation, each pixel can therefore potentially capture the full-image dependencies.
In the context of neural networks, particularly those used for segmentation tasks,
axial attention can be adopted to ensure both global connection and efficient com-
putation. For example, in the work ”Axial-DeepLab: Stand-Alone Axial-Attention
for Panoptic Segmentation” [118] axial attention was applied in a stand-alone self-
attention setting. In this setup, an axial-attention layer is defined on the width-axis
of an image as a one-dimensional position-sensitive self-attention, and a similar def-
inition is used for the height axis. This is similar to how axial attention is used in the
decoder of H. M. Luu’s and S. H. Park’s extended nnU-Net shown in Figure 18.
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Figure 18: Axial attention applied to each axis in upsampling step as proposed by Luu et al. in [78].
The output is added back to the original input, which is then concatenated with the features from the
U-Net’s encoder path.

Furthermore, attention mechanisms enable the decoder to leverage the most relevant
parts of the input sequence in a flexible manner through a weighted combination
of all the encoded input vectors, with the most relevant vectors being attributed the
highest weights [52]. This mechanism enhances the capability of neural networks
in segmentation tasks by capturing long-range dependencies in the input data which
is crucial for tasks like brain tumor segmentation, as mentioned in the paper by Luu
and Park [78].
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6 Segmentation of Non-Enhancing Regions

The main focus of this section is to provide an adapted segmentation model for the
identification of the different tumor regions and especially focusing on the specific
and often small-scale non-enhancing tumor areas. This model will be based on the
previously presented BraTS winning models nnU-Net, TSC U-Net and mainly Seg-
ResNetVAE together with a newly introduced resolution enhancing extension on the
decoder side. The basic model architecture will be defined and fixed in Section 6.1,
but will include general filter blocks, which can be varied are evaluated against each
other in Sections 6.1.2 and 6.1.3. Section 6.2 will introduce the upscaling decoder
extension which will allow higher resolution outputs for the segmentation masks.
Subsequently, Section 6.3 will define how the non-enhancing tumor area can be ex-
tracted from the BraTS 2018 data and will unify the two large BraTS datasets from
2018 and 2021. Also, it will provide all formal aspects to set up further training and
evaluation runs, whereas Section 7 will evaluate the according results.

6.1 Basic Segmentation Model

6.1.1 3D U-Net with General Filter Blocks

Following the idea of nnU-Net, the overall construction of the used model will be
very plain and near to the original U-Net as shown in Figure 19. The principal ar-
chitecture is an encoding path followed by a decoding path, each going through four
levels of spatial resolution and each of the three spatially related top levels having a
skip connection from encoder to decoder side. The structure within the single layers
is repeated with each level having a different number of filters and spatial size. The
following paragraph will go from input to output and will give a detailed description
of the single parts of the underlying architecture.

As a pre-processing step, the multi-channel input records will be center-cropped to
size 80×160×128×4 (axial, coronal, sagittal, channel). Working with the original
full record size of 155×240×240×4 will not be possible due to GPU memory lim-
itations. Cropping the records to the given size will have nearly no effect regarding
image data loss, since a wide outer area of the records is empty. The dataset labels
NCR, ET and ED will be pre-processed to the evaluation segments ET, TC and WT
as described in Section 5 and will be cropped to the same size, a code example is
given in Appendix 9.2.

The input layer is followed by an initial 3D-convolutional layer with 32 filters of
kernel size 3× 3× 3 and a spatial dropout layer with dropout rate of 20%. In Ron-
neberger’s original work [97] he states, that the dropout layer in his architecture
is placed at the end of the contracting path but today the placing of a regularizing
dropout layer right after the initial convolution is more common in many deep learn-
ing and image processing architectures [21].
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The result of the concatenated filter block will be spatially downsampled to half size
using 3× 3× 3 convolutions with stride 2. In the original U-Net design the down-
sampling was done using 2×2 max-pooling, but stride 2 convolutions are capable of
carrying parameters for the downsampling operation, whereas max-pooling is a fixed
operation. By learning the downsampling operation, stride 2 convolutions can poten-
tially learn more complex and task-specific downsampling patterns, which may lead
to better performance. Also in some cases, stride 2 convolutions can be more compu-
tationally efficient than max-pooling combined with spatially invariant convolutions,
since it combines both convolution and downsampling into a single operation. This
can result in fewer overall operations to perform during both, the forward and back-
ward passes [4]. In the continuing encoder path downsampling together with two
filter block structures per resolution layer will be repeatedly applied until reaching a
spatial resolution of 10×20×16 with a feature depth of 256.

In the following decoding path, the upsampling is performed by applying transposed
3D convolutions of stride 2. After each of the upsampling steps, the result is summed
with the skip connection path connecting from the encoding side. After reaching
back to the original spatial shape another two residual filter blocks are applied, fol-
lowed by a 1× 1× 1 convolution. The final convolution uses three filters, yielding
three output masks with sigmoid activation, which will be used as the three prediction
probability masks for enhancing tumor, tumor core and whole tumor (ET,TC,WT ).
This completes a typical U-Net architecture with input shapes, channels and outputs
being adapted for the application on the BraTS data introduced in Section 5.

Figure 19: U-Net architecture with four spatial layers and with general residual filter blocks (gray).
The skip connections are combined additively into the upsampling path.
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6.1.2 Filter Block Structures

After giving the outer model architecture in the previous section, this part will in-
troduce different possible implementations for the filter blocks in use. Historically,
there are basically three main iterations of filter blocks which have been used. In the
original U-Net paper [97], Ronneberger et al. used plain convolutions with ReLU
activation as shown in the top row of Figure 20. Using these plain U-Net filter blocks
gives a very original U-Net architecture as a reference.

The second model will use ResNet like filter blocks, similar to those introduced in
the original ResNet paper [49]. The structure is the characteristic combination of
two subsequent convolutions with an intermediate ReLU activation and an additive
residual connection bypassing the operations. The schematic representation of this
is shown in the second place of Figure 20.

In the third and fourth model, normalization blocks will be added. The common way
to do this is to add normalization and activation as successor layers of the convolu-
tional layer. The skip connection may end before or after the final activation. In this
work the version with activation after the skip will be used. This is shown in the third
row of Figure 20. Usually, batch normalization is a typical choice here, but since the
model has high memory demand it will have to be trained with very low batch size
(even batch size 1 in the training runs below) and thus limits the use of batch nor-
malization. Instead, group normalization will be used, which is independent of batch
size. A variation of this filter block is shown in the bottom row of Figure 20. The
normalization and activation layers are placed before the convolution layers instead
of following after them, therefore it is called pre-activation filtering. This structure
is less common than the previous one, it is used by the BraTS winning model of
Myronenko et al. [87] and will be added to the comparison. Appendix 9.3 shows the
structure of the described filter blocks in Tensorflow code.

In the pre-activation structure, the activation functions (like ReLU) are applied be-
fore the convolution layers. This arrangement is used to improve the flow of gradients
during backpropagation, making it easier to train deeper networks. This is because
it reduces the vanishing gradient problem, a common issue in deep networks. More-
over, by applying normalization before the convolution, pre-activation blocks can
reduce internal covariate shift, which is a change in the distribution of network acti-
vations due to the parameters update during training. This leads to faster training and
requires less careful initialization. In their papers ”Deep Residual Learning for Image
Recognition” and ”Identity Mappings in Deep Residual Networks”, He at al. intro-
duced and developed the concept of using pre-activation in ResNet blocks [50, 49].
They demonstrated improved performance and easier training of very deep networks
using this approach.

This results in four different models, which will be trained and evaluated on the
BraTS data for comparing their performance. The best performing model will be
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used for the further extraction process of the non-enhancing segment.

Figure 20: Different types of residual filter blocks, each type can be used in the above U-Net archi-
tecture

6.1.3 Training and Evaluation on BraTS 2018/21 Data

Each of the previously shown filter blocks results in a network with a different com-
plexity, gradient behaviour and a varying number of parameters. To get a quantified
insight into the prediction capabilities of the models, the four presented filter block
types shown in Figure 20 will be used in the previously given basic U-Net model
(Figure 19) and will be compared against each other by training and evaluating the
derived models on the BraTS 2018 as well as on the BraTS 2021 data. The following
Table 14 summarizes the presented filter blocks together with the resulting number
of parameters of each model integrating them.

Model name Filter blocks Parameters Input dim.
Plain-UNet Original U-Net filter blocks 7.04M (4, 80, 160, 128)
ResNet-UNet ResNet filter blocks 12.88M (4, 80, 160, 128)
ResNetN-UNet ResNet filter blocks with norm. 12.88M (4, 80, 160, 128)
PreAct-UNet Pre-activation filter blocks 12.88M (4, 80, 160, 128)

Table 14: U-Net variations for different filter block structures together with number of parameters.

The training of each of the models was run for 20 epochs on the BraTS 2018 and
for 15 epochs on the BraTS 2021 data with a training/validation split of 90:10. The
total number of records is 285 for the BraTS 2018 dataset and 1251 for BraTS 2021.
The training results are shown in Table 15, Table 16 and Figure 21. A training speed
comparison is presented in Table 17.

In the BraTS 2018 training data diagram of Figure 21, a rather clear ranking is
observable, with the following model types having highest to lowest performance:
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BraTS 2018 train BraTS 2018 validation
Plain ResNet ResNetN PreAct Plain ResNet ResNetN PreAct

ET 0.6342 0.6767 0.6741 0.6745 0.6842 0.7352 0.7126 0.7239
TC 0.7708 0.7660 0.8038 0.7895 0.7349 0.7791 0.7859 0.7573
WT 0.8679 0.8712 0.8878 0.8833 0.8061 0.8294 0.8210 0.8266
Mean 0.7576 0.7713 0.7885 0.7824 0.7417 0.7813 0.7732 0.7693

Table 15: Accuracy comparison results for BraTS 2018 and filter block types Plain, ResNet, ResNetN
and PreAct, 20 epochs

BraTS 2021 train BraTS 2021 validation
Plain ResNet ResNetN PreAct Plain ResNet ResNetN PreAct

ET 0.8155 0.8282 0.8282 0.8245 0.8131 0.8215 0.8108 0.8138
TC 0.8655 0.8802 0.8748 0.8755 0.8725 0.8857 0.8939 0.8660
WT 0.8927 0.9006 0.9073 0.9040 0.8766 0.9166 0.9163 0.9014
Mean 0.8579 0.8697 0.8701 0.8680 0.8541 0.8746 0.8737 0.8604

Table 16: Accuracy comparison results for BraTS 2021 and filter block types Plain, ResNet, ResNetN
and PreAct, 15 epochs

Model name Training speed [ms/step] Training speed [s/epoch]
Plain-UNet 356 89
ResNet-UNet 623 156
ResNetN-UNet 700 175
PreAct-UNet 700 175

Table 17: Training speed comparison for the given U-Net variations. Speed measured on a single
Tesla V100-SXM2-16GB GPU.
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ResNetN U-Net, pre-activation U-Net, ResNet U-Net, Plain U-Net. In the BraTS
2018 validation data diagram of Figure 21, the results seems similar with ResNetN
and pre-activation performing very comparative, ResNet has lower performance through-
out the training process and the Plain U-Net having lowest performance. Taking into
account the similar results of ResNetN and PreAct on the validation data and PreAct
having lower performance on the training data, this indicates a slightly stronger regu-
larization effect for the pre-activation model. The ResNetN model has already higher
training data performance but resulting in similar validation data results, which can
indicate an earlier trend towards overfitting.

The BraTS 2021 curves in Figure 21, on the other hand, show very similar behaviour
of ResNet, ResNetN and PreAct on the training data. The Plain U-Net performing
clearly lower here. The results on the BraTS 2021 validation data however is very
mixed with the Plain U-Net being below the others again. The pre-activation model
performs good in the first half but is surpassed by ResNet and ResNetN in the end.

In total, the training diagrams in Figure 21 show, that there is a distinct gap between
the lower performing Plain U-Net and the three remaining ones. But based on the
given performance comparison results, there is not an obvious winner. Since in recent
work on segmentation using deep learning methods [49, 50], the pre-activation filter
block has shown considerable advantages, it will therefore be used in the following
models of this work.

6.2 Proposed Upscaling Extension for the Pre-Activation U-Net
Figure 22 shows two versions of the proposed upscaling U-Net model, which will be
used train on the BraTS 2018 and 2021 datasets for segmentation. The new model
inherits from the base model given in Section 6.1 by the addition of a further up-
scaling branch on the decoder side, which exceeds the spatial input resolution by a
factor of 2. This increases the output segmentation mask resolution and therefore
benefits the detection of small scale structures, such as the non-enhancing tumor re-
gions. Additionally there is a filtered skip path connecting going from the first of the
original skip connections the new high resolution level. This is a novel design choice
since U-Nets and their variations are found in a very symmetric structure throughout
the present research literature. In some variations, e.g. in A. Myronenko’s adapted
U-Nets [87, 88] the decoder path comes with different filter block structures than the
encoding path which is in contrast to the very original design by Ronneberger [97].
But the rigorous concept of the output shape exceeding the input shape in terms of
spatial resolution by adding an additional stage in decoding, thus allowing a resolu-
tion upscaling behaviour, contributes a unique non-symmetric design idea to U-Nets.

The ground-truth masks have to adapted by upscaling them to double size. The up-
scaling method of the binary masks was by repeating the given binary values, no
interpolation was used. The Sørensen-Dice coefficient metric as well as the Soft-
Dice loss function were accordingly adapted to the increased size of the prediction
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Figure 21: Training and validation results of given basic U-Net model using different types of filter
blocks: Plain, ResNet, ResNetN (with normalization), Pre-Activation.

76



6.2 Proposed Upscaling Extension for the Pre-Activation U-Net

Figure 22: U-Net architecture with residual filter blocks and upscaling extension in the decoding path.
The bottom part can be truncated for a 4-level version.
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and ground truth maps.

The model was trained in two different architectural versions. The first one extending
the previously presented pre-activation U-Net with the described resolution enhanc-
ing extension. This means the U-Net from the previous chapter, which is originally
designed with four levels of spatial resolution will be extended by another fifth res-
olution level on the decoder side. In the second version, the bottom layer, carrying
a very high number of parameters will be eliminated and the model is brought back
to a 4-level design, the Tensorflow code for the 4-layer version is given in Appendix
9.4. This lower level design will support regularization and allow larger sized inputs
within limited GPU memory constraints. The results of this model depth comparison
regarding performance costs will be presented in the following.

Table 18 shows comprehensive results comparing the 4-level model variant against
the 5-level model variant. The 4-level version achieves competitive results for the
BraTS 2018 validation data and even higher results on the BraTS 2021 validation
data. The validation performance difference of the 4-level and 5-level models on
BraTS 2018 in classes TC and WT is very small, while the 5-level version is domi-
nating on ET slightly. On the Brats 2021 validation data, the 4-level model’s perfor-
mance is clearly superior. In total, on the validation data, the 4-level version shows
better performance than the 5-level variant.

Interestingly, the 5-level model reaches higher values when regarding the perfor-
mance results for the BraTS 2018 and BraTS 2021 training data, which is not nec-
essarily a benefit. On the BraTS 2018 training data, the 5-level model shows higher
values on TC and WT and is only very minor behind the 4-level model in ET. On the
BraTS 2021 training data, both models show very comparative results. In summary
this shows that the 4-level model is outbeating the 5-level model on the validation
data, while still reaching lower training data performance. This is a strong indicator
for the 5-level model showing overfitting behaviour, while the 4-level model is still
generalizing well.

The validation result plots for the training runs of the 4-level version of the model on
the BraTS 2018 and the BraTS 2021 datasets is shown in Figure 23.

A reduced model architecture depth leads to a reduced number of parameters and
model complexity which, as discussed in various deep learning literature [41, 13]
generally makes the it less sensitive to noise and enforces the regularization effects
and the stability of the model. This approach will be used here with respect to the im-
proved model behaviour in it’s 4-level form. The reduced architecture depth further
allows larger input size without exceeding the GPU memory of the available hard-
ware. Table 19 shows the number of parameters of both model versions, as well es
the training speed and a maximum possible input data size for the given computation
hardware.
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6.2 Proposed Upscaling Extension for the Pre-Activation U-Net

BraTS 2018 train BraTS 2018 val. BraTS 2021 train BraTS 2021 val.
5-level 4-level 5-level 4-level 5-level 4-level 5-level 4-level

ET 0.7162 0.7179 0.7842 0.7802 0.8524 0.8566 0.8357 0.8464
TC 0.8803 0.8646 0.8125 0.8230 0.9140 0.9121 0.8798 0.8841
WT 0.9117 0.9010 0.8913 0.8912 0.9282 0.9232 0.9157 0.9186
Mean 0.8361 0.8278 0.8293 0.8315 0.8982 0.8973 0.8771 0.8830

Table 18: Upscaling pre-activation U-Net results, dice coefficients for enhancing tumor (ET), tumor
core (TC) and whole tumor (WT). Comparison for 4-level and 5-level model. 60 epochs training
on BraTS 2018 data. 30 epochs training on BraTS 2021 data. Bold numbers indicating the higher
numbers in 5-level/4-level comparison.

Figure 23: Upscaling Pre-Activation U-Net 4-level architecture, training results for BraTS 2018 and
BraTS 2021 validation data

Model Parameters Input size Training speed
Upscaling PreAct-UNet 5-level 13.15M 80 x 160 x 128 (1.64M) 696 ms/step
Upscaling PreAct-UNet 4-level 2.87M 96 x 192 x 160 (2.95M) 1096 ms/step

Table 19: Model comparison regarding number of parameters, input size and training speed (measured
on a Tesla A100-SXM4-40GB GPU)
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6 Segmentation of Non-Enhancing Regions

The two center images of Figure 24 show an example of the original resolution seg-
mentation masks given in the BraTS data. Due to the repeating pixel upscaling
method for carrying the ground truth data to the new resolution level, this struc-
ture is basically inherited to binary masks which are used for training. The right
column of Figure 24 shows a segmentation output of the already trained model for
the same record. Remarkably, the prediction mask which is inferred by the upscaling
model does not reflect any of the lower resolution edges or steps, but fully constructs
a binary mask with resolution adequate details. It may be expected, that with a high
model complexity and extensive training runs, the edged shape could be approxi-
mated to minimize loss. The given model does not show any of this behaviour and
can thus be supposed to be generalizing very well.

Figure 24: Left: MRI T1ce sample record from BraTS 2018 dataset. Center: BraTS 2018 ground-
truth segmentation mask for the Enhancing Tumor (ET) region. Right: Prediction using the presented
resolution enhancing model

Figures 25 and 26 also show predictions done by this presented upscaling U-Net
model. They were done after training the presented model on a combined BraTS
2018/21 dataset in section 7.4 but are already shown here to demonstrate the resolu-
tion enhancing capabilities of the presented architecture. The shapes of the generated
segmentation masks (right) are forming a detailed and natural structure of the brain
tumor tissue, despite exceeding the underlying resolution of the MRI record record,
which come in the same pixel resolution as the original segmentation masks (left).
Additionally the newly generated segmentations show the introduced prediction of
the non-enhancing region NET (green). Similar slices illustrating the resolution en-
hancing aspect and showing NET predictions are given in Appendix 9.5.
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Figure 25: Sample using resolution enhancing model including NET prediction, BraTS 2021 record
00203. Left: BraTS 2021 ground truth segmentation, original resolution, edema (yellow), enhancing
tumor (blue) and necrosis (red). Right: Prediction using the presented resolution enhancing model,
includes non-enhancing tumor NET prediction (green).

Figure 26: Sample using resolution enhancing model including NET prediction, BraTS 2021 record
00209. Left: BraTS 2021 ground truth segmentation. Right: Prediction using the presented resolution
enhancing model with NET.
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6 Segmentation of Non-Enhancing Regions

6.3 Reconstruction of a Subset of Isolated NET from BraTS 2018

As described in Section 5, the BraTS datasets of the recent years did not come
with dedicated segmentation masks for the non-enhancing NET region [8, 6]. More
specifically, 2015 was the last year where the published BraTS data provided specific
NET masks [83], yet not throughout consistent with recent definitions. After that, in
the datasets of the years 2018 and 2021 the labels were always combined to higher
level hierarchical labels ET (enhancing tumor), TC (tumor core) and WT (whole tu-
mor).

Since there was a variation in these combinations of labels in the datasets between
the years 2018 and 2021, and using the previously trained BraTS 2021 model, it will
be possible to break up some fused NCR masks from BraTS 2018 containing NET
region information. Together with the application of morphological filters this will
provide a subset of records with isolated NET masks which will serve for further
model training.

Figure 27 shows a sample slice from the BraTS 2021 dataset, the first segmentation
mask shows the data provided by BraTS 2021. The second segmentation is extended
by a NET label, which will be predicted by the presented method. More sample slices
with results for the extraction of NET are shown in Appendix 9.6. The relevant tumor
regions are listed in Table 20.

Figure 27: Sample record from BraTS 2021, from left to right: T1, T2, T1ce, Flair, BraTS 2021
Segmentation data, extended Segmentation data with Non-Enhancing region (yellow)

Color Region Short Description
gray Edema ED existing, from Brats 2021
red Necrosis NCR existing, from Brats 2021
blue Enhancing ET existing, from Brats 2021
yellow Non-Enhancing NET new, predicted using model trained

on NET isolated BraTS 2018 subset

Table 20: Original segmentation labels in BraTS 2021 with new Non-Enhancing label added.

The BraTS 2018 challenge paper [8] states that the necrosis segment NCR is la-
beled together with the non-enhancing segment NET. Therefore the NET segment is
implicitly included in the BraTS 2018 NCR labels. The reason why these regions
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6.3 Reconstruction of a Subset of Isolated NET from BraTS 2018

were merged to one label are not explain in the official announcements. Neverthe-
less, necrosis and non-enhancing parts are typically found in spatially well separable
regions. Necrosis is typically found in center tumor parts, surrounded by the enhanc-
ing tumor region and forming the tumor core TC together with it. Outside if this TC
region, in it’s bordering area and reaching into the surrounding edema ED domain
the non-enhancing NET part can be found. In many cases necrosis NCR and non-
enhancing tumor areas NET have only few or no touching or intersecting points.

By a process of predicting, filtering and substracting the plain necrosis regions using
the trained BraTS 2021 model, it is widely possible to separate the two regions. The
basic prediction and classification steps performed are the following:

– Train model on BraTS 2021 data (model will predict ET pred
21 , TCpred

21 , WT pred
21

as stated in datasets section) with TCpred
21 = NCRpred

21 ∪ ET pred
21 .

– Calculate NCRpred
21 region using the previously trained BraTS 2021 model by

using the equation NCRpred
21 = TCpred

21 \ET pred
21 .

– For a given BraTS 2018 record, read the provided NCRgt
18, where NCRgt

18 =

NCRgt
21 ∪ NET (note that by BraTS data definition NCRgt

18 ̸= NCRgt
21). Cal-

culate NCRpred
21 using the trained BraTS 2021 model prediction for TCpred

21 as
described above.

– The non-enhancing region can then be extracted as NET = NCRgt
18 \NCRpred

21
or even as NET = NCRgt

18 \ TCpred
21 given that the non-enhancing tumor part

does not reach into the enhancing tumor region, which should hold, since char-
acterization and ground truth data of the enhancing region is supposed to be
very profound.

– Reassign pixel labels to NET if pixel is classified as NCRgt
18 but not TCpred

21 .
Also edema ED, enhancing tumor ET and background pixels will be changed
to NET if classified as such.

For improving the results of the above process, morphological filters are applied to
clean the masks and to reduce noise effects. A detailed list of the operation steps and
the applied filters is shown in Table 21.

The main advantages of using morphological filters in this application are the elim-
ination of small (single pixel sized) border noise, which is present in some of the
given BraTS 2018 ground truth masks, the reduction of artifacts resulting from sub-
straction of masks and the possibility of filling small gaps in border areas. The small
pixel sized noise appearing in some of the BraTS 2018 NCR data (see Figure 28 for
examples) may be a result of labeling suggestions which were automatically gener-
ated and confirmed in the original labeling process of the BraTS dataset.
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6 Segmentation of Non-Enhancing Regions

Set Operation Iterations Structuring el. B
TCpred

21 = TCpred
21 ⊖B 1 rank 3, connectivity 1

NET = TCgt
18 \ (ET gt

18 ∪TCpred
21 ) - -

NCR = TCgt
18 \ (ET gt

18 ∪NET ) - -
NET = NET ◦B 1 rank 3, connectivity 1
NET = NET ⊕B 1 rank 3, connectivity 2
NET = NET \ET gt

18 - -
NCR = NCR◦B 1 rank 3, connectivity 1
ET = TCgt

18 \ (NET ∪NCR) - -
ED =WT gt

18 \ (TCgt
18 ∪NET ∪NCR) - -

Table 21: Morphological filters applied for improving NET extraction results in BraTS 2018 data. See
section 4.5 for a detailed description of the binary morphological filters ⊖ (erosion), ⊕ (dilation) and
◦ (opening). The structuring element B for the binary filters is given in the last column.

The sample images in Figure 28 show slices of BraTS 2018 records which have been
processed by the described operations.

Having the isolated NET masks resulting from this process, the BraTS 2018 dataset
was analysed towards presence and extent of contained NET data in each of the
records. Therefore the total volume of NET mask was measured in each record and
the data was classified to three groups using Gaussian Mixture Model Clustering (see
Figure 29).

The first group (cluster 1 in Figure 29) contains no or low amount of NET pixels,
which may have it’s reason in the NET segment presumably not being labeled in this
set of BraTS 2018 records. The second group (cluster 2) having a very high amount
of NET, possibly reflecting an alternative definition of NET or some labeling error.
And the third and intermediate group (cluster 3) having a moderate amount of NET
pixels, this group will be used as training data.

The results from dividing the data using this method are shown in Table 22. The sep-
aration values between clusters, in the context of Gaussian Mixture Models (GMM),
can be interpreted as the values where the probability density functions (PDFs) of
the Gaussian components intersect with each other. These values serve as natural
boundaries between the clusters. To determine the separation values, the PDFs of the
Gaussian components are calculated and solved for the points of intersection. Using
the selected subset of medium sized NET region data, the previously presented up-
scaling pre-activation U-Net was trained to classify the four segments ET , ED, plain
NCR and the isolated NET .

Due to having a reduced number of training records together with some degree of in-
consistency in the NET data, a high-fold cross validation approach would be needed
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6.3 Reconstruction of a Subset of Isolated NET from BraTS 2018

Figure 28: BraTS 2018 records CBICA-ANI-1, CBICA-AXO-1, CBICA-AQQ-1, TCIA03-419 (top
to bottom). Left: Flair (CBICA-ANI-1, CBICA-AXO-1) or T1ce (CBICA-AQQ-1, TCIA03-419)
slice, center: original BraTS 2018 segmentation mask (ED yellow, NCR+NET red, ET blue), right:
NCR (red) and NET (green) separated and filtered.
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6 Segmentation of Non-Enhancing Regions

Figure 29: The top plot shows the histogram of NET volumes with the GMM clusters. The bottom
plot presents the PDF curves of the Gaussian components inferred by the GMM.

Cluster Selected boundaries GMM PDF intersections Min. value Max. value Size
1 0...10000 14823 0 9779 132
2 >100000 115560 107737 336035 10
3 10000...100000 14823; 115560 10525 84516 68

Table 22: Selected group boundaries and cluster boundary suggestions by Gaussian Mixture Models
(GMM) using PDF intersection
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6.3 Reconstruction of a Subset of Isolated NET from BraTS 2018

to capture a representative validation accuracy, which was not performed due to high
computational costs. Instead, the training was performed on the full available subset
to a level of convergence without using validation data. The results are shown in
Table 23 and Figure 30.

BraTS 2018 subset
NCR 0.8197
ED 0.8053
NET 0.4943
ET 0.8122
Mean 0.7329

Table 23: Training results for presented pre-activation U-Net on BraTS 2018 subset with reconstructed
and isolated NET segments. 100 epochs, 1044ms/step, learning rate 1e-4 with 5% decay per epoch,
training data size 68, batch size 1, GPU Tesla T4

Figure 30: Training results for the presented pre-activation U-Net on BraTS 2018 subset with recon-
structed and isolated NET segments.

Having a working model for NET, based on the computed subset of isolated NET
records, the full BraTS 2018 data was again processed using it. This means, the
records of group 1, which had few or no NET data were assigned new and additional
NET predictions and the third group of data, which originally had a high amount of
NET were reduced to smaller NET areas. Also the second group of records, which
were used as training data, were re-processed to reach a higher level of consistency
through the data. The volume distributions of the newly added NET segment and
further analysis will be given in the next Section 7.
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7 Results and Discussion

7.1 Discussion on Selected Samples

Identifying non-enhancing tumor parts on T1, T2, T1ce and Flair MRI records is a
challenging and often ambiguous task. To judge the plausibility of the given model’s
predictions, some axial slices from the BraTS 2021 data records together with the
original and the NET extended segmentation masks will be discussed in this section.

Figure 31 shows BraTS 2021 record 00062. The images show an extended area of
edema which is very clearly indicated as a hyperintense domain in the T2 and Flair
records. On the T1ce contrast-enhanced image, the typical tumor core, consisting of
the very bright enhancing part together with the surrounded darker necrotic parts is
visible. The dark inside parts in T1ce still are not labeled as necrosis, since in this
example it was the ending or border part of necrosis. In the neighbouring of the axial
cuts, necrosis was started to be labeled in the BraTS dataset. This covers the given
original segmentations masks of enhancing tumor (blue) and edema (yellow). By
observing the top left area next to the enhancing tumor, a slightly shaded area can
be noted which is marked by an arrow on the T2, T1ce and Flair modalities. On the
T2 record, this area extends the part of enhanced tumor and can be identified as less
hyperintense as the homogeneously brighter edema showing. This is an indication
of non-enhancing tumor tissue, which is predicted in green color in the bottom left
segmentation, showing the prediction of the trained model. A similar phenomenon
shows in the Flair modality, where the enhancing tumor domain has an adjacent, less
hyperintense part on the top left side. The T1ce slice only shows a slight hyperin-
tense effect in the border region between enhancing and non-enhancing part. NET
typically shows very variable on T1 and T1ce modalities. All these observations
match with the imaging characteristics of non-enhancing tumor parts summarized in
Table 2 of Section 3.4.

In another example, BraTS 2021 00505 in Figure 32, the shape of the tumor without
surrounding edema can well be determined in the T1 modality where the core part of
the abnormal tumor tissue appears elliptically shaped. The same can be observed in
the Flair image and, with a hypointense top and bottom region, also in the T2 slice.
The neighbouring edema region lies at the bottom left and top left and is shown as
a bright and rather homogeneous shade in the Flair image. The enhancing tumor
tissue as well as the necrotic part are very clearly visible in the T1ce mode, namely
as the very hyperintense and the very hypointense parts. The enhancing tumor part
ET together with the necrosis part NCR form the classical tumor core part TC. This
example shows clearly, that there is a residual part between this tumor core part TC
showing in T1ce and the elliptical tumor region apparent in T1, T2 and Flair. This
remainder area is identified as the non-enhancing tumor part, again being consistent
with the intensity listing of Table 2 and shown as the green prediction mask in the
extended segmentation on the bottom left image. In Appendix 9.7 more examples of
this type are presented.
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Figure 31: BraTS 2021, record 00062, axial slice, the left images show the original segmentation
of enhancing tumor (blue) and edema (yellow) as well as the segmentation mask extended by the
prediction for non-enhancing NET (green). The center and right images show the T1, T2, T1ce and
Flair sequence images. The arrows are pointing onto shaded areas indicating NET.
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Figure 32: BraTS 2021, record 00505, axial slice, the left images show the original segmentation of
enhancing tumor (blue), edema (yellow) and necrosis (red) as well as the segmentation mask extended
by the prediction for non-enhancing NET (green). The center and right images show the T1, T2, T1ce
and Flair sequence images. The arrows are pointing onto shaded areas indicating NET.

Figure 33 shows a summary of examples, where each of the sample records (BraTS
2021 00209, 00724, 01017, 01028, 01584) is given as a T1ce and a Flair slice (left)
together with the original BraTS2021 segmentation mask and the extended 4-label
segmentation. On the T1ce image, the actual tumor core (NCR + ET) can be identi-
fied, which is shown as blue (ET) and red (NCR) masks in the segmentations. The
interpretation of non-enhancing parts is again very subtle in these examples. In the
Flair image, the tumor center part comes with a bright surrounding edema area. If
the edema is ignored, the tumor center part in the Flair image appears larger than the
tumor core area on T1ce. This difference in extent of center areas, which is typically
less hyperintense than the edema area on the Flair record, marks the non-enhancing
part.

7.2 NET Volume Distributions
Another approach towards analyzing the segmentation outcome is by observing the
total amount of classified non-enhancing volume and compare it towards the volumes
of the remaining regions. This will explore the degree of covariance between the dif-
ferent tumor regions, since larger tumors will typically include a higher volume of
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Figure 33: BraTS 2021 records 00209, 00724, 01017, 01028, 01584 (top to bottom). Left: T1ce slice,
center left: Flair slice, center right: original BraTS 2021 segmentation mask with 3 labels (ED yellow,
NCR red, ET blue), right: extended 4-label mask with newly added NET (green)
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each of the segments, smaller tumors will enclose a smaller number of pixels for all
of the classes. Following this assumption, it can be expected that for each of the
segments NCR, ED, NET and ET volume distributions of similar type can be found
when observing the entire dataset.

For this analysis, the number of pixels of each of the segments NCR, ED, NET and ET
was counted throughout the newly extended BraTS 2021 4-label data. The cropped
and upscaled record size in the 4-label dataset is 192 x 384 x 320. Each of the labels
defines a subset of pixels, whose volume is counted and listed as indicated below:

ID, NCR, ED, NET, ET

BraTS2021_00549, 3003, 87897, 264, 7284

BraTS2021_00565, 8102, 50585, 3057, 21808

BraTS2021_00378, 935, 30654, 2529, 3099

BraTS2021_01505, 63795, 25323, 2018, 1066

BraTS2021_01183, 19553, 78470, 4027, 21283

...

This gives a list containing all 1251 sample records in the BraTS 2021 dataset, which
can be analyzed and visualized in various ways. Figure 34 shows the histograms of
each of the regions volumes.

Figure 34: Histograms of NCR, ED, NET and ET volumes in the BraTS 2021s dataset. NET was
newly added, the segmentation masks for NCR, ED, and ET are the original ones.

The plots of all four classes show positively skewed distributions of the tumor re-
gion volumes, that range from values close of zero to very large values, which is a
common characteristic in biological data. After removing the very high and outlying
values from NCR and NET, these volumes can closely be modeled by the gamma
distribution, which can be used in medical and clinical data when describing disease
progression, survival times or especially in oncology, the tumor growth distributions
across patients as stated in [28]. Figure 35 shows the volume distributions with fit-
ted gamma distribution curves. The newly generated NET volumes show a similar
distribution behaviour across the patient data in the BraTS 2021 dataset than the re-
maining classes.
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7.2 NET Volume Distributions

Figure 35: Gamma distribution fits for volume distributions of NCR, ED, NET and ET. Blue his-
tograms showing the actual volume distributions, red graphs showing an appropriate gamma distribu-
tion fit.

Another common representation is a pairplot, which is shown in Figure 36. It shows
the approximated density functions on the diagonal, which reflect the above given
histograms of the single volume distributions for each of the labels. In the off-
diagonal places, it shows pairwise scatterplots of the different segments, visualizing
the correlations between their volumes.

NCR ED NET ET
NCR 1.000 0.105 0.203 0.201
ED 0.105 1.000 0.308 0.272

NET 0.203 0.308 1.000 0.338
ET 0.201 0.272 0.338 1.000

Table 24: Pearson correlation coefficients between NCR, ED, NET and ET volumes. Correlation
coefficients were calculated based on extended BraTS 2021 4-label dataset.

The values in the correlation matrix shown in Table 24 represent the Pearson cor-
relation coefficients between the volumes of NCR, ED, NET and ET segments. A
value close to 1 implies a strong positive correlation, a value close to -1 would imply
a strong negative correlation, and a value close to 0 implies little to no correlation.
The pairwise values are listed in Table 24. The following list describes the Pearson
correlation coefficients in increasing order:
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Figure 36: Pairplot of NCR, ED, NET and ET volumes. The diagonal shows the kernel density
estimate (KDE) for each variable, which provides a smoothed representation of the data’s distribution.
The off-diagonal plots are scatter plots between pairs of the volumes.
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• NCR and ED (0.105): There is a slight positive correlation between NCR and
ED. This suggests that as NCR values increase, ED values tend to increase
slightly as well, but the relationship is weak.

• NCR and ET (0.201): The correlation between NCR and ET is similar to that
between NCR and NET, indicating a weak positive relationship.

• NCR and NET (0.203): There is a weak positive correlation between NCR
and NET. This suggests that as NCR values increase, NET values tend to in-
crease to some extent.

• ED and ET (0.272): There’s a weak to moderate positive correlation between
ED and ET. As ED values increase, ET values also tend to increase to some
extent.

• ED and NET (0.308): There’s a moderate positive correlation between ED
and NET. This suggests that as ED values increase, NET values also tend to
increase moderately.

• NET and ET (0.338): The correlation between NET and ET is moderate. As
NET values increase, ET values tend to increase moderately.

Overall, there are no strong correlations between any pairs of the segments. The
relationships that exist are mostly weak to moderate, but with all correlations being
positive. That means they tend to move in the same direction to varying degrees.
From the scatter plots in Figure 36, we can get a visual sense of these correlations.
For instance, we see that NET and ET have a cloud of points that suggests a positive
correlation, aligning with the correlation value which was computed.

Also, it can be noticed, that the Necrosis NCR segment volume seems more indepen-
dent than the others. The three NCR volumes’ correlation values NCR to ED (0.105),
NCR to ET (0.201) and NCR to NET (0.203) are the lowest ones appearing, hinting
towards a weaker medical or clinical coupling of necrosis volume and total tumor
volume or intrinsic volume relations. The non-enhancing NET segment on the other
hand is present in the two pairs of highest correlation, ED to NET (0.308) as well
as NET to ET (0.338). This indicates a commonly increased presence of the three
regions NET, ET to ED with increasing total tumor size.

7.3 Analysis of Variance for Intensity Masks

For evaluating the newly added NET segment and the overall BraTS 2021 4-label
dataset towards intensity characteristics of the single regions NCR, ED, NET and ET
on the different MRI modalities, the data is processed and prepared as follows:
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• For a given modality (T1, T2, T1ce, Flair) the 3D MRI image data (xi) is
loaded and re-scaled to (zi) in range [0, 1] by

zi =
xi −min j(x j)

max j(x j)−min j(x j)

• For one of the tumor regions NCR, ED, NET and ET the segmentation mask
(mi) with mi ∈ {0,1} is applied to the re-scaled image data by multiplication
with the binary mask value wi = mi · zi

• The mean intensity for the given tumor region in the selected MRI modality is
then calculated as I = ∑i wi/∑i mi

• This is performed for all tumor regions NCR, ED, NET and ET in all MRI
modalities T1, T2, T1ce and Flair

Figure 37 shows boxplots for the region intensities of all the combinations of NCR,
ED, NET and ET on the different MRI modalities T1, T2, T1ce and Flair. Each
boxplot shows the median inside the upper and lower quartile bounded box. The
whiskers are set to the highest and lowest observations within the typical distance of
1.5 times interquartile range outside the upper and lower quartile.

Performing an analysis of variance (ANOVA) of the above region intensities gives the
below results, where the extremely low p-value suggests that there is a statistically
significant difference in the mean intensities across the four categories NCR, ED,
NET and ET:

• F-statistic: 44.84

• p-value: 1.39×10−28

Since the ANOVA Analysis only states, that there are at least two categories with dif-
ferent means, a post hoc group comparison test has to be performed. This is done by
the Tukey Honestly Significant Difference (Tukey HSD) test [115], which compares
all possible pairs of means and controls for the family-wise error rate, see Tables 25
to 28.

The non-enhancing region’s intensity means are showing significant differences to
most of the other regions in the different modalities:

• In T1: NET mean is significantly different to NCR and ED means but shows
no significant difference to ET mean. The non-enhancing parts appear brighter
than necrosis, darker than edema and in similar shading than the enhancing
tumor.

• In T2: NET mean is significantly different to NCR and ET means but shows
no significant difference to ED mean. The non-enhancing parts show distinctly
darker than necrosis, slightly darker than enhancing tumor and with similar
intensity as edema.
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Figure 37: Boxplots for region intensities on different MRI modalities. The plots provide a visual
representation of the distribution of intensity values, including the median, quartiles, and potential
outliers for each segment (NCR, ED, NET, ET) in each modality (T1, T2, T1ce, FLAIR).
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meandiff p-adj lower upper reject
ED ET -0.0264 ≤ 0.001 -0.0372 -0.0156 True
ED NCR -0.0755 ≤ 0.001 -0.0863 -0.0648 True
ED NET -0.0298 ≤ 0.001 -0.0406 -0.0190 True
ET NCR -0.0492 ≤ 0.001 -0.0599 -0.0384 True
ET NET -0.0034 0.8263 -0.0142 0.0074 False
NCR NET 0.0457 ≤ 0.001 0.0350 0.0565 True

Table 25: Tukey HSD post-hoc comparison table for the T1 modality

meandiff p-adj lower upper reject
ED ET 0.0290 ≤ 0.001 0.0165 0.0415 True
ED NCR 0.1326 ≤ 0.001 0.1201 0.1450 True
ED NET -0.0006 0.999 -0.0131 0.0119 False
ET NCR 0.1036 ≤ 0.001 0.0911 0.1161 True
ET NET -0.0295 ≤ 0.001 -0.0420 -0.0171 True
NCR NET -0.1331 ≤ 0.001 -0.1456 -0.1206 True

Table 26: Tukey HSD post-hoc comparison table for the T2 modality

meandiff p-adj lower upper reject
ED ET 0.1529 ≤ 0.001 0.1449 0.1609 True
ED NCR -0.0173 ≤ 0.001 -0.0253 -0.0094 True
ED NET 0.0150 ≤ 0.001 0.0070 0.0229 True
ET NCR -0.1702 ≤ 0.001 -0.1782 -0.1623 True
ET NET -0.1379 ≤ 0.001 -0.1459 -0.1300 True
NCR NET 0.0323 ≤ 0.001 0.0243 0.0403 True

Table 27: Tukey HSD post-hoc comparison table for the T1ce modality

meandiff p-adj lower upper reject
ED ET 0.0244 ≤ 0.001 0.0107 0.0382 True
ED NCR 0.0219 ≤ 0.001 0.0082 0.0357 True
ED NET -0.0287 ≤ 0.001 -0.0424 -0.0149 True
ET NCR -0.0025 0.966 -0.0162 0.0112 False
ET NET -0.0531 ≤ 0.001 -0.0668 -0.0394 True
NCR NET -0.0506 ≤ 0.001 -0.0643 -0.0369 True

Table 28: Tukey HSD post-hoc comparison table for the FLAIR modality
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• In T1ce: NET mean is significantly different to NCR, ED and ET means. The
non-enhancing tumor region appears distinctly darker than the enhancing tu-
mor, slightly brighter than edema and brighter than necrosis.

• In Flair: NET mean is significantly different to NCR, ED and ET means. The
non-enhancing tumor parts are darker than necrosis and slightly darker than
edema and enhancing tumor.

All of these observations comply with the imaging characteristics described in Sec-
tion 3.4 and Table 2.

A tumor region with a distinguished high or low intensity value within a given modal-
ity is represented as a bright or dark area compared to the remaining tumor regions in
the corresponding MRI records. Since the non-enhancing part lies within the edema
area and is likely to be surrounded by it, the similar means of both in the T2 modality
will make the detection difficult. The same holds for the T1 modality, where NET
and the enhancing tumor part have very near intensity values while also being located
near or next to each other. This makes T1ce and Flair the two reasonable candidates
for allocating the non-enhancing areas, although in practice the non-enhancing tumor
can appear very variable on T1ce and the task of identification is still tough in many
cases.

7.4 Unified 4-Label BraTS 18/21 Dataset
In the BraTS 2018 data, the non-enhancing regions could be isolated from necrosis
as described in the previous Section 6.3. This will allow the creation of new segmen-
tation data for BraTS 2018 containing the split versions of NET and NCR instead of
the original merged version.

For the Brats 2021 data a similar split can be performed by applying the NET pre-
diction model which was won from the BraTS 2018 NET reconstruction data. The
edema parts can be cleaned from non-enhancing regions and the predicted NET re-
gions themselves can be added as a new label.

This will result in both modified datasets, BraTS 2018 as well as BraTS 2021 pro-
viding the same labels NCR, ED, NET and ET. With the data part also providing
the same structure (T1, T2, T1ce and Flair records) both modified datasets become
compatible to be unified to one large combined dataset BraTS 2018/21. Table 29
shows the single and isolated data labels of the large combined dataset. The com-
bined BraTS 2018/21 dataset has a total number of 1536 records together with the
four labels NCR, ED, NET and ET.

Since the dataset structure of the unified BraTS 2018/21 dataset is compatible with
it’s predecessors, the upscaling pre-activation U-Net which was introduced in section
6.2 can now be trained on this larger dataset without major modification. For retriev-
ing better evaluation insights and for a more detailed outcome of the segmentation
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Label Data Name Description
0 BG Background
1 NCR Necrosis
2 ED Edema
3 NET Non-Enhancing Tumor
4 ET Enhancing Tumor

Table 29: Unified BraTS 2018/21 dataset labels. The combined BraTS 2018/21 dataset contains 1536
records together with the four labels NCR, ED, NET and ET.

results on the newly introduced NET part, two additional evaluation segments were
introduced. Besides the three original evaluation segments for enhancing tumor ET,
tumor core TC and whole tumor WT, the newly added non-enhancing tumor region
NET itself is added as a fourth evaluation segment. This way the traditional ET, TC
and WT can be compared towards reference models and the results for NET will be
output as well.

The original tumor core part TC is combined similar to the one in BraTS 2021, with-
out the non-enhancing parts being included. In BraTS 2021 the non-enhancing tumor
part was counted towards edema which is a frequent way to treat the non-enhancing
region. Also in the clinical context of treatment or resection, the focus lies on the tu-
mor core parts including the necrotic parts as well as the active or enhancing region.
The non-enhancing tumor part is a more neglected part, often due to identification
problems as discussed in Section 2.4. But due to the NET’s importance in medical
treatment and tumor diagnosis, the tumor core part is increasingly suggested to be ex-
tended by the non-enhancing region. This extended tumor core part will be denoted
TCN here and includes the necrotic, the enhancing and the non-enhancing parts. Tu-
mor core with non-enhancing TCN will be added as a fifth evaluation segment in the
training of the large upscaling U-Net model on the unified BraTS 2018/21 data. All
evaluation segments and their composition based the single tumor parts are listed in
Table 30.

Eval. Segment BraTS 2018/21 Data BraTS 2018/21 Labels Description
ET ET 4 Enhancing tumor
TC ET + NCR 4, 1 Tumor core
WT ET + NCR + NET + ED 4, 1, 3, 2 Whole tumor
NET NET 3 Non-Enhancing tumor
TCN ET + NCR + NET 4, 1, 3 Tumor core w. Non-Enhancing

Table 30: Unified BraTS 2018/21 evaluation segments as compositions of data labels. NET is added
as a evaluation segment for itself. TCN is added as a new evaluation segment, which extends the
traditional TC by the non-enhancing regions.

The unified BraTS 2018/21 dataset has a total number of 1536 records which was
divided into a training dataset holding 1305 records (85% of total) and a validation

100



7.4 Unified 4-Label BraTS 18/21 Dataset

dataset with 231 records. The structure of the presented upscaling pre-activation U-
Net was modified to have an output layer suitable for the five segments ET, TC, WT,
NET, TCN and the training and validation data was pre-processed accordingly with
a center cropped size of 4× 96× 192× 160 for each record (channels, axial, coro-
nal, sagittal). The metric and loss functions were kept as before, which means the
Sørensen-Dice coefficient was used as a metric for each of the single segments. The
Soft-Dice-Loss function was used as a combined loss function. The batch size was
again set to 1 due to high memory demand, the learning rate was selected to start at
10−4 with an exponential decay of 5% per epoch.

The GPU accelerator used for training was a powerful NVIDIA A100-SXM4 with
40GB RAM which allowed a training speed of 1177ms/step or approximately 26
minutes per epoch. The training was run for 45 epochs which resulted in a total
training time of 19.5 hours for the large prediction model.

The last column of Table 31 shows the performance results of the model as Sørensen-
Dice coefficient, evaluated on the validation data. On the enhancing tumor part ET
the new model reaches a Dice-score of 81.94%, for tumor core 89.97% and for whole
tumor 91.51% is reached. This gives a mean Dice-coefficient over the ET, TC, WT
of 87,75%. Table 31 also shows performance results of the previously discussed
BraTS winning models of Section 5.2. The upscaling pre-activation U-Net model
introduced on this work, which was trained on the unified BraTS 2018/21 dataset
achieves competitive performance results between the winning models. It outper-
forms the original U-Net with Variational Autoencoder (SegResNetVAE) model by
Myronenko from 2018 [87], the Two Stage Cascaded (TSC) U-Net by Jiang et al.
from 2019 [59] as well as the original No-New U-Net (nnU-Net) by Isensee et al.
from 2020 [56] in all three classical categories while additionally and consistently
providing the NET predictions.

SegResNetVAE TSC U-Net nnU-Net SegResNet nnU-Net Ours
2018 [87] 2019 [59] 2020 [56] 2021 [105] 2021 [78]

NET - - - - - 0.5320
TCN - - - - - 0.8846
ET 0.8145 0.8021 0.7945 0.8600 0.8823 0.8194
TC 0.8596 0.8647 0.8524 0.8868 0.9235 0.8979
WT 0.9042 0.9094 0.9119 0.9265 0.9383 0.9151
Mean 0.8594 0.8587 0.8529 0.8911 0.9147 0.8775

Table 31: Validation results, combined 4-label BraTS 2018/21 data, upscaling pre-activation U-Net,
learning rate 1e-4 with 5% decay, training data size 1305, validation data size 231, batch size 1,
45 epochs, NVIDIA A100-SXM4-40GB, training speed 1563s/epoch 1177ms/step, total training time
19.5h, 2.879M parameters. Values are Sørensen-Dice-coefficients on validation data. Mean values are
calculated from ET, TC, WT for all models (NET and TCN segments don’t count into mean value).

The performance results stand back behind the 2021 model of Myronenko et al. (Seg-
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ResNet) [105] and the 2021 No-New U-Net model of Luu et al. (nnU-Net 2021)
[78]. When compared to the SegResNet 2021 model the gap in ET Dice-score is
high, while it shows minor performance drawback in the WT category and is even
slightly superior in TC. The results of the improved nnU-Net version from 2021 are
more far ahead.

In total the model presented in this work shows competitive performance results in
the original BraTS segmentation categories without reaching or surpassing the state-
of-the-art performance of the latest winning models. Concurrently, it offers two im-
portant advantages over existing models. On the one hand, it will automatically out-
put resolution enhanced segmentation masks serving a more detailed and advanced
view onto the tumor’s structure. This can help radiologists and clinicians to visualize
and understand the shape and extent of the tumor and it’s parts. On the other hand
it will, in addition to the regular segments, also predict the important non-enhancing
regions, which are hard to locate on the conventional radiology records. This can
give new options in radiology assistance and treatment planning. A further aspect
in analysing and diagnosing the active tumor region is the extended TCN segment
which grows the classical tumor core TC by the relevant non-enhancing part and can
be a sophisticated complement in the hierarchical order of a glioma’s extent:

ET ⊂ TC ⊂ TCN ⊂WT

The overall performance value of TCN using the presented model on the unified
BraTS 2018/21 dataset is 88.46% and therefore very comparable to that one of TC,
which is 89.79%. The Dice-coefficient performance of NET on the given dataset is
53.20% and is low compared to the remaining segments. This is due to the subtle
nature of the non-enhancing regions, which are only showing very slightly on the
conventional MRI sequences. The lack of curated non-enhancing tumor data and the
practical limitations in representative reconstruction from given data are also con-
tributing to inhomogeneous NET data in the constructed dataset. This necessarily
leads to an overall upper bound performance in NET identification, given a proper
regularization behaviour and robustness of the model.

7.5 3D Model Reconstruction

3D models of tumors, derived from the medical imaging MRI data, can significantly
aid in both the diagnosis and treatment of cancer in several ways. The models can be
able to offer a detailed and accurate representation of tumors, providing insights that
can enhance the precision and efficiency of the cancer therapy.

The major advantage of 3D tumor models lies in the ability to accurately visualize
the size, shape, and volume of tumors. They provide a clear delineation of tumor

102



7.5 3D Model Reconstruction

boundaries from surrounding tissues, aiding in understanding its invasiveness and
potential spread. Additionally, the structure of the tumor seen from these models
can offer valuable information about its type and aggressiveness. Also 3D models
have become useful tools for preoperative planning, allowing surgeons to arrange the
surgical removal of tumors with minimal impact on healthy tissue. The additional
information on non-enhancing areas, which can be added by the developed model
can therefore support the decision towards boundaries in surgical removal. The 3D
models can also serve for an educational purpose, aiding in patient understanding of
surgical procedures and enabling surgeons to practice and simulate complex opera-
tions and thereby reducing risks and improving surgical outcomes.

The raw MRI data comes in a number of slices, each representing a 2D pixel im-
age. Stacking the slices of the binary segmentation masks using the given resolution
of the MRI device gives a raw voxel representation of the tumor, where a voxel, or
volumetric pixel, is the three-dimensional equivalent of a pixel in 2D images. Voxel
representations are the very first and basic version of generating such a 3D model
representation. A major advance in efficiently creating more enhanced 3D mod-
els was the introduction of the so called Marching Cubes algorithm by William E.
Lorensen and Harvey E. Cline in 1987 [73]. The Marching Cubes algorithm is a
computer graphics algorithm used for extracting a polygonal mesh of an isosurface
from a three-dimensional scalar or binary field as given in the 3D volumetric MRI
data.

For creating 3D volumetric models based on the segmentation masks generated from
BraTS 2021 data by the model presented in the previous section, the tool Medical
Imaging Interaction Toolkit (MITK) developed by the German Cancer Research
Center DKFZ [39] was used. The MITK Workbench is a free open-source software
for viewing, processing, and segmenting medical images.

The top left image of Figure 38 shows the marching cube model created from the
original resolution version of the new BraTS 2021 segmentation mask. The bot-
tom left version shows a smoothed polygon 3D model which can be calculated by
the MITK software that applies algorithms like Laplacian smoothing to the volume
mesh. This involves adjusting the position of each vertex in the mesh based on the
average of its neighbors, leading to a smoother appearance.

The smoothed 3D volumes are providing a clearer view and improve the visual qual-
ity of the reconstructed surfaces on of the overall shape of the tumor, a drawback
although is the loss of details that the smoothing process entails. This can be ob-
served in small structures being lost after smoothing, as marked with arrows in the
top left and bottom left images in Figure 38.

Increasing the resolution of the MRI data for the volume construction can therefore
result in more detailed and smoother surfaces. The resolution enhanced output of
the proposed upscaling U-Net model enables this and the generated 3D volumes can
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Figure 38: 3D volumetric model of BraTS2021 record no. 00209. The top row shows the marching
cubes reconstructions, the bottom row shows the smoothed versions. The two models on the left side
were created using the original, lower resolution of the segmentation masks. The two volumes on
the right side were generated from the enhanced, higher resolution outputs of the presented upscaling
pre-activation U-Net. All 3D models were created using the open source MITK Workbench, version
v2023.04, published by the German Cancer Research Center DKFZ. The arrows on the left images
mark small parts in the lower resolution versions, which can get lost due to the smoothing process.
The tumor parts shown in the 3D model are necrosis NCR (red), enhancing tumor ET (blue) and non-
enhancing tumor NET (green).
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thus offer a richer and more detailed insight in the tumors structure. Another exam-
ple visualizing the advantage of higher resolution segmentation outputs for 3D re-
construction is shown in Figure 39 which presents the whole tumor and the isolated
necrosis part of a BraTS 2021 sample, transformed to a smoothed polygon model
from original resolution (left) as well as the same one from the enhanced resolution
version (right). Appendix 9.8 shows a collection of more generated 3D models.

Figure 39: 3D volumetric model, smoothed version of WT and NCR, based on original resolution
(left) and on enhanced resolution (right) BraTS2021 record 00216. Top left: Whole tumor, smoothed
polygon model from original BraTS resolution. Bottom left: Necrosis, smoothed polygon model
from original resolution. Top right: Whole tumor, smoothed polygon model from enhanced resolution
output. Bottom right: Necrosis, smoothed polygon model from enhanced resolution output. Edema
(ED) is shown yellow, necrosis (NCR) red, enhancing tumor (ET) is transparent blue, non-enhancing
tumor (NET) is green.

A characteristic aspect of the non-enhancing tumor region which can be observed
in many of the 3D visualizations is it’s eccentric localization within the total tumor
area. As stated in a quote from the Lasocki paper [65] in Section 3.4, edema typically
occurs in a concentric distribution around the tumor core (unless it is obstructed in
some way) while the NET regions often arise in an eccentric location towards the
enhancing part in the tumor center. An example showing the tumor core (NCR + ET)
with evenly spread surrounding edema (ED) is presented in the left image of Figure
40, with the NET region suppressed. The right image in Figure 40 shows the pre-
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dicted NET region inside the same tumor, which is, in contrast to edema not spread
evenly around the core part, but instead appears accumulated on one side. This char-
acteristic of NET can be confirmed in more of the 3D models given in Appendix 9.8.

Figure 40: 3D volumetric model, smoothed version of WT of NCR, based on original resolution
(left) and on enhanced resolution (right) BraTS2021 record 00413. Top left: Whole tumor, smoothed
polygon model from original BraTS resolution. Bottom left: Necrosis, smoothed polygon model
from original resolution. Top right: Whole tumor, smoothed polygon model from enhanced resolution
output. Bottom right: Necrosis, smoothed polygon model from enhanced resolution output. Edema
(ED) is shown yellow, necrosis (NCR) red, enhancing tumor (ET) is transparent blue, non-enhancing
tumor (NET) is green.
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8 Conclusion
This study has shown advancements in the identification and segmentation of non-
enhancing tumor regions in glioblastomas using established MRI techniques together
with sophisticated machine learning methods. The findings demonstrate the potential
of the proposed upscaling pre-activation U-Net model in improving the detection and
characterization of NET regions.

The core of this work was the development and validation of the upscaling pre-
activation U-Net model, enhanced with depth regularization, which has demonstrated
promising potential in detecting and characterizing NET regions, a task traditionally
challenging due to the subtle and diffuse nature of these lesions.

The model’s unique approach in integrating a resolution enhancing extension in the
decoder branch has contributed towards a more accurate identification of NET re-
gions. This is particularly crucial in glioblastoma, where accurate delineation of the
non-enhancing regions can significantly impact treatment planning and prognosis
assessment. The accurate segmentation of NET regions can aid in the better un-
derstanding of tumor boundaries, potentially leading to more targeted and effective
treatment approaches, including surgery and radiotherapy.

However, the study is not without limitations. The primary challenge is the lim-
ited availability of appropriate data representing the subjected non-enhancing areas,
which was addressed by using reconstructed data from existing datasets. The used
data was extracted and prepared by a well-founded automatic process but still it is
not hand-curated similarly to the original BraTS data. A major improvement to the
automated identification and detection of non-enhancing tumor areas will therefore
depend on the creation and availability of consistent, expert-based segmentation data
for training.

Furthermore and to move forward, it has to be considered to translate these findings
into clinical practice. Future studies could focus on integrating the model into clini-
cal workflows, assessing its impact on patient outcomes and refining it’s capabilities
to serve in the finding and diagnosis of glioblastoma. Another promising field for
future research is the exploration of the biological significance of NET regions. Un-
derstanding these areas allows new insights into glioblastoma’s diverse and complex
nature.

In conclusion, this work presents another step in the offering medical and radio-
logical assistance applications using latest machine learning methods. The further
development of refined prediction models has the potential to improve the diagnosis,
treatment planning, and management of glioblastoma.
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9.1 Code: Dice Coefficient and Dice Loss

import tensorflow as tf

import tensorflow.keras.backend as K

def dice_coefficient(y_true, y_pred):

y_pred = (y_pred > 0.5)

y_pred = tf.dtypes.cast(y_pred, tf.float32)

intersection = K.sum(K.abs(y_true * y_pred), axis=[-3,-2,-1])

dn = K.sum(y_true, axis=[-3,-2,-1]) + K.sum(y_pred, axis=[-3,-2,-1]) + 1e-8

return K.mean(2 * intersection / dn, axis=[0,1])

def soft_dice_loss(y_true, y_pred):

y_true = tf.dtypes.cast(y_true, tf.float32)

intersection = K.sum(K.abs(y_true * y_pred), axis=[-3,-2,-1])

dn = K.sum(K.square(y_true) + K.square(y_pred), axis=[-3,-2,-1]) + 1e-8

return 1 - K.mean(2 * intersection / dn, axis=[0,1])

9.2 Code: Data pre-processing for evaluation segments

def preprocess_labels(seg, output_shape=None):

"""

Brats 2018

1: Necrosis and non-enhancing tumor NCR + NET

2: Edema ED

3: not used

4: Enhancing tumor ET

---

Brats 2021

1: Necrosis NCR

2: Edema and non-enhancing tumor ED + NET

3: not used

4: Enhancing tumor ET

"""

ncr = seg == 1

ed = seg == 2

et = seg == 4

tc = (et | ncr)

wt = (et | ncr | ed)

if output_shape is not None:

et = crop(et, output_shape)

tc = crop(tc, output_shape)

wt = crop(wt, output_shape)

return np.array([et, tc, wt], dtype=np.uint8)
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9.3 Code: Filter blocks (Tensorflow/Keras)

def residual_block(inp, filters, type = ’plain’):

assert type in [’plain’, ’resnet’, ’resnetn’, ’preact’], "Unknown type"

cf = ’channels_first’

if type == ’plain’:

# Plain U-Net filter block

x = Conv3D(filters=filters, kernel_size=(3, 3, 3), strides=1, padding=’same’, data_format=cf)(inp)

out = Activation(’relu’)(x)

elif type == ’resnet’:

# ResNet like filter block

x = Conv3D(filters=filters, kernel_size=(3, 3, 3), strides=1, padding=’same’, data_format=cf)(inp)

x = Activation(’relu’)(x)

x = Conv3D(filters=filters, kernel_size=(3, 3, 3), strides=1, padding=’same’, data_format=cf)(x)

out = Add()([x, inp])

elif type == ’resnetn’:

# ResNet like filter block with normalization

x = Conv3D(filters=filters, kernel_size=(3, 3, 3), strides=1, padding=’same’, data_format=cf)(inp)

x = GroupNormalization(groups=8, axis=1)(x)

x = Activation(’relu’)(x)

x = Conv3D(filters=filters, kernel_size=(3, 3, 3), strides=1, padding=’same’, data_format=cf)(x)

x = GroupNormalization(groups=8, axis=1)(x)

x = Add()([x, inp])

out = Activation(’relu’)(x)

elif type == ’preact’:

# Pre-activation filter block

x = GroupNormalization(groups=8, axis=1)(inp)

x = Activation(’relu’)(x)

x = Conv3D(filters=filters, kernel_size=(3, 3, 3), strides=1, padding=’same’, data_format=cf)(x)

x = GroupNormalization(groups=8, axis=1)(x)

x = Activation(’relu’)(x)

x = Conv3D(filters=filters, kernel_size=(3, 3, 3), strides=1, padding=’same’, data_format=cf)(x)

out = Add()([x, inp])

else:

out = inp

return out
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9.4 Code: Upscaling 4-layer U-Net (Tensorflow/Keras)

# Input layer

inp = Input((4, 96, 192, 160))

cf = ’channels_first’

# Initial block

x = Conv3D(filters=32, kernel_size=(3, 3, 3), strides=1, padding=’same’, data_format=cf)(inp)

# Dropout

x = SpatialDropout3D(0.2, data_format=cf)(x)

# Encoder block

x0 = residual_block(x, 32, filter_block_type)

# Branch for upscaling path

xu = UpSampling3D(size=2, data_format=’channels_first’)(x0)

xu = Conv3D(filters=16, kernel_size=(3, 3, 3), strides=1, padding=’same’, data_format=cf)(xu)

xu = residual_block(xu, 16, filter_block_type)

# Downsampling

x = Conv3D(filters=64, kernel_size=(3, 3, 3), strides=2, padding=’same’, data_format=cf)(x0)

# Encoder blocks

x = residual_block(x, 64, filter_block_type)

x1 = residual_block(x, 64, filter_block_type)

# Downsampling

x = Conv3D(filters=128, kernel_size=(3, 3, 3), strides=2, padding=’same’, data_format=cf)(x1)

# Encoder blocks

x = residual_block(x, 128, filter_block_type)

x = residual_block(x, 128, filter_block_type)

# Upsampling

x = Conv3D(filters=64, kernel_size=(1, 1, 1), strides=1, data_format=’channels_first’)(x)

x = UpSampling3D(size=2, data_format=cf)(x)

x = Add()([x, x1])

# Decoder block

x = residual_block(x, 64, filter_block_type)

# Upsampling

x = Conv3D(filters=32, kernel_size=(1, 1, 1), strides=1, data_format=’channels_first’)(x)

x = UpSampling3D(size=2, data_format=cf)(x)

x = Add()([x, x0])

# Decoder block

x = residual_block(x, 32, filter_block_type)

# Upsampling

x = Conv3D(filters=16, kernel_size=(1, 1, 1), strides=1, data_format=cf)(x)

x = UpSampling3D(size=2, data_format=cf)(x)

x = Add()([x, xu])

# Decoder block

x = residual_block(x, 16, filter_block_type)

# Decoder end

out = Conv3D(filters=3, kernel_size=(1, 1, 1), strides=1, data_format=cf, activation=’sigmoid’)(x)

# Create and compile the model

model = tf.keras.Model(inp, outputs=[out])

model.compile(Adam(), loss=[loss_gt(soft_dice_loss)], metrics=[dice_coefficient])
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9.5 Slices Showing Resolution Enhancement and NET

9.5 Slices Showing Resolution Enhancement and NET
Left: BraTS 2021 ground truth segmentation, original resolution, edema (yellow),
enhancing tumor (blue) and necrosis (red). Right: Prediction using the presented
upscaling pre-activation U-Net, including the predicted non-enhancing tumor region
(green).

Figure 41: Sample using resolution enhancing model including NET prediction, BraTS 2021 record
00211.

Figure 42: Sample using resolution enhancing model including NET prediction, BraTS 2021 record
00206.
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Figure 43: Sample using resolution enhancing model including NET prediction, BraTS 2021 record
00207.
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9.6 BraTS2021 00589 Segmentation Slices

9.6 BraTS2021 00589 Segmentation Slices

Figure 44: BraTS2021-00589 Segmentation, gray: Edema (from Brats2021), red: Necrosis (from
Brats2021), blue: Enhancing tumor (from Brats2021), yellow: Non-Enhancing tumor (new, predicted
by model based on Brats2018 data)
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9.7 BraTS2021 Segmentation Samples
In each sample, the left column shows the original segmentation (top) of enhancing
tumor (ET blue), edema (ED yellow) and necrosis (NCR red) as well as the new
segmentation mask extended by the prediction for non-enhancing NET (bottom im-
age, NET green). The middle and right columns show the T1, T2, T1ce and Flair
sequence images. The arrows are pointing onto shaded areas indicating NET.

Figure 45: BraTS 2021, record 00501, axial slices.
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Figure 46: BraTS 2021, record 00513, axial slices.

Figure 47: BraTS 2021, record 00084, axial slices.
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Figure 48: BraTS 2021, record 00334, axial slices.
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9.8 3D Tumor Models

Figure 49: 3D volumetric model, smoothed version of NCR (red), BraTS 2021 record 00201. Left:
Based on model prediction in original BraTS resolution. Right: Based on enhanced resolution output
from presented upscaling U-Net.

Figure 50: 3D volumetric model, smoothed version of NCR (red), ET (blue), NET (green) and ED
(yellow), BraTS 2021 record 00214. Left: Based on model prediction in original BraTS resolution.
Right: Based on enhanced resolution output from presented upscaling U-Net.
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Figure 51: 3D volumetric model, smoothed version of NCR (red), ET (blue), NET (green) and ED
(yellow), BraTS 2021 record 00207. Left: Based on model prediction in original BraTS resolution.
Right: Based on enhanced resolution output from presented upscaling U-Net.

Figure 52: 3D volumetric model, smoothed version of NCR (red), ET (blue), NET (green) and ED
(yellow), BraTS 2021 record 00207. Left: Based on model prediction in original BraTS resolution.
Right: Based on enhanced resolution output from presented upscaling U-Net.
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