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Chirality-induced spin selectivity has been reported in many experiments, but a generally accepted theoretical expla-
nation has not yet been proposed. Here, we introduce a simple model system of a straight cylindrical free-electron
wire, containing a helical string of atomic scattering centers, with spin-orbit interaction. The advantage of this simple
model is that it allows deriving analytical expressions for the spin scattering rates, such that the origin of the effect can
be easily followed. We find that spin-selective scattering can be viewed as resulting from constructive interference of
partial waves scattered by the spin-orbit terms. We demonstrate that forward scattering rates are independent of spin,
while back scattering is spin dependent over wide windows of energy. Although the model does not represent the full
details of electron transmission through chiral molecules, it clearly reveals a mechanism that could operate in chiral
systems.

The first observations of, what is now known as chiral-
ity induced spin selectivity (CISS), were already reported
in 1999 by Ray, Ananthavel, Waldeck and Naaman.1
Since, many papers have appeared that confirm the gen-
eral picture: transmission of electrons through chiral
molecules selectively favors one of the two spin directions,
depending on the handedness of the molecule. The effect
has been found in photo-emission experiments1–5 in elec-
tron transport experiments, either for small numbers of
molecules,6–10 or in cross-bar configurations across a self-
assembled monolayer (SAM) of chiral molecules.6,11–13

Spin polarization efficiencies have been reported to ap-
proach even 100%,13,14 and the effects are observed un-
der ambient conditions at room temperature. Even more
surprising are the related observations that the direc-
tion of the magnetization of a thin magnetic film can be
determined by the handedness of a monolayer of chi-
ral molecules15 and, conversely, a magnetic surface selec-
tively binds one out of the two enantiomers in a racemic
mixture.16,17 Recent reviews are given in Refs. 18 and 19,
and the connection with chiral spin currents in condensed
matter systems is made by Yang et al.20

The various attempts at capturing these observations in a
theoretical description have recently been summarized by Ev-
ers et al.21 Although several possible mechanisms have been
discussed that lead to spin selectivity, the discrepancy be-
tween the observations and the theory is large. The main dif-
ficulty that theories encounter is the fact that the spin-orbit
coupling in molecules composed of only light elements is ex-
tremely small, leaving a gap of many orders of magnitude in
the size of the effects between theory and experiment. Al-
though claims have been put forward that the effects can be
understood from a combination of spin-orbit interaction and
inelastic scattering,22,23 it remains unclear how the smallness
of the spin-orbit interaction can be addressed by including a,
presumably small, correction to it. Until this question is re-
solved we take the point of view that currently few of the
proposed ideas are capable of explaining the observations. A

favorable exception is the work by Dalum and Hedegård,24

where an amplification of spin-orbit interaction was identified
associated with level crossing at multiple energies in chiral
molecules.

Three groups of experiments: Following21 we catego-
rize the experimental evidence in three groups, of increas-
ing level of difficulty met in explaining all the observations.
The first group of experiments involves the detection of a dif-
ference in transmission of electrons of opposite spin through
chiral molecules, such as the photo-emission experiments in
Refs. 2–4. These experiments detect the spin of the electrons
directly.

The second and largest group of experimental reports con-
siders changes in electrical resistance of a junction or device
as a function of either magnetic field or magnetization of a
component.6–13 As pointed out by Yang et al., the resistance
of such set-ups is expected to be insensitive to reversal in the
magnetization or the magnetic field as known from Onsager’s
relations, based on fundamental limits imposed by time rever-
sal symmetry.25–27 Therefore, magnetoresistance reveals itself
in the nonlinear regime, which is much more challenging to
understand.

The third and final group of experiments comprises obser-
vations of (near-)equilibrium properties that are controlled by
the handedness of the molecules involved, such as the direc-
tion of magnetization of a thin ferromagnet,15 or the selective
adhesion of enantiomers to a magnetized surface.16,17 Here,
the gap between available theoretical ideas and the experimen-
tal observations is largest, and only a few sketchy proposals
have been put forward.21,28

Outline of this paper: Here, we want to focus on the first
group of experimental observations only, in the hope that clar-
ification of possible mechanisms for those will lead the way
to also resolve the more complicated problems involved in
the second and third categories of experiments. Rather than
constructing detailed models for describing any specific ex-
periment or chiral molecule, we focus on simple analytically
tractable models, which can guide us in our understanding of
the principles involved in CISS.
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FIG. 1. Illustration of the model, which consists of free electrons
inside a cylindrical tube, containing a helical string of atomic-like
scattering centers.

One such model has already been introduced by Michaeli
and Naaman:29 free electrons inside a helical tube with
quadratic confining potential. By including the spin-orbit
interaction resulting from the smooth confining potential an
anti-crossing gap opens in the energy spectrum, which re-
sults in spin-selective transport through the helical tube. This
is an important result, because it shows that spin-selective
transmission can be obtained generically. However, it falls
short in explaining the experiments in that it allows for spin-
dependent scattering only in a very narrow energy window of
a few meV around the anti-crossing. It is important to stress
that the model does not predict magnetoresistance (needed for
explanation of the second class of experiments) because for
evaluation of the full current one needs to include a magnetic
electrode.30

The model we consider here is that of free electrons trav-
eling inside a straight cylindrical tube, see Fig. 1. We place
an atomic scattering potential off-axis inside this tube, and
analyse the spin-dependent scattering due to the spin-orbit in-
teraction at this site by Fermi’s golden rule. The simplicity of
this model permits obtaining analytical expressions, and an-
alyzing the various mechanisms of scattering systematically.
Chirality is introduced into the problem by arranging a num-
ber of atomic scattering potentials as a helical string inside
the tube. By adding the contributions from the individual
atoms we find that quantum interference produces large dif-
ferences in back scattering into the two spin channels, and
leads to spin-dependent reflection over wide energy windows.
The coupling between momentum scattering and spin scatter-
ing is seen to result from the non-symmorphic character of the
scattering potential.

I. MODEL AND ANALYTIC RESULTS

We consider the spin-dependent electronic conduction of
chiral molecules as a scattering problem. We use a model
based on a helical string of atomic-like scattering potentials,
sitting inside a perfectly straight wire, carrying Landauer-type
conduction channels. The axis of the tube coincides with the
z-axis in a system of cylindrical coordinates. Before introduc-
ing the localized scattering potentials, the conductance chan-
nels are those for a perfectly smooth and straight cylindrical
free-electron-like conductor with hard-wall boundary condi-

tions, and radius Rb (Fig. 1). The eigenchannels for this per-
fect wire are given by,

Ψµnk(r,ϕ,z) = Jµ(γµnr)eikzeiµϕ (1)

Here, γµn = xµn/Rb, with xµn the nth zero of Jµ , the µ th Bessel
function (n ≥ 1). The energy of this state is

εµnk =
h̄2

2m
γ

2
µn +

h̄2k2

2m
. (2)

The interaction with the atomic-like spin-orbit terms is in-
troduced as a perturbation of these states, by means of Fermi’s
golden rule. Although the Coulomb potential of the atoms
will be the dominant source of scattering, we propose to focus
on the role of the spin-orbit interaction term only, and ignore
potential scattering. Such a model could be a reasonable ap-
proximation for a metallic wire, where the electronic states are
described by Bloch waves, containing a helical arrangement
of heavy ions. At this point it is important to stress that we do
not aim at a realistic description of a molecular wire. Yet, the
model will help us to trace similar mechanisms in more real-
istic models. The advantage of having an explicit expression
for the unperturbed states is that we may evaluate the matrix
elements explicitly, which allows us to trace the origin of spin
dependent scattering in our model.

For the spin-orbit interaction term we have,

ĥ0 =
ih̄2

4(mc)2σ

(
∂v(r)

∂r
×∇

)
. (3)

Here, the differential operator ∂/∂r only acts on the electro-
static potential of the atomic nucleus, v(r), while the operator
∇ on the right acts on the electron wave function. Although
the cylindrical confining potential will also produce a contri-
bution to the spin-orbit interaction, we will ignore this in the
following, because the symmetry of this potential prohibits
any back scattering. Forward scattering cannot lead to spin
polarization, as we show in Section I.A.6, below.

The spin-flip rates induced by spin-orbit scattering are
given by Fermi’s golden rule as,

1
τ0

∣∣∣∣
µnkσ

= 2π ∑
µ ′ n′ k′,σ ′

|⟨µ ′n′k′σ ′|ĥ0|µnkσ⟩|2 δ (E f −Ei).

(4)

Here, Ei = εµnk and E f = εµ ′n′k′ are the total energy of the
initial and final states.

A. Evaluation of the matrix elements

1. Spin-orbit interaction in cylinder coordinates

In order to evaluate the matrix elements in (4) we need to
work out the structure of the perturbing Hamiltonian (3). We
express the spin operator σ in cylindrical coordinates as,

σ = σrer +σϕeϕ +σzez (5)

= (e−iϕ
σ++ e+iϕ

σ−)er − i(e−iϕ
σ+− e+iϕ

σ−)eϕ +σzez,
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where er, eϕ , and ez are the unit vectors in cylindrical coor-
dinates and,

σ+ = h̄
(

0 1
0 0

)
, σ− = h̄

(
0 0
1 0

)
= σ

†
+. (6)

Using coordinates (r,ϕ,z) also for the electrons we can work
out the vector products in the expression for ĥ0 as,

σ

(
∂v(r)

∂r
×∇

)
= ĥzσz + e−iϕ ĥ+σ++ eiϕ ĥ−σ− (7)

where we have introduced the real-space operators

ĥz(r,ϕ,z) :=
1
r

∂v
∂ r

∂

∂ϕ
− 1

r
∂v
∂ϕ

∂

∂ r

ĥ+(r,ϕ,z) :=
1
r

∂v
∂ϕ

∂

∂ z
− 1

r
∂v
∂ z

∂

∂ϕ
− 1

i

(
∂v
∂ r

∂

∂ z
− ∂v

∂ z
∂

∂ r

)
and ĥ− := ĥ∗+.

2. General structure of matrix elements

Due to (7), two kinds of matrix element appear in Eq. (4),
spin flipping and non-flipping. The spin-conserving one is
given by

⟨µ ′n′k′σ ′|ĥzσz|µnkσ⟩= ⟨µ ′n′k′|ĥz|µnk⟩⟨σ ′|σz|σ⟩ (8)

The second matrix element on the rhs is trivially evaluated as

⟨σ ′|σz|σ⟩= sign(σ)δσ ′σ , (9)

while the first matrix element on the rhs of (8) takes the ex-
plicit form

Iµ ′n′k′,µnk
z =

∫ Rb

0
dr

∫ +∞

−∞

dz
∫ 2π

0
rdϕ e−iµ ′ϕ e−ik′z

×Jµ ′(γµ ′n′r) ĥz(r,ϕ,z) eiµϕ eikzJµ(γµnr). (10)

The spin-non-conserving matrix elements are given by

⟨µ ′n′k′σ ′|e∓iϕ ĥ±σ±|µnkσ⟩=
⟨µ ′n′k′|e∓iϕ ĥ±|µnk⟩⟨σ ′|σ±|σ⟩ (11)

The second matrix element on the rhs for σ+ and σ− is non-
vanishing only for σ =↓ and σ =↑, respectively:

⟨σ ′|σ+|σ⟩= δσ ′↑δσ↓,

⟨σ ′|σ−|σ⟩= δσ ′↓δσ↑, (12)

while the first matrix element takes the explicit form

Iµ ′n′k′,µnk
± =

∫ Rb

0
dr

∫ +∞

−∞

dz
∫ 2π

0
rdϕ e−i(µ ′±1)ϕ e−ik′z

×Jµ ′(γµ ′n′r) ĥ±(r,ϕ,z) eiµϕ eikz Jµ(γµnr). (13)

Based on these expressions we introduce rates for spin-
conserving and spin-flipping processes

1
τz

∣∣∣∣
µnkσ

=2πξ
2

∑
µ ′ n′ k′

|Iµ ′n′k′,µnk
z |2δ (E f −Ei)

1
τ+

∣∣∣∣
µnk↓

=2πξ
2

∑
µ ′ n′ k′

|Iµ ′n′k′,µnk
+ |2δ (E f−Ei)

1
τ−

∣∣∣∣
µnk↑

=2πξ
2

∑
µ ′ n′ k′

|Iµ ′n′k′,µnk
− |2δ (E f−Ei), (14)

with ξ = h̄2/(4m2c2). These three scattering rates follow
directly from the three terms in Eq. (7), and can be consid-
ered separately because the processes do not mutually inter-
fere. The most interesting situations arise when the rates for
up- or down-conversion of the spins, i.e. the lower two lines
of (14), differ.

3. Evaluation of the integrals

The integral for the spatial coordinates in (10) has two terms
inherited from the structure of ĥz. The partial derivative ∂

∂ϕ
at

the right in the operator ĥz, acting on a wave function |µnkσ⟩,
produces iµ . The two terms can be combined through partial
integration. For the first term we use for the integral over r,

iµ

∫ Rb

0

∂v
∂ r

Jµ ′Jµ dr = (15)

− iµ

∫ Rb

0
v
(

Jµ

dJµ ′

dr
+ Jµ ′

dJµ

dr

)
dr.

where we write Jµ and Jµ ′ as short for Jµ(γµnr) and
Jµ ′(γµ ′n′r).

For the second term we use,∫ 2π

0
e−i(µ−µ ′)ϕ ∂v

∂ϕ
dϕ = (16)

− i(µ −µ
′)
∫ 2π

0
ve−i(µ−µ ′) dϕ.

The two terms combine into,

Iµ ′n′k′,µnk
z =−i

∫ Rb

0
dr

∫ +∞

−∞

dz
∫ 2π

0
dϕ v(r)ei(µ−µ ′)ϕ

× ei(k−k′)z
(

µJµ

dJµ ′

dr
+µ

′Jµ ′
dJµ

dr

)
(17)

By similar steps we obtain for the corresponding integrals
for the operators ĥ±,

Iµ ′n′k′,µnk
± =

∫ Rb

0
dr

∫ +∞

−∞

dz
∫ 2π

0
dϕ v(r)ei(µ−µ ′∓1)ϕ×

ei(k−k′)z
[
(µk′−µ

′k)Jµ ′Jµ ± r
(

kJµ

dJµ ′

dr
+ k′Jµ ′

dJµ

dr

)]
.

(18)

Here, we have assumed that the potential v(r) vanishes for
z →±∞, but otherwise it has not yet been specified.
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4. Limiting case: a single ‘atom’

Note that the potential due to a single atomic-like scatterer
does not define a chiral structure. Yet, we find a difference
between the integrals for τ+ and τ− in (18) even for a single
scattering center. This spin-dependent scattering arises from
the combination of the finite orbital angular momentum h̄µ

and h̄µ ′ of the incoming and scattered waves, in combination
with the off-axis position of the ‘atom’. Experiments that per-
mit selection of the angular momentum of incoming waves
may observe this spin-dependent scattering, but typical exper-
iments select the incoming waves by energy only.

This chiral effect that is not associated with a chiral po-
tential is removed by summation of contributions of all in-
coming electrons at the same energy. This can be seen from
the fact that Iµ ′n′k′,µnk

+ =−I−µ ′n′k′,−µnk
− , so that |Iµ ′n′k′,µnk

+ |2 =
|I−µ ′n′k′,−µnk
− |2. Therefore, for a single ‘atom’,

1
τ+

∣∣∣∣
µnk↓

=
1

τ−

∣∣∣∣
−µnk↑

(19)

Since the states with quantum number µ are degenerate with
those having −µ we should consider the sum of the scattering
rates for µ and −µ and, thus, this sum is equal for τ+ and τ−.

Concluding, as we should expect, a single atomic-like po-
tential does not represent a chiral structure and only produces
spin-dependent scattering when we can conceive of an exper-
iment that selects the orbital states of the electron waves.
Below we will combine the scattering of a string of ‘atoms’
and demonstrate that spin dependence results from a helical
arrangement of single scatterers.

The potential v(r) in (3) describes the electrostatic potential
due to the ‘atoms’ inside the tube. As a first step, we limit this
to a single site at (R,Φ,Z). We calculate the matrix elements
explicitly by adopting a minimal model for the scattering po-
tential v(r). The potential is normally given by the Coulomb
interaction between the electrons and the effective core. For
the purpose of the minimal model we have the freedom of ad-
justing the actual form of this potential, and for computational
convenience we choose it to be a delta function

v(r,ϕ,z) = K0δ (r−R)
1
r

δ (ϕ −Φ)δ (z−Z). (20)

With this, the integrals for the spatial coordinates in matrix
elements for ĥz, ĥ+ and ĥ− become,

Iµ ′n′k′,µnk
z =−iK0ei(µ−µ ′)Φei(k−k′)Z× (21)[

1
r

(
µJµ

dJµ ′

dr
+µ

′Jµ ′
dJµ

dr

)]
r=R

,

Iµ ′n′k′,µnk
± = K0ei(µ−µ ′∓1)Φei(k−k′)Z×[

1
r
(µk′−µ

′k)Jµ Jµ ′ ±
(

kJµ

dJµ ′

dr
+ k′Jµ ′

dJµ

dr

)]
r=R

.

The terms in square brackets depend on the quantum numbers,
but otherwise only on the radial distance R for the position of
the atomic potential. The dependence on Z and Φ is com-
pletely covered by the phase factors in the first lines of (21).

5. A helical string of atomic-like scatterers

In order to implement a chiral structure we arrange 2N +1
identical ‘atoms’ along a helix inside the cylindrical conduc-
tor at positions (R,νθ ,νs) for ν =−N, . . . ,N, where the con-
stants θ and s describe the chirality of the ‘molecule’. Thus,
we write the potential v in the form of a sum over the poten-
tials of the individual nuclei,

vN(r) =
N

∑
ν=−N

v0(r−R, ϕ −νθ , z−νs), (22)

where v0 is the potential due to a single scattering center.
In order to evaluate the matrix elements for this potential,

we insert it in Eqs. (17) and (18). The scattering amplitudes
from each of the ‘atoms’ in the string receive phase factors
according to (21), which allows us to express the integrals as,

Iµ ′n′k′,µnk
z = Iµ ′n′k′,µnk

z (v0)
N

∑
ν=−N

eiν(s∆k+θ∆µ)

=Iµ ′n′k′,µnk
z (v0)

sin((N + 1
2 )(s∆k+θ∆µ))

sin( 1
2 (s∆k+θ∆µ))

Iµ ′n′k′,µnk
± = Iµ ′n′k′,µnk

± (v0)
N

∑
ν=−N

eiν(s∆k+θ(∆µ∓1))

= Iµ ′n′k′,µnk
± (v0)

sin((N + 1
2 )(s∆k+θ(∆µ ∓1)))

sin( 1
2 (s∆k+θ(∆µ ∓1)))

, (23)

where ∆k = k′ − k and ∆µ = µ − µ ′. The integrals on the
rhs are evaluated for the potential v0 due to a single scattering
center. The sums in (23) generally lead to near-cancellations,
unless the argument s(k′−k)+θ(µ−µ ′∓1) is close to a mul-
tiple of 2π . This quantum interference effect strongly selects
specific channels for spin scattering.

This is the central result of this paper: quantum interfer-
ence breaks the symmetry between spin-up and spin-down
scattering. For example, consider initial and final states with
µ ′ = µ and n′ = n. Energy conservation requires k′ =±k. For
back scattering we have k′ = −k, so that the arguments are
x =−2ks−θ for I+ and x =−2ks+θ for I−. This breaks the
symmetry of (19), in particular for the energy range for which
k ≃ θ/2s so that x approaches zero for I−, while x≃ 2θ for I+,
which will be typically far from zero. The other spin channel
is selected when x =−2ks−θ ≃−2π .

At higher energy many combinations of quantum numbers
lead to constructive interference, and in order to evaluate this
we need to resort to numerical evaluation of the expressions.

6. Absence of spin-dependent forward scattering

In order to suppress scattering that is not associated with
the chiral shape of the potential we consider the average of
scattering of all states available at a given energy,

1
τ±

∣∣∣∣
E
=

1
nτ

∑
µ n

∑
k>0

1
τ±

∣∣∣∣
µnkσ

δ (E − εµnk), (24)
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where the energy for each of the states εµnk is given by (2),
and nτ counts the numbers of states available at this energy.
The polarization of the spin scattering can then be defined as,

P(E) =
1

τ+

∣∣∣
E
− 1

τ−

∣∣∣
E

1
τ+

∣∣∣
E
+ 1

τ−

∣∣∣
E
+ 1

τz

∣∣∣
E

(25)

Remarkably, we find that the polarization for forward scat-
tering (k′ > 0) is identical to zero. In order to demonstrate this
let us consider incoming states with energy E and quantum
numbers µ,n,k > 0. The spin-flip scattering rates averaged
over states at energy E can be written as,

1
τ+

∣∣∣∣fwd.

E
=

2πξ 2

nτ
∑
µnk

∑
µ ′n′k′

∣∣〈µ
′n′k′ ↓

∣∣ ĥ0 |µnk ↑⟩
∣∣2

×δ (E − εµ ′n′k′)δ (E − εµnk) (26a)

1
τ−

∣∣∣∣fwd.

E
=

2πξ 2

nτ
∑
µnk

∑
µ ′n′k′

∣∣〈µ
′n′k′ ↑

∣∣ ĥ0 |µnk ↓⟩
∣∣2

×δ (E − εµ ′n′k′)δ (E − εµnk). (26b)

In order to account for forward scattering only we restrict the
final-state momenta to positive values, k′ > 0. In this case,
the indices µ,n,k and µ ′,n′,k′ run through identical sets of
quantum numbers in the (26). When one uses the fact that ĥ0
in (26) is hermitian, and relabels the indices, it it easy to see
that

h̄
τ+

∣∣∣∣fwd.

E
=

h̄
τ−

∣∣∣∣fwd.

E
. (27)

This identity does not apply for back scattering, because in
this case the summation over k and k′ cannot be interchanged.
In the following we will focus on the properties of back scat-
tered electron spins.

II. NUMERICAL EVALUATION

The many contributions to the sums in (14) require numeri-
cal evaluation. For back scattering we find the result plotted in
Fig. 2. The important result we obtain is that P(E) is typically
large, and even approaches complete polarization in some re-
gions of energy. When we change the sign of the chirality (by
s→−s, or θ →−θ ) the graph is reflected around the horizon-
tal axis, as expected. We find that the spin-conserving term
1/τz only makes a minor contribution to the total scattering
rates.

Initially, P(E) is zero, because below (γ01/Rb)
2 = 5.78

there are no conduction channels available. After that point
the first channel opens, with µ = 0, n = 1, µ ′ = 0, n′ = 1,
and this remains the only channel until (γ11/Rb)

2 = 14.68. In
this range of energies the transmission and reflection of spins
is exactly balanced, in accordance with Kramers’ degeneracy
for a single-channel conductor.31 In our expressions, this ab-
sence of spin scattering for the lowest conductance channel
can be read from (21): the first term in the square brackets

vanishes for µ = µ ′ = 0, and the second term cancels because
the Bessel functions for µ and µ ′ are the same, and because
k′ =−k for back scattering into the same channel.

Once we cross E = 14.68 additional conductance chan-
nels become accessible, having non-zero angular momentum
quantum numbers µ, µ ′ =±1, with n = n′ = 1. The contribu-
tions of these channels allow for the integrals (21) to become
finite, and the gradual increase of k and k′ above E = 14.68
leads to rapid oscillations of P(E) due to the phase factors
in (23). The polarization continues to fluctuate with energy,
but longer-period components take over. In some cases it is
possible to trace the saturation of P near 1 to a contribution
for which the argument of the phase factor in the interference
x = s(k− k′)+θ(µ − µ ′±1) becomes very small, so that all
terms add constructively. When this happens the spin scatter-
ing rate for these terms shows a very long period oscillation
as a function of energy and as a function of the numbers of
‘atoms’ in the string.

Importantly, we find that P(E) maintains predominantly the
same sign over wide ranges of energy. For example, P is al-
most exclusively positive between E = 17.5 and E = 27.5.
Since many experiments do not select a sharply defined en-
ergy, but a finite range of energies contributes to the signal, it
is useful to integrate the scattering rates over an energy win-
dow.

Figure 3 shows the rates 1/τ+|E (red), 1/τ−|E (blue), and
1/τz|E (green) for 2N +1 = 41 atomic scattering centers, in-
tegrated from E = 17.5 to E. Clearly the difference between
the two spin scattering directions is large, in particular at the
lower energy end. At higher energies the predominance of
spin-up vs. spin-down scattering alternates.

One of the hallmark observations in the experiments is a
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FIG. 2. Constructive interference of the spin scattering in a string of
21 ‘atoms’ (N=10). Here P is the ratio of the rates for back scattering
spins from up to down and the reverse process, as given by Eq. (25),
as a function of energy E, in units h̄2/(2mR2

b). The angle between
successive scattering centers in the helical string is set at θ = 2π/10,
and the distance between the sites s= 0.85 in units of Rb. The vertical
lines mark the points of opening of new conductance channels for
n = 1 (solid), n = 2 (dashed), and n = 3 (dotted). Successive lines in
the same style have increasing values of µ . Changing the sign of the
chirality produces a curve with the opposite sign.
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FIG. 3. Rates 1/τ+|E (red), 1/τ−|E (blue), and 1/τz|E (green) in-
tegrated over energy from E = 17.5, for 2N +1 = 41. The rates are
given in arbitrary units. The inset shows the low-energy range on an
expanded scale.

roughly linear dependence of the spin polarization with the
length of the molecule. In our model, at any given energy
we find that the scattering rates oscillate with the number of
‘atoms’ 2N +1 included in the helical string. This oscillation
is often rapid, but long-period oscillations are found near the
points where P(E) approaches 1 or -1 (Fig. 2). However, as
noted above, experiments typically measure the signals due to
a finite range of energies. Figure 4 shows the two spin scatter-
ing rates, integrated from E = 17.5 to E = 27.5, as a function
of the length of the helical string, where the number of atoms
is 2N + 1. The observed dependence is close to linear, while
the polarization P remains approximately constant. The lin-
ear dependence of the spin scattering rates persists (at least
up to N = 100), so that the spin scattering can, in principle,
dominate other sources of scattering for long molecules. The
linear dependence will ultimately saturate due to interactions
that are not included in our model, such as multiple scattering
and inelastic scattering.

III. DISCUSSION AND CONCLUSION

The model presented above was investigated in order to
trace a possible origin of the chirality-induced spin selectiv-
ity. We find that quantum interference of partial waves scat-
tered off atomic spin-orbit interactions leads to selective back
scattering of one spin component over the other. Although
this mechanism appears to be intuitively appealing, we can-
not claim that we offer a quantitative explanation of the CISS
effect. The nature of the unperturbed electronic states is ideal-
ized in our model, and the spin-orbit interaction at the atomic
sites is represented by a delta-function potential, which is
clearly not realistic. Therefore, the quantitative outcomes for
the scattering rates cannot be taken literally for a comparison
with experiments.

The strong points of the mechanism proposed here is that
it is robust, conceptually simple, and may be applicable to a
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FIG. 4. Energy-integrated back scattering rates 1/τ+|E (red),
1/τ−|E (blue), and 1/τz|E (green) as a function of the length of the
helical string. The integration over energy is taken from E = 17.5 to
E = 27.5. The number of atoms in the string is 2N +1. At N = 0 the
tube contains one atom, and the blue and red rates are equal, as ex-
pected. The inset plots the rates devided by N, as a function of 1/N,
which demonstrates the saturation to a constant slope of the rates for
large N. The rates are given in arbitrary units.

wider range of unperturbed molecular wave functions. In our
model, spin selectivity is found in wide ranges of energy, de-
spite the smallness of the spin-orbit interaction. This contrasts
with the model proposed by Michaeli,29 which produces spin
selectivity of order unity only in a narrow window of a few
meV at low energies. In our case it is found for all energies
above a certain threshold value. Furthermore, we find that the
spin scattering rates increase almost linearly with the length
of the ’molecule’, in agreement with observations.2

An interesting feature of our model is that the sign of the
spin scattering is not uniquely determined by the handedness,
as shown by the plot in Fig. 2, but also by the helicity θ/s
and by the energy range that we consider. Most experiments
have compared the effects of the sign of chirality by compar-
ing the two enantiomers, or have studied similar molecular
structures as a function of length, all under the same experi-
mental conditions. In a system that can be described by this
quantum interference mechanism one would expect to observe
sign changes when varying the helical pitch, even when main-
taining the same sign of chirality, or when probing the system
in a different energy range.

The model considered here is consistent with Landauer’s
picture of a phase-coherent scattering problem. It transitions
to a classical resistance only when we add inelastic scattering
to the description, and consider the limit of very long helical
wires. Even at room temperature, for most chiral molecules
probed in experiments the inelastic scattering length is much
longer than the length of the molecule. On the other hand, the
long DNA strands tested by Gohler et al.2 are possibly long
enough for temperature-induced dephasing to become observ-
able.

In conclusion, we propose a simple model of construc-
tive quantum interference as a mechanism giving rise to spin-
selective electron reflection. The mechanism proposed here
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may guide the design of experiments and the analysis of
more realistic computations. We have limited our discussions
to possible explanations of spin-selectivity in the transmis-
sion properties of chiral molecules, and the model presented
here offers a simple and intuitive mechanism that may be
transferable to actual molecular systems. We have refrained
from touching upon experiments that involve charge detec-
tion, rather than spin directly, because of the additional com-
plications involved in describing the spin-to-charge conver-
sion (both in terms of the modeling, and regarding the proper
design of the experimental conditions). The observation of the
third class of experiments, revolving around near-equilibrium
properties of enantiomer absorption on magnetized surfaces,
pose even greater difficulties for explanation, and we have
not attempted at addressing those. A proper understanding
of spin-selective transmission may form a solid basis for pro-
ceeding with developing an explanation for the second two
classes of experiments.
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