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Natural frequencies are known to improve performance in Bayesian reasoning. 
However, their impact in situations with two binary events has not yet been completely 
examined, as most researchers in the last 30  years focused only on conditional 
probabilities. Nevertheless, situations with two binary events consist of 16 elementary 
probabilities and so we widen the scope and focus on joint probabilities. In this article, 
we theoretically elaborate on the importance of joint probabilities, for example, in 
situations like the Linda problem. Furthermore, we implemented a study in a 2×5×2 
design with the factors information format (probabilities vs. natural frequencies), 
visualization type (“Bayesian text” vs. tree diagram vs. double tree diagram vs. net 
diagram vs. 2×2 table), and context (mammography vs. economics problem). 
Additionally, all four "joint questions" (i.e., P A B  P A B  P A B  P A B� �� � �� � �� � ��   

were 
asked for. The main factor of interest was whether there is a format effect in the five 
visualization types named above. Surprisingly, the advantage of natural frequencies 
was not found for joint probabilities and, most strikingly, the format interacted with 
the visualization type. Specifically, while people’s understanding of joint probabilities 
in a double tree seems to be worse than the understanding of the corresponding 
natural frequencies (and, thus, the frequency effect holds true), the opposite seems 
to be true in the 2 × 2 table. Hence, the advantage of natural frequencies compared 
to probabilities in typical Bayesian tasks cannot be found in the same way when joint 
probability or frequency tasks are asked.
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1 Introduction

There is an interesting tension in empirical research on the understanding of joint probabilities 
(formal: e.g., P(A∩B)). On one hand, researchers have stressed the importance of comprehending 
joint probabilities, e.g., in the legal context (O’Grady, 2023) and conducted empirical studies (e.g., 
Tversky and Kahneman, 1974; Donati et al., 2019). On the other hand, psychological studies mostly 
just ask for a qualitative comparison of P(A) and P(A∩B) without the need for participants to assess 
a concrete joint probability. Let us, for example, consider the most famous instance of the so-called 
conjunction fallacy, namely the Linda problem (introduced by Tversky and Kahneman, 1983).
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Linda is 31 years old, single, outspoken, and very bright. She majored in philosophy. As a 
student, she was deeply concerned with issues of discrimination and social justice, and she 
also participated in anti-nuclear demonstrations. Which is more probable?

 1. Linda is a bank teller.
 2. Linda is a bank teller and is active in the feminist movement.
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Let “A” be the event “being active in the feminist movement” and “B” 
“being a bank teller.” Since B∩A (being a bank teller and being active in the 
feminist movement) is a subset of B (being a bank teller), the single event 
B is more probable than both events at the same time. Formally, the 
multiplication rule concerning joint probabilities is P(B∩A) = P(B) ⋅ P(A|B) 
and because P(B) must be multiplied with a probability, i.e., a number 
between 0 and 1, P(B∩A) cannot be larger than P(B).

Yet, the fact that no concrete probability has to be estimated or 
calculated stands in strong contrast to the way conditional probabilities 
are examined in cognitive psychology, for example, in the framework 
of Bayesian reasoning in which specific estimates have to be given by 
participants (see Theoretical Framework).

For requesting a concrete joint probability in the Linda task, 
participants, for instance, might be asked:

Linda is 31 years old, single, outspoken, and very bright. She majored 
in philosophy. As a student, she was deeply concerned with issues of 
discrimination and social justice, and she also participated in anti-
nuclear demonstrations. Assume that the probability that Linda is a 
bank teller is 5%. Assume that the probability that she is active in the 
feminist movement, if she is a bank teller, is 20%. What is the 
probability that she is a bank teller and active in the feminist movement?

Now, the multiplication rule based on the given information  
yields P(B∩A) = P(B) ⋅ P(A|B) = 5% ⋅ 20% = 1%. Considering this rule, 
it becomes clear that joint probabilities, i.e., P(A∩B), are deeply 
interwoven with conditional probabilities, i.e., P(A|B). Joint probabilities 
are even used for defining conditional probabilities in mathematics 
(P(A|B) = P(A∩B)/P(B)). The tension in psychological research is that 
joint probabilities are stressed as very relevant, but at the same time 
concrete joint probabilities usually do not have to be  calculated by 
participants. In the present study, we investigate people’s assessment of 
concrete numerical values of joint probabilities. The main aim is to 
explore, whether the so-called “natural frequency effect” (that helps 
participants assess conditional probabilities) can also be found for joint 
probability judgments.

2 Theoretical framework

In the following, we  first embed the structure of the Linda 
problem in the larger framework of Bayesian reasoning situations 
consisting of two binary events. In general, in the statistical world of 
two binary events A and B (with the counter events A  and B ), one 
can consider 16 different elementary probabilities:1

 • Four marginal probabilities: P A  P A  P B  P B� �� � �� � �� � �
 • Four joint probabilities: P A B  P A B  P A B  P A B� �� � �� � �� � �   

 • Eight conditional probabilities:

P A B P A B P A B P A B P B A P B A P B A

P B A

� ��� � �� � �� � �� � �� � �� � ��

� �

1 Of course, there are also the trivial probabilities P(∅) and P(Ω) as well as all 

probabilities regarding set unions, e.g., P(A∪B). An extensive overview and 

discussion of all possible cases can be found in Neth et al. (2021).

Note that in the case of stochastic independence of both events, 
P(A|B) equals P(A) and, thus, the multiplication rule can be simplified:

 • A and B are stochastic dependent: P(B∩A) = P(B) ⋅ P(A|B)
 • A and B are stochastic independent: P(B∩A) = P(B) ⋅ P(A)

Ignoring the dependency of two events was, by the way, one of 
several problems in the famous miscarriage of justice concerning Sally 
Clark (Colmez and Schneps, 2013) or the one of Kathleen Folbigg 
(O’Grady, 2023), which again stresses the importance of understanding 
joint probabilities (including concrete values). After two infants of 
Sally Clark died shortly after birth, she was convicted of murdering 
her children. The court knew that the sudden infant death syndrome 
(SIDS) occurs with a chance of about 1 in 8500 cases. After not only 
one infant but two of her children died, it was considered to be very 
unlikely that this happened by chance, particularly under the wrong 
assumption that these two deaths were independent of each other. 

Consequently, the chance for two children suffering from SIDS was 

calculated as 1

8500
 ⋅ 1

8500
 (≈0.0000014%), whereupon she was 

convicted of being a murderer. However, a second SIDS is more 
probable given a first one already happened (Glinge et al., 2023). As 
soon as this was stated clearly, Clark was released from prison (after 
three years of her sentence); nevertheless, her life had been destroyed 
(Colmez and Schneps, 2013). In a similar, more recent criminal case, 
Kathleen Folbigg was convicted of murdering three of her infant 
children and of manslaughter of her fourth child (Phillips, 2022). This 
verdict was based on the same misunderstanding as Clark’s—the 
court assumed that four children could not independently die by 
accident but only by being murdered. After scientists, though, had 
analyzed the case for about 20 years and had proven a gene mutation 
in the family, Folbigg was finally released from prison in 2023 (Wells 
et al., 2023).

2.1 Bayesian reasoning and natural 
frequencies

In psychological research on situations with two binary events, 
typically Bayesian reasoning is investigated empirically. For this, a 
specific set of probabilities is given, and a concrete probability is 
required (Figure 1). In more detail, the “positive predictive value” 
P(B|T+) has to be  inferred from (1) the base rate P(B), (2) the 
sensitivity P(T + |B), and (3) the false-alarm rate P(T + |nB), which 
reflects the typical setting of diagnostic situations. Figure 1 displays 
the famous mammography task (adapted from Eddy, 1982). Since the 
issue of joint probabilities is strongly related to such diagnostic 
reasoning, we first take a short look at the research area of Bayesian 
reasoning. Many studies documented the difficulties people—laymen 
and experts like physicians—have with such problems, especially 
when they are formulated in terms of probabilities (Figure 1, left; 
Gigerenzer and Hoffrage, 1995; Garcia-Retamero and Hoffrage, 2013; 
Binder et al., 2015; Bruckmaier et al., 2019).

In research on Bayesian reasoning, it turned out that a 
reformulation with so-called “natural frequencies” (Figure 1, right 
side) helps people to understand such situations (Gigerenzer and 
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Hoffrage, 1995; Siegrist and Keller, 2011). Natural frequencies are a 
pair of natural numbers a and b (a ≤ b), which are equivalent to 
percentages and used as “a out of b” (Krauss et al., 2020). Sometimes, 
people distinguish between “percentages” and “natural frequencies” 
instead of “probabilities” and “natural frequencies” (e.g., Knapp 
et al., 2009). In this article, we use the latter distinction. A meta-
analysis revealed that on average in probability versions (without 
visualization) usually only 4% of people can solve such tasks 
correctly, while, in natural frequency versions (also without 
visualizations), 24% of people find the correct solution (McDowell 
and Jacobs, 2017).

Natural frequencies are helpful because the calculations are 
simpler compared to the probability version (Figure 1) and, thus, the 
solution can be accessed more easily (Gigerenzer and Hoffrage, 1995). 
The higher solution rates can, therefore, also be  explained by the 
number of mental steps that are needed to solve the problem. In the 

probability format, the correct solution has to be calculated using a 
sophisticated formula, while people only have to identify two correct 
numbers and do a simple addition in the frequency format. Studies 
show that Bayesian tasks are solved more correctly the less mental 
steps are needed (Ayal and Beyth-Marom, 2014).

Note that, in the tree diagram (Figure  1, left), conditional 
probabilities are depicted at the lower arrows, for instance the 
sensitivity P(T + |B) of 80%, represented at the very left branch. Joint 
probabilities are not depicted. However, P(B∩T+), for example, might 
be  calculated according to the multiplication rule above by 
P(B∩T+) = P(B) ⋅ P(T + |B) = 2% ⋅ 80% = 1.6%.

In typical Bayesian reasoning tasks, joint probabilities are neither 
given nor asked for. For an exception for giving joint probabilities see 
the “short menu” in Gigerenzer and Hoffrage (1995); for exceptions 
for asking for joint probabilities see Böcherer-Linder and Eichler 
(2017), Bruckmaier et al. (2019), or Binder et al. (2020).

FIGURE 1

The famous mammography task (adapted from Eddy, 1982): probability version (left) and natural frequency version (right).
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From the perspective of the widespread research on Bayesian 
reasoning and the largely documented effect of natural frequencies, 
however, it is an interesting question, whether natural frequency 
formulations would also help understanding notorious joint 
probabilities. This is especially intriguing since Bayes formula 
(Figure 1, left) could alternatively be written as

 
P B T

P B T
P B T P nB T

| �� � � � �� �
� �� � � � �� �

While 16 probabilities are available in statistical situations with 
two binary events, empirical research has, to a very large extent, 
primarily focused on Bayesian reasoning tasks. The enormous effect 
of natural frequencies in such basic diagnostic tasks motivates the 
question what happens in related or extended problem-
solving situations.

2.2 Extensions of Bayesian reasoning—and 
the respective help of natural frequencies

Before we address a possible generalization of the natural 
frequency effect from Bayesian reasoning to joint probabilities in 
detail (see section 2.3), we first shed light on the potential of natural 
frequencies in alternative extensions of Bayesian reasoning. The 
following paragraphs summarize various possible extensions of 
Bayesian reasoning and whether studies document that natural 
frequencies also help in these cases. Interestingly, there seems to be a 
clear format effect as long as conditional probabilities are considered. 
When it comes to joint probabilities, though, there does not seem to 
be an overall format effect in favor of natural frequencies because the 
evidence is mixed.

To explain extensions 1–3, medical contexts are used in 
the following.

2.2.1 Increasing the number of tests (extension 1a)
One possible extension of Bayesian reasoning would be to vary 

the number of medical tests applied. In the context of breast cancer, 
for instance, after a mammography screening, an ultrasound test 
might be applied to verify the test results (which would yield another 
level in the tree diagram in Figure 1, e.g., Binder et al., 2018). Krauss 
et al. (1999), for example, found that natural frequency versions were 
more than four times as likely to be solved correctly than probability 
versions. Similar results can be found in Woike et al. (2017).

2.2.2 Increasing the number of test (or criterion) 
values (extension 1b)

Another way of altering Bayesian reasoning is to increase the 
number of test and/or criterion values. For instance, a medical test 
might have three different outcomes (positive, negative, unclear). In 
the same manner, a medical test can be  sensitive to two different 
diseases, which would result in three possible criterion values (e.g., 
diabetes type 1, diabetes type 2, or healthy). Modeling three (or even 
more) possible test outcomes as well as three (or even more) possible 
health statuses would lead to three (or more) nodes in a tree diagram 
in the second or in the third level, respectively. Formulating tasks in 
such complex situations in natural frequencies leads to about 50% of 

correct performances of participants (Hoffrage et al., 2015). Binder 
and Krauss (under review) confirm these results and give an extensive 
overview of studies on such types of generalization (i.e., 1a and 1b).

2.2.3 Covariational reasoning (extension 2)
Another interesting way of extending the classical Bayesian 

reasoning task would be to consider whether people are aware of the 
consequences of changing one of the three input variables (i.e., base 
rate, sensitivity, false-alarm rate) on the positive predictive value. Even 
though such kind of reasoning is very complex, some people, 
nevertheless, can correctly judge the direction of change of the positive 
predictive value after a respective training, when it is based on the 
natural frequency concept (Steib et al., 2023; Büchter et al., 2024).

2.2.4 Communication skills (extension 3)
The communication quality in Bayesian situations is a further 

aspect worth to consider. Since Bayesian situations often occur in 
medical contexts in which a physician is supposed to advise patients, 
the way of (verbally) communicating the meaning of a positive test 
result is very important (Gigerenzer et al., 1998; Brose et al., 2023). 
Unfortunately, counselors are not always communicating the results 
in a correct and comprehensible way (Gigerenzer et al., 1998; Ellis and 
Brase, 2015; Prinz et al., 2015) and medical students cannot even 
identify a high-quality communication with the correct value when it 
is presented as one out of several short video clips (Böcherer-Linder 
et  al., 2022). To improve (pictorial) communication, the Harding 
Center for Risk Literacy developed fact boxes and icon boxes 
(Schwartz et al., 2007; McDowell et al., 2019), which are also based on 
the concept of natural frequencies. Clearly, verbal and pictorial 
communication can benefit from the frequency effect.

2.3 The issue of joint probabilities: Do 
natural frequencies help?

The extensions discussed so far (1–3) deal with conditional 
probabilities. However, there are 16 elementary probabilities 
available in Bayesian situations (see above). Thus, it is an interesting 
question whether natural frequencies help in a similar way when 
questions on joint probabilities are posed. In the following 
paragraphs, we analyze empirical evidence collected so far. First  
(in 2.3.1), we  summarize experimental results concerning the 
qualitative comparison of P(A∩B) and P(A). Afterwards (in 2.3.2), 
we turn to quantitative tasks in which a concrete probability is asked 
for. Finally, we conclude that the evidence regarding the help of 
natural frequencies concerning joint probabilities is mixed and 
explain the limitations of the studies conducted so far.

2.3.1 Qualitative comparison of P(A∩B) and P(A)
Besides the original study of the Linda problem by Tversky and 

Kahneman (1983), many studies document that people consider the 
second option with two events at the same time as more likely as the 
first option with only one event (e.g., Charness et al., 2009; Donati 
et al., 2019). However, as demonstrated above, one single event is 
always more probable than the simultaneous occurrence of this event 
and an additional event.

Since the background information on Linda, which is irrelevant 
for the multiplication rule, seems to make option 2 more plausible, 

https://doi.org/10.3389/fpsyg.2024.1296359
https://www.frontiersin.org/journals/psychology


Stegmüller et al. 10.3389/fpsyg.2024.1296359

Frontiers in Psychology 05 frontiersin.org

Tversky and Kahneman (1983) explain people’s difficulties by the 
representativeness heuristic, which can sometimes lead to 
misjudgments. Yet, there are alternative explanations, for instance, 
that the word “and” in everyday communication has many different 
meanings (Mellers et  al., 2001; Hertwig et  al., 2008). Another 
explanation of the fallacy is that people interpret the first event “Linda 
is a bank teller” in reminiscence to the second option as “Linda is a 
bank teller and is NOT active in the feminist movement” (Hertwig 
et al., 2008).

Nonetheless, similar difficulties occur in related tasks like for 
example in “rolling the dice” (Tversky and Kahneman, 1983) in which 
the events are not formulated literally, and, therefore, such linguistic 
problems cannot explain participants’ misconceptions.

Consider a regular six-sided dice with four green faces and two red 
faces. The dice will be rolled 20 times and the sequence of greens (G) 
and reds (R) will be recorded. You are asked to select one sequence 
from a set of three and you will win $25 if the sequence you chose 
appears on successive rolls of the dice. Please check the sequence of 
greens and reds on which you prefer to bet.

 1. RGRRR
 2. GRGRRR
 3. GRRRRR

In this task, three options (instead of two) are given, but, again, 
one (1.) is a subset of another (2.). Most participants orientated 
themselves on the probabilities of rolling a green face (4/6) and of 
rolling a red face (2/6) and, therefore, chose sequence 2, which 
includes more green faces compared to sequence 1, both absolutely 
and relatively, and is, therefore, more representative regarding the 
provided information (Tversky and Kahneman, 1983). The first 
sequence, though, again is more probable than the second one since 
the latter includes the first one.

To what extent can natural frequencies help in both problems? 
Note that neither in the “Linda problem” nor in “rolling the dice” 
concrete probabilities are asked for.2 However, at least a “frequentist 
formulation” of both problems is possible, for instance: “Which option 
occurs most often?” In the Linda task, such a formulation does not 
seem possible at first sight, since the task is about a single event 
probability (Linda is only one person). Even in this case, though, one 
can imagine, for example, 200 people, who fit Linda’s description 
(Fiedler, 1988). Picturing these 200 people while asking oneself, how 
many are (1) bank tellers or (2) bank tellers and simultaneously active 
in the feminist movement, makes it easier to understand the task 
regardless of whether such 200 people exist or not (Fiedler, 1988).

Wedell and Moro (2007) investigated the effect of such frequentist 
questions in multiple similar scenarios (including rolling the dice), but 
found no systematic differences between probability and frequentist 
questions. Interestingly, already Inhelder and Piaget (1964) 
implemented a frequentist question for investigating their so-called 
class-inclusion problem. They concluded that children who are asked 

2 Even though neither probabilities are given nor asked for explicitly, in “rolling 

the dice,” the probability of all three sequences can be calculated concretely: 

P(RGRRR) ≈ 0.82%, P(GRGRRR) ≈ 0.54% and P(GRRRRR) ≈ 0.27%.

whether there are more red roses or roses in a bouquet often choose 
the answer “red roses,” although the latter ones clearly are included in 
the answer “roses.”

Note that in all examples so far only a qualitative comparison of 
P(A∩B) and P(A) was asked for. While Fiedler (1988) found increased 
performances based on a frequency question, Wedell and Moro (2007) 
did not. Also, Inhelder and Piaget (1964) did not identify a frequentist 
formulation as beneficial, which overall results in mixed evidence.

2.3.2 Calculating P(A∩B) based on concrete given 
probabilities

Basically, there are two options for displaying concrete 
probabilities that allow assessing a joint probability. One of them is 
presenting several concrete pieces of information in a text and the 
other one is to provide statistical information in visualizations (also 
see Figure 2).

Concerning a textual representation, the question arises, which 
pieces of information should or must be given to determine a correct 
joint probability answer. In the Bayesian reasoning paradigm both the 
given pieces of information and the specific question are predefined. 
Interestingly, based on the typical three given pieces of information in 
a “Bayesian text,” namely P(B), P(A|B), and P(A|B), not only the 
positive predictive value, but also all four joint probabilities can 
be  calculated in principle. This set of information is, in so far, 
“complete” because it allows for the calculation of all 16 
elementary probabilities.

It is important to note that for calculating one specific joint 
probability, i.e., P(A∩B), only two probabilities are needed (e.g., P(A) 
and P(B|A) or P(B) and P(A|B), respectively). Yet, if all four joint 
probabilities were asked for, more information would be necessary 
(for a case-by-case analysis see Stegmüller, 2020). For this reason, it is 
evident that providing a “Bayesian text” allows some generalization 
potential regarding the judgment of joint probabilities.

When asking for all four joint probabilities based on the 
mentioned set of given information P(B), P(A|B), P(A B),| the four 
types (P(A∩B), P(A B), P(A B), P(A B))  

see Table 1) require a 
different number of mental steps. Looking at Table 1, it becomes clear 
that, for the first type, all needed factors for answering this "joint 
question" are directly given in the "Bayesian text" (Figure 1), whereas, 
for the third type, even two counter probabilities have to be assessed 
first. In the frequency version, the first and the last type can be inferred 
by "skipping one level" and reading off the correct numbers only (for 
the example in Figure 1, e.g., 160 out of 10,000 and 980 out of 10,000, 
respectively), while the counter events need to be assessed first for the 
other two joint frequencies (e.g., 40 out of 10,000 and 8,820 out of 
10,000, respectively).

A first attempt to ask for a joint probability based on such a 
“Bayesian text” was made by Binder et al. (2020), however, in this 
study, only one joint probability was asked for (type 2 in Table 1). 
Although there was no substantial frequency effect (see Table  2: 
“Bayesian text”), this finding cannot simply be transferred to the other 
three joint probabilities, since the different questions require a 
different number of mental steps (Table 1; Ayal and Beyth-Marom, 
2014) and are, thus, not directly comparable.

Another way to provide concrete probabilities that allow to 
assess a joint probability is to present them in a visualization. 
Figure 2 displays four visualizations that were already used for 
joint probability judgements in prior studies (yet, not 
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FIGURE 2

Visualizations of two binary events in the context of the mammography problem: Probability versions (left) and frequency versions (right).1

1 Note that because of the plural “women” in our probability trees (e.g., in Figures 1, 2) these trees are basically percentage trees. However, since 

research in Bayesian reasoning mostly distinguishes between probability and frequency format, we call them probability trees.
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systematically) based on the context and numbers given in 
Figure 1 (Bruckmaier et al., 2019; Binder et al., 2020). Note that 
the first two (tree diagram and double tree) display conditional but 
no joint probabilities. The opposite is true for the 2 × 2 table. Only 
the net diagram has the advantage of displaying both conditional 
and joint probabilities.

The tree diagram, the double tree, and the net diagram have a 
node-branch structure in which probabilities can be entered at the 
branches (Figure 2, left) and frequencies in the nodes (Figure 2, 
right). Nevertheless, frequencies and probabilities can, in 
principle, also be included simultaneously (imagine putting the 
left and the right visualization on top of each other), which makes 
it possible to depict both formats into the visualization at once 
(Binder et  al., 2023). Thereby, the net diagram is the only 
visualization that can display all 16 probabilities. This versatility 
of the net diagram (i.e., all 16 probabilities and all 9 frequencies 
can be inserted), however, raised the concern that it would lead to 
a cognitive overload for students or study participants (Henze and 
Vehling, 2021). In 2 × 2 tables, cells normally either include 
probabilities or frequencies.

In both probability trees (simple and double), the answer to all 
joint questions cannot be read off directly but must be calculated first 
(e.g., in Figure 2: P(B∩T+) = P(B) ⋅ P(T +|B) = 2% ⋅ 80% = 1.6%). In the 
net diagram and the 2 × 2 table in probability format, only the correct 
numbers have to be read off, which results in fewer mental steps than 
in the tree diagrams. In the frequency format, however, all 
visualizations directly deliver the same information, since in each 
visualization, only the correct two numbers have to be combined 
without a calculation.

Table  2 presents previous results, when a joint probability 
question was asked explicitly based on these visualizations 
(Bruckmaier et al., 2019; Binder et al., 2020). While there seems to 
be no format effect in the “normal” tree diagram (Bruckmaier et al., 
2019), natural frequencies appear to have a positive effect when 
placed in a double tree (Binder et al., 2020). Interestingly, in 2 × 2 

tables, natural frequencies even seem to deteriorate the performance 
(see both studies in Table 2).

However, Bruckmaier et al. (2019) conducted an eye-tracking 
study with only 24 participants and Binder et  al. (2020) focused 
predominantly on conditional probabilities (i.e., Bayesian reasoning).

In both studies, previously posed conditional probability questions 
might have framed participants toward thinking of conditional 
probabilities and, thereby, might have had an influence on the answer 
to the following joint probability question. Furthermore, in both 
studies, only one of the four possible joint probabilities was asked for, 
namely the one without the need to infer counter events first. Taken 
together, the findings in Table 2 must be interpreted very carefully.

In the present article, the understanding and assessing of joint 
probabilities and frequencies in situations with two binary events 
is examined for the first time systematically. Note that we are not 
primarily interested in which visualization is better than the other 
to foster understanding of joint probabilities. Rather, different 
visualization types have the potential to display statistical 
information in various ways and, thus, allow exploring possible 
format effects on a more differentiated level. In principle, we are, 
therefore, interested in potential interactions of a possible 
frequency effect with (a) the underlying representation of statistical 
information and (b) the type of probability question asked  
P(A∩B), P(A B), P(B A),P(B A).   Both perspectives aim at 
generalizing possible frequency effects regarding the assessment of 
“joint information.”

3 Present approach

In the present study, we investigate people’s ability to assess concrete 
joint probabilities or frequencies based on various ways to represent 
statistical information. To study format effects, we  considered five 
different “visualization types,” namely the “Bayesian text” (no 
visualization) and the four completely filled visualizations from Figure 2. 

TABLE 1 Information given or not given in the "Bayesian text" in both formats; each "X" requires an additional mental step.

Joint 
question

Probability format Frequency format

Needed calculation First factor Second factor
Both needed absolute 

frequencies

Type 1 P(A B) P(B) ⋅ P(A|B) ✓ ✓ ✓

Type 2 P(A B) P(B) ⋅ P(A|B) ✓ X X

Type 3 P(A B) P(B) ⋅ P(A|B) X X X

Type 4 P(A B) P(B) ⋅ P(A|B) X ✓ ✓

Note that also the questions with the switched event order (e.g., P(B∩A)) have the same calculation steps as the listed ones (e.g., P(A∩B)).
✓: directly given; X: not directly given; probability/frequency of counter event needs to be inferred first.

TABLE 2 Results in previous studies with questions on joint probabilities.

Information 
format

Bruckmaier et al. (2019) Binder et al. (2020)

Tree diagram 2  ×  2 table “Bayesian text” Double tree Net diagram 2  ×  2 table

Probabilities 46% 96% 16% 16% 59% 78%

Natural frequencies 50% 79% 22% 48% 45% 52%
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Next to each visualization, no additional text with statistical information 
was given. Since each of the five visualization types (“Bayesian text,” 2 × 2 
table, tree diagram, double tree, net diagram) can be equipped with both 
information formats (probability or natural frequency), we implemented 
10 different stimuli. Based on all visualization types, we, furthermore, ask 
for all four possible joint probabilities or frequencies.

Our research question is:

RQ: What is the effect of information format (i.e., probabilities vs. 
natural frequencies) for assessing all four concrete joint probabilities/
frequencies when statistical information is presented as

 a.  “Bayesian text,” i.e., the three pieces of information (base rate, 
sensitivity, and false-alarm-rate) typically presented in 
Bayesian reasoning tasks are provided in textual form

or in a completely filled visualization (Figure 2), namely as

 b.  tree diagram
 c. double tree
 d. net diagram
 e. 2 × 2 table?

Furthermore, we  want to know whether the type of joint 
probability (P(A B), P(A B), P(B A), P(B A))    that was asked 
substantially changed participants’ performance.

3.1 Hypotheses regarding research 
question (a) Bayesian text

In the probability version, answers need to be calculated, for 
example, by applying the multiplication rule (e.g., “2% ⋅ 80%”). In the 
natural frequency format, most absolute frequencies that must 
be combined for the correct answer are already available (depending 
on the type of question; see Table 1). For instance, in the “Bayesian 
text” in Figure 1, the first two provided natural frequencies (“200 out 
of 10,000” and “160 out of 200”) have to be combined correctly to 
receive the answer “160 out of 10,000.” Note that in both formats 
some of the given information has to be ignored. Since a calculation 
with probabilities seems to be  more difficult than choosing and 
combining the right frequencies, we  assume—in contrast to the 
results of Binder et  al. (2020)—a substantial format effect here. 
Consequently, a natural frequency formulation should enhance the 
performance for questions on joint probabilities. Moreover and 
regarding the four types (Table 1), it is expected that the more counter 
events from the “Bayesian text” have to be  inferred first, the less 
correct solutions will be given.

3.2 Hypotheses regarding research 
question (b) - (e) visualizations

Neither in the tree diagram nor in the double tree, joint 
probabilities are displayed, meaning that they must be calculated 
(e.g., by the multiplication rule). In the frequency versions of both 
tree diagrams, the two relevant absolute frequencies can be read off 
directly and only have to be combined, which is why we expect a 

positive format effect here. All four joint probabilities can be directly 
read off from the net diagram and the 2 × 2 table, so high solution 
rates can be expected even in probability versions (these performances 
might be probably higher in the 2 × 2 table because less other possibly 
interfering probabilities are displayed as compared to the net 
diagram). According to Bruckmaier et al. (2019) and Binder et al. 
(2020), even a reverse format effect might be expected for the net 
diagram and the 2 × 2 table, since two relevant frequencies have to 
be identified first and then combined correctly.

In sum, concerning (b) and (c), we expect a format effect in favor 
of natural frequencies, while concerning (d) and (e), we expect no or 
even an opposite format effect.

Since in each implemented visualization, all statistical information 
is presented in a “symmetrical way” and no counter events have to 
be inferred, no differences are expected regarding the different type of 
probability question. Yet, the various types of joint probabilities still differ 
in a linguistic way since the number of negations in the question varies.

4 Method

4.1 Design

Participants had to work on two different contexts (i.e., 
mammography problem and economics problem; the first adapted 
from Eddy, 1982, and the second from Ajzen, 1977). In each context, 
they had to assess all four possible joint probabilities or frequencies. 
So, every participant had to work on eight tasks.

The study design (see Table 3) includes three factors (information 
format, visualization type, and context). This leads to a 2 × 5 × 2 design:

 • Factor 1: information format: probabilities vs. natural frequencies
 • Factor 2: visualization type:  “ Bayesian text” (no visualization) vs. 

2 × 2 table vs. tree diagram vs. 
double tree vs. net diagram

 • Factor 3 (not a factor of interest): context: mammography vs. 
economics problem

Factor 1 is the main factor of interest by considering possible 
interactions with factor 2, while factor 3 was not a factor of 
interest but only implemented for mutual validation. Furthermore, 
each participant answered all four possible joint questions 
(P(A B), P(A B),P(B A),P(B A))    in both contexts. To control for 
effects of the event order (i.e., asking for P(A∩B) vs. asking for 
P(B∩A)), two questions always first included the event A (e.g., getting 
a positive test result or not) and the other two the event B (e.g., having 
breast cancer or not).

4.2 Instruments and administration

For each context, 10 stimuli were constructed according to 
Table 3. In the testlets, one context (for both contexts see Table 4) per 
participant was always presented in natural frequencies and the other 
one in probabilities. If the first context processed was based on one 
out of five visualization types (“Bayesian text,” tree diagram, double 
tree, net diagram, 2 × 2 table), the second context was presented in 
one out of the remaining four visualization types. Thus, the 
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instruments were systematically constructed from the modules in 
Table  3. The rule was: If a participant worked on context X, 
information format Y, and visualization type Z, exactly these three 
conditions were forbidden for the second context processed. Every 
context comprised all four possible joint questions.

Besides the eight joint probability or frequency judgements, several 
covariates were collected from all participants (see 4.3): level of education 
(“Fachsemester”), grade point average from high school (German 
“Abiturnote”), the highest school degree, the field of study, gender, and age.

We varied the first three factors between participants (yielding 160 
different testlets) and gave two participants that were sitting next to 
each other always different contexts for the first task. The two different 
scenarios (Table 4) were handed out one after the other to track the 
order of processing. The participants did not have a time limit, but 
they could use as much time as they wanted to. It took them between 
5 and 25 minutes to complete all eight tasks. Further, they were given 
calculators since the study was on their understanding of the tasks and 
not on their ability to calculate.

4.3 Participants

Data analysis was based on N = 335 students who were examined 
during university classes in Bavaria (Germany) in the year 2022. Students 
of social work (N = 251), biomedical engineering (N = 53), and business 
classes (N = 31) participated. N = 271 students were female, N = 62 male, 
and N = 2 nonbinary. The average age was M = 22.5 (SD = 4.0).

The study was carried out in accordance with the Research Ethics 
Standards of the university. Students were informed that their 
participation was voluntary, and anonymity was guaranteed. Initially, 
we had N = 339 students attending, but only N = 335 were considered 
for the analysis because two withdrew their consent and two more 
mentioned that they did not really think about the tasks and did not 
put any effort in trying to solve them.

Note that in German schools, only 2 × 2 tables (either filled with 
probabilities or frequencies) and tree diagrams (only with 
probabilities) were taught, so students probably were familiar with 
these types of visualizations.

4.4 Coding

An overview of the correct answers for each of the eight questions 
(for both contexts and both formats) is given in Table  5. For the 
probability versions, the correctness of a response is classified according 
to whether the participant gave the correct answer within a certain 

interval of rounding (± 0.1%). For the natural frequency version, both 
absolute frequencies had to be correct (no rounding occurs). Interrater 
reliability between two raters was calculated based on 15% of the data 
and yielded a Cohens Kappa of κ = 1 (Cohen, 1960), therefore answers 
could be coded with a maximum of objectivity.

5 Results

5.1 Descriptive results regarding the four 
types of questions

Unexpectedly, there were almost no substantial differences 
regarding the special type of joint probability that was asked  
(P(A B), P(A B), P(B A), P(B A);    always in this order). In 
Supplement S1, all descriptive results are displayed for each single 
stimulus. Across all versions, the type of question asked and, thus, the 
number of counter events that first had to be assessed as well as the 
number of negations in the question do not seem to make a 
substantial difference.

Another perspective on this fact is given by Figure 3, which 
illustrates the number of correct joint inferences (0–4). According 
to the bar diagrams, participants rather predominantly answered 
none or all of the four questions correctly. Thus, they either 
understood how to calculate or read off the answer or they did not 
at all, regardless of which information format was given. In the 
following, we will, therefore, report results aggregated across the 
four joint questions.

5.2 Results regarding research questions 
(a)–(e)

There seems to be a highly differential format effect regarding 
each visualization type (Figure 4). Because the response patterns in 
both contexts were very similar, Figure 4 displays the results across 
contexts. By considering the visualizations separate from each 
other, two opposite results can be observed already at a descriptive 
level: the expected frequency effect for the double tree and a reverse 
effect for the 2 × 2 table in which the probabilities lead to 
better performances.

To analyze the effects of information format, visualization 
type, and their interaction effects by means of inferential statistics, 
we estimated a generalized linear mixed model (GLMM) with a 
logit link function to predict the probability that participants solve 
a question for joint probabilities or frequencies correctly (as a 

TABLE 3 Study design.

First context processed* Second context processed*

Probabilities

×

“Bayesian text”

Probabilities

×

“Bayesian text”

Tree diagram Tree diagram

Double tree Double tree

Natural frequencies
Net diagram

Natural frequencies
Net diagram

2 × 2 table 2 × 2 table

All four possible joint questions (order of the events within a question was varied) All four possible joint questions (order of the events within a question was varied)

Each participant worked on both contexts. If the first context was presented, e.g., in natural frequencies and a net diagram, these both conditions were excluded for the second context.
*= order of contexts, formats, and the two visualization conditions were counterbalanced.
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TABLE 4 Stimuli that emerged by systematically varying factors 1–3 (see Figure 2 for the visualizations).

Mammography problem Economics problem

Probabilities Natural frequencies Probabilities Natural frequencies

Cover story Imagine you are a reporter for a women’s magazine and you want to write an article about breast 

cancer. As a part of your research, you focus on mammography as an indicator of breast cancer. 

You are especially interested in the question of what it means if a woman has a positive result 

(which indicates breast cancer) in such a medical test.

Please answer the following questions using the statistical information provided below:

Imagine that you are interested in the question of whether students at a boys’ school are more 

likely to choose economics courses or other courses at their school. For this purpose, 

you refer to a study conducted by the school psychology service on the connection between 

personality traits in students and the choice of subjects.

Please answer the following questions using the statistical information provided below:

Statistical information 

(visualization type)

“Bayesian text”  • The probability that a woman who goes for a 

routine screening has breast cancer is 2%. If a 

woman who goes for a routine screening has 

breast cancer, the probability that she will get a 

positive test result is 80%. If a woman who goes 

for a routine screening does not have breast 

cancer, then the probability that she will still get 

a positive test result is 10%.

 • 200 out of 10,000 women who go for a 

routine screening have breast cancer. Out 

of 200 women who go for a routine 

screening and have breast cancer, 160 get 

a positive test result. Out of 9,800 women 

who go for a routine screening and do not 

have breast cancer, 980 still get a positive 

test result.

 • The probability that a student attends the 

economics course is 32%. If a student 

attends the economics course, the 

probability that he is career-oriented is 

64%. If a student does not attend the 

economics course, the probability that he is 

still career-oriented is 60%.

 • 320 out of 1,000 students attend the 

economics course. Out of 320 students 

who attend the economics course, 205 are 

career-oriented. Out of 680 students who 

do not attend the economics course, 408 

are still career-oriented.

Visualization  • 2 × 2 table with probabilities, or  • 2 × 2 table with natural frequencies, or  • 2 × 2 table with probabilities, or  • 2 × 2 table with natural frequencies, or

 • Tree diagram with probabilities, or  • Tree diagram with natural frequencies, or  • Tree diagram with probabilities, or  • Tree diagram with natural frequencies, or

 • Double tree with probabilities, or  • Double tree with natural frequencies, or  • Double tree with probabilities, or  • Double tree with natural frequencies, or

 • Net diagram with probabilities  • Net diagram with natural frequencies  • Net diagram with probabilities  • Net diagram with natural frequencies

1st question P(A B)

What is the probability that a woman who goes 

for a routine screening will get a positive test 

result and has breast cancer?

How many of the women who go for a 

routine screening get a positive test result 

and have breast cancer?

What is the probability that a student is career 

oriented and chooses the economics course?

How many of the students are career 

oriented and choose the economics course?

2nd question P(A B)

What is the probability that a woman who goes 

for a routine screening will get a negative test 

result and has breast cancer?

How many of the women who go for a 

routine screening get a negative test result 

and have breast cancer?

What is the probability that a student is not 

career oriented and chooses the economics 

course?

How many of the students are not career 

oriented and choose the economics course?

3rd question P(B A)

What is the probability that a woman who goes 

for a routine screening does not have breast 

cancer and will get a negative test result?

How many of the women who go for a 

routine screening do not have breast cancer 

and get a negative test result?

What is the probability that a student does 

not choose the economics course and is not 

career oriented?

How many of the students do not choose 

the economics course and are not career 

oriented?

4th question P(B A)

What is the probability that a woman who goes 

for a routine screening does not have breast 

cancer and will get a positive test result?

How many of the women who go for a 

routine screening do not have breast cancer 

and get a positive test result?

What is the probability that a student does 

not choose the economics course and is 

career oriented?

How many of the students do not choose 

the economics course and are career 

oriented?

Answer format _________

(please specify to one decimal place)

____out of ______ _________

(please specify to one decimal place)

____out of ______
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binary dependent variable with 0 = wrong, 1 = correct). We decided 
for a mixed analysis and against a, for instance, generalized linear 
model (i.e., a logistic regression) due to our between-within-
subject design since each participant solved several tasks. To take 
this aspect into account, we modeled a generalized linear mixed 
model with the participants’ ID as a random factor, so that the 
participant-specific error is also modeled (Figure  3 shows 
dependencies between the responses). In the generalized linear 
mixed model, we specified the probability version of the “Bayesian 
text” as the reference category and included the possible 
explanatory factors “frequencies,” on the one side and, on the 
other side, “tree diagram,” “double tree,” “net diagram,” and “2 × 2 
table” via dummy coding. Furthermore, since the performance in 
the different formats was expected to vary depending on the 
visualization type, four interaction terms visualization × format 
were modeled as fixed effects.

Because the answers of the participants were dependent on 
each other (Figure 3) and to exclude sequence effects, we also 
controlled for the fact that one participant worked on more 
than one task. Specifically, we  implemented participants’ ID 
(w1) and the order of the questions: 1st, 2nd, 3rd, 4th, 5th, 6th, 7th, 
and 8th (w2) as random factors in the generalized linear 
mixed model:

0 1 2
3 4 5
6 7
8 9
1 2

frequencies tree diagram
double tree net diagram 2 2 table
tree diagram frequencies double tree frequencies
net diagram frequencies 2 2 table frequencies

w

ˆ

w

y = β + β ⋅ + β ⋅
+β ⋅ + β ⋅ + β ⋅ ×
+β ⋅ × + β ⋅ ×
+β ⋅ × + β ⋅ × ×
+ +

The regression coefficient for the frequencies was significantly 
negative (Table 6), which means that, in the “Bayesian text,” tasks 
in probabilities are better solved than the ones in natural 
frequencies. This “probability effect” also holds true for the 2 × 2 
table and the net diagram but does not become substantially bigger 
as can be  seen from the regarding interactions that are not 
significant. In contrast, for the tree diagram and the double tree, 
this interaction was significantly positive, meaning that the negative 
format effect observed in the “Bayesian text” is outweighed in these 
two versions. As a side effect of the findings, we can observe that 
each visualization compared to the text version—except the double 
tree—has significant regression coefficients, which means that all of 
these visualizations in the probability version improved participants’ 
performance. All fixed effects of the model explain 16.3% of the 
variance, whereas fixed and random effects together explain 75.9% 
of the variance.

If the question type (P(A B), P(A B), P(B A), P(B A)    ) is 
additionally implemented in the model (not displayed in Table 6), it 
can be  observed that none of the other question types is solved 
correctly significantly rarer than the (easiest) question for P(A∩B). 
Moreover, the implementation of this variable, as well as other 
covariates such as age, gender, level of education, mathematics grade, 
and school degree, does not lead to substantial changes in the 
results presented.

Note that some of the results displayed in Table 6 at first seem 
to contradict the results in Figure 4. Concerning the “Bayesian 
text,” for example, there was a descriptive advantage of frequencies 
in Figure 4, while, with inferential statistics, the outcome is the 
opposite. The results differ because we controlled for order and 

TABLE 5 Coding of the correct answers regarding all questions.

Probabilities Natural frequencies

Correct answer Interval in which 
answers were 
coded correct

Both absolute numbers 
must be exact

Mammography Having breast cancer joint with a 

positive test result

1.6% [1.5%; 1.7%] or a decimal 

fraction in [0.00; 0.02]

The correct answer is 160 out of 10,000.

Having breast cancer joint with a 

negative test result

0.4% [0.3%; 0.49%] or a decimal 

fraction in [0.00; 0.0049]

The correct answer is 40 out of 10,000.

Not having breast cancer joint with a 

negative test result

88.2% [88.1%; 88.3%] or a decimal 

fraction in [0.88; 0.89]

The correct answer is 8,820 out of 10,000.

Not having breast cancer joint with a 

positive test result

9.8% [9.7%; 9.9%] or a decimal 

fraction in [0.09; 0.10]

The correct answer is 980 out of 10,000.

Economics problem Choosing the economics course joint 

with interest in a career

20.5% [20.4%; 20.6%] or a decimal 

fraction in [0.20; 0.21]

The correct answer is 205 out of 1,000.

Choosing the economics course joint 

with no interest in a career

11.5% [11.4%; 11.6%] or a decimal 

fraction in [0.10; 0.12]

The correct answer is 115 out of 1,000.

Not choosing the economics course 

joint with no interest in a career

27.2% [27.1%; 27.3%] or a decimal 

fraction in [0.27; 0.30]

The correct answer is 272 out of 1,000.

Not choosing the economics course 

joint with interest in a career

40.8% [40.7%; 40.9%] or a decimal 

fraction in [0.40; 0.41]

The correct answer is 408 out of 1,000.

The problem of different rounding only occurs in the probability version, which is why only in these versions (and not in the frequency versions) answers within a certain interval were 
accepted. If we allowed the same interval for natural frequencies, though, nothing in the coding would change.
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ID in the GLMM, which we did not in the descriptive results. Of 
course, we varied all versions systematically when collecting the 
data, but, obviously, there are still “group” effects. This 
demonstrates the need for multi-level modeling since these more 
precise results cannot be  obtained from the descriptive 
results alone.

6 Discussion

6.1 Summary

In the present study, we systematically investigated participants’ 
assessment of concrete joint probabilities in Bayesian reasoning 

FIGURE 3

Overview of the absolute numbers of participants achieving no, one, two, three, or all four correct answers regarding all four types (Table 1), separated 
for all 20 stimuli.
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situations. In the theoretical part, we distinguished between paradigms 
that ask for a qualitative comparison of P(A) and P(A∩B) and 
paradigms in which, principally, the whole “Bayesian situation” 
consisting of 16 probabilities is considered and, therefore, (all) joint 
probabilities can be assessed. After summarizing pertinent literature, 
we  concluded that the evidence on a possible format effect with 
respect to joint probabilities is mixed.

In the empirical part of the paper, we reported a study with a 
2 × 5 × 2 design with the factors information format (probabilities 
vs. natural frequencies), visualization type (“Bayesian text” vs.  

tree diagram vs. double tree diagram vs. net diagram vs. 2 × 2  
table), and context (mammography vs. economics problem). 
Furthermore, each participant answered all four joint questions 
(P(A B), P(A B), P(B A), P(B A)).    Information format was the 
main factor of interest, and it was investigated which representation 
of a Bayesian situation shows which format effect.

First of all, looking at interactions between visualizations and 
information format, there were some opposite format effects. While 
tasks with probabilities improved participants’ performance in three 
visualization conditions (“Bayesian text,” net diagram, and 2 × 2 table), 

FIGURE 4

Percentages of correct inferences, separated by information format and visualization type across both contexts and across all four joint probability 
questions.

TABLE 6 Regression coefficients for information format, visualization type, and their interactions.

Estimate SE z p

β0 Intercept −0.27 0.30 −0.90 0.37

β1 Frequencies −1.18 0.40 −2.97 0.003

β2 Tree diagram 0.71 0.34 2.08 0.04

β3 Double tree −0.05 0.37 −0.14 0.89

β4 Net diagram 3.46 0.38 9.00 < 0.001

β5 2 × 2 table 3.75 0.45 8.30 < 0.001

β6 Tree diagram × frequencies 2.26 0.58 3.89 < 0.001

β7 Double tree × frequencies 2.79 0.61 4.54 < 0.001

β8 Net diagram × frequencies −0.86 0.58 −1.50 0.13

β9 2 × 2 table × frequencies −0.17 0.63 −0.27 0.79

Note that bold regression coefficients are significant at α = 0.05. 
R2

marginal = 16.3%, R2
conditional = 75.9%.
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this effect cannot be observed with tree diagrams and double trees. 
Second and compared to the "Bayesian text", participants’ performance 
improved with the probability versions of the tree diagram, the net 
diagram, and the 2 × 2 table. However, it was not of our interest per se 
to examine which visualization improves the performance the most. 
Nevertheless, we found tendencies that suggest which visualizations 
should be used when explaining situations with joint probabilities, 
which will be shown in the following section.

6.2 Open questions: Linda and Sally Clark

Although we did not explicitly contribute to these two situations 
by our experimental setting, let us, nevertheless, recapitulate these 
situations shortly. With respect to the visualizations in Figure 2, Linda 
as well as Sally Clark “happen” in only one branch (or in one column 
of a 2 × 2 table) because only P(A) and P(A∩B) are considered, which 
are depicted in one “line of branches.” The difference between both 
situations is that Sally Clark has a stronger sequential structure because 
the second child always succeeds the first one.

6.2.1 Linda
Our results would suggest explaining the Linda problem with a 2 × 2 

table in probability format (left in Figure 5). So, it might become obvious 
that it is more probable to be a bank teller than to be a bank teller and to 
be active in the feminist movement, since 1% is smaller than 5% (which, 
of course, stays true for any other chosen imaginary numbers).

Comparing the 2 × 2 tables in probability and frequency format, 
in the latter one (center of Figure  5), whole persons and no 
percentages appear (see also, for example, Brase et al., 1998). This is 
why the 2 × 2 table with frequencies also seems to be rather intuitive. 
Indeed, to answer the Linda problem, in both tables, the same two 
cells have to be compared. Fiedler (1988) could foster his participants’ 
insight by letting them imagine 200 women fitting Linda’s description 
but without providing the other numbers. In any case, it must 
be noted that for answering the Linda question, marginal probabilities 
or frequencies (i.e., P(A)) have to be considered in addition, but the 
understanding of them was not subject of our study.

Perhaps the visualization of the general situation (right in 
Figure 5) in which no imaginary concrete numbers are given, would 
also enhance the performance in the Linda problem. The general 2 × 2 
table would be more analog to the initial problem (no numbers are 
given) and it can be easily transferred into a filled-out version by, e.g., 
requesting the participants to complete the table with imaginary 
numbers. Thereby, it could either result in a probability or in a natural 

frequency version, so, alternatively, the abstract 2 × 2 table might be a 
good starting point for teaching in school.

6.2.2 Sally Clark
In the case of Sally Clark, information may be visualized in a tree 

diagram because of the sequential character of this situation. However, 
because our results would suggest an advantage of the net diagram and 
because this sequential character is served by the node-branch-
structure, we  display the net diagram here (Figure  6). In this 
visualization, joint probabilities can additionally be included. The red 
numbers show the situation that was wrongly assumed in court first, 
while the green numbers show the actual situation. The probability 
that the 2nd child dies of SIDS (S2), if the 1st child already died of SIDS 
(S1), is 4.3 times as likely as the probability that the 1st child dies of 
SIDS (Glinge et al., 2023). In the case of Sally Clark, this would result 

in a probability of 1

8500
 ⋅ 4 3

8500

.  = 4 3

72000000

.  ≈ 0.000006%. Although 

the disregard of the stochastic dependency is often named as the 
reason for the misjudgment, the calculation shows that this cannot 
be the only reason since the probability is still very small. The mistrial, 
in fact, also ignored, for example, that even a very small probability 
never is equal to 0% and, thus, does happen sometimes (Colmez and 
Schneps, 2013). The medical expert, Roy Meadow, furthermore, 
assumed that mothers kill their children more often than one might 
think and, therefore, made this very clear as an expert during trial, 
which made people—and the jury—think that Clark killed her 
children (Colmez and Schneps, 2013). This shows that people thought 
to understand the situation, but apparently not all of them did.

6.3 Limitations and future research

Since we chose typical Bayesian contexts, we might have caused 
priming toward conditional probabilities among participants, 
although we did not ask for a conditional probability at any time. By 
taking the mammography context, for example, most people want to 
know what a positive or negative test result actually means and not 
how many people receive a positive test result and have breast cancer. 
Furthermore, in the text version, only the base rate, the sensitivity, and 
the false-positive-rate—the pieces of information that are typically 
given in Bayesian inference tasks—were given. This information might 
prime questions for conditional probabilities and not for joint 
probabilities. However, the economics context does not lead to a 
certain kind of question, which mitigates this claim. Still, we might 

FIGURE 5

Visualization of the Linda version with 2  ×  2 tables (probabilities, frequencies, abstract).
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have triggered different assumptions of the participants (e.g., the need 
for a conditional probability), which might have led to specific errors 
like answering with a conditional probability.

Furthermore, some participants might have also wondered why 
we “just” asked for all four joint probabilities and have not included 
conditional probability questions. Moreover, the fact that the 
visualizations included much more information might have made some 
participants evaluate their answers as “too easy,” which could have made 
them change their initial answer. By including only joint probabilities, 
we also cannot judge the format effect regarding marginal probabilities.

Future research could look more deeply into variations. At first, it 
would be interesting to vary the given pieces of information (especially 
in the textual version). Then, it would also be interesting to implement 
further contexts—especially ones that make perfectly sense 
concerning joint probabilities (e.g., gambling).

In addition, note that the efficacy of natural frequencies always also 
depends on more factors than the ones mentioned above: Ayal and 
Beyth-Marom (2014) showed that if the presented and requested format 
is not compatible (e.g., the information is in probabilities and the 
question in natural frequencies), the performance is lower than, for 
example, if both are in probabilities. However, highest performance levels 
can be observed, if information is presented in natural frequencies and 
participants also work with natural frequencies instead of translating 
them “back” into probabilities (Weber et al., 2018; Feufel et al., 2023). It 
also has an impact on the performance, whether the given information 
and the question are “aligned”, which means that the presented and 
requested information should be attached to the same subset (Tubau 
et  al., 2019; Tubau, 2022; Brose et  al., 2023). Furthermore, the 
performance also improves if the task format is formulated “explicitly” 
(the intersecting set is explicitly named, i.e., “How many of the positive 
tested women are ill and test positive?”) instead of “implicitly” (i.e., “How 
many of the positive tested women are ill?”; Böcherer-Linder et al., 2018). 
Future research should also consider these factors to be able to derive 
conclusions about their effect on joint probabilities.

Finally, we  want to propose a fifth extension of Bayesian 
reasoning, namely, to explicitly address all possible 16 probabilities 
in future research. There are eight conditional probabilities; two of 
them are just complemented probabilities of the given sensitivity and 

false-alarm-rate. All four inverse conditional probabilities, 
nevertheless, belong to the full situation. From a mathematical 
viewpoint, all 16 probabilities are equally relevant and, furthermore, 
at school, of course, all of them are taught.

6.4 Conclusion

Our answer to the question “How general is the natural frequency 
effect?” is: There is no general statement possible concerning 
questions for joint probabilities. Whether natural frequencies 
improve participants’ performance in joint probability tasks highly 
depends on the way the statistical information is presented.
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