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Malignancies represent a persisting worldwide health burden. Tumor treatment is

commonly based on surgical and/or non-surgical therapies. In the recent

decade, novel non-surgical treatment strategies involving monoclonal

antibodies (mAB) and immune checkpoint inhibitors (ICI) have been

successfully incorporated into standard treatment algorithms. Such emerging

therapy concepts have demonstrated improved complete remission rates and

prolonged progression-free survival compared to conventional chemotherapies.

However, the in-toto surgical tumor resection followed by reconstructive

surgery oftentimes remains the only curative therapy. Breast cancer (BC), skin

cancer (SC), head and neck cancer (HNC), and sarcoma amongst other cancer

entities commonly require reconstructive surgery to restore form, aesthetics, and

functionality. Understanding the basic principles, strengths, and limitations of

mAB and ICI as (neo-) adjuvant therapies and treatment alternatives for

resectable or unresectable tumors is paramount for optimized surgical therapy

planning. Yet, there is a scarcity of studies that condense the current body of

literature on mAB and ICI for BC, SC, HNC, and sarcoma. This knowledge gap

may result in suboptimal treatment planning, ultimately impairing patient
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outcomes. Herein, we aim to summarize the current translational endeavors

focusing on mAB and ICI. This line of research may serve as an evidence-based

fundament to guide targeted therapy and optimize interdisciplinary anti-

cancer strategies.
KEYWORDS

breast cancer, sarcoma, head and neck cancer, skin cancer, malignant melanoma,
monoclonal antibody, immunotherapy, immune checkpoint inhibitors
1 Introduction

Cancer persists as a worldwide healthcare burden currently

affecting 18 million US Americans (1). Malignant tumors are the

second leading cause of death in the US population accounting for

609,360 deaths in 2022 (2). Annual cancer therapy costs amount to

more than $200 billion. About one-third of cancer patients report

symptoms of reactive depression representing an additional burden

beyond the tumor disease (3).

In most solid malignancies, advanced or high-risk cancer

commonly warrants a joint approach including local treatment

and systematic therapy (4–9). Over the past decades,

chemotherapeutics and radiotherapy have been considered the

standard (neo-)adjuvant therapy strategies. However, recent

scientific advances have proposed novel treatment protocols and

broadened the therapeutic arsenal of healthcare providers (10).

The advent of monoclonal antibodies (mAB) (e.g., the anti-

human epidermal growth factor receptor 2 (HER-2)/neu antibody

trastuzumab) and immune checkpoint inhibitors (ICI) (e.g.,

programmed cell death protein 1 (PD-1), programmed cell death

protein ligand 1 (PD-L1), and cytotoxic T-lymphocyte antigen 4

(CTLA-4) inhibitors) has heralded a paradigm shift in oncology (11,

12). ICI target the immune system evasion mechanism of tumor

cells based on self-tolerance-inducing proteins on the cell surface.

Common target structures include PD-1 and its ligand PD-L1, both

inhibitors of antitumoral T cells (13, 14). The combined positive

score (CPS) is used to judge the level of PD-L1 expression, by

evaluating the proportion of potential PD-L1 expression,

encompassing both tumor and immune cells, relative to the

overall count of living tumor cells (15). The clinical effects of

mAB (as targeted therapy) center on the stimulation of different

innate immune effector processes, direct antibody-mediated

toxicity, and complement activation (16). Specific cell surface

antigens and receptors, like, epidermal growth factor receptor

(EGFR), and vascular endothelial growth factor receptor

(VEGFR), represent established targets for mAB (17). The

therapeutic potency and clinical efficacy have led to increased

rates of complete remissions and prolonged progression-free

survival (PFS) even in advanced neoplasms (18). However, the

administration of ICI and mAB can induce various side effects. For
02
instance, ICI have been associated with pneumonitis, hepatitis, and

myocarditis, while mAB have been implicated with cytokine release

syndrome, pneumonitis, cytopenia, or cardiac failure (19–24).

Knowledge of the efficacy, safety, and drug interactions of these

emerging treatments is pivotal to leveraging systemic therapies with

local surgical strategies (25). There is a scarcity of research work

condensing the scientific literature on mAB and ICI for the surgical

readership. This knowledge gap leads to untapped therapy potential

impairing patient outcomes and survival rates.

Additionally, current cancer guidelines recommend a close

interlocking of cancer resection and reconstructive surgery to

restore the functionality and aesthetics of the affected body

region. A mounting body of evidence has underscored the clinical

impact of reconstructive surgery to support patient rehabilitation

and improve quality of life (26–29).

Therefore, we aim to summarize the current body of evidence

and clinical trials on mAB, ICI, and other immunotherapies for the

most common cancer entities treated by reconstructive surgeons

(i.e., head and neck cancer (HNC), breast cancer (BC), skin cancer

(SC), and sarcoma). This line of research may help reconstructive

surgeons develop a more comprehensive understanding of cancer

therapies and optimize the perioperative workflow.
2 Head and neck cancer –
basic information

HNC describes a heterogeneous and complex group of

malignancies, categorized based on their anatomical location in

the oral cavity, oropharynx, nasopharynx, hypopharynx, and

larynx. The majority of HNC (90%) stems from the epithelial

lining and is summarized as HNSCC (30–32). Given the majority

of HNSCC within HNC, this review focuses on HNSCC and its

current neoadjuvant and adjuvant immunotherapeutic modalities.

Worldwide, HNSCC is accounting for more than 700,000 new cases

and 300,000 deaths per year, representing the sixth most common

cancer (33, 34). The overall incidence of HNSCC is proposed to

increase by 30% unitl 2030, both in developed and developing

countries (32, 35). Significant epidemiological variations in the

incidence of HNSCC include tobacco and alcohol consumption,
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environmental pollutants, and viral infections, namely human

papilloma virus (HPV) and Epstein-barr virus (EBV) infections

(31, 34). A substitute biomarker for HPV infection is protein p16,

which is upregulated by HPV virus proteins (36–38). The American

Cancer Society estimated 54,540 new oral cavity and pharynx

cancer cases for both sexes in the US of which about 75% occur

in male patients (39). The gender dysbalance might be due to a

higher prevalence of behavioural risk factors (e.g., nicotine or

alcohol abuse) in males (40). Besides these, genetic syndromes

(e.g., Fanconi anemia) may contribute to HNSCC (41).
2.1 Standard therapy for head and
neck cancer

The neoadjuvant therapy typically involves chemotherapy, with

a preference for platinum-based compounds like cisplatin, often

used in conjunction with taxanes or 5-fluorouracil (5-FU), and

might succeeded by radiotherapy or chemoradiotherapy (which

may warrant further surgical management due to side-effects) to

further halt the tumor’s progression. For locally advanced HNSCC,

the primary approach is commonly surgery followed by adjuvant

radiation therapy or definitive simultaneous chemoradiotherapy,

with surgery (in an organ-preservation approach) kept as a salvage

option (42). As delineated in the National Comprehensive Cancer

Network (NCCN) Guidelines, Version 2.2020, salvage surgery can

also present a curative opportunity for patients enduring isolated

resectable recurrences. Treatment decisions are contingent upon

several factors, such as the patient’s prior therapy, location, and the

extent of recurrence. The treatment modality for unresectable

diseases generally mirrors the strategy deployed for metastatic

HNSCC. Yet, patients with unresectable HNSCC may still

undergo definitive radiotherapy. For metastatic or widespread

recurrent HNSCC, systemic therapy is the mainstay of treatment.

This typically involves the use of chemotherapy, with platin

derivates, taxanes, and 5-FU among others, utilized individually

or in various combinations. In such settings, targeted therapies like

the EGFR-inhibitor cetuximab have also proven efficacious (43).

In summary, the standard treatment approach for HNSCC,

either applied in a neoadjuvant or adjuvant setting, currently

consists of surgery and (radio-)chemotherapy but is associated

with considerable morbidity and unfavorable prognoses yielding

poor five-year survival rates. A landmark Indian multi-institution

study reported a five-year cumulative survival (FCS) of 68% for

surgical treatment with radiation for oral cavity cancer and 60% for

locally advanced stages. Chemoradiation of irresectable cancer

compared to radiation alone showed an improvement of 15% in

survival rate for oro- and hypopharyngeal cancers with 40% FCS

(44). Resistance to radio- and chemotherapy and relapse have been

described as the main factors contributing to low survival rates.

Additionally, the genetic variety within HNSCC has impeded the

process of identifying specific targets and precision therapies.

Therefore, gaining a deeper understanding of the pathophysiology

of HNSCC is crucial for the advancement of therapy (30). Recent

clinical trials indicate that especially mAB immunotherapy can

potentially transition paradigms in the treatment of HNSCC (45).
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2.2 The role of monoclonal antibodies in
head and neck cancer therapy

Early favor was assigned to cetuximab, an EGFR-inhibiting

mAB. EGFR is a receptor tyrosine kinase upregulated in many

malignancies. Its overexpression or overactivation sets off

downstream pro-oncogenic pathways, promoting cell proliferation

and inhibiting apoptosis (45, 46).

Initially examined in combination with radiotherapy, additional

cetuximab showed longer locoregional control (24.4 months)

compared to radiation alone (14.9 months). Furthermore,

cetuximab and radiotherapy achieved significantly longer overall

survival (49.0 months) than radiotherapy alone (29.3 months). Side

effects did not differ significantly in both treatment regimens, with

the exception of acneiform rash and infusion reactions (47).

In a subsequent phase III trial, including 891 patients, of

concurrent accelerated radiation plus cisplatin in combination

with cetuximab or alone for stage III to IV HNSCC, the addition

of cetuximab led to more interruptions in radiation therapy and

more grade III to IV radiation mucositis but did not improve three-

year PFS or overall survival. Notably, patients with p16+

oropharyngeal carcinoma demonstrated better three-year PFS and

overall survival compared to those with p16- oropharyngeal

carcinoma, while tumor EGFR expression did not significantly

affect the outcome (48).

However, when examined in combination with chemotherapy

in the palliative setting, cetuximab in combination with platinum-

based chemotherapy and 5-FU, can prolong the median overall

survival from 7.4 months to 10.1 months when applied as a first-line

treatment for patients with recurrent or metastatic (R/M) HNSCC

(49). Therefore, cetuximab was the first introduced targeted therapy

for HNSCC (50). Under special recommendations by the National

Comprehensive Cancer Network (NCCN), cetuximab is currently

considered to be an option for the treatment of patients with R/M

HNSCC alongside cisplatin (45, 51). It can be utilized for both

HPV-positive and HPV-negative cases and in an adjuvant,

neoadjuvant, or combination setting (52).

Skin toxicities have presented as a major side effect in treatment

with cetuximab (53). Therefore, a phase IV study is designed to

distinguish between skin reactions caused by radiation and those

triggered by cetuximab to assess the incidence and severity of these

adverse effects (trial identifier: NCT01553032).

Bevacizumab is humanized mAB targeting VEGF-A. VEGF in

general is a stimulator of angiogenesis, a crucial factor for tumor

growth and metastasis. Its overexpression has been associated with

unfavorable outcomes in HNC (45). Several pro-angiogenic factors

besides VEGFR, like EGFR, fibroblast growth factor receptor

(FGFR), and platelet-derived growth factor receptor (PDGFR),

are upregulated. Therefore, along with bevacizumab, there have

been other angiogenesis-inhibiting drugs tested, yielding varying

degrees of success (54).

However, till 2019, only bevacizumab has been investigated in

phase III clinical trials (54, 55). Still, bevacizumab is not

recommended by NCCN due to haematologic and other toxicity

effects (56). It has been tested alongside docetaxel, a taxane. Taxanes

are a group of chemotherapy drugs, which are a pivotal part of
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chemotherapeutic regimens, especially in breast, ovarian, non-small

cell lung, and head and neck cancer. Acting as microtubule

inhibitors by impeding the cell cycle at the G2/M phase, this drug

class triggers the activation of cellular apoptosis pathways, thus

inhibiting cancer growth (57, 58).

A phase II interventional study including 30 patients with stage

III or IV HNSCC treated with a combination of bevacizumab,

docetaxel, and radiotherapy to determine the treatment-specific

time to progression. The three-year PFS was 61.7% with an overall

survival of 68.2%. Locoregional recurrence-free survival was 84.5%

and distant metastasis-free survival was 80.5%. The most common

non-hematologic toxicities were dysphagia, mucositis, and

dermatitis. No grade V toxicities were observed, however, more

than 80% of patients developed ≥ grade III lymphopenia and two

patients suffered from hemorrhage. Still, Yao et al. claimed this

regimen as tolerable and effective in HNSCC (59). A phase III

randomized trial (E1305) showed improved response rate and PFS

with bevacizumab in addition to conventional chemotherapy in the

first-line therapy of R/M HNSCC. Overall response rates were

35.5% with bevacizumab alongside chemotherapy and 24.5% with

chemotherapy alone. However, there was no significantly improved

overall survival, and toxicities were elevated, including a higher rate

of treatment-related grade 3 to 5 bleeding events (6.7% vs. 0.5%)

and treatment-related deaths (9.3% vs. 3.5%) with added

bevacizumab vs. chemotherapy alone. Median overall survival

with bevacizumab plus chemotherapy was 12.6 months and 11.0

months with chemotherapy alone. Moreover, at 2, 3, and 4 years,

the overall survival rates were 25.2% vs. 18.1%, 16.4% vs. 10.0%, and

11.8% vs. 6.4% for bevacizumab in addition to chemotherapy vs.

chemotherapy alone (60) (Table 1; Figure 1).
2.3 Immune checkpoint inhibitors for the
treatment of head and neck cancer

In 2016, ICI were introduced for the treatment of HNSCC,

when the anti-PD-1 monoclonal antibodies pembrolizumab and

nivolumab received approval from the FDA for the treatment of

patients with R/M HNSCC. The consent was supported by two

landmark trials, stating that treatment with nivolumab led to longer

overall survival compared to standard treatment options, and

pembrolizumab showed adequate tolerability and clinically

relevant antitumor activity in R/M HNSCC (51, 61, 62).

CheckMate 141, the first reported randomized phase III trial of a

PD-1 inhibitor in HNSCC, CheckMate 141, the first reported

randomized phase III trial of a PD-1 inhibitor in HNSCC, focused

on enrolling patients who had experienced disease progession within

six months of undergoing platinum-based chemotherapy. Regardless

of tumor PD-L1 status, 361 patients were enrolled in this study.

Patients were randomized to receive either 3mg/kg nivolumab every 2

weeks or investigator’s choice of weekly systemic standard therapy

(methotrexate, weekly docetaxel, or cetuximab. Patients treated with

nivolumab exhibited improved median overall survival (7.5 months

vs 5.1 months) and a higher overall response rate (13.3% vs. 5.8%)

compared to those receiving chemotherapy. At the first interim
Frontiers in Immunology 04
analysis, the estimated one-year overall survival was notably higher

with nivolumab (36% vs. 16,6%). Moreover, 13.1% patients on

nivolumab experienced grade 3/4 treatment related adverse events,

as opposed to 35.1% of patients on standard therapy. Upon 2-year

follow-up, patients who received nivolumab had a median overall

survival of 7.7 months, while those who underwent chemotherapy

had a median overall survival of 5.1 months. Antibodies blocking PD-

1, namely pembrolizumab and nivolumab, have been added to the

treatment of HNSCC (15, 25). Further, Gillison et al. analyzed long-

term outcomes with nivolumab as a firstline treatment in recurrent or

metastatic HNSCCs. In their 2-year randomized, phase III trial, they

found that nivolumab (n=50) improved overall survival compared

with the investigator’s control therapy (i.e., chemotherapy only

(n=26)) from a median of 3.3 months to 7.7 months (63). Wu

et al. prospected that more effective cancer immunotherapy can be

achieved by using anti-PD-L1 agents in combination with other

therapeutics (64). In fact, preclinical evidence from different cancer

entities lends supports to therapeutic synergies between chemo- and

immunotherapy, primarily due to the activation of innate immune

pathways (65, 66).

The palliative first-line therapy standard has fundamentally

changed due to the phase III KEYNOTE-048 study, where

pembrolizumab alone or in combination with cisplatin, and 5-FU

was compared to cetuximab-chemotherapy, in the above-described

combination of cetuximab, platinum-based chemotherapy, and 5-

FU, in R/M HNSCC. In this study, 301 patients received

pembrolizumab alone, 281 pembrolizumab and chemotherapy,

and 300 cetuximab and chemotherapy. Both pembrolizumab and

pembrolizumab-chemotherapy treatments were compared to

cetuximab-chemotherapy. Particularly in tumors with high PD-L1

expression (CPS ≥ 20), pembrolizumab monotherapy extended

overall survival to 14.9 months compared to 10.3 months, with a

significantly better side-effect profile. Albeit the response rate was

lower (23.3% vs. 36.1%) compared to cetuximab-chemotherapy.

Overall survival also benefited (given a CPS ≥ 1) at 12.3 months

compared to 10.3 months, but 38.9% of this group initially

progressed. Overall survival with pembrolizumab in combination

with cisplatin, and 5-FU, also significantly extended at CPS ≥ 1,

with a similar remission rate, but with a higher side effects rate than

pembrolizumab alone, yet comparable to cetuximab-chemotherapy.

Patients were followed-up for four years. The median overall

survival improved by a minimum of 3.6 months when

pembrolizumab was applied either way. In conclusion, first-line

pembrolizumab and pembrolizumab-chemotherapy treatment were

considered beneficial in R/M HNSCC (67, 68).

Further, PD-1 levels among HNSCC patients infected with

HPV have been shown to be elevated (36–38). Additionally, PD-

L1 expression is linked to the primary tumor location, postoperative

recurrence, survival rate, and PD-1 and p16 expression.

A lower probability for postoperative recurrence was linked to

PD-L1+/PD-1+ (2.5-fold). PD-L1/PD-1 expression, linked to p16

and HPV, in HNSCC patients also led to better overall survival. PD-

L1 expression was positively associated with the time of overall

survival compared to negative PD-L1 expression (overall survival

rate: 82.8% vs 53.5%; overall survival 36.66 months vs. 30.54
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months). In conclusion, these findings promote PD-1-targeted

immunotherapy for treatment in HNSCC, specifically in HPV-

positive cases (36). Therefore, it is paramount to differentiate

between HPV-positive versus HPV-negative HNSCC.

Ongoing studies are investigating other potential immune

implications and combinations of cancer-related pathways beyond

PD-1 or EGFR An active, not recruiting study aims to investigate the

clinical and biological effects of the therapy R/M HNSCC with

atezolizumab, targeting PD-L1, in combination with bevacizumab,

mAB against VEGF (trial identifier: NCT03818061). Of note,

atezolizumab in combination with bevacizumab has been tested in

a phase II study for patients with unresectable or metastatic mucosal

melanoma, demonstrating a median progression-free survival of 8.2

months, along with an objective responste rate of 45.0% (69).
Frontiers in Immunology 05
To avoid the above-mentioned ICI treatment failure,

pembrolizumab will be used in combination in several studies.

For instance, a triple combination of CTLA-4, PD-1, and PDL-1

blocking ICI, ipilimumab, pembrolizumab, and durvalumab, is

about to be tested for 100 patients with advanced solid tumors

including HNSCC in a recruiting phase I/II trial (trial identifier:

'NCT05187338) (Table 1; Figure 2).
2.4 Additional therapeutic approaches in
head and neck cancer

Tyrosine kinase inhibitors (TKI) work by inhibiting pathways

that regulate cell growth, division, and survival but do not belong to
FIGURE 1

Summary of monoclonal antibodies and their pathways for the treatment of cancer entities presented in this review (i.e., head and neck cancer,
breast cancer, malignant melanoma, sarcoma).
TABLE 1 Summary of clinical trials on monoclonal antibodies and immune checkpoint inhibitors for the treatment of the cancer entities presented in
this review (i.e., head and neck cancer, breast cancer, malignant melanoma, sarcoma).

Cancer
entity

Study/
Trial number

Treatment
regimen/Antibody

Cancer specification Drug targets

Monoclonal Antibodies

Head and
neck cancer

NCT01553032
(Phase IV)

Cetuximab
Locally advanced (Stage III, IVA or IVB) non-

metastatic HNC
EGFR

Breast cancer NCT00411788 (Phase II) Trastuzumab + Rapamycin positive metastatic breast cancer HER-2

Breast cancer NCT03765983 (Phase II) Trastuzumab + GDC-0084 positive metastastic breast cancer HER-2

Immune Checkpoint Inhibitors

Head and
neck cancer

NCT03818061 (Phase II)
Atezolizumab
+ Bevacizumab

Advanced/metastatic HNSCC PD-L1 + VEGFR

Head and
neck cancer

NCT05187338 (Phase II)
Ipilimumab + Pembrolizumab

+ Durvalumab
Advanced solid Tumors

CTLA-4 + PD-1 +
PD-L1

Head and
neck cancer

NCT03765918 (Phase II) Pembrolizumab
Previously untreated, resectable, locally

advanced HNSCC
PD-1
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the group of mAB and ICI from a pharmacological standpoint (70).

Yet, these agents can block multiple angiogenic signaling pathways

including those of VEGFR, EGFR, FGFR, and PDGFR. Examples

are cabozantinib, axitinib, and lenvatinib (55, 71).

A phase II trial investigated cabozantinib, a multi-TKI

inhibiting VEGFR 1-3 among other receptors, in combination

with pembrolizumab in the treatment of patients with R/M

HNSCC. Median overall survival was 22.3 months with median

PFS of 14.6 months. Promising clinical activity and tolerability was

concluded, however no correlation between tumor mutational

burden (TMB) and clinical outcome was observed, warranting for

further investigation for similar combinations for HNSCC (71).
2.5 Immunotherapies in head and neck
cancer standard therapy – where do
we stand?

ICI such as pembrolizumab and nivolumab have been

implemented into the treatment algorithm for R/M HNSCC and

are an integral part of the most recent American Society of Clinical

Oncology (ASCO) Guidelines (72).

For patients with R/M HNSCC, PD-L1 immunohistochemistry

and TMB testing are recommended. Pembrolizumab has emerged

as a primary treatment option for R/M HNSCC, either paired with

platinum/5-FU or used in isolation for patients with a CPS of ≥ 1

(43, 73). In general, PD-L1 CPS of ≥ 1 or TMB of ≥ 10 suggests a

positive clinical response to PD-1 inhibitors. Alternatively, based on

the performance status, such patients can be administered a

combination of pembrolizumab, platinum, and 5-FU.
Frontiers in Immunology 06
Interestingly, this therapy approach can be employed for cases

with CPS < 1, too. Further, pembrolizumab or nivolumab should be

administered to patients with platinum-refractory R/M HNSCC,

regardless of CPS status (74). ICI targeting PD-1 should be

considered if the tumor has progressed after platinum-based

therapy. Radiation therapy is recommended as a therapeutic

option concurrently with immunotherapy for palliation or local

control in patients with oligometastatic HNSCC. Yet, it is not

recommended to be given in order to enhance response to

immunotherapy outside of clinical trials. In the specific case of

TMB-high R/M HNSCC or PD-L1-positive R/M salivary gland

cancer, pembrolizumab is recommended as another therapy

option (75).

In conclusion, immunotherapy is the new standard approach

for the treatment of R/M HNSCC. Positive results have been

achieved in neoadjuvant settings, and combination therapy,

including TKI, seems to be a promising strategy but warrants

further research and broad clinical studies (76). Currently

approaching this concern, the KEYNOTE-689 trial, a phase III

randomized, open-label study, is designed to assess pembrolizumab

in combination with standard treatment – radiotherapy with or

without cisplatin – as both neoadjuvant and adjuvant therapy for

patients with previously untreated, resectable, locally advanced

HNSCC (trial identifier: NCT03765918).
3 Breast cancer – general information

Female BC has taken the lead as the most frequently diagnosed

cancer according to global cancer statistics in 2020. Approximately
FIGURE 2

Summary of immune checkpoint inhibitors for the treatment of cancer entities presented in this review (i.e., head and neck cancer, breast cancer,
malignant melanoma, sarcoma).
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2.3 million new cases of BC and 680.000 deaths due to BC were

estimated worldwide, making it the second leading cause of cancer-

related death among women (39, 77).

BC is a generic term referring to a group of heterogeneous

malignancies, clinically classified into three primary subtypes based

on immunohistochemical markers. Those markers include the

status of hormone receptors, either estrogen (ER) or progesterone

receptor (PR), and HER-2. Therefore, there are luminal ER+ and

PR+, HER-2+, and triple negative BC (TNBC) (78). ER is involved in

the main regulation of BC cell growth, PR is considered a significant

indicator in carcinogenesis acting as an interdependent partner

alongside ER (79). Roughly 15-20% of BC cases exhibit

amplification of the HER-2 oncogene, situated on chromosome

17q12. HER-2 is a membrane tyrosine kinase receptor expressed in

breast tissue, normal and malignant, indicating pathways for cell

proliferation and differentiation. In BC cells, an elevated level of

HER-2 is linked to poor prognosis, increased cell proliferation,

angiogenesis, and evolution of metastasis (80, 81). Even with

adjuvant chemotherapy, the five-year survival rate in metastatic

breast cancer remains less than 30% (82, 83). Metastatic recurrence

poses a significant challenge for women diagnosed with BC, with

20-30% mortality due to metastatic disease BC (78, 84).

Mutations in the tumor suppressor genes BRCA1 and BRCA2

are responsible for the majority of hereditary BC. Identifying these

variants in patients is crucial for determining eligibility for targeted

treatment using poly-ADP-ribose polymerase (PARP) inhibitors.

Consequently, BRCA1/2 genomic testing is imperative for BC (85).

Due to its reliability, accessibility, and simplicity, Sanger DNA

sequencing has been recognized as the gold standard for BRCA

testing. However, an increase in the application of next-generation

sequencing (NGS) technology, which offers recognition of Large

Genomic Rearrangements (LGRs) and cost-effectiveness, is

observed (86).
3.1 Standard therapy for breast cancer –
on the pulse of time?

Breast cancer therapy is individualized based on the cancer’s

type, stage, and patient’s preference and health factors. Treatment

strategies involve surgery, radiation, chemotherapy, hormonal, and

targeted therapies.

Neoadjuvant therapy was initially investigated in inoperable,

locally advanced BC, but has been integrated into the standard of

care, particularly in HER-2+ early-stage BC, for 2 cm N0 (according

to the TMN classification) or all N+ BC subtypes, and TNBC (87).

Due to the most recent ASCO guidelines, neoadjuvant therapy is

suitable for inflammatory BC patients, and for patients with

posttherapeutic tumor residuals. Further, neoadjuvant therapy is

applied to reduce the extent of surgery in the breast and axilla and to

implement individualized post-neoadjuvant strategies. While

TNBC patients with clinically node-positive or T1c disease should

receive an anthracycline and taxane regimen prior to surgery,

T1aN0 and T1bN0 HER-2+ patients have no recommendation for

routine neoadjuvant treatment. Postmenopausal patients with

hormone receptors-positive, HER-2- BC can be administered
Frontiers in Immunology 07
hormone therapy to downstage disease preoperatively (88).

Moreover, tamoxifen or aromatase inhibitors may be used for

hormone receptor-positive tumors. Trastuzumab may be given in

HER-2-positive tumors alongside chemotherapy. Primary surgery

has been proven to be highly effective. Yet, its clinical impact can be

potentiated by including the principles above (89).

Adjuvant therapy after surgery is based on the same pillars as

neoadjuvant strategy, namely chemotherapy, radiation therapy,

hormonal therapy, and targeted therapy, e.g., anti-HER-2 drugs

like trastuzumab for HER-2+ tumors (78). While radiotherapy

remains crucial in adjuvant BC therapy, ER+ tumors are

commonly treated with five to ten years of endocrine therapy

and/or chemotherapy. Tamoxifen, for example, is a medication

classified as a selective ER modulator, which is used for the

treatment of BC in both men and women (and as a prophylactic

agent for BC risk reduction) (78, 90).
3.2 The status quo of monoclonal
antibodies in breast cancer therapy

mAB have versatile roles in BC therapy, including directly

attacking cancer cells, but also facilitating drug delivery to specific

targets, inhibiting cell growth, and blocking immune system

evasion. While mAB have proven to be efficient in treating HER-

2+ BC, their potential remains unexplored for other subtypes,

particularly TNBC (79, 91).

Trastuzumab was the first FDA-approved anti-HER-2 mAB in

1998, and remains the first-line therapy for early, advanced, and (in

combination therapy) also for metastatic, HER-2+ BC (92). By

binding to the extracellular domain of HER-2 on tumor cells, it

stops the downstream pathways and therefore their proliferation (79).

Resistance to trastuzumab-based therapy poses a significant

challenge, thus anticipation for enhanced therapeutic outcomes lies

within investigating drug combinations that target multiple relevant

pathways. Interestingly, trastuzumab is already applied in

combination with other agents, e.g. anthracyclines and taxanes, in

BC. For metastatic BC, many other drugs are trialed besides

trastuzumab (80). Further examples of FDA-approved mAB for BC

treatment are pertuzumab, another anti-HER-2 mAB, and

bevacizumab. Bevacizumab targets VEGF, therefore acting as an

anti-angiogenic drug. Erinjeri et al. retrospectively analyzed 1,108

port placements in patients who were treated with bevacizumab.

Ports had to be removed in 120 patients of which 11 were BC

patients. Following port removal one BC patient presented with

wound healing disorders. Overall, patients with an interval between

bevacizumab therapy and surgery of less than 14 days demonstrated a

significantly higher risk of wound healing disorders (93). This finding

can be due to the half-life of bevacizumab whichmay vary between 11

and 50 days. The GeparQuinto study by Gerber et al. included 127

study sites and looked into outcomes following BC surgery. The

authors found no overall rise in surgical complications when

bevacizumab was administered concurrently with neoadjuvant

anthracycline- and taxane-based chemotherapy for early or locally

advanced BC. Overall, 38.1% of all patients included in the study

suffered surgical complications, such as bleeding, necrosis, wound
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infections, and abscesses. In the group of patients, who were treated

without bevacizumab, surgical complications occurred in 10.9% vs.

15.0% when treated with bevacizumab showing no statistical

significance. Yet, within specific patient subsets, such as those

undergoing breast-conserving surgery or requiring repeated surgical

intervention to attain clear margins, the incidence of complications

significantly increased among those treated with bevacizumab.

Among patients undergoing breast-conserving surgery (N=53),

surgical complications occurred in 7.3% following treatment

without bevacizumab, and in 13.4% following treatment with

bevacizumab (94). Interestingly, to date, no trials correlated ICI in

BC therapy with an increased risk of lymphedema, a common

complication following breast cancer resection, especially when

combined with lymph node dissection (95). Golshan et al.

investigated the neoadjuvant administration of bevacizumab in

TNBC. While 28 patients received single-agent cisplatin prior to

definitive surgery, 51 patients were administered neoadjuvant

cisplatin plus bevacizumab preoperative. The authors reported that

the use of expanders or implants might be problematic for patients

treated with bevacizumab with a trend towards more wound-related

events in this group despite not yielding significant differences to the

cisplatin-only group. Yet, they emphasized that future research was

warranted to deduce concrete recommendations (Supplementary

Material S1).
3.3 What do the guidelines say? – immune
checkpoint inhibitors in the standard
therapy for breast cancer

Immunotherapy has emerged as a promising lifeline for TNBC

patients. It is, therefore, recommended, that all patients eligible for

immunotherapy treatment undergo tumor tissue PD-L1 testing,

regardless of their prior immunotherapy in adjuvant or

neoadjuvant settings.

Current immunotherapies regimens are recommended to

include anthracyclines and a taxane, with or without carboplatin.

Adjuvant immunotherapy should be balanced carefully, especially

regarding potential toxicities. Neoadjuvant pembrolizumab and

atezolizumab are recommended based on improved pathological

complete response rates, regardless of PD-L1 status. Patients with

inoperable advanced or metastatic TNBC should undergo tumor

tissue testing for PD-L1 and comprehensive genomic profiling,

including TMB and MSI tests.

Pembrolizumab alongside chemotherapy, is beneficial for

patients with tumors expressing PD-L1 with a CPS of ≥ 10. It is

recommended as a first-line treatment when combined with nab-

paclitaxel, or a carboplatin and gemcitabine combination. However,

it is also still only recommended when PD-L1 expression has a CPS

of ≥ 10. High-risk early-stage TNBC patients can benefit from

pembrolizumab with chemotherapy before and after surgery.

Further studies are expected to enhance treatment for early-

stage TNBC and other subtypes. Future research may also further

explore immunotherapy’s impact on hormone receptor-positive

and -negative subtypes, and ideal chemotherapy combinations

involving ICI (96).
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4 Skin cancer – from clinical
classifications to genetic profiling

SC is the predominant form of cancer worldwide, accounting

for a variety of malignancies. It is generally categorized as non

melanoma skin cancer (NMSC), including basal cell carcinoma

(BCC) and squamous cell carcinoma (SCC), or as malignant

melanoma (MM) arising from the malignant transformation of

melanocytes (i.e., melanin-producing cells in the basal layer of the

epidermis). Of note, melanocytes originate from the neural crest,

indicating that MM can be found in any location, where neural crest

cells migrate such as the skin, but also the gastrointestinal tract, the

brain or the eye (97, 98). Due to significantly higher mortality rates

in MM compared to other SC, this review will focus on MM (97,

98). Of note, immunotherapies (especially ICI) have been shown to

be effective therapy agents in NMSC (99).

Multiple epidemiological studies have provided evidence of

rising incidence in MM over the past decades (98, 100–102).

Global cancer statistics in 2020 reported 325,000 new cases and

57,000 new deaths for MM versus 6.3 million cases and 56,000

deaths for NMSC, underlying the high mortality of MM disease

(32). MM commonly affects younger patients compared to other

solid tumors and is more common for White people than Black

persons or Asians (97, 103). MM development involves multiple

factors arising from an interaction between endogenous factors, like

genetic predisposition, and exogenous factors. UV solar radiation

exposure is the main risk factor for cutaneous malignancies (100,

104). The increased occurrence of UV-induced cytidine to

thymidine transitions is associated with a significantly higher

mutation rate in MM than in other solid tumors (105, 106).

Increased sensitivity to UV radiation, especially in white patients

increases the risk of developing MM as pigmentation and melanin

are crucial for shielding melanocytes and keratinocytes from UV

lights. That is why individuals with lighter skin (i.e., phototypes I

and II) face a greater risk for SC (107). Family history is another

pivotal risk factor for MM development, while mutations in the

tumor suppressor gene cyclin-dependent kinase inhibitor

(CDKN2A) are the most common ones responsible for hereditary

MM (108, 109). Somatic driver mutations for melanoma include,

for example, B rapidly accelerated fibrosarcoma (BRAF), RAS,

CDKN2A, neurofibromatosis type 1 (NF1), and phosphatase and

tensin homolog gene (PTEN) (110, 111).
4.1 Standard treatment approach for
malignant melanoma

For local MM therapy, the primary treatment is surgical removal,

showing high survival rates. However, survival rates decrease

significantly after metastasis (112, 113). Before the advent of

immune checkpoint inhibitors, the five-year relative survival rate

for patients with stage IV, metastatic MM was around 10%,

depending on the location and metastasis burden. For comparison,

the five-year relative survival rate for MM stage 0 (i.e., melanoma in

situ) is 97% (97). Beyond surgery, immunotherapy plays a key role in
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standard therapy for MM (Please see “From Bench to Beside –

Immunotherapy as Standard Therapy for Malignant Melanomas).

Applying immunotherapy inMM treatment, improved survival rates.

The five-year overall survival in patients with advanced melanoma

was 52% when receiving nivolumab and ipilimumab, and 44% when

receiving nivolumab alone (114).
4.2 Monoclonal antibodies and immune
checkpoint inhibitors for malignant
melanoma – effective and
targeted therapies?

4.2.1 Monoclonal antibodies for
malignant melanoma

Relatlimab, a mAB targeting LAG-3, plus nivolumab, a PD-1-

targeting mAB, have been approved by the FDA as a first-line

treatment for advanced-stage melanoma (115). While inhibition of

PD-1, and PD-L1 mostly (not exclusively) affects CD8+ T cells,

inhibition of LAG-3 is proposed to affect multiple immune cell

subtypes, since LAG-3 is found to be more broadly expressed on

various cell lines (116). To investigate relatlimab’s specific cellular

impact on the immune system, Huuhtanen et al. performed a phase

I single-cell characterization trial. The authors evaluated relatlimab

plus nivolumab, stating that the combination of those drugs,

inhibiting LAG-3 and PD-1 affected not only CD8+ T cells but

also natural killer cells (NK cells) and regulatory T cells (Tregs).

Adaptive NK cells (i.e., specialized NK cells carrying the potential

for immunological memory) experienced an enhancement in

responders and transcriptomic changes, while the number of Tregs

increased. Interestingly, transcriptome analysis showed that the

metabolic activity of Tregs decreased. Furthermore, the clonality of

T cell receptors, as well as the cytotoxic and NK cell-like activity of

their enlarging CD8+ T cell clones increased in therapy-responders

(117) (Table 1; Figure 1).

Molecular and cellular factors as suitable targets for checkpoint

inhibitors in MM have been identified, including PD-L1, major

histocompatibility complex (MHC-I), TMB and BRAF mutation,

and T cell infiltration. Additionally, MITF, a transcription factor

involved in the development and survival of melanocytes, is

proposed to have a mechanistic relevance in MM treatment.

Primary targets in melanoma treatment are PD-1, PD-L1, and

CTLA-4. Pembrolizumab and nivolumab target PD-1 to enhance

the immune response against melanoma cells, whereas ipilimumab

binds to CTLA-4 to support the immune response. The efficacy of

immune checkpoint inhibition relies on factors involved in the

immune balance with melanocyte survival. PD-L1 expression is

emphasized as one key element, intricately interwoven with other

molecular and cellular players like MHC expression, and

mutational load (112, 118). Regardless of the BRAF mutational

status, immunotherapies have shown promising efficacy (119). The

human monoclonal IgG1 antibody Ipilimumab received its

approval for treating advanced or unresectable MM based on

survival benefits for patients with advanced MM (120–123).

In a phase III trial, including 676 patients with pretreated

metastatic, unresectable stage III or IV melanoma, ipilimumab,
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alone or in combination with glycoprotein 100 peptide vaccine

(gp100), demonstrated enhanced overall survival compared to

gp100 alone. The median overall survival for ipilimumab alone

was 10.1 months, combined with gp100 10.0 months, and for gp100

alone 6.4 months. Patients experienced severe therapy-induced

immune-related adverse events, most frequently affecting the skin

and gastrointestinal tract (i.e., diarrhea, nausea, pruritus), which

can be treatment-limiting (120). Ipilimumab was followed by the

approval of nivolumab and pembrolizumab (i.e., PD-1 inhibitors)

for the therapy of advanced or metastatic melanoma among other

tumors. A combination of ipilimumab and nivolumab has been

established for the treatment of patients with BRAF wild-type

metastatic or unresectable MM (122, 124).

The application of nivolumab, in combination with ipilimumab

or by itself, has been shown to be an effective treatment for patients

with advanced melanoma. A phase III clinical trial reported a

median overall survival rate of more than 60.0 months for

patients treated with nivolumab and ipilimumab, 36.9 for patients

treated with only nivolumab, and 19.9 months for patients treated

with only ipilimumab. The five-year overall survival for patients

treated with both agents was 52%, versus 44% with nivolumab, and

26% with ipilimumab. Additionally, quality of life was not

permanently impaired (114). A still ongoing multicenter, multi-

cohort, open-label phase Ib/II trial was designed as a first-in-human

study to investigate the safety, tolerability, and efficiency of a

combination of bi-specific antibody applications, targeting

different T-cell co-inhibitory receptors for patients with advanced

or metastatic melanoma prior immune checkpoint inhibitor

therapy. XmAb2284, CTLA-4 X LAG3 or bavunalimab, targeting

both CTLA-4 and LAG-3, and XmAb23104, also known as PD1 X

ICOS or XmAb104, targeting PD-1 and ICOS (CD278), a

costimulatory molecule for T-cell proliferation and cytokine

secretion, are applied intravenously (125) (Table 1; Figure 2).

4.2.2 Immune checkpoint inhibitors for
malignant melanoma

T cell immunoglobulin and mucin domain 3 (TIM-3) and T cell

immunoreceptor with Ig and ITIM domains (TIGIT) are under

investigation as the next wave of co-inhibitory receptor targets.

They showcase distinctive functionalities, particularly in regulating

the immune system in tissue sites, while being negative regulators of

T-cell function like PD-1 and CTLA-4 at the same time. ICI brought

about a significant revolution in the treatment of MM, but novel

combination therapies are explored to improve response rates (117,

123, 126).
4.3 Treatment approaches for malignant
melanoma - beyond monoclonal
antibodies and immune
checkpoint inhibitors

In this context, vemurafenib and dabrafenib, selective mutant

BRAF inhibitors, were approved for patients with metastatic MM

and BRAFV600 mutations (127, 128). Targeted therapy includes

BRAF and mitogen-activated protein kinase kinase (MEK)
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inhibitors like vemurafenib, dabrafenib, and trametinib. BRAF, a

serine/threonine protein kinase activating the mitogen-activated

protein kinase (MAPK) and downstream MEK and ERK signaling

pathways, plays a crucial role in tumorigenesis (129, 130). The MEK

pathway is promoted by BRAF mutations and might be responsible

for melanoma cell proliferation (128, 129, 131, 132). More than 50%

of MM cases contain activating BRAF mutations, with a

substitution of valine to glutamine in codon 600 (V600E) being

the most common BRAF mutation (128, 133).

Clinical phase I and II trials suggested that vemurafenib, also

known as PLX4032, represented an effective treatment yielding

response rates of more than 50% in MM patients with BRAF V600E

mutations (134–137). Chapman et al. investigated the efficacy of

vemurafenib compared to dacarbazine, the only chemotherapeutic

drug approved for metastatic MM therapy, in a phase III

randomized clinical trial including 675 patients with untreated,

metastatic MM carrying the BRAF V600E mutation. Vemurafenib

showed enhanced overall survival with 84% at six months compared

to 64% at six months for dacarbazine use, and improved PFS (135).

Still, resistance to BRAF inhibitors over time was shown, most likely

due to MAPK-driven acquired resistance. Combining both MEK

and mutant BRAF kinase was proposed to delay resistance

mechanisms (128). Trametinib is a selective, allosteric MEK1/

MEK2 inhibitor, also known as GSL1120212, which was recently

investigated in a phase II clinical trial designed to determine the

response rate for patients with metastatic BRAF mutant melanoma.

It showed good patient tolerability and significant clinical tumor

reduction in patients who were not treated with BRAF inhibitors

before, but poor response rates in patients that had been previously

treated with a BRAF inhibitor. Kim et al., therefore, stated that these

resistance mechanisms against BRAF inhibitors were likely to pass

resistance on to MEK inhibitor monotherapy, warranting further

investigations (130, 138, 139).
4.4 From bench to beside –
immunotherapy as standard therapy for
malignant melanomas

While surgery is still the mainstay of treatment, the advent of

immunotherapy, specifically the use of the ICI nivolumab and

ipilimumab in advanced MM, has revolutionized the therapy of

patients with MM (114, 140). In a neoadjuvant setting, an emerging

approach for high-risk melanoma may include immunotherapy and

agents like ipilimumab, nivolumab, and pembrolizumab, and

targeted therapy for melanomas with BRAF mutations.

Adjuvant therapy, aiming to reduce recurrence, also relies on

immunotherapy and targeted therapy. The individual treatment

approach depends on various factors, like tumor stage, metastasis,

and BRAF mutation status. According to the ASCO Guidelines for

melanoma treatment, nivolumab and pembrolizumab should be

considered for patients with resected stage IIIA/B/C/D BRAF wild-

type cutaneous melanoma. These drugs, or a dabrafenib-trametinib

combination should be offered for BRAF-mutant tumor patients.

No definitive guidance for neoadjuvant cutaneous melanoma

treatment has been provided as of 2023. For unresectable or
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metastatic cases, BRAF wild-type patients should be administered

a combination of ipilimumab and nivolumab, nivolumab alone, or

pembrolizumab treatment. BRAF-mutant patients can also receive

BRAF/MEK inhibitors (e.g., dabrafenib or trametinib). The same

treatment strategies are recommended for patients with mucosal

melanoma (141, 142).
5 Sarcoma – prevalence, incidence,
and risk factors

Broadly speaking, sarcomas manifest as either soft-tissue

sarcomas (STS) or bone sarcomas (BS), while STS occur with a

four to five times higher prevalence than BS (143). STS encompass a

range of mesenchymal malignancies originating from muscles,

adipose tissue, tendons, and vasculature structures. They

predominantly occur in the extremities (143–145). Among

children and adolescents, rhabdomyosarcoma (RMS) and synovial

sarcoma are the most frequent subtypes, whereas liposarcoma (LS)

and leiomyosarcoma (LMS) are the most common STS observed in

adults. Based on prevalence rates, this review will focus on RMS, LS,

and LMS (143, 144). RMS is categorized into distinct clinical

subtypes based on histopathological features including embryonal

RMS (ERMS), alveolar RMS (ARMS), pleomorphic RMS, and

spindle cell/sclerosing RMS (ssRMS). ERMS and ARMS are the

most common subtypes, whereas the other subtypes are considered

rare. PRMS stands out due to its non-responsiveness to

chemotherapy, unlike ERMS and ARMS. It is often treated with

radiation therapy and wide excision (146, 147).

For STS, 13,400 new cancer cases, and 5,140 new deaths in 2023

were estimated for the United States of America (39). STS can be

attributed to environmental and/or genetic risk factors (148–150).

Germline mutations in the tumor suppressor gene TP53 are

accountable for LFS and can contribute to the early onset of

sarcomas and other tumors by causing genomic instability (149–

152). Even though STS show a relatively low incidence, STS

represents an aggressive oncological disease leading to high

mortality rates (143). Over the past two decades, no substantial

change in the overall and one-year mortality rates among various

histological subtypes has been observed.
5.1 Standard treatment approach in
sarcoma therapy

Surgical resection is the backbone of sarcoma therapy aiming

for complete resection with negative margins (i.e., R0), but

additional drug therapy is commonly indicated to avoid

recurrence and enable resection (144, 153).

RMS is commonly treated with a multimodal approach

including chemotherapy, surgical resection, and/or radiation

therapy. Localized RMS is curable for most patients.

Chemotherapy includes drugs like vincristine, actinomycin D,

and cyclophosphamide. Surgery aims for complete tumor

removal, with radiation therapy used for unresectable tumors, or

if there’s a high risk of local recurrence (154).
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Radiation therapy can be employed both in a neoadjuvant and

adjuvant approach to impair local recurrence. Anthracycline-based

chemotherapy approaches remain the standard initial therapy for

LS, both resectable and unresectable. Doxorubicin is applied either

as a single agent or in combination with ifosfamide (155, 156). It is

important to mention, that treatment option for LS rely on the

tumor type and stage. LS can be differentiated into several subtypes,

inc luding wel l -d i ffe rent ia ted l iposarcoma (WDLPS) ,

dedifferentiated liposarcoma (DDLPS), pleomorphic liposarcoma,

and myxoid/round-cell liposarcoma (MRCLS). Those subtypes

respond differently to systemic therapies. The most frequent

subtypes WDLPS and DDLPS remain challenging to treat due to

their low response rate to standard chemotherapy. However,

MRCLS, for example, shows higher sensitivity to doxorubicin-

based regimens (157).

Surgery is often applied in the treatment of localized LMS, also

approaching for R0 resection. For unresectable or metastatic cases,

doxorubicin is the most commonly used first-line agent in

chemotherapy. For some patients, radiation therapy may be

beneficial as an adjuvant therapy strategy, or in palliative

cases (158).

However, even with combined (neo-)adjuvant treatment

strategies, approximately 50% of treated patients still show relapse

episodes. For metastatic and refractory sarcomas, the median

survival rate remains merely 12 to 18 months (159, 160).

Consequently, novel therapeutic strategies, notably antibody-

based therapies are warranted to advance sarcoma treatment and

improve patient prognosis (161).
5.2 Monoclonal antibodies in sarcoma
therapy – fact or fiction?

Olaratumab, a human mAB targeting PDGFR-a, showed

enhanced overall survival in phase II trials, when applied in

combination with the chemotherapeutic agent doxorubicin,

compared to only doxorubicin, for patients with advanced or R/

M STS (162, 163). Thus, it got approved by the FDA, but recently

has been taken off the market due to underwhelming findings in

phase III studies. Tap et al. stated no significant benefit in overall

survival by adding olaratumab to doxorubicin in a double-blinded,

randomized trial, including 509 patients from 110 sites in 25

countries (162, 164, 165).

A murine IgG1 mAB called 8H9 targets a distinctive cell surface

tumor antigen found in neuroectodermal, epithelial, and

mesenchymal tumors, including RMS. More precisely, 8H9

targets B7-H3 (also referred to as CD276) by binding to a region

that is crucial for the immunologic function of this immune

checkpoint and immunoregulatory molecule. Of note, B7-H3

displays elevated expression in tumor tissues versus suppressed

expression in normal tissues. Thus, it has been discussed to carry

untapped potential as a target for cancer immunotherapy (166,

167). Modak et al. reported in vitro characterization of radiolabeled

8H9 and its potential application in vivo with subcutaneous human

RMS, stating that the utilization of radiolabeled 8H9 showed

effective targeting of RMS xenografts and holds promising
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potential for potentiating radioimmunotherapy (168). Yet, further

studies are warranted to corroborate its clinical impact

(Table 1; Figure 1).
5.3 Immunotherapeutic and epigenetic
options for sarcoma patients

5.3.1 Monoclonal antibodies for sarcoma patients
Pembrolizumab, nivolumab, and ipilimumab have been

investigated for their application in sarcoma treatment (169). A

phase I/II study of pembrolizumab and doxorubicin for the

treatment of unresectable R/M sarcoma did not reach its primary

endpoint (i.e., objective response rate) but demonstrated a notable

improvement in PFS when compared to conventional treatment

protocols. Patients who received pembrolizumab and doxorubicin

showed a median PFS of 8.1 months compared to single

doxorubicin with a median PFS of under five months (170).

Zhou et al. proposed combining ipilimumab and nivolumab as

an efficient and properly tolerated treatment option for advanced

STS (171). Chen et al. reviewed 150 patients with untreated PD-L1

positive R/M STS, who have been therapied with nivolumab,

ipilimumab, or nivolumab alone. An improved survival rate of

12.2 months compared to 9.2 months was reached when patients

received a combination of both drugs compared to nivolumab

alone. However, the application of both drugs showed less

tolerability compared to nivolumab alone (172) (Table 1; Figure 2).

5.3.2 Immune checkpoint inhibitors and
epigenetic options for sarcoma patients

Undifferentiated pleomorphic sarcoma often presents with a

notably dense immune infiltration. ICI targeting PD-1, PD-L1, and

CTLA-4 have shown efficacy, with response rates varying between 20%

and 40%. A recent phase II trial of neoadjuvant ICI with concurrent

radiotherapy (n=10), exhibited a 90% pathologic response rate for

nivolumab/ipilimumab in patients with extremity/truncal

undifferentiated pleomorphic sarcoma. Adverse effects observed in

this study were in line with the known safety profiles of nivolumab

and the combination nivolumab/ipilimumab. Postoperative

complications, including one anastomotic leak, anemia, and one

wound infection also were consistent with expectations. Stating there

is no validated cutoff for pathologic response in STS, they used 30%

hyalinization as the optimal cutoff for pathologic response with

receiver-operating curves based on landmark analysis of early relapse

52 weeks after surgery. A minimum of 30% hyalinization was found in

90% of patients with undifferentiated pleomorphic sarcoma. Also,

overall survival at 24 months was 90% in patients with

undifferentiated pleomorphic sarcoma (173, 174).

Carcinogenesis extends beyond genetic alterations and

encompasses significant involvement of epigenetic mechanisms,

especially histone modifications like acetylation, which is

managed by histone deacetylase (HDAC). Inhibition of HDAC

has been shown to induce apoptosis, differentiation, and cell cycle

arrest while reducing angiogenesis and modulating immune

response for cancer cells. HDAC inhibitors are tested in several

studies for various cancer types, like lymphoma, or BC (175).
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An interaction between HDAC inhibitors and the multi-kinase

inhibitor pazopanib, both in vitro and in vivo, has been recently

evidenced to induce apoptosis in sarcoma cells and decrease tumor

growth (175–177). Pazopanib is a multi-TKI, with targets including

VEGFR 1-3, and PDGFR-a, and -b, already approved for the

treatment of advanced renal cell carcinoma in the European Union

and US (178). Axitinib is another TKI, that has been demonstrated to

selectively inhibit VEGFR 1-3 and interact with HDAC inhibitors,

ultimately leading to the apoptosis of sarcoma tumor cells in vivo and

in vitro (176, 179). Axitinib was examined in combination with

pembrolizumab in patients suffering from advanced sarcomas in a

phase II trial, stating a 3-month PFS of 65.6% for eligible patients and

72.7% for patients with alveolar soft-part sarcoma. The most frequent

grade 3/4 treatment-related adverse events encompassed

hypertension and autoimmune toxicities, both in 15% of 33

patients enrolled. Additionally, the authors of the study reported

serious treatment-related adverse events such as autoimmune colitis,

transaminitis, pneumothorax, and hemoptysis in 21% of patients.

Thus, Wilky et al. stated that the combination of axitinib and

pembrolizumab showed promising antitumoral activity and

manageable toxicity in patients with advanced sarcomas. However,

further investigations are warranted to pinpoint this treatment

combination’s clinical and mechanistic effects (180).
5.4 Immunotherapies in sarcoma patients
– the most recent guideline updates

Atezolizumab is recommended for unresectable or metastatic

alveolar soft-part sarcoma. Pembrolizumab is not specifically FDA-

approved for STS, but has been granted approval for specific

patients with advanced sarcoma showing high MSI, DNA

mismatch repair deficiency (dMMR), or high TMB. Dostarlimab,

targeting the PD-1/PD-L1 pathway is approved for patients with

advanced sarcoma exhibiting dMMR. Denosumab, a mAB targeting

the RANKL pathway, is approved for certain subgroups of bone

cancer patients (181, 182).
6 Discussion

Tumor therapy is a dynamic field and this work shows, it is

crucial to work within a multidisciplinary team. Recent

advancements have paved the way toward promising treatments

that improve complete remission rates and prolong PFS. The

knowledge of the strengths and limitations of novel mAB and ICI

is paramount to providing effective therapy concepts and leveraging

surgical and non-surgical therapies. Thus, reconstructive surgeons

should be updated on the latest oncological therapy trends and

further explore potential links between mAB/ICI administration

and surgical outcomes.

Overall, future clinical trials are warranted to explore further the

potential of mAB and ICI in the presented cancer entities. There is a

lack of ongoing clinical trials in skin cancer and sarcoma (Table 1).
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Currently, scrutinized target structures for ICI include PD-1

and its ligand PD-L1, which are both inhibitors of antitumoral T

cells. Targets of mAB include EGFR and VEGFR, and HER-2.

EGFR and VEGFR are growth-factor receptors, and HER-2 is a

membrane tyrosine kinase receptor expressed in breast tissue, an

oncogene in BC (13, 14, 17, 80, 81).

Beyond those structures, more targets show potential. Anti-

RANKL mAB therapy shows potential in BRCA1-mutational

driven BC and is approved for some types of bone cancer (183)

(181, 182). In BC, CD4/6 inhibitors are explored - looking at the

crucial role of the cell cycle in tumor development (184–188).

CTLA-4 is one of the main targets in mAB therapy in MM, but

more structures are scrutinized as promising targets like LAG-3

(117). For ICI in MM, TIM-3, and TIGIT are currently under

investigation as coinhibitory-receptor targets (126). Beyond mAb

and ICI, BRAF inhibitors have been investigated in MM treatment

(138). mAB for sarcoma therapy focus on PDGFR-a and B7-H3,

while ICI involve HDAC-inhibitors. Further, the application of

multi-TKIs targeting VEGFR 1-3, and PDGFR-a, and -b, is under
current investigation for sarcoma therapy (169).

This review condenses the current body of evidence on mAB

and ICI in HNC, SC, BC, and sarcoma therapy. Ultimately, this line

of research goes beyond the scalpel and may serve as an evidence-

based fundament to optimize the therapeutic efficacy of surgical and

non-surgical treatments.
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5-FU (5-)fluorouracil

ARMS alveolar rhabdomyosarcoma

BAP1 BRAC1 associated protein

BAP1-
TPDS

BAP1 tumor predispositions syndrome

BC breast cancer

BCC basal cell carcinoma

BRCA1/2 breast cancer gene 1/2

BRAF v-raf murine sarcoma viral oncogene homolog B1

BS bone sarcomas

CDK cyclin-dependent kinase

CDKN2A cyclin-dependent kinase inhibitor

CPS Combined Positive Score

CTLA-4 cytotoxic T-lymphocyte antigen 4

CXCR4 CXC chemokine receptor type 4

DDLPS dedifferentiated liposarcoma

dMMR DNA mismatch repair deficiency

EBV epstein-barr virus, human herpesvirus 4

EGFR epidermal growth factor receptor

ER estrogen receptor

ERK extracellular signal-regulated kinase

ERMS embryonal rhabdomyosarcoma

FCS five-year cumulative survival

FDA United States Food and Drug Administration

FGFR fibroblast growth factor receptor

HDAC histon deacetylase

HER-2 human epidermal growth factor receptor 2

HNC head and neck cancer

HNSCC head and neck squamous cell carcinoma

HPV human papilloma virus

ICI immune checkpoint inhibitors

IgG4 humanized mononuclear immunoglobulin G4

LAG-3 lymphocyte activation gene 3

LFS Li-Fraumeni syndrome

LMS Leiomyosarcoma

LS Liposarcoma

mAB monoclonal antibodies

MAPK mitogen-activated protein kinase

MEK mitogen-activated protein kinase kinase
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MHC-I major histocompatibility complex I

MITF microphthalmia-associated transcription factor

MM malignant melanoma

MRCLS myxoid/round-cell liposarcoma

MSI microsatellite instability

mTOR mammalian target of rapamycin

NF1 neurofibromatosis type 1

NK cells natural killer cells

PALB2 partner and localizer of BRCA2 gene

PARP poly-ADP-ribose polymerase

PD-1 programmed cell death protein 1

PD-L1 programmed cell death protein ligand 1

PDGFR platelet-derived growth factor receptor

PFS progession-free survival

PI3K phosphatidylinositol-3-kinase

PI3KCA phosphatidylinositol-4,5-biphosphaste 3-kinase catalytic
subunit alpha

PR progesterone receptor

PTEN phosphate and tensin homolog gene

R/M recurrent or metastatic

RAC1 ras-related C3 botulinum toxin substrate 1

RANK receptor activator of nuclear factor kappa-B

RANKL RANK ligand

RMS Rhabdomyosarcoma

SC skin cancer

SCC squamous cell carcinoma

ssRMS spinde cell/sclerosing rhabdomyosarcoma

STS soft tissue sarcomas

TIGIT T cell immunoreceptor with Ig and ITIM domains

TIM-3 T cell immunoglobulin and mucin domain 3

TKI tyrosine kinase inhibitor

TMB tumor mutational burden

TNBC triple negative breast cancer

TNFa tumor necrosis factor alpha

Tregs regulatory T cells

TP53 tumor protein p53 gene

VEGF vascular endothelial growth factor

VEGFR vascular endothelial growth factor receptor

WDLPS well-differentiated liposarcoma
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