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Abstract
Modern cancer research relies on a vast array of different technologies and data
sources. Many of them use next-generation sequencing (NGS) techniques, with
diverse application domains such as genomics, transcriptomics, epigenomics
and metagenomics. These processes create data on the molecular level, and
enables researchers to analyze genetic mutations, gene expression patterns,
genome methylation, protein-DNA interactions and much more. With falling
costs, research projects are including more and more NGS experiments, cre-
ating massive amounts of data that requires secure storage, processing and
analysis.

The advent and impressive progress of powerful AI models in recent years has
created another important source of data from imaging. Pathologists analyze
histopathological images to identify cellular abnormalities, tissue structures
and patterns indicative of certain cancer subtypes. The pathologist’s diagnosis
will often decide the cancer therapy used, and getting it correct is a matter of
life and death. The amount of data, the complexity of it, and the regulatory
requirements render data-management a central task of utmost importance for
the success of research projects.

This thesis describes the development and utilization of digital infrastruc-
ture for both NGS sequencing and AI-based pathology image analysis. We
modularize this infrastructure through the use of software containers as ba-
sic building blocks. We build mostly independent services and manage them
automatically by using kubernetes container orchestration. We created infras-
tructure for securely storing and sharing large datasets and for managing NGS
metadata. We show how this is applies for NGS projects in cancer research. In
the same way we built services for managing and acquiring pathology image
data and for running AI workloads on these pathology images. This is the
foundation for applying deep neural networks to diagnose lymphoma subtypes
on a dataset of slides images from 157 patients. Our software focuses on us-
ability by researchers and leverages modern web technologies for both creating
a graphical user interface for users and enabling computational access through
JSON APIs.

Our projects are available open-source, and they are in active use for further
research, both in NGS sequencing as part of the TRR305 project on metastatic
organ colonization in cancer, and for pathology image analysis as part of the
FDLP project on federated learning on lymphoma pathology data.
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Zusammenfassung
Die moderne Krebsforschung stützt sich auf ein breites Spektrum von unter-
schiedlichen Technologien und Datenquellen. Viele von ihnen nutzen Sequen-
zierungstechniken der nächsten Generation (NGS) mit verschiedenen Anwen-
dungsbereichen wie Genomik, Transkriptomik, Epigenomik und Metagenomik.
Diese Verfahren erzeugen Daten auf der molekularen Ebene, und ermöglichen
den Forscher*innen die Analyse von Genexpression, Gen Mutationen, Protein-
DNA-Interaktionen, DNA Methylierung und vieles mehr. Mit kontinuierlich
sinkenden Kosten, werden in Forschungsprojekten immer mehr NGS-Experimente
durchgeführt, die große Datenmengen erzeugen. Daten, die eine sichere Spe-
icherung, Verarbeitung und Analyse erfordern.

Das Aufleben und die enormen Fortschritte leistungsstarker KI-Modelle in
den letzten Jahren haben eine weitere wichtige Datenquelle geschaffen: die
Bildanalyse. Patholog*innen analysieren histopathologische Bilder zur Iden-
tifizierung von zellulären Anomalien, Gewebestrukturen, und um Muster zu
erkennen, die auf bestimmte Krebs Subtypen hinweisen. Die Diagnose der
Pathologin oder des Pathologen entscheidet oft über die angewandte Krebs-
therapie, und die richtige Diagnose ist lebenswichtig für Patient*innen. Die
Menge der Daten, ihre Komplexität und die strengen gesetzlichen Anforderun-
gen machen das Datenmanagement zu einer Aufgabe von großer und zentraler
Bedeutung für den Erfolg von Forschungsprojekten.

Diese Arbeit konzentriert sich auf zwei miteinander verbundene Interessens-
gebiete: NGS-Sequenzierung und KI-Histopathologie. Zunächst wird die In-
frastruktur beschrieben, die zur Unterstützung der Arbeit in diesen beiden
Bereichen geschaffen wurde. Das wichtigste Ergebnis daraus ist ein hochver-
fügbarer Kubernetes-Cluster. Er bietet uns eine verteilte Plattform für con-
tainerisierte Dienste und Pipelines.

Für die NGS-Sequenzierung haben wir Software entwickelt die alle Sequen-
zierungsdaten, die wir erhalten, mit starker Kryptografie verschlüsselt. Dies ist
für genetische Daten von Menschen erforderlich, aber wir wenden Verschlüs-
selung standardmäßig auf alle Sequenzierungsdaten an. Die Daten werden nur
symmetrisch verschlüsselt gespeichert, und die symmetrischen Schlüssel wer-
den dann mit Public-Key-Kryptographie gesichert. Dieses hybride Kryptosys-
tem hat große Sicherheitsvorteile, denn der Datenzugriff erfordert sowohl den
Zugriff auf die Daten als auch den Besitz der richtigen Schlüssel. Selbst wenn
die Server kompromittiert werden sollten, bleiben die Daten sicher. Mehrere
potenzielle Risiken wurden berücksichtigt. Wir haben verschiedene Wieder-
herstellungsoptionen dokumentiert und implementiert, z. B. für den Fall eines
Schlüsselverlusts durch die Benutzer*innen. Die wichtigste Innovation dieser
Software ist die Verwendung der Web Crypto API im Webbrowser des Be-
nutzers für die gesamte Kryptografie. Die Nutzer*innen müssen keine Soft-
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ware installieren, und die kryptografischen Algorithmen sind in den Browser
integriert, wo sie ständig überprüft werden und die Hersteller der Browser ihre
Sicherheit gewährleisten. Bei unserem Entwurf müssen sich die Nutzer*innen
zwar nicht aktiv mit der Kryptografie befassen, aber sie müssen trotzdem mit
den Daten richtig umgehen und ihre Schlüssel sichern. Wir haben die lokale
Erzeugung von Kryptoschlüsseln implementiert und können sie auf gedruck-
ten QR-Codes speichern, die dem mentalen Modell für physische Schlüssel sehr
ähnlich sind.

In Verbindung mit den NGS-Daten sammeln wir die relevanten Metadaten
zentral in einem Webtool. Die Benutzeroberfläche ähnelt einem einfachen
Spreadsheet, das den meisten Nutzer*innen vertraut ist. Doch im Vergleich zu
einer einfachen Excel-Tabelle werden die Metadaten durch die zentrale Infras-
truktur über den gesamten Lebenszyklus der Daten hinweg synchron gehalten.
Wir haben Metadatenvorlagen auf der Grundlage bestehender Metadatenstan-
dards, z. B. denen des European Genome-Phenom Archive (EGA), entwickelt.
Die Metadatenstandards werden auf benutzerfreundliche Weise, durch Drop-
downs und sofortige, visuelle Datenvalidierung durchgesetzt. Die Daten wer-
den als vollständige Zeitleiste der Ereignisse gespeichert, so dass sie selbst bei
versehentlichem Überschreiben wiederhergestellt werden können. Da sowohl
die Metadaten als auch die Sequenzierungsdaten über eine API zugänglich
sind, können Pipelines die Daten automatisch lesen und schreiben.

Für die KI-Pathologie beschreiben wir zunächst die gemeinsame Infrastruk-
tur, die wir für unsere KI-Projekte geschaffen haben. Dazu gehören die Date-
naufnahme, die Konvertierung von Pathologie Objektträger Scans in ein of-
fenes Format, die Visualisierung der digitalen Bilder und der schnelle Lesezu-
griff für Deep Learning. Anschließend stellen wir unsere Arbeit an der KI-
Diagnose von Lymphomen anhand eines Datensatzes von 628 digitalisierten
Objektträgern von 157 Patient*innen. Wir verwenden Transfer Learning, um
tiefe neuronale Netze auf einer großen Menge von Patches, Bilder von kleinen
Teilen des Objektträgers, zu trainieren. Diese trainierten Netze werden dann
auf Testdaten angewendet, um Diagnosekarten zu erzeugen. Das sind lokal
annotierte Objektträgerbilder, die die KI-Diagnose für verschiedene Regionen
der Objektträger anzeigen. Diese Karten können von Patholog*innen ausgew-
ertet werden, und wir können alle lokalen Diagnosen zu einer Patient*innen
Diagnose zusammenfassen. Für den Datensatz von 157 Patient*innen erzielen
wir eine gute Quote von 60% richtig klassifizierter Patches und waren in der
Lage, alle Patienten korrekt zu diagnostizieren. Leider ließ sich diese Leistung
nicht auf einen unabhängigen Datensatz übertragen, und es ist weitere Arbeit
erforderlich, um ein Modell zu erstellen, das auf verschiedenen Datensätzen
gut performt.



Summary
Modern cancer research relies on a vast array of different technologies and data
sources. Many of them use next-generation sequencing (NGS) techniques, with
diverse application domains such as genomics, transcriptomics, epigenomics
and metagenomics. These processes create data on the molecular level, and
enables researchers to analyze genetic mutations, gene expression patterns,
genome methylation, protein-DNA interactions and much more. With falling
costs, research projects are including more and more NGS experiments, cre-
ating massive amounts of data that requires secure storage, processing and
analysis.

The advent and impressive progress of powerful AI models in recent years has
created another important source of data from imaging. Pathologists analyze
histopathological images to identify cellular abnormalities, tissue structures
and patterns indicative of certain cancer subtypes. The pathologist’s diagnosis
will often decide the cancer therapy used, and getting it correct is a matter of
life and death. The amount of data, the complexity of it and the regulatory
requirements render data-management a central task of utmost importance for
the success of research projects.

This thesis focuses on two main loosely connected fields of interest, NGS
sequencing and AI pathology. We first describe the infrastructure that was
created to support work in both those fields, with the main result being a high-
availability kubernetes cluster. It gives us a common platform for containerized
services and pipelines.

For NGS sequencing, we created software that applies strong cryptography
to all the sequencing data we receive. This is required for human genetic
data, but we apply encryption to all sequencing data by default. Data is only
stored encrypted by a symmetric key algorithm, and the symmetric keys are
then secured using public-key cryptography. This hybrid cryptosystem has
very strong security benefits, data access requires both access to the data and
holding the proper keys. Even if the servers were to be compromised the data
would stay secure. Multiple potential risks were considered and mitigated.
We have documented and implemented various recovery options, e.g. in case
of key-loss by users. Key innovation for this software is the use of the Web
Crypto API in the user’s browser for all the cryptography. Users do not need
to install software, and the cryptographic algorithms are built into the browser,
where they are continuously audited, and browser vendors ensure their security.
While our design does not require users to actively deal with the cryptography,
they must also handle the data properly and secure their keys. We implement
local crypto key generation, and we can save them to printed QR Codes where
they closely map to the mental model for physical keys.

Connected to the NGS data, we centrally collect the relevant metadata in
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a web-tool. The interface for users is similar to a simple spreadsheet, familiar
to most users. But compared to simple Excel spreadsheet, through the central
infrastructure, metadata is kept in sync for the whole data life-cycle. We de-
signed metadata templates based on existing metadata standard, e.g. from the
European Genome-Phenome Archive (EGA). Metadata standards are enforced
in a user-friendly way by providing drop-downs and immediate user feedback
on data validation. Data is stored as a full timeline of events, so even if data
is accidentally overwritten it can be recovered. By having both the metadata
and the sequencing data accessible through an API, pipelines can read and
write the data automatically.

For AI pathology we first describe the shared infrastructure we created for
our AI projects. This includes data ingestion, converting pathology slides to a
common format, viewing the slides, and enabling fast random access for deep
learning. We then present our work on the AI diagnosis of lymphoma on a
dataset of 628 whole slides images from 157 patients. We use transfer learning
to train deep neural networks on a large amount of patches, small pieces of the
slide. These trained networks are then used on test data to generate diagnosis
maps, locally annotated slide images that show the AI diagnosis for different
regions of the slides. These maps can be evaluated by pathologists, and we can
combine all the local diagnoses into a patient diagnosis. For the initial dataset
of 157 patients we achieved great performance with 60% of patches classified
correctly, and were able to correctly diagnose all patients. Unfortunately this
performance did not transfer to an independent dataset, and more work is
required to create a model that generalizes well.
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1 General Infrastructure
This chapter describes the general compute infrastructure that was set to sup-
port the software created as part of this thesis.

1.1 Introduction
“If you wish to make an apple pie from scratch, you must first
invent the universe.”

— Carl Sagan, Cosmos

Goal of this thesis is to support research with helpful tools with a wide range
of applications. While this research we do is also part of this thesis, the tools
and code that support it are just as much a scientific result. We need a sort
of “infrastructure for the infrastructure” that supports the creation, execution
packaging and distribution of software. The following chapter describes the
methods and tools used. To avoid the dilemma described by Carl Sagan we
depend on many other open-source [75] projects, free and usable by everyone,
instead of proprietary and closed solutions.

1.2 Containers
All this works strongly depends on containers for distribution, deployment and
management of the infrastructure. Containers provide a standardized way to
package and distribute applications along with their dependencies, ensuring
portability across different environments. Containers in this work is used to
refer to containers specified by the Open Container Initiative (OCI). The OCI
defines two main components: the image format [51] and the runtime [52].
The image format describes how a container image should be structured. Con-
tainer images are files stored in this format on the file system, and uploaded for
distribution. The runtime then defines how a container should be executed,
including permissions, process isolation and resource constraints. Container
runtimes provide an isolated environment for apps to run, each container has
its own view of the file system, its own network and its own processes. These
isolation features are (typically) provided directly by the host operating sys-
tem’s kernel, using cgroups and namespaces. cgroups (Control Groups) limit
the resource usage, e.g. CPU and memory usage. Namespaces give containers
a separate file system and process space.

Containers can be run by themselves using a container runtime such as
Docker [49] or Podman [77]. They will run on every operating system, but not
on every instruction set.

1



Figure 1.1: Containers on the major operating systems. OCI containers run
on the Linux kernel, on Windows and macOS a virtualization layer
is used to run the containers.

The more powerful application of containers is in large orchestrated cloud
systems, such as kubernetes[2]. There containers act as the basic units of
computation, they are automatically started, restarted, stopped or moved to
different servers.

1.3 Kubernetes cluster
1.3.1 Hardware
Specification and setup of the Hardware was done in collaboration with Chris-
tian Kohler, the system administrator for the Spang Lab.

The work presented here does not rely on powerful compute hardware, but
requires instead stability, a high fault tolerance and proper redundancy. This
is why a cluster of multiple bare-metal servers was selected, running kuber-
netes [2].

Initially kubernetes was deployed to a test cluster, see 1.2 and later a highly
available production cluster was set up.

Figure 1.2: Test kubernetes cluster at the Spang Lab. This cluster was used
for testing before real servers in a compute-center where available.
One server has a Nvidia GTX 1080Ti GPU and is used for AI
workloads.

The test cluster was built from 5 old workstation PCs and one recent “gam-
ing” computer with a Nvidia 1080Ti GPU. The production cluster uses three
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Dell PowerEdge R740 servers as a control plane, and multiple other servers as
workers. The only requirements for these servers are that they are connected
via a local network connection and have a unique MAC address It is also im-
portant that there are at least three control-plane nodes, so a single server can
be updated, or physically upgraded and there are still two other servers left
that provide redundancy against hardware failure. See 1.3.6.

1.3.2 AI hardware
Key requirement for the AI workflows described in 5 were Graphical Process-
ing Units (GPUs). AI applications, particularly training deep learning models
involves performing numerous matrix multiplications and other matrix op-
erations. GPUs can efficiently parallelize these calculations, and are orders
of magnitude faster and more efficient than CPUs. Training models of even
moderate size is computationally impractical without GPUs. Our models were
trained initially on a Nvidia GTX 1080Ti GPU because of its cost-effectiveness.
This card is not licensed by Nvidia for use in data centers and after funding
was available was mostly replaced by a more powerful Nvidia A40 GPU, in
one of the kubernetes nodes. With recent additional funding we also acquired
a dedicated GPU server with 6 Nvidia A100 GPUs.

1.3.3 Kubernetes basics
Definitions:

• Node: The physical (or virtual) machine that is part of the cluster.

• Cluster: The set of nodes that all run kubernetes software on them.
They are connected through the local network.

• Pod: The base unit in the kubernetes object model, a pod represents
(in most cases) a single running container. Pods run on specific nodes.

• Service: An abstract object that describes the interface for communi-
cation with a set of pods. If we want to talk to a pod, we talk to the
service and the traffic will be directed to proper node by kubernetes.

• Deployment: A deployment describes a desired state of an application.
Kubernetes will try to create pods in a way to fulfill this state.

• Ingress: Entry and exit points to the cluster. Ingresses open network
ports to the outside of the cluster, the internet (or an internal network).
They then route the traffic through to the specified services.

Kubernetes is first of all a set of containers, which are distributed across
multiple nodes. All the nodes communicate over the local network, they have
custom cryptographic certificates, and they encrypt all inter-node traffic. On
top of this, kubernetes provides a set of services, for scheduling, cluster control,
networking and state management. All these services are implemented as
containers running as part of the cluster.
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1.3.4 Cluster state
Kubernetes tracks its own state in a shared database, called etcd [25]. The
cluster admin communicates with the cluster through the kube-apiserver and
specifies a desired state. The kube-controller-manager handles the core control
loop of the cluster, it compares the current state against the desired state and
then attempts to move the current state towards the desired state. If new
pods are required the kube-scheduler will assign them nodes, according to pod
requirements and balancing resource load.

1.3.5 Networking
In addition to running the containers, kubernetes needs to securely handle
communication between containers and from the outside. Kubernetes builds
its own internal network from the cluster nodes, each node, each service and
each pod get its own local IP Address. Kubernetes addresses are from the
special use address blocks as defined in the IPv4 Standard (RFC 791 [78]).
Kubernetes runs an internal Domain Name System (DNS) for name resolution.
Our cluster uses the core-dns service for this purpose. Each node runs kube-
proxy, a proxy server that will redirect network traffic to the correct node. We
specify a set of edge-router nodes, these are connected to the internet and may
have open ports. These edge nodes run an ingress controller, which routes
external traffic to the internal containers. All this networking is built on top
of the same open protocols and tools that power the internet.

1.3.6 High availability
The sections 1.3.4 and 1.3.5, describe all the services required to run the cluster.
They are: the etcd database, the kube-apiserver, the kube-controller-manager,
the core-dns, the kube-scheduler and the kube-proxy. They are all implemented
as containers and are managed by the cluster itself. All of them are crucial
for cluster operation. Part of the design goal is for the cluster to be highly
available, this means the cluster should be functional at all times.

The first step in this is creating a level of redundancy against hardware
failure of the nodes. Three identical control plane nodes were chosen, and as
long as at least one of the nodes is working the cluster will be working. A single
node may be taken down intentionally for software updates or hardware fixes,
with the other two still providing resiliency against hardware failure during
this time.

This redundancy is achieved first by simply replicating all the core service
containers on all the control plane nodes, see Figure 1.3.

But this alone does not fully solve the redundancy problems. We need to
prevent a split brain scenario, where e.g. two schedulers disagree. In case a
server fails we also need to detect the failure and redirect the traffic.

To solve both these problems an additional core service called kube-vip was
deployed and a new virtual IP Address was created. The control plane nodes
follow a leader election process where the leader takes over the virtual IP
Address.
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Figure 1.3: The kubernetes control plane of the Spang Lab. The control plane
nodes are physical servers in the compute center. At least three
control plane nodes are required to ensure high availability. All the
core services are replicated on every control plane node. They use
a virtual IP Address and the ARP Protocol to do leader election

1.3.7 Leader election
Leader election is done using the Address Resolution Protocol (ARP) [78].
ARP is the protocol that assigns physical MAC addresses of computers to
IPv4 IP Addresses. The network routers will send network traffic addressed to
an IP Address to the corresponding MAC address of the computer. Computers
may broadcast ARP Requests in the local network to create new mappings.
The leader election process for the control plane works like this:

1. We have a virtual, initially unassigned IP Address vip, e.g. in our case
132.199.249.2.

2. As soon as a control-plane node starts up it waits for a short amount of
time, and then sends an ARP broadcast to try to assign vip to their own
MAC address.

3. If a node receives an ARP broadcast during the time it waited, it does
not do its own broadcast.

4. The node who won the race for the first broadcast becomes the leader of
the cluster, its scheduler, controller-manager and api-server manage the
cluster state.

5. The new leader continues sending the ARP broadcast for vip every five
seconds.

6. As long as the other control plane nodes receive the broadcast they follow
the cluster leader.
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7. If the leader fails, looses connection or is taken offline it can no longer
broadcast ARP requests.

8. If the other nodes do not receive an ARP broadcast for five seconds they
begin to broadcast their own ARP request and assume leadership of the
cluster.

9. Because the IP address mapping changes, all network traffic is immedi-
ately directed to the new leader.

This process was chosen because it requires no additional hardware and can
be managed from within the cluster. Failover time is at most 5 seconds.

We also deploy and ingress controller on each of the control plane nodes,
and all of them are set up to act as edge routers.

1.3.8 Web security
Kubernetes may be used for any kind of network protocol, but is especially
suited for applications communicating over HTTP and HTTPS (as specified
in RFC 9110 [27]). All the services described later use a web based design,
and they benefit from some additional services set up as part of the cluster.

Securing web traffic with HTTPS has become a requirement for modern web
applications. HTTPS encrypts data transmitted between the user’s browser
and the web server, protecting login credentials and personal data from eaves-
dropping. Browsers will show warnings and disable some APIs for unencrypted
HTTP connections. The Web Crypto API [33] required for the data encryption
in chapter 2 is only available in secure contexts.

Fortunately Let’s Encrypt [34], a non-profit Certificate Authority provides
free certificates, through the ACME protocol [7]. As part of the cluster in-
frastructure the cert-manager tool was deployed. Cluster ingress information
is already fully defined by the cluster, by associating external access points to
the cluster with in-cluster services. The cert-manager service reads the cluster
state, automatically generates and renews the required certificates and stores
them in the cluster database. All external traffic is automatically encrypted,
the ingress controller acts as an endpoint for the encryption.

1.3.9 Storage backend
Our workflows and services require a stable redundant and backed up storage.
In our case large file servers, set up by Christian Kohler and Randy Rückner,
serve as the storage backed. These servers manage a large amount of hard
disks that are combined into a large logical volume. Data is distributed on
multiple drives and parity information is created by the servers. This allows
for up to two simultaneous drive failures, without data loss.

This storage volume is additionally regularly backed up on magnetic tape,
this is a high-capacity but cheap way to keep data backups, and well suited
for long term backups. Access is very slow but only required in case of data
loss.

6



The volume is exported to all our servers using the NFS (Network File Sys-
tem) protocol. But the kubernetes storage model is different and built more
for large cloud providers like Google Cloud, Amazon Web Services or Microsoft
Azure. Kubernetes expects to create separate storage volumes, called persis-
tent volumes for each service. These persistent volumes are then managed like
other cluster resources. Kubernetes wants to dynamically provision storage,
as in create new storage volumes on demand. This is typical for large cloud
providers, storage is essentially infinite for the customer and billed by usage.

Fortunately there is software that also allows us to do dynamic provisioning
with our bare-metal NFS setup. We define a custom storage provisioner, the
Kubernetes NFS Subdir External Provisioner [3] maintained by the kubernetes
authors. When a new persistent volume is requested, it creates a new folder
inside the NFS storage as the volume and sets the required permissions.

1.3.10 GPUs as cluster resources
By default, kubernetes manages CPUs and memory as resources in the cluster.
Each Pod may be assigned resource requests and limits. e.g. a Pod may
request 256 MiB of memory and 1 CPU and it may have set limits of 2 GiB
of memory. It may then use more than the requested 256 MiB, but will not
be able to allocate more than 2 GiB of memory. CPU as kubernetes resource
refers to the number of CPU cores, and a request of 0.5 CPUs is a request for
half the CPU time of a single core. The kubernetes scheduler uses these limits
and requests to distribute services according to their resource needs across
different nodes.

For our GPUs the Nvidia Container Toolkit [73] allows us to generate Con-
tainer Device Interface (CDI) specifications [17]. This allows the scheduler
to manage not just CPUs and memory, but also GPUs as a cluster resource.
Pods and Jobs can simply be annotated, see Figure 1.4, and will be scheduled
correctly. With just the resource annotations, kubernetes also knows that the
GPU device should be mounted into the container.

Figure 1.4: A kubernetes Pod specification with a request for a GPU resource,
it will automatically be scheduled to a node which contains a GPU.

1.3.11 Kubernetes jobs
The kubernetes cluster mostly manages services, these are expected to stay
running, and they are restarted automatically should they crash. But data
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pipelines are not services, they should be run once, and they should terminate.
For this use case kubernetes provides a different API, the kubernetes Job API.
A Job represents a finite task that runs to completion, the Job API is designed
to also run Pods, but then checks if they successfully terminate. Jobs may
specify parallelism, how many jobs should run at the same time in the cluster,
and a back-off limit, how often the Job should be retried in case of failure.

With this API we created containerized data pipelines, and schedule them to
run on the cluster. AI pipelines may simply request a GPU, see 1.3.10, and will
then run on a GPU node. These pipelines are reproducible, the containers are
built automatically from code repositories using our CI, see 1.6.4 and stored
in our container registry.

1.4 Authentication and authorization
For user authentication a custom authentication provider was set up. It acts
as both a provider for the OpenID Connect Protocol [30] and as an LDAP [106]
server. This service manages all the personal user data, and complies to the
General Data Protection Regulation(GDPR) [26]. The minimally required
data is collected, and a privacy policy is provided to users. Using the OpenID
Protocol, other services only request the required scopes and users get a clear
prompt each time personal data is requested.

1.4.1 Access control
For authorization, we define set of permissions as part of the authentication
provider. For each service users may be granted permission to use the service,
and in addition may be granted additional admin permissions.

1.4.2 OpenID Connect
User information and permissions are exported first using the OpenID Connect
protocol [30]. This protocol evolved from OAuth2 and is by far the most
popular authentication method on the internet.

It is used by applications to securely outsource authentication to identity
providers, and well known through sign-in flows like Sign-in with Google, Sign-
in with Apple, Sign-in using Facebook etc.

The OpenID Connect flow works like this

1. The user navigates to a website or web application, called the Relaying
Party (RP)

2. The users clicks Sign-In

3. The user is redirected to the Identity Provider (IP).

4. The RP requests a certain set of scopes from the IP, these scopes rep-
resent certain user information, such as the name, email, address or
permissions.
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Figure 1.5: Auth server user management. Authorization is managed by a set
of permissions per users. These permissions are also mapped to
LDAP groups, and can be used to set file system permissions.

5. RPs should request the minimal required set of scopes.

6. The IP authenticates the user, e.g. with the user entering his username
as password.

7. The user must consent to grant the RP access to the requested scopes.

8. The IP sends an Identity Token and an Access Token to RP.

9. The RP sends a request to the userinfo endpoint of the IP to fetch the
request user data.

For our applications we depend on this flow, and we use our custom identity
provider to store the user data. Because we externalize authentication, our
software is easy to reuse by others, they simply configure their own Identity
Provider, or use a public Provider like Google, Apple, Facebook, Otka, or
GitHub.

1.4.3 LDAP mapping
Because we also support Linux compute environments, see 1.5.1, we use the
user data in our identity provider to emulate an LDAP server. LDAP, the
Lightweight Directory Access Protocol, organizes user data in a hierarchical
tree structure, and maps well to the Linux user model of users and groups.
We assign each permission, set in 1.4.1 an LDAP group and ID, this can then
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be mapped to file system permissions in our compute environment. Note that
the there is only a single source of truth for the user data, but it is exported
for both the OpenID and the LDAP protocol. These two protocol cover all
the authentication needs for our infrastructure. The SAML [13] protocol, was
not implemented but may be useful in the future. LDAP access is limited to
within the cluster and a valid bind is required to read user data. The LDAP
tree is read only, write operations will fail. Changes to the user data are done
using the HTTPS API or our identity provider, mostly from the web client,
see Figure 1.5.

Figure 1.6: LDAP export of user data.

1.4.4 Cluster authentication
Even thou our identity provider runs as a service in the cluster, we can also
use it to manage permissions for cluster administration. Kubernetes supports
the OpenID Connect token authentication [4]. We configure the kubernetes
API servers to accept access tokens from our identity provider and then users
can use kubelogin [54] to sign in and set the access token for the kubernetes
command line tool kubectl. Kubernetes uses role base access control (RBAC)
to manage cluster permission. Cluster roles define permissions for actions in
the cluster. By defining ClusterRoleBindings we can map users and groups to
roles. This allows for fine-grained access control for cluster management, see
Figure 1.7.

1.5 Kubernetes services

1.5.1 Compute servers
Even with a reproducible job queue, described in 1.3.11, some use cases are
better served by dedicated server. Especially for testing and exploratory anal-
ysis, the overhead of creating a container creates too much friction and pre-
vents rapid iterations of code. Debugging also requires more active control
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Figure 1.7: Kubernetes configuration for defining cluster roles and permissions.
This maps the group kubernetes to the cluster admin role with full
permissions, and also defines a read-only role, that may only read,
but not change cluster state.

and monitoring of the pipeline. Dedicated machines would typically be vir-
tual or physical machines, with ssh access for users running a headless Linux
operating system. Users work on these servers the same way as their local
machine, they can install software, transfer files and run code. They connect
using the secure shell (ssh) protocol, a cryptographic network protocol, and
all the communication is encrypted. This way of remote work is wide-spread
and familiar to users. We wanted this, more direct, way of interacting with
the machines without compromising the security or stability of the cluster. To
solve this we created custom containers, based on Ubuntu [15] a full server op-
erating system. These containers can be scheduled on the kubernetes cluster
like any other service and they can request GPUs. We run the OpenSSH [97]
server sshd as the main container process and enable ssh access to the cluster.
Only public-key based authentication is permitted, and the public keys are
managed by the identity provider, see 1.4. We can offer different containers
based on workload and still have an effective sandbox where applications can
run without affecting the cluster. Because these containers access the host
systems kernel we do not lose compute performance from virtualization, as it
would be the case in dedicated VMs. These compute containers are in active
use not just for this work, but they support a variety of scientific work from
the Spang Lab. Each user has an individual persistent storage claim mounted
via NFS as described in 1.3.9.
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1.5.2 Jupyter

Jupyter Notebooks are widely used for various tasks such as data exploration,
prototyping, model training and result visualization. Jupyter is an open-source
interactive web application that enables users to create and share documents,
called Jupyter Notebooks that contain code, equations, visualizations and text.
Jupyter was set up on kubernetes, thanks to the open-source project Zero to
JupyterHub with Kubernetes [80]. This was initially created at the UC Berkeley
for use in their Data8 [102] teaching program, but is now officially supported
by Project Jupyter. This project integrates easily with our infrastructure, with
the notebooks running as Pods on the cluster, user authentication bound to
our identity provider, see 1.4 and storage dynamically allocated from our file
server, see 1.3.9.

GPUs can be mounted as resources into the notebook pods, see 1.3.10 cre-
ating an easy way to train our neural networks, see 5 and evaluate results.
This was especially useful for students working on the AI project, who could
quickly start working on AI workflows.

Jupyter Notebooks were not only useful for the work in this thesis, they
were also an essential tool for teaching at the Spang Lab. We could offer the
course Genomic data analysis [92] with a custom coding environment, based
on Jupyter and the Data8 [102] program, for students unfamiliar to coding
and statistics. Containers (1.2) provided a working coding and teaching en-
vironment for students. Jupyter enabled us to teach an interactive coding
course remotely during the COVID-19 pandemic. As part of the Faculty for
informatics and data science (FIDS) Jupyter is an official part of the Data
Science study program, with a course Developer Skills [95] created by me and
the other PhD Students of the faculty. Infrastructure and teaching support for
this and the Data course was provided by Tobias Schmidt and me, in collab-
oration with the FIDS administrator Nils Meyer and the computing center of
the University of Regensburg. Tooling for this, called urnc is already published
on GitHub [45], but not directly related to the work described in this thesis.

1.5.3 Other scientific web services

This cluster also serves as basic infrastructure for other projects.

• Lyra [46]: Data exploration and visualization of lymphoma expression
and suvival data.

• DTD [89]: Web app for digital tissue deconvolution.

• Celloscope [88]: Visualization of scRNA seq data.

• Datatomb [55]: Scientific data management.
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1.6 Code and container management

1.6.1 Git repositories
The work in this thesis is in large parts, code written in different programming
languages and for different projects. For years the state of the art in code
management is Git [36]. Because code is plain text and requires little storage
we can keep a complete history, every version with every change, for all code
we write. Git is a distributed version control system design to track these
changes in source code. It was created by Linus Torvalds in 2005 for use on
the Linux kernel. All projects in this thesis are one or more git repositories
(repos). Repositories are collections of files with their revision history. This
history is organized as a tree of commits, snapshots of the project at a specific
points in time. All code is hosted and backed up, either on our own self-hosted
instance of GitLab [11] or is publicly available on GitHub [50].

1.6.2 Semantic versioning
Stability and reproducibility is important for the software created and pub-
lished as part of this thesis. For all of our software projects and containers
we use a versioning scheme that describes the nature of changes and whether
they are compatible with existing code or introduce breaking changes. This
is why we use the Semantic versioning (SemVer) versioning scheme [79]. Each
code and container release has a version number with 3 numbers in the for-
mat MAJOR.MINOR.PATCH, e.g 1.0.4. After changes this version is updated,
depending on the extent of the changes. Incrementing the PATCH version, e.g.
1.0.4 ⇒ 1.0.5 indicates bug fixes or small improvements that are fully back-
wards compatible. Changing the MINOR version implies some breaking changes,
and the MAJOR version is increased when there are fundamental changes to the
software. The version tags are attached to commits in the version control sys-
tem, see 1.6.1, and the software code can be reverted to a certain version with
a simple git command e.g. git checkout v1.0.4. Version tagged containers
are stored in the container registry, see 1.6.3, and create a fully reproducible
environment. This versioning is essential for reproducible and reusable science,
and are part of the FAIR guiding principles [104].

1.6.3 Container registry
Similarly to the code management described in 1.6.1, we also store the con-
tainers we create. Because of the features described in 1.2, containers are a
key technology for reproducible research [8]. We not only keep the code, see
1.6.1, but also the whole environment, with all dependencies. The Spang Lab
hosts an internal container registry, a service that stores and distributes con-
tainers as part of the GitLab [11] instance, maintained by Christian Kohler. In
addition, for open-source web services we also publish containers on the public
container registry DockerHub [48].
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1.6.4 Continuous integration
We have automated the container and software build and publication pro-
cess using the continuous integration (CI) and continuous deployment (CD)
platforms of our GitLab server and of GitHub. These automations define the
containers only from specific commits. Git commits tagged with a seman-
tic version, see 1.6.2, trigger the pipelines. For an example see Figure 1.8.
For our GitLab server we set up a custom runner on a Linux PC to execute
the pipelines and build the containers. GitHub Actions provides free runners
with macOS (ARM and x86), Linux and Windows machines in the cloud for
open-source projects. With this we can create build matrices and easily create
cross-platform binary releases for our software, see 1.9.

Figure 1.8: GitHub action that automatically builds and publishes the dabih
container from a commit that is tagged with a semantic version.

Figure 1.9: The GitHub build matrix for releasing precompiled versions of
dabih (see chapter 2). GitHub provides free runners for MacOS
(x86 and ARM), Linux and Windows systems.
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1.7 Web development
Web services have long been essential for NGS workflows, with web applications
such as the Ensembl genome browser [66], the databases from the NCBI [86]
and many others. These tools are generally built for bioinformaticians, while
they may offer some services in the browser they act more like a data source
that is consumed using a programming language, such as R or Python. The
services we built also enable this kind of workflow, through the use of machine-
readable JSON web APIs, see 1.7.2, but the evolution of web technologies in
the recent years enables us to provide powerful new applications in the browser.

1.7.1 Databases
We follow best practice for storing all of our data, while large datasets are
stored directly on the file system, all the metadata is stored in databases
based on the Structured Query Language (SQL). We set up a highly available
instance of PostgreSQL [99] on the cluster hardware. This works similarly
to the high availability of the cluster, see 1.3.6. There is a primary database
server, that manages all the writes to the database and acts as a source of truth
for read-only replicas. Reading data from the database can happen from either
the primary or a replica. We use a smart Object Relational Model (ORM) that
maps well to many SQL based database technologies, called Sequelize [18]. This
allows us to share our software without requiring a specific database technology
as a dependency. By also supporting SQLite [93] we only require some kind of
persistent storage, with no separate database server.

1.7.2 JSON API
The make the data in these databases accessible, with proper access control,
and do the processing required we use API web servers based on NodeJS [98].
These web servers do not have a graphical user interface, or render HTML.
They use JSON [9] as their data format for communication, see Figure 1.10.
JSON is a Lightweight data interchange format that is easy for both humans
to read and write, and easy for machines to generate and parse. JSON APIs
have largely replaced XML and are the primary way to exchange data over the
internet. API requests over HTTP are stateless, meaning self-contained and in-
dependent, and will be handled asynchronously by the web server. This means
instead of waiting for a single request to finish the server can process multiple
requests concurrently. This is different from parallelism, because concurrency
happens on a single thread but instead of blocking execution, e.g. when wait-
ing for a database request or file system read, the server will continue with
other tasks, and be notified upon completion.

1.7.3 Web clients
In recent years the browser has evolved from an application that simply renders
HTML received from the server to a full cross-platform application platform.
Code running in the browsers is no longer simple DOM manipulation, but
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Figure 1.10: A documented JSON API call for the dabih (see chapter 2) ap-
plication. This documents the http endpoint for starting a new
upload /api/v1/upload/start. The client sends a JSON Re-
quest and receives a JSON response from the API server.

it has access to many standardized browser APIs. These functionalities make
browsers a viable platform for more and more use cases, with major advantages
for software distribution, portability and ease of use. In chapter 2 we describe
a novel use of the Web Crypto API [33], which only became possible after
adoption from browser vendors.

With this new complexity, new tooling and methodology is required to build
these web applications. While language of the web, JavaScript, is an inter-
preted language without a compiler, transpilers play a crucial role. Transpilers
compile source code to source code, and their primary purpose is to enhance
compatibility. They also perform tasks such as code optimization, and they
introduce new language features. Modern web applications now have a full
build and development system.

Software development also changed to different architectures based on Com-
ponents, with React.js [68] as the most popular library. React components al-
low us to create modular, reusable and composable pieces of the user interface.

For our web clients we use the Next.js [103] framework that integrates React
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components and uses Webpack [58] as a build tool.
Usability is a key concern for our applications, and having consistent styling

and the proper signifiers for interactions is important. With the proliferation
of mobile devices we also needed to adopt responsive design principles, with
the graphical interface automatically adapting based on screen size and layout.
We rely on Tailwind CSS [62] for styling our web applications, a set of low level
utility classes to build designs directly in the web component markup.
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2 dabih - encrypted data storage
and sharing platform

Parts of this chapter are published as preprint [47]. Other authors and their
contributions:

Michael Huttner: Conceptualization, Methodology, Software, Writing -
Original Draft, Writing- Review & Editing, Visualization; Jakob Simeth:
Conceptualization, Methodology, Software, Writing - Review & Editing; Re-
nato Liguori: Validation, Writing - Review & Editing; Fulvia Ferrazzi:
Validation, Writing - Review & Editing, Supervision; Rainer Spang: Writ-
ing - Review & Editing, Supervision; The text and visualizations in this thesis
are my original work.

2.1 Introduction
Modern biomedical research relies heavily on large datasets, acquired by vari-
ous techniques such as sequencing analysis or imaging. This encompasses the
acquisition, storage, sharing and analysis of highly sensitive data, including
human genomic data. Handling such data carries significant ethical and legal
implications, which are governed by regulations like the General Data Protec-
tion Regulation (GDPR) in the European Union. Researchers must maintain
stringent security measures and uphold confidentiality to protect the integrity
of sensitive data. For most sensitive clinical data, proper anonymization or
pseudonymization are effective and practical solutions to protect the individ-
ual’s privacy. But genomic data is special because it is identifiable by nature.
In this case, the principle of least privilege [84] must be rigidly applied. This
can be achieved through the use of asymmetric encryption, limiting access to a
minimal set of authorized individuals. Additionally, implementing fine-grained
access control further ensures that only those authorized individuals can access
the data. Software and algorithms for this purpose are well established, with
comprehensive recommendations available, such as those from the German
Federal Office for Information Security [29]. The predominant shortcoming
is the usability of these algorithms especially in integrating key management,
authentication, and authorization. For example, the most widely used stan-
dard OpenPGP [28], implemented by the GnuPG software, requires installing
software, cryptography knowledge and is built for use in the command line.
Typically, data owners are clinicians and biomedical researchers who may not
possess extensive IT expertise. It is crucial for them to manage their data
securely while avoiding the complexities involved in understanding encryption
and key management in detail. To address this, here we present dabih, an
open-source web application specifically designed to facilitate user-friendly en-
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crypted data management. dabih relies on the Web Cryptography API [33],
a tool integrated in modern web browsers that allows us to overcome many
usability and portability issues, by employing a web application that functions
within the browser.

2.2 Methods
2.2.1 Preliminary work
Dabih is based on a simpler unencrypted data storage, conceptualized and
implemented in collaboration with Jakob Simeth. This work is also available
open-source on GitHub, as

• datatomb [55]: The data storage API server.

• glacier [56]: A command line interface for datatomb.

• diggeR [91]: A simple R package for interfacing (searching, download-
ing, uploading) with datatomb.

While datatomb implemented data storage, it did not have a web client. It was
intended mostly for use in the command line, and in data analysis pipelines
written in the R language [100]. It also did not support encryption, but in-
cluded some metadata tracking that was excluded from dabih.

2.2.2 Design
dabih implements a hybrid cryptosystem with symmetric-key encryption for
data and public-key encryption as key encapsulation mechanism, enabling easy
permission changes by re-encrypting only the symmetric key to authorized data
recipients. The 256-bit Advanced Encryption Standard with Cipher Block
Chaining (AES-256-CBC), as specified in NIST SP800-38A[70] is used as the
symmetric algorithm, 4096-bit RSA (Rivest – Shamir – Adleman) with Opti-
mal Asymmetric Encryption Padding (OAEP) as specified in RFC3447[83] is
used for key encryption.

dabih is implemented as a server-client system, see 1.7. The server (we call
dabih server) provides a web API, receives and sends the data and manages
the keys. Clients handle the cryptography related to the private key on the
user’s device, e.g. the user’s web browser.

2.2.3 Authentication and key management
For authentication, dabih uses third-party services through the OAuth2 pro-
tocol. This allows server administrators to configure various authentication
providers such as Google, GitHub, Keycloak, or any other OpenID provider,
facilitating easy integration with different institutional setups, see 1.4. dabih
requests a user ID, name, and email from these providers. By default, anyone
can sign up; however, to actively use dabih, users must also submit an RSA
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Figure 2.1: Database structure for the dabih.

public key. This key requires admin confirmation before it becomes active, en-
suring that admins maintain control over who can access their dabih instance.
The RSA key-pair can be generated by the dabih client or by using the popular
tool ssh-keygen
ssh-keygen -m pkcs8 -t rsa -b 4096 -f key.pem
dabih requires a 4096-bit RSA key-pair in the PKCS#8 format. In the follow-
ing we assume users have a valid RSA key-pair and have uploaded their public
key to dabih. We stress that the private key never leaves the data owner’s
hardware and is not uploaded to the server.

2.2.4 Uploading data to dabih
In the context of dabih, ’datasets’ always refer to single files. For directories,
clients will convert them into archive files prior to uploading. The upload
process in dabih begins with the client initiating the action by first sending
file metadata to the upload API endpoint. The server will then generate an
ID and a cryptographically strong pseudo-random 32 byte AES-256-CBC key.
The ID will be returned to the client, the key will be kept in memory until
the upload is complete, it is not written to disk. The AES Key is encrypted
with the RSA public key of the user uploading the data and then stored in
the database. The dabih client will then start the data upload by splitting
the file into chunks (typically 2 MiB) and sending them to the server. For
each chunk the server will generate a random 16 byte initialization vector (IV)
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Figure 2.2: RSA-4096 key-pair generation and upload to dabih. Key genera-
tion always happens locally, and the private key never leaves the
user’s computer. The public key is uploaded to dabih. The private
key can be generated as a printable QR Code and scanned in with
a normal webcam, it will only be stored in the browsers local stor-
age.

and encrypt the chunk with the IV and the AES key. Only after encryption,
the data is written to the storage backend, fully implementing data-at-rest
encryption. dabih also generates an SHA-256 hash of the unencrypted data,
which allows us to check and skip duplicate files as well as resume incomplete
uploads. A checksum of the encrypted data is calculated using the CRC-32
algorithm [61], this is an emergency redundancy against data corruption, but
it is important that the storage used has adequate protection and redundancy
by itself.

After all chunks have been uploaded dabih calculates a dataset hash by
concatenating the bytes of all the chunk hashes and hashing this data again
with SHA-256. We also write a recovery file to the storage, which can be used
for offline data recovery, see 2.2.10. See Figure 2.3 for a schematic overview
on this process.

Figure 2.3: The dabih upload process: When data is uploaded to dabih we
generate a random key in memory and use symmetric encryption
(AES-256-CBC) to encrypt data before it is stored. Dabih loads
the public key of the uploader from its database. With this public
key we can complete the upload and encrypt the AES key. The
encrypted key is stored and can only be decrypted using the private
key that dabih does not have.
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2.2.5 Data sharing
Data owners can grant authorized recipients either read or write access to their
datasets. Read access permits downloading the data, whereas write access
provides more extensive permissions. With write access, recipients can further
share access with additional users, re-encrypt the dataset, and even delete it.

Assume User A wants to share a dataset with User B. To do so, A down-
loads the encrypted AES key for the dataset. Locally A decrypts the key thus
obtaining an unencrypted AES key for the dataset. User A uploads this key
again, the server does not hold a copy of it, and the server re-encrypts it with
the public key of B. To prevent key exchange attacks from A, the server com-
pares the SHA-256 fingerprint of the AES key to its database and rejects the
key if it does not match. This happens for both the read and write permission,
the different permission levels are written to the database and checked on API
calls by the server. This process is visualized in Figure 2.4.

Figure 2.4: The dabih data sharing process: Because dabih itself cannot access
the data, only a user who already has access can share the dataset
with others. Data sharing is similar to downloading, but only the
AES key is downloaded. This key is then sent back to dabih and
encrypted with the public key of the new user.

2.2.6 Data download
Similarly to sharing data access, downloading datasets starts by downloading
and decrypting the encrypted AES key. Now the client can simply download
the encrypted data and decrypt it locally, as seen in Figure 2.5. While this
is the most secure way to download data, users can also send the decrypted
key to dabih. The server will then decrypt the dataset and send the raw data,
offloading this computation from the client system. Data is still encrypted in
transit by the https transport layer security (TLS) and clear-text chunks are
kept only in memory.

2.2.7 Data ingestion
A ’side effect’ of this encryption scheme is that, technically, no private key is
required for uploading data to dabih. This creates a way of data ingestion:
users can allow others to upload data into their account. Dabih enables this
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Figure 2.5: The dabih download process: a two-step decryption process is re-
quired. First the encrypted AES key is downloaded and is de-
crypted using the private key. This results in the unencrypted AES
key. Then the encrypted dataset is downloaded and decrypted us-
ing the newly acquired AES key.

through the use of upload tokens. Each user can create one of more access
tokens on their account page. This token can then be sent to others with
a special link. This link shows a modified upload page that uses the token
owners public key for encrypting the data. No cryptographic key and no
account is required to upload. This can be very useful for securely collecting
data from others or from automatic processing pipelines, e.g. a link can be
sent to a sequencing provider to upload data directly, no other software or
account required. Unfortunately web browsers have limitations for ingesting
large amounts of data, e.g. it has to stay open during the whole upload and
our code can only access files directly selected by the user. This is why we
created an optional application for data ingestion as part of dabih 2.3.3, it
can be downloaded and run to upload large amounts of data to dabih. These
upload tokens are not very secure as they are part of the URL, which is why
they are scoped only to upload API calls, and will expire after some time if
not renewed by the user.

2.2.8 Key loss
Datasets remain encrypted throughout their entire tenure on the server, en-
suring that only authorized data owners have the capability to decrypt them.
This approach eliminates the possibility of a central authority, like a system
administrator, recovering data if a user’s private key is lost or stolen. Nev-
ertheless, if at least one other user maintains access to the data, it can be
re-encrypted, which allows for the restoration of access. Re-encryption is done
by first decrypting the AES key for the dataset by the user who still has access
to the data, or by using a root key, see 2.2.9. This key is sent to dabih, which
generates a new random AES key. All the data chunks are decrypted and
then re-encrypted with the new key. This new key is then encrypted to all
the public keys of users who are authorized to have access to the dataset. See
Figure 2.6. There is no disruption to other users, as long as they did not store
or cache the old keys or data locally.
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Figure 2.6: Dataset re-encryption in case of key loss. As long as some other
user has access to the data it can be re-encrypted. The user with
access download the encrypted AES key, decrypts it and sends it
to the server. The server uses the key to decrypt the dataset,
generates a new AES key and then re-encrypts the dataset with
the new key. All existing access permissions stay intact, the public
keys are known to dabih and are used to generate new encrypted
AES keys.

2.2.9 Root keys
If all users with access to a dataset lose their private keys, the data becomes
irrecoverable. This scenario is particularly likely if certain datasets are accessi-
ble to only a single user. To address this issue, dabih incorporates root keys as
an emergency backup solution, providing a safeguard against such situations.
Root keys are ordinary RSA-4096 key-pairs, just as every user key. One or
more public root keys can be configured for the dabih server, and new datasets
will be automatically encrypted to every public root key. Since root keys by-
pass the security system, private keys must be stored in a physically secure
location with strict access controls and only used for emergency recovery of
the data in case all other keys are lost. The code for recovering datasets this
way is part of the dabih command line interface, see 2.3.2.

2.2.10 Offline recovery
Another disaster scenario is the loss of the dabih database. We stress that
storage must be backed up independently. As a precaution against loss of the
database we write the most important recovery data to disk as a part of the
dataset. This recovery file contains a list of all chunks in a dataset, with their
hash, crc32 checksum and AES initialization vector. Also included is the AES
key encrypted with each public root key. This is all the information required
to decrypt the data with one of the private root keys.

2.2.11 Mnemonic based ID system
Dabih needs a way to uniquely identify datasets, and these identifiers will
be exposed to users. As part of the design we decided on human friendly
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identifiers for dabih, we call them mnemonics. A dabih mnemonic identifier
will typically be a random adjective combined with a random first name. e.g.
vampiric_aviyana, unsaluted_esmerelda or branchless_eliyana. dabih
ensures uniqueness, and its name database currently contains 28476 adjectives
and 101337 first names, allowing for up to 2.8 billion datasets. Mnemonics
have several advantages over numeric IDs, they are easier to remember, are
simpler to exchange verbally, they prevent typing errors and may even provide
a bit of humor.

2.2.12 Detecting duplicate uploads
We expect to deal with large datasets, uploading the same dataset twice can
be a waste of time for users and tools. At the same time, we always encrypt
the data with different initialization vectors and encryption key, making it
impossible to detect duplicate datasets once they are stored encrypted. This
is why we implemented a two-step hashing process during upload. We hash
the original data of each chunk we receive using SHA-256, and we create a
dataset hash by concatenating all the chunk hashes in order and hashing the
hashes again. The hash behavior also is implemented separately in the CLI
with the command dabih hash <file-path>. If a client starts an upload it
may send the hash of the first chunk that will be uploaded, the dabih server
will check if such a chunk exists for the user, and if it does, respond with the
full hash of the matching dataset. The client can then hash the local file fully
and check if it matches. If the hash matches the client may then cancel the
upload, the default behavior for the currently implemented clients, but it can
also continue uploading. This scheme allows us to detect duplicates, at almost
no additional compute cost in the normal case.

2.2.13 Restarting uploads that were interrupted
The hashing algorithm described in 2.2.12 also allows us to restart interrupted
uploads.

The client may ask the server for incomplete uploads and, if one exists, will
receive a filename, and a list of already complete chunks and their hashes. This
allows the client to load the file again, skipping the upload of the completed
chunks, but reading and hashing them instead to ensure the data is identical.
The dabih web client and the CLI implement this feature.

2.2.14 Reducing RSA-4096 private key size
Our selection of cryptography algorithms is limited by what is available in the
browsers we target and by what the algorithms supported use cases are. The
only valid algorithm was RSA, with the minimum modulus length of 2048,
see [23]. We wanted to set the recommended modulus length of 4096, see
[29]. At the same time we wanted users to be able to print and scan their
keys as QR Codes, as defined by ISO/IEC 18004:2015 [53]. The Web Crypto
API [33] has functions for exporting keys. For RSA private keys the formats
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PKCS#8 [59] and JSON Web Key (JWK) [57] are supported. Unfortunately
both formats are impractical for this use case because the exported size of the
key is too large. The default JWK output is too large for any QR Code, the
PKCS#8 output produces about 2370 bytes of output, which would only fit
into a Version 40 QR Code with low error correction. We were unable to
scan this type of code consistently with a computer webcam.

But the JWK Format gives us a more mathematical representation of the
RSA private key, with the following values: n the RSA public modulus, e
the RSA public exponent, p the smaller RSA secret prime, q the larger RSA
secret prime (p < q), d the RSA secret exponent d = e−1 mod (p − 1)(q − 1),
dp = d mod (p − 1), dq = d mod (q − 1), qi the multiplicative inverse qi =
p−1 mod q. To compress the key we can remove n, dp, dq, qi from the JWK
and recalculate them when we re-import the key, see Figure 2.7. This results
in a smaller, very usable QR Code, even with medium level error correction,
as seen in Figure 2.9.

Figure 2.7: The key decompression algorithm, part of the dabih client [40]. It
first converts the base64 encoded numbers into the BigInt type,
able to represent numeric values too large for the number type.
It then does the calculations described in 2.2.14 and converts the
numbers back into base64 strings.

2.3 Results
Dabih is available open-source on GitHub [40]. All the features described in
methods are implemented by the server and web-client in the repository. The
main application flows of uploading, sharing and downloading are summarized
in Figure 2.8. The full code can be audited before using dabih to secure data.
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Figure 2.8: Schematic overview of the dabih application: Data is up-
loaded to dabih and then encrypted in two stages, the encrypted
data is written to disk. This data can then be securely shared with
authorized recipients, by re-encrypting the symmetric key with the
new users public key. Downloading is the reverse of the upload
process, decrypting the data in two stages.

None of the security measures rely on secrecy of the code. Documentation for
deployment is provided as part of the code repository. For ease of deployment
we also provide a ready to use container [41] and example deployments for
different environments. After deployment, dabih is directly available as an easy
to use web-application. Most common administrative tasks are implemented
as part of this web application, after configuring a list of users with admin
privileges. Administrators can enable keys, delete datasets, and access activity
logs, but they cannot access data from others.

2.3.1 Usability
While the full source code and all cryptographic details are available, a key
design consideration for dabih is that users should never actively need to deal
with the cryptosystem. After the initial setup users just upload, share and
download data. In addition to their account users only need to manage their
private key. We made this as simple as possible, allowing users to download
their key as a file or by printing it as QR Code. We encrypt all data and do
not offer a way of storing data unencrypted, as this would only create a risk of
misuse. In almost all cases the upload speed to the dabih server is the limiting
factor for performance, the encryption creates almost no performance cost. As
dabih primary use is in the browser we depend on some browser API, but we
only require the Web Cryptography API and the local storage for the client,
these are supported by all the major browsers. The only notable browser we
do not support is Internet Explorer, installed on older Windows computers.

2.3.2 Command line interface
For advanced use cases we provide an API reference as part of dabih, after
generating an access token dabih can be used by any program through the
web API. As part of the dabih source code we also provide a dabih command
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Figure 2.9: Left side: A dabih private key in a printable format. The key
is encoded as a QR Code that can easily be read by a computer
webcam. We use a special smaller format, see 2.2.14, to be able
to fit the key into a single QR Code. The QR Code is encoded
as text, to allow for easy copy and pasting of the data. The key
is also printed out as text next to the QR Code as a redundancy
measure, typing it in should never be required.
Right side: The dabih web client, currently uploading a large file.
We show a clear progress indicator, can detect duplicate uploads
and can resume from incomplete uploads.

line interface (CLI), written in Rust. This CLI can be compiled by users or
downloaded from our releases page on GitHub. We provide a pre-compiled
binary for all major operating systems. It implements all the major functions
of the graphical dabih client but can be used in shell scripts or for other
automation tasks. In the case of data upload we even implemented additional
features, not possible in the browser, such as recursively searching the file-
system, or zipping folders before upload.

2.3.3 Data ingestion application
As, by design, a private key is not required for uploading data we use this as
a feature for data ingestion. A user generates a simple randomly generated
upload token, that can be sent to others and enables them to upload data to
their account. We offer a separate app, based on the dabih CLI 2.3.2. This
app is deliberately kept simple and only implements uploading to upload links
for data ingestion as described in 2.2.7. It is based on tauri[19] which allows
us to build an app for all major operating systems that calls our rust code in
the dabih CLI package. It is available on our releases page on GitHub [40].
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2.3.4 Collaboration and evaluation
dabih was developed based on regularly requirements, and follows recommen-
dations from the federal office of information security [29]. As part of the
TRR305 it was evaluated by both the FAU Competence Center for Research
Data and Information (CDI) and the Regensburg University computer center.
Minor changes, suggested by them, were implemented.

2.4 Discussion
We developed dabih as a more secure alternative to classical self-hosted file
storage platforms like Nextcloud [31] and Seafile [65], while maintaining their
user-friendliness. Although these platforms provide encryption, they typically
use symmetric encryption with a password-derived key. dabih enhances se-
curity by introducing asymmetric key infrastructure. Nevertheless, it is still
designed for users who may not be familiar with command-line tools. Its
deployment, along with authentication and authorization processes, are as
straightforward as those of the aforementioned services. Dabih focuses exclu-
sively on the core feature of file storage, leading to a simple and easy to audit
system. In the context of securing genomic data dabih’s cryptography is similar
in concept to the Crypt4GH [90] software, but we also include key management
and, through different choice of algorithms, we not require users install soft-
ware. In clinical settings, dabih can interoperate with other data management
software, through its platform independent and well documented API. While
it is not a replacement for clinic information systems, it offers a viable solu-
tion for managing sensitive research data. One of the key advantages of dabih
is that it does not require custom software installations on clinic computers.
Instead, all functionalities are supported by standard web browsers, which are
standardized and maintained by multiple large corporations. The browser-
based cryptosystem is arguably more secure than many other libraries. This
is because they are widely used, ensuring that any vulnerabilities are quickly
addressed. Additionally, each clinic has a strong incentive to keep their em-
ployees’ browsers updated for security purposes. Differently from custom data
management software, which require deployment and maintenance on client
devices, dabih can be provided for free, with only server maintenance needed.
While dabih adheres to best practices for data security, its overall security
heavily relies on proper user behavior. This is particularly crucial as users
may not be entirely familiar with asymmetric cryptography. It is imperative
for data owners to maintain the confidentiality of their private keys and ensure
they are not lost. Additionally, dabih’s effectiveness depends upon the reli-
ability of its storage backend. The encrypted data must be regularly backed
up, and the file system should prevent data corruption, for instance, through
the use of checksums. Due to the nature of the encryption algorithm, even a
single bit flip in the encrypted data can corrupt the entire file. To mitigate
this, we generate a checksum for every 2 MiB chunk of stored data. This is
primarily for data validation and should be reserved for emergency recovery
purposes.
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2.5 Conclusion
We propose dabih as a viable and secure alternative for on-premise file storage
and sharing solutions, while maintaining an equivalent level of user-friendliness.
Leveraging the ubiquity of web browsers, which are installed on virtually every
computer, dabih facilitates accessible and secure cryptographic operations for
a broad user base.

Cryptographic Summary

• Symmetric Algorithm: 256-bit Advanced Encryption Standard with Ci-
pher Block Chaining, AES-256-CBC, specified in NIST SP800-38A[70].

• Asymmetric Algorithm: 4096 bit Rivest Shamir Adleman (RSA)
with Optimal Asymmetric Encryption Padding (OAEP), specified in
RFC3447[83].

• Hashing Algorithm: 256-bit SHA (SHA-256) as specified in FIPS 180-4
[71].

• During file upload the dataset is processed in memory and not written
to disk.

• When the upload starts the server generates a cryptographically strong
pseudo-random AES-256-CBC Key k (24 Bytes)

• The client creates “chunks”, sequential byte buffers of the data, each
with size 2 MiB.

• For each chunk we again generate a cryptographically strong pseudo-
random initialization vector (iv)

• The raw chunk data is hashed using SHA-256 and then encrypted using
the AES key k with the initialization vector iv

• We then create a crc32 checksum of the encrypted chunk.

• This encrypted chunk is then written to the file system and the iv, hash
and checksum written to the database.

• All the asymmetric keys are RSA key-pairs, with at least 4096 bits.

• We only encrypt the 24 Byte AES Key k using RSA.

• To prevent key exchange attacks all keys are fingerprinted using an SHA-
256 hash.

Table 2.1: Detailed description of cryptographic algorithms used by dabih
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3 Data Management for
Next-Generation Sequencing

As described in chapter 2, we have a secure way of storing large datasets. The
design of this storage was deliberately kept simple for security and auditing
purposes. While dabih is well suited to work with biomedical datasets, es-
pecially human genome data, its design is completely data agnostic. dabih
essentially provides a unique ID for datasets uploaded, and these IDs may be
connected to metadata which is specific to the use and content of the data.
Metadata can include details about the origin, structure, content, and context
of the primary data, allowing users to understand and use the data effectively.
For the more specific use case of RNA sequencing we created a web tool for
managing the metadata.

3.1 Introduction

Next-Generation Sequencing (NGS) it the technology that enables the rapid
reading of DNA and RNA sequences. It gives researchers the ability to decipher
the genetic code with unprecedented speed and accuracy.

Over the past few decades the field of genomics has changed dramatically.
Traditional and expensive techniques such as Sanger sequencing [85] have been
largely replaced by more efficient next-generation technologies such as RNA-
seq, ChIP-seq, or Nanopore Sequencing.

In cancer research, RNA-seq provides a snapshot of the transcriptome, the
complete set of RNA molecules within a cell or tissue. RNA-seq is a corner-
stone for our research consortium on metastatic organ colonization in can-
cer, TRR305 [101]. The process begins with isolation of RNA, followed by
a conversion to complementary DNA (cDNA), library preparation, and high-
throughput sequencing. The resulting data is then typically mapped to a
genome and gene expression levels are quantified. For responsible research,
this whole process, from biological sample to scientific results must be well-
designed, well documented and reproducible. Each RNA-seq experiment, will
generate several gigabytes of raw data in the FASTQ Format, and both wet-
lab researchers and bioinformaticians contribute and document various kinds
of metadata on the experiment. The amount of data is continuously increasing,
especially as the technology becomes cheaper, and proper data management
is essential.
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3.2 Methods
Storing metadata for NGS is essential for organizing and interpreting the vast
amount of information generated during sequencing experiments. Metadata
encompasses information about the experimental design, sample character-
istics, and processing steps, providing context for the raw sequencing data.
Properly managed metadata is crucial for reproducibility, data sharing, and
downstream analysis.

3.2.1 Design principles
Our data management strives to achieve the FAIR [104](findable, accessi-
ble, interoperable, and reusable) principles. FAIR describes concise, domain-
independent principles for both data and metadata.

• Findable: Metadata and data should be easy to find for both humans
and computers.

• Accessible: Once the data is found, users need to know how it can be
accessed, including authentication and authorization.

• Interoperable: The data needs to be integrated with other data, and
must be readable by applications or pipelines.

• Reusable: Data must be well described, so it can be replicated or used
in different settings.

3.2.2 Design
Metadata is typically collected as a locally stored matrix, e.g. an Excel sheet
with a list of samples as rows, and a set of properties as columns, with different
matrices for different projects of contexts. This design is familiar to researchers
but has a few disadvantages.

In this design metadata is not based on matrices, but instead on a continuous
timeline of metadata events. Events track all the changes to metadata, with
a sample reference, a property reference and a new value. Each event has a
time-stamp and events are never deleted, newer events simply overwrite older
events.

This requires a centralized design, instead of distributed, locally stored ma-
trices. The key advantage is that there is a single source of truth for the
metadata, metadata cannot diverge if there are changes from two different
users to their local versions. But this design creates a set of new challenges for
data security, redundancy and usability that need to be addressed.

3.2.3 Definitions
• Sample: Samples are single entries of data, and in most cases will cor-

respond to individual biological specimens. Each sample represents a
distinct biological condition or experiment group.
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Figure 3.1: Metadata event timeline: events are never deleted, and have exact
time-stamps. This allows us to recover the metadata at any time
point.

• Property: Properties describe the different kinds of metadata attached
to a sample, common properties are: Sample identifier, experimental
condition, tissue type, sequencing method, species, etc.

• Project: Projects are for organizing samples and for defining access
to samples. Projects contain samples, and projects have members with
various permissions. Projects describe the samples contained in them,
and they are findable by all users.

• Template: Templates are logical collections of properties. E.g. all the
properties required to submit a dataset based on EGA standards [24].

• Entity: Both samples and projects are entities. Entities can be related
to other entities and all entities may have attached metadata.

• Value: Values are the actual metadata, e.g a property species may have
the values homo sapiens or mus musculus.

• Event: Events represent changes to the metadata, an event references
an entity, a property and a new value. Each event also has a time-stamp
and an owner.

3.2.4 Structure
Metadata collection is implemented as a server-client system, see 1.7, comple-
mentary to the data storage ( See chapter 2). The server provides a web API,
receives and sends and converts the data, and talks to the database.

3.2.5 Computational access
Metadata is automatically available in a machine-readable format from the
servers JSON API, see 1.7.2. Independent of if the metadata samples al-
ready have a unique identifier, each sample is automatically assigned a unique
mnemonic [3.1F1]. The mnemonic ID system is the same as for dabih, see
2.2.11. We use these mnemonics for creating deep links to the data. Deep
links are full hyperlinks that point directly to the sample. With the deep links
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Figure 3.2: Database structure for the metadata. Metadata is stored as long
list of events.

we also generate a QR Code for each sample, that may be used as a sticker or
printout attached to the physical sample. The API is based on HTTP[3.1A1.1]
and includes authentication and authorization [3.1A1.2]. The metadata API
is independent of the dabih API for data [3.1A2].

3.2.6 Format conversion

Figure 3.3: Schematic for conversion from a long data format to a sparse wide
matrix. This conversion is used for converting between the meta-
data timeline and a familiar matrix format.

Metadata is stored as a timeline, but presented to users in a matrix format.
This requires a conversion process. This process is show in Figure 3.3 works
like this:
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1. For a project, find all the sample IDs belonging to that projects.

2. Fetch all events that are related to one of these sample IDs, sorted by
their time-stamp.

3. Create a new empty matrix with samples as Rows and Properties as
columns.

4. For each event find the corresponding row and column in the matrix and
fill in the event value.

5. If a matrix field is already filled by a previous event, overwrite the value
with the newer events value.

6. This results in the full matrix.

This process is lossy, because we overwrite older values, but this is by design.
The latest state of the data is most relevant to users. We can adapt this
conversion process to recover older data, see 3.2.10. This conversion process
is only done in one direction, from events to matrix, changes to the data can
be directly recorded as new events. With our SQL based database (see 1.7.1)
we can define indices that make this conversion process fast. Even for large
matrices the whole conversion takes less than 100ms.

3.2.7 Metadata templates
While the properties that are recorded are set by users and are project spe-
cific, we provide lists of properties as templates for new user projects. These
templates serve as a starting point and may be adapted for each project. They
are based on standards set by the GHGA [96] and the EGA [24], and make
sure users capture and record all the data required for later submission and
publication of data [3.1R1.3]. New templates for different use cases can be
added easily, and users select the approritate template on project creation.

3.2.8 Validation and normalization
The properties we define also control the vocabulary used, and prevent ty-
pos. E.g. for a property like species, it is not clear which words should be
used. Human, human or homo sapiens could be used interchangeably, but
later automated computer analysis may treat them as different. As part of the
properties, where reasonable, we provide a description, a set of default options
and a validation function. e.g. for species the description would be “Latin
name for the organism”, with examples homo sapiens, mus musculus, rattus
norvegicus and danio rerio. These options are presented as part of the UI
when entering the data, see Figure 3.4. Users are not limited to the suggested
values, they may enter anything and the values entered for other samples are
also suggested when entering data. This is an effective way to prevent typos
and create a uniform vocabulary [3.1I1, I2], while at the same time speeding
up the users work. We use regular expressions, patterns for matching strings,

37



to validate input from users. Invalid input will be highlighted in red with
a clear error message. Validation only provides information to the user, we
do not force compliance or prevent input, users stay in control of their data.
We provide a graphical interface to administrators for creating and editing
properties.

Figure 3.4: Metadata Auto completion: Metadata values are automatically
suggested based on the metadata template and based on previ-
ously entered values, this prevents typos from retyping and makes
sure metadata uses uniform vocabulary.

3.2.9 Data integration
As already described, large dataset are stored encrypted in dabih (see chapter
2), because each dataset has a unique ID, assigned by dabih, it is sufficient
to simply track the ID as part of the metadata [3.1I3, F3]. Storage related
metadata, such as the data size, file name, file hash or storage location is
tracked by dabih and does not need to be repeated in the metadata.

3.2.10 Reproducibility and time travel
In the case of accidental removal of data or other errors we can adapt the
conversion process described in 3.2.6 to recover metadata, or undo unintended
changes. If, instead of fetching all events, we only fetch events up to a certain
time point, and then convert, we end up with a version of the data at that
time point. This way data is never deleted but only overwritten. With the
computational access 3.2.5 from the JSON API, advanced users can fetch the
event data and arbitrarily filter it e.g. with open tools such as jq [21]. This
is great for data security but may also have negative consequences. Personal-
ized data that was entered accidentally cannot be easily deleted, and must be
removed by an administrator.

3.2.11 Security
While the security of the data is not as critical as the raw datasets, because
personally identifiable information should never be part of the metadata, it is
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nonetheless important. As already described in 3.2.10 data is already protected
from accidental deletion. We also carefully manage access based on projects.
Each project has an owner who may grant read or write access to other users.
Because the data is recoverable, write access may be granted liberally. In order
to enable findability of data, project names and descriptions are available and
searchable by all users [3.1F4].

3.2.12 Redundancy
As described in 1.7.1, on our infrastructure all the metadata is stored in multi-
ple databases with automatic fail-over. Regular backups are created and user
may optionally keep local copies of the data. We rely on the database to pro-
vide the data redundancy, where there are multiple well established options.

3.3 Results
Data storage in dabih, together with the metadata collection create a solid
foundation for NGS data analysis, based on FAIR principles [104]. These tools
are useful for ensuring data is handled according to best practices while at the
same time helping researchers be more productive. We abstract away com-
plexities such as encryption, data validation, backups or publication, enabling
researchers to focus on their research. Open protocols and formats allow for
easy integration with other tools and pipelines. We enforce ontologies and a
controlled vocabulary, improving the quality of the data, without extra effort
from researchers.

Dabih is already published, see 2.3, the metadata collection code will be
published in the future building on top of dabih.

3.3.1 Data workflow
Our tools are in active use as part of the TRR305 [101], for studying the
mechanisms of metastatic organ colonization in cancer. The data workflow
can be seen in Figure 3.5.

3.4 Discussion
Data and metadata management is important not just for NGS workflows but
for all projects with large datasets. Software faces an important trade-off:
between being usable and generalized enough for a wide variety of datasets
and use cases, and with providing the specialized solutions and tools users
require. While turn-key data management solutions like rucio [6] or invenio [16]
scale to huge data sizes required e.g. for high energy physics, them being
application independent will require custom code for adaption or high effort
from users for each use case. With rule-base frameworks such as iRODS [82]
integrations like the required data encrypted could be implemented. With
the metalnx [74] plugin iRODS even offers web based interface similar to our
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tools. But integrating other data models, not based on files, like the one we
use for metadata, would still be difficult to impossible. Our tools provide their
full functionality through open JSON APIs. This still enables integration with
these rule based frameworks or other data management tools, if required. With
our clear focus on NGS data analysis we can provide additional value to users,
provide context specific data and integrate with domain specific tools and
standards, like the ones from EGA [24]. This comes at the cost of being less
domain independent. With our design we only create this domain specificity
for tracking metadata and keep data storage domain and data independent.

3.5 Outlook
Work on the data management continues in the TRR305, in collaboration with
bioinformaticians from Erlangen, Fulvia Ferrazzi and Renato Liguori. While
dabih and the metadata collection are well integrated when running on our
cluster we intend to publish the software with minimal dependencies. We will
further develop this integration, and may offer an easily deployable full data
management solution based on these tool in the future. Dabih also has more
extensive, authentication provider independent, API access through custom
access tokens. We will enable this also for the metadata, with a fully docu-
mented API similar to dabih. With this shared authentication system, and
cryptographic keys already required by dabih, we plan to also offer optional
encryption of the metadata, further increasing data security. Pamly, the ap-
plication we created for AI pathology described in the next chapter already
implements automatic user-triggered pipelines for data. With unified API ac-
cess to both data and metadata it is also possible to automatically trigger
basic and computationally cheap NGS pipelines.
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FAIR principles
Findable

• F1. (Meta)data are assigned a globally unique and persistent identifier

• F2. Data are described with rich metadata (defined by R1 below)

• F3. Metadata clearly and explicitly include the identifier of the data
they describe

• F4. (Meta)data are registered or indexed in a searchable resource

Accessible

• A1. (Meta)data are retrievable by their identifier using a standardized
communications protocol

• A1.1 The protocol is open, free, and universally implementable

• A1.2 The protocol allows for an authentication and authorization pro-
cedure, where necessary

• A2. Metadata is accessible, even when the data is no longer available

Interoperable

• I1. (Meta)data use a formal, accessible, shared, and broadly applicable
language for knowledge representation.

• I2. (Meta)data use vocabularies that follow FAIR principles

• I3. (Meta)data include qualified references to other (meta)data

Reusable

• R1. (Meta)data are richly described with a plurality of accurate and
relevant attributes

• R1.1. (Meta)data are released with a clear and accessible data usage
license

• R1.2. (Meta)data are associated with detailed provenance

• R1.3. (Meta)data meet domain-relevant community standards

Table 3.1: The full numbered fair principles from the Go Fair web page [105]
based on the FAIR publication [104].
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Figure 3.5: Full NGS workflow overview from the TRR305
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4 pamly - digital pathology
platform

4.1 Introduction
Histopathology is the practice of diagnosing tissue samples from patients.
These tissue samples are cut into thin slices and stained using immunohisto-
chemistry stain. Pathology used to be fully analog process from tissue sample
to diagnosis under a microscope. New ways of image analysis created the field
of digital pathology as a powerful tool to augment the practice of diagnosing
diseases. The recent advances in AI image analysis, and the ability to down-
load pretrained models ready for adaption created the now large and diverse
field of AI image analysis.

Digital pathology involves the application of advanced algorithms and ma-
chine learning techniques to analyze high-resolution images of tissue slides,
called whole slide images (WSIs).

These algorithms can process vast amounts of data and detect patterns,
anomalies, and changes within the tissue. They provide pathologists with
valuable support in diagnosis.

Unfortunately there a still major challenges in digital pathology, mostly at
the interface between the pathologists and the AI researchers. As there is no
universal format for WSIs, and most scanner vendors define their own propri-
etary image formats, analysis tools and slide viewers. To get the large amounts
of data required for training effective AI models interoperability between data
formats from different pathologists is required. Furthermore, AI results on
these large dataset need to be visualized properly in order to be useful for
pathologists.

4.2 Materials and methods
We developed pamly, an interactive web application, as a support tool for
histopathology. The structure is similar to dabih, see chapter 2, with an API
server and an interactive web client.

4.2.1 Histopathology process
First a tissue sample is obtained from a patient, with a biopsy. Most of our
tools do not depend on a specific type of tissue, but the tissue samples we use
are mostly whole lymph nodes, or needle biopsies of lymph nodes. The tissue
is then properly dissected and embedded in paraffin wax. From the wax block
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multiple thin slices are cut and put onto glass slides. The slices are then stained
using different immunohistochemistry markers, such as hematoxylin and eosin
(H&E), CD20 or CD68. The “analog” pathology process continues from here,
where a pathologist diagnoses the patient by viewing the slides under the
microscope. In our case the slides are scanned using a high-resolution scanner.
This creates whole slide images (WSIs).

4.2.2 Data
For a typical tissue area of about 2cm2 the scanned image file will have a size
of about 2 GiB. Reading this scanned image is not easy, as most commercial
scanners only create a proprietary format. This format is only meant to be
read by special software sold by the manufacturer, e.g. a Hamamatsu Scanner
creates .ndpi files, for their NDP®.view2[35] software.

4.2.3 Upload
With our work these slides can be uploaded over the web (or a local network)
to the pamly server. All the files are split by the client into chunks (typically
2 MiB) which are reassembled by the server. Upload features are similar to
dabih, with duplicate detection, see2.2.12 and the ability to resume incomplete
uploads, see 2.2.13. Alternatively pamly also supports reading the data directly
from the file system of the server, or dabih data ingestion can be used, see 2.2.7.

4.2.4 Hashing
As slide processing involves significant computational resources, we perform a
256-bit SHA hash computation [71] for every uploaded file, storing the result in
the database. When a new file is uploaded, we compare its hash with existing
hashes, and if a match is found, the file is skipped. Obtaining the same hash
for two different files is practically impossible.

4.2.5 Preprocessing
We built a custom slide conversion tool based on the open-source library
openslide[32] which can read different proprietary WSI formats from all popu-
lar scanners in use at pathology institutes.

As a target format we chose a SQLite [93] database file for each WSI. This
database contains metadata and a set of tiles as a quad tree.

We pick a fixed tile size s and for each WSI we pad the image with white
pixels, such that the scanned image is a square with size s · 2n, with the
lowest possible n. We then split the slide into 4n tiles with unique coordinates
(0, 0, n), (0, 1, n), . . . , (0, 2n − 1, n), (1, 0, n), . . . , (2n − 1, 2n − 1, n). These tiles
are then read one by one and stored in the database as JPEG encoded images.
As part of this process two basic filters can be applied to each tile: a tile can
be discarded immediately if it contains to many white pixels, or if a canny
edge detector cannot find any edges. These filters can be configured by the
user, and reliably filter out regions of the slide that do not contain tissue. All
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Figure 4.1: Visual example of the image preprocessing, showing which parts of the
slide will be removed. The parameters for these filtering steps can be
adjusted and the filtering can be disabled if required.

other tools will treat “missing” tiles in the database as background (typically
white). In a further filtering step we detect islands: we cluster all remaining
tiles into connected regions. Any two tiles are part of the same region if there
is a path of non-background tiles connecting them. A valid tissue area will
contain hundreds of connected tiles, so if a connected region is smaller than a
certain size we remove it.

4.2.6 Scaling
After the filtering process we recursively compute lower resolution tiles, which
simulate “zooming out”.

We build a quad tree the following way:

• Start with the 4n tiles in the database, created in 4.2.5, we refer to these
tiles as level n tiles.

• Create 4n−1 new tiles by combining each 2x2 grid of tiles into a sin-
gle image, e.g. the new tile (0, 0, n − 1) is the combination of tiles
(0, 0, n), (0, 1, n), (1, 0, n), (1, 1, n).

• These new tiles have size 2s × 2s, use a standard image algorithm to
down-scale the image to size s× s again.

• These tiles now represent the level n− 1.

• Repeat this process to create 4n−2 tiles to create the level n− 2.

• Continue recursively creating levels until reaching level 0, containing a
single tile.

See Figure 4.3 for a visual example of this process.
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4.2.7 pamly pipeline
Depending on the size of the WSI and the server used, the conversion process
will often take multiple minutes. We use a state machine to model and monitor
this process, see Fig 4.2. Pamly can read these states for each slide, and can
report the progress and any errors that may occur. This pipeline may also be
extended, e.g. to directly run uploaded WSIs through a neural network for
quality control or pre-diagnosis.

Figure 4.2: Pamly state machine for processing whole slide images. This process
either starts with an upload of data, or with a new file in the ingress
folder. If a file is uploaded, pamly will wait for all chunks to be uploaded,
then combine the chunks into the original slide file. If a new file is added
to the server the upload steps are skipped. In either case the new file is
then hashed, checked against existing data and skipped if it was already
processed. If the file is new, pamly starts the actual convert process,
and reads progress updates for reading and scaling the slide. As soon
as the convert process completes the slide’s metadata is read into the
database, and it is available for viewing.

4.2.8 Slide reading
We use this format because it allows for fast random access at any resolution,
meaning the time it takes to read a rectangular region of the slide only scales
with the size of region. This is easy to see as, given the tile size s, we can
simply calculate all tiles that intersect the rectangular region we want to read,
see Figure 4.3. For each rectangle with width w and height h at most ⌈w

s
⌉×⌈h

s
⌉

tiles intersect it and reading a single tile from the database is O(1).

4.2.9 Slide viewer
This fast random access is necessary for efficiently training neural networks on
this image data, but also has an advantage for viewing the data as a human.
When these slides are viewed under the microscope the pathologist will use
different magnifications while moving the slide to view different regions. We
can reproduce this process in a digital slide viewer in a very bandwidth efficient
way, which allows live viewing of these slides over the internet. The key to this
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is to recognize that when viewing a large tissue area, the human eye can no
longer discern fine detail. We can instead show pre-computed lower resolution
tiles. With higher magnification details become important, and we load high
resolution tiles. At the same time, after zooming in, only a small part of the
slide will be within view. We can detect scrolling in the viewer and load the
tiles that will come into view just in time.
This behavior is implemented as part of the pamly web application. After
a WSI is uploaded and processed, we store the resulting sqlite file and offer
the slide data as a web API. This works the same way as the web clients for
services such as OpenStreetMap or Google Maps, the web client requests the
relevant tiles and combines them into a seamless scrollable map.

4.3 Results
Pamly is available open-source on GitHub [42]. Documentation for deploy-
ment is provided as part of the code repository. For ease of deployment we
also provide ready to use containers and example deployments for different
environments. After deployment, pamly is directly available as an easy to use
web-application. WSIs can be added to pamly by either uploading the slide
through the web UI or by moving the files into the pamly ingress folder.

4.3.1 Slide conversion tool
We designed pamly not only to be used as a web application. All the code
for reading and converting the slides is written in rust [67] and published as
a crate (rust’s name for packages) on rust’s main package repository crates.io
[44].

This crate is both a library and a command line interface (CLI) that can
be used directly. If users want to convert slides using the process described in
4.2.5 and 4.2.6 they need to install openslide [32] and install pamly with the
convert feature. cargo install pamly --features convert.

Furthermore we provide a subset of the functions as bindings to the python
programming language, published as a package on PyPI [43]. Most AI work-
flows are written in python and they can directly use pamly as a dependency
or install it via pip3 install pamly. This also allows us to define consistent
types and enumerations for the high-performance convert code written in Rust,
the neural network package written in Python and the web application written
in JavaScript. These types are defined in the Rust code, and then exported
to python. This is enabled by the powerful Rust compiler and the bindings
library PyO3 [81]. Only simple compiler annotations are required see Figure
4.6. The package is pre-built for all platforms using GitHub Actions, see 1.6.4.

4.4 Discussion
With our software we aim to make whole slide pathology images immediately
usable by both pathologists and AI researchers, instead of relying on propri-
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etary formats we use SQLite as a simple open and interoperable format that
may be used from any other tool or programming language. As part of this
we created an easy way to convert to this format and a simple way of both
reading the data and viewing it. Our tool is built on top of openslide [32],
with gives us a great interface for reading the slides. Closely related to our
software is QuPath [5], with a more extensive feature set, but more focused
on offline local work. Similarly to dabih, we use the power of the browser for
our slide viewing and rendering, and do not require software installation. This
is also the reason why pamly converts the slides into an SQLite based format
first, users then do not need to compile the openslide library [32].

The methods used by pamly are well established, e.g. in SlideToolkit [72],
but we provide them differently. We created a full pipeline that is auto-
matically run after upload of the slides, results and potential problems are
immediately visible to pathologists. We do not require users to be proficient
at coding or scripting.
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Figure 4.3: Left: How the slides are stored as a set of tiles, after scaling 4.2.6.
We store the slide in its original resolution and a scaled copy for
each level. The scale for each level l is 2l in both width and height.
Empty tiles are not stored. Right: How the storage format is used
for viewing: the required tiles for a certain viewport are calculated
and only those tiles are loaded on-demand.
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Figure 4.4: The web base viewer, it fetches tiles on-demand at different reso-
lutions. It works similar to popular online map services, such as
OpenStreetMap or Google Maps.
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Figure 4.5: The pamly web application, https://pamly.spang-lab.de. A
few of the slides are publicly available.

Figure 4.6: The rust python binding code. A simple rust compiler annotation
from pyo3 [81] #[pymodule] exports rust functions to python. This
prevents errors as custom types and enums are only defined once,
in the rust code.
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5 AI Pathology
In collaboration with Prof. Dr. Wolfram Klapper and Dr. Sarah Reinke from
the institute of pathology of the Christian-Albrechts-University in Kiel a large
dataset of whole-slide images (WSIs) was analyzed.

5.1 Introduction
After infrastructure challenges are solved and pathology data is acquired, the
possibilities and applications of image analysis are endless [20]. Neural net-
works have proven to be adept at extracting and recognizing complex patterns
from image data, making them invaluable tools for lymphoma diagnosis. While
the theory on neural networks goes back to the 1960 [87], only the power of
modern compute clusters enabled the creation of well performing models for
image classification and segmentation. These models contain hundreds of lay-
ers to be trained, and are called deep neural networks. A key insight for deep
learning was that these model generalize well: they can first be trained on a
huge dataset of everyday images, like cars, trains or animals. They acquire
general image recognition skills like edge detection that can then be transferred
over to more specialized classification tasks [39]. This process is called transfer
learning, and it is essential for training neural networks without the huge com-
pute clusters of large entities like Google or Meta. Researchers can download
published, pre-trained models, adapt them, and then fine-tune them to more
specialized tasks with less data and compute resources. Many applications
of deep learning on pathology are image segmentation tasks, e.g separating
lymph node tissue from a breast cancer metastasis [22]. This is different in the
case of lymphoma, because the lymph node does not contain foreign tissue, but
is homogeneously affected by the cancer. This makes the task for lymphoma a
classification and not a segmentation task, with fundamentally different base
networks and methodology.

5.2 Methods
5.2.1 Collecting slides
As described in 2.2.7, we can use our data infrastructure for supporting the
data transfer of the large WSIs from pathologies. While this would be sup-
ported by browsers, a large amount of data can be more easily uploaded with
our custom app 2.3.3. With it users can recursively search the file system,
upload whole folders and queue multiple uploads to run in the background.
No account or cryptographic key is required by the uploader.
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Figure 5.1: A whole slide image (WSI) being uploaded to dabih, using the
dabih data ingestion tool described in 2.2.7

5.2.2 Dataset
The first dataset transferred contains 755 WSIs from 157 patients. All the
images are cuts from a full lymph node. All the patients have been diagnosed
by a pathologist, and received one of the following diagnoses:

• Chronic lymphocitic leukemia (CLL)

• Diffuse large B-cell lymphoma (DLBCL)

• Follicular lymphoma (FL)

• Hodgkin lymphoma (HL)

• Lymphadenitis (LTS)

• Mantle cell lymphoma (MCL)

For each patient there are multiple WSIs, with different immunohistochemistry
stains. These stains are visible markers applied to the tissue, and they bind
to specific antigens.

• H&E: Hematoxylin and Eosin is the most common staining method,
and visualizes the general morphology the tissue.

• CD20: is a marker for B-lymphocytes, it is commonly used to identify
B-cells in the tissue.

• CD30: is a marker for activated T-cells, especially CD4+ T cells.

• CD68: is a marker for macrophages and monocytes.

• CD3: is a marker for both T-cells and natural killer cells.

54



Figure 5.2: An example WSI, the scan includes a macro image that shows the
physical microscope slide. The tissue area is selected for scanning
and read in a very high resolution. The image size depends on the
total tissue area, the average size is about 1.1 GiB.

Pathologists use a combination of these stains to diagnose patients. The
dataset we use was created for patient diagnosis. For this process the H&E
and CD20 stains were used for all patients, the other stains are not always
requested by the pathologist. This is why we do not have a WSI for each
patient and every stain, 30 WSIs are missing.

Figure 5.3: Overview of the dataset of lymphoma patients from Kiel

After the first results additional slides were scanned and sent by Sarah
Reinke. We received an additional dataset of 30 new patients, each slide
scanned twice on two different WSI scanners.
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Figure 5.4: Data augmentation pipeline for the neural networks.

5.2.3 Preprocessing and data augmentation
All the slides received were first preprocessed as described in 4.2.5 and 4.2.6.
This transforms the proprietaryWSI formats into an open SQLite based format
and gives us fast random access for reading the slides.

The neural networks we use require a large amount of images for train-
ing. The input sizes of the pretrained networks are 244 × 244 pixels for the
ResNet34 [37] or 299× 299 for Inception v3 [94]. The slides are orders of mag-
nitudes bigger and the amount of slides we have would not even be close too
enough to directly train a neural net. This is why we randomly sample many
small squares, we call patches from the slides, with which we train the neural
networks. The sampling process is shown in Figure 5.4 and looks like this:

1. Pick a fixed sample size, e.g. 200× 200µm

2. Convert this size into a pixels count s using the slide metadata. e.g.
880× 880 pixels.

3. Read a random region from a WSI with the larger size
√
2× s

4. Run a canny edge detection [14] on the image, if it contains too few edges
we assume we sampled a mostly empty region and resample.

5. Pick a random angle θ and rotate the image around it’s center by θ. This
is why we initially need to sample a larger region, or else the rotation
will crop some pixels.

6. Randomly flip the image vertically of horizontally.

7. Center crop the image to its sample size s, this means removing all pixels
not contained in the s× s square around the center of the image.

8. Resize the image to the size required for the target neural network.

9. Apply a slight color jitter to all the pixels.

10. Normalize the color values for the target network and convert the image
to a tensor.
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Using this augmentation steps we can easily generate >100 000 unique
patches per slide. Furthermore, we ensure that the neural networks do not rely
on artifacts from variation of rotation, orientation or stain color. Through the
pathology process 4.2.1 the tissue on the slides is already rotated and flipped
arbitrarily.

This approach works especially well because the lymph node tissue of lym-
phoma patients is homogeneous. Given a small section from the lymph node,
often done by a needle biopsy, pathologists are still able to diagnose the lym-
phoma subtype.

5.2.4 Neural networks
We use simple transfer learning on pretrained vision networks on these patches.
Multiple different approaches were tried and will be described in 5.2.7. One of
the best performing but simple approaches, will be described here in full.

We train a separate neural network for each of the different stains. First a
test set of 30 patients was randomly selected, with the other 127 patients as
the training set.

A total of 20 × 4096 = 81, 920 training patches were sampled from the
training set using the process described in 5.2.3, this corresponds to 650
patches per slide. Additionally, half as many validation patches were randomly
sampled, without any data augmentation. A higher amount of patches did not
significantly improve performance. The pretrained neural network inception
v3 [94] was used. It is a convolutional neural network for image classification,
pre-trained on the ImageNet dataset [63]. This dataset contains millions of
everyday images, each one with a label from a set of 1001 labels, such as
“airplane”, “automobile”, “bird”, “cat”, “deer”. This network was adapted by
replacing the final linear layer with a new liner layer with just 6 outputs, one
for each of the possible diagnoses. The full network can be seen in Figure 5.6.

The network is then trained on all the patches, where each training patch is
label with the diagnosis of the slide from which it was sampled. This results
in a network trained to classify patches, this means for an input patch it will
return a vector of 6 scores, one for each of the diagnoses. This is of course a very
simple strategy and is by design inaccurate. Some patches contain no relevant
tissue to diagnose and a fixed size for patches is not optimal for all diagnoses.
We intentionally ignore these problems because the accuracy of these networks
does not need to be perfect. For each patient we have thousands of patches
from 5 different stains, as long as most of them are classified correctly the
patient will be classified correctly.

5.2.5 Patient diagnosis
After training networks for each stain they are used to diagnose the patients
in the test set. Patches are sampled from the slides and fed through the neural
networks. We make sure to sample the patches in a way to cover all the tissue
of all the slides. The diagnosis results from the networks are tallied up and
most common diagnosis for a patient is assigned as the AI diagnosis for the
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test patient. All the patches essentially vote for the final diagnosis of the
patient. In addition, a diagnosis map is created that can be overlaid over the
tissue, as seen in Figure 5.5. This show very well which regions of the slides
can be diagnosed well and which ones are problematic, pathologists can use
their expertise and check the performance of the networks. The full process
is summarized in Figure 5.5. In order to create these diagnosis maps for the
whole dataset, the AI training and diagnosis process was also run in a 4-fold
cross validation, this result in 4 slightly different networks per stain.

5.2.6 Independent test set
In order to check how well these neural networks generalize, a fully independent
test set of 30 patients was used, the networks were not re-trained but used for
the inference as described in 5.2.5.

Figure 5.5: AI diagnosis process for an example WSI. The Slide (A) is scanned
as a high resolution image (B). From this image patches are sam-
pled (C) and fed through the trained neural networks for classi-
fication (D). For each stain a diagnosis map can be created by
combining the output of the network from all the patches. (E).
For a patient all the available stains are used with a separate net-
work for each (F). All the patches from all the stains are combined
into a final diagnosis for the patient (G).

5.2.7 Training variations
The described methodology is the result of an extensive discovery process, on
how to best set up the diagnosis architecture. This included the following:

• Replacing the majority voting by a second-level random-forest classifier,
trained as part of the cross validation.

• Testing different pre-trained neural networks such as ResNet34 (see Fig-
ure 5.6) and ResNet100.
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• More aggressive data augmentation and color jitter.

• Sampling more data for training.

• Testing different fixed input sizes, and varying input size as part of data
augmentation.

• Allowing for an additional diagnosis label Unknown, with a custom error
function for backpropagation.

• Including newer data when training the neural networks.

• An independent reproduction of the method by Julian Lorenz as his
bachelor thesis [64]

• “Negative” tests, e.g. intentionally training the networks only on bad
“background” patches.

5.3 Results
5.3.1 Base dataset
Training on the initial dataset of 157 patients, with a test set of 30 patients
resulted in great performance. 60% of patches where classified correctly by
the networks. When combining the patch diagnoses into a patient diagnosis
all but two patients (93.33%) were classified correctly. These two patients
were re-checked by pathologists and are errors by the neural network. When,
instead of majority voting, a random forest classifier is used for combining the
patch diagnoses, all patients can be classified correctly.

5.3.2 Independent test set
The first independent test set received was from 30 new lymphoma patients,
scanned on a different model of scanner. Unfortunately performance was al-
most completely lost when diagnosing the patients of this test set. Patch level
accuracy was down to 20%, barely better than randomly guessing.

The same 30 patients were scanned again with the same scanner as the base
data, but this did not significantly improve neural network performance. It
resulted in a patch level accuracy of 28%.

Unfortunately none of the changes described in 5.2.7 improved performance
significantly. In order to eliminate a metadata or data preparation error the
slide labels were validated by pathologists. As the whole workflow and code
was independently re-implemented by Julian Lorenz, we also expect this per-
formance is not an error in the code.

Another reason for poor performance are probably technical artifacts in the
data. These neural networks strictly optimize diagnosis performance and will
use all the information contained in the images. There might be patterns,
brightness changes or other artifacts from the preparation or scanning process.
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The neural networks might rely on the artifacts for diagnosis, and thus loose
performance in an independent test.

The diagnosis maps were valuable for input from pathologists on this topic,
see table 5.1 and 5.2 for their conclusions.

Technical Points

• Insufficient tissue detection occurs frequently. Variability in tissue de-
tection between type of stainings (<slide ID>)

• Misclassification occurs in tissue types not trained to AI. e.g. sclerosis
and soft tissue as HL (<slide ID>), <slide ID> fatty tissue with blasts
as MCL, colonic mucosa as DLBCL <slide ID>

• AI insufficiently recognizes unaffected lymph node areas (partial infiltra-
tion) (<slide ID>)

• Unspecific staining is misinterpreted by AI e.g. in necrosis (CD20 <slide
ID>)

• AI recognized tissue variably according to staining type. Example necro-
sis in <slide ID> recognized as tissue in CD20 but not as tissue in HE.
Some areas not or only partially stained in CD20 not recognized as tissue
(<slide ID>). Defects in tissue not sufficiently recognized or overesti-
mated (both in <slide ID>).

• The overlay of AI results seem to have a tendency of deviating towards
outer borders of tissue fragment. <slide ID>.

Table 5.1: Technical points from pathologists Prof. Dr. Wolfram Klapper and
Dr. Sarah Reinke, based on the diagnosis maps, slide identifiers
redacted

The network’s performance was also checked when using an “inverted” patch
selection function, where we train the network only on patches we would nor-
mally reject as “background” in the pre-selection process. While the networks
performed worse, a total loss of performance was not observed. A model inter-
pretability library was used to generate and compare attentions maps on the
patch level networks. This did not reveal any obvious artefacts. Fortunately
through our diagnosis maps we already generate an “inner”, explainable repre-
sentation of the networks. The comments from pathologists indicate that the
networks, are at least somewhat influenced by artefacts in the data.

When mixing in the new test cases with the base dataset, and then creating
a new random test set performance also dropped significantly. This indicates
that there is variability in the data that the base dataset does not cover.
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5.4 Discussion
While the field of AI pathology is huge with hundreds of published models and
datasets, AI diagnosis of lymphoma requires somewhat different methodology.
For other cancers, such as breast cancers metastasis will form in the lymph
nodes and the pathology task is, first of all, detecting the metastasis tissue.
The CAMELYON16 challenge on finding breast cancer metastasis [22] alone
includes 25 different deep learning based algorithms for this segmentation task.
While these approaches informed some methodology with our approach, the
key difference for lymphoma is that there are no two clearly distinguished tissue
types in the lymph node. In our case the whole lymph node is uniform and
the AI task is not image segmentation but image diagnosis. For AI lymphoma
cases a preliminary study from Achi. et. al [1] achieved a 95% accuracy with
a simpler CNN, for the diagnoses lymphadenitis, DLBCL, Burkitt Lymphoma
and CLL. This is similar to the initial performance achieved here. Multiple
other findings show that AI models can exhibit a strong decline in performance
when evaluated on independent datasets [60] [12].

Miyoshi et. al. [69] improved on this methodology by not randomly sam-
pling tissue patches, but by sampling only from areas annotated by experienced
hematopathologists. This is in some ways disadventagious as it requires man-
ual effort from a hematopathologist, but increases robustness of the neutral
networks.

5.5 Outlook
While the results from this work did not create a model that generalizes well,
the results are nonetheless promising. Based on this work, further research
was funded by the Federal Ministry of Education and Research(BMBF) for a
federated learning approach to AI pathology [10].

As Miyoshi et. al. [69] show, an obvious weakness of our approach that can
be improved is the poor quality of patches we use for training the networks. If
we can select better input data, patches that a pathologist would also select for
diagnosis, the networks can be improved. Of course this pre-selection should
not require manual labor from pathologists but can be treated as another AI
task. Preliminary work and data collection on this is already being done, as
part of the FDLP project. Visual features can be extracted with powerful new
Vision Transformers architectures, such as DINOv2 [76].

A federated approach also allows us to run models on huge datasets, available
locally at the pathologies without creating privacy risks for patient data [38].
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Figure 5.6: Neural networks used for slide diagnosis. Left: the structure of the
adapted ResNet34 [37] neural network. Right: the structure of the
Inception v3 network [94]
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Figure 5.7: The diagnosis pipeline for the base dataset could be reduced to
only require two stains (H&E and CD20) with minimal loss of
performance. These two stainings are very common for lymph
node staining and routinely done by many pathologies.
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Figure 5.8: The detailed diagnosis map for the H&E stain of Figure 5.7, the
maps have the same resolution as the original slide. The overlay
can be turned off for checking the tissue. It can be seen that
artefacts, such as the small tears in the tissue cause misdiagnoses.
The round yellow region is also likely the location where the tissue
was picked up with tweezers and damaged.
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Figure 5.9: Examples of incorrect predictions and their diagnosis maps. This
data gives pathologists a good understanding of where the errors
happen, and they can look at the slide themselves.
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Conclusions

• AI has difficulties in recognition of what seems obvious for a pathologists
eye. Most remarkable example is deficiency in recognition of follicles
e.g. in <slide ID> a FL almost completely classified as CLL in the
CD20 staining despite obvious follicular architecture. In contrary: well
recognition of FL diagnosis by AI when follicles are less well defined and
almost confluent (<slide ID>, CD20 stain). Artefacts such as labels with
a permanent pen (<slide ID> HE stain) or edges of cover slip (<slide
ID> CD20) recognized as tissue and classified incorrectly. MCL GC
center classified as MCL (<slide ID> CD20)

• AI maps can be visually inspected by pathologist: Hodgkin shows by far
the most convincing classification maps when inspected visually (followed
by lymphadenitis).

• Obviously immunohistochemical reaction (positive staining) only is a
part of the information used by AI: Example for recognition indepen-
dent of positive staining: Insufficient staining for CD20 in central area
correctly recognized as DLBCL (<slide ID>, <slide ID>). Example for
incorrect classification due to unexpected negativity for CD20 in DLBCL
(<slide ID>).

• Tissue features leading to local misclassification can be partially iden-
tified: HL- sclerosis/soft tissue, MCL – foldings, scratches, FL+LyA –
T-cell and histiocyte rich but no follicular areas (e.g. in fatty tissue).

• Areas with deviating classification by AI frequently do not show a coun-
terpart by visual inspection. E.g. remnants of GC obvious by visual
inspection frequently not recognized by AI as such. Examples: unaf-
fected lymph node areas (<slide ID>), 2 CLL with lots of GC: <slide
ID>, <slide ID>.

Table 5.2: Conclusions from pathologists Prof. Dr. Wolfram Klapper and
Dr. Sarah Reinke, based on the diagnosis maps, slide identifiers
redacted
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