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Abstract. In the last decade, graphene has become an exciting platform for
electron optical experiments, in many aspects superior to conventional two-
dimensional electron gases (2DEGs). A major advantage, besides the ultra-large
mobilities, is the fine control over the electrostatics, which gives the possibility
of realising gap-less and compact p-n interfaces with high precision. The latter
host non-trivial states, e.g. , snake states in moderate magnetic fields, and serve
as building blocks of complex electron interferometers. Thanks to the Dirac
spectrum and its non-trivial Berry phase, the internal (valley and sublattice)
degrees of freedom, and the possibility to tailor the band structure using proximity
effects, such interferometers open up a completely new playground based on novel
device architectures. In this review, we introduce the theoretical background
of graphene electron optics, fabrication methods used to realise electron-optical
devices, and techniques for corresponding numerical simulations. Based on this,
we give a comprehensive review of ballistic transport experiments and simple
building blocks of electron optical devices both in single and bilayer graphene,
highlighting the novel physics that is brought in compared to conventional 2DEGs.
After describing the different magnetic field regimes in graphene p-n junctions and
nanostructures, we conclude by discussing the state of the art in graphene-based
Mach-Zender and Fabry-Perot interferometers.
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1. Preface

1.1. Electron quantum optics; why graphene?

Since its discovery [I], graphene has emerged as a
wonder material and as a playground of different
fascinating condensed matter physics ideas. Due to
its high electrical and thermal conductivity that comes
together with an almost 100 % optical transparency
for the visible optical spectrum, monolayer and
bilayer graphene, as well as the recently discovered
twisted bilayer and multilayer graphene [2], are
promising materials for various application areas
including advanced electronics and novel solutions
for sustainability. Advancement of nanofabrication
techniques over the past twenty years led to the
realization of several interesting concepts stemming
from the linear energy-momentum relation near the
Fermi energy of undoped graphene, where the two-
dimensional Fermi surface shrinks to two Fermi points,
known Dirac points. The two separate Fermi surfaces
are termed valleys (the K and K’ points) and for low-
energy, each valley hosts mass-less quasi-particles that
are alike relativistic Dirac/Weyl fermions.

Electron quantum optics is a field of research
where the focus is on the wave nature of electrons in
solids. The goal is to explore fundamental properties
of fermionic quasi-particles in solids by conducting
prototypic experiments known from optics. A typical
traditional free space quantum optics experiment is
an interference experiment that converts the quantum
nature into a measurable intensity pattern as a function
of a control parameter. Examples are the text-book
two-slit interference experiment, Fabry-Pérot, Mach-
Zehnder and Michelson interferometers, and intensity-
correlation experiments along the line of Hanbury-
Brown and Twist [3, 4]. These experiments make use
of the large velocity of photons given by the speed of
light which transforms even a rather short temporal
coherence of a light source of 1ns into an appreciable
coherence length of 0.3 m. Taking a laser source, some
light apertures and mirrors, it is straightforward to
construct such interference experiments on an optical
table.

In the solid state, electrons move at much lower
speeds. The velocity is an interesting parameter as
it can be dressed by all interactions: it is usually
enhanced by strong electron-electron repulsion, but
it can also be lowered through strong coupling with
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lattice degrees of freedom, such as phonons. For a
typical doping, the group velocity of quasi-particles in
semiconductors is only of order 10°m/s. Noting that
relaxation times through electron-phonon interaction
can easily be as short as 1ps, which yields an electron
mean-free path l,f, of only ~ 100nm. Hence, it
seems impossible to perform free electron propagation
(ballistic) electron optics experiments. First, one
has to cool the solid state material to low enough
temperatures that relaxation through the lattice is
sufficiently suppressed. In the second place, one has
to work with materials of very high quality, since
also inherent disorder, such as atomic defects and
grain boundaries, limit the mobility, and, hence, I, fp.
Electron optics experiments become feasible when the
ballistic mean-free path [, s, is larger or comparable to
system sizes that can be patterned with current state-
of-the-art micro and nano-fabrication technology. So
samples are of size L > 0.1 um, and typically in the
range of L ~ 1 — 10 pm.

A second requirement is that the de Broglie
wavelength A of the electrons (or holes) in the
solid-state material should be A\ < Ilpf,. This is
the limit of quasi-classical quantum optics, where
propagation along optical trajectories can be defined
and engineered through smooth electrostatic profiles.
Moreover, beyond conventional optical properties of
light rays, trajectories of Dirac charge carriers can
be additionally bent and controlled through magnetic
fields, a hallmark and unique stronghold of Dirac
electron quantum optics. We note here that the
notion of quasi-classical electron propagation looses its
meaning in the opposite limit A ~ L. Here, localized
confined states appear, which are realized in quantum
dots and cavities. Such structures will also be covered
in this review.

The field for electron quantum optics widened
to a great extent when graphene devices could be
fabricated with high enough purity yielding large
enough ballistic mean-free paths l,,¢,. The large
Fermi velocity of graphene of v ~ 10°m/s helped to
move on from disordered graphene ribbons to graphene
that is ballistic over macroscopic distances. Moreover
the electric field controllable ambipolar nature of
graphene [I] provides a pristine way to control the
global carrier density over the ion-implantation method
of doping in conventional semiconductors. Realization
of junctions of opposite carrier densities (electron
and hole-type) in a single graphene sheet through
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the local control of carrier density using electrostatic
gates is a milestone in electron quantum optics in
general [Bl [0 [7, [§]. The ability of fabricating p-n
junctions gave rise to ‘relativistic’ condensed matter
physics where relativistic quantum phenomena like
Klein tunneling [9], Veselago lensing [I0], particle
collimation [II], and quasibound states [I2] were
demonstrated on chip-size devices.

1.2. Traditional quantum optics in a 2DEG

Two-dimensional electron gases (2DEGs) confined
in a GaAs quantum well in heterostructures of
AlGaAs/GaAs-based semiconductors [I3] have been
the historically dominant material in which electron
quantum optics experiments could be realized. This is
due to various factors: among the technical ones, the
use of microelectronics industry growth and processing
techniques has allowed obtaining high quality 2DEGs
on wafer scale, that can be electrically connected using
highly transparent ohmic contacts [I4]. Due to the
low mass of the electrons in the conduction band,
very high mobilities have been achieved [I5]. Record
electron mobilities are u > 50 - 10° cm?/Vs yielding
macroscopic mean-free paths I, 5, > 250 um. Perhaps
even more importantly, the semiconducting nature
of AlGaAs/GaAs heterostructures permits the use of
electrostatic depletion gates with which one can shape
the potential landscape in the 2DEG. Thereby, one can
gain control over electron wave trajectories. The most
commonly used gating structure in electron quantum
optics experiments with GaAs quantum wells is a split
gate realising a quantum point contact (QPC) [10]:
a saddle point-like constriction in the 2DEG through
which the electrons are channeled.

For electron-transport experiments at low temper-
ature, which are at the focus in this review, only elec-
trons (or holes) at low energies are considered. Ac-
cording to the de Broglie relation and parabolic energy
dispersion of quasi-free electrons with mass m,, the
Fermi wavelength \p = h/v/2m.Er, where Ef is the
Fermi energy and h the Planck constant. For a low
effective mass and Fermi energy, the Fermi wavelength
can become large, reaching values Ap > 100 nm. Since
structure on the 100 nm scale can easily be fabricated
today, QPCs can be designed that can electrostatically
be tuned to pass none, only one, or a few (transverse)
channels through the constriction. This has led to the
seminal work of quantized conductance in QPCs, first
conducted by B. van Wees et al. [10].

The most elementary electron optics experiment
could start with a QPC that is tuned to transmit
exactly one single channel. If the channel opens
adiabatically on the exit side, a spherical electron wave
would emerge. One could then place a gate electrode
in the shape of a half circle some distance behind the
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QPC and applying a strongly negative voltage so that
the gate acts as a mirror for electrons. If the mirror is
smooth enough, it would reflect the electrons back to
the QPC. Due to the wave nature, this arrangement
will give rise to so-called Fabry-Pérot interferences,
which, depending on the wavelength and the distance
from the QPC to the mirror, can be constructive or
destructive. This interference pattern can be made
visible in three ways: (i) by changing the Fermi energy
of the 2DEG with e.g. a global gate, or (ii) by tuning
the voltage that is applied over the QPC. In case
(i), one would measure the linear-response electrical
conductance at small bias voltage as a function of
gate voltage, and in case (ii), one would measure the
differential conductance as a function of bias voltage.
The (iii) way is by applying a tunable magnetic field B,
which is also a very important tuning knob in quantum-
interference experiment, and it will very often show up
in this review.

1.8. Graphene for quantum electron optics

In recent years graphene devices with amazing
qualities could be obtained, either by current-annealing
suspended graphene [I7, 8] or by encapsulation
into single-crystalline hexagonal boron nitride (h-
BN) [19, 20, 21] complemented with one-dimensional
(1D) edge contacts [21] which improved the electronic
performance of graphene-based devices drastically, as
explained in detail in section[3] All these developments
led to two-dimensional (2D) gate-tunable electrical
conductors with mobilities that typically reach values
fe > 10°cm?/Vs, in some cases even above
10%cm?/Vs. Correspondingly, large mean-free paths
Imfp exceeding 1 um could be established and ballistic
transport became possible in samples of “mesoscopic”,
and even macroscopic size [18, [17, 22] 23] 24]. If in
addition the coherence length is sufficiently long, which
requires low bias and low temperature experiments,
quantum interference starts to play a decisive role.
In graphene devices, all kind of quantum coherent
interference effects have been observed in a surprisingly
clean fashion.

Three generic electron-optical device concepts
that very often appear in the literature are introduced
in figure [T

In a perpendicular magnetic field B the quantum
effects are very different for zero, small, intermediate
and large fields. For very small fields, the
magnetic field adds a weak Lorentz force which bends
semiclassical trajectories slightly [25]. This adds
a small phase term in quantum interference as a
correction to the zero-field case. Nonetheless, this
has interesting consequences. At intermediate fields
the bending can become significant, leading to the
formation of new bounds states within a finite size
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Figure 1: Examples of electron optical devices. (a) shows a Fabry-Pérot interferometer where the “mirrors” are
defined by the boundaries between two regions with different electron concentrations. Specific to graphene, the two
regions can also have opposite doping, indicated here in red as n-type and in blue as p-type. In this bipolar case, electron
refraction is negative at the interface, which is something quite peculiar. Constructive interference occurs when the phase
acquired along the blue or yellow path is a multiple of 2. The phase can be controlled through gates that tune the
electron concentrations in, for example, the middle region. (b) shows another interesting device concept which is based
on transverse magnetic focusing. The Lorentz force due to a magnetic field applied perpendicular to the graphene plane
deflects the electron trajectories. In the red case, the electrons are deflected from the source contact 1 into drain contact
2. Changing either the direction of the magnetic field or the sign of the charge carrier type, flips the orientation of the
circular motion from the red to the blue case. The right figure in (b) shows transverse magnetic focusing along one sample
edge. The resonance condition for scattering from source contact A into drain contact B can be obtained for different
strengths of magnetic fields. Finally, (c) shows a quantum Hall interferometer that makes use of edge states (dark black
lines with arrows indicating propagation direction). One can measure, for example, the transmission probability from
contact I to contact II or the reflection probability to IV. The edge state can be seen as a one-dimensional propagating
electron wave that is scattered with some probabilities at the left and right constrictions. With the aid of the side gate

in the interior region the path length can be adjusted resulting in Aharonov-Bohm oscillation in the measurements.

graphene device [26]. If the magnetic field increases
beyond a critical value B, for which the cyclotron
radius due to the ballistic motion shrinks below the
sample size L, edges-states form at the boundary of
the samples [27]. They can often still be treated in a
semiclassical manner as so-called skipping orbits and
they are crucial to understand transport in devices
where p-n junctions are realized. But if the magnetic
field is so large that Landau quantization becomes
dominant, this is when the bulk of the sample becomes
gapped, one is entering the quantum Hall regime [28]
[29]. While the interior of the sample is gapped in the
quantum Hall state, compressible conducting channels
form along the edges of the crystal. These channels are
known as edges states. In the integer quantum Hall
regime the edge channels are chiral and the number
of channels depends on the filling factor v = nh/eB
which depends on carrier density n and magnetic field
strength B.

The edge channels of the quantum Hall state form
ideal channels, since backscattering is absent in wide
enough samples. The transport channels can be seen
as analogs to single- or few-mode optical fibres. They
are ballistic over lengths reaching the millimeter scale.
In GaAs quantum wells they became the tool to ex-
plore a very large number of electron quantum optics
experiments, such as electronic quantum interferom-
eters in Fabry-Pérot [30] and Mach-Zehnder [31] ge-
ometries, the realization of on-demand single electron

sources [32, B3], Hanbury-Brown and Twiss correla-
tions measurements in continuous [34} [35] and single-
excitations [36] electron beams, or Hong-Ou Mandel
two-particle interferences [37]. Lately, the ability to
combine these electron quantum optics schemes with
the fractionally charged anyonic excitations of the frac-
tional quantum Hall effect has further expanded the
field 38, 9] with the perspective of developing yet an-
other quantum information processing platform relying
on non-abelian statistics [40]. A quantum Hall edge
channel can be selectively transmitted with a probabil-
ity between zero and unity, fully gate-tunable. As the
edge channels form the electronic analogue of fiber op-
tics, quantum point contacts are the electronic equiva-
lent of tunable beam-splitters, and are therefore ubiqg-
uitous in electron quantum optics experiments realized
in AlGaAs/GaAs 2DEGs.

Transferring electron quantum optics experiments
from GaAs 2DEGs to graphene has become an
important task in the field in the past decade, as the
quality and mobility of the available graphene samples
increased dramatically. Indeed, the honeycomb lattice
of graphene and its semi-metallic band structure give
rise to extremely rich quantum Hall effects [41],
which can be explored through electron quantum
optics experiments. In particular, the ambipolarity
of graphene, as well as the strong role of electronic
interactions in the emergence of a quantum Hall
ferromagnetism where both spin and valley symmetries
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are broken [42, [43| [44] [45], greatly expands the
playground for electron quantum optics. Furthermore,
the structural differences between AlGaAs/GaAs
2DEGs and graphene, particularly with respect to
the electronic confinement at the edge of the sample,
allows testing the hypotheses upon which our current
understanding of edge channel transport is based.

Similar to monolayer graphene, electron quantum
optics experiments were early on also conducted with
bilayer graphene. In contrast to monolayer graphene,
bilayer graphene has additionally to the valley degree
also a layer degree of freedom. The layer degree can
directly be accessed through the charge density in the
two layers using a double gated stack, which today
typically starts with a graphite bottom gate, followed
by a h-BN gate dielectric, bilayer graphene, followed
by the top h-BN gate dielectrics, and ending by a
top graphite gate. A symmetric gate voltage will
add the same amount of charge to the two layers.
However, if gating is asymmetric one can induced
opposite charge in the two layers. This gives rise
to a so-called displacement field, which — crucially —
opens a gap in bilayer graphene. In gapped bilayer
graphene one can realize the exact analogue of the QPC
that was/is used in GaAs quantum well structures.
Gating allows to fully deplete a region. This has
also allowed to define gate controlled channels where
the channel width is not determined by the natural
graphene edges or by etched edges, but rather by a
smooth bounding potential defined by the global gate
structure [46], 47, 48], [49]. This has been an important
milestone, since it allowed to engineer ballistic few-
mode channels without a magnetic field, simply due
to the presence of the gap in bilayer graphene with
non-zero displacement field. In earlier etched graphene
ribbons the edge roughness was too large and strongly
limited to scattering mean-free path.

2. Introduction to graphene

2.1. Band structure

Graphene has a hexagonal lattice with a of two-atom
basis as depicted in figure 2a] where a ~ 0.142 nm
is the carbon-carbon bond length, a; = a.(1/2,v/3/2)
and ay = a.(—1/2,v/3/2) are the primitive vectors,
a. = V3a is the hexagonal lattice constant, and the
basis vectors of the two atoms are d4 = (0,0),dp =
(0,a). The corresponding reciprocal primitive vectors
can be chosen as by = 27/v3a.(v/3,1) and by, =
21 /v/3a.(—v/3,1) as shown in figure [2b, where the
empty dots are part of the hexagonal reciprocal lattice,
and the yellow area bounded by a dashed hexagon is
the (first) Brillouin zone (BZ), some symmetry points
of which are marked.
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2.1.1. Band structure of single layer graphene. Using
a two-basis tight-binding model considering only p.-
orbitals up to second nearest neighbors, the energy
bands of graphene within the entire Brillouin zone can
be written as

E(k) =€, +t'F(k) £t\/3+ F(k) (1)

where €, is the p,-orbital energy (often set to zero),
t and t' are the nearest and second-nearest neighbor
hopping energy (equivalent to Slater-Koster parameter
Vppr and V), respectively, and the function F'(k) is
defined by

F(k)=2 (cos kya + 2 cos k:;a cos \/§2k;ya> . (2)
The graphene band structure based on equation [I}-
equation [2 along the k-path MT KM points (marked
on the Brillouin zone shown in figure is shown
in figure considering t # 0 and ' = 0 cases.
The surface plot of the band structure for the ¢ = 0
case is shown in figure 2d] where the conic structure
centered at K can be clearly seen. By Taylor expansion
of equation [2] at k = K 4+ q with |qle <« 1, it
can be shown that up to terms quadratic in ¢, F' ~
—3 + 9¢%a?/4. Substituted into equation [1} we have
E(K; + ¢z, Ky + q) =~ €, — 3t £ (3at/2)q, which can
be briefly written as

E,(k) ~ =3t + chvopk (3)

where k is relative to K, 0 = =+ is the band index
(o0 = + for the electron branch and ¢ = — for the hole
branch), €, = 0 is chosen, and the Fermi velocity of
graphene, vg, is defined via

hvp = g|t|a (4)

which is about 0.639 eV nm when using the commonly
used approximate value of ¢ = —3 eV. From this the
value of vg is about one nanometer per femtosecond,
or vp = 10% m/s, which is 1/300 of speed of light.
Note that ¢’ in equation [3| appears to be just a trivial
band offset, but in the scope of strained graphene with
nonuniform hopping, ¢ may play an interesting role of
pseudoscalar potential [50] 5] (2] (3].

2.1.2.  Graphene Landau levels. Under high per-
pendicular magnetic field B, the band structure of
graphene leads to a peculiar quantum Hall effect [41],
characterized by a electron-hole symmetric spectrum
of four-fold (spin and valley) degenerate Landau lev-
els with energies Ey = sign(N)y/2ehvi NB, with —e
the electron charge, i = h/2m the reduced Planck con-
stant, N the Landau level index (positive for electron,
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Qo Qo

Figure 2: (a) Lattice structure of graphene which is composed of two hexagonal sublattices (gray and pink balls).
(b) The corresponding reciprocal lattice (open circles) and the first Brillouin zone (yellow hexagon). (c) Band
structures along k-path of MT' KM with (¢,t") = (—3,0.23) eV (black dashed) and (¢,¢') = (=3,0) eV (red solid).
(d) Surface plot of the band structure for the case of ' = 0. (e) The Dirac cone of graphene, i.e., its low energy
band structure. (f) Schematics of shifted Dirac cones of a graphene p-n junction, assuming a Bloch electron
incident from the p-region at velocity v; and transmitted into the n-region at velocity v,.

negative for holes), and vp &~ 10°m/s is the Fermi ve-
locity. For large magnetic fields, electron-electron in-
teractions lift the spin and valley symmetries such that
each Landau level splits into four sublevels that are
fully spin and valley polarized [41], 42]. The 0-th Lan-
dau level, pinned at zero energy, also splits into four
sub-levels that reflect its half electron, half hole nature.
If the Zeeman energy can be neglected with respect to
interaction-driven spin and valley gaps (which gener-
ally occurs unless a strong in-plane magnetic field is ap-
plied [54], or a high-constant dielectric is used to screen
interactions [55]), the 0-th Landau level splits into two
electron-type sublevels with equal valley polarization

(e.g. K) and opposite spins polarizations, and two
hole-type sublevels with equal valley polarization (but
opposite to that of the electron-type sublevels, e.g.
K'), and opposite spin polarizations. Thus, at quar-
ter filling, that is at filling factor v = neuh/eB = £1
(ne/n is the carrier density with respect to charge neu-
trality), both bulk and edge become fully spin and val-
ley polarized [41] [42] [56]. At filling factor v = 0, the
spin and valley symmetry breakings lead to a fully in-
sulating state with no edge channels, the gap of which
is about 150 K at B = 10 T, ten times larger than
the Zeeman gap [42]. This insulating v = 0 state is
crucial in many electron quantum optics experiments,
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Figure 3: (a) In the absence of interaction, each
graphene Landau level (denoted by the index N) is
four time degenerate and each level energy is given by
Ey = hwey/N +1/2. (b) Electron interactions lift
up the spin and valley degeneracy through a Stoner
instability, leading to broken symmetry states Landau
level classified by the index v.

as it allows to locally deplete the electron gas using
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electrostatic gates, in a manner similar to experiments
realized in AlGaAs/GaAs heterostructures. Thus, the
experiments described in this section mostly rely on
locally changing the filling factor using gates to con-
trol the trajectories of edge channels, as well as their
coupling.

2.1.3. Band structure of bilayer graphene. Similar to
the tight-binding description of monolayer graphene,
cf. section [2.1.1] one can obtain the band structure
of Bernal stacked bilayer graphene [57, 58] 59], taking
into account intra-layer and inter-layer hoppings and
inter-layer asymmetry, see figure [l One finds four
bands, two valence bands, and two conduction bands,
see figure [dp. In the low-energy expansion around the
K-points (cf. the discussion around equation, bilayer
graphene’s bands can be described by

2 2

A ’U? 2 _ U2k’2 2
o R (v2 + 2‘3) k* + (—1)“\/(71 L (V2 + A2 + v2k2) + 2€yv302k3 cos Bp,  (5)

2 4 4

where &« = 1 (o = 2) yields the low-energy
(split) bands, ¢ = #1 indexes the two valleys K+,
¢ = arctan [k, /k,] is the polar angle of the momentum,
and A is the interlayer asymmetry gap. Equation
captures vertical inter-layer coupling of the dimer sites
(71), in-plane nearest-neighbour intra-layer hopping
(v), and skew inter-layer coupling between non-dimer
orbitals (v3).

The latter skew hopping parameter breaks
rotational symmetry and induces trigonal warping to
the parabolic bands, leading to triangularly deformed
Fermi surfaces with opposing orientation in the K+
valleys, see figure [4.

2.1.4. Density of states. Given the energy band of
a certain material, the corresponding density of states
p(E), i.e., the density of the number of states at energy
E, is generally given by the sum of contributions from
all bands: p(E) =Y _ pn(E) where

_ A .,
po(E) = (2)2 ji“g(k)ﬂf |[ViEo (k)| ©

is the density of states of the oth band. Here, g is the
degeneracy factor and A is the area of the 2D material.
The above closed contour integral generally needs to be
done numerically, but can be greatly simplified when
the energy band is isotropic: E,(k) = E,(k), such as
graphene at low energy. For bilayer graphene, on the
other hand, the low-energy bands given by equation

are isotropic only when the skew interlayer hopping
V3 = 0.

For graphene, we need to sum up all contributions
from the six Dirac cones within the first BZ, with each
cone described by equation [3] and shared by three BZs,
a factor of 6/3 = 2, also called the valley degeneracy
gy = 2, should be taken into account. Together with
the spin degeneracy gs = 2, the total degeneracy factor
in equation [6] for low-energy graphene should be set to
g = gsg» = 4. Since there is no overlap of energy
bands, the contribution to the density of states is from
either the electron branch (¢ = +) or the hole branch
(o0 = —). Using |ViE,(k)| = hvp from equation
the density of states per unit area, D(E) = p(E)/A, is
given by B

2|F

D(E) = m(hvp)? (M)

for the case of ¢ = 0 with the Dirac point at £ = 0.

For the case of t' # 0 with the Dirac point shifted to

—3t’, as indicated by equation [3[ and seen in figure

the density of states equation [7] should be modified

with |E| — |E + 3t/|. For BLG the quasi-quadratic

dispersion relation leads to enhanced DOS close to

CNP, leading to better screening of disorder and also
to the enhancement of correlation effects.

2.1.5. Energy carrier density relation. At zero
temperature, the carrier density n as a function of
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Figure 4: Lattice and electronic structure of
bilayer graphene. (a) Lattice structure of Bernal
stacked bilayer graphene. We indicate nearest
neighbour intra-layer hopping (v), vertical inter-layer
coupling (1), and skew inter-layer coupling (7s3).
(b) Cut through the bilayer graphene band structure
tracing the corners K* and the centre I' of the
Brillouin zone. There are four bands, two valence
bands, and two conduction bands. Near the K
points, one conduction band and one valence band
are split from zero by an energy of the order of
71, while the remaining two bands constitute the
low-energy bands. These low-energy bands touch at
the K-points for zero inter-layer asymmetry (with an
approximately parabolic dispersion), while finite inter-
layer asymmetry opens a gap A. The inset shows the
bands around the Brillouin zone corners as described
by equation 5| (c) The skew hopping breaks rotational
symmetry, leading to trigonally warped bands where
the Fermi lines are of valley-dependent, triangular
shape.

energy I can be obtained via

E
D(E/)dE' (8)
Ey

n(E) =

where Ej is the charge neutrality energy which is zero
for graphene with ¢ = 0. By inverting the relation,
the Fermi energy as a function carrier density, F(n),
can be obtained. When energy bands are analytically
available and are isotropic in k, i.e., E(k) = E(k), the
result from the above described approach is equivalent

10
to replacing k in the energy dispersion with
k2
=g—. 9
n=g- (9)

For graphene, we have ¢ = 4 and may replace k£ in
equationwith \/m|n| (for the case of t' = 0) to obtain

E(n) = sgn(n)hvpy/7|n| ,

where n > 0 and n < 0 correspond to n- and p-type
graphene, respectively.

(10)

2.2. Semiclassical description for motion of carriers

In solids, the semiclassical dynamics of Bloch electrons
(without the correction from the Berry curvature [60])
is governed by [61]

1
i =—ViE, (k)

) (11)

R:f%(Ee+1’~xB)

(12)
where Vi is the gradient operator with respect to
k, FE,(k) is the energy band, o is the band index,
h is the reduced Planck constant, —e is the electron
charge, E. is the electric field, and B is the magnetic
field. For two-dimensional materials arranged in the z-
y plane, the position vector is r = (z,y), and the wave
vector is also two-dimensional, k = (k;, k). Given
an energy band FE,(k), equation stands for two
first-order ordinary differential equations (ODEs) for
Z and y. Together with equation that describes
another two first-order_ODEs, one for k, and the
other for k,, equation and equation represent
four first-order coupled ODEs that can be numerically
solved to describe the semiclassical dynamics of Bloch
electrons in 2D. Without having to bother with such
numerics, however, the following section provides
a simple understanding of the basic properties of
Dirac electrons in graphene based on equation

equation [T2]

2.2.1. Cyclotron motion. To describe the semiclassi-
cal motion of the Bloch electron in the present focus of
graphene, it is sufficient to adopt the low-energy disper-
sion equation [3] which exhibits a conic band structure,
known as the Dirac cone, already shown in the inset of
figure 2d] and now elaborated in figure [2¢] where car-
riers occupying the upper branch (o = +) behave like
negatively charged electrons and those occupying the
lower branch (o0 = —) behave like positively charged
holes. The behaviors of electron-like and hole-like car-
riers can be understood by considering Bloch electrons
in graphene applied with only B = (0,0,B) = Be.
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where B is constant and €, is the unit vector along the
z axis. The absence of E, simplifies equation [I2] to

k=-SixB.

- (13)

By a bit of mathematical processing [61], the above
equation [13|leads to the following geometric relation:

h

r(t) —r(0) = B

k(t) —k(0)] x &, . (14)
which indicates that the real-space trajectory of a
Bloch electron is just its reciprocal-space trajectory
scaled by hi/eB and rotated about the z-axis by 90
degrees clockwise.

Since the magnetic force is perpendicular to the
group velocity r and does not alter the kinetic energy,
the motion of a Bloch electron in a constant magnetic
field is a constant-energy motion. Put in another
way, its reciprocal-space trajectory is a constant-energy
contour, i.e., the Fermi contour for Bloch electrons
at the Fermi energy. At sufficiently low energies,
the Fermi contour is a circle of radius k, with which
equation[I4]indicates that the corresponding real-space
trajectory is a circle of radius

hk

E ’ (15)

Te =
called cyclotron radius. Whereas the above discussion
is valid independent of the band structure, the
cyclotron radius formula equation [I5] is applicable
also for other 2D materials with isotropic dispersion
relation.

2.2.2. Electron and hole orbits. Equation[I3] together
with the group velocity r given by equation allows
us to distinguish between electron and hole orbits.
Since the group velocity r is directed along the energy
gradient, which is radially outward for the electron
branch and inward for the hole branch (see figure [2€),
how k evolves with time follows the direction of B X r,
leading to counterclockwise and clockwise orbits for
electrons and holes, respectively; see figure

Note that the above argument is valid not only
for graphene. What makes graphene different from its
linear energy dispersion equation [3|is that the group
velocity equation [11] explicitly reads

k

V =0V 7

i 1o

whose magnitude is always vp, independent of energy.

2.2.3. Cyclotron frequency. The energy-independent
magnitude of the group velocity equation leads to
distinct behaviors of electrons in graphene compared
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to non-Dirac materials where the energy dispersion
is not linear in k. Take the cyclotron motion for
example. Because of the constant |v| = vp, the
smaller the cyclotron radius, the shorter the time
needed for the electron to complete a cycle, which is in
sharp contrast with electrons in usual two-dimensional
electron gas (2DEG) where E(k) = h%*k?/2m*, the
magnitude of group velocity then clearly depends on
energy: |v| = hk/m* = \/2E/m*, leading to energy-
independent cyclotron frequency |v|/r. = eB/m*.
Using the effective mass of GaAs, m* = 0.067m.,
me the bare electron mass, the cyclotron frequency
in 2DEG confined in GaAs is about 2.63 THz under
B =1T. On the other hand, the cyclotron frequency
in graphene is energy-dependent: |v|/r. = eBv%/E,
which ranges between a few THz (E > 100 meV) to
about one hundred THz (F < 10 meV) under the same
magnetic field of B=1T.

2.2.4. Negative refraction. Although the problem of
transmission across a graphene p-n junction will be
elaborated in more details in section the above
semiclassical description allows us to easily understand
the origin of negative refraction in graphene.

Suppose a graphene sheet is subject to an on-
site energy band offset arranged in a way that
the Dirac cone in the left (right) region is shifted
upward (downward) in energy, forming a graphene p-
n junction; see figure 2, where the horizontal green
plane is the global Fermi energy, and the circles in
the bottom part of the figure are the Fermi circles in
the corresponding regions. Because the left region is
p-type, the group velocity points radially inward as
explained above, and a possible incoming state with
positive z-component of the group velocity vector v;
is shown in figure After transmission across the
p-n junction with the k, component conserved, the
Bloch electron occupies a state in the n-region at
the Fermi energy with the resulting group velocity v,
which points radially outward of the Dirac cone (see
figure , leading naturally to the negative refraction
of the Bloch electron because v; and v, lie on opposite
side of the incidence normal (dashed line in figure [2f).

The above explanation considers the special case
of a symmetric p-n junction where the Fermi energies
in the p and n regions are equal in magnitude and
opposite in signs. Whereas more general cases will be
elaborated in section from the simple picture
based on the semiclassical description here, it can
be seen that the origin of the negative refraction for
electrons traversing p-n junctions in graphene arises
from the opposite energy gradient of the conductance
and valence bands.
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2.8. Graphene junctions

If one uses two gates, for example, one bottom and
one top-gate, one can define regions of different doping
and gate-controlled p-n devices. If the doping has
the same sign on the two sides (n-n’ or p-p’) it is
called a unipolar junction, if it changes sign it is a
bipolar (p-n or n-p) junction. The sharpness of the
change in potential profile can also vary: the carrier
density can switch sharply or smoothly, depending on
the geometrical parameters and on screening properties
in general. If the gate electrodes are very close to the
graphene layer, the potential step is more abrupt as
compared to the case when thicker insulating barrier
layers are employed. The sharpness of the potential
affects how electrons traverse the p-n region. In the
“abrupt” case, the p-n junction can be seen as a “thin”
scattering region.

2.8.1. Snell’s law. Consider an infinitely extending
graphene sheet arranged in the xz-y plane, subject to a
potential profile V' (z) causing an interface along the y
direction. Let the left (right) region be the incoming
(outgoing) region labeled by i (0). The local Fermi
energy, i.e., the highest filled energy relative to the
Dirac point, is F; in the incoming region and FE, in
the outgoing region. We consider an incoming state
occupying a wave vector k; corresponding to F; and
a positive xz-component of the group velocity v;. The
outgoing wave vector k, corresponding to energy F,
also has positive z-component of the group velocity
v,, as shown figure

Regardless of the sign of F; and F,, Snell’s law for
electrons in graphene is simply the conservation of the
y-component of the wave vector,

kyi=Fkyo, (17)
due to the translational invariance along y. Without
loss of generality, we fix E, > 0 and consider two cases
of E; > 0 and E; < 0, the former corresponding to
a unipolar nn junction and the latter a bipolar p-n
junction.

Unipolar nn junction. When both of F; and E, are
positive, the band offset profile and the local energy
bands are schematically shown in figure Since the
group velocity is parallel to the wave vector for n-
type graphene, as indicated by equation [I6} both of k;
and k, have positive components along k,, as shown
in figure Since the angle of incident (refraction),
0; (0,), defined as the angle between the incoming
(outgoing) velocity and the normal of the interface
(i.e., the z- or equivalently the k. -axis), is the same as
the azimuthal angle of k; (k,), the conservation of k,
equation reads k;sin; = k,sinf,, where k; = |k;|
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and k, = |k,|. Multiplying the equation by fAvg, we
have E;sinf; = E,sinf,.

We note, that for unipolar junctions it is even
possible to achieve total internal reflection if the
incident angle is large enough.

Bipolar p-n junction. For a p-n junction with E; <0
and E, > 0 (figure , we consider k; with a negative
k.-component in order to have a positive z-component
of the group velocity v;, as shown in figure[5dl Because
of equation v; is now antiparallel to k;, and the
angle of k; is not just the angle of incidence 6;, but
0; + m. Therefore, the conservation of k, equation
reads k;sin(6; + ®) = kosinf,. Multiplying the
equation by hvg, we have —hvpk; sin0; = hvgpk, sin f,.
Since k; = |k;| and k, = |k,| are both positive, we have
E; = —hvupk;, and the resulting Snell’s law

E;sinf; = E,sin6, (18)
remains the same form as that in the previous case of
the nn junction. Equation [18|is valid for both unipolar
and bipolar junctions, with none of 6;,6,, F; E,
restricted to positive. In the case of bipolar junctions
with E;E, < 0, the angles of incidence and refraction
must, in view of equation be of opposite signs:
0;0, < 0, consistent with the negative refraction
described in section [2.2.41

2.8.2. Transmission across graphene junctions. The
Snell’s law equation [I§] discussed above indicates that
the role of refraction index in ray optics is played
by Fermi energy in electron optics of graphene. The
equation gives a constraint for the angles of incidence
and refraction, but says nothing about the quantum-
mechanical transmission yet.

In the literature, two main approaches are adopted
in solving the problem of transmission across graphene
junctions: analytical Dirac equation and numerical
tight-binding model. ~ The former leads to useful
formulas but is restricted to simple potential profiles.
The latter is not restricted to any potential profile
but provides only numerical results without any
neat formulas. At low-energy, the tight-binding
approach agrees with the analytical formulas obtained
from solving the Dirac equation, as was shown in
reference [62] for the case of sharp p-n junctions [I1],
linearly smooth p-n junctions [II], and sharp n-p-n
junctions [9] for graphene. The case of gapless bilayer
graphene n-p-n junctions discussed in reference [9] was
also reproduced by the numerical tight-binding method
[62] but below we briefly review only the cases of single
layer graphene junctions.

Sharp p-n junctions. Graphene subject to a potential
profile V(z) shown in figure is the case of an
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Figure 5: Band offset profiles V(z) and local energy band diagrams of (a) a unipolar nn junction, whose
corresponding Fermi circles are shown in (b), and (c) a bipolar p-n junction, whose corresponding Fermi circles

are shown in (d).

asymmetric sharp p-n junction. The upper panel
of figure is a case of a symmetric p-n junction,
across which the transmission as a function of the
angle of incidence, denoted as 6 for brevity, has a neat
expression first derived in reference [11]:

T(0) = cos*0 , (19)

which is shown in the lower panel of figure [6a] by
the black dashed curve. The result is independent of
the potential height and can be reproduced by using
the numerical tight-binding approach (thick solid cyan
curve in figure [6a] [62]. The transmission at all angles
is non-zero, but most strikingly, for § = 0 transmission
probability approaches one! This surprising effect is
known as Klein tunneling [25].

Smooth p-n junctions. If the potential varies smoothly
on the scale of the Fermi wavelength Ap, electrons in-
cident from the left with an angle 6 > 0 relative to
the normal of the scattering region are smoothly bent
within the scattering region. If the carrier density now
truly crosses from n-type to p-type, the electrons are

bent off the scattering region, never reaching the other
side. This is schematically shown in figure [fh. One
would therefore predict a transmission probability of
zero in case of a p-n junction with a smooth “soft”
potential change.

As shown in reference [II], the angle-resolved
transmission T'(f) for a linearly smooth p-n junction
such as those considered in figure [6b] or figure [6d can
be described by

T(6) = exp (—ﬂ'kgd sin? 9) , (20)
when the product of the Fermi wave VeCtOIﬂ]] kr and the
smoothness d fulfills kpd > 1. Two examples for such
linearly smooth p-n junctions are shown in figure [6H]
with kpd =~ 1.54 and figure [6d with krpd ~ 6.16.

The simulation also shows that the situation
is again angle dependent. For incident electron
trajectories that are nearly perpendicular to the
|| Note that the Fermi wave vector is temporarily denoted as kp

here in order to be consistent with the literature, but is mostly
denoted simply as k in the rest of our discussions.
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Figure 6: Angle-resolved transmission of symmetric graphene p-n junctions considering (a) a sharp
(abrupt) junction of potential difference 0.1 eV and (b) a linearly smooth junction of the same potential difference
and smoothing thickness d = 20 nm. Diagrams of (c) are similar to (b) with the only difference being the potential
difference increased to 0.4 eV. (d) considers a nonlinear smooth p-n junction. Upper panels of each subfigure
show the onsite-energy profile V(z) and the lower panels show the angle-resolved transmission T'(¢) based on the
numerical tight-binding model (thick solid cyan curves) and analytical formulas (dashed black curves). (a)—(c)

are modified and reproduced from reference [62].

scattering region with the line of zero density located at
position xg, the probability for transmission T'(6) gets
appreciable. The angle dependence shown in figure [Th
and figure [6b-d can be understood in a qualitative
manner as follows: appreciable transmission sets in
when the classical electron trajectory approaches zq
at a distance l,;, with the condition that the Fermi
wavelength at this position exceeds li,. In this case,
there is appreciable wavefunction overlap between the
two sides.

We note, that the analytical formula of equa-
tion does not match the numerical tight-binding
results for the former case because krpd > 1 is not
fulfilled, while the agreement for the latter case can be
seen. Figures have been shown in reference [62].
For completeness, we show another p-n junction in fig-
ure [6d] which is the same as figure [6 except that the
junction profile is not linear but modeled by a sine
function; see the upper panel of figure The T(0) is
analytically difficult to solve but remains numerically
straightforward. Nevertheless, because of kpd > 1, the
difference between the two approaches is not drastic,
as seen in the lower panel of figure [fd We conclude
that the exponential form of equation [20] can always
serve as a good approximation for smooth n-p and p-n
junctions.

Klein tunneling. Whether sharp equation or
smooth equation [20] the transmission probability
across a graphene p-n junction at normal incidence is
always perfect: T'(0) = 1, which resembles the original
Klein paradox in relativistic quantum electrodynamics

[64], and is often referred to as the Klein tunneling

[65, 66, 67]-

Interfaces at contact electrodes. In experiments
mostly soft p-n interfaces are often reported. Sus-
pended graphene devices have typically a soft p-n junc-
tion, while encapsulated devices can have sharper po-
tential steps approaching the 10 nm range, determined
by the thickness of the gate insulator. However, there
are inherent potential steps at the contacts themselves.
This has two reasons: a) depending on the contact ma-
terial, the workfunction difference between the metal
and graphene results in an exchange of carriers, hence,
to a region of contact doping; b), due to screening prop-
erties, the metal contacts can also be seen as an effec-
tive capacitor. Together with the gate capacitor(s),
this changes the so-called gate-lever arms in the vicin-
ity of the contact region. Again, one expects a change
in carrier density in the vicinity of contacts. Since the
metal electrode is in direct contact with the graphene
sheet, this potential change can be rather steep. Con-
sequently, as long as diffusive scattering can be disre-
garded, a normal metal contacts can also be seen as
a (partially) reflecting mirror as will be seen e.g. in

figure 23]
2.4. Ballistic conductance

For a two-dimensional material of width W at energy
E corresponding to the magnitude of the wave vector
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Figure 7: [Electron transmission at a p-n
junction. The graph in (a) shows the expected
transmission probability color coded as a function of
incident angle 6 and carrier density n. Here, an
equation for a smooth potential change has been used
according to reference [9]: t(0) = exp(—nkrdsin(0)?).
The graph has been adapted from reference [63]. The
semiclassical particle trajectories illustrate in (b) how
they are repelled from the region of zero carrier density
which is located at position xy. The smaller the
incident angle 6, the closer the trajectories approach
xg. If the remaining classical distance I, gets
shorter than the Fermi wavelength Ap, the wave-
function will have an appreciable overlap on the other
side leading to an increase in transmission probability.
Quite remarkably, for § = 0 transmission probability
approaches unity. This is known as Klein tunneling.

k, the number of modes is given by

oW

. (21)

which is obtained from 2k/(27/W) and is just the
number of k, points (assuming the transport direction
is along ). This estimation arises from the assumption
of applying the periodic boundary condition along
the y dimension, and becomes exceptionally precise
whenever W is sufficiently large, or in simpler terms
it counts how many times the half wavelength of

15

electrons’ fits into the transport channel. Taking
into account the degeneracy factor g, the ballistic
conductance of the material in the absence of any
potential, defect, and disorder, is given by

62

— oM 22
G=—gM, (22)

according to the Landauer formula [68].

2.4.1. Pristine graphene. Using g = 4 for graphene
(section and substituting equation into
equation 22| we have the ballistic conductance for
pristine graphene:

e 4w
which is plotted in figure (solid cyan curve),
considering an example of W =1 pym. Note that from
the above equation 21] and equation the ballistic
conductance of all 2D materials exhibit such a linear-
in-k dependence, or square-root-in-n dependence when

using k = +/m|n| (section , up to a different

degeneracy factor g.

2.4.2. Ballistic graphene p-n junctions. When the
pristine graphene is subject to a potential V(z)
without breaking the translation symmetry along v,
the contribution of each k, mode to the conductance
is generally limited by the transmission probability
0 < T(ky) < 1. By summing over contributions from
all modes, the ballistic conductance is given by

_622W k
_h ™ —k

G T(ky)dky , (24)

which recovers equation [23| when V(x) = 0 such that
T(ky) =1 for all —k < k, < k. For arbitrary V(z),
the transmission T'(k,) can be numerically computed,
but no neat formulas for the resulting conductance
equation |24| can be obtained in general, except the two
special cases reviewed in section |2.3.2
For symmetric sharp p-n and n-p junctions, using
equation |19 we have ffk T (ky)dk, = 4k/3, and the
conductance is precisely given by
e? W
G — 73_7.(]{ 3
which differs from equation only by a factor of 2/3,
indicating that an ideally sharp graphene p-n junction
is rather transparent (highly conductive); see the red
solid curve in figure [8a]
For linearly smooth p-n and n-p junctions, the

(25)

ffk T(ky)dk, integral is not analytically solvable
even using equation when kd > 1 is fulfilled.
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Figure 8: Energy (and hence wave vector) dependence of graphene conductance in the clean limit.
(a) Ballistic conductance as a function of E/hvg based on analytical formulas (colorful solid lines) and numerical
quantum transport simulations (black markers), considering a pristine graphene sheet (cyan curve and black
squares), a sharp graphene pn junction (red curve and black crosses), and a linearly smooth (d = 50 nm)
graphene pn junction (orange curve and black circles), all with width W = 1 pm. The inset shows the range
of E/hvr € [-0.03,0.03] nm~! and G € [0,40] e?/h. (b) Ballistic conductance of a suspended graphene pn
junction: experiment vs theory; taken from reference [69]. The smoothness of the junction and the width of the
graphene sample are assumed to be d =1 pm and W = 2 um, respectively.

However, as we have seen in figure T(0) decays
to zero well before § = =£n/2, which means
that approximating the integral as ffooo T(k,)dk, =

[, exp (—wdk2/2k) dk, = +/2k/d is quite fine.
Substituted into equation [24] the final result is [11]

N e? 2W |2k
“hor Vd”
which has a square-root-in-k dependence, contrary to
equation and equation as shown by the solid
orange curve in figure

Note that the horizontal axis of figure
summarizing the %k dependence of the ballistic
conductance for a pristine graphene sheet, equation 23]
a sharp graphene p-n junction, equation and a
linearly smooth graphene p-n junction, equation
is E/hvp instead of k, because k is defined positive
in our discussions while F can be negative. All of the
three cases well agree with the numerical results (black
markers) based on quantum transport simulations, to
be briefly reviewed in the following section [2.5

It is also nice to illustrate how close experimental
graphene p-n junctions come to theoretical prediction
for a clean device with soft potential. Figure
shows a comparison of an actual measurement with
the theoretical prediction. The measured dependence
does indeed follow a square-root dependence G

G (26)

Vkr, proofing that the potential barrier is smooth
and varies in this example on a length scale of d =
1 pm. The comparison also reveals that there is an
additional contact resistance of order 2e2/h in series
to the junction resistance. Finally, the conductance
G does not approach zero at the Dirac point, as
there should be a cut-off which theory predicts to be
Gmin = 4€%/7h [9]. That the experimentally measured
minimal conductance is close to the ideal ballistic limit
illustrates the cleanliness of this device [70].

2.5. Quantum transport simulation for clean graphene

Quantum transport in the framework of Landauer-
Biittiker formalism [68] is an exceptionally useful and
powerful tool, especially for low-bias, low-temperature
transport in the clean limit. To focus on clean graphene
devices, let us summarize the formalism by considering
an exemplary two-terminal suspended graphene device.

2.5.1. Real-space Green’s function method. As shown
in figure [Pa] the system we are interested in is
composed of a scattering region described by a clean
Hamiltonian Hy and the attaching electrical contacts
described by X and X, i.e., the so-called lead self-
energies. To model and simulate electronic devices in
real space, the local orbitals of the atoms composing
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Figure 9: (a) Optical images (background and left) of exemplary suspended graphene devices. Lower right:
An SEM image of a two-terminal device made of a suspended graphene sample (described by a tight-binding
Hamiltonian Hy) attached to two contacts (described by 37 and ¥s) and tuned by a central gate at voltage V.
(marked on the figure) and a global backgate at voltage V}, which is not shown in (a) but sketched in (b). (b)
Schematics of the side view of the device shown in the SEM image of (a). Considering (¢4, hs) = (500, 600) nm
and V, = =20 V, (c) shows carrier density profiles n(z) of graphene at V, =0V (blue),2 V,--- ,10 V (red), and
their corresponding on-site energy profiles V(z) are shown in (d). The upper part of (¢) shows an example of
the electrostatic potential u(z, z) at (V, V) = (10, —20) V.

the lattice may be chosen as the basis to represent
Hy. Considering only the p, orbital of the carbon
atoms, the real-space tight-binding Hamiltonian can
be written as

Hy :th}Lcj +t Z czcj ,
(1,4)

()

(27)

where ¢! (¢;) creates (annihilates) an electron on site

i
i located at position r;, so that c;fcj stands for an

electron hopping from r; to r;, and Z@.’j) (Z«i,j»)

means that the sum runs over all nearest (second
nearest) neighboring site pairs fulfilling |r; — r;| = a
(|ri — rj| = V/3a); see figure [2a] for the definition of
a. Despite that equation [27] describes a finite-sized
graphene without translational invariance, the hopping
parameters t and ' are often assumed to be the same as
those for the energy bands introduced in section [2.1.1
where translational invariance is the basic requirement.

Apart from the clean part of the graphene
Hamiltonian, Hy, the on-site energy term appearing
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as a diagonal matrix,

U= ZV(I‘i)CICi ) (28)

takes into account electrons’ potential energy from all
different sources, such as electrical gating, chemical
doping, contact doping, disorder, atomic orbital
energy, and so on. In the clean limit, equation
mainly describes the electrical gating, which will be
explained in the following section [2.5.2

Together with the lead self-energies 3; and
Yo describing the electrical contacts which serve
as electron reservoirs, the effective Hamiltonian
describing the contact-graphene-contact system can be
written as

H(E)=Ho+U+%(E) +3(F) , (29)
which is a function of energy E because the lead
self-energies depend on FE. Commonly adopted
methods for calculating the lead self-energies include
eigenfunction expansion [68], eigendecomposition and
Schur decomposition [71], and recursive Green’s
function [72], but are beyond the scope of this review.
Once equation [29] is built, the retarded Green’s
function at energy F is by definition given by

Gr(E)=[E-H(E)] " . (30)
Since all terms in equation are Ny x Ny square
matrices, Ny being the total number of lattice sites,
the above equation [30] stands for a matrix inversion,
which is computationally heavy unless Ny is small. For
graphene, it is possible to rescale the lattice to reduce
Nj, to be explained in the following section[2.5.3] Note,
however, that even N, is not too large, inverting the
entire matrix [E — H(FE)] is not necessary, because not
all elements of Gr(F) are needed. Technical details
are crucial at this point but are also beyond the scope
of this review.

With the retarded Green’s function obtained,
together with the broadening matrices

T,(E) = —2Im3, (E) (31)

corresponding to the pth lead self-energy, the transmis-
sion function from lead ¢ to lead p at energy E can be
obtained:

Tpq(E) = Tr [T (E)GR(E)D(E)GA(E)]  (32)

where Ga(E) =
function matrix.

GE(E) is the advanced Green’s

2.5.2.  Realistic on-site energy. When tuning the
carrier density of graphene by electrical gating, what
does the gate do? To a simple picture, when a positive
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gate voltage is applied, negative charges are induced
on the surface of graphene, causing the raise of Fermi
level, and vice versa. The change of the Fermi level
can also be understood as the change of the entire
energy bands with the Fermi level fixed. This picture
is more useful when the carrier density is not uniform,
corresponding to a spatially varying energy band offset,
which is exactly the V(r) in equation

Without taking into account the correction due
to quantum capacitance [73] [74, [75] [76], the carrier
density profile of graphene is given by the following
linear superposition,

(33)

where C;(r) is the capacitance profile of the jth gate
which can be either analytically described by a proper
model function or numerically obtained by solving
the Poisson equation [76] using commercial software
such as CoMmsoOL [77] or finite-element-based partial
differential equation (PDE) solvers such as FENICS
in PYTHON [78] or PDEMODELER (PDETOOL in older
versions) of MATLAB [79].

To continue with the example of suspended
graphene, consider the scanning electron microscopy
(SEM) image of figure [9a] (lower right), whose side
view is schematically shown in figure [9b] The carrier
density of the graphene sample placed at z = 0 is
tuned by a central gate at voltage V. and a back
gate at voltage V;. Since the width of the graphene
sample W is sufficiently large and the geometry of
the metal contacts and gates does not depend on y,
we may consider the two-dimensional Laplace equation
V2u = 0 to solve for the electrostatic potential u(z, ),
subject to a properly assigned boundary conditions.
The suspension height hg is typically several hundreds
of nanometers and is roughly the smoothness of
gate capacitance profiles. This means that the
resulting carrier density and onsite energy profiles
are completely smoothed (exhibiting no plateaus)
whenever the gate length ¢, < hg, which is the case
in the example shown here.

An exemplary solution of wu(z,z) subject to
(Ve, Vo) = (10,—20) V is shown in the top panel of
figure considering ({4, hs) = (500,600) nm. From
the surface gradient of v at z = 0™, the corresponding
surface charge density (and hence the carrier density in
graphene) can be obtained [76]. Because the Laplace
equation is linear, it is more convenient to first obtain
the central gate capacitance, C.(z), by considering
(Ve, Vo) = (1,0) V, and back gate capacitance, Cp(z),
by considering (V.,V,) = (0,1) V. For arbitrary
gate voltages, the calculated C.(z) and Cy(x) allow
us to obtain the carrier density profile, n(z), using
equation When the correction due to quantum



CONTENTS

capacitance is considered, equation [33] for the carrier
density in graphene needs to be modified, but the
procedure remains the same [76].

The bottom panel of figure shows carrier
density profiles, without the quantum correction,
considering various V. and fixed V,, (values specified in
the caption of figure . Since the length scale of the
variation of n(x) is supposed to be much larger than
the atomic scale, it is legitimate to assume that the
energy-carrier relation equation is locally fulfilled.
Therefore, considering the local energy band offset
defined as

V(z) = —E(n(x)) = —sgn(n(z))hop/wln(x)],  (34)
which is the onsite energy term in equation
the global Fermi energy for the entire graphene
sample is expected to be fixed at zero. In short,
using equation in the above introduced quantum
transport, the transmission equation should be
evaluated at £ = 0.

2.5.3.  Scalable tight-binding model. From sec-
tion [2.5.1] we have seen that the matrix size of equa-
tion mainly depends on the number of atoms (or
the lattice sites) composing the lattice under consider-
ation. In the present spinless case of equation [27] with
only one p, orbital per atom considered, the Hy thus
represented is an Ng X Ny square matrix. Using the
unit cell area |a; x as| = v/3a2/2, it can be shown that
the number of carbon atoms is about 38 millions per
um?, which is the typical order of magnitude of the
sample area used in transport experiments. Dealing
with Ny x N, matrices with N, ~ 107 is not a sim-
ple task. When the spin degree of freedom or other
orbitals are taken into account, the size of Hy may be
further doubled, tripled, or even more.

For graphene, luckily the lattice spacing a and
the nearest-neighboring hopping ¢ appears in the low
energy dispersion equation [3] simply as a product; see
equation Therefore, by considering a honeycomb
lattice of lattice spacing @ = sya and nearest neighbor
hopping energy t = t/s¢, its low-energy dispersion
proportional to t@ = ta is guaranteed to be the
same as that of real graphene. This scaling approach
first introduced for spinless monolayer graphene in
reference [80] led to the possibility of simulating
micron-sized graphene samples [27, 69] [81] [82] B3], [84]
35, [86] 871, 88, 89, 90], 9T, 92, 93], [04], [95] [96, 97, [08], 9]
and therefore made quantum transport simulations for
ballistic graphene a very powerful tool. Moreover,
the approach is compatible with spin-orbit coupling
[I00] as applied in a recent work on spin-dependent
transport in graphene on WSey [I01], and can also
be applied to bilayer graphene as was remarked in
reference [80] and applied in reference [102] [99].
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2.5.4.  Periodic boundary hopping. Previously, in
section[2:3.2) we have mentioned that the angle-resolved
transmission can be numerically computed by the
tight-binding approach. This is exactly what we
have described in the above section [2.5.1] except that
equation for Hy needs to be modified, in a way to
allow periodic boundary hopping between upper and
lower edge sites. Such hopping terms arise from the
Bloch theorem because of the assumed translational
invariance along the lateral dimension. This means,
the periodic boundary hopping terms contain k,, such
that Hy = Hy(ky). See reference [62), [71], [103]
for details. Because of the k, dependence of the
Hy, the lead self-energies, the effective Hamiltonian
equation[29] retarded Green’s function equation 30} the
broadening matrices equation and the transmission
function equation@ all contain the k, dependence. In
terms of the incidence angle, § = arcsin(k,/k), the
numerically computed T'(k,) can be plotted as T'(¢) as
shown in figure [6]

In addition to the angle-resolved transmission,
the method of periodic boundary hopping is also
very useful for quasi-one-dimensional two-terminal
graphene device, such as the example of figure [Oa]
where W is sufficiently large. In such cases, the
onsite energy V' (z) is one-dimensional, and T'(k,) can
be numerically computed. Integrating over k, and
using equation [24] the conductance thus obtained
is consistent with the one computed using a finite-
width ribbon, but the computation is much lighter and
faster. In the recent work about gate-controlled one-
dimensional superlattice in graphene, the two kinds of
computations were explicitly compared [93], and the
results are hardly distinguishable.

In the literature, the first work applying this
method to reproduce the features of the experimentally
measured conductance was [I03], revisiting the
experiment [22] showing the phase shift of Fabry-
Pérot interference due to the Berry phase [25].
Subsequent applications include p-n junctions of
suspended graphene [23], multiple p-n junctions of
graphene on substrate [I04], p-n-p junctions of bilayer
graphene [105] [T02], and large-angle decoupled twisted
bilayer graphene [106, [O7].

3. Fabricating clean graphene devices

The observation of electron optical phenomena requires
high quality devices with ballistic transport where
electrons can travel large distances without scattering
processes. In 2DEGs buried below the surface
record high mobilities were achieved, which allowed
to perform electron optical experiments like magnetic
focussing [107, M08, M09, MI0]. The special Dirac
spectrum of graphene leads to protection against
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Carrier density

n

Fermi velocity

vp ~ 10% m/s

Wave vector

k = \/m|n|

Energy E = sign(n)hvp\/mn
Velocity v= %%71]3
Density of states D= N%EF
Cyclotron radius for a magnetic field B re =&
Cyclotron frequency we = er?TUFF

Magnetic length

g =/

Nth Landau level energy

En = sign(N)\/2elw2 NB

Filling factor

nh

V:eB

Sharp p-n junction transmission with incidence angle 6

T(0) = cos(9)?

Pristine ballistic graphene conductance (width W)

G =y,

™

Table 1: Main formulas summary for single layer graphene.

back-scattering events which promises large electron
mobilities. However, in the first transport experiments
rather low quality devices (at least compared to
2DEGs) have been realized with a mean free path on
the order of 100 nm and mobilities on the order of few
1000 cm?/Vs [1, 29]. It was soon realised that in these
devices the mobility was limited by the charge traps in
the SiO5 that was used as a gate dielectric on silicon
wafers [ITI] and by contamination of the graphene
surface mostly originating from the fabrication process.
Whereas the latter can be partially eliminated by
cleaning the graphene surface with forming gas (or
other gases) or by AFM cleaning [112] [113], for the
former, separation of the graphene flake from the
surface was required.

3.1. Suspended graphene

To achieve separation from the substrate the graphene
flakes were suspended above the SiOy wafer. This was
in the beginning done by etching away the SiOs with
buffered HF solution, followed by a critical point drying
step [T, [18]. First devices fabricated using this method
reported mobilities on the order of 200’000 cm?/Vs.
Later on the fabrication of top gates to suspended
devices was achieved [I08], which together with a
doped Si substrate allowed the realisation of double
gated high quality devices. Later, another method

was developed by Tombros et al. [114] and further
extended by Maurand et al. [I15], where instead of
etching away the SiO5 below graphene, the flakes were
transferred onto a sacrificial layer that was spin-coated
on top of the Si/SiOy wafer. This sacrificial layer
could be locally removed by electron beam lithography
and liftoff without the need for critical point drying,
and the contact material was not limited by the HF
etching. This method could also be extended with
top-gates, but was better suited for local-bottom gated
structures. The fabrication method and examples of
suspended devices are shown in figure [LOp-c.

The drawback of both methods was that after
fabrication the graphene flakes were covered by resist
residues and other contaminants, which had to be
removed at low-temperature by passing a large current
through the device (current annealing). This process
allowed the realization of ultra-high quality devices,
however led to a substantial decrease of fabrication
yield. For complicated devices with multiple contacts
and graphene flakes that are shaped to a certain form,
the yield became extremely low.

3.2. Graphene-hBN heterostructures

The next breakthrough came when Dean et al.
demonstrated that another 2D crystal, hexagonal
boron nitride (hBN), could be an ideal substrate for
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Figure 10: High mobility graphene devices.
of a sacrificial LOR polymer layer.
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(a) Suspended graphene devices realised by selective removal
(b)-(c) Graphene suspended devices with complicated structure were
demonstrated, with several contacts and bottom gates (b) or even with suspended topgates.

Images (a) and

(b) are from reference [I15], (c) from reference [63]. (d) Encapsulating graphene with h-BN lead to high mobility
devices and allowed a higher yield in fabrication [21]. Using these methods complicated gate structures and device
architectures can be realized. Image (e) is from reference [63], (f) is from C. Schoénenberger and coworkers.

graphene devices [I9]. First of all, hBN could be
exfoliated similarly to graphene, and due to the 2D
nature of the crystal an atomically smooth interface
could be achieved between graphene and hBN, as
demonstrated by TEM studies [I16]. Second, hBN is
an insulator with a large bandgap and can be used
as a gate dielectric. The high quality hBN crystals
separated the flakes from the SiO, substrates and
allowed the formation of high quality devices with
mobilities similar to the suspended ones. The hBN
crystals grown by T. Tanaguchi and K. Watanabe
led to a revolution in the field and now they are
central building blocks of 2D heterostructures. In
these heterostructures, where graphene was placed on
top of an hBN flake, the top surface was usually
cleaned with forming gas or AFM [19]. In a next
step it was also shown that the graphene devices
can be fully encapsulated between hBN flakes [21],
where the devices were made with the pick-up method
shown on figure [[0d. The method relies on van der
Waals interaction between 2d crystals and allows to
pick up flakes from a substrate using another one,
leading to the fabrication of not only hBN/Gr/hBN,
but more complex heterostructures. The atomically

clean interfaces were once again demonstrated by TEM
measurements [2I] and also signalled by the high-
quality transport experiments. Since the graphene
is encapsulated between hBN crystals prior to
fabrication, in order to fabricate electrical contacts,
an etching step was performed which exposed the
edge of the device and allowed the fabrication of 1D
edge contacts which worked surprisingly well, with
low contact resistance. This method was further
extended/altered by later works [117, [1I8| 119, 120]
and is the standard fabrication technique for most
research groups.

An important advancement in reaching high
quality devices was the introduction of graphite gate
electrodes. It was found that in this case potential
fluctuation from the substrates was further removed
in graphite/hBN/Gr/hBN /graphite devices [121), 122
[123]. The decrease of potential fluctuations was
confirmed in scanning SET measurements as discussed
in more detail e.g. in reference [124]. Finally, very
recently a novel transfer method based on silicon
cantilevers has been developed for the fabrication of
vdW heterostructures [125]. This allows polymer-
free transfer and a compatibility with UHV based
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fabrication for extremely air-sensitive materials. This
methods leads to ultra-clean devices and a very fast
fabrication procedure.

The advent of encapsulated devices gave a new
boost for electron optical experiments, since the
device architectures could become much more versatile
compared to suspended devices, as shown by examples

in figure [L0p-f.

3.3. Dewvice characterization

The quality of graphene devices is usually characterised
by field effect mobility.  This is extracted from
conductance vs. density plots, often by dividing or by
derivating the conductance by density. Other methods
rely on fitting the conductance vs. density dependence
with a formula taking into account contact resistance
as well (for two terminal measurements), short range
scattering, residual doping around the CNP and
a given form of density dependent mobility (often
constant). Some typical results are demonstrated on
figure The fitting procedure with the equation
o™l = p. + (pey/n2+n2)~1t for an encapsulated
device is shown in figure a), where a doping
independent mobility p is supposed originating from
scattering either on charged impurities or from strain
fluctuations. p. is the contact resistance and n, is
the residual doping. The field effect mobility can be
converted into a mean free path, which determines
the length-scale on which electron-optical experiments
can be performed. Though this depends on the
density, in high quality devices this can reach from
a few micrometres up to 20-30 micrometres by now
[24], (126}, [125).

For low energy experiments performed close to
the CNP, another quantity, the residual doping n, is
important. This quantifies the cut-off lowest density
that can be achieved in the device, below which an
inhomogenous doping profile forms with electron-hole
puddles. The lowest values that can be reached were
around below 10° cm~2 demonstrated in suspended
devices [127, [70, [128]. This is often extracted from
log-log conductance-density plots, see also figure
for an example. Finally device quality can also be
inferred from the magnetic field at which Shubnikov de
Haas (SdH) oscillations appear. This leads to another
lifetime, the quantum lifetime, which is susceptible to
small angle scattering as well. This contrasts with the
momentum scattering time, which is more sensitive
to backscattering events involving large momentum
changes. The SdH oscillations can appear in a few
tens of milliTeslas, and in figure a well-developed
quantum Hall plateau is observed already at 50mT.
The splitting of Landau level degeneracy also signifies
high quality devices, however the strength of the
electronic interactions also matter, which could also
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depend on the device architecture, e.g. on the distance
of screening gate electrodes [129, [130] [I3T] 106} 132].
In state-of-the art devices, one limiting factor for
the mobility could arise from strain fluctuations, but
for the best devices scattering on the edges of the
device limit the mobility [133, 134, 24]. Finally,
other time-scales that are usually longer than the
momentum scattering time are intervalley-scattering,
phase coherence or spin-relaxation time can also be
important for certain set of experiments.

4. Electron optics experimental toolbox

4.1. Magnetic focussing

Bend resistance. One of the first signatures of ballistic
transport on the micron-scale came from Hall crosses
in hBN encapsulated devices [107], as shown in
figure [I2h. In the experiment, a voltage is measured
between terminal 3 and 4, the current is injected
at contact 2, while contact 1 is grounded. The
voltage-current ratio yields the bend resistance. In
zero magnetic field a large negative resistance was
observed originating from straight trajectories from
contact 2 and 4. In perpendicular magnetic fields,
however the trajectories start to bend, as described in
section and electrons are guided towards contact
3 leading to a crossover to positive bend resistances.
These measurements confirmed ballistic transport up
to 3um. With the development of device quality
similar negative bend was observed but now on the
30 um length scale [24].

Focussing experiments. Similar physics arises in Hall-
bars in magnetic focusing experiments, as shown in
graphene for the first time by Taychatanapat et al
in reference [I08]. As shown on figure [12p, one
of the side electrodes of the Hall-bars are used
as electrons injectors, whereas on a neighbouring
electrode the increase of the electrochemical potential
is measured as a result of electron trajectories hitting
the electrode. In magnetic fields the electrons follow
circular trajectories, and if twice the cyclotron radius
matches the distance of the contacts, an increased
voltage is observed. The cyclotron radius given in
equation [I5] can be rewritten as

re = hk/eB = hy/nr/eB, (35)
therefore both magnetic field and the electron density
tunes the resonance condition. As a result these
focusing resonances show up as dispersing lines
in the measured voltage in gate-B-field maps, as
shown in figure [I2b for positive gate voltages and
magnetic fields. The focusing peaks also show up at
negative gate voltages (for holes), however for opposite
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Figure 11: Standard characterization of high mobility samples. (a) Conductivity versus carrier density
(with fitting procedure described in the text). (b) Conductivity versus carrier density in a log log plot shows
a saturation corresponding to a residual doping at charge neutrality of about 5 x 10%m~2 (c) Resistance
versus back-gate voltage at finite field showing quantum Hall plateau emerging at field as low as 50 mT which
demonstrates the high quality of the device. (a) and (b) are from reference [63], whereas panel (c) is from

reference [70].
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Figure 12: Ballistic electron propagation in high mobility devices. (a) Mayorov et.al. demonstrated in
reference [107] negative resistance vanishing with magnetic field in a non-local measurement, consistently with
a device size limited mean free path. (b) Selective focusing of electron trajectories with up to three specular
reflections on the sample edge was demonstrated soon after [108]. (c¢) The cyclotron orbits were directly imaged
in reference [I09] with a scanning gate microscope. (d) Lee and coworker were able to observe magnetic focusing
originating both from the usual graphene bands (main panel) as well as the magnetic focusing of the mini bands
originating from the moire potential between graphene and h-BN. The band structure modification is shown on

the left [TT0].
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magnetic fields compared to positive densities. This
is the result of opposite group velocity and hence
chirality in the electron and hole band for given
momentum. The dashed line shows the focusing
conditions based on equation which matches quite
well the measurements. Note that for the correct
peak positions the valley degeneracy has to be taken
into account. In the real experiments the electrons
are injected under an angular distribution, however
their majority will still focus to the same position
along caustics. The focusing trajectories have been
imaged using scanning gate microscopy [109, [135] [1306]
and an example is shown in figure [[2f, which nicely
demonstrates their tunability using magnetic fields and
gate voltage.

Higher order focussing. A focusing condition can also
be reached if the electrons bounce on the side of the
sample. These account for higher focusing peaks,
whenever 2r. x j = L, where j is an integer. The
visibility of higher order peaks depends on the sample
quality (mean-free path) and on the specularity of
the interface on which the trajectories are scattered.
A disordered edge leads to the randomization of
reflection angles and to the loss of visibility for higher
order focusing peaks. This has been very recently
investigated in BLG [137], where the edge was realised
by electrostatic gating opposite to etched single layer
devices, see in more detail figure [I8p in section [.4.1]
It was found that in this case the smoother edge
potential leads to a specular reflection demonstrated
by the high visibility of higher order focusing peaks.
We note here that the magnetic focusing has also been
applied in a special setting [I36], where the edge of the
graphene, on which the charge carriers bounce, was
replaced by a superconducting electrode. In this case
due to Andreev reflection, instead of electrons, holes
can reach the detector leading to a reversed sign for
the second focusing peak. In general, by investigation
of the temperature dependence of the focusing signal
(the weight of the focusing peak) it was found that
it cannot be explained by thermal broadening of the
injected electrons’ momenta. It was found from these
experiments that at low temperature electron-electron
interaction dominates the momentum scattering time
with T2 dependence.

Revealing the band structure. Finally, magnetic focus-
ing is a sensitive tool to probe modification of the band
structure and the Fermi surface. In a recent example
the splitting of the graphene Fermi surface was realized
by inducing spin-orbit interaction in graphene that is
placed on a WSe; substrate [I01I]. This led to a split-
ting of the Fermi surface and to signatures of split-
ting in the focusing peaks. Another example is coming
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from graphene/hBN structures, where hBN is aligned
with the graphene lattice which imposes a superlattice
on graphene and leads to strong modification of the
band structure, as shown in figure [I2d. As a result of
the band structure modification mini-bands with sec-
ondary CNPs appear. The focusing peak position will
be sensitive to the band structure and in this case sev-
eral transitions between electron and hole-like carri-
ers have been observed [110], as shown in figure [L2f.
These measurements therefore give an important tool
in the mapping of the band-structure modifications of
graphene heterostructures. Recently, another work in-
vestigated the case of twisted bilayer graphene where
similar transitions from electron to hole Fermi surfaces
have been found [139].

Focussing in p-n junctions. Chen et al. used a
transverse focusing setting through a p-n junction to
verify Snell’s-law both in the unipolar (n-n’) and the
bipolar (p-n) regime. This is shown in figure ,
where the doping on the left and right side of the
junction can be tuned using two separate gates.
These allow to generate a homogeneous doping with
circular trajectories (panel ¢, top cartoon) or distorted
trajectories by having different dopings (but with the
same carrier type) on the two sides (middle cartoon),
and even situations when the doping is opposite on
the two sides (bottom sketch). In this case, the
trajectories on the p-side bend in the opposite direction
due to the opposite group velocity (see section
or reference [65]), and the carriers are focused to
an opposite terminal leading to a sign change in the
voltage. The measurements are shown in panel b
for fixed doping on the left side, as a function of
right doping and magnetic field. For negative gate
voltages the focusing signal can be well fitted (see
dashed lines) by trajectories similar to the one shown
in panel b). Moreover, for positive gate voltages the
focusing through a p-n junction is observed. By tuning
the magnetic field and the gate voltage on the left side
the incidence angle of the carriers to the p-n junction
can be set. To achieve the focusing condition the
gate voltage on the right side is tuned, which also
determines the angle of the electrons refracted through
the junction. The refracted angle multiplied with the
momentum as a function of the same quantity on the
left side is plotted in figure [I3{, verifying Snell’s law
given in equation Finally, the intensity of the
focusing peaks can also be used to determine the angle
dependent transmission through a p-n junction, which
is shown in panel e. The measurements can be well
reproduced with a model of a graded p-n junction with
a width of 70 nm.
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Figure 13: Snell’s law across p-n junction in ballistic graphene device. (a) Schematic of the h-BN
encapsulated graphene device: a local graphite gate below half of the device is used to create a p-n junction,
the carrier density in the rest of the device is controlled by the Si backgate. (b) Non-local resistance shows

focusing peak similar to the one in figure

instead of being reflected on the sample edge as in figure [12]

the charge carriers are here deflected by the p-n junction. (c) schematic of electrons trajectories for different
carrier densities. (d) The estimated outgoing angle versus incident angle (dots) follow the Snell’s law (blue and
red lines). (f) Focusing peak signal versus incidence angle (dots), fitted by a simulation for a 70 nm wide p-n

junction. Adapted from reference [138].

4.2. Electron optical elements

4.2.1. Electron guiding. In section [2.3] we have seen
that the reflection and refraction properties of n-n’ and
p-n junctions depend on the densities, hence are gate
tunable. Using this with local gating different electron
optical devices can be engineered. The critical angle of
reflection is used to keep photons inside optical fibres
and a similar guiding experiment has been engineered
also in multiterminal suspended devices [81]. A false-
colored SEM image of the device is shown in figure
where the local gates below the graphene allow to
tune the electron density in the outer regions and
in the central channel, marked with dashed lines,
separately. This allows the formation of n-n’-n, n-p-n
junctions. The injectors and detectors of the channel
are the suspended narrow electrodes, whereas the large
electrodes are used to measure the loss. In panel
b, we show by red the density regions where optical
fiber guiding originating from total internal reflection is
expected. Moreover, as soon as a p-n junction is formed
(marked by the striped region), the guiding is expected
to become more effective due to the larger reflection

probability in smooth p-n junctions if the electrons
do not arrive close to perpendicular to the junction.
Finally for narrow channels, the appearance of mode-
by-mode filling is possible, as shown by the blue
regions. The experiment shown in panel ¢ shows strong
resemblance to the expectation with guiding efficiencies
close to 50%. The experiments were reproduced by
tight-binding based calculations and even signatures of
mode filling were observed. The guiding efficiency was
limited by electrons injected perpendicularly from the
side of the contact to the interface (see dashed arrow),
which could then easily reach the large electrodes
via Klein tunnelling. With proper shaping of the
devices and the versatility of hBN encapsulated device
architectures higher efficiencies could be reached now.

4.2.2. Tunable-beam splitters and reflectors. The
angle-dependent transmission was also used to make
a gate tunable beam-splitter [82]. The device
architecture is shown in figure [[4d. The electrons are
injected from electrode L, the current is measured on
the rest of the terminals and tilted gates are used to
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Figure 14: Electron-optics building blocs. a) False colored electron optical image of a suspended graphene
sheet where carrier density is tuned locally such to mimic the behavior of an optical fiber. b) Different regions
for device operation as function of channel and bulk carrier densities, marking regions of optical fiber guiding,
p-n guiding and mode filling. ¢) Measured transmission reproducing well the expectations shown in panel b).
d) False colored electron optical image of a suspended graphene devices with local gates splitting the graphene
sheet into two regions and effectively creating a electronic beam splitter between different contacts. e) Current
reflected from the beam splitter towards terminal 7' (normalised to the injected current) as a function of both
local carrier densities. The reflection efficiency increases as the p-n junction is formed. (f) corner reflector, g)
resistance of the corner reflector as a function of carrier densities in the B (horizontal axis) and A regions (vertical
axis). Images in (a), (b), (c) are adapted from reference [81] images in (d), (e) are adapted from reference [82],

images in (f) and (g) are adapted from reference [140]

realise a junction tilted with respect to the injected
current. The percentage of the current measured
at the top contact in the bipolar region (p-n, n-p)
clearly increases compared to the unipolar region (n-
n or p-p) case, as demonstrated in panel e. It was
found that most of the current is diverted to the top
contact when a p-n junction is formed. This study
was followed by studies on similar architectures, where
even higher tunability was demonstrated [141] [142].
The geometry shown on figure [I4f relies on similar
principles [140, [143]. In the corner-reflector devices the
source and the drain is connected by two gates: gate A
used for collimation and gate B used as the reflector.
The principle is similar to that of a prism, however here
the refractive index of the inner and outer region are
gate tunable. The measurements from reference [140]
are shown in panel f. The reflector works in the n-
p-n regime, for large densities within region B. In
this case, resistance larger than in the CNP region
can be reached. Limitations on the visibility come
from residual scattering mechanism (here phonons),
since electrons which don’t arrive perpendicularly to
the interface need to traverse several times within the
prism, which leads to enhanced scattering probability.

4.8. Collimation and lensing

4.3.1. Collimation wusing p-n junctions. For the
experiments above the collimation effect of a p-n
junctions was important. As shown in section [2.3.2
and demonstrated on figure [13] a smooth p-n junction
only transmits electrons under small incidence angles.
Smooth p-n junctions are easy to realize in suspended
samples, where the gate distance is large. However,
for several experiments, this has to be combined with
sharp p-n interfaces, which poses technical challenges.
An improved version of p/n collimation have been
suggested by Liu and coworkers in reference [85].
Specifically, by combining negative refraction and
Klein collimation at a parabolic p-n interface, highly
collimated, mnon-dispersive electron beams can be
engineered, which stay focused over scales of several
microns, as shown in figure [[Bh. Such ”beams of
electron waves” can be bent and steered by a magnetic
field without losing collimation, see figure This
provides a setup for observing high-resolution angle-
dependent Klein tunneling and high-fidelity transverse
magnetic focusing [146].

This setting is based on feeding charge carriers
through a point-like source (vertically) into the
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Figure 15: Electronic flow collimation. a) Electron collimation based on a pointlike source at the focal point
of a parabolic interface separating two regions with opposite charge carrier densities. Calculation shows small
scale and large scale current distributions. In the inset this current density analyzed for the white box area. The
beam is collimated on the scale of the electronic wavelength. Adapted from Ref. [85]. (b) Electron collimation
based on etching the graphene to specific shape reference [144]. (c) Pinhole configuration used to generate a

directional beam in reference [145].

system. Indeed, such sub-100nm point contacts have
already been experimentally realized in graphene [147].
However, the intensity of the created beams suffers
from the fact that only an angular segment of the
isotropically emitted wave is collimated. Enclosing the
point source by a cavity to collect such losses should,
in principle, allow for strongly enhancing the beam
intensity.

4.8.2.  Geometrical collimation. Other methods to
generate collimated beams are shown in panels b and ¢
of figure In panel b the geometrical shaping of the
devices is used to make narrow injector contacts [144].
This allows a well-defined injection angle to the central
region and the p-n junction that is realized at the
boundary of the yellow gate. In such architecture the
injector part has to be ballistic as well, which puts more
serious constrains on the device quality. Moreover, the
edge of the injector part of the devices often suffer
from edge roughness due to the etching procedure used
to define them, which leads to random scattering and
hence can randomize the outgoing electron trajectories
close to the injection point. A solution for this
problem is shown in figure [I5¢, where the side of the
injector contact is used to drain the electrons that
are not injected under a narrow angular distribution
[I45]. Here the injection is done from the bottom
of the injector-collimator element (shown in red), and
after the constriction the black contact can be used
to drain the uncollimated electrons. The viability
of this method was tested using magnetic focusing

experiments [T45].

4.8.3. The Veselago lens. A very peculiar negative
refraction property of p-n junction can also be used to
make a ”perfect lens”, called Veselago lens. In their
early work Cheinaov and coworkers have suggested

[10] that a flat p-n surface can be used to focus the
trajectories originating from a point like source to a
point like detector. This is shown in figure where
the trajectories originating from S source electrode
are refocused to D1 after two reflection through
the p-n junction. The experimental challenge lies
in the formation of point like sources [147] and
in the realization of sharp p-n interfaces. This is
important, since as described in section [2.3.2] for
smoother junctions only trajectories that are close
to perpendicular to the junction are transmitted.
The first signatures of the lensing was shown in
reference [144] in a geometry shown in figure[I6p. The
trajectories are injected through a constriction, which
similarly to the proposal are twice refracted through
a p-n junction. The SEM image of the device is
shown in panel c. The geometrical parameters of the
device, a and b determines the density ratio at which
the focusing to the drain ("OUT”) electrode should
happen. Weak signatures of this focusing effect were
observed in the measurements shown in figure [16{,
the position where a weak enhancement is observed is
marked by red arrows. The different curves correspond
to different doping in the green region of the device,
and for the position of the arrows the doping in the
yellow region is set to the focusing condition. Later
work have shown signatures of this lensing effect in
interference experiments [149].

4.4. Anisotropic Fermi surfaces

4.4.1.  Gate-defined electron guiding in ballistic bi-
layer graphene. Early designs of quantum nanostruc-
tures in mono- and bilayer graphene confined the
charge carriers by physically etching the graphene
sheet [I50] 1511 152]. This method allowed to observe
some quantum confinement effects in graphene, but in-
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Figure 16: Negative refraction and Veselago lensing. (a) Theoretical concept of a graphene based Veselago

lens using negative refraction [10].

(b) Experimental design with electron trajectories traced in red. (c) False

colored scanning electron microscope of the device. (d) Constant current is injected from top left contact and

the collected current at bottom left contact is measured. Background (taken at Vj, =

—9.5V) is substracted.

Red triangles indicate current enhancement. Image adapted from reference [144].

—_
L=

404 G:(2¢*/h 107%)

split gate

i ; ii%g channel

spht gate

Ferm1

Y (um)

Figure 17: Electron guiding and anisotropic propagation in bilayer graphene. (a) Device schematic for
electrostatic soft confinement and guiding in gapped bilayer graphene: Multiple gates locally modulate both the
gap and the charge carrier density such that, e.g., the Fermi energy is within the band gap underneath the split
gates, but in the conduction band in the centre, defining a 1D channel. (b) Collimated electron jets behind a
gate-defined channel in gapped bilayer graphene. Left: spatial structure of electron flow in the bilayer graphene
bulk on both sides of the channel measured by SGM. Right: the trigonally warped Fermi lines in bilayer graphene
are anisotropic in both K* valleys, entailing an anisotropic, valley dependent velocity distribution of the charge

carriers. Panel (

troducing hard wall boundaries by etching is intrinsi-
cally flawed. Edge disorder and, consequently, ran-
domly localised states along the sample edges are in-
evitable, leading to a loss of coherence and control of
the charge carriers’ degrees of freedom.

An alternative for confinement in bilayer 2D
materials uses electrostatic gating [47), [49] 48, [46]. In

a) © C. Schulz and A. Knothe CC BY 4.0, panel (b) adapted from reference [14§]

a bilayer lattice, an external electric field breaks the
inversion symmetry and opens a band gap. Then, in
the gapped device, e.g., two split gates may define
a channel: adjusting the potentials of the gates
tunes the Fermi energy into the conduction band
within the channel region but into the band gap
underneath the split gates, as shown in figure [T7h.
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This method of electrostatic confinement introduces
smoother confinement potentials and avoids edge-
induced device perturbations. Over the recent
years, such gate-defined soft electrostatic potentials
have developed into a formidable tool for electron
confinement, steering, and control in bilayer graphene.
Immense progress in sample quality and gating has
enabled the demonstration of electron confinement
and control in a series of gate-defined quantum nano-
structures, including quantum wires [153] 154} 148, 011
155, 156} 157, 137], quantum dots [158), 159, 160, 16T,
1621 [163], [164] 165 166l 167, 168, 169, 170, 171l 172
173], and electron interferometers [174), [I75] [176].

Due to the high quality of the gate-induced
electrostatic confinement and the hBN-encapsulated
bilayer graphene samples [24, [T10, 148, [139] charge
carriers in such confined structures often propagate
in a largely ballistic manner and can be guided and
controlled by virtue of the external gates.

4.4.2. Lowered rotational symmetry of the electronic
structure and anisotropic charge carrier dynamics.
The tunable band gap and the anisotropic, trigonally
warped low-energy dispersion are the key factors for
unusual ballistic electron optics in bilayer graphene
(BLG) different from the standard Dirac case.
The low-energy band-structure of BLG is given by
equation[f] The presence of v3 skew hopping parameter
breaks rotational symmetry and induces trigonal
warping, leading to triangularly deformed Fermi
surfaces with opposing orientation in the K+ valleys,
as can be seen in figure [I8b. Since an anisotropic
dispersion entails a corresponding anisotropy in the
charge carriers’ velocity distribution, v = %VkE, the
trigonally warped dispersion of the bilayer graphene
leads to directional and valley dependence of the
ballistic electronic transport.

Anisotropic ballistic charge carrier dynamics
in bilayer graphene has been observed directly in
scanning gate microscopy (SGM) experiments: In
reference [I48], they raster-scan the bilayer graphene
areas behind a gate-defined channel with an SGM tip
and measure the linear conductance between source
and drain as a function of the tip position. The
resulting conductance map in figure shows two
narrow jets emanating from a gate-defined bilayer
graphene channel predominantly at an angle of 60°
with respect to each other. These collimated jets at
this specific angle directly result from the reduced
symmetry of bilayer graphene’s trigonally warped
dispersion.  For charge carriers at a given Fermi
energy, the triangular Fermi line gives rise to three
distinct preferred directions per valley (normals to the
triangle’s flat legs). The electronic states emerging
from the channel populate these directional states

29

according to the distribution of the occupied channel
mode. As a result, there are two jets behind
the channel corresponding to one of the preferred
directions per valley. For recent additional evidence
for the anisotropic transport, see reference [I77]).

The charge carriers’ anisotropic velocity distri-
bution is an intrinsic material property of bilayer
graphene and its trigonally warped dispersion impacts
different aspects of ballistic propagation.

For one, the real-space anisotropy translates into
the Fresnel and Snell laws for diffraction and reflec-
tion at p/n-junctions in bilayer graphene. The dis-
cussion is similar to that of monolayer graphene laid
out in section but for bilayer graphene, the non-
isotropic Fermi lines and opening of a gap must be
taken into account [I78, [I79]. The unique interplay
between anisotropic scattering and anisotropic ballis-
tic propagation in bilayer graphene has prompted in-
vestigations into the potential for intraband electron
focusing and valley-selective electronic Veselago lenses
in bilayer graphene [I79]. These concepts allow for ma-
nipulating and controlling electron motion based on a
material’s properties and symmetries. Further research
has explored the motion of electrons in gate-defined bi-
layer graphene cavities, revealing unusual regular and
chaotic trajectory dynamics due to the anisotropies
and nonlinearities induced by the trigonally warped
Fermi lines [96], [I78]. We discuss electronic cavities
in detail in section

Moreover, the deformation of the Fermi lines in
bilayer graphene has consequences for the trajectories
of charge carriers when exposed to weak magnetic
fields.  Section H] and section describe how
the combined influence of the magnetic field and
the charge carrier density on the radius of circular
cyclotron orbits of circularly symmetric dispersions
leads to transport resonances in transverse magnetic
focusing experiments. Specifically, the deformation
of the Fermi lines and the corresponding cyclotron
orbits changes these caustics of transverse electron
focusing resonances. For example, in bilayer graphene,
the valley dependence and deformation of the Fermi
lines change the position and shape of these caustics
depending on the orientation of the device with respect
to the lattice, and hence the positions where the
charge carriers are focused and defocused as they
move through the material. = These deformations
have implications for how to steer and confine
bilayer graphene’s charge carriers in magnetotransport,
cf. figure from reference [I37]: Here, the authors
study magnetic focussing between gate-defined bilayer
graphene channels along different crystallographic
directions, demonstrating the effect of the non-
rotationally symmetric, trigonally warped cyclotron
orbits.
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Figure 18: Anisotropic magnetic trajectories in bilayer graphene. Due to the C'5 symmetry of the
trigonally warped Fermi lines, transverse electron focusing in bilayer graphene depends on the orientation of
emission and detection with respect to the lattice (a). (b) TEF resonances for two differently oriented devices.
(c) Simulated TEF signal for perfectly aligned (top) and 3° misaligned (bottom) quantum point contacts with
respect to bilayer graphene’s armchair crystallographic direction taking into account the trigonally warped and
valley dependent Fermi lines. Images adapted from reference [137].
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Figure 19: Magnetotransport in graphene/hBN superlattices depending on the Fermi line shape. (a)
Left: the band structure of a graphene/hBN moiré superlattice exhibits hexagonal (red) or circular (green) Fermi
lines at the K point of the mini-Brillouin zone depending on doping. Right: charge carrier beams from simulations
in the two different regimes show bending or no bending in a magnetic field depending on the possible directions
prescribed by the Fermi line symmetry. (b) Bending or no bending of the ballistic charge carrier trajectories
was evidenced in dispersive or nondispersive interference fringes in graphene/hBN Fabry-Pérot cavities adapted
from reference [92] (see section and section for a detailed discussion about interferences in Fabry-Pérot
cavities).

The discussion above about anisotropic electron
optics in ballistics bilayer graphene relies on the
anisotropic band structure and resulting velocity
distribution. This line of argumentation is not limited
to Bernal stacked bilayer graphene but applies to
any material with an anisotropic dispersion. Further
common examples of materials with anisotropic Fermi
lines include heterostructures of graphene and hBN,

twisted multilayer graphene structures, and graphene
with gate-defined superlattices. In the former instance,
the moiré superlattice potential induced by the
adjacent hBN leads to reconstructed spectra with
circular, trigonal, or hexagonal symmetry as a function
of doping, cf. figure on transport studies of
anomalous cyclotron motion in hBN/graphene/hBN)

[92] and figure [12] ([LL0]).
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In the left panel of figure [[Oh the computed
modified band structure is shown, which exhibits
strong electron-hole asymmetry. As visible in the left
inset, the Fermi surface can assume both isotropic or
hexagonal textures, depending on the energy regime.
This leads to distinctly different electron propagation
in magnetic field as shown for two different doping
situations: The lower sequence of panels shows for
the circular Fermi surface the magnetic-field dependent
propagation of bended electron waves along usual
cyclotron orbit segments. In contrast to that, at
an energy corresponding to the hexagonal Fermi
contour, electron waves stay straight and nearly B-
field unaffected at weaker fields and follow peculiar
hexagonal-shaped orbits for stronger fields [92].

In the case of graphitic multilayers, e.g., large
angle twisted bilayer graphene [I39] and twisted
monolayer—bilayer graphene [I80] show trigonally
distorted Fermi lines with various shapes at different
Fermi energies. Gate-defined superlattices allow
inducing diverse and variable potential modulations by
virtue of patterned gates [181], [182] 104 [183], entailing
Fermi surfaces of various shapes and symmetries
[184].  Furthermore, external perturbations such
as mechanical strain and shear can lower spatial
symmetries and induce anisotropies in a material’s
electronic dispersion [I85, [186]. Generally, the
discussion of anisotropic ballistic electron optics
highlights the complex nature of electron motion in
materials with anisotropic dispersions.

4.5. Directed emission from single- and bilayer
graphene cavities

4.5.1. Tailoring charge carrier emission from graphene
disks. There are different ways to tailor graphene-
based cavity regions. Complementary to gates, as
used in several of the charge carrier guiding and
steering experiments reviewed in section disk-
like cavities have been created by employing a scanning
tunneling setting, see figure 20h. Within such circular
p-n junctions, whispering-gallery type resonant states
that are confined through the ring-shaped p-n junction
have been probed experimentally [I87], see also
reference [98, [I88]. Such resonant states are
exceptionally long-lived and stable against decay
from the cavity due to Klein tunneling suppressing
the tunneling of waves with grazing incidence.
In figure 20p, such whispering-gallery modes are
depicted for different angular momenta, respectively.
Panels ¢) and d) display corresponding observed and
calculated dI/dV spectra of the whispering-gallery
resonant states. Subsequently, non-reciprocity of such
whispering gallery modes was theoretically predicted
[I89]. Earlier theoretical works had addressed the
influence of the classical charge carrier dynamics’
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Figure 20: Confining and probing electronic
states in single-layer graphene cavities. (a) Disk-
like microscopic cavity (hosting resonant states) based
on a circular p-n junction created by the combined
effect of an STM tip with voltage bias (Vb) and
a back-gate voltage (Vg) inducing a ring-type p-n
junction (see reference [I87]). It creates a sharp
boundary with associated Klein scattering of charge
carrier waves giving rise to confined whispering-gallery
resonant states. (b) Spatial profile of calculated
whispering-gallery modes. The effective confinement
is stronger for larger angular momentum with more
oblique wave incidence angles. The left (right)
panel shows modes with weak (strong) confinement,
respectively. (c) Differential tunneling conductance
(dI/dVb) as a function of Vb and Vg. The two
fans of interference features, marked WGM’ and
WGM”, originate from different WGM resonances.
(d) Corresponding calculations based on an effective
Dirac model. From reference [I87]. Reprinted with
permission from AAAS.

character (integrable versus chaotic) on transport
through open cavities [190, 191), 192 193, 194 195]
and spectra of closed cavities [196], 197, [198] of different
shapes. Recently, in reference [199] ballistic graphene
disks with spin-orbit interaction have been shown to
host chiral spin channels with the spin fully in-plane
and radially polarized upon tuning certain parameters.

The experimental realization of disk-like cavities
has opened up several intriguing directions, arising
from the fact that the physics of resonant states in
single-layer graphene cavities has much in common
with the field of mesoscopic optics: there, corre-
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Figure 21: (a) Directed charge carrier emission from tailored graphene-disks. Ray-wave correspondence
in single-layer graphene billiards of Limagon shape with effective refractive index n = —1. The light blue area
marks the cavity. Left: Ray simulations for point source injection marked as yellow dot. Right: Corresponding
wave simulations for the same source position as on the left. The color scale represents the electronic wave
function intensity. From reference [96]. (b) Effects of k-space anisotropy. Left: Local charge carrier density
for charges injected from a point-like source at the center of a bilayer graphene disk (diameter 1um), dashed line
marks the midfield region (r,, = 2um. Adapted from reference [96]. Right: Poincaré surface of section revealing
different types of trajectory dynamics in a gate-defined bilayer graphene electron cavity: chaotic dynamics (iii),
stable triangular, periodic orbits (ii, v), unstable periodic orbits along the diameter (iv), and whispering-gallery-

like orbits (i, vi). Images taken from reference [I7§].

sponding settings for electromagnetic radiation have
been devised for controlling highly directional emis-
sion from asymmetrically shaped, lasing cavities [200].
In these dielectric microcavities, total internal reflec-
tion partially confines light in whispering-gallery type
modes [201]. Breaking of the rotational symmetry was
found [200] 202] to lead to directional light emission
of decaying resonant states. These emission charac-
teristics were understood by invoking optical ray-wave
correspondence. The cavity geometry determines the
phase space structure of the rays inside the cavity in
the classical ray limit of optics. Controlling the ray
phase space structure by deforming the cavity allowed
one to steer directional emission and lasing in the op-
tics context.

Based on a corresponding ray-wave correspon-
dence approach for electrons in graphene, such meso-
scopic optics concepts have recently been transferred
to specific graphene cavity setups. These cavities are
defined by the p-n interface geometry that, in turn, is
determined by the gate voltage step from the inner to
the outer region, i.e., Vi, to Viu where Vi, is related to
Vout by an effective index n of refraction, Vi, = nVyus,
as explained in section [2.3.1] A back-gate voltage pro-
vides a tunable parameter to mimic different effective
refractive indices and, thereby, the corresponding Fres-
nel laws at the boundaries. The possibility of readily
realizing negative refractive indices in graphene adds
to the fascination of such studies.

In reference [203], the decay features of integrable
disk- and chaotic stadium-type cavities were studied
based on classical ray tracing. reference [96] explores
charge carrier trapping and (directed) emission for de-
formed leaky graphene micro-disks by considering the

complete ray-wave correspondence through classical
and quantum simulations. As depicted in figure 21,
the corresponding ray and wave results agree semi-
quantitatively. They both exhibit a pronounced di-
rected emission of electrons, leaving the cavity to the
right for that setting. More generally, one finds var-
ious emission characteristics depending on the posi-
tion of the source where charge carriers are fed into
the cavities. Furthermore, single-layer and double-
layer graphene cavities exhibit Klein- and anti-Klein
tunneling at the cavity boundary, respectively, lead-
ing to distinct differences concerning dwell times and
resulting emission profiles of the cavity states. More-
over, bilayer-based cavities offer the additional pos-
sibility to tune between Klein and anti-Klein tun-
neling by varying a respective asymmetry parame-
ter [59) [105] 204 102], 178, 205]. For bilayer graphene,
trapping of resonant states is more efficient, and the
emission characteristics depend less on the source po-
sition [96]. Recently, in reference [205] the trapping,
respectively transmission, of charge carriers in a single-
and bilayer graphene-based Corbino disk has been
studied and proposed as a signature of Klein and anti-
Klein tunneling, respectively.

4.5.2. Symmetry breaking through anisotropic Fermi
surfaces. The left panel of figure [21p shows a
typical resonant state in a bilayer-graphene-based disk.
Interestingly, despite the circular cavity geometry,
the wave simulation result displays distinct emission
directions, which can be understood as follows. While
the current is injected isotropically from the central
point source, the reflected waves (through anti-Klein
tunneling) return to the point injector, then acting
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as a scatterer.  However, the scattering is non-
isotropic because the underlying Fermi contour gets
non-circular for bilayer graphene at finite energies.
Hexagonal contributions to the Fermi contour lead
to six predominant velocity directions [92] that are
filtered out, cf section [£.4:2] figure They determine
the resonant state in figure 2Ip and thereby peculiar
directional charge carrier emission. In reference [I78)],
the emergence of non-standard fermion optics solely
due to anisotropic material characteristics, i.e., k-space
structure, has been examined in much more detail.
There it is shown how the anisotropic dispersion of
bilayer graphene induces chaotic and regular charge
carrier dynamics depending on the gate voltage,
despite the high symmetry of the circular cavity,
cf. the right panel of figure 2Ip.

These findings imply that directional emission can
be steered by breaking the cavity geometry’s symmetry
and through an anisotropic dispersion. Compared
to standard mesoscopic optics, graphene electron
optics provides an additional, fundamentally different
further mechanism for symmetry breaking and steering
electron beams. Besides, contrary to electromagnetic
optics, the charge carrier dynamics in graphene can be
further manipulated through external magnetic fields,
opening another angle of research. We discuss various
aspects of k-space anisotropies in ballistic graphene-
based systems in section [£.4:2]

5. Quantum-interference in graphene p-n
junctions

5.1. Quantum-interference in zero magnetic field

5.1.1. Fabry-Pérot interferometer based on p-
n junctions. In a ballistic 2D electron system, a
combination of semitransparent mirrors can result in
cavity resonances when wave propagation is coherent.
A very well-known example from optics is the Fabry-
Pérot interferometer. It consists of two parallel
semitransparent mirrors that are spaced by a distance
L.. An illustration is shown in figure 22h. An optical
plane wave incident from left under an angle © relative
to the normal of the mirrors enters the cavity with
transmission probability 7. At the other mirror the
wave is reflected with probability R = 1 — T. This
process can be continued to a finite number of partial
waves limited by temporal and spatial coherence. Once
summing up all transmitted partial waves ), 1; one
obtains for the transmitted intensity the well-known
relation 1/(1 + Ksin(vy/2)?), where K = 4R/T? is
proportional to the square of the so called Finesse
F=nVvR /T and ~ the propagation phase between two
successive emitted partial waves: v = 4wnL, cos(©)/A.
Here, n is the refractive index and A the wavelength.
The finesse can be seen as the quality factor, which
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in a practical optical etalon or narrow-band filter can
take large values up to F' ~ 400000. In analogy,
electrons in a ballistic 2D electron systems at the Fermi
energy are coherent if temperature is small enough and
phase randomization due, for example, gate noise can
be neglected. Since p-n junctions in graphene have
the properties of a semitransparent mirror, they can
serve as elements to realize an electronic Fabry-Pérot
interferometer. An example is sketched in figure
and a typical interference pattern as measured by the
two-terminal conductance G, which is proportional
to the total transmission probability, is shown in
figure 22k. Here, an encapsulated graphene device is
sketched that consists of three gateable regions: the
central inner one and two outer regions that are gated
by the back gate BG, while an additional top gate TG
is used for the inner region. Here, we can realize a n-p-
n, p-n-p or a general n-n’-n device. Let us assume that
we gate the device into the p-n-p regime as indicated
by the energy diagram. The measured interference
pattern in G is shown as a function of carrier density
in the middle section n;,. The carrier density in the
inner n-region is increased starting from the CNP at
Nin = 0 to 4-10'® m~—2. The conductance increases
with carrier density as expected, but on top of this
general trend conductance oscillations are seen. The
visibility is of order 10%. This is very different to
optical cavities where the visibility is ~ 100%. This
shows that the transmission probability of the mirrors
in graphene, averaged over all angles is surprisingly
large. This is due to Klein tunneling which leads
to a large transmission at normal incidence. If we
would only consider waves travelling normal to the
p-n junctions, the visibility would disappear. It is
important to remember that the low wvisibility in
graphene interferometers based on p-n junctions as
semitransparent mirrors is not caused by limitations
in coherence but is intrinsic and caused by Klein
tunneling [25].

The bandstructure of graphene at the tight-
binding level is rather simple. However, combining
all electrodes and contacts with graphene is not
straightforward to model, but it can be performed
using the scaling approach introduced in detail in
section 2.5:3] Figure [22]shows a comparison between a
measurement (panel d) and the respective parameter-
free simulation (panel e). The correspondence between
the two is remarkable, even detailed features are
reproduced. Note, to enhance the features, the
derivative of the conductance versus the back-gate
voltage is plotted here. There are four regions, clearly
separated by two pronounced lines. The vertical line
at Vg = 0 corresponds to the CNP in the outer two
regions. The line with the negative slope corresponds
respectively to the CNP of the middle region. This
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Figure 22: FP oscillations in p-n-p or n-p-n cavities. (a) Schematics of a Fabry-Pérot (FP) setup with two
planar mirrors separated by the distance L. The mirrors have a fixed transparency of ¢. In the lower part, the
bandstructure is shown for such a three-section graphene device in a p-n-p gate configuration. (b) Cross section
of the encapsulated graphene device with the two outer sections controlled by the global back gate (BG) and
the middle one controlled by the local top gate (TG). In (¢) the measured conductance G(n) as a function of
carrier density n is shown for a typical device. The conductance modulation corresponds to ~ 10%. (d,e) The
derivative d/dVpq of the two-terminal conductance is shown as a function of back-gate and top-gate voltages.
The left graph (d) is the experiment and the right one (e) the simulation. (f) G as a function of normalized
densities in the outer, noyut, and inner region, n;,. On the right side (g) three cuts along different directions (red,
green, blue) are shown. The modulation is clearly largest along the blue cut, which is the directions along which
only the carrier density of the inner region is changed. (a-e) are adapted from [63], the calculation in (e) was
performed by Ming-Hau Liu and (f,g) are adapted from [206].

line has a finite slope because n;, is tuned by both
gate voltages. Of the four quadrants, the top left
corresponds to the gating situation p-n-p, the top right
to n-n’-n, bottom right to n-p-n, and bottom left to p-
p-p. We see Fabry-Pérot (FP) interference effects in
all four quadrants, though they are the weakest in the
n-n’-n case. In contrast, they are most pronounced
in the bipolar regions. Here, the main contribution
originates form the expected FP resonances formed
in the inner region. For the unipolar situations, the
electron waves propagate all the way from the left
source to the right drain contacts, where reflections can

happen, too. That the oscillations are fainter in the n-
n’-n case as compared to the p-p’-p case suggests that
the contacts are n-doped. In this case, there are also
p-n junctions present at the contacts enhancing the
reflection probability. It is instructive to inspect the
interference pattern even further. A zoomed-in graph
is shown in figure R2f, now plotted as a function of
normalized coordinates, n;, and ngut. The modulation
in G that one experiences in a cut along the blue line
corresponds to the proper FP oscillations of the inner
cavity (see panel g for the conductance traces along
these lines). The oscillation along the green cut shows



CONTENTS

oscillations that are due to FP oscillations generated in
the left and right outer regions separately. And finally,
the red cut corresponds to unipolar gating with the
largest cavity size. The visibility is the weakest in the
red cut, intermediate for the green one, and largest for
the blue cut.

FP resonances have become the key signature for
claiming ballistic transport in all kinds of graphene
devices [25] B0, 207, 208, 23, 209, 105, 210, [0,
211, 212, 213, 206, 214, 215, 216, b5 which is
only qualitatively correct as detailed below. FP
resonances not only appear in the linear-response
conductance, but also when superconductors are
involved, for example in the critical current of
graphene-based Josephson junctions [210, 212, 214
215] and in Andreev reflection in normal metal-
graphene-superconductor devices [216]. They would
also show up in thermoelectrical properties [207, 217]
and higher moments in charge transfer, for example
in noise properties. FP interferences go beyond
monolayer graphene. They have been observed in
bilayer [105] and trilayer graphene [208]. Additionally,
in graphene superlattices the secondary Dirac points
can give rise to additional (quasi-)bipolar barriers,
yielding more complex interference patterns [206], [92]
218.

While the observation of FP interferences is widely
used as evidence for ballistic transport, based on
the bare observation one should not claim that the
scattering mean-free path is larger than the sample
size: lmg, > L. Even if there is appreciable disorder,
e.g. close to sample edges, there is still a distribution in
scattering so that there might still be enough electron
trajectories that remain ballistic in the interior of the
sample. A detailed study would require modelling the
visibility of the interference pattern taking also finite
temperature into account [219]. As mentioned before,
p-n junctions are never abrupt, and they are rather
smooth in high-quality graphene devices which can be
operated at lower carrier concentrations for which Ag is
large. To assess the effective width of the p-n junction
barriers, it is helpful to deduce the effective cavity
length L. from the experiment. It can be estimated
if we assume hard wall potentials bounding the cavity.
For waves travelling normal to the cavity mirrors,
constructive interference occurs if the path difference
between the adjacent partial waves is a multiple of \p.
This leads to the condition 2L. = jAr, where j is

an integer. Since the Fermi wavelength Arp depends
on the carrier density as kp = 2n/Ap = /7n, we

obtain for the j-th constructive interference maximum
the condition L.\/n; = jv/m. In the experiment we
can note down the carrier density for two adjacent
conductance maxima, n;4+1 and nj, to obtain for
the effective cavity length L. the equation L.; =
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V7 /(\/mj11— /). This length depends on the index
j. In practice it should be a constant if the barrier were
indeed hard wall potentials. However, it strongly varies
in graphene devices. In a p-n-p graphene cavity, the
extracted L. ; strongly depends both on the inner and
outer carrier density. L. expands (shrinks) if the inner
carrier density is increased (decreased), and vice versa,
L. shrinks (expands) if the outer carrier density is
increased (decreased). The change in cavity length can
be large and can account for a ~ 100% change [63], 206].
Until today, Fabry-Pérot interference effects were only
studied in the low bias regime, where the oscillations
display a checkerboard pattern in conductance on
bias-gate maps. It would be interesting to explore
interference effects also in the non-linear transport
regime, which is a topic of increasing interest [220].
The temperature dependence of FP resonances has
been studied in detail in reference [219].

5.2. Non-zero magnetic field (low field regime)

5.2.1. Different magnetic-field regimes. In the fol-
lowing, we introduce the four different magnetic field
regimes for p-n junctions, depicted in figure 23] We
assume phase-coherent ballistic transport and consider
a single p-n junction in the center of a two-terminal
graphene device. Since there are two cavities, Fabry-
Pérot resonances may appear on both sides of the p-n
junction, provided there is enough specular scatter-
ing of electron waves at the contacts. We have al-
ready mentioned that contact doping is a general phe-
nomenon in graphene devices. It can be n or p-type
depending on the contact material and fabrication pro-
cesses involved. It is a parameter that is still today not
very well understood. Let us further assume that the
size of the sample is much larger than the Fermi wave-
length A\rp and that the graphene edge is ideal with a
large probability for specular reflection. In this case,
we can consider electron propagation in the form of
wave packets that follow semiclassical electron-optical
trajectories. A magnetic field B applied perpendicular
to the graphene plane causes a Lorentz force to act on
the electrons which consequently are deflected. If the
deflection measured at an angle is much smaller than
one, we are in low field limit which is indicated in fig-
ure[23h. Here, The Fabry-Pérot condition for construc-
tive interference is only slightly modified. But there
is an interesting effect in the acquired phase which
has been used as evidence for Klein tunneling [22]. It
will be discussed further below. The electrons in a
homogeneous magnetic field will follow cyclotron mo-
tion, as detailed in section [2.2.1 The cyclotron ra-
dius, r. shrinks with increasing magnetic field. If r,.
is of order sample size (length or width), the correc-
tions to the conventional Fabry-Pérot resonance are
becoming large. New bound states can form, so called
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Figure 23: Different field regimes. This schematic emphasizes on the four different magnetic-field regimes.
In the Fabry-Pérot regime (a) the straight classical electron trajectories are only slightly bent, while for larger
fields (b) two-dimensional cavity bound states, also known as scar states, can form. If the magnetic field is as
large that the cyclotron orbit is smaller than the sample dimension both in width and length, skipping orbits are
formed (c). These orbits are chiral, meaning that there is a unidirectional propagation determined by the sign
of magnetic field and the sign of the charge carriers (electron or holes) along each edge. At a p-n junction, and
for a constant magnetic field, snake states lead to a current flow that follows the p-n junction, crossing one side
of the sample to the other. If the field is even higher (d), one enters the quantum Hall regime where skipping
orbits become one-dimensional edge channels. Image taken from [27].

scar-states [22I]. A very symmetric scar-state is indi-
cated as an example in figure 23p. Scar states can be
much more complex having intersecting electron tra-
jectories, for example. If r. is smaller than the sam-
ple size, full cyclotron orbits fit into the two cavities.
Now, so-called skipping orbits are formed along the
edges of the device as seen in figure 23g. They lead
to charge transport along the edges in a directional
manner determined by both the sign of the magnetic
field and the carrier type. The cyclic motion is oppo-
site in a p-type materials as compared to an n-type
one, as discussed in section If we follow the cyclic
motion along the edges, we see that propagation can
be pinned to a p-n junction, due to the opposite chi-
rality on opposite sides of the junctions. The charge
motion now follows the partial cyclotron orbits along
the p-n junction. This propagating state is known
as snake-state [222] [223] 224], 27, 211] 87, 225, [226].
This is a very peculiar addition to charge transport
as it connects the two edges of the graphene device.
Snake-states were proposed already before graphene
for 2D electron systems realized in semiconducting
heterostructures [227, [228] [229] 230]. Since this elec-
tron gas is unipolar (electrons), one requires a mag-
netic field reversal in the two areas to obtain a snake
state. This is much more difficult to realize. Hence,
the ambipolar nature of graphene has given us a
neat playground to study this special kind of elec-
tron state [27, 2T1]. If the magnetic field is increased
further, the skipping orbits evolve into quantum Hall
edge states [231] 232] 233, 234] 235] [88]. To under-
stand when and how one enters the quantum regime
it is instructive to look at the cyclotron frequency
w. = eBup /kp. To reach the quantum Hall regime, w,.
times the scattering time in the bulk should be larger

than one. This ensures that there are full cycles that
need to be quantized along the usual Sommerfeld-Bohr
condition. Additionally, fiw. should be larger than the
thermal energy. There is an additional length param-
eter, known as the magnetic length [p which follows
from the Landau quantization: lg = y/h/eB. Now,
we can formulate the two conditions required to re-
main in the regime where semiclassical electron orbits
can be considered: Ig > Ar and r. > Ap. To remain
in the semiclassical regime, the magnetic field cannot
be too large. What is very interesting and peculiar is
the dependence on electron density. The cyclotron ra-
dius shrinks with decreasing density. Hence, the closer
one approaches the Dirac point (zero density), the less
trustable is the assumption of semiclassical transport.
If one crosses from an n-type to a p-type region, the
semiclassical approach must break down in the center
of the junction. It is therefore clear that a semiclassical
approach to snake states can only deliver qualitative re-
sults and that a proper quantum treatment is required
to make quantitative predictions.

Another interesting relation is given by (I /\r)? =
ro/Ar = v/4mw, where v denotes the filling factor given
by v = nh/eB. Semiclassical transport, as discussed in
the following two sections, requires large filling factors.
To have an idea regarding absolute values, examples
for typical graphene densities at a still low magnetic
field of 0.1 T are given in table

5.2.2. Correction to Fabry-Pérot oscillations for the
lowest magnetic fields. For low magnetic fields the
classical electron-optical trajectories bend very little.
It is important to recall how the FP signal appears
in a graphene p-n-p device without a magnetic field.
Due to Klein tunneling, there are no contributions
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Vy (V) | n(em™2) Ar re (at 0.1 T) | Ip (at 0.1 T) | v (at 0.1 T)
0.01 108 3 pm 12 nm 200 nm 0.04
0.1 10° 1 pm 40 nm 200 nm 0.4
1.0 1010 330 nm 120 nm 200 nm 4.0
10 10t 100 nm 400 nm 200 nm 40

Table 2: This table illustrates the dependence of the Fermi wavelength Ar and cyclotron radius 7. at a relatively
weak magnetic field of 0.1 T on the gate voltage V, or the respective carrier-density n. The first two rows
show cases where a classical description is not valid, as the filling factor v drops below one. It is important to
rationalize that while passing across a p-n junction the carrier-density must change sign. Hence, there is a region
in the center of the p-n junction where a classical description in terms of electron trajectories can only provide
an approximation.

Figure 24: Low and intermediate field regime with 7-shift and scar states. (a) schematically shows
classical electron trajectories for a FP arrangement with two mirrors m; and msq at position z; and x5 in (i)
when the two scattering angles have opposite or (iii) the same sign. The contribution from the symmetric loop,
where the angles have the same sign, dominates for larger fields. This change in sign gives rise to a m-shift in
the interference pattern. (b,c) Experimental data of the m-shift adapted from Young and Kim [22]. The shift
appears at around 0.5 T. (d) Similar experimental data obtained with an encapsulated graphene device, taken
from reference [63]. Here, the shift already appears at a much lower field of ~ 20 mT. (e) shows another low-field
interference pattern obtained from an ultraclean suspended graphene device, taken from reference [70]. The fine
regular pattern, which is emphasized in yellow on the negative field side, is caused by scar states. Measurement
(f) and a simulation (g) for interference in a single p-n junction as a function of magnetic field and gate axis
taken along the bipolar direction. What is emphasized here, is the border between the low field and higher-field
regime determined by the cavity size L and the cyclotron radius .. The upwards dispersing curves emphasized
in light blue belong to the small angle FP interferences. The additional interference pattern within the low field
region is due to cavity states (scar states) [70].

to the interference from trajectories that propagate
normal to the two mirrors. These trajectories have
angles ©; = Oy = 0. Only trajectories with a finite
angle add to the interference. Since the reflection
amplitude at each mirror drops fast with angle, due
to the typical soft potential steps in realistic devices,

the main contribution to the interference is due to
electron trajectories with finite but small angles [22]. A
scattering situation with finite angle in zero magnetic
field is shown in figure 24h. The two angles at the
two mirrors have opposite sign, 81 = —05 in (i).
As pointed out by Shytov et al. [25] the reflection
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amplitude of the mirrors, r12(0), must be an odd
function, since 71 2 goes through zero when © changes
sign. This sign change is thus an additional feature
of Klein tunneling. It has measurable consequences
when a magnetic field bends the electron trajectories.
There are bent trajectories of two kinds possible: (ii)
one for which the two angles remain of opposite sign,
and one kind for which the two angles have the same
sign. In the former, and thus for small magnetic fields,
a phase shift of 7 adds to the interference contribution
due to the product ry - ro acquiring a minus sign. With
increasing magnetic field, the symmetric trajectories
that enclose the origin start to dominate and the =7
shift disappears. Hence, it has been proposed that
a hallmark of Klein tunneling would be a m-shift of
the FP oscillation pattern when a magnetic field is
added [25]. This has indeed been observed, first by
Young and Kim [22]. The magnetic field scale for this
transition is determined by the inverse of the cavity
area given by the length of the cavity times its width.

Figure 24p shows the first experimental evidence
for the m-shift due to Klein tunneling [22]. One can
see that the interference fringes shift a bit faster with
magnetic field around a field value of 0.5 T. The
additional five cross-sections in (c) make this effect a
bit clearer. Due to the generally observed dispersion
of the interference fringes with magnetic field the n-
shift is not as evident as one would like to have it.
In higher mobility samples, the shift can show up
in a more pronounced manner. This is illustrated
with figure 240 where the cross-over already appears
at around 25 mT [63]. This result was obtained in
an encapsulated graphene device with a much longer
cavity length compared to the previous mentioned
example. Figure [24¢ shows FP resonances measured
in a suspended ultraclean graphene device in a larger
parameter range [70]. For magnetic fields = 15 mT
further oscillations appear. They are highlighted
with yellow lines on the negative magnetic field side.
These resonances are so-called scar-states. They were
discovered in studies of bound states of quasi-classical
trajectories of electrons in a two-dimensional electron
gas with stadium boundaries [236]. Unlike the FP
resonances, which can be seen as one-dimensional
bound states, scar states are cavity states that include
scattering at the edges of the sample. Additionally,
a measurement and a simulation of conductance
oscillations in a graphene device with a single p-
n junction is reproduced in figure 24f,g. Here the
boundary between the “low-field” regime and the
“large-field” regime is emphasized. The boundary
is determined by the condition r. = L, where L is
the cavity size and r. the cyclotron radius. Outside
this boundary, states with a parabolic-like dispersion
are seen. These are due to skipping orbits and will
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be discussed in the next chapter. The resonances
emphasized in blue are FP resonances where the typical
m-shift is evident too. In addition, one can clearly see
many more interference features in the low-field regime
caused to two-dimensional cavity states. A remarkable
good agreement between simulation and experiment is

found [70].

5.2.3. Skipping orbits and snake states at intermediate
to high magnetic fields. In the intermediate to high
magnetic-field regime, the cyclotron radius r, is smaller
than the length and width of the cavity: 7. <
L,W. In agreement with figure 23k we assume here
a graphene device with a single p-n junction in the
middle. The p-doped region is on the left side and
has a hole-carrier density of piege > 0. In analogy,
the n-doped region is on the right side with electron
carrier density of nyght = Plest- We assume first,
that the carrier-density jumps abruptly at the p-n
junction located at coordinate z = 0 (the x-axis points
along the sample direction from source to drain and
the y-axis is transverse along the p-n junction). In
the classical electron optical picture and for a global
constant perpendicular magnetic field B, the carrier
trajectory would alternate between the p and n-side
with skipping orbits being half circles with opposite
chirality. This situation is illustrated in figure [25g.
The picture also suggest why one should observe
conductance oscillations due to these so-called snake-
states [237, 238 239]. If the last half-cycle ends
on the left side, the charge is reflected back to the
source contact on the left. In contrast, if it ends
on the right side, it will be transmitted to the drain
contact on the right. Hence, the conductance should
oscillate with a period given by 4r., if we assume that
Dleft = Nright = 7 > 0. The conductance modulation
dG can be written to be proportional to cos(mW/2r.),
leading to conductance minima and maxima whenever
W is an even multiple of r.. Since r. is proportional
to y/n/B, lines of constant phase in the n versus
B plane follow a parabolic dependence: n o< B2
This is sketched in figure 25b. In the experiment
we expect the conductance modulation to follow the
colored curves. The dashed red line denotes the
condition Ip = r., with {5 = y/h/eB is the magnetic
length. In the shaded region, where lg > 7., the quasi-
classical description must break down. In this regime of
large magnetic field and/or small carrier concentration,
Landau quantization needs to be considered.

Figure shows an experimental result [70].
Note, the gate voltage V, controls both the carrier
density on the p- and n-side with an equal magnitude.
The stronger intensity modulation which starts with a
spacing in magnetic field of ~ 0.5 T, which then seems
to decrease, is thought to be due to snake-states [21T],
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Figure 25: Intermediate to high-field regime with quasi-classical skipping and snake-state orbits. (a)
Ilustration of snake-states that propagate along p-n junctions. If we assume a common starting point (crosses)
at the bottom, the trajectory may either end up on the left or right side, depending on the ratio between the
width W and the cyclotron radius r.. This results in conductance oscillations. Lines for a fixed ratio W/r. are
parabolic in a density n versus magnetic field B map, as seen in (b). For a constant density, neighboring peaks
in G(B) are expected to be equidistantly spaced (red dots). (c,d) show an experimental result obtained in an
h-BN encapsulated graphene p-n device. The snake-state oscillation is emphasized by the red arrows and red
points. It is found that the peaks are not equidistantly spaced. This is caused by a distortion of the orbits due to
the gradual density change at the p-n junction, sketched in (f), see text for further explanations. (e) shows the
oscillation pattern in a gate-gate map at constant magnetic field. The peaks and dips follow a hyperbolic-like
pattern (inset). Finally, (g) and (f) show numerical simulations of p-n junctions for two different magnetic fields.
Plotted in color is the current density along the horizontal axis. If one follows the pattern along the zero-density
line (dashed), one can see that there is a periodic sign change consistent with the notion of snake-states. In
addition to the snake-state, one can see other bound states residing on the left side. These simulations were
performed by Ming-Hau Liu, see [70]. Note, there are further equidistant oscillations (orange lines) seen in (c).
They are of Aharonov-Bohm type and are addresses in further chapters.

27]. The previous reasoning for the snake-state transmission probability is maximal due to the Klein

oscillation predicts a constant period § B in magnetic
field at constant carrier density. This is not what is
observed, as shown in panel d. Clearly, if we consider a
horizontal cut at constant density, the spacing narrows
with increasing magnetic field. In the data, there
is another set of faster but weaker oscillations seen
superimposed. This oscillation pattern is to a good
approximation equidistant in magnetic field. It likely
originates from Aharonov-Bohm oscillations due to
edge-states forming along the p-n junctions at small
densities [135, [88]. This physics will be covered in
section [6.21

One could also think that other quasi-classical
electron trajectories could contribute to the current.
For example, trajectories crossing the p-n junction not
at normal incidence, but with a shallower or larger
angle. However, one expects that these contribute less
to the total conductance. The main contribution is
due to trajectories that cross the interface at (or close
to) normal incidence, since for those trajectories the

effect, while for all others the transmission probability
is strongly suppressed. This argument does not really
hold for a sharp step in carrier density, but only for
a smooth potential changes. In real devices, however,
the step varies smoothly over a length of > 20 nm.

It is not straightforward to calculate the shape
of the snake-state electron trajectory in a self-
consistent manner, accounting accurately for the
gradual potential change. The semicircles deform
by elongating along the y-direction as indicated in
figure25f. However, it is possible to evaluate the length
R, assuming a linear density change between the p and
the n side [88]. One obtains:

Ry _ (T‘—h) ? |pleft - nright| .

eB 2d (36)

Here, d is the width over which the density changes
from the p to the n-side. Interestingly, the skipping
orbit length at fixed magnetic field is determined by
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the local electric field. Figure shows measurements
at fixed magnetic field of 0.12 T as a function of
the two gate voltages Vierg and Vijgne that control
the densities in the two regions. The inset shows
lines of constant electric field F, obtained numerically.
The oscillation pattern appears in the gate-gate map
in the form of hyperbola. The modified equation
for the skipping-orbit length preserves the relation
n(B) oc B? that is followed by intensity maxima
and minima as introduced with figure 25b. However,
it does change the periodicity in magnetic field for
constant densities. One does not expect a constant
AB anymore, but rather AB o« 1/B. This fits much
better to the experimental observation in figure 25¢,d
where it is evident that for a horizontal cut the spacing
between adjacent conductance maxima decreases with
increasing magnetic field. This observation can be
taken as a confirmation that the potential drops
gradually at the p-n junction.

Figure also shows 2D-simulations of current
patterns. Here, the current component in z-direction
is shown for two different scenarios: a small and a
large field. If we concentrate on the region of the p-
n junction, with the zero-density line indicated by a
dashed line, we can recognize the alternating skipping
pattern. Following along the dashed line from the
bottom to the top, the current alternates. It is first
blue (positive), then changes to red (negative), and so
forth. Hence, the picture of commensurate snake orbits
determining the conductance is appealing. However,
it assumes a fixed starting point. This starting point
is indicated in figure [25h with a cross. One might
think that the conductance oscillation could average
out if one varies the starting point. There has been
simulation of this problem in which the sum of all
trajectories was considered. Interestingly, caustics can
show up causing repeated refocusing which in a similar
manner can cause the conductance modulation [237]
TT0]. If we look at the left half of the sample in the
simulations, we see two things: (i) a fast oscillation
pattern which is due to scar states, but (ii) we also see
a peculiar blue region close to the bottom sample edge
and an opposite red one close to the upper sample edge.
These regions can be interpreted as the starting points
of the quasi-classical picture with snake trajectories.
The charge current is fed into the sample along the
bottom edge with j, > 0 (blue region). The current
stream then follows the snake orbit. The part that is
reflected ends on the top edge with j, < 0 (red region).
The part that is transmitted to the right can nicely
been seen as skipping orbits along the upper edge in
the right half of the sample. What exactly determines
these “starting points” is at present not known.

Since graphene is a zero-bandgap semimetal, the
Fermi energy can continuously by moved from the
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valence band into the conductance band. Hence,
the discovery of graphene had made it possible to
study snake state physics in quite some detail for
the first time [27, 21I].  Other geometries that
were theoretically studied are cylindrical magnetic
field patterns, which can be realized in graphene
with a cylindrical gate. Such a gate can confine
electrons through boundary snake-states. Many more
electron-optical devices can be conceived based on
confinement geometries defined by bipolar junctions.
Further examples are discussed in the section and
section 3]

6. Edge state interferometers

In the previous section we saw that semiclassical
arguments well describe transport in a wide range
of magnetic field strengths, see figure 23h-c. We
now move to the quantum regime, when semiclassical
skipping orbits and snake states break down and give
way to fully formed quantum Hall edge channels —
such channels exist wherever the electronic density
changes enough for at least one Landau level to be
crossed, which is for example the case both at the
physical edge of the graphene flake and on each side
of a p-n junction, see figure We thus present
electron quantum optics developments in graphene
setups using such edge channels as waveguides. The
first step is to outline the basics of quantum Hall
transport. Fundamental concepts, including the
physics of decoherence, will be introduced from a
general perspective, while the peculiarities of graphene
will be highlighted when necessary. The second step is
a detailed review of different edge state interferometers
realised in graphene, in particular Mach-Zehnder
interferometers based on p-n junctions and Fabry-
Pérot ones formed by quantum point contacts, much as
in 2DEGs. We also present some considerations, both
experimental and theoretical, on decoherence effects in
these experiments, and how they compare with their
AlGaAs/GaAs counterpart.

6.1. Chiral edge electronics: theory essentials

The basics of integer quantum Hall transport can
be understood within a single (quasi)particle picture
via the Landauer-Biittiker formalism [240, 68]. In
the simplest linear-response scenario, electrons injected
from a given reservoir propagate phase-coherently and
independently from each other along the available
1D edge channels — one for each filled Landau level
— and are finally absorbed by a second reservoir.
The conductances of arbitrary multi-terminal setups
are obtained once the single-particle transmission
amplitudes at the Fermi energy t73' are known,
where m (n) labels a given quantum channel from /into
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reservoir « (8). Numerous extensions of the formalism
were worked out, e.g. to deal with non-linearities
[241] in various contexts [242] [243] [244] 245] or to
consider AC transport and current fluctuations via
Floquet scattering theory [246] 247]. Though simpl
this approach provides a clear and remarkably well-
working physical picture of edge transport. It is on this
basis that some key concepts behind electron quantum
optics eventually developed [3T), 250, 25T, 247]. In
spite of its successes, this intuitive construction has
limitations coming from its two main requirements:
(i) idealised, featureless 1D chiral edge channels in
one-to-one correspondence with bulk Landau levels;
(ii) Fermi liquid premises, i.e. free quasielectrons
propagating from reservoir to reservoir. Though fair
initial assumptions, neither turns out to be particularly
accurate.

Consider first the edge state problem, starting
from a 2D system at B = 0. The sample edges are
defined by a confining potential ®(r), to which one
can (semiclassicaly) associate a smooth local electronic
density ng(r) which decreases to zero as it approaches
the sides. Now let B # 0. The textbook picture of
adiabatically bending the Landau level energies E,, (k)
as they approach the sample sides [68]

En(k) — En(k) — B(I)(I‘k), re = (ij,y), T = leB’

(37)
yields sharply defined 1D channels with velocity v, ~
OEn(k), and an associated electronic density np(r)
which is discontinuous at each Landau level crossing.
This is shown in figure 26h-c. The smooth density
profile at B = 0, sketched in red, is massively distorted
and becomes step-like when the magnetic field is
switched on, ng(r) = np(r). It was realised [252] 253]
and formalised [254] 255] early on that this cannot be
accurate: the electrostatically defined profile ng(r) can
only be modified slightly in the presence of B, since
hwe < |e®g|. At the same time the Landau levels
do not simply adiabatically bend. The qualitatively
correct picture is shown in figure 26[d-f. It implies the
formation of compressible (Opp # 0) electronic strips —
the edge states — separated by incompressible (O, =
o0) regions — the gapped Landau levels. The problem
must be solved self-consistently, since the electrostatic
potential, the electronic density and the spectrum form
a set of coupled non-linear equations. The original
construction by Chklovskii, Shklovskii, Glazman and
Matveev [254, [255] was recently improved via self-
consistent numerics [256] and in this form applied to
graphene p-n junctions [257], see figure It is a
Hartree-level construction. What if non-local exchange

€ Its simplicity is actually deceiving, as it hides numerous sub-
tleties rooted in mesoscopic physics (non-locality of responses,
role of contacts, invasiveness of probes...). See e.g. refer-
ences [248], 249] for some details.
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Figure 26: (a)-(c): Single-particle Landauer-Biittiker
picture of widely-separated, exactly 1D edge chan-
nels.  Arrows indicate the propagation direction.
(d)-(f): Chklovskii-Shklovskii-Glazman self-consistent
(Hartree) picture. Edge channels are compressible
(shaded) strips of finite width a distance b;,i = 1,2
apart, separated by narrow incompressible (white)
strips of width a;,7 = 1,2. Figure adapted from refer-
ence [254].

(Fock) is also taken into account? Remarkably, in this
case the bulk-boundary correspondence “one edge state
for each Landau level” does not necessarily hold [258].
This “edge state reconstruction” was experimentally
confirmed in different systems [259] [260], and recently
further investigated [261, 262]. Ome concludes that
the edge state properties of a quantum Hall droplet
are less universal than those of the bulk topological
phase. In particular, the edges have in general a non-
trivial internal structure possibly hosting multiple co-
and counter-propagating modes of varying width —
which may also be more or less strongly coupled to
one another, see below. This is a general conclusion,
affecting both integer and fractional quantum Hall
phases. In fact, since transport experiments probe
edge state excitations, it is not always obvious how
to relate these with excitations of the topological
bulk, e.g. the fractionally charged quasiparticles of a
fractional quantum Hall phase [252]. Note that full
edge reconstruction with counter-propagating modes is
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Figure 27: Edge channel structure at a graphene
p-n junction. The top (blue) and bottom (red)
gates define the junction and the filling factors v, here
v = 2, —1 respectively on the n and p side. The n and
p quantum Hall channels are compressible regions of
finite width (shaded gray in the right panel) running
along the graphene edges and following the junction
profile. They are labelled by valley (K, K') and spin (1
,4). The red curves in the right panel show the density
and electrostatic profiles for B = 97T, d; = do = 20nm.
Figure adapted from reference [257].

expected to take place for smoothly confined quantum
Hall droplets [258| [262], but the situation in graphene is
varied, as it depends on how edges are experimentally
realised. Pristine edges obtained by exfoliation can
be sharp and clean, showing no sign of reconstruction
[263, 264], while in etched samples the formation of
incompressible strips is important [265], and counter-
propagating modes were also observed [266]. Edges
obtained by gating are clean but smooth on the I 5 scale
at higher fields [256] 257], so that full reconstruction
cannot always be excluded a priori.

Let us now reconsider the Fermi liquid assump-
tion. This is somewhat questionable for narrow edge
states, since in 1D the Fermi liquid picture breaks
down and is substituted by the Luttinger liquid one
[267]). The breakdown is brought about by electron-
electron interactions, whose critical importance in 1D
can be formalised by the bosonisation procedure [268].
It turns out that the (almost) free quasiparticles of a
1D fermionic many-body state are not the quasielec-
trons of Fermi liquids, but collective bosonic modes,
the simplest being charge density waves. Ideal 1D
quantum Hall edge states are actually realisations of
chiral Luttinger liquids, i.e. , Luttinger liquids hosting
either only left- or only right-propagating modes. Ex-
plicitly, considering spinless electrons for simplicity’s
sake, the chiral (right) Luttinger model may be brought
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into the following basic form [f]

HCLL = Z quq Bgl;q,

q>0

(38)

with B};, IA)q bosonic operators creating/annihilating col-
lective density fluctuations propagating with velocity
vq > 0, the latter depending on details of the electron-
electron interaction.

An in-depth discussion of the Tomonaga-Luttinger
low-energy model does not belong here [268] 267, [269]
270, 27T), 272). Tt suffices to say that it is a standard
starting point to study (time-dependent) quantum Hall
edge transport [273], [274], though not always necessary
[275], 276l 2511, 277]. Indeed, the internal structure of
the compressible edge strips (varying width, lack of
perfect homogeneity) and the coexistence of different
channels in close vicinity, see figures 26| and remind
us of the approximate nature of equation [38, and
that strips are not ideal 1D objects. Their width
should notably influence their character (Fermi vs.
Luttinger) and the velocity of excitations propagating
through them [278] [256], as well as posing fine practical
problems in the definition of a surface they may
enclose [279]. On the other hand disorder of different
origins may cause phase transitions within the (quasi)
1D state, as well as enhancing inter-channel coupling
[274, 267]. The latter is a fundamental point, as
inter-channel coupling is a major source of decoherence
in quantum Hall setups [280, 281, 282, 283 [284]
[285], together with intrinsic non-linearities of the 1D
electron liquid beyond the ideal Luttinger construction
(269 271, 272]

Decoherence indicates the loss of phase memory
of a quantum state. It is intimately related with
irreversible loss of (quantum) information, which
takes place whenever the quantum state interacts
with additional entities — a heat bath, a fluctuating
electromagnetic environment and so on — whose
dynamics is beyond our control [286, 248]. The
quantum state here is an electronic excitation
propagating along an edge channel, be it of Fermi
or Luttinger nature. Its phase-memory loss comes
e.g. from interactions with a bath [287], which may

explicitly be classical [275] or quantum [2706, 28§,
or from intra-channel [278, 289 and inter-channel

coupling [200, 280, 281, 282, 253, [285].

To be definite, consider the case of inter-channel
coupling in an ideal Luttinger liquid scenario. The
propagating signal is an eigenmode of the Hamiltonian
equation thus by definition it never decays. In
presence of a second chiral Luttinger strip coupled
to the first by e-e interactions [278, 280, 291] the
Hamiltonian becomes

H=H!, +H, +0H?

+ See e.g. reference [267] for details.

(39)
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Consider an excitation propagating through the first
Luttinger strip. If the second channel sits unbiased
nearby it will act as a bath, which can be traced
out breaking the unitarity of time evolution within
the first channel. The dynamics induced by mutual
coupling is however richer in general, since excitations
become coherent objects spreading across two channels
[280L 2777, 291]. The latter may lose phase coherence by
coupling to additional environment entities, e.g. other
channels, the bulk, nearby gates. Notice that
qualitatively similar conclusions would be reached if
the strips were Fermi liquid in character. In fact,
decoherence processes can be modelled quite effectively
via phenomenological “Biittiker probes”, i.e. fictitious
floating voltage probes which spoil phase memory
without affecting the overall charge transfer [292] 251].
This widely employed approach is successful also in
graphene [89], but obviously cannot provide substantial
microscopic insight.

We have thus seen that the theory basis for
electron quantum optics in the quantum Hall regime is
the competition between electron-electron interactions
(electrostatics and beyond) and the applied strong
magnetic field. Specifically concerning graphene as
a platform, some of its characteristics set is aside
from traditional semiconductor systems. Besides its
“relativistic” Landau level spectrum, see section [2.1.2)
two are of central importance: (i) the valley and
sublattice internal degrees of freedom (isospin) and
their locking to momentum; (ii) the finer control one
has over electrostatics and specifically screening, since
metallic gates can be very close to the transport
sample. The latter is in particular a great advantage,
since it allows to realise compact p-n interferometers
and to effectively screen edge channels from the
environment and each other, largely increasing the
coherence length within each [293)].

6.2. P-n junction based Mach-Zehnder
interferometers

The first observation of a graphene p-n junction
based Mach-Zehnder (MZ) interferometer was reported
by Morikawa and coworkers in reference [294]. They
have realized a p-n-p junction using two gate
electrodes. At high magnetic fields edge states form
which propagate along the sample edges, and the
outermost electron and hole edge states, corresponding
to filling factor 2 and -2, merge at the p-n interface
where they co-propagate at v = 0, as shown in
figure 28h. However, if as written in section 2.1.2] the
interactions split the lowest Landau level up, at lower
field or moderate interaction strength, into a doublet
(K and K’) than the edge states at the p-n interface
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Figure 28: The formation of MZ interferometers
in graphene p-n junctions. (a) Edge states along a
p-n junction, with the an electron-hole like edge states
propagating along the p-n junction. Scattering between
the channels is possible at the edges. Green dashed line
mark possible MZ interformeter areas. (b) For larger fields
the lowest LL is split up and the gapped region between
electron and hole trajectories gives the interferometer’s
area. (c) If spin spilitting is present mixing is only possible
between states with the same spin. (d) The positions of the
edge states, that which reside at a given filling factor along
the p-n junction are marked with small circles with at two
different magnetic fields. (e) Position of the edge states is
shown for two different dopings. Figure is reproduced from
Ref. [63]

real space (x)

will move away from the interface to regions where the
doping corresponds to v = £1 (separating gapped bulk
regions of v = 0 and v = £2). This is shown in
panel b of Fig[28l As a result, co-propagating edge
states are formed at the p-n junction. If there is no
coupling of these edge states, this would lead to an
insulating behaviour in transport measurements. As
long as these edge states are close (smaller magnetic
field) the coupling along the full length of the p-
n interface will result in an oscillating motion of
electrons originating from the source electrode, which
is the quantum description of the quasi-classical snake
states. Edge states with larger filling factor on both
sides can participate in the formation of quasi-classical
trajectories [88]. As the magnetic field is increased,
the edge states become separated in the bulk, but as
was suggested by Morikawa and coworkers they can
be coupled at the bottom and top edge of the sample,
as shown in Figure [28b, and hence an interferometer
loop can be formed. This interference loop results
in an oscillating conductance, where the conductance
maxima is separated by a change of flux quantum
within the loop. Therefore one expects that the
conductance maxima follows lines on gate-gate or
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gate-magnetic field maps, where the flux within the
interference loop is constant.

For simplicity, let us assume, that a symmetric,
smooth p-n junction is formed. In this case, by
increasing the doping on the two sides, the density
gradient at the p-n junction increases, therefore the
edge states which reside at fix filling factor move
inward, as shown in panel f of figure In order to
keep the flux constant, the magnetic field has to be
increased. Without a detailed derivation, this leads to
parabolic-like oscillation maxima in the conductance
in gate-magnetic field maps, as can be in figure 29.
Using similar arguments, it can be shown, that for
constant magnetic field if one of the gate voltages is
changed, to keep the area constant the other gate needs
to be used for compensation, leading to hyperbolic
lines in the conductance in gate-gate maps as shown
in figure 29p-d.

If the magnetic field or the interaction strength is
further increased then the lowest Landau level splits
further. In this case, spin and valley split edge
states co-propagate along the p-n interface (figure )
Since spin-scattering is prohibited even on the edge
of the sample, only edge states with the same spin
can mix. This was first observed by in reference [295]
(figure[29p) and later in reference [88] (panel c-d). The
Mach-Zehnder interpretation was also corroborated in
reference [295] by investigating interferometers with
different p-n junction lengths leading to different
oscillation periodicity (figure ) Finally, the bias
dependence of these oscillations was also studied, for
which an example is shown in figure 29k, more details
can be found in references [294, 295] [88]. We note that
even in the non-split Landau level case (figure 28h)
Aharonov-Bohm oscillations are possible between, e.g.,
the lowest and higher lying Landau levels. Since all
these different MZ oscillations and the snake states give
similar signatures in both magnetic field-gate and gate-
gate maps, see, e.g., all the oscillations in figure 29¢-
d with different colors, their identification is possible
only based on further bias or temperature dependent
measurements. Whereas snake states can be observed
up to 100 K, MZ oscillations disappear at few Kelvins
or below. Finally we would draw the attention to
another set of very prominent oscillations which stem
radially from the charge neutrality point (marked by
black dashed lines in figure . As seen in panel (g)
they seem to be magnetic field dependent. Along such
lines and the position of the p-n junction is fixed and
these oscillations have been attributed to valley-isospin
oscillations probing the microscopic character of the
edges [296]. This is discussed in the next section.
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6.3. Tunable Mach Zehnder inteferometers

A controlled approach to achieve Mach-Zehnder in-
terferences was demonstrated in a recent study [297]
where electronic beam splitters were utilized, lever-
aging the valley degree of freedom in graphene. The
concept of valley beam splitters builds upon theoret-
ical work by [298], 299] and earlier experimental work
of Refs. [296, B00], where the crystalline structure at
the corner of a graphene p-n junction enables electron
scattering between p-n interface channels with opposite
valley polarizations of quantum Hall edge channels. In
the experiment, the researchers employed small electro-
static side gates to tune the mixing point of the edge
channels along the edge of the graphene flake, thereby
controlling the scattering process. This allowed for the
reliable modulation of electronic transmission through
the valley beam splitters, ranging from zero to near
unity. Notably, this work demonstrated the complete
tunability of Aharonov-Bohm (AB) interference by ad-
justing the side gate voltage and magnetic field. The
resulting AB oscillations exhibited stability and repro-
ducibility.

The sample schematic is depicted in figure [30h,
illustrating an encapsulated graphene in a bipolar
quantum Hall state. In the N region, the Landau-
level filling factor is vy = 2, resulting in two
counterclockwise circulating channels with opposite
spins (1, |) along the boundary. On the other hand,
the p region has a filling factor of vp = —1, featuring
only one clockwise circulating spin-down channel.
When an injected current of Iy/2 carried by spin-down
carriers is introduced, it can interact with the edge
current flowing from the p region. Consequently, this
interaction leads to a contribution to the transmitted
current It. The flow of the spin-down current is
regulated by splitting it into p-n interface channels
that possess opposite valley isospins [301]. After
the physical top edge of graphene intersects with
the electrostatically defined p-n interface, the current
proceeds along either the p -side or the n -side of the
interface. The transmission probability along the P
-side is denoted as Ty = [t1]?, while the reflection
probability on the N side is given by |r|? = 1 — T7.
In the presence of a strong perpendicular magnetic
field, the valley degeneracy is lifted, as discussed in
section As a result, the currents on the n -side
and p -side exhibit opposite valley isospins, represented
as +w. The probability 77 reflects the degree of
valley-channel splitting, which can be described by a
quantum-mechanical superposition.

‘\I/initial> - rll Ta ’U_;> + t1| Tv _U_j> (40)
At the n-side interface, the spin-up state is represented
as | T, @), while at the p-side interface, it is denoted as
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Figure 29: First graphene based MZ interferometers. (a) Magneto-resistance oscillations dispersing as a function
of B-field and doping. Simple calculations reproducing the findings based on the edge state positions is shown in the
right [294]. b) Magneto-conductance oscillation as a function of the filling factors on the two sides of the p-n junction
[295]. (c)-(d) Similar features shown from Ref. [88] in 2 and 4T magnetic field, respectively, as a function of the two
gate voltages. The derivative of the conductance is shown to highlight the oscillations. Different oscillations marked with
different colors are attributed to different origin. (e) Bias dependence of the magneto conductance oscillation as function
of magnetic field demonstrating a checkerboard pattern [294]. (f) Oscillation periodicity for MZ oscillations is extracted
for different samples, and the from that length of the interferometer is calculated, matching nicely the dependence on
p-n junction length [295]. (g) Magnetoconductance oscillations attributed to valley-isospin physics shown in gate-B-field
maps with horizontal lines. For this figure the gate voltage is tuned such that only the p-n junction position is changed,

whereas the potential profile remains the same [296].

| 1, —). The valley-isospin undergoes a change from
that of the top edge channel to ), resulting in a sig-
nificant momentum shift. This change is attributed to
the atomic structure at the intersection [299].

By applying voltages to the side gates, they could
modify the electrostatic potential profile at both ends
of the p-n interface, as depicted in the schematic di-
agram figure 28] In a recent investigation employing
the Chklovski-Shklovskii-Glazman formalism, the pre-
cise positioning of edge states in a graphene p-n junc-
tion was determined through rigorous quantitative cal-
culations [257]. When the filling factor below a side
gate was set to v < —1, the p-n junction intersected
the physical edge, creating a sharp potential change at
the atomic distance scale. This sharp potential change
facilitated the mixing of the valley channels. On the
other hand, by setting the filling factor to v = 0, the

p-n junction intersected an electrically defined edge
where the potential landscape was smooth, resulting in
no change in valley isospin. Through the manipulation
of these side gates and the associated filling factors, the
researchers could control the extent of valley-channel
splitting and restrict the mixing of valleys. This al-
lowed for precise control over the transmission proba-
bility and the preservation of valley isospin within the
system.

The authors of this study first demonstrated the
ability to tune the transmission probability 77, defined
as the ratio of transmitted current It to half of the
injected current Iy/2. This tuning was achieved by ad-
justing the voltage V7 applied to the top side gate, as
shown in figure [30p. To achieve valley-channel split-
ting at the top intersection while suppressing it at the
bottom, they set the filling factor v, below the top side
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Figure 30: (a) Schematic of a fully tunable Mach-Zehnder interferometer using valley degrees of freedom of graphene

297].

(b) Measured transmission 77 of the top valley splitter as a function of the side gate voltage i.e controlling the

filling fraction below it. (c) Oscillation of transmission of a valley splitter. Right panel: The edge state configuration in
this condiction. (d) KWANT simulation of transmission (71) as a function of the position along the p-n interface. (e)
Measured T} as a function of gate voltage and magnetic field. (f) Transmission in the MZ interferometer configuration
(Tarz) when both (top and bottom) the splitters are allowed to have valley mixing. (g) Taz as a function of magnetic

field and gate voltage.

gate to v < —1, and v» below the bottom side gate
to v = 0. When a positive non-zero voltage was ap-
plied to Vi, it resulted in v; = 0, ensuring that the
edge channels only intersected at electrostatically de-
fined edges without valley-channel splitting, leading to
a vanishing transmission. Conversely, for V; < 0, they
ensured v; < —1, causing the p-n junction to inter-
sect the top physical edge. This enabled valley-channel
splitting and resulted in a finite transmission. Subse-
quently, the authors demonstrated the full tunability
of the transmission probability 77 from zero to nearly
unity, as depicted in figure 30k, by varying the voltage
V1. Importantly, they also showed that T; could be
tuned by changing the magnetic field, as illustrated in
figure [30p. The period of the dependence on V; was
estimated to be around AV; ~ 100 meV on average. It
was calculated that this change in voltage caused the

p-n interface to shift by approximately ~ 1 nm below
the top side gate. The period of the magnetic field (B)
dependence was found to be AB; ~ 300 mT, corre-
sponding to a change of approximately ~ 0.2 nm in
the magnetic length at B = 9.2 T. These length scales
are comparable to the interatomic distance of pristine
graphene (approximately 0.142 nm) and the period of
atomic edge structures (e.g., 0.246 nm for the zigzag
edge), but significantly shorter than the spatial varia-
tion of the electrostatic potential induced by gate volt-
age. This strongly suggests that the transmission prob-
ability 77 can be controlled by the atomic structure at
the top intersection. The shift of the p-n interface, es-
timated from experimental data, was made possible by
independent control of the top and bottom side gates,
which was not achievable in previous works [295] [290].
Similar experiments were conducted with the bottom
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side gate, yielding a comparable physical scenario and
trend in the results. In the transmission results, some
irregular but reproducible oscillations were observed.
These oscillations were attributed to the roughness in
the upper physical edge of the graphene. The the-
oretical simulation using KWANT simulations, as de-
picted in figure[30d, supported this explanation. Over-
all, the experiments and simulations provided strong
evidence that the transmission probability 77 in the
system could be controlled by the atomic structure at
the top intersection, and the observed irregularities in
the results were attributed to edge roughness effects.

Finally, the investigated the Mach-Zehnder inter-
ferometer by utilizing both the top and bottom val-
ley splitters. The edge channels from the two sides of
the p-n junction acted as the arms of the interferome-
ter, while the valley splitters served as the beam split-
ters, as illustrated in figure f). Notably, smaller-
scale Aharonov-Bohm oscillations were observed with
a magnetic field period of approximately 25 mT.
The area of the interferometer was calculated to be
0.15 um?, indicating a separation of around 110 nm be-
tween the edge channels. This separation is attributed
to electron-electron interactions. When both valley
splitters were set to a half-transmission configuration,
the interferometer exhibited regular oscillations, as de-
picted in figure[30g. The visibility of the Mach-Zehnder
interferometer, defined as (Tinax — Tmin)/ (Tmax + Tmin),
was approximately 60%.

The paper also discussed the coherence properties

of the valley-split state in relation to the energy of the
transported electrons. A lobe pattern was observed
in the transmission probability Th;z as a function
of the bias voltage, which is a typical behavior in
Mach-Zehnder interferometers (MZIs) fabricated in
conventional GaAs heterostructures. The microscopic
origin of this lobe pattern is now well understood and
discussed in detail in the reference [293]. Moreover for
the graphene MZI studied in these works, the value of
Vio» was found to be 210 peV, which is relatively large
compared to the reported value of 20 peV for MZIs
fabricated in GaAs/AlGaAs heterostructures. This
suggests that the graphene MZI exhibits robust phase
coherence over a wider energy range.
This robustness of phase coherence of graphene MZI
has been harnessed recently to demonstrate coherent
phase manipulation of periodically injected single
electronic state[302]. This development opens up
further avenues for exploring electronic experiment
analogous to optics in graphene platform.
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6.4. Decoherence and relaxation in quantum Hall
Mach-Zehnder interferometers.

Single electron coherence in quantum edge chan-
nels is notably highlighted by Mach—Zehnder interfer-
ometry experiments. But it also digs up a number of
questions on the electron decoherence mechanism in
these systems. A large majority of experiments deal-
ing with quantum Hall interferometers in conventional
semiconductors suffers from decoherence, which can
come from different sources like edge reconstruction
due to the presence of impurity around [258], inter-edge
interaction [303] 304] and intra-edge Coulomb interac-
tion [305] 280} 306]. Most of the time, those interac-
tions are intertwined which makes it hard to address
them separately. Within the last decade, the majority
of experimental and theoretical works addressed the is-
sue of inter-edge interaction [281] 282] 307, 308, 283
305, 280} 288l [309] 285) [310] 311} 37, 273l [312] [313]
314, 315, 316, B17, 318, 319, B20, B21], 274] but there
is still an ongoing debate about the observed results.
One possible way out is demonstrated in [293] by using
a fully tunable graphene MZ interferometer utilizing p-
n junctions. In the experiment, three interferometers
of different lengths (figure BIp-c) were studied, show-
ing a persistence of the interferences up to 1.6 K, rel-
atively high compared to the operating temperature
of GaAs interferometers. The visibility of the inter-
ferences, as shown in figure [31d, was shown to have
two distinct regimes in temperature. Visibility decay
is found to be algebraic instead of exponential below
1K which signifies the suppression of thermal route of
decoherence. This ‘new-found’ algebraic decay regime
was not observed before in conventional semiconductor
system, and it does not depend on the different config-
urations (e.g. different edge configurations of p and n
side) of the interferometer. Electron heating giving rise
to this kind of scaling behavior was ruled out by care-
ful measurement of thermal noise at each temperature
confirming the electrons to be well thermalized. Inter-
estingly, the decay profile for all the three interferome-
ters lies on a single curve (figure[31p) if plotted against
a scaled temperature LT/Ly where T is temperature,
L is the interferometer length, and L¢ is the length
of the large interferometer. This scaling behaviour is
in good agreement with an intra-channel interaction
model. To access the effect of the presence of adjacent
edge channels, the temperature dependence of interfer-
ence visibility was monitored by changing the number
of edge channels which is shown in figure [31f. The
short-range inter-channel interaction fractionalizes the
electron flow in fast and slow modes which causes de-
coherence. No significant change in decay profile was
observed, indicating the absence of influence of inter-
edge channel interaction mechanisms. In a van-der-
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Figure 31: (a) AB oscillation in three MZ interferometer of different lengths. (b) The schematic of channel mixing points
in the interferometer. (c¢)Temperature dependence of the transmission for the large interferometer. (d) Visibility decay
of with temperature for all the interferometer. (e) Universal scaling behaviour of visibility. (f) Visibility decay profile in

presence of different number of edge channels. [293].

Waals architecture, the possibility to position the elec-
trostatic gates very close (vertical distance 30 nm)
to the 2DEG provides screening between nearest edge
channels. Therefore, the decoherence mechanism due
to inter-edge channel interaction can be efficiently sup-
pressed and one can only talk about the intra-edge
channel interaction.

Moreover, at high bias, magnons can be emitted
which are also a source of decoherence [322] [323].

6.5. Graphene quantum point contacts in the QH
regime

Quantum points contacts realized in conventional
2DEGs rely on the ability to deplete the electron gas
locally using electrostatic gates. This is not possible in
single layer graphene at zero magnetic field since in this
condition graphene is gapless. Under a high magnetic

field, one can rely on the gap between different Landau
levels to locally confine the edge channels with gates
until backscattering occurs between the two counter
propagating edges. An order of magnitude of these
gaps is given by recent measurement conducted at 4 T
and 1.4 K, estimating broken symmetry state gaps to
be about 100 meV [327]. This QPC technique under
strong magnetic field has been implemented in several
recent experiments both in the integer [324] [84] [328]
and in the fractional QH regime [325] [329] [326], B330].
Typical geometries are depicted in figure[32] QPC split
gates, made of either metal or thin graphite flakes, are
fabricated on top of an hBN-encapsulated graphene
flake, and are biased with a dc voltage such that the
quantum Hall states below them is set to a filling factor
smaller than the bulk filling factor, thereby expelling
the edge channel from beneath. The filling factor of
the bulk is tuned using a global back gate (usually in
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Figure 32: Graphene quantum Hall QPC devices. (a) and (b), First generation reported in [324], where
a thin layer of aluminium oxide is used to separate the gates from the graphene flake deposited on a SiO2
substrate. (a), device schematics and (b) optical micrograph of the sample. (c¢) Scanning electron micrograph
of a QPC realized in hBN-encapsulated graphene [325], with metallic QPC gates deposited on the surface of
the hBN/graphene/hBN stack. (d), (e) and (f) high-mobility, dual graphite gates devices reported in [326],
where the top graphite gate is divided in 4 regions by anodic oxidation (d). (e) stack structure and (f) optical
micrograph of the sample. The regions denoted N and S correspond to the QPC gates.

graphite) combined with additional graphite top gates
in [329, 326 [330). The distance between the split
gates is typically about 100 nm. In [326] [330, [329],
the QPC and bulk top gates are realized from a single
top graphite flake divided into the local gates by either
reactive ion etching as shown in figure [329] or by
local anodic oxidation using an AFM tip as shown in
figure [32d-f [331}, 1326] .

Typical QPC characterization, shown in figure [33]
consists in maps of the electric conductance across
the QPC measured as a function of both QPC gate
voltage and back/top gate voltage. They show regions
of quantized conductance, corresponding to an integer
number of channels perfectly transmitted across the
QPC. When applying larger negative voltage on the
QPC, a depleted region is first created below the gate.
At higher voltages this region become populated with
negatively charged carriers leading to an effective p-n-p
barrier. In earlier devices [324] [84] [328], equilibration
among channels in p and n regions led to an effective
short cut of the split gates who could then not work
as a QPC. These devices thus required the filling

factor below the top gate to be fixed at v = 0, the
gap of which prevents equilibration across the gate.
Because of the finite density range over which v = 0
is defined, the QPC gate voltage could only be tuned
in a limited range (typically, AVqpc ~ 100 mV at
5 T, for an approx. 50 nm thick BN). The global
back gate and additional top gates were thus tuned
in combination with the QPC gates, such that the
electrostatic potential at the saddle point is raised
or lowered while the filling factor below the QPC
gates, and in the bulk of the sample, are fixed. This
leads to configurations typically depicted in figure [33-
i, where an integer number of edge channels can be
ballistically transmitted across the QPC in a controlled
fashion, leading to the conductance plateaus shown,
e.g., in figure [33f. The condition for the split gates
to operate correctly as a QPC in these early devices
depending on the carrier concentration below the gate
and a critical magnetic field has been extensively
studied for example in [55]. Most recent devices with
higher mobility and operating at higher field do not

present signs of equilibration [325] [332 [329, [326].
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In particular, they show extended regions of zero
conductance, demonstrating the ability to effectively
pinch those devices thanks to the different quantum
Hall gaps and even in the absence of an intrinsic
bandgap.

The ideal point contact signature has been the
subject of debates in the GaAs community recently
[333, B34, 335]. While these discussions focused on
the use of QPCs for shot noise measurement, similar
questions arise for the use of QPCs for interferometry,
and it is not clear whether a QPC which is ideal
for all measurements exists (or is even possible).
Notably, a recent article showed for the first time
tunneling measurements across a QPC between edge
channels at filling factors v = 1 and v = 1/3, and
observed the scaling laws for the bias and temperature
dependence of the tunneling conductance predicted by
the Tomonaga-Luttinger liquid theory [330].

6.6. Quantum Hall Fabry-Pérot interferometers

6.6.1. Principle of the FPI experiment.

The quantum Hall Fabry-Pérot interferometer (FPI)
is a pivotal tool for accessing the exchange statistic
of exotic quasiparticles and realizing anyonic braiding
[337, 338]. In analogy with optical FPI, where semi-
transparent mirrors reflect the incident light back and
forth and enable photon interference, quantum point
contacts are utilized as electron beam splitters to
backscatter the chiral edge channels of the quantum
Hall states. The electronic QH FPI can be built with
two QPCs in series in a two-dimensional electron gas
in semiconducting heterostructures or 2D materials
in the QH regime, where selective partitioning of
the edge channels leads to interferences. In this
configuration, interference of electrons propagating
along the periphery of the cavity can be controlled by
the Aharonov-Bohm phase ¢ ap=27AB/¢, where A
and B are the enclosed area and magnetic field, and
¢o=h/e is the magnetic flux quantum.

Historically, this type of interferometer was
first realized in a 2D electron gas embedded in
GaAs/AlGaAs quantum wells [339, [340, B4, B42]
343]. However, the presence of charging effects
between the edge modes and the compressible bulk
has long hindered the measurement of the Aharonov-
Bohm phase, not to mention the exploration of
braiding statistics [342], B43], [344] 30]. Recently, new
GaAs heterostructures, purposely designed to mitigate
charging effects by incorporating additional quantum
wells serving as screening layers, have enabled the long-
awaited observation of Aharonov-Bohm interference of
a 1/3 fractional QH edge [343] [38] and subsequently
at filling factor 2/5 [345]. Nevertheless, the quest for
smaller interferometers with negligible charging energy
is fervently pursued for practical applications.

50

Graphene-based van-der-Waals heterostructures
offer a promising alternative platform for realizing QH
FPI due to their intrinsically advantageous dielectric
environment. The presence of a graphite backgate,
typically positioned in close proximity (~ 20 — 60 nm)
to the graphene, naturally provides electrostatic
screening, which effectively reduces the device’s
charging energy. Moreover, crystallographic edges
create a hard-wall potential, limiting possible edge
reconstructions [264] that might otherwise generate
undesired additional integer, fractional and even
neutral modes. These neutral modes are known to be
detrimental to coherence [260].

Recently, monolayer and bilayer graphene-based
FPIs have been successfully fabricated. We review
here the various strategies employed in the design of
interferometers with minimal charging energy, as well
as the observation of Aharonov-Bohm conductance
oscillations in the integer quantum Hall regime [332]
329, [1°75].

6.6.2. Monolayer graphene based FPI

Figure [34] illustrates representative graphene-
based devices.  These heterostructures consist of
hexagonal boron nitride (h-BN) encapsulated graphene
deposited on top of a graphite backgate as detailed in
reference [332, [329]. Two distinct technical approaches
have been employed to define the FPI cavity for
quantum Hall edge channels. In the first approach, the
physical edge of graphene, in conjunction with QPCs
and plunger gates made from Pd deposited atop the
uppermost h-BN, were used by Déprez and coworkers
[332] as shown in figures 34h-b. Plunger gates placed
between the QPCs manipulate the electron trajectory,
enabling the modulation of the interference loop area.
Multiple FPIs can be constructed by incorporating
additional QPCs, as shown in figures [34h-b, where
three QPCs define three cavities of different sizes. A
second approach, developed by Ronen and coworkers
[329], involves an additional graphite layer on top
of the hBN heterostructure. This layer is locally
etched to establish QPC and plunger gates (as depicted
in figures B4k-d). The interferometer cavity is thus
entirely determined electrostatically through these top-
gates. These gates offer the flexibility to tune the
smoothness of the electrostatic edge potential, thereby
enabling a modulation of the edge channel velocity.
Last, Zhao and coworkers [336] implemented a similar
device where the QPCs are constructed by etching both
graphene and top h-BN layer.

A standard measurement setup, as shown in
figure , is commonly used in most experiments
[332, 329]. The measurement of the longitudinal or
diagonal resistance of the FPI are performed using
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Figure 33: Conductance measurements in graphene QPCs. (a) conductance map of the QPC realized in
reference [325], as a function of the back gate (V4,4) and QPC gate (Vig) voltages. (b) line cuts of the data plotted
in (a) at fixed back gate voltage, showing the quantized conductance plateaus. (c), (d) and (e) conductance map
of the QPC realized in reference [326] as a function of the bulk top gates ((Vgw) and QPC gates (Vxg) voltages,
for 3 different values of the bulk back gate (Vp) voltage. The white bar indicates the QPC gate voltage range
over which the filling factor below the QPC gates is v = 0. (e) line cut of the conductance data as a function
of a combination of the bulk top and back gates, showing the quantized conductance plateaus. (g), (h) and (i)
schematic representation of the filling factors in the vicinity of the QPC corresponding to the points marked I,

IT and IIT in (c-f).

lock-in amplifiers.

The new interesting aspect of the graphene
platform lies in the extensive tunability provided by the
plunger gate. In contrast to GaAs heterostructures,
where the plunger gate tunability is constrained by
the depletion of electrons beneath the gate, graphene’s
gapless band structure allows for a broad gate sweep
covering multiple quantum Hall states and filling
factors. Figure illustrates characteristic resistance
oscillations with high visibility across a wide voltage
range. Applying a negative voltage to the plunger gate
depletes the electron gas and eventually accumulates
holes beneath the gate. Consequently, the electron
trajectory is continuously pushed toward the device
interior with decreasing plunger gate voltage (see
figure [35().

Graphene-based FPIs exhibit less charging effect
compared to GaAs-based ones of similar sizes.
Figures [36h-b depict 2D plots of the resistance Rp
as a function of both magnetic field and plunger

gate voltage for the outer channel interference of two
interferometers of different sizes (A = 3.1 pm? and
A = 14.7 pym?). Effective interferometer areas (A)
calculated from magnetic field periodicities (AB) using
the formula A = ¢¢/AB, are found to be in excellent
agreement with area defined by lithography. The
periodic stripes in the plot correspond to lines of
constant phase. The direction of these lines is used to
distinguish whether the interference is dominated by
Aharonov-Bohm effect or Coulomb interactions [338§].
A constant Aharonov-Bohm phase results in stripes
with a negative slope due to the diminished area
being compensated by an enhanced magnetic field, as
expressed by the equation Apap = 27/¢o(BAA +
AAB) = 0. The observed negative slopes in
figures [36p-b, along with the accurate estimation
of interference area, provide clear evidence that
these interferometers are operating in the Aharonov-
Bohm regime. It is noteworthy that GaAs-based
interferometers of similar size were reported to be
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Figure 34: Quantum Hall Fabry-Pérot interferometers. (a) Schematic and (b) SEM image of the device
studied in reference [332]: 1D Ohmic contact made by Cr/Au, QPC split gates and plunger gates are made
by depositing Pd electrodes on the hBN top flake. (¢) Schematic and (d) SEM image of the device studied in
reference [329]. QPC and plunger gates are made by selectively etching the uppermost graphite flake. (e) Optical
image and (f) SEM image of the device studied in reference [336]. QPC and plunger gates are made by etching

both the top h-BN and the graphene flake.

dominated by Coulomb interactions [30].

Edge velocity can be probed through the oscil-
lation dependence on both the DC bias voltage and
the temperature. When a source-drain DC bias volt-
age is applied, electrons experience a dynamical phase
shift given by @gyn = 2meVpc2L/(hv) = 4weVpc/Ern,
where L is the length of edge propagation between the
two QPCs, v is the edge velocity, and Ety, = hv/L
is the Thouless energy. Depending on the energy re-
laxation processes consecutive to the current flow, and
on the electrostatic coupling between the cavity, the
back gate, the source and the drain, the electrochemi-
cal potential in the cavity will adjust itself at a value
intermediate between that of the source and that of
the drain. The resulting conductance oscillations de-
pending on the potential drop across the interferometer
have been calculated in [332] by extending the theory
of [346]. It reads

G = gose [ﬂ cos <27r£ — %eV,B) (41)
+Bcos (%% + %aV,@) L (42)

where § and § are asymmetry parameters describ-
ing how symmetric is the voltage drop on the

two side of the interferometer (see Supplementary
Information in [332] for definition), and gese =

%2@ with R; and R, the reflection coefficients
of each QPCs. Equation reduces to AG ~
cos (2n¢/po — dweVpc/Ern) for a fully asymmetric
potential drop across the interferometer and AG ~
cos (2m@/¢o) cos (2meVpe/Ery) for a fully symmetric
potential drop. Figures[36k and d illustrates the result-
ing conductance oscillations as a function of plunger
gate voltage and voltage bias for the asymmetric (small
interferometer) and symmetric (large interferometer)
cases, respectively. The edge velocity v determined
from the bias periodicity via v = AVpcL/h, is found
to be approximately 1.4 x 10° m/s (at 14 T). Another
method to estimate the Thouless energy stems from
the temperature dependence of the oscillation ampli-
tude, described by exp (—T'/Tp), as exemplified in fig-
ures [36p-f Figure [332]. The fits of the Fourier
peaks are used to estimate Ty and the Thouless en-
ergy Ern = 4nkgTyL. Figure demonstrates the
excellent agreement between the Thouless energies es-
timated using these two methods.

The interferometer geometry in reference [329]
shown in figure B4d, allows to study the phase
coherence of interfering edges defined either by gating
or by etching. Figure shows plunger gate
dependent oscillations of the inner channel at filling
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Figure 35: Plunger gate dependant oscillations. Resistance oscillations of outer channel of v = 1.5 at
B = 14 T.Plunger gate voltage sweeps from -3.2 V to -2.8 V in (a), from -1.2 V to -0.8 V in (b) and from -4

Vto 0V in (c).

(d) Schematic of the edge channel position at different plunger gate voltages. (e) Amplitude

of sliding Fourier transform of the resistance oscillations shown in (c) as a function of plunger gate voltage and

plunger gate frequency. Adapted from [332].

factor 2, where interfering channels undergo distinct
potential confinements, as schematized on top of
the figure.  Figure [37p shows the edge channel
positions (upper panel), interfering area (middle panel)
and coherence length (lower panel) in these different
configurations. In regime I (1 V < Vo < 1.4 V),
oscillations’ visibility remains relatively constant and
the extracted interfering area corresponds to the
inner channel traveling along the plunger gate. In
regime III (V,, > 1.6 V), the oscillations’ visibility
is dramatically reduced and the extracted area now
includes the plunger gate delimited area, suggesting
that both channels are propagating along the etched
graphene edge. Note that the coherence lengths are
about 7 pum for gate defined channels and 400 nm for
etched defined channels. The detrimental effect on the
coherence observed in etched-edge defined FPIs can be
attributed to edge disorder and charge accumulation at
the physical edge. Interestingly graphene crystal edges
that have not undergone etching, as in the experiment
conducted by Déprez and coworkers [332], led to a
coherence length assessment of 10 um, implying that
pristine edges are equally good for coherence.

The authors of reference [329] systematically
investigated the interference of various channels at

filling factors 2 and 3.  Figure summarizes
the plunger gate periodicity, oscillation visibility,
edge velocity, and phase coherence length for these
channels. The colors blue, red, and green are used
to distinguish the innermost, middle, and outermost
edges, respectively. The coherence lengths are of the
order of tens of microns. The highest velocity and
coherence length are obtained in the middle channel of
vg = 3 and are accounted for by interaction screening
by adjacent edges.

6.6.3. Bilayer graphene based FPI.

Bilayer graphene also hosts numerous fractional
QH states, particularly those with even denominator
fractions are believed to involve non-Abelian quasi-
particles [347]. BLG is thus considered as a
highly promising platform for performing non-Abelian
braiding through interferometry. In the study reported
by Fu and coworkers [I75], the first Fabry-P’erot
quantum Hall interferometer in bilayer graphene was
introduced. In this investigation, bilayer graphene is
encapsulated by h-BN flakes, with a global graphite
gate at the bottom and several split gates on the
top (see Figure ,b). The devices operate in the
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voltage at different temperatures. (f) Oscillation amplitudes extracted from a Fourier transform as a function

of temperature for three interferometers (A = 3.1 pum

2 A =10.7 pm? and A = 14.7 pym?).

(¢) Energy scale

extracted from the checkerboard patterns in (c) and (d) and the temperature dependence in (f) as a function of

the inverse path length. Adapted from [332]

Aharonov-Bohm regime as demonstrated in figure .
The checkerboard pattern (figure [38d) is analysed
through the same framework as in reference [332] [329],
and the edge channel velocity is extracted from the
lobe structure (figure [38) at different filling factors
(figure [38 ) A careful analysis show that this velocity
decreases as the distance of the edge channel to the
edge increases, as expected. This work opens the
door for further studies that might benefit from recent
technical improvement, such as the use of air bridges
[329] or atomic force microscopy etching [326].

In conclusion, the robust oscillations observed
in single and bilayer graphene-based quantum Hall
FPIs with various designs, characterized by strongly
suppressed charging energy and an extended phase

coherence length, offer compelling reasons to advance
and deepen these studies into fractional quantum
Hall interferometry. Concurrently, some correlated
phenomena in the integer quantum Hall regime
remain to be understood. Very recent experiments
have presented evidence for electron pairing at bulk
filling factors v > 2 [348, B49], reproducing the
phenomenology of GaAs FPIs [344] [350], and even
tripling of electrons at v = 3 [349]. These phenomena
are characterized by an anomalous Aharonov-Bohm
period of h/2e and h/3e, respectively. Interpretations
suggest that these intriguing phenomena result from
attracting pairing emerging via the exchange of neutral
modes [351] or inter-edge states charging effects [348].
They underscore the genuinely complex nature of these
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Figure 37: (a) Resistance oscillations with plunger gate voltages from -2 V to 3 V. (b) Interfering area extracted
from oscillation periodicity in (a) from 1 V to 2 V (middle panel), top schematics indicate the quantum
Hall edges path for each oscillation regime. Bottom panel is the phase coherence length extracted from the
oscillations’ visibility. (c¢) Oscillation visibility at bulk filling factor 2 (up) and 3 (bottom) for different edge

channel interference. Adapted from [329]

FPI devices, challenging initial expectations based on
an apparently simple, non-interacting theory [346].
Exploring the physics of anyons in the fractional
quantum Hall regime will undoubtedly require careful
and systematic experiments, given our current, still
partial, understanding of integer quantum Hall FPIs.

7. Conclusion and perspectives

We have seen throughout this review that graphene
has emerged as an excellent and unique platform for
the realization of electron optical devices. This stems,
among other things, from the ultra-high mobility of
graphene structures and the ability of forming gapless
p-n interfaces, where the doping changes continuously
from electron to hole doping. This allowed, as
detailed before, observing magnetic focusing and
snake states and realizing interferometers based on
quantum-Hall edge channels. The presence of the
lattice and valley degree of freedom (or the layer
in case of bilayer graphene) leads to a richer and
much more fascinating behaviour than in conventional
2DEGs. Moreoever, due to the semimetallic nature

of graphene, it can be contacted with ferromagnetic

and superconducting electrodes. This yields ballistic
spintronic devices that can show chiral properties,
on the one hand, and ballistic interferometers that
are governed by unconventional Andreev physics at
p-n interfaces, on the other hand. The ability to
combine graphene with other 2D materials and to
stack different materials together with arbitrary twist
angles opens a large parameter space, allowing to
tailor the bandstructure and to design materials with
yet unknown phenomenology. Correspondingly, these
developments, including emergent phenomena such as
unconventional superconductivity, also open up new
challenges to theory. Properties, like superconducting
pairing, spin-orbit interaction and magnetic exchange
can also be introduced in monolayer and bilayer
graphene through proximity to TMDCs or van der
Waals superconductors and ferromagnets. This is
a largely unexplored area where the combination
with ballistic carriers opens up a new playground for
quantum electron optics.
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Figure 38: Bilayer graphene based Fabry-Pérot interferometer. a) Optical image of the device. b)
Schematic of the device in an exploded view. c) Resistance oscillations showing an Aharonov Bohm type pyjama
at filling factor 2 for a field about 9 T. d) The resistance oscillations as a function of side gate voltage and
source drain voltage display a typical checkerboard pattern (B = 9T, filling factor 2, 20 mK). e) The oscillation
amplitude at the oscillation frequency shows a lobe structure as a function of source drain voltage. The author
extract both a Thouless energy and an edge velocity by fitting the lobe structure with the usual theory [332] [329]
f) Edge channel velocity (extracted from lobe structure as in e) versus filling factor. The decrease in velocity for
increasing filling factor can be understood in a non-interacting edge channel picture as the channels are further

and further from the edge as the filling factor increase.[T75].
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1(2)D one(two) dimensional
2DEG two dimensional electron gas
BZ Brillouin zone
SQUID superconducting quantum interference device
ODE ordinary differential equation
PDE partial differential equation
SEM scanning electron microscope
AFM atomic force microscope
TEM transmission electron microscope
STM scanning tunnelling microscope
SET single electron transistor
SGM scanning gate microscope
TEF transverse electron focusing
h-BN hexagonal boron nitride
Gr graphene (usually monolayer)
BLG bilayer graphene
LOR lift off resist
PDMS Polydiméthylsiloxane
PC polycarbonate (polymer)
PPC Polypropylene carbonate (polymer)
CNP charge neutrality point of graphene
SdH Shubnikov de Haas
WGM whispering gallery mode
TG top gate
BG back gate
p-n junction | interface between positively (p) and negatively (n) charged graphene regions
FP(I) Fabry-Pérot (interferometer)
MZ(I) Mach Zehnder (interferometer)
QPC quantum point contact
AB Aharonov Bohm
QH quantum Hall
FT Fourier transform

Table 3: List of acronyms
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