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Rashba spin-orbit coupling is a quintessential spin interaction appearing in virtually any elec-
tronic heterostructure. Its paradigmatic spin texture in the momentum space forms a tangential
vector field. Using first-principles investigations, we demonstrate that in twisted homobilayers and
hetero-multilayers, the Rashba coupling can be predominantly radial, parallel to the momentum.
Specifically, we study four experimentally relevant structures: twisted bilayer graphene (Gr), twisted
bilayer WSe2, and twisted multilayers WSe2/Gr/WSe2 and WSe2/Gr/Gr/WSe2. We show, that the
Rashba spin-orbit field texture in such structures can be controlled by an electric field, allowing to
tune it from radial to tangential. Such spin-orbit engineering should be useful for designing novel
spin-charge conversion and spin-orbit torque schemes, as well as for controlling correlated phases
and superconductivity in van der Waals materials.

Introduction. The Rashba effect is the appearance of
an extrinsic spin-orbit coupling (SOC) at surfaces and
interfaces of electronic materials. Following the study by
Rashba and Sheka on wurtzite semiconductors [1], the
effect was formulated by Bychkov and Rashba for 2D
electron gas [2]; see the recent review [3]. The Rashba
effect is at the heart of spintronics, allowing for efficient
spin manipulation in a variety of spin transport, spin
relaxation, and spin detection phenomena [4–8].

The advent of two-dimensional (2D) materials and
van der Waals (vdW) heterostructures has significantly
expanded the range of possibilities for controlling the
electron spin [6–8]. In particular, novel spin interac-
tions can be generated in vdW stacks by the proxim-
ity effect [9, 10]. The prime example is the valley-
Zeeman (Ising) SOC, induced in graphene (Gr) from
a neighboring transition-metal dichalcogenide (TMDC)
such as MoSe2 or WSe2, yielding a giant spin relaxation
anisotropy [11–13] and with controllable spin precession
by gate voltages in spin transistor devices at room tem-
perature [14].

In addition to the valley-Zeeman term, the breaking
of space and mirror symmetries leads to the Rashba
spin-orbit field (SOF). Pioneering tight-binding studies
of twisted Gr/TMDC [15, 16] proposed that the Rashba
coupling acquires a so-called Rashba angle φ (between
the electron’s momentum and spin). The general form of
the Rashba coupling atK andK ′ points for C3 symmetric
systems is

HR = λRe
−iφsz/2(τσx ⊗ sy + σy ⊗ sx)e

iφsz/2. (1)

The coupling constant λR denotes the strength of the
Rashba field, τ = ±1 is the valley index, σ are the pseu-
dospin and s spin Pauli matrices. If φ = 0, the Rashba
field is tangential (conventional); if φ = 90◦, it is radial
(unconventional).

The Rashba angle φ has been calculated for twisted
Gr/TMDC from first-principles [17–20] and by tight-
binding modeling [21], as well as for Gr/1T-TaS2 [22].

DFT calculations for twisted Gr/TMDCs [17, 18, 20] find
that the Rashba angle varies between -20◦ and 40◦, not
being radial at any twist angle. Remarkably, the pre-
dicted variation of the Rashba angle has now been seen
experimentally in Gr/WSe2 bilayers [23], observing φ up
to about ±60◦.
Here, we show that a radial Rashba SOF emerges

in twisted homobilayers and multilayers of hexagonal
lattices. Specifically, we perform first-principles cal-
culations on four distinct structures: twisted bilayer
graphene (TBLG), twisted bilayer WSe2, twisted mul-
tilayers WSe2/Gr/WSe2, and WSe2/TBLG/WSe2. We
show that in all the investigated cases the in-plane
Rashba field can be radial, φ = 90◦, but we also dis-
cuss cases in which it is not. For computational reasons,
we use the twist angle of 21.79◦ (and the complementary
38.21◦) for the homobilayers, noting that commensurate
moiré crystals of bilayer WSe2 twisted at these angles
were recently created [24]. For such structures, our find-
ings make even quantitative predictions. The origin of
the radial Rashba field can be traced to the interference
of two layer-locked (in untwisted stacks hidden) Rashba
fields that have opposite tangential, but the same radial
components. Important, the Rashba field can be tuned
from radial to tangential by a displacement field.

Engineering radial Rashba coupling would allow to
achieve unconventional charge-to-spin conversion in vdW
heterostructures [18, 20, 25–29], improve the functional-
ity of spin-orbit torque [30] by allowing to control the
polarization of accumulated spin accumulation and spin
current, and influence correlated phases [31–35] and su-
perconductivity [36–38]. Furthermore, a radial spin tex-
ture in a vdW heterostructure would emulate, in a con-
trolled way, the parallel spin-momentum locking in chiral
materials [39] such as 3D tellurium [40, 41] or chiral topo-
logical semimetals [42, 43]. Very recently, chiral-induced
spin selectivity has been predicted to be realized in verti-
cal tunneling by twisted TMDCs [44]. Our first-principles
calculations show that, while not being universal, the for-
mation of a radial Rashba spin texture can be readily
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achieved in twisted vdW structures.
Twisted bilayer graphene. Monolayer Gr exhibits in-

trinsic spin-orbit splitting of tens of µeVs [45, 46], and
no Rashba coupling; a transverse electric field induces a
Rashba splitting of about 10 µeV per each V/nm [45].
Similar values appear in bilayer graphene (BLG) [47, 48].

The electronic structure of BLG with SOC can be
described as comprising conventional layer-dependent
Rashba SOF with opposite orientations in the two lay-
ers [47]; the net result is no overall Rashba field and no
spin-orbit splitting of the bands. In effect, each layer
exerts an effective electric field on the other layer, caus-
ing a Rashba coupling in it. This is similar to the con-
cept of “hidden” spin polarization in inversion symmetric
materials [49]. A transverse electric field induces layer
polarization and removes the perfect balance of the hid-
den Rashba fields, giving a non-zero conventional Rashba
spin texture [47]. Chirally stacked (ABC) graphene tri-
layers follow the same SOC trends [50, 51].

How do the hidden, layer-dependent Rashba fields
manifest themselves in the electronic structure when the
two layers get twisted? Without layer polarization, the
two spin vector fields in the momentum space add up;
if the fields of the hybridizing Bloch states from each
layer are similar, these two tangential (but rotated) fields
yield a purely radial, unconventional Rashba spin tex-
ture. Layer polarization—due to a transverse electric
field or the presence of a substrate—can add a tangen-
tial component and make the Rashba field fully in-plane
tunable.

We illustrate this concept by performing first-
principles simulations and effective modeling for 21.79◦

(sublattice-exchange) even and odd TBLG [52], which
exhibit three-fold rotational symmetry and resemble
energy-renormalized versions of AA and AB (Bernal)
BLG dispersions, respectively. The supercells are con-
structed following Shallcross et al. [53]. Further geome-
try setup details are given in [54]. Even TBLG has two
overlapping atomic sites, see Fig. 1(b), whereas the odd
structure has only one eclipsed position, see Fig. 1(c). In
twisted structures, spatial modulation of the interlayer
interaction provides momentum conservation for the cou-
pling of different single-layer momentum states via Umk-
lapp processes [52]. The interaction between the layers
predominantly happens at the eclipsed sites and the re-
duction in the energy scale (with respect to BLG ana-
logues) is a measure for the loss of interlayer registry [55].

The band structures of even and odd TBLGs are cal-
culated by the Wien2k code[56], which accounts for d or-
bitals responsible for SOC in Gr [45] (for computational
details see the Supplemental Material [54]). The band
structure and spin texture of the even system are shown
in Fig. 2. We focus on the low-energy physics at the K
point of the moiré lattice, indicated by the meV energy
scale. The band structure exhibits two crossings at the
K point, which are remnants of the Dirac cones of single-

(a)

(b) (c)

Figure 1. (a) Sketch of radial Rashba emergence by the inter-
ference of oppositely rotating tangential Rashba fields. (b,c)
21.79◦ TBLG (p=1, q=3) and different sublattice-exchange
symmetries. The primitive cell of graphene with its lattice
vectors a1/2 is indicated by the green rhombus. The shaded
area is the moiré supercell with lattice vectors A1/2. The
red/blue dots represent carbon atoms from the bottom/top
layer. The even system (b) is obtained from AA stacking and
rotation about the origin [0, 0], the odd system (c) from initial
AB (Bernal) stacking. The coordinate system for DFT calcu-
lations is shown by labels X and Y. In-plane twofold rotation
axes are indicated by dashed lines.

layer graphene separated in energy by 3.6 meV. Shifting
the cones would resemble the rescaled AA-stacked BLG
band structure [52, 54]. However, the interlayer inter-
action opens a gap of 1.1 meV between the two copies
of Dirac cones. The Dirac cones themselves are gapped
(not visible) by a spin-orbit gap of 24 µeV as in single
layer Gr [45]. The spin degeneracy is lifted by ∼ 10 µeV
due to missing inversion symmetry. The spin expectation
values of the highest valence band around K, shown in
Fig. 2(b), form a purely radial Rashba SOF. All the low-
energy bands have such a spin texture, with alternating
directions pointing towards or away from the K point.
However, the radial texture can be tuned to tangential
by applying an out-of-plane electric field, as shown in
Fig. 2(d) for the field of 29 mV/nm, while the band struc-
ture is hardly affected, see Fig. 2(c).

In the case of the odd system, Fig. 3, the band struc-
ture has a quadratic dispersion, similar to AB-stacked
BLG. The valence-conduction band degeneracy at K is
lifted by the intrinsic spin-orbit gap of 23 µeV and band
splittings on the sub-µeV scale are introduced. The
parabolic second valence and conduction bands, see e.g.
Ref. 52, are split off by 1.7 meV, outside the energy win-
dow. In the odd system we recognize a radial shape of
the spin texture as well. The SOF shows some devia-
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Figure 2. Ab initio low-energy band structures and spin-fields
of 21.79◦ even TBLG. (a) Low-energy TBLG band structure,
(b) SOF of the highest valence band, (c) TBLG band struc-
ture with an electric field 29 mV/nm, and (d) SOF of the
highest valence band in the electric field. The vector field en-
codes sx and sy components of the spin expectation value.
The K point is marked by the vertical dashed line. The
color code denotes the spin-z expectation value, where red is
spin-up, grey color denotes zero polarization and blue is spin-
down. The dashed lines on top of the DFT bands are model
fits with parameters vF = 8.16 · 105m/s, w = 1.597 meV,
λI = −11.858 µeV, λR = 13.5 µeV, and u = 0.43 meV.

tions from pure radial, because the symmetry is reduced
from sixfold rotation to a threefold symmetry. Applica-
tion of a tiny electric field of 29 µV/nm further opens
the gap and the band splitting saturates at the intrinsic
SOC energy scale. We find that the band structure be-
comes spin-polarized and that the spin texture acquires
a tangential component.

The calculated low-energy bands along with the spin
textures can be quantitatively described by an effective
model of TBLG with layer-dependent intrinsic and (hid-
den) Rashba couplings. We refer to [54] for details of the
model, but present in Figs. 2 and 3 the fits.

We note that our calculated spin textures are at odds
with the recent report [57] which considered the same
twist angle of TBLG, but found vortex-like spin textures
at K, employing VASP code [58]. To crosscheck our re-
sults, we also employed Quantum Espresso [59] and con-
firmed the radial spin textures for both unrelaxed and
relaxed geometries, without significant differences. Also,
our effective model [54] fits well the DFT simulations, see
Figs. 2 and 3, giving additional support for the emergence
of radial Rashba fields.

Twisted WSe2 homobilayers. To demonstrate that
not only TBLG exhibits purely radial Rashba SOFs, we

Figure 3. Same as Fig. 2 but for 21.79◦-rotated odd TBLG in
an electric field of 29 µV /nm. Model fit parameters are vF =
8.16 · 105m/s, w = 1.685 meV, ϕ = 0.171, λI = −11.858 µeV,
λR = 0.3 µeV, and u = 3.1 µeV.

performed first-principles simulations of a twisted WSe2
homobilayer using the Wien2k code [56]. Monolayer
TMDCs such as WSe2 lack space inversion symmetry,
so their electronic states are naturally spin split. How-
ever, the presence of a horizontal mirror plane symme-
try precludes the appearance of in-plane Rashba fields
but rather enables robust spin-polarization in the out-of-
plane direction[60]. Conversely, naturally stacked bilayer
TMDCs have space inversion symmetry and no spin-orbit
polarization of their bands. The twisted structures start
from a 0◦ stacking with W and Se atoms on top of each
other (the Rh

h stacking[61, 62], containing a horizontal
mirror plane). We discuss here in the main text the com-
mensurate unit cell for a twist angle of 38.21◦ with the
corresponding C3 symmetric atomic structure shown in
Fig. 4(a).

The band structure of the 38.21◦ supercell is pre-
sented in Fig. 4(b), indicating monolayer- and moiré-
derived spin-orbit splittings, ∆ (consistent with isolated
monolayers[63]) and δ, respectively. The spin textures
for the lowest energy bands, v1-v2 and c1-c2, are given
in Figs. 4(c-f). Despite the strong spin-valley locking
(out-of-plane spins)[60], our calculations clearly reveal
the emergence of in-plane radial Rashba textures in the
vicinity of the K-valleys. The corresponding in-plane
spin expectation values are on the order of 10−5 − 10−4,
roughly 3 orders of magnitude smaller than in Gr systems
(see Fig. S11) but well above the numerical precision[64].
In the Supplemental Material [54], we show the full band
structure and the spin textures for all the valence and
conduction bands v1-v4 and c1-c4, as well as the same



4

W
Se

(a)

38.21o

v4 (Γ6)

(b)

K

c2(Γ4) 

c4 (Γ5)
c3(Γ5)

c1(Γ4) 

v3(Γ6)

v1(Γ4) 
v2(Γ4) 

−1

0

1

k y
[1

0
−

3
2
π
/a

]

(d) v2

−1 0 1

kx [10−3 2π/ a]

−1

0

1

k
y

[1
0
−

3
2
π
/a

]

−1 0 1

kx [10−3 2π/ a]

(c) v1

(e) c1 (f) c2

Figure 4. Radial Rashba in twisted WSe2 homobilayers. (a)
38.21◦ supercell with W and Se atoms indicated. (b) Sketch of
the low-energy bands indicating the relevant energy splittings
and their irreducible representations. The calculated ab initio
splittings (in meV) are Eg = 1352.79, ∆v = 453.22, ∆c =
40.65, δv′ = 4.29, δv = 1.94, δc = 0.63, δc′ = 0.24. Calculated
spin textures for the energy bands (c) v1, (d) v2, (e) c1 and
(f) c2. The radial Rashba texture points outwards for v1, v2,
and c1 and inwards for c2.

analysis for the complementary twist angle of 21.79◦.
Particularly, in the 21.79◦ case the radial Rashba spin
textures acquire trigonal features that become more pro-
nounced as we move away from the K-valleys for partic-
ular energy bands, due to the hybridization of the Bloch
states from different layers occurring at different points
in the Brillouin zone. These distinct k-points can exhibit
hidden Rashba fields with unequal magnitudes and/or
angular textures (see Fig. S7 for monolayer WSe2 under
electric field).

WSe2-encapsulated TBLG. BLG has weak Rashba cou-
pling, but encapsulated by TMDCs the spin-splitting of
BLG is on the meV scale, well within the reach of spin
transport experiments. Here, we demonstrate the exis-
tence of unconventional Rashba coupling in twisted mul-
tilayer stacks, containing either monolayer Gr (see [54])
or TBLG, see Fig. 5. The twist angle of BLG is 21.79◦,

Figure 5. Radial Rashba in WSe2-encapsulated even TBLG.
(a) Top and side view of the twisted multilayer stack. The
twist angle indicated above each layer is measured with re-
spect to the bottom WSe2 layer. (b) The corresponding low-
energy bands with a fit to the model Hamiltonian. (c) and (d)
Exemplary spin textures of the bands b3 and b4 as labeled in
subfigure (b).

while the bottom layer of BLG is twisted by 20.11◦ from
the adjacent WSe2. To complete the chiral structure, the
top WSe2 monolayer is twisted by 60◦ with respect to the
bottom WSe2; see Fig. 5(a).

The energetically spin-split electronic states have no
out-of-plane spin orientation, as shown in Fig. 5(b). The
in-plane spin polarizations, presented in Fig. 5(c) and
(d), are purely radial. The difference to BLG is the mag-
nitude of the Rashba coupling, which is about 1 meV.
We fit the DFT data to a model Hamiltonian in Supple-
mental Material[54]. The Hamiltonian description should
be useful for investigating spin transport and correlation
physics in such chiral multilayers. Important, the spin
texture can turn from radial to tangential, upon apply-
ing an out-of-plane electric field [54].

Conclusions. We studied the emergence of purely ra-
dial SOFs in twisted homobilayers of Gr and WSe2, as
well as in twisted multilayer heterostructures compris-
ing Gr and WSe2. We found that this unconventional
Rashba spin texture is fully in-plane tunable, from radial
to tangential, by a displacement field. Such SOFs should
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be even more pronounced in homobilayers of strong spin-
orbit materials with built-in Rashba SOC, such as Janus
dichalcogenides [65] as well as in vdW heterostructures
with strong interlayer coupling which induces strong hid-
den Rashba fields.
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[10] I. Žutić, A. Matos-Abiague, B. Scharf, H. Dery, and
K. Belashchenko, Materials Today 22, 85 (2019).

[11] A. W. Cummings, J. H. Garcia, J. Fabian, and S. Roche,
Physical Review Letters 119, 206601 (2017).

[12] T. S. Ghiasi, J. Ingla-Aynés, A. A. Kaverzin, and B. J.
Van Wees, Nano Letters 17, 7528 (2017).

[13] L. A. Benitez, J. F. Sierra, W. Savero Torres, A. Arrighi,
F. Bonell, M. V. Costache, and S. O. Valenzuela, Nature
Physics 14, 303 (2018).

[14] J. Ingla-Aynés, F. Herling, J. Fabian, L. E. Hueso,
and F. Casanova, Physical Review Letters 127, 047202
(2021).

[15] Y. Li and M. Koshino, Physical Review B 99, 075438
(2019).

[16] A. David, P. Rakyta, A. Kormányos, and G. Burkard,
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I. TWISTED BILAYER GRAPHENE (TBLG)

S1. Computational details and geometry setup

The supercells are constructed following Shallcross et al.1. We define the primitive

graphene cell as a⃗1 = (1, 0)xy and a⃗2 = (−1/2,
√
3/2)xy and atoms at positions (1/3, 1/3)12

and (2/3, 2/3)12. The supercell lattice vectors take the form A⃗1 = [−(p + q)⃗a1 + 2qa⃗2]/γ

and A⃗2 = [−2qa⃗1 − (p − q)⃗a2]/γ, with γ = gcd(p + 3q, p − 3q). For our cells, we choose

(p, q) = (1, 3), resulting in an rotation angle of

θ = tan−1[(3(p/q)2 − 1)/(3(q/p)2 + 1)] ≈ 21.79◦. (S1)

The layer lattice vectors in the bottom (b) and top (t) layers in terms of the bare Gr lattice

vectors are given by R⃗b = i⃗a1 + ja⃗2 + t⃗ and R⃗t = Rθ(i⃗a1 + ja⃗2) with integer i and j.

Translation vector t⃗ controls the sublattice-exchange symmetry: the even system results

from t⃗even = (0, 0)12, the odd from t⃗odd = (1/3, 1/3)12. The top layer is rotated with respect

to the bottom layer by the rotation matrix Rθ, taking the angle of Eq. (S1) to ensure

commensurability. Our even and odd structures are shown in Fig. 1. The DFT code we

employ, Wien2k 2, symmetrizes the supercell internally such that A⃗1 is aligned with the y

direction; this is important to correctly interpret in-plane spin components.

The resulting twisted bilayers lack inversion symmetry. The even system belongs to space

group P622, having the z-axis as a six-fold rotation axis and a two-fold rotation symmetry

around the axis indicated in Fig. 1(b), giving a total of 12 symmetry operations. The odd

system has half the number of symmetry operations and its space group is P321 with a

threefold rotation symmetry about the z-axis and a two-fold in-plane rotation axis.

Our electronic structure calculations within the LAPW (linearized augmented plane

wave) formalism are carried out with Wien2k2, an electronic structure code that gives ac-

curate results for SOC in carbon-based materials3,4. The lattice constant of graphene is

set to a = 2.46 Å and a vacuum spacer of 12 Å is inserted between repeated structures in

z-direction of our slab calculation. We apply a 10 Å−1 cutoff for plane waves and employ a

k-point grid of 6× 6. Empirical van der Waals corrections5 lead to an interlayer distance of

3.49 Å, in agreement with accurate quantum Monte Carlo calculations for BLG6.

In the paper, we show the results for unrelaxed TBLG. We have checked, using Quantum
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Figure S1. DFT-calculated AA-stacked bilayer graphene. (a) global band structure, (b) zoom

into the crossing at K (k=0, E=200 meV) – intrinsic SO gap, (c) zoom into the crossing off K –

SOC-mediated gap (k =1.5, E = 0)

ESPRESSO, that relaxing the structures does not alter the radial spin textures. The relaxation

of the structures changes only slightly the 120◦ angles by 0.05◦, and introduces a rippling of

about 0.003 Å.

S2. AA stacked bilayer graphene

The even TBLG derives from the energetically less favourable AA stacking. For com-

pleteness, we also present the ab initio calculation of the low-energy energy bands of AA

BLG in the presence of SOC, see Fig.S1.

The band structure consists of two Dirac cones split by the interlayer coupling. Both the

valence and conduction Dirac bands feature spin-orbit (intrinsic) gaps of about 25 µeV. The

valence and conduction bands exhibit SOC-induced anticrossings off K.

S3. Effective Hamiltonian for TBLG with spin-orbit coupling.

The emergence of a purely radial Rashba spin-orbit field in graphene is unprecedented

and the mechanism leading to it deserves special examination. To this end, we extend the

low-energy Hamiltonians for large-angle TBLG of Refs. 7 and 8 with the corresponding

SOC terms. TBLG can be modeled by expressing the Hamiltonian in terms of single-

layer graphene Bloch functions7–9, applying a cutoff at the momentum coupling scale g =

3



8π/
√
3a sin θ/2. Weckbecker et al.8 provide a unified description of large and small angle

regimes and find agreement with tight-binding calculations. Our ab initio results correspond

to the electronic structure given in Refs. 7 and 8.

The orbital Hamiltonians read7,8

Heven(k⃗) =




u ℏvFkei(θk−θ/2) we−iϕ 0

ℏvFke−i(θk−θ/2) u 0 weiϕ

we−iϕ 0 −u ℏvFkei(θk+θ/2)

0 weiϕ ℏvFke−i(θk+θ/2) −u




(S2)

and

Hodd(k⃗) =




u ℏvFkei(θk−θ/2) w 0

ℏvFke−i(θk−θ/2) u 0 0

w 0 −u −ℏvFke−i(θk+θ/2)

0 0 −ℏvFkei(θk+θ/2) −u




. (S3)

The outer blocks describe the layer degree of freedom (the first block is the bottom layer),

and the inner basis is the sublattice degree of freedom. The linearized graphene dispersions

with Fermi velocity vF within the layers are symmetrically rotated by the relative angle θ.

The angles θ and θk = arg(kx+ iky) are measured with respect to the kx axis. The interlayer

coupling w reflects effective coupling within a single sublattice in the odd system. Different

signs in the arguments of the exponentials and prefactors indicate that in the odd case, K

and K′ from different layers are coupled7. Our notation follows Ref. 10, to have consistent

graphene [ℏvF (κkxσx − kyσy)] and SOC Hamiltonians. The valley is addressed by κ, which

takes values of ±1 for K and K′. Angle ϕ is added as a free parameter in Eq. (S2)7, necessary

to tune the anticrossing in the even bilayer system. To model the electric field of our ab

initio calculations, we put potentials of ±u onto the bottom and top layers to simulate an

out-of-plane electric field (positive u – positive field in z), respectively.

Knowledge about which K points are coupled is important for the SOC extension. In

graphene, the low-energy Rashba SOC Hamiltonian is given by λR(−κσxsy − σysx), where

s and σ Pauli matrices indicate the real spin and sublattice degree of freedoms. Hence, the

4



Rashba SOC extension to Hamiltonians of Eqs. (S2) and (S3) are

Heven, R =


λR(−σxsy − σysx) 0

0 −λR(−σxsy − σysx)


 , (S4)

and

Hodd, R =


λR(−σxsy − σysx) 0

0 −λR(σxsy − σysx)


 . (S5)

The signs of Rashba SOC in the bottom and top layer are opposite due to the crystal

field gradients that point into opposite perpendicular directions, responsible for the Rashba

effect.

The other ingredient for a minimal SOC model in bilayer graphene4 is the intrinsic SOC,

which is given by λI(κσzsz), leading to the extension

Heven, I =


λIσzsz 0

0 λIσzsz


 , (S6)

and

Hodd, I =


λIσzsz 0

0 λI(−σzsz)


 . (S7)

Our ab initio band structures on the orbital scale are reproduced very well by the models,

see Figs. 2 and 3 in the main text. The intrinsic SOC in graphene of λI = 12 µeV remains

unchanged, Rashba SOC is introduced. In principle, an applied electric field also changes

the size of Rashba SOC by 10 µeV per V/nm aligning the Rashba couplings3, which is too

small for the electric fields considered here.

The SOC-extended models for the even and odd systems can explain the emergence of

radial Rashba. In Fig. S2 we plot spin expectation values for the uncoupled layer blocks

of the odd Hamiltonian. The bottom layer shows a spin field winding clockwise around

the K point similar to the plain Rashba effect in graphene. Due to the rotation of the

coordinate system with angle θ/2, the spins in the k points are not purely tangential to the

5
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Figure S2. Model radial Rashba spin texture formation for the odd system. Panel (a) shows the

spin field resulting from the isolated bottom-layer block of the model Hamiltonian, (b) from the top

layer. In Panel (c), the spin field of the highest valence band is shown for the interacting system.

In Panel (d), spin expectation values with respect to an electric field are displayed. The blue color

indicates the strength of spin-down polarization gradually evolving to a grey color standing for

zero spin-z.

equi-momentum circles but acquire a radial component. The spin field in the other layer has

the opposite rotation sense due to the different signs in Rashba. The interaction between

the layers leads to a vector addition of the spin expectation values in each k point, which

results in a cancellation of tangential components. This also means, that the spin texture

is independent of the rotation angle and this effect should be observable in a range of large

twist angles.

S4. Model Hamiltonian in electric field

In Fig. S3 we show the low-energy band structure of the even TBLG, from the model

Hamiltonian in the main text, as a function of the out-of-plane electric field. The off-K

anticrossings move to larger k values as the field increases, but the overall topology of

the bands remains the same. On the other hand, the spin texture is tuned from radial to

tangential, demonstrating the full in-plane tunability of the Rashba field by the electric field.

In Fig. S4 we show the electric field dependence of the electronic states in odd TBLG.
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Figure S3. Electric field dependence of the even model system applying different potential differ-

ences u across the layers. Model parameters as in main text.

−5 0 5
k [10−5 2π/a]

−50

0

50

E
−

E
F

[µ
eV

]

(a)

u = 0 eV

−5 0 5
k [10−5 2π/a]

−50

0

50

E
−

E
F

[µ
eV

]

(b)

u = 10−6 eV

−5 0 5
k [10−5 2π/a]

−50

0

50

E
−

E
F

[µ
eV

]

(c)

u = 10−5 eV

−5 0 5
k [10−5 2π/a]

−200

0

200

E
−

E
F

[µ
eV

]

(d)

u = 10−4 eV

−25 0 25
kx [10−5 2π/a]

−25

0

25

k y
[1

0−
5

2π
/
a] (e)

−25 0 25
kx [10−5 2π/a]

−25

0

25

k y
[1

0−
5

2π
/
a] (f)

−25 0 25
kx [10−5 2π/a]

−25

0

25

k y
[1

0−
5

2π
/
a] (g)

−25 0 25
kx [10−5 2π/a]

−25

0

25

k y
[1

0−
5

2π
/
a] (h)

Figure S4. Electric field dependence of the odd model system applying different potential differences

u across the layers. Model parameters as in main text.

The electric field effects are more interesting than for the even system. First, the electric

field induces a sizeable (up to 25 µeV) spin-orbit splitting of the bands and closing the band

gap, and rotates the spin texture from radial to tangential. As the electric field further

increases, the spin-orbit splitting remains but the band gap reverses its trend and increases

due to the layer polarization. The spin texture remains tangential.
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II. TWISTED WSe2 HOMOBILAYERS

The ab initio calculations of twisted WSe2 homobilayers for two complementary twist

angles, ∼21.79◦ and ∼38.19◦, are performed using Wien2k2. We employ the Perdew-Burke-

Ernzerhof11 exchange-correlation functional with van der Waals interactions included via

the D3 correction5. We used a k-grid of 12× 12× 1, and convergence criteria of 10−5 e for

the charge and 10−5 Ry for the energy. The plane-wave cutoff multiplied by the smallest

atomic radii is set to 8. Spin–orbit coupling was included fully relativistically for core

electrons, while valence electrons were treated within a second-variational procedure12 with

the scalar-relativistic wave functions calculated in an energy window up to 5 Ry. The lattice

parameter for the monolayer WSe2 is 3.282 Å and thickness is 3.34 Å13. The interlayer

distance is 3.4 Å14. The vacuum is 20 Å. To create the twisted structures, the two WSe2

are aligned at zero degree and the rotation axes goes through the W atoms (notice how the

W atoms are on top of each other at the corners of the supercell in both cases), following

Ref.15.

The resulting band structures, spin splittings, and spin textures are presented in Figs. S5

and S6 for ∼21.79◦ and ∼38.19◦ bilayer WSe2 structures, respectively. We focus on the

low energy valence (v1-4) and conduction (c1-4) bands. The ∼21.79◦ structure belongs to

the symmetry group D2
3 (space group 150, P321), with its K-point belonging to the point

group D3. On the other hand, the ∼38.21◦ structure belongs to the symmetry group D1
3

(space group 149, P312), with its K-point belonging to the point group C3. The different

symmetry groups influence the splitting of the energy bands at the K-points, encoded by

irreducible representations (irreps). In the twisted homobilayers, this effect is clearly visible

in the spin splittings directly at the K-point, which are non-zero for all the studied bands

of the ∼38.21◦ case but are absent in some of the bands of the ∼21.79◦ case. Nonetheless,

both v1-4 and c1-4 present strong signatures of the radial Rashba spin texture.

To better understand the origin of trigonal effects in the spin texture of the twisted

homobilayers as emerging from the hidden spin splitting in the individual layers, we present

in Fig. S7 the band structure and spin texture for the band edges of monolayer WSe2

under electric field. The electric field mimics the effect of asymmetric potentials, which

is present in the twisted homobilayer system. Our calculations reveal that the in-plane

spin texture exhibits complicated patterns that do not behave as typical tangential Rashba

8



fields, particularly when we move away from the K-point. Since in the twisted homobilayers

there is band hybridization involved states at arbitrary k-points, these different regions in

k-space with non-tangential Rashba textures can contribute to the deviations from pure

radial Rashba spin texture [as shown in Figs. S5(a,b)].
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Figure S5. WSe2 bilayer twisted by ∼21.79◦. (a) Band structure along the Γ-K direction high-

lighting the low energy valence (v1-4) and conduction (c1-4) bands. The double group irreps at the

K-point (D3 point group) are indicated. The irrep Γ4 is two-dimensional and real, while the irreps

Γ5 and Γ6 are one-dimensional and complex. The inset shows the supercell. (b) Spin splitting of

relevant low-energy bands around the K-point. (c)-(f) Spin texture around the K-point for the

valence bands v1-v4. (g)-(j) Spin texture around the K-point for the conduction bands c1-c4.
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Figure S6. Same as Fig. S5 but for the WSe2 bilayer twisted by ∼38.21◦. The point group at the

K-point is C3 with the double group irreps Γ4 and Γ5 being one-dimensional and complex, while

the irrep Γ6 is one-dimensional and real.
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III. TWISTED MULTILAYER STACKS

We finally consider twisted multilayer stacks. In particular, we consider the even case of

TBLG and encapsulate it within WSe2 monolayers, which induce strong proximity-induced

SOC. Two different geometries, which have 52 atoms in the heterostructure supercell, are

set-up with the atomic simulation environment (ASE)16 and the CellMatch code17, im-

plementing the coincidence lattice method18,19. In the heterostructures, the graphene layers

are biaxially strained by about 0.8%, while keeping WSe2 unstrained. The structures and

the twist angles are shown in Fig. S8(b,c).

The ab initio calculations are performed with Quantum ESPRESSO20. Self-consistent cal-

culations are carried out with a k-point sampling of 18 × 18 × 1. We use an energy cutoff

for charge density of 560 Ry and the kinetic energy cutoff for wavefunctions is 70 Ry for

the fully relativistic pseudopotentials with the projector augmented wave method21 with the

Perdew-Burke-Ernzerhof exchange correlation functional11. Spin-orbit coupling (SOC) is in-

cluded in the calculations. For the relaxation of the heterostructures, we add DFT-D2 vdW

corrections5,22,23 and use quasi-Newton algorithm based on trust radius procedure. Dipole

corrections24 are also included to get correct band offsets and internal electric fields. To

get proper interlayer distances and to capture possible moiré reconstructions, we allow all

atoms to move freely within the heterostructure geometry during relaxation. Relaxation is

performed until every component of each force is reduced below 1× 10−4 [Ry/a0], where a0

is the Bohr radius.

Additionally, we consider the 38.21◦ twisted WSe2 homobilayer, and place a monolayer

graphene in between the WSe2 layers. In particular, we place graphene such, that the relative

twist angles from top and bottom WSe2 with respect to graphene are exactly opposite, i. e.,

±1
2
× 38.21◦. We end up with 266 atoms in the heterostructure supercell. The calculation

details are the same as before, but with a reduced k-grid of 3 × 3 × 1. The structure and

the twist angles are shown in Fig. S8(a).

In Fig. S9 and Fig. S10, we show the DFT-calculated global band structures, low energy

bands, and spin-orbit fields for the WSe2-encapsulated TBLG geometries corresponding

to Fig. S8(b,c). In the case when the two WSe2 layers have a relative twist angle of 0◦,

out-of-plane spin components dominate the spectrum, with small but radial in-plane spin

components. In the case of 60◦ relative twist angle, the radial in-plane spins dominate the
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low energy spectrum of TBLG. By applying a small electric field of 0.1 V/nm, see Fig. S11,

we introduce a potential difference between the twisted graphene layers, and spin-orbit fields

recover their typical vortex-like Rashba structure.

In the case of WSe2-encapsulated monolayer graphene, see Fig. S12, we also find a radial

Rashba spin-orbit field combined with strong out-of-plane valley-Zeeman spins.

The low energy bands and spins of the encapsulated TBLG geometries, with and with-

out electric field, can be reproduced by the model Hamiltonians from Sec. I S3, employing

sublattice-resolved intrinsic and complex-valued Rashba SOCs for the individual graphene

layers to account for the proximity effects25–27. The comparison of DFT and model data

are shown in Fig. S13, while the parameters are summarized in Table S1. In the case of

encapsulated graphene, we employ the following model Hamiltonian

H = H0 +H∆ +HI +HR + ED, (S8)

H0 = ℏvF(κkxσx − kyσy)⊗ s0, (S9)

H∆ = ∆σz ⊗ s0, (S10)

HI = κ(λA
I σ+ + λB

I σ−)⊗ sz, (S11)

HR = −λRe
−iθR

sz
2 (κσx ⊗ sy + σy ⊗ sx)e

iθR
sz
2 . (S12)
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Figure S8. Top and side views of the twisted multilayer stacks. We consider (a) WSe2-encapsulated

graphene and (b,c) WSe2-encapsulated even TBLG. The twist angle indicated above each layer is

measured with respect to the bottom WSe2 layer.
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Figure S9. (a) Global band structure of the WSe2-encapsulated even TBLG geometry of Fig. S8(b).

(b) The corresponding low energy bands with labels for the eight bands b1-b8. (c) The spin-orbit

fields of the eight bands as indicated in (b).
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Figure S10. (a) Global band structure of theWSe2-encapsulated even TBLG geometry of Fig. S8(c).

(b) The corresponding low energy bands with labels for the eight bands b1-b8. (c) The spin-orbit

fields of the eight bands as indicated in (b).
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Figure S11. (a) Global band structure of theWSe2-encapsulated even TBLG geometry of Fig. S8(c),

with an applied transverse electric field of 0.1 V/nm. (b) The corresponding low energy bands with

labels for the eight bands b1-b8. (c) The spin-orbit fields of the eight bands as indicated in (b).
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Figure S12. (a) Global band structure of the WSe2-encapsulated monolayer graphene geometry of

Fig. S8(a). (b) The corresponding low energy bands with labels for the eight bands b1-b4. (c) The

spin-orbit fields of the four bands as indicated in (b).
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Figure S13. Comparison of the DFT data and model Hamiltonian fits. (a) Corresponds to the low

energy bands in Fig. S9. (b) Corresponds to the low energy bands in Fig. S10. (c) Corresponds to

the low energy bands in Fig. S11. (d) Corresponds to the low energy bands in Fig. S12.
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Table S1. The fit parameters of the model Hamiltonians. The model parameters from left to right

reproduce the DFT data in the subfigures (a)-(d) of Fig. S13. Compared to the Hamiltonians from

the main text, we employ layer (1, 2) and sublattice (A, B) resolved intrinsic and Rashba SOC

parameters to account for proximity effects.

system TBLG TBLG TBLG graphene

relative twist angle of WSe2 layers [deg.] 0 60 60 38.21

E-field [V/nm] - - 0.1 -

∆ [meV] - - - 0.015

u [meV] 0 0 8.329 -

w [meV] 3.486 3.604 3.604 -

vF/10
5[m

s
] 7.940 7.931 7.931 7.456

ϕ [rad] -0.654 -0.721 -0.721 -

λA1
I [meV] 0.567 0.567 0.567 1.133

λB1
I [meV] -0.615 -0.615 -0.615 -1.229

λA2
I [meV] 0.567 -0.615 -0.615 -

λB2
I [meV] -0.615 0.567 0.567 -

λR1 [meV] 0.865 0.865 0.875 0.601

λR2 [meV] -0.865 -0.865 -0.855 -

θR1 [rad] 0.866 0.866 0.866 -1.571

θR2 [rad] 1.229 1.229 1.229 -

ED [meV] -6.541 0.605 -6.996 0.943
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