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Abstract
Nowadays, the use of third-party libraries in software is common. At the same time, the number of published libraries contin-
ues to increase. An automated classification should help to maintain an overview and identify similar software libraries. This 
paper investigates if new approaches can be used to classify all software libraries crawled from Apache Maven repositories 
into defined classes using machine learning. In addition to tags that are not always available or of poor quality, we examine 
one feature that is always available—the id. Consisting of group-id and artifact-id, the id of an Apache Maven software 
library contains valuable information that can help in classification. Through a developed preprocessing and an optimized 
recurrent neural network (RNN), the tokenised ids should allow a classification of most libraries. Furthermore, we present 
an optimized approach through a hybrid use of id tokens and tags in combination. Based on the dataset including 28,600 
labeled entries, a comparison of various approaches was carried out. The RNN achieved a balanced accuracy of 71.36% by 
training on tokenised ids. A model trained on tags achieved a balanced accuracy of 92%. However, the new hybrid approach, 
which combines tags and ids, optimizes the result to 94.12%. While a classification on tags achieves a better result than the 
more general id-based approach, the applicability is limited to software libraries that are tagged. The hybrid approach, on 
the other hand, takes advantage of the classification results based on tags when these are available, but includes valuable 
information from the always available ids.
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Introduction

An increasing number of organizations and developers pub-
lish software via application programming interfaces (APIs), 
which contain a range of subroutines and functionalities. 
These are made available in the form of comprehensive 
packages, so-called third-party libraries [1]. This allows 
other software systems to integrate these third-party librar-
ies and gain a usually quick and comparatively easy access 
to the integrated routines and functionality. Companies 
with interfaces to digital services can make their products 

easily accessible and attractive, to offer a service by means 
of maintaining compatibility and backward compatibility as 
well as continuous maintenance and further development. 
The libraries can be used to query services, simplify code, 
and file processing, integrate prebuild components, simplify 
tests, analyze code, or integrate complex processing, e.g., 
in distributed computing. Using libraries, typically less 
code needs to be written and therefore less code needs to be 
tested and maintained. As a result, software libraries are an 
essential part of many software projects in most domains, 
platforms, and technologies.

The usage of such third-party libraries has increased over 
the last decades. Back in 2013, Thung et al. [2] analyzed 
over 1000 projects of considerable size from GitHub. They 
found that 93.3% of the software projects studied used third-
party libraries. On average, these projects each contained 28 
third-party libraries. If current uses are analyzed and smaller 
projects are also considered, this amount may vary consid-
erably. We ourselves examined around 800,000 revisions 
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of around 15,000 Java projects from GitHub.1 A random 
search was performed with the filter criteria that each pro-
ject should use the dependency management tool Apache 
Maven and that a Readme.md file should be available in the 
project directory. First-party libraries were filtered out and 
only one revision per project with the largest share of third-
party libraries was considered. This enabled us to determine 
an average use of 8.65 third-party libraries per project. The 
median usage of libraries was 6.

Online available ecosystems, which list or even manage 
software libraries, are registering an increasing number of 
projects that can be integrated as software libraries. For 
example, beside Python Package Index (PyPI) or package 
management systems such as CRAN (for the R language) or 
npm (for Node.js packages), Maven is one of these ecosys-
tems. The Maven ecosystem contains libraries that are devel-
oped in the context of the Java Virtual Machine (JVM) and 
made available to it. The indexing platform MvnRepository.
com,2 which is based on different JVM-related repositories 
like Maven Central3 for software libraries, provides partly 
classified and tagged data. The website of MvnRepository.
com does not offer an API, but if categories and tags are 
available for libraries, it does display these as shown in Fig. 1.

A classification of libraries can help developers and other 
project participants to get an overview of current imple-
mentations for wrapped access to technologies, functions, 
frameworks, and so on. In addition, this can also provide an 
overview of technologies behind the software libraries within 
a category. For decision making, it is essential to organize 
software libraries that are available in that broad spectrum.

Within the context of our overall research project, it is 
planned to identify a similarity between software projects 
automatically to derive design decisions and business-rel-
evant information. Software libraries can help to calculate 

a technical similarity of software by drawing conclusions 
about similar technical characteristics. Applied software 
libraries provide information on these characteristics, 
such as the technology stack in general, types of process-
ing methods and data as well as the type of storage for the 
data, integration with other systems, security methods, 
provided APIs, the underlying platform, like application 
server or cloud-provider, and the usage of the software. For 
usage, libraries can point to what type of user interface is 
provided, such as command-line, fat-client, thin-client, and 
what design pattern is used. By analyzing these characteris-
tics, similar software should be found on a technical basis. 
In a later step, the evolution of the software over time is 
to be determined, such as migrations made, and therefore 
automated decisions about selected technologies, design and 
architecture are to be derived. However, the problem arises 
that libraries must be classified to detect migrations from 
library A to library B with similar functions. As too many 
libraries are available, manual classification is not feasible. 
Therefore, this research project aims to evaluate whether 
libraries crawled from Apache Maven repositories can be 
classified automatically into defined classes using machine 
learning (ML).

In the following Section “Related Work”, related work 
is provided, before the new approaches are elaborated in 
Section “Software Library Classification Approach”. Sec-
tion “Dataset” describes the data required for the training 
and evaluation approaches, as well as the preprocessing. 
Section “Evaluation” presents the test setup that is used for 
the evaluation and introduces the metrics applied for the 
description of results in Section“ Results”. Section “Discus-
sion” includes a discussion of the results from the previous 
chapter. Finally, Section “Threads to Validity” lists some 
limitations and validity threats before drawing the conclu-
sion in the final Section “Conclusion”.

Related Work

Similar to the ongoing growth of repositories for software 
libraries, app stores4 have also grown in size over the last 
decade. As a result, these app stores have already become 
the focus of research in the past. Various approaches [3] have 
been used to process and order the apps by means of auto-
mated classification or clustering. Yu et al. [4], for example, 
use not only descriptions but also third-party libraries of 
mobile apps to perform categorisation and recommendation 
using similarity metrics and collaborative filtering.

Fig. 1  Example of a categorized and tagged software library on the 
MvnRepository.com website

1 https:// github. com/.
2 https:// mvnre posit ory. com/, last accessed 2021-12-05.
3 https:// repo1. maven. org/ maven2/.

4 The Apple app store (https:// www. apple. com/ de/ app- store/) and 
Google play (https:// play. google. com/ store) are frequently used for 
mobile apps in the studies.

https://github.com/
https://mvnrepository.com/
https://repo1.maven.org/maven2/
https://www.apple.com/de/app-store/
https://play.google.com/store
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In addition to the app stores, the research field of clas-
sification and recognition of similar software projects has 
also increased in general. A recently conducted and pub-
lished systematic literature review [3] shows the variety 
of approaches and motivations behind the work. In com-
parison, the categorization of software libraries is rarely 
found in published research projects. The review paper only 
points out the work of Escobar-Avila [5], who published an 
approach to automatically categorize software libraries. He 
manually collected the bytecode (.jar files), profiles and cat-
egories of 158 software libraries. These examined libraries 
are written in Java, which are published and maintained by 
the Apache Software Foundation. The bytecode documents, 
including most of the textual information in the source code, 
were transformed and clustered. Instead of a multi-class 
classification, five categories are suggested by this approach. 
The author points out that this goal leads to a good accu-
racy on recommending a list of categories, but precision and 
recall were rather low and in around 40% of cases, the first 
recommended category was the correct one. Since we are 
aiming for a multi-class classification with higher precision 
and recall, we decided on using other sources, like meta-data 
of the libraries.

A recent study [6] of ours has shown that a tag-based 
approach can provide good results for automated multi-class 
classification of software libraries. However, this approach 
is limited to tags and only applicable to a part of the soft-
ware libraries. We used the same data as in this study to 
achieve the same goal, which is why we use this approach 
as a baseline.

Another, recently published study [7] shows a hybrid 
approach through the automated evaluation of tags and word 
vectors from binary files. However, the aim of the work is a 
multi-label classification to recommend tags for previously 
untagged software libraries. Therefore, even though their 
study is in the same subject area, it cannot be directly com-
pared to ours. It pursues a different goal based on different 
data and methods. The same applies to all other studies in 
the systematic literature review [3]. We can imagine that a 

classification based on similar extracted data to that from 
the studies in the review could be promising when applied 
to software libraries.

For a better overview, the related research that followed 
a similar goal is summarized in the Table 1.

Another challenge is caused by applying and evaluat-
ing imbalanced data, which was also identified in an earlier 
study [7] on tags of MvnRepository.com. Since we were 
confronted with a similar problem in our experiment, we 
described in our previous study [6] as well as in the evalu-
ation Section 5 all the steps taken to obtain an evaluable 
result.

Software Library Classification Approach

Machine learning is well suited to train models for classifi-
cation tasks because they are able to identify patterns and 
relationships in data that are not easily identified by humans 
or rule-based software approaches. This capability empow-
ers machine learning models to learn patterns to classify 
vast datasets, such as a wide range of software libraries. 
Furthermore, once these models are trained, they can adapt 
to changes in the data environment, which is essential con-
sidering the constant growth of software libraries. Therefore, 
in addition to the prediction performance of each machine 
learning model trained on labeled data, the speed and scal-
ability of these models will also be examined in the later 
discussion.

In addition to the approaches described in related work for 
the classification of software libraries, we present our new 
machine learning approaches based on the always available 
software library ids (in the following referenced as id-based) 
as well as a hybrid solution (in the following referenced as 
hybrid-based) that considers ids and tags at the same time. 
In doing so, we evaluate and discuss the approaches by com-
paring them to the tag-based approach as baseline.

Table 1  Summary overview of the existing published work

Authors Target Data-Source ML-Method

Auch et al. [6] Multi-class classification of software 
libraries

Tags Feedforward neural network, naïve 
Bayes, random forest, logistic regres-
sion

Escobar- Avila [5] Single-label and multi-label categoriza-
tion of software libraries

Bytecode, software library profiles and 
categories

Clustering via vector space model and 
Dirichlet process clustering

Velázquez- Rod-
ríguez and De 
Roover [7]

Multi-label classification of software 
libraries

Tags and word vectors from binary 
files

Several specific classifier out of a 
MEKA toolkit

Yu et al. [4] Categorization and recommendation of 
mobile apps

Descriptions, third-party software 
libraries

Similarity metrics, collaborative 
filtering
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Tag‑Based Classification (baseline)

A tag-based approach for classification of software libraries 
is probably obvious if tags are available for these libraries 
in a repository. A detailed description of this approach, the 
quality of the data, the preprocessing and the study results 
are described in a previously published paper [6]. Both 
the quality of the tags and the quantity of tagged software 
libraries play an important role when training a ML model 
for classification. This aspect was also described as one 
of the limitations of this approach. The goal would be a 

classification with good results based on attributes that all 
software libraries of the included repositories share. Tags, 
on the other hand, are not always available as they are often 
manually assigned. The two new approaches to overcome 
this problem are therefore described below. While the new 
Id-based approach is independent, the hybrid approach is 
based on both approaches to benefit from them.

Id‑Based Classification

In this study, we refer to the names of the libraries as the 
unique identifier, which in the JVM and Apache Maven con-
text consists of group-id, artifact-id, and version [8]. We 
have excluded the project version of the software library 
in advance, since these do not provide any relevance as a 
feature for the targeted classification. This approach focuses 
on classification by the group-id and the artifact-id. Before 
describing the approach of processing the ids, we want to 
summarize what constitutes these two identifiers and why 
they may be suitable for classification.

The structure of these two identifiers is not clearly 
described and strict naming conventions do not exist 
either. The Apache Maven project describes the group-id 
as a unique identifier for the project behind the software. It 
should be based on the Java package name conventions and 
begin with a reversed domain name. This can be followed 

by further sub-items such as division, department, project, 
machine, or login names [9]. The items are usually separated 
by dots. The artifact-id, on the other hand, is the name of the 
packed build without the version number [8]. This structure 
is illustrated by the following example:

group – id : a r t i f a c t – id
org . mariadb . jdbc : mariadb– java – c l i e n t

These rules are not enforced by Maven, and conse-
quently libraries may not follow the convention. A simple, 
systematic filtering out of certain parts of classification-
relevant words should therefore not be possible in gen-
eral. Our approach still relies on an automated classifica-
tion using these group-ids and artifact-ids. As part of our 
approach, a process is developed to extract the relevant 
tokens from the id. This preprocessing is described in the 
following Section 4. Word embeddings of the extracted 
token sequences are to be generated. These word embed-
dings can then be used to train an artificial neural net-
work (ANN). We considered different ANN architectures 
and finally decided to use a recurrent neural network 
(RNN), which can learn to map input sentences of vari-
able length into a fixed-dimensional vector representation 
[10]. Besides an RNN, we have also considered other ML 
algorithms and a feedforward neural network [11] (FNN). 
However, since the tokens from the ids are processed simi-
larly to the tags, we excluded other ML algorithms, such 
as the most recently evaluated from [6]. We experimented 
with an FNN in addition but could not achieve a better 
performance. Since the structure of the FNN, which is also 
described in [6], expects a fixed length of the input vector, 
we decided to use the RNN with a variable input.

Different RNN architectures, such as Long Short-Term 
Memory (LSTM) [12] or Gated Recurrent Unit (GRU) 
[13], can be considered. In this study, we experimented 
with these RNN architectures, including unidirectional 
and bidirectional evaluation of token sequences. While 
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the differences in training results were relatively small, 
we opted for a bidirectional LSTM. In addition to choosing 
a suitable architecture, we also performed hyperparameter 
tuning. The resulting RNN is presented in Fig. 2.

The figure illustrates the layers placed sequentially from 
left to right and from top to bottom the tokenised ids of the 
1 to n software libraries. To process the ids, the tokens are 
first loaded into an encoding layer. The resulting vectors, 
which represent the encoded tokens, are then converted 
into word embedding vectors and fed into a bidirectional 
LSTM layer with 100 neurons. The LSTM is followed 
by a fully connected dense layer with 100 neurons and a 
ReLu activation function. In the Figure 2, the 100 neurons 
of the dense layer are represented by 6 circles for better 
visualization. To counteract overfitting, a dropout layer 
follows, which randomly discards input values. For visu-
alization purposes, we have marked neuron circles in the 
layer with a cross as dropouts. For those dropouts we have 
chosen a frequency of 20%. Finally, an output layer with 
69 neurons is included, matching the 69 possible classes of 
the crawled dataset. Further details on the dataset and the 
classes are described in the following Section 4. The com-
bination of layers, the neuron numbers, and the frequency 
of dropouts are the result of the hyperparameter tuning.

Hybrid Classification

The two approaches presented so far use the group-id and 
artifact-id of the Java software libraries and tags from the 
indexing platform MvnRepository.com. Complementing the 
two approaches, a new hybrid approach aims to combine 
the advantages of these two and optimizes a trained model 
for a higher accuracy. The idea is therefore to use the new 
RNN from Fig. 2, training a classification model based on 
the extracted tokens from the ids combined with the tag lists 
of the respective software libraries. The addition of ids is 
intended to compensate for poor tag quality or the absence 
of tags. However, the evaluation of the tag-based approach 
in the previous study [6] showed that tags, when present, 
produce good classification results and should always be 
considered.

Dataset

Software libraries for the Java Virtual Machine were crawled 
between May to July 2020 to create a dataset for an auto-
mated classification. For this purpose, the libraries were 
crawled by their id, consisting of group-id and artifact-id 
from the largest public repositories, listed in Section 4.1. 
In addition, a class mapping and improved balancing of the 
individual classes was carried out.

The entire process with all the efforts made to reduce 
the imbalance in the data is described in the previous study 
[6]. The mapping of the crawled 162 categories to coarser-
grained classes as well as the removal of a class that was too 

LSTM

LSTM

LSTM

Embedding
Layer

Embedding
Layer

Embedding
Layer

ReLu Dropout Softmax

Fully-Connected 
Dense Layer

100 Neurons

Dense Output Layer

69 Neurons
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1-D Vector

Representation

Encoding
Layer
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Fig. 2  Architecture of the applied RNN on the tokens of group-id and artifact-id
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coarse-grained is also described in detail in the last study. 
The 69 classes resulting from the mapping are also used as 
the classification target in this study. However, the imbal-
ance could only be reduced but not eliminated. An evalua-
tion of the distribution of classes after the applied balancing 
steps is shown in Fig. 3. The classes "Build Automation Tool 
Plugins", "Example", "Web Applications" and "Testing" still 
contain slightly over 50% of the labeled data.

However, in this study we did not choose an attempt to 
further balance the data by methods such as oversampling 
or undersampling, as these could bring new drawbacks, as 
described for example by Velez et al. [14]. Instead, by apply-
ing macro evaluation metrics and a balanced accuracy, we 
show below that the trained models can also deal with imbal-
anced data. We describe the evaluation process in section 5.

Description of crawled dataset

The by far largest repository was found to be Maven Cen-
tral,5 which contained slightly over 300,000 libraries. The 
other five selected repositories for crawling were Sonatype,6 
Spring IO,7 Atlassian,8 Hortonworks9 and Wso2.10 After 
merging and removing duplicates, the dataset has a size of 
325,000 unique software libraries. For these crawled librar-
ies, we accessed metadata from the online indexing service 
MvnRepository.com for each library. This service provides 
categories and tags for some libraries. While categories bun-
dle similar libraries of a domain, tags show more coarse-
grained and sometimes unique properties of a library [7]. 
This process of crawling is shown in Fig. 4.

For the crawled dataset, we found that not all software 
libraries are tagged. Furthermore, we have found that only 
a fraction of the libraries that have tags also have catego-
ries. Velazquez-Rodriguez and De Roover [7] point out, 
that tags are often missing or only a single tag is available. 
This observation was made based on a crawled dataset with 

about 3,000 tagged libraries. We were also able to identify 
about 75% of the crawled libraries are tagged, which corre-
sponds to about 250,000 libraries. About 11% of all libraries 
are categorized. Libraries that are labeled and tagged com-
prise about 9% of the dataset. This is an absolute amount 
of around 28,600. This dataset, which we already used and 
published in the last study [6], is also applied in this study to 
ensure comparability. As described in Fig. 4, preprocessing 
is also carried out on the ids and a split is already made into 

Fig. 3  Imbalanced distribution of libraries after the applied balancing 
steps from [6]

Fig. 4  Crawling Apache Maven 
repositories and MvnRe-
pository.com to create software 
library corpora

Maven Central
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Atlassian

Hortonworks
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libraries

Corpus including
28,600

categorized and
tagged software

libraries

Crawled Categories 
and Tags from

MvnRepository.com

313,122

681

35,434

1,180

1,716

1,448

Preparation process 
on ids of software 
libraries (compare 

with Figure 5)
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validationcorpus 

including
categorized and
tagged software

libraries

Testcorpus 
including
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libraries
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0.2
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0.8

5 https:// repo1. maven. org/ maven 2/.
6 https:// oss. sonat ype. org/ conte nt/ repos itori es/.
7 https:// repo. spring. io/ plugi ns- relea se/.
8 https:// maven. atlas sian. com/ conte nt/ repos itori es/ atlas sian- public/.
9 https:// repo. horto nworks. com/ conte nt/ repos itori es/ relea ses/.
10 https:// maven. wso2. org/ nexus/ conte nt/ repos itori es/ relea ses/.

https://repo1.maven.org/maven2/
https://oss.sonatype.org/content/repositories/
https://repo.spring.io/plugins-release/
https://maven.atlassian.com/content/repositories/atlassian-public/
https://repo.hortonworks.com/content/repositories/releases/
https://maven.wso2.org/nexus/content/repositories/releases/
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a training/validation dataset and a test dataset. Details on the 
split process are described in Section 5. We have published 
the datasets applied in our evaluation on GitHub. 11

Tags

Available tags from the indexing platform MvnRepository.
com were added to the crawled software library corpus. In 
the process, 437 unique tags were extracted, and each soft-
ware library holds usually up to 7 tags. A few outliers even 
have up to 13 tags assigned to them. A distribution of the 
tags on the categorized training and evaluation data as well 
as the uncategorised data is shown in Figure 5. It is notice-
able that a higher percentage of libraries which are not cat-
egorized have a single tag and few libraries have more than 
three tags.

Additionally, we analyzed whether the uncategorised 
data contain different tags than the already categorized 
libraries. This is not the case, so we consider tags as a good 
basis for applying a machine learning model for automated 
classification.

A first analysis of the crawled dataset has shown that not 
all tags have the same relevance. Some tags were found to 
be irrelevant when viewing the crawled dataset and could 
be excluded for training. These are tags that occur across 
classes and do not contribute to the description of the func-
tionality of a class. The excluded tags are "github", "code-
haus", "apache", "experimental", "starter", "runner", "api" 
and "bom". We have identified these tags in an analysis of 
the dataset across classes and as interfering. The first three 
indicate where the project is hosted. The remaining tags to 
be excluded indicate an irrelevant status, function, or struc-
ture. By excluding these tags, we assume that an improved 
training result can be achieved. Even though a neural net-
work may automatically rate the irrelevant tags as such, 
manual pre-filtering can exclude libraries that only have 
irrelevant tags from the classification. By adding further 

features, as described below, these insufficiently tagged 
software libraries can possibly still be reliably classified.

Group‑id and Artifact‑id

The classification of software libraries by their group-id and 
artifact-id is novel. In contrast to the tag-based approach, 
the id-based approach requires additional preprocessing. 
The spelling of ids usually follows certain conventions, but 
no strict guidelines. In the following, we therefore present 
five software libraries of the Maven Central Repository in 
Table 2. These serve as examples in the following.

To achieve the best possible classification result and to 
obtain a model that is as robust as possible, we have carried 
out a automated data cleaning and described it in the form of 
a preprocessing process in Fig. 6. The results described later 
in the paper were optimized by this preprocessing. Training 
and validation data were repeatedly tested against the new 
id-based approach to achieve improvements. For compari-
son, the difference in results was noted in Table 3.

For example, the five software libraries presented in 
Table 2 were broken down into unique tokens and classi-
fied according to the procedure. Extracted tokens such as 
"database", "db" or "jdbc" must be identified automatically, 
since these are used in all the stated libraries and should be 
relevant for classification in the domain database.

Before we split the group-id and artifact-id into individ-
ual tokens, we start in a first step of the process with the 
general replacement of special characters. In addition, we 
removed duplicated spaces and all numbers from the text. 
Removing those numbers is intended to exclude resulting 
purely numeric tokens that represent a version number. As 
an example, the artifact-ids "scala-2.10-provider-plugin" 
and "scala-2.11-provider-plugin" with the group-id "com.
atlassian.scala.plugins" can be mentioned. The version num-
bers define which Scala runtime is provided. However, this 

Fig. 5  Distribution of tags compared by categorized and uncatego-
rized software libraries

Table 2  Example of library ids from the category ’database’

group-id artifact-id

com.h2database h2
com.oracle.database.jdbc ojdbc10
org.mariadb.jdbc mariadb-java-client
org.mongodb mongodb-driver
software.amazon.awssdk dynamodb

11 The datasets are available on the CCWI-repository on GitHub at 
https:// github. com/ CCWI/ corpus- libsim and on https:// github. com/ 
CCWI/ corpus- libsim- exten ded.

https://github.com/CCWI/corpus-libsim
https://github.com/CCWI/corpus-libsim-extended
https://github.com/CCWI/corpus-libsim-extended
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version number is irrelevant for a classification into the tar-
geted classes.

In the Java community, the camel case notation is com-
monly used and is supported by the conventions for writing 
ids. For text classification, this is problematic because each 
compound word would have its own id representation. Due 
to the variety of words in camel case, this would lead to a 
considerable amount of unique tokens and information for 
classification would be lost. To avoid this problem, we split 
the camel case words into individual tokens. After this step, 
all tokens are converted to lowercase letters and duplicate 
ones in a library id are removed. The next step can be viewed 
as stop word removal for software libraries. We defined a bag 
of blacklisted words, which do not include necessary infor-
mation for the classification but do frequently occur.

First, typical entities such as the names of hosting plat-
forms ("googlecode", "codehaus", "github’), software foun-
dations ("apache", "eclipse") and versioning tools ("git", 
"svn") were removed. Company names contained in the ids, 
such as Oracle, Amazon, Facebook, Google, etc., were not 
removed, as they can provide important information for the 
classification. As an example from Table 2, the tokens "ora-
cle" and "amazon" can be useful for this. Both companies 
are behind a respective database solution and the company 
names as tokens can support a classification in combination 
with other tokens. Furthermore, there are software libraries 

with unconventional names, such as "oracle:oracle", which 
have to be classified exclusively by the name of a company.

Another source of potentially interfering tokens in the 
ids could be common top-level domains such as com, edu, 
gov, mil, net, org or any two-letter codes identifying coun-
tries as specified in ISO standard 3166. Starting the group-id 
with such an abbreviation is a convention of Oracle, which 
is described in the JVM specification [9]. This is therefore 
common practice, but also not a fixed rule, as the above 
example ids demonstrate. However, a general exclusion of 
these codes is not possible, as important information could 
be lost in certain cases. For example, the tokens "ai" and 
"ml" represent country codes according to the ISO stand-
ard as well as common abbreviations for "artificial intel-
ligence" and "machine learning" that are used in library ids. 
We therefore recommend a manually created dictionary 
that contains domain abbreviations to be removed, which 
are used in all libraries exclusively at the beginning of the 
group-id.

Next, we use the NLP library spaCy [15] for a lemma-
tization on each token. This allows token to be set to their 
basic form to facilitate classification. The token "embed" 
can be used as an example. Further extracted tokens like 
"embedding" and "embedded" are to be put into the basic 
form "embed" by the process. After the lemmatisation step, 

* Define in advance at which number in the dataset a token is considered ’common’. All tokens that occur less frequently in the dataset are then treated as ’rare tokens’.

Start:
Import dataset

Replacement of
special characters

and numbers

Split group-id and
artifact-id into

tokens

Split camel case
words into tokens

Make tokens
lower case

Remove blacklisted 
tokens

Lemmatization

Remove 
blacklisted tokens

Remove duplicates
in tokens for each 

library

Split rare tokens 
via created 
dictionary

Drop libraries 
containing rare 

tokens only

Mask rare tokens

End:
Export as new

dataset

yes

no
Retrieve rare tokens 

with less than a
certain occurance

Does each
library contain 
at least one 

common token

Are rare 
tokens 
further

separable?

yes

no

Create dictionary 
incl. common

tokens*

Fig. 6  Preparation process on library ids
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it is advisable to remove any blacklisted tokens that may 
have emerged.

To achieve the identification of important tokens such 
as "database", "db" or "jdbc" in the ids, further processing 
steps can be applied. Frequently, important terms for the 
classification are concatenated within the ids, even without 
camel case notation. In the example from Table 2, these 
tokens could be extracted from the concatenated tokens 
"h2database", "mariadb", "mongodb" and "dynamodb". 
However, proper names such as "mariadb", "mongodb" and 
"dynamodb" may themselves already refer to a technology 
and can therefore be suitable for classification if these tokens 
occur more frequently in the dataset and especially in a cer-
tain class. Therefore, in the preparation process in Fig. 6, we 
propose an automated detection of common and rare tokens 
in the dataset and a dictionary-based split of the rare tokens 
if a split is possible. While common tokens are present more 
frequently than a certain number in the dataset, rare tokens 
are below a certain number. For the comparison of the differ-
ent approaches, we did not optimize the dataset in this study 
and did not perform any splitting or filtering to ensure that 
the entire dataset is used. Additionally, a comparison of the 
id-based approach applied on different definitions of com-
mon and rare tokens in the dataset is conducted in this paper. 
For the comparison, in addition to training on data without 
split and filtering, we set tokens to be treated as common 
from 3 occurrences, from 5 occurrences and in another test 
from 10 occurrences. The applied dictionary for the split is 
composed of a predefined dictionary of 125,000 words from 
Wikipedia and a defined dictionary from the domain. The 
specifically defined dictionary was built up by all the found 
common tokens. It was ensured that the words were first split 
according to the domain language of the common tokens and 
then according to the Wikipedia dataset to avoid possible 
incorrect splits. Details and evaluation results are described 
in Section 6. The applied process in Fig. 6 also takes into 
account that if new tokens are found by the split process, 
previous steps are repeated. If no more tokens are found, 
all remaining rare tokens are masked. In addition, libraries 
without at least one common token can be removed, as these 
cannot be classified without further features or actions by the 
presented id-based approach.

Based on the preprocessing, we performed an analysis 
regarding the number of common tokens in the ids of soft-
ware libraries. We compared classified and previously unclas-
sified libraries to determine whether the unclassified ones 
contain the same common tokens. A frequency in percent of 
the number of common tokens without splitting and filtering 
rare tokens in the two datasets is shown in Fig. 7.

First, it is noticeable that many of the uncategorised 
libraries have at least one common token. Some libraries 
hold up to 8 common tokens in both datasets, a few outli-
ers even up to 11 in the ids. It is also noticeable that about 

10% of the uncategorised libraries have none of the common 
tokens in their ids. For this 10% of the libraries, it remains 
to be tested as future work whether a reliable classification 
is possible. It may be necessary to check the tokens of the 
library ids separately again and to create an extended train-
ing set by manually annotating the libraries to make the 
trained model even more robust.

Evaluation

In our last study for the tag-based approach [6] we chose a 
5-fold nested cross validation [16] for an optimized result 
in accuracy. At the same time, however, we were able to 
determine that the accuracy result does not change signifi-
cantly by applying a classical training, validation and test 
split instead. This simplifies an accurate comparison of the 
approaches after all models have been trained and optimized 
on the same training and validation data. Furthermore, all 
different models were evaluated against the same test data-
set, which allows a direct comparison. Therefore, we use the 
classical approach and split the data randomly. Initially, we 
reserved 20% of the data for the final evaluation. We then 
randomly divided the data intended for training into training 
data and validation data by 20%. The validation data was 
used to develop and optimize the resulting model. Finally, 
we trained the optimized neural network 5 times. For this, 
the random split in training and validation data was repeated.

A similar approach was also used for the second evalua-
tion. Here, however, the same id-based approach is always 
applied to different datasets. The datasets differ in a varying 
number of tokens to categorize them as common or rare and 
to perform token splits and filtering of libraries. This proce-
dure corresponds to the preprocessing presented in Fig. 6. 
The evaluation is intended to show one possible option for 
optimizing the classification results and is also discussed 
below.

Fig. 7  Distribution of common tokens in a preprocessed dataset with-
out splitting and filtering rare tokens compared by categorized and 
uncategorized software libraries
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For the evaluation in this study, we apply the metrics 
Precision, Recall and F1-Score, commonly used for clas-
sification problems. There are several calculation options 
that need to be considered. While the basic calculation is a 
binary variant to evaluate 2 classes, a multi-class classifica-
tion involves a global calculation over the classes of true 
positives (TP), false negatives (FN), true negatives (TN) and 
false positives (FP). Without further adjustments to the cal-
culation, this procedure is called micro-averaging [17]. How-
ever, in imbalanced datasets, the overrepresented classes are 
favored in the respective metrics. This is different in a cal-
culation by macro-averaging [17]. With macro-averaging, 
the metrics are calculated for each class and equally merged 
into one overall metric. Since we have imbalanced data and 
perform a multi-class classification task, we have chosen 
the variant of macro-averaging for the respective metrics to 
evaluate the results. In addition to the accuracy, the balanced 
accuracy was calculated. The balanced accuracy considers 
imbalanced data to the effect that overrepresented classes 
are not favored over smaller classes [18].

The balanced accuracy is the average of sensitivity and 
specificity and can be calculated as stated in Eq. 1 [14]. 
Balanced accuracy is the arithmetic mean of recall for each 
class and is the same as the macro-averaged recall. We have 
calculated both metrics and our test results presented in this 
study show that in each test run the two metrics lead to the 
same results.

While micro-averaging results for imbalanced data can lead 
to optimistic results, in our case macro-averaging results are 
more informative about the generalisability of the trained 
model. For example, looking only at micro-averaging met-
rics may miss the fact that the classifier assigns libraries 
during test from small classes to large classes. In our last 
study [6] we excluded this possibility by considering confu-
sion matrices. To obtain meaningful and at the same time 
comparable metrics for each approach tested, we chose 
macro-averaging results for this evaluation. Furthermore, 
even though we report the accuracy for each approach, for 
this evaluation we prefer to use balanced accuracy to inter-
pret the performance of each approach.

In the following, the results of the respective evaluation 
processes are presented and discussed.

(1)
Accbal =

(sensitivity+specificity)

2

=
(TP∕(TP+FN)+TN∕(TN+TP))

2
.

Results

Comparison of Approaches

For comparison, we have evaluated the newly described 
approaches for classification by an RNN using ids, tags, and 
a hybrid approach. At the same time, we evaluated the tag-
based approach from the last study [6] using the described 
procedure and compared it with the other approaches as a 
baseline. Unlike the other approaches, the baseline approach 
relies on an optimized feedforward neural network [11] 
(FNN). For each approach, the accuracy ( Acc

�
 ), balanced 

accuracy ( Accbal ), macro-averaged recall ( RecM ), macro-
averaged precision ( PrecM ), and macro-averaged f1-score 
( FscoreM ) are calculated. A standard deviation was calcu-
lated for each result over the multiple test runs and added 
below the respective results. The test results for each 
approach based on the described evaluation procedure are 
summarized in Table 3. The best result in each metric is high-
lighted in bold.

We found the baseline approach with a balanced accu-
racy of 0.92 performs well despite the change in evalu-
ation. The deviation from the results in the last study 
[6] is negligible. The id-based approach with an opti-
mized RNN achieves an accuracy of 0.90, but only a 
balanced accuracy of 0.71. A subsequently developed 
hybrid approach consisting of the tag-based and id-based 
approach was able to further optimize the tag-based 
approach. The balanced accuracy is 0.94 with a standard 
deviation of 0.01. The additional evaluation of a pure 
tag-based approach based on the RNN with a balanced 
accuracy of 0.77 shows that it was not the neural network 
architecture that brought the optimisation, but the hybrid 
application of the data. Overall, the standard deviations 
for the respective metrics of all approaches are marginal 
and are all below 0.015.

To evaluate whether the differences in performance of 
the compared classifiers are significant, a non-parametric 
Friedman test [19] and the post-hoc Nemenyi test [20] were 
applied. These tests were chosen to determine if the classifi-
ers are significantly different from each other. For the Fried-
man test, a null hypothesis states that there are no significant 
differences in performance between the classifiers, while the 
alternative hypothesis states that at least one classifier per-
forms significantly better than the others. A typical p-value 
< 0.05 was chosen as significance level [21]. The result of 
the Friedman test over all approaches and their measured 
performance from Table 3 is the following: 

statistical-value: 10.8
p-value: 0.0129
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Since the p-value is below the significance level and the 
statistical-value is higher than the critical value of 7.815,12 
the null hypothesis can be rejected and the conclusion can 
be drawn that there is a significant difference among the 
classifiers. This means that at least one classifier performs 
significantly better or worse than the others. However, the 
Friedman test does not identify which specific classifiers 
differ significantly from one another. This is why a Nemenyi 
test was applied subsequently as a post-hoc test for more 
insight. It performs a pairwise comparison of each classifier 
result, so it identifies the performance differences among 
them. All p-values between the respective models are sum-
marized in Table 4. The values that are below the signifi-
cance level and refer to a significant difference between the 
models are marked in bold.

In addition to the significances, further details on the 
results can be obtained from a comparison of the confu-
sion matrices. For each approach, we have chosen a compact 
representation of such a matrix over the 69 classes and com-
pared them in Fig. 8. The x-axes of the matrices show the 
predicted categories for all test data for the respective model. 
The y-axes, on the other hand, show the actual expected 
categories. A diagonal line without deviating markings is 
therefore a desired result. The applied scale was normalized 

across the respective predicted classes to achieve a better 
representation due to the imbalanced classes.

It can be observed that the tag-based model and the id-
based model have predicted one class of the models more 
often incorrectly. In both matrices it is the class "Web Appli-
cations". This is one of the over-represented classes in the 
dataset, as already described in Figure 3. In the confusion 
matrices, the corresponding columns are highlighted with 
a red border.

The training time of the models was comparatively low 
and can therefore be neglected. However, to give an idea 
of how long the training of these neural networks with the 
given data can take on average and how the training duration 
of the approaches compared, the performance over all runs 
including extra repeats was measured as well. It was per-
formed on a system running the Linux distribution Ubuntu 
22.04.1 LTS with an NVIDIA GeForce GTX 1080, an AMD 
Ryzen 9 3900XT and 64 GiB of memory. The tag-based 
approach with an RNN already took approx. twice as long 
(mean/std: 32.2 s ±5.6 s) as the same approach with an FNN 
(mean/std: 15.4 s ±1.83 s). While the id-based approach 
ran faster than the tag-based RNN (mean/std: 26.8 s ±0.45 
s), the hybrid approach took the longest due to the largest 
amount of tokens entered (mean/std: 45.9 s ±6.29 s). While 
these measurements can vary significantly due to the hard-
ware and implementation used, it should be noted that all 
4 classifiers can be trained in a relatively short time by a 
standard mid-range gaming PC. Due to these relatively short 
training times, instead of retraining existing models with the 

Table 3  Evaluation results of 
the respective models for each 
approach over 5 runs

The best result of the respective metric in each column is highlighted in bold
1 Feedforward neural network
2 Recurrent neural network, described in Figure 2
3 To justify the preprocessing process, the following poorer results were obtained in an additional test with-
out preprocessing: Acc

�
 = 0.8330 / Acc

bal
 = 0.6604 / Prec

M
 = 0.7782 / Fscore

M
 = 0.7049

Approach Model Measures

Acc
�

Acc
bal

 / Rec
M

Prec
M

Fscore
M

Tag-based FNN1 0.9748 ± 0.0010 0.9200 ± 0.0115 0.9502 ± 0.0066 0.9291 ± 0.0104
Tag-based RNN2 0.8700 ± 0.0055 0.7657 ± 0.0088 0.9425 ± 0.0145 0.8314 ± 0.0103
Id-based 3 RNN 2 0.9041 ± 0.0010 0.7136 ± 0.0111 0.7949 ± 0.0141 0.7403 ± 0.0110
Hybrid RNN 2 0.9833 ± 0.0010 0.9412 ± 0.0121 0.9620 ± 0.0089 0.9487 ± 0.0106

Table 4  Results of the applied 
Nemenyi test to find significant 
differences between the models 
examined

Values below the significance level of 0.05 are marked in bold

Tag-based (FNN) Tag-based (RNN) Id-based (RNN) Hybrid (RNN)

Tag-based (FNN) 1.000 0.3549 0.3549 0.6703
Tag-based (RNN) 0.3549 1.000 0.9000 0.0314
Id-based (RNN) 0.3549 0.9000 1.000 0.0314
Hybrid (RNN) 0.6703 0.0314 0.0314 1.000

12 The critical value was obtained using a degree of freedom of k-1, 
when k is the amount of classifiers, on a chi-squared distribution 
table.
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risk of catastrophic forgetting, a constant retraining can also 
be considered as the number of data grows.

Comparison of Preprocessed Datasets

For a further evaluation, tests were carried out on the 
basis of optimized datasets by varying preprocessing set-
tings. Table 5 shows the test results for the id-based RNN 
approach. As described before, the optimisations differ by 
varying definitions for common and rare tokens. The defini-
tions for rare and common token described as base show dif-
ferent test results. In the following, we refer to the selected 
number that defines a token in the data set as common or 

rare as basex , where x stands for the defined number of 
tokens. A rare token is defined as one that occurs less than 
x times in the data set. Tokens ≥ x are considered common 
for the dataset. For the evaluation we selected base

1
 , base

3
 , 

base
5
 , and base

10
 , which show different test outcomes when 

applied to the id-based RNN. The best result in each metric 
is highlighted in bold.

The metrics in Table 5 show that the classification results 
of the id-based approach can be optimized to a degree by 
increasing the basex for word splitting and filtering. How-
ever, the results vary. Especially the balanced accuracy could 
be improved significantly, while the other metrics increase 
only slightly. However, a general increase of the base only 

Fig. 8  Comparison of normal-
ized confusion matrices from a 
trained model of each described 
approach

Table 5  Evaluation results of 
the id-based RNN approach for 
different dataset optimisations 
by rare token split and library 
filtering on varying base

x

The best result of the respective metric in each column is highlighted in bold

Base Classes Measures

Acc
�

Acc
bal

/Rec
M

Prec
M

Fscore
M

base
1

69 0.9041 ± 0.0010 0.7136 ± 0.0111 0.7949 ± 0.0141 0.7403 ± 0.0110
base

3
69 0.9172 0.7511 ± 0.0199 0.8057 ± 0.0166 0.7703 ± 0.0182

±0.0021
base

5
69 0.9212 ± 0.0023 0.7683 ± 0.0136 0.7950 ± 0.0130 0.7719 ± 0.0143

base
10

68 0.9164 ± 0.0013 0.7546 ± 0.0072 0.8046 ± 0.0116 0.7688 ± 0.0090
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brings an improvement up to a certain degree and leads 
to the fact that underrepresented classes can no longer be 
included. The evaluation of base

10
 was limited to 68 classes, 

after one class no longer held any libraries due to the filter-
ing. The standard deviation of the results is with less than 
0.02 slightly higher than in the previous evaluation from 
Table 3, but still negligible. Considering the standard devia-
tions, it can at least be concluded that the results of base

5
 and 

base
10

 are close to each other.

Discussion

Based on the results, it can be concluded that both an 
improvement of the classification results compared to the 
baseline was achieved and a working tag-independent 
approach was presented. The hybrid approach achieved bet-
ter results compared to the baseline approach, based on a 
feedforward neural network and significantly compared to 
the one based on the RNN. This indicates that the quality 
of tags is insufficient for the classification of some libraries. 
Tags are insufficient if, for example, they are too generic 
and are used across classes. Including the tokens from the 
group-id and artifact-id helps the applied RNN to provide 
better predictions for such libraries.

The RNN trained on group-id and artifact-id achieved an 
accuracy of 0.90, but for balanced accuracy it achieved just 
about 0.71. It allows a more generic classification, independ-
ent of tags that are not always available. However, the excel-
lent result of the tag-based approach could not be achieved. 
On the one hand, this could be due to the ids, which do not 
always contain clear or assignable tokens. On the other hand, 
a fuzziness in the classes or software libraries with cross-
class functions could lead to the deviating predictions. Manu-
ally added tags, which are adapted to the classes, could hide 
this issue. An example of a software library with cross-class 
functions is org.apache.hbase:hbase-testing-util. This library 
offers utility functions for testing on the HBase database. 
Among others, the classes "Utilities", "Testing" and "Data-
base" are available for the classifier. This can lead to errors in 
the prediction. For example, some libraries from the category 
"File System" were not correctly classified as "Database". 
The comparison of the accuracies achieved by the id-based 
approach and the additional consideration of the confusion 
matrix shows that the id-based approach works better for 
some classes than for others. The worst results were obtained 
solely for the under-represented classes. An enrichment of 
these small classes by, for example, selective annotation of 
libraries could further improve the result. We also observed 
that with the range of functions of some libraries and with 
a division of the classes as derived from MvnRepository.
com, a division into classes is not always clearly possible. In 
addition, we found libraries on the platform that have been 

assigned more than one class label. An example of this is 
given in the following Section 8 about threads to validity. 
However, when the described dataset from Section 4.1 was 
crawled, no multi-label entries were found.

The evaluation also included the results for approaches that 
depend on the ids and can be optimized by more restrictive 
token-splitting and filtering out rare tokens in preprocessing. 
The improved classification results were presented in Table 5. 
We found for the id-based approach an optimized classifica-
tion result by applying a higher basex . Out of all the bases 
tested, the best result was achieved with base

5
 . The larger 

base
10

 did not lead to any performance optimisation. Further-
more, an increase in the filtering of libraries by base

10
 already 

leads to a dropout of classes that no longer contain libraries. A 
not further improvement of the classification results has a sim-
ilar background. Already previously underrepresented classes 
contain even less training data after filtering. We conclude 
from this that optimal filtering must be determined accord-
ing to needs. For the comparison of the different approaches, 
optimisation by filtering the software libraries was therefore 
not performed and base

1
 was applied. The aim was to train 

models that are as robust as possible and can potentially be 
applied to all software libraries, and comparability with the 
tag-based approach is ensured by utilizing the same dataset.

Threads to Validity

The validity of the evaluation results is limited to the 
mapped categories, which were presented in [6] by map-
ping. The application of finer or more coarse-grained classes 
can lead to a different performance of the approaches for 
automated classification. The same applies to the classifica-
tion into other class structures. This study refers to the class 
structure adapted from the classes of MvnRepository.com.

Another limitation is that the approaches are initially only 
applicable to software libraries in the JVM Maven context. 
Away from the applied dataset, the approaches need to be 
further evaluated. For example, the ecosystems of CRAN, 
PyPI or npm, which were mentioned in the introduction, 
need to be analyzed to conduct a cross-programming-
language study on the classification of software libraries. 
In addition, the result may also vary when using software 
library ids from other repositories in the JVM context. As 
described, there is no binding rule regarding id names.

The data was collected between May and July 2020 and 
is limited to one label per software library. However, the 
distinction may not be definite for every software library, 
or the classes may be chosen in such a way that intersec-
tions arise. As an example, the library javax.inject:javax.
inject [22] can be mentioned. This library was assigned 
the classes "Dependency Injection" and "Java Specifica-
tions". The choice of the classes in this example is because 
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"Dependency Injection" is function-oriented, and "Java 
Specifications" describes the specification of a technical 
standard.

Conclusion

In this study, our goal is to develop classifiers for all crawled 
software libraries from the JVM repositories. The study is 
based on around 28.600 labeled software libraries. The 
approach using their tokenised ids is generic and we were 
able to obtain a balanced accuracy of 71.36% and 76.83% 
by more filtering of tokens. Furthermore, we were able to 
optimize the classification results of the tag-based models 
using a hybrid approach.

This is possible by adding the tokenized ids as addi-
tional features. Training an RNN with tags and ids leads 
to an improvement in the results. By applying this hybrid 
approach, we were able to improve the balanced accuracy 
from 92 to 94.12%. Probably poorly tagged libraries as well 
as software libraries that do not hold any tags will be sup-
plemented by the tokens from the ids, improving the clas-
sification result.

Third-party libraries from other programming languages 
may contain libraries with different name or id structures. 
Further studies and possibly further approaches are therefore 
necessary. At the same time, we found that other indexing 
platforms for software libraries in other languages tag their 
listed entries partly as well. It would be future work to ana-
lyze the quality and coverage of the tags on other platforms 
and to examine the applicability for a classification.

Another future work could be the analysis of id-tokens 
already described in section 4.3. An additional annotation 
of libraries with certain tokens could solve several problems 
at once. Uncategorized libraries without previous common 
tokens can possibly be classified more reliably. In addition, 
the imbalance can be reduced by enriching strongly under-
represented classes and thus the performance results of the 
trained models based on ids as well as the hybrid approach 
can be optimized.
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