
Vol.:(0123456789)

SN Computer Science (2024) 5:339
https://doi.org/10.1007/s42979-024-02654-2

SN Computer Science

ORIGINAL RESEARCH

Towards an Automated Classification of Software Libraries

Maximilian Auch1 · Maximilian Balluff1 · Peter Mandl1 · Christian Wolff2

Received: 9 February 2022 / Accepted: 24 January 2024
© The Author(s) 2024

Abstract
Nowadays, the use of third-party libraries in software is common. At the same time, the number of published libraries contin-
ues to increase. An automated classification should help to maintain an overview and identify similar software libraries. This
paper investigates if new approaches can be used to classify all software libraries crawled from Apache Maven repositories
into defined classes using machine learning. In addition to tags that are not always available or of poor quality, we examine
one feature that is always available—the id. Consisting of group-id and artifact-id, the id of an Apache Maven software
library contains valuable information that can help in classification. Through a developed preprocessing and an optimized
recurrent neural network (RNN), the tokenised ids should allow a classification of most libraries. Furthermore, we present
an optimized approach through a hybrid use of id tokens and tags in combination. Based on the dataset including 28,600
labeled entries, a comparison of various approaches was carried out. The RNN achieved a balanced accuracy of 71.36% by
training on tokenised ids. A model trained on tags achieved a balanced accuracy of 92%. However, the new hybrid approach,
which combines tags and ids, optimizes the result to 94.12%. While a classification on tags achieves a better result than the
more general id-based approach, the applicability is limited to software libraries that are tagged. The hybrid approach, on
the other hand, takes advantage of the classification results based on tags when these are available, but includes valuable
information from the always available ids.

Keywords Software libraries · Java · Classification · Machine learning · Recurrent neural network

Introduction

An increasing number of organizations and developers pub-
lish software via application programming interfaces (APIs),
which contain a range of subroutines and functionalities.
These are made available in the form of comprehensive
packages, so-called third-party libraries [1]. This allows
other software systems to integrate these third-party librar-
ies and gain a usually quick and comparatively easy access
to the integrated routines and functionality. Companies
with interfaces to digital services can make their products

easily accessible and attractive, to offer a service by means
of maintaining compatibility and backward compatibility as
well as continuous maintenance and further development.
The libraries can be used to query services, simplify code,
and file processing, integrate prebuild components, simplify
tests, analyze code, or integrate complex processing, e.g.,
in distributed computing. Using libraries, typically less
code needs to be written and therefore less code needs to be
tested and maintained. As a result, software libraries are an
essential part of many software projects in most domains,
platforms, and technologies.

The usage of such third-party libraries has increased over
the last decades. Back in 2013, Thung et al. [2] analyzed
over 1000 projects of considerable size from GitHub. They
found that 93.3% of the software projects studied used third-
party libraries. On average, these projects each contained 28
third-party libraries. If current uses are analyzed and smaller
projects are also considered, this amount may vary consid-
erably. We ourselves examined around 800,000 revisions

This article is part of the topical collection “Data Science,
Technology and Applications” guest edited by Slimane Hammoudi
and Christoph Quix.

 * Maximilian Auch
 maximilian.auch@hm.edu

1 University of Applied Sciences Munich, Lothstraße 34,
80335 Munich, Germany

2 University of Regensburg, Universitätsstraße 31,
93053 Regensburg, Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-024-02654-2&domain=pdf
http://orcid.org/0000-0002-4860-7464
http://orcid.org/0000-0002-6837-0628
http://orcid.org/0000-0003-4508-7667
http://orcid.org/0000-0001-7278-8595

 SN Computer Science (2024) 5:339 339 Page 2 of 15

SN Computer Science

of around 15,000 Java projects from GitHub.1 A random
search was performed with the filter criteria that each pro-
ject should use the dependency management tool Apache
Maven and that a Readme.md file should be available in the
project directory. First-party libraries were filtered out and
only one revision per project with the largest share of third-
party libraries was considered. This enabled us to determine
an average use of 8.65 third-party libraries per project. The
median usage of libraries was 6.

Online available ecosystems, which list or even manage
software libraries, are registering an increasing number of
projects that can be integrated as software libraries. For
example, beside Python Package Index (PyPI) or package
management systems such as CRAN (for the R language) or
npm (for Node.js packages), Maven is one of these ecosys-
tems. The Maven ecosystem contains libraries that are devel-
oped in the context of the Java Virtual Machine (JVM) and
made available to it. The indexing platform MvnRepository.
com,2 which is based on different JVM-related repositories
like Maven Central3 for software libraries, provides partly
classified and tagged data. The website of MvnRepository.
com does not offer an API, but if categories and tags are
available for libraries, it does display these as shown in Fig. 1.

A classification of libraries can help developers and other
project participants to get an overview of current imple-
mentations for wrapped access to technologies, functions,
frameworks, and so on. In addition, this can also provide an
overview of technologies behind the software libraries within
a category. For decision making, it is essential to organize
software libraries that are available in that broad spectrum.

Within the context of our overall research project, it is
planned to identify a similarity between software projects
automatically to derive design decisions and business-rel-
evant information. Software libraries can help to calculate

a technical similarity of software by drawing conclusions
about similar technical characteristics. Applied software
libraries provide information on these characteristics,
such as the technology stack in general, types of process-
ing methods and data as well as the type of storage for the
data, integration with other systems, security methods,
provided APIs, the underlying platform, like application
server or cloud-provider, and the usage of the software. For
usage, libraries can point to what type of user interface is
provided, such as command-line, fat-client, thin-client, and
what design pattern is used. By analyzing these characteris-
tics, similar software should be found on a technical basis.
In a later step, the evolution of the software over time is
to be determined, such as migrations made, and therefore
automated decisions about selected technologies, design and
architecture are to be derived. However, the problem arises
that libraries must be classified to detect migrations from
library A to library B with similar functions. As too many
libraries are available, manual classification is not feasible.
Therefore, this research project aims to evaluate whether
libraries crawled from Apache Maven repositories can be
classified automatically into defined classes using machine
learning (ML).

In the following Section “Related Work”, related work
is provided, before the new approaches are elaborated in
Section “Software Library Classification Approach”. Sec-
tion “Dataset” describes the data required for the training
and evaluation approaches, as well as the preprocessing.
Section “Evaluation” presents the test setup that is used for
the evaluation and introduces the metrics applied for the
description of results in Section“ Results”. Section “Discus-
sion” includes a discussion of the results from the previous
chapter. Finally, Section “Threads to Validity” lists some
limitations and validity threats before drawing the conclu-
sion in the final Section “Conclusion”.

Related Work

Similar to the ongoing growth of repositories for software
libraries, app stores4 have also grown in size over the last
decade. As a result, these app stores have already become
the focus of research in the past. Various approaches [3] have
been used to process and order the apps by means of auto-
mated classification or clustering. Yu et al. [4], for example,
use not only descriptions but also third-party libraries of
mobile apps to perform categorisation and recommendation
using similarity metrics and collaborative filtering.

Fig. 1 Example of a categorized and tagged software library on the
MvnRepository.com website

1 https:// github. com/.
2 https:// mvnre posit ory. com/, last accessed 2021-12-05.
3 https:// repo1. maven. org/ maven2/.

4 The Apple app store (https:// www. apple. com/ de/ app- store/) and
Google play (https:// play. google. com/ store) are frequently used for
mobile apps in the studies.

https://github.com/
https://mvnrepository.com/
https://repo1.maven.org/maven2/
https://www.apple.com/de/app-store/
https://play.google.com/store

SN Computer Science (2024) 5:339 Page 3 of 15 339

SN Computer Science

In addition to the app stores, the research field of clas-
sification and recognition of similar software projects has
also increased in general. A recently conducted and pub-
lished systematic literature review [3] shows the variety
of approaches and motivations behind the work. In com-
parison, the categorization of software libraries is rarely
found in published research projects. The review paper only
points out the work of Escobar-Avila [5], who published an
approach to automatically categorize software libraries. He
manually collected the bytecode (.jar files), profiles and cat-
egories of 158 software libraries. These examined libraries
are written in Java, which are published and maintained by
the Apache Software Foundation. The bytecode documents,
including most of the textual information in the source code,
were transformed and clustered. Instead of a multi-class
classification, five categories are suggested by this approach.
The author points out that this goal leads to a good accu-
racy on recommending a list of categories, but precision and
recall were rather low and in around 40% of cases, the first
recommended category was the correct one. Since we are
aiming for a multi-class classification with higher precision
and recall, we decided on using other sources, like meta-data
of the libraries.

A recent study [6] of ours has shown that a tag-based
approach can provide good results for automated multi-class
classification of software libraries. However, this approach
is limited to tags and only applicable to a part of the soft-
ware libraries. We used the same data as in this study to
achieve the same goal, which is why we use this approach
as a baseline.

Another, recently published study [7] shows a hybrid
approach through the automated evaluation of tags and word
vectors from binary files. However, the aim of the work is a
multi-label classification to recommend tags for previously
untagged software libraries. Therefore, even though their
study is in the same subject area, it cannot be directly com-
pared to ours. It pursues a different goal based on different
data and methods. The same applies to all other studies in
the systematic literature review [3]. We can imagine that a

classification based on similar extracted data to that from
the studies in the review could be promising when applied
to software libraries.

For a better overview, the related research that followed
a similar goal is summarized in the Table 1.

Another challenge is caused by applying and evaluat-
ing imbalanced data, which was also identified in an earlier
study [7] on tags of MvnRepository.com. Since we were
confronted with a similar problem in our experiment, we
described in our previous study [6] as well as in the evalu-
ation Section 5 all the steps taken to obtain an evaluable
result.

Software Library Classification Approach

Machine learning is well suited to train models for classifi-
cation tasks because they are able to identify patterns and
relationships in data that are not easily identified by humans
or rule-based software approaches. This capability empow-
ers machine learning models to learn patterns to classify
vast datasets, such as a wide range of software libraries.
Furthermore, once these models are trained, they can adapt
to changes in the data environment, which is essential con-
sidering the constant growth of software libraries. Therefore,
in addition to the prediction performance of each machine
learning model trained on labeled data, the speed and scal-
ability of these models will also be examined in the later
discussion.

In addition to the approaches described in related work for
the classification of software libraries, we present our new
machine learning approaches based on the always available
software library ids (in the following referenced as id-based)
as well as a hybrid solution (in the following referenced as
hybrid-based) that considers ids and tags at the same time.
In doing so, we evaluate and discuss the approaches by com-
paring them to the tag-based approach as baseline.

Table 1 Summary overview of the existing published work

Authors Target Data-Source ML-Method

Auch et al. [6] Multi-class classification of software
libraries

Tags Feedforward neural network, naïve
Bayes, random forest, logistic regres-
sion

Escobar- Avila [5] Single-label and multi-label categoriza-
tion of software libraries

Bytecode, software library profiles and
categories

Clustering via vector space model and
Dirichlet process clustering

Velázquez- Rod-
ríguez and De
Roover [7]

Multi-label classification of software
libraries

Tags and word vectors from binary
files

Several specific classifier out of a
MEKA toolkit

Yu et al. [4] Categorization and recommendation of
mobile apps

Descriptions, third-party software
libraries

Similarity metrics, collaborative
filtering

 SN Computer Science (2024) 5:339 339 Page 4 of 15

SN Computer Science

Tag‑Based Classification (baseline)

A tag-based approach for classification of software libraries
is probably obvious if tags are available for these libraries
in a repository. A detailed description of this approach, the
quality of the data, the preprocessing and the study results
are described in a previously published paper [6]. Both
the quality of the tags and the quantity of tagged software
libraries play an important role when training a ML model
for classification. This aspect was also described as one
of the limitations of this approach. The goal would be a

classification with good results based on attributes that all
software libraries of the included repositories share. Tags,
on the other hand, are not always available as they are often
manually assigned. The two new approaches to overcome
this problem are therefore described below. While the new
Id-based approach is independent, the hybrid approach is
based on both approaches to benefit from them.

Id‑Based Classification

In this study, we refer to the names of the libraries as the
unique identifier, which in the JVM and Apache Maven con-
text consists of group-id, artifact-id, and version [8]. We
have excluded the project version of the software library
in advance, since these do not provide any relevance as a
feature for the targeted classification. This approach focuses
on classification by the group-id and the artifact-id. Before
describing the approach of processing the ids, we want to
summarize what constitutes these two identifiers and why
they may be suitable for classification.

The structure of these two identifiers is not clearly
described and strict naming conventions do not exist
either. The Apache Maven project describes the group-id
as a unique identifier for the project behind the software. It
should be based on the Java package name conventions and
begin with a reversed domain name. This can be followed

by further sub-items such as division, department, project,
machine, or login names [9]. The items are usually separated
by dots. The artifact-id, on the other hand, is the name of the
packed build without the version number [8]. This structure
is illustrated by the following example:

group – id : a r t i f a c t – id
org . mariadb . jdbc : mariadb– java – c l i e n t

These rules are not enforced by Maven, and conse-
quently libraries may not follow the convention. A simple,
systematic filtering out of certain parts of classification-
relevant words should therefore not be possible in gen-
eral. Our approach still relies on an automated classifica-
tion using these group-ids and artifact-ids. As part of our
approach, a process is developed to extract the relevant
tokens from the id. This preprocessing is described in the
following Section 4. Word embeddings of the extracted
token sequences are to be generated. These word embed-
dings can then be used to train an artificial neural net-
work (ANN). We considered different ANN architectures
and finally decided to use a recurrent neural network
(RNN), which can learn to map input sentences of vari-
able length into a fixed-dimensional vector representation
[10]. Besides an RNN, we have also considered other ML
algorithms and a feedforward neural network [11] (FNN).
However, since the tokens from the ids are processed simi-
larly to the tags, we excluded other ML algorithms, such
as the most recently evaluated from [6]. We experimented
with an FNN in addition but could not achieve a better
performance. Since the structure of the FNN, which is also
described in [6], expects a fixed length of the input vector,
we decided to use the RNN with a variable input.

Different RNN architectures, such as Long Short-Term
Memory (LSTM) [12] or Gated Recurrent Unit (GRU)
[13], can be considered. In this study, we experimented
with these RNN architectures, including unidirectional
and bidirectional evaluation of token sequences. While

SN Computer Science (2024) 5:339 Page 5 of 15 339

SN Computer Science

the differences in training results were relatively small,
we opted for a bidirectional LSTM. In addition to choosing
a suitable architecture, we also performed hyperparameter
tuning. The resulting RNN is presented in Fig. 2.

The figure illustrates the layers placed sequentially from
left to right and from top to bottom the tokenised ids of the
1 to n software libraries. To process the ids, the tokens are
first loaded into an encoding layer. The resulting vectors,
which represent the encoded tokens, are then converted
into word embedding vectors and fed into a bidirectional
LSTM layer with 100 neurons. The LSTM is followed
by a fully connected dense layer with 100 neurons and a
ReLu activation function. In the Figure 2, the 100 neurons
of the dense layer are represented by 6 circles for better
visualization. To counteract overfitting, a dropout layer
follows, which randomly discards input values. For visu-
alization purposes, we have marked neuron circles in the
layer with a cross as dropouts. For those dropouts we have
chosen a frequency of 20%. Finally, an output layer with
69 neurons is included, matching the 69 possible classes of
the crawled dataset. Further details on the dataset and the
classes are described in the following Section 4. The com-
bination of layers, the neuron numbers, and the frequency
of dropouts are the result of the hyperparameter tuning.

Hybrid Classification

The two approaches presented so far use the group-id and
artifact-id of the Java software libraries and tags from the
indexing platform MvnRepository.com. Complementing the
two approaches, a new hybrid approach aims to combine
the advantages of these two and optimizes a trained model
for a higher accuracy. The idea is therefore to use the new
RNN from Fig. 2, training a classification model based on
the extracted tokens from the ids combined with the tag lists
of the respective software libraries. The addition of ids is
intended to compensate for poor tag quality or the absence
of tags. However, the evaluation of the tag-based approach
in the previous study [6] showed that tags, when present,
produce good classification results and should always be
considered.

Dataset

Software libraries for the Java Virtual Machine were crawled
between May to July 2020 to create a dataset for an auto-
mated classification. For this purpose, the libraries were
crawled by their id, consisting of group-id and artifact-id
from the largest public repositories, listed in Section 4.1.
In addition, a class mapping and improved balancing of the
individual classes was carried out.

The entire process with all the efforts made to reduce
the imbalance in the data is described in the previous study
[6]. The mapping of the crawled 162 categories to coarser-
grained classes as well as the removal of a class that was too

LSTM

LSTM

LSTM

Embedding
Layer

Embedding
Layer

Embedding
Layer

ReLu Dropout Softmax

Fully-Connected
Dense Layer

100 Neurons

Dense Output Layer

69 Neurons

Dropout Layer
1-D Vector

Representation

Encoding
Layer

Lexical Embeddings LSTM Layer

100 Neurons

Embedding Layer
Vector

RepresentationToken Encoder

Encoding
Layer

Token of
Library Id

Encoding
Layer

Fig. 2 Architecture of the applied RNN on the tokens of group-id and artifact-id

 SN Computer Science (2024) 5:339 339 Page 6 of 15

SN Computer Science

coarse-grained is also described in detail in the last study.
The 69 classes resulting from the mapping are also used as
the classification target in this study. However, the imbal-
ance could only be reduced but not eliminated. An evalua-
tion of the distribution of classes after the applied balancing
steps is shown in Fig. 3. The classes "Build Automation Tool
Plugins", "Example", "Web Applications" and "Testing" still
contain slightly over 50% of the labeled data.

However, in this study we did not choose an attempt to
further balance the data by methods such as oversampling
or undersampling, as these could bring new drawbacks, as
described for example by Velez et al. [14]. Instead, by apply-
ing macro evaluation metrics and a balanced accuracy, we
show below that the trained models can also deal with imbal-
anced data. We describe the evaluation process in section 5.

Description of crawled dataset

The by far largest repository was found to be Maven Cen-
tral,5 which contained slightly over 300,000 libraries. The
other five selected repositories for crawling were Sonatype,6
Spring IO,7 Atlassian,8 Hortonworks9 and Wso2.10 After
merging and removing duplicates, the dataset has a size of
325,000 unique software libraries. For these crawled librar-
ies, we accessed metadata from the online indexing service
MvnRepository.com for each library. This service provides
categories and tags for some libraries. While categories bun-
dle similar libraries of a domain, tags show more coarse-
grained and sometimes unique properties of a library [7].
This process of crawling is shown in Fig. 4.

For the crawled dataset, we found that not all software
libraries are tagged. Furthermore, we have found that only
a fraction of the libraries that have tags also have catego-
ries. Velazquez-Rodriguez and De Roover [7] point out,
that tags are often missing or only a single tag is available.
This observation was made based on a crawled dataset with

about 3,000 tagged libraries. We were also able to identify
about 75% of the crawled libraries are tagged, which corre-
sponds to about 250,000 libraries. About 11% of all libraries
are categorized. Libraries that are labeled and tagged com-
prise about 9% of the dataset. This is an absolute amount
of around 28,600. This dataset, which we already used and
published in the last study [6], is also applied in this study to
ensure comparability. As described in Fig. 4, preprocessing
is also carried out on the ids and a split is already made into

Fig. 3 Imbalanced distribution of libraries after the applied balancing
steps from [6]

Fig. 4 Crawling Apache Maven
repositories and MvnRe-
pository.com to create software
library corpora

Maven Central

Sonatype

Spring IO

Atlassian

Hortonworks

Wso2

Collected around
325,000 unique

libraries

Corpus including
28,600

categorized and
tagged software

libraries

Crawled Categories
and Tags from

MvnRepository.com

313,122

681

35,434

1,180

1,716

1,448

Preparation process
on ids of software
libraries (compare

with Figure 5)

Trainings- and
validationcorpus

including
categorized and
tagged software

libraries

Testcorpus
including

categorized and
tagged software

libraries

split
0.2

split
0.8

5 https:// repo1. maven. org/ maven 2/.
6 https:// oss. sonat ype. org/ conte nt/ repos itori es/.
7 https:// repo. spring. io/ plugi ns- relea se/.
8 https:// maven. atlas sian. com/ conte nt/ repos itori es/ atlas sian- public/.
9 https:// repo. horto nworks. com/ conte nt/ repos itori es/ relea ses/.
10 https:// maven. wso2. org/ nexus/ conte nt/ repos itori es/ relea ses/.

https://repo1.maven.org/maven2/
https://oss.sonatype.org/content/repositories/
https://repo.spring.io/plugins-release/
https://maven.atlassian.com/content/repositories/atlassian-public/
https://repo.hortonworks.com/content/repositories/releases/
https://maven.wso2.org/nexus/content/repositories/releases/

SN Computer Science (2024) 5:339 Page 7 of 15 339

SN Computer Science

a training/validation dataset and a test dataset. Details on the
split process are described in Section 5. We have published
the datasets applied in our evaluation on GitHub. 11

Tags

Available tags from the indexing platform MvnRepository.
com were added to the crawled software library corpus. In
the process, 437 unique tags were extracted, and each soft-
ware library holds usually up to 7 tags. A few outliers even
have up to 13 tags assigned to them. A distribution of the
tags on the categorized training and evaluation data as well
as the uncategorised data is shown in Figure 5. It is notice-
able that a higher percentage of libraries which are not cat-
egorized have a single tag and few libraries have more than
three tags.

Additionally, we analyzed whether the uncategorised
data contain different tags than the already categorized
libraries. This is not the case, so we consider tags as a good
basis for applying a machine learning model for automated
classification.

A first analysis of the crawled dataset has shown that not
all tags have the same relevance. Some tags were found to
be irrelevant when viewing the crawled dataset and could
be excluded for training. These are tags that occur across
classes and do not contribute to the description of the func-
tionality of a class. The excluded tags are "github", "code-
haus", "apache", "experimental", "starter", "runner", "api"
and "bom". We have identified these tags in an analysis of
the dataset across classes and as interfering. The first three
indicate where the project is hosted. The remaining tags to
be excluded indicate an irrelevant status, function, or struc-
ture. By excluding these tags, we assume that an improved
training result can be achieved. Even though a neural net-
work may automatically rate the irrelevant tags as such,
manual pre-filtering can exclude libraries that only have
irrelevant tags from the classification. By adding further

features, as described below, these insufficiently tagged
software libraries can possibly still be reliably classified.

Group‑id and Artifact‑id

The classification of software libraries by their group-id and
artifact-id is novel. In contrast to the tag-based approach,
the id-based approach requires additional preprocessing.
The spelling of ids usually follows certain conventions, but
no strict guidelines. In the following, we therefore present
five software libraries of the Maven Central Repository in
Table 2. These serve as examples in the following.

To achieve the best possible classification result and to
obtain a model that is as robust as possible, we have carried
out a automated data cleaning and described it in the form of
a preprocessing process in Fig. 6. The results described later
in the paper were optimized by this preprocessing. Training
and validation data were repeatedly tested against the new
id-based approach to achieve improvements. For compari-
son, the difference in results was noted in Table 3.

For example, the five software libraries presented in
Table 2 were broken down into unique tokens and classi-
fied according to the procedure. Extracted tokens such as
"database", "db" or "jdbc" must be identified automatically,
since these are used in all the stated libraries and should be
relevant for classification in the domain database.

Before we split the group-id and artifact-id into individ-
ual tokens, we start in a first step of the process with the
general replacement of special characters. In addition, we
removed duplicated spaces and all numbers from the text.
Removing those numbers is intended to exclude resulting
purely numeric tokens that represent a version number. As
an example, the artifact-ids "scala-2.10-provider-plugin"
and "scala-2.11-provider-plugin" with the group-id "com.
atlassian.scala.plugins" can be mentioned. The version num-
bers define which Scala runtime is provided. However, this

Fig. 5 Distribution of tags compared by categorized and uncatego-
rized software libraries

Table 2 Example of library ids from the category ’database’

group-id artifact-id

com.h2database h2
com.oracle.database.jdbc ojdbc10
org.mariadb.jdbc mariadb-java-client
org.mongodb mongodb-driver
software.amazon.awssdk dynamodb

11 The datasets are available on the CCWI-repository on GitHub at
https:// github. com/ CCWI/ corpus- libsim and on https:// github. com/
CCWI/ corpus- libsim- exten ded.

https://github.com/CCWI/corpus-libsim
https://github.com/CCWI/corpus-libsim-extended
https://github.com/CCWI/corpus-libsim-extended

 SN Computer Science (2024) 5:339 339 Page 8 of 15

SN Computer Science

version number is irrelevant for a classification into the tar-
geted classes.

In the Java community, the camel case notation is com-
monly used and is supported by the conventions for writing
ids. For text classification, this is problematic because each
compound word would have its own id representation. Due
to the variety of words in camel case, this would lead to a
considerable amount of unique tokens and information for
classification would be lost. To avoid this problem, we split
the camel case words into individual tokens. After this step,
all tokens are converted to lowercase letters and duplicate
ones in a library id are removed. The next step can be viewed
as stop word removal for software libraries. We defined a bag
of blacklisted words, which do not include necessary infor-
mation for the classification but do frequently occur.

First, typical entities such as the names of hosting plat-
forms ("googlecode", "codehaus", "github’), software foun-
dations ("apache", "eclipse") and versioning tools ("git",
"svn") were removed. Company names contained in the ids,
such as Oracle, Amazon, Facebook, Google, etc., were not
removed, as they can provide important information for the
classification. As an example from Table 2, the tokens "ora-
cle" and "amazon" can be useful for this. Both companies
are behind a respective database solution and the company
names as tokens can support a classification in combination
with other tokens. Furthermore, there are software libraries

with unconventional names, such as "oracle:oracle", which
have to be classified exclusively by the name of a company.

Another source of potentially interfering tokens in the
ids could be common top-level domains such as com, edu,
gov, mil, net, org or any two-letter codes identifying coun-
tries as specified in ISO standard 3166. Starting the group-id
with such an abbreviation is a convention of Oracle, which
is described in the JVM specification [9]. This is therefore
common practice, but also not a fixed rule, as the above
example ids demonstrate. However, a general exclusion of
these codes is not possible, as important information could
be lost in certain cases. For example, the tokens "ai" and
"ml" represent country codes according to the ISO stand-
ard as well as common abbreviations for "artificial intel-
ligence" and "machine learning" that are used in library ids.
We therefore recommend a manually created dictionary
that contains domain abbreviations to be removed, which
are used in all libraries exclusively at the beginning of the
group-id.

Next, we use the NLP library spaCy [15] for a lemma-
tization on each token. This allows token to be set to their
basic form to facilitate classification. The token "embed"
can be used as an example. Further extracted tokens like
"embedding" and "embedded" are to be put into the basic
form "embed" by the process. After the lemmatisation step,

* Define in advance at which number in the dataset a token is considered ’common’. All tokens that occur less frequently in the dataset are then treated as ’rare tokens’.

Start:
Import dataset

Replacement of
special characters

and numbers

Split group-id and
artifact-id into

tokens

Split camel case
words into tokens

Make tokens
lower case

Remove blacklisted
tokens

Lemmatization

Remove
blacklisted tokens

Remove duplicates
in tokens for each

library

Split rare tokens
via created
dictionary

Drop libraries
containing rare

tokens only

Mask rare tokens

End:
Export as new

dataset

yes

no
Retrieve rare tokens

with less than a
certain occurance

Does each
library contain
at least one

common token

Are rare
tokens
further

separable?

yes

no

Create dictionary
incl. common

tokens*

Fig. 6 Preparation process on library ids

SN Computer Science (2024) 5:339 Page 9 of 15 339

SN Computer Science

it is advisable to remove any blacklisted tokens that may
have emerged.

To achieve the identification of important tokens such
as "database", "db" or "jdbc" in the ids, further processing
steps can be applied. Frequently, important terms for the
classification are concatenated within the ids, even without
camel case notation. In the example from Table 2, these
tokens could be extracted from the concatenated tokens
"h2database", "mariadb", "mongodb" and "dynamodb".
However, proper names such as "mariadb", "mongodb" and
"dynamodb" may themselves already refer to a technology
and can therefore be suitable for classification if these tokens
occur more frequently in the dataset and especially in a cer-
tain class. Therefore, in the preparation process in Fig. 6, we
propose an automated detection of common and rare tokens
in the dataset and a dictionary-based split of the rare tokens
if a split is possible. While common tokens are present more
frequently than a certain number in the dataset, rare tokens
are below a certain number. For the comparison of the differ-
ent approaches, we did not optimize the dataset in this study
and did not perform any splitting or filtering to ensure that
the entire dataset is used. Additionally, a comparison of the
id-based approach applied on different definitions of com-
mon and rare tokens in the dataset is conducted in this paper.
For the comparison, in addition to training on data without
split and filtering, we set tokens to be treated as common
from 3 occurrences, from 5 occurrences and in another test
from 10 occurrences. The applied dictionary for the split is
composed of a predefined dictionary of 125,000 words from
Wikipedia and a defined dictionary from the domain. The
specifically defined dictionary was built up by all the found
common tokens. It was ensured that the words were first split
according to the domain language of the common tokens and
then according to the Wikipedia dataset to avoid possible
incorrect splits. Details and evaluation results are described
in Section 6. The applied process in Fig. 6 also takes into
account that if new tokens are found by the split process,
previous steps are repeated. If no more tokens are found,
all remaining rare tokens are masked. In addition, libraries
without at least one common token can be removed, as these
cannot be classified without further features or actions by the
presented id-based approach.

Based on the preprocessing, we performed an analysis
regarding the number of common tokens in the ids of soft-
ware libraries. We compared classified and previously unclas-
sified libraries to determine whether the unclassified ones
contain the same common tokens. A frequency in percent of
the number of common tokens without splitting and filtering
rare tokens in the two datasets is shown in Fig. 7.

First, it is noticeable that many of the uncategorised
libraries have at least one common token. Some libraries
hold up to 8 common tokens in both datasets, a few outli-
ers even up to 11 in the ids. It is also noticeable that about

10% of the uncategorised libraries have none of the common
tokens in their ids. For this 10% of the libraries, it remains
to be tested as future work whether a reliable classification
is possible. It may be necessary to check the tokens of the
library ids separately again and to create an extended train-
ing set by manually annotating the libraries to make the
trained model even more robust.

Evaluation

In our last study for the tag-based approach [6] we chose a
5-fold nested cross validation [16] for an optimized result
in accuracy. At the same time, however, we were able to
determine that the accuracy result does not change signifi-
cantly by applying a classical training, validation and test
split instead. This simplifies an accurate comparison of the
approaches after all models have been trained and optimized
on the same training and validation data. Furthermore, all
different models were evaluated against the same test data-
set, which allows a direct comparison. Therefore, we use the
classical approach and split the data randomly. Initially, we
reserved 20% of the data for the final evaluation. We then
randomly divided the data intended for training into training
data and validation data by 20%. The validation data was
used to develop and optimize the resulting model. Finally,
we trained the optimized neural network 5 times. For this,
the random split in training and validation data was repeated.

A similar approach was also used for the second evalua-
tion. Here, however, the same id-based approach is always
applied to different datasets. The datasets differ in a varying
number of tokens to categorize them as common or rare and
to perform token splits and filtering of libraries. This proce-
dure corresponds to the preprocessing presented in Fig. 6.
The evaluation is intended to show one possible option for
optimizing the classification results and is also discussed
below.

Fig. 7 Distribution of common tokens in a preprocessed dataset with-
out splitting and filtering rare tokens compared by categorized and
uncategorized software libraries

 SN Computer Science (2024) 5:339 339 Page 10 of 15

SN Computer Science

For the evaluation in this study, we apply the metrics
Precision, Recall and F1-Score, commonly used for clas-
sification problems. There are several calculation options
that need to be considered. While the basic calculation is a
binary variant to evaluate 2 classes, a multi-class classifica-
tion involves a global calculation over the classes of true
positives (TP), false negatives (FN), true negatives (TN) and
false positives (FP). Without further adjustments to the cal-
culation, this procedure is called micro-averaging [17]. How-
ever, in imbalanced datasets, the overrepresented classes are
favored in the respective metrics. This is different in a cal-
culation by macro-averaging [17]. With macro-averaging,
the metrics are calculated for each class and equally merged
into one overall metric. Since we have imbalanced data and
perform a multi-class classification task, we have chosen
the variant of macro-averaging for the respective metrics to
evaluate the results. In addition to the accuracy, the balanced
accuracy was calculated. The balanced accuracy considers
imbalanced data to the effect that overrepresented classes
are not favored over smaller classes [18].

The balanced accuracy is the average of sensitivity and
specificity and can be calculated as stated in Eq. 1 [14].
Balanced accuracy is the arithmetic mean of recall for each
class and is the same as the macro-averaged recall. We have
calculated both metrics and our test results presented in this
study show that in each test run the two metrics lead to the
same results.

While micro-averaging results for imbalanced data can lead
to optimistic results, in our case macro-averaging results are
more informative about the generalisability of the trained
model. For example, looking only at micro-averaging met-
rics may miss the fact that the classifier assigns libraries
during test from small classes to large classes. In our last
study [6] we excluded this possibility by considering confu-
sion matrices. To obtain meaningful and at the same time
comparable metrics for each approach tested, we chose
macro-averaging results for this evaluation. Furthermore,
even though we report the accuracy for each approach, for
this evaluation we prefer to use balanced accuracy to inter-
pret the performance of each approach.

In the following, the results of the respective evaluation
processes are presented and discussed.

(1)
Accbal =

(sensitivity+specificity)

2

=
(TP∕(TP+FN)+TN∕(TN+TP))

2
.

Results

Comparison of Approaches

For comparison, we have evaluated the newly described
approaches for classification by an RNN using ids, tags, and
a hybrid approach. At the same time, we evaluated the tag-
based approach from the last study [6] using the described
procedure and compared it with the other approaches as a
baseline. Unlike the other approaches, the baseline approach
relies on an optimized feedforward neural network [11]
(FNN). For each approach, the accuracy (Acc

�
), balanced

accuracy (Accbal), macro-averaged recall (RecM), macro-
averaged precision (PrecM), and macro-averaged f1-score
(FscoreM) are calculated. A standard deviation was calcu-
lated for each result over the multiple test runs and added
below the respective results. The test results for each
approach based on the described evaluation procedure are
summarized in Table 3. The best result in each metric is high-
lighted in bold.

We found the baseline approach with a balanced accu-
racy of 0.92 performs well despite the change in evalu-
ation. The deviation from the results in the last study
[6] is negligible. The id-based approach with an opti-
mized RNN achieves an accuracy of 0.90, but only a
balanced accuracy of 0.71. A subsequently developed
hybrid approach consisting of the tag-based and id-based
approach was able to further optimize the tag-based
approach. The balanced accuracy is 0.94 with a standard
deviation of 0.01. The additional evaluation of a pure
tag-based approach based on the RNN with a balanced
accuracy of 0.77 shows that it was not the neural network
architecture that brought the optimisation, but the hybrid
application of the data. Overall, the standard deviations
for the respective metrics of all approaches are marginal
and are all below 0.015.

To evaluate whether the differences in performance of
the compared classifiers are significant, a non-parametric
Friedman test [19] and the post-hoc Nemenyi test [20] were
applied. These tests were chosen to determine if the classifi-
ers are significantly different from each other. For the Fried-
man test, a null hypothesis states that there are no significant
differences in performance between the classifiers, while the
alternative hypothesis states that at least one classifier per-
forms significantly better than the others. A typical p-value
< 0.05 was chosen as significance level [21]. The result of
the Friedman test over all approaches and their measured
performance from Table 3 is the following:

statistical-value: 10.8
p-value: 0.0129

SN Computer Science (2024) 5:339 Page 11 of 15 339

SN Computer Science

Since the p-value is below the significance level and the
statistical-value is higher than the critical value of 7.815,12
the null hypothesis can be rejected and the conclusion can
be drawn that there is a significant difference among the
classifiers. This means that at least one classifier performs
significantly better or worse than the others. However, the
Friedman test does not identify which specific classifiers
differ significantly from one another. This is why a Nemenyi
test was applied subsequently as a post-hoc test for more
insight. It performs a pairwise comparison of each classifier
result, so it identifies the performance differences among
them. All p-values between the respective models are sum-
marized in Table 4. The values that are below the signifi-
cance level and refer to a significant difference between the
models are marked in bold.

In addition to the significances, further details on the
results can be obtained from a comparison of the confu-
sion matrices. For each approach, we have chosen a compact
representation of such a matrix over the 69 classes and com-
pared them in Fig. 8. The x-axes of the matrices show the
predicted categories for all test data for the respective model.
The y-axes, on the other hand, show the actual expected
categories. A diagonal line without deviating markings is
therefore a desired result. The applied scale was normalized

across the respective predicted classes to achieve a better
representation due to the imbalanced classes.

It can be observed that the tag-based model and the id-
based model have predicted one class of the models more
often incorrectly. In both matrices it is the class "Web Appli-
cations". This is one of the over-represented classes in the
dataset, as already described in Figure 3. In the confusion
matrices, the corresponding columns are highlighted with
a red border.

The training time of the models was comparatively low
and can therefore be neglected. However, to give an idea
of how long the training of these neural networks with the
given data can take on average and how the training duration
of the approaches compared, the performance over all runs
including extra repeats was measured as well. It was per-
formed on a system running the Linux distribution Ubuntu
22.04.1 LTS with an NVIDIA GeForce GTX 1080, an AMD
Ryzen 9 3900XT and 64 GiB of memory. The tag-based
approach with an RNN already took approx. twice as long
(mean/std: 32.2 s ±5.6 s) as the same approach with an FNN
(mean/std: 15.4 s ±1.83 s). While the id-based approach
ran faster than the tag-based RNN (mean/std: 26.8 s ±0.45
s), the hybrid approach took the longest due to the largest
amount of tokens entered (mean/std: 45.9 s ±6.29 s). While
these measurements can vary significantly due to the hard-
ware and implementation used, it should be noted that all
4 classifiers can be trained in a relatively short time by a
standard mid-range gaming PC. Due to these relatively short
training times, instead of retraining existing models with the

Table 3 Evaluation results of
the respective models for each
approach over 5 runs

The best result of the respective metric in each column is highlighted in bold
1 Feedforward neural network
2 Recurrent neural network, described in Figure 2
3 To justify the preprocessing process, the following poorer results were obtained in an additional test with-
out preprocessing: Acc

�
 = 0.8330 / Acc

bal
 = 0.6604 / Prec

M
 = 0.7782 / Fscore

M
 = 0.7049

Approach Model Measures

Acc
�

Acc
bal

 / Rec
M

Prec
M

Fscore
M

Tag-based FNN1 0.9748 ± 0.0010 0.9200 ± 0.0115 0.9502 ± 0.0066 0.9291 ± 0.0104
Tag-based RNN2 0.8700 ± 0.0055 0.7657 ± 0.0088 0.9425 ± 0.0145 0.8314 ± 0.0103
Id-based 3 RNN 2 0.9041 ± 0.0010 0.7136 ± 0.0111 0.7949 ± 0.0141 0.7403 ± 0.0110
Hybrid RNN 2 0.9833 ± 0.0010 0.9412 ± 0.0121 0.9620 ± 0.0089 0.9487 ± 0.0106

Table 4 Results of the applied
Nemenyi test to find significant
differences between the models
examined

Values below the significance level of 0.05 are marked in bold

Tag-based (FNN) Tag-based (RNN) Id-based (RNN) Hybrid (RNN)

Tag-based (FNN) 1.000 0.3549 0.3549 0.6703
Tag-based (RNN) 0.3549 1.000 0.9000 0.0314
Id-based (RNN) 0.3549 0.9000 1.000 0.0314
Hybrid (RNN) 0.6703 0.0314 0.0314 1.000

12 The critical value was obtained using a degree of freedom of k-1,
when k is the amount of classifiers, on a chi-squared distribution
table.

 SN Computer Science (2024) 5:339 339 Page 12 of 15

SN Computer Science

risk of catastrophic forgetting, a constant retraining can also
be considered as the number of data grows.

Comparison of Preprocessed Datasets

For a further evaluation, tests were carried out on the
basis of optimized datasets by varying preprocessing set-
tings. Table 5 shows the test results for the id-based RNN
approach. As described before, the optimisations differ by
varying definitions for common and rare tokens. The defini-
tions for rare and common token described as base show dif-
ferent test results. In the following, we refer to the selected
number that defines a token in the data set as common or

rare as basex , where x stands for the defined number of
tokens. A rare token is defined as one that occurs less than
x times in the data set. Tokens ≥ x are considered common
for the dataset. For the evaluation we selected base

1
 , base

3
 ,

base
5
 , and base

10
 , which show different test outcomes when

applied to the id-based RNN. The best result in each metric
is highlighted in bold.

The metrics in Table 5 show that the classification results
of the id-based approach can be optimized to a degree by
increasing the basex for word splitting and filtering. How-
ever, the results vary. Especially the balanced accuracy could
be improved significantly, while the other metrics increase
only slightly. However, a general increase of the base only

Fig. 8 Comparison of normal-
ized confusion matrices from a
trained model of each described
approach

Table 5 Evaluation results of
the id-based RNN approach for
different dataset optimisations
by rare token split and library
filtering on varying base

x

The best result of the respective metric in each column is highlighted in bold

Base Classes Measures

Acc
�

Acc
bal

/Rec
M

Prec
M

Fscore
M

base
1

69 0.9041 ± 0.0010 0.7136 ± 0.0111 0.7949 ± 0.0141 0.7403 ± 0.0110
base

3
69 0.9172 0.7511 ± 0.0199 0.8057 ± 0.0166 0.7703 ± 0.0182

±0.0021
base

5
69 0.9212 ± 0.0023 0.7683 ± 0.0136 0.7950 ± 0.0130 0.7719 ± 0.0143

base
10

68 0.9164 ± 0.0013 0.7546 ± 0.0072 0.8046 ± 0.0116 0.7688 ± 0.0090

SN Computer Science (2024) 5:339 Page 13 of 15 339

SN Computer Science

brings an improvement up to a certain degree and leads
to the fact that underrepresented classes can no longer be
included. The evaluation of base

10
 was limited to 68 classes,

after one class no longer held any libraries due to the filter-
ing. The standard deviation of the results is with less than
0.02 slightly higher than in the previous evaluation from
Table 3, but still negligible. Considering the standard devia-
tions, it can at least be concluded that the results of base

5
 and

base
10

 are close to each other.

Discussion

Based on the results, it can be concluded that both an
improvement of the classification results compared to the
baseline was achieved and a working tag-independent
approach was presented. The hybrid approach achieved bet-
ter results compared to the baseline approach, based on a
feedforward neural network and significantly compared to
the one based on the RNN. This indicates that the quality
of tags is insufficient for the classification of some libraries.
Tags are insufficient if, for example, they are too generic
and are used across classes. Including the tokens from the
group-id and artifact-id helps the applied RNN to provide
better predictions for such libraries.

The RNN trained on group-id and artifact-id achieved an
accuracy of 0.90, but for balanced accuracy it achieved just
about 0.71. It allows a more generic classification, independ-
ent of tags that are not always available. However, the excel-
lent result of the tag-based approach could not be achieved.
On the one hand, this could be due to the ids, which do not
always contain clear or assignable tokens. On the other hand,
a fuzziness in the classes or software libraries with cross-
class functions could lead to the deviating predictions. Manu-
ally added tags, which are adapted to the classes, could hide
this issue. An example of a software library with cross-class
functions is org.apache.hbase:hbase-testing-util. This library
offers utility functions for testing on the HBase database.
Among others, the classes "Utilities", "Testing" and "Data-
base" are available for the classifier. This can lead to errors in
the prediction. For example, some libraries from the category
"File System" were not correctly classified as "Database".
The comparison of the accuracies achieved by the id-based
approach and the additional consideration of the confusion
matrix shows that the id-based approach works better for
some classes than for others. The worst results were obtained
solely for the under-represented classes. An enrichment of
these small classes by, for example, selective annotation of
libraries could further improve the result. We also observed
that with the range of functions of some libraries and with
a division of the classes as derived from MvnRepository.
com, a division into classes is not always clearly possible. In
addition, we found libraries on the platform that have been

assigned more than one class label. An example of this is
given in the following Section 8 about threads to validity.
However, when the described dataset from Section 4.1 was
crawled, no multi-label entries were found.

The evaluation also included the results for approaches that
depend on the ids and can be optimized by more restrictive
token-splitting and filtering out rare tokens in preprocessing.
The improved classification results were presented in Table 5.
We found for the id-based approach an optimized classifica-
tion result by applying a higher basex . Out of all the bases
tested, the best result was achieved with base

5
 . The larger

base
10

 did not lead to any performance optimisation. Further-
more, an increase in the filtering of libraries by base

10
 already

leads to a dropout of classes that no longer contain libraries. A
not further improvement of the classification results has a sim-
ilar background. Already previously underrepresented classes
contain even less training data after filtering. We conclude
from this that optimal filtering must be determined accord-
ing to needs. For the comparison of the different approaches,
optimisation by filtering the software libraries was therefore
not performed and base

1
 was applied. The aim was to train

models that are as robust as possible and can potentially be
applied to all software libraries, and comparability with the
tag-based approach is ensured by utilizing the same dataset.

Threads to Validity

The validity of the evaluation results is limited to the
mapped categories, which were presented in [6] by map-
ping. The application of finer or more coarse-grained classes
can lead to a different performance of the approaches for
automated classification. The same applies to the classifica-
tion into other class structures. This study refers to the class
structure adapted from the classes of MvnRepository.com.

Another limitation is that the approaches are initially only
applicable to software libraries in the JVM Maven context.
Away from the applied dataset, the approaches need to be
further evaluated. For example, the ecosystems of CRAN,
PyPI or npm, which were mentioned in the introduction,
need to be analyzed to conduct a cross-programming-
language study on the classification of software libraries.
In addition, the result may also vary when using software
library ids from other repositories in the JVM context. As
described, there is no binding rule regarding id names.

The data was collected between May and July 2020 and
is limited to one label per software library. However, the
distinction may not be definite for every software library,
or the classes may be chosen in such a way that intersec-
tions arise. As an example, the library javax.inject:javax.
inject [22] can be mentioned. This library was assigned
the classes "Dependency Injection" and "Java Specifica-
tions". The choice of the classes in this example is because

 SN Computer Science (2024) 5:339 339 Page 14 of 15

SN Computer Science

"Dependency Injection" is function-oriented, and "Java
Specifications" describes the specification of a technical
standard.

Conclusion

In this study, our goal is to develop classifiers for all crawled
software libraries from the JVM repositories. The study is
based on around 28.600 labeled software libraries. The
approach using their tokenised ids is generic and we were
able to obtain a balanced accuracy of 71.36% and 76.83%
by more filtering of tokens. Furthermore, we were able to
optimize the classification results of the tag-based models
using a hybrid approach.

This is possible by adding the tokenized ids as addi-
tional features. Training an RNN with tags and ids leads
to an improvement in the results. By applying this hybrid
approach, we were able to improve the balanced accuracy
from 92 to 94.12%. Probably poorly tagged libraries as well
as software libraries that do not hold any tags will be sup-
plemented by the tokens from the ids, improving the clas-
sification result.

Third-party libraries from other programming languages
may contain libraries with different name or id structures.
Further studies and possibly further approaches are therefore
necessary. At the same time, we found that other indexing
platforms for software libraries in other languages tag their
listed entries partly as well. It would be future work to ana-
lyze the quality and coverage of the tags on other platforms
and to examine the applicability for a classification.

Another future work could be the analysis of id-tokens
already described in section 4.3. An additional annotation
of libraries with certain tokens could solve several problems
at once. Uncategorized libraries without previous common
tokens can possibly be classified more reliably. In addition,
the imbalance can be reduced by enriching strongly under-
represented classes and thus the performance results of the
trained models based on ids as well as the hybrid approach
can be optimized.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Data availability The data that support the findings of this study are
openly available at (https:// github. com/ CCWI/ corpus- libsim- exten ded).

Declarations

Conflict of interest During his participation in this research project,
Maximilian Auch had a part-time employment relationship with Ausy
Technologies Germany. Maximilian Balluff also had a part-time em-
ployment relationship with IT4IPM - IT for Intellectual Property
Management GmbH. In addition to these employments, which had no

direct influence on the study, the authors declare that they have no
conflict of interest.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

 1. Salza P, Palomba F, Di Nucci D, de Lucia A, Ferrucci F. Third-
party libraries in mobile apps. Empir Softw Eng. 2020;25(3):2341–
77. https:// doi. org/ 10. 1007/ s10664- 019- 09754-1.

 2. Thung F, Lo D, Lawall J. Automated library recommendation. In:
2013 20th Working Conference on reverse engineering (WCRE),
2013; pp. 182–191. https:// doi. org/ 10. 1109/ WCRE. 2013. 66712
93.

 3. Auch M, Weber M, Mandl P, Wolff C. Similarity-based analyses
on software applications: a systematic literature review. J Syst
Soft. 2020;168:110669

 4. Yu H, Xia X, Zhao X, Qiu W. Combining collaborative filtering
and topic modeling for more accurate android mobile app library
recommendation. In: Mei H, editor. Proceedings of the 9th Asia-
Pacific Symposium on Internetware. New York, NY: ACM Digi-
tal Library, ACM; 2017. p. 1–6. https:// doi. org/ 10. 1145/ 31317 04.
31317 21.

 5. Escobar-Avila J. Automatic categorization of software libraries
using bytecode. In: 2015 IEEE/ACM 37th IEEE International
Conference on software engineering, 2015;2:784–6.https:// doi.
org/ 10. 1109/ ICSE. 2015. 249.

 6. Auch M, Balluff M, Mandl P, Wolff C. Similarity of software
libraries: a tag-based classification approach. In: Quix C, editor.
DATA 2021; 17–28. SCITEPRESS-Science and Technology Pub-
lications Lda, Setúbal, Portugal, 2021. https:// doi. org/ 10. 5220/
00105 21600 170028.

 7. Velázquez-Rodríguez C, De Roover C. Mutama: an automated
multi-label tagging approach for software libraries on maven. In:
2020 IEEE 20th International Working Conference on source code
analysis and manipulation (SCAM), 2020; 254– 258. https:// doi.
org/ 10. 1109/ SCAM5 1674. 2020. 00034.

 8. Sanchez C. Maven—guide to naming conventions 2005. https://
maven. apache. org/ guides/ mini/ guide- naming- conve ntions. html#
guide- to- naming- conve ntions- on- group id- artif actid- and- versi on.
Accessed 9 Nov 2021.

 9. Gosling J, Joy B, Steele G, Bracha G, Buckley A, Smith D, Bier-
man G. The Java® Language Specification 2021. https:// docs. ora-
cle. com/ javase/ specs/ jls/ se17/ html/ index. html. Accessed 9 Nov
2021.

 10. Sutskever I, Vinyals O, Le VQ. Sequence to sequence learning
with neural networks. arXiv: org/ pdf/ 1409. 3215v3.

 11. Goodfellow I, Bengio Y, Courville A. Deep learning. Adaptive
computation and machine learning. Cambridge: The MIT Press;
2016.

https://github.com/CCWI/corpus-libsim-extended
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s10664-019-09754-1
https://doi.org/10.1109/WCRE.2013.6671293
https://doi.org/10.1109/WCRE.2013.6671293
https://doi.org/10.1145/3131704.3131721
https://doi.org/10.1145/3131704.3131721
https://doi.org/10.1109/ICSE.2015.249
https://doi.org/10.1109/ICSE.2015.249
https://doi.org/10.5220/0010521600170028
https://doi.org/10.5220/0010521600170028
https://doi.org/10.1109/SCAM51674.2020.00034
https://doi.org/10.1109/SCAM51674.2020.00034
https://maven.apache.org/guides/mini/guide-naming-conventions.html#guide-to-naming-conventions-on-groupid-artifactid-and-version
https://maven.apache.org/guides/mini/guide-naming-conventions.html#guide-to-naming-conventions-on-groupid-artifactid-and-version
https://maven.apache.org/guides/mini/guide-naming-conventions.html#guide-to-naming-conventions-on-groupid-artifactid-and-version
https://docs.oracle.com/javase/specs/jls/se17/html/index.html
https://docs.oracle.com/javase/specs/jls/se17/html/index.html
http://arxiv.org/1409.3215v3

SN Computer Science (2024) 5:339 Page 15 of 15 339

SN Computer Science

 12. Hochreiter S, Schmidhuber J. Long short-term memory. Neural
Comput. 1997;9(8):1735–80. https:// doi. org/ 10. 1162/ neco. 1997.9.
8. 1735.

 13. Cho K, van Merrienboer B, Gulcehre C, Bahdanau D, Bougares
F, Schwenk H, Bengio Y. Learning phrase representations using
RNN encoder-decoder for statistical machine translation. arXiv:
org/ pdf/ 1406. 1078.

 14. Velez DR, White BC, Motsinger AA, Bush WS, Ritchie MD, Wil-
liams SM, Moore JH. A balanced accuracy function for epistasis
modeling in imbalanced datasets using multifactor dimensionality
reduction. Genet Epidemiol. 2007;31(4):306–15. https:// doi. org/
10. 1002/ gepi. 20211.

 15. spaCy . Industrial-strength Natural Language Processing in
Python (22.11.2021). https:// spacy. io/. Accessed 22 Nov 2021.

 16. Varma S, Simon R. Bias in error estimation when using cross-
validation for model selection. BMC Bioinform. 2006;7(1):91.
https:// doi. org/ 10. 1186/ 1471- 2105-7- 91.

 17. Sokolova M, Lapalme G. A systematic analysis of perfor-
mance measures for classification tasks. Inform Process Manag.
2009;45(4):427–37. https:// doi. org/ 10. 1016/j. ipm. 2009. 03. 002.

 18. Brodersen KH, Ong CS, Stephan KE, Buhmann JM. The balanced
accuracy and its posterior distribution. In: 2010 20th International

Conference on pattern recognition (ICPR 2010), IEEE, Piscata-
way, NJ, 2010; 3121– 3124. https:// doi. org/ 10. 1109/ ICPR. 2010.
764.

 19. Friedman M. The use of ranks to avoid the assumption of nor-
mality implicit in the analysis of variance. J Am Stat Assoc.
1937;32(200):675–701.

 20. Nemenyi PB. Distribution-free multiple comparisons. Princeton
University; 1963.

 21. Demar J. Statistical comparisons of classifiers over multiple data
sets. J Mach Learn Res. 2006;7:1–30.

 22. Maven Repository: javax.inject:javax.inject (08.12.2021). https://
mvnre posit ory. com/ artif act/ javax. inject/ javax. inject Accessed
08.12.2021

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
http://arxiv.org/1406.1078
http://arxiv.org/1406.1078
https://doi.org/10.1002/gepi.20211
https://doi.org/10.1002/gepi.20211
https://spacy.io/
https://doi.org/10.1186/1471-2105-7-91
https://doi.org/10.1016/j.ipm.2009.03.002
https://doi.org/10.1109/ICPR.2010.764
https://doi.org/10.1109/ICPR.2010.764
https://mvnrepository.com/artifact/javax.inject/javax.inject
https://mvnrepository.com/artifact/javax.inject/javax.inject

	Towards an Automated Classification of Software Libraries
	Abstract
	Introduction
	Related Work
	Software Library Classification Approach
	Tag-Based Classification (baseline)
	Id-Based Classification
	Hybrid Classification

	Dataset
	Description of crawled dataset
	Tags
	Group-id and Artifact-id

	Evaluation
	Results
	Comparison of Approaches
	Comparison of Preprocessed Datasets

	Discussion
	Threads to Validity
	Conclusion
	References

