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Abstract

We consider the sharp interface limit of a Navier—Stokes/Allen Cahn equation in a bounded
smooth domain in two space dimensions, in the case of vanishing mobility m, = /¢, where
the small parameter ¢ > 0 related to the thickness of the diffuse interface is sent to zero. For
well-prepared initial data and sufficiently small times, we rigorously prove convergence to
the classical two-phase Navier—Stokes system with surface tension. The idea of the proof is to
use asymptotic expansions to construct an approximate solution and to estimate the difference
of the exact and approximate solutions with a spectral estimate for the (at the approximate
solution) linearized Allen—Cahn operator. In the calculations we use a fractional order ansatz
and new ansatz terms in higher orders leading to a suitable e-scaled and coupled model
problem. Moreover, we apply the novel idea of introducing ¢-dependent coordinates.

Mathematics Subject Classification Primary: 76T99; Secondary: 35Q30 - 35Q35 - 35R35 -
76D05 - 76D45

1 Introduction and main result

Two-phase flows of macroscopically immiscible fluids is an important research area with
many applications. There are two important model categories: sharp interface models and
diffuse interface models. For sharp interface models the interface separating the fluids is
assumed to be a hypersurface. These models usually consist of an evolution law for the
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hypersurface, coupled to equations in the bulk domains and on the interface. Solutions often
develop singularities in finite time, in particular when the interface changes its topology. In
contrast, diffuse interface models use a typically smooth order parameter (e.g. the density or
volume fraction of the two fluids) that distinguishes the bulk domains and inbetween typi-
cally has steep gradients in a small transition zone (also called diffuse interface), which is
proportional to a small parameter, e.g. ¢ > 0. In applications the diffuse interface can be
interpreted as microscopically small mixing region of the fluids. Quantities defined on the
hypersurface in sharp interface models typically have a diffuse analogue that is defined in
the diffuse interface. An important example is the relation of surface tension and capillary
stress tensor, see Anderson et al. [9]. Diffuse interface models may be more suited to describe
phenomena acting on length scales related to the interface thickness, e.g. interface thicking
phenomena, complicated contact angle behaviour and topology changes, cf. [9]. Moreover,
topology changes typically are no problem from an analytical or numerical point of view
in contrast to sharp interface models. However, both model types are usually derived from
physical principles or observations and can be used to model the same situations in applica-
tions. This motivates to study the connection between diffuse and sharp interface models by
sending the small parameter ¢ (related to the thickness of the diffuse interface) to zero. Such
limits are known as “sharp interface limits”.

Let To > 0, @ C R? be a bounded smooth domain and & > 0 be small. For v,: Q x
[0, Ty] — R2, Pe, et Q x [0, Ty] — R we consider the following Navier—Stokes/Allen—
Cahn system for small ¢ > 0:

0;Ve + Ve - Vvg —div(2u(ce) Dve) + Vpe, = —ediv(Ve, @ V) in Q x (0, Tp), (1.1)
divv, =0 inQ x (0, Ty, (1.2)

| .
0rce + Ve - Veg = my |:Acg — 8—2f (cg)] in Q x (0, Tp), (1.3)

(Ve, ce)laq = (0, —1) on A2 x (0, Tp), (1.4)

(Ve, ce)li=0 = (Vo,e, CO,E) in Q, (15)

where v, p. have the interpretation of a mean fluid velocity and pressure, respectively, and
¢e has the role of an order parameter distinguishing two components of a fluid mixture.
Moreover, v: R — (0, 00) is a smooth concentration-dependent viscosity, m, := /¢ is the
mobility and f: R — [0, 0o) is a suitable smooth double-well potential with wells of equal
depth, e.g. f(c) = %(c2 — 1), specified below. For simplicity in the following analysis we
assume that v’ : R — R is even. Furthermore, Dv, = %(va + (Vve)T) is the symmetrized
gradient and the operators V, A and div are defined to act on spatial variables only. Finally,
note that Ve, ® Ve, is a contribution to the stress tensor that represents capillary stresses
due to surface tension effects in the (typically small) mixing region. The above model was
introduced by Liu and Shen in [26] for constant viscosity along with a Navier—Stokes/Cahn-
Hilliard variant in order to describe two-phase incompressible Newtonian fluids with the
diffuse interface approach. The model was later derived in a thermodynamically consistent
way by Jiang et al. [21] via an energetic variational approach including the case of different
densities. Moreover, they showed global existence of weak solutions in 3D and global well-
posedness and longtime behaviour of strong solutions in 2D.

We are interested in the sharp interface limit ¢ — 0 for the above system (1.1)—(1.5).
For well-prepared initial data and small times, we will rigorously prove the convergence of
(1.1)—(1.5) to the following classical two-phase Navier—Stokes equation with surface tension:

vy + vy - Vvg —VvEAVY +Vpi =0 inQF 1 el0, ], (1.6
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divvy =0 inQF e[0T, (1.7)

[2v*Dvi — piIlnr, = —o Hr,nr, only,tel0,Tol, (1.8)
Vil =0 onT,, 1[0, T, (1.9

Vr, =nr, - vi onT;, 1[0, Tpl, (1.10)

vy lag =0 on 92 x (0, Tp),  (1.11)

To=T%  v§li=o =g, in QF, (1.12)

where Ty > 0, v¥ := v(£1), Qs the disjoint union of QF, Q; and I'; forevery ¢ € [0, To],
Q:F are smooth domains, I'; = 9Q,” € Q and nr, is the interior normal of I'; with respect
to ;7. The jump [u](., ) in x € T, of a quantity u defined on Q;" U Q; is defined as

[u](x, 1) = "EI&_ [u(x +rar, (x), 1) — u(x — rnr, (x), t)] .

Moreover, Hr, is the (mean) curvature and VT, is the normal velocity of I'; with respect to
nr,. Furthermore, (FO, V(:)to) are suitable initial data. For the following we denote

Qf= |J @f <. = |J

1€[0,Tp] 1€[0,Tp]

The surface tension constant o is determined by o = fR 9(’)(,0)2dp, where 6y is the well-
known optimal profile, i.e., the unique solution of

—9(’)/ + f'(6)) =0 inR, lim 6y(p) = +£1, 6p(0) = 0. (1.13)
p—F00

As in Abels and Liu [5] we assume for the double well potential f: R — R that it is smooth
and satisfies the assumptions

F(ED) =0, f'(£1)>0, f(s)=f(—s)>0 forallse (—1,1).

Then there is a unique solution p: R — R of (1.13), which is monotone. Moreover, for
every m € Ny, there is some C,, > 0 such that

107 (B0 (p) F )| < Cpe V! forall p € R with p =0,

where « = min(y/ f”(—1), /f”(1)). Since f is assumed to be even, 6y is odd and 96 is
even.

Strong solutions for the problem (1.6)—(1.12) have been studied extensively in the literature
starting with the results by Denisova and Solonnikov [14]. For further references we refer to
Kohne et al. [24] and the monograph by Priiss and Simonett [30], where in particular local
well-posedness in an L”-setting is shown. Existence of a notion of weak solutions, called
varifold-solutions, globally in time was shown in [1]. Weak-strong uniqueness for these kind
of solutions was shown by Hensel and Fischer [16].

Let us now comment on the choice of vanishing mobility m, = /¢ — 0in (1.4). In [2]
a non-convergence result was shown for a convective Allen—Cahn equation for a mobility
mg = moe*, where mg > 0 is a constant and o > 2, and formal asymptotic calculations
were carried out for the case « = 0, 1. Hence for constant mobility m, = m the formal limit
is a transport equation coupled to mean curvature flow, whereas for the case m, = mge the
formal limit is a pure transport equation, cf. (1.10) above. It is possible to adapt the formal
calculations to the case of mobilities m, = mpe® for all exponents « € [0, 1] (with the same
limit system for & € (0, 1]), the expansions just become more tedious and lengthy due to
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the fractional order ansatz. In Abels and Fei [3] the case of m, = 1, o = 0 was studied and
rigorous convergence to a two-phase Navier—Stokes system coupled with mean curvature flow
was shown as expected from the formal asymptotic expansions as long as a smooth solution
of the limit system exists. However, for this limit system there is no conservation of mass
and hence it could be considered physically less relevant compared to the classical two-phase
Navier—Stokes system with surface tension, where one has pure transport of the interface.
This clearly motivates the study of the case of vanishing mobility m, for ¢ — 0. To the best
of our knowledge there is no rigorous convergence result in the case of vanishing mobility
in the literature. The choice of m, = /¢ and @ = % for our result is motivated as follows:

for the arguments in [3], the exponent o = % is critical in a heuristic sense by calculating
the orders for « = 1 and by assuming some linear depencence on «. The cases o € (0, %]

should work formally with the strategy in [3], but we decided to simply choose o = %, in
particular in order to have simpler asymptotic expansions with just 1/e-spacing in the sums.
We note that in a joint-work with Fischer the first and third author show convergence for more
general scalings of m, > 0 using the relative entropy method. In this work the convergence
is obtained in weaker norms (and assuming same viscosities for simplicity), but it also holds
for three space dimensions, see [4].

Our strategy to prove the sharp interface limit is via rigorous asymptotic expansions.
The method goes back to de Mottoni and Schatzman [13] who first applied it to prove the
rigorous sharp interface limit for the Allen—Cahn equation. The strategy works as follows:
it is assumed that there exists a smooth solution to the limit sharp interface problem locally
in time (usually this is no restriction). Then in the first step, one rigorously constructs an
approximate solution to the diffuse interface system via rigorous asymptotic expansions
based on the evolving hypersurface that is part of the solution to the limit problem. In the
second step, one estimates the difference between the exact and approximate solution with
the aid of a spectral estimate for a linear operator depending on the diffuse interface equation
and the approximate solution. Comparison principles are not needed for the method and one
even obtains the typical profile of solutions across the diffuse interface. The strategy was
applied to many other sharp interface limits as well, see Moser [28] for a list of results. Let
us just mention the famous result by Alikakos et al. [8] for the Cahn-Hilliard equation, Abels
and Liu [5] for a Stokes/Allen—Cahn system, Abels and Marquardt [6, 7] for a Stokes/Cahn—
Hilliard system, and the recent result Abels and Fei [3] for the Navier—Stokes/Allen Cahn
system with constant mobility.

In general, rigorous results for sharp interface limits can be grouped into results concerning
strong solutions for the limit system, in particular before singularities appear, and global
time results using some weak notion for the sharp interface system. As described above,
our result relies on the existence of a smooth solution for the limit system and assumes
sufficiently small times. Another important strategy for sharp interface limits using strong
solutions is the relative entropy method, see Fischer et al. [17] where the convergence of
the Allen—Cahn-equation to mean curvature flow is considered and Hensel and Liu [19],
where the Navier—Stokes/Allen—Cahn system with constant mobility (but equal viscosities)
is considered, cf. [28] for more references concerning the relative entropy method. Weak
notions used for global time results for the Allen—Cahn equation are viscosity solutions
[10, 11, 15, 23], varifold solutions [20, 22, 27], BV-solutions ([25]; conditional result) and
a solution concept inbetween [18]. In [3] there are more references for results on Navier—
Stokes/Cahn—Hilliard-type models.

The following theorem is our main result about convergence of (1.1)—(1.5) to (1.6)—(1.12):
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Theorem 1.1 Let Ty > 0, my = /¢ for all ¢ > 0, and (Voi, I') be a smooth solution
of the two-phase Navier—Stokes system with surface tension (1.6)—(1.12) on [0, Ty] with
coe(x,t) € [=1,1] for all (x,t) € Q x[0,Tyl, ¢ € (0,1]. Let N € N, N > 3. Then
there exist cpx = caA(N,&),va = Va(N,&) € H'(0, To; L2(RQ)) N L*(0, To; H*(RQ)) for
e € (0, 1], uniformly bounded in these spaces and ||cAllco < 1 + ¢ with ¢ > 0 independent
of ¢ € (0, 1], such that the following holds:

Let (vg, cg) be strong solutions of (1.1)—(1.5) with initial values vo ¢, co,¢ such that

1
llco,e — cali=oll2(q) + &2V (co.c — cali=0)l12(q) + IVo,e = Vali=oll 2(q) = ceNta
(1.14)

forall e € (0, 1] and some C > 0. Then there are some g9 € (0, 1], R > 0and T} € (0, To]
small such that for all ¢ € (0, eg] and some Cr > 0 it holds

1 1
llee = call .12 + ¥ IV (e = el 2ax. ey < Re™ T2,
(1.15)
1 1
&% Ve, (ce — ca)ll2qaxo.mpnresy + eIV (e — ca)ll 2qaxo.mynras) < ReVT2,
(1.16)

1 1
52||V(Cs —c)llzeo 12 @) + i ||V2(Ca —c)llzxony < ReN T2,

1.17)

N+1
lve — VA||H%(O’T1;L2(Q)) + 11Ve = Vall oo,y 2@)n220,11: 1 (2)) < CrE™ T,
(1.18)

where F(S) are standard tubular neighbourhoods forS € [0,368], § > 0 small and V4, is
a suitable (approximate) tangential gradient, see Sect.2.1. Moreover, let dr be the signed
distance to T'. Then

ca = £dr)fo(pe) £ xgx (1 — £(dr) + O(e?) in L*((0, To) x @),  (1.19)
va = vy (6, Dn(pe) + Vg (e, (1 = 1(pe)) + O(We)  in L0, To; LP(R)), (1.20)

where epe = dr + O(y/¢) in T'(38), p € [1, 00) is arbitrary, ¢ : R — [0, 1] is smooth such
that supp ¢ C [—28,28]and ¢ = 1on[-6, 8], andn: R — [0, 1] is smooth such that n = 0
in(—oo,—1], n=1in[l,00), n — % is odd and ' > 0 in R. In particular

lin}) ca = £1 uniformly on compact subsets of Q*.
E—>

Remark 1.2 Note that for strong solutions of (1.1)—(1.5) we have the energy inequality

To m
sup f%|vs(t)|2+§|Vc5(t>|2+éf<cs<t>>dx+f f|Dvs|2+—S|us|2dxdsto,a,
te[0,Ty] /Q 0 Q &

(1.21)

where (1, = —eAc + %f’(ce) and

Eoe = / Ivo.el* dx + / (§1Veoel* + L f(co.e)) dx.
Q Q
Therefore the left-hand side of (1.21) is uniformly bounded in ¢ € (0, 1) if SUPg¢(0,1) Eo.e <

00. Using a Taylor expansion for f and the form of c4, v4 in Sect.4 below, one can show
this bound under the assumption (1.14).
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Let us comment on the novelty of our contribution. We use a similar strategy as in Abels
and Fei [3]. Compared to [3], we consider the case of vanishing mobility m, = /¢ in (1.4),
leading to the classical two-phase Navier—Stokes system with surface tension (1.6)—(1.12) in
the sharp interface limit instead of the coupling with mean curvature flow in (1.11) obtained
in [3]. Some remarks on the choice of the scaling for the mobility were included before. Note
that our choice turns out to be critical for the arguments we use, and therefore we need to take
time small in our result compared to [3]. Moreover, we need fractional order expansions with
J/&-spacing in the terms, cf. Sect. 3 below. Additionally, note that in [3] a new type of ansatz
in higher orders was introduced based on a linearization idea that simplified the previous
works [5-7]. However, a direct modification with uncoupled equations for the higher order
ansatz terms as in [3] does not lead to suitable estimates and hence is not enough to close the
argument in our case. Therefore we modify this type of ansatz and obtain as model problem
a coupled system (and another uncoupled problem in higher order) with suitable scaling in €,
see Sects.2.3 and4 below. Moreover, we even have a term at order O (4/¢) in the expansion
of the distance function which leads to problems when applying spectral estimates within
standard tubular neighbourhood coordinates. Therefore we use the novel idea of working with
e-dependent coordinates, in particular as framework for the spectral estimates, cf. Sects. 2.1
and 2.4 below.

Finally, let us summarize the structure of the paper. Section?2 contains the required pre-
liminaries, i.e., e-dependent coordinates, estimates of remainder terms, the (coupled and
uncoupled) model problems with scalings in ¢ as well as spectral estimates based on the
e-scaled coordinates. The asymptotic expansion is done in Sect.3, where the novelty lies
in the expansion in integer powers of /¢ instead of integer powers of ¢. The sophisticated
higher order ansatz terms and remainder estimates are the content of Sect. 4. Finally, the main
result is proven in Sect. 5, where a major part is the control of the error in the velocities in
Sect.5.1.

2 Preliminaries

Throughout the manuscript N denotes the set of natural numbers (without 0) and Nog = NU{0}.
Let U € RY be open, m € Ng, p € [1, co] and X be a Banach space. Then we denote with
LP(U; X) and W;” (U; X) the standard Lebesgue and Sobolev spaces. In the case X = R
we write L?(U) and W;” (U), respectively. Moreover, if U has finite measure, we define for
1<g <ocandk € Ny

L) = {f e LIU): /Uf(x) dx = o} . WE o) = W) N LY ).

Finally, note that we use the convention that V, div and A only act on spatial variables and
not on rescaled ones.

2.1 Coordinates

Let € R? be a domain, To>0andI" = U,E[O’TO] I'; x {t} be a smooth evolving compact
closed curve contained in 2. Then € is divided into two disjoint connected components
Q;J‘ such that BQ,Jr = I for all r € [0, Tp]. We parametrize I'; for every t € [0, To]
over the torus T! = R/277Z with an Xo: T' x [0, Ty] — T such that 8;X(s,7) # 0
foralls e T',r € [0, Tp]. Moreover, we denote the corresponding tubular neighbourhood
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coordinates with (do, Sp): T'(38) — [—38,38] x T, where ['(§) := {dy € (=3, 5)} isa
relatively open neighbourhood of I in 2 x [0, 7p] fors € (0,38]and § > 01is small such that
I'(38) € Q x [0, To]. Here dy(-, t) is the signed distance function to I'; for every ¢ € [0, Tp]
and do(x, 1) = 0in 5. Weset I, (8) := {x € Q: (x,1) € I'(8)} for § € (0, 35] and we also
write dr := dy. Moreover, we denote with

s Xo(s,t —
(s, 1) = ﬁg,[;' and n(s, 1) := ((l) Ol> 7(s,t), for(s,t)e T! x [0, Tp]

the unit tangent and normal vectors of I'; at Xo(s, t), where X is chosen such that n(s, 7) is
the interior normal with respect to Q7 () for all ¢ € [0, Tp]. Moreover, we define

nr,(x) :=n(s,t) forall x = Xo(s,t) € I'y,

and let Vr, and Hr, be the normal velocity and (mean) curvature of I'; with respect to nr,
fort € [0, Tp]. We denote

V(s,1) =V Ixoe.0s  H(s, 1) := Hr,|xs.r) forall (s, 1) € T! x [0, Ty
Here and in the following u|x, : T! x [0, Ty] — R is defined by
ulx, (s, 1) 1= ulxy.n = u(Xo(s, 1)) forall (s, 1) € T! x [0, To]
for a function u defined on a set containing I". It is well known that

\Vdr|>=1, Vdr-VS;=0 inT(39),
le"|X0 =n, azd]"|X0 ==V, Adr|X0 =—H on T! % [0, Tol.

Later we will need a suitable e-perturbation of the standard tubular neighbourhood coor-
dinate system. Therefore we consider for > 0 and ¢ € (0, &9]

de(x, 1) :=do(x, t) + "de(x, 1), (2.1)
Se(x, 1) := So(x, t) + &"Se(x,1)/27  for (x, 1) € T(33), (2.2)

where (d, S¢): T'(38) — R2 are smooth with C¥-norm uniformly bounded with respect to
e € (0, go] for every k € N, and we assume that

de=0 on T(35)\I'() (2.3)

for some " € (0, 38). For small ¢ these coordinates also have suitable properties similar to
a tubular neighbourhood system because of the following theorem.

Theorem 2.1 (e-Coordinates) For ¢1 > O sufficiently small and every ¢ € (0, &1] the e-
coordinates (dg, S¢,1d;): I'(38) — [—36, 38] x T! x [0, Ty] are well-defined and yield a
smooth diffeomorphism with inverse X.. Moreover, for e1 small

@) cre@) cres cri@) cr@@ crid) cres) (2.4)
forall ¢ € (0, &1], where for §' > 0
@) = {(x.1) €T@38) :do(x,1) € (=8, 8)}.

Moreover, for every k € N the C*-norms of dg, S are uniformly bounded.
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Proof Because of (2.3) we obtain that (d, S¢,id;) : T (38) — [—36,368] x T' x [0, Tp]
is well-defined and smooth for ¢ > 0 small. Moreover, because of compactness and the
definitions it holds that D(d,, S, id;) is invertible pointwise in I"(36) for ¢ > 0 small. Hence
(dg, S, idy) is a local diffeomorphism. Furthermore, a compactness and extension argument
shows that (do, So, id;) is globally bi-Lipschitz. This extends to (dg, S, id;) with uniform
constants for ¢ > 0 small. Injectivity of (d;, S¢, id;) directly follows and surjectivity can now
be proven by showing that the image is open and closed in the connected space [—38, 38] x T'.
The additional statement is clear from the definitions for & > 0 small. m]

As before we define

é@) :={x e Q: (x,1) e T¥(8)} foré e (0,33].

Remark 2.2 In order to transform integrals with X, later, we define J,: [—38,38] x T! x
[0, To] — (0, oo) by

Je .= |detDX,| = ! o Xe. 2.5)
VIVA:PIVSe]? — (Vd; - VSe)?
Furthermore, we denote
ng(x,1) = Vdg(x,1) forall (x,1) € T'(38).
For the following we assume that
n.|* = |Vd;|> = 14 0(¢?), n - VS, = O() (2.6)

inC Ib‘ (I'(36)) for all k € N, which we will assure in the following constuction. The following
identity will be useful in relation with divergence free functions:

0 Xe(r,s,t) @ne(Xe(r,s, 1), 1) + 05 Xc(r,5,1) @ VS (X (r,s,8),t) =1 2.7
forall r € (—36,36),s € TL r € [0, Tp]. Itis a consequence of differentiating
Xe(de(x, 1), Se(x,0)) =x  forall (x, 1) € T*(36).
This motivates to define for suitable i
Ve ¥ = VSe[35(¥ 0 Xo)loX . 2.8)
Then
Vi = Ve, ¥ + 0.0, X: 0 X, - V).
Moreover, (2.7) implies
O Xe(r,s, 1) =o(Xe(r,s5,0),1) + 0(e?) = no(X: (0,5, 1), 1) + O(e?)  (2.9)
in C’lj (T'(38)) for all k € N due to (2.6) and
a0 (Xp(r,s, 1) = Ve (Xe(r, s, 1) - 8, Xe(r, s, 1) = O(e%)
in C’; (T'(38)) for all k € N. In particular this shows

(0, Xe) o X1 Vu = dpu + 0(e?)
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for every sufficiently smooth u: I'(36) — R, where 0,4 := n, - Vu. Similarly, by multi-
plying (2.7) with VS¢ (X (r, s, 1), t) one obtains

3 Xe(r,s,1) = |[VS(Xe(r, s, 1)) 2VS(Xe(r, 5, 1) + O(e%)
in C§(T'(36)) forall k € N.

Remark 2.3 Leta: I'(38) — R be smooth in normal direction and assume a = 0 on I', then
a:I'(38) — R with

a(x,t)
aen e [dicn  forall (o) €TGH\T,
opa(x,t) forall (x,7) e’

is well-defined, smooth in normal direction and tangential regularity is conserved. In partic-
ular a is smooth provided that a is smooth. This can be shown with a Taylor expansion in
dr.

A similar statement, based on a Taylor expansion in normal direction for Sobolev functions,
is given by the following lemma and will be useful to estimate remainder terms.

Lemma24 Lett € [0, Tp], € € (0, &) with &1 > 0 as in Theorem 2.1, §' € [25,38] and
ae W;(F,(W))for somek € N, 1 < p < 0o. Then there are ry ¢, € LP(T,(8")) such that

a(x) = Z(E) a)(Pg(x )d(xjit) +d.(x, t) Frer(x) forall x € T4(8),

where Ps(x, 1) := X (0, Se(x,1),1), ng(x,t) = Vdg(x,t), and
I7ke.ellLrar @) < Crllallwir, on)- (2.10)
for some Cy independent of ¢, t, and a.

Proof Since smooth functions are dense in W;j (I';(8)), we can assume that a is smooth. We
define the auxiliary function ®, ,(r) := X.(r, S¢(x, 1), t) for all » € [—§, §']. Then by a
one-dimensional Taylor expansion

a(x) = a((bxt(d (x, 1)
k—

o~ de(x, )7 (%50 @M a(Dy (1)) (de(x, 1) —r)*!
—gd—(a(cbxt(r»)u p +/O - e
k—1 ) ( )
=Y @ha)(Pe(x, 1)~ + de(x, ) rp e (x)
=0 J!
where
4 gk (a(Dy () (1= r/de(x, 1)K
rk,s,t(x):d -
e (x, 1) Jo dr (k—1)!
Now using that by Hardy’s inequality
o d*(a(®y,(r))) % "k @@y, (r))) | ’
(13 [ [fetssnaf ) < ([ [£rscon]’ o
one easily shows (2.10). O
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For the following let #: T! x [0, Ty] — R be sufficiently smooth. Then we have

VI h(r, s, 1) := Ve (h(Se(x, 1), 1) = VS (x, D)dsh(s, 1),

AT h(r, s, 1) == Ay (h(Se(x, 1), 1) = (AS)(x, 1) - dsh(s, 1) + |V S (x, 1)|202h(s, 1)
2.11)

for all (x, 1) € I'(38), where r € (—36§,35) and s € T! are determined by x = X (r, s, 1).
Therefore we define for every sufficiently smoth z: T! x [0, To] — R

(Vreh)(s, 1) = V), s, 1), (Apsh)(s, 1) = (AT h)(0,5,1) foralls € T!, ¢ € [0, Tp].
We note that coefficients of the differences
(VIR (r s, 1) = (Vreh)(s. 1), (ATTR)(r,s.1) = (Arsh)(s. 1)

vanish for r = 0, which corresponds to x € I';.
Finally, let U, C R%t e [0, T'], be open sets and U := U,E[O’T] U,. Then we define for
s>0

L*(0,T; H*(Uy) = {g € L*U) : g(-,1) € H*(Uy) forae.t € (0, T), |gC. Ollusu,y € L*(0, T)},

T 2
g2 0,715y = (/(; llgC, t)ll%;s(y,)dt) ,
L*(0,T; H* () := {g € L*(T) : g 0 Xo € L*(0, T; H*(T"))},

lelr20,7; 1) = 18 © Xoll 20,7515 (11)-

2.2 The stretched variable and remainder terms

In the following we will use a “stretched variable”, which is defined by

for (x,1) e I'(35), ¢ € (0, g1], (2.12)

de(x,t)
P =Pe =
&

where d;: I'(35) — R is as in the previous subsection and &; > 0 is as in Theorem 2.1. In
particular, it satisfies
[Vde(x, 1) =1 +82bg(x,t) for all (x, t) € ['(36),

where b, and all its derivatives are uniformly bounded in ¢ € (0, £1] for some ¢; > 0
sufficiently small.
For a systematic treatment of the remainder terms, we introduce:

Definition 2.5 For any k € R and @ > 0, Ry, denotes the vector space of family of
continuous functions 7. : R x I'(38) — R, indexed by ¢ € (0, 1), which are continuously
differentiable with respect to nr, for all ¢ € [0, Tp] such that

|a,{nf5(p,x, N < Ce Plgk forall p e R, (x,1) e '(38), j =0,1,6 € (0,1) (2.13)

for some C > 0 independentof p € R, (x,1) € ['(35), ¢ € (0, 1). Rg’a is the subclass of all
(Fe)ee(0.1) € Riq such that 7 (p, x,t) =0forall p e R, x € 'y, t € [0, Tp].

We remark that R o and Rg o, are closed under multiplication and Ry o C Ri—1,a-
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Lemma2.6 Let 0 < ¢ < ¢y, do be defined as before, §' € [%,38] and (F¢)o<g<1 €
L2(TY; LY(R) N L2(R)), (@e)eco.1) S C(T'(38)) such that

lag (x,1)| < Cldg(x, t)Ij forall (x,t) e I'(38), ¢ € (0, &1]

for some C > 0 independent of €, x, t and j € Ng. Then there is some C > 0, independent
of 0 < e < ey, &1 € (0,1) such that for each t € [0, T]

o fde(x,t
re(x) = ag(x,t)ra( el ),sg(x,r)> for x € T1(38)
satisfies
Ire@lliLiresy) = C81+j||,0jfa||L2(T1;L1(R))||</7||H1(rf(5/))s (2.14)
Tyin ia
rellz2resny) < C82+'/||/0"”s||L2(T1;L2(R)) (2.15)

uniformly for all ¢ € H'(T'¢(8")), t € [0, Tol, and & € (0, &1].

Proof With the aid of the change of variables x = X (r, s), wherer = dg(x,1),s = Sc(x, 1),
we obtain

5
lIre@llLt(re o)) Z/ ./’J.I‘l lag(Xe(r, s, 1), 1)] |f£ (g,S,l‘)| lp(Xe(r,s, )| Je(r,s, 1) ds dr
-

56/ /|rf||fg Los,0ldr sup |o(Xe(r,s,0)|ds
T JR )
1

re(—=8,8
| N )
< Celti / ds / sup |@(X,(r,s,1)*ds
T! T! |r\§8’

< Ce"|plt, lz2crt; o @y el at re o)

f |p/F:(p, s, 1) dp
R

forall e € (0, &1],¢ € [0, To], and ¢ € H' (). This proves the first estimate.
In the same way we estimate

3/
2 _ 2
el sy = [ [ sl

1214 2 1425 in 2
EC/]/Wl FoZe 5,2 dr ds = Ce™ 0 R o
T JR

Fo (5,5, 0)[* Je(r, 5, 1) ds dr

forall ¢ € (0,&1] and ¢ € [0, Tp], which shows the second estimate. ]

Lemma2.7 Let g € S(R) and ¢ € CS°(R) with supp ¢ < [—%, %]. Then there is constant

C > 0 such that for all t € [0, Tyl, a € H'(T') and ¢ € H' ()¢ N L2 () we have

3
< Cezllallgrrylell g as)s

/ ¢ odrg (pe(x, 1))a(Se(x, ))ns @ n, : Vo(x) dx
T'/(38)

where ng = Vd,.

Proof We use that

ng ng ng ng
- ® Vo = (I — ® ) : Vo (2.16)
[ng| [ng| ng | ng |
P..=

@ Springer



94 Page 12 of 58 H. Abels et al.

since div ¢ = 0. This together with en, - Vg (o, (x, 1)) = g’ (pe (x, ))|ng|? yields

I :=

/l" 38) ¢ Odr‘g’(ps(x, 1)a(Se(x, 1)), @ n, : Vo dx

ng ng

Ve dx

/ “ ¢ odre(ng - Vg(pe(x,1)))a(Se(x, 1))
r(®)

[ng| Ing|

= /1“ ) eg(pe(x, )N, - V(¢ odra(Se(x,1)P, : Vo) dx
7

+

/ . £8(p(x, ) divi, (¢ 0 dra(S:(x. )P, : Vo) dx
()

2

forall ¢ € (0,¢1), t € [0, Tp], where we used integration by parts in the last step. Using
product rule we obtain

1 < j;~ 55) Sg(los(-x, t))Ps Y% [é‘ o dra(SE(x’ Z))(ng . V)(ﬂ] dx

&

+

[ 800 @S5, D0 + (S5, DR T
(5

for some uniformly bounded Q;, R.. Hence another integration by parts leads to

I<

/F(sa); o drePs(Vg(pe(x,1)))a(Se(x, 1)) - (ng - V) dx
(7

+8C/F€(“5) [g (e (x, D)la(Se(x, )| + [(sa)(Se (x, 1)||Ve|dx,
e

where
P:(Vg(pe(x, 1)) =P (nség’(ps(x, t)) =0.
Now using g € S(R) and (2.15) we obtain
I<cCe? lall grery 1@l g1, 2s)) -
This finishes the proof. O
2.3 Parabolic equations on evolving hypersurfaces

For T € (0, 00) and r € [0, 1] we shall denote the function spaces
Xr, = L20,T; H*(TY) N H'(0, T; H'(TY), X7 :=X, i
We equip X7 with the norm

Nl xy = Nullp2,7: w52 ety + Nullgio, a2ty + lul=oll g3y
Then it holds
X7 < C([0, T]; H¥*(TY) n L*0, T; H*(T")) (2.17)
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and the operator norm of the embedding is uniformly bounded in T'.
In the following theorem we derive uniform estimates for a class of degenerate parabolic
partial differential equations.

Theorem 2.8 LetO < T < T; < ocoandk € (0,1], r € [0, 1]and ag, by, ¢, : T x[0, T] —
R be twice continuously differentiable with uniformly bounded C*-norms with respect to
Kk € (0, 1]. Moreover, let there be some co > 0, independent of k, such that c,(s,t) > co
forall (s,t) € T! x [0, T]. For every g € L*>(0, T; H'(T")) and hg € H'*" (T") there is a
unique solution h € Xr , of
dh + acdsh + beh — ke 0°h = g on T' x [0, T1, (2.18)
hli—o = ho onT. (2.19)
Moreover, there is some C = C(T1) > 0 independent of k € (0,11, T € (0, T1], h, g, ho
such that

12l cqo. 71 7 (rty) + Ve lRl 2.7 5+ ety < C (gL, mrcrty + 1Rl g (r1y)
(2.20)

«/I?”h”c([().T];HlJrr(Tl)) + K”h”L2(O,T;H2+’(T1)) < C (||g||L2(O,T;H"(T1)) + ||h0||[.11+r(11‘1)) .
(2.21)
Remark 2.9 Note that Theorem 2.8 can be applied for right hand sides g, depending on «.

Proof of Theorem 2.8 Existence of a unique solution follows by standard results on linear
parabolic equations. Therefore we only need to prove the uniform estimates.

First we consider the case » = 0. Then testing (2.18) with & and integrating with respect
to t we obtain

Kco
sup_ ()12, + =0 / / 19,12 ds dr
0<t<T

T
<C  swp (|asax(s,r)|+|bK(s,r)|+|a‘qck<s,t)|2)f / B ds di
seT1,t€[0,T] 0 JT!

T
+ [ 1s iz dt sup 1Oz,
0 0<t<T
Hence Young’s and Gronwall’s inequality imply (2.20). y
Next let r = 1. Then differentiating (2.18) with respect to s yields for & = d;h
dh 4 @cdsh + beh — ke d2h = 85 onT' x [0, T, (2.22)

for some a,, l;K : T x [0, T] — R, which are smooth and have C!-norms uniformly bounded
in k € (0, 1]. Hence the same estimate as before yields

||3sh||c([0,T];L2(’Ir')) + «/’?||3.vh||L2(o,T;Hl(’Irl)) <C (”g”L‘(O,T;H'(T‘)) + ||h0||H1(1r1))

for some C > 0 independent of « € (0, 1], T € (0, T1] and g, ho. This implies (2.20) in the
case r = 1. Finally, (2.20) for the case r € [0, 1] follows by interpolation.
In order to prove (2.21) in the case r = 0 we test (2.18) with —Kafh and obtain

d ENIR
P
dt T! 2

2/ ce|92h|* ds :K/ a,(ashaszhds—/ (g + beh)kd?hds,
T! T! T!
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where

a,hdZh ds = 9 |8Shl2d < Cx||h@®)|?
K . Ay 050y § = —K i s i ) S = K” (t)“Hl(']Tl)s
- le(g + behkdhds < CUE I 2erty + 1RO 201 195 | 271,

Hence integration in time, (2.20) with r = 0 and Young’s inequality finally yield (2.21).
In the case r = 1 we use again that 1 = 9;h solves (2.22). Testing this equation with
—kd2h yields in the same way as before

d [ 19:h?
L
dt Joi 2

ds +K2/]I‘] cc|92h? ds = K/TI G, 05hd2h ds — /T](Bsg—}—l;,(fl)lcaszh ds

where

Y ~ Ia h|?
K/TI a,cdshd}hds = —K/T O —>— ds < Ci A1 71 g
- [ (058 + beh)dlhds < CUBE O L2y + 13O 2 KIOTA D 20
T

Therefore integration in time, (2.20) with = 1 and Young’s inequality yield (2.21) in the
case r = 1. Finally, the case r € (0, 1) follows again by interpolation.

For the construction of the approximate solutions we will essentially use solution to the
following linearized system:

IWE+WE VT Vi VwE —vEAWE +VgE =15 Q)T re (0.7), (2.23)

divwE =0 inQF 1e(0,7), (224

[w:] =0, [vDw,—gq.I] -n, —o(Ar,hs)oSen, =0 onTlj,te(0,T), (2.25)

W, laga =0 ondQ x (0,7), (2.26)

wE—o=wo inQfT, (2.27)
together with
Othe + (ng - Wg) 0 X¢|,—0 + ag0she + behg — KsAf‘ghs
=y u)o Xg|—o inT!x (0, 7), (2.28)
heli—o = ho inT', (2.29)
where W = w|qe+, ¢F = glge+,ne = Vde andu: Q x (0, T) — R? is given. Moreover,

T € (0, To]

QFF = (QE\T,(38) U (x € T, (38) : de(x, 1) 20}, Q°F = U Q8 F x {1},
t€[0,T]

fi={x el(38) 1de(x.1) =0}, T:= (] I x (1)
tel0,T]

and

Arhe(s, 1) i= (ASe) (X, Dlx=x,0.5.1) - Oshe (5, 1) + [V Se(x, 1) [x=x, (0.5, 02 he (5, 1)
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foralls € T!, t € (0, T). We note that by chain rule
A(he(Se(x,1),1)) = Ar,he(Se(x,1),t)  forallx e '(38),t € (0, T)

for every sufficiently smooth £, : T! x (0, T) — R.
More precisely, (2.23)—(2.25) are understood in the following weak sense:

(Owe (1), @)viy vie) + / (We - Vvg+vo - VW) - @dx + Z/ . vEDw, : Do dx
Q — Jar*o)

= (f(1), 9)vy,v@) +0/ (Ar,he) o Sgng - @ do (2.30)
ry

forall ¢ € V(Q) := H} (2)> N L2 () and almost every ¢ € (0, T), where as usual

2 - L@

L;(Q) ={p € C()? : dive =0} .

Theorem 2.10 For ¢ € (0,1] let k, € (0,1], ag,be: T' x [0,T] — R be continu-
ously differentiable with uniformly bounded C'-norms with respect to ¢ € (0, 1]. Then
for every £ € L*(0,T; V(Q))% u € H'(0,T; V(Q)) N L0, T; V(Q)), wo € L2(RQ),
and hy € HY(TY) there is a unique solution w, € H'(0,T; V(2)") N L2(0,T; V()),
he € HY(0, T; L>(TY))NL2(0, T; H*(TY)) of (2.23)—(2.30). Moreover, there is some C > 0
independent of ¢ € (0, 1], h, g, ho, and T € (0, To] such that

2
el poo,7: 11y + VEelldghell L2¢0. 7yt + IWell 0,72 v () + 1WellL20.7: 11y

< C(Ifllz20.7:vy) + Il 20, 7: 11y + 1000l 20,72 vy + IWoll 22 + ol 1) -
(2.31)

Finally, if additionally f € L*(0, T; L2(2)%), wo € V(S), and hg € H? (T"), then

”hE”H](O,T;H%)HLZ(O,T;H%) + ”WE”HI(O,T;LZ) + llwe ”LZ(O,T;HZ(Qf'i))
C

== (€1l 20,7y + Ill 20,711y + 19l 20,7 v 2y + IWoll gt + N0l 1)
&€

(2.32)

Proof First of all existence of a unique solution w, € HY0,T; V()N L0, T; V(Q)),
he € H'(0,T; H~'(T")) N L?(0, T; H'(T")) follows from the standard theory of abstract
parabolic evolution equations for the Gelfand triple

V=V x H(T"), H=L2(Q) x LXTH, V' =V x H }(T").

Moreover, h, € H'(0, T; L>2(T")) N L2(0, T; H*(T")) follows from standard regularity
theory since n, - We o X.|,—g € L2(0,T; L?>(T')). Hence it only remains to show the
uniform estimates.

Proof of (2.31): First of all we can reduce to the case u = 0 simply by replacing w by
w — u in the equations, where wy is replaced by wg — u|;—o and f has to be replaced by f
defined by

(f(), 9) = (£(1), @)

— (0pu(r), ¢>V(Q)’,V(Q) + / (u-Vvog+vy-Vu) - -@dx + Z/ UiDll : Do dx
Q T oo
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for all ¢ € V(2) and ¢t € (0, T). Adding u afterwards to w, yields the desired solution.
Since

If 202 v < Ifl20.m vy + € (lall20. 7. 51 + 10l 20 7. v@)))

one also obtains (2.31).
Now let u = 0. Choosing ¢ = w, in (2.30) and testing (2.28) with |3, X, (0, s, )| Ar, s
we obtain

d [we ()| [V Sel?195he (1) [ " 2
E(/Q 5 dx+/1rlf|35Xs(O,s,t)|ds +;/ﬂi2v | Dw,|? dx

+ ke /;T 18: X (0,5, DIIVSe[*[0}he (0 ds = (F, @)vy.via) —Z/i WV W d
+ JQF0)

L R R I Y RUP ANC) EUNCEE
T T

< <||f||L2(sz) +Iwell 20 + Ha”H,%(l,g) + Il (he, ashs)HLZ(']T])) (Iwell g1 gy + l10shell2crty)
t

for some smooth and uniformly bounded ag, l;g, Ce, (L: T! x [0, T] — R, where we note
that

/ Ar,hg o Sgng - wedo = / (g - W) (Xe (0,5, 8))Ar, he(s, 1)]0sXe (0,5, 1)|ds  and
re T!

- ~ _ |0ghe)? -
/K%%%+%%Wﬁﬂh=—/l0&%ﬂs;|+&@MQ%%>M~
T T

Hence Young’s and Gronwall’s inequality yield the desired estimate (2.31).
Proof of (2.32): Now assume additionally that f € L(0, T; L?(2)?), wo € V() and
hyoe H 3 (T1). (Note that we do not reduce to the case u = 0 in this case since this is not com-

patible with the assumed regularity for u.) The estimate of || 1, || 1 5
H'(0,T;H2 (T")NL2(0,T;:H2 (T'))

follows directly from (2.21) for r = % and (2.31) using the equation (2.28). Hence

Ar.hoS
1Ar o EHzﬁ(0,T;L2(Ff))nL2<o,T;H%(Ff))

C
< — <||f||L2((0,T)xQ) + llgll
Ke

1 1+ [[woll g1 + |lholl g1
ooty ol + ol

Now the estimate of [|We |l g1, 7. 12) + [[Well L20,T: HA(©QE5)) follows from standard estimates
for the two-phase Stokes system, cf. e.g. [30] for the case that the interface I'; is independent
oft € (0, T). The result in the present case that I'? evolves smoothly with respect to ¢ can be
shown by the same perturbation argument as in the proof of Theorem A.14 in the appendix.

O

2.4 Spectral estimate

For the spectral estimate in e-coordinates as in Sect.2.1 let £; > 0 be as in Theorem 2.1 and
assume that (2.6) hold true. Moreover, we consider the rescaled variable

dg(x, 1)
e

Pelx,t) = for (x,t) € I'(39). (2.33)
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Finally, we assume the following structure of the approximate solution: let
G, 1) = 00(pe(x, 1)) + " pe(Se, )01 (pe) + O(e?), (2.34)
where u € [1,2)and p, : T! %[0, To] — Ris measurable with | Pelloo < Cand By € L*(R)
with
fRf”’(@o)(@é)z@l dp =0. (2.35)

We set

do . do .
P = 0E + (=L e ~ Xar@) IR (2.36)
where ¢ : R — R is a smooth cutoff-function with ¢ = 1 for |r| <2 and ¢ = 0 for |r| > %
The following spectral estimate will be a key ingredient for the proof of convergence.

Lemma 2.11 (Spectral estimate) Let the above assumptions in this section hold. Then there
are some uniform Cp,cp > 0, g9 € (0, e1] such that for every € HY(Q), t € [0, Ty), and
e € (0, gg] we have

"o A
/Q(Ww p LD ) dx

= —CLIV I gy + IV g sy + LN Ve Ve -
where Vi is as in (2.8) and Ff(%) = Fa(%) N (Rz X {t}) with X, FE(%)), and g1 are
as in Theorem 2.1.

Remark 2.12 Because of (2.4) and |V/| > ¢|V, ¥| (see e.g. the proof below), the result also
holds for I'; (28) instead of 'Y (%) with a possibly smaller constant c;. .

Proof of Lemma 2.11 First, due to (2.4) and the definition (2.36) of c?, we obtain that for
& > 0 small it holds

f1efy =0 inTe(3).

Therefore let us first consider the integral over Fg( ) we can transform it into (d, S;)-
coordinates and get

"o A % 1" ~A
/ <|w| PRAC e )dx=/ / [|vw|2oxg+f (ES)wS]Jgdrds,
Te(3) T =% &

where we have set ¥, := ¥ o X, and J is defined in (2.5). Via the chain rule we have the
following transformation identity:

Vd,|*> Vd, - VS,
|V¢|2 o X, = (V(r,x)l)lfes)—r <V|dg .Evlsg |éSE|2 8)

V(r,s)ws . (237)
Xe
Therefore the asymptotics (2.6) together with Young’s inequality yields for & small
2 2 2, 1 2
VY7o Xe = (1 — CeN)[0,r el + EIVQI#I o X,.

Altogether we obtain
"o A
2, Sl (L), 1 2 2
fQ(IVIIfI +;721# dx >|IVW||L2(Q\F5(35)) Ellv‘rgwlll‘z(r;:(%é))_C”w”Lz(F{(%{S))
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EY 1" (RA
+a —Ce2)/ /2 [|a,¢g|2+ wx/@] Jdrds.
T J-¥

(2.38)

The last term on the right hand side of (2.38) can be treated by well-known scaling and
perturbation arguments as well as the spectral properties of differential operators on the real
line similar to Chen [12]. More precisely, except for the dependency of J. on & (which is
not a problem because it is uniform in ¢) the abstract 1D-spectral estimates in Moser [29,
Section 5.1.3] are applicable after rescaling and yield the desired estimate. This shows the
spectral estimate in Lemma 2.11. O

Furthermore, we need more refined estimates of spectral decomposition type:

Corollary 2.13 Let the previous assumptions be valid and let t € [0,Tp] and ¢ €
HY(T¢(3)), where T¢(3) = {x € Q: (x,1) € T*(3)} with T(3}) from Theorem 2.1.
Moreover, let A, € R be such that

(A
re®) &2 Toe
and denote I, = (—%, %) Then, for ¢ > 0 small enough, there exist functions Z, €

HY(TY, yR e Hl(Ff(%)) and smooth W, : I, x T — R such that

V() = 72 Zu(s) (Be0y(0) + We(p, 9)) + YR (x) forallx eTF(E)  (2.40)

where
de(x, 1
s= S0, p=te®D (2.41)
&
Sfor almost all x € Ff(%) and B¢ = ||06||221(18). Moreover,
R 2 <C|eA, +&2 v , 2.42
V8 ) = ( S L (2.42)
I Zell) g1y + Ve 112 + vl 3 <c|lvl? 4+ 8
ctatah TR wr ) TR T (e ) T r2(ri) e )’
(2.43)
and with J, from (2.5)
sup ( / (We(p, )7 + 0 We (0, )%) Je (ep,s,ndp) < Cs. (2.44)
SETI Is

Proof One can proceed similar to Abels, Marquardt [6, Corollary 2.12]. Here one uses
the transformation into the e-coordinates from Theorem 2.1 and spectral properties of 1D-
differential operators on the real line similar to Chen [12], cf. also Moser [29, Section 5.1.3].
This yields the result with || Z,J. (0, ., t)% | g1 1y instead of || Z¢ |l 11y on the left hand
side of (2.43). However, the additional factor is not a problem, because one can control
J: (0, ., t)_% in cl(ThH independent of ¢ using the form (2.5) and the assumptions on d;
and S;. Hence with the chain rule we obtain || Z¢ || g1 (1) < Cl|Z: J: (0, ., t)% 71 ¢r1y and the
result follows. ]

@ Springer



Sharp interface limit for a Navier-Stokes/Allen-Cahn... Page 190f58 94

Remark2.14 Foru € H l(I‘f(%)) let us introduce the e-dependent norms
. 1
lullv, =mf{||Z||H1<T1) Il sy + S0y 2 2 € HUTY, v € HITT (),
— 1 / &3
u(x) = —=Z2(s)0y(p) + v(x) forallx e Iy (F) ¢,

Je
with the abbreviations from (2.41). Corollary 2.13 yields

1
2 2 < 2 e A 2 2
||"‘||Vg + ||VT€u||L2(Ff(¥)) <C (/1“5(325) [Vul|* + ;Zf (ci (., 0))u”dx + ”u”L2(I‘§(325))> .

Here note that 8, from Corollary 2.13 is bounded uniformly for ¢ small and in order to obtain
the estimate one has to take care of the W,-term from Corollary 2.13. However, this can be
done by using the estimates in Corollary 2.13 and a rescaling argument.

We note that for every ¢ > 0 the norm ||. ||y, is equivalent to the standard norm in H 1 (%))
(with e-dependent constants). For the estimates of some critical remainder terms the choice
of this norm will be essential. To estimate such remainder terms the following lemma will
be used.

Lemma2.15 Fixt € [0, Tp]. Letu € Hl(Ff(%)) and rg: Ff(%) — R be a finite sum of
terms of the form

a(p)wg(Se),

where a € Ro,q, We € LZ(T]) and such that

/ re(p,5,005(p)dp =0 foralls € T, (2.45)
R

Then there are constants C > 0, g9 € (0, e1] independent of t € [0, To] such that for
e € (0, &0l

3
/\ redx| < Ce e |l 2, el
IHE
Proof This can be done in the analogous way as in [3, Lemma 2.11]. O

Remark 2.16 If we define dual norm

I fllvy = Sup 1|<f, @)l for f e (H' ().
@llve =

ge - dx
/l"f<3f)

3 Formally matched asymptotics

the lemma states that

3
S C82 ||w£ ”LZ(TI)'
Ve

In this section we will discuss the construction of the approximate solutions except some
higher order terms, which will be added in the next section. In comparision with previous

@ Springer



94 Page 20 of 58 H. Abels et al.

works the main difference is that we obtain an expansion in terms of integer powers of €2,
which means we consider expansions in terms of X with k € %N().
First of all we note that

1
div(Ve, ® V) = Ev(|va€|2) + Acy Ve,

Therefore we can rewrite (1.1)—(1.3) as

0:Ve + Ve - Vv — div(2v(ce) Dve) + Vp, = —eAce Vg, 3.1
divv, =0, 32)
dice + Ve - Ver = 2 Ace — 672 f'(ce) (3.3)

in © x (0, Tp) by replacing p, by p. + 3|V, |2

3.1 The outer expansion

We assume that in Q¥ \I" the solutions of (3.1)—(3.3) have the expansions

cew. Y e, veln Y VG,
ke Ny ke Ny

pex.ty~ Y e pfn,
kG%N,Q

where N_, = Ng U {—1, —2} and c,f, v,f and p,f are smooth functions defined in *. Here
Qe(x, 1) =~ Zkzo,ke%No 8k<,0,§E (x, 1) for ¢z = c¢, Ve (analogously for p;) is understood in the

sense that for any N € %No we have

e — Y g =06"") et
ke lNo,k<N

and the same if ¢, and gy are replaced by 9; 3% ¢, and 9/ agwf, respectively, for any j € Ny,
a € Nj.

Plugging this ansatz into (3.1)—(3.3) and (1.4), using a Taylor expansion for f” and v, the
Dirichlet boundary condition for c,, and matching the O(e~ D, O~ %) terms one obtains in
a standard manner (cf. e.g. [3, Appendix])

1

g =%, ¢f=0 fork > -, VpE, =Vp*, =0 inQ* (3.4)
-2
and
IViE + v - VVE +viE - VvE —vEAVE 4 VpE = — Z vj* . Vvki_j inQ%, (3.5
jesNt<j<k—3

divvE =0 inQ*, (3.6)
Vk_ lag =0 on 92 (37)

for every k > 0. For simplicity we take
pt =p*, =0 (3.8)
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Remark 3.1 Asin [3, 5] we extend (¢, vi¥, pi5), k > 0, defined on Q*, to @ UT'(35) such
that div vkjE = 01in QT UT'(38) for all k > 0. We refer to [3, Remark A.1] for the details.

For the following we define

Wi =avit,n+ Y Vi Vv —vEAVE(L D+ Vpi ) (39)

jeiNo.j<k

Wt = Z eFWEE, (3.10)
ke iNg

for (x, 1) € QT UT(28). Because of (3.5), it holds Wff (x,t) =0forall (x,7) € QF.

3.2 The inner expansion

Close to the interface I" we introduce a stretched variable

de(x,t
p=px,t):= M for all (x, 1) € '(36) 3.11)
I3
for e € (0, 1), where d.: I'(35) — R satisfies
|Vd, (x, t)|2 ~ 1 forall (x,1) € '(39), (3.12)

which has to be understood as |Vd,(x, )] = 1 + O(sNJr%) for any N € %No similary
as before. Formally, d. is the signed distance function to I'?, which is the 0-level set of c,.
Moreover, we assume the asymptotic expansion

de(x,t) ~ Z efdp(x, 1) for (x,1) € T'(38)
kE%NO
understood in the same way as before, where dy(x, t) = dr, (x) for all (x, t) € I'(35). Here
and in the following we assume already that (V(j)t, poi, I') is a smooth solution of (1.6)—(1.12),

although these equations can also be derived throughout the formal expansion. Since for the
asymptotic expansion as € — 0 only small values of ¢ > 0 matter, we may assume that

Ide (x, 1) — do(x, 1) — /edyjp(x,1)] < Mpe ~ forall (x, 1) € I'(38) (3.13)

for some My > 0. Moreover, we choose n: R — [0, 1] such thatn = 0in (—oo, —1],n =1
in [1, 00), n — % is odd and n” > 0 in R. Then we have by integration by parts

+0o0 1
/ v(6o)n'(p)dp = [V(Go(p)) (n(p) - 5)]

00 + _
_rtv 42”’ =7 (3.14)

p=—00
since v/ (6p) is even by the assumptions on v’. Furthermore, we define
=, x, ) =n(-M - 1£pF 8*%d1/2(x, 1)) forp eR, (x,1) € I'(39).

Remark 3.2 In the following we will insert terms W*7%* in the equation to ensure some
matching conditions. We have to make sure that these terms vanish if p = w Because of

(3.13), we have for p = %@ and (x, 1) € I'(38) withdr (x, 1) > Othat p—e~2dy o (x, 1) >
—M . Hence n*~(p, x,t) = 0 and, since (x,t) € Q+F, we have W (x, 1) = 0. Altogether

Wb+t W5~ =0 in QF.

In the same way one shows this in Q.
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For the inner expansion we use the ansatz

cs(xaz)zéé‘(pvxst)s VE(X,I)Z‘A’g(p,X,t), ps(xvt)zﬁé?(p’xvt)

for (x,1) € I'(35), where p € Risasin (3.11), and use it in the expansion of (3.1)—(3.3) for
smooth &, ps: R x T'(38) = R, ¥;: R x I['(38) — R2.
We use that

div(2v(ce) DVe) = £729,(v(E0)8,V:) — e 7', (v(Ee) div V) Vs
+e719,(2v(6) DV)) - Vde + e~ div (2v(&:) Dg¥e) + div (2v(&:) DY),  (3.15)
provided (3.2) holds, where
DV, = %(V@E +(V¥)T)., Dg¥e = %(apog ® Vd, + (8,9: ® Vdo)").
Moreover, we note that
Ve = g_lapEsVdg + Ve,
Ace = £ 20ppCe +2671V0,00 - Vde + 710,6.Ad: + ACe,
where we have used (3.12). This yields
eAC Ve = 8 20,8:0,pCe Ve + & 'Ag + B, + £Ce, (3.16)
where

A¢ = 0p@e Ve, +2V0,6c - Vded,0:Vde + (9,0:) Ad Ve,
Be = 2Vd,C, - Vde Ve, + 0y0e Ade Ve + 8,00 AG: V.
Ce = A& Ve..

Hence for p as in (3.11) the system (3.1)—(3.3) is equivalent to
3p(V(Ee)BpVe) = 2080 0,pCs Ve + (e(apega,ds + Ve - Vde0,Ve + 0, P Vde + A
— 0, (2v(Ee) D¥;) - Vde — div (20(Ge) DgVe) + 9, (v (&) div es)vgg)
+ 82<a,08 + 9 - V¥ + Ve — div (20(&,) DV;) + WHps T + Wwf»*)

+&2Be + &3Ce + (v (0)) e (ds — £p) + elen) (p) (de — ep),

(3.17)

3pVe - e = —edivy Ve +u, - Vden' (p)(de — €p), (3.18)
28 — f1(Ce) = 62 <8p558td8 + 3pCe Ve - Vdg> — 8<8pégAdg +2Vd,Ce - Vdg)

+s%<8,é£ 9, - v55> —e2A8, +£28, (de — &p). (3.19)

We note that by the definition of W* the right-hand side of (3.17) converges exponentially
to zero as |p| — oo. Here we introduced u, (x, ) and 1. (x, ¢) for (x, t) € I'(368) in a similar
manner as in [8]. I will ensure the compatibility conditions in I'(3§)\I" for (3.17) and u,
will ensure the matching conditions for v, on I'(3§)\I". Moreover, an auxiliary function
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ge(p,x, 1) = egen'(p) — 96(,0)(;3‘s is introduced, which is used to satisfy the compatibility
conditions in T"(38)\I" for (3.19). Note that the extra terms vanish on the relevant set

§¢:={(p,x,1) eRx[(38) : p = LD},
By the definition of g, we have
L _ R v / & L qe
€28, (de — ep) = —e20'(p)pge + &2 (1 (p)geds + 63(p) pd°) — £264(p)°d,.

More precisely, we choose the auxiliary functions to have expansions of the form

de(p,x.0) = oo, x.1) + 36 (p,x,1) inT(39)

with
o 0rd vo - Vd
o = ¥, (3.20)
T
. ddy 4V Vdy +¥1 - Vdr — god) — Adr
¢ = — S— s , (3.21)
2 dl-*
and
o~ Y wmln et g Y g net, Lt~ Y kix,ne
kelmg kelNg kelNy
(3.22)

for (x, t) € T'(38). We note that (Z)O, ¢A§ 1 are defined on I" as limits dr — 0, which exist due
to (1.10), (3.30), and since it will turn out that V| = vg Ir, cf. (3.53) below. In particular,

¢o = V(8idr + Vo - Vdr) - Vdr = V(¥ - Vdr) - Vdr onT, (3.23)
(1;%ZV(atd%+‘A’()-Vd%+€’%-Vdr—¢A)()d%—Adr)~Vdr onTI" (3.24)

since Vdr - Vo,dr = %8, |Vdr |2 = 0. Here, in order to obtain (3.1)—(3.3) (approximately),

the equations above only have to hold in §¢ = {(p,x, t) e RxI'@38 :p = W}
But in the following we consider them as ordinary differential equations in p € R, where
(x, 1) € I'(36) are seen as fixed parameters. Thus we require from now on that (3.17)—(3.19)
are fulfilled even for all (p, x, ) € R x I'(36).

Furthermore, we assume that we have the expansions

~ o kA ~ N ka
Gelp.x, )~ Y . x.n), Velpox.nx Y e (o, x. 1),
ke Ny keiNy

ﬁ&‘(pvxﬁt)% Z Skﬁk(p’xvt)'
keliN_,

understood in the same way as before. Actually, in the expansion it turns out that ¢y = 6y
and ¢1 = ¢; = 0. To simplify the following presentation we already assume ¢1 = ¢; = 0.
2 2

As usual we normalize ¢ such that

& (0,x,1) =0 forall (x,7) € ['(38),k > 0. (3.25)
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In order to match the inner and outer expansions, we require that for all k the so-called
inner—outer matching conditions

sup |07, (p(Ep, x,1) — ¢*(x, 1) = Ce (3.26)

(x,1)el (38)

where ¢ = ¢, V¢ with k > 0 and p; with k > —1 hold for constants ¢, C > O and all p > 0,
m,n,l > 0.
For the non-linear terms ® = v, f’ we use the expansion

N+2 N+2
A Kot n \A k A A A
D(cy) = P(c " ®'(co)c & ®p_1(c0,C3, ..., Ck—
(ce) (0)+E (0)k+§ k=1(C0, €35 Ck—1)

k=3 =3
2 2
N+3 AA N

+¢€ 2¢N+%(cg,c0,c%,...,cN+%) (3.27)

where we have used ¢1 /2 = ¢; = 0. Here ®x_1(Co, €3, ..., Ck—1) and @, 3 (ce, Co, €3, - . -,

2 2 2
Cy +23) are polynomials in C3,...,Ck—1 with coefficients that depend smoothly on ¢y and
2 2

(Co, ce), respectively.
Using this expansion in (3.12) we obtain

1
\Vde* ~ |Vdo|* +22Vdy - Vdip + Y &5 > Vd; Vi

-1 k=1,kelNy  O<i<k,ieiNg
Hence, in order to satisfy (3.12) (up to higher order terms in ¢) in I'(3§) we choose dy,
k= %, 1, %, ... successively such that
Vdy - Vdip =0, in I'(35), (3.28)

1 1
Vdo - Vi = =5 > Vd; Vi fork =1, k€ -No, in['(39). (3.29)
t<i<k-1ielNg
Furthermore, we choose d > such that

A~

atd%-i—f’o-Vd%-f-‘A’%~Vdr—¢>od%—Adr20 onl, (3.30)

which will ensure that (3.21) is well-defined and we can choose ¢; = 0, cf. (3.3A6) below.
In what follows (see Corollary 3.7 below) we will find that Vo, v 1 Vdr and ¢ will be

independent of p on I'.
To proceed we use that forD = A, B, C

De(p,x.1) = Y &Dilp,x,1) forall p € R, (x,1) € [(35)
keiNg

since ¢, d, and their derivatives have a corresponding expansion.
Matching the O (¢°)-terms in the Allen—Cahn equation (3.19), we find

2o(p,x,1) = 0p(p) forall p e R, (x,1) € ['(35). (3.31)

Matching the O (¢°)-terms in the transformed momentum equation (3.17) and the divergence
equation (3.18), we derive the following ordinary differential equations in p:

3y (u(@o)(ap% - uodrn’)> = (2046y + 9,p—1)Vdr, (3.32)
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(8,%0 — wodrn’) - Vdpr =0, (3.33)

where the right-hand side vanishes for the choice p_1(p) = %9(’) (p)2. Matching the 0(8%)-
order terms in the Allen—Cahn equation (3.19), we find

8/%61 — " (@0)é1 = 64(3idr + Vo - Vdr — odr) = 0,

[N]
[N]

which is compatible with the choice ¢ 1= 0 above. Here we have used (3.20) and (3.25). Then

. 1 . . .
matching the O (g2 )-order terms in the transformed momentum equation and the divergence
equation, we obtain the following ordinary differential equations with respect to p:

3, (u(@o)(ape% — (uydr + uod%)n’)> = (2606¢ + 9o p-1) Vdy +0,p_1Vdr, (3.34)

(891 — (ydr +uod )1y) - Vdr = (=d,% +wodr') - Vdy. (3.35)
Furthermore comparing the O (¢)-order terms in the Allen—Cahn equation (3.19), we have

61— f/(B0)é = 96(8td% +¥0 - Vdy +¥) - Vdr — qggd% - ¢3%dp — Adr) =0,
(3.36)

which again justifies the choice ¢; = 0.
Then matching the O(e)-order terms in the transformed momentum equation and the
divergence equation, we obtain the following ordinary differential equations

3y (v(eo)(apel — (wdr + uodl)n/)> = 20000 Vdi + d,V00:dr + Vo - Vdrd,Vo
— 0, (2v(60) DV0) - Vdr — div (2v(60) DaVo) + 9, (v (6p) div Vo) Vdr
+ Z dppiVd_i + Ao+ Vp_i + (v(@o)n’)’(u%d% —ugp) +lodrn’, (3.37)

ie{~1,-1.,0)
and
(8,91 — (udr +uod)n') - Vdr = — Y 9,9 Vdi_; — div %o —ug - Vdrn'p
i€{0, 4}
+1' Y uo-Vdidi_i + 1 uy - Vdid, ;. (3.38)
ie(d.1) ie{0, 1)

Similarly, comparing the O (g¥)-order terms for k > % in the transformed momentum equa-
tion (3.17), the divergence equation (3.18) and the Allen—Cahn equation (3.19), we obtain
the following ordinary differential equations
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3p (1(00) (3, ¥k — (udr + uodi)n’))
= _ Z 0y (i 0pVr—i) + 20, (3,8k00) Vdr + 28,,(8/,6,(_%66)Vd% +23,(3,Cr—100) Vd,

ielk—1,k—% .k}
+ Y dViddioa-i+ 9% Y Vi Vi1 + %1% - Vdr
i€{0,k—1} i€{0,k—1}
+ 0 Vér-1 + (09) (Adr Ve + Ady—1Vdr) +1'(0) Y lidi—1-i
ief0.k—1)
— 2Vdr - Z 0, (Di DVi—1-j) — 2Vdy_1 - 3,(VoDV0) — 2div(Do(DgV)k—1) — 2 div(Dx—1 DaVo)
ief0.k—1}
+Vdr Y (0 divio1) + Vdia18, (o divio) + Y 9, pi Vi1
ie{0,k—1} ie{0,k—1}
+o,(v@0)n) Y wideei = 8, (v@0)n ) pwt + R 3, (3.39)
ie{d Lk—1 k-1
(8pVk — 0’ (wedr + wody)) - Vdr
= — Z 3,0\71' Vdi_; —divVe_1 + n'ug - Z Vd;di_;
i€(0,3,1,k=1,k=3) ietd 1 k—1,k—1 k)
/ /
+rup - > Vdid;_1_; +nuy - > Vdidii
e} k—1k-1) ie{0,k—1}
+nw_y > Vdidy_; +n'u - Y Vdidi
i€{0. 1) i€{0,1}
/
—pn Y i Vi + Ry, (3.40)

ie{0,k—1}
and
328 — f"(O0)ck = fi_y + 0001y 1 + 3péy_1 drdr + Bpli10d

+ 9(/) Z Vi - de—%—i + 3p6k7%€70 - Vdr + 9,Cr—1 Z \7 Vd%,i

i€{0, 5. k—1,k—1} i€{0, 3}
— Z 0pCi Adg—1—i —2Vd,Cr—1 - Vdr — 0% Z éidk_%_i
i€{0,k—1} ie{O,%}
+1'g3dr +Ryy_s, (3.41)

where
. L, . . L, . .
(Da¥),_, = E(apvk—l ® Vdr + (9,91 ® Vdr)") + E(apvo ® Vdi—1 + (3% ® Vdi—1)")

3
and Ry, ER Ry 3 Ry 3 depend on the terms up to k — 5 order and converge exponen-

tially to zero as |p| — oo because of the choice of WkjE and div V,:—L =0forallk € %NO.
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3.3 Existence of expansion terms
The following two lemmas are used to solve the ordinary differential equations with respect

to p and can be found in [3, Lemma A.2 and Lemma A.3] with f replaced by f”.

Lemma3.3 Let U C R” be an open subset and let A : R x U — R, (p, x) — A(p, x) be
given and smooth. Assume that there exists A* (x) such that the decay property A(£p, x) —
AT (x) = 0(e™*) as p — oo is fulfilled. Then for every x € U the system

Wop(p, x) — [ (Oo(p)w(p, x) = A(p,x) forall p € R,

3.42
w(0,x) =0, w(-, x) € L°(R) (342)
has a smooth and bounded solution if and only if
| A 000180 =0, (3.43)
R
In addition, if the solution exists, then it is unique and satisfies for all x € U
A% (x)
¢ -
8p<w(:I:,0,x) + f”(:l:l)) =0 *) asp—>o00,1=0,1,2. (3.44)
Furthermore, if A(p, x) satisfies for all x € U
ol <A(:l:p,x) — Ai(x)) =0(e ) asp— o0
forallm € {0,--- ,M}andl € {0, --- , L}, then
A% (x) _
ol (w(:l:p,x) + f”(il)) =0(e %) asp — 0 (3.45)

forallm € {0,--- ,M}andl € {0, ---, L}.

Lemma3.4 Let U C R” be an open subset and let B : R x U — R, (p, x) — B(p, x) be
given and smooth. Assume that for all x € U the decay property B(£p, x) = O(e”*") as
p — oo is fulfilled. Then for each x € U the problem

3, (v(B0)d,w(p,x)) = B(p,x) forallp e R (3.46)
has a solution w(-, x) € CE(R) N L®(R) if and only if

/ B(p,x)dp =0. (3.47)
R
Furthermore, if wy(p, x) is such a solution, then all the solutions can be written as
w(p,x) =ws(p,x) +cx), peR (3.43)
where ¢ : U — R is an arbitrary function. In particular, if (3.47) holds,
| r
ws(p, X) =/ —/ B(s,x)dsdr, p e R (3.49)
0o V(o) J-

is a solution. Additionally, if (3.47) holds for all x € U and there exist M, L € N such that
BfBLB(j:p, x) =0 *)asp — +oo (3.50)
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forallm € {0,---,M}andl € {0, --- , L}, then there exists smooth functions w* (x) and
w7~ (x) such that

Ol (w(Ep, x) — wE(x)) = O(e™*) as p —> +00 (3.51)
forallm € {0,--- ,M}andl € {0, ---, L +2}.

Remark 3.5 We note the statements on the asymptotics “O (e~*") as p — 00” in Lemma 3.3
and Lemma 3.4 hold true uniformly with respect to x € U provided A(£p, x) — At(x) =
O(e ") and B(£p, x) = O(e %) as p — oo hold true uniformly with respect to x € U.

3.3.1 Solving lower order terms

Solving p_1, vo, wg, and v(jf: Firstly, using the matching conditions (3.26) and (3.25) we get
Co = 0 satisfying (1.13). Moreover, it follows from (3.32) multiplied with Vdr and (3.33)
that

0=29, (v(@o)(ap% —updrn’ (p)) - Vdr) =2000y + 9,p—1 inR x I'(36),
where we used V = V, and |Vdr|? = 1. Hence

p-1(p,x,t) = —(9(/)(,0))2 and
Vo(p, x, 1) :VO(X,I)+u0(x,t)dr(n(p)_ %) (3.52)

forall p € R, (x, 1) € I'(38) and some function vy : I'(38) — R? due to Lemma 3.4. Using
the matching conditions we obtain

_ 1 B B 1
v (x, 1) = Volx, 1) + 900, Ddr(x, 1), ¥g (x, 1) = Vo(x, 1) = Suo(x, Ndr (x, 1)
and therefore
Vo(x, 1) = 2(vo (X, 1) 4+ vy (x, 1), wo(x, H)dr(x, 1) =vg (x, 1) — vy (x,1)

for all (x, t) € I'(3§). The latter is consistent with (1.9) and yields

Vo(p, x, 1) = va'(x, D) + vy (x, H( —n(p)), (3.53)
and
+ —
T if (v, 1) € PGO\I
Uo(x, 1) = (3.54)
n- V(Var(x, 1) — v, (x, t)) if (x,t) eT.
Therefore

ddr + Vo - Vdr = d,dr + vy - Vdr + (vi —vy) - Vdrn(p) (3.55)

which vanishes on I" due to (1.9) and (1.10).
1
Solving ﬁ_%and the O(g2)-order terms: It follows from (3.34) multiplied with Vdr,
(3.35), and (3.52) that

8pﬁ_%(p,x,t):0 forall p € R, (x,1) € T'(33).
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Hence we can choose p_1 = 0. Using Lemma 3.4 we obtain

(]

Vi(p,x,t) = Vi n+ (u%(x, Bdr (x, 1) + ug(x, )d (x, ) (n(p) — %)

forall p € R, (x, t) € I'(38) and some function V% : T'(38) — R2. Because of the matching
conditions we get

vi=vi+ l(uldr —|—u0d1) vV, =V1 — 1(U1dr +u0d1) in I"(36)
3 7 2V s AN 7 2V 2
as well as
1
Vi =—(vi+v)), widr +ud; =vi —v; (3.56)
2 2 2 2 2 2 2
which immediately imply
‘A’%(p,x, 1) =vi(x,0On(p) + vy (x, (1 —n(p)) (3.57)
2 2

and

Vi) =v] (x.H—ug(x,0d | (x,1)
Z 2 2 if INGEIN

PIeE if (x, 1) € TBIH\T,
uy(x,1) = reen (3.58)

n-V(Vienn = v —uex, 0dy (x.0) if (x.1) €T
2 2

for all (x,t) € I'(38), p € R.
Solving the O (g)-order terms: To proceed we give the following proposition, which can be
found in [3, Proposition A.5].

Proposition 3.6 There hold

o0
1
/ Y0 - Vdrd,Vodp = E(vg +vy) - Vdr(vg —vy) =0 onT,  (3.59)

—00
o
/ div (2U(00)Dd{’()))dp = vdivvg = Tug onT, (3.60)
—00
[o.¢]
/ Aodp = 0 AdrVdr = —oHn onT, (3.61)
—00
u-n=20 onT, (3.62)

where (ﬁ/@o = ((Va' —vy)- V) Vdr + (v(')" — Vo) Adr + (Vdr - V)(va' — Vo) and v is
defined as in (3.14).

We need to point out that the first equalities in (3.59)—(3.61) hold not only on I" but also
in I"(36). Moreover, because of (1.9)

(Ivi1- V)Vdr = ([v§]-n)Adrn =0, onT. (3.63)

Corollary 3.7 ¥y, \7% - Vdr and <i;0 are independent of p on T'. Moreover, we can rewrite the
evolution law (3.30) for dy 2 as

dydy +Vy - Vdy + vy - Vdr — ((Vdr - V)vy - Vdr)dy = Adr =0 onT.  (3.64)
2
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Proof It follows from (3.53) that
Vo(p,x, 1) =vg (x,1) = v, (x,1) onT. (3.65)
By (3.56) and (3.57) one has
\7% (p,x, 1) = uod%n(p) + V%_(x, t) onT.
Together with (3.62) this leads to
\A'%(p,x,z)~Vdr =v%_(x,t)~Vdr onT. (3.66)
According to (3.23), (3.54) and (3.65) one has

b0 =g - Vdrn(p) + (Vdr - V)vy (x,1) - Vdr = (Vdr - V)vy (x,1) - Vdr onT.
(3.67)

This implies the statement. O

Remark 3.8 We note that solvability of (3.64) together with a system for v 1 is given by
Theorem A.14 in the appendix and will be discussed later.

In order to apply Lemma 3.4 to (3.37) the equation

1
(i = Py + 0 Ade) Ve + (v = V5 )ade + 5 (%5 +v5) - Ve (v =)
—2(v*Dvy — v Dvy) - Vdr — Bdivig + lodr + Tug = 0 (3.68)

has to be satisfied on I'(3§) because of Proposition 3.6. Using (3.59)—(3.61) we obtain that
(3.68) on I' is equivalent to

2[vEDVEIn — [pE]n = o Adrn, onT, (3.69)

i.e., the balance of normal stresses (1.8) has to hold, which is true by our assumptions. In
order to obtain (3.68) on I'(36) we define

(pa—par—aAdr)Vdr+(va —vJ)B,dr—% (V(J)r+va)-Vdr (var—va)
dr -
+2(\ﬂrDvg7V’Dv5312Vdr+f(div%7uo) in FGONL,
1) = 3.70
0 n-Vv (p(; —pg—aAdr)Vdr—l-(Va—Vg)a,dr ( )
—5(vg +vg) - Vdr(v§ —vy) +2(vTDvy — v Dvy) - Vdr
+V((ﬁ</€’o — u0)> onl.

Then the solution of (3.37) is given by
L 1

Vi — (uod; 4+ widr)n(p)

— r 0
v +u%d%n(p)+/_oo 6o /_OOV (s,x,t)dsdr

vy + WY inR x I'(38) (3.71)

because of the matching conditions, where V© consists of the terms up to zero order. Passing
to the limit p — oo yields

uodi +widr +urdy +Wlpmioo = Vi = vy, (3.72)
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which immediately implies that

V10, x, 1) = v (x, On(p) + vy (x, (1 = n(p) + WO(p, x, 1) — Wo(x, 1, +00)n(p)

3.73)
forall p € R, (x,7) € I'(35) and
Vrfvrfuodl —uyd; 7W0|,o:+oc
drz 2 in ['(35)\T,
u; = (3.74)
n- V(v — vy —uodi —uyd; —WOp—so0) onT.
In order to determine py we multiply (3.37) with Vdr, use (3.38), and obtain
9, <ﬁo + Vo - Vdrdydr + Vo - Vdr¥g - Vdr — (2v(60) DVo : Vdr ® Vdr)
P
- / div (2v(Bo(r)) Da¥o(r, -)) - Vdr dr + v(6o) div Vo
—00
po
+ lodrn - Vdr — v(OO)AO + / Vo, ) - Vdrdr> =0, (3.75)
—00

where A" and V¥~ consist of some terms up to O order. Integrating this equation on
(—00, p) and using the matching condition for py determines py.

In summary the equations for (V{, uy, po) are solvable if (V(:)t, p(:)t, (T'r)ref0,1y)) solves the
sharp interface limit system (1.6)—(1.10) and we have:

Lemma 3.9 (The zeroth order terms)

Let pi = (8))% let (vi, pz, (Coicio.my)) be the solution of (1.6)~(1.10), and let
(v(?, p(jf) be extended to QF U T (38) as in Remark 3.1. Moreover, we define c(j)E (x,1) = %1
forall (x,1) € QT UT(38) and ¢y, Vo, ug, ly by (3.31), (3.53), (3.54), and (3.70), respec-
tively. Then the outer equations (3.4), (3.5), (3.6) (for k = 0), the inner equations (3.39),
(3.40), (3.41) (for k = 0), the inner—outer matching conditions (3.26) (for k = 0) are satis-
fied on T"(38). Finally, the compatibility condition for (3.37), which is equivalent to (3.68),
is satisfied on " (36).

3.3.2 Solving the higher order terms

Determining E%, the evolution law of di on I', and gp: Taking k = % in (3.41) one has

agé% — (60)¢3 = 6y(p)ddy + 0y(p) (Vo - Vdi + 0% . Vd% + Vi - Vdr) — Oé(p)Ad%

= 06(p) (dod + $1dy) +n'(p)godr + 6 (p) po. (3.76)

3
2

The compatibility condition (3.43) for (3.76) is equivalent to
Di 40 'oigodr =0  inT(38), (3.77)
where o := [0 0)(0)n(p)dp
+00

+ — + —
Vo +V, v +vVv _ ~
Dy = dyd) + 0~ Vd) + L - Vdr — o / (66(0)) do(p. ) dpdy + Dy

—0Q0
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and D 1 depends on the terms up to order %, which were determined before. Here we have

used the definition of V¢ and fR 0'(p)(n(p) — %) dp = 0since n — % is odd. On I the latter
equation is satisfied if and only if d; solves the evolution equation

+ -
vi +Vv; A

ddy + vy - Vdy + - Vdr — ¢odi + Dy =0 onT. (3.78)

In order to satisfy the compatibility condition on I'(3§) \ I we define

—1
~2o D in CBH\T,
20 = (3.79)

—oal_ln -VDionT.

Determining ¢y for k > 2, the evolution law of d,,_ Lon [,andg,_ 3 First of all, we rewrite
(3.41) as

Opc — f" 000k = Sy 3 (B0, 83, &y do. - dimt 0. Vi3 80+ g2 bo. DY)
k=3
+00dd;_1 + 6 POERZE Vd_1_; = 0 Adio — Oobody_1 +n'g,_3do. (3.80)
j=0,je}$Ng

where S ;3 depends on lower order terms which are known by the induction hypothesis.
Then the compatibility condition (3.43) for (3.80) is equivalent to

—1
Dkfé +o alg,ﬁ%dr =0 onI'(39), (3.81)

where

+00
D1 =o—‘/ 00(P)S, j_3 dp + ddy_1 — Ady—

-2

—00
+o00 2 k=3 R
+a_1/ (90/(,0)) ( Z \7 ’de,%,j —¢0dk7%>dp.
- j=0.je 4N
It is satisfied if dk_% solves
1
+o0 5 k=2 .
oy +o7! / (85(p)) ( Y. ViV ;- ¢0dk7%>dp
B Jj=0,jeiNg
+00
—Adj_1+07! / 96(p)81’k_%dp =0 onTl (3.82)
—00
and
JJFIDkil
-2 in T3S\,
g 3= (3.83)
—ool_ln . VDk_% onI’
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Determining Vi, k > %, the jump conditions on I and I _1: Firstly, the compatibility condition
(3.47) for (3.39) is equivalent to

)vg—i—va

(V(ﬂ)F — Va)atdk,] + o Ady_1Vdr + (VaL -V - Vdy 1

o0

+ (G’Adr + po+ — Py — 2(U+DV§ — ZU_DVE))de_l + (V(T — Va)/ r],f’k_l - Vdrdp

—00

[o¢] o0
+ / 8,91 (3rdr + %0 - Var)dp — / div (20(600)(Da?),_,))dp
o0 o0

— (v Dy, —2v"Dv,_)Vdr + (pi_; — pi_)Vdr + lodk—1 + l—1dr
=8 300, ¢35, Cmrdos oo dj—2, Vo, Vi3 los el 3). (3.84)
Here S, ;3 depends on low order terms, which were determined before.
If it is satisfied, the solution to (3.39) is given by

o 1

{’k*(llodk+llkdr)nzvk_+(ll%dk7% +uk7%d%)n+/;oo 6o

= vk_-i-(u%dkf% +uk7%d%)n + WL (3.85)

,
f Vk_l(s, x,t)dsdr
—00

where VA= consists of terms up to k — 1 order. By taking p — o0 in (3.85) and the
matching conditions for ¥, we obtain

v — v =uody +wedr + u%dk_% +uk_%d% + Wk71|p:+oo,
which yields
+ k—1 S
Vil n=(upd,_y +w_1dy + W —oo) ‘m+ug - ndy =14y onT, (3.86)
where we have used ug - n|r = 0 due to Proposition 3.6, and
+ k—1 Ly
[vil-t= (u%dkf% —|—uk7%d% + W |p=+oo) ST 4y Tdp =: akf% +ug - Tdy
(3.87)

on I'. Since by the induction hypothesis one assumes that the compatibility condition (3.84)
for k — 1 instead of k is already satisfied, one obtains

P 1 r
Gk_l=v,;tln(p>+v,;1<1—n(p))+<1—n(p))/ m/ VE2(s, ) ds dr

“+0o0 1 r
—1(p) / — / VE2(s, ) dsdr, (3.88)
p V() J -
where V_; = 0. Inserting this we can rewrite (3.84) as
Tt +hemrdr =53, (3.89)
where
+ _ oy . % tY
Ti—1 = (VO -V )81‘dk71 + o Ady_1Vdr +(VO _VO) 5 -Vd
+ (aAdr + p(')" - Py — 2(v+Dva' - 2U7DV6))de_1 + lodk—1
Vi v vi v
+(vo _Va)% -Vdr + (Vi = Vi )ddr + (v - V;—l)% - Vdr

=V (Vi) = Vi) - V) Vdr = B(v, = v, )Adr = V(Vdr - V)(v = v y)
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=V ((vg = vg) - V) Vdi—1 = V(v — g )Adk—y — vV (vg — vy ) Vdk—1
— (vt DV, —2v"Dv;_|)Vdr + (p{_, — p;_)Vdr. (3.90)
Here we have used
o0
/ div (2v(60)(Da¥), ;))dp =V ((v{_; = v;_)) - V) Vdr +9(v;_| — vi_,)Adr
—00
+9(Vdr - V(v = Vi) + Y ((v§ —vy) - V) Vi
+ (v — Vg ) Adi—1 + 0V (vg — vy ) Vdi—1,

which is shown in the same way as (3.60).
Therefore (3.84) is satisfied if

Sk_% = 0 Ady_1Vdr + (0 Adr + [pg] — 2[vEDVE]-V[Vvi]) Vdi—1 + lodk—1
+ Vi 1(3:dr + vy - Vdr — VAdr — vV2dr)

—B[VVE (] - Vdr — 2[vEDVE | |Vdr + [pif IVdr onT (3.91)
and
~k_3 —Tk—1 .
Zdir in [ (38)\TI,
L1 = (3.92)

n- V(Sk_% — Jk—1) onT.
In order to satisfy the matching conditions for ¥; we define uy by
+ - k—1
v, —v, —updy—uid, 1—u, 1d;—W =
K Ve “Uodiuidy 1w 1dy [ p=o00

w, = @ on BT, (393)
n~V(V2_—Vk_ —u()dk—u%dk_% _uk—%d% —wk-1 |p:+oo) onTl.

Then

R _ P .
V(p.x, 1) = vl (x. Hn(p) + Vi (x,r)<1—n<p)>+<1—n<p>>/ m/ VEl(s, x, 1) ds dr

+00 1 r o
- "/p ) /_xV (s, %, 1) dsdr, (3.94)

satisfies the inner—outer matching conditions (3.26).
In order to determine pg_; we multiply (3.39) by Vdr and use (3.40). This yields

dp (ﬁk—1 + Vk—1 - Vdrddp + Vk—1 - Vdr¥o - Vdpr — (2v(60) DVi—1 : Vdr ® Vdr)
o
— / div (2v(60(r))(Da¥),_,)(r, ) - Vdr dr 4 v(6o) div ¥x—1
—00

P
+Y_1drn - Vdr — v(6p) A*! +/ VAR (IO Vdrdr> =0, (3.95)
—00
where A~ and V¥~! consist of some terms up to k — 1 order. Thus

Pt = v () AT = v(B(p)) divii_y + (V{1 + vi_ (1 — ) - Vdrd,dr
— Vk—1 - Vdrdidr + 2v(00(p)) DVk_1 : Vdr ® Vdr + p;_n+ p_ (1 —1n)
— (2v*'Dv_n+2v"Dv,_ (1 —n): Vdr ® Vdr
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P p

+ n/ div (2v(6o()(Da¥),_,)) - Vdr dr + (1 — ) / div (2v(6o(r)(Da¥),_,)) - Vdr dr
+oo -
+o00

+ n/ VI, ) - Vdrdr — (1= 1) fp V=1, ) - Vdr dr in T'(38), (3.96)
P —00

which satisfies the inner—outer matching conditions (3.26). In summary we have:

Lemma 3.10 (The k-th order terms)
Let k > % and all functions with negative index be supposed to be zero. Then there are
smooth functions

N + A~ + N +
Vies Vios Wes -1, G, €7 843 dies Pr=15 P

which are bounded on their respective domains, such that for the k-th order the outer equa-
tions (3.4), (3.5), (3.6), the inner equations (3.39), (3.40), (3.41), the inner—outer matching
conditions (3.26) are satisfied. Moreover, (V]:::, p,':':, dy) satisfies

dvi = VEAVE + Vp =0 it (3.97)
divviE =0 in %, (3.98)

il n=a,_, onT,  (3.99)

Vil -7 = dy_y —uo - v onT,  (3.100)

[2vEDvE — pELnr, + V[VvE]nr, + v[vi]Adr
+[vi ] - mr, Adrnr, = o Adenr, = T[VVGIVdi +lodi on T, (3.101)
.
drdi + Vit - Vi + %% np, — pody = by onl,  (3.102)

Vi = agnyg, on 02, (3.103)

where ay = ﬁ fl‘x (ék_% —ug - tdy) do, as well as (3.29). Here (3.101) and (3.102) come
Sfrom (3.91) and (3.82)(with k instead of k — 1, k — %, respectively) and &k—%’ Elk_%, by_1

2
depend only on the terms up to k — % order. Furthermore, the compatibility condition (3.91)

is satisfied for k instead of k — 1 and Vki, cki and pki are extended onto Q* U T'(38) as in
Remark 3.1.

Proof The lemma is proved by mathematical induction with respect to k € %N , where the
beginning of the induction is given by Lemma 3.9. In Theorem A.14 in the appendix we will
show solvability of the system (3.97)—(3.103), which will be smooth due to Remark A.2. In
the induction hypothesis we assume that

~ + N A +, . . 1
{(vVi, v; ,ui,lz—l,Ci,gi_%,di,pi—l,pi ):0<i<k-3}

are known and satisfy the statements of the lemma with 7 instead of k forall 0 <i <k — %
Then we obtain the terms for i = k by the following four steps:

Step 1 By the induction hypothesis Sl,kig is known. Since dk,% solves (3.102) with k — %
instead of k, the compatibility condition for (3.41) on I' is satisfied. Moreover, defining
8k-3 by (3.83) the compatibility condition for (3.41) are satisfied on I"'(36). Hence we can
determine ¢ as the solution of (3.41) for all p € R, (x, 1) € I'(35).

Step 2 We have seen that the compatibility condition (3.84) for solving (3.39) is equivalent to
(3.91) and (3.92). Here (3.91) is satisfied since (Vi |, pif |, di—1) solve (3.97)~(3.103) by
assumption in which we have used (3.63) to rewrite (3.91) as (3.101). Moreover, if we define
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Ix—1 by (3.92), the compatibility conditions for (3.39) are satisfied. Now we can determine
Vi by (3.39) on I uniquely. (Note that (3.39) determines v on I'(38) \ T up to ug, which is
not determined yet.) Moreover, this determines px_; by (3.96) on I'(368) since (3.92) holds
and A1 V¥=T1 are known.
Step 3 Since py—_; is determined, Sj x—; is known on I" and we can determine (v,f, pki, dy)
as solution of (3.97)—(3.103), cf. Theorem A.14 in the appendix.
Step 4 Using that (v,f, pzc) are known, uy is now determined uniquely by (3.93) and we can
determine vy by (3.39) on I'(38) uniquely.
Step 5 Using that dj is determined on I', one can integrate (3.29) in normal direction to
determine dj uniquely on I'(34).

Finally, we note that (V¢, pr—1, ¢x) satisfy the matching conditions on I'(38) by construc-
tion, in particular because of the choice of uy. O

3.4 Summary of the construction

The result of this section can be summarized as follows:

Theorem 3.11 Let N € éN Then there are smooth (EX‘, VA p;{q) defined in T'(38) and
smooth (cA , VA pf) defined on Q x [0, To] such that:

1. Inner expansion: In I"(35) we have

3,v + VX’ VV d1V(2v(E’Af‘)Df'X’) +Vp ~”’ = —¢ d1v(V~’" ~”1) + R,
divv ”" = Gg,
BIEX’ + f'”’ V”A" = azAE’" — 8_ff (~”’) + Se,
(3.104)
where
I(Re, 8 Ge, se)ll L3y < CeMT, (3.105)
IGellLoorasy < CeN T2 (3.106)
2. Outer expansion: In Q* we have ¢+ = +1 and
OVE 4L VL — vEAVE 4+ VT = RE (3.107)
divvE = 0,
Vilae = @empa on 32 x [0, Tol, (3.108)

where ag: [0, T]1 — R is smooth and
IRE Lo @xi0.1 < CeN12 foralle € (0, 1).
3. Matching condition: For every B € Nij we have for some a > 0, C(M) > 0
108 ¥4 = Vi xe — Vax)lerasnre) < C(Mye™ %,
102 (57t — phas — Pax=)lleerasnre) < C(M)e_%f,
182 (E — &4 x4 — Ex x) L raonre) < C(M)e %
foralle € (0,1).
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Proof We define

e k£ ot kot
Gan= > g, vian= Y évia,
keiNg,k<N+2 keiNo,k<N+2
e ko %
Pren= > &pan,
keIN_j k<N+2
and
~i kn (d Gi kg (d
o= Y dadxn, Wen= ) &N x,
ke N k<N+2 ke 1N k<N+2
~i ko cd
Pran= > pxn,
keIN_j k<N+2
where

dalx,t) = Z ek dy (x, 1). (3.109)
keiNo.k<N+2

as well as a.(t) = Zk € INo k<N 42 e¥a, (¢). From the construction one can verify the state-
ments of Theorem 3.11 in the same way as e.g. in [7, Section 4]. O

Remark 3.12 We note that d4 defined in (3.109) satisfies
IVdal> =1+ 0@ENT)  ase >0 (3.110)
with respect to Ck (1 (36)) for every k € N by the construction (3.29).

4 Refined approximate solutions

In this section we refine the approximate solutions constructed in the previous section by
adding a few terms to obtain:

Theorem4.1 Let M > 0, u = u(e) € L*(0, T.; H'(Q)?> N L2(Q)) be given for some
T. € (0, Ty, ¢ € (0, 1). Moreover; let

u flullz2,7,, 11 () + llull
Py (u) = Mu
||U||L2<0’T£;Hl)+”u”H%(0,’1‘5;L2)
Then there are c4 € H'(0, T,; L>(R2)) N L%(0, T,; H*(R)), pa € L*(0, Ty; H' (), and
va € HY(0, Tp; V(R)) N L*0, Te; HY(Q)?), we € H'(0, To; LA(Q)) N L0, Te; H' ()
such that

)

1 <
HZ(0,T:;: LX) —

else.

0rvA + Va4 - Vvy —divQ2u(cg)Dvy) + Vpag = —ediv(Veqa ® Veu) + R,

“4.1)
divvy = Gg, 4.2)
1 1 3
dca+ (va+ eNTI((Py () + Wo)lx, 0.5..) — We)) - Vea =e2Aca — e 2 f(ca) + se,
4.3)
(Va,ca)lag = (0, =1), 4.4
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where s, = sgl + sgz with supp sg2 C I'(28), divw, = 0 and

1 1 1
IRl 20,7z @y < CMIENTI(T2 +67),  (4.5)

1Gell g 0.7,:12009) < CADENH, 4.6)

IWell 20,7 10 ) + IWell Loo (0,70 12(02)) < C(M) 4.7)

s 201y < CODENTE, Is2 201, vy < CMENTE, (4.8)
152 201y < C(MDEN 1, (4.9)

uniformlyin T € (0, T;] for some C(M) > 0 independent of ¢ € (0, 1). Moreover, cpy = +1
in Qi\F(SS), drca, Veg are supported in I'(38) and supp s C I'(56/2).

Remark 4.2 Later we will choose u = :}:‘1 , cf. also (5.7).
& 4

Let (EXL, VK’, ﬁff), (Ef, Vf, ﬁf), and a, (¢) be as in Theorem 3.11, i.e., the inner and outer

pieces of the approximate solution of the Navier—Stokes/Allen—Cahn system constructed in
the previous section. Moreover, let d4 be as in (3.109) and define

de(x,1) = dr(x, 1) + 6(dr (x, ))(da(x, 1) — dr(x, 1) forall (x,1) € [(38), (4.10)
where § € CS°(R) with 0(r) = 1if r € [-%, 3] and supp# C (—38, 36). Moreover, let
Se(x.1) = So(x. 1) + 2815 (x. 1) + £81(x. 1) + €2 S3,2(x. 1) forall (x. 1) € ['(38),
(4.11)
where S1/2, 81, §3/2 are determined such that
VSe(x,1) - Vde(x,1) = O(e*)  inT(2)

with respect to any C¥-norm, k € N. Since VS - Vdr = 0, this leads to the system of first
order partial differential equations

VS;-mp=— > V& Vd; inT(})
k=0,....j—1}
for j = %, 1, %, which can be solved together with S;|r = 0 by integration in normal

direction/the method of characteristics. Moreover, we extend S; to S;: I'(38) — T! such
that supp S; € I'(8’) for some &’ € (%, 3§). Then the assumptions (2.1)—(2.3) are satisfied
withn = % Moreover, let p be defined as in (2.12) in the following. Since d; = d4 in F(%),
the definition of p coincides with the definition of p in Sect.3, proof of Theorem 3.11,
respectively, in F(%). In the following we will only use the identities from Sect.3 in the
latter domain.

We will now define the refined approximate solution as

calx,t) =¢ odrcif(x, )+ (1 —¢odr) (CXX+ + CXX,) ,
VaGe, 1) = ¢ odrvi(x, 1) + (1 — ¢ odr) (Vi (x, x4 + vy (x, D x—) —Nae (1),
paCe, 1) = ¢ odrpl(x,0) + (1 = ¢ odr) (i (x. x4+ + py (x.DX-)
where ¢: R — [0, 1] is smooth such that supp¢ € [—%, 5—2‘3] and ¢ = 1 on [—26, 26],
N: Q — R? is a smooth vector field such that Nlse = nyq and suppN N T'(38) = 0,
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cf = cA =Z+land x4+ = XorF (x), and we use the following refined ansatz for the inner and

outer expansmn
e, 1) = EN e, 1) + eV TI0)(p (. 1) hn.e (Se(x. 1), 1),

hye(s.0) =hy_ 3 (s.0) +ehy_1 (s.10),
vff(x, 1) =0, ) + eV (W, Dxge s+ Wo (D xge-) (4.12)
) = B0 + eV (gF (0 Dxeer a7 (DX
- 1 - 1
vA<x, D =VEen 0 +eNTIwE(e ), pren ) = i n + eV g 0.
We note that we do not use p-dependent terms in the extra-terms in v ' and p " of order eV 1.
This ansatz differs significantly from the construction of the other terms It turned out that it
not only simplifies the treatment of several remainder terms. It also provides sufficiently good

remainder estimates for our analysis, which we could not obtain before. Here it is essential
that (We, ge, hy_ 3 ) solve the following linearized two-phase flow system

dwE 4w vvE 4 vi o vwE —vEAwE Vgt =0 in Q% 1 €0, Ty, (4.13)
divwE =0 inQ* e 0,7y, (4.14)
[we]l =0, [vDwe —gI] - npe = aArsth%!san onTé te(0,T), (4.15)
w, lse =0 on Q2 x (0, Tp), (4.16)
wEli—o=0 in QF 4.17)

together with
Ohy_3 o 008 Welx, 0.5, = BrSe + V0 - VS, 0.5.085hy_3 (4.18)

- \/EIVSOIzlxe(o,sg,x)asth_%g + a: (S, t)hN_%yg = —(Py () - Vde)|x,0,5:.0)

onT!' x (0, T,) and hN_%,5|t=0 = 0, where w;t = Wg|qe.t, qgc = ¢|qe.+. Here a, is deter-
mined in the proof of Theorem 4.3 below. This system can be considered as a linearization of
(1.6)— (1 11) if /e Hr, was added to the right-hand side of (1.10) and QF, I'; was replaced
by Q7 Fs The function £ N-le will be determined in the proof of Theorem 4.3 below.

As in Sect.3 we extend w and ¢ to  x (0, T) such that divwE = 0in  x (0, T;)
and wr e HY (0, T; L2()) N L2(0, T,; H*(Q)), ¢F € L*(0, T,; H! (Q)) in a bounded
manner. Because of Theorem 2.10, we have the uniform bounds

1
hy 3 iy &2 Ay 3 | 5
Wy 3 ellLe.rmt ety I N_K'E”Hl(O,Tg:Hf)ﬁLZ(O,Tg;Hf)

+ 4 1a? hy 3 el <y + IWell a1 vy + IIWell 20,711 ()
+ £? IWell g1 0,7,: 2202 + e ”WEHLZ(O,TS;HZ(Qf*i)) < CM), 4.19)

where C (M) does not depend on 7. The estimate (4.7) follows from the well-known embed-
ding L2(0, To; V(2)) N HY(0, T; V() — C°([0, T], L*(2)), where the embedding
constant is uniform due to (4.17).

For the following we denote ui{’ = cg” — Efq and use VA = V’” + 8N+4Wg, where
We = W xqe+ + W, xge.—. Then we obtain in a straight forward manner

d 't Vi Vel — e AT +8_5f(Cl")
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= du'l + VI VUl — JeAu'l +8_5f”(~’")uX' + 54 —|—8N+4W \/ 0(£N+2)

= du'l + VI VUl — JeAu'l +8_5f”(5’")u’"+£N+4w5 Ve +O(8N+2)
(4.20)

in L2(0, Ty; LZ(F,(za))) = LX('(28) N ((o T.) x R?)). Here §¢ is a term that is quadratic

in 4" times £~2. Hence & is 0(e2N~373%1) = 0(eN*+2) in L2(0, Tp: LA(T,(28))) if
N > 3 due to (4.19).
For the first terms we have:

Theorem 4.3 Let ui{’ = N"@ (p)hNE(S (x,1),t)and hy_ 3, . be as before and define
Re 1= 9l + Vil Vull — JeAuD + 672 £/ @Mull + eV Py () + Wo)lx, 0.5, - VET,

where u = u(g) is uniformly bounded in L*>(0, T,, H (@)*) N H? (0, Tp; L>(@)?) for small
&, ¢f. Remark 4.2. Then there is a choice oth_%,g € Xr, .0 with bounds as in Theorem 2.8

for k = /e, r = 0 such that
Re=eV"ge(p. Se.1) + 0N 2) i L20, Tos LA(T1(26))),
where g, satisfies the conditions of Lemma 2.15.

Proof First of all, let us recall where all the appearing terms come from. By (4.12), it holds
cA = EIA" + u’” and VZ' = VX’ + 8N+%W5, where the terms

¢y =0o(p) + 83/263/2(,0, x, 1) +elcr 4 -
and Vi" = Vo(p,x,1) + 81/2‘71/2 + .-+ stem from the inner expansion in Sect.3.2 and
are smooth. Here uA = eN’%Q(’)(p)i_zN,g(SE(x, t),t) is as in (4.12) with the expansion

hN,g = hN_% .t sth_% .- Note that hN_% . Will be determined by a coupled equation
as in Theorem 2.10 and h_1 . will be determined by Theorem 2.8 for x, = /€. Thus

these functions will satisfy the uniform estimates in there for k = /. Hence we can already
assume the latter estimates to hold and disregard some unimportant higher order terms in the
following. Finally, recall the properties and expansion form of d;, S¢ from above.

We compute all terms with the chain rule and use Taylor for the f”-term. This yields

Re = < 0 +60(0) N ¢ + 0 Sedshy 5))

+eN 4”’”-(9”(/» th+00(p)VSgasth>

1 VS - Ady - _
—eNh (9(3”( Ve i hy e + 260 (p )SgashN,s‘f‘e(/),(P)sshN,g'i‘e(/)(P)Al“ghN,s)
3 3 — 3
+e 2N T30 ()i (f”(eo) + " (00) [870% +€2€2D
1 vd, o
+ NI Py ) + Wo)lx, 0.5,.0) - —03(0) + 0Ny in L2T(28) N (0, Ty) x R2)),

where we used that terms of the form &Na(p)b.(Ss, 1) with a € Ro« and by €

L3(T! x (0, T,)) uniformly bounded with respect to small € are oV +%) in L2(I"(28)) with
Lemma 2.6. Moreover, we used that (P (u) 4+ W¢)|x, (0,.) is bounded in L2((0, Te) x Tl),

@ Springer



Sharp interface limit for a Navier-Stokes/Allen-Cahn... Page410f58 94

the estimates for A, _ 3 and hy_1 ,aswellas N > 2 to replace Vi{’ by ffi{l up to the error

I
in L2(I"(28)) above.
3
Note that the remaining u-term is critical and sits at order O (e ~%). Actually, the point

of the theorem is to generate this term. Therefore the prefactor of h N.e was chosen to be

3 T .
eV=% such that the contribution is also in that order. There are several problems one has

to overcome. First, there are contributions of d.-terms into orders below the critical one.
Since |Vd,|* = 1 + O(g?), we can cancel the lowest order contribution of this term with the
f"(6p)-term. Moreover, Vd, - VS, is of order 0(&?). By taking a close look at Sect. 3.2, one
can infer that 0,d, + ffi{’ -Vd, — /e Ad; only gives a contribution of order O (&) because there
is some cancellation. These terms are of sum structure with /e-spacing. Furthermore, one
has to expand some remaining terms in R, depending on (x, ¢) or (p, x, t) into (p, Se, ).
This can be done by transforming the (x, ¢)-part with X, using Taylor expansion in the first
variable and d; = ep. Therefore we use Vo(p, x,1) = vy (x,1) + (V5 — Va_)(x, Hn(p).
Because of v, = Var on I', the second part is improved by the order /¢ due to a Taylor
expansion. Finally, the functions in the expansion of /y . should be obtained by solving
equations of the form mentioned above, of course with the goal to just leave remainders as
stated in the theorem. The goal to have a remainder r, suitable for Lemma 2.15 as state;d
N—3

in the theorem leads to the desired equation for 4 ,,_3 . in order to resolve the order £ 4.
1

- . 1 . .
The remaining terms contribute formally to the order £V~ . For this order we intend to use
hy_1 .. However, one has to take care since not all terms in (2.18) for hy;_1 , scale as the
I 7
right hand side with respect to ¥ = /¢ in the L>-norm. More precisely, the first two terms
. . . 1
with d; and 9, are scaling worse on their own (but only at the amount of €#), the others are
fine. Hence in the application here we need the same prefactor (depending on p) for those
two terms in the equations we require. By having a look at R, we see that 6)) is the desired
prefactor. Hence all terms with derivatives of hy,_1 . either have the same p-prefactor 6’6
3
or contribute to the order O(e") or higher. Thus we obtain an equation of the form as in
Theorem 2.8 for hy,_1 . More precisely we have
i

dhy_1 o —@Se +¥0 - VSe)lx.0,5.00hy_1 , — \/EArghN_%,g +as(Se. Dhy 1, = &,

BN

where a. is smooth (uniformly bounded with respect to small ¢, derivatives as well) and
ge 1s uniformly bounded in L2(T'(28) N ((0, T,) x R?)). By rewriting the 8,hN_%‘£ and

Oshy_1 ~terms with the above equation, and estimating the O (¢™) remainders with the aid

of Lemma 2.6, we finally get remainders as stated in the theorem. Altogether, this yields the
claim. O

Proof of Theorem 4.1 First, we estimate @, : (0, Tp) — R. To this end we define
Valx, 1) = odrVif (x, 1) + (1= L odr) (Vi (x, x4 + ¥, (x, 0)x-).
Then

s s

divvg =¢odrGe+ O(e” %), 09;divvg =¢ odr(3;:Ge) + O(e™ %)

because of the matching conditions and div Vf = 0. Since a. = nyq - V4|sq only depends
ont,
1

G = ——— | divigdx = 0™ *?) and
& Hd_](aﬂ)/; A ( )
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8ds = 8, divvsdx = 0Nt

1
HI-1HQ) /Q

in L®°(0, Tp) due to (3.105)—(3.106). The rest of the proof is split into three parts.
Part 1: Error in the divergence equation Because of [w,] = 0 and divw¥ = 0 in &%, we
have

div(va(x, 1) + Nag(t))
= £(r (e, 0)Ge + ¢ (dr (& )V (6, 1) - (Vi (1) = V(6 Dt (0) = V3 (5 D xa 0 ()
= 0N 4.21)

in H1(0, T,; L2(£2)) because of (3.105)—(3.106) and the matching conditionin Theorem 3.11.
Together with the previous estimates for @, this shows (4.2) for some (different) G.: Q x
(0, T;) — R, which is given by the sum of the right-hand side of (4.21) and — div(Na,(?)).
Part 2: Error in the linear momentum equation First of all,

0rvA + V4 - Vvy —divQ2u(cg)Dva) + Vpa
= c(dr) (Vg + i - IV = divu(e) DY) + Vi)

+ (1= 2(dr) Y (v + v - VvE — div@u(e) DvE) + Vpi) x= + 0N )
+

in L2(2 x (0, T;))? because of the matching conditions and 8,a;(H)N = O(e¥*!) in
L°°(0, Tp). Since by the construction
8,vf + vf . va - div(2v(cj§)va) + Vp/i‘ = o(gNJr%) in L2(QF \ I'(29)),

we only have to consider the terms from the inner expansion.
Next by the construction of w, and (4.15) we have

—div(2v(@o(p))DwW) + Vg, = — div(2v(60(p))(w:XQeA+ + W, xqe-)) + Ve
= 2div(v+wj'xgs,+ +VT W, xqe-) + Ve
+ 2div((v(60) — v xger DW) + 2div((v(8p) — v ) xqe.- DW,)

1
= (—vT AW + Vg xge+ + (—v AW, + Vg, ) xge- — 08t ® Arshe o Sen, + O (%)

in L2(0, T,: (HY(I',(38))%)"), where

(8re ® Arshg o Seng, @) = / Arshe(Se(x,0)n - @(x)do (x) forall g € H' ()%

Ty

Here we have used for the second equality that

(v(B) — vE)DWE || 2qety < 1V(E00) — vEll 2 swp DWE(Xe(r, )l 2(0.7)%T)
rell,

1 1
2 — I
wa”Lz(O,T;HZ(Qf’i)) 0(8 )

1
2
=Y N LA —
due to (2.31)—(2.32) as well as n, = nr: + 0 (e *3) due to (3.110). Hence we conclude
0 We + W, - Vvg + vg - Vwe — div(2v(0p(p)) Dw,) + Vg,
= —081-19 ® Arfhg o Sgng

@ Springer



Sharp interface limit for a Navier-Stokes/Allen-Cahn... Page430of58 94

1
+ ZXQs,i (E)twgi + wgjE . Vv(j)E + v(j)E . szi — viAwsi + quc) + O(e?)
+

1
= —051“;‘ ® Ar‘t&'/’lé\ o Sgns + O(SZ)
in L2(0, T,; (H'(38))"). Moreover, we have because of Lemma 2.4 for 0 < H\(T,; (38))2

05(p)?
£

(Arshy_3 ) o Seng - @ dx

1€

0{dre @ (Arshy_3 ) o Sene, @) — /
! IHE D)

11
1 [#3
=- 166(5)* 0 - (9(Xc(r,5,1) — @(Xc(0,5,0)) Arshy_3 (5,01 Jc(r, 5, 1) ds dr
& ,%5 Tl t I

+Celhy 3 Muzanllellarw,cs)

1ls 2
T
§C</ 15|;96(;>2|2dr) ol aon | Arhy_3 Nz

|T
+CMelhy 3 Muzery lllar, cs)

= C\/EH(DHHI(F,(%))||hN,%,E||H2(1r1) + C(M)€||‘P||Hl(r,(33)) ||hN,%,gHH2(1rl)

since
11
1 [%9 o
z 0 (I (r s, )dr=— 4+ 0
8/_1;5 o D = s K@ O
due to (2.5), |Vds|>? = 1 + 0(?), Vd, - VS: = 0(?), |VS:e(X:(0,5,0)] =

|05 X (0, s, t)l’l+0(52),andaTaylorexpansion aroundr = 0. Here ||8S2hN_% 2T x0.7))
= O(¢~ %) due to (2.31). Hence we obtain
0:vaA +vVa-Vvy —divQRu(ca)Dva) + Vpa
= —¢(dr) (s div(VER @ VER) + &N E 05(p) (Ar iy 1) 0 ss) +0(eN D)

in L2(0, T.; (H'(£2)?)’) by using (3.105) and the matching condition in Theorem 3.11.
Now we use that
SVCX’ ® Vc’x‘ — SVET ® VEX‘
= V1200 (0)0) ()0 ® LTy o (Se(x. 1), 1)
+eN=16)(p)? (VF‘SEN,E(SE 0,0 @np + 1, @V Ty o (Se(x, 1), r))
+ eV i (o, x, 1) - ac(s, ) inD(36)

for some r, € (Roya)N, a, € L2, T,; LX(TY))Y and N € N with uniformly bounded
norms in ¢ € (0, g9). Here one uses that \/EhN_% o \/EhN_% . € L0, Ty W41 (T1)) are
bounded (because of (2.32) and (2.21)) and that 8shN_% e hN_% . enter at most quadrati-
cally. Hence we obtain
— ediv(Vc'l @ Vel + e div(VET @ VET)

_ N-41 " / 7 N=T~pn / 7

= —e" 740,205 (p)y(p)) (Mg -me)Nghy o — 7320, (p)0 (o) -V Chy ¢

- 8N7%296,(p)‘9(3(10) div(n; ® ns)ﬁN,a - SN*%QQ(’)’(p)Q(’)(p) (ns : nsvr‘gﬁN‘s +n - VFEN,SHE)
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— &N 7305(0)? div (Ve Ty e (Se(x, 1), 1) @ Mg +1e @ Vg e (Se (x, 1), 1))
+ OV TH(WT +61))

= V. — &N 4260 (0)85(p) divine)n Ty
— eN300(0)2 div (Ve Tin o (Se (x, 1), 1) @ Mg + e ® VI eTiy (S (x, 1), 1)
+ O@ENTI (VT +et))

= Vi, — gN*%eo’(p)hrﬁh,v_%’g(ss(x, 0, On, + 0EVH T (VT + 1))

in L2(0, T; (H'(I';(36)))) forall T € (0, T;] since n, -n, = 1+ 0 (e?),n. - Vn, = O(&?),
n - VS, = 0(e?).and hy_3 , € L0, T, H'(T")) and E%EN_%E € L*(0, T;, H*(TY))
are uniformly bounded, where 7, = ¢V _4126’6/(,0)90 (0)hy . Now replacing pa by pa + 7,
we obtain (4.1).

Part 3: Error in the Allen—Cahn equation Since ci = +1, the equation (4.3) together with

(4.7) and (4.8), follows in a straight forward manner from (4.20), Theorem 4.3 and the
matching conditions. o

5 Sharp interface limit

The proof of our main result Theorem 1.1 follows the same steps as in [3, Section 4]. But
there are several careful adaptions needed since for our choice of mobility certain estimates
“degenerate”/give worse estimates compared to [3] and the construction of the approximate
solution is different.

5.1 The leading error in the velocity

Forthe followinglet (c4, v4, pa) and (C4, V4, pa) are given as in Sect. 4, where (c4, V4, PA)
still depends on the choice of u, which will be chosen in the following, but (¢4, V4, pa) are

independent Gvp-Mr@wer) Be.Jefily Ve =V ¥ VY 4 oo we)obtain, )) Dv4)
— &div(Ve, ®° Veu) — ediv(Vee, ® Vi) — R,
divv, = —G,, (5.1
Veli=0 = Vo, — Vali=0,

Velao =0,

for some g: Q x [0, Tp] > R.Herec, =c, —c4,a @ b=a®b+b®aand R,, G, are
as in Theorem 4.1.
In the following we consider the estimates

S i@ + e IVael 20ty < REVTE 520

et Ve, Cell 20, mynre 2y t €l0n.Cell2@u 0, 0nre(2)) = ReNT3, (5.2b)
IVEell oo 0.0 220 + €4 I1AC N 20y < REVT2, (5.2¢)

/OT /f(?) IV |2 4+ e72 f"(ca)E:2 dx dr < R2e2N+2 (5.2d)
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for some t = 1(¢) € (0, Tyl, g9 € (0, 1], and all ¢ € (0, 9], where R > 0 is chosen such
that

R? _
lco.c = eali=ol72(g) + &1V (€o.e = cali=0)l72q) + I¥o.c = Vali=olljaq) = &V e
(5.3)

for all ¢ € (0, 1], where C; > 0 is the constant from the spectral estimate in Theorem 2.11.

We note that compared to [3, Estimates (4.5)] there is an additional factor 8% in front of the
norms for V(c; — ca) in (5.2a), for V¢, (c; — ca) in (5.2b), and for A(c; — c4) in (5.2¢) as
well as a loss by /¢ in (5.2d).

As in [3, Section 4], we define

T: :=sup{r € [0, Tp] : (5.2) holds true}. 5.4)
and have T, > 0 because of (5.3).

The main goal of this subsection is to obtain the following bound for the error v, in the
velocity, which again is by a factor ¢7 worse than the corresponding result in [3]:

Theorem 5.1 Let M > 0, ca, Ve be as in (5.1) and ¢, satisfy (5.2) for some R > 0 and
T =T, € (0,Ty] and N > 3. Then there are some C(R, M) > 0, Co(R) independent
of ¢ € (0, e1), where €1 is as in Theorem 2.1, and T € (0, T¢] and v, = w1 — Wy, where
wi € C([0, T1; L2(2)NL*(0, T; H] (QNH? (0, T; L2(Q)), wo € L*(0, T; H*(2)*)N
HY 0, T; L*()?) satisfy

l0:will 20,7 v (@) + Wil + Wil 0,7:22¢) + IWill 220, 7, 51 (@)

HY(0,T;L2(2)

< Co(R)eN i + C(R, M)eNH3(T7 +61), (5.5)

||W0||L2(o,T;H2(Q)) + ||3tW0||L2(Q><(0,T))) < C(R, M)SNH (5.6)
provided that ||Vo.e — Vali=oll g1 (@) < CsN'*'%for some C > 0.

Remark 5.2 Now we choose
Wi

1
& 4

u= e L*(0, To; Hy (%) N C([0, Tol; L2(2)). (5.7

As in [3] this yields a non-linear evolution equation with a globally Lipschitz nonlinearity
for u, which can be solved in the same manner as in [5, Proof of Lemma 4.2].

The result shows that, if we choose M = 2Cy(R), then there are T’ € (0, Tp] and
go € (0, 1) (depending on R > 0) such that

”u”H%(o,T;LZ(Q)) +lull oo, 72200y + Il z20,7; 11 (@)) = M = 2Co(R)

provided that 7 € (0, min(7”’, T¢)] and ¢ € (0, &o]. In particular Py;(u) = u in (4.3). After
the proof of Theorem 5.1 M will be choosen as M = 2C(R).

Proof of Theorem 5.1 The proof is a variant of the proof of [3, Theorem 4.1]. But there are
several careful modifications necessary because of the different powers in the estimates (5.2)
in the present case and the new e-dependent coordinates (d, S¢), which are only approxi-
matively orthogonal.

As in [3] let (wo, go) solve the system

Wy — Awg 4+ Vgo =0 in 2 x (0,7), (5.8a)
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divwy = G, in Q x (0, T), (5.8b)
wolag =0 ond2 x (0,7T), (5.8¢)
Wolr=0 = (VA — Ve)lr=0 in €2, (5.8d)

where we note that G, |;—0 = div(v4 —V:)|;=0. By standard results on strong solutions of the
Stokes system one obtains a unique solution wgy € L2(0, T; HX(Q)>) N H' (0, T: L2(2)?),
which satisfies (5.6). Then w; := v, 4 wq is a solution of the modified system

0rwWiHve - VW —div(2v(ce) Dw1)+ Vg =—s div(Vee ®° Vey)—ediv(Vee ® Vee)
+div(2(v(ce) —v(ca)) DVa)Ve - Vvy
+0rwo+Ve - Vwg—div(2v(cg) DWg)—Rs,  (5.9)
divw; =0,
wilpe =0,
Wili=0 =0
in a weak sense. Now testing (5.9) with w; and using Gronwall’s inequality yields

sup f/ |w1| (x, t)dx+2f /v(cS)Ilel dx dt

0<t<T 2

CT( / [wi]?(x, O)dx—i-s/
0

T
+ 2/ / ((v(ce) = v(ca))Dva : Vwy)dx
0 Q
T T
+5/ dt—i—/
0 0
T T
+/ m+f
0 0
T
+/ / ((ve - VWo 4+ Wo - Vva) - Wi + (2v(ce) Dwo : Vwy))dx
0 Q

Now we estimate the different terms on the right-hand side separately.
The most important step is to show

8/
0

1 1 1 1
< C(RE"TTVW Il 2iax 0.1y + CR, M)eNTH(TZ + e0) [ VWil 120 0.1 -
(5.11)

dr

. (ch ®° Vey : le)dx

dt

/ R, - widx
Q

dr

dt

f (Ve ® V& : Vwy)dx
Q

(0rwo, Wi)yr vy

/ (W1 - Vvy) - widx
Q

dt). (5.10)

dt

/ Ve, ® Vea - Vwidx
Q

To this end we decompose €2 into Q\I'y (%) and I'} (%) and split the integrals accordingly.
Then the proof of (5.11) will consist of three parts.
First of all, we have

T
8/
0

< C(M)e|| Ve, Vw
< C(M)e| 5”L2(§2><(0,T)\I‘(¥)))” 1||L2(Qx(0,T))

/ N Ve, ® Vey - Vwidx|dr
Q\Té(

5
< C(R, M)NTT|Vwi | 120u0.1))- (5.12)
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Furthermore, since
38 s
|ds| = 5 forallx € [/BH\[(38), 1 €10, Tl & € (0, 0] (5.13)
due to (2.4), it holds

Veate, 1) = V& odr) (o, 5,0) = s — cix-) +67'c 0 drboime

N+2 N+2
+¢odr Y &V di(p s, )+ odr Y 0,8 (p. s, n,
k=3 k=3

7 3
+eN710] (p)mehy ¢ 0 Se + V7105 (p)V(hn ¢ 0 Se)
= et o dr)(p)ne + eV 30} (0)Viin.e 0 Se) + O(e2)

in L°°(I"(38)) because of the matching conditions. Therefore we can estimate

8/
0

T
= / / 3 %° dr(p)dn, e ne @ M, : Vwidx d
0 Jriz)

/ N Ve, ® Vey - Vwidx |dr
rs ()

=:1
N—3 _
+ C(M)S 4 ”Vce ”LZ(O,T;L“(F;&‘(%))) ”VW] ||L2(Q><(O,T))
3
+ C(M)e> ||VC8||L2(0’T;L2(F5(%))) VWil 2@ 0,1))
1
< I+ CR. MM 2| VWil 20 0.1 (5.14)

since /edshy . € L0, T; L*(TY)) is bounded due to (2.21) and (2.32). Because of
dn, (05(p))?* = 18,(6/(p))* and Lemma 2.7 and using (2.40), we obtain

=

T |
[ [ s, 0 0@ (73 265000) (Betio + 920, 52.0) + %
o Jred
ng @ ng : Vwy dx dz|

=

T 1 1
/ 2 — .
/0 /rf(%) 5 ne (90(p) )s 2 Z(Se, 1)Bene @ g : Vwydx dr

T 38
2¢ _3
+ / _/1 / :5 96(,0)8 2Z(s,1)0pWe(p, s, )ng @ ng : VWi 0 X Je (ep, 5, 1) dpds dr
0o JT!J—-52
2e

R
+C H‘ﬁ HLZ(O,T:HI(F,E(%‘S))) w1 ||L2(O7T;H1(pts(%)))
s
+C(M)e 2 ||Vce \ILQ(FE(%)) Iwill 2% 0.1y

< C”Z”LZ(O’T;HI(’]I‘I))HWI ”LZ(O,T;HI(Q))
1
+ C( sup sup | 18, We(p.s. 02 (ep t)dﬁ)jllzl\ will
- p¥Yelp, S, 58, 2 .glerl 172 .yl
° 1€10,7] ger! Is L4(0,T;H'(TY)) L=(0,T;H"(2))

+C HI/IR H Lz(O,TQHl (rf(%))) lwy HLZ(O,T;HI (Ff(%)))
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8
+ C(M)e 2e ”VCEHLZ(O,T;LZ(Ff(%))) ”Wl ”Lz(O,T;LZ(Q)). (5'15)
Now using (2.43) and (2.44) we derive
n<c(|2|’ 3 v 5.16
= C([5), o Il or2arcy) IV @0y, (5.16)
where
1
Ap = / <g|va;|2 + ff’/(cj)@z) dx.
re(¥) €
Altogether (5.2), (5.16), and (5.14) yield
T
8/ / Ve ® Via : Vwidx |de
0 ri(¥)
1 1
< CREN VWil 2@u 0.1y + CR, MIENT2 VWl 120 0.7))- (5.17)

This shows (5.11) because of (5.12) and (5.17).
For the following we will use that by construction

. i l
Vi ) = Vo, 1) + eV Tawe(x, ).

Using that [|Welz2(0,7.11(g)) 18 uniformly bounded and vo(p, x,1) = V(J)r(x, Hn(p) +
Vo (x, 1)(1 — n(p)) together with var Ir = vy Ir, one can show similarly as in [3, Estimate
(4.28)]

- 1
Vva =Vvy + eNta Vw,

where ||VVa |l Lo @x0,1)), | VWe 2% 0,7))> JVEIVwe l22(0,7: L7 (2)) are uniformly bounded
for every 1 < r < oco. Therefore we obtain

[

1 1
=CWM) (TZ ”CEHLOO(()_T:LZ) + eNta ”CEHLOO(()_T;L4) HVWEHLZ(()_T;L4)) IVwi ||L2(Q><(O.T))

dr

/ <(V(Cg) — v(cA))DvA : VW])dx
Q

< C(R, M)(T? +e)eN T2 (5.18)

since [v(ce) — v(ca)l < [V [lzeo(w)lcel.
Next we use that

1 1 1
”VEE ||L4(Q><(O,T)) = Cc (”VES ”lz‘oo(o’T;LZ(Q)) ” Acé‘ ”zz(QX(O,T)) + T()4 ”VCS ||L°°(0,T;L2(Q))>
3

< CR)(VF +eV77) < C(R)ENF, (5.19)

which yields

T
8/ / (VES ® Ve, : Vw1>dx
0 Q

_9 1
< CREMN T3 VWill 20x 0.7y < CRENTT VWL 2001 (5.20)

— 12
dr < C€||VC£||L4(0,T;L4(Q)) “VWIHLZ(QX(O,T))
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dueto N > % Because of (4.5),
T
/ / R, - widx
0 Q

Using (5.6) one obtains as in [3, Proof of Theorem 4.1]

T T
/ (9 wo, i)y v|dr +/
0 0

1 1 1
< CODENT 2| VWil 200,y + CODEM 2 IWL s 712,

1
dr < C(M)eNta|w, oo 0,7: 22(92))

1 1 1
+ C(R, M)eNTH(T2 + e9) | Wil oo, 7:12(02) - (5.21)

dr

/ ((vg -Vwog —wp - Vvy) -w + (2v(cg)Dwo : le))dx
Q

1

2
L2(0,T;H')’

(5.22)

Wil

Combining (5.17), (5.18), (5.20)—(5.22) and utilizing (1.14), Korn’s and Young’s inequality
we conclude
N+1 N+l 1 1
||wl||LDO(0’T;L2(Q)) + ”wl”Lz(O,T;HI(Q)) < C(R)E 4 +C(R,M)8 4(T2 +84).
(5.23)

Furthermore, by testing (5.9) with ¢ € L%(0,T; V()) and using the similar arguments as
above we arrive at

18, W1l 20,7 viy) < C(RIENTE 4+ C(R, M)eNH(T7 4 67),
which by interpolation leads to

< C(R)ENFT 4 C(R, M)eNTH (T2 + ¢1). (5.24)

well

H? (0,T;L%(Q))
Finally, (5.6) and (5.23)—(5.24) yield the desired result. ]

N+

Since by definition u = 1, we get for T € (0, T¢)
e 4

loralvllL20.7:v @y + llLeo i r2) + 1l 20,751 @) < C(R).  (5.25)

Proposition 5.3 For T € (0, T) there holds

i

where C(R,T) —> 0as T — O.

/ (u—1ulx,0.5.n) - Vcacs dx|dt < C(R, TyeN+1, (5.26)
Q

Proof Let
O, 1) =¢odr(x,0H00(p) + (1 — ¢ odr(x, 1) (¢} (x, x4 (x, 1) + ¢ (x, Hx—(x, 1))
(5.27)
be the leading part of ¢ 4. Using that
(9o(p) - (£ 1|Qi(t)))w; odr) = 0(e %), (5.28)

due to (5.13), we obtain

_ _ad —_
/l—~£(36) (ll — u|XE(O,Sg,[)) . VC(O)CEdX =J —+ O(e 25)”“”H1(Q)”C8 ”LQ(F;‘(¥)), (529)
[
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where

J = e—‘/ . ¢ odr(u—ulx,(,s,.) - MeBy(p)Ce dx.
i (%)

Now we use that
O Xe(r, s, 1) =ng(Xe(0,5,1), 1) + O(e?) = 8, X (r' .5, 1) + O(e?)
forallr,r’ € (—3—2‘3, %), s € T!, ¢ € [0, Ty] because of (2.9). Therefore we obtain

38
¥ o
-/ ; / - / e (Xe(r. ) - (3 Xe () - (V)Xo () dr” 6 (E)e (X () e, s dr
/ . /T . / e (Xe () - (0 Xe G ) - (V) (Xe G ) dr’ B (EVee (Xe (o ) e (r, )ds dr

+/f5 /1 gf Aer,r! s, 1) - (Vo) (Xe (', )dr’ 0)(5)Ce (Xe(r, ) e (r, )ds dr, (5.30)
-5 JT 0
where Ag (r, r/, s, 1) = O(¢2). Now using (2.7) we derive

/”/ E/Y(divu)(xg(r’, DAF 0 (E)Ee (X () ) Je(r, )ds dr
3 /I € )

»
/: _/1 S/ VSe(Xe(r', ) - (0 Xe (', ) - V) (X (¢, ))dr' 65 (5)Ee (X (r, ) Je(r, )ds dr
» Jr
s
/3 /] S/ Ac(r,r' s, 1) s (Va) (X (r, ))dr 6y(5)ce(Xe(r, ) Je(r, )ds dr, (5.31)
EA

where

V f S/ VSe(Xe(r, ) - @5 Xe(r', ) - VO (Xe (', ))dr' 0(5)Ce (Xe(r, ) Je(r, Hds dr
35 T'

» |
= ’/; /w 5/0 u(Xe(r', NOY(E) - 05 (VSe(Xe(r', )Ce(Xe(r, ) Je(r, ) dr' dsdr
-7

1 1 i _ _
< Ce2|u(, t)”Zz(Q) la(., t)l\i,l(Q)(IIVrscg “LZ(F;‘(%» + lIce IILz(F;:(%s)))

because of

;
i / u(Xe(r, s, 0dr| <
0

< — ||u(X5( s, t))”LOO( 35 25)
| |
= 7”u(X5( S5 t))” ¥ 35)||U(Xs( S, t))“H‘( ¥ By

Similarly we have

38

38 1
/2 / */ (divu) (X (r', s, 0))dr" 6y(5)ce (X (r, s, 1)) Je(r, s, 1)ds dr

3 Jre Jo

<C| lell“LZ(Q) ||C8”L2(1"f(¥))

due to

< ' SNV (Xe G, D) 23 3.

1 / (diva) (X, (r, s, )dr’
0
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Now using || divullz2qx,7.)) = 0(8%), we obtain

T 1.1 — 1 L N4
o |J|dt < C(R)T4 (82 ||V1€C£ ||L2(Q><(0,T)) +T2gd ||C€||L°°(O,T;L2(Q))) +CTz2¢e

< C(R)TH(1 +T2)eN+1. (5.32)
Combining (5.32) and (5.29) we obtain

i

where C(R,T) - 0as T — 0.
Finally, the corresponding estimate V(c4 — ¢(?) can be done in a straight forward manner

/ L, (W—ulx©s.) - Ve dxldr < C(R, T)eV+a, (5.33)
Iy (3)

since all terms are of higher order in ¢ (by at least a factor 8%) compared to V¢(©@. This
finishes the proof. o

Remark 5.4 Analogous to Proposition 5.3 one can show that

i

where C(R, T) — 0 as T — 0. To this end one uses the same computations and estimates
as in the proof of Proposition 5.3 for w, instead of u and the estimate (4.7).

/ (We — Welxo0.5.)) - Veate dx|dt < C(R, T)eV T3, (5.34)
Q

5.2 Proof of the main result Theorem 1.1

. . L _3
In order to estimate the error due to linearization of ¢~ 2 f’(c) we need:

Proposition 5.5 Under the assumptions of Sect.5.1 we have for every T € (0, T;)
! 3 } 3N+
/ / |coPdxdr < C(R)T 27N s, (5.35)
0 Q

Proof The proof is almost identical to [3, Proposition 4.3] with T',(§) and V,u replaced by
1

re (%), Vz, ¢, respectively. In the present case the power of ¢ in the estimate for || V¢, ¢ || 22

is decreased by %, which cause the loss of % in the power of ¢ in the present case compared
to [3, Proposition 4.3]. O

In the following the proof is similar to [3, Section 4.2]. But because of the different
powers of ¢ in the estimates, some terms are critical compared to [3] and we have to choose
additionally T > 0 sufficiently small to finally control all terms.

First of all, by definition v, = v4 + 8N+%ll — wo. Therefore (1.3) and (4.3) imply
_ _ N+l
3Ce + Ve - Ve + € T2 (u—ulx,0,5.0 — (We — Welx,(0.5..1))) - Vea — Wo - Vea
Lo _3 _ _3 - 1 2
=62Ac, — & 2 f"(ca)Ce —& 2MN(ca,Ce) — s, — 55, (5.36)
where M(ca, ) = f'(cs) — f'(ca) — f”(ca)Cs. Taking the L2(£2)-inner product of (5.36)
and c,, using integration by parts we obtain

1d
2dt Jo

"
E£2dx+s%/ (IVeel? + L0524,
Q &
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1
<gN+1

+

/ (w—ulx, 05,0 — We — Welx,0,5..))) - Vcace dx
Q

+s*%C/ |c€|3dx+‘/ 5.Ce dx
Q Q

because of

/ wo - Veace dx
Q

(5.37)

/N(CA,ES)Egdx > —c/ |G dx.
Q Q

Application of Lemma 2.11 now yields

1d ~2 L —) 1 — 2 1 — 2
2—— [ ¢.°dx — Cpe2 Ceodx + &2 |Vce|“dx + €2 |V, Ce|“dx
2dt Jg Q NVE) e
N+1 _ _
=& (w—ulx,0,5.n9 — (We — Welx,0.5..1)) - Veatedx| + wo - Veacedx
Q Q

. (5.38)

+C£_%/ |Eg|3dx+‘/ SgCe dx
Q Q

Therefore we obtain

1 r !
sup */ ES(X,f)ZdX'FS%/ / |V5s|2dde+€%/ / Ve, Cel* dx dr
o<i<T 2 Jo o Jars®) o Jreed

1 _ 1 T
< Ctto */ Ce(x, 0)2dx + eNTa / / (u—ulx,0,5.0 — (We — Welx,0.5..1)))
2 Ja o |Je
- Veyce dx

dt
T 3 T T

+/ dt—i—Cs_i/ / |EE|3dxdt+/ /sgzgdx dt>
0 0 Q 0 Q

R? R?
< §82N+1 +C'(R, T)(82N+1 +83N7%) < ?SZNH + C(R, T)e¥N+! (5.39)

/ wo - Veace dx
Q

forall 0 < T < T, due to (4.8), (5.2), (5.3), Theorem 5.1, Proposition 5.3, Remark 5.4,
Proposition 5.5, ||[Vcal| L0, To: L2(Q)) = O(ﬁ), Gronwall’s inequality, and N > 3, where
C(R,T),C'(R,T) —71—0 0.Hence,if ¢ € min(0, gg) andsy > 0and T > 0 are sufficiently
small, we have
2 2

R ovn +C(R. T)eN+! < R ovn

8 4
and therefore

1
sup f/Eg(x,t)2dx+s%/ |VE,2d(x, 1)
o<i<r 2 Jo Qx(0,T)\I'* (%)
: 2 R® Snii
+87/ |V, Cel?d(x, 1) < —&* VT (5.40)
Qx(0,7)Nre(3) 4

Combining this estimate with (5.37) we obtain

T 4 1
s%/ /<|va|2+f (EA)5£2>dXd’5*/Ea(x’o)zdx
0o Ja € 2Ja
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T
1 _
+eNta / / (w—ulx, 05,0 — (We — Welx,0,5..1))) - VcaCedx
0o IJa

T T T
—i—/ / wo - Veace dx|dr + C87% / / IEg|3dx dt —i—/ / SgCedx
0 Q 0 Q 0 Q

2 2
< %82N+1+C(R’ Tye2N+ < RTF;ZNJrl. (5.41)

dr

dt

for T € (0, T¢] sufficiently small and, if &9 > 0 is sufficiently small,

T T
82/ /|3ngfg|2dxdt§82/ /|V68|2dxdt
0 Q 0 Q
T T
5/ / (82|VES|2+f”(cA)Egz)dxdt-i-C/ /Eﬁdxdt
0 Q 0 Q

2 2
< R782N+% + CT£82N+1 < 3R? 2N+ (5.42)
— 4 2 - 4
Next we derive the estimates for AG, in L2(S2 x (0, T)) and V¢, in L0, T; L3(R)).
To this end we take the LZ(2)-inner product of (5.36) and —e*AC,, integrate by parts, and
obtain

4

sup = [ vecle z)dx+sz/ /IAcg\ drdr
0<t<T

5 T
58—/ |VEg|2(x,0)dx+57/ /|f”(cA)ESAEg}dxdt+s4/ /|v5.VEgAEg\dxdt
0 JQ

17
eNta / / [(w=ulx, 0,51 — (We = Welx,(0,8..1)) - Vea ATe |dx dr

T
4 dz+sz/ /\N(CA Ce) AT |dx dr + e* / '/ sgAEgdx'dt,
0 Q

(5.43)

+¢

wo - Veg Acg dx
0 Q

where

9
z/ / | £ (ca)ee ACs|dx dr < Cesz||cg||Lm(0TL2(9)>||Ac€||L2(OTLz(Q))

< CRN T2 AG | 12 0.1 - (5.44)

As in [3, Section 4.2] one estimates
e’ /0 ' /Q [Mca, €)AC|[dx df < CR*e™ 2| Al 20,7 12()) (5.45)
and, using vo = v + eNtig — w0,
= /OT /Q Ve - Ve Az |dx di < CRENTTAC 1200 72120

N _ 3
+ C(R)8 + 4 ”VCS ”LOO(O T; LZ(Q)) ”ACS ||22(0.T;L2(Q))'

(5.46)

Furthermore

T
9 _
Nh/ /’(u_ulxs(O,Sg.t)_(Wa_Ws|xg(0,se,t)))'VCAAcg|dxdt
0 Q
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13 _
< CREMT TN AT 200,720 (5:47)
T 9
84/ / Wwo - VCAAES dx |dr < C‘(R)(‘?IV—"_i ”AES ”LZ(O,T,LZ(Q)) (548)
0 Q
and
4 r 4.1 2
& /(; /QSgAES dx|dt <e ||SE + Se ||L2(O,T;L2(Q))”AE(:‘”LZ(O,T;LZ(Q))
15 _
< C8N+ 4 ”ACS ||L2(0,T;L2(Q))' (549)

due to (4.9).
Now using (5.3), (5.44) and (5.46)—(5.49) in (5.43) leads to

4 T

& _ 9 _
sup */ [Vl (x,t)dx+£2/ /lAc3| dx dr
o<i<T 2 Ja o Ja

1 3

R? N 17 1 3
+1 N+ = 12 .12
= ?8 + C(R)S 4 ”vc&”LOO(O,T;LZ(Q))||Ac€”L2(O,T;L2(Q))

+ C(R)8N+3”AE&”LZ(O,T;Lz(Q))'

An application of Young’s inequality yields

3t 3 r
sup i/ |VES|2(x,t)dx+fs%/ /|A68|2dxdt
o<i<T 3 Ja 8 Jo Ja

R2 3 R?
< DN+ C(R)82N+7 < 2N+

= )

(5.50)

and

=2 e =2 2R’ 2N-3
sup / |Vee| (x,t)dx+87/ / |ACe|"dx dt < —e" 7. (5.51)

0<r<T JQ 0 Jo 3
if &9 > 0 is small enough.

Altogether we see from (5.40), (5.41), (5.42) and (5.51) and the definition of T that there
are &g > 0 and 77 > O such that T, > T} for all ¢ € (0, &y) and therefore (5.2) hold true for
T =1T1.

Finally, (1.18) follows from v, = v, — v4 and Theorem 5.1, in particular (5.5), and the
remaining two conclusions in Theorem 1.1 are a consequence of the constructions of ¢4 and
v 4. This finishes the proof of Theorem 1.1.
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A Wellposedness of linearized two-phase flow system

Theorem A.14 Ler QF, ' be smooth and as in Sect. I with Vr, =nr, ~v6t forallt € [0, Ty]

and some smooth V(f: QFf > R? with div VOi = 0 in QF. Moreover, let T € (0, Ty],
q € (4,00),andb;: T — Rz,j =0,1,2, ar: T' x [0, Ty] > R, k = 0, 1 be smooth. Then
for all

2L
feli(Qx0,7)° gelLl0,T;W,(Q\T)), weLl0,T;W, “(T'),

2L 11 22

a;r € LY0,T; W, “(C))*NW, *(0,T; LYTy))*, voe W, “(2\To?
1-1 1_1 3_2

a, € L90, T; W, “(T))>*NW,; (0, T; LYT))?, hoeW, (T,
z_l 1_L

ae L0, T; W, “(dQ))*NW, *(0,T;LIHR)*

satisfying

/ gdx:—/ aj -nr,dH! +/ a-nyqdH! (A1)
Q\I'; T, aQ

foralmostallt € (0, T) such that g = div G for some G € qu (0, T; L1(2))2, div vo ;= =
gli=0 and [vo] = ayl;=0 + boho o Soli=0, ¥ lae = ali=o, there are unique

Ve LU0, T; W (Q\T))* N W, (0, T: LYR)*, pe L0, T: W, (2\T)),

31 21
heLi0,T; W, “(Th)NW, 0, T; W, “(T")

solving
vt —vEAVE £ VpT =f inQF, te,T), (A2)
divvt =g inQF, 1e0,7), (A3)
[v] = boh o So = a; onT;,t€(0,T), (A4

[2vDv — pI]n + V[3,v] — 0 A"k o Son = b1 85k o So
+bhoSy+ay only,te(0,T), (AS)

dh +ardsh + L (v +vy) 0 Xo +aoh = w onT! x (0,T), (A6)
v =a ondQ x (0,T), (A7)
vElizo = v in <, (A.8)
hli—o = ho inT!, (A.9)
where v¥ = v|g+, p* = p|q+, n =nr,.

Proof First of all by subtracting suitable extensions of a, v, and h( we can easily reduce to
the casea =0, vg = 0, and g = 0.

Step 1: Time-independent interface, zero lower order terms Let us first consider the case that
r,=r, Q,i = QF are independent of t € [0, Tp],b; = Ofor j =0, 1, 2, by = 0. First of all
by subtracting suitable extensions, we can easily reduce to the case that g = 0 and a; = 0.
Then

T[Vva] =0 if[v] =0onT, divvt = 0in Q%.
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Hence in this case (A.5) is equivalent to
[20v + ) Dv — pIln = o A hn + a,. (A.10)

Thus the result follows e.g. from [30, Corollary 8.1.3].
Step 2: Existence for T = Ty > 0 sufficiently small Let ®: Q x [0, To] — € be defined by

%ap,(g) = VE(D,(E), 1) forall £ € QF, ¢ € [0, Tyl
Do(§) =§ forall £ € Qi(jf.

Then @ is smooth in QF and O[T, t) =17, @(Qi, t) = Q,i for all € [0, Tp]. Moreover,
(vE, pE, h) solves (A.2)~(A.9) if and only if (V=, p*, h), where V¥ (x, 1) = vE (D (x), 1),
pE(x, 1) = pT(®(x), 1) forall x € QF, 7 € [0, T, solves the perturbed system

vt —vEAVE + VT =+ Ry in Q7 % (0,7), (A.11)
divit =g+ Ry in QF x (0,7), (A.12)
[¥] = a1 + both onTg x (0,T), (A.13)

[2vD¥ — pIn + V[8,¥] — 0 AT0h 0 S = n + b5/ 0 S
+bohoS)+a+Rs onTyx (0,7), (A.14)
dh +ardsh + (v +vy) o X0 = w —aph + Ry onT!' x (0,T), (A.15)

together with V|yq = 0, V|;=9 = 0, h|;=0 = 0, where Sg(x, t) = So(x,0) for all (x,1) €
Q x (0,T), XJ(s) = Xo(s,0) forall s € T!, and

foe, 1) = 8@/ (), 1), F0x, 1) = g(®;(x), 1) forall (x, 1) € QF x (0, T),
aj(, ) =a (@), 0,  bjx,1)=b;(@x),1) forall (x,1) € Ty x (0, T), j = 1,2,
bo(x, 1) = bo(®@(x), 1), forall (x, 1) € Ty x (0, T).

Here (Ry, R2,0,R3, Ry) € F(T) :=F((T) x ... x Fs(T) depends linearly on (v, p, h) €
E(T) := E(T) x Eo(T) x E3(T), where

By (T) := L9(0, T; Wi (Q\ To) N W) o(2)* NoW, (0, T5 L9())?,
Eo(T) i= L9(0, T3 Wy ) (@ \ T0)) N oWy (0, T5 W, (o ()

3-1 o1
E3(T) := L90. T: W, 1 (TH) noW, . T: W, (T,
Fy(T) := L9(Q x (0, )%, Fo(T) := L0, T; W,}(Q \ To)),
_1 1_1
Fy(T) = L9O, T3 W, @ (To) NoW, 2 (0,75 L9To)?,
-1 11 o1
Fo(T):= L9, T; Wy (o> N W, (0. T:L9(To)2 Fs(T):=LI0.T; W, (Th),
normed in the standard way, and, for a Banach space X and s > 1 — é,
oW;(O, T;X):={uce W;(O, T; X):u(0) =0}
Moreover, since ®; —;_¢ idg in Cck(Q) for every k € N, we have that

IR, R2,0,R3, Ry)llwry < CDONF, p, h) Ty,
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for some C(T) — 71— 0. Furthermore using e.g. E3(T) — C([0,T]; W, * (T!)) one can
show that

100, 0, both, b1dsh o Sg +bah o 83, aph)lw(ry < CT*| (¥, p, )llEcr)

for some @ > 0 and C independent of 7 € (0, Tp]. Hence, since the set of all invertible linear
operators is open, there is some 77 > 0 such that (A.11)—(A.15) possesses a unique solution
in (¥, p, h) € E(T) provided T € (0, T]. Transforming (¥, p) to * with the aid of <I>;1
yields the statement in this case.

Step 3: Existence for general T > 0: Since the system is linear, the existence time 77 > 0 in
the second step is independent of the norms of the data. Moreover, as in the second step we
obtain that for any #y € [0, T') there is some 77 (#p) > o such that the system has a unique
solution for ¢ € (#o, T1(tp)) for a given initial value v|;—;,, = Vo att = fy. Because of the
compactness of [0, 7] and uniqueness of the solutions, we can concatenate these solutions
and obtain a solution on [0, T']. ]

Remark A.2 With the aid of Theorem A.14 one can obtain that for all smoothf, g, a2, b, w, a
(without precribed initial values vg, hg) a smooth solution of (A.2)-(A.7). To this end one
extends the smooth data f, g, w, a;, k = 1, 2, a, and Q,i I'; on a time interval [—1, Tp] in a
smooth manner such that these functions vanishin[—1, %]. Then one can apply Theorem 3.11
to obtain a solution (v, pi, h) of (A.2)-(A.7) on a time intervall (—1, Tp) instead of (0, Tp)
and with initial values vo = 0, hg = 0. Then one can apply the parameter-trick in space and
time (cf. e.g. [30, Section 9.4] to obtain that vE, p are smooth in Ute(_l,TO] Qti x {t}and A is

smooth in Ut e(—1.Tp] T! x {r}. Restriction to [0, Tp] in time yields the existence of a smooth
solution to (A.2)—(A.7), which satisfy (A.8)—(A.9) for some V§ = vE|,—0, ho 1= hli—0.
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