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A B S T R A C T

This paper quantifies the intricacy, i.e., non-linearity and interactions of predictor variables, in explaining
cryptocurrency returns. Using data from several thousand cryptocurrencies spanning 2014 to 2022, we
observe a notably high level of intricacy. This provides a quantitative measure why linear models are often
outperformed by machine learning algorithms in predicting cryptocurrency returns. Furthermore, we document
that the intricacy in these predictions is considerably larger compared to stocks. Our analysis reveals that
interactions are gaining importance over time, while individual non-linearity of the drivers is diminishing.
This adds to the emerging literature on spillover effects between cryptocurrencies, traditional finance and the
economy. This finding is important for investors as well as regulators as the high intricacy proposes challenges
to both actors in the market.
1. Introduction

The application of machine learning has grown rapidly in recent
years. Gu et al. (2020) demonstrate that machine learning-based stock
portfolios outperform traditional strategies. Additionally, Bryzgalova
et al. (2020) highlight the importance of interactions in grouping
similar stocks for trading strategies. Furthermore, Chen et al. (2024)
apply machine learning models to estimate asset pricing models for
single stock returns. Machine learning also shows promise for other
asset classes, such as bonds or hedge funds, as evidenced by studies
like Bianchi et al. (2021) and Wu et al. (2021). Cryptocurrencies
have emerged as an established alternative asset class, with private
yet professional investors increasingly considering them in their asset
allocation. Predicting cryptocurrency returns has become a prominent
focus in the literature, with machine learning models consistently
outperforming classical statistical models (Akyildirim et al., 2021; Liu
et al., 2021, 2023; Cakici et al., 2024). Thus, the relationship between
predictor variables and returns appears to be intricate, characterized by
marginal non-linearity and interactions among these predictors. This
paper aims to quantify the importance of marginal non-linearity and
predictor interactions for cryptocurrency returns. This quantification
enhances understanding of why machine learning methods outperform
simpler ones and can further explain documented spillover effects
between traditional financial assets and cryptocurrencies in the liter-
ature (Blau et al., 2021; Jia et al., 2021; Borri et al., 2022; Yousaf
et al., 2023; Gubareva et al., 2023). The question remains open re-
garding how spillover effects in the literature affect return prediction
and predictor’s functional form. Economically, understanding market
stability intricacies means evaluating simultaneous impacts of various
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markets, emphasizing predictor interactions. This quantification helps
assess the magnitude of impact when multiple markets change together.
Investors need this insight as they integrate data from multiple markets
into return predictions, uncertain about singular or joint impacts.

Utilizing a large sample of approximately 2800 cryptocurrencies
spanning from 2014 to 2022, our contributions are manifold. First, the
dominance of intricacy is evident, with at least 86% attributed to it.
This percentage significantly surpasses that of large stocks, which peaks
at 36% (Nagl, 2023). Consequently, the structure of cryptocurrency
return predictions presents greater challenges than that of large stocks.
However, intricacy is decreasing over time, indicating a convergence to
stock market levels. Second, we observe a trend where the importance
of interactions among drivers is increasing over time, while individ-
ual non-linearity is diminishing. Hence, in recent times, returns are
influenced more jointly by drivers rather than individually, contrasting
with the early days of the cryptocurrency universe. This highlights that
various markets impact the cryptocurrency market jointly, suggesting
higher-order spillover effects.

2. Data

Our dataset spans cryptocurrencies from January 2014 to Decem-
ber 2022 using data retrieved from coinmarketcap.com (Liu et al.,
2022). To avoid survivorship bias, we include both active and inactive
cryptocurrencies. Following Liu et al. (2022), we only select cryptocur-
rencies with a marketcapitalization of at least 1 million USD and a
listing duration of at least eight weeks. We exclude the cryptocurren-
cies INNBCI, BTWTY, and KRT due to implausible values for market
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Table 1
Descriptive statistics of weekly cryptocurrency returns.

Variable 2014 2015 2016 2017 2018 2019 2020 2021 2022 Total

N.Coins 57 56 102 442 880 803 1074 1899 1887 2791
Mean −0.042 −0.013 0.000 0.128 −0.048 −0.010 0.015 0.013 −0.030 −0.005
Std 0.165 0.145 0.155 0.387 0.197 0.140 0.171 0.217 0.131 0.190
Min −0.516 −0.515 −0.502 −0.507 −0.554 −0.394 −0.562 −0.445 −0.567 −0.567
25% Q −0.147 −0.092 −0.084 −0.098 −0.182 −0.100 −0.085 −0.122 −0.102 −0.112
50% Q −0.065 −0.015 −0.012 0.041 −0.054 −0.018 0.000 −0.014 −0.023 −0.017
75% Q 0.030 0.054 0.060 0.253 0.062 0.064 0.098 0.101 0.040 0.073
Max 0.728 0.660 1.157 2.911 0.734 0.573 0.844 1.245 0.427 2.911

Note: N.Coins depicts the number of unique cryptocurrencies in that year.
apitalization and other information, following Ammann et al. (2022).
fter applying these filters 2791 cryptocurrencies are in the dataset.
e divide each year into 52 weeks, with the first 51 weeks consisting

f seven days each and the last week consisting of the last eight days.
ubsequently, the returns are shifted by one week to relate all current
nformation to the return of the following week. Table 1 provides the
ryptocurrency return’s descriptive statistics.

Predicting cryptocurrency returns hinges on identifying suitable
rivers and their functional form in the prediction model. Some studies
nderscore the significance of cryptocurrency-specific information (Oz-
amar et al., 2021; Jia et al., 2021; Liu et al., 2022). Addition-
lly, macroeconomic variables, stock market data, and commodities
re crucial determinants (Liu et al., 2023). Others stress the impor-
ance of uncertainty-related variables (Colon et al., 2021; Lucey et al.,
022). We consider the most common drivers across various cate-
ories. Cryptocurrency-specific variables include market capitalization,
eturn volatility, maximum return, past one and eight-week returns, as
ell as the illiquidity measure by Amihud (2002). Commodities are

epresented by a comprehensive commodity index and weekly gold
rice returns. For macroeconomic data, we utilize the yield spread
etween Baa and Aaa rated bonds, the yield spread between the 10-year
reasury and 3-month treasury constant maturity bill, the VIX, and the
eekly return of S&P500 as well as NASDAQ. Regarding uncertainty-

elated variables, we incorporate the US and Global Economic Political
ncertainty index by Baker et al. (2016), along with the Policy Crypto
ncertainty index proposed by Lucey et al. (2022). A detailed descrip-

ion of the drivers and data sources is available in Online Appendix B,
able B.1.

. Methods

As Liu et al. (2023) demonstrates that XGBoost outperforms other
odels, such as Lasso, in predicting cryptocurrency returns, we utilize

asso (linear) and XGBoost (non-linear) to investigate the intricacy of
ryptocurrency returns .

easuring intricacy
We employ a well-known method, Accumulated Local Effect (ALE)

lots, introduced by Apley and Zhu (2020). The main aim of ALE
lots is to calculate a function 𝛩𝐴𝐿𝐸 (𝑋𝑗 ) that quantifies how much the

prediction of the model 𝑓 (𝑋) changes on average for every value of
feature 𝑋𝑗 ∈ R𝑁×1, where 𝑗 = 1,… , 𝑝. Here, 𝑁 is the number of ob-
servations, and 𝑝 is the number of predictors. This function entails the
individual (non-linear) impact of 𝑋𝑗 on 𝑓 (𝑋). Additionally, the function
𝛩𝐴𝐿𝐸 (𝑋𝑗 ) can be calculated for interaction effects up to order 𝑝. In
simple terms, the ALE function 𝛩𝐴𝐿𝐸 (𝑋𝑗 ) allows us to decompose the
prediction function 𝑓 (𝑋) into the individual impact of the predictors
and the impact of all possible interactions among these predictors. For
a detailed description of ALE Plots, please refer to Online Appendix A.

Following Apley and Zhu (2020), we can calculate an 𝑅2-like mea-
sure, describing the extent to which the prediction can be explained by
individual non-linearity. The proposed 𝑅2

𝐴𝐿𝐸 by Apley and Zhu (2020)
is defined as:

𝑅2 =
𝑣𝑎𝑟{

∑

𝐽⊊{1,…,𝑝} 𝛩𝐴𝐿𝐸 (𝑋𝐽 )} (1)
2

𝐴𝐿𝐸 𝑣𝑎𝑟{𝑓 (𝑋)}
Table 2
Variants of intricacy.

Definition Measured intricacy Interpretation

1 - 𝑅2
𝐴𝐿𝐸,𝑙𝑖𝑛𝑒𝑎𝑟 Overall intricacy Importance of individual non-linearity

and all possible orders of interactions
1 - 𝑅2

𝐴𝐿𝐸 Interactions Importance of all possible interactions
𝑅2

𝐴𝐿𝐸 - 𝑅2
𝐴𝐿𝐸,𝑙𝑖𝑛𝑒𝑎𝑟 Individual non-linearity Importance of individual non-linearity

Apley and Zhu (2020) show that 𝑅2
𝐴𝐿𝐸 = 1 if we add all ALE functions

up to order 𝑝. Nagl (2023) expands this approach by introducing
another variant called 𝑅2

𝐴𝐿𝐸,𝑙𝑖𝑛𝑒𝑎𝑟. This quantifies how well a linear
model could approximate the prediction of the machine learning model,
providing insight into the linearity in predictions. The 𝑅2

𝐴𝐿𝐸,𝑙𝑖𝑛𝑒𝑎𝑟 is
defined as:

𝑅2
𝐴𝐿𝐸,𝑙𝑖𝑛𝑒𝑎𝑟 =

𝑣𝑎𝑟{
∑𝑝

𝑗=1 𝛩
𝑙𝑖𝑛𝑒𝑎𝑟
𝐴𝐿𝐸 (𝑋𝑗 )}

𝑣𝑎𝑟{𝑓 (𝑋)}
(2)

where 𝛩𝑙𝑖𝑛𝑒𝑎𝑟
𝐴𝐿𝐸 (𝑋𝑗 ) is calculated by fitting a linear regression of 𝑋𝑗 onto

𝛩𝐴𝐿𝐸 (𝑋𝑗 ). We can use Eqs. (1) and (2) to quantify various intricacy
levels, depicted in Table 2:

4. Results

To train the models, we employ an expanding window approach,
where data is sequentially expanded by one quarter (i.e., 13 weeks).
The initial time slice covers data until the end of 2017 (2017 Q4). The
data are randomly split into an 80% training sample and a 20% testing
sample, implementing a cross-sectional split to control for overfitting.
Additionally, we perform a time series split, where the testing data is
the subsequent quarter, but find no difference regarding the intricacy.
After training the algorithms, finding hyperparameters, and measuring
intricacy, we add the next time slice, i.e., 2018 Q1. We observe that
XGBoost clearly outperforms Lasso in every quarter considered, which
is in line with the findings of Liu et al. (2023). Further details on
hyperparameter selection and the performance of both models can be
found in Online Appendix C.

Intricacy over time
Fig. 1 illustrates the amount of intricacy, as defined in the first line

of Table 2.
The intricacy measure is calculated each time new hyperparameters

are fitted, ranging from 78.7% to 94.1%. We observe a downward trend
of intricacy in the crypto market from mid-2019 onwards. Nagl (2023)
applied a similar approach to all constituents of the S&P 500 index,
finding intricacy ranging from 6% to 36% from 1995 until 2016. Hence,
intricacy in the stock market is considerably lower. However, as the
crypto market evolves, its intricacy becomes more similar to stocks.
Therefore, the convergence of the intricacy values can be interpreted
as a sign of the increasing maturity of the crypto market.

As intricacy arises from individual non-linearity of the drivers or
various interactions between them, Fig. 2 dissects this effect.

Over time, the importance of interactions increases, whereas the im-

portance of non-linearity decreases. This shift implies that intricacy is
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Fig. 1. Intricacy over time.
Fig. 2. Non-linearity and interactions over time.
leaning more towards joint effects rather than individual non-linearity
of the drivers. This increased importance may indicate a greater inte-
gration of cryptocurrencies with other asset classes or spillover effects.
This adds to the literature on spillover effects, by showing that spillover
effects are (jointly) important for cryptocurrencies. By incorporating
various drivers from different asset classes, the increased interactions
may suggest that they collectively influence cryptocurrencies more
nowadays than in the early days of the crypto market. This interpre-
tation is in line with Corbet et al. (2018) who shows that until 2017
the correlation between crypto and other financial assets was very
low. Similar evidence until 2019 is provided by Gil-Alana et al. (2020)
and Jia et al. (2021). To test the robustness of our findings, we calculate
the intricacy for more or less liquid cryptocurrencies. We find that the
conclusions drawn remain the same. Furthermore, we redo our analysis
using only the top 100 coins by market cap at the end of the estimation
period to further reduce the impact of illiquidity of smaller coins on
our results. Moreover, we redo our analysis by using two-year simple
splits to ensure that the expanding window hides some time-variation
3

in the more recent samples. For both robustness checks, our conclusions
remain the same.1 Detailed results to all robustness checks can be found
in Online Appendix D.

To further investigate the importance of interactions, we calcu-
late SHAP interaction values in Online Appendix E. SHAP values are
standard for explaining machine learning models and are frequently
used. Summing up the detailed analysis in Online Appendix E, the
most important interaction at the onset of the COVID-19 pandemic
was between the UCRY Policy Index and Gold Bullion LBM, highlighting
the significance of uncertainty around crypto policy and the safe-haven
property of gold. With the start of the Federal Reserve’s first rate hike in
March 2022, the most important interaction was between DBAA-DAAA
and T10Y3M, both indicating changes in the interest rate environment.
This suggests that crypto returns react sensitively to changes in interest
rates as well as to fears of a recession in the United States. Considering
the time variation of the importance of interactions for individual

1 We thank an anonymous reviewer for suggesting these robustness checks.
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features, we observe that the interest rate environment shows large in-
teractions during the rate hike period. Furthermore, gold exhibits large
interaction values only during COVID-19, but not before or afterward.
This indicates that the importance of interactions of individual features
is not stable over time and varies with different degrees of economic
uncertainty and important macroeconomic events. This adds further to
the literature on spillover effects. For example, Aharon et al. (2021)
showed that cryptocurrencies and US yield curves are connected in
stressful times, but not in normal times. We extend this evidence by
showing that the yield curves also interact more with other drivers
during those times. Furthermore, Jiang et al. (2022) demonstrated
tail risk spillover, i.e., connectedness during extreme events. Similar
evidence is found by Lahiani et al. (2021) and Ahn (2022).

5. Conclusion

We observe an decrease in the intricacy of cryptocurrency predic-
tions; however, the intricacy is notably high compared to large stocks.
Additionally, we find evidence of an increasing importance of interac-
tions, while the importance of individual non-linearity of the drivers is
decreasing. Overall, high intricacy of cryptocurrencies is important for
investors seeking to develop profitable strategies for cryptocurrencies.
As many different joint impacts become more important, building and
implementing trading strategies become more challenging. From a reg-
ulatory perspective, the relatively high intricacy may require regulatory
frameworks tailored to address the challenges posed by this intricacy.

Data availability

Data will be made available on request.
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