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Abstract
In this article we define and study convex bodies associated to linear series of adelic
divisors over quasi-projective varieties that have been introduced recently byYuan and
Zhang.Restricting our attention to big adelic divisors,we deduce properties of volumes
obtained by Yuan and Zhang using different convex geometric arguments. We go on
to define augmented base loci and restricted volumes of adelic divisors following
the works of Michael Nakamaye and develop a similar study using convex bodies
to obtain analogous properties for restricted volumes. We closely follow methods
developed originally by Lazarsfeld and Mustaţă

Keywords Adelic divisors · Volumes and restricted volumes · Augmented base
locus · Okounkov bodies

Mathematics Subject Classification 14G40 · 14C40 · 52A27

1 Introduction

The theory of Okounkov bodies to study linear systems of line bundles on a projective
variety was introduced by Russian mathematician Andrei Okounkov in his articles
Okounkov (1996, 2000). Given a linear series of an ample line bundle on a projec-
tive variety, he introduced certain convex bodies, which later came to be known as
Okounkov bodies whose convex geometric properties encode interesting invariants of
the graded series. In their article Lazarsfeld (2009) noticed that the constructions of
Okounkov generalise from ample line bundles to arbitary big line bundles on pro-
jective varieties. In their paper Lazarsfeld (2009) they develop a systematic study of
Okounkov bodies for big line bundles and prove various properties of volumes such as
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continuity, Fujita approximation and others. They also consider the notion of restricted
volumes along a closed sub-variety and prove properties analogous to those of ordinary
volumes.

A crucial feature of the approach in Lazarsfeld (2009) is that the construction of
Okounkov bodies makes sense even when the variety is not projective as long as we
have a graded series of the space of global sections on our given line bundle. In this
article we use this observation to construct Okounkov bodies for “compactified” line-
bundles on quasi-projective varieties. In their recent pre-print Yuan and Zhang (2021)
introduced the notion of adelic divisors on a quasi-projective variety U over a field.
Theymanage to put a topology on the space of all divisors which come from projective
models Xi ofU and consider all divisors which are ”compactified” with this topology.
In other words an adelic divisor on a normal quasi projective variety U is given by
the data {Xi , Di } and a sequence of positive rationals qi converging to 0 where Xi are
projective models of U , Di are Q-divisors on Xi with Di |U = Dj |U for all i, j such
that the following “Cauchy condition” holds, with respect to a boundary divisor D0

−q j D0 ≤ Di − Dj ≤ q j D0 ∀ i ≥ j

Here inequalities signify effectivity relations holding in a common projective model
(see section 2.4 of Yuan et al. 2021 for details). As a result of their consideration,
given any divisor D on U and an adelic compactification on D denoted by D, we get
a space of adelic global sections H0(U , D) which is a finite dimensional sub-space
of all global sections H0(U , O(D)). Hence we can consider the notions of volumes
similarly to the projective case and it is shown in Yuan et al. (2021) that these volume
functions show properties analogous to the classical projective volumes (see Yuan
et al. 2021, section 5). However following the approach in Lazarsfeld (2009) in this
article we construct Okounkov bodies �(D) for the graded series {H0(U ,mD)}m∈N.
The construction is essentially a special case of the construction sketched in Definition
1.16 of Lazarsfeld (2009) where we take Wm = H0(U ,mD) ⊆ H0(U , O(mD)). If
the divisor D is big i.e it has positive volume as defined in Yuan et al. (2021), we show
that the Lebesgue volume of the body is essentially the same as the algebraic volume
upto scaling. The first main theorem of our article is as follows

Theorem (A) Suppose we have a big adelic divisor D on a normal quasi-projective
variety U and suppose �(D) is the Okounkov body associated to D. Furthermore
suppose ̂vol(D) be the adelic volume defined in Theorem 5.2.1 of Yuan et al. (2021).
Then we have

volRd (�(D)) = lim
m→∞

dimK (H0(U ,mD))

md
= 1

d! · ̂vol(D)

Continuing with our analogy of the approach in the article Lazarsfeld (2009) we
construct global bodies for adelic Okounkov bodies to study the variation of these
bodies. Although we do not have finiteness of the Néron–Severi space associated to
adelic divisors, it turns out there exist a canonical global convex body whose fibers
give Okounkov bodies even if this global body depends on some choices of divisors
in contrast to in Lazarsfeld (2009). This is the content of our next theorem
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Theorem (B) Suppose D and E be adelic divisors on a normal quasi-projective variety
U such that D is big. Then there exists a convex body �(U ) = �(U , D, E) ⊂ Rd+2

with the property that for any 
a = (a1, a2) ∈ Q2 with a1D + a2E big, we have

�(a1D + a2E) = �(U ) ∩ (Rd × {
a})

The above two theorems combine to prove Theorem 5.2.1 of Yuan et al. (2021) for big
adelic divisors using convex geometric methods and Okounkov bodies. Furthermore
we show that not only the volume of the big adelic divisor but also its Okounkov
body constructed in this article is approximated (in terms of Hausdorff metric) by the
corresponding Okounkov bodies of the projective models defining the divisor.

Next we go on to define the notions of restricted volumes of adelic divisors along
a closed sub-variety E of U using Okounkov bodies. The restricted volume essen-
tially measures the asymptotic growth of global sections of O(D)|E which arise as
restrictions of sections of D overU to E analogously to the classical projective setting
(see Ein 2009 for more details). Analogously to the projective case, we can form the
convex geometric objects�U |E (D),�U |E (D) and the algebraic objects H0(U |E, D),
̂volU |E (D) for a given adelic divisor D. In order to have relations analogous to that
of the adelic volume, we introduce the notion of augmented base locus of an adelic
divisor in analogy with projective augmented base locus (see section 2.4, Lazarsfeld
2009). Our definition, although being very similar to the projective case, requires
some work to be shown well-defined. Since we do not have Serre finiteness on quasi-
projective varieties, we have to use the main result of Birkar (2017) to show the
well-definedness. We go on to show that when E is not contained in the augmented
base locus, the expected properties hold which is our next theorem

Theorem (C) Suppose D is an adelic divisor on a normal quasi-projective variety U
over K . Furthermore suppose E is a closed irreducible sub-variety of U not contained
in the augmented base locus of D. Then we have

volRd (�U |E (D)) = lim
m→∞

dimK (H0(U |E, OE (mD)))

md
= 1

d! · ̂volU |E (D)

where dim(E) = d

We go on to show the existence of a global body even for restricted volumes and
hence the variation of these restricted Okounkov bodies also has desirable satisfying
properties like continuity etc.

The organisation of the article is as follows. In the first three sections of the first
chapter we review the notions of adelic divisors and their space of global sections
following sub-section 2.4 in Yuan et al. (2021). In the fourth section we construct the
Okounkov bodies for adelic divisors and show some preliminary properties of them.
In the fifth section we prove our first main theorem relating the algebraic adelic vol-
umes with Euclidean volumes of their Okounkov bodies. In the next two sections we
construct the global bodies and show that their fibers essentially gives the variation of
Okounkov bodies in fixed directions. We also deduce certain corollaries of the exis-
tence of global bodies. In the first section of the second chapter we define augmented
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base locus of an adelic divisor. We go on to define the restricted volume of an adelic
divisor along a closed sub-variety in the next section. We relate them to Euclidean
volumes of restricted Okounkov bodies and show the existence of global bodies in
analogy to the adelic volume in the next two sections. We end the chapter by obtain-
ing certain corollaries of restricted volumes similar to those of ordinary volumes in
Chapter. 1.

1.1 Adelic divisors

We begin by giving a short review of adelic divisors which are our main objects of
interest in this article. We fix a quasi-projective variety U over any field k. By a
projective model ofU , we mean a projective variety X over k which containsU as an
open dense subset via an open immersionU ↪−→ X . Given a projective model X ofU ,
we have the group of Cartier Q-divisors denoted by Div(X)Q = Div(X) ⊗Z Q. Then
we consider the group of (Q, Z)-divisors Div(X ,U ) as follows

Div(X ,U ) = {(D,D) ∈ Div(U ) ⊕ Div(X)Q | D|U = D in Div(U )Q}

where D|U denotes the image of D under the pull-back morphism Div(X)Q →
Div(U )Q.

Note that the set of all projective models of a givenU form an inverse systemwhich
in turn makes the set of (Q, Z)-divisors into a directed system via pull-backs. Then
we can form the direct limit to define the group of model divisors as follows

Div(U/k)mod = lim
X

Div(X ,U )

where above the direct limit is taken as X varies over all projective models ofU . Next
note that there is a notion of effectivity in both the groups Div(X)Q and Div(U )which
induces a partial order on Div(X ,U ) where (D,D) ≤ (D′,D′) if and only if both
D′ − D and D′ − D are effective in Div(U ) and Div(X)Q respectively. This partial
order induces a partial order in Div(U/k)mod by passing to direct limits.

By a boundary divisor of U over k, we mean a tuple (X0, D0) where X0 is a
projective model of U and D0 is an effective Cartier divisor on X0 with Supp(D0) =
X0 − U . Note that such a boundary divisor always exists which can be seen by
choosing any projective model X ′

0 of U and blowing-up X ′
0 along the reduced center

X0 − U . Then note for any non-zero rational r ∈ Q we can view r D0 as an element
of Div(X0,U ) and hence as en element of Div(U/k) by setting the component on
Div(U ) to be 0.

We can finally put a norm, denoted by the boundary norm on Div(U/k)mod as
follows

|| · ||D0 : Div(U/k)mod → [0,∞]
||D||D0 = inf{q ∈ Q>0 | −qD0 ≤ D ≤ qD0 in Div(U/k)mod}
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It is shown in Lemma 2.4.1 of Yuan et al. (2021) that || · ||D0 is actually a norm and
the topology induced by it on Div(U/k)mod is independent of the chosen boundary
divisor (X0, D0). Hence we can talk about the boundary topology on Div(U/k)mod
as the topology induced by a boundary norm coming from any boundary divisor.
We finally define the adelic divisors, denoted by ̂Div(U , K ), as the completion of
the topological space Div(U/k)mod with respect to the boundary topology described
above. Note that then by an adelic divisor we mean the data {Xi , Di } where Xi are
projective models and Di ∈ Div(Xi ,U ) and a sequence of positive rationals {qi }
converging to 0 satisfying the effectivity relations

−qi D0 ≤ Di − Dj ≤ qi D0 in Div(U/k)mod for all j ≥ i .

Remark If we assume U to be normal, we can choose the models Xi to be normal
and further embedding the group of Cartier divisors into Weil divisors we can look
at Di just as elements of Div(Xi )Q and the effectivity relation to be holding in just
Div(Xi )Q instead of Div(U/k)mod. This is due to the fact that group of Weil divisors
on U has no torsion.

1.2 Space of global sections of an adelic divisor

We fix an algebraically closed field K and a normal quasi-projective varietyU over K .
As described in the previous section, we have the notion of the group of adelic divisors
̂Div(U , K ) (Yuan et al. 2021, sub-section 2.4.1 for more details) which are given by
a compatible sequence of models {Xi , Di } such that Di are Cartier Q-divisors on the
projective models Xi such that Di restrict to a Cartier divisor D onU and they satisfy
the Cauchy condition with respect to a boundary divisor D0 defined over a projective
model X0 i.e there exists a sequence of positive rational numbers {q j } converging to
0 such that

Dj − q j D0 ≤ Di ≤ Dj + q j D0 for all i ≥ j . (1)

where D0 is an effective Cartier divisor on X0 with support exactly equal to the
complement ofU in X0 and the above effectivity relations are considered in a common
model (for details see Yuan et al. 2021, Section 2). Note that the definition of adelic
divisor does not depend on the particular choice of the boundary divisor D0, as shown
in Yuan et al. (2021, Lemma 2.4.1). We denote this data by D. Given such an adelic
divisor, we introduce the space of global sections

H0(U , D) = H0(U , O(D)) = { f ∈ κ(U )× | div( f ) + D ≥ 0} ∪ {0}

following (Yuan et al. 2021, section 5.1.2). In the above definition, div( f ) is the adelic
divisor obtained by picking the divisor corresponding to f ∈ κ(U )× = κ(X)× on
any projective model X of U , and div( f ) + D ≥ 0 means that the left hand side can
be represented by a sequence of effective divisors on the corresponding models.

123



Beitr Algebra Geom

Remark It is shown in Yuan et al. (2021, Lemma 5.1.7(2)) that this space is always
finite dimensional. This will be our analogue for the usual space of global sections
on which we construct Okounkov bodies. For this purpose, note that by restricting
the effectivity relation div( f ) + D ≥ 0 to U , we can identify H0(U , D) with a
finite dimensional vector sub-space of the space of all sections H0(U , O(D))( which
in general is very large and infinite dimensional). This will always be our way of
viewing the vector spaces H0(U , D).

1.3 Different notions of effective sections

Note that Di can be viewed as a (model) adelic divisor Di in ̂Div(U , K ) and conse-
quently we have the space of global sections H0(U , Di ) as before, where we put the
overline to emphasize it is viewed as a model adelic divisor. However viewing Di as a
Q-divisor on the projective variety Xi we can also define the space of global sections
as before

H0(Xi , Di )
′ = { f ∈ κ(Xi )

× | div( f ) + Di ≥ 0 in Div(Xi )Q} ∪ {0}.

only by restricting our attention to the projective model Xi . These two notions of
effective sections can be different a-priori. However if we consider U to be normal,
then by Yuan et al. (2021, Lemma 5.1.5 and Remark 5.1.6) they are canonically
identified and we get that both these notions are the same. Next we will obtain some
inclusions.

Lemma 1.1 We have the sequence of inclusions

H0(X j , k(Dj − q j D0))
′ ↪→ H0(U , O(kD)) ↪→ H0(X j , k(Dj + q j D0))

′

for all k ∈ N and for all j .

Proof Note that by our discussion above the two extremes of the sequence can be
replaced by

H0(U , k(Dj − q j D0)) and H0(U , k(Dj + q j D0))

respectively as U is assumed to be normal. Therefore, the statement is equivalent to
the chain of inequalities

D j − q j D0 ≤ D ≤ D j + q j D0,

which is an immediate consequence of (1). ��
Next we define the volume of an adelic line bundle following (Yuan et al. 2021,

sub-section 5.2.2).
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Definition 1.2 Given an adelic line bundle D on a quasi-projective varietyU as above,
we define the volume of D as

̂vol(D) = lim sup
m→∞

dimK ( ̂H0(U ,mD))

md/d! ,

where d is the dimension of U . We call an adelic divisor big if ̂vol(D) > 0.

We will primarily be interested in the Okounkov bodies of the big adelic divisors.

Remark It is shown in Yuan et al. (2021, Theorem 5.2.1(1)) that the lim sup in Defi-
nition 1.2 is actually a limit by using the fact that the volume is actually a limit of the
volumes of the projective Q-volumes of the models. However we will not assume that
here and we will use the theory of Okounkov bodies to independently show that this
volume is given by a limit.

1.4 Okounkov bodies for adelic divisors

We recall the valuation function crucial in the definition of Okounkov bodies. Note
that as we remarked at the end of section 1.1, every element of H0(U , O(D)) can
be identified as a global section of O(D) on U by restricting the effectivity relation
div( f ) + D ≥ 0 to U . Now we fix a closed regular point x ∈ U (K ) and consider
any local trivialisation s0 of O(D) around x . Then every element s ∈ H0(U , D) ⊆
H0(U , O(D)) induces a regular function by f = s

s0
around x and hence an element in

the completion ÔU ,x ∼= K [[x1 . . . xd ]] where d is the dimension of U and the second
congruence follows from the regularity of x . Then we define a valuation like function
denoted by ord as follows:

νx ( f ) = min{α ∈ Nd | f =
∑

aαx
α in ÔU ,x , aα �= 0}

where the minimum is taken with respect to the lexicographic order on the variables
x1 · · · xd and this function is independent of the choice of s0. Now the choice of a
flag x = Y0 ⊂ Y1 ⊂ · · · Yd = U centered at x gives a choice of variables x1 · · · xd
as above and hence yields a valuation function νx on H0(U , D). Note that the sub-
spaces H0(U ,mD) are finite dimensional and induces a graded linear series {Vm ⊆
H(U ,mD)} in the sense of section 1.3 of Lazarsfeld (2009). Hence we can define the
semi-groups and convex bodies similarly

Definition 1.3 Suppose we have the adelic divisor D. Then we can define the semi-
group

�(D) = {(α,m) ∈ Nd+1 | α = νx (s) for some s ∈ H0(U ,mD)}
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We further define �(D)m = �(D) ∩ (Nd × {m}). Finally we define the associated
Okounkov body of D as

�(D) = closed convex hull(∪m
1

m
· �(D)m) = �(�(D)) ∩ (Rd × {1})

where �(·) denotes taking the closed convex cone in the ambient Euclidean space.

We are going to derive required properties of�(D) and�(D)with the goal of relat-
ing its volume to the volume of adelic divisors. We begin by showing that eventually
the models are big when perturbed a little by the boundary divisor D0 provided D is
big. This is immediate if we assume Proposition 5.2.1 of Yuan et al. (2021). However
even without the full strength of the result, we have the following lemma:

Lemma 1.4 Suppose D is a big adelic divisor given by models {Xi , Di } as above with
boundary divisor D0. Then for j >> 0, D j −q j D0 (and hence D j ) is a big Q-divisor
on X j . In particular, we deduce that there exists a r0 such that H0(U , r D) �= {0} for
all r > r0.

Proof We are going to use Fujita approximation (Fujita 1994) for Q-divisors on pro-
jective models. Note that the RHS of the inclusions in Lemma 1.1 gives us that
vol(Dj + q j D0) ≥ ̂vol(D). Hence for ε j > 0, we can find by Fujita approxima-
tion an ample Q-divisor A j on a birational modification π : X ′

j → X j such that
π∗(Dj + q j D0) ≥ A j and vol(A j ) ≥ vol(Dj + q j D0) − ε j . Then consider the
Q-divisor A j − 2q j D0 ≤ Dj − q j D0 where we consider this effectivity relation in
X ′

j by pulling back both D0 and Dj to X ′
j and we omit the notations of pull-backs.

Write D0 = A − B where A and B are nef effective Q-divisors in X0. Then we have

vol(Dj − q j D0) ≥ vol(A j − 2q j D0) = vol(A j + 2q j B − 2q j A)

≥ (A j + 2q j B)d − 2dq j (A j + 2q j B)d−1 · A ≥ Ad
j − 2dq j (A j + 2q j B)d−1A ≥

vol(Dj + q j D0) − ε j − 2dq j (A j + 2q j B)d−1 · A

Here in the second inequality we have used Siu’s inequality to the nef divisors A j +
2q j B and 2q j A since both A and B were nef in X0 and nefness is preserved under
bi-rational pull-backs whereas A j is ample in X ′

j , in the third inequality we have
used that A j is nef and B is nef and effective and in the last one we have used
Ad
j = vol(A j ) ≥ vol(Dj + q j D0) − ε j . Now choosing ε j → 0 as j → ∞ and

suppose we can choose a nef model divisor N such that A j + 2q jπ
∗
j B ≤ π∗

j N for all
j . Then we get that

vol(Dj − q j D0) ≥ vol(Dj + q j D0) − 2dq j M − ε j

where M = Nd−1A is a fixed number independent of j . Noting that both ε j and
q j go to 0 as j → ∞ and noting that vol(Dj + q j D0) ≥ ̂vol(D) > 0 is bounded
from below independently of j , the above inequality shows that for large enough j ,
vol(Dj − q j D0) > 0 which finishes the claim.
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Hence we are reduced to showing that there exists a model nef divisor N in
Div(U , k)mod such that π∗

j N ≥ A j + 2q jπ
∗
j B for all j . To this end choose a positive

integer r such that r > q j for all j . Then consider the divisor D1+2r D0+2r B in X0.
By Serre’s finiteness there is a nef divisor N on X0 such that N ≥ D1 + 2r D0 + 2r B.
Then since r > q1 > 0 and D0 is effective, we get that N ≥ D1+q1D0+q j D0+2q j B
for all j . But note that we have the effectivity relation D1 +q1D0 ≥ Dj and hence we
conclude N ≥ Dj+q j D0+2q j B. Sincewehave the effectivityπ∗

j (Dj+q j D0) ≥ A j ,
pulling back by π j we deduce π∗

j N ≥ π∗
j (Dj + q j D0) + 2q jπ

∗
j B ≥ A j + 2q jπ

∗
j B

as required. ��
From now on onwards thanks to the previous lemma, we fix once and for all a j such
that Dk −qk D0 is big for all k ≥ j . The first result we want to state is the boundedness
of �(D) where we use the similar result for integral divisors on projective varieties
from Lazarsfeld (2009) to obtain our claim.

We start with a sequence of inclusions.

Lemma 1.5 We have a sequence of inclusions

�(Dj − q j D0)m ⊆ �(D)k ⊆ �(Dj + q j D0)m

for all positive integers m and hence as a consequence

�(Dj − q j D0) ⊆ �(D) ⊆ �(Dj + q j D0)

Proof First note that it makes sense to have �(·) and �(·) in the right and left extrem-
ities above even though the arguments are Q-divisors by just viewing them as model
adelic divisors in Div(U , k)mod. The first sequence of inclusions then follow easily
from the set of injective maps in Lemma 1.1 and noting that the construction of νx
is local. The second set of inclusions then easily follows from definition of a closed
convex hull generated by subsets. ��
Finally we can state the boundedness result that we wanted to obtain.

Lemma 1.6 The subset �(D) is a compact convex subset of Rd .

Proof The said subset is already closed and convex. Hence it is enough to prove that
it is bounded. Note that R = Dj + q j D0 is a Q-divisor on Xi and hence there is an
integer t such that t R is an integral Cartier divisor. Note that from the RHS of the set
of inclusions in Lemma 1.1 we conclude that any section s ∈ H0(U , kt D) induces a
section s′ ∈ H0(Xi , kt R)′ = H0(U , kt R) and both of these have the same valuation
vector. Hence we get that �(t D) ⊆ �(t R) where the RHS is well defined as t R is
an integral Cartier divisor which in turn yields by construction that �(t D) ⊆ �(t R).
On the other hand we have �(D) ⊆ 1

t · �(t D) and hence by construction we get
�(D) ⊆ 1

t · �(t D). This readily gives the boundedness as �(t R) is bounded by
Lemma 1.10 of Lazarsfeld (2009) as t R is an integral divisor and Xi is projective. ��
Remark The proof of boundedness for the projective case in Lazarsfeld (2009) is based
on intersecting ample divisors with the flagwhich gives us the Okounkov construction.
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It might be interesting to try to give a proof using intersection theory as there is a new
intersection theory nowwith adelic line bundles on quasi-projective varieties. However
the notion of “adelic ample divisors” are “positive” is not immediate to formulate since
pull back of ample bundles by birational morphisms is not necessarily ample again
and this might arise as a problem.

1.5 Volumes of Okounkov bodies

We want to relate the volume of the Okounkov body �(D) with the volume of the
adelic divisor D as defined in Yuan et al. (2021). It will turn out that they are equal
(upto scaling) analogous to the projective case. We start with a lemma listing the
properties of the �(D) which are sufficient to assert the volume equality.

We begin by recording a result which relates the dimension of the space of global
sections with the cardinality of slices of �(D). We denote by�(D)m = �(D)∩(Nd ×
{m}). Then we have

Lemma 1.7 We have #�m = dimK (H0(U ,mD))

Proof The claim immediately follows from Lemma 1.4 of Lazarsfeld (2009) by taking
W = H0(U ,mD) and noting thatW is finite dimensional from Lemma 5.1.7 in Yuan
et al. (2021). ��
Next we want to naturally extend the notion of Okounkov bodies to Q-adelic line
bundles. One necessary property is to show that the construction of �(·) behaves
well with taking integral multiples of adelic divisors which is the content of our next
lemma. Note that if we can show volR(�(D)) = limm→∞ #�m

md , then with Lemma 1.7

we have that the Euclidean volume of�(D) is the same as the volume of D as defined
in Definition 1.2 upto scaling by d!. It turns out that for the above equality to be true, it
is enough for �(D) to satisfy certain properties which are purely Euclidean geometric
in nature. We wish to state and prove them in our main lemma of this section. Before
that we prove a property necessary in our next lemma.

Lemma 1.8 Suppose D is a big adelic divisor on a normal quasi-projective variety
U given by the sequence of models {Xi , Di } and rationals {qi → 0} as usual. Then
there is a model X j such that for all ample divisors A on X j , there exists a non-zero
section s0 ∈ H0(U ,mD − A) whenever m is a sufficiently large positive integer.

Proof The idea is to use Kodaira lemma (Proposition 2.2.6, Lazarsfeld 2004) in the
projective case on models approximating D from below. More precisely suppose
D′

j = Dj − q j D0. Then as {D′
j } is a sequence also representing the big divisor

D, by Lemma 1.4 we can find a j such that D′
j is a big divisor. Now applying the

Kodaira lemma on the big divisor D′
j on the projective variety X j , we conclude that

for all sufficiently large m, there exists a non-zero section of O(mD′
j − A) on X j and

restricting to U , we get a non-zero section s0 ∈ H0(U ,mD′
j − A) for all sufficiently

large m. Now the claim follows from noting that the effectivity relation D ≥ D′
j

implies that H0(U ,mD′
j − A) ⊆ H0(U ,mD − A). ��
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Lemma 1.9 Suppose D is a big adelic divisor on a normal quasi-projective variety U
over K . Then the convex body �(D) satisfies the following properties:

1. �0 = {0}
2. There exist finitely many vectors (vi , 1) spanning a semi-group B ⊆ Nd+1 such

that �(D) ⊆ B.
3. �(D) generates Zd+1 as a group.

Proof The first point is trivial. For the second point we follow the proof of Lemma
2.2 in Lazarsfeld (2009). Denote by vi (s) the i th co-ordinate in the valuation vector
of a section s. Note then vi (s) ≤ mb for some large constant b and for all non-zero
s ∈ H0(U ,mD) due to the fact that �(D) is bounded (Lemma 1.6) as �(D) contains
1
m · �(D)m for each m ∈ N. Now a basic algebraic calculation easily shows that
�(D) is contained in the semi-group generated by the finite set of integer vectors
{(ai ) | 0 ≤ ai ≤ b} which shows the second point. Hence it is enough to prove the
third point.

To this end, choose a model X j which satisfies the condition of Lemma 1.8. Then
choose a very ample divisor A on X j such that there exists sections si of O(A) for
i = 0, 1, . . . d with v(si ) = ei where v is the valuation vectorwith respect to the chosen
flag and {ei } is the standard basis of Rd for i = 1, . . . d and e0 is the zero vector, as
suggested in the beginning of the proof of Lemma 2.2 in Lazarsfeld (2009). Restricting
these sections give sections si ∈ H0(U , A) with v(si ) = ei . Now thanks to Lemma
1.8 and our choice of X j , we can find non-zero sections ti ∈ H0(U , (m0 + i)D − A)

for i = 0, 1 with valuation vectors v(si ) = fi . Then clearly we find non-zero sections
s′
i = si ⊗ t0 ∈ H0(U ,m0D) and s′′

0 = s0⊗ t1 ∈ H0((m+1)D)with valuation vectors
v(s′

i ) = ( f0 + ei ) for i = 0, . . . d and v(s′′
i ) = f1. Hence �(D) contains the vectors

( f0,m0), ( f0 + ei ,m0) for i = 1 . . . d and ( f1,m0 + 1). Then it clearly shows that
�(D) generated Zd as a group and finishes the proof. ��
We are ready to state the first main theorem of this chapter.

Theorem 1.10 Suppose we have a big adelic divisor D on a normal quasi-projective
variety U and suppose �(D) is the Okounkov body associated to D as constructed
above. Furthermore suppose ̂vol(D) be the adelic volume defined in section 5 ofYuan
et al. (2021). Then we have

volRd (�(D)) = lim
m→∞

#�m

md
= lim

m→∞
dimK (H0(U ,mD))

md
= 1

d! · ̂vol(D)

Proof With Lemma 1.9 and by basic arguments of euclidean and convex geometry as
indicated in the proof of Proposition 2.1 of Lazarsfeld (2009), we get that

volR(�(D)) = lim
m→∞

#�m

md
= lim

m→∞
dimK (H0(U ,mD)

md
(2)

exists which clearly gives the claim. ��

123



Beitr Algebra Geom

Remark Note that the above theorem also proves that the lim sup in the definition of
̂vol(D) is actually given by a limit directly from convex geometric properties of the
Okounkov bodies which is essentially the content of the first part of Theorem 5.2.1 of
Yuan et al. (2021).

We end this section by showing that the construction ofOkounkov body is homogenous
with respect to scaling.

Lemma 1.11 Suppose D is a big adelic divisor on a normal quasi-projective variety
U. Then

�(t D) = t · �(D)

for all positive integers t . Hence we can naturally extend the construction of �(·) to
big adelic Q-divisors.

Proof We choose an integer r0 such that H0(U , r D) �= {0} for all r > r0. We can
always do this as we assumed D is big (as explained in the proof of Lemma 1.9). Next
choose q0 > 0 such that q0t − (t + r0) > r0 for all t . Then for all r0 + 1 ≤ r ≤ r0 + t
we can find non-zero sections sr ∈ H0(U , r D) and tr ∈ H0(U , (q0t − r)D) which
gives inclusions

H0(U ,mtD)
⊗sr

↪−−→ H0(U , (mt + r)D)
⊗tr

↪−→ H0(U , (m + q0)t D)

which gives the corresponding inclusion of the graded semi-groups

�(t D)m + er + fr ⊆ �(D)mt+r + fr ⊆ �(t D)m+q0

where er = v(sr ) and fr = v(tr ). Now recalling the construction of �(·) and letting
m → ∞ we get

�(t D) ⊆ t · �(D) ⊆ �(t D)

which clearly finishes our proof. ��
Remark Note that this homogeneity allows us to define Okounkov bodies for adelic
Q-divisors by passing to integral multiples and hence conclude that adelic volumes
are homogenous for big divisors as in the projective case.

1.6 Variation of Okounkov bodies

We fix a normal quasi-projective variety U over K and a big adelic divisor D on it.
Furthermore suppose E is any adelic divisor on U . We will construct a global convex
body �(U ) = �(U , D, E) ⊆ Rd × R2 such that the fiber of this body over a vector
(a1, a2) ∈ Q2 under the projection to R2 will give us the Okounkov body of the adelic
Q-divisor a1D + a2E provided it is big. Furthermore we fix a flag Yd ⊂ · · · ⊂ Y0
as before. We are going to follow closely the arguments in Section 4 of Lazarsfeld
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(2009). All constructions are dependent on the choice of the divisor D and E but we
fix them for this section and we omit them in the notation. We start by defining the
semi-group associated to these two adelic divisors.

Definition 1.12 Suppose D and E are as before. We define the graded semi-group
�(U ) as

�(U ) = {((v(s), a1, a2) | ai ∈ Z, s �= 0 ∈ H0(U , a1D + a2E)}

where v(·) is the valuation corresponding to the chosen flag. Furthermore we define
the global Okounkov body �(U ) as

�(U ) = closed convex cone(�(U ))

which is a closed convex subset of Rd × R2.

As in the case with one bundle, we will deduce the properties needed from general
properties of convex bodies and graded semi-groups. Before doing that we define
certain terms necessary.

Definition 1.13 Suppose we have an additive semi-group � in Rd × R2. Denote by P
the projection fromRd ×R2 toR2 and� = �(�) is the closed convex cone generated
by �. We define the support of �, denoted as Supp(�) to be its image under P . It
coincides with the closed convex cone in R2 generated by the image of � under P .
Finally given a vector 
a = (a1, a2) ∈ Z2 we denote

�N
a = � ∩ (Nr × N
a)

�R
a = � ∩ (Rd × R
a)

Furthermore we denote �N
a as a semi-group inside Nd × N
a ∼= Nd+1 and denote the
closed convex cone generated by it in Rd+1 as �(�N
a).

With the above definitions we can state our next lemma.

Lemma 1.14 Suppose the semi-group � generates a sub-group of finite index in Zd+2

and suppose 
a ∈ N2 such that 
a ∈ int(Supp(�)). Then we have

�R
a = �(�N
a)

Proof The statement and the proof of the Lemma is identical as in Proposition 4.9 of
Lazarsfeld (2009). ��
Next we want to show that the vectors which gives rise to big combinations of the
bundles D and E in fact belong to the interior int(Supp(�))which is the content of the
next lemma. Note that by passing to rational multiples just as in the projective case,
we can similarly define Q-adelic divisors. Furthermore by the remark at the end of
the previous section, we can also define Okounkov bodies for Q-adelic divisors which
behave homogenously.
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Lemma 1.15 Suppose 
a ∈ Q2 such that a1D + a2E is a big adelic divisor. Then

a ∈ int(Supp(�)).

Proof We assume that dim(U ) > 0 as the 0-dimensional case is degenerate. Clearly
it is enough to show the case when ai ∈ Z because Supp(�) is a cone and scaling
sends open sets to open sets. We can assume that both D and E are given by models
Di and Ei on projective models Xi of U respectively along with a boundary divisor
D0 and rationals qi → 0 as in our usual notation. We first prove that for any rational
q ∈ Q such that D + qE is big, there is an ε > 0 such that (1, x) is in Supp(�)

for all x ∈ (q − ε, q + ε). Suppose first that q > 0. Then note that the sequence
of models S j = (Dj − q j D0) + q(E j − q j D0) gives a Cauchy sequence defining
D+qE and hence by Lemma 1.4 we get that S j is big for large enough j . Now due to
the continuity of the volume function in the projective setting, we can find a rational
0 < q < p such that (Dj − q j D0)+ p(E j − q j D0) is big. Now due to the effectivity
relation

(Dj − q j D0) + p(E j − q j E0) ≤ D + pE

we deduce that the right hand side above is big. Hence we get that for some positive
integer p0, p0 · (1, p) ∈ P(�) where P : Rd × R2 → R2 is the projection and
� = �(D). As D is assumed to be big, we also obtain that r0 · (1, 0) ∈ P(�) as
well for some large positive integer r0. As p0 and r0 are positive, it is enough to find
an ε > 0 such that (1, x) is in the convex cone generated by (1, 0) and (1, p) for
all x ∈ (q − ε, q + ε) because Supp(�) is exactly the convex cone generated by
P(�). But clearly (1, x) is in the convex cone generated by (1, 0) and (1, p) for all
0 < x < p which clearly yields the existence of one such ε because 0 < q < p. For
the case when q < 0 we do a similar calculation but with E j −q j D0 being replaced by
E j + q j D0. Finally for the case q = 0 using similar arguments we can find a rational
number q0 such that all the three vectors p0 · (1, 0), p0 · (1,−q0) and p0 · (1, q0) are
in P(�) for some large positive integer p0. Hence by the above arguments we get that
(1, x) is in Supp(�) for x ∈ (−q0, q0).

Next we take any 
a = (a1, a2) such that a1D + a2E is big. First suppose a1 ≤ 0.
It is easy to see that the sum of two big adelic divisors is again big. Hence adding
(−a1)D we conclude that a2E is big. Since the trivial adelic divisor is not big, we
conclude that a2 �= 0. Then adding the big adelic divisor −a1D we deduce that E
(resp. -E) is big if a2 > 0 (resp. a2 < 0). Hence in these two cases replacing D by
E or −E we are reduced to the case when a1 > 0 and hence we can assume WLOG
that a1 > 0. In that case scaling by a1 we obtain that D + qE is big for q = a2

a1
and

by our considerations before we deduce that for some ε > 0, (1, x) is in the convex
cone generated by P(�) for all x ∈ (q − ε, q + ε). We assume that a2 ≥ 0 and the
argument for a2 < 0 will just be the analogue by changing signs. Then for any κ > 0
we have

a2 − κ

a1 + κ
≤ a2 + t2

a1 + t1
≤ a2 + κ

a1 − κ
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for all t1, t2 ∈ (−κ,+κ). Choose κ > 0 so small that

(

a2 − κ

a1 + κ
,
a2 + κ

a1 − κ

)

⊂ (q − ε, q + ε)

and a1 ± κ > 0 which we can do as q = a2
a1

and a1 > 0. Hence by the choice of ε for

any t1, t2 ∈ (−κ, κ), the vector (1, a2+t2
a1+t1

) and hence (a1 + t1, a2 + t2) is in the convex
cone generated by P(�) and hence in Supp(�) as a1 + t1 > 0. This clearly shows
that (a1, a2) ∈ int(Supp(�)) and finishes the proof. ��
Next to use Lemma 1.14 we have to prove that �(U ) generates a sub-group of finite
index in Zd+2 which in particular guarantees that int(Supp(�(U )) is non-empty. This
is going to be the content of our next Lemma.

Lemma 1.16 The multi-graded semi-group �(U ) constructed in Definition 1.12 gen-
erates Zd+2 as a group.

Proof Arguing similarly as in the proof of Lemma 1.15, as D is big, we can find a
positive integerm such thatmD− E is big. On the other hand we already know that D
is big. Note that the semi-groups�(mD−E) and�(D) sit naturally as sub-semigroups
of �(U ). Moreover from Lemma 1.9 we deduce that �(D) and �(mD − E) generate
the sub-groupsZd ×Z ·(1, 0) andZd ×Z ·(m,−1). But the vectors (1, 0) and (m,−1)
generate Z2 which clearly shows that �(U ) generates Zd+2 as a group. ��
Finally we are ready to state and prove the main theorem of this section.

Theorem 1.17 Suppose D and E be adelic divisors on a normal quasi-projective
variety U such that D is big. Then there exists a convex body �(U ) = �(U , D, E) ⊂
Rd+2 with the property that for any 
a = (a1, a2) ∈ Q2 with a1D + a2E big, we have

�(a1D + a2E) = �(U ) ∩ (Rd × {
a})

where�(a1D+a2E) is the Okounkov body of a1D+a2E as constructed in Definition
1.3.

Proof Clearly it is enough to show when 
a ∈ Z2 by homogeneity of Okounkov bodies
(Lemma 1.11). Note that the semi-group �(a1D+a2E) sits naturally in Nd ×N · 
a ∼=
Nd+1 and by construction of�(·) as inDefinition 1.3,we deduce that�(a1D+a2E) =
�(�(U )N
a)∩(Rd ×{
a}). By Lemma 1.15 we get that 
a ∈ int(Supp(�(U )) and hence
by Lemma 1.14 we have �(U )R
a = �(�(U )N
a). Hence we deduce that

�(a1D + a2E) = �(�(U )N
a) ∩ (Rd × {
a}) = �(U )R
a × (Rd × {
a}) = �(U ) ∩ (Rd × {
a})

concluding the proof. ��
Remark The construction of the Global body �(U , D, E) is done here by mimicking
the constructions in section 4 of Lazarsfeld (2009).However one stark difference is that
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the global body constructed in Lazarsfeld (2009) is independent of the chosen basis of
the Neron–Severi group because they work modulo numerical equivalences. However
even if there can be a notion of “numerical equivalence” in the adelic setting, it is
certainly not known if the corresponding Neron–Severi space is finitely generated and
hence such a “canonical global body” cannot be constructed using similarmethods and
our �(U , D, E) is dependent on the chosen divisors D and E . However our version
still gives some interesting corollaries which we shall see next.

1.7 Corollaries: continuity, Fujita approximation andmore

Before going to state our first corollary, we introduce the notion ofHausdorff distance
which will be the correct metric under which we want to show the convergence of
bodies.

Definition 1.18 Let (V , ‖ · ‖) be a normed real vector space. The Hausdorff distance
between two closed compact subsets C1 and C2 in V is defined as

dH (C1,C2) = inf{ε > 0 | C1 ⊆ C2 + εB,C2 ⊆ C1 + εB}

where B is the unit ball in V with respect to || · ||.
Now we can state our first main corollary.

Corollary 1.19 Suppose D is a big adelic divisor on a normal quasi-projective variety
U given by models {Xi , Di } in our usual notation. Then

lim
j→∞ dH (�(D),�(Dj )) = 0

where D j is just D j looked at as a model divisor in Div(U , k)mod. In particular, we
have

̂vol(D) = lim
j→∞ vol(Dj )

where vol(·) is the classical projective volume considering D j as a Q-divisor in X j .

Proof We prove the first claim at first. Begin by noting that the sequence of inclusions

�(D − q j D0) ⊆ �(Dj ) ⊆ �(D + q j D0)

implies that it is enough to show that dH (�(D − q j D0),�(D + q j D0)) → 0 as
j → ∞. But this immediately follows from Theorem 1.17 taking E = D0 and
Theorem 13 in Khovanskii (2012) noting that q j → 0 as j → ∞. Now the second
claim follows readily from Theorem 7 in Shephard and Webster (1965) and the first
claim noting that vol(Dj ) = ̂vol(Dj ) = d!·vol(�(Dj )) and vol(D) = d!·vol(�(D)).

��
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Remark Note that Corollary 1.19 and Theorem 1.10 prove Theorem 5.2.1 of Yuan
et al. (2021) for big adelic divisors independently using convex geometric methods
and hence we can deduce all the corollaries of section 5 of Yuan et al. (2021) coming
from Theorem 5.2.1 for big divisors which we list next.

Corollary 1.20 (log-concavity) Suppose D1 and D2 are two effective adelic divisors
on a normal quasi-projective variety U. Then we have

̂vol(D1 + D2)
1
d ≥ ̂vol(D1)

1
d + ̂vol(D2)

1
d

where d = dim(U ).

Proof The statement is trivial if one of the divisors is not big. When both of them are
big, applying Corollary 1.19 the problem gets converted into the projective case which
is proved in Corollary 4.12 in Lazarsfeld (2009). ��
Corollary 1.21 (Fujita approximation) Suppose D is a big adelic Q-divisor on a
normal quasi-projective variety U. Then for any ε > 0 there exists a normal quasi-
projective variety U ′, a birational morphism π : U ′ → U, a projective model X ′ of
U ′ and an ample Q-divisor A′ on X ′ such that π∗D − A′ ≥ 0 in D̂iv(U , K ) and

vol(A′) ≥ ̂vol(D) − ε

where vol(A′) is the volume of A′ as a divisor on X ′.

Proof Using the fact that the adelic volume is the limit of its models in Corollary 1.19,
the claim gets reduced to the original Fujita approximation which was proved in Fujita
(1994). ��
Next we come to the final corollary of this section which shows the continuity of the
volume function.

Corollary 1.22 (Continuity) Suppose D, M1, . . . Mr are adelic Q-divisors on a nor-
mal quasi-projective variety U. Then we have

lim
t1,t2...tr→0

̂vol(D + t1M1 + . . . tr Mr ) = ̂vol(D)

where t1 . . . tr are rational numbers converging to 0. Furthermore we have ̂vol(D) =
lim j→∞ vol(Dj ) for a sequence of model D j representing D.

Proof As in the proof of Theorem 5.2.8 in Yuan et al. (2021), we choose nef model
adelic divisors M

′
i such that M

′
i ± Mi ≥ 0 and we set M = M

′
1 + · · · M ′

r . Then it is
enough to show that

lim
t→0

̂vol(D + tM) = ̂vol(D)
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as t converges to 0 over the rationals. First assume that D is big. Then from Theorem
13 of Khovanskii (2012) we get

lim
t→0

dH (�(D + tM),�(D)) = 0

by taking E = M in Theorem 1.17 since we saw in the proof of Lemma 1.15 that
D + tM is big for small enough t whenever D is big. Now the claim follows from
Theorem 7 of Shephard and Webster (1965). The second claim is also true when D is
big thanks to Corollary 1.19. Hence we can assume that D is not big. Now suppose
the claim does not hold. Then there is a c > 0 and a sequence of rationals ti → 0 such
that ̂vol(D+ ti M) > c for all ti . By Corollary 1.21 we can choose an ample Q-divisor
Ati on a projective model X ′ of a birational modification π : U ′ → U of U such that
π∗(D + ti M) − Ati ≥ 0 and vol(Ati ) > c/2. Then clearly

̂vol(D) ≥ vol(Ati − ti M) ≥ Ad
ti − dti A

d−1
ti M

where in the second inequality we used the Siu’s criterion for model nef divisors Ati

and M . We can bound the intersection number Ad−1
ti M as in the proof of Theorem

5.2.8 in Yuan et al. (2021) to conclude that

̂vol(D) ≥ Ad
ti − O(ti ) > c/2 − O(ti ) as ti → 0

which clearly contradicts the hypothesis ̂vol(D) = 0 and finishes the proof of the first
claim. Furthermore the effectivity relation D j ≤ D + q j D0 shows that vol(Dj ) ≤
̂vol(D + q j D0). Now as j → ∞ we know that q j → 0 and hence by the first claim
lim j→∞ ̂vol(D + q j D0) = 0 which clearly shows the second claim. ��

2 Augmented base loci and restricted volumes

In this chapter we define restricted volumes of adelic divisors along a closed sub-
variety of a normal quasi-projective variety U over an algebraically closed field K .
We will define the notion of augmented base locus of an adelic divisor. It turns out that
the restricted volume can be realised as the volume of an Okounkov body when the
the sub-variety is not contained in the augmented base locus of the adelic divisor. As
a corollary we will deduce that the lim sup defining the restricted volume is actually a
limit analogously as in Chapter. 1 for ordinary volumes. We go on to show that there
are global bodies which regulate the variation of restricted volumes along arbitary
directions similarly as to ordinary volumes as in Chapter. 1. Finally as a corollary
we will deduce properties analogous to those obtained in chapter one for ordinary
volumes.
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2.1 Augmented base locus of an adelic divisor

In this section, we recall the concepts of base loci and stable base loci of a graded linear
series of an adelic line bundle. Using these concepts we introduce the notion of the
augmented base locus of an adelic divisor D in analogy to the projective setting (see
Lazarsfeld 2009, section 2.4). In the projective setting, it is shown that the definition of
augmented base locus is independent of the choice of the ample divisor using Serre’s
finiteness. However as in our setting, model divisors are only defined upto bi-rational
pull-backs and ampleness is not preserved under such pull-backs, Serre’s finiteness
does not work. It turns out that this gap can be fixed using the main theorem due to
Birkar (2017) and provides us with a similar independence of choice which will be
the main result of this section.

Definition 2.1 Suppose U is a normal quasi-projective variety over an algebraically
closedfield K and suppose D is a divisor. Furthermore supposeW ⊆ H0(U , O(D)) =
H0(U , D) is a finite dimensional sub-space of the space of global sections of O(D).
Then we define the base locus

Bs(W ) = {p ∈ U | s(p) = 0 in κ(p) = OU ,p/mU ,p for all s ∈ W }

Now suppose we have a graded linear series W = {Wm} of O(D). We define the
stable base locus as

SB(W ) = ∩m∈NBs(Wm)

Finally suppose D is an adelic divisor onU . Then it determines a graded linear series
W = {Wm = H0(U ,mD)} as explained in the beginning of Chapter. 1. Then we
define the base locus and stable base locus of D as

Bs(D) = Bs(W1) and SB(D) = SB(W )

Remark Note that it is easy to check that the stable base locus SB(D) is indeed
eventually stable i.e there exists an integer p0 such that SB(D) = Bs(p0D) by using
noetherianity of U just like in the projective case.

Our next lemma is the main ingredient to show that augmented base loci are well-
defined.

Lemma 2.2 Suppose X1 and X2 are two normal projective models of a normal quasi-
projective variety U over K , f : X1 → X2 a birational morphism which is an
isomorphism over U and A1, A2 ample divisors on X1 and X2 respectively. Fur-
thermore suppose D is an adelic divisor on U. Then for any closed irreducible
sub-variety E of U, E � Bs(m0D − A2) for some positive integer m0 if and only if
E � Bs(n0D − A1) for some positive integer n0.

Proof We first suppose that E � Bs(m0D − A2). We denote f ∗A2 = A
′
2 which is

a big nef divisor on X1 as A2 was big and nef (being ample) and this notions are
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invariant under bi-rational pull-backs. Let E be the Zariski closure of E in X1. Then
clearly A

′
2|E is big and as A

′
2 is also nef, we can deduce from Theorem 1.4 of Birkar

(2017) that for large enough integer s0, E is not contained in the (projective) stable
base locus of s0A

′
2 − A1 since A1 is ample in X1. Restricting everything toU , we can

find a positive integer p0 and section s′ ∈ H0(U , s0 pA2 − pA1) such that s′ does
not vanish along E whenever p0 | p. Tensoring by a section of H0(U , (p − 1)A1)

non-vanishing on E , which we can find as A1 is ample, we produce a section s ∈
H0(s0 pA2 − A1) non-vanishing on E whenever p0 | p. By hypothesis we can find
a section s0 ∈ H0(U ,m0s0 p0D − s0 p0A2) non-vanishing along E . Hence picking
p = p0 and tensoring s and s0 we produce a section in H0(U ,m0s0 p0D− A1) which
does not vanish identically on E and hence E � Bs(n0D − A1) and finishes one
direction of the claim with n0 = m0s0 p0.

For the other side, suppose E � Bs(n0D − A1). Hence for every positive integer
p we can find a section s0 ∈ H0(U , n0 pD − pA1) which does not vanish identically
on E . Now chose p large enough such that pA1 − A

′
2 is very ample which we can do

by Serre’s finiteness theorem on projective varieties because A1 is ample on X1. Then
chosing a section of pA1 − A

′
2 on X1 not vanishing identically on E and restricting

to U , we obtain a section s0 ∈ H0(U , pA1 − A2) not vanishing identically on E for
large enough p. Once again tensoring s and s0 we obtain that E � Bs(m0D − A2)

with m0 = n0 p for large enough p and finishes the proof. ��
Remark The proof of the above lemma follows along similar lines as the independence
of the augmented base locus on the choice of the ample divisor is shown in the pro-
jective case. However it uses Serre’s finiteness theorem which has no known versions
in the adelic setting due to non-invariance of ampleness under birational pull-backs.
However it turns out the gap in one direction of the proof can be bridged by the main
result due to Birkar (2017) as we have shown above and in the other direction we
already have Serre finiteness.

Finally we can deduce the the desired invariance under pull-backs of model ample
divisors as a direct corollary of Lemma 2.2 which we do next.

Corollary 2.3 Suppose D is an adelic divisor on a normal quasi-projective variety U
over K and suppose X1 and X2 are two projective models of U with ample divisors
A1 and A2 respectively on them. Then for any closed irreducible sub-variety E of
U, we have that E � Bs(m0D − A2) for some positive integer m0 if and only if
E � Bs(n0D − A1) for some positive integer n0. In particular the set B+(D, A) =
∩m∈NBs(mD − A) is independent of the chosen model ample divisor (X , A).

Proof Clearly the the second claim follows from the first and the first claim follows
directly from Lemma 2.2 by noting that we can always find a projective model X of
U dominating both X1 and X2 via a birational morphism overU and an ample divisor
on X . ��
The above corollary clearly shows what should be the definition of our augmented
base locus which we record in the next definition.
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Definition 2.4 Suppose D is an adelic divisor on a normal quasi projective variety U
over K . We define the augmented base locus of D as B+(D) = ∩m∈NBs(mD − A)

for any ample divisor A on a projective model of U .

Remark Note that the above definition makes sense thanks to Corollary 2.3. It is easy
to check that B+(m0D) = B+(D) for any positive integerm0 and hence we can define
an augmented base locus of an adelic Q-divisor by passing to integral multiples.

We end this section with a lemma which will be necessary later to show that the
Okounkov bodies of restricted linear series behave nicely when the sub-variety is not
contained in the augmented base locus.

Corollary 2.5 Suppose D is an adelic divisor on a normal quasi-projective variety U
over K and suppose E is a closed irreducible sub-variety with E � B+(D). Then
there exist a projective model X such that for any ample divisor A on X, there exists
sections si ∈ H0(U , (m0 + i)D − pi A) not vanishing identically on E for some
positive integers m0, p0, p1 and i = 0, 1.

Proof Suppose D is given a sequence of models {Xi , Di } and rationals qi → 0 as
usual and let X = X1. Then as E � B+(D), for any ample divisor A on X1 we
can assume that E � Bs(n0D − A) for some n0 ∈ N and hence we can produce a
section s0 ∈ H0(U , 2n0 pD − 2pA) not vanishing identically on E for every positive
integer p. Choose p so large that D′

1 + pA is very ample where D′
1 = D1 − q1D0

and choose a section s′ ∈ H0(U , D′
1 + pA) which does not vanish identically on

E . Then tensoring s0 and s′ we get a section s1 ∈ H0(U , 2n0 pD + D′
1 − pA) ⊆

H0(U , (2n0 p + 1)D − pA) where the inclusion follows from the effectivity relation
D′
1 ≤ D. Clearly s0 and s1 satisfy the claim with m0 = 2n0 p, p1 = 2p and p2 = p.

��

2.2 Restricted volumes

In this section, we define the restricted volume of an adelic divisor along a closed
sub-variety E of U in analogy to the projective setting. Then we go on to show that
if E is such an irreducible closed sub-variety with E � B+(D), then this restricted
volume can be realised as the volume of an Okounkov body calculated with respect
to a suitable flag dominated by E . Much in the spirit of Theorem 1.10 we deduce that
the lim sup defining the restricted volume is actually a limit.

Suppose we have an irreducible closed sub-variety E
i

↪−→ U embedding in U via
the closed immersion i . Then as explained in sub-section 5.2.2 of Yuan et al. (2021)
we can consider the pullback of the adelic line bundle O(D) by i which we denote as
the restriction of O(D) to E and denote as O(D)|E . We recall that this line bundle is
given by the datum {Ei , O(Di )|Ei } where Di are the,models defining D and Ei are
the Zariski closures of E in the projective models Xi of U . Then there is a restriction
map of vector spaces on the space of global sections

H0(U , O(D))
restr−−→ H0(E, O(D)|E )
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and we denote the image of this map by H0(U |E, OE (D)) obtained by just restriction
maps on sections model wise. This lets us define the notion of restricted volume.

Definition 2.6 Suppose E is a closed irreducible sub-variety of a normal quasi-
projective variety U over K and D be an adelic divisor on U . Then we define the
restricted volume of D along E as

̂volU |E (D) = lim sup
m→∞

dimK (H0(U |E, OE (mD))

md/d!
where d = dim(E).

We can view the finite-dimensional vector spaces Wm = H0(U |E, OE (mD)) as a
graded linear sub-series of H0(E, O(mD)|E ) ⊆ H0(E, O(mD)|E ). And hence if we
can fix a flag in E , we can construct an Okounkov body corresponding to {Wm} as
indicated in section 1 of Lazarsfeld (2009).

Now given a closed sub-variety E in U , we fix a flag Y0 ⊂ Y1 . . . ⊂ Yd = E
in E where dim(E) = d. Note that in any projective model of U this flag induces
a canonical partial flag contained in the closure E j of E in U by taking closures
we obtain a flag in the model such that the (partial) valuation of a global section of
some bundle with respect to this on the model is the same after restricting to U and
evaluating w.r.t to the flag Y0 ⊂ Y1 · · · ⊂ Yd and we always take this flag to calculate
valuation vectors in the projective models. We fix this flag to calculate the Okounkov
body of the linear series {Wm}. Then we have the notions of the graded semi-group
�U |E (D) ⊆ Nd+1 and the Okounkov body �U |E (D) ⊆ Rd . As in Chapter. 1, we also
define �U |E (D)m to be the fiber of the graded semi-group over the positive integer m.
Next we show that when E � B+(D), then the Okounkov body behaves nicely in the
sense of satisfying properties analogous to Lemma 1.9.

Lemma 2.7 Suppose D is a adelic divisor on a normal quasi-projective variety U
over K . Furthermore suppose E is a closed irreducible sub-variety of U such that
E � B+(D). Then the graded semi-group �U |E (D) satisfies the following properties

1. �U |E (D)0 = {0}
2. There exists finitely many vectors (vi , 1) spanning a semi-group B ⊆ Nd+1 such

that �U |E (D) ⊆ B.
3. �U |E (D) generates Zd+1 as a group.

Remark Note that in analogy to Lemma 1.9 it is desirable that D is big in the above
lemma. However since we assume that E � B+(D), by Definition 2.4 we already
have a non-zero section s ∈ H0(mD − A) for some model ample divisor A on a
projective model X of U . Hence we have the inclusion

H0(U , nA)
s⊗n

↪−→ H0(U ,mnD)

for all positive integers n which shows that ̂vol(mD) ≥ ̂vol(A) > 0 and hence D is
big. In other words the assumption E � B+(D) already implies that D is big.
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Proof Suppose D is given by the sequence of models {Xi , Di } and rationals qi → 0
as usual. Note that as in the proof of Lemma 1.9, the first point is trivial and the second
point can be deduced once we know that the vectors of �U |E (D)m are bounded bymb
for some large positive constant b as explained in the proof of Lemma 2.2 in Lazarsfeld
(2009). In other words we need to show that restricted graded series satisfies the
condition (A) as defined inDefinition 2.4 of Lazarsfeld (2009). Note that the effectivity
relation D ≤ Dj + q j D0 implies the inclusion �U |E (D)m ⊂ �U |E (Dj + q j D0)m
for all positive integers m. The right hand side is the same as the graded semi-group
of Dj + q j D0 viewed as a Q-divisor on the projective variety X j calculated with
closures of our flag on E and hence by the footnote on page 803 of Lazarsfeld (2009),
we conclude that �U |E (Dj + q j D0)m satisifes condition (A) which clearly shows the
second point as �U |E (D)m is a subset. Hence we just need to show the third point.

We argue as in the proof of Lemma 1.9. Choose a model very ample divisor A on
X j such that it has sections si on X j with v(si ) = (ei ) for i = 0 · · · d where e0 is the
zero vector, {ei } is the standard basis of Rd for i = 1, . . . d and v(·) is the valuation
corresponding to the closures in X j of the chosen flag in E . We can always do this
as A is chosen very ample and hence the restriction A|E j is very ample where E j

is the closure of E in X j , as explained in proof of Lemma 2.2 in Lazarsfeld (2009).
Restricting to U gives sections si ∈ H0(U , A) with the same valuation vectors. Note
that then for all positive integers p, by appropriately tensoring these sections we can
also find sections sip = s⊗p−1

0 ⊗ si ∈ H0(U , pA) such that v(sip) = (ei ). Then by
restricting to E , we get non-zero sections sip|E ∈ H0(U |E, OE (pA))with v(sip|E ) =
ei . Now using Corollary 2.5 we can find positive integersm0, p0, p1 and sections t0, t1
(relabelling them ti for notational convenience) satisfying the properties stated in the
corollary. Restricting ti ’s to E we get non-zero sections ti |E ∈ H0(U |E, OE ((m0 +
i)D − pi A)) and suppose v(ti |E ) = fi for i = 0, 1. Then arguing like in the proof
Lemma 1.9 by tensoring sip|E ’s with ti |E ’s we conclude that the vectors ( f0,m0),
( f0 + ei ,m0) and ( f1,m0 + 1) all belong to �U |E (D) which clearly completes the
proof. ��
Then arguing just like in Chapter. 1, we deduce the main theorem of this section which
we state next.

Theorem 2.8 Suppose D is an adelic divisor on a normal quasi-projective variety U
over K . Furthermore suppose E is a closed irreducible sub-variety of U such that
E � B+(D). Then we have

volRd (�U |E (D)) = lim
m→∞

#�U |E (D)m

md
= lim

m→∞
dimK (H0(U |E, OE (mD)))

md

= 1

d! · ̂volU |E (D)

where dim(U ) = d

We end this section with a homogeneity property analogous to Lemma 1.11. Before
going to that we obtain a crucial property needed for the homogeneity.
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Lemma 2.9 Suppose D is an adelic divisor on a normal quasi-projective variety U
over K and E is a closed sub-variety with E � B+(D). Then there exists an integer
r0 such that H0(U |E, OE (r D)) �= {0} for all positive integers r > r0.

Proof By Corollary 2.5 there exist non-zero sections si ∈ H0(U , (m + i)D) which
do not vanish identically on E for i = 0, 1 by tensoring with sections of pi A which
do not vanish identically on E which exists as A can be assumed very ample. Then
for all r ≥ m2, write it as r = arm + br for non-negative integers ar ≥ m and
0 ≤ br ≤ m − 1 < ar . Then note that s

⊗ar−br
0 ⊗ sbr1 is a section of H0(U , r D) which

does not vanish identically on E which clearly finishes the claim with r0 = m2 − 1 ��
Lemma 2.10 Suppose D is an adelic divisor on a normal quasi-projective variety U
over K . Then for any closed irreducible sub-variety E of U with E � B+(D), we
have

�U |E (t D) = t · �U |E (D)

for all positive integers t . Hence we can naturally extend the construction of �U |E (·)
to big adelic Q-divisors.

Proof We choose an integer r0 such that H0(U |E, OE (r D)) �= {0} for all r > r0
thanks to Lemma 2.9. Next choose q0 > 0 such that q0t − (t + r0) > r0 for all
positive integers t . Then for all r0 + 1 ≤ r ≤ r0 + t we can find non-zero sections
sr ∈ H0(U |E, OE (r D)) and tr ∈ H0(U |E, OE ((q0t −r)D))which gives inclusions

H0(U |E, OE (mtD))
⊗sr

↪−−→ H0(U |E, OE ((mt + r)D))
⊗tr

↪−−→ H0(U |E, OE ((m + q0)t D))

which gives the corresponding inclusion of the graded semi-groups

�U |E (t D)m + er + fr ⊆ �U |E (D)mt+r + fr ⊆ �U |E (t D)m+q0

where er = v(sr ) and fr = v(tr ). Now recalling the construction of �U |E (·) and
letting m → ∞ we get

�U |E (t D) ⊆ t · �U |E (D) ⊆ �U |E (t D)

which clearly finishes our proof. ��

2.3 Variation of bodies for restricted volumes

In this section, we construct global bodies whose fibers give the Okounkov bodies
�U |F (·) for a ”sufficiently general” closed sub-variety F of U much in analogy with
Theorem 1.17. Most of the constructions follow analogously as in the non-restricted
case. The crucial point that we need to show is that given a fixed irreducible sub-
variety F , the set of divisors D with F � B+(D) is in the interior of the support of the
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global body as was shown in Lemma 1.15. Most of the other arguments will follow
identically as in section 5 of chapter 1. However for sake of clarity we will anyway
repeat some constructions. We fix a flag Y0 ⊂ · · · Yd = F as explained in the previous
section and all calculations of Okounkov bodies is with respect to this flag.

Definition 2.11 Suppose D and E are two adelic divisors on a normal quasi-projective
variety U over K . Given a closed irreducible sub-variety F of U with F � B+(D),
we define the graded semi-group �U |F (F) as

�U |F (F) = {((v(s), a1, a2) | ai ∈ Z, s �= 0 ∈ H0(U |F, OF (a1D + a2E))}

where v(·) is the valuation corresponding to the chosen flag. Furthermore we define
the global Okounkov body �(U ) as

�U |F (F) = closed convex cone(�U |F (F)) = �(�U |F (F))

which is a closed convex subset of Rd × R2.

Definition 2.12 Suppose we have an additive semi-group � in Rd × R2. Denote by P
the projection fromRd ×R2 toR2 and� = �(�) is the closed convex cone generated
by �. We define the support of �, denoted as Supp(�) to be its image under P . It
coincides with the closed convex cone in R2 generated by the image of � under P .
Finally given a vector 
a = (a1, a2) ∈ Z2 we denote

�N
a = � ∩ (Nr × N
a)

�R
a = � ∩ (Rd × R
a)

Furthermore we denote �N
a as a semi-group inside Nd × N
a = Nd+1 and denote the
closed convex cone generated by it in Rd+1 as �(�N
a).

We begin by showing the crucial property of the ”good” divisors being open.

Lemma 2.13 Suppose D and E are two adelic divisors such that F � B+(D) and
F � B+(D + qE) for some q ∈ Q. Then there is an ε > 0 such that (1, x) ∈
Supp(�U |F (F)) for all x ∈ (q − ε, q + ε).

Proof Suppose both D and E are given by models Di , Ei on projective models Xi

and rationals {qi → 0} as usual. Further more we denote E ′
1 = D1 − q1D0 and

E ′′
1 = E1 + q1E0. We first consider the case when q �= 0. Then by hypothesis there

exists an integer m0 depending on A such that F � Bs(m0 pD + m0qpE − pA) for
some very ample divisor A on X1 and for all sufficiently divisible integers p. Choose
p so large that that E ′

1 + pA (resp −E ′′
1 + pA) is very ample when q > 0( resp.

q < 0). Then choosing sections in

H0(U , 2m0 pD + 2m0qpE − 2pA) and H0(U , pA + E ′
1) (resp H0(U , pA − E ′′

1 ))
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which do not vanish identically on F and finally tensoring them, we get sections in
H0(U , 2m0 pD+2m0qpE+E ′

1− pA) (resp H0(U , 2m0 pD+2m0qpE−E ′′
1 − pA))

which do not vanish identically on F . Now the effectivity relation E ′
1 ≤ E (resp

E ′′
1 ≥ E) induces the inclusion

H0(U , 2m0 pD + 2m0qpE + E ′
1 − pA) ⊆ H0(U , 2m0 pD + (2m0qp + 1)E − pA)

(resp. H0(U , 2m0 pD + 2m0qpE − E ′′
1 − pA) ⊆ H0(U , 2m0 pD + (2m0qp − 1)E − pA))

when q > 0 (resp q < 0). Hence noting the remark at the end of Definition
2.4, we conclude that F � B+(2m0 pD + (2m0qp + 1)D) = B+(D + r E) (resp.
F � B+(2m0 pD + (2m0qp − 1)D) = B+(D + r E)) where r = q + 1

2m0 p
> q

(resp r = q − 1
2m0 p

< q) when q > 0 (resp q < 0). Note that then thanks to
Lemma 2.9 we conclude that for some large integer p0 the points p0(1, r), p0(1, 0) ∈
Supp(�U |F (F)) as F � B+(D + r E) and F � B+(D). Hence arguing as in the
proof of Lemma 1.15 we obtain the claim. Finally for the case q = 0 we repeat the
arguments above in both positive and negative directions with E ′

1 and E ′′
1 to obtain

such an ε. ��
As a corollary of the above, we obtain the necessary property which we record next.

Corollary 2.14 Suppose D and E are adelic divisors on a normal quasi-projective
variety U over K and let F be a closed sub-variety of U with F � B+(D). Then for
any 
a = (a1, a2) ∈ Q2 such that a1D + a2E satisfies F � B+(a1D + a2E) we have

a ∈ int(Supp(�U |F (F)))

Proof Due to the homogeneity property in Lemma 2.10 it is enough to show the claim
for ai integers. First note that if D1 and D2 are two adelic divisors with F � B+(Di )

for i = 1, 2, then F � B+(D1 + D2). To see this pick a positive integer m such that
F � Bs(mDi − A) for i = 1, 2 and some ample divisor A on some projective model
X . Then choosing sections on each of the bundles non-vanishing on F and tensoring
them, we produce a section in H0(U ,m(D1 + D2) − 2A) which does not vanish
identically on E which clearly shows that F � B+(D1 + D2) by definition of the
augmented base locus.

Now first suppose that a1 ≤ 0. Then as F � B+(D) by hypothesis, by
adding (−a1)D we deduce using our discussion above that F � B+(a2E) =
B+(E)( resp. B+(−E)) if a2 > 0( resp. a2 < 0) by the remark at the end of Definition
2.4 and clearly a2 �= 0. Then switching D with E( resp. −E) we can assume that
a1 > 0. Then once again by the remark, we conclude that F � B+(a1D + a2E) =
B+(D + qE) for q = a2

a1
. Once we obtain this then thanks to Lemma 2.13 we can

argue exactly as in the end of the proof of Lemma 1.15 to obtain the claim. ��
Next we show that the interior of the the support is actually non-empty- To show this
we show that the graded semi-group generates the whole Zd+2 in our next Lemma.

Lemma 2.15 Suppose D and E are adelic divisors on a normal quasi-projective vari-
ety U over K and F a closed irreducible sub-variety of U with F � B+(D). Then
�U |F (F) generates Zd+2 as a group.
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Proof The proof is almost identical to the proof of Lemma 1.16. We just need to note
that by the proof of Lemma 2.13, when q = 0 we can find a positive integer n such that
F � B+(D − 1

n E) = B+(nD − E). The rest of the argument is identical to Lemma
1.16 thanks to the third property in Lemma 2.7 and as (1, 0) and (n,−1) generate Z2

as a group. ��

Finally we are ready to state and prove the main theorem of this section.

Theorem 2.16 Suppose D and E be adelic divisors on a normal quasi-projective
variety U over K and let F be an irreducible closed sub-variety such that F �

B+(D). Then there exists a convex body �U |F (F) = �U |F (F, D, E) ⊂ Rd+2 with
the property that for any 
a = (a1, a2) ∈ Q2 with F � B+(a1D + a2E), we have

�U |F (a1D + a2E) = �U |F (F) ∩ (Rd × {
a})

where�U |F (a1D+a2E) is the restrictedOkounkov body of a1D+a2E as constructed
in section 2.

Proof Clearly it is enough to show when 
a ∈ Z2 by homogeneity of Okounkov bodies
(Lemma 2.10). Note that the semi-group �U |F (a1D + a2E) sits naturally in Nd ×
N · 
a ∼= Nd+1 and by construction of �U |F (·), we deduce that �U |F (a1D + a2E) =
�(�U |F (a1D+a2E)N
a)∩(Rd×{
a}). ByLemma2.13weget that 
a ∈ int(Supp(�(U ))

and hence by Lemma 1.14 we have �U |F (F)R
a = �(�U |F (a1D + a2E)N
a). Hence
we deduce that

�U |F (a1D + a2E) = �(�U |F (a1D + a2E)N
a) ∩ (Rd × {
a})
= �U |F (F)R
a ∩ (Rd × {
a}) = �U |F (F) ∩ (Rd × {
a})

concluding the proof. ��

2.4 Corollaries

In this section we deduce some corollaries which are direct from the existence of
global bodies for restricted volumes as shown in Theorem 2.16. Note that we already
have the notion of restricted volume of a line bundle L along the closed sub-variety E
of a projective variety X defined similarly as defined before Lemma 2.16 in Lazarsfeld
(2009) which we denote by projective restricted volume in the next corollary.

Corollary 2.17 Suppose D is an adelic divisor on a normal quasi-projective variety
U over K and suppose F is a closed irreducible sub-variety of U with F � B+(D).
Furthermore suppose D is given by a Cauchy sequence of models {Xi , Di } and let Fj

be the Zariski closure of F in X j . Then we have

lim
i→∞ dH (�U |F (D),�U |F (Di )) = 0
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where dH (·, ·) is the Hausdorff metric and Di is Di considered as a model adelic
divisor. In particular, we have

̂volU |F (D) = lim
i→∞ volXi |Fi (O(Di ))

where volXi |Fi (O(Di )) is the projective restricted volume of the line-bundle O(Di )

with respect to Fi .

Proof The proof is very similar to that of the proof of Lemma 1.19.We begin by noting
the set of inclusions

�U |F (D − q j D0) ⊆ �U |F (Dj ) ⊆ �U |F (D + q j D0)

where we put overlines to emphasize that they are looked as model divisors. Now the
first claim follows once again noting that the two extremities of the above inclusions
converge under the Hausdorff metric thanks to Theorem 2.16 and Theorem 13 of
Khovanskii (2012) when q j is small enough. Then note that fromLemma 2.13, as F �

B+(D)we conclude that F � B+(D−q j D0) ⊇ B+(Dj ) for large enough j as q j →
0. Hence for large enough j we have F � B+(Dj ) which implies vol(�U |F (Dj )) =
1
d! ̂volU |F (Dj ) = 1

d!volX j |Fj (O(Dj )) thanks to Theorem 2.8 which now clearly gives
the second claim together with the first claim. ��
Corollary 2.18 (Log-concavity) Suppose Di are two adelic divisors on a normal
quasi-projective variety U over K for i = 1, 2. Furthermore suppose F is a closed
irreducible sub-variety of U with F � Bs(Di ) for i = 1, 2. Then we have

̂volU |F (D1 + D2)
1
d ≥ ̂volU |F (D1)

1
d + ̂volU |F (D2)

1
d

where dim(E) = d.

Proof When F � B+(Di ) for both i , so is their sum and hence passing to models,
we are reduced to the claim in the projective setting thanks to Corollary 2.17. The
projective case can be deduced from the existence of global bodies as indicated in
Example 4.22 of Lazarsfeld (2009). ��
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