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Abstract

We prove convergence of a sequence of weak solutions of the nonlocal Cahn-Hilliard equation to the
strong solution of the corresponding local Cahn-Hilliard equation. The analysis is done in the case of suffi-
ciently smooth bounded domains with Neumann boundary condition and a W L1 kernel. The proof is based
on the relative entropy method. Additionally, we prove the strong L2—convergence of the nonlocal operator
to the negative Laplacian together with a rate of convergence.
© 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC
license (http://creativecommons.org/licenses/by-nc/4.0/).

MSC: 35B40; 35K25; 35K55; 35D30; 45K05

Keywords: Cahn-Hilliard equation; Nonlocal Cahn-Hilliard equation; Nonlocal operators; Nonlocal-to-local
convergence; Singular limit

1. Introduction

The Cahn-Hilliard equation was originally introduced in [6] to model the phenomena of spin-
odal decomposition in binary alloys. Since then, it has been frequently used in a variety of
different mathematical models describing phenomena such as population dynamics, image pro-
cessing, two-phase flows and tumor growth, cf. [8,9,11,15,18].
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The (local) Cahn-Hilliard equation as introduced in [6] reads as follows:

dc=mAp in Qr, (H
p=—Ac+ f'(c) inQr, @)

where Q7 :=(0,T) x 2, T > 0 and Q C R"”, n <3, is a bounded domain with C2-b0undary.
Further, we require the following initial condition

Cli=o=co IinQ 3)
and boundary conditions
onc=0, dpu=0 on a2 x (0,7). )

Here, c is a concentration parameter and p the chemical potential associated to c. Furthermore,
m > 0 is the mobility coefficient and f is the free energy density. Typical choices for the potential
in the free energy density are a smooth double-well potential, e.g. f(c) := K (1 — ¢*)? for some
K > 0, or the logarithmic potential f(c) := %((1 —c)In(l —c)+ (1 +c)In(1 + c)) — %cz for
c € [—1, 1], where we assume 0 < 6 < 6.. We note that the Cahn-Hilliard equation describes the
H~!-gradient flow of the free energy functional

ECH (¢) :=/%|Vc|2+f(c)dx. 5)
Q

The Cahn-Hilliard equation has already been studied very intensively and there exists an exten-
sive literature (see [8,9,11,15,18] and the references therein).

The nonlocal counterpart of the Cahn-Hilliard equation has first been presented by Giacomin and
Lebowitz in [14], where the authors considered the hydrodynamic limit of a microscopic model
describing an n-dimensional lattice gas evolving via the (Poisson) nearest neighbor exchange

process. The nonlocal Cahn-Hilliard equation can be interpreted as the H ~!-gradient flow of the
non-local free energy functional

1
£ @)= / / Jo(x = e — e dydx + / o)) dr. ©)
Q Q Q

This leads to the following system:

dc=mApu in Qr, @)
w=~LecH+ f'(c) inQr, 3

where we define

Lec(x) :i=— / Je(lx —yDe(y) dy + / Je(|x — y])e(x)dy forall x € Q.
Q Q
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Further, we require the initial condition

cli=o=cp inQ ©))

and the boundary condition
opu =0 on 32 x (0, T). (10)
Here, J. : R" — [0, 00) is a non-negative function. More precisely, we assume that J,(x) = %

for all x € R” and J, € W1 (R™), where (p;)¢~0 is a family of mollifiers satisfying

pe : R —[0,00), p:€ Ll(R), pe(r) = p(—r) forallr eR, ¢ >0,
o0
n—1 2
pe(r)r" " dr = o forall e > 0,

n

0

o0
lim / 0e(r)r"1dr =0 forall § >0,
e\0

8

where C, := fSn*I ler - 0|2 dH"~! (o). Moreover, the singular potential f obeys the same as-
sumptions as in [13], i.e.

fec® (-1, 1pncl=1,1),

lim1 f'(s) = —o0, lim1 f(s) =400, f'(s)>—a>0.
§—>— 5§—>

Observe that the logarithmic potential mentioned above fulfills these assumptions. In our anal-
ysis, it is also possible to consider regular potentials f : R — R, which satisfy f”(s) > —«
for all s € R together with a growth condition | f’(s)| < C(s]? + 1) for all s € R, since we
only need that f” is bounded from below. A typical choice for f is the double-well potential
fl)=K({ - ¢)?2 for some constant K > 0.

The nonlocal Cahn-Hilliard equation has already been subject to an intense research activity
in the recent years. For instance, in the case of singular potentials, the authors in [13] proved well-
posedness and regularity of weak solutions. Moreover, they established the validity of the strict
separation property in two spatial dimensions. For further results on the nonlocal Cahn-Hilliard
equation, we refer the reader to [5,8,9,11,13,15,18] and the references therein.

It is the goal of this contribution to show strong convergence of the nonlocal operator £, to —A
with respect to the L2-topology and to show convergence of weak solutions of (7) - (8) together
with (9) - (10) to the strong solution of (1) - (2) together with (3) - (4) under suitable conditions
on the initial values.

Important first results on nonlocal-to-local convergence for functionals of the form (6) were
obtained by J. Bourgain, H. Brezis and P. Mironescu [3,4]. These results were extended by A.C.
Ponce in [19,20], where also results on I'-convergence were shown. The following results are
based on these works to a large extent. Recent results on convergence of nonlocal quadratic forms
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to local quadratic forms of gradient type and further references can be found in Foghem Gounoue
et al. in [12]. Nonlocal-to-local asymptotics have already been studied in [23], where the author
proved the convergence of weak solutions of the fractional heat equation to the fundamental
solution as t — oo. In [7], the authors studied the limits s — 07 and s — 1~ for s-fractional
heat flows in a cylindrical domain with homogeneous Dirichlet boundary conditions.

Convergence of solutions of the nonlocal Cahn-Hilliard equation, i.e., (7) - (8), to the local
Cahn-Hilliard equation, i.e., (1) - (2), has already been proved by Melchionna et al. in [18] in
the case of periodic boundary conditions and a regular free energy density and by Davoli et
al. in [8] in the case of periodic boundary conditions and a singular free energy density. In the
case of Neumann boundary conditions, convergence has been proved by Davoli et al. in [10]
with an additional viscosity term in the nonlocal Cahn-Hilliard equation and in [9] for W1 1-
kernels. A corresponding result for a singular phase field system was proved by Kurima [16].
The authors in [11] proved convergence of the nonlocal to the local degenerate Cahn-Hilliard
equation. In [1] and [17], the authors proved the nonlocal-to-local limit for a coupled Navier—
Stokes/Cahn—Hilliard system.

In this contribution, however, we use Fourier transforms, which then guarantee a rate of con-
vergence for the nonlocal operator in the case of 2 = R”. Using a reflection argument together
with perturbation and a localization argument, we can even show a rate of convergence in suffi-
ciently smooth bounded domains 2 C R”.

The structure of this paper is the following: In Section 2, we recall some definitions and pre-
liminary results. In Section 3, we prove first convergence results of the nonlocal operator L. In
Section 4, we then state and prove the main theorem about the strong convergence of the nonlo-
cal operator. This will be done by localization. Finally, in Section 5, we apply our results from
Section 4 to prove nonlocal-to-local convergence of the Cahn-Hilliard equation using the relative
entropy method.

2. Preliminaries

In this section, we recollect some preliminary results, which we need throughout the paper.
First, we briefly recall the Fourier transform F : L?(R") — L2(R") given by

Fer= [ e a
R~»
We observe that this map is well-defined and defines an isometric automorphism on LZ(R"),

cf. Plancherel‘s Theorem. Further, we recall that the inverse of the negative Laplacian —A with
Neumann boundary condition is a well-defined isomorphism

(-A) e e (H'(Q) 1cq=0}— {ce H () :cq =0}.
For ¢ € (H'(Q)), we define cq = ﬁ (c, 1). Next, we state some important inequalities.

Lemma 2.1. For every § > O there exist constants Cs > 0 and 5 > O with the following proper-
ties:
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1. For every sequence (f¢)s=0 C HY'(Q), there holds

1 = Sl =8 [ [ 909 o0 = 9 £
Q Q
+8//Jez(x,y)|vfgl(x) VL) dydx + Colfey = ferlagy (D)
Q Q

2. For every sequence (fg)g=0 C L2(2), there holds
I fer = fer 2y < 8Ee) (fer) + 8Ee (fer) + Csl fer = fea Iy gy (12)
Proof. For a proof, we refer to [8, Lemma 4(2)]. O

Here, the term &, is defined by

1
£ = f f Je(x = )| — e dydx
Q Q

for all c € H'(R), i.e., the first part of the nonlocal energy functional E¥L in (6). In the limit
&\ 0, this term behaves as

g%sg(c)zéfwc(x)fdx (13)
Q

for all ¢ € H'(Q). For details, we refer to [3,8].
Lemma 2.2. Let a,b € L' (R*™"), n > 2. Then, it holds

/ a(x —y) b((1 —1)y +tx) dxdy = |lall L1 ge—1) |61l L1 mr1)
Rn—an—l

forallt €0, 1].
Proof. We define the mapping

o, R xR > R x R,
x, > =y, (1—-1)y+tx).

Then, we have

Id —Id
detD®; (x, y) Zdet<ﬂd (1- t)Id> =1
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for all ¢ € [0, 1]. Using change of variables and Fubini‘s Theorem, we obtain

/ a(x —y)b((1 —t)y+tx)dxdy = / a(x)dx / b(y) dy

Rr—1 Rn—1 Rn—1 Rn—1

= ||a||Ll(Rn—l)||b||Ll(Rn—l)
forallr €[0,1]. O

Remark 2.3. The space {c € Ck(R ): 8nc|d]Rn =0} is dense in {c € Hk(R ): Bnc|0Rn =0}.If
k = 3, the proof is based on the following 1dea

Since CW(R—”) is dense in H3(R”) for any c € H3(]R{") there exists a sequence (5j)jeN C
COO(]R ) such that ¢; — cin H 3(R ) as j — oo. Next, we consider the auxiliary problem

(1—A)yw; =0 inR",

n-Vw; =n-V¢; ondRY

for all j € N. Then, by linear elliptic theory, there exists a solution w; € C3(]R{ ) for all j € N.
Finally, the sequence c; :=¢; — w;, j € N, has the desired properties.

Next, we consider the case of the bent half-space. Let y € C ’b‘(R”’l) be given. Then, the space
{ce Cé‘_l’l(RT",) : dnclyrr = 0} is a dense subset of {c € Hk(Rg) : Onclyrr = 0}. The proof is
based on the following idea: Y

Since y € Ck(R" 1, there exists a C¥~!-1-diffeomorphism F, :R" — R" with F),(R"}) =
F,(x’,0) = (x", y(x") and —0y, F}, (x)|x,—0 = n(x’, y (x")), where n denotes the exterior umt
normal on B]R{ﬁ, cf. [22, Lemma 2.1]. Let c € {c € Hk(]Riﬁ) : BnclgR; = 0}. Moreover, we define
ci=cofF,eH k(R" ). Thanks to the first part, there exists a sequence (¢;) jeN contained in
{c e Ck(R ): anc|3Rn = 0} such that ¢; — ¢ in Hk(R ) as j — oo. Finally, the sequence

cj:=Cjo Fy € Cé{ I 1(IR’;,), J € N, has the desired properties.
3. Convergence of the nonlocal to the local operator

In this section, we prove the strong L?—convergence of the nonlocal operator £ to —A. In
the first case, we study the convergence on R”.

Lemma 3.1. Let ¢ € H2(R"). Then, it holds

LR 4+ Ac — 0 as e 0.
” s OF L2(R™) N
In addition, if ce H 3 (R™), we even have
"¢+ Ac ‘ <Keg|c n
B et ac] g = Kellelnsgoy.
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Proof. Thanks to Plancherel‘s Theorem, it suffices to prove

— 0 ase 0.

H,CanC + Ac
L2(R")

By definition, we have

LR+ Ac =
H e CF L2R" (27

T / (= FUDE) +FUO) — [P Fe)6)] dg,
R”7

where we used that
(Je x D(x) = F(Je)(0)
for all x € R". Next, we prove the pointwise convergence
F(J)0) = F(J)(E) — |£* forall £ € R”

as £ \{ 0. Defining the functions f;(x) := —e~ ¢ we have

F(Je)0) = F(Je)(E) = f Je (1)) (fe (x) — f&(0)) dx

R~
- f Je(xD(fe @) — £z (0) — %xTszs«J)x) dx
R~
1 T N2
+/Js<|x|>§x D? £ (0)x dx
Rn
=1+ 12

Now, we analyze these terms separately.
Ad 181: Since the function J.(|x|)x; is odd foralli =1, ..., n, it holds

/J€(|x|)xi dx=0 (14)
Rn

forall i =1,...,n. Therefore, multiplying (14) by 9; f¢(0) and summing over all i =1, ..., n,
gives

[ = | Je(xD(fe(x) = fc(0) = V £(0) - x — leszs(O)X) dx|.
2

R~

Using Taylor‘s Theorem, we have | fz(x) — fz(0) — V f¢(0) - x — %xTszg O)x] < g‘Cd,f|X|2
for all |x| < §. Therefore, it holds
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1
1] 5/Js(IXI)‘fg(x)—fs(O)—st(O)vc—ExTszs(O)x dx

Rn
< [ cispihar+ [ Codxpar
Bs(0) B;s(0)¢

Since we can choose & > 0 arbitrarily small and since || B;(0) pe(|x]) dx < K, the first term in the
last line is arbitrarily small. In the second integral, the properties of p. imply that this integral
vanishes as ¢ N\ 0. Altogether, this shows IEl — 0ase\(O0.

Ad I?: We compute

n

1
2= [9uxby 3w fe O

R" I,m=1

1 n
=3 2 & [ JellxDua ax
I,m=1 R~

1 n
=5 &m / Je(|1x])x], dx
m=1 Rn

1 n
léi;/Je(lxl)fodX=|5|2-

R~ Jj=1

1 n
"2

m=
Here, we used the facts
/ Je(IxD)xix, dx =0
Rn
for all m #1, and
[ et ar = [ i ax
R~ R~
forallm =1, ..., n. In the last step, we used our assumptions on p, to compute

[0]

1 1 _ wp 1
E/pgun)dx:%wn/p(r)r" lar=t =1,
R~ 0

where we used w, = H"~1(S"~!) and that (for any j =1, ..., n) it holds

1

Cp = / let - o2 dH" (o) = f lej o2 dH" (o) = - / o2 dH" (o) = 2.

n n
Snfl Snfl Snfl
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Altogether, this shows the pointwise convergence

FJe)E) — F(J:)(0) — [€]> as e\, 0
for all £ € R". Again, using Taylor‘s Theorem, we observe that
7 7 2 1 72
7o) = 326 = 15| =| [ () = f20) = Ve0)-x = 35T D2 Fe(0)2) |
Rn

SC(1+|€|2)/ps(IXI)dxSC(1+|$|2), (15)
]Rn

which implies

[(FU©0) = FUDE) — EP)F@©)| < C(IF@ @+ 1EPIF @)

for all £ € R”. As ¢ € H>(R"), the right-hand side is integrable. Therefore, we use Lebesgue‘s
dominated convergence theorem to conclude the proof for ¢ € H>(R").
Now, let ¢ € H3(R"). Then, we even have

70 = 3.6) = 167 <€ [ 0.x1) sup 1D° el a

R yeR?

<CleP / pe(x)|x| dx < Celg|?

R~?

for all £ € R" using a third-order Taylor expansion. Consequently, it holds

2 1
R” _ . e2 2
[c¥ et ac],, o = G f (FUE) = FUO) — [EPDF @) d
Rn
Ce? 3 2 2012
< oo / 6P F©©)dg = Celels g
]Rn
Therefore, we obtain
Rn
)L‘e et A, o = Cellel s,

which concludes the proof. O

In the next lemma, we study the situation, where x and y have positive distance, i.e., no
singularity appears. In fact, this will play an important role for the following proofs.
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Lemma 3.2. Let Q@ C R” be open and let Q' C Q such that dist(Q/, dQ) > 0. Then, for every
c € L%(Q), it holds

||R£c||L2(Q,) <KelellLzgq

where K > 0 only depends on dist(2¢, Q). Here, we defined

Rec(x) = / Je(lx — yD(e(x) = E(v)) dy

Qe

for all ¢ € L*(2) and almost all x € Q. Here, ¢ € L*(R") is an extension of ¢ to the whole of R"
such that ”E”LZ(R") < K”C”LZ(Q)

Proof. First of all, we observe

2 2
2 ~
HmwmmsK/‘/km—ﬂmmw M+K/‘/Mu—waw® dx
Q' 1Qe Qe
= K(1} +12).
Now, we estimate these terms separately.

Ad IEI: Since dist(€Q’, 9Q) > 0, it holds |x — y| > & := dist(Q¢, Q') > 0 for all x € Q°, y € .
This yields

2
1 2 2 2
I; < Ks / le(x)] /ps(lx —yDIx =yldy | dx < Kse“liclliz g
9% Qc
Ad 13: Here, we estimate
2
ﬁs/ /kW—ﬂW@My dx
94 Q¢
sf /km—ﬂﬂy f@W~ﬂM@W® dx

Q/ Qf QC

sKw/me /mm—ﬂm—ﬂm dy
Qe Q

< Ks &’ llcl}aq)

where we used |x — y| > § :=dist(2¢, ') > 0 and Fubini‘s Theorem. Altogether, we obtain
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”RSC”LZ(Q/) = K5 £||C||L2(Q)‘
This concludes the proof. 0O

In the proof of Theorem 4.1, we want to use a localization argument. To this end, we now
consider the upper half-space R’} .

Lemma 3.3. Let c € H3(R") with dnc =0 on dR".. Then, it holds

Rn
Hﬁg te+ Ac‘

@) < Kx/E||C||H3(]R1)'

Proof. Let ¢ € H3(R") be an extension of ¢ to R” such that Il g3 @Ry < K||c||H3(R»er). Then,
we observe

]Rn
H,Cg te+ Ac

= HLZLR”EJFAE

+IReEl 2w

L2(R". L2(R")

= Kelcllgsgny + IRCll 2R )

where the error term R, is given by

Rec(x) 2=fJe(|x—yI)(C(x)—5(y)) dy (16)

R”

fora.e. x € R’} . We want to prove that || R¢|| LR ~ 0 as & \( 0. To this end, we first prove the

statement for functions ¢ € CS (M) with 9,¢ =0 on dR” and use a density argument afterwards
to conclude the proof.
Using the transformation y = (y1, ..., Yn—1, Yu) = (V1s+-» Yu—1, —¥n) =: ¥, we have

Rec(x) = / Je(lx — yD(c(x) —(y)dy = / Je(lx = ID(c(x) — c(3))dy
R" R

fora.e. x € Ri. For § > 0, we obtain

Recol =] [ gl =5 - ey

Bs(x")x(0,8)

H [ R shew - cona) a7

R™\(Bs (x)x (0,8))
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for a.e. x € R’} . In the second integral on the right-hand side, we use the calculations in the proof
of Lemma 3.2 to obtain

2
[1 [ = snew - conas] ar < &s ety
R% RA\(Bs(x")x(0,8))

since it holds dist(x, §) > 6 > 0 for all y € R"} \ (B,; (x") x (0, 6)). Thus, it suffices to consider
the first integral on the right-hand side. Here, a first order Taylor expansion yields
c(x) —c(P) =Ve(x) - (x — ) + Ra(x, 3)
= Vye(x) - (x" =) 4 0y, ¢(x) (X0 + yn) + R2(x, 3),

where x := (x’, x,) e R""! x R, and

1
2
Ry(x,§) =) 5 f(l —0ODPe(F+1(x — Pt | (x — )P,
1B1=2""

Inserting this, we end up with

[ reesnew—conar]=| [ a0r-5pTee - o -y
Bs(x")x(0,8) Bs(x")x(0,8)

H [ = shae
Bs(x")x(0,8)

LI EERACE TN
Bs(x")x(0,8)
=L+ 12+ 15 (18)
Now, we estimate these integrals separately.

Ad 1815 We observe that the integrand Jo(|x — y|)Vyc(x) - (x’ — y) is odd with respect to
x" — y’. Therefore, it holds

Je(|x = IDVpe(x) - (x" = yHdy =0,
Bs(x')

which then implies I 5=0.
Ad I 62 s+ First of all, the properties of ¢ and the fundamental theorem of calculus imply

1
Oy, c(x’, xp) = By, c(x’, x) — By, c(x,0) = / Binc(x’, tXxy) X, dt.
0
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This yields

| / Je(x = $1)84, 600 (i + y)dy
Bs(x")x(0,8)
1
= [ [ 50 e+ vy dr

Bs(x")x(0,8) 0

1
< [Ieeonnl(- [ el =500l + bl + aldy)ar
0

Bs(x')x(0,68)
1
Sf|8§,C(x/,txn)|as(xn)dt,
0

where we defined

ag(xp) == / pe(|x — Ddy.
Bs(x')x(0,68)

By construction and due to the properties of p., the function a. is in fact independent of x’.

Computing the L?-norm of a,, we get

o0

laell? >, = / / pe(lx =3 dy | dx,
0 Bs(x")x(0,8)

2
00

=/ / 8’”/0(‘)6;9’)(1)’ dx,

0 Bs(x")x(0,8)

o0
//p(lx—ﬁl)dy’dyn dx,

oo
!/
0 0 Rr-1
R
!/
0

IA

=

o0
/ / p(x — 5 dy'dy, | duy < Re.
0 Rr-!

19)

Here, we applied the transformations y — ¢y and x, + ex, and we used that suppp C Br(0).

This then implies
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2
[ ] s smaeom +ya e
R Bs(x')x(0,8)
2

Xn
2 1 2 l
=< | las(xn)l = 0y, c(x’ IiLee@®,ydzn | dx
R" "0

o0
<k [ [1anPIod et ) ng, drdy
Rr-1 0

2 2 2 2
<K [ 1l 19,60 D B 0 = Kol
Rn-1

where we used the embedding H!(R,) < L®(R,).
Ad I : Here, it holds

2
[| [ str=sprae oy e

R Bs(x')x(0,8)
1
sK/ / fpgux—&|)|ch(&+t<x—9>)|drdy dx
R% \Bs(x')x(0,8) 0
1
pe(lx — 3 dy / / pe(lx = $DID*c(F+1(x —9)[*dydr | dx
R\ Bs(x")x(0,8) 0 Bs(x)x(0,8)

IA
>
—

1
<K / e () f / pe(x = IDID2 e +1( = 3. ) 2o, dydr | da
R" 0 R

R 1
< K/ag(xn)dxn/ / / lpe (1 =, Dll 1w, 1D +1( =), ) o, dydx’dr
0 0 Rr—1Rn—1
R

<K /a8<xn>dxn ey < Kellel sy - 20)
0

where we first used the inequality of Cauchy-Schwarz and then Lemma 2.2 together with the
embedding H'(R,) < L*®(R,) in the fourth step. In the last step, we used suppp C Bg(0)
and applied the transformations y — ¢y and x, — &€x,. Altogether, this shows

IRscll 2wy < Kellel e
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forall c € C0 (]R ) with dpc =0 on IR’} .

In the next step, we want to use a denseness argument, to conclude the proof. Let ¢ € H? (R7)
with dpc = 0 on R’} be arbitrary. Since the space {c € C OO(R ) 1 9nc =0o0n dR'} } is dense in

{ce H3(IR” ) : 9nc =0 on dR’} }, cf. Remark 2.3, there exists a sequence (cx)keN C C°°(]R{ )
with dpc =0 on dR’} such that ¢, — c¢in H 3 (R’ ). Thanks to our results so far, the sequence

(,CQR"*ck + Ack)ke c LX(R")

. . . . . R”

is bounded. Thus, there exists a subsequence, which is again denoted by (Es tor + ACk)k N’
€

such that

ER cr+ Acy —w 1nL2(]R ) ask — o0

for some w € LZ(]R{" ) Since E is linear and continuous, and therefore weakly continuous, it

follows that w = /3 ¢ + Ac. Then, the weak lower semi-continuity of norms implies

]Rn
”ﬁs te+ Ac

.. R”
LR < l}cmmf HES ter 4+ Acy
’_ﬁ_ —00

poqany = MK Ellekll e gy < K Ve
a

forallce H 3(]R ) with 9pc =0 on dR’} with ||c| g3 ®") < 1. In particular, this concludes the
proof. O

Remark 3.4. The rate of convergence obtained in Lemma 3.3 is optimal. Even in the simplest
case, where n =1 and ¢ € C{° (R, ), we do not gain a better rate of convergence in L>(R)
unless Bﬁc =0 on dR . This shows the following calculation: Let x > 0. Then, we obtain for
the error term

e¢]

Rec(x) = / Je(1x = $)(e(x) — () dy

0

= / Je(Ix = D (c(x) — () dy + / Je(lx = D (c(x) — () dy

Bs(x)NR. R\ Bs(x)

= [ =306 - 5P+ R )y

Bs(x)NR

+ / Jo(x = D (@) — c(3)) dy
R\Bs(x)

1 N
= 56”(0) / pe(lx — yDdy + O(e),

Bs(x)NR.
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where fBa(x)ﬂR+ pe(]x — ydy =: a.(x) and ||a5(x)||Lz(R+) > K ./e for ¢ > 0 small enough
similar as in (19). In the third step, we used a Taylor expansion. In the last step, we then applied
Lemma 3.2. Here, the term O(e) is measured with respect to the L2(R+)-n0rm.

Corollary 3.5. Let c € HZ(Ri) with dyc =0 on R’ Then, it holds

— 0 ase 0.

]Rl‘l
HL’E te4+ Ac
L2(RY)

. R% . .
Proof. Thanks to Lemma 3.3, it suffices to prove that || L e+ Ac || 2R 18 bounded uniformly
+

ineg>0forallce H 2(]R{’j_) with d,¢ = 0 on R’} . Then, the Banach-Steinhaus Theorem con-
cludes the proof.

In fact, we only need to estimate the error term (17) in a suitable way. First of all, we prove the
assertion for functions ¢ € Cé (@) with dpc =0 on dR’} and use a density argument afterwards
to conclude the proof. In the term

] nr e - e
R%\(Bs(x)x(0,8))
we can apply Lemma 3.2, again. Thus, it suffices to consider the first part of (17). As in the proof

of Lemma 3.3, it holds [/ 81 s=0.In1/ 52 s» we use the properties of ¢ and the fundamental theorem
of calculus to obtain

| = 3D+ ]
B (x")x(0,8)

1
=[x 508 e s+ ) |
Bs(x")x(0,8) 0

1
= [ [t el + vl drdy
Bs(x")x(0,8) 0

1
ffla)%nc(x/,txn)|< f J8(|x_)A’|)(|xn|+|)’n|)|xn+)’n|d)’)dt-
0 Bs(x")x(0,8)
In the inner integral, it holds
Je(Ix = 3D (xn| + [yn)xn + yuldy < / Je(lx = DK (1xn ] + |ya|H)dy
Bs(x")x(0,8) Bs(x")x(0,8)

< f Kpe(lx — $dy < K.

Bs(x")x(0,8)
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This implies

1
[ = shaew ] < [ K12 e e

Bs(x")x(0,8) 0

Xn
_ 1 2 /
=K— [ |0y c(x', zx)|dzy,
Xn
0

where we changed variables as z, = tx,, in the last step. This implies

X 2 1T , 2
[ ] we=smaecom+mafacsk [ ([ 02ew. ) o
0

]R’_;_ Bs(x")x(0,8) Rr_ﬁ_

o0
<K / /|a§nc(x’,xn)|2dxndx’

Rr—1 0
< Klelpge)- 1)
where we applied Hardy ‘s inequality.
Ad1 53 s+ Here, we use Fubini‘s Theorem and Lemma 2.2 to get
) 2
[I [ str-spraw e e
R" B(x)x(0,6)
1
sk [ [ [otx =500 + 0= 9y Parayar
R” Bs(x")x(0,8) 0
1
<K / / / loe (1" =Y D1y 1D (1 = 1)y + 12", )72 g dY/dx'de
0 Rr—1Rn-1
2
< Kl - (22)

Altogether, we get the following estimate
IR:El 2 < Ksllell g + K llel g2y

forallc e Cg (R_’i) with dy, ¢|(x, =0} = 0. Finally, a density argument as in the proof of Lemma 3.3
finishes the proof. O

In the next step, we prove convergence on the bent half-space.
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Lemma 3.6. Let y € Cg Ry with ||y ”CZ(R"_') sufficiently small and c € H3(R'}i) such that
onc=0o0n SR';. Then, it holds

Proof. Let ¢ € H3(R") denote an extension of ¢ to R” such that < g3 mny < K||c||H3(R,;).

Rf’l
LoV c+ Ac‘

< K.¢lc H ny.
Lz(R?) — \/—“ I 3(RV)
Then, we have

R)l
H/Jg e+ Ac‘

= |+ ac

IR gy

L2(R2, L2(R"

< Kellellpsmny + IReCll2Re)

where we used Lemma 3.3 and defined the error term

Reé(x) = / Je(lx — yD(c() — &) dy (23)
Rn)e

fora.e. x € R’)ﬂ. Thus, it suffices to consider the error term.
Since y € Cj(R"™1), there exists a C*!—diffeomorphism F,, : R" — R" with F,, (R}) =R?,
F,(x’,0) = (x", y (x")) and —3,, F}, (x)|x,—0 = n(x’, y(x')), where n denotes the exterior unit
normal on GR;’,, cf. [22, Lemma 2.1].

In the following, we assume

sup [DF, (%) —1d| <« (24)

xeR”

for some « € (0, %). Using the diffeomorphism F,, and reflection afterwards, we compute

Rec(x) = / Je(|1Fy (%) = F, (DD (c(Fy (2)) = €(F, (9)))| det(DF, ()| dy
R”

=/Je<|Ay(£,y>(£—y>|>(u(£)—u(y))|det(DFy@)>|dy
R},

for almost all x € ]R)"/. Here,u:=coF, : R} - R, F,(X) =x,=(1,..., Yu—1, —yn) and we
used

1
Fy(X) = F, () =/DF)/()_’ +1(x —yNE —y)dr =1 Ay (X, (& — ).
0

Next, we rewrite the error term R as
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Rec(x) = / Je(1Ay (2, ) (% = 7)) (u(X) — u(3))| detDF, (¥)| dy
Bs(x7)x(0,8)

+ / Ke(JAy (3, 5 = 9D (@) —u(3)) dy
Bs ()% (0,5)

+ / Je(JAy (&, )(E = 9D (u(X) — u(3))| det(DF, (7))| dy

R™\(Bs(3)x(0,8))

= 11 x) 4+ I2(x) + 12 (), (25)

where K. (]A, (X, %)(X — ¥)|) is defined by

Ke(JAy (2, )& = D)D) = J(14y R, )& = §)D| detDFy ()]
— Je(JA, (X, %)(F — 7)])| detDF,, (¥)]

for almost all X, y € R’i. In 183 (x), we can apply Lemma 3.2, since it holds
A, (X, 9)(X = y)| > K|X —y| > K6.

In the next step, we estimate / 81 (x)and [, 82 (x) separately. In the following, let ¢ € Cé ’1(@) with
dnc =0 on BR';.
Ad 1 61 (x): First, we use a Taylor expansion for u to get

I (x) = / Je(JAy (2, )(F = DD Vyu(®) - (3" = §)| detDF, (£)| dy

Bs(x")%(0,8)

+ / Je(JAy (&, ) (F = §)Ddy, u(X)(%n + Jn)| detDF,, (£)| dy

Bs(x")x(0,8)

+ / Je(|Ay (£, %)(F =)D R2(%, 7)| detDFy (1) | dy,
Bs ()% (0,)

where the error term Ry(X, ¥) is defined by
) 1
Ry(%, )= ) 5 /(1 —0DPe(y +1(& - y)dr | & =)
1BI=2"" \

Observe that by our choice of F,,, the term A, (X, X) is given by
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A, (%,%) =DF,(}) =U(%) A'(%) .

where U (%) € SO(n) and A’(x) € R®=Dx=D "¢f 2] for details. This implies
1Ay G HE = DIF =A@ E = Y+ |50+ vl

and therefore it follows that the integrand in the first term of Is] (x) is odd with respect to ' — j'.
Consequently,

Je(|Ay (&, )(F = D Vyu(®) - (3 = §)| detDF, (X)| dy =0.
Bs(x')x(0,8)

Furthermore, F), satisfies

0, (2] (5,0} = D (€ 0 Fy ) )}, 20 = Ve, y () - (—n(x', y (') =0,
since dpc =0 on 8R)’1,. Thus, it holds

1

O, U(X) = Oy, u(X) — 3y, u(x’,0) = (/ E)inu()?’, tx,) dt)x,,.
0

Hence, we obtain in the second term of IE1 (%)

[ A GG = Do+ 5| dDF, ()] 0
Bs(x")x(0,8)

1
< / 4 o192 u (e, 13, dr,

0

where we used |A, (£, )(£ —§)| > K|£ — | forall £, y € R” as well as |detDF,, (£)| <K forall
x € R". Here, we defined

ag(xy) == sup / pe(|Ay (X, )(X — y)]) dy.
x'eRn—1 R
Bs(x")x(0,8)

Note that it holds a, € L?(R.) and ||a; || 2Ry =K /€. This follows from the same calculation
as in the proof of Lemma 3.3. Computing the L2-norm, we then obtain
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2
[I ] 504,656 = 9a,ut + | deDr, @] arf as
R"  By(+)x(0.8)

£

o] y 2

< [ lacGP (5 [ 105,06 0ldz, ) d
R" "0

o
< / f s ) P10, 08 D 2y A’ < Kl
R2-1 0

In the third term of [ 81 (x), we have

2
L R0AG DG = DRG] deDE, )y as

R’ Bs(x')x(0,6)

1
staeoen) / f pe(lA, (B D) E = DD +1G — )P dyds | d
R 0 By ()% (0.8)
R

<K /agoen) @t | Iy g < Kol s e - (26)
0

where we used the calculations as in (20) and Lemma 2.2. Altogether, we end up with
1
Hls ||L2(R’;,) = K\/g||c||H3<R';)’

where we used the same estimates as in the proof of Lemma 3.3.
Ad Isz(x): Here, we first rewrite the term K, (]A, (X, X)(X — ¥)|) in the following way:

Ke(|Ay (3, 2)(F = ) = Je (145 (3, ) (& = H)D(| detDF, (7)| — | detDF, (3)|)
+ (Je (1A, G, )G = DD = Je(1A, (&, 5)(E = D)D) |detDF, (2)].
Using this identity, we then get
1200] < | f Je(1Ay (3, )G = 9)D(| detDF, ()] — [ detDF, (9)]) (u(®) — u(5)) dy/|
Bs(x")x(0,8)

H [ (04,6 9GP - 404, DG - D)

Bs(x")x(0,8)

x | detDF, ()| (u(®) — u(3)) dy‘.
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In the first term on the right-hand side, we use the continuity of |detDF), |, the fundamental
theorem of calculus as well as the Cauchy-Schwarz inequality and the calculations in 181 (x) to
estimate the L2(R")-norm

[| [ 204,656 - 50( D, )] - |deDF, () (ud) ~ 1) dy | as
R By x(0.)
1
ske [ [ [ 004, GG - DIDUG + 1G5 drdydd = Kelulys g
R™ Bs(#)x(0,8) 0

where we used the same arguments as in (26) in the last step. In the second term on the right-hand
side, we use the mean value theorem to conclude

7oAy G, HE = DD = Je (A, G, DG — 7))
1
= | [ Vb (4G ) = 4, G D) G = P
0
1

1
1 /
5/—’06('“) K|£—y|2dt+/p8(|zn K% — 57 dr, @7)
0

5 e lz? |lz=z |23 |lz=z

where we defined

7 =M (R, Y)(X — Y),
MR, 5) = Ay R, 8) +1(A, (R, 7) — A, (3, 9))
forall x, y € R" and all ¢ € [0, 1]. Thanks to assumption (24), it follows that |M; (%, y) —Id| < 3«

forall £, y € R” and all 7 € [0, 1]. Therefore, M, (%, )~ ! exists forall £, y € R" and all 1 € [0, 1]
and satisfies the inequality

1 1
| < — <
1 —|Mi(x,y)—1d] 1—-3«

|M, (%, 5)7"
for all x, y € R" and all 7 € [0, 1]. Using (27), we then obtain for the second term of Igz(x)
[1 [ (504,696 =50 - 204,606 - 5D)
R%  Bs (%)% (0,8)

2
x |detDF, ()] (u(®) — u(3) dy| d

2

/ / /‘ /(1 pglﬂzél) Pe|(|T;|)) |Du(y+s(£—ﬁ))}lf—dededt dx
2t 2t

R% \0 Bs(#)x(0,8) O
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2

1 1
1
K/ / / /(;p;(|z,|>|£—i|+pg(|z,|>)|Du(y+s(;e—y)>|dsdydt di

R% \0 B;(#)x(0,8) 0

IA

11

1
<ke [ [ [ [ (Zeitzble =51+ .2 DuG + 56— ) dydiasar

0 0 R.R"
< Kellul)}
= H3 (Rrjr) )

where we used the same arguments as above. Then, we conclude

1720 12 g < KVElEl 3 s -

In particular, this implies

R’l
HES e+ Ac‘

< .
rRy = K\/E||C||H3(]Ry)

forall c € Cg‘l (RTZ) with dpc =0 on JR} . Finally, a density argument, cf. Lemma 3.3, yields

R’l
HES e+ Ac‘

<K n
rry = \/EHC“H3(RV)

forall c € H3(R'}£) with dpc =0 on E)]R{;’,. This concludes the proof. O

Corollary 3.7. Let c € HZ(R';) with dpc =0 on GR'}',. Then, it holds

]Rn
H£8 e+ Ac

LR — 0 ase 0.
14

Rn
Proof. Due to Lemma 3.6, it suffices to show that Hﬁg Yo+ Ac” L2R?) is bounded uniformly
Y

ine>0forallce H 2(R]’ﬁ) with dpc = 0 on dR?Y. Then, we can apply the Banach Steinhaus
Theorem, which implies the assertion.

In fact, it suffices to bound the error term (23) in a suitable way. Using the same methods as in
the proof of Lemma 3.6, we can rewrite R, as in (25). First of all, we prove the assertion for
functions ¢ € Cé’l (@) with dpc = 0 on 9R}, and use a density argument afterwards to conclude
the proof. Observe that it suffices to integrate in R, only over Bs(x") x (0, §), since otherwise
we can employ Lemma 3.2, cf. proof of Lemma 3.6.

Ad I 61 (x): Using a Taylor expansion, we obtain

I} (x) = / Je(1Ay R, D)@ = H)DVru@) - @ = §)|detDFy ()| dy

Bs(x")x(0,8)
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+ / Je(JAy (&, )(F = §)Dy, u(X)(%n + Jn)| detDF,, (¥)| dy

Bs(x')x(0,8)

+ / (A, G. DG — PDR(E. )| det DF, (8)] dy.

Bs(x')x(0,8)

As in the proof before, the first term on the right-hand side vanishes, since the integrand is odd
with respect to X" — y'. In the second term, the properties of F, imply

B, 1 ()|, =0) = B, (€ © Fy ) (D)), =0y = Ve (', y () - (=m(x’, y (")) =0,
since dpc =0 on 8]1%’)1,, and therefore

1

O, U(X) = Oy, u(X) — Oy, u(x',0) = (/ afnu(i/, tx,) dt)xn.
0

This yields

| A GG - D@+ 5| dDF, (D) dy)

Bs(x")x(0,8)

1
<k [W@uc i [ p0a,GRG -5 ay)ar
0 Bs(£)x(0,8)

sK(i/nwﬁnu@’,zn)mzn)( [ ranGoG-mna)
0

Xn
Bs (%)% (0,8)
where we used |A, (X, y)(X — y)| = C|x — y| for all X, y e R" as well as |detDF},(JE)’ < C for

all £ € R”. Computing the L?-norm, we then get

2
[ [ 204,606 = Do u, + 5| deDF, (] dy| 68 < Kl

R Bs(#)x(0,8)

where we used the same ideas as in Corollary 3.5, cf. (21). In the third term, it holds

Je(lA, R, $)E — PR (%, 7)| detDF, (£)| dy

B;s(x')x(0,6)

1

R” Bs(#)x(0,5) 0
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1
< K/ / / e (1A, (G ). . DE = 72 D iwy
0 Rr—1Rn-1
< | D*u(y +t@ = 3. 2w, d&'dy'de
< K||u||§,2(R,;).

Here, we used similar arguments as before, cf. (22) and (26). Altogether, we have
12N 2y < K llell g2y -
Ad I%(x): Here, we have
1200) < / T4, (&, )& = $))(| detDF, ()| - | detDF, ()]) (u(h) - u(5)) dy|

Bs(x")x(0,8)

+| / (704, G )G = DD = (1A, G DG = PD)
Bs (%)% (0,8)

)

x |detDF, ()| (u(®) — u(3)) dy

where we used the same identity as in the proof of Lemma 3.6. In the first term on the right-hand
side, we observe that

1
)(| detDF, (5)| — | detDF, (2)]) (u(%) — u@)) < K(/ D +1(E = )lde ) 1 - 512,
0

which yields

2
[1 [ 204,656 = 50(detDF, )] = |detDF, () (1)~ u) dy | as

R Bs(x)x(0,8)

2

Here, we concluded with the same arguments as in the proof before. In the second term, we again
use the mean value theorem, cf. Lemma 3.6, to obtain

[1 [ (504,696 =50 504,06 - 5))
R% Bs(x)x(0,8)
2
x [detDF, (®)] (u(d) — u(3) dy| d
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2

1 1
1 % y v 2 o A~
SK/ / / /(gpé(lal)lx—y|+pg(|z,|)>|Du(y+s(x—y))|dsdydt dz

R% \0 Bs(#)x(0,8) 0
< Kull32 gn s
= ||u||H2(R+)
where we defined
it = 1Wt()27)_’)()e -y,
My(3.5) = Ay (3. 5) +1(Ay 3, 5) — Ay (£. )

for all x, y € R" and all 7 € [0, 1]. In fact, this estimate follows by the same methods as in the
proof of Lemma 3.6. Altogether, it follows that

IReCll 2 ey < Kllel m2ma)

for all ¢ € Cé’l(RT",) with dpc =0 on 8]R;1,, and therefore

Rn
H£8 e+ Ac‘

< K n
Py = Kl
forall c € Cé‘l (}RT;,) with dpc =0 on BRJ’} Finally, a denseness argument, cf. Lemma 3.6, yields

that this estimate also holds true for all c € H 2(R’)ﬂ) with dpc =0 on BR;. In the last step, we
employ the Banach Steinhaus Theorem. Then, the claim follows. O

4. Main result

In this section, we want to state and prove the main result on the strong convergence of the
nonlocal operator £, on bounded smooth domains 2 C R”.

Theorem 4.1. Let Q@ C R”, n =2, 3, be a bounded domain with C*-boundary. Then, for every
c € HX(2) with duc = 0 on 3K, it holds

— 0 ase 0. (28)

L3+ A
H eCHAC L2(R)

Proof. Since 02 is compact, there exist open sets Uy, ..., Uy CR" and y1,..., YN € CS (]R"_l)
such that, up to a rotation, Q N U; = R’;j NU; forall j=1,...,N and 922 C U?jzl U;.
Since also €2\ (U?’zl U j) is compact, there exists an open, bounded set Uy C R” such that

Q\ (ij:1 Uj) C Up and Uy C 2. Then, we choose some yg € Cg(R"_l) such that Uy C ]R)’ﬁo.
Altogether, we have

N
Qc|JU; and @NU; =R} NU; forall j=0,...,N.
j=0
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Next, we choose a partition of unity ¢;, j =0,..., N, on . Without loss of generality, we can
assume that o, 9= 0 on BR;/' forall j =0,..., N, where n; denotes the outer unit normal to
8RJ’£]_. Otherwise, BR% admits a tubular neighborhood Uaj of widtha; > 0, cf. [21, Section 2.3].
Then, the restriction of ¢; to 8R')',j can be extended to a function ¢; on qu, which is constant
in the direction of n; by setting ¢; (x) := ¢; (na]R;ylj (x)) for x € Uy, where rrg]jo 1Uq; — E)R’;j
denotes the projection on B]R”

Finally, we choose functlons 1,0, C(‘)>Q (R™) such that supp ; C U;, ¥; >0 and ¢; =1 in
supp ¢; forall j =0,...,N.

Now, let ¢ € H>(2) with ¢ = 0 on 9 be arbitrary. Using the identity ¢ = Z;V:o @jc, we get

LPc+ Ac= E?(iw) + A(iw) = i (£2(es) + Alge))

j=

Mz

> (wiL2 (0j) + (1= UL2 (gj¢) + Alpje))

.
Il
(=)

I
'MZ

(1 + 12+ Ape))-

0

J

In the next step, we analyze these terms separately.
Ad I1 : For almost all x € Q and all j =0, ..., N it holds:

¥ (LS (pjc) (x) = Wj(X)/Js(Ix —¥D(gj (@) = @;(e(y)) dy

—lﬁ/(X)/Ja(lx YD (g )ex) =@ (Me(y)) dy
V/

) / Je(1x = yDg; (¥)e (o) dy

Q\U;
=¥ (x) / Je(lx = yDoj(x)c(x) dy
Ry \Uj
=0y + 12— 12
In I;zj we observe that 8, ; := dist(supp ¥, 2\ U;) > 0 and therefore |x — y| > & ;. Hence,

||1A2 ||Lz(Q>—>0ass\0f0rallj=O ., N by Lemma 3.2.

In 13, it holds &3 ; := dist(supp ¥, R” \ Uj) > 0. This implies ||I ||L2(Q) — 0 as e \( 0 for
all j=0,..., N again by Lemma 3.2.
In the next step, we consider 151’/. + A(gojc). Since supp ¥; € U}, we have
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n

. R?. R?
I+ Blose) =viLe " (ps) + Algje) =i (L 7 (0i0) + Alese)). @9

Due to the properties of ¢;, it holds ¢ ;c € H 2(R)'ﬁj) and 9, (pjc) =0 on 8R’)ﬂj. Therefore, (29)
vanishes as ¢ N\ 0 by Corollary 3.7.
Ad Iéj: Due to our choice of the functions v}, it holds supp(1 — v ;) N supp ¢; = @. Thus,

we have §; := dist(supp(l — ¥;), supp ¢;) > 0. Therefore, ||I§j||Lz(Q) — 0 as & \( 0 for all
j=0,..., N by Lemma 3.2. This concludes the proof. O

Corollary 4.2. In addition, if ¢ € H3(2) and 2 is of class C3, it even holds
Q
Hﬁs e+ AchQ) < KVElel i)

Proof. This can be proven analogously as Theorem 4.1 using Lemma 3.6 instead of Corol-
lary 3.7. O

5. Nonlocal-to-local convergence of the Cahn-Hilliard equation

Theorem 5.1. Let the initial data cp s € L3() satisfy co e — co in L%() at rate O(J/¢) as
e\ 0 for co € H'(Q). Let the weak solution ¢ € L>(0, T; H'(Q)) N L?(0, T; H*(Q)) with
flo) e LX(Qr) of the local Cahn-Hilliard equation satisfy c € L%(0, T; H3(Q)). Then, the weak
solution c; of the nonlocal Cahn-Hilliard equation (7)-(8) converges strongly to the strong solu-
tion of the local Cahn-Hilliard equation (1)-(2) in L*°(0, T; H~1(Q)) N L*(Qr) at rate O(/¢)
as e (0.

Proof. Let us define the functions u :=c; — ¢ and w := u, — . Then, (4, w) solves the system

o = Aw, 30)
w= LT + Ac+ f(ce) — (). 31)

In the next step, we test (30) by (—A )~ 'u. Here, v := (—Ax)"'u € H'(Q) N L%, () denotes

(©)
the unique solution of
/Vv-Vgodx:/ugodx

Q Q

for all ¢ € H'(2)nN L(ZO)(Q). This yields

d1 _
ainung,l(m:/Aw(—AN) ludxz—/wudx. (32)
Q Q

Here, we also used the following calculation

d 1 2 dl1

-1 —-1/2 2
f&u(—AN) udx=—dt/5|(—AN) Pul dr = Sl gy
Q Q
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Furthermore, we multiply (31) by u and integrate over 2. Hence,

/wudx:/ﬁ?cgudx—i—/Acudx—i—/(f’(cg)—f’(c))udx.
Q Q

Q Q
Using the assumptions on f, we can estimate the last integral on the right-hand side from below
by
/(f/(cg) — f'©)udx > —/a(cs —udx = —/a|u|2 dx.
Q Q Q

Therefore, we have

/wudxz/Egzuudx+/(£§zc+Ac)udx—a/|u|2dx
Q Q

Q Q
=85(u)+/(£§c+Ac)u dx—(x/|u|2dx, (33)
Q Q
where we used
1
f,cgzuu dx = Z/fjs(x — y)|ux) —u(y)’zdx dy =& () (34)
Q Q Q

in the last step. Now, combining (32) and (33) yields

d1 1 1
EEHMIIQH_l(Q) + Ellulliz(m + & (u) < (a + 5)”“”%2(9) - / (L8c+ Ac)u dx
Q

2 1 Q 2
< (a n 1)||u||L2(Q) + E”Le et Ac‘ .

Employing inequality (12) from Lemma 2.1 with § = we then obtain

1
2@+’

d1 1 1 2
Sl g+ Il g + 3600 < Cluly g + C|[£86 + Ac (35)

L2Q)’

Finally, Gronwall‘s inequality yields

t t t
1
2 2 2
Oy gy + 300y + [ Eew @t = Ke(14 [ e g dr)exp( [ K ar)
0 0 0

for almost all ¢ € (0, T'), where we used Corollary 4.2 and the assumptions on the initial data on
the right-hand side. Using (13), we then conclude the proof. O
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Corollary 5.2. Under the assumptions of Corollary 5.1, it even holds
ce—>c inL®0,T; H(RQ)) ase\ 0
forall s € (—1,0) and furthermore,
ce— ¢ inL*(0,T; LP(Q)) ase\0
forall p € 2,6).
Proof. In Theorem 5.1, we have already shown that
ce — ¢ in L0, T; H'())

as ¢ \, 0. Since the sequence (c;)e~0 C L*°(0, T L2()) is bounded, cf. [9, Theorem 2.3], we
get

[4 1-6
”CS - C”LOO(O,T;HS(Q)) = K”CS - C”LDC(O,T;LZ(Q)) ”CS - C”LOO(O’T;H—I(Q))

fors =6 — 1,6 € (0, 1) and thus the first assertion follows.
In the second assertion, we use that (c;)e=o C L2(0,T; H () — L2(0,T; L%()) is
bounded, cf. [9, Theorem 2.2]. Then, an interpolation yields

6 1-6
”Cé‘ - C”LZ(O’T;LP(Q)) S K“CS - C”L2(QT) ”Cé‘ - C||L2(0,T;L6(Q))

forall p = H%’ where 6 € (0, 1]. This finishes the proof. O

Remark 5.3. Lastly, we want to mention that our methods from Section 5 can also be used to
prove nonlocal-to-local convergence for the Allen-Cahn equation. The Allen-Cahn equation is
given by

dc=Ac— f'(c) inQr (36)

together with boundary and initial conditions

onc=0 onoQ2x (0,7), 37
cli=0 =cop in Q. (38)
The nonlocal version is given by
0c=—Lec— f'(c) inQr (39)
with initial condition
Cli=o =co in Q. 40)
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Observe that we do not need to impose any boundary condition for the nonlocal Allen-Cahn
equation. Here, we use the same notation and the same prerequisites as before, cf. Section 1.
Then, we can prove the following assertion.

Theorem 5.4. Let cp . € LZ(Q) satisfy co.e — co at rate O(/€) in L2(Q)ase N\ 0 for some cg €
HY(Q). Let the weak solution ¢ € L°°(0, T; H'(2)) N L*(0, T; H*(R)) with f'(c) € L*(Qr)
of the local Allen-Cahn equation satisfy ¢ € L*(0, T; H3(2)). Then, the weak solution c. of the
nonlocal Allen-Cahn equation (39)-(40) converges strongly to the strong solution of the local
Allen-Cahn equation (36)-(38) in L0, T; L>(2)) at rate O( /g) as & \ 0.

Proof. First of all, we define u := ¢, — c¢. Then, u is a solution of

du=—L3c. — f'(ce) — Ac+ f'(c). 41)

Testing (41) with u, yields

/8,1414 dx = —/ (ﬁ?ca + AC)M dx — / (f/(ca) _ f/(c))u dx
Q

Q Q
:—/(E?c—i—Ac)udx—/ﬁgzuudx—/(f’(cg)—f’(c))u dx,
Q Q Q

where the left-hand side also satisfies

[ o ax = 53wl o,
Q

Employing the properties of f and (34), we then end up with

a 2
Lic+ Ac‘ .
LX)

dl1 2 1 s 1
T3 lula gy + €0 < (@ + ) Il 20+ 5 |

In the last step, we use inequality (12) from Lemma 2.1 with § = —L I Gronwall‘s inequality

2(a+5
as well as Theorem 4.1 and (13). Then, the claim follows. O
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