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1. Introduction

Tensor-triangular geometry applies algebro-geometric methods to study triangulated 
categories. This abstraction allows the transport of ideas and techniques between areas 
of mathematics such as algebraic geometry, modular representation theory, equivariant 
stable homotopy theory and noncommutative geometry. The profound impact on alge-
braic geometry brought by Grothendieck’s work on étale cohomology advocates for a 
generalization of the étale topology in tensor-triangular geometry. We compare two pro-
posals for this: the first one is due to Balmer [5] via the notion of separable commutative 
algebra, and the second one is due to Mathew [37] via the notion of finite cover. The 
goal of this paper is twofold:

(1) Provide a comprehensive comparison between Balmer’s and Mathew’s work.
(2) Use this comparison to derive new classification results for separable algebras.

We now recall the two approaches.

Étaleness via separability

The étale site of a field k consists of all étale k-algebras A. Most concretely, these 
can be described as finite products of finite separable field extensions of k, but can also 
be characterised by the existence of a bimodule section to the multiplication map of A. 
This latter characterisation generalizes immediately to tensor triangular geometry and 
was taken by Balmer as the starting point of his theory. Many more examples of sepa-
rable algebras emerge in this context: Balmer–Dell’Ambrogio–Sanders [11] showed that 
restriction to a subgroup of finite index in the equivariant stable homotopy category, 
equivariant KK-category and equivariant derived categories all yield commutative sep-
arable algebra objects. In algebraic geometry, Balmer [8] showed that étale morphisms 
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of schemes yield examples of separable algebras. As a consistency check, a result of 
Neeman [40] shows that the only separable commutative algebra objects in the perfect 
derived category of a Noetherian scheme are those arising from finite étale morphisms 
(and smashing localizations).

Étaleness via Galois theory

Another way to characterise étale k-algebras A over a field k is by demanding that A ⊗k

k̄ be a finite product of copies of k̄, where k̄ denotes a separable closure of k. The approach 
of Mathew then relies on stipulating that a good replacement for the étale topology is 
the descendable topology. Accordingly, he defines a commutative algebra to be a finite 
cover if it is a finite product of copies of the unit, locally for the descendable topology. 
See [33, Appendix D.3] for an account of the descendable topology. He then shows that 
this notion enjoys excellent properties, both formally and computationally. For example, 
the finite covers organize into a Galois category in the sense of Grothendieck. Here again, 
he establishes a consistency check by showing that the finite covers in the (unbounded) 
derived category of a scheme are exactly the finite étale covers.

Main results

Let C be a stable homotopy theory and let C dual ⊆ C be the full subcategory of 
dualizable objects. For any separable commutative algebra object A ∈ C dual, Balmer 
defined a notion of degree measuring the size of the separable algebra [6]. The degree 
can be organized into a function

deg(A) : Spc(C dual) → Z ∪ {∞}

on the Balmer spectrum of C dual. We say that the degree function is finite if it takes finite 
values on all prime ideals and locally constant if for each prime ideal there exists some 
neighbourhood on which the degree function is constant. The following is our comparison 
result.

Theorem A (see Corollary 8.13). Let C be a stable homotopy theory with unit object 
1 ∈ C . Suppose that π0(1) decomposes as a finite product of indecomposable rings. Then 
we have an equality

CAlgcov(C ) = CAlgsep,lcf(C dual)

between the finite covers of C and those separable commutative algebras of C which have 
a dualizable underlying module, and whose degree function is finite and locally constant.

We use this comparison result along with some new structural results about commu-
tative separable algebras in order to obtain the following.
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Theorem B. There is an essentially complete1 classification of the separable and com-
mutative algebras with underlying dualizable module in the following homotopy theories:

(1) Modules over a connective E∞-ring, see Proposition 10.5.
(2) Modules over an even periodic E∞-ring R with π0(R) regular and Noetherian with 

2 ∈ π0(R)×, see Theorem 10.7.
(3) Complete modules over an adic E∞-ring, see Theorem 11.6.
(4) Modules over Lubin-Tate theories over perfect fields of characteristic p > 0, see 

Theorem 12.5.
(5) Modules over topological complex and real K-theories, see Theorems 12.9 and 12.10.
(6) Quasi-coherent sheaves over an even periodic refinements of a regular Noetherian 

Deligne-Mumford stack defined over Spec(Z[1/2]), see Theorem 12.11.
(7) Derived categories of qcqs schemes, see Corollary 13.8.
(8) The stable module category of a finite group of p-rank one with coefficients in a 

separably closed field of characteristic p > 0, see Theorem 14.14.

We conclude the introduction by a section-wise overview:
Section 2 collects preliminaries on category theory, including a brief review of the 

“small” and “large” homotopy theories we are using and culminating in a description of 
categories of modules in a limit stable homotopy theory.

Section 3 reviews connected components of stable homotopy theories and their relation 
to the unit of the category, and the Balmer spectrum of its dualizable objects. We need 
this to formulate the mild technical hypothesis we need for our comparison result, namely 
that there be only finitely many connected components.

Section 4 collects various results from the literature for the ease of reference. Most 
notably, Lemma 4.7 records a variant of the fact that the formation of modules for a 
separable algebra commutes over passage to the homotopy category. This result is of 
key importance, as it allows us to freely pass between the infinity-categorical and the 
triangulated categorical level.

In Section 5 we show that Balmer’s splitting tower for a separable algebra in a tt-
categories uniquely lifts to the setting of infinity categories. We relate the resulting 
local degree function on the Balmer spectrum with the splitting tower, and record its 
functoriality. We note that separable algebras which are finite products of retracts of the 
unit object always have locally constant degree functions.

In Section 6 we show that the formation of separable algebras commutes over arbi-
trary limits of homotopy theories. This result was suggested by the analogous result of 
Mathew for weak finite covers. The key point in the proof is the uniqueness of splitting 
idempotents for commutative separable algebras. This last result seems new even in the 
case of ordinary commutative rings.

1 Modulo the possible existence of separable commutative algebras having infinite degree in the stable 
homotopy theories considered here.
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In Section 7 we collect results from Mathew’s work on Galois theory which we will have 
to use later on: The precise working of his Galois correspondence and some observations 
about G-torsors.

Section 8 is the core of Part 1. Here, we establish our comparison result equating finite 
covers and suitable separable algebras. Deducing separability properties of (weak) finite 
covers is essentially a revisit of results of Rognes in the present more general setting, 
coupled with descent results for the Balmer spectrum. To see that certain separable 
algebras are finite covers, the observation is that the final term in their tt-tower is 
descendable and splits the algebra.

Section 9 is motivated by the observation that for certain basic homotopy theories, 
(weak) finite covers agree with separable algebras (with necessary extra condition). The 
present section shows that this simple relation is preserved under limits of homotopy 
theories. To see this, we need to revisit the notion of limits of Galois categories and 
equate Mathew’s notion of rank in Galois theory with Balmer’s notion of degree of 
separable algebras.

Section 10 is the first of Part 2 of the paper, about specific computations. Here we 
consider categories of modules over E∞-rings which are either connective or even periodic 
and regular Noetherian in which 2 acts invertibly. In both cases Mathew showed that 
all finite covers are classical, and we extend this result to include all separable algebras 
with underlying dualizable module. The approach is very standard, relying on residue 
fields, respectively suitable homology theories, to reduce to the case of ordinary (graded) 
commutative rings.

As a first application of our descent results, Section 11 determines the separable 
algebras in the category of complete modules over a complete I-adic E∞-ring. This 
stable homotopy theory is a bit more complicated to access, e.g. its unit is not compact. 
The key here is a result of independent interest: The only dualizable modules for the 
completed tensor product are the perfect modules,2 and these in turn organize into a 
limit over a suitable I-adic tower.

In Section 12 we classify separable algebras over Lubin-Tate theories of perfect fields 
of characteristic p > 0, and using descent techniques, we access the Ln- and K(n)-local 
categories. We also treat the case of topological K-theories and global sections of suitable 
non-connective spectral Deligne-Mumford stacks.

In Section 13 we show that the theories of Mathew and Balmer yield the same result 
when applied to the categories of quasi-coherent sheaves on a spectral Deligne-Mumford 
stack. When specialized to Noetherian qcqs schemes, this recovers a special case of pre-
vious work of Neeman.

In the final Section 14 we consider stable module categories for finite groups and 
classify separable algebras there in the case of groups of p-rank one. This generalizes 
previous results of Balmer and Carlson which indeed were the initial motivation for the 
present work. Our proof is arguably a lot more direct than theirs, which for example relied 

2 We include an example of Mathew showing this requires connectivity.
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on unexpected and subtle properties of the Kelly radical. We explain why extending these 
results to the case of an elementary abelian p-group of rank two likely requires new ideas.
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Part 1. Finite covers and separable commutative algebras

In this part of the paper we relate the notion of finite cover introduced by Mathew 
with the notion of separable commutative algebra introduced into homotopy theory by 
Balmer. After recalling the relevant background we show that finite covers coincide with 
those separable commutative algebras which have a dualizable underlying module and a 
locally constant and finite degree function, see Corollary 8.13.

2. Preliminaries

In this section we recall the notation and terminology from homotopy theory that we 
use throughout the paper. We start by introducing the notion of a 2-ring and of a stable 
homotopy theory and then discuss various results about limits and module categories.

Notation 2.1. Let Catperf
∞ denote the ∞-category of essentially small, idempotent com-

plete, stable ∞-categories and exact functors, see [37, Definition 2.3].

Recall from [37, Definition 2.13] the relevant symmetric monoidal structure on Catperf
∞ .

Definition 2.2. We let 2-Ring denote the ∞-category of commutative algebra objects in 
Catperf

∞ . More concretely, this is the ∞-category of essentially small, idempotent com-
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plete, stable ∞-categories equipped with a symmetric monoidal structure whose tensor 
products are exact in each variable. A functor between such categories is assumed to be 
symmetric monoidal and exact. We will refer to any C ∈ 2-Ring simply as a 2-ring.

We will also need a big variant of the previous definitions.

Notation 2.3. Let PrL denote ∞-category of presentable ∞-categories and colimit-
preserving functors, and let PrLst denote the full subcategory of PrL spanned by the 
stable ∞-categories.

Recall from [35, Proposition 4.8.1.15] that the ∞-category PrL inherits a symmetric 
monoidal structure from the ∞-category of (large) ∞-categories Ĉat∞ whose commuta-
tive algebra objects are precisely the symmetric monoidal and presentable ∞-categories 
whose tensor product preserves colimits in each variable. For the stable version, we re-
call from [35, Proposition 4.8.2.18] that the ∞-category of spectra Sp is an idempotent 
commutative algebra in PrL and that ModSp(PrL) � PrLst. It then follows from [35, 
Proposition 4.8.2.10] that PrLst inherits a symmetric monoidal structure.

Definition 2.4. We let CAlg(PrLst) denote the ∞-category of commutative algebra objects 
in PrLst. More concretely, this is the ∞-category of presentable, symmetric monoidal, 
stable ∞- categories such that the monoidal structure commutes with colimits in each 
variable. A functor between such categories is assumed to be symmetric monoidal and 
colimit-preserving. We will refer to any C ∈ CAlg(PrLst) simply as a stable homotopy 
theory. We note that any such C is closed symmetric monoidal and write Hom and 
D = Hom(−, 1) for the internal hom and duality functor respectively.

There is a canonical way to produce 2-rings from a stable homotopy theory:

Lemma 2.5. For any C ∈ CAlg(PrLst), the full subcategory of dualizable objects C dual ⊆ C

naturally admits the structure of a 2-ring.

Proof. See the discussion surrounding [37, Definition 2.15]. For the convenience of the 
reader we flesh out the argument here. Since an object X ∈ C is dualizable if and only 
if the natural transformation

D(X) ⊗ (−) −→ Hom(X,−)

is an equivalence, and both D(X) and Hom(X, −) are exact functors in X, it follows 
that C dual ⊆ C is a stable and thick subcategory. It is in particular stable under retracts 
in C , and hence idempotent complete. If both X and Y are dualizable, then we leave it 
to the reader to check that the given duality data easily provide one for X ⊗ Y , see [37, 
Definition 2.15] for the definition of a duality datum. It is only left to show that C dual is 
essentially small, for then C dual endowed with the tensor product of C , will be a 2-ring.
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We first claim that the unit 1 ∈ C is λ-compact for some regular cardinal λ. Since C
is in particular κ-accessible for some regular cardinal κ, it follows from [34, Proposition 
5.4.2.2, (2)] that 1 is a κ-filtered colimit of κ-compact objects. Choose a regular cardinal 
λ such that λ ≥ κ, and such that the above colimit is λ-small. The existence of λ
is secured by the existence of arbitrarily large regular cardinals. Since any κ-compact 
object is λ-compact, we have written 1 as a λ-small colimit of λ-compact objects, hence 
1 is λ-compact by [34, Corollary 5.3.4.15]. To see that every dualizable object X is 
λ-compact consider the following sequences of equivalences

HomC (X,−) � HomC (1,Hom(X,−)) � HomC (1, (−) ⊗DX).

As the functors HomC (1, −) and (−) ⊗ DX commute with λ-filtered colimits, X is λ-
compact, as claimed. We conclude, since the category of λ-compact objects is essentially 
small by [34, Remark 5.4.2.13]. �

Conversely, we can promote every 2-ring C to a stable homotopy theory: The ω-Ind-
completion Ind(C ) is presentable [34, Theorem 5.5.1.1], stable [35, Proposition 1.1.3.6]
and symmetric monoidal [35, Corollary 4.8.1.14], hence a stable homotopy theory. This 
has the property that the subcategory of compact objects of Ind(C ) coincides with C , 
and that the Yoneda embedding j : C → Ind(C ) is symmetric monoidal.

The following result describes how to calculate limits of stable homotopy theories.

Lemma 2.6. The ∞-category CAlg(PrLst) admits all limits and these are preserved by the 
forgetful functor CAlg(PrLst) → Ĉat∞ into the large ∞-category of ∞-categories.

Proof. The forgetful functor CAlg(PrLst) → Ĉat∞ factors as the composite

CAlg(PrLst) → PrLst → PrL → Ĉat∞.

Limits in PrL exist and the forgetful functor PrL → Ĉat∞ preserves them by [34, Propo-
sition 5.5.3.13]. Using this together with the fact that limits of stable ∞-categories are 
again stable [35, Theorem 1.1.4.4], we deduce that PrLst admits limits and that these are 
preserved by the forgetful functor PrLst → Ĉat∞. For the final step, note that the sym-
metric monoidal ∞-category PrLst defines [35, Example 2.1.2.18] a cocartesian fibration 
of ∞-operads (PrLst)⊗ → Fin∗ whose fibre over 〈n〉 ∈ Fin∗ is equivalent to 

∏n
i=1 PrLst by 

the Segal condition. Thus by [35, Corollary 3.2.2.5], the ∞-category CAlg(PrLst) admits 
limits, and these are preserved by the forgetful functor CAlg(PrLst) → PrLst. �

As an application of the previous lemma, we record the following useful result about 
commutative algebras and limits.

Lemma 2.7. Let K be a simplicial set and let p : K → CAlg(PrLst) be a functor. Then the 
canonical functor
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CAlg(lim
K

p) �−→ lim
k∈K

CAlg(p(k))

is an equivalence in Ĉat∞.

Proof. By Lemma 2.6, limits in CAlg(PrLst) can be calculated in Ĉat∞. Recall that a 
commutative algebra object in a symmetric monoidal ∞-category C is a section of the 
associated cocartesian fibration defined in [35, Example 2.1.2.18]. Equivalently, a com-
mutative algebra object is a functor Fin∗ → C satisfying the Segal conditions (certain 
maps into a product are equivalences). As limits in functor categories are calculated 
pointwise we see that the canonical map Fun(Fin∗, limi Ci) → limi Fun(Fin∗, Ci) is an 
equivalence. It then suffices to check that a limit of commutative algebras is again a 
commutative algebra. This can be checked pointwise and it holds as limits preserves 
equivalences and commutes with products. �

Let C be a stable homotopy theory and consider A ∈ CAlg(C ). As discussed in [35, 
Section 4.5], there is an ∞-category ModA(C ) of A-modules internal to C . This is again 
a stable homotopy theory by [35, Proposition 4.2.3.4, Corollary 4.2.3.7 and Theorem 
4.5.2.1] and comes with a lax monoidal forgetful functor

UA : ModA(C ) → C

which is conservative [35, Corollary 4.2.3.2] and (co)continuous [35, Corollaries 4.2.3.3 
and 4.2.3.5]. It follows that the forgetful functor UA admits left and right adjoints FA and 
RA respectively. We recall how module categories behave with respect to lax symmetric 
monoidal functors.

Remark 2.8. Let F : C → D be a lax monoidal functor between stable homotopy theories. 
For any commutative algebra A ∈ CAlg(C ), there is a commutative diagram of lax 
monoidal functor

ModA(C ) ModF (A)(D)

C D ,

F

UA UF (A)

F

with UA and UF (A) denoting the forgetful functors: See the discussion in [23, Remark 
1.1.11] or [45, Section 3.3.9]. If in addition F is symmetric monoidal and preserves col-
imits, then F is also symmetric monoidal and preserves colimits: see [45, Proposition 
3.18] for monoidality and to see the preservation of colimits one can use conservativity 
and cocontinuity of UF (A) together with the commutative diagram above. In particular, 
in this case, F is a left adjoint, so that the above diagram extends as follows:
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ModA(C ) ModF (A)(D)

C D ,

F

UA UF (A)

G

FA

F

FF (A)

G

(2.1)

where G (resp. G) denotes the right adjoint of F (resp. F ) and FA (resp. FF (A)) denotes 
the free-module functor. Since FA(X) = A ⊗ X, we see that the canonical natural 
transformation

F ◦ FA � FF (A) ◦ F

is an equivalence, and a formal argument using the present adjunctions shows, that also 
the exchange transformation

UA ◦G � G ◦ UF (A)

is an equivalence; i.e. the diagram (2.1) is right adjointable.

Lemma 2.9. Let K be a simplicial set and p : K → CAlg(PrLst) be a functor. Consider 
A ∈ CAlg(limK p) and write Ak ∈ CAlg(p(k)) for its k-component. Then the canonical 
functor

ModA(lim
K

p) → lim
k

ModAk
(p(k))

is an equivalence in Ĉat∞.

Proof. Set C = limK p and Ck = p(k) so that C = limk Ck. By assumption the projection 
functor Fk : C → Ck is a symmetric monoidal left adjoint (say with right adjoint Gk) so 
by Remark 2.8 there is a diagram of adjunctions

ModA(C ) ModAk
(Ck)

C Ck

Fk

U

Gk

Uk

Fk

Gk

satisfying

Uk ◦ F k � Fk ◦ U and U ◦Gk = Gk ◦ Uk. (2.2)

Using [35, Corollary 4.7.4.18, (2)] this induces another diagram of adjunctions
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ModA(C ) limk ModAk
(Ck)

C limk Ck,

F

U

G
limUk

F

G

given on objects by

F (X) = {Fk(X)}k and F (M) = {F k(M)}k

and

G({Xk}k) = lim
k

Gk(Xk) and G({Mk}k) = lim
k

Gk(Mk)

where X ∈ C , Xk ∈ Ck, M ∈ ModA(C ) and Mk ∈ ModAk
(Ck). Note that by our 

assumption the unit and counit maps of the adjunction (F, G) are equivalences. We 
claim that the unit and counit of the adjunction (F, G) are also equivalences. This will 
conclude the proof of the lemma.

For any M ∈ ModA(C ), we will show that the unit map M → GFM = limk GkF kM

is an equivalence. By conservativity of the forgetful functor, we can instead check that the 
map UM → U limk GkF kM is an equivalence. Using that U preserves limits and (2.2)
we can identify this with the map UM → limk GkFkUM = GFUM which is the unit of 
the adjunction (F, G). Hence an equivalence by assumption.

Finally let us consider the counit map F G{Mk} → {Mk}. It will suffice to verify that 
for all k ∈ K, the map UkF k limk Gk{Mk} → UkMk is an equivalence. Using that U
preserves limits and equations (2.2) we can identify this with the map FkG{UkM} →
UkM which is the k-component of the counit map FG{UkMk} → {UkMk}, hence an 
equivalence. �
3. Connected stable homotopy theories

In this section we recall the notion of a connected stable homotopy theory follow-
ing [37], introduce a slight generalization (fin-connected stable homotopy theories), and 
give a characterization using the Balmer spectrum. We need to record some results about 
idempotent elements and indecomposable commutative algebras. We fix a stable homo-
topy theory C ∈ CAlg(PrLst). Recall that an idempotent of A ∈ CAlg(C ) is by definition 
an idempotent of the commutative ring

π0(A) := π0 (HomC (1, A)) .

Lemma 3.1. Let e be an idempotent of A ∈ CAlg(C ). Then, there is a splitting

A � A[e−1] ×A[(1 − e)−1]
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in CAlg(C ) such that π0(A[e−1]) = eπ0(A), and similarly for (1 − e). Conversely, given 
a splitting of A � B × C in CAlg(C ), there exists an idempotent e of A such that 
B � A[e−1] and C � A[(1 − e)−1].

Proof. See the discussion after [37, Definition 2.38]. �
Definition 3.2. We say that A ∈ CAlg(C ) is indecomposable if A is nonzero and if it does 
not decompose as a product of two nonzero algebras.

Remark 3.3. Using Lemma 3.1 we see that A ∈ CAlg(C ) is indecomposable if and only 
if the discrete ring π0(A) is indecomposable.

Definition 3.4. Let C be a stable homotopy theory.

• We say that C is connected if 1 is indecomposable in CAlg(C ). This is also equivalent 
to π0(1) being indecomposable as a discrete ring. Note that if C is connected then 
1 � 0 so C is nonzero.

• We say that C is fin-connected if 1 decomposes as a non-empty finite product of 
indecomposable rings.

Example 3.5. Any finite product of connected stable homotopy theories is fin-connected.

We give another useful characterization of connected and fin-connected stable homo-
topy theories using the Balmer spectrum. First we need a little bit of preparation.

Lemma 3.6. Let C be a stable homotopy theory and suppose that the Balmer spec-
trum Spc(C dual) is the disjoint union of two Thomason subsets U and V . Write 
C dual
U , C dual

V ⊆ C dual for the full subcategories of objects with support contained in U and 
V respectively. Then there is a decomposition C dual � C dual

U ×C dual
V with Spc(C dual

U ) = U

and Spc(C dual
V ) = V .

Proof. By [3, Theorem 2.11 and Corollary 2.8], every object X ∈ C dual is equivalent to 
a direct sum XU ⊕XV with XU ∈ C dual

U and XV ∈ C dual
V , and we have

HomC (C dual
U ,C dual

V ) = HomC (C dual
V ,C dual

U ) = 0.

In particular, the functor C dual
U × C dual

V → C dual sending (XU , XV ) to XU ⊕XV is an 
equivalence. The claim on the Balmer spectra follows by direct verification. �
Proposition 3.7. Let C be a stable homotopy theory. Then C is connected if and only 
if Spc(C dual) is connected and nonempty. Moreover, C is fin-connected if and only if 
Spc(C dual) is non-empty and has finitely many connected components.
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Proof. If C is connected, then 1 � 0 and so C dual is nonzero. It follows from [2, 
Lemma 2.2] that Spc(C dual) is nonempty. Now suppose by contradiction that Spc(C dual)
is disconnected so that there exist two nonempty open subsets U and V such that 
Spc(C dual) = U � V . Note that U and V are quasi-compact as any cover can be 
extended to a cover of all Spc(C dual), which by quasi-compactness admits a finite sub-
cover. Therefore U and V are Thomason and so by Lemma 3.6 we get a decomposition 
C dual � C dual

U × C dual
V which in turns gives a decomposition of 1 as a product of two 

nonzero rings. This contradicts our starting assumption, so Spc(C dual) must be con-
nected. Conversely, let Spc(C dual) be connected and nonempty, and suppose that C
is not connected so that 1 decomposes nontrivially as 10 × 11 in CAlg(C ). It then 
follows that C � C0 × C1 and so C dual � C dual

0 × C dual
1 by [35, Proposition 4.6.1.11]. 

By [16, Theorem A.5] or by direct verification, we then obtain a nontrivial decomposition 
Spc(C dual) � Spc(C dual

0 ) � Spc(C dual
1 ) contradicting our starting assumption. Therefore 

C must be connected. If C is fin-connected then C �
∏n

i=1 Ci for connected Ci and 
by the same argument as above we see that Spc(C dual) � �n

i=1 Spc(C dual
i ) where each 

Spc(C dual
i ) is connected. Finally, if Spc(C dual) is non-empty with finitely many connected 

components, an easy induction on the number of connected components and using the 
splitting established above shows that C is fin-connected. �
4. Separable commutative algebras

In this section we recall the notion of a separable commutative algebra and list some 
important properties that we will use throughout the paper. We record one version of 
the surprising fact that for a separable commutative algebra, the formation of modules 
commutes over the passage to the homotopy category, see Lemma 4.7.

We set the following definition, directly parallelling [5, Definition 3.1].

Definition 4.1. Let C be a symmetric monoidal ∞-category and A ∈ CAlg(C ). We say 
that A is separable if the multiplication map μ : A ⊗ A → A admits a section as a map 
of (A, A)-bimodules. Equivalently, σ is a map σ : A → A ⊗ A in C such that μσ = 1A
and (1A ⊗ μ) ◦ (σ⊗ 1A) = σμ = (μ ⊗ 1A) ◦ (1A ⊗ σ) : A ⊗A → A ⊗A. The commutative 
separable algebras span a full subcategory CAlgsep(C ) ⊆ CAlg(C ).

Example 4.2. If A, B ∈ CAlg(C ) are separable, then A ⊗ B is separable, as seen by 
tensoring the individual bimodule sections.

Example 4.3. For A, B ∈ CAlg(C ), we can form the commutative algebra A × B with 
componentwise structure. Then A and B are separable if and only if A ×B is so. Indeed 
if we have bimodule sections for μA and μB, we can combine then to get a bimodule 
section for μA×B. Conversely if μA×B admits a bimodule section, then by restricting this 
section along each component we get sections for μA and μB.

We now discuss how separable algebras behave under symmetric monoidal functors.
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Construction 4.4. A symmetric monoidal functor F : C → D between symmetric 
monoidal ∞-categories induces a functor CAlg(C ) → CAlg(D) on commutative algebras. 
We claim that this preserves separable algebras. To see this consider A ∈ CAlgsep(C ) so 
that the multiplication map μA admits a A-bimodule section σA. Note that since F is 
symmetric monoidal we have a commutative diagram

F (A)

F (A) F (A⊗A) F (A) ⊗ F (A).

1

F (σA)

F (μA)

∼

μF (A)

Then the bottom composite defines a F (A)-bimodule section for F (A) as required. Thus 
we get a well-defined functor CAlgsep(C ) → CAlgsep(D) as claimed.

Remark 4.5. Our definition of a separable algebra is identical to that given by Balmer 
in [5], with the only caveat that we work in the setting of ∞-categories as opposed to that 
of triangulated categories. We can relate the two notions by considering the canonical 
symmetric monoidal functor u : C → hC into the homotopy category of C . We deduce 
from Construction 4.4 that if A is separable in C , then uA is separable in hC . In fact, 
in forthcoming work Ramzi [43] will show that the converse also holds.

Remark 4.6. Let C be a stable homotopy theory, and A ∈ CAlg(C ) be separable with 
multiplication map μ, unit map η and bimodule section σ. Set γ := σ ◦ η : 1 → A ⊗ A. 
Separability tells us that

μ ◦ γ = η and (μ⊗ 1A) ◦ (1A ⊗ γ) = (1A ⊗ μ) ◦ (γ ⊗ 1A). (4.1)

Consider the extension-restriction adjunction

FA : C � ModA(C ) : UA.

If A is separable, then the counit ε : FAUA ⇒ Id admits a section ξ : Id ⇒ FAUA given 
by the composite

ξM : M γ⊗1M−−−−→ A⊗A⊗M
1A⊗act−−−−−→ A⊗M = A⊗ UAM

compare with [5, Proposition 3.11] (see also [19, 2.9](1)). One can check that this com-
posite is A-linear and a section of εM using the identities in (4.1). For instance, the fact 
that ξM is a section for εM follows from the following commutative diagram which uses 
the first identity in (4.1):
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M A⊗A⊗M A⊗M M

A⊗M M .

γ⊗1M

η⊗1M
μ⊗1M

1A⊗act εM

act

act

1M

In particular, the above implies that UA : ModA(C ) → C is faithful.

The following is a remarkable consequence of separability and under stronger assump-
tions has already appeared in [12, Remark 2.34], based on [20] and [47, Proposition 3.8]. 
Here we give a more direct proof.

Lemma 4.7. Let C be a stable homotopy theory and let A ∈ CAlg(C ) be separable. The 
symmetric monoidal functor u : C → hC induces a symmetric monoidal equivalence

hModA(C ) � ModuA(hC )

which is compatible with the forgetful functor to hC .

Remark 4.8. In the situation of Lemma 4.7, the triangulated categories hModA(C ) and 
ModuA(hC ) have small direct sums (since C is cocomplete). It then follows from [17, 
Proposition 3.2] that these triangulated categories are idempotent complete.

Proof. Throughout the proof we will need to use that uA is separable in the sense 
of Balmer (see Remark 4.5), so we can apply all the results of [5]. Also, given M in 
hModA(C ) or ModuA(hC ), we denote by UAM the underlying object in hC (which can 
also be seen as object in C ).

Let us start by noting that the symmetric monoidal functor u : C → hC induces a 
lax symmetric monoidal functor at the level of modules ModA(C ) → ModuA(hC ) by 
Remark 2.8. We claim that this is in fact symmetric monoidal, i.e. that the canonical 
map αM,N : uM ⊗uA uN → u(M ⊗A N) is an equivalence for all A-modules M and 
N . To this end recall from [35, Section 4.4.2] that we can calculate M ⊗A N (resp. 
uM ⊗uA uN) as the geometric realization of the simplicial object n �→ A⊗n ⊗ M ⊗ N

(resp. n �→ uA⊗n⊗uM⊗uN). We observe that the canonical map αM,N is an equivalence 
if M is of the form A ⊗X for some X ∈ C . This is due to the fact that the simplicial 
object n �→ A⊗n ⊗ M ⊗ N has an “extra degeneracy” or splitting [35, Section 4.7.2], 
which in particular implies that it is a universal colimit diagram (hence it is preserved 
by any functor). Since A is separable, for a general A-module M , we have a retraction 
diagram

M
ξM−−→ A⊗ UAM

εM−−→ M

by Remark 4.6. Therefore for all L ∈ ModuA(hC ), we have a commutative diagram
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HomModuA(hC )(L, uM ⊗uA uN) HomModuA(hC )(L, u(A⊗ UAM) ⊗uA uN) HomModuA(hC )(L, uM ⊗uA uN)

HomModuA(hC )(L, u(M ⊗A N)) HomModuA(hC )(L, u(A⊗ UAM ⊗A N)) HomModuA(hC )(L, u(M ⊗A N))

(αM,N )∗ (αA⊗UAM,N)∗∼ (αM,N )∗

where the top and bottom horizontal arrows compose to the respective identities. A 
simple diagram chase then shows that (αM,N )∗ is an equivalence for all L, which in 
turn shows that αM,N is an equivalence. This concludes the proof that ModA(C ) →
ModuA(hC ) is symmetric monoidal. Note that ModA(C ) → ModuA(hC ) factors through 
hModA(C ) by [34, Proposition 1.2.3.1] as the target is equivalent to the nerve of a 1-
category. We abuse notation and still denote by u the resulting symmetric monoidal 
functor hModA(C ) → ModuA(hC ).

Next we check that this functor induces an equivalence of underlying ∞-categories. 
To this end let hModA(C )free and ModuA(hC )free be the full subcategories spanned by 
the free modules, that is those of the form A ⊗ X and uA ⊗ X for some X ∈ C . We 
have an induced functor hModA(C )free → ModuA(hC )free which is evidently essentially 
surjective, and fully faithful

HomhModA(C )(A⊗X,A⊗ Y ) � HomModuA(hC )(uA⊗X,uA⊗ Y )

as one can verify by noting that both sides are equivalent to HomhC (X, uA ⊗ Y ) using 
the corresponding extension-of-scalars-forgetful adjunctions. Passing to the idempotent 
completion, this yields an equivalence

(hModA(C )free)� � ModuA(hC )free)�.

It is only left to note that

(hModA(C )free)� = hModA(C ) and ModuA(hC )free)� = ModuA(hC )

which follows from Remark 4.8 together with the fact that, by separability of A, any 
module is a retract of a free one: see [5, Remark 3.9 and Proposition 3.11] for the 
statement in ModuA(hC ) and Remark 4.6 for the statement in ModA(C ). �

We finally explain how the previous result relates to work of Balmer [5].

Remark 4.9. In the situation of Lemma 4.7, there is a commutative diagram

hModA(C ) ModuA(hC )

hC .
fgt

∼

fgt

In particular ModuA(hC ) inherits a triangulated structure from hModA(C ). This trian-
gulated structure coincides with that of [5] by [5, Main Theorem 5.17(c)]. Furthermore 



N. Naumann, L. Pol / Advances in Mathematics 449 (2024) 109736 17
the extension of scalars functor FA : C → ModA(C ) induces a functor hFA : hC →
hModA(C ) on homotopy categories which identifies via Lemma 4.7 with the extension 
of scalars functor hC → ModuA(hC ) defined in [5, Definition 2.4].

5. Degree functions of separable algebras

In this section we export the notion of separable algebra of finite tt-degree into the 
world of ∞-categories. We use this to introduce the degree function of a separable algebra 
and list a few of its important properties.

Theorem 5.1. Let D ∈ CAlg(PrLst) be given, and let f : A → B and g : B → A be maps in 
CAlgsep(D) such that gf = 1A. Then there exists C ∈ CAlgsep(D) and an equivalence in 
CAlg(D) h : B ∼−→ A ×C such that pr1h = g. In particular, C becomes an A-algebra via 
pr2hf . Moreover, if C ′ is another A-algebra and h′ : B ∼−→ A ×C ′ is another equivalence 
such that pr1h′ = g, then there exists an equivalence of A-algebras � : C ∼−→ C ′ such that 
h′ = (1 × �)h.

Proof. This is an elaboration of [6, Lemma 2.1]. Let Be := B⊗Bop be the enveloping al-
gebra so that Be-modules are the same as (B, B)-bimodule. We equip A with a structure 
of (B, B)-bimodule such that g is Be-linear. We then complete g to a fibre sequence

C → B
g−→ A

z−→ ΣC

in ModBe(D). Applying the exact functor UBe to the above fibre sequence and using that 
g is split by f in D , we deduce that UBe(z) = 0 in D . As Be is separable by Example 4.2, 
the forgetful functor UBe is faithful by Remark 4.6. Thus, z = 0 in ModBe(D) too. This 
gives an equivalence h : B ∼−→ A ⊕ C in ModBe(D) satisfying pr1h = g. Applying the 
canonical functor u : D → hD , we obtain a decomposition u(h) : uB ∼−→ uA ⊕ uC in 
ModuBe(hD). By [6, Lemma 2.2] (noting that the proof does not rely on the tt-category 
being essentially small), we can equip uA and uC with ring structures such that u(h)
is a ring isomorphism. Moreover this new ring structure on uA agrees with the original 
one: this follows from the fact that u(g) : uB → uA is a split epimorphism which is a 
homomorphism with respect to both ring structures on uA (the old one by assumption 
and the new one because u(h) =

(
u(g)
∗

)
is a homomorphism). Therefore we get a splitting 

of rings u(h) : uB � uA × uC in hD satisfying pr1u(h) = u(g). By applying π0 to u(h)
and noting that π0(B) = π0(uB) (and similarly for A and C), we get a splitting of 
commutative rings

π0(h) : π0(B) � π0(A) × π0(C)

satisfying pr1π0(h) = π0(g). Therefore there exists an idempotent e ∈ π0(B) correspond-
ing to (1, 0) under π0(h). Set C := B[(1 − e)−1] ∈ CAlg(D) and note that A � B[e−1]. 
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Then by Lemma 3.1 we get a decomposition h : B � A × C in CAlg(D) lifting the de-
composition in hD . By construction, we find that pr1h � g. Note that C is separable 
by Example 4.3. Finally, for uniqueness of C as an A-algebra, with the notation of the 
theorem, we obtain an equivalence k := h′h−1 : 1A × C

∼−→ 1A × C ′ of commutative 
algebras in ModA(D) such that pr1k � pr1. This means that k has the form(

1 0
s l

)
.

Now we can conclude by [6, Lemma 2.3] (again noting that the proof does not rely on 
the tt-category being essentially small). �
Corollary 5.2. Let D ∈ CAlg(PrLst) be given and consider A ∈ CAlgsep(D) with multiplica-
tion map μ and unit map η. Then there is an equivalence in CAlg(D) h : A ⊗A ∼−→ A ×A′

for some A′ ∈ CAlgsep(D) in such a way that pr1h = μ. Moreover, the A-algebra A′ is 
unique up to equivalence with this property.

Proof. Apply Theorem 5.1 to B = A ⊗A with g = μ : A ⊗A → A and f = 1A ⊗ η : A →
A ⊗A. �

We can then construct the splitting tower following [6].

Construction 5.3. Let D ∈ CAlg(PrLst) be given, and consider some A ∈ CAlgsep(D). We 
construct the splitting tower of A in CAlg(D)

A[0] → A[1] → A[2] → . . . → A[n] → . . . ,

where A[0] := 1, A[1] := A and the first map in the tower is the unit map η : A[0] → A[1]. 
For n ≥ 1, we define A[n+1] to be (A[n])′ in the notation of Corollary 5.2 applied to 
the commutative separable algebra A[n] in ModA[n−1](C ). Equivalently, the separable 
commutative A[n]-algebra A[n+1] is characterized by the existence of an equivalence 
h : A[n] ⊗A[n−1] A[n] � A[n] ×A[n+1] of A[n]-algebras such that pr1h = μ.

Remark 5.4. The splitting tower is functorial as in [6, Theorem 3.7(a)], i.e. given a functor 
F : D → D ′ in CAlg(PrLst), some A ∈ CAlgsep(D) and n ≥ 0, then F (A[n]) � F (A)[n] as 
commutative algebra objects.

Definition 5.5. Let 0 = D ∈ CAlg(PrLst) be given, and assume that A ∈ CAlgsep(D). We 
say that A has finite degree n ≥ 0 if A[n] = 0 and A[n+1] = 0. We say that A has infinite 
degree if A[n] = 0 for all n ≥ 0.

Example 5.6. Note that A has degree 0 if and only if A � 0 and that A has degree 1 if 
and only if A is nonzero and the multiplication map μ : A ⊗A → A is an equivalence.
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To establish a finiteness property of the splitting tower, we will need the following 
standard fact.

Lemma 5.7. Assume that C ∈ 2-Ring and A ∈ CAlg(C ) are given, and let

FA : Ind(C ) � ModA(Ind(C )) : UA

denote the free-forgetful adjunction. Then FA and UA preserves compact objects.

Proof. To ease the notation let us set D := Ind(C ). The first claim then follows from 
HomModA(D)(FA(X), −) � HomD(X, UA(−)) and the fact that UA preserves all colimits. 
For the second claim recall that UA admits a right adjoint RA. We claim that RA

preserves filtered colimits. This will conclude the proof since

HomD(UA(M),−) � HomModA(D)(M,RA(−)),

and both functors on the right hand side commute with filtered colimits if M is compact.
To prove the claim we need to show that the canonical map lim

−→
RA(Xi) → RA(lim

−→
Xi)

is an equivalence for any filtered diagram (i �→ Xi) in D . This is equivalent to checking 
that the canonical map

HomModA(D)(FA(Gi), lim−→ RA(Xi)) → HomModA(D)(FA(Gi), RA(lim
−→

Xi)) (5.1)

is an equivalence for {Gi} a set of compact generators of C , as {FA(Gi)} provides a set 
of compact generators for ModA(D). Using that FA(Gi) is compact in ModA(D) and the 
adjunction (UA, RA), we can rewrite the source of (5.1) as lim

−→
HomD(A ⊗Gi, Xi). This 

agrees with the target of (5.1) using the adjunction and the fact that A ⊗Gi ∈ C = Dω. 
Therefore the map (5.1) is an equivalence. �
Remark 5.8. It follows from Lemma 5.7 that there is an induced free-forgetful adjunction

FA : C = Ind(C )ω � ModA(Ind(C ))ω : UA.

Lemma 5.9. Let C ∈ 2-Ring and A ∈ CAlgsep(C ) be given. Then we have A[n] ∈ C for 
all n ≥ 0.

Proof. Note that a priori we have A[n] ∈ Ind(C ) by construction. We claim more strongly 
that for all n ≥ 0 and 0 ≤ i ≤ n − 1 we have A[n] ∈ ModA[i](Ind(C ))ω, omitting all 
forgetful functors from the notation. The stated claim will then be the cases with i = 0. 
The cases n = i = 0 and n = 1, i = 0 are clear since A[0] = 1, A[1] = A ∈ C = Ind(C )ω. 
We now proceed by induction on n ≥ 2: By construction, we have a splitting

A[n−1] ⊗A[n−1] � A[n−1] ×A[n] in ModA[n−2](Ind(C )).
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This shows that A[n] is a retract of the compact object on the left hand side (using the 
induction hypothesis and Lemma 5.7). Applying forgetful functors and Lemma 5.7, we 
obtain the claim for 0 ≤ i ≤ n − 2. The above splitting is also A[n−1]-linear, for the 
A[n−1]-action through the left tensor factor and the map A[n−1] → A[n] in the splitting 
tower. Since the left hand side is a compact A[n−1]-module by base-change, so is its 
retract A[n]. This settles the induction and the proof. �

This allows us to adapt the construction of the splitting tower to 2-rings.

Construction 5.10. Let C ∈ 2-Ring and A ∈ CAlgsep(C ) be given. Then the splitting 
tower of A ∈ C is obtained by embedding C ⊆ D into its ind-completion as the compact 
objects, applying Construction 5.3 to A ∈ CAlgsep(D), and noting that the resulting 
tower takes values in C ⊆ D by Lemma 5.9.

We note the following application for future reference.

Lemma 5.11. Let C ∈ 2-Ring and A ∈ CAlgsep(C ) be given. Then there is an equivalence 
of tt-categories ModuA(hC ) � hModA(Ind(C ))ω.

Proof. Recall from Lemma 4.7 that there is an equivalence of tt-categories

hModA(Ind(C )) � ModuA(h Ind(C ))

and that Ind(C )ω = C . Thus, we only need to check that M ∈ ModuA(h Ind(C )) is 
compact if and only if UAM ∈ h Ind(C ) is compact. The forward implication follows from 
Lemma 5.7. The backward implication follows from the same lemma and separability as 
M is a retract of A ⊗ UAM . �
Remark 5.12. It follows from Lemma 5.11 that the tower of Construction 5.10 lifts the 
splitting tower of uA ∈ CAlgsep(hC ) constructed by Balmer [6].

We now list some useful properties that the degree satisfies.

Proposition 5.13. Let C ∈ 2-Ring and consider A, B ∈ CAlg(C ) with A separable. Denote 
by FB : C → ModB(Ind(C ))ω the functor X �→ B ⊗X.

(a) We have deg(FB(A)) ≤ deg(A). This is an equality if B is faithful or B is separable 
and A is a B-algebra.

(b) We have deg(1×n) = n for all n ≥ 1.

Proof. For part (a) see [6, Theorem 3.7(a) and (b)] and [41, Proposition 3.5(c)]. Part 
(b) is proved in [6, Theorem 3.9(a)]. �
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Definition 5.14. Let C be a 2-ring and consider A ∈ CAlgsep(C ). For any prime 
p ∈ Spc(C ), we can consider the local category Cp which is defined as the idempo-
tent completion of the Verdier quotient C /p. There is a canonical symmetric monoidal 
exact functor qp : C → Cp. We define the p-local degree of A to be the degree of 
qp(A) ∈ CAlgsep(Cp). We can assemble the local degrees into a function

deg(A) : Spc(C ) → Z = Z ∪ {∞}, p �→ deg(A)(p) := deg(qp(A)).

We say that the degree function is:

• finite if deg(A)(p) is finite for all p ∈ Spc(C ). By [6, Theorem 3.8] this is equivalent 
to A having finite degree. Furthermore we have the formula

deg(A) = max
p∈supp(A)

deg(A)(p). (5.2)

• locally constant if the degree function is constant on a suitable open neighbourhood 
of every point of Spc(C ).

Remark 5.15. The category Cp is local in the sense that X ⊗ Y = 0 implies X = 0 or 
Y = 0, see [4, Proposition 4.2, Example 4.3]. This is also equivalent to Spc(Cp) having 
exactly one close point. In fact, Spc(Cp) is homeomorphic to the subspace {q | p ⊆ q} ⊆
Spc(C ) by [2, Proposition 3.11, Corollary 3.14].

The next result shows that separable algebras of finite degree are closed under finite 
products.

Lemma 5.16. Let C be a 2-ring and let A =
∏n

i=1 Ai ∈ CAlg(C ) be separable. Then

deg(A)(p) =
n∑

i=1
deg(Ai)(p) for all p ∈ Spc(C ).

In particular, A has finite degree if and only if Ai has finite degree for all i.

Proof. For all p ∈ Spc(C ), the functor qp : C → Cp is exact so qp(A) =
∏n

i=1 qp(Ai). The 
claim that deg(A)(p) =

∑n
i=1 deg(Ai)(p) for all p then follows from [6, Corollary 3.12]. 

The second claim follows from the first one and (5.2). �
Example 5.17. Let C be a 2-ring and consider the commutative algebra 1×n for some 
integer n ≥ 1. Then the degree function deg(1×n) : Spc(C ) → Z is constant with value 
n. Indeed for all p ∈ Spc(C ), the functor qp : C → Cp is exact and symmetric monoidal 
so

qp(1×n) = qp(1)×n = 1×n
p
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where 1p denotes the unit object of Cp. Therefore the claim follows from Proposi-
tion 5.13(b).

We can obtain more examples of separable algebras with locally constant and finite 
degree function as follows.

Lemma 5.18. Let C be a 2-ring and consider 1[e−1] ∈ CAlg(C ) for an idempotent e of 
1. Then

deg(1[e−1])(p) =
{

1 if p ∈ supp(1[e−1])
0 otherwise.

In particular, the degree function deg(1[e−1]) : Spc(C ) → Z is locally constant. More 
generally if e1, . . . , en are idempotent elements of 1, then 

∏n
i=1 1[e

−1
i ] has finite degree 

and its degree function is locally constant.

Proof. Recall that p ∈ supp(1[e−1]) if and only if 1[e−1] ∈ p. Clearly, if 1[e−1] ∈ p then 
its image is zero in Cp and so it has zero degree. Now suppose that 1[e−1] ∈ p so that 
qp(1[e−1]) = 0. Then

0 < deg(qp(1[e−1])) ≤ deg(1) = 1

using Proposition 5.13.
The decomposition 1 � 1[e−1] ×1[(1 −e)−1] induces a decomposition of C as C0×C1

which in turns gives a decomposition

Spc(C0) � Spc(C1) � Spc(C ),

by Lemma 3.6. The previous paragraph shows that the degree function is constant and 
equal to 1 on Spc(C0), and equal to 0 on Spc(C1). In particular, the degree function is 
locally constant.

If we have several idempotent elements of 1, a similar argument as above gives a 
decomposition Spc(C ) � �i Spc(Ci) where each deg(1[e−1

i ]) is constant with value 
1 in Spc(Ci) and zero otherwise. By Lemma 5.16, we have deg(

∏
i 1[e

−1
i ])(p) =∑

i deg(1[e−1
i ])(p) which is then finite and locally constant. �

The next result makes explicit the relation between supp(A[d]) and the degree function 
deg(A). (The notion of descendability used here is reviewed in Section 7).

Lemma 5.19. Let C be a 2-ring and consider A ∈ CAlgsep(C ). Then for all p ∈ Spc(C )
and d ∈ Z≥0 we have p ∈ supp(A[d]) if and only if d ≤ deg(A)(p). Moreover if C is rigid 
(which means that C = C dual), then A is descendable in C if and only if deg(A)(p) ≥ 1
for all p ∈ Spc(C ).
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Proof. Recall that p ∈ supp(A[d]) if and only if A[d] ∈ p. This is equivalent to 0 =
qp(A[d]) = qp(A)[d] by the functoriality of the splitting tower, see Remark 5.4. Finally 
qp(A)[d] = 0 if and only if deg(A)(p) ≥ d.

For the second claim note that A is descendable if and only if supp(A) = Spc(C ), 
see Lemma 7.4. Since A = A[1], the previous paragraph tells us that this equivalent to 
deg(A)(p) ≥ 1 for all primes p. �

We note the following functoriality of the degree function.

Proposition 5.20. Let F : C → D be a symmetric monoidal exact functor between 2-rings 
and let ϕ : Spc(D) → Spc(C ) be the induced map between Balmer spectra. For every 
A ∈ CAlgsep(C ) and p ∈ Spc(D), we have

deg(F (A))(p) = deg(A)(ϕ(p)).

Proof. For all p ∈ Spc(D) we have a commutative diagram

C D

C /ϕ(p) D/p

Cϕ(p) Dp.

F

qϕ(p) qpF

F
�

Here we used the universal property of idempotent completion and the fact that 
F (ϕ(p)) ⊆ p. We need to check that deg(qϕ(p)(A)) = deg(qp(F (A))). We claim that 
F

� is conservative so that by [6, Theorem 3.7(b)] we find

deg(qϕ(p)(A)) = deg(F �(qϕ(p)(A))) = deg(qp(F (A)))

as required. To prove the claim let us first show that F is conservative. Pick X ∈ C /ϕ(p)
such that F (X) � 0. Choose X ∈ C such that its image under C → C /ϕ(p) is X. Note 
that F (X) � 0 if and only if F (X) ∈ p, which means that p ∈ supp(F (X)). But 
supp(F (X)) = ϕ−1(supp(X)) by [2, Proposition 3.6] so we deduce that ϕ(p) ∈ supp(X). 
In other words, X ∈ ϕ(p) and so X � 0 as required.

Finally, consider an object of Cϕ(p), which is a pair (X, e) where X ∈ C /ϕ(p) and 

e is an idempotent of X. Suppose that its image under F � is equivalent to the zero 
object. This means that F (X) � 0 and F (e) is an equivalence. By conservativity of F
we conclude that the pair (X, e) is equivalent to zero in Cϕ(p) as claimed. �
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6. Descent for separable commutative algebras

In this section we prove that the formation of commutative separable algebras respects 
all limits of stable homotopy theories and deduce some consequences for the degree 
function. We start by giving a characterization of separability.

Definition 6.1. Let C ∈ CAlg(PrLst) be given and consider A ∈ CAlg(C ) with multiplica-
tion map μ. We define a space s(A) via the pullback square

s(A) HomModA⊗A(C )(A,A⊗A)

∗ HomModA⊗A(C )(A,A).

μ∗

idA

Clearly, s(A) is non-empty if and only if A is separable.

We now show that the bimodule section witnessing separability is essentially unique. 
We emphasize that this is only true for commutative algebras, see for example [30, 
Example 1.5].

Lemma 6.2. The commutative algebra A ∈ CAlg(C ) is separable if and only if s(A) is 
contractible.

Proof. If s(A) is contractible, then it is non-empty and so a bimodule section for the 
multiplication map of A exists, i.e. A is separable.

Conversely, suppose that A is separable with section s and let J denote the fibre of 
the multiplication map μ : A ⊗ A → A formed in (A, A)-bimodules. Then consider the 
following diagram of spaces

HomModA⊗A(C )(A,A⊗A) HomModA⊗A(C )(A,A)

HomModA⊗A(C )(A,A⊗A) HomModA⊗A(C )(A,A)

μ∗

+s +idA

μ∗

in which the vertical maps are equivalences, using the H-space structure of the mapping 
spaces. This is a commutative square since for all f ∈ HomModA⊗A(C )(A, A ⊗A), we have

μ ◦ (f + s) = μ ◦ f + μ ◦ s = μ ◦ f + idA

using that s is a section for μ. By taking horizontal fibres we obtain the equivalence

HomModA⊗A(C )(A, J) �−→ s(A). (6.1)

Using Corollary 5.2, we can identify
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HomModA⊗A(C )(A, J) � HomModA×A′ (C )(A,A′),

which is contractible since A and A′ are orthogonal. �
Proposition 6.3. Let K be a simplicial set and p : K → CAlg(PrLst) be a functor. Then 
the canonical functors induced by the projections

CAlgsep(lim
K

p) ∼−→ lim
k∈K

CAlgsep(p(k))

and

CAlgsep((lim
K

p)dual) ∼−→ lim
k∈K

CAlgsep(p(k)dual)

are equivalences.

Proof. The second isomorphism follows from the first and the fact ([35, Proposition 
4.6.1.11]) that the formation of dualizable objects commutes over limits.

Let us set C = limK p and Ck = p(k) so that C = limk Ck. We note that the 
first functor is fully faithful as it is a subfunctor of the equivalence of Lemma 2.7. Now 
consider A ∈ CAlg(C ) such that all images Ak ∈ CAlgsep(Ck) are separable. To conclude 
the proof, we need to show that A is separable. We note that there is an equivalence 
ModA⊗A(C ) � limk ModAk⊗Ak

(Ck) by Lemma 2.9. Thus we can calculate the mapping 
spaces in the limit category rather than in ModA⊗A(C ). Since mapping spaces in limits 
are limits, (6.1) shows that the canonical map

s(A) ∼−→ lim
k

s(Ak)

is an equivalence. Since all s(Ak) are contractible the limit s(A) is non-empty (in fact, 
contractible by Lemma 6.2), and A is separable. �
Example 6.4. Let G be a finite group and consider a stable homotopy theory C . Since 
Fun(BG, C ) = limBG C we immediately deduce that

CAlgsep(Fun(BG,C )) = Fun(BG,CAlgsep(C )).

We deduce some consequences for the degree of a commutative algebra in a limit.

Corollary 6.5. Let K be a simplicial set and p : K → CAlg(PrLst) be a functor. Consider 
A ∈ CAlgsep((limK p)dual) and for each k ∈ K, let Ak ∈ CAlgsep(p(k)dual) be its image 
under the projection functor limK p → p(k). Then

deg(A) = sup(deg(Ak)) ∈ N ∪ {∞}.

k∈K
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Proof. The functoriality of the splitting tower implies that, for each n ≥ 0, we have 
A[n] = {A[n]

k }k. Since an object in the limit is zero if and only if it is so at every vertex, 
the claim follows. �
Corollary 6.6. Let K be a simplicial set and p : K → CAlg(PrLst) be a functor. Then the 
equivalence

CAlgsep((lim
K

p)dual) ∼−→ lim
k∈K

CAlgsep(p(k)dual)

from Proposition 6.3 identifies algebras of finite degree with families of algebras of 
bounded degree.

7. Axiomatic Galois theory

In this section we recall the necessary background on axiomatic Galois theory follow-
ing [37]. We start by giving the definition of a Galois category and listing a few simple 
examples. We then introduce the notion of a (weak) finite cover which will be of key 
importance throughout this paper and recall that they can be organized into a Galois 
category. We also explain how to associate a profinite groupoid to any such category 
via the Galois correspondence. We end this section by discussing G-torsors in a Galois 
category and showing that Galois extensions are examples of such.

Definition 7.1. A Galois category is a category C such that

(a) C admits finite limits and coproducts, and the initial object ∅ is empty (see [37, 
Definition 5.11]);

(b) coproducts are disjoint and distributive in C (see [37, Definition 5.12, Definition 
5.13]);

(c) Given an object x in C , there is an effective descent morphism [37, Definition 5.14]
x′ → ∗ into the terminal object of C and a decomposition x′ = x′

1
∐

. . .
∐

x′
n such 

that each map x × x′
i → x′

i is isomorphic to the fold map x × x′
i �

∐
Si

x′
i → x′

i for 
a finite set Si.

The collection of Galois categories and functors between them (which are required to 
preserve coproducts, effective descent morphisms, and finite limits) can be organized into 
a 2-category GalCat.

Example 7.2. Let G be a finite group. The category FinSetG of finite sets with a left 
G-action is a Galois category by [37, Example 5.30]. The only axiom that requires verifi-
cation is (c). Given a finite G-set T , there is an effective descent morphism G → ∗ such 
that T × G decomposes in FinSetG as a disjoint union of finite copies of G (since it is 
free).
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Example 7.3. Let G be a finite groupoid. The category Fun(G , FinSet) is a finite product 
of Galois categories so it is again a Galois category.

Before giving the main examples of Galois categories, we will need to introduce some 
terminology. Recall from [37, Definition 3.18] that A ∈ CAlg(C ) is called descendable if 
the thick tensor ideal generated by A is all of C . We give the following useful character-
ization of descendability which we will use repeatedly.

Lemma 7.4. Let C be a 2-ring which is rigid, i.e. we have C = C dual. Then, the following 
are equivalent for A ∈ CAlg(C ):

(a) A is descendable in C ;
(b) supp(A) = Spc(C ).

Proof. A is descendable if and only if A and 1 generate the same thick ideal in C . By 
the classification of thick ideals [2, Theorem 4.10] (together with [3, Proposition 2.4]) 
this is equivalent to supp(A) = Spc(C ). �

We are finally ready to introduce (weak) finite covers following [37, Definitions 6.1 
and 6.2].

Definition 7.5. Let C ∈ CAlg(PrLst) and some A ∈ CAlg(C ) be given.

• We say that A is a weak finite cover if there exists A′ ∈ CAlg(C ) such that
(i) A′ is faithful (i.e. A′ ⊗− : C → C is faithful).
(ii) A′ ⊗− : C → C commutes with all limits.
(iii) there is an equivalence

A⊗A′ �
n∏

i=1
A′[e−1

i ] in CAlg(ModA′(C ))

where each ei is an idempotent of A′.
The weak finite covers span a full subcategory CAlgw.cov(C ) ⊆ CAlg(C ).

• We say that A is a finite cover if there exists A′ ∈ CAlg(C ) such that
(i) A′ is descendable in C ;
(ii) there is an equivalence

A⊗A′ �
n∏

i=1
A′[e−1

i ] in CAlg(ModA′(C ))

where each ei is an idempotent of A′.
The finite covers span a full subcategory CAlgcov(C ) ⊆ CAlg(C ).
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As already mentioned at the beginning of this section, (weak) finite covers form a 
Galois category.

Proposition 7.6. Let C ∈ CAlg(PrLst) be given. Then, the ∞-categories

CAlgcov(C )op and CAlgw.cov(C )op

are Galois categories. We always have the containment CAlgcov(C ) ⊆ CAlgw.cov(C ), 
and this is an equality if 1 ∈ C is compact. Furthermore, any functor F : C → D in 
CAlg(PrLst) induces functors

CAlgw.cov(C ) → CAlgw.cov(D) and CAlgcov(C ) → CAlgcov(D).

Proof. The first two claims are proved in [37, Theorem 6.5]. Implicitly, we are also 
claiming that the ∞-categories of (weak) finite covers are in fact 1-categories, which is 
consequence of [37, Proposition 5.28]. The final claim is [37, Proposition 6.6]. �

We now turn to discuss the Galois correspondence. To this end, we note that the 
collection of finite groupoids, functors and natural transformations can be organized 
into a 2-category which we denote by Gpdfin. Using Example 7.3, we see that there is a 
functor

Gpdop
fin → GalCat, G �→ Fun(G ,FinSet). (7.1)

Now by [37, Proposition 5.34], GalCat admits filtered colimits and these are calculated 
at the level of underlying categories. It follows that (7.1) uniquely extends to a colimit 
preserving functor

Pro(Gpdfin)op � Ind(Gpdop
fin) → GalCat. (7.2)

Theorem 7.7 (Galois correspondence). The functor (7.2) is an equivalence of 2-
categories.

Proof. See [37, Theorem 5.36]. �
Therefore we can make the following definition following [37, Definition 6.8].

Definition 7.8. Let C be a stable homotopy theory. The Galois groupoid π≤1(C ) of C
is the profinite groupoid associated to the Galois category CAlgcov(C )op via the Ga-
lois correspondence. The weak Galois groupoid πweak

≤1 (C ) of C is the profinite groupoid 
associated to the Galois category CAlgw.cov(C )op.

Remark 7.9. If C is connected, these Galois groupoids can be represented by profinite 
groups, denoted by π1(C ) and πweak

1 (C ).
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For a profinite group G, we let FinSetctsG denote the category of finite discrete sets 
with a continuous left G-action, i.e., a G-action that factors through G/U for U an open 
normal subgroup (which is automatically of finite index). In other words,

FinSetctsG = lim
−→
U⊆G

FinSetG/U .

By specializing the Galois correspondence to the case where C is connected and using 
Remark 7.9, we obtain the following result.

Corollary 7.10. Let C be a connected stable homotopy theory. Then there are equivalences 
of Galois categories

CAlgcov(C )op � FinSetctsπ1(C ) and CAlgw.cov(C )op � FinSetctsπweak
1 (C ).

We finish this section by recalling the notion of G-torsor in a Galois category and list 
some examples.

Definition 7.11 ([37, Definition 5.31]). Let C be a Galois category and let G be a finite 
group. A G-torsor in C is an object x ∈ C with a G-action such that there exists an 
effective descent morphism y → ∗ such that y×x → y ∈ C/y, as an object with G-action, 
is given by

y × x �
∐
G

y (7.3)

where G-acts on the latter by permuting the summands.

Example 7.12. The Galois category FinSetG admits a G-torsor which is given by x = G. 
Indeed the canonical right G-action makes x into an object with G-action in FinSetG. 
Consider y = G ∈ FinSetG with its canonical left G-action. We have already noted that 
there is an effective descent morphism y → ∗ in FinSetG, and there is a canonical map∐

G

y → y × x, yg �→ (yg, g)

which is a G-equivariant bijection with respect to both the left and right G-actions on the 
source and on the target. Therefore it provides an equivalence of G-objects in FinSetG. 
In fact we can say a little more: up to isomorphism G is the unique G-torsor which is 
indecomposable in FinSetG. To see this consider a G-torsor x and an effective descent 
morphism y → ∗ such that (7.3) holds. If x is indecomposable in FinSetG, then x � G/H

for some subgroup H ⊆ G. However, the equivalence (7.3) implies that G acts freely on 
x, forcing H = 1.

In order to give other examples of G-torsors, we recall the following definition.
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Definition 7.13. Let C ∈ CAlg(PrLst) be given. An object A ∈ CAlg(C ) with an action of 
a finite group G in CAlg(C ) is a G-Galois extension if:

• The canonical map 1 → AhG is an equivalence;
• The map h : A ⊗A →

∏
G A in ModA(C ), given informally by a1⊗a2 �→ (a1g(a2))g∈G, 

is an equivalence.

We say that a G-Galois extension A is faithful if furthermore A is faithful.

The following result provides more examples of G-torsors.

Proposition 7.14. Let G be a finite group, and C ∈ CAlg(PrLst).

(a) The G-torsors in the Galois category CAlgw.cov(C ) are precisely the faithful G-Galois 
extensions. Moreover, given A ∈ CAlgw.cov(C ), there exists a faithful G-Galois ex-
tension B such that

B ⊗A �
k∏

i=1
B[e−1

i ] in CAlg(ModB(C ))

where each ei is an idempotent of B.
(b) The G-torsors in the Galois category CAlgcov(C ) are precisely the (faithful) G-Galois 

extensions which are descendable. Moreover, given A ∈ CAlgcov(C ), there exists a 
(faithful) G-Galois extension B which is descendable and such that

B ⊗A �
k∏

i=1
B[e−1

i ] in CAlg(ModB(C ))

where each ei is an idempotent of B.

Recall that descendability implies faithfullness by [37, Proposition 3.19]. This explains 
the use of the parenthesis in part (b) above.

Proof. The first part of (a) and (b) is proved in [37, Proposition 6.13 and Corollary 
6.15]. The rest follows from [37, Corollary 5.41]. �

Finally we record the following result.

Proposition 7.15. Let C ∈ CAlg(PrLst) be given, and A ∈ CAlg(C ) be a faithful G-Galois 
extension. Then A ∈ C dual. Moreover if 1 is compact in C then A is descendable in C .

Proof. See [37, Proposition 6.14 and Theorem 3.38]. �
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8. Finite covers and separability

The goal of this section is to show that finite covers are precisely the separable com-
mutative algebras with underlying perfect module and locally constant and finite degree 
function. Let us first introduce some notation.

Definition 8.1. Consider C ∈ CAlg(PrLst).

• We denote by CAlgsep,f(C ) the full subcategory of CAlg(C ) spanned by the separable 
commutative algebras of finite degree.

• We denote by CAlgsep,cf(C dual) the full subcategory of CAlg(C dual) spanned by the 
separable commutative algebras with constant and finite degree function.

• We denote by CAlgsep,lcf(C dual) the full subcategory of CAlg(C dual) spanned by the 
separable commutative algebras with locally constant and finite degree function.

Our proof can be divided in four steps:

(1) We show that any weak finite cover is separable of finite degree and dualizable: 
CAlgw.cov(C ) ⊆ CAlgsep,f(C dual), see Corollary 8.8. This step relies on results of 
Rognes which, for completeness, we recall below.

(2) We show that finite covers are separable, dualizable and have locally constant and 
finite degree function: CAlgcov(C ) ⊆ CAlgsep,lcf(C dual) see Theorem 8.10.

(3) If C is fin-connected, we show that any separable and dualizable commutative algebra 
with locally constant and finite degree function is a finite cover: CAlgsep,lcf(C dual) ⊆
CAlgcov(C ) see Theorem 8.12.

(4) Combining the previous steps, we deduce that CAlgsep,lcf(C dual) = CAlgcov(C ), see 
Corollary 8.13.

To prove step one, we will first show that any faithful G-Galois extension is separable 
and has a dualizable underlying module, and then deduce the general result from this.

Proposition 8.2. Let A ∈ CAlg(C ) be a G-Galois extension. Then A is separable of degree 
|G|.

Proof. The first claim is essentially [46, Lemma 9.1.2]; we reproduce the argument here 
for completeness. Since C is additive and G is finite, we have a natural equivalence ∐

G A �
∏

G A. Therefore the canonical inclusion {e} → G of the neutral element induces 
a map

ie = A →
∏

A.

G
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Endow 
∏

G A with the A-bimodule structure making h into an A-bimodule map. Infor-
mally, this is given by

a0.(ag)g.a1 := (a0agg(a1))g a0, a1 ∈ A and (ag)g ∈
∏
G

A.

Note that the map ie is also an A-bimodule map. The required A-bimodule section σ to 
μ is described by the following diagram

A A⊗A A

∏
G A .

σ

ie
� h

μ

pre
(8.1)

To calculate the degree note that FA(A) = 1
×|G|
A in ModA(C ) and apply Proposition 5.13

(b) and (a). �
Lemma 8.3 ([46, Lemma 6.2.6]). Let A ∈ Fun(BG, CAlg(C )) for a finite group G, and 
let X ∈ C be dualizable. Then the canonical map

νX : X ⊗AhG → (X ⊗A)hG

is an equivalence.

Proof. The result follows from the fact that AhG = limBG A and that X ⊗− preserves 
limits since X is dualizable. �

The next result gives the first part of step one.

Lemma 8.4 ([46, Lemma 6.2.4]). Let A ∈ CAlg(C ) be dualizable and faithful. If X ∈ C

is such that A ⊗ X is dualizable in ModA(C ), then X is dualizable. In particular any 
weak finite cover is dualizable.

Proof. Consider the free-forgetful adjunction FA : C → ModA(C ) : UA. We note that 
FA = A ⊗ − is conservative and preserves all limits since A is faithful and dualizable. 
Therefore by the ∞-categorical version of the Barr-Beck theorem [37, Theorem 3.3], the 
adjunction (FA, UA) is comonadic. An application of [35, Theorem 4.7.5.2] shows that 
C � Tot(ModA⊗•+1(C )). By [35, Proposition 4.6.1.11], the object X is dualizable in C
if and only if A⊗n ⊗X is dualizable in ModA⊗n(C ) for all n ≥ 1. This now follows from 
our assumption and the fact that the free functor preserves dualizable objects.

For the second claim consider a weak finite cover A. Then by Proposition 7.14 there 
exists a faithful G-Galois extension B such that FB(A) =

∏k
i=1 B[e−1

i ]. Note that FB(A)
is dualizable in ModB(C ) as it is a finite product of retracts of the unit objects. More-
over B is dualizable by Proposition 7.15 and faithful by definition. So by the previous 
paragraph A is dualizable. �
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Lemma 8.5 ([46, Lemma 7.2.5]). Let A be a faithful G-Galois extension. For every sub-
group K ⊆ G, the commutative algebra AhK is dualizable in C and the canonical map 
κ : AhK ⊗AhK → (A ⊗A)h(K×K) is an equivalence.

Proof. Note that A is dualizable in C by Proposition 7.15. Thus by Lemma 8.4, we can 
prove that AhK is dualizable in C by checking that A ⊗AhK is dualizable in ModA(C ). 
The equivalence h : A ⊗ A →

∏
G A is K-equivariant with respect to the left K-action 

on A ⊗ A via the right copy of A, and a right action on 
∏

G A via (ag)g.k = (agk)g for 
k ∈ K and (ag)g ∈

∏
G A. Then using Lemma 8.3 we see that

A⊗AhK � (A⊗A)hK � (
∏
G

A)hK �
∏
G/K

A,

where in the last equivalence we used that K acts on 
∏

G A only via the indexing set 
G. The right hand side is dualizable in ModA(C ) since it is a finite product of the unit 
object. Therefore AhK is dualizable in C .

For the second claim we note that the map κ factors as the composite

AhK ⊗AhK ν−→ (A⊗AhK)hK ν−→ (A⊗A)h(K×K).

We have already noted that A is dualizable in C , and by the previous paragraph AhK

is dualizable too. Therefore the two maps above are equivalences by Lemma 8.3 �
Proposition 8.6. Let A be a faithful G-Galois extension. For every subgroup K ⊆ G, the 
commutative algebra B = AhK is separable in C .

Proof. This is essentially [46, Proposition 9.1.4]; we record the argument here for com-
pleteness. The canonical map h : A ⊗A →

∏
G A is (K ×K)-equivariant with respect to 

the actions given by (k, k′).(a ⊗ a′) = k.a ⊗ k′.a′ on the source, and (k, k′).(g �→ ag) =
(g �→ k.ak−1gk′) on the target. We note that there are maps

∏
K

A
iK−−→

∏
G

A
prK−−→

∏
K

A

whose composite is the identity. The first map is induced by the inclusion K → G and 
uses the equivalence 

∐
K A �

∏
K A coming from the fact that C is additive and K

is finite. The map prK is the projection onto the K-factors. The maps iK and prK are 
(K × K)-equivariant where the action on 

∏
K A is defined in a way similar to that of ∏

G A. The equivalence A → (
∏

K A)hK induces an equivalence AhK → (
∏

K A)h(K×K)

which makes the following diagram commute



34 N. Naumann, L. Pol / Advances in Mathematics 449 (2024) 109736
AhK AhK ⊗AhK AhK

AhK (A⊗A)h(K×K) AhK

(
∏

K A)h(K×K) (
∏

G A)h(K×K) (
∏

K A)h(K×K).

= κ�

μ

=

� hh(K×K)�

μh(K×K)

�

i
h(K×K)
K prh(K×K)

K

The map κ is an equivalence by Lemma 8.5, and the maps hh(K×K) and prh(K×K)
K ◦

i
h(K×K)
K are obtained from equivalences by passing to homotopy (K ×K)-fixed points. 

A diagram chase then shows that μ admits a section as claimed. �
Theorem 8.7. Let C ∈ CAlg(PrLst) and consider a weak finite cover A ∈ CAlg(C ). Then 
there exist finite collections of finite groups {Gα} and {Kjα} with Kjα ⊆ Gα, and faithful 
Gα-Galois extension Bα ∈ CAlg(C ) such that A =

∏
α

∏
jα

B
hKjα
α . In particular, A is 

separable of finite degree.

Proof. By the Galois correspondence (Theorem 7.7) we have an equivalence of Galois 
categories

CAlgw.cov(C )op � lim
−→
λ∈Λ

Fun(BGλ,Set)

where Λ is filtered and the Gλ’s are finite groupoid. In particular, we can find a finite 
groupoid G = Gλ for some λ ∈ Λ and a functor of Galois categories

F : Fun(BG ,FinSet) → CAlgw.cov(C )op

whose essential image contains A. Say that X ∈ Fun(BG , FinSet) is such that F (X) � A. 
We decompose the finite groupoid into its finite connected components BG �

∐
α BGα

and so rewrite X =
∐

α Xα where Xα is a finite Gα-set. Thus, we have functors of Galois 
categories

Fα : FinSetGα
→ CAlgw.cov(C )op, Xα �→ Aα

such that 
∏

α Aα � A. The Galois category FinSetGα
has a natural Gα-torsor which 

is given by Gα, see Example 7.12. Passing this along Fα gives us a faithful Gα-Galois 
extension Bα ∈ CAlg(C ) by Proposition 7.14. We decompose Xα even further into its 
orbits Xα �

∐
jα

Gα/Kjα and note that Xα =
∐

jα
(Gα)hKjα

. Thus after applying Fα

to this identity we find that Aα �
∏

jα
B

Kjα
α . Putting all together, A �

∏
α

∏
jα

B
Kjα
α . 

The fact that A is separable follows from Proposition 8.6 and Example 4.3. To calculate 
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the degree of A, recall that by definition of weak finite cover, there exists a faithful 
commutative algebra B and an equivalence

B ⊗A �
s∏

i=1
B[e−1

i ] ∈ CAlg(ModB(C ))

for some idempotent elements ei’s of B. By Proposition 5.13(a), the degree of A agrees 
with the degree of B⊗A calculated in ModB(C ). Now the claim follows from Lemmas 5.16
and 5.18. �

We are finally ready to prove step one.

Corollary 8.8. For any C ∈ CAlg(PrLst), there is an inclusion

CAlgw.cov(C ) ⊆ CAlgsep,f(C dual).

Proof. Combine Lemma 8.4 and Theorem 8.7. �
Before proving step two we will need the following result.

Lemma 8.9. Let C ∈ CAlg(PrLst) and A ∈ CAlg(C dual) be a faithful G-Galois extension 
which is descendable. Then the map induced by the extension of scalars functor

Spc(ModA(Ind(C dual))ω) → Spc(C dual)

is isomorphic to the quotient map

Spc(ModA(Ind(C dual))ω) → Spc(ModA(C )dual)/G.

Proof. From [41, Theorem 9.1] with K = hC dual there we obtain

Spc(C dual) = Spc(hC dual) � Spc(ModuA(hC dual))/G,

using that supp(A) = Spc(C dual) because A is descendable. The claim then follows from 
ModuA(hC dual) � hModA(Ind(C dual))ω, see Lemma 5.11. �

We now prove step two.

Theorem 8.10. For any C ∈ CAlg(PrLst), there is an inclusion

CAlgcov(C ) ⊆ CAlgsep,lcf(C dual).
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Proof. Consider A ∈ CAlgcov(C ). Since a finite cover is a weak finite cover, we deduce 
that the underlying module of A is dualizable by Lemma 8.4, and that A is separable of 
finite degree by Theorem 8.7.

It remains to show that the degree function is locally constant. By Proposition 7.14(b), 
there exists a faithful G-Galois extension B which admits descent such that FB(A) =∏k

i=1 B[e−1
i ]. By Lemma 8.9 we can identify the map

ϕ : Spc(ModB(Ind(C dual))ω) → Spc(C dual)

induced by the extension of scalars functor with the quotient map by the action of G. 
Here an element g ∈ G acts on a prime ideal p via p.g := g−1(p). By Proposition 5.20
we know that

deg(FB(A))(p) = deg(A)(ϕ(p)) (8.2)

for all p ∈ Spc(ModB(Ind(C dual))ω). Given primes p, q with ϕ(p) = ϕ(q), there exists 
g ∈ G such that p.g = q. Then multiplication by g defines an equivalence

ModB(Ind(C dual))ωq � ModB(Ind(C dual))ωp

which shows that deg(FB(A))(p) = deg(FB(A))(p.g) for all g ∈ G, using that FB(A)g �
FB(A). In other words deg(FB(A)) is constant on the orbits of G. This fact together 
with (8.2) implies that deg(A) is locally constant whenever deg(FB(A)) is so. The latter 
degree function was shown to be locally constant in Lemma 5.18. �

The degree function of a weak finite cover need not be locally constant, see Exam-
ple 14.12.

We now turn to giving conditions under which a separable algebra is a finite cover.

Proposition 8.11. Consider A ∈ CAlgsep(C dual). Then the following are equivalent:

(a) A has constant degree d ∈ Z≥0.
(b) There exists B ∈ CAlg(C dual) descendable such that FB(A) = B×d in

ModB(Ind(C dual))ω.

In particular we have an inclusion CAlgsep,cf(C dual) ⊆ CAlgcov(C ).

This is a slight modification of [41, Proposition 8.4].

Proof. Assume that (a) holds and put B = A[d] ∈ CAlg(C dual). We claim that B is 
descendable. By part (a) we have deg(A)(p) = d for all p ∈ Spc(C dual) and so supp(B) =
Spc(C dual) by the first part of Lemma 5.19. By Lemma 7.4, this is equivalent to B being 
descendable. It is only left to show that FB(A) = B×d. This is [6, Theorem 3.9(c)].
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Conversely if B is descendable then supp(B) = Spc(C dual). It follows from [9, Theorem 
1.7] that the map Spc(FB) : Spc(ModB(Ind(C dual))ω) → Spc(C dual) is surjective. Then 
A has constant degree if and only if FB(A) has constant degree by [41, Lemma 8.3]. By 
direct verification B×d has constant degree equal to d, see Example 5.17. �

We now prove step three.

Theorem 8.12. Let C ∈ CAlg(PrLst) be fin-connected. Then there is an inclusion 
CAlgsep,lcf(C dual) ⊆ CAlgcov(C ).

Proof. By assumption C �
∏n

i=1 Ci where each Ci is connected. We then get decompo-
sition

CAlgsep(C dual) �
n∏

i=1
CAlgsep(C dual

i ) and CAlgcov(C ) =
n∏

i=1
CAlgcov(Ci)

by Proposition 6.3, cf. [37, Proposition 7.2]. The canonical projection maps πi : C dual →
C dual
i induce maps on Balmer spectra ϕi : Spc(C dual

i ) → Spc(C dual). For A ∈
CAlgsep(C dual), Proposition 5.20 tells us that

deg(A)(ϕi(p)) = deg(πi(A))(p)

for all p ∈ Spc(C dual
i ) and 1 ≤ i ≤ n. This formula together with the fact that the map 

ϕi is the inclusion of a connected component (see proof of Proposition 3.7) yields the 
equivalence

CAlgsep,lcf(C dual) �
n∏

i=1
CAlgsep,cf(C dual

i ),

using that every locally constant Z-valued function on the connected space Spc(C dual
i ) is 

constant. Thus it suffices to show that CAlgsep,cf(C dual
i ) ⊆ CAlgcov(Ci) for all 1 ≤ i ≤ n. 

This is the content of Proposition 8.11. �
We are finally ready to state and prove the main result of this section.

Corollary 8.13. Let C ∈ CAlg(PrLst) be fin-connected. Then there is an equality

CAlgsep,lcf(C dual) = CAlgcov(C ).

Proof. Combining Theorems 8.10 and 8.12 we get inclusions

CAlgcov(C ) ⊆ CAlgsep,lcf(C dual) ⊆ CAlgcov(C ).

Therefore the inclusions in the previous display are in fact equalities. �
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9. Weak finite covers and separable algebras in limit categories

As we will see in the second part of this paper, there are many situations in which 
the containment of Lemma 8.8

CAlgw.cov(C ) ⊆ CAlgsep,f(C dual)

is in fact an equality. In this section we show that this property is preserved under 
arbitrary limits of stable homotopy theories, see Theorem 9.7. To this end, we will need 
to discuss limits of Galois categories in details, following [37]. We start by recalling the 
rank of an object in a Galois category from [37, Proof of 5.28].

Definition 9.1. Let C be a Galois category and consider an object x ∈ C . By the axiom of 
a Galois category, there exists an effective descent morphism x′ → ∗ and a decomposition 
x′ = x′

1 � . . .� x′
n such that each map x × x′

i → x′
i identifies with the fold map x × x′

i �
�Si

x′
i → x′

i for a finite set Si. We define the rank of x to be

rk(x) := sup
i

|Si|.

One can verify that the rank is well-defined, i.e. it does not depend on the effective descent 
morphism and decomposition chosen, by reducing, via the Galois correspondence, to the 
case that C = Fun(G , FinSet) for a finite groupoid G , and then using Example 9.3 below.

Example 9.2. Consider S ∈ FinSetG for some finite group G. In this case we have rk(S) =
|S|. To see this pick any effective descent morphism T → ∗. By virtue of [37, Proposition 
5.22(iii)], we deduce that T is nonempty. Decompose T into its orbits T �

∐
i G/Hi. Each 

projection map S ×G/Hi → G/Hi can be written as the fold map 
∐

|S| G/Hi → G/Hi, 
so the rank of S coincides with its cardinality.

Example 9.3. Consider a finite groupoid G �
∐

i Gi. In this case the rank of X = (Xi) ∈
Fun(G , FinSet) �

∏
i FinSetGi

is given by rk(X) = supi |Xi|.

We next verify that the notions of degree for separable algebras and of rank for Galois 
extensions coincide, in the cases in which they are both defined.

Proposition 9.4. Assume that C ∈ CAlg(PrLst) and that

A ∈ CAlgw.cov(C ) ⊆ CAlgsep,f(C dual)

is given. Then we have deg(A) = rk(A).

Proof. Before diving into the proof of the proposition it will be helpful to recall some 
facts about abstract Galois theory. Let C = CAlg(C )op and E be the collection of maps 
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A → B in C such that the base change functor B ⊗A − commutes with limits and is 
conservative. Then by [37, Lemma 6.4] the pair (C, E) forms a Galois context in the 
sense of [37, Definition 5.26] and the collection of Galoisable objects in the sense of [37, 
Definition 5.27]) agrees with the weak finite covers. After this small digression we are 
ready to prove the proposition. Let A be a finite cover so that there exists B ∈ CAlg(C )
faithful such that B ⊗ − : C → C preserve limits, and an equivalence of B-algebras 
A ⊗ B �

∏n
i=1 B[e−1

i ] for some idempotents ei. By the remark following the proof of 
[37, Proposition 5.28] (apply to the Galois context defined above), we may assume that 
B is itself a weak finite cover. It then follows from [37, Corollary 5.29] that the map 
1 → B is an effective descent morphism, so we can compute rk(A) using base-change 
along 1 → B. We regroup the above decomposition

FB(A) = A⊗B �
n∏

i=1
B[e−1

i ] =
s∏

j=1
(B[e−1

j ])×nj

by insisting that all the ej ’s are pairwise orthogonal, and that B[e−1
j ] = 0. Then by 

definition, the rank of A is given by maxj nj . Note that A is separable of finite degree 
by Theorem 8.7. We now claim that

deg(A) = deg(FB(A)) = rk(A).

The first equality follows from Proposition 5.13(a), so let us discuss the second one. For 
all Balmer primes p, we know that

deg(FBA)(p) =
s∑

j=1
nj deg(B[e−1

j ])(p)

by Lemma 5.16. Note that if j = k, then supp(B[e−1
j ]) ∩ supp(B[e−1

k ]) = ∅ as the idem-
potents are orthogonal. Therefore by [6, Corollary 3.12] and Lemma 5.18, we calculate

deg(FB(A)) = max
p

⎧⎨⎩
s∑

j=1
nj deg(B[e−1

j ])(p)

⎫⎬⎭ = max
j

{nj} = rk(A). �

We exploit the rank to describe limits of Galois categories as follows.

Lemma 9.5. Let K be a simplicial set, and let F : K → GalCat be a diagram. Then the 
limit of F exists and is given by

(limF )br ⊆ limF,

namely the full subcategory of the categorical limit spanned by the objects of bounded 
rank. In particular, if K has finitely many vertices, then limF = (limF )br.
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Proof. The proof is the same as that of [37, Lemma 5.37], see also [37, Remark 5.38]. �
Lemma 9.6. Let K be a simplicial set and let p : K → CAlg(PrLst) be a functor. Then the 
canonical functor

CAlgw.cov(lim
K

p) ∼−→ ( lim
k∈K

CAlgw.cov(p(k)))br

is an equivalence in Cat∞ (but also an equivalence of Galois categories).

Proof. Combine [37, Proposition 7.1] which equates CAlgw.cov(limK p) with a limit of 
Galois categories with Lemma 9.5 which describes limits of Galois categories. �

We now establish the permanence result formulated at the beginning of this section.

Theorem 9.7. Let K be a simplicial set and let p : K → CAlg(PrLst) be a functor. Suppose 
that for each k ∈ K, we have CAlgw.cov(p(k)) = CAlgsep,f(p(k)dual). Then we also have

CAlgw.cov(lim
K

p) = CAlgsep,f((lim
K

p)dual).

Proof. Consider the following commutative square in Cat∞:

CAlgsep,f((limK p)dual) limk CAlgsep,f(p(k)dual)

CAlgw.cov(limK p) limk CAlgw.cov(p(k)).

∼

The left vertical functor is fully faithful by Corollary 8.8 and the right vertical is an 
equivalence by our assumption. The horizontal arrows are fully faithful as they are sub-
functors of the equivalence in Lemma 2.7. We only need to prove that the left vertical 
arrow is essentially surjective. To this end pick a separable commutative algebra A with 
underlying dualizable module in limk p which has finite degree. Then its image (Ak) un-
der the top horizontal arrow will have bounded degree by Corollary 6.6. Under the right 
vertical equivalence this corresponds to a compatible sequence of weak finite covers (A′

k)
which by Proposition 9.4 must have bounded rank. Then by Lemma 9.6 there exists a 
weak finite cover A in limK p with components (A′

k). By construction the image of A′

under the left vertical arrow is A. �
For the next result recall that an object k of a simplicial set K is said to be weakly 

initial if it maps to any other object of K.

Proposition 9.8. Let K be a simplicial set and let p : K → CAlg(PrLst) be a func-
tor. Suppose that K admits a weakly initial object k0 such that CAlgw.cov(p(k0)) =
CAlgsep(p(k0)dual). Then we also have
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CAlgw.cov(lim
K

p) = CAlgsep((lim
K

p)dual).

Proof. Note that we have a natural transformation of functors from K to Cat∞

ι• : CAlgw.cov(p(•)) → CAlgsep(p(•)dual)

which is fully faithful at all vertices of K, by Corollary 8.8. Moreover ιk0 is an equivalence 
by our assumption. The same argument as in [13, Lemma 5.16] applies to show that

lim
k

ιk : lim
k

CAlgw.cov(p(k)) ∼−→ lim
k

CAlgsep(p(k)dual)

is an equivalence. Now there is a commutative diagram

CAlgsep((limK p)dual) limk CAlgsep(p(k)dual)

CAlgw.cov(limK p) limk CAlgw.cov(p(k))

∼

∼ limk ιk

where the top horizontal arrow is an equivalence by Proposition 6.3 and the left vertical 
arrow is fully faithful by Corollary 8.8. We ought to show that the left vertical arrow 
is essentially surjective. By the commutativity of the diagram it suffices to show that 
the bottom horizontal arrow is an equivalence. This would follow from Lemma 9.6 if we 
knew that any object in A ∈ limk CAlgw.cov(p(k)) had bounded rank (or bounded degree 
by Proposition 9.4). To see this, we write A = (Ak)k∈K and note that for all k ∈ K, we 
have deg(Ak0) ≥ deg(Ak) since k0 is weakly initial. It is only left to note that Ak0 has 
finite degree as, by our assumption, it is a weak finite cover. �
Corollary 9.9. Assume that C ∈ CAlg(PrLst), and let A ∈ CAlg(C ) be descendable. If

CAlgw.cov(ModA(C )) = CAlgsep(ModA(C )dual),

then we also have

CAlgw.cov(C ) = CAlgsep(C dual).

Proof. Recall from [37, Proposition 3.22] that in this case there is a symmetric monoidal 
equivalence C � Tot(ModA•+1(C )). The claim then follows from Proposition 9.8. �
Part 2. Applications: classification of separable commutative algebras

In this second part of the paper we use Galois theory to classify separable dualizable 
commutative algebras in various stable homotopy theories of interest. In more detail, 
we will study categories of modules over an E∞-ring A, which is either connective or 
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even periodic with π0(A) regular and Noetherian, categories of complete modules over 
an adic E∞-ring, categories of quasi-coherent sheaves on an even periodic derived stack 
or a spectral Deligne–Mumford stack, and finally the stable module category of a finite 
group of p-rank one.

10. Modules over an E∞-ring

In this section we classify all separable commutative algebras with underlying dualiz-
able module in the category of modules over an E∞-ring A, which is either connective 
or even periodic with π0(A) regular and Noetherian. As an application, we classify all 
separable commutative algebras in finite spectra.

Notation 10.1. Let A be an E∞-ring. The full subcategory of dualizable A-modules coin-
cides with the full subcategory of perfect A-modules. Therefore we write PerfA instead 
of Moddual

A .

We start by recalling the following definition from [35, Definition 7.5.0.4].

Definition 10.2. Let R be a discrete commutative ring and let φ : A → B be a map of 
E∞-rings.

• We let CovR denote the category of finite étale R-algebras. Here by finite we mean 
that the étale R-algebra is finitely generated as an R-module.

• We say that φ is étale if π0(φ) : π0(A) → π0(B) is étale (in the sense of classical 
commutative algebra), and A → B is flat in the sense of [35, Definition 7.2.2.10], i.e. 
the natural map π0(B) ⊗π0(A)π∗(A) → π∗(B) is an isomorphism and π0(A) → π0(B)
is flat.

Lemma 10.3 ([35, Theorem 7.5.4.2]). Let A be an E∞-ring. The ∞-category of étale 
A-algebras is equivalent under π0 to the category of étale π0(A)-algebras.

Finite étale algebras provide examples of separable algebras by the following result.

Lemma 10.4. For any E∞-ring A, we have fully faithful inclusions

Covπ0(A) ⊆ CAlgcov(ModA) = CAlgw.cov(ModA) ⊆ CAlgsep,f(PerfA).

Proof. Combine [37, Proposition 6.10] with Corollary 8.8. The above equality uses [37, 
Theorem 6.5]. �

In his work on Galois theory, Mathew exhibits two important classes of E∞-rings, for 
which the inclusion
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Covπ0(A) ⊆ CAlgcov(ModA)

is an equality. The next two results generalize this to include separable algebras with 
perfect underlying module.

Proposition 10.5. Let A be a connective E∞-ring. There is an equality

Covπ0(A) = CAlgsep(PerfA).

In particular, any separable commutative algebra in PerfA has finite degree.

Proof. The proof is a variation of the one of [39, Example 5.5].
Let B be a separable A-algebra and a perfect A-module. By Lemma 10.4, it will 

suffice to show that A → B is étale and that π0(A) → π0(B) is finite. For any morphism 
π0A → k into a field, we have maps of commutative rings

A → π0(A) → k.

Base-changing B along this composite, we get a separable commutative algebra k⊗A B

in Perfk by Construction 4.4. This is equivalent to a finite product of finite separable 
field extension of k by [40, Proposition 1.6].

We now argue that B is connective, for which we can assume that B = 0. Using [35, 
Corollary 7.2.4.5] we see that there is a smallest n ∈ Z with πn(B) = 0, and that the 
π0(A)-module πn(B) is finitely presented. There thus exists a residue field π0(A) → k

such that πn(B) ⊗π0(A) k = 0. By inspection of the Tor-spectral sequence [22, Chapter 
IV, Theorem 4.1]

E2
p,q = Torπ∗A

p,q (k, π∗(B)) ⇒ πp+q(k ⊗A B)

and using the minimality of n, one sees that 0 = k ⊗π0(A) πn(B) � πn(k ⊗A B). By the 
previous paragraph k ⊗A B is discrete, so we conclude that n = 0. It follows that B is 
connective and π0(B) is finitely presented as π0A-module. In particular, π0(A) → π0(B)
is finite.

We next argue that A → B is flat. By [35, Theorem 7.2.2.15], it suffices to verify that 
for any discrete A-module (i.e. π0(A)-module) N , the spectrum B⊗AN is discrete. Since

B ⊗A N � (B ⊗A π0(A)) ⊗π0(A) N,

it suffices to show that B⊗Aπ0(A) is a discrete, flat π0(A)-module. Now we appeal to the 
following fact of commutative algebra [48, Tag 068V]: given a commutative ring R and 
a perfect complex of R-modules P , then P is quasi-isomorphic to a projective R-module 
concentrated in degree 0 if and only if the same holds (over k) for P ⊗R k for every 
residue field k of R. We apply this result to R = π0(A) and P = B⊗A π0(A), using that 
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B ⊗A k is a finite product of separable extensions of k, and conclude that B ⊗A π0(A)
is a discrete, flat π0(A)-module. Thus A → B is flat.

It is only left to show that π0(A) → π0(B) is étale. Note that π0(A) → π0(B) is flat 
since A → B is so. It is also formally unramified since the Kähler-differentials satisfy 
Ωπ0(B)/π0(A) = 0 if and only if k ⊗π0(A) Ωπ0(B)/π0(A) = 0 for all residue field k of π0(A), 
and we know that k⊗π0(A) Ωπ0(B)/π0(A) � Ωπ0(B)⊗π0(A)k/k = 0 since k ⊆ π0(B) ⊗π0(A) k

is separable. We showed that π0(A) → π0(B) is finite, flat and formally unramified, so 
it is finite étale. �
Corollary 10.6. The only separable commutative algebras in finite spectra are those of the 
form (S0)×n for n ∈ N.

Proof. The ∞-category of spectra Sp can be identified with the ∞-category of mod-
ules over the sphere spectrum S0, which is connective. The étale fundamental group 
of π0(S0) = Z is trivial by Minkowski’s theorem, so the claim follows from Proposi-
tion 10.5. �

Recall that an E∞-ring A is even periodic if πi(A) = 0 if i is odd, and the multiplication 
map π2(A) ⊗π0(A) π∗(A) → π∗+2(A) is an isomorphism. The proof of the next result is 
inspired by [37, Theorem 6.29].

Theorem 10.7. Let A be an even periodic E∞-ring with π0(A) regular and Noetherian 
with 2 ∈ π0(A)×. Then we have

Covπ0(A) = CAlgsep(PerfA).

In particular, every separable commutative algebra in PerfA has finite degree.

Proof. Let B be a commutative separable A-algebra with perfect underlying A-module. 
One sees that π0(B) is a finite π0(A)-module by induction on the number of cells and 
using that A is Noetherian and even periodic. Therefore, it will suffice to show that 
A → B is étale. To do this, we can assume that π0(A) is regular local, say with maximal 
ideal m generated by a regular sequence (x1, . . . , xn) and residue field k. Our assumptions 
on A ensure that we can choose a structure of E1-algebra on

A/(x1, . . . , xn) := A/(x1) ⊗A . . .⊗A A/(xn) ∈ AlgE2
(ModA)

and that π∗(A/(x1, . . . , xn)) = k[t±1] with |t| = 2, see [1, Section 3]. Moreover 
A/(x1, . . . , xn) is automatically homotopy commutative by [49, Corollary 3.12]. We can 
then define a homology theory P∗ from the (homotopy) category of A-modules to the 
category of graded k[t±1]-modules by

P∗(M) = π∗(M ⊗A A/(x1, . . . , xn)).



N. Naumann, L. Pol / Advances in Mathematics 449 (2024) 109736 45
(here by homology theory we mean a functor which sends triangles to long exact se-
quences and preserves products). An easy argument using the Tor-spectral sequence and 
the fact that k[t±1] is a graded field, shows that the homology theory P∗ satisfies the 
Künneth isomorphism

P∗(M) ⊗k[t±1] P∗(N) � P∗(M ⊗A N).

If we endow the category of graded k[t±1]-modules with the graded tensor product and 
commutativity constraint x ⊗y = (−1)|x||y|y⊗x, then the functor P∗ lifts to a symmetric 
monoidal functor (this can be checked on homotopy categories). It will be convenient to 
replace this symmetric monoidal category of graded k[t±1]-modules with the equivalent 
symmetric monoidal category of super k-vector spaces sVectk. This is the category of 
Z/2-graded k-vector spaces endowed with the graded tensor product and commutativity 
constraint v ⊗ w = (−1)|v||w|w ⊗ v, so that by definition, any commutative algebra in 
sVectk is graded commutative. We denote the modified symmetric monoidal functor by 
Q∗ : ModA → sVectk. Then, Q∗(B) is a separable commutative algebra in sVectk, so by 
Lemma 10.8 below, we must have Q1(B) = 0. It then follows from [37, Lemma 6.32] that 
π1(B) = 0 and that π0(B) is a free π0(A)-module, necessarily finite. This in particular 
implies that A → B is flat and that π0(B ⊗A B) � π0(B) ⊗π0(A) π0(B) so that π0(B) is 
a separable π0(A)-algebra. It then follows from [24, Theorem 8.3.6] that π0(A) → π0(B)
is formally unramified and hence étale. �
Lemma 10.8. Let k be a field of characteristic p > 2 and let A = (A0, A1) ∈ CAlg(sVectk)
be separable. Then A1 = 0 and A0 is a finite product of finite separable field extensions 
of k.

Proof. We can argue in the same way as in the proof of [40, Lemma 1.4] and see that 
A1 = 0. From this it follows that A0 is a separable k-algebra and so a finite product of 
finite separable field extensions of k by [40, Proposition 1.6]. �
11. Complete modules over an adic E∞-ring

In this section we recall the ∞-category of complete modules over a connective E∞-
ring and we classify its dualizable and separable commutative algebras. We start by 
recalling some background and terminology following [33, Chapter 8.1].

Definition 11.1. An adic E∞-ring is a connective E∞-ring A with an adic topology on 
the commutative ring π0(A) admitting a finitely generated ideal I ⊆ π0(A) of definition.

Given a ideal I in a discrete commutative ring π0(A), one can form the I-adic tower 
of quotient rings

. . . → π0(A)/In → . . . → π0(A)/I2 → π0(A)/I.
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This tower governs the theory of I-adic completion for π0(A)-modules. The next results 
provide asimilar construction applicable to all adic E∞-rings.

Lemma 11.2. Let A be an adic E∞-ring with finitely generated ideal of definition I ⊆
π0(A). Then, there exists a tower . . . → A4 → A3 → A2 → A1 in the ∞-category CAlgA
of A-algebras satisfying the following properties:

(a) Each A-algebra Ai is connective and each map Ai+1 → Ai induces a surjection on 
π0 with nilpotent kernel.

(b) For every connective A-algebra B, the canonical map

lim
−→

HomCAlg(An, B) → HomCAlg(A,B)

induces a homotopy equivalence between the source and the summand of the target 
consisting of those maps A → B which annihilate some power of I.

(c) Each E∞-ring An is almost perfect when regarded as an A-module.

Moreover we can also arrange that the given map induces an isomorphism

π0(A)/I �−→ π0(A1).

Proof. The existence of a tower satisfying (a), (b) and (c) is proved in [33, Lemma 
8.1.2.2], and we note that the construction given there has the additional property that 
π0(A1) � π0(A)/I. �

As in classical commutative algebra, there is a notion of completeness for modules 
over an adic E∞-ring A. If I is an ideal of definition of π0(A), there is an associated full 
subcategory ModCpl(I)

A ⊆ ModA of I-complete A-modules [33, Definition 7.3.1.1]. The 
inclusion ModCpl(I)

A ⊆ ModA admits a left adjoint [33, Notation 7.3.1.5] which we refer 
to as the I-completion functor. The ∞-category ModCpl(I)

A is a stable homotopy theory 
where the symmetric monoidal structure is given by the completed tensor product [33, 
Corollary 7.3.5.2] (presentability and stability of ModCpl(I)

A follows by combining [33, 
Proposition 7.1.1.12 and Proposition 7.3.1.7]. The next result determines the complete 
modules which are dualizable with respect to this symmetric monoidal structure.

Theorem 11.3. Let A be an adic E∞-ring which is complete with respect to a finitely 
generated ideal of definition I ⊆ π0(A). Then we have the following equality of full 
subcategories

PerfA = ModCpl(I),dual
A ⊆ ModA

and the symmetric monoidal structures on PerfA and ModCpl(I),dual
A agree.
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Proof. The inclusion PerfA ⊆ ModCpl(I),dual
A holds because A is complete and 

ModCpl(I),dual
A ⊆ ModA is a thick subcategory.

To see the reverse inclusion we consider some M ∈ ModCpl(I),dual
A . To show that 

M ∈ PerfA, by [33, Corollary 8.3.5.9] it suffices to show that M is almost connective and 
that M ⊗A (π0(A)/I) is perfect. Since M is dualizable for the completed tensor product, 
so is the π0(A)/I-module M⊗A (π0(A)/I). Since I is zero here, this module is dualizable 
for the ordinary tensor product, i.e. it is perfect.

To see that M is almost connective, we choose generators I = (x1, . . . , xn), the cor-
responding Koszul-objects Ck := (A/x1) ⊗A · · · ⊗A (A/xk) (0 ≤ k ≤ n) and show by 
descending induction on k ≤ n that M ⊗A Ck is almost connective. The final case k = 0
will give the result since M ⊗A C0 = M . To start the induction, we claim that M ⊗ACn

is a perfect A-module, and in particular almost connective. It is clear that M ⊗A Cn is 
dualizable for the completed tensor-product, say with dual N . Since completion is exact, 
it commutes with − ⊗A Cn, and hence the fibre of the completion map

fib(M ⊗A Cn ⊗A N −→ (M ⊗A Cn)⊗̂AN) � Cn ⊗ fib(M ⊗A N −→ M⊗̂AN)

is both I-nilpotent ([33, Definition 7.1.1.6]) and I-local (using [33, Proposition 7.3.1.4]), 
and thus vanishes. Hence M ⊗A Cn is dualizable for the ordinary tensor product, as 
claimed.

For the induction step, we assume given 1 ≤ k ≤ n and that M ⊗A Ck is almost 
connective, say it is r-connective. Using the fibre sequences

M ⊗A Ck−1 ⊗A A/xn
k −→ M ⊗A Ck−1 ⊗A A/xn+1

k −→ M ⊗A Ck−1 ⊗A A/xk = M ⊗A Ck

and induction on n shows, that for every n, M ⊗A Ck−1 ⊗A A/xn
k is r-connective. Since 

M ⊗A Ck−1 is I-complete, we have

M ⊗A Ck−1 � lim
n

M ⊗A Ck−1 ⊗A A/xn
k ,

and this is (r−1)-connective by the Milnor exact sequence. This concludes the induction 
and the proof of the claimed equality. Regarding the symmetric monoidal structures, note 
that the unit objects of PerfA and ModCpl(I),dual

A agree as A is complete and that the 
tensor products of two perfect A-modules are already complete as it is perfect. �

This result implies the following description of complete dualizable modules as a limit, 
which will be the key to determining the separable algebras.

Corollary 11.4. Let A be an adic E∞-ring which is complete with respect to a finitely 
generated ideal of definition I ⊆ π0(A) and let {An} be its associated adic tower as given 
in Lemma 11.2. Then we have a symmetric monoidal equivalence

PerfA = ModCpl(I),dual
A

�−→ lim PerfAn
.

n
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Proof. Recall from the proof of [33, Theorem 8.3.4.4] that there is an adjunction

F : ModCpl(I)
A � lim

n
ModAn

: G

with F symmetric monoidal and given on objects by F (M) = {An ⊗A M}n and 
G({Mn}) = limn Mn. The cited result also proves that (F, G) restricts to an equiva-
lence on suitably connective objects, namely

F cn : ModCpl(I)
A ∩ Modcn

A
�−→ lim

n
Modcn

An
: Gcn. (11.1)

We will prove that the adjunction (F, G) restricts to an equivalence between dualizable 
objects. Let us first argue why the adjunction restricts to dualizable objects. A direct 
argument using [33, Proposition 7.3.5.1] and the fact that An ⊗A M is I-complete for 
all modules M , shows that F is symmetric monoidal and hence it restricts to dualizable 
objects. The argument for the functor G is more involved. Consider {Mn} ∈ limn PerfAn

, 
we want to show that limn Mn ∈ PerfA. We first observe that the connectedness of 
the compatible collection {Mn} is uniformly bounded below: this is because we have 
equivalences An ⊗An+1 Mn+1 � Mn with An and An+1 connective. It follows that there 
exists s ≥ 0 such that ΣsMn is connective for all n ≥ 0. Then by (11.1), the A-module 
G(ΣsMn) = lim ΣsMn is I-complete and connective. By [33, Corollary 8.3.5.9] the A-
module lim ΣsMn is perfect if (limn ΣsMn) ⊗A π0(A1) is a perfect π0(A1)-module (we 
used that π0(A1) = π0(A)/I). But using the adjoint equivalence (11.1)

(lim
n

ΣsMn) ⊗A π0(A1) = (lim
n

ΣsMn ⊗A A1) ⊗A1 π0(A1) = ΣsM1 ⊗A1 π0(A1)

which is perfect since M1 ∈ PerfA1 . It follows that G({ΣsMn}) and G({Mn}) are perfect 
A-modules. This shows that (F, G) restricts to an adjunction

F dual : PerfA = ModCpl(I),dual
A � lim

n
PerfAn

: Gdual.

The fact that (F dual, Gdual) is an adjoint equivalence now follows from (11.1) since any 
object in PerfA and limn PerfAn

is bounded below so up to suspending can be assumed 
to be connective. �
Remark 11.5. There are also variants of Theorem 11.3 for certain non-connective rings, 
for example [37, Proposition 10.11] which establishes the result for Morava E-theories. 
Mathew points out that this uses the regularity, as one can see by considering the cochain 
algebra A := C∗(BCp, E1) with E1 denoting p-complete K-theory. Then A is a finite 
flat E1-algebra, p-complete (but not regular), and we claim that the inclusion

PerfA � ModCpl((p)),dual
A
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is proper in this case. To see this, we recall from [28, Corollary 5.4.4] that the global 
sections functor is a symmetric monoidal equivalence

Fun(BCp,ModCpl((p))
E1

) �−→ ModCpl((p))
A .

Restricting to dualizable objects, we obtain a symmetric monoidal equivalence

Fun(BCp,PerfE1) � ModCpl((p)),dual
A .

The induced representation E1⊗Cp,+ is an object on the left hand side, which is not con-
tained in the thick subcategory generated by the unit (as one sees after rationalization). 
Its global sections are E1, considered as an A-module via the augmentation A −→ E1, 
which hence is an example of a p-complete dualizable A-module which is not perfect.

Theorem 11.6. Let A be an adic E∞-ring which is complete with respect to a finitely 
generated ideal of definition I ⊆ π0(A). Then

CAlgsep,f(ModCpl(I),dual
A ) � Covπ0(A)/I .

Proof. Let {An} be the associated adic tower of A, as in Lemma 11.2. Recall that

ModCpl(I),dual
A � lim

n
PerfAn

and that CAlgw.cov(ModAn
) = CAlgsep,f(PerfAn

) = Covπ0(An) by Proposition 10.5. 
Therefore by our descent result (Theorem 9.7) together with Lemma 9.6, we find that

CAlgsep,f(ModCpl(I),dual
A ) =

(
lim
n

CAlgsep,f(PerfAn
)
)br

=
(
lim
n

Covπ0(An)

)br
.

As the given map π0(An) → π0(A1) is a surjection with nilpotent kernel, we have 
Covπ0(An) � Covπ0(A1) (see [26, Theorem 18.1.2]), so the transition maps in the limit 
are all equivalences. It follows that

CAlgsep,f(ModCpl(I),dual
A ) � Covπ0(A1).

We conclude by recalling that π0(A1) � π0(A)/I. �
12. Chromatic homotopy theory

In this section we use our descent result to classify separable and dualizable algebras in 
the setting of chromatic homotopy theory. We have three main examples: the category 
of modules over Lubin-Tate theories over perfect fields, the category of modules over 
topological complex and real K-theories and the category of quasi-coherent sheaves on 
even periodic derived stacks defined over Spec(Z[1/2]).
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12.1. Chromatic localizations

In this section we fix a perfect field k of characteristic p > 0 and a formal group G0
of height n over k. This data determines a Lubin-Tate theory E(k; G0) ∈ CAlg, which 
we denote by E(k). The homotopy groups of E(k) are non-canonically isomorphic to

W (k)�u1, . . . , un−1�[u±1]

where |ui| = 0, |u| = 2 and W (k) denotes the ring of Witt vectors of k. The Lubin-Tate 
theory E(k) is even periodic with regular and noetherian π0(E(k)) so by Theorem 10.7
we can classify all separable commutative algebras in PerfE(k) provided that p = 2. In 
this section we will complete this classification result by showing that the same result 
also holds if p = 2.

To this end recall that for each n ≥ 0, the category of spectra admits localizations 
functors

Sp → SpT (n) → SpK(n)

where:

• SpT (n) denotes the full subcategory of Sp spanned by the T (n)-local objects. Here 
T (n) is the telescope of a vn-self map of a type n-spectrum.

• SpK(n) denotes the full subcategory of Sp spanned by the K(n)-local objects. Here 
K(n) denotes the Morava K-theory spectrum which is defined as

K(n) = E(k)/(u1) ⊗E(k) . . .⊗E(k) E(k)/(un−1) ∈ ModE(k).

Since E(k) is even periodic and the sequence (p, u1, . . . , un−2) is regular in π0(E(k)), 
we can choose a structure of E1-algebra on K(n) such that π∗(K(n)) = k[u±1] with 
|u| = 2, see [1, Section 3].

The above full subcategories admit the structure of stable homotopy theories making the 
above localizations into symmetric monoidal functors. Since the Lubin-Tate spectrum 
E(k) is K(n)-local, we obtain induced symmetric monoidal localizations

ModE(k) → ModE(k)(SpT (n)) → ModE(k)(SpK(n))

on the corresponding categories of modules. We have the following result which relates 
the dualizable objects in all these localizations.

Lemma 12.1. The above functors induce a symmetric monoidal equivalence of ∞-
categories

PerfE(k) � ModE(k)(SpT (n))dual � ModE(k)(SpK(n))dual.
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Proof. We note that any perfect E(k)-module is automatically K(n)-local (and so T (n)-
local) as E(k) is K(n)-local. It follows that we have fully faithful functors PerfE(k) →
ModE(k)(SpT (n))dual → ModE(k)(SpK(n))dual. The result follows from the fact that

(
ModE(k)(SpK(n))

)dual
� PerfE(k)

which is proved in [37, Proposition 10.11], see also Remark 12.2. �
Implicitly in the previous proof and often throughout this section we will use the 

following fact.

Remark 12.2. Given a Morava K-theory spectrum K(n) associated to a Lubin-Tate 
theory E(k), there are two candidates for the category of K(n)-local E(k)-modules:

ModE(k)(SpK(n)) and LK(n)ModE(k)

where the right hand side is the Bousfield localization of the category of E(k)-modules 
at K(n). These two categories agree by [29, Proposition 2.2].

Before diving into our classification result we will need some preliminary results.

Lemma 12.3. Let K(n) be the Morava K-theory spectrum attached to E(k). The K(n)-
homology functor

K(n)∗(−) := π∗(K(n) ⊗E(k) −) : ModE(k) → ModK(n)∗

is monoidal, and conservative on perfect E(k)-modules.

Proof. We note that for any E(k)-module M , the homology groups K(n)∗(M) are nat-
urally a graded module over K(n)∗ as K(n) admits an E1-algebra structure, so the 
functor is well defined. Monoidality follows using the Tor-spectral sequence and the fact 
that K(n)∗ is a graded field. By definition of Bousfield localization, the functor K(n)∗(−)
is conservative on K(n)-local E(k)-modules and so in particular it is conservative on all 
perfect E(k)-module. �
Construction 12.4. Let CAlgperf

k denote the category of perfect k-algebras, that is those 
k-algebras on which the Frobenius map is an isomorphism. As shown in [18, Definition 
2.32], the Lubin-Tate theory extends to a functor

E(−) : CAlgperf
k → CAlg(ModE(k)(SpT (n)))

in such a way that for any perfect k-algebra P , we have a non-canonical isomorphism

π∗(E(P )) � W (P )�u1, . . . , un−1�[u±1].
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Theorem 12.5. Let k be a perfect field of characteristic p > 0. Then any separable com-
mutative algebra in PerfE(k) has finite degree and there are equivalences

Covk � Covπ0(E(k)) � CAlgcov(ModE(k)) � CAlgsep(PerfE(k)).

Proof. The equivalence Covk � Covπ0(E(k)) follows from the fact that π0(E(k)) is a com-
plete local Noetherian ring with residue field k and that the étale site is invariant under 
thickenings, see [26, Theorem 18.1.2]. The second equivalence follows from Matthew’s 
work on Galois theory [37, Theorem 6.29]. Moreover by Theorem 8.10 we have the con-
tainment CAlgcov(ModE(k)) ⊆ CAlgsep(PerfE(k)). Therefore it is only left to show that 
any A ∈ CAlgsep(PerfE(k)) is a finite cover. It will then follows that A has finite degree.

Let us first deal with the case that k is an uncountable algebraically closed field. Recall 
that the K(n)-homology functor is monoidal and conservative by Lemma 12.3. We prove 
by induction on d = dimK(n)∗ K(n)∗(A) that A � E(k)d as a E(k)-algebra. The case 
d = 0 follows by conservativity of K(n)∗(−). Now suppose that d ≥ 1. By [18, Theorem 
6.21], the unit map E(k) → A admits a retraction so that A � E(k) ×A′ as algebras by 
Theorem 5.1. By the induction hypothesis A′ = E(k)×d−1 since dimK(n)∗(A′) = d − 1. 
It follows that A � E(k)d and so a finite cover. Thus we proved the theorem for k an 
uncountable algebraically closed field.

If k is a general perfect field, choose an uncountable algebraically closed extension 
k → l. We now claim that the induce map on Lubin-Tate theories E(k) → E(l) is 
faithfully flat. Flatness follows from [32, Theorem 6.1.2] provided that we show that the 
module of Kähler differentials Ωl/k vanishes. Note that Ωk/Fp

= 0 since k is a perfect 
field of characteristic p: given an Fp-derivation d on k we see that d(xp) = pxp−1d(x) = 0
for all x ∈ k, so d = 0 by surjectivity of the Frobenius map. Since l is also perfect, this 
gives Ωl/Fp

= 0. The transitivity sequence then implies Ωl/k = 0 as desired. It is only left 
to check that π0(E(k)) → π0(E(l)) is faithfully flat. But this follows as it is induced by 
the base changed map W (k) → W (l) which is faihtfully flat (as it is a flat map between 
local rings). It then follows from [38, Theorem 2.40] that there is an equivalence

ModE(k) � Tot(Mod
E(l)⊗E(k)•+1).

We can then apply Proposition 9.8 and the previous paragraph to conclude that

CAlgcov(ModE(k)) = CAlgw.cov(ModE(k)) = CAlgsep(PerfE(k))

where the first equality uses the fact that the unit is compact so there is no difference 
between weak finite covers and finite covers. �

For the rest of this section it will be convenient to write En for a Lubin-Tate theory 
associated to a perfect field k and a formal group of height n over k. Let Ln denote the 
functor of (Bousfield) localization at En. It is known that Ln is a smashing localization 
so LnSp � ModLnS0 .
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Proposition 12.6. We have

CAlgsep(PerfLnS0) = CAlgw.cov(ModLnS0) � CovZ(p) .

Proof. By work of Hopkins-Ravenel [44, Chapter 8], the E∞-ring En is descendable in 
ModLnS0 . By Theorem 12.5 we know that

CAlgsep(PerfEn
) = CAlgcov(ModEn

) = CAlgw.cov(ModEn
)

using that there is no difference between weak finite covers and finite covers as the unit 
is compact. Thus Corollary 9.9 applies to give

CAlgsep(PerfLnS0) = CAlgw.cov(ModLnS0)

proving the first claim. The second claim is proved in [37, Theorem 10.15]. �
We have already discussed that associated to En there is a Morava K-theory spectrum 

K(n). We refer the reader to [37, section 10.2] for more background, and in particular for 
the definition of the extended Morava stabilizer group Gext

n . The ∞-category of K(n)-
local spectra SpK(n) is an example of a stable homotopy theory where the unit object 
is not compact. We now classify all its separable commutative algebras with underlying 
dualizable module. To do this, we use the following result from the proof of [37, Theorem 
10.9].

Lemma 12.7. The canonical inclusion as the classically étale algebras

Covπ0(En) ⊆ CAlgw.cov(ModE(SpK(n)))

is an equality.

Proof. We have a chain of inclusions and equalities

CAlgw.cov(ModEn
(SpK(n))) ⊆ CAlgsep

(
ModEn

(SpK(n)))dual
)

=

= CAlgsep(PerfEn
) = Covπ0(En),

given in turn by Corollary 8.8, [37, Proposition 10.11], and Theorem 12.5. �
Proposition 12.8. We have

CAlgsep(Spdual
K(n)) = CAlgw.cov(SpK(n)),

and these are classified by the extended Morava stabilizer group Gext
n .



54 N. Naumann, L. Pol / Advances in Mathematics 449 (2024) 109736
Proof. We will show that CAlgsep(Spdual
K(n)) = CAlgw.cov(SpK(n)). The classification of 

the weak finite covers in the K(n)-local category is then due to Mathew [37, Theorem 
10.9]. To prove the claim we use that En is descendable in SpK(n) (see [37, Proposition 
10.10]) and apply Corollary 9.9, which reduces us to verifying that

CAlgsep
((

ModEn
(SpK(n))

)dual
)

= CAlgw.cov(ModEn
(SpK(n))).

By Lemma 12.1 there is a symmetric monoidal equivalence(
ModEn

(SpK(n))
)dual

� PerfEn
.

Theorem 12.5 implies CAlgsep(PerfEn
) = Covπ0(En). This agrees with the right hand 

side by Lemma 12.7 above. The implicit identifications are easily seen to be compatible, 
since in both cases they are given by the classically étale algebras. �
12.2. Topological K-theories

Let KU denote the E∞-ring of topological complex K-theory whose homotopy groups 
are given by Z[β±1] with |β| = 2. As 2 is not a unit in π0, we do not get a classification of 
separable commutative algebras in PerfKU just by the results of the previous subsection. 
The following result bridges this gap.

Theorem 12.9. The E∞-ring KU is separably closed, i.e., the only separable commutative 
algebras in PerfKU are those of the form KU×n for n ≥ 0.

Proof. An easy inspection on homotopy groups shows that there is a pullback of E∞-
rings

KU KU [1/2]

KU∧
2 (KU∧

2 )[1/2]

which induces a square of 2-rings

PerfKU PerfKU [1/2]

PerfKU∧
2

Perf(KU∧
2 )[1/2]

which we claim is cartesian. This follows from [31, Proposition 1.17] and the discussion 
after the cited result by noting that the canonical map KU [1/2] ⊗KUKU∧

2 → (KU∧
2 )[1/2]

is an equivalence by the Tor-spectral sequence.
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We now note that KU∧
2 is a form of Lubin-Tate theory at the prime 2 and height 1, and 

that KU [1/2] and (KU∧
2 )[1/2] are even periodic E∞-rings with regular and Noetherian 

π0 in which 2 acts invertibly. Therefore in these cases, Theorems 10.7 and 12.5 tells us 
that there is no difference between finite covers and separable commutative algebras with 
underlying dualizable objects. Therefore by Theorem 9.7 we find that

CAlgsep,f(PerfKU ) = CAlgw.cov(ModKU ) = CAlgcov(ModKU ) = CovZ

where in the second equality we used Proposition 7.6 and in the last equality we used [37, 
Theorem 6.29]. We are only left to argue why every separable algebra in PerfKU has finite 
degree, but this follows from the fact that there is a conservative symmetric monoidal 
exact functor

PerfKU → PerfKU∧
2
× PerfKU [1/2]

in the target of which every separable commutative algebra has finite degree. �
Next, we consider the real K-theory spectrum KO and recall from [46, Proposition 

5.3.1] that there is a faithful C2-Galois extension KO → KU .

Theorem 12.10. There is an equality CAlgsep(PerfKO) = CAlgcov(ModKO) and these 
are precisely those of the form KO×n ×KU×m for n, m ≥ 0.

Proof. The equality follows from Corollary 9.9 and the fact that faithful Galois extension 
are descendable [38, Proposition 3.21]. The classification of finite covers is proved in [37, 
Corollary 10.5(2)]. �
12.3. Affiness and topological modular forms

Let MFG be the moduli stack of formal groups. Let X be a Noetherian and sepa-
rated Deligne–Mumford stack together with a flat map X → MFG. For any étale map 
SpecR → X, the composition SpecR → X → MFG is again flat, so by the Landweber 
exact functor theorem there exists a canonically associated even periodic, multiplicative 
homology theory whose formal group is classified by the map SpecR → MFG. This de-
fines a presheaf of multiplicative homology theories on Affet

/X , the affine étale site of X. 
Following [39], we call an even periodic refinement of this data a pair X = (X, Otop)
where Otop is a sheaf of even periodic E∞-rings on Affet

/X lifting the above diagram of 
multiplicative homology theories. If we assume in addition that X is regular, then the 
E∞-ring Otop(SpecR) is weakly even periodic and regular. One then defines [39] a stable 
homotopy theory of quasi-coherent sheaves on X by

QCoh(X) := lim
(SpecR→X)∈Affet

ModOtop(Spec(R)),

/X
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and an E∞-ring of global sections

Γ(X,Otop) := lim
(SpecR→X)∈Affet

/X

Otop(Spec(R)).

Theorem 12.11. Let X be a regular Deligne–Mumford stack defined over Spec(Z[1/2]), 
let X → MFG be a flat, quasi-affine map and assume that there exists an even periodic 
refinement X = (X, Otop) as above. Then

CAlgsep(PerfΓ(X,Otop)) = CAlgcov(ModΓ(X,Otop)),

and these are classified by the étale fundamental group πét
1 (X).

Proof. Note that our assumptions imply that X is Noetherian and separated. There-
fore we are under the assumptions of [39, Theorem 4.1] so the result applies to give a 
symmetric monoidal equivalence

ModΓ(X,Otop) � QCoh(X). (12.1)

By definition, the stable homotopy theory QCoh(X) is a limit of module categories over 
regular, Noetherian, even periodic E∞-rings Otop(SpecR) where 2 acts invertibly. By 
Theorem 10.7, separable commutative algebras with underlying perfect module over 
these E∞-rings agree with the (weak) finite covers and these have all finite degree. Our 
descent result in the form of Theorem 9.7 applies to give

CAlgsep,f(QCoh(X)dual) = CAlgw.cov(QCoh(X)).

Note that in this case there is no difference between weak finite covers and finite covers 
since the unit object is compact by (12.1). Finally, the (weak) finite covers have already 
been classified by Mathew in [37, Theorem 10.4] by the étale fundamental group πét

1 (X). 
It is only left to argue that all separable commutative algebras in QCoh(X) with under-
lying perfect module have finite degree. To this end pick an étale cover Spec(R) → X

and observe that the corresponding pullback functor QCoh(X)dual → PerfOtop(Spec(R))
is conservative. As any separable algebra in the target of the pullback functor has finite 
degree by Theorem 10.7, it follows from [6, Theorem 3.7(b)] that the same is true for 
any separable algebra in QCoh(X)dual. �
Example 12.12 (Non-periodic topological modular forms). We consider Mell, the compact-
ification of the moduli stack Mell of elliptic curves. As discussed in [39, Section 7], work 
of Goerss-Hopkins-Miller-Lurie gives an even periodic refinement Otop on Mell whose 
E∞-ring of global section is the spectrum Tmf of non-connective, non-periodic topolog-
ical modular forms. The proof of [39, Theorem 7.2] shows that the map Mell → MFG is 
quasi-affine. We can now base change to Z(p) for some prime number p = 2 and obtain 
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Tmf(p) as the E∞-ring of global sections. Combining Theorem 12.11 with [37, Corollary 
10.5(1)] we find that the separable commutative algebras with perfect underlying module 
over Tmf(p) are classified by the étale fundamental group of Z(p).

13. Spectral Deligne–Mumford stacks

In this section we classify separable commutative algebras with underlying perfect 
module in the stable homotopy theory of quasi coherent sheaves on a spectral Deligne–
Mumford stack. We start by mildly elaborating on the relevant definition [33, Definition 
1.4.4.2].

Definition 13.1. A non-connective spectral Deligne–Mumford stack is a spectrally ringed 
∞-topos X = (X , OX ) satisfying the following conditions:

i) There is a collection of objects Uα ∈ X covering X and such that
ii) For each α there is an equivalence (X/Uα

, OX |Uα) � Spét(Aα) for some E∞-ring Aα.

A spectral Deligne Mumford-stack is a non-connective spectral Deligne-Mumford stack 
X = (X , OX ) with connective structure sheaf OX = τ≥0OX . We observe that in this case, 
all Aα appearing in ii) above are connective: Since

τ≥0(OX |Uα) � (τ≥0OX )|Uα
� OX |Uα

,

we see that Spét(Aα) is a spectral Deligne-Mumford stack, hence Aα is connective by [33, 
Corollary 1.4.5.3].

Example 13.2. Any Deligne–Mumford stack canonically determines a spectral Deligne–
Mumford stack by [33, Remark 1.4.8.3]. In particular, we can view any qcqs scheme as 
a spectral Deligne–Mumford stack.

Definition 13.3. Given a spectral Deligne–Mumford stack X, one associates with it a 
stable homotopy theory of quasi-coherent sheaves by setting

QCoh(X) = lim
Spec(R)→X

ModR (13.1)

where the limit runs over all maps Spec(R) → X with R a connective E∞-ring. For more 
discussion see [33, Proposition 6.2.4.1].

We recall the following result.

Lemma 13.4 ([33, Proposition 6.2.6.2]). Let X be a spectral Deligne-Mumford stack, and 
consider some F ∈ QCoh(X). Then, the following are equivalent:
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(a) F is dualizable in QCoh(X);
(b) F is perfect, that is F(Spec(R)) is a perfect R-module for all Spec(R) → X.

Example 13.5. For any Deligne–Mumford stack X, the homotopy category of QCoh(X)
identifies with Dqc(X), the derived category of complexes of OX-modules with quasi-
coherent cohomology, see [27, Remark 1.7] for details.

Theorem 13.6. Let X = (X, OX) be a spectral Deligne–Mumford stack. Then

CAlgsep,f(QCoh(X)dual) = CAlgw.cov(QCoh(X)),

and this category identifies with the category of finite étale covers of the underlying 
classical stack of X. If X is quasi-compact, then any separable commutative algebra in 
QCoh(X)dual has finite degree.

Proof. By (13.1), the ∞-category of quasi-coherent sheaves is a limit of module categories 
over connective E∞-rings R. For any such R, we have

Covπ0(R) = CAlgw.cov(ModR) = CAlgsep(PerfR)

by Proposition 10.5. In particular, all the categories are invariant under passage from R
to π0(R), i.e. under passage to the underlying classical stack. Therefore the first claim 
follows from Theorem 9.7, and the second is clear. For the final claim, suppose that 
X is quasi-compact so that we can find a cover Spét(R) → X where R is a connective 
E∞-ring. Note that the corresponding pullback functor QCoh(X)dual → PerfR is conser-
vative. As any separable algebra in the target of the pullback functor has finite degree 
by Proposition 10.5, it follows from [6, Theorem 3.7(b)] that the same is true for any 
separable algebra in QCoh(X)dual. �
Remark 13.7. If X = (X, OX) is a perfect stack in the sense of [33, Definition 9.4.4.1], 
then the structure sheaf OX is compact in QCoh(X) so there is no difference between 
weak finite covers and finite covers. Important examples of perfect stacks are:

• (stack-theoretic) quotients X/G for G an affine algebraic group defined over a field k
of characteristic zero and X is quasi-projective k-scheme, see [33, Example 9.4.4.4].

• quasi-compact and quasi-separated schemes by [33, Proposition 9.6.1.1].

For more example we refer to [27].

We note that the next result may alternatively be deduced form [40, Theorem 7.10], 
using Noetherian approximation.
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Corollary 13.8. Let X be a qcqs scheme. Then

CAlgsep(QCoh(X)dual) = CAlgcov(QCoh(X)),

and these are classified by the étale fundamental group πét
1 (X).

Proof. The first part of the claim follows from Theorem 13.6 together with the fact 
that X is perfect so there is no difference between weak finite covers and finite covers. 
Note that all separable algebras have finite degree by Theorem 13.6 and our assumption 
that X is quasi-compact. Finally, the description of the Galois group is given in [37, 
Discussion after Example 7.19]. �
14. The stable module category for finite groups of p-rank one

In this section we classify all commutative separable algebras of finite degree in the 
small stable module category of a finite group of p-rank one. This in particular answers 
affirmatively a question of Balmer in this case. We fix a field k of characteristic p > 0
and a finite group G.

Definition 14.1. We denote by ModG(k) the ∞-category Fun(BG, Mod(k)). The point-
wise tensor product turns this ∞-category into a stable homotopy theory with indecom-
posable unit object. Therefore ModG(k) is a connected stable homotopy theory.

As discussed in [36, Section 2], the category of k[G]-modules admits a combinatorial 
stable model structure in which the fibrations are the surjections, the cofibrations are 
the injections and the weak equivalences are the stable equivalences. The k-linear tensor 
product makes the category of k[G]-modules into a symmetric monoidal model category.

Definition 14.2. The stable module category StMod(G; k) is the ∞-categorical localiza-
tion of the category of k[G]-modules at the class of stable equivalences. This inherits 
the structure of a symmetric monoidal ∞-category by [35, Proposition 4.1.7.4.]. We de-
note by stmod(G; k) the full subcategory of compact objects; this also agree with the 
subcategory of dualizable objects.

Remark 14.3. The stable module category StMod(G; k) is a stable homotopy theory. It 
follows from Lemma 2.5 that stmod(G; k) is a 2-ring. One calculates that

π0(k) = Ĥ0(G; k) = cok(k |G|−−→ k),

so StMod(G; k) is a connected stable homotopy theory which is trivial if and only if p
does not divide the order of G.
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Definition 14.4. For every finite G-set X, we define a commutative algebra in k[G]-
modules by AG

X := k[X] with multiplication μ : AG
X ⊗ AG

X → AG
X and unit η : k → AG

X

obtained by extending k-linearly the formulas μ(x ⊗ x) = x and μ(x ⊗ x′) = 0 for all 
x = x′ ∈ X, and η(1) =

∑
x∈X x ⊗ x. For a subgroup H ⊆ G, we ease the notation 

by setting AG
H := AG

G/H . Note that AG
X can also be viewed as a commutative algebra in 

ModG(k) and stmod(G; k).

The next result was first observed by Balmer in [7, Proposition 3.16].

Lemma 14.5. For every finite G-set X, the commutative algebra AG
X is separable of finite 

degree in ModG(k) and stmod(G; k).

Proof. It is easy to check that AG
H is separable with bimodule section σ : AG

H → AG
H⊗AG

H

given by σ(x) = x ⊗x for all x ∈ G/H. The discussion in [6, Example 4.6] shows that for 
any H ⊆ G, the commutative algebra AG

H has finite degree in ModG(k) and stmod(G; k).
For a general finite G-set, we can write AG

X �
∏

i A
G
Hi

by decomposing X into its 
orbits. Then AG

X is separable by Example 4.3 and of finite degree by Lemma 5.16. �
We now recall the determination of finite covers in ModG(k).

Theorem 14.6 (Mathew). Let k be a separably closed field of characteristic p > 0 and let G
be a finite group. Then the Galois group π1(ModG(k)) is isomorphic to the quotient of G
by the normal subgroup Np(G) � G generated by the elements of order p.3 Furthermore, 
every object of CAlgcov(ModG(k)) is of the form AX for a finite G-set X with trivial 
Np(G)-action.

Proof. The calculation of the Galois group is due to Mathew [37, Theorem 7.16]. In the 
proof the author shows that the Galois covers are precisely those of the form AG

N for 
some normal subgroup N � G containing Np(G). Our claim about the shape of a general 
finite covers follows formally from this: Given A ∈ CAlgcov(ModG(k)), there exist Galois 
covers {AG

Nα
} and subgroups Nα ⊆ Hα such that A �

∏
α(AG

Nα
)hHα , see (the proof of) 

Theorem 8.7. Here Hα acts on AG
Nα

on the right by [g]Nα
.h = [gh]Nα

; one can check that 
this action is well-defined since Nα is normal in G. For each α, we find that

(AG
Nα

)hHα � (
∏

G/Nα

k)hHα �
∏

G/NαHα

k � AG
NαHα

= AG
Hα

as Nα ⊆ Hα. We conclude that A � AG
X for X =

∐
α AG

Hα
. �

The goal of this section is to settle the following question posed by Balmer [7, Question 
4.7] in the simplest non-trivial case.

3 The group Np(G) is traditionally denoted by Ω1(G) in group theory.
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Question 14.7. Let k be a separably closed field of positive characteristic and G a finite 
group, and let A be a separable commutative algebra in stmod(G; k). Is there a finite 
G-set X such that A � AG

X in stmod(G; k)?

Equivalently, we can ask if the only indecomposable separable algebras in stmod(G; k)
are those of the form AG

H for some subgroup H ⊆ G. Observe that by Theorem 14.6 this 
is also equivalent to asking if every separable algebra in stmod(G; k) lifts to ModG(k).

We remind the reader of the computation of the Balmer spectrum of the stable module 
category. Let k be a field of characteristic p > 0 and let G be a finite group. Let H•(G; k)
denote the commutative ring H∗(G; k) if p = 2, and Heven(G; k) otherwise, and write 
VG for the projective support variety Proj(H•(BG; k)). Note that VG is Noetherian since 
H•(G; k) is so [14, Corollary 4.2.2].

Theorem 14.8 ([15, Theorem 3.4]). There is a homeomorphism Spc(stmod(G; k)) � VG.

We next need a group-theoretical observation about finite groups of p-rank one. Recall 
that the p-rank of a finite group G is the largest integer n such that G has an elemen-
tary abelian subgroup of order pn. We recall the following classification result, see for 
instance [25, Sec. 5.4, Thm. 4.10].

Lemma 14.9. Let G be a finite group of p-rank one and let Gp ⊆ G be a Sylow p-subgroup. 
Then either Gp is cyclic, or p = 2 and Gp is a generalized quaternion group. Furthermore, 
all maximal elementary abelian p-subgroups of G are conjugate.

Corollary 14.10. Let G be a finite group and let k be a field of characteristic p, which 
divides the order of G. Then VG is discrete if and only if VG � ∗ if and only if G has 
p-rank one.

Proof. We have already noted that StMod(G; k) is a connected stable homotopy theory 
so its Balmer spectrum must be connected by Proposition 3.7. This immediately gives 
that VG is discrete if and only if VG � ∗. Let us now prove the other implications. Recall 
from [42, Corollary 7.8] that the Krull dimension of H•(BG; k) coincides with the p-rank 
of G, and that dimVG = dimH•(BG; k) −1. So if VG is discrete, then dimH•(BG; k) = 1
and so G must have p-rank one. Conversely if G has p-rank one, then dimH•(BG; k) = 1
and so dimVG = 0. We conclude by noting that any 0-dimensional Noetherian scheme 
is discrete [21, Exercise I.36]. �

The next result is our classification of finite separable algebras. In the special case that 
G is cyclic, this is due to Balmer-Carlson [10]. Observe however, that they prove more in 
this special case as they do not have to assume from the outset that their algebras have 
finite degree. We do not know if this finiteness condition holds in our situation, too.
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Proposition 14.11. Let k be a field of characteristic p > 0 and let G be a finite group of 
p-rank one. Then there is an equality

CAlgcov(StMod(G; k)) = CAlgsep,f(stmod(G; k))

between the finite covers and the separable and compact commutative algebras of finite 
degree.

Proof. Since G has p-rank one then Spc(stmod(G; k)) = ∗ by Corollary 14.10. It fol-
lows that any separable algebra of finite degree A has locally constant degree function 
deg(A) : Spc(stmod(G, k)) → Z. Therefore the claim follows from Corollary 8.13. �

The following example demonstrates that if the p-rank of G is not one, there are 
examples of separable algebras which are not finite covers. So our approach of classifying 
separable algebras via Galois theory will not give a conclusive answer in this case.

Example 14.12. Let G be elementary abelian p-group of rank 2 and let E ⊆ G an 
elementary abelian subgroup of rank 1. Then we have seen that AG

E is separable of 
finite degree in stmod(G; k). We observe that the degree function of AG

E is not locally 
constant on VG as it is nonzero exactly on the image of the inclusion ∗ = VE → VG. It 
then follows that AG

E is not a finite cover. To prove the claim about the degree function, 
it suffices to note that AG

H is equivalent to CoindG
H(k) and apply [9, Theorem 1.7]. Recall 

also that AG
E is a weak finite cover in ModG(k) so the same argument as above shows 

that not all weak finite covers have locally constant degree function. Note we have just 
given our first example of some C := StModG(k) ∈ CAlg(PrLst) for which the inclusion 
of full subcategories

CAlgw.cov(C ) � CAlgsep(C dual)

is proper. We also observe that [37, Theorem 9.2] exhibits C as a finite limit of module 
categories of localizations R of cochain-algebras.4 Consequently, we will also have

CAlgw.cov(ModR) � CAlgsep(PerfR)

for some such R.

By Proposition 14.11, we can use Galois theory to classify all separable algebras of 
finite degree in stmod(G; k) for G a finite group of p-rank one. We know as a special 
case of [37, Corollary 9.19] that the Galois group of the stable module category is the 
Weyl-group of a copy of Z/p ⊆ G. We next observe that the corresponding W -torsor 

4 This can be thought of as a categorification of the Greenlees-May spectral sequence from local cohomol-
ogy to Tate cohomology.
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is induced by the canonical action of the Weyl-group on AG
Z/p. We remark that this 

action happens already in the module category, but in general, it determines a W -Galois 
extension only after passage to the stable module category.

Lemma 14.13. Let k be a field of characteristic p > 0 and let G be a finite group of p-rank 
one. Let P denote a maximal elementary abelian subgroup of G so that P � Z/p. Write 
N for the normalizer of P in G, and W for the Weyl group of P in G so that W =
N/P . Then AG

P = k[G/P ] is an indecomposable and descendable W -Galois extension in 
stmod(G; k).

Proof. Note that AG
P has a canonical left G-action by left multiplication, making it 

an object of stmod(G; k), but it has also a right N -action by right multiplication via 
[g]P .n = [gn]P for all g ∈ G and n ∈ N . Clearly P ⊆ N acts trivially on AG

P so we get 
an induced W = N/P -action. The W and G actions are compatible to one another and 
so they make AG

P into an object with a W -action in stmod(G; k).
Note that AG

P is descendable by the second part of Lemma 5.19 and the fact that 
VG = ∗. Moreover, AG

P is indecomposable since

π0(AG
P ) = Ĥ0(P ; k) = k/|P | = k

by our assumption on the characteristic of the field.
Let us now show that the map h : AG

P ⊗ AG
P →

∏
W AG

P from Definition 7.13 is an 
equivalence. Let T be a complete set of representatives for the double coset P\G/P . The 
double coset formula tells us that the following G-equivariant map is an isomorphism:

∐
g∈T

βg :
∐
g∈T

G/P ∩ P g ∼−→ G/P ×G/P, βg([x]P∩P g ) = ([x]P , [xg−1]P ) (14.1)

see [41, Remark 10.6]. Since P is normal in N , we have P\N/P = N/P = W , so we can 
decompose T as T = W0 ∪ (T −W0) by picking representatives W0 for W . We note that 
P ∩P g = P if g ∈ W0, and P ∩P g = 1 otherwise. The double coset decomposition (14.1)
induces a ring isomorphism in the stable module category

τ : AG
P ⊗AG

P
∼−→

∏
g∈W0

AG
P ×

∏
g∈T−W0

AG
1 �

∏
g∈W0

AG
P

since AG
1 is projective. For all g ∈ W0 and x, y ∈ G, the map τ is defined as follows 

(see [41, Remark 10.6])

prgτ([x]P ⊗ [y]P ) =
{

[x]P if ∃ p ∈ P s.t y−1xpg−1 ∈ P

0 otherwise
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The condition y−1xpg−1 ∈ P can be rewritten as y−1xg−1(gpg−1) ∈ P which is equiv-
alent to y−1xg−1 ∈ P since gpg−1 ∈ P . Therefore we can simplify the formula of τ as 
follows:

prgτ([x]P ⊗ [y]P ) =
{

[xP ] if y−1xg−1 ∈ P

0 otherwise
(14.2)

We claim that τ agrees with the map h : AG
P ⊗ AG

P →
∏

W AG
P of the Galois condition. 

For all g ∈ W and x, y ∈ G, the map h is given by

prgh([x]P ⊗ [yP ]) = [x]P · [yg]P =
{

[x]P if [x]P = [yg]P
0 otherwise

(14.3)

where we used the definition of the multiplication in AG
P which we have recalled in 

Definition 14.4. The condition [x]P = [yg]P means that there exists p ∈ P such that 
xp = yg, and we can rewrite this as x−1yg ∈ P . Conjugating this last formula by g, we 
find that gx−1y = gx−1ygg−1 ∈ P g = P . Finally applying (−)−1 to this we find that 
y−1xg−1 ∈ P . But this is precisely the condition defining τ see (14.2). Therefore h = τ

and this is an isomorphism (as τ was).
It is only left to prove that η : k → (AG

P )hW is an equivalence. Since AG
P is faithful, it 

suffices to check that AG
P ⊗ η : AG

P → AG
P ⊗ (AG

P )hW is an equivalence. By Lemma 8.3, 
we can rewrite

AG
P ⊗ (AG

P )hW � (AG
P ⊗AG

P )hW � (
∏
W

AG
P )hW = AG

P

and so the required map is an equivalence. �
Theorem 14.14. Suppose we are in the situation of Lemma 14.13 and that the field k is 
separably closed. The Galois group of StMod(G; k) is isomorphic to W and the resulting 
equivalence

FinSetW � CAlgcov(StMod(G; k))op

can be chosen to send W to AG
P . Furthermore, Question 14.7 admits a positive answer 

in this case, if we assume in addition that the separable algebra has finite degree.

Proof. The fact that the Galois group is isomorphic to W is proved in [37, Corollary 
9.19] (together with the second part of Lemma 14.9 to remove one assumption from the 
cited result) and so by the Galois correspondence (Theorem 7.7) we get an equivalence

CAlgcov(StMod(G; k))op � FinSetW . (14.4)
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We next argue that the equivalence behaves as claimed. By Lemma 14.13 we know 
that AG

P is an indecomposable and descendable W -Galois extension. Thus by Proposi-
tion 7.14(b), it corresponds to the indecomposable W -torsor W in FinSetW , see Exam-
ple 7.12.

Finally, to see that Question 14.7 admits a positive answer as claimed, we assume 
that A is a compact and separable algebra in the stable module category, which has 
finite degree. By Proposition 14.11, A is a finite cover. It thus corresponds to a finite 
W -set X, which we can assume transitive, say X = W/U . We can write U = V/P . 
Since W/U = (W )hU , the coset W/U corresponds under the equivalence (14.4) to the 
indecomposable finite cover (AG

P )hU . Furthermore,

(AG
P )hU � (

∏
G/P

k)V/P �
∏
G/V

k = AG
V .

This provides a positive answer to Question 14.7. �
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